
Chapter 2

Sign patterns and congruences of certain

infinite products involving the Rogers -

Ramanujan continued fraction

2.1 Introduction

In 1978, Richmond and Szekeres [134] examined asymptotically the power series

coefficients of a large class of infinite products including the product given in (1.9)

and its reciprocal. In particular, they [134, Eq. (3.9)] proved that, if

1

R(q)
=

(q2; q5)∞(q3; q5)∞
(q; q5)∞(q4; q5)∞

:=
∞∑
n=0

c(n)qn,

then

c(n) =

√
2

(5n)3/4
exp

(
4π

25

√
5n

)
×
{
cos

(
2π

5

(
n− 2

5

))
+O(n−1/2)

}
,

which implies that, for n sufficiently large,

c(5n) > 0, c(5n+ 1) > 0, c(5n+ 2) < 0, c(5n+ 3) < 0, and c(5n+ 4) < 0. (2.1)

The contents of this chapter have appeared in The Ramanujan Journal [30].
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They also gave a similar result for the power series coefficients of R(q) from which

it follows that, for n sufficiently large,

d(5n) > 0, d(5n+ 1) < 0, d(5n+ 2) > 0, d(5n+ 3) < 0, and d(5n+ 4) < 0,

(2.2)

where

R(q) =
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

:=
∞∑
n=0

d(n)qn.

Ramanujan, in his lost notebook [132, p. 50] recorded formulas for
∑∞

n=0 c(5n+

j)qn and
∑∞

n=0 d(5n+ j)qn, 0 ≤ j ≤ 4, which were proved by Andrews [5] (Also see

Andrews and Berndt [10, Chapter 4]). Andrews used the formulas and a theorem

of Gordon [77] to give partition-theoretic interpretations of these coefficients, and

hence proved that (2.1) and (2.2) hold for all n except c(2) = c(4) = c(9) = 0,

d(3) = d(8) = 0. Using the quintuple product identity [60], Hirschhorn [84] found

exact q-product representations of
∑∞

n=0 c(5n+j)q
n and

∑∞
n=0 d(5n+j)q

n, 0 ≤ j ≤ 4,

and concluded the periodicity of the signs of the coefficients c(n) and d(n), with two

more exceptions, namely d(13) = d(23) = 0.

There are results on periodicity of the signs of the coefficients of certain infinite

products in more general settings. For 1 ≤ r, s < m, define

Fm,r,s(q) :=
(qr; qm)∞(qm−r; qm)∞
(qs; qm)∞(qm−s; qm)∞

.

Note that F5,1,2(q) = R(q). In 1988, Ramanathan [127] proved the following result.

Theorem 2.1. Suppose gcd(m, r) = 1. Let

Fm,2r,r(q) =
∞∑
n=0

b(n)qn.

If gcd(m, 6) = 1, the signs of the b(n)’s are periodic with period m.

Chan and Yesilyurt [49] proved Theorem 2.1 using the ideas of Hirschhorn [84] in

a more general setting and without the condition gcd(m, 6) = 1. They also studied

the periodicity of infinite products for some other values of r and s. Chern and Tang

[58] studied the sign patterns of certain q-products related to the Rogers-Ramanujan

continued fraction, namely, R(q)R2(q2), R2(q)/R(q2) and their reciprocals. For work

on the periodicity of coefficients of similar infinite products, one can look at the
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following non-exhaustive list of papers: Dou and Xiao [73], Hirschhorn [85], Lin

[105], Tang [149], Tang and Xia [150], Xia and Yao [160], and Xia and Zhou [161].

In this chapter, we investigate the behavior of the signs of the coefficients of the

infinite products R5(q), R5(q)/R(q5), and their reciprocals appearing in (1.11). We

also find some interesting congruences satisfied by some coefficients. We state our

results in the following theorems.

Theorem 2.2. If A(n) is defined by

1

R5(q)
:=

∞∑
n=0

A(n)qn,

then for all nonnegative integers n, we have

A(5n+ 1) > 0, (2.3)

A(5n+ 2) > 0, (2.4)

A(5n+ 3) > 0, (2.5)

A(5n+ 4) < 0. (2.6)

Theorem 2.3. If B(n) is defined by

R5(q) :=
∞∑
n=0

B(n)qn,

then for all nonnegative integers n, we have

B(5n+ 1) < 0, (2.7)

B(5n+ 2) > 0, (2.8)

B(5n+ 3) < 0, (2.9)

B(5n+ 4) > 0. (2.10)

Theorem 2.4. If C(n) is defined by

R5(q)

R(q5)
:=

∞∑
n=0

C(n)qn,

then for all nonnegative integers n, we have

C(5n) < 0, (2.11)

C(5n+ 1) < 0, (2.12)

C(5n+ 2) > 0, (2.13)
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C(5n+ 3) < 0, (2.14)

C(5n+ 4) > 0, (2.15)

except C(0) = 1.

Remark 2.5. Theorem 2.4 shows that the signs of C(n) are periodic with period 5.

