
Chapter 7

Parity biases in integer partitions

7.1 Introduction

In 2022, Banerjee, Bhattacharjee, Dastidar, Mahanta and Saikia [20] proved (1.13)

by using combinatorial means. They also proved a conjecture of B. Kim, E. Kim,

and Lovejoy [102] using combinatorial means which we mention next.

Theorem 7.1. [20, Theorem 1.4] For n > 19, we have

do(n) > de(n),

where do(n) (resp. de(n)) denotes the number of partitions of n with distinct parts

with more odd parts (resp. even parts) than even parts (resp. odd parts).

In addition, they proved several more results on parity biases of partitions with

restrictions on the set of parts. For a nonempty set S ⊊ Z≥0, define

P S
e (n) := {λ ∈ Pe(n) : λi /∈ S}

and

P S
o (n) := {λ ∈ Po(n) : λi /∈ S},

The contents of this chapter have been jointly written with Mr. Pankaj Jyoti Mahanta and

Dr. Manjil P. Saikia. The contents of this chapter have been submitted for possible publication

[108].
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where the set Pe(n) (resp. Po(n)) consists of all partitions of n with more even parts

(resp. odd parts) than odd parts (resp. even parts). Let us denote the number

of partitions of P S
e (n) (resp. P S

o (n)) by pSe (n) (resp. pSo (n)). Banerjee et al. [20]

proved the following result.

Theorem 7.2. [20, Theorems 1.5, 1.6 and 1.7] For positive integers n, the following

inequalities are true (the range is given in the brackets),

p{1}o (n) < p{1}e (n), (n > 7), (7.1)

p{2}o (n) > p{2}e (n), (n ≥ 1), (7.2)

and

p{1,2}o (n) > p{1,2}e (n), (n > 8). (7.3)

All of the proofs of the above inequalities were by using combinatorial techniques.

Although they do not use this term, but partitions where the part 1 does not appear

are called non-unitary partitions and we will use this terminology in this chapter.

In 2023, B. Kim and E. Kim [100] gave two further refinements for parity biases

in ordinary integer partitions. For the first refinement, they let p(m,n) to be the

number of partitions of n with the number of odd parts minus the number of even

parts to be m. They proved the following result.

Theorem 7.3. [100, Theorem 1] For a positive integer m ≥ 0, we have

p(m,n) ≥ p(−m,n).

The second refinement is that parity bias still holds if any odd part ≥ 3 is not

allowed. This is given by the following theorem.

Theorem 7.4. [100, Theorem 2] Let k be a positive integer. Then, for all positive

integers n,

p{2k+1}
o (n) > p{2k+1}

e (n).

The proofs of these results involve both combinatorial and analytic techniques. In

2024, they [101] looked at some asymptotic results related to parity biases, which
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we do not mention here. Bringmann et al. [40] also studied asymptotics for parity

biases into distinct parts.

In view of (7.1), it is clear that the contribution of 1 towards parity bias is much

more than that of other odd parts.

The primary goal of this chapter is to use analytical techniques and prove results

of the type proved by Banerjee et al., that is about parity biases in partitions with

certain restrictions on its allowed parts. We reprove the inequality (7.1) using ana-

lytical techniques, as well as prove results in a similar setup for the biases discussed

in the work of B. Kim and E. Kim [99]. Our techniques can also be used to prove

partition inequalities of the type where the number of partitions of a certain class of

partitions are more than another class. This is explored for two classes of partitions

studied by Andrews [9] where the parts are separated by parity, where either all odd

parts are smaller than all even parts or vice versa.

The chapter is structured as follows: In Section 7.2 we collect some q-series iden-

tities which we will use later, in Section 7.3 we state and prove our main results,

namely on biases in ordinary non-unitary partitions, in Section 7.4 we look at in-

equalities on partitions with parts separated by parity. Finally we close the chapter

with some concluding remarks in Section 7.5.

