
Chapter 3

Differences of even and odd numbers of

parts of the cubic and some analogous par-

tition functions

3.1 Introduction

In 2021, Merca [110, Definition 1] defined the following functions.

Definition 3.1. For a positive integer n, let

1. ae(n) be the number of partitions of n into an even number of parts in which

the even parts can appear in two colors.

2. ao(n) be the number of partitions of n into an odd number of parts in which

the even parts can appear in two colors.

3. Λ(n) = ae(n) - ao(n).

By considering

F (z, q) =
∞∏
n=1

1

(1− zqn)(1− zq2n)
,

The contents of this chapter have appeared in Bolet́ın de la Sociedad Matemática Mexicana

[28].
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we can see that the generating function of Λ(n) (due to Merca) is given by
∞∑
n=0

Λ(n)qn = F (−1, q) =
1

(−q; q)∞(−q2; q2)∞
= (q; q2)∞(q2; q4)∞, (3.1)

where the last equality arises from Euler’s identity

(−q; q)∞ =
1

(q; q2)∞
.

With the aid of Smoot’s RaduRK Mathematica package [148] which is based on

an algorithm developed by Radu [123], Merca [110, Theorem 6.1] proved that
∞∑
n=0

Λ(9n+ 5)qn = −3q
f 3
2 f3f

6
12

f 2
1 f

3
4 f

5
6

+ 9q2
f 5
2 f3f

10
12

f 2
1 f

7
4 f

7
6

+ 3q3
f 7
2 f3f

14
12

f 2
1 f

11
4 f

9
6

− 9q4
f 9
2 f3f

18
12

f 2
1 f

15
4 f

11
6

(3.2)

and a similar expression for the generating function of A(27n+26) having 12 terms

[110, Theorem 6.1]. From these expressions of the generating functions, Merca

readily found the following two Ramanujan-like congruences.

Theorem 3.2. [110, Theorem 1.10] For all n ≥ 0,

Λ(9n+ 5) ≡ 0 (mod 3), (3.3)

Λ(27n+ 26) ≡ 0 (mod 3). (3.4)

Using classical generating function manipulations and dissections, da Silva and

Sellers [68] reproved the above congruences. They also proved an additional con-

gruence and couple of infinite families of congruences modulo 3 as stated in the

following theorem.

Theorem 3.3. [68, Theorems 3.1–3.3] For all j ≥ 0 and n ≥ 0,

Λ(3n+ 1) ≡ Λ(27n+ 8) (mod 3), (3.5)

Λ

(
9j+1n+

39 · 9j + 1

8

)
≡ 0 (mod 3), (3.6)

Λ

(
3 · 9j+1n+

23 · 9j+1 + 1

8

)
≡ 0 (mod 3). (3.7)

The first purpose of this chapter is to employ Ramanujan’s theta function iden-

tities in finding simplified formulas of the generating functions from which proofs of

Theorem 3.2 and Theorem 3.3 follow quite naturally.

Now we state our results on Λ(n).
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Theorem 3.4. We have
∞∑
n=0

Λ(3n)qn =
χ(−q)ψ(q3)φ(−q3)

φ(−q)φ(q2)
, (3.8)

∞∑
n=0

Λ(3n+ 1)qn = −ψ
2(q3)χ2(−q)
ψ(−q)ψ(q2)

, (3.9)

∞∑
n=0

Λ(3n+ 2)qn = −ψ(−q
3)ψ(q6)

ψ2(q2)
, (3.10)

∞∑
n=1

Λ(9n+ 5)qn = −3q
f1f

4
2 f

6
12

f 11
4

. (3.11)

Furthermore, for all n ≥ 0

Λ(3n+ 2) ≡ −Λ(27n+ 17) (mod 3), (3.12)

Λ(81n+ 44) ≡ 0 (mod 3). (3.13)

Note that (3.11) is a much simplified form of (3.2) and the congruence (3.3) also

readily follows from (3.11).

The second purpose of this chapter is to study the partition function Λk(n)

defined below, where Λ2(n) = Λ(n).

Definition 3.5. For a positive integer n, let

1. ake(n) be the number of partitions of n into an even number of parts in which

the parts that are multiples of k can appear in two colors.

2. ako(n) be the number of partitions of n into an odd number of parts in which

the parts that are multiples of k can appear in two colors.

3. Λk(n) = ake(n) - a
k
o(n).

For example, if k= 3 and n = 4, then

a3e(4) = 4, the relevant partitions being 3r + 1, 3b + 1, 2 + 2, 1 + 1 + 1 + 1;

a3o(4) = 2, the relevant partition being 4 and 2 + 1 + 1;

and hence, Λ3(4) = 4− 2 = 2, where the subscripts r and b depict the two colors of

the respective part.
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By considering the function

G(z, q) =
∞∏
n=1

1

(1− zqn)(1− zqkn)
,

we can easily see that the generating function of Λk(n) is G(−1, q); that is,
∞∑
n=0

Λk(n)q
n =

1

(−q; q)∞(−qk; qk)∞
,

which by Euler’s identity (−q; q)∞ = 1/(q; q2)∞ and (1.7) may be recast as
∞∑
n=0

Λk(n)q
n = (q; q2)∞(qk; q2k)∞ = χ(−q)χ(−qk). (3.14)

In the following theorems we state our results on Λk(n) for k ∈ {3, 5, 7, 23}.

