
Chapter 4

Arithmetic properties of 5-regular parti-

tions into distinct parts

4.1 Introduction

Let b′ℓ(n) count the number of ℓ-regular partitions into distinct parts of n. For

example, b′5(10) = 7 and the relevant 7 partitions of 10 are 9 + 1, 8 + 2, 7 + 3,

7 + 2 + 1, 6 + 4, 6 + 3 + 1, and 4 + 3 + 2 + 1. It is clear that b′ℓ(n) also counts

the number of ℓ-regular partitions with odd parts of n. With the convention that

b′ℓ(0) = 1, the generating function of b′ℓ(n) is given by
∞∑
n=0

b′ℓ(n)q
n =

(−q; q)∞
(−qℓ; qℓ)∞

. (4.1)

Note that, b′2(n) counts the number of partitions of n into distinct odd parts,

which, in fact, is equal to the number of self-conjugate partitions of n. The function

b′2(n) has been well-studied. There are certain known results on b′ℓ(n) for ℓ ≥ 3. For

primes ℓ ≥ 3 and an integer r with 1 ≤ r ≤ p − 1 such that 24r + 1 is a quadratic

nonresidue modulo ℓ, Sellers [141] proved that, for all nonnegative integers n,

b′ℓ(ℓn+ r) ≡ 0 (mod 2). (4.2)

The contents of this chapter have appeared in International Journal of Number Theory [29].
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For a given prime ℓ ≥ 5, Cui and Gu [64, p. 523] showed that

b′ℓ

(
ℓn+

ℓ2 − 1

24

)
≡ bℓ(n) (mod 2). (4.3)

Therefore, congruences modulo 2 of b′ℓ(n) may be studied from those of bℓ(n). Thus,

many results on congruences modulo 2 for b′ℓ(n) can be derived from the results

in papers on bℓ(n) that we mentioned earlier. Recently, Iwata [91] found some

congruences modulo 2 for b′ℓ(n) for ℓ = 9, 25, 41, and 45 by using modular forms.

In this chapter, we study the arithmetic properties of the function b′5(n), which

counts the number of 5-regular partitions into distinct parts of n. Setting ℓ = 5 in

(4.1), we have
∞∑
n=0

b′5(n)q
n =

(−q; q)∞
(−q5; q5)∞

= 1 + q + q2 + 2q3 + 2q4 + 2q5 + 3q6 + 4q7 + 4q8 + 6q9 + 7q10 + 8q11

+ 10q12 + 12q13 + 14q14 + 16q15 + 19q16 + 22q17 + 26q18 + · · · . (4.4)

The sequence (b′5(n)) is A096938 in [147]. Other interpretations of this sequence are

also discussed there. The function b′5(n) is also related to representation theory and

studied from that point of view by Andrews et al. [13] (see also Andrews et al. [12]).

Very recently, Ballantine and Feigon [16] gave a new combinatorial interpretation of

b′5(n). There are a few known arithmetic properties of b′5(n) as well. It follows from

(4.2) that

b′5(5n+ 3) ≡ b′5(5n+ 4) ≡ 0 (mod 2).

Many results on congruences modulo 2 for b′5(n) can also be derived from (4.3) and

the corresponding work on b5(n). In particular, see [45], [64], and [89] for results on

b5(n) modulo 2.

In this chapter, we prove several new arithmetic results on b′5(n). We state our

results in the following theorems.

The following theorem gives a complete characterization of the parity of b′5(2n+

1).
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Theorem 4.1. For all n ≥ 0,

b′5(2n+ 1) ≡

1 (mod 2), if n = 15k2 − 5k for k ∈ Z,

0 (mod 2), Otherwise.

(4.5)

Some congruences modulo 4 for b′5(n) are given in the next theorem.

