
Chapter 6

Arithmetic properties of overcubic parti-

tion triples

6.1 Introduction

From Section 1.7, we recall that a cubic partition (denoted by a(n)) of n is a partition

of n in which the even parts can appear in two colors. Assuming a(0) = 1, the

generating function is given by
∞∑
n=0

a(n)qn =
1

f1f2
.

Shortly after Chan introduced the cubic partition, Kim [97] studied the overpartition

analogue of the cubic partition, called the overcubic partition function. The number

of overcubic partitions of n, denoted by a(n) counts the number of overlined version

of the cubic partitions counted by a(n): that is, the cubic partitions where the first

instance of each part is allowed to be overlined. The generating function is given by
∞∑
n=0

a(n)qn =
f4
f 2
1 f2

. (6.1)

Zhao and Zhong [166] subsequently studied the number of cubic partition pairs,

The contents of this chapter have been jointly written with Dr. Manjil P. Saikia. The contents

of this chapter have been accepted for publication in Bulletin of the Australian Mathematical

Society [138].
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denoted by b(n) with the following generating function
∞∑
n=0

b(n)qn =
1

f 2
1 f

2
2

.

The overpartitions version of this function was studied by Kim [98], who denoted

by b(n) the number of overcubic partition pairs of n. The generating function for

this function is given by
∞∑
n=0

b(n)qn =
f 2
4

f 4
1 f

2
2

.

As can be seen, we can extend this definition even further, as was done recently

by Nayaka, Dharmendra, and Kumar [111]. They denoted by bt(n), the number of

overcubic partition triples of n, and gave the following generating function
∞∑
n=0

bt(n)qn =
f 3
4

f 6
1 f

3
2

. (6.2)

As mentioned in Section 1.4, Ramanujan-type congruences are widely studied

for many subsets of the partition function. Such studies have also been done for

a(n), a(n), b(n), b(n), and as mentioned in Section 1.7, very recently for bt(n) by

Nayaka, Dharmendra, and Kumar [111]. The main goal of this chapter is to extend

the list of congruences given by Nayaka, Dharmendra, and Kumar [111]. We also

extend the definition of overcubic partition triples to overcubic partition k-tuples

and explore arithmetic properties of this class of partitions.

Before stating our main results, we note that Nayaka, Dharmendra, and Kumar

[111, Eq. (46)] showed that for all n ≥ 1, we have

bt(2n+ 1) ≡ 0 (mod 2).

In fact, we have for all n ≥ 1

bt(n) ≡ 0 (mod 2). (6.3)

This follows easily from the binomial theorem by observing that
∞∑
n=0

bt(n)qn =
∞∏
i=1

(
1 + q2i

1 + q2i − 2qi

)3

=
∞∏
i=1

(
1 + 2

qi

1 + q2i − 2qi

)3

≡ 1 (mod 2).

We now state our first result.

79



Theorem 6.1. For all n ≥ 0, we have

bt(4n+ 3) ≡ 0 (mod 4), (6.4)

bt(8n+ 5) ≡ 0 (mod 32), (6.5)

bt(8n+ 6) ≡ 0 (mod 4), (6.6)

bt(8n+ 7) ≡ 0 (mod 64), (6.7)

bt(16n+ 10) ≡ 0 (mod 32), (6.8)

bt(16n+ 12) ≡ 0 (mod 4), (6.9)

bt(16n+ 14) ≡ 0 (mod 64), (6.10)

bt(32n+ 20) ≡ 0 (mod 32), (6.11)

bt(32n+ 24) ≡ 0 (mod 4), (6.12)

bt(32n+ 28) ≡ 0 (mod 64). (6.13)

Remark 6.2. Some of our congruences are better than those found by Nayaka,

Dharmendra, and Kumar. For instance, they had proved [111, Theorem 1] for all

n ≥ 0

bt(8n+ 5) ≡ 0 (mod 8) and bt(8n+ 7) ≡ 0 (mod 32).

They also proved [111, Theorem 4], for all n ≥ 0

bt(16n+ 10) ≡ 0 (mod 16) and bt(16n+ 14) ≡ 0 (mod 16).