7.2 Preliminaries

Recall Heine’s transformation [76, Appendix III.1], which says that for |z|, |q|, |b| ≤

1, we have
∞∑
n=0

(a)n(b)n
(q)n(c)n

zn =
(b)∞(az)∞
(c)∞(z)∞

∞∑
n=0

(z)n(c/b)n
(q)n(az)n

bn. (7.4)

By appropriately iterating Heine’s transformation, we obtain [76, Appendix III.3]

what is sometimes called the q-analogue of Euler’s transformation, which says that

for |z|, |abz
c
| ≤ 1, we have

∞∑
n=0

(a)n(b)n
(q)n(c)n

zn =
(abz/c)∞
(z)∞

∞∑
n=0

(c/a)n(c/b)n
(q)n(c)n

(abz/c)n. (7.5)
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The final set of auxiliary identities that we need is described below. Due to Euler

[6, p. 19], we know that

1

(a; q)∞
=

∞∑
n=0

an

(q; q)n
.

Therefore,

1

(q; q2)∞
=

∞∑
n=0

qn

(q2; q2)n
=

∞∑
n=0

qn

(−q)n(q)n
,

and

1

(q2; q2)∞
=

∞∑
n=0

q2n

(q2; q2)n
=

∞∑
n=0

q2n

(−q)n(q)n
.

Now, substituting c = −q, a, b→ 0, z = q in (7.4) we get
∞∑
n=0

qn

(−q)n(q)n
=

1

(−q)∞(q)∞

∞∑
n=0

q
n2+n

2 .

Again, substituting c = −q, a, b→ 0, z = q2 in (7.4) we get
∞∑
n=0

q2n

(−q)n(q)n
=

1

(−q)∞(q)∞

∞∑
n=0

(1− qn+1)q
n2+n

2 .

We use some of these identities in the next sections without commentary.

7.3 Biases in Ordinary Non-Unitary Partitions

Using analytical techniques, we will give a proof of the following result which was

proved by Banerjee et al. [20] combinatorially. We modify the notation a bit and let

qe(n) (resp. qo(n)) be the number of non-unitary partitions of n where the number

of even (resp. odd) parts are more than the number of odd (resp. even) parts.

Theorem 7.5. [20, Theorem 1.5] For all positive integers n ≥ 8, we have

qo(n) < qe(n).

Let pj,k,m(n) be the number of partitions of n such that there are more parts

congruent to j modulo m than parts congruent to k modulo m, for m ≥ 2. Then,

B. Kim and E. Kim [99] proved that for all positive integers n ≥ m2 −m + 1, we

have

p1,0,m(n) > p0,1,m(n).
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Let us now denote by qj,k,m(n) the number of non-unitary partitions of n such that

there are more parts congruent to j modulo m than parts congruent to k modulo

m, for m > 2. Then, we have the following result.

Theorem 7.6. For n ≥ 4m+ 3 and m > 2, we have

q0,1,m(n) > q1,0,m(n).

By standard combinatorial arguments, we have that
qbn

(q2; q2)n
is the generating

function for partitions with exactly n odd parts with the minimum odd part being

at least b, as well as it is the generating function for partitions with exactly n even

parts with the minimum even part being at least b. We will use this in the proofs

below without commentary.

Proof of Theorem 7.5. Let Po(q) (resp. Pe(q)) be the generating functions of qo(n)

(resp. qe(n). Then, we have

Po(q) =
∞∑
n=0

q3n

(q2; q2)2n
−

∞∑
n=0

q5n

(q2; q2)2n
= q3 + q5 + q6 + q7 + 2q8 + · · · ,

and,

Pe(q) =
1

(q2; q)∞
−

∞∑
n=0

q3n

(q2; q2)2n
= q2 + 2q4 + 3q6 + q7 + 5q8 + · · · .