Theorem 4.2. Let p (> 5) be a prime such that
(

3
p

)
L
̸=
(

−5
p

)
L
. For all n ≥ 0 and

α ≥ 0, we have

b′5(20n+ j) ≡ 0 (mod 4), where j ∈ {7, 15}, (4.6)

b′5(100n+ j) ≡ 0 (mod 4), where j ∈ {11, 31}, (4.7)

b′5

(
4 · p2α(5n+ j) +

17 · p2α + 1

6

)
≡ 0 (mod 4), where j ∈ {1, 3}, (4.8)

b′5

(
4 · p2α+1(pn+ j) +

17 · p2α+2 + 1

6

)
≡ 0 (mod 4), where j ∈ {1, 2, . . . , p− 1}.

(4.9)

In the next theorem, we state the exact generating functions of b′5(5n + 1) and

b′5(25n+21) in terms of q-products, from which an internal congruence modulo 5 is

also derived.

Theorem 4.3. We have
∞∑
n=0

b′5(5n+ 1)qn =
f2f

3
5

f 3
1 f10

(4.10)

and
∞∑
n=0

b′5(25n+ 21)qn =
f1f

3
10

f 3
2 f5

+ 40
f 4
2 f

4
5

f 8
1

+ 500q
f 4
2 f

10
5

f 14
1

. (4.11)

Furthermore, for all integers α ≥ 0, we have

b′5(5n+ 1) ≡ b′5

(
52α+1n+

52α+1 + 1

6

)
(mod 5). (4.12)

In the final result of this chapter, we prove the following theorem which implies

that
∑∞

n=0 b
′
5(5n+ 1)qn is lacunary modulo arbitrary positive powers of 5.

Theorem 4.4. Let k be a positive integer. Then

lim
X→∞

#{0 ≤ n ≤ X : b′5(5n+ 1) ≡ 0 (mod 5k)}
X

= 1.
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In Sections 4.2–4.5, we prove Theorems 4.1–4.4, respectively. We use t-dissections

of certain q-products and the theory of modular forms in our proofs. The necessary

background material and useful preliminary lemmas are given in the corresponding

section.

4.2 Proof of Theorem 4.1

From (4.4), we have
∞∑
n=0

b′5(n)q
n =

(−q; q)∞
(−q5; q5)∞

=
f2
f10

· f5
f1
. (4.13)

Employing (2.35) in (4.13), we have
∞∑
n=0

b′5(n)q
n =

f8f
2
20

f2f10f40
+ q

f 3
4 f40

f 2
2 f8f20

. (4.14)

Extracting the terms involving q2n+1 from both sides of the above, dividing by q,

and then replacing q2 by q in the resulting identity, we find that
∞∑
n=0

b′5(2n+ 1)qn =
f 3
2 f20

f 2
1 f4f10

. (4.15)

Employing (2.87) in (4.15), we have
∞∑
n=0

b′5(2n+ 1)qn ≡ f10 (mod 2). (4.16)

Employing (1.8) with q replaced by q10 in (4.16), we see that
∞∑
n=0

b′5(2n+ 1)qn ≡
∞∑

k=−∞

q15k
2−5k (mod 2),

from which we readily arrive at (4.5) to complete the proof.

4.3 Proof of Theorem 4.2

We recall the following 2-dissection is stated in the following lemma, which will be

used subsequently.

Lemma 4.5. [26, Lemma 2] We have

f 2
1 =

f2f
5
8

f 2
4 f

2
16

− 2q
f2f

2
16

f8
. (4.17)
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The following result which will be helpful in proving the theorem.

Lemma 4.6. ([1, Lemma 2.3]) If p ≥ 3 is a prime, then

f 3
1 =

p−1∑
k = 0,

k ̸= p−1
2

(−1)kq
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2 + p(−1)
p−1
2 q

p2−1
8 f 3

p2 .

(4.18)

Furthermore, for 0 ≤ k ≤ p− 1 and k ̸= p−1
2
,

k2 + k

2
̸≡ p2 − 1

8
(mod p).

Now we are in a position to prove Theorem 4.2.

Proofs of (4.6) and (4.7). By the binomial theorem, for all positive integers j,

f 4
j ≡ f 2

2j (mod 4). (4.19)

Employing (4.19) in (4.15), and then using (4.17), we have
∞∑
n=0

b′5(2n+ 1)qn ≡ f 2
1 f2f20
f4f10

≡ f 2
2 f8f20
f 3
4 f10

− 2q
f 2
2 f

2
16f20

f4f8f10
(mod 4).