Theorem 3.6. For all n ≥ 0,

Λ3(4n+ r) ≡ 0 (mod 2), where r ∈ {2, 3}. (3.15)

Theorem 3.7. For all n ≥ 0,

Λ5(10n+ r) ≡ 0 (mod 2), where r ∈ {2, 6}, (3.16)

Λ5(25n+ r) ≡ 0 (mod 5), where r ∈ {14, 19, 24}. (3.17)

To state the remaining theorems, we require the Legendre symbol, which is

defined for a prime p ≥ 3 by

(
a

p

)
L

:=


1, if a is a quadratic residue modulo p and p ∤ a,

0, if p | a,

− 1, if a is a quadratic nonresidue modulo p.

Theorem 3.8. For all n ≥ 0 and j ≥ 0,

Λ7(2n+ 1) ≡ Λ7(8n+ 3) (mod 2), (3.18)

Λ7

(
22j+3n+

10 · 22j+1 + 1

3

)
≡ 0 (mod 2), (3.19)

Λ7(16n+ r) ≡ 0 (mod 2), where r ∈ {9, 13}, (3.20)

Λ7(50n+ r) ≡ 0 (mod 2), where r ∈ {7, 27, 37, 47}, (3.21)
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if p > 3 is a prime such that
(

−7
p

)
L
= −1, then for all α ≥ 0 and δ ≥ 0,

Λ7

(
2 · 7α · p2δ(7n+ r) +

2 · 7α · p2δ + 1

3

)
≡ 0 (mod 2), where r ∈ {3, 4, 6},

(3.22)

Λ7

(
2 · 7α · p2δ+1(pn+ r) +

2 · 7α · p2(δ+1) + 1

3

)
≡ 0 (mod 2), (3.23)

where r ∈ {1, 2, . . . , p− 1}.

Theorem 3.9. For all n ≥ 0,

Λ23(50n+ r) ≡ 0 (mod 2), where r ∈ {11, 21, 31, 41}, (3.24)

If p > 3 is a prime such that

(
−23

p

)
L

= −1, then for all α ≥ 0, δ ≥ 0 and n ≥ 0,

Λ23

(
2 · 23α · p2δ(23n+ r) + 2 · 23α · p2δ + 1

)
≡ 0 (mod 2), (3.25)

where r ∈ {4, 6, 9, 10, 13, 14, 16, 18, 19, 20, 21},

Λ23

(
2 · 23α · p2δ+1(pn+ r) + 2 · 23α · p2(δ+1) + 1

)
≡ 0 (mod 2), (3.26)

where r ∈ {1, 2, . . . , p− 1}.

Remark 3.10. Note that congruences equivalent to (3.15) and (3.16) can be found in

the work of Hirschhorn and Sellers [88]. Congruences equivalent to (3.18) and (3.20)

can be found in the work of Radu and Sellers [124]. Further (3.24) is equivalent to

a special case of [162, Eq. (1.10)]. However, our proofs are different.

We organize the chapter as follows: In the next section, we state a few well-

known dissection formulas. In Section 3.3, we prove Theorems 3.2–3.4. In Sections

3.4–3.7, we prove Theorems 3.6–3.9, respectively.

3.2 Dissection formulas

Some known 2-, 3-, and 5-dissections formulas are stated in the following four lem-

mas.

Lemma 3.11. [33, p. 40, Entries 25(i) and 25(ii)] If φ is given by (1.3), then

φ(q) = φ(q4) + 2qψ(q8). (3.27)
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Lemma 3.12. [33, p. 315] If ψ is given by (1.4), then

ψ(q)ψ(q3) = φ(q6)ψ(q4) + qφ(q2)ψ(q12), (3.28)

ψ(q)ψ(q7) = φ(q28)ψ(q8) + qψ(q2)ψ(q14) + q6φ(q4)ψ(q56). (3.29)

Lemma 3.13. [33, p. 49 and p. 51] We have

ψ(q) = f(q3, q6) + qψ(q9), (3.30)

φ(q) = φ(q9) + 2qψ(−q9)χ(q3). (3.31)

Lemma 3.14. [33, p. 49] We have

φ(q) = φ(q25) + 2qf(q15, q35) + 2q4f(q5, q45). (3.32)

In the following lemma, we recall a p-dissection of f1.

Lemma 3.15. [64, Theorem 2.2] For a prime p > 3, we have

f1 = (−1)
±p−1

6 q
p2−1
24 fp2 +

p−1
2∑

k ̸=±p−1
6

,k=− p−1
2

(−1)kq
3k2+k

2 f
(
− q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
,

where

±p− 1

6
=


p− 1

6
, if p ≡ 1 (mod 6),

−p− 1

6
, if p ≡ − 1 (mod 6).

