Chapter 3

Differences of even and odd numbers of
parts of the cubic and some analogous par-

tition functions

3.1 Introduction

In 2021, Merca [110, Definition 1] defined the following functions.

Definition 3.1. For a positive integer n, let

1. ae(n) be the number of partitions of n into an even number of parts in which

the even parts can appear in two colors.

2. a,(n) be the number of partitions of n into an odd number of parts in which

the even parts can appear in two colors.
3. A(n) = a.(n) - as(n).

By considering

it 1
Flag) = g (1—2¢")(1 = z¢°")’

The contents of this chapter have appeared in Boletin de la Sociedad Matemdtica Mexicana

[28].
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we can see that the generating function of A(n) (due to Merca) is given by
1
A(n 1.q = (4:4")oo (0% ¢")ox; 3.1
Z )= (=@ oo (0% ¢*) o (& 0ol (31)
where the last equality arises from Euler’s identity
B 1
(4:¢*)oo

(=4 @)

With the aid of Smoot’s RaduRK Mathematica package [148] which is based on
an algorithm developed by Radu [123], Merca [110, Theorem 6.1] proved that

Bty | o BBRI8 W SIRIS L B
RER U RAR RS R

and a similar expression for the generating function of A(27n + 26) having 12 terms

Z A(9n +5)¢" = =3¢

(3.2)

[110, Theorem 6.1]. From these expressions of the generating functions, Merca

readily found the following two Ramanujan-like congruences.

Theorem 3.2. [110, Theorem 1.10] For alln > 0,
AOn+5)=0 (mod 3), (3.3)
A(27Tn +26) =0 (mod 3). (3.4)

Using classical generating function manipulations and dissections, da Silva and
Sellers [68] reproved the above congruences. They also proved an additional con-
gruence and couple of infinite families of congruences modulo 3 as stated in the

following theorem.

Theorem 3.3. [68, Theorems 3.1-3.3] For all j > 0 and n > 0,

ABn+1)=A(2Tn +8) (mod 3), (3.5)
. .97 11

A <9ﬂ+1n + %) =0 (mod 3), (3.6)
23971 11

A (3 L9t 4 3 ) =0 (mod 3). (3.7)

The first purpose of this chapter is to employ Ramanujan’s theta function iden-
tities in finding simplified formulas of the generating functions from which proofs of

Theorem [3.2] and Theorem [3.3] follow quite naturally.

Now we state our results on A(n).
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Theorem 3.4. We have

S n_ X(=0)¥(¢*)p(—¢%)

;A(?m)q  e(=9e(r) (38)

- o VPN
;A(3n+ 1)g" = EnTrR (3.9)

. n V(=Y
; A(Bn +2)¢" = B (3.10)
i A9n+5)q¢" = —3qf1f5111f162. (3.11)

Furthermore, for alZn;L >0

A(Bn+2)=—-A(27n+17) (mod 3), (3.12)
ABIn+44) =0 (mod 3). (3.13)

Note that (3.11)) is a much simplified form of (3.2]) and the congruence (3.3)) also
readily follows from (3.11]).

The second purpose of this chapter is to study the partition function Ag(n)
defined below, where Ay(n) = A(n).

Definition 3.5. For a positive integer n, let

1. a®(n) be the number of partitions of n into an even number of parts in which

the parts that are multiples of k can appear in two colors.

2. a¥(n) be the number of partitions of n into an odd number of parts in which

the parts that are multiples of k can appear in two colors.

8. Ar(n) = ak(n) - ak(n).

o

For example, if k= 3 and n = 4, then

a’(4) = 4, the relevant partitions being 3, + 1,3, + 1,2 +2,1+ 1+ 1+ 1;

a’(4) = 2, the relevant partition being 4 and 2 + 1 + 1;

o

and hence, A3(4) = 4 — 2 = 2, where the subscripts 7 and b depict the two colors of

the respective part.
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By considering the function

s 1
¢eo = m—ma—my

we can easily see that the generating function of Agx(n) is G(—1,q); that is,

Z Ag(n)q" = L
n=0

(=4 Qoo(—0%; 4% )

which by Euler’s identity (—¢;¢)s = 1/(¢;¢*)s and (1.7) may be recast as
D M) = (407 (0": ) oo = x(—0)X(—4"). (3.14)
n=0
In the following theorems we state our results on Ag(n) for k € {3,5,7,23}.