Theorem 2.6. If D(n) is defined by

R(q5)

R5(q)
:=

∞∑
n=0

D(n)qn,

then for all nonnegative integers n, we have

D(5n) < 0, (2.16)

D(5n+ 2) > 0, (2.17)

D(5n+ 3) > 0, (2.18)

D(5n+ 4) < 0, (2.19)

except D(0) = 1.

We state some congruences satisfied by A(n), B(n), C(n), and D(n) in the next

theorem.

Theorem 2.7. For all n ≥ 0, we have

A(9n+ 4) ≡ 0 (mod 3), (2.20)

B(9n+ 2) ≡ 0 (mod 3), (2.21)

A(16n+ 13) ≡ 0 (mod 4), (2.22)

B(16n+ 11) ≡ 0 (mod 4), (2.23)

A(15n+ r) ≡ 0 (mod 15),where r ∈ {4, 8, 13, 14}, (2.24)

B(15n+ r) ≡ 0 (mod 15),where r ∈ {2, 6, 11, 12}, (2.25)

C(15n+ r) ≡ 0 (mod 30),where r ∈ {3, 13}, (2.26)

D(15n+ r) ≡ 0 (mod 30),where r ∈ {7, 12}. (2.27)

We organize this chapter as follows: In the next section, we give some preliminary

results on Ramanujan’s theta functions and t-dissections. In Sections 2.3–2.7, we
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prove Theorems 2.2–2.7. Some concluding remarks and conjectures are presented in

the final section of this chapter.

2.2 Preliminary lemmas

In the following lemma, we recall two useful identities.

Lemma 2.8. [33, p. 51 and p. 350] We have

f(q, q5) = ψ(−q3)χ(q), (2.28)

f(q, q2) =
φ(−q3)
χ(−q)

, (2.29)

where

χ(−q) = (q; q2)∞ =
f1
f2
. (2.30)

In the next three lemmas, we recall some known 2-, 3-, and 5-dissection formulas.

Lemma 2.9. [26, Lemma 2] We have

f 4
1 =

f 10
4

f 2
2 f

4
8

− 4q
f 2
2 f

4
8

f 2
4

, (2.31)

1

f 2
1

=
f 5
8

f 5
2 f

2
16

+ 2q
f 2
4 f

2
16

f 5
2 f8

, (2.32)

1

f 4
1

=
f 14
4

f 14
2 f

4
8

+ 4q
f 2
4 f

4
8

f 10
2

, (2.33)

f1
f5

=
f2f8f

3
20

f4f 3
10f40

− q
f 2
4 f40
f8f 2

10

, (2.34)

f5
f1

=
f8f

2
20

f 2
2 f40

+ q
f 3
4 f10f40
f 3
2 f8f20

. (2.35)

Lemma 2.10. [33, p. 49] We have

φ(q) = φ(q9) + 2qf(q3, q15), (2.36)

ψ(q) = f(q3, q6) + qψ(q9). (2.37)

Lemma 2.11. [34, p. 165] We have

f1 = f25

(
1

R(q5)
− q − q2R(q5)

)
(2.38)

and

1

f1
=
f 5
25

f 6
5

(
1

R4(q5)
+

q

R3(q5)
+

2q2

R2(q5)
+

3q3

R(q5)
+ 5q4 − 3q5R(q5)
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+ 2q6R2(q5)− q7R3(q5) + q8R4(q5)

)
. (2.39)

In the next two lemmas, we recall some useful identities involving R(q), G(q),

H(q), and fk.

Lemma 2.12. [82, Lemma 7] We have

R2(q5)
f 2
1H

5(q)

f 2
25H(q5)

= 1− 2qR(q5) + 4q2R2(q5)− 3q3R3(q5) + q4R4(q5), (2.40)

R2(q5)
f 2
1G

5(q)

f 2
25G(q

5)
= 1 + 3qR(q5) + 4q2R2(q5) + 2q3R3(q5) + q4R4(q5). (2.41)

Lemma 2.13. [34, Theorem 7.4.4], [22, Eq. (1.22) and (2.14)], [26, Eq. (66) and

p. 532] We have

1

R5(q)
− q2R5(q) = 11q +

f 6
1

f 6
5

(2.42)

= 4q +
f2f

5
5

f1f 5
10

+ 8q2
f1f

5
10

f2f 5
5

+ 16q3
f 2
1 f

10
10

f 2
2 f

10
5

, (2.43)

1

R3(q)R(q2)
+ q2R3(q)R(q2) = 2q +

f2f
5
5

f1f 5
10

+ 4q2
f1f

5
10

f2f 5
5

, (2.44)

R(q2)

R2(q)
+
R2(q)

R(q2)
= 2

f 2
2 f

10
10

f4f 8
5 f

3
20

+ 8q2
f1f4f10f

3
20

f2f 5
5

, (2.45)

1

R(q)R2(q2)
+ q2R(q)R2(q2) =

f 3
2 f

5
10

f1f4f 3
5 f

3
20

+ 4q2
f4f

3
20

f 4
10

. (2.46)

2.3 Proof of Theorem 2.2

Proof of (2.3). Setting

N := 1− 2qR(q5) + 4q2R2(q5)− 3q3R3(q5) + q4R4(q5) (2.47)

and

D := 1 + 3qR(q5) + 4q2R2(q5) + 2q3R3(q5) + q4R4(q5), (2.48)

we rewrite (1.11), (2.40) and (2.41) as

R5(q)

