
Chapter 1

Introduction

The thesis consists of seven chapters which includes this introductory chapter.

This chapter aims to briefly explain the topics of the thesis. It mainly contains three

topics. In Chapter 2, we study sign patterns and congruences of certain infinite

products related to the Rogers-Ramanujan continued fraction. In Chapters 3–6, we

study arithmetic properties of some partition functions which we shortly explain

in this chapter. And finally, in Chapter 7, we study parity biases in non-unitary

partitions (namely, the partitions where 1 is not allowed to be a part).

Throughout this thesis, for complex numbers a and q with | q |< 1 and integers

n ≥ 0, we define

(a; q)0 := 1, (a; q)n :=
n−1∏
j=0

(
1− aqj

)
, (a; q)∞ :=

∞∏
j=0

(
1− aqj

)
.

For convenience, we adopt the notations:

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n

and

(a1, a2, . . . , am; q)∞ := (a1; q)∞ (a2; q)∞ · · · (am; q)∞ .

For k ≥ 1, we also adopt

fk :=
(
qk; qk

)
∞ .

In the following sections, we present a few useful definitions as well as some back-

ground material.
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1.1 Ramanujan’s theta functions

Ramanujan’s general theta function f(a, b) [34, Eq. 1.2.1] is defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2 = (−a,−b, ab; ab)∞, | ab |< 1, (1.1)

where the last equality is Jacobi’s famous triple product identity [33, p. 35, Entry

19]. Three special cases of f(a, b) are

f(−q) := f(−q,−q2) =
∞∑

j=−∞

(−1)nqn(3n−1)/2 = f1, (1.2)

φ(q) := f(q, q) =
∞∑

j=−∞

qj
2

=
f 5
2

f 2
1 f

2
4

, (1.3)

ψ(q) := f
(
q, q3

)
=

∞∑
j=0

qj(j+1)/2 =
f 2
2

f1
. (1.4)

Replacing q by −q in (1.3) and (1.4), we have

φ(−q) = f 2
1

f2
, (1.5)

ψ(−q) = f1f4
f2

. (1.6)

We also define

χ(q) := (−q; q2)∞. (1.7)

The Euler Pentagonal Number Theorem [34, Corollary 1.3.5] is given by

f1 =
∞∑

k=−∞

(−1)nq
k(3k−1)

2 ≡
∞∑

k=−∞

q
k(3k−1)

2 (mod 2). (1.8)

1.2 The Rogers-Ramanujan continued fraction

The celebrated Rogers-Ramanujan continued fraction R(q) is defined as

R(q) :=
q1/5

1 +
q

1 +
q2

1 + · · ·

, |q| < 1,

and the Rogers-Ramanujan identities are given by

G(q) :=
∞∑
n=0

qn
2

(q; q)n
=

1

(q, q4; q5)∞
,
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H(q) :=
∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
,

where G(q) and H(q) are called the Rogers-Ramanujan functions.

Ramanujan [131] and Rogers [135] (see [33, Corollary, p. 30]) proved that

R(q) =
H(q)

G(q)
=

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

, (1.9)

where we have defined R(q) := q−1/5R(q).

1.3 n-Dissection of power series

For a power series P (q) in q and a positive integer n > 1, the n-dissection of P (q)

is given by

P (q) =
n−1∑
j=0

qjPj (q
n) ,

where Pj’s are power series in q. As an example, a 5-dissection of f1 [34, p. 165] is

f1 = f25

(
1

R (q5)
− q − q2R

(
q5
))

.

1.4 Partitions of positive integers

An integer partition of a positive integer n is a sequence of non-increasing parts

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 such that
k∑

i=1

λk = n. Let p(n) count the number of

partitions of any nonnegative integer n. For instance, there are 5 partitions of 4,

namely

4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1,

and hence p(4) = 5. The generating function of p(n) (due to Euler) is given by
∞∑
n=0

p(n)qn =
∞∏
i=1

1

(1− qi)
=

1

f1
,

where we take the convention, p(0)=1. For a general survey of the theory of parti-

tions, we refer to the books of Andrews [6] and Johnson [93].

One of the fundamental questions that arises in the theory of integer partitions
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is whether p(n) or any interesting subclass of partitions satisfy any nice arithmetic

properties. For p(n), this answer is found in the following celebrated congruences of

Ramanujan [128], [129], [130]: For all n ≥ 0, we have

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

In 1919, Ramanujan [128] also conjectured that if δ = 5a7b11c and γ is an integer

such that 24γ ≡ 1 (mod δ), then for all n ≥ 0,

p(δn+ γ) ≡ 0 (mod δ). (1.10)

In [36], Ramanujan proved (1.10) for the case when a is arbitrary and b = c = 0 but

the case when b is arbitrary and a = c = 0 of (1.10) turned out to be incorrect. The

corrected version of (1.10) is stated below.