Theorem 3.6. For alln > 0,

As(dn+7) =0 (mod 2), where r € {2,3}. (3.15)

Theorem 3.7. For alln > 0,

A;(10n+7r) =0 (mod 2), where r € {2,6}, (3.16)

As(25n+7) =0 (mod 5), where r e {14,19,24}. (3.17)

To state the remaining theorems, we require the Legendre symbol, which is

defined for a prime p > 3 by

(

1, if a is a quadratic residue modulo p and p 1 a,

a
» L:: 0, ifp]la,

— 1, if a is a quadratic nonresidue modulo p.

\

Theorem 3.8. For alln >0 and 53 > 0,

A7(2n+1) =A7(8n+3) (mod 2), (3.18)

] 10 - 22j+1 1
A7 (223+3n + O%) =0 (mod 2), (319)
A7(16n+7) =0 (mod 2), where r € {9,13}, (3.20)

Az(50n+7) =0 (mod 2), where r e {7,27,37,47}, (3.21)
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if p> 3 is a prime such that (%) = —1, then for alla« > 0 and 6 > 0,
L

A; (2 ST pP(Tn 1) + 270‘#1)25—1—1) =0 (mod?2), where r € {3,4,6},
(3.22)
Ar (2 ST P (pn 4 1) + 2.7 'p;(éﬂ) i 1) =0 (mod 2), (3.23)
where r € {1,2,...,p—1}.
Theorem 3.9. For alln > 0,
Ao3(50n +7) =0 (mod 2), where r € {11,21,31,41}, (3.24)
If p > 3 is a prime such that <_723> = —1, then for alla >0, >0 andn > 0,
L
Aoz (2-23% - p®(23n+7)+2-23%-p* +1) =0 (mod 2), (3.25)
where r € {4,6,9,10, 13,14, 16, 18,19, 20,21},
Ao (2-23% - p*pn+71) +2-23* p**™ 4 1) =0 (mod 2), (3.26)

where r € {1,2,...,p—1}.

Remark 3.10. Note that congruences equivalent to (3.15)) and (3.16|) can be found in
the work of Hirschhorn and Sellers [88]. Congruences equivalent to (3.18)) and (3.20))
can be found in the work of Radu and Sellers [124]. Further (3.24)) is equivalent to

a special case of [162, Eq. (1.10)]. However, our proofs are different.

We organize the chapter as follows: In the next section, we state a few well-
known dissection formulas. In Section [3.3] we prove Theorems 3.4l In Sections
3.7, we prove Theorems [3.6H3.9] respectively.

3.2 Dissection formulas

Some known 2-, 3-; and 5-dissections formulas are stated in the following four lem-

mas.

Lemma 3.11. [33, p. 40, Entries 25(i) and 25(ii)] If ¢ is given by (1.3), then
(a) = e(g") + 201 (") (327)
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Lemma 3.12. [33, p. 315] If ¢ is given by (1.4), then

V(@)Y (q®) = o(¢®)(q) + qpo(a®)(q"), (3.28)
V(@)v(q") = o(@®*)Y(d®) + a ()0 (g™) + ¢®p(g") (™). (3.29)

Lemma 3.13. [33, p. 49 and p. 51] We have

¥(g) = f(4* ¢°) + qv(q”), (3.30)
e(q) = 0(q”) + 2qv(—¢”)x (). (3.31)

Lemma 3.14. [33, p. 49] We have

e(q) = o(¢®) +2qf (4", ¢%) + 24" f(¢°, ¢*). (3.32)

In the following lemma, we recall a p-dissection of f.