Finally, they had also proved [111, Theorem 5]

bt(32n+ 20) ≡ 0 (mod 16) and bt(32n+ 28) ≡ 0 (mod 16).

There are numerous other congruences modulo powers of 2 and multiples of 3

that the bt(n) function satisfies. We prove the following two such congruences here

to give a flavour.

Theorem 6.3. For all n ≥ 0, we have

bt(72n+ 21) ≡ 0 (mod 128), (6.14)

bt(72n+ 69) ≡ 0 (mod 384). (6.15)

We prove Theorems 6.1 and 6.3 in Section 6.2, using Smoot’s implementation [148]

of Radu’s algorithm [122, 123] coming from the theory of modular forms.
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The main purpose of proving Theorem 6.1 was to ‘guess’ the following theorem.

Theorem 6.4. For all n ≥ 0 and α ≥ 0, we have

bt(2α(4n+ 3)) ≡ 0 (mod 4), (6.16)

bt(2α(8n+ 5)) ≡ 0 (mod 32). (6.17)

We prove Theorem 6.4 in Section 6.3 using elementary means.

Likewise, we can define bk(n) to be the number of overcubic partition k-tuples,

with the following generating function
∞∑
n=0

bk(n)q
n =

fk
4

f 2k
1 fk

2

. (6.18)

Then b1(n) = a(n), b2(n) = b(n) and b3(n) = bt(n). Similar to the bt(n) function,

there seems to be many congruences that the bk(n) function satisfies for powers of

2. We just state a few of them here, in the results below.

We begin with the following easy to prove result.

Theorem 6.5. For all n ≥ 0 and k ≥ 1 with n, k ∈ Z we have

b2k+1(n) ≡ a(n) (mod 4).

Proof. We have
∞∑
n=0

b2k+1(n)q
n =

f 2k+1
4

f
2(2k+1)
1 f 2k+1

2

=
f 2k
4 f4

f 4k
1 f 2k

2 f 2
1 f2

≡ f4
f 2
1 f2

(mod 4).

This completes the proof, via (6.1).

Our next theorem gives a general modulo 4 congruence for the overcubic partition

k-tuples function.

Theorem 6.6. For all n ≥ 0, k ≥ 0 with n, k ∈ Z and p ≥ 3 prime, and all

quadratic nonresidues r modulo p with 1 ≤ r ≤ p− 1 we have

b2k+1(2pn+R) ≡ 0 (mod 4),

where

R =

r, if r is odd,

p+ r, if r is even.
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Again the proof is not difficult, so we complete it here.

Proof of Theorem 6.6. From [142, Theorem 2.5], we know that, for all n ≥ 1, a(n) ≡

0 (mod 4) if and only if n is neither a square nor twice a square. So it is enough

for us to show that 2pn + R as defined above is never a square and never twice a

square, thanks to Theorem 6.5. Clearly, 2pn + R is always odd by definition, so it

cannot be twice a square. Next, from the definition of R we see that 2pn + R ≡ r

(mod p). Since r is defined to be a quadratic nonresidue modulo p, we know that r

cannot be congruent to a square modulo p. Thus, 2pn + R cannot equal a square.

This concludes the proof.

Our final congruence result is the following result.

Theorem 6.7. For all n ≥ 0 and k ≥ 0, we have

b2k+1(8n+ 1) ≡ 0 (mod 2),

b2k+1(8n+ 2) ≡ 0 (mod 2),

b2k+1(8n+ 3) ≡ 0 (mod 4),

b2k+1(8n+ 4) ≡ 0 (mod 2),

b2k+1(8n+ 5) ≡ 0 (mod 8),

b2k+1(8n+ 6) ≡ 0 (mod 4),

b2k+1(8n+ 7) ≡ 0 (mod 16).

We give a sketch proof of this theorem in Section 6.5.

Finally, it turns out that the partition function bt(n) is almost always divisible

by 2k for k ≥ 1. Specifically, we prove the following result in Section 6.4.

Theorem 6.8. For ℓ ≥ 1, let G(q) =
∑∞

n=0 bℓ(n)q
n. Then for every positive integer

k,

lim
X→∞

δ0(G, 2
k;X) = 1.