R(q5)
=
N

D
, (2.49)

N = R2(q5)
f 2
1H

5(q)

f 2
25H(q5)

, (2.50)

D = R2(q5)
f 2
1G

5(q)

f 2
25G(q

5)
. (2.51)
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Multiplying (2.50) and (2.51), we have

ND = R4(q5)
f 4
1

f 4
25

G5(q)H5(q)

G(q5)H(q5)
. (2.52)

Now,

H(q)G(q) =
1

(q; q5)∞(q2; q5)∞(q3; q5)∞(q4; q5)∞
=
f5
f1
. (2.53)

Employing (2.53) in (2.52), we have

ND =
f 6
5R

4(q5)

f1f 5
25

. (2.54)

From (2.49) and (2.54), we have

1

R5(q)
=

D2

R(q5)ND
=

f1f
5
25D

2

f 6
5R

5(q5)
.

By (2.38) and (2.48), we rewrite the above identity as

1

R5(q)
=

∞∑
n=0

A(n)qn =
f 6
25

f 6
5R

5(q5)
(1 + 3qR(q5) + 4q2R2(q5) + 2q3R3(q5) + q4R4(q5))2

×
(

1

R(q5)
− q − q2R(q5)

)
. (2.55)

Extracting the terms of the form q5n+1 from (2.55), dividing both sides by q, and

then replacing q5 by q, we have
∞∑
n=0

A(5n+ 1)qn =
f 6
5

f 6
1

(
5

R5(q)
− 40q

)
.

Employing (2.42) in the above, we have
∞∑
n=0

A(5n+ 1)qn = 5 + 15q
f 6
5

f 6
1

+ 5q2
f 6
5R

5(q)

f 6
1

= 5 + 15q
f 6
5

f 6
1

+
5q2

(q; q5)∞(q2; q5)11∞(q3; q5)11∞(q4; q5)∞
,

from which it easily follows that, for n ≥ 0, A(5n+ 1) > 0. This proves (2.3).

Proof of (2.4). Extracting the terms of the form q5n+2 from (2.55), dividing both

sides by q2, and then replacing q5 by q, we have
∞∑
n=0

A(5n+ 2)qn = 10
f 6
5

f 6
1

(
1

R4(q)
− 3qR(q)

)
. (2.56)

Now, let b25(n) denote the number of 25-regular partitions of n, that is, the

number of partitions in which parts are not divisible by 25. The generating function
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of b25(n) is given by
∞∑
n=0

b25(n)q
n =

f25
f1
.

Employing (2.39) in the above and then extracting the terms involving q5n, we find

that
∞∑
n=0

b25(5n)q
n =

f 6
5

f 6
1

(
1

R4(q)
− 3qR(q)

)
. (2.57)

It follows from (2.56) and (2.57) that
∞∑
n=0

A(5n+ 2)qn = 10
∞∑
n=0

b25(5n)q
n.

As b25(5n) > 0 for all n ≥ 0, it readily follows from the above that A(5n + 2) > 0

for all n ≥ 0, which is (2.4).

Proof of (2.5). Extracting the terms of the form q5n+3 from (2.55), dividing both

sides by q3, and then replacing q5 by q, we have
∞∑
n=0

A(5n+ 3)qn = 5
f 6
5

f 6
1

(
1

R3(q)
− 3qR2(q)

)
. (2.58)

Now, define F (n) by
∞∑
n=0

F (n)qn =
f25R(q

5)

f1
(2.59)

=
1

(q1,2,3,4,6,7,8,9,10,10,11,12,13,14,15,15,16,17,18,19,21,22,23,24; q25)∞
,

where (qa1,a2,...,aj ; qk)∞ := (qa1 ; qk)∞(qa2 ; qk)∞ · · · (qaj ; qk)∞. Combinatorially, F (n)

counts the number of partitions of n into parts not congruent to 0 or ±5 modulo 25

and parts congruent to ±10 modulo 25 have two colors. Clearly, F (n) > 0 for all

n ≥ 0.

Now, employing (2.39) in (2.59) and then extracting the terms involving q5n, we

find that
∞∑
n=0

F (5n)qn =
f 6
5

f 6
1

(
1

R3(q)
− 3qR2(q)

)
. (2.60)

From (2.58) and (2.60), we have
∞∑
n=0

A(5n+ 3)qn = 5
∞∑
n=0

F (5n)qn,

from which it follows that A(5n+3) = 5F (5n). Now, the positivity of F (n) implies
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that A(5n+ 3) > 0 for all n ≥ 0, which is (2.5).

Proof of (2.6). Extracting the terms of the form q5n+4 from (2.55), dividing both

sides by q4, and then replacing q5 by q, we find that
∞∑
n=0

A(5n+ 4)qn

= −5
f 6
5

f 6
1

(
3

R2(q)
+ qR3(q)

)
(2.61)

= −5

(
3

(q, q4; q5)8∞(q2, q3; q5)4∞
+

q

(q, q4; q5)3∞(q2, q3; q5)9∞

)
,

which clearly implies that A(5n+ 4) < 0 for all n ≥ 0.