Substituting c = q4, a, b→ 0, z = q3, q → q2 in (7.5) we get

Po(q) =
∞∑
n=1

q3n

(q2; q2)2n
(1− q2n)

=
1

(1− q2)

∞∑
n=1

q3n

(q4; q2)n−1(q2; q2)n−1

=
q3

(1− q2)

∞∑
n=0

q3n

(q4; q2)n(q2; q2)n

=
1

(q3; q2)∞

∞∑
n=0

q2n
2+5n+3

(q2; q2)n+1(q2; q2)n
=

1

(q3; q2)∞

∞∑
n=1

q2n
2+n

(q2; q2)n(q2; q2)n−1

=
1

(q3; q2)∞

∞∑
n=1

q2n
2+n

(q2; q2)2n
(1− q2n).

Substituting c = q2, a, b→ 0, z = q3, q → q2 in (7.5) we get

Pe(q) =
1

(q3; q2)∞

1

(q2; q2)∞
−

∞∑
n=0

q3n

(q2; q2)2n

=
1

(q3; q2)∞

∞∑
n=0

q2n
2

(q2; q2)2n
− 1

(q3; q2)∞

∞∑
n=0

q2n
2+3n

(q2; q2)2n
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=
1

(q3; q2)∞

∞∑
n=1

q2n
2

(q2; q2)2n
(1− q3n).

Now,

Pe(q)− Po(q) =
1

(q3; q2)∞

∞∑
n=1

q2n
2

(q2; q2)2n
(1− qn). (7.6)

Clearly, for the summands from n = 2 onward the coefficients are positive,

because if n is even, then 1− qn will be cancelled by a factor of (q2; q2)n and if n is

odd, then it will be cancelled by a factor of (q3; q2)∞.

From [102, Eq. (3.4)], we recall that

1

(q3; q2)∞

q(1− q)

(1− q2)2
= −q2 − q4 +

q(1 + q2)

(1− q2)
+

q

1− q2

∞∑
n=2

(−q2)n−1

(q2)n−1

(1 + q2n+1)q
3n2+n

2 .

Multiplying both sides of the above by q, we have

1

(q3; q2)∞

q2(1− q)

(1− q2)2
= −q3 − q5 +

q2(1 + q2)

(1− q2)
+

q2

1− q2

∞∑
n=2

(−q2)n−1

(q2)n−1

(1 + q2n+1)q
3n2+n

2 ,

(7.7)

where the left side of (7.7) is the case n = 1 in (7.6).

We see that the coefficients for all terms are nonnegative except for q3 and q5.

The terms in the expansion of the third summand of the right side of (7.7) consists

of terms of the form q2i for all i ∈ N. For n = 2 in the fourth summand of the right

side of (7.7) gives a series where the terms are of the form q2i+1 for all i ∈ N and

i ≥ 4. For all n > 2 the minimum power of q in the expansion of the fourth term of

the right side of (7.7) is greater than 9. Also, for all n > 1 the minimum power of q

in the expansion of Pe(q)− Po(q) is greater than or equal to 8. So, in each case the

coefficient of q7 is 0. This completes the proof.

Proof of Theorem 7.6. We start by acknowledging the fact that
qbn

(qm; qm)n
is the gen-

erating function with partitions into n parts congruent to b (mod m). Let P1,0,m(q)

(resp. P0,1m(q)) be the generating functions of q1,0,m(n) (resp. q0,1,m(n)). Then, we

have

P1,0,m(q) =
(qm+1, qm; qm)∞

(q2; q)∞

∞∑
n=0

q(m+1)n

(qm; qm)2n
− (qm+1, qm; qm)∞

(q2; q)∞

∞∑
n=0

q(m+1)n+mn

(qm; qm)2n
,
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and

P0,1,m(q) =
1

(q2; q)∞
− (qm+1, qm; qm)∞

(q2; q)∞

∞∑
n=0

q(m+1)n

(qm; qm)2n
.