This chapter is organized as follows: Sections 6.2 – 6.4 contain the proofs of our

results, and we end this chapter with some concluding remarks in Section 6.6.

82



6.2 Proofs of Theorems 6.1 and 6.3

In this section we prove Theorems 6.1 and 6.3 using an algorithmic approach. More

specifically, we use Smoot’s [148] implementation of Radu’s algorithm [122, 123],

which can be used to prove Ramanujan type congruences of the form stated in

Section 6.1. The algorithm takes as an input the generating function
∞∑
n=0

ar(n)q
n =

∏
δ|M

∞∏
n=1

(1− qδn)rδ ,

and positive integers m and N , with M another positive integer and (rδ)δ|M is a

sequence indexed by the positive divisors δ ofM . With this input, Radu’s algorithm

tries to produce a set Pm,j(j) ⊆ {0, 1, . . . ,m − 1} which contains j and is uniquely

defined by m, (rδ)δ|M and j. Then, it decides if there exists a sequence (sδ)δ|N such

that

qα
∏
δ|M

∞∏
n=1

(1− qδn)sδ ·
∏

j′∈Pm,j(j)

∞∑
n=0

a(mn+ j′)qn,

is a modular function with certain restrictions on its behaviour on the boundary of

H.

Smoot [148] implemented this algorithm in Mathematica and we use his RaduRK

package, which requires the software package 4ti2. Documentation on how to intall

and use these packages are available from Smoot [148]. We use this implemented

RaduRK algorithm to prove Theorem 6.1 in the next section.

It is natural to guess that N = m (which corresponds to the congruence subgroup

Γ0(N)), but this is not always the case, although they are usually closely related to

one another. The determination of the correct value of N is an important problem

for the usage of RaduRK and it depends on the ∆∗ criterion described in the previous

subsection. It is easy to check the minimum N which satisfies this criterion by

running minN[M, r, m, j]. The generating function of bt(n) given in (6.2) can be

described by setting M = 4 and r = {−6,−3, 3}.

Proof of Theorem 6.1. We only prove (6.7) in detail. We use (6.2) and calculate

minN[4,{-6,-3,3},8,7], which gives N = 8, which is easily handled in a modest

83



laptop. Radu’s algorithm now gives a straight proof of (6.7). Here we give the

output of RK.

In[1] := RK[8,4,{-6,-3,3},8,7]∏
δ|M

(qδ; qδ)rδ∞ =
∞∑
n=0

a(n) qn

f1(q) ·
∏

j′∈Pm,r(j)

∞∑
n=0

a(mn+ j′) qn =
∑
g∈AB

g · pg(t)

Modular Curve: X0(N)

Out[2] =

N: 8

{M,(rδ)δ|M}: {4, {−6,−3, 3}}

m: 8

Pm,r(j): {7}

f1(q):
(q; q)69∞ (q4; q4)

30
∞

q15 (q2; q2)29∞ (q8; q8)64∞

t:
(q4; q4)

12
∞

q (q2; q2)4∞ (q8; q8)8∞

AB: {1}

{pg(t): g∈AB} {9792t15 + 6606336t14 + 905825280t13

+46058225664t12 + 1124900028416t11

+15177685794816t10 + 122507156520960t9

+616578030764032t8 + 1960114504335360t7

+3885487563472896t6 + 4607590516391936t5

+3018471877115904t4 + 949826648801280t3

+110835926040576t2 + 2628519985152t}

Common Factor: 64

The interpretation of this output is as follows.

The first entry in the procedure call RK[8, 4, {-6, -3, 3}, 8, 7] corresponds
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to specifying N = 8, which fixes the space of modular functions

M(Γ0(N)) := the algebra of modular functions for Γ0(N).

The second and third entry of the procedure call RK[8, 4, {-6, -3, 3}, 8,

7] gives the assignment {M, (rδ)δ|M} = {4, (−6,−3, 3)}, which corresponds to spec-

ifying (rδ)δ|M = (r1, r2, r4) = (−6,−3, 3), so that

∞∑
n=0

bt(n)qn =
∏
δ|M

(qδ; qδ)rδ∞ =
f 3
4

f 6
1 f

3
2

.