2.4 Proof of Theorem 2.3

Proof of (2.7). From (2.49) and (2.54), we have

R5(q) =
R(q5)N2

ND
=

f1f
5
25N

2

f 6
5R

3(q5)
.

With the aid of (2.38), (2.47) and (2.54), we rewrite the above as

R5(q) =
∞∑
n=0

B(n)qn =
f 6
25

f 6
5R

3(q5)

(
1− 2qR(q5) + 4q2R2(q5)− 3q3R3(q5) + q4R4(q5)

)2
×
(

1

R(q5)
− q − q2R(q5)

)
. (2.62)

Extracting the terms of the form q5n+1 from both sides of the above, dividing both

sides by q, and then replacing q5 by q, we find that
∞∑
n=0

B(5n+ 1)qn = −5
f 6
5

f 6
1

(
1

R3(q)
− 3qR2(q)

)
. (2.63)

From (2.58) and (2.63), we have
∞∑
n=0

B(5n+ 1)qn = −
∞∑
n=0

A(5n+ 3)qn, (2.64)

which implies that for all n, B(5n+1) = −A(5n+3). Therefore, (2.5) implies (2.7).

Proof of (2.8). Extracting the terms of the form q5n+2 from both sides of (2.62),

dividing both sides by q2, and then replacing q5 by q, we obtain
∞∑
n=0

B(5n+ 2)qn = 5
f 6
5

f 6
1

(
3

R2(q)
+ qR3(q)

)
, (2.65)
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which, by (2.61), implies that
∞∑
n=0

B(5n+ 2)qn = −
∞∑
n=0

A(5n+ 4)qn. (2.66)

It follows that B(5n+ 2) = −A(5n+ 4). Thus, (2.6) implies (2.8).

Proof of (2.9). Extracting the terms of the form q5n+3 from both sides of (2.62),

dividing both sides by q3, and then replacing q5 by q, we find that
∞∑
n=0

B(5n+ 3)qn = −10
f 6
5

f 6
1

(
3

R(q)
+ qR4(q)

)
(2.67)

= −10

(
3

(q, q4; q5)7∞(q2, q3; q5)5∞
+

q

(q, q4; q5)2∞(q2, q3; q5)10∞

)
,

which readily implies that B(5n+ 3) < 0 for all n ≥ 0, which is (2.9).

Proof of (2.10). Extracting the terms of the form q5n+4 from both sides of (2.62),

dividing both sides by q4, and then replacing q5 by q, we obtain
∞∑
n=0

B(5n+ 4)qn =
f 6
5

f 6
1

(
40 + 5qR5(q)

)
= 40

f 6
5

f 6
1

+
5q

(q, q4; q5)∞(q2, q3; q5)11∞
,

which implies that B(5n+ 4) > 0 for all n ≥ 0.

2.5 Proof of Theorem 2.4

Proof of (2.11). From (2.49), we have

R5(q)

R(q5)
=

N2

ND
=

f1f
5
25N

2

f 6
5R

4(q5)
.

Invoking (2.38), (2.47) and (2.54) in the above, we obtain

R5(q)

R(q5)
=

∞∑
n=0

C(n)qn =
f 6
25

f 6
5R

4(q5)
(1− 2qR(q5) + 4q2R2(q5)− 3q3R3(q5) + q4R4(q5))2

×
(

1

R(q5)
− q − q2R(q5)

)
. (2.68)

Extracting the terms of the form q5n and then replacing q5 by q, we have
∞∑
n=0

C(5n)qn =
f 6
5

f 6
1

(
1

R5(q)
− 36q − q2R5(q)

)
. (2.69)
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With the aid of (2.42), the last equation can be recast as
∞∑
n=0

C(5n)qn = 1− 25q
f 6
5

f 6
1

which clearly implies C(5n) < 0 for all n ≥ 1, which is (2.11).

Proof of (2.12). Extracting the terms of the form q5n+1 from (2.68), dividing both

sides by q and then replacing q5 by q, we have
∞∑
n=0

C(5n+ 1)qn = −5
f 6
5

f 6
1

(
1

R4(q)
− 3qR(q)

)
. (2.70)

It follows from (2.56) and (2.70) that, for all n ≥ 0, we have 2C(5n+1) = −A(5n+2).

Thus, (2.12) follows by (2.4).

Proof of (2.13). Extracting the terms of the form q5n+2 from (2.68), dividing both

sides by q2 and then replacing q5 by q, we have
∞∑
n=0

C(5n+ 2)qn =
f 6
5

f 6
1

(
15

R3(q)
+ 5qR2(q)

)
=

15

(q, q4; q5)9∞(q2, q3; q5)3∞
+

5q

(q, q4; q5)4∞(q2, q3; q5)8∞
,

which readily yields C(5n+ 2) > 0 for n ≥ 0, which is (2.13).