Now,

P1,0,m(q) =
(qm+1, qm; qm)∞

(q2; q)∞

∞∑
n=0

q(m+1)n

(qm; qm)2n
(1− qmn)

=
(qm+1, qm; qm)∞

(q2; q)∞

∞∑
n=1

q(m+1)n

(qm; qm)n(qm; qm)n−1

=
(qm+1, qm; qm)∞

(q2; q)∞

qm+1

(1− qm)

∞∑
n=0

q(m+1)n

(qm, q2m; qm)n
.

By substituting, q → qm, a, b→ 0, c→ q2m and z → qm+1 in (7.5), we obtain

=
(qm; qm)∞
(q2; q)∞

qm+1

(1− qm)

∞∑
n=0

qmn2+2mn+n

(qm, q2m; qm)n

=
(qm; qm)∞
(q2; q)∞

∞∑
n=1

qmn2+n(1− qmn)

(qm; qm)2n
. (7.8)

Similarly, we have

P0,1,m(q) =
(qm; qm)∞
(q2; q)∞

∞∑
n=0

qmn2

(qm; qm)2n
− (qm; qm)∞

(q2; q)∞

∞∑
n=0

qmn2+(m+1)n

(qm; qm)2n

=
(qm; qm)∞
(q2; q)∞

∞∑
n=1

qmn2

(qm; qm)2n
(1− q(m+1)n). (7.9)

From (7.8) and (7.9), we have

P0,1,m(q)− P1,0,m(q) =
(qm; qm)∞
(q2; q)∞

∞∑
n=1

qmn2

(qm; qm)2n
(1− qn).

From the work of B. Kim and E. Kim [99, Lemma 2.1], we recall that the above

difference has nonnegative coefficients for all qk with k > 2m + 1. The summand

n = 2 is
(qm; qm)∞q

4m

(q3; q)∞(qm; qm)22
. This shows that coefficients of qk are positive for k ≥

4m+ 3. So, we have our result.

7.4 Inequalities between Partitions with Parts Sep-

arated by Parity

Andrews [8, 9] studied partitions in which parts of a given parity are all smaller

than those of the other parity, and proved several interesting results, which have
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been studied by other authors as well. We denote by pwx
yz (n), the cardinalities

of the class of partitions of n studied by Andrews. The symbols wx and yz are

formed with first letter either e or o (denoting even or odd parts) and second let-

ter either u or d (denoting unrestricted or distinct parts). The parts separated

by the symbol in the subscript are assumed to lie below the parts represented by

the superscript. This gives rise to eight different families of partitions, namely

poueu(n), p
od
eu(n), p

eu
ou(n), p

ed
ou(n), p

ed
ou(n), p

od
ed(n), p

eu
od(n) and pedod(n). The corresponding

generating functions for the class of partitions counted by pwz
yx (n) is denoted by

Pwz
yx (q) :=

∞∑
n=0

pwz
yx (n)q

n.

The corresponding set of all partitions counted by pwz
yx (n) is denoted by Pwz

yx (n).

Collectively we call all such partitions to be partitions with parts separated by

parity.

Recently, Ballantine and Welch [18] proved a few inequalities for partitions with

parts separated by parity with some additional conditions.

In this section we mainly look at some inequalities between P ou
eu (n) and P

eu
ou (n).

Unlike Ballantine and Welch [18], we do not put any additional conditions. We get

the following two generating functions from Andrews [9].

P ou
eu (q) :=

∞∑
n=0

poueu(n)q
n =

1

(1− q)(q2; q2)∞
,

and

P eu
ou (q) :=

∞∑
n=0

peuou(n)q
n =

1

1− q

(
1

(q; q2)∞
− 1

(q2; q2)∞

)
.

Note that the set P ou
eu (n) includes the partitions with all parts even or odd. But

P eu
ou (n) does not include the partitions with all parts even.

Now, we prove the following inequality between peuou(n) and p
ou
eu(n).

Theorem 7.7. For all n > 6, we have

peuou(n) > poueu(n).