Lemma 3.15. [64, Theorem 2.2] For a prime p > 3, we have

_ 2_ 2
=) e Y (DT

e )

3p2+(6k+1)p
2

3p2(6k+l)p)
2

f(—q ,—q

Y

where

tp—1 ZJT? if p= 1 (mod 6),

6 )-p-—1
6 )

if p= —1 (mod 6).

+p—1
6 )

—(p—1 1
Furthermore, for % <k< pT and k #

3k2—|—/<:?_ép2—1

5 o (mod p).

3.3 Proofs of Theorems |3.2-3.4

Proof. With the aid of (1.7), we rewrite (3.1]) in the form
> Am)g" = x(—g)x(—4). (3.33)
n=0
From [24, Lemma 3.5] (See also [61, p. 194, Eq. (3.65)]), we recall that

(@) — ¢*(¢) = dax(a)x(—=¢*) ¥ (a*)v(d°). (3.34)
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Replacing ¢ by —¢q in the above and then employing (3.31]), we have
2
A (—)x (=g (=" )(d°) = ¥*(=¢*) = (p(=¢") = 2q0(a")x(=¢"))".  (3.35)
It follows from (3.33)) and ([3.35) that

= T e 1 oy 9y (_3))2
12 A = ST i T g PO T @)

(3.36)

Extracting the terms involving ¢®**! from both sides of the above, we have

- 3n+1 _ X(—q3)1/1(q9)<p(—q9)
12 MG =0

Dividing both sides of the above by 4¢ and then replacing ¢® by ¢, we arrive at

- n X(=QU(@)e(—¢%)
2 NG = Ty

which is (3.8)).

Similarly, extracting the terms involving ¢*" ™2 from both sides of (3.36]), dividing
by 4¢*> and then replacing ¢® by ¢, we arrive at (3.9).

Again, extracting the terms involving ¢***3 from both sides of (3.36]), we have

> 3n+3 1 20 3\ __ 2/ 9
4;A(3n+2)q + = SN (P*(=d") — ¢*(—4")) -

Replacing ¢® by ¢ in the above and then employing (3.34)), we find that

42 A(Bn +2)¢"t = _4QX(—q)X(—q2)w<_q3)w<q6)

g P(=q)¥(e?)’
from which it follows that
G Y(=¢°)1(q°)
ABn 4+ 2)g" = — 4V \E )
2 An+ 2 )

which is (3.10)).
Now, from [68, Lemma 1.5], we recall that
(B g B g (S Sl

- 13 16 £6
12 12 f18

= (fedis . (3.37)
¥*(q?) 13 15 fis 12 )
Employing (3.37)) in (3.10)), extracting the terms involving ¢***!, dividing both sides
by ¢, and then replacing ¢® by ¢, we obtain

- 6 £6 2 616
> AOn 40" = dan(a)ula’) e = e T
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fifs £
T

which is (3.11)).

Now, it is easy to see that

¥*(q) = ¥(¢°) (mod 3).
Employing the above in (3.10)), we find that

S w V(=) (=" v(e®)v(e?)
2 A 20" = =y = )
= 20(=¢*)¥(¢*) (mod 3), (3.38)

which by (3.30) can be written as
D ABn+2)¢" = 20(—¢") (£(¢°,4") + *(¢"))  (mod 3).
n=0

Extracting the terms involving ¢3"*2 from the above and then employing (3.30]) once

again, we find that
> A0 +8)q" = 20(¢°)ib(—q)
n=0

= 20(¢°) (f(=¢*,¢°) — av¥(=¢"))  (mod 3). (3.39)
Equating the coefficients of ¢*"*2 from both sides of the above, we arrive at

A(27n+26) =0 (mod 3),

which is (3.4).
Next, from (1.4), (2.30) and (3.9), the fact that f{ = f3 (mod 3), we find that
- el Vbl G/ N £V
A(3 1)¢" = — —
2 A 00 = =500 TR
_ o, Jifefis
=2 2 Fn (mod 3). (3.40)