Proof of (2.14). Extracting the terms of the form q5n+3 from (2.68), dividing both

sides by q3 and then replacing q5 by q, we have
∞∑
n=0

C(5n+ 3)qn = −10
f 6
5

f 6
1

(
3

R2(q)
+ qR3(q)

)
. (2.71)

From (2.61) and (2.71), we have C(5n+ 3) = 2A(5n+ 4) for all n ≥ 0. Thus, (2.6)

implies (2.14).

Proof of (2.15). Extracting the terms of the form q5n+4 from (2.68), dividing both

sides by q4, and then replacing q5 by q, we have
∞∑
n=0

C(5n+ 4)qn =
f 6
5

f 6
1

(
40

R(q)
+ 5qR4(q)

)
=

40

(q, q4; q5)7∞(q2, q3; q5)5∞
+

5q

(q, q4; q5)2∞(q2, q3; q5)10∞
,

which yields C(5n+ 4) > 0 for all n ≥ 0, which is (2.15).
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2.6 Proof of Theorem 2.6

Proof of (2.16). From (2.49), we have

R(q5)

R5(q)
=

D2

ND
=

f1f
5
25D

2

f 6
5R

4(q5)
.

Invoking (2.38), (2.48) and (2.54) in the last equation, we arrive at

R(q5)

R5(q)
=

∞∑
n=0

D(n)qn =
f 6
25

f 6
5R

4(q5)
(1 + 3qR(q5) + 4q2R2(q5) + 2q3R3(q5) + q4R4(q5))2

×
(

1

R(q5)
− q − q2R(q5)

)
. (2.72)

Extracting the terms of the form q5n and then replacing q5 by q, we have
∞∑
n=0

D(5n)qn =
f 6
5

f 6
1

(
1

R5(q)
− 36q − q2R5(q)

)
.

Comparing the above identity with (2.69), we see that D(5n) = C(5n) for all n ≥ 0.

Thus, (2.11) implies (2.16).

Proof of (2.17). Extracting the terms of the form q5n+2 from (2.72), dividing both

sides by q2 and then replacing q5 by q, we have
∞∑
n=0

D(5n+ 2)qn = 10
f 6
5

f 6
1

(
1

R3(q)
− 3qR2(q)

)
. (2.73)

It follows from the above identity and (2.58) that D(5n + 2) = 2A(5n + 3) for all

n ≥ 0. Therefore, (2.17) follows by (2.5).

Proof of (2.18). Extracting the terms of the form q5n+3 from (2.72), dividing both

sides by q3 and then replacing q5 by q, we have
∞∑
n=0

D(5n+ 3)qn =
f 6
5

f 6
1

(
5

R2(q)
− 15qR3(q)

)
=

5

(q, q4; q5)3∞(q2, q3; q5)3∞

(
1

(q, q4; q5)5∞
− 3q

(q2, q3; q5)5∞

)
. (2.74)

In order to prove (2.18), that is, D(5n + 3) > 0 for all nonnegtive integers n, it is

enough to show that coefficients in the expansion of(
1

(q, q4; q5)5∞
− 3q

(q2, q3; q5)5∞

)
are positive.
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To that end, define the sequences (α(n)) and (β(n)) by
∞∑
n=0

α(n)qn :=
1

(q, q4; q5)5∞

and
∞∑
n=0

β(n)qn :=
1

(q2, q3; q5)5∞
.

Combinatorially, α(n) counts the number of partitions 5-tuples of n with parts

congruent to ±1 (mod 5) and β(n) counts the number of partitions 5-tuples of n

with parts congruent to ±2 (mod 5). We first show that

α(n) > 3β(n− 1) for n ≥ 3. (2.75)

Define the following sets:

R1(n) := {P|P is a partition of n and all parts are ≡ ±1 (mod 5)},

R2(n) := {P|P is a partition of n and all parts are ≡ ±2 (mod 5)},

En := {π = (π1, π2, π3, π4, π5)|all parts in partition πi(1 ≤ i ≤ 5) are ≡ ±2 (mod 5)

and
5∑

i=1

s(πi) = n},

Sn := {π = (π1, π2, π3, π4, π5)|all parts in partition πi(1 ≤ i ≤ 5) are ≡ ±1 (mod 5)

and
5∑

i=1

s(πi) = n},

where s(πi) denotes the sum of all parts in partition πi.

Define the map τ : R2(n) → R1(n) by τ(π) = λ, where λ is a partition obtained

by subtracting 1 from each of the parts congruent to 2 (mod 5) and adding 1 to

each of the the parts congruent to 3 (mod 5). In case the number of parts congruent

to 2 (mod 5) and 3 (mod 5) are unequal, then we do the following for the extra

partitions:

1. If the number of parts congruent to 2 (mod 5) are more than the number of

parts congruent to 3 (mod 5), then we write each remaining part as a part

congruent to 1 (mod 5) + 1.

2. If the number of parts congruent to 3 (mod 5) are more than the number of

parts congruent to 2 (mod 5), then we write each remaining part as a part
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congruent to 1 (mod 5) + 1 + 1.

Clearly, λ ∈ R1(n). Furthermore, π1 ̸= π2 ⇐⇒ τ(π1) ̸= τ(π2).