If δ′ = 5a7b
′
11c, where b′ = b when b = 0, 1, 2 and b′ = ⌊ b+2

2
⌋ when b > 2, and γ

is an integer such that 24γ ≡ 1 (mod δ), then for all n ≥ 0,

p(δn+ γ) ≡ 0 (mod δ′).

In the above corrected version, Watson [154] proved the case when b is arbitrary

and a = c = 0. In 1967, Atkin [15] provided a proof of (1.10) for arbitrary c and

a = b = 0. In [87], Hirschhorn and Hunt found the exact generating function of

p(δn+ γ) for arbitrary a and b = c = 0.

1.5 Arithmetic density

Given an integral power series A(q) :=
∞∑
n=0

a(n)qn and 0 ≤ r ≤ M , the arithmetic

density δr(A,M ;X) is defined as

δr(A,M ;X) =
#{n ≤ X : a(n) ≡ r (mod M)}

X
.

An integral power series A is called lacunary modulo M if

lim
X→∞

δ0(A,M ;X) = 1,
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which means that almost all the coefficients of A are divisible by M .

Along with the study of Ramanujan-type congruences, the study of distribution

of the coefficients of a power series modulo M is also an interesting arithmetic

property to explore. In Chapters 4, 5 and 6, we study the arithmetic density of

some partition functions. For example, in Chapter 5, we prove that

Theorem 1.1. We have

lim
X→∞

#{0 ≤ n ≤ X : EO(10n+ 8) ≡ 0 (mod 10)}
X

= 1,

where the function EO(n) will be explained shortly in the paragraph succeeding

Theorem 1.3.

In the remaining part of this chapter, we briefly present the topics of the thesis.

1.6 Some infinite products related to the Rogers-

Ramanujan Identities

In his second notebook [131, p. 289] and the lost notebook [132, p. 365], Ramanujan

recorded the following elegant identity:

R5(q) = R(q5) · 1− 2qR(q5) + 4q2R2(q5)− 3q3R3(q5) + q4R4(q5)

1 + 3qR(q5) + 4q2R2(q5) + 2q3R3(q5) + q4R4(q5)
. (1.11)

The identity can also be found in his first letter to Hardy written on January 16,

1913. Various proofs of (1.11) can be found in the literature. For example, see the

papers by Rogers [136], Watson [152], Ramanathan [126], Yi [165], and Gugg [82].

In Chapter 2, we study the sign patterns of
1

R5(q)
, R5(q),

R5(q)

R(q5)
and

R(q5)

R5(q)
. For

instance, we prove that if A(n) is defined by

1

R5(q)
:=

∞∑
n=0

A(n)qn,

then for all nonnegative integers n, we have

A(5n+ 1) > 0.

We also prove some congruences for the infinite products mentioned above. For
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example, we prove that for all n ≥ 0, we have

A(9n+ 4) ≡ 0 (mod 3).

1.7 Some partition functions

Since the time of Euler, the study of various special subsets as well as generalizations

of the set of partitions has been an active topic of study. In this section, we take a

look at some partition functions that we study in this thesis.

The cubic partition function a(n) counts the number of partitions of a positive

integer n in which even parts can appear in two colors. This function was introduced

by Hei-Chi Chan [47], [48] in 2010 in connection to the so-called Ramanujan’s cubic

continued fraction. With the convention of a(0) = 1, the generating function of a(n)

is given by
∞∑
n=0

a(n)qn =
1

f1f2
.

Motivated by Ramanujan’s so-called “most beautiful identity”
∞∑
n=0

p(5n+ 4)qn = 5
f 5
5

f 6
1

,

Chan [47] proved the following analogous identity:
∞∑
n=0

a(3n+ 2)qn = 3
f 3
3 f

3
6

f 4
1 f

4
2

.

This clearly gives

a(3n+ 2) ≡ 0 (mod 3),

which is analogous to

p(5n+ 4) ≡ 0 (mod 5),

one of the three famous congruences for the partition function discovered by Ra-

manujan.

In Chapter 3, we find exact generating functions and congruences for some par-

tition functions related to the cubic partition function. For instance, we prove the

following theorem.
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Theorem 1.2. We have
∞∑
n=1

Λ(9n+ 5)qn = −3q
f1f

4
2 f

6
12

f 11
4

,

where the partition function Λ(n) will be defined in Section 3.1.

Next, a partition is said to be ℓ-regular if none of its parts is a multiple of ℓ.

For example, 3+3+2+1 is a 4-regular partition of 9. Let bℓ(n) denote the number

of ℓ-regular partitions of n. Then, with the convention, bℓ(0) = 1, the generating

function of bℓ(n) is given by
∞∑
n=0

bℓ(n)q
n =

fℓ
f1
.

