
Chapter 5

Arithmetic properties of Andrews’ integer

partitions with even parts below odd parts

5.1 Introduction

Let ν(q) denote the following third order mock theta function [153, p. 62]

ν(q) =
∞∑
n=0

qn
2+n

(−q; q2)n+1

.

Let us assume that

ν(−q) =
∞∑
n=0

pν(n)q
n.

Note that [23, Eq. (1.10)]

pν(2n) = f(6n+ 1),

where f(n) counts the number of 1-shell totally symmetric plane partitions of n first

introduced by Blecher [37]. Xia [156] proved that
∞∑
n=0

f(30n+ 25)qn =
∞∑
n=0

pν(10n+ 8)qn = 5
f 2
2 f

2
5 f10
f 4
1

. (5.1)

Andrews’ proved that [8, Corollary 5.2]

pν(2n) = EO(2n). (5.2)

The contents of this chapter have been submitted for possible publication [140].
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Hence, from (5.1) and (5.2), we have
∞∑
n=0

EO(10n+ 8)qn =
∞∑
n=0

pν(10n+ 8)qn = 5
f 2
2 f

2
5 f10
f 4
1

. (5.3)

Andrews [8] proved several Ramanujan-type congruences. For example, he proved

the following result.

Theorem 5.1. [8, Eq. (1.6)] For all n ≥ 0, we have

EO(10n+ 8) ≡ 0 (mod 5).

Many more congruences involving EO(n) have been proved by several other

mathematicians. Goswami and Jha [79] proved a few congruences modulo 2 and 4

for EO(n). They conjectured that EO(10n + r) ≡ 0 (mod 2) for r ∈ {2, 4}. This

was recently proved by Baruah, Das, Saikia and Sarma [31]. Goswami and Jha [79]

found a few exact generating functions as well which were also found by Pore and

Fathima [121]. Pore and Fathima [121] further proved a few congruences modulo

5, 10 and 20. They conjectured the following result which was proved by Ray and

Barman [133] by using an algorithm of Radu [122].

Theorem 5.2. [133, Theorem 1.3] For all n ≥ 0, we have

EO(50n+ r) ≡ 0 (mod 20) for r ∈ {18, 28, 38, 48}. (5.4)

The above theorem can also be proved via elementary methods using (5.3). The

proof is short, so we complete it here.

Proof of (5.4). From (5.3), we recall that
∞∑
n=0

EO(10n+ 8)qn = 5
f 2
2 f

2
5 f10
f 4
1

≡ 5f 2
5 f10 (mod 20),

where in the last step, we have employed (2.87).

Extracting the terms involving q5n+r for r ∈ {1, 2, 3, 4} in the above, we complete

the proof.

Remark 5.3. Very recently, Guadalupe [81, Theorem 1.1] gave a different proof of

(5.4).
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Chern’s result [56] reveals that there is an infinite family of congruences modulo

arbitrary powers of 5: For all n ≥ 0 and α ≥ 1, we have

EO
(
2 · 52α−1n+

52α − 1

3

)
≡ 0 (mod 5α). (5.5)

Rahman and Saikia [125] found a few infinite families of congruences modulo 2, 4, 5

and 8 for EO(n). Other infinite families for EO(n) were proved in [50, 52, 81, 133].

Passary [116] proved the following result which gives a complete characterisation of

the parity of EO(n).

Theorem 5.4. [116, Eq. (2.1.24)] For all n ≥ 0,

EO(n) ≡

1 (mod 2), if n = 4k(3k − 1) for k ∈ Z,

0 (mod 2), otherwise.

(5.6)

Apart from congruences, a few density results have also been proven for EO(n).

One such result was proved by Ray and Barman [133]. Using the theory of modular

forms, they proved that for n ≥ 0, EO(8n + 6) is almost always divisible by 8. To

be specific, they proved the following theorem.

Theorem 5.5. [133, Theorem 1.5] For n ≥ 0, we have

lim
X→∞

#{0 ≤ n ≤ X : EO(8n+ 6) ≡ 0 (mod 8)}
X

= 1.