Again, define τ̃ : En → Sn by

τ̃ = (τ(π1), τ(π2), τ(π3), τ(π4), τ(π5)) = λ′.

If π ∈ En−1, then λ′ ∈ Sn−1. We now add a part of size one to any one of the

components of λ′ and let λ̃′ be the new partition. Clearly, λ̃′ ∈ Sn. Since, for

the partition 5-tuple, there are 5 choices to append this part of size 1, so α(n) ≥

5β(n−1). Furthermore, since β(n) ̸= 0 for all n ≥ 2, we see that α(n) ≥ 5β(n−1) >

3β(n − 1) for n ≥ 3. Thus, (2.75) holds. Using (2.75) and the easily checked facts

D(3) = 5, D(8) = 25, and D(13) = 155, in (2.74), we readily arrive at (2.18).

Proof of (2.19). Extracting the terms of the form q5n+4 from (2.72), dividing both

sides by q4 and then replacing q5 by q, we have
∞∑
n=0

D(5n+ 4)qn = −5
f 6
5

f 6
1

(
3

R(q)
+ qR4(q)

)
.

From the above identity and (2.67), we see that 2D(5n + 4) = B(5n + 3) for all

n ≥ 0. Therefore, (2.9) implies (2.19).

2.7 Proof of Theorem 2.7

Proofs of (2.20) and (2.21). From the definitions of A(n) and B(n) given in Theorem

2.2 and Theorem 2.3 respectively, the identity (2.42) may be rewritten as
∞∑
n=0

A(n)qn −
∞∑
n=0

B(n)qn+2 = 11q +
f 6
1

f 6
5

. (2.76)

Now, with the aid of the binomial theorem, it can be easily shown that

f 3
1 ≡ f3 (mod 3). (2.77)

Therefore, from (2.76), we have
∞∑
n=0

A(n)qn −
∞∑
n=0

B(n)qn+2 ≡ 2q +
f 2
3

f 2
15

(mod 3). (2.78)
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Furthermore, by (2.53), we have
∞∑
n=0

A(n)qn +
∞∑
n=0

B(n)qn+2 =
1

R5(q)
+ q2R5(q)

=
G5(q)

H5(q)
+ q2

H5(q)

G5(q)

=
f 5
1

f 5
5

(
G10(q) + q2H10(q)

)
,

which implies that
∞∑
n=0

A(n)qn +
∞∑
n=0

B(n)qn+2 ≡ f 2
1 f3

f 2
5 f15

(
G(q)G3(q3) + q2H(q)H3(q3)

)
(mod 3),

(2.79)

where we also applied the congruences

G3(q) ≡ G(q3) (mod 3) and H3(q) ≡ H(q3) (mod 3).

Now, recall from [83, Theorem 4.1(ii)] that

G(q)G3(q3) + q2H(q)H3(q3) =
f 3
5

f1f3f15
.

Using the above identity in (2.79) and then employing (2.77), we find that
∞∑
n=0

A(n)qn +
∞∑
n=0

B(n)qn+2 ≡ f1f5
f 2
15

(mod 3). (2.80)

Adding (2.78) and (2.80), we have

2
∞∑
n=0

A(n)qn ≡ 2q +
f 2
3

f 2
15

+
f1f5
f 2
15

(mod 3). (2.81)

Again, from [25, p. 509], we recall that

f1f5 = φ(q5)ψ(q2)− qφ(q)ψ(q10). (2.82)

Employing (2.36) and (2.37) in the above, we have

f1f5 =
(
φ(q45) + 2q5f(q15, q75)

) (
f(q6, q12) + q2ψ(q18)

)
− q

(
φ(q9) + 2qf(q9, q15)

)
×
(
f(q30, q60) + q10ψ(q90)

)
. (2.83)

Invoking (2.83) in (2.81), and then extracting the terms involving q3n+1, we find

that

2
∞∑
n=0

A(3n+ 1)qn ≡ 2 +
2q2f(q5, q25)ψ(q6)− φ(q3)f(q10, q20)

f 2
5

(mod 3),
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which, by (2.28) and (2.29), can be rewritten as

2
∞∑
n=0

A(3n+ 1)qn ≡ 2 + 2q2
ψ(q6)ψ(−q15)χ(q5)

f 2
5

− φ(q3)φ(−q30)
f 2
5χ(−q10)

(mod 3).

Employing (1.5), (1.6), (1.7) and (2.30) in the above, we find that

2
∞∑
n=0

A(3n+ 1)qn ≡ 2 + 2q2
ψ(q6)ψ(−q15)f 2

10

f15f20
− φ(q3)φ(−q30)f20f5

f15f10

≡ 2 + 2q2
ψ(q6)ψ(−q15)

f15
φ(−q10)− φ(q3)φ(−q30)

f15
ψ(−q5) (mod 3).

With the aid of (2.36) and (2.37), the above can be written as

2
∞∑
n=0

A(3n+ 1)qn ≡ 2 + 2q2
ψ(q6)ψ(−q15)

f15

(
φ(−q90)− 2q10f(−q30,−q150)

)
− ϕ(q3)ψ(−q30)

f15

(
f(−q15, q30)− q5ψ(−q45)

)
(mod 3).