Again, extracting the terms involving ¢3" from both sides of (3.39)) and then replac-

ing ¢ by ¢, we arrive at

D A@RT+8)g" = 20(¢*) f(—q.q°) (mod 3). (3.41)

n=0
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By (1.1), (1.3), and (1.7), we find that
o 2 — (3 2. 3 3.3 _(QQ)(CIC])
f(=4:0°) = (¢ =) o075 —¢") oo (—¢"; —0") o o)

Employing the above identity and (1.4) in (3.41)), and then simplifying by using the

fact f = f3 (mod 3) again, we find that

iA(27n+8)q”z (¢ ) ( Q;’q(jgio( 16%) oo

— (=4:¢*)oo (9% 4"
_ o IS
B
f1f6f18
f3 7 (mod 3). (3.42)

From ({3.40) and (3.42)), we conclude that, for all n > 0,

ABn+1)=A27Tn +8) (mod 3),

which is (3.5)).
Next, extracting the terms involving ¢3"*! from both sides of (3.39)), dividing

both sides by ¢ and then replacing ¢* by ¢, we find that

S AT+ 170" = H(@)(—a?) (mod 3) (3.43)
n=0
From the above congruence and , we see that, for all n > 0,
A(Bn+2)=—-A(27Tn+17) (mod 3),
which is (3.12]).
With the aid of , we can rewrite as

i/\@?n +17)¢" = ¢(=¢%) (f(¢° ¢%) + ¢*¢(¢"®))  (mod 3).

n=0

Equating the coefficients of ¢*"! from both sides of the above, we find that
ABIn+44) =0 (mod 3),
which is (3.13)).
Successive iterations of give
ABn+2)=—-ABOn+5)+2)
= A27(9n +5) + 17)

=A(3n+3"-5+3-5+2)
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(=1)AB-Yn+3-91. 5439254 +3-5+2)
15-97 +1
8
Replacing n by 3n + 1 in the above, we find that

. . . QJ
A(9n +5) = (—1YA (9J+1n n %) (mod 3).

(—1YA (3 - 9n + ) (mod 3). (3.44)

Employing (3.3]), we see that, for all j > 0 and n > 0,

. .97 1]
A (9”“71 + %) =0 (mod 3),
which is (3.6)).
Again, replacing n by 9n + 8 in ([3.44)), we have

) . 23 .97t 4+ q
A(2Tn 4+ 26) = (—1)’A <3 ARV NS SQT—F) (mod 3).

Employing (3.4)) in the above, we readily arrive at (3.7)).

3.4 Proof of Theorem (3.6

Setting £ = 3 in (3.14)) and then manipulating the ¢-products, we have

> taln)g” = x(-an(e') = i = P

Replacing ¢ by —¢ in (3.28) and then using the resulting identity in the above, we

have

- n_ 2(d®)v(g") — qp(d®)¥(g"?)
2 Aalma” = Fifo '

Extracting, in turn, the even and odd terms from both sides of the above, and then

using 7 we find that
n=0

fafs f2f6
and
S n o e@v(d®) () (eleh) + 2q0(¢*))
2 As(n+ 1)g" = == = fofo |
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Equating the coefficients of ¢?"™! from both sides of the above two identities, we

arrive at
As(4n+7) =0 (mod 2), where r e {23},

which is (3.15)).

3.5 Proof of Theorem 3.7

Setting k£ = 5 in (3.14]), we have
> As(n)g" = x(—9)x(—¢"). (3.45)
n=0
Now, recall from [33, p. 258, Entry 9(vii) and p. 262, Entry 10(iv)] that

©*(q) — ©*(¢°) = 4qf(q,4°) f(¢*.q") = 4ax(q) [ fe0- (3.46)

Multiplying by x(¢°), and then replacing ¢ by —¢q, we find that

sqx(—a (=) = X0 2oy~ 2(g))

~ x(@°) frofa0
_ ¢ (=2°) — ¢*(=q)
V*(q°)
With the aid of (3.45) and (3.32)), the above may be rewritten as
4 Z As(n)g™™!
n=0
1

2
= P <902(—q5) — (e(=¢®) — 24/ (=4"°, —¢®) + 24" f (—¢°, —¢*)) ) (3.47)
Extracting, in turn, the terms of the form ¢°**2 and ¢°**3 from both sides of the

above, we obtain

FP(=¢*,—q") _ f(=¢®, —¢"")

RZ:OA5(5n +1)¢" = — ) = ¢(;2) (mod 2),
- w0 —d) _ f=t—d")
2 Moot =y =y et

from which it readily follows that A;(10n + 6) = 0 (mod 2) and A5(10n+2) =0
(mod 2). This completes the proof of (3.16)).