For other related works in this direction, interested readers can look at the follow-

ing non-exhaustive list of papers and the references therein: Ballantine and Welch

[18], Banerjee and Dastidar [19], Bringmann and Jennings-Shaffer [38], Bringmann

et al. [39], [41], Burson and Eichhorn [42], [43], [44], Y. H. Chen et al. [53], Chern

[54], [55], Fu and Tang [74].

The goal of this chapter is to extend this study. In this chapter, we prove several

new arithmetic properties for the EO(n) partition function. We now state our main

results.

We begin our results by presenting some internal congruences modulo 16, namely

Theorem 5.6. For all n ≥ 0 and t ∈ {1, 2, 3, 4}, we have

EO(1250n+ 250t+ 208) ≡ 6EO(50n+ 10t+ 8) (mod 16), (5.7)
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EO(10n) ≡ 13EO(250n+ 8) ≡ 5EO(6250n+ 208) (mod 16), (5.8)

EO(10n+ 6) ≡ 13EO(250n+ 158) ≡ 5EO(6250n+ 3958) (mod 16). (5.9)

In the next few theorems, we present infinite families of congruences modulo 10

and 40.

Theorem 5.7. Let a(n) be defined by
∞∑
n=0

a(n)qn = f 2
1 f2.

Let p ≥ 5 be a prime. Define

ω(p) := a

(
p2 − 1

6

)
+

(
−4

p

)
L

(
−(p2−1)

6

p

)
L

.

1. If ω(p) ≡ 0 (mod 2), then for n, k ≥ 0 and p ∤ n, we have

EO
(
50 · p4k+3n+

25 · p4k+4 − 1

3

)
≡ 0 (mod 10). (5.10)

2. If ω(p) ≡ 1 (mod 2), then for n, k ≥ 0 and p ∤ n, we have

EO
(
50 · p6k+5n+

25 · p6k+6 − 1

3

)
≡ 0 (mod 10). (5.11)

Remark 5.8. For example, if we choose p = 5 in the above theorem, we find that

ω(5) ≡ 0 (mod 2). Then for 5 ∤ n and k = 0, we have

EO (6250n+ 5208) ≡ 0 (mod 10).

Theorem 5.9. Let p be a prime. If
(

30r+25
p

)
L
= −1, where r ∈ {1, 2, . . . , p − 1},

then for all n ≥ 0, we have

EO(10(pn+ r) + 8) ≡ 0 (mod 10). (5.12)

Remark 5.10. For example, choosing p = 7 and r = 1 in the above theorem, we

find that EO(70n+ 18) ≡ 0 (mod 10).

Theorem 5.11. Let p be a prime with
(

−3
p

)
L
= −1, then for all n, α ≥ 0, we have

EO
(
50 · p2α+1(pn+ j) +

25 · p2α+2 − 1

3

)
≡ 0 (mod 10), (5.13)

where j ∈ {1, 2, . . . , p− 1}.

Remark 5.12. For instance, choosing p = 5, α = 0 and j = 1 in the above theorem,

we have EO(1250n+ 258) ≡ 0 (mod 10).
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Theorem 5.13. Let p be a prime with
(

−3
p

)
L
= −1, then for all n, α ≥ 0, we have

EO (200n+ 40r + 38) ≡ 0 (mod 40), for r ∈ {0, 1, 2, 4},

(5.14)

EO
(
200 · p2α+1(pn+ j) +

475 · p2α+2 − 1

3

)
≡ 0 (mod 40), for j ∈ {0, 1, . . . , p− 1}.

(5.15)

Remark 5.14. For example, choosing p = 5, α = 0 and j = 1 in (5.15), we have

EO(5000n+ 4958) ≡ 0 (mod 40).

With the aid of (5.3), we also study the distribution of EO(n). In the next

theorem, we prove that
∑∞

n=0 EO(10n+ 8)qn is lacunary modulo 10, namely

Theorem 5.15. We have

lim
X→∞

#{0 ≤ n ≤ X : EO(10n+ 8) ≡ 0 (mod 10)}
X

= 1.