Furthermore, for
−(p− 1)

2
≤ k ≤ p− 1

2
and k ̸= ±p− 1

6
,

3k2 + k

2
̸≡ p2 − 1

24
(mod p).

3.3 Proofs of Theorems 3.2–3.4

Proof. With the aid of (1.7), we rewrite (3.1) in the form
∞∑
n=0

Λ(n)qn = χ(−q)χ(−q2). (3.33)

From [24, Lemma 3.5] (See also [61, p. 194, Eq. (3.65)]), we recall that

φ2(q)− φ2(q3) = 4qχ(q)χ(−q2)ψ(q3)ψ(q6). (3.34)
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Replacing q by −q in the above and then employing (3.31), we have

4qχ(−q)χ(−q2)ψ(−q3)ψ(q6) = φ2(−q3)−
(
φ(−q9)− 2qψ(q9)χ(−q3)

)2
. (3.35)

It follows from (3.33) and (3.35) that

4
∞∑
n=0

Λ(n)qn+1 =
φ2(−q3)

ψ(−q3)ψ(q6)
− 1

ψ(−q3)ψ(q6)
(
φ(−q9)− 2qψ(q9)χ(−q3)

)2
.

(3.36)

Extracting the terms involving q3n+1 from both sides of the above, we have

4
∞∑
n=0

Λ(3n)q3n+1 = 4q
χ(−q3)ψ(q9)φ(−q9)

ψ(−q3)ψ(q6)
.

Dividing both sides of the above by 4q and then replacing q3 by q, we arrive at
∞∑
n=0

Λ(3n)qn =
χ(−q)ψ(q3)φ(−q3)

ψ(−q)ψ(q2)
,

which is (3.8).

Similarly, extracting the terms involving q3n+2 from both sides of (3.36), dividing

by 4q2 and then replacing q3 by q, we arrive at (3.9).

Again, extracting the terms involving q3n+3 from both sides of (3.36), we have

4
∞∑
n=0

Λ(3n+ 2)q3n+3 =
1

ψ(−q3)ψ(q6)
(
φ2(−q3)− φ2(−q9)

)
.

Replacing q3 by q in the above and then employing (3.34), we find that

4
∞∑
n=0

Λ(3n+ 2)qn+1 = −4qχ(−q)χ(−q2)ψ(−q
3)ψ(q6)

ψ(−q)ψ(q2)
,

from which it follows that
∞∑
n=0

Λ(3n+ 2)qn = −ψ(−q
3)ψ(q6)

ψ2(q2)
,

which is (3.10).

Now, from [68, Lemma 1.5], we recall that

1

ψ2(q2)
=

(
f 4
6 f

6
18

f 12
12

− 2q6
f 7
6 f

9
36

f 16
12 f

3
18

)
+ 3q4

f 6
6 f

6
36

f 14
12

−
(
2q2

f 5
6 f

3
18f

3
36

f 13
12

− q8
f 8
6 f

12
36

f 16
12 f

6
18

)
. (3.37)

Employing (3.37) in (3.10), extracting the terms involving q3n+1, dividing both sides

by q, and then replacing q3 by q, we obtain
∞∑
n=1

Λ(9n+ 5)qn = −3qψ(−q)ψ(q2)f
6
2 f

6
12

f 14
4

= −3q
f1f4
f2

· f
2
4

f2
· f

6
2 f

6
12

f 14
4
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= −3q
f1f

4
2 f

6
12

f 11
4

,

which is (3.11).

Now, it is easy to see that

ψ3(q) ≡ ψ(q3) (mod 3).

Employing the above in (3.10), we find that
∞∑
n=0

Λ(3n+ 2)qn = −ψ(−q
3)ψ(q6)

ψ2(q2)
= −ψ(−q

3)ψ(q6)ψ(q2)

ψ3(q2)

≡ 2ψ(−q3)ψ(q2) (mod 3), (3.38)

which by (3.30) can be written as
∞∑
n=0

Λ(3n+ 2)qn ≡ 2ψ(−q3)
(
f(q6, q12) + q2ψ(q18)

)
(mod 3).

Extracting the terms involving q3n+2 from the above and then employing (3.30) once

again, we find that
∞∑
n=0

Λ(9n+ 8)qn ≡ 2ψ(q6)ψ(−q)

≡ 2ψ(q6)
(
f(−q3, q6)− qψ(−q9)

)
(mod 3). (3.39)

Equating the coefficients of q3n+2 from both sides of the above, we arrive at

Λ(27n+ 26) ≡ 0 (mod 3),

which is (3.4).