Comparing the coefficients of q3n+1 for n ≥ 0, we obtain

A(9n+ 4) ≡ 0 (mod 3), (2.84)

which is (2.20).

Again, extracting the terms involving q3n+4 from both sides of (2.78), we find

that

A(3n+ 4) ≡ B(3n+ 2) (mod 3).

Replacing n by 3n in the above, and then invoking (2.84), we have

A(9n+ 4) ≡ B(9n+ 2) ≡ 0 (mod 3),

which is (2.21).

Proof of (2.22). At first, from (2.43) and the definitions of A(n) and B(n) given in

Theorem 2.2 and Theorem 2.3, we have
∞∑
n=0

A(n)qn −
∞∑
n=0

B(n)qn+2 ≡ f2f
5
5

f1f 5
10

+ 4q (mod 8). (2.85)

Next,
∞∑
n=0

A(n)qn +
∞∑
n=0

B(n)qn+2 =
1

R5(q)
+ q2R5(q)

= − 1

R(q)R2(q2)
− q2R(q)R2(q2) +

(
R2(q)

R(q2)
+
R(q2)

R2(q)

)
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×
(

1

R3(q)R(q2)
+ q2R3(q)R(q2)

)
.

Invoking (2.44)–(2.46) in the above, we find that
∞∑
n=0

A(n)qn +
∞∑
n=0

B(n)qn+2 = − f 3
2 f

5
10

f1f4f 3
5 f

3
20

− 4q2
f4f

3
20

f 4
10

+

(
2
f 2
2 f

10
10

f4f 8
5 f

3
20

+ 8q2
f1f4f10f

3
20

f2f 5
5

)
×
(
2q +

f2f
5
5

f1f 5
10

+ 4q2
f1f

5
10

f2f 5
5

)
≡ f 3

2 f
5
10

f1f4f 3
5 f

3
20

+ 4q + 4q2f4f20 (mod 8). (2.86)

Without commentary, here and throughout the thesis, we use the fact that for

integers k ≥ 1 and ℓ ≥ 1,

f 2ℓ

k ≡ f 2ℓ−1

2k (mod 2ℓ). (2.87)

We now add (2.85) and (2.86), and then use (2.31), (2.33), and (2.35). Accordingly,

we find that

2
∞∑
n=0

A(n)qn ≡ f 3
2 f

5
10

f4f 3
20

· 1

f 4
5

· f5
f1

+
f2
f 5
10

· f 4
5 · f5

f1
+ 4q2f4f20

≡ f 3
2 f

5
10

f4f 3
20

(
f8f

2
20

f 2
2 f40

+ q
f 3
4 f10f40
f 3
2 f8f20

)(
f 14
20

f 14
10 f

4
40

+ 4q5
f 2
20f

4
40

f 10
10

)
+
f2
f 5
10

×
(
f8f

2
20

f 2
2 f40

+ q
f 3
4 f10f40
f 3
2 f8f20

)(
f 10
20

f 2
10f

4
40

− 4q5
f 2
10f

4
40

f 2
20

)
+ 4q2f4f20 (mod 8).

Extracting the terms involving odd powers of q, we have

2
∞∑
n=0

A(2n+ 1)qn ≡ f 3
2 f

9
10

f 2
1 f4f

6
5 f

3
20

+
f 2
2 f

10
10

f4f 8
5 f

3
20

− 4q2
f4f

3
20

f1f 3
5

+ 4q2
f1f4f10f

3
20

f2f 5
5

≡ f 3
2 f

5
10

f4f 3
20

·
(
f5
f1

)2

+
f 2
2 f

6
10

f4f 3
20

(mod 8).

Employing (2.35) in the above and then extracting the terms involving the even

powers of q, we obtain

2
∞∑
n=0

A(4n+ 1)qn ≡ f10
f2

·
(
f1
f5

)2

+
f 2
4 f10
f2f 2

20

· f5
f1

· f 4
5 + q

f 5
2 f

2
20

f 2
4 f10

· f1
f5

· 1

f 4
1

(mod 8).

Using the identities of Lemma 2.9 in the above and then extracting the odd powers

of q, we find that

2
∞∑
n=0

A(8n+ 5)qn ≡ f 5
2 f20
f4f10

· 1

f 4
1

− 4q2f4f
3
20 ·

f1
f5

+
f4f

5
10

f2f20
· 1

f 4
5

− 4qf 3
4 f20 ·

f5
f1
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− 2f2f10 (mod 8).

Once again using the identities of Lemma 2.9 in the above and then extracting the

odd powers of q, we have

2
∞∑
n=0

A(16n+ 13)qn ≡ 4
f2f

4
4 f10

f 5
1 f5

+ 4q
f 3
2 f

3
10f20

f4f 2
5

+ 4q2
f2f10f

4
20

f1f 5
5

− 4
f 3
2 f4f

3
10

f 2
1 f20

(mod 8)

which implies that
∞∑
n=0

A(16n+ 13)qn ≡ 2
f2f

4
4 f10

f 5
1 f5

+ 2q
f 3
2 f

3
10f20

f4f 2
5

+ 2q2
f2f10f

4
20

f1f 5
5

− 2
f 3
2 f4f

3
10

f 2
1 f20

(mod 4).