The ℓ-regular partition function bℓ(n) has been studied quite extensively in the

recent past by various authors. It is to be noted that the function bℓ(n) for prime

ℓ gives the number of irreducible ℓ-modular representation of the symmetric group

Sn [92]. One can see the following non-exhaustive list of papers for various works

related to bℓ(n) for ℓ ≥ 3 (note that b2(n) counts the number of partitions of n into

odd parts, which is, by Euler’s theorem, equal to the number of partitions of n into

distinct parts); arranged in alphabetical order of the first authors:

Ahmed and Baruah [1], Alladi [4], Andrews, Hirschhorn, and Sellers [14], Bal-

lantine and Merca [17], Barman et al. [21], Baruah and Das [27], Calkin et al.

[45], Carlson and Webb [46], Cui and Gu [64], [65], [66], [67] Dai [69], Dai et al.

[70], Dandurand and Penniston [71], Furcy and Penniston [75], Gordon and Ono

[78], Granville and Ono [80], Hirschhorn and Sellers [89], Hou, Sun, and Zhang [90],

Iwata [91], Keith [94], Keith and Zanello [95, 96], Lin and Wang [104], Lovejoy [106],

Lovejoy and Penniston [107], Mestrige [120], Ono and Penniston [114, 115], Pennis-

ton [117, 118, 119], Singh and Barman [144, 145], Singh, Singh, and Barman [146],

Wang [151], Webb [155], Xia [157], Xia and Yao [158, 159], Yao [163, 164], Zhao,

Jin, and Yao [167].

In Chapter 4, we extend this study and find arithmetic properties of 5-regular

partitions into distinct parts (denoted by b′5(n)). For example, we show that
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Theorem 1.3. For all n ≥ 0,

b′5(2n+ 1) ≡

1 (mod 2), if n = 15k2 − 5k for k ∈ Z,

0 (mod 2), Otherwise.

Studies related to the partition function have been an active topic of study since

the last century. Studies related to restricted partition functions have also been of

interest. One such function was first introduced by Andrews [8, 9]. Let EO(n) count

the number of partitions of n in which each even part is less than each odd part.

Also, let EO(n) count the number of partitions of n counted by EO(n) in which

only the largest even part appears an odd number of times. Andrews [8, Corollary

3.2] proved that the generating function of EO(n) is given by
∞∑
n=0

EO(n)qn =
f 3
4

f 2
2

. (1.12)

Since then, many mathematicians have found several arithmetic properties for EO(n).

In Chapter 5, we extend this study and find new congruences and density results

for the EO(n) function. For example, we prove that

Theorem 1.4. For all n ≥ 0 and t ∈ {1, 2, 3, 4}, we have

EO(1250n+ 250t+ 208) ≡ 6EO(50n+ 10t+ 8) (mod 16),

EO(10n) ≡ 13EO(250n+ 8) ≡ 5EO(6250n+ 208) (mod 16),

EO(10n+ 6) ≡ 13EO(250n+ 158) ≡ 5EO(6250n+ 3958) (mod 16).

An overpartition [62] of n is a partition of n where the first occurence of a part

may be overlined. For example, the eight overpartitions of 3 are

3, 3̄, 2 + 1, 2̄ + 1, 2 + 1̄, 2̄ + 1̄, 1 + 1 + 1, and 1̄ + 1 + 1.

In 2024, Nayaka, Dharmendra, and Kumar [111] proved various arithmetic properties

for overcubic partition triples (denoted by bt) which is the overpartition version of

cubic partition triples. In Chapter 6, we extend this study and find new arithmetic

properties for overcubic partition triples. For example, we prove that

Theorem 1.5. For all n ≥ 0 and α ≥ 0, we have

bt(2α(4n+ 3)) ≡ 0 (mod 4),
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bt(2α(8n+ 5)) ≡ 0 (mod 32).

1.8 Parity biases in integer partitions

In the theory of partitions, inequalities arising between two classes of partitions

have a long tradition of study, see for instance work in this direction by Alder [3],

Andrews [7], McLaughlin [109], Chern, Fu, and Tang [59] and Berkovich and Uncu

[32]. In 2020, B. Kim, E. Kim and Lovejoy [102] introduced a phenomenon in integer

partitions called parity bias, wherein the number of partitions of n with more odd

parts (denoted by po(n)) are more in number than the number of partitions of n

with more even parts (denoted by pe(n)). To be specific, they proved the following

theorem.

Theorem 1.6. For n ̸= 2, we have

po(n) > pe(n). (1.13)

Further generalizations of the results of B. Kim, E. Kim, and Lovejoy [102] have

been found by B. Kim and E. Kim [99] and Chern [57].

In Chapter 7, we study parity biases in non-unitary partitions, i.e., partitions

where the part 1 is not allowed to be a part of the partition. We also study parity

biases for another class of partitions defined by Andrews [8, 9].

9


	05_chapter 1