The last two entries of the procedure call RK[8, 4, {-6, -3, 3}, 8, 7] cor-

responds to the assignment m = 8 and j = 7, which means that we want the

generating function
∞∑
n=0

bt(n)(mn+ j)qn =
∞∑
n=0

bt(n)(8n+ 7)qn.

So, Pm,r(j) = P8,r(7) with r = (−6,−3, 3).

The output Pm,r(j) := P8,(−6,3,3)(7) = {7} means that there exists an infinite

product

f1(q) =
(q; q)69∞ (q4; q4)

30
∞

q15 (q2; q2)29∞ (q8; q8)64∞
,

such that

f1(q)
∞∑
n=0

bt(n)(8n+ 7)qn ∈M(Γ0(8)).

Finally, the output

t =
(q4; q4)

12
∞

q (q2; q2)4∞ (q8; q8)8∞
, AB = {1}, and {pg(t): g∈ AB},

presents a solution to the question of finding a modular function t ∈M(Γ0(8)) and

polynomials pg(t) such that

f1(q)
∞∑
n=0

bt(8n+ 7)qn =
∑
g∈AB

pg(t) · g

In this specific case, we see that the singleton entry in the set {pg(t): g∈ AB} has

the common factor 64, thus proving (6.7).

Since the proofs of the remaining congruences listed in Theorem 6.1 are similar,

we record only the values of the input and the corresponding common factors in the
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output below.

Congruence Input=RK[N,M,r,m,j] Common factor in the output

(6.4) RK[8,4,{-6,-3,3},4,3] 4

(6.5) RK[8,4,{-6,-3,3},8,5] 32

(6.6) RK[8,4,{-6,-3,3},8,6] 4

(6.8) RK[8,4,{-6,-3,3},16,10] 32

(6.9) RK[8,4,{-6,-3,3},16,12] 4

(6.10) RK[8,4,{-6,-3,3},16,14] 64

(6.11) RK[8,4,{-6,-3,3},32,20] 32

(6.12) RK[8,4,{-6,-3,3},32,24] 4

(6.13) RK[8,4,{-6,-3,3},32,28] 64

Remark 6.9. One can refer to [11] or [137] for some more recent applications of

the method.

Proof of Theorem 6.3. Since the proof of Theorem 6.3 is similar to the proof of

Theorem 6.1, we omit the details and record only the input and the corresponding

common factors in the output below.

Congruence Input=RK[N,M,r,m,j] Common factor in the output

(6.14) RK[12,4,{-6,-3,3},72,21] 128

(6.15) RK[12,4,{-6,-3,3},72,69] 384

6.3 Proof of Theorem 6.4

Proof of (6.16). Nayaka, Dharmendra, and Kumar had found [111, Eq. (45)]
∞∑
n=0

bt(n)qn =
f 3
4 f

15
8

f 18
2 f

6
16

+ 6q
f 5
4 f

9
8

f 18
2 f

2
16

+ 12q2
f 7
4 f

3
8 f

2
16

f 18
2

+ 8q3
f 9
4 f

6
16

f 18
2 f

3
8

. (6.19)
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From (6.19) we have
∞∑
n=0

bt(2n)qn ≡ f 3
2 f

15
4

f 18
1 f

6
8

(mod 4). (6.20)

Using (6.2) and (6.20) we obtain, for all n ≥ 0

bt(2n) ≡ bt(n) (mod 4). (6.21)

Combining (6.21) with (6.4) we obtain (6.16).

Remark 6.10. We note here, it can be proved that bt(n) ≡ a(n) (mod 4). With

this and a result of Sellers [142, Corollary 2.6] for a(n), we get an alternate proof

of (6.16).

Proof of (6.17). We re-write (6.2) as
∞∑
n=0

bt(n)qn =
f 3
4

f 3
2

· 1

(f 4
1 )

2
· f 2

1 .