Now, extracting the terms involving ¢°"™ from both sides of (3.47)), replacing
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¢° by ¢, and then applying (3.46)), we find that

1

421\5 bn +4)q" = =2 0*(—q) — ¢ (—=¢") + 8¢f (=", —4") f (=4, —¢°))
n=0

_ Aqf (=2’ =) f(—q,—¢°)

¥?(q)
_ dgx(=9)(=¢"; ¢" )oof10f20
¥2(q)
Therefore,
©© 3
nz;/\5(5n +4)¢" = ];Cl;}; = ];150 2 (mod 5). (3.48)

But, well-known Jacobi’s identity [34, Eq. (1.3.24)] states that

o0

R=> (=12 + 1)gur, (3.49)

Jj=0

Employing this in (3.48]), we have
ZA5 5n +4)¢" = 20 oy Z 127 + 1)¢?U*tD72 (mod 5). (3.50)

Now, j(j +1)/2= 0,1 or 3 (mod 5). Therefore, equating coefficients of ¢°**2 and
¢®"*, in turn, from both sides of (3.50]), we find that

As(25n + 14) = A5(25n +24) =0 (mod 5). (3.51)

Furthermore, if 7 = 2 (mod 5), then j(j+1)/2 = 3 (mod 5) and 2j +1 = 0

(mod 5). Therefore, equating the coefficients of ¢ from both sides of (3.50]), we
find that

As(25n+19) =0 (mod 5). (3.52)

Clearly, (3.51]) and (3.52) together give (3.17)). This completes the proof.
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3.6 Proof of Theorem (3.8

Proofs of (3.18), (3.19), (3.20). Setting £ = 7 in (3.14)), manipulating the ¢-

products, and then employing (3.29), we have
ffr  (=@)v(=q")
A ( = —q7) = =
Z Tt =xtmoxa) =5 5 fulas

B fi“ (P(@(@®) — q(@)(a") + ¢°ola)i(g™)) . (3.53)

Extracting the odd terms from both sides of the above and then employing ((3.29)

once again, we have

;Amn L 1)g" = _%}w(cﬁ
- _f;”u; (0(¢®)0 (") + q(a®)(a™) + ¢l ) (d™)) . (3.59)

Extracting the odd terms, we find that

f1f7 N
= fofia (mod 2). (3.55)
It follows from that

f: A(8n+3)¢" = fifr (mod 2) (3.56)

and B
Az(8n+7)=0 (mod 2). (3.57)

From (3.54)), we also have
f: A(2n+1)¢" = fif: (mod 2). (3.58)

From the above congruence and , we readily arrive at .
Now, iterating , we find that
A(2n+1) = A7(2(4n+1) + 1)
=AN(24%n+4+1)+1)

= A 240 + 4% +4+1) + 1)
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%A7 (2 <4jn+4j3_1) +1) (mod 2).

Replacing n by 4n + 3 in the above and then employing (3.57)), we obtain (3.19)).

Now, extracting the even terms on both sides of (3.54)), we have

> Aeldn + 1)q" =~ (pla")0la") + pla?)(a™)
(@) (") (e(d")v(g") + o) ()

- o . (3.59)
Now, as ¢(q) = 1 (mod 2), from (3:20), we have
D(@)P(q") = () + q(@®)e (™) + ¢°¥(¢™)  (mod 2).
Therefore, from(3.59)), we find that
i Ar(dn +1)q" = (¥(¢®) + q (@) (@) + ¢® (™)) (V(¢") + (™))
n=0

i (mod 2).
(3.60)

Extracting the even terms, we have
n=0
_ (@*)¥(ah) + @v(@®)¥(d®) + ¥ (a)v(a)v(g™)
N f2f14
_ W(@)Y(eh) + PY(@)v(e®) + v(a™) (W(@®) + gy (@) (@) + ¢®¥(e™)) (mod 2)
N f2f14 .