Proof of Theorem 7.7. We have

P eu
ou (q)− P ou

eu (q) =
1

1− q

(
1

(q; q2)∞
− 2

(q2; q2)∞

)
=

1

(1− q)(q2; q2)∞

(
(q2; q2)2∞
(q; q)∞

− 2

)
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=
1

(1− q)(q2; q2)∞

( ∞∑
n=0

q
n2+n

2 − 2

)
,

where the last equality follows from [6, p. 23].

We now note that the products on the right side of the above can be rewritten

as

(1+ q+ q2+ q3+ · · · )
∞∏
i=1

(1+ q2i+ q4i+ q6i+ · · · )(−1+ q+ q3+ q6+ q10+ q15+ · · · ).

Let (1+ q+ q2+ q3+ · · · )
∞∏
i=1

(1+ q2i+ q4i+ q6i+ · · · ) =
∑
n≥0

anq
n. Then we can prove

that

a2n = a2n+1, for all n ≥ 0,

and the series begins as

1 + q + 2q2 + 2q3 + 4q4 + 4q5 + 7q6 + 7q7 + · · · ,

where the coefficients of qn are clearly monotonically non-decreasing. Multiplying

this with (−1+q+q3+q6+q10+q15+ · · · ) now shows that indeed the coefficients of

q2n+1 in P eu
ou (q)−P ou

eu (q) are nonnegative for n ≥ 1 (since each instance of a2n+1q
2n+1

multiplied with −1 will be cancelled out by a2nq
2n multiplied with q).

Let
∞∏
i=1

(1+q2i+q4i+q6i+ · · · ) =
∑
n≥0

b2nq
2n, where b2n is the number of partitions

of 2n with all parts even. To prove that the coefficients of q2n in P eu
ou (q) − P ou

eu (q)

are nonnegative for n ≥ 4, we have to prove that

a2n−1 + a2n−3 > a2n,

which means

a2n−2 + a2n−3 > a2n.

It is easy to see that

a2n =
n∑

i=0

b2i, and a2n−3 =
n−2∑
i=0

b2i.

This implies,

a2n−2 + a2n−3 − a2n =
n−2∑
i=0

b2i − b2n.
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So, to complete the proof, it is enough to show that

n−2∑
i=0

b2i − b2n > 0. (7.10)

This is not difficult to see combinatorially. We define the set P̃ (2n) to be the set

of partitions of 2n into even parts. Let Ã(2n) = P̃ (2n) \ {(2n), (2, 2, . . . , 2︸ ︷︷ ︸
n

)}. Then

we define an injection φ : Ã(2n) →
n−2⋃
i=1

P̃ (2i) by mapping any partition λ in Ã(2n)

to a partition in P̃ (2i) for 1 ≤ i ≤ n− 2 by removing the largest part of λ. And we

map (2n) to (2n − 4), and (2, 2, . . . , 2︸ ︷︷ ︸
n

) to (2n − 6), which is possible for all n ≥ 7.

This proves the inequality (7.10) for n ≥ 7. So, the coefficients of even powers of q

in P eu
ou (q)−P ou

eu (q) are positive for all n ≥ 14. Verifying for the smaller even powers

of q, we get the theorem.

Remark 7.8. In fact, it is possible to prove combinatorially that, for all n ≥ 7, we

have

b2n−4 + b2n−6 + b2n−8 + b2n−10 > b2n.

This will give an alternate justification of the previous proof without invoking the

map φ.

We also look at non-unitary versions of these types of partitions. Let us denote

by Qou
eu(n) and Q

eu
ou(n) the set of non-unitary partitions which are in the sets P ou

eu (n)

and P eu
ou (n) respectively. Let us denote the cardinalities of these two sets by qoueu(n)

and qeuou(n) respectively. If 1 is a part in any partition inside P ou
eu (n), then no even

part is there in that partition. So, we get the following generating function.