Extracting the terms involving q2n+1, we find that
∞∑
n=0

b′5(4n+ 3)qn ≡ 2
f 2
1 f

2
8 f10

f2f4f5
(mod 4).

Applying (2.87) in the above, we have
∞∑
n=0

b′5(4n+ 3)qn ≡ 2f 3
4 f5 (mod 4), (4.20)

which, by (2.38), yields

∞∑
n=0

b′5(4n+ 3)qn ≡ 2f5f
3
100

(
1

R(q20)3
+

q4

R(q20)2
+ q12

+ q20R(q20)2 − q24

R(q20)3

)
(mod 4). (4.21)

Equating the coefficients of q5n+1 and q5n+3 from both sides of the above, we arrive

at

b′5(20n+ 7) ≡ b′5(20n+ 15) ≡ 0 (mod 4),
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which is (4.6).

Next, extracting the coefficients of q5n+2 from both sides of (4.21), we find that
∞∑
n=0

b′5(20n+ 11)qn ≡ 2q2f1f
3
20 (mod 4).

Employing (2.38) in the above and then equating the coefficients of q5n and q5n+1,

we obtain

b′5(100n+ 11) ≡ b′5(100n+ 31) ≡ 0 (mod 4),

which is (4.7).

Proofs of (4.8) and (4.9). Employing (3.15) and (4.18), we rewrite (4.20) as
∞∑
n=0

b′5(4n+ 3)qn

≡ 2

[
p−1∑

k ̸= p−1
2

,k=0

(−1)kq4·
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)q4·pn·
pn+2k+1

2

+ p(−1)
p−1
2 q4·

p2−1
8 f 3

4p2

]

×

[ p−1
2∑

k ̸=±p−1
6

,k=− p−1
2

(−1)kq5·
3k2+k

2 f

(
− q5·

3p2+(6k+1)p
2 ,−q5·

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q5·
p2−1
24 f5p2

]
(mod 4).

Consider the congruence

4 · k(k + 1)

2
+ 5 · 3m

2 +m

2
≡ 17 · p

2 − 1

24
(mod p),

where 0 ≤ k ≤ p − 1 and − (p−1)
2

≤ m ≤ p−1
2
. Since the above congruence is

equivalent to

3(4k + 2)2 + 5(6m+ 1)2 ≡ 0 (mod p)

and
(

3
p

)
L
̸=
(

−5
p

)
L
, it turns out that the only possibilities of satisfying the above

congruence are k = p−1
2

andm = ±p−1
6

. So, extracting the terms involving qpn+17· p
2−1
24 ,

dividing both sides by q17·
p2−1
24 , and then replacing qp by q, we arrive at

∞∑
n=0

b′5

(
4pn+

17 · p2 + 1

6

)
qn ≡ 2pf 3

4pf5p (mod 4).
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Extracting the terms involving qpn, we have
∞∑
n=0

b′5

(
4p2n+

17 · p2 + 1

6

)
qn ≡ 2pf 3

4 f5 (mod 4).

We now apply (3.15) and (4.18) in the above and repeat the process α times to

arrive at
∞∑
n=0

b′5

(
4p2αn+

17 · p2α + 1

6

)
qn ≡ 2pαf 3

4 f5 (mod 4). (4.22)

Using (4.18) in the last step and extracting the terms involving q5n+1 and q5n+3, we

obtain (4.8).

Again, extracting the terms involving qpn+17· p
2−1
24 from (4.22), dividing both sides

by q17·
p2−1
24 , and then replacing qp by q, we arrive at

∞∑
n=0

b′5

(
4p2α+1n+

17 · p2α+2 + 1

6

)
qn ≡ 2pα+1f 3

4pf5p (mod 4).

Comparing the coefficients of qpn+r, where r ∈ {1, 2, . . . , p − 1}, we obtain (4.9).

This completes the proof of Theorem 4.2.

4.4 Proof of Theorem 4.3

First we state some lemmas.