Equivalently,
∞∑
n=0

A(16n+ 13)qn ≡ 2f1f5f
3
4 + 2qf2f

4
10 + 2q2f1f5f

3
20 − 2f8f10

≡ 2f2f5(f
3
2 − qf 3

10)(f
3
2 + qf 3

10 − f1f5) (mod 4). (2.88)

Now, from (2.82), we have

f1f5 = φ(q5)ψ(q2)− qφ(q)ψ(q10)

=
f 5
10

f 2
5 f

2
20

· f
2
4

f2
− q

f 5
2

f 2
1 f

2
4

· f
2
20

f10

≡ f 3
2 + qf 3

10 (mod 2).

Employing the above congruence in (2.88), we find that
∞∑
n=0

A(16n+ 13)qn ≡ 2f2f5(f
3
2 − qf 3

10)(f
3
2 + qf 3

10 − (f 3
2 + qf 3

10)) ≡ 0 (mod 4),

which is (2.22).

Proof of (2.23). From (2.43), we have
∞∑
n=0

A(n)qn −
∞∑
n=0

B(n)qn+2 ≡ f2f5
f1f 3

10

(mod 4),

which, by (2.35), may be written as
∞∑
n=0

A(n)qn −
∞∑
n=0

B(n)qn+2 ≡ f2
f 3
10

(
f8f

2
20

f 2
2 f40

+ q
f 3
4 f10f40
f 3
2 f8f20

)
(mod 4).

Extracting, we have
∞∑
n=0

A(2n+ 1)qn −
∞∑
n=1

B(2n− 1)qn ≡ f 3
2 f20
f4f10

· 1

f 2
1

· 1

f 2
5

(mod 4).
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Employing (2.32) in the above and then extracting, we find that
∞∑
n=0

A(4n+ 1)qn −
∞∑
n=1

B(4n− 1)qn ≡ f 5
4 f

5
20

f2f 2
8 f10f

2
40

· 1

f 2
1

· 1

f 2
5

(mod 4).

Using (2.32) again in the above and then extracting the odd powers of q, we obtain
∞∑
n=0

A(8n+ 5)qn −
∞∑
n=1

B(8n+ 3)qn ≡ 2
f 7
2 f

2
8 f

5
10f

3
20

f 6
1 f

3
4 f

6
5 f

2
40

+ 2q2
f 5
2 f

3
4 f

7
10f

2
40

f 6
1 f

6
5 f

2
8 f

3
20

≡ 2
f 4
2 f

2
8 f

2
10f

3
20

f 3
4 f

2
40

+ 2q2
f 2
2 f

3
4 f

4
10f

2
40

f 2
8 f

3
20

(mod 4),

which readily implies that

A(16n+ 13) ≡ B(16n+ 11) (mod 4).

Using (2.22), we arrive at

B(16n+ 11) ≡ 0 (mod 4),

which is (2.23).

Proofs of (2.24)–(2.27). From (2.58), we have
∞∑
n=0

A(5n+ 3)qn =
f 6
5

f 6
1

(
5

R3(q)
− 15qR2(q)

)
≡ 5

f 6
5

f 6
1R

3(q)
(mod 15)

≡ 5
f 2
15

f 2
3R(q

3)
(mod 15).

Clearly, the last relation has no terms involving q3n+r for r ∈ {1, 2}. Hence, for all

n ≥ 0, we have

A(15n+ 8) ≡ A(15n+ 13) ≡ 0 (mod 15).

To prove the remaining two congruences in (2.24), we consider (2.61) and proceed

exactly as in the above. Thus, we complete the proof of (2.24).

The proofs of (2.25)–(2.27) are similar to the proof of (2.24). So we only record

the required generating functions for the proofs in the following table.

Congruence Generating functions

(2.25) (2.63) and (2.65)

(2.26) (2.71)

(2.27) (2.73)
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2.8 Concluding remarks

In Theorems 2.2, 2.3, and 2.6, we have the sign patterns of the coefficients A(n),

B(n), and D(n) of 1/R5(q), R5(q), and R(q5)/R5(q), respectively, except A(5n),

B(5n), and D(5n + 1). Based on numerical observation, we pose the following

conjecture.

Conjecture 2.14. For all integers n > 0,

A(5n) < 0,

B(5n) < 0,

D(5n+ 1) > 0.

An affirmative answer to the above conjecture along with Theorems 2.2, 2.3, and

2.6 will prove that the signs of A(n), B(n), and D(n) are periodic with period 5.

There might be more congruences similar to those given in Theorem 2.7. For

example, based on numerical calculations, we propose the following conjecture.

Conjecture 2.15. For all integers n ≥ 0,

C(27n+ 18) ≡ 0 (mod 3),

D(27n+ 18) ≡ 0 (mod 3),

C(16n+ 12) ≡ 0 (mod 4),

D(16n+ 12) ≡ 0 (mod 4),

C(32n+ 28) ≡ 0 (mod 8),

D(32n+ 28) ≡ 0 (mod 8).
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