Extracting the odd terms from both sides of the above, we obtain

A n _ @W(@)¥(e") + a(0)v*(d)
; 2(16n 4 9)q T
NGOLIC)

flf?
from which for r = 9 follows readily.

=0 (mod 2),

Next we prove (3.20]) for r = 13. Extracting the odd terms from both sides of
(13.60), we find that

Z A7(8n +5)¢"
n=0

_ q¥(g)v(@™) + " (@)Y (d*) + P (9)y(a®)¥(d)
N f2f14
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_ 0(@)9(¢™) + ¢(@MU(G) + (@) (U(6°) + (@0 a™) + V@) o)

f2f14

Extracting the odd terms, we obtain

Y(g*)P(q") + % (q)v(q")
flf'?

U(a®)¥(q")
fifz
from which (3.20)) for » = 13 is apparent. With this, we complete the proof of (3.20)).

Proof of (3.21)). From (3.58), we have

ZA7(2n +1)¢" = fifr (mod 2).
n=0

> A7(16n+13)¢" =

n=0

2

=0 (mod 2),

Now, using the 5-dissection of f; stated in (2.38), we have

ZA7(2n +1)¢" = fosfros (% —q— C]QR(Q5))
n=0

(¢°)

< (g~ — 0" R6))  (od 2)

Extracting the terms involving ¢°**2 from both sides, dividing both sides by ¢* and

replacing ¢° by ¢, we have

ZA7(1On +7)¢" = qfsfss  (mod 2).

n=0

Extracting the terms involving ¢°**" for r € {0,2, 3,4}, we obtain
Az(10(bn+7)+7)¢" =0 (mod 2).

This completes the proof of (3.21)).
Proof of (3.22)), (3.23)). At first, we show by the mathematical induction that for

all a >0,

3
Clearly, by (3.58]), the result is true for & = 0. Now, suppose that (3.61)) holds good

> Aq (2 7% 4 ﬁ) "= fif: (mod 2). (3.61)
n=0

for some av > 0. Setting p = 7 in Lemma [3.15] we have
3

3k%+k 3-724(6k+1)7 3-72 = (6k+1)7
h=dfo+ D (1) Q.f(—q >, g 2 )-

k#1,k=—3

Employing the above in (3.61)), we have

> 2.7% 4+ 1
> (2o 20 g

n=0
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3

3k2 4k 3724+ (6k+1)7 3.72 _(6k+1)7
= Pt S (1) f(—q T ) (mod 2).

k#1,k=—3

3k? + k
It can be easily verified that ;— # 2 (mod 7) for k # 1. Therefore, extracting

the terms involving ¢™*? from both sides of the above, dividing both sides by ¢2,

and then replacing ¢ by ¢, we arrive at

2.7+ 4 1
ZA7 ( 7o¢+1 T) qn = f1f7 (mod 2)

Thus, (3.61) holds good for o + 1 whenever it holds good for some o > 0. Hence,
by mathematical induction, (3.61)) is true for all oo > 0.

. . e . =7
Next, we prove by mathematical induction that if p is a prime such that (—> =
L

p
—1, then for all 6 > 0 and n > 0,

S 2.7 p* +1
Z A7 (2 ST pPn 4 ++) q" = fifr (mod 2). (3.62)
n=0

The case § = 0 of (3.62)) is clearly true by (3.61]).