Next, from (1.4), (2.30) and (3.9), the fact that f 3
1 ≡ f3 (mod 3), we find that

∞∑
n=0

Λ(3n+ 1)qn = −ψ
2(q3)χ2(−q)
ψ(−q)ψ(q2)

= − f1f
4
6

f 2
3 f

3
4

≡ 2
f1f6f18
f 2
3 f12

(mod 3). (3.40)

Again, extracting the terms involving q3n from both sides of (3.39) and then replac-

ing q3 by q, we arrive at
∞∑
n=0

Λ(27n+ 8)qn ≡ 2ψ(q2)f(−q, q2) (mod 3). (3.41)
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By (1.1), (1.3), and (1.7), we find that

f(−q, q2) = (q;−q3)∞(−q2;−q3)∞(−q3;−q3)∞ =
(−q3; q6)2∞(q6; q6)∞

(−q; q2)∞
.

Employing the above identity and (1.4) in (3.41), and then simplifying by using the

fact f 3
1 ≡ f3 (mod 3) again, we find that

∞∑
n=0

Λ(27n+ 8)qn ≡ 2
(q4; q4)∞(−q3; q6)2∞(q6; q6)∞

(−q; q2)∞(q2; q4)∞

≡ 2
f1f

3
4 f

5
6

f 3
2 f

2
3 f

2
12

≡ 2
f1f6f18
f 2
3 f12

(mod 3). (3.42)

From (3.40) and (3.42), we conclude that, for all n ≥ 0,

Λ(3n+ 1) ≡ Λ(27n+ 8) (mod 3),

which is (3.5).

Next, extracting the terms involving q3n+1 from both sides of (3.39), dividing

both sides by q and then replacing q3 by q, we find that
∞∑
n=0

Λ(27n+ 17)qn ≡ ψ(q2)ψ(−q3) (mod 3). (3.43)

From the above congruence and (3.38), we see that, for all n ≥ 0,

Λ(3n+ 2) ≡ −Λ(27n+ 17) (mod 3),

which is (3.12).

With the aid of (3.30), we can rewrite (3.43) as
∞∑
n=0

Λ(27n+ 17)qn ≡ ψ(−q3)
(
f(q6, q12) + q2ψ(q18)

)
(mod 3).

Equating the coefficients of q3n+1 from both sides of the above, we find that

Λ(81n+ 44) ≡ 0 (mod 3),

which is (3.13).

Successive iterations of (3.12) give

Λ(3n+ 2) ≡ −Λ(3(9n+ 5) + 2)

≡ Λ(27(9n+ 5) + 17)

≡ Λ(35n+ 33 · 5 + 3 · 5 + 2)
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...

≡ (−1)jΛ(3 · 9jn+ 3 · 9j−1 · 5 + 3.9j−2 · 5 + · · ·+ 3 · 5 + 2)

≡ (−1)jΛ

(
3 · 9jn+

15 · 9j + 1

8

)
(mod 3). (3.44)

Replacing n by 3n+ 1 in the above, we find that

Λ(9n+ 5) ≡ (−1)jΛ

(
9j+1n+

39 · 9j + 1

8

)
(mod 3).

Employing (3.3), we see that, for all j ≥ 0 and n ≥ 0,

Λ

(
9j+1n+

39 · 9j + 1

8

)
≡ 0 (mod 3),

which is (3.6).

Again, replacing n by 9n+ 8 in (3.44), we have

Λ(27n+ 26) ≡ (−1)jΛ

(
3 · 9j+1n+

23 · 9j+1 + 1

8

)
(mod 3).

Employing (3.4) in the above, we readily arrive at (3.7).

3.4 Proof of Theorem 3.6

Setting k = 3 in (3.14) and then manipulating the q-products, we have
∞∑
n=0

Λ3(n)q
n = χ(−q)χ(−q3) = f1f3

f2f6
=
ψ(−q)ψ(−q3)

f4f12
.

Replacing q by −q in (3.28) and then using the resulting identity in the above, we

have
∞∑
n=0

Λ3(n)q
n =

φ(q6)ψ(q4)− qφ(q2)ψ(q12)

f4f12
.

Extracting, in turn, the even and odd terms from both sides of the above, and then

using (3.27), we find that
∞∑
n=0

Λ3(2n)q
n =

φ(q3)ψ(q2)

f2f6
=
ψ(q2) (φ(q12) + 2q3ψ(q24))

f2f6

and
∞∑
n=0

Λ3(2n+ 1)qn = −φ(q)ψ(q
6)

f2f6
= −ψ(q

6) (φ(q4) + 2qψ(q8))

f2f6
.
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Equating the coefficients of q2n+1 from both sides of the above two identities, we

arrive at

Λ3(4n+ r) ≡ 0 (mod 2), where r ∈ {2, 3},

which is (3.15).

3.5 Proof of Theorem 3.7

Setting k = 5 in (3.14), we have
∞∑
n=0

Λ5(n)q
n = χ(−q)χ(−q5). (3.45)

Now, recall from [33, p. 258, Entry 9(vii) and p. 262, Entry 10(iv)] that

φ2(q)− φ2(q5) = 4qf(q, q9)f(q3, q7) = 4qχ(q)f5f20. (3.46)

Multiplying by χ(q5), and then replacing q by −q, we find that

4qχ(−q)χ(−q5) = χ(−q5)
χ(q5)f10f20

(
φ2(−q5)− φ2(−q)

)
=
φ2(−q5)− φ2(−q)

ψ2(q5)
.