Employing (4.17), (2.33) and then extracting the even powered terms of q, we have
∞∑
n=0

bt(2n)qn =
f 29
2

f 30
1 f

3
4 f

2
8

+ 16q
f 13
4 f

5
2

f 22
1 f

2
8

− 16q
f 2
8 f

19
2

f 26
1 f4

≡ f 2
1 f

13
2

f 3
4 f

2
8

+ 16qf 24
1 − 16qf 24

1 ≡ f 2
1 f

13
2

f 3
4 f

2
8

(mod 32).

Extracting the even powered terms of q by using (4.17), we have
∞∑
n=0

bt(4n)qn ≡ f 14
1 f

3
4

f 5
2 f

2
8

(mod 32). (6.22)

Again, re-writing (6.2) as
∞∑
n=0

bt(n)qn =
f 3
4

f 3
2

· 1

f 4
1

· 1

f 2
1

.

Employing (2.32), (2.33) and then extracting the even powered terms of q, we have
∞∑
n=0

bt(2n)qn =
f4f

17
2

f 22
1 f

2
8

+ 8q
f 3
4 f

2
8 f

7
2

f 18
1

≡ f2f4f
10
1

f 2
8

+ 8qf2f4f
18
1 (mod 32)

≡ f2f4
f 2
8

· (f 4
1 )

2 · f 2
1 + 8qf2f4 · (f 4

1 )
4 · f 2

1 (mod 32).

Employing (4.17), (2.31) and further extracting the even powered terms of q, we

have
∞∑
n=0

bt(4n)qn ≡ f 19
2

f 2
1 f

5
4 f

2
8

+ 16q
f 2
1 f

2
8 f

9
2

f 3
4

+ 16q
f 6
1 f

11
4

f 5
2 f

2
8

− 16q
f 2
8 f

41
2

f 6
1 f

17
4
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≡ f 19
2

f 2
1 f

5
4 f

2
8

+ 16qf 24
1 + 16qf 24

1 − 16qf 24
1

≡ f 19
2

f 2
1 f

5
4 f

2
8

+ 16qf16f8 (mod 32).

Finally, employing (2.32) and extracting the terms involving q2n, we have
∞∑
n=0

bt(8n)qn ≡ f 14
1 f

3
4

f 5
2 f

2
8

(mod 32). (6.23)

From (6.22) and (6.23), we have

bt(4n) ≡ bt(8n) (mod 32). (6.24)

Combining (6.5), (6.8), (6.11) and (6.24), we conclude the proof.

6.4 Proof of Theorem 6.8

Before going into the proof of Theorem 6.8, we recall some fundamental ideas from

the theory of modular forms. We recall that the Dedekind’s eta-function η(z) is

defined by

η(z) := q1/24(q; q)∞ = q1/24
∞∏
n=1

(1− qn),

where q := e2πiz and z ∈ H. A function f(z) is called an eta-quotient if it can be

expressed as a finite product of the form

f(z) =
∏
δ|N

η(δz)rδ ,

where N is a positive integer and each rδ is an integer.

Define

G(τ) :=
η(δ1τ)

r1η(δ2τ)
r2 · · · η(δuτ)ru

η(γ1τ)s1η(γ2τ)s2 · · · η(γtτ)st
= q

EG
24

∞∑
n=0

ρ(n)qn, (6.25)

where ri, si, δi, and γi are positive integers with δ1, ..., δu, γ1, ..., γt distinct, u, t ≥ 0

and

EG :=
u∑

i=1

δiri −
t∑

i=1

γisi.

We say that G(τ) is lacunary modulo M whenever
∑∞

n=0 ρ(n)q
n has that property.
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The weight of G(τ) is given by

1

2

(
u∑

i=1

ri −
t∑

i=1

si

)
.

Also define DG := gcd(δ1, δ2, . . . , δu). The following result by Cotron et al. [63] will

be useful in proving Theorem 6.8.

Theorem 6.11. [63, Theorem 1.1] Suppose G(τ) is an eta-quotient of the form

(6.25) with integer weight. If p is a prime such that pa divides DG and

pa ≥

√∑t
i=1 γisi∑u
i=1

ri
δi

, (6.26)

then G(τ) is lacunary modulo pj for any positive integer j. Moreover, there exists a

positive constant α, depending on p and j, such that the number of integers n ≤ X

with pj not dividing b(n) is O

(
X

logαX

)
.