Suppose that (3.62) is true for some o > 0. Then, by Lemma [3.15] we have

& 2. 7. 25 1
ZA7(2.7a.p25n+—§ * )q"
n=0

=N 2 2+ (6k+1) ?—(6k+1) -1 p?-
_ [ Z (_1)kq3k2+kf< B qu +g +1p’ _qap g+1 p) 4 (_1>¢% lqp241fp2i|
k

ket 21

2

2 2
L 7.3K24k 7,302+ (0k+1)p 7,302~ (6k+1)p
X[ > A A A e A

e

+p—1 - p2—1

o f7.pz} (mod 2). (3.63)

Now we consider the congruence

24k 3m? 21
LAY m;mng (mod p), (3.64)

2
where —’%1 <km< ”T Since the above congruence is equivalent to solving the

congruence
6k +1)>+7(6m+1)*=0 (mod p),

and (%)L = —1, it follows that (3.64) has the unique solution k = m = %.

2_
Therefore, extracting the terms involving qp”+pTl from both sides of (3.63]), we find
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that

0 N 2 . 7a . p2(5+1) + 1 "
> Aq <2 7Pt 4 : ¢" = fofzp, (mod 2). (3.65)
n=0

Extracting the terms involving ¢P" from the above and replacing ¢” by ¢, we arrive

at

= 2.7%. proth 1
S A (2 7 PO P ; > ¢" = fif: (mod 2),
n=0

which clearly is the o + 1 case of (3.62)). This completes the proof of (3.62)).

Now, it can be seen that (3k?+k)/2 = 0,1,2,0or 5 (mod 7). Therefore, equating
the coefficients of "™, where r = 3,4, 6, from both sides of (3.62), we arrive at

9. 70, 26 1
&)EO (mod 2),

A; (2 ST p®(Tn 4 1) + 3

which is (3.22)).
Now, equating the coefficients of ¢""*" for r € {1,2,...,p — 1} on both sides of
(3.65)), we readily arrive at (3.23)).

Remark 3.16. It follows from (3.53)) and (3.54) that

(Z A7(n)q"> (Z A(2n + 1)q”> = —1.

3.7 Proof of Theorem (3.9

Proof of (3.24]). Setting k = 23 in (3.14)), we have

o0

> Aas(n)g" = x(—)x(—*). (3.66)

n=0

From [35, Eq. (7.4)], we recall that
X(=0)x(—=¢*) = x(0)x(¢*) = =24 = 26> (=¢* ¢*) oo (=" ") o0
which, by , may be rewritten as
i Azz(n)q" — i Ags(n)(=@)" = =24 = 2¢°(—=¢% ¢*)oo(—0"%; ¢*) -
n=0 n—=0
It follows from the above that

D A0+ 1)q" = —1 - q(—¢; Do~ 0%
n=0
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=1+¢qfifes (mod 2),

and hence,

Z Ao3(2n+3)q" = f1fes  (mod 2), (3.67)

n=0

From ({3.70), we have

ZAQg(QTL +3)¢" = fif2s (mod 2).

Now, using the 5-dissection of f; stated in (2.38), we have

Z Aos(2n +3)q" = fos faz.25 (% —q— (ZQR(CIB))
n=0

X (@ — ¢ - q4ﬁR(q115)) (mod 2).

Extracting the terms involving ¢°*** from both sides, dividing both sides by ¢* and
replacing ¢° by ¢, we have

ZA23(1On +11)¢" = ¢* fsfuis  (mod 2).

n=0

Extracting the terms involving ¢°**" for r € {0,1,2, 3}, we obtain
Ao3(10(5n +7) +11)¢" =0 (mod 2).

This completes the proof of (3.24)).
Proof of (3.25)), (3.26]). At first, we prove by mathematical induction that for all

a >0,

D A (2-23°n+2-23"+1)¢" = fifas (mod 2). (3.68)

n=0

Setting k£ = 23 in ([3.14]), we have

ZAzg n)g" = x(=a)x(—=¢*). (3.69)

From [35, Eq. (7.4)], we recall that

23) 23) —

X(=a)x(—=¢**) = x(a)x(q —2¢ = 2¢* (=% ¢*) oo (0" %),

which, by (3.69), may be rewritten as

D Aas(n)g" =Y Ass(n)(—0)" = —2¢ = 26°(—¢% *)oo(— 0" 4"
n=0 n=0
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It follows from the above that

n=0

—1 = q(=¢ Q)% ¢*)

=1+gqfifss (mod 2),
and hence,

> Ass(2n+3)q" = fifes (mod 2), (3.70)

which is the case o = 0 of (3.68)).