Lemma 4.7. ([22, Eqs (2.6) and (2.7)]) We have

f5
f 2
2 f10

=
f 5
5

f 4
1 f

3
10

− 4q
f 2
10

f 3
1 f2

, (4.23)

f 3
2 f

2
5

f 2
1 f

2
10

=
f 5
5

f1f 3
10

+ q
f 2
10

f2
. (4.24)

Lemma 4.8. ([22, Lemma 1.3]) If R(q) is as defined in (1.9), then

1

R(q)R2(q2)
− q2R(q)R2(q2) =

f2f
5
5

f1f 5
10

, (4.25)

R(q2)

R2(q)
− R2(q)

R(q2)
= 4q

f1f
5
10

f2f 5
5

, (4.26)

R(q)

R3(q2)
+ q2

R3(q2)

R(q)
=
f2f

5
5

f1f 5
10

+ 4q2
f1f

5
10

f2f 5
5

− 2q. (4.27)

Now we prove Theorem 4.3 by establishing (4.10)–(4.12).

Proof of (4.10). Employing (2.38), with q replaced by q2 and (2.39) in (4.13), and
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then extracting the terms involving q5n+1, we find that

∞∑
n=0

b′5(5n+ 1)qn =
f 5
5 f10
f 5
1 f2

(
1

R3(q)R(q2)
+ q2R3(q)R(q2)

− 2q

(
R(q2)

R2(q)
− R2(q)

R(q2)

)
− 5q

)
,

which, by (2.44) and (4.26), yields
∞∑
n=0

b′5(5n+ 1)qn =
f 10
5

f 6
1 f

4
10

− 3q
f 5
5 f10
f 5
1 f2

− 4q2
f 6
10

f 4
1 f

2
2

=

(
f 10
5

f 6
1 f

4
10

− 4q
f 5
5 f10
f 5
1 f2

)
+ q

(
f 5
5 f10
f 5
1 f2

− 4q
f 6
10

f 4
1 f

2
2

)
.

Employing (4.23) and (4.24) in the above, we have
∞∑
n=0

b′5(5n+ 1)qn =
f 6
5

f 2
1 f

2
2 f

2
10

+ q
f5f

3
10

f1f 3
2

=
f2f

3
5

f 3
1 f10

, (4.28)

which proves (4.10).

Proof of (4.11). With the aid of (4.23), we may rewrite (4.28) as
∞∑
n=0

b′5(5n+ 1)qn =
f1f10
f2f5

+ 4q
f 4
10

f 2
1 f

2
5

.

Employing (2.38) and (2.39) in the above identity, and then extracting the terms

involving q5n+4, we find that

∞∑
n=0

b′5(25n+ 21)qn =
f5f

5
10

f1f 5
2

(
2

(
1

R(q)R2(q2)
− q2R(q)R2(q2)

)

−
(
R(q)

R3(q2)
+ q2

R3(q2)

R(q)

)
− 5q

)

+ 20
f 4
2 f

10
5

f 14
1

(
2

(
1

R5(q)
− q2R5(q)

)
+ 3q

)
.

Using (2.42), (4.25), and (4.27) in the above identity, we have
∞∑
n=0

b′5(25n+ 21)qn =
f 6
5

f 2
1 f

4
2

− 4q
f5f

5
10

f1f 5
2

+ q

(
f5f

5
10

f1f 5
2

− 4q
f 10
10

f 6
2 f

4
5

)
+ 40

f 4
2 f

4
5

f 8
1

+ 500q
f 4
2 f

10
5

f 14
1

.

With the aid of (4.23) and (4.24), the above identity reduces to
∞∑
n=0

b′5(25n+ 21)qn =
f1f

3
10

f 3
2 f5

+ 40
f 4
2 f

4
5

f 8
1

+ 500q
f 4
2 f

10
5

f 14
1

,
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which is (4.11).

Proof of (4.12). By the binomial theorem, for all positive integers j, we have

f 5
j ≡ f5j (mod 5). (4.29)

Employing (4.29) in (4.11), we find that
∞∑
n=0

b′5(25n+ 21)qn ≡ f1f
3
10

f 3
2 f5

≡ f1f
2
2 f

2
10

f5
(mod 5),

which, with the help of (2.38), may be recast as
∞∑
n=0

b′5(25n+ 21)qn ≡ f 2
10f25f

2
50

f5

(
1

R(q5)
− q − q2R(q5)

)
×
(

1

R(q10)
− q2 − q4R(q10)

)2

(mod 5).