Proof of Theorem 6.8. From (6.18), we recall
∞∑
n=0

bℓ(n)q
n =

f ℓ
4

f 2ℓ
1 f

ℓ
2

=
ηℓ(4z)

η2ℓ(z)ηℓ(2z)
.

Following the notations used in (6.25) and the paragraph succeeding it, we have

δ1 = 4, r1 = ℓ, γ1 = 1, s1 = 2ℓ, γ2 = 2, and s2 = ℓ.

Also DG = 4 and the weight is −ℓ ∈ Z. Next, we see that 22|4 and

22 ≥
√

2ℓ+ 2ℓ
ℓ
4

=
√
16 = 4.

Choosing p = 2 and a = 2 in Theorem 6.11, we complete the proof.

6.5 Sketch Proof of Theorem 6.7

From the work of Sellers [142, Corollary 2.3] we can write

∞∑
n=0

bt(n)q
n =

(
φ(q)

∏
i≥1

φ(q2
i

)3·2
i−1

)t

,

where

φ(q) := 1 + 2
∞∑
n=0

qn
2

= φ(q4) + 2qψ(q8),
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with ψ(q) :=
∑∞

n=0 q
n(n+1)/2. Since

(∏
i≥3 φ(q

2i)
)3·2i−1·t

is a function of q8, it is

enough to do the 8-dissection of the first three terms. Also, as the highest modulus

involved in the theorem is 16 and the other moduli are divisors of 16, we will prove

our result modulo if we consider only modulo 16 this 8-dissection. Re-writing

∞∑
n=0

bt(n)q
n =

(
7∑

j=0

at,jq
jFt,j(q

8)

)(∏
i≥3

φ(q2
i

)

)3·2i−1·t

,

where Ft,j(q
8) is a function of q8 whose power series representation has integer co-

efficients. It suffices to just prove the following congruences

at,1 ≡ 0 (mod 2),

at,2 ≡ 0 (mod 2),

at,3 ≡ 0 (mod 4),

at,4 ≡ 0 (mod 2),

at,5 ≡ 0 (mod 8),

at,6 ≡ 0 (mod 4),

at,7 ≡ 0 (mod 16).

We can do this using induction, and follows exactly the same pattern as the proofs

of [143, Theorem 2.2] and [139, Lemma 6.1], so we omit the details here.

6.6 Concluding Remarks

1. Based on numerical calculations, we speculated the following congruences sim-

ilar to (6.16) and (6.17): For all n ≥ 0 and α ≥ 0, we have

bt(2α(8n+ 7)) ≡ 0 (mod 64),

bt(144n+ 42) ≡ 0 (mod 384),

bt(2α(72n+ 21)) ≡ 0 (mod 128),

bt(2α(72n+ 69)) ≡ 0 (mod 128).

These congruences appeared as conjectures in a published paper [138] based

on this chapter. However, Chen et al. [51] proved the congruences.
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2. There is a closely related function to the bk(n) function, namely overpartition

k-tuples with odd parts. We denote by OPT k(n) the number of overpartition

k-tuples with odd parts of n. The generating function is given by
∞∑
n=0

OPT k(n) =
f 3k
2

f 2k
1 fk

4

.

In a series of papers [72, 139], the authors and their collaborators have studied

several arithmetic properties that this function satisfies. It seems that, some

of the techniques used in these papers translate directly for the bk(n) function.

In particular, the authors in [72] have explored congruences modulo powers

of 2 and 3 for the OPT 2k+1(n) function (with k ≥ 1), which we believe may

lead to similar results for the bk(n) function. Additionally, in [139] the authors

have also found inifnite family of congruences modulo small powers of 2 for

OPT 2k+1(n) (with k ≥ 1) and OPT 4(n), we believe similar results also hold

for bk(n).

3. We have just scratched the surface for congruences modulo powers of 2, a

systematic study will unearth several more. For instance, we believe that

Theorem 6.7 can be strengthened further by taking appropriate values of k;

however, the techniques that we have used in this chapter seem unsuitable to

find a more general result. We again leave this as a future direction of research.
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