With the aid of (3.45) and (3.32), the above may be rewritten as

4
∞∑
n=0

Λ5(n)q
n+1

=
1

ψ2(q5)

(
φ2(−q5)−

(
φ(−q25)− 2qf(−q15,−q35) + 2q4f(−q5,−q45)

)2)
. (3.47)

Extracting, in turn, the terms of the form q5n+2 and q5n+3 from both sides of the

above, we obtain
∞∑
n=0

Λ5(5n+ 1)qn = −f
2(−q3,−q7)
ψ2(q)

≡ f(−q6,−q14)
ψ(q2)

(mod 2),

∞∑
n=0

Λ5(5n+ 2)qn = −qf
2(−q,−q9)
ψ2(q)

≡ q
f(−q2,−q18)

ψ(q2)
(mod 2),

from which it readily follows that Λ5(10n + 6) ≡ 0 (mod 2) and Λ5(10n + 2) ≡ 0

(mod 2). This completes the proof of (3.16).

Now, extracting the terms involving q5n+5 from both sides of (3.47), replacing
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q5 by q, and then applying (3.46), we find that

4
∞∑
n=0

Λ5(5n+ 4)qn+1 =
1

ψ2(q)
(φ2(−q)− φ2(−q5) + 8qf(−q3,−q7)f(−q,−q9))

=
4qf(−q3,−q7)f(−q,−q9)

ψ2(q)

=
4qχ(−q)(−q5; q10)∞f10f20

ψ2(q)
.

Therefore,
∞∑
n=0

Λ5(5n+ 4)qn =
f 3
1 f

3
10

f 5
2 f5

≡ f 2
10

f5
f 3
1 (mod 5). (3.48)

But, well-known Jacobi’s identity [34, Eq. (1.3.24)] states that

f 3
1 =

∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2. (3.49)

Employing this in (3.48), we have
∞∑
n=0

Λ5(5n+ 4)qn ≡ f 2
10

f5

∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2 (mod 5). (3.50)

Now, j(j + 1)/2 ≡ 0, 1 or 3 (mod 5). Therefore, equating coefficients of q5n+2 and

q5n+4, in turn, from both sides of (3.50), we find that

Λ5(25n+ 14) ≡ Λ5(25n+ 24) ≡ 0 (mod 5). (3.51)

Furthermore, if j ≡ 2 (mod 5), then j(j + 1)/2 ≡ 3 (mod 5) and 2j + 1 ≡ 0

(mod 5). Therefore, equating the coefficients of q5n+3 from both sides of (3.50), we

find that

Λ5(25n+ 19) ≡ 0 (mod 5). (3.52)

Clearly, (3.51) and (3.52) together give (3.17). This completes the proof.
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3.6 Proof of Theorem 3.8

Proofs of (3.18), (3.19), (3.20). Setting k = 7 in (3.14), manipulating the q-

products, and then employing (3.29), we have
∞∑
n=0

Λ7(n)q
n = χ(−q)χ(−q7) = f1f7

f2f14
=
ψ(−q)ψ(−q7)

f4f28

=
1

f4f28

(
φ(q28)ψ(q8)− qψ(q2)ψ(q14) + q6φ(q4)ψ(q56)

)
. (3.53)

Extracting the odd terms from both sides of the above and then employing (3.29)

once again, we have
∞∑
n=0

Λ7(2n+ 1)qn = −ψ(q)ψ(q
7)

f2f14

= − 1

f2f14

(
φ(q28)ψ(q8) + qψ(q2)ψ(q14) + q6φ(q4)ψ(q56)

)
. (3.54)

Extracting the odd terms, we find that
∞∑
n=0

Λ7(4n+ 3)qn = −ψ(q)ψ(q
7)

f1f7
= −f

2
2 f

2
14

f 2
1 f

2
7

≡ f2f14 (mod 2). (3.55)

It follows from (3.55) that
∞∑
n=0

Λ7(8n+ 3)qn ≡ f1f7 (mod 2) (3.56)

and

Λ7(8n+ 7) ≡ 0 (mod 2). (3.57)

From (3.54), we also have
∞∑
n=0

Λ7(2n+ 1)qn ≡ f1f7 (mod 2). (3.58)

From the above congruence and (3.56), we readily arrive at (3.18).

Now, iterating (3.18), we find that

Λ7(2n+ 1) ≡ Λ7(2(4n+ 1) + 1)

≡ Λ7(2(4
2n+ 4 + 1) + 1)

≡ Λ7(2(4
3n+ 42 + 4 + 1) + 1)
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...

≡ Λ7

(
2

(
4jn+

4j − 1

3

)
+ 1

)
(mod 2).

Replacing n by 4n+ 3 in the above and then employing (3.57), we obtain (3.19).