Extracting the terms involving q5n from both sides of the above, and then replacing

q5 by q, we obtain
∞∑
n=0

b′5(125n+ 21)qn

≡ f 2
2 f5f

2
10

f1

(
1

R(q)R2(q2)
+ q − q2R(q)R2(q2)

)
(mod 5).

Employing (4.25) and (4.24) in the above, and then invoking (4.29), we find that
∞∑
n=0

b′5(125n+ 21)qn ≡ f 6
2 f

3
5

f 3
1 f

2
10

≡ f2f
3
5

f 3
1 f10

(mod 5).

From the above congruence and (4.10), it follows that

b′5(5n+ 1) ≡ b′5(125n+ 21) (mod 5),

which by iteration yields (4.12).

4.5 Proof of Theorem 4.4

Before proving Theorem 4.4, we recall some useful background material on modular

forms. Let H denote the complex upper half-plane. We define the following matrix
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groups:

SL2(Z) :=


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 ,

Γ0(N) :=


a b

c d

 ∈ Γ : c ≡ 0 (mod N)

 ,

Γ1(N) :=


a b

c d

 ∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

 ,

and

Γ(N) :=


a b

c d

 ∈ SL2(Z) : a ≡ d ≡ 1 (mod N), and b ≡ c ≡ 0 (mod N)

 ,

where N is a positive integer.

A subgroup Γ of SL2(Z) satisfying Γ(N) ⊆ Γ for some N is called a congruence

subgroup and the smallest such N is called the level of Γ. The group

GL+
2 (R) :=


a b

c d

 : a, b, c, d ∈ R and ad− bc > 0


acts on H by

a b

c d

 z =
az + b

cz + d
. We will identify ∞ with

1

0
. We also definea b

c d

 r
s
=
ar + bs

cr + ds
, where

r

s
∈ Q ∪ {∞}. This will give an action of GL+

2 (R) on

the extended upper half-plane H∗ = H∪Q∪ {∞}. If Γ is a congruence subgroup of

SL2(Z), then a cusp of Γ is an equivalence class in Q ∪ {∞}.

The group GL+
2 (R) also acts on the functions f : H → C. In particular, suppose

that γ =

a b

c d

 ∈ GL+
2 (R). If f(z) is a meromorphic function on H and ℓ is an

integer, then define the slash operator |ℓ by (f |ℓ γ)(z) := (detγ)ℓ/2(cz + d)−ℓf(γz).

Definition 4.9. Let Γ be a congruence subgroup of level N. A holomorphic function

f : H → C is called a modular form with integer weight ℓ on Γ if the following hold:

1. We have

f

(
az + b

cz + d

)
= (cz + d)ℓf(z)
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for all z ∈ H and all

a b

c d

 ∈ Γ.

2. If γ ∈ SL2(Z), then (f |ℓ γ)(z) has a Fourier expansion of the form

(f |ℓ γ)(z) =
∞∑
n=0

aγ(n)q
n
N ,

where qN = e
2πiz
N .

For a positive integer ℓ, let Mℓ(Γ) denote the complex vector space of modular

forms of weight ℓ with respect to Γ.

Definition 4.10. [113, Definition 1.15] If χ is a Dirichlet character modulo N , then

a modular form f ∈Mℓ(Γ1(N)) has Nebentypus character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)ℓf(z)

for all z ∈ H and all

a b

c d

 ∈ Γ0(N). The space of such modular forms is denoted

by Mℓ(Γ0(N), χ).

Now recall that the Dedekind’s eta-function η(z) is defined by

η(z) := q1/24(q; q)∞,

where q := e2πiz and z ∈ H. A function f(z) is called an eta-quotient if it is of the

form

f(z) =
∏
δ|N

η(δz)rδ ,

where N is a positive integer and rδ is an integer.