Qou
eu(q) :=

∞∑
n=0

qoueu(n)q
n =

1

(1− q)(q2; q2)∞
− q

(q; q2)∞
.

If 1 is not a part in any partition inside P eu
ou (n), then the least odd part of that

partition is greater than or equal to 3. So, in any case the partition can not contain

2 as a part. Therefore, we get the following generating function (for details see

Andrews [9]).

Qeu
ou(q) :=

∞∑
n=0

qeuou(n)q
n =

∞∑
n=0

q2n+3

(q3; q2)n+1(q2n+4; q2)∞
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=
q

(q2; q2)∞

( ∞∑
n=0

q2n(q2; q2)n
(q3; q2)n

− 1

)
=

1

(q; q2)∞
− q + 1

(q2; q2)∞
.

We now have the following result.

Theorem 7.9. For all n > 3, we have

qeuou(n) < qoueu(n).

Proof. We have

Qou
eu(q)−Qeu

ou(q) =
2− q2

1− q
· 1

(q2; q2)∞
− 1 + q

(q; q2)∞

=
1

(q2; q2)∞

∞∑
n=0

(
(2− q2)(1− qn+1)

1− q
− (1 + q)

)
q

n2+n
2

=
1

(q2; q2)∞

( ∞∑
n=0

(1 + q + q2 + · · ·+ qn)q
n(n+1)

2

−
∞∑
n=0

(1 + q)q
(n+1)(n+2)

2

)
=

1

(q2; q2)∞

(
1 +

∞∑
n=0

(1 + q + q2 + · · ·+ qn+1)q
(n+1)(n+2)

2

−
∞∑
n=0

(1 + q)q
(n+1)(n+2)

2

)
=

1

(q2; q2)∞

(
1 +

∞∑
n=1

(q2 + · · ·+ qn+1)q
(n+1)(n+2)

2

)
.

Hence, the coefficients of qn in Qou
eu(q)−Qeu

ou(q) are positive for all n > 3.

7.5 Concluding Remarks

There are several natural questions that arise from our study, including several av-

enues for further research. We list below a selection of such questions and comments.

1. Experiments suggest that the inequality in Theorem 7.5 can be strengthened.

We conjecture that, for all n > 9 we have

3qo(n) < 2qe(n).
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In fact, it is easy to see that this is true for all even n, since we have

2Pe(q)− 3Po(q) =
1

(q3; q2)∞

∞∑
n=1

q2n
2

(q2; q2)2n
(1− qn)2(2 + qn),

and when n is even then (1− qn)2 is cancelled by a factor of (q2; q2)2n.

2. Chern [57, Theorem 1.3] has recently proved for m ≥ 2 and for integers a and

b such that 1 ≤ a < b ≤ m, we have

pa,b,m(n) ≥ pb,a,m(n),

thus generalizing the result of B. Kim and E. Kim [99]. Limited data suggests

that this inequality is reversed if we consider qj,k,m(n) instead of pj,k,m(n). It

would be interesting to obtain a unified proof of this observation.

3. B. Kim, E. Kim, and Lovejoy [99] and B. Kim and E. Kim [99] also study

asymptotics of some of their parity biases. It would be interesting to study

such asymptotics for our cases as well.

4. All the proofs in this chapter are analytical. It would be interesting to obtain

combinatorial proofs of some of these results.

5. Analytical proofs of the inequalities (7.2) and (7.3) would also be of interest

to see if we can obtain more generalized results of a similar flavour.

6. Alanazi and Nyirenda [2] and Chern [55] study some more classes of partitions

where the parts are separated by parity, following the work of Andrews [9]. It

would be interesting to see if inequalities of the type proved in Theorems 7.7

and 7.9 can be proved for these cases as well as for other classes studied by

Andrews [9].

7. It appears that there are a lot of interesting (parity) biases to be unearthed

for different types of partition functions. A systematic study of such (parity)

biases would also be of interest.
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