Now, extracting the even terms on both sides of (3.54), we have
∞∑
n=0

Λ7(4n+ 1)qn = − 1

f1f7

(
φ(q14)ψ(q4) + q3φ(q2)ψ(q28)

)
=
ψ(q)(ψ(q7) (φ(q14)ψ(q4) + q3φ(q2)ψ(q28))

f 2
2 f

2
14

. (3.59)

Now, as φ(q) ≡ 1 (mod 2), from (3.29), we have

ψ(q)ψ(q7) ≡ ψ(q8) + qψ(q2)ψ(q14) + q6ψ(q56) (mod 2).

Therefore, from(3.59), we find that
∞∑
n=0

Λ7(4n+ 1)qn ≡ (ψ(q8) + qψ(q2)ψ(q14) + q6ψ(q56)) (ψ(q4) + q3ψ(q28))

f4f28
(mod 2).

(3.60)

Extracting the even terms, we have
∞∑
n=0

Λ7(8n+ 1)qn

≡ ψ(q2)ψ(q4) + q3ψ(q2)ψ(q28) + q2ψ(q)ψ(q7)ψ(q14)

f2f14

≡ ψ(q2)ψ(q4) + q3ψ(q2)ψ(q28) + q2ψ(q14) (ψ(q8) + qψ(q2)ψ(q14) + q6ψ(q56))

f2f14
(mod 2).

Extracting the odd terms from both sides of the above, we obtain
∞∑
n=0

Λ7(16n+ 9)qn ≡ qψ(q)ψ(q14) + qψ(q)ψ2(q7)

f1f7

≡ 2
qψ(q)ψ(q14)

f1f7
≡ 0 (mod 2),

from which (3.20) for r = 9 follows readily.

Next we prove (3.20) for r = 13. Extracting the odd terms from both sides of

(3.60), we find that
∞∑
n=0

Λ7(8n+ 5)qn

≡ qψ(q4)ψ(q14) + q4ψ(q14)ψ(q28) + ψ(q)ψ(q2)ψ(q7)

f2f14
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≡ qψ(q4)ψ(q14) + q4ψ(q14)ψ(q28) + ψ(q2) (ψ(q8) + qψ(q2)ψ(q14) + q6ψ(q56))

f2f14
(mod 2).

Extracting the odd terms, we obtain
∞∑
n=0

Λ7(16n+ 13)qn ≡ ψ(q2)ψ(q7) + ψ2(q)ψ(q7)

f1f7

≡ 2
ψ(q2)ψ(q7)

f1f7
≡ 0 (mod 2),

from which (3.20) for r = 13 is apparent. With this, we complete the proof of (3.20).

Proof of (3.21). From (3.58), we have
∞∑
n=0

Λ7(2n+ 1)qn ≡ f1f7 (mod 2).

Now, using the 5-dissection of f1 stated in (2.38), we have
∞∑
n=0

Λ7(2n+ 1)qn ≡ f25f7·25

(
1

R(q5)
− q − q2R(q5)

)
×
(

1

R(q35)
− q7 − q14R(q35)

)
(mod 2).

Extracting the terms involving q5n+3 from both sides, dividing both sides by q3 and

replacing q5 by q, we have
∞∑
n=0

Λ7(10n+ 7)qn ≡ qf5f35 (mod 2).

Extracting the terms involving q5n+r for r ∈ {0, 2, 3, 4}, we obtain

Λ7(10(5n+ r) + 7)qn ≡ 0 (mod 2).

This completes the proof of (3.21).

Proof of (3.22), (3.23). At first, we show by the mathematical induction that for

all α ≥ 0,
∞∑
n=0

Λ7

(
2 · 7αn+

2 · 7α + 1

3

)
qn ≡ f1f7 (mod 2). (3.61)

Clearly, by (3.58), the result is true for α = 0. Now, suppose that (3.61) holds good

for some α > 0. Setting p = 7 in Lemma 3.15, we have

f1 = q2f49 +
3∑

k ̸=1,k=−3

(−1)kq
3k2+k

2 f

(
−q

3·72+(6k+1)7
2 ,−q

3·72−(6k+1)7
2

)
.

Employing the above in (3.61), we have
∞∑
n=0

Λ7

(
2 · 7αn+

2 · 7α + 1

3

)
qn
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≡ q2f7f49 + f7

3∑
k ̸=1,k=−3

(−1)kq
3k2+k

2 f

(
−q

3·72+(6k+1)7
2 ,−q

3·72−(6k+1)7
2

)
(mod 2).

It can be easily verified that
3k2 + k

2
̸≡ 2 (mod 7) for k ̸= 1. Therefore, extracting

the terms involving q7n+2 from both sides of the above, dividing both sides by q2,

and then replacing q7 by q, we arrive at
∞∑
n=0

Λ7

(
2 · 7α+1n+

2 · 7α+1 + 1

3

)
qn ≡ f1f7 (mod 2).

Thus, (3.61) holds good for α + 1 whenever it holds good for some α > 0. Hence,

by mathematical induction, (3.61) is true for all α ≥ 0.