Next, we recall three theorems from [113, p. 18] which will be used to prove

Theorem 4.4.

Theorem 4.11. [113, Theorem 1.64] If f(z) =
∏

δ|N η(δz)
rδ is an eta-quotient with

ℓ =
1

2

∑
δ|N rδ ∈ Z, with ∑

δ|N

δrδ ≡ 0 (mod 24)
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and ∑
δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)ℓf(z)

for every

a b

c d

 ∈ Γ0(N), where

χ(d) :=

(
(−1)ℓ

∏
δ|N δ

rδ

d

)
.

Theorem 4.12. [113, Theorem 1.65] If c, d, and N are positive integers such that

d|N and gcd(c, d) = 1, then the order of vanishing of f(z) at the cusp
c

d
is

N

24

∑
δ|N

gcd(d, δ)2rδ

gcd(d, N
d
)dδ

.

Suppose that f(z) is an eta-quotient satisfying the conditions of the last two

theorems and the associated weight ℓ is a positive integer. If f(z) is holomorphic at

all of the cusps of Γ0(N), then f(z) ∈ Mℓ(Γ0(N), χ). The following result is due to

Serre, which we state from [113, p. 43].

Theorem 4.13. If f(z) ∈Mℓ(Γ0(N), χ) has Fourier expansion

f(z) =
∞∑
n=0

c(n)qn ∈ Z[[q]],

then for each positive integer m there exists a constant α > 0 such that

|{n ≤ X : c(n) ̸≡ 0 (mod m)}| = O
(

X

(logX)α

)
.

Now we are in a position to prove Theorem 4.4.

Let

A(z) :=
∞∏
n=1

(1− q12n)5

(1− q60n)
=
η5(12z)

η(60z)
.

Then

A5k(z) =
η5

k+1
(12z)

η5k(60z)
.
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Set

Bk(z) :=
η(12z)η3(30z)

η3(6z)η(60z)
A5k(z) =

η5
k+1+1(12z)η3(30z)

η3(6z)η5k+1(60z)
.

Working modulo 5k+1, we have

Bk(z) ≡
η(12z)η3(30z)

η3(6z)η(60z)
= q

f12f
3
30

f 3
6 f60

. (4.30)

From (4.10) and (4.30), we see that

Bk(z) ≡
∞∑
n=0

b′5(5n+ 1)q6n+1 (mod 5k+1). (4.31)

Clearly, Bk(z) is an eta-quotient with N = 360. We now prove that Bk(z) is

a modular form for any positive integer k. We know that the cusps of Γ0(360) are

given by fractions c
d
, where d|360 and gcd(c, d) = 1. By Theorem 4.12, we find that

Bk(z) is holomorphic at a cusp c
d
if and only if

L := (5k+2 + 5)
gcd(d, 12)2

gcd(d, 60)2
+ 6

gcd(d, 30)2

gcd(d, 60)2
− 30

gcd(d, 6)2

gcd(d, 60)2
− 5k − 1 ≥ 0.

We verify that the above inequality holds for all the divisors of 360. We illustrate

this with the help of the following table.

d (5k+2+5)gcd(d,12)
2

gcd(d,60)2
+6gcd(d,30)2

gcd(d,60)2
−30 gcd(d,6)2

gcd(d,60)2
−5k−1

1,2,3,6,9,18 24 · 5k − 20

4,8,12,24,36,72 24·5k − 2

5,10,15,30,45,90 1
25

(
5k+2 + 5

)
− 5k + 19

5

20,40,60,120,180,360 1
25

(
5k+2 + 5

)
− 5k + 1

5

Using Theorem 4.11, we find that the weight of Bk(z) is 2·5k. Further, the associated

character for Bk(z) is χ1(•) =
(

124·5
k ·52−5k

•

)
. Thus, Bk(z) ∈ M2·5k(Γ0(360), χ1).

Also, the Fourier coefficients of Bk(z) are all integers. Hence, by Theorem 4.13, the

Fourier coefficients of Bk(z) are almost always divisible by 5k. By (4.31), the same

holds for b′5(5n+ 1) and hence Theorem 4.4 follows.
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