Now, suppose that (3.68) is true for some a > 0. We claim that it is then true
for a + 1 as well.

Setting p = 23 in the p-dissection of f; stated in Lemma [3.15] we see that
11

3k2 4k 3.232423(6k+1) 3232 23(6k+1)
f="fe+ D> (=Dfg > f(—q g ® )

kt—4,k=—11
Employing the above in (3.68)), we have

ZA23 (2-23%n 42234+ 1) "
n=0

11

3k24+k 3-232423(6k+1) 3-232-23(6k+1)
= ¢* fas foz2 + Z (—D*¢" 7 fasf <—q 2 y —(q 2 > (mod 2).
kA —Ak=—11

k% + k
It is easy to verify that 2+ # 22 (mod 23) for k # —4. Therefore, extracting

the terms involving ¢?*"*22 on both sides of the above, dividing by ¢?2, and then
replacing ¢* by ¢, we find that

D A5 (2-23%(23n+22) +2-23" +1)¢" = fifss  (mod 2),

n=0

which is the a + 1 case of (3.68)). Thus, (3.68) holds good for all a > 0.

Now, we prove by mathematical induction that if p > 3 is a prime such that
—23

( ) = —1, then for all 6 > 0

L

p
D Mg (2-23" pPn+2-23p* +1)¢" = fifas (mod 2). (3.71)
n=0

Clearly, (3.68)) is the 6 = 0 case of (3.71])).
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Now, suppose that (3.71]) is true for some v > 0. Then, by Lemma [3.15| we have

D Mg (2-23" - pPn42-23%p¥ +1) ¢

n=0
p—1

2

3621k 3p2+(6k+1)p 3p2—(6k+1)p tp—1 p2-1
E[ Y. () f(—q 2, —q >+(—1) g pr}

2 2,2 . Q. 2
L 93.3k°+k 7,307+ (6k+1)p 3.3 —(6k+1)p
S D D G VL ] (L S e
et S b=t

+p—1 3 p2—l

+(=1) 75 g fgg.pz] (mod 2). (3.72)

Now, consider the congruence

3k + k 3m?
+ _|_23.mT+m

=p’—1 (mod p),

where —’%1 < k,m < EL. As the above congruence is equivalent to solving the

congruence
6k +1)2+23(6m +1)>=0 (mod p),
—23 , . . +p—1
and | — = —1, it has a unique solution, namely, & = m = =£—=. There-
p /L

fore, extracting the terms involving ¢?"7*~! on both sides of the congruence (3.72),
dividing by qp2_1, and then replacing ¢” by ¢, we arrive at

D Ags (2023 pP 0 4223 20D 4 1) " = fofay, (mod 2).  (3.73)

n=0

Extracting the terms involving ¢”” from both sides of the above and then replacing

¢® by q, we find that
3" Mgy (2023?00 4 2. 23% . XD L 1) " = fifoy (mod 2),
n=0

which is clearly the o 4+ 1 case of (3.71]). Hence, (3.71)) is true for all a > 0.
3k* 4+ k

It can be easily verified that #4,6,9,10,13, 14,16, 18,19, 20,21 (mod 23).

So, equating the coefficients of ¢*"*" for r € {4,6,9,10, 13,14, 16, 18,19, 20,21} on
both sides of (3.71)), we find that, for all o > 0,

Ao (2-23% - p*(23n+7)+2-23% - p* +1) =0 (mod 2),

which is (3.25)).

Equating the coefficients of ¢"*" for r € {1,2,...,p—1} on both sides of (3.73)),
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we readily arrive at (3.26)) to complete the proof.

Remark 3.17. Setting «,d = 0 and p = 5 in (3.26) alongwith the facts that
Agg(ll) = A23(21) = A23(31) = A23(41) =0 (mod 2) giUES 324

20
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