Next, we prove by mathematical induction that if p is a prime such that

(
−7

p

)
L

=

−1, then for all δ ≥ 0 and n ≥ 0,
∞∑
n=0

Λ7

(
2 · 7α · p2δn+

2 · 7α · p2δ + 1

3

)
qn ≡ f1f7 (mod 2). (3.62)

The case δ = 0 of (3.62) is clearly true by (3.61).

Suppose that (3.62) is true for some α > 0. Then, by Lemma 3.15, we have
∞∑
n=0

Λ7

(
2 · 7α · p2δn+

2 · 7α · p2δ + 1

3

)
qn

≡
[ p−1

2∑
k ̸=±p−1

6
,k=− p−1

2

(−1)kq
3k2+k

2 f
(
− q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 fp2

]

×
[ p−1

2∑
k ̸=±p−1

6
,k=− p−1

2

(−1)kq7·
3k2+k

2 f
(
− q7·

3p2+(6k+1)p
2 ,−q7·

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q7·

p2−1
24 f7·p2

]
(mod 2). (3.63)

Now we consider the congruence

3k2 + k

2
+ 7 · 3m

2 +m

2
≡ p2 − 1

3
(mod p), (3.64)

where −p−1
2

≤ k,m ≤ p−1
2
. Since the above congruence is equivalent to solving the

congruence

(6k + 1)2 + 7(6m+ 1)2 ≡ 0 (mod p),

and
(

−7
p

)
L
= −1, it follows that (3.64) has the unique solution k = m = ±p−1

6
.

Therefore, extracting the terms involving qpn+
p2−1

3 from both sides of (3.63), we find
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that
∞∑
n=0

Λ7

(
2 · 7α · p2δ+1n+

2 · 7α · p2(δ+1) + 1

3

)
qn ≡ fpf7p (mod 2). (3.65)

Extracting the terms involving qpn from the above and replacing qp by q, we arrive

at
∞∑
n=0

Λ7

(
2 · 7α · p2(δ+1)n+

2 · 7α · p2(δ+1) + 1

3

)
qn ≡ f1f7 (mod 2),

which clearly is the α + 1 case of (3.62). This completes the proof of (3.62).

Now, it can be seen that (3k2+k)/2 ≡ 0, 1, 2, or 5 (mod 7). Therefore, equating

the coefficients of q7n+r, where r = 3, 4, 6, from both sides of (3.62), we arrive at

Λ7

(
2 · 7α · p2δ(7n+ r) +

2 · 7α · p2δ + 1

3

)
≡ 0 (mod 2),

which is (3.22).

Now, equating the coefficients of qpn+r for r ∈ {1, 2, . . . , p− 1} on both sides of

(3.65), we readily arrive at (3.23).

Remark 3.16. It follows from (3.53) and (3.54) that(
∞∑
n=0

Λ7(n)q
n

)(
∞∑
n=0

Λ7(2n+ 1)qn

)
= −1.

3.7 Proof of Theorem 3.9

Proof of (3.24). Setting k = 23 in (3.14), we have
∞∑
n=0

Λ23(n)q
n = χ(−q)χ(−q23). (3.66)

From [35, Eq. (7.4)], we recall that

χ(−q)χ(−q23)− χ(q)χ(q23) = −2q − 2q3(−q2; q2)∞(−q46; q46)∞,

which, by (3.69), may be rewritten as
∞∑
n=0

Λ23(n)q
n −

∞∑
n=0

Λ23(n)(−q)n = −2q − 2q3(−q2; q2)∞(−q46; q46)∞.

It follows from the above that
∞∑
n=0

Λ23(2n+ 1)qn = −1− q(−q; q)∞(−q23; q23)∞
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≡ 1 + qf1f23 (mod 2),

and hence,
∞∑
n=0

Λ23(2n+ 3)qn ≡ f1f23 (mod 2), (3.67)

From (3.70), we have
∞∑
n=0

Λ23(2n+ 3)qn ≡ f1f23 (mod 2).

Now, using the 5-dissection of f1 stated in (2.38), we have
∞∑
n=0

Λ23(2n+ 3)qn ≡ f25f23·25

(
1

R(q5)
− q − q2R(q5)

)
×
(

1

R(q115)
− q23 − q46R(q115)

)
(mod 2).

Extracting the terms involving q5n+4 from both sides, dividing both sides by q4 and

replacing q5 by q, we have
∞∑
n=0

Λ23(10n+ 11)qn ≡ q4f5f115 (mod 2).

Extracting the terms involving q5n+r for r ∈ {0, 1, 2, 3}, we obtain

Λ23(10(5n+ r) + 11)qn ≡ 0 (mod 2).

This completes the proof of (3.24).

Proof of (3.25), (3.26). At first, we prove by mathematical induction that for all

α ≥ 0,
∞∑
n=0

Λ23 (2 · 23αn+ 2 · 23α + 1) qn ≡ f1f23 (mod 2). (3.68)

Setting k = 23 in (3.14), we have
∞∑
n=0

Λ23(n)q
n = χ(−q)χ(−q23). (3.69)

From [35, Eq. (7.4)], we recall that

χ(−q)χ(−q23)− χ(q)χ(q23) = −2q − 2q3(−q2; q2)∞(−q46; q46)∞,

which, by (3.69), may be rewritten as
∞∑
n=0

Λ23(n)q
n −

∞∑
n=0

Λ23(n)(−q)n = −2q − 2q3(−q2; q2)∞(−q46; q46)∞.
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It follows from the above that
∞∑
n=0

Λ23(2n+ 1)qn = −1− q(−q; q)∞(−q23; q23)∞

≡ 1 + qf1f23 (mod 2),

and hence,
∞∑
n=0

Λ23(2n+ 3)qn ≡ f1f23 (mod 2), (3.70)

which is the case α = 0 of (3.68).

Now, suppose that (3.68) is true for some α > 0. We claim that it is then true

for α + 1 as well.

Setting p = 23 in the p-dissection of f1 stated in Lemma 3.15, we see that

f1 = q22f232 +
11∑

k ̸=−4,k=−11

(−1)kq
3k2+k

2 f

(
−q

3·232+23(6k+1)
2 ,−q

3·232−23(6k+1)
2

)
.

Employing the above in (3.68), we have
∞∑
n=0

Λ23 (2 · 23αn+ 2 · 23α + 1) qn

≡ q22f23f232 +
11∑

k ̸=−4,k=−11

(−1)kq
3k2+k

2 f23f

(
−q

3·232+23(6k+1)
2 ,−q

3·232−23(6k+1)
2

)
(mod 2).

It is easy to verify that
3k2 + k

2
̸≡ 22 (mod 23) for k ̸= −4. Therefore, extracting

the terms involving q23n+22 on both sides of the above, dividing by q22, and then

replacing q23 by q, we find that
∞∑
n=0

Λ23 (2 · 23α(23n+ 22) + 2 · 23α + 1) qn ≡ f1f23 (mod 2),

which is the α + 1 case of (3.68). Thus, (3.68) holds good for all α ≥ 0.

Now, we prove by mathematical induction that if p > 3 is a prime such that(
−23

p

)
L

= −1, then for all δ ≥ 0

∞∑
n=0

Λ23

(
2 · 23α · p2δn+ 2 · 23α · p2δ + 1

)
qn ≡ f1f23 (mod 2). (3.71)

Clearly, (3.68) is the δ = 0 case of (3.71).
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Now, suppose that (3.71) is true for some α > 0. Then, by Lemma 3.15, we have
∞∑
n=0

Λ23

(
2 · 23α · p2δn+ 2 · 23α · p2δ + 1

)
qn

≡
[ p−1

2∑
k ̸=±p−1

6
,k=− p−1

2

(−1)kq
3k2+k

2 f
(
− q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 fp2

]

×
[ p−1

2∑
k ̸=±p−1

6
,k=− p−1

2

(−1)kq23·
3k2+k

2 f
(
− q7·

3p2+(6k+1)p
2 ,−q23·

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q23·

p2−1
24 f23·p2

]
(mod 2). (3.72)

Now, consider the congruence

3k2 + k

2
+ 23 · 3m

2 +m

2
≡ p2 − 1 (mod p),

where −p−1
2

≤ k,m ≤ p−1
2
. As the above congruence is equivalent to solving the

congruence

(6k + 1)2 + 23(6m+ 1)2 ≡ 0 (mod p),

and

(
−23

p

)
L

= −1, it has a unique solution, namely, k = m = ±p−1
6

. There-

fore, extracting the terms involving qpn+p2−1 on both sides of the congruence (3.72),

dividing by qp
2−1, and then replacing qp by q, we arrive at

∞∑
n=0

Λ23

(
2 · 23α · p2δ+1n+ 2 · 23α · p2(δ+1) + 1

)
qn ≡ fpf23p (mod 2). (3.73)

Extracting the terms involving qpn from both sides of the above and then replacing

qp by q, we find that
∞∑
n=0

Λ23

(
2 · 23α · p2(δ+1)n+ 2 · 23α · p2(δ+1) + 1

)
qn ≡ f1f23 (mod 2),

which is clearly the α + 1 case of (3.71). Hence, (3.71) is true for all α ≥ 0.

It can be easily verified that
3k2 + k

2
̸≡ 4, 6, 9, 10, 13, 14, 16, 18, 19, 20, 21 (mod 23).

So, equating the coefficients of q23n+r for r ∈ {4, 6, 9, 10, 13, 14, 16, 18, 19, 20, 21} on

both sides of (3.71), we find that, for all α ≥ 0,

Λ23

(
2 · 23α · p2δ(23n+ r) + 2 · 23α · p2δ + 1

)
≡ 0 (mod 2),

which is (3.25).

Equating the coefficients of qpn+r for r ∈ {1, 2, . . . , p−1} on both sides of (3.73),
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we readily arrive at (3.26) to complete the proof.

Remark 3.17. Setting α, δ = 0 and p = 5 in (3.26) alongwith the facts that

Λ23(11) ≡ Λ23(21) ≡ Λ23(31) ≡ Λ23(41) ≡ 0 (mod 2) gives (3.24).
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