The next theorem states that
∑∞

n=0 EO(40n+ 38)qn is lacunary modulo 40.

Theorem 5.16. We have

lim
X→∞

#{0 ≤ n ≤ X : EO(40n+ 38) ≡ 0 (mod 40)}
X

= 1.

The chapter is organised as follows. In Sections 5.2 and 5.3, we prove Theorems

5.6 and 5.7 respectively. In Section 5.4, we prove Theorems 5.9 and 5.11. In Section

5.5, we prove Theorem 5.13. And finally, in Section 5.6, we prove Theorems 5.15

and 5.16. Our proofs make use of elementary techniques. The necessary background

material and useful preliminary lemmas are given in the corresponding section.

5.2 Proof of Theorem 5.6

Before proving Theorem 5.6, we recall the following 5-dissection.

Lemma 5.17. [33, p. 49] We have

ψ(q) = f(q10, q15) + qf(q5, q20) + q3ψ(q25). (5.16)
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We are now in a position to prove Theorem 5.6.

With the aid of (4.23), (5.3) can be re-written as
∞∑
n=0

EO(10n+ 8)qn = 5

(
f 3
10

f 2
5

+ 4q
f2f

6
10

f 3
1 f

3
5

)
≡ 5

∞∑
n=0

EO(2n)q5n + 20q
f1f

8
10

f2f 7
5

(mod 16). (5.17)

Employing (2.38) and (2.39) in the above and then extracting the terms involving

q5n, we find that
∞∑
n=0

EO(50n+ 8)qn ≡ 5
∞∑
n=0

EO(2n)qn + 20q
f 5
10

f 5
5

ψ(q) (mod 16).

Invoking (5.16) in the above, we obtain
∞∑
n=0

EO(50n+ 8)qn ≡ 5
∞∑
n=0

EO(2n)qn + 20q
f 5
10

f 5
5

(
f(q10, q15)

+ qf(q5, q20) + q3ψ(q25)
)

(mod 16). (5.18)

Now, extracting the terms involving q5n and q5n+3 from the above, we obtain

EO(250n+ 8) ≡ 5EO(10n) (mod 16) (5.19)

and

EO(250n+ 158) ≡ 5EO(10n+ 6) (mod 16) (5.20)

Extracting the terms involving q5n+4 from both sides of (5.18), we find that
∞∑
n=0

EO(250n+ 208)qn ≡ 5
∞∑
n=0

EO(10n+ 8)qn + 20
f 3
2 f

4
10

f1f 5
5

(mod 16).

Using (4.24) in the above, we have
∞∑
n=0

EO(250n+ 208)qn ≡ 5
∞∑
n=0

EO(10n+ 8)qn + 20
f 3
10

f 2
5

+ 20q
f1f

8
10

f2f 7
5

(mod 16)

which on invoking (5.17) can be recast as
∞∑
n=0

EO(250n+ 208)qn ≡ 5
∞∑
n=0

EO(10n+ 8)qn + 20EO(2n)q5n + EO(10n+ 8)qn

− 5EO(2n)q5n

≡ 6
∞∑
n=0

EO(10n+ 8)qn + 15EO(2n)q5n (mod 16). (5.21)
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Extracting the terms involving q5n+r for r ∈ {1, 2, 3, 4}, we arrive at

EO(1250n+ 250r + 208) ≡ 6EO(50n+ 10r + 8) (mod 16),

which readily yields (5.7).

Next, extracting the terms involving q25n from both sides of (5.21), we find that

EO(6250n+ 208) ≡ 6EO(250n+ 8)− EO(10n) (mod 16). (5.22)

But from (5.19), we have

EO(10n) ≡ 13EO(250n+ 8) (mod 16).

So, (5.22) can be written as

EO(6250n+ 208) ≡ −7EO(250n+ 8)

≡ 9EO(250n+ 8) (mod 16),

which implies that

EO(250n+ 8) ≡ 9EO(6250n+ 208) (mod 16), (5.23)

Combining (5.19) and (5.23), we readily obtain (5.8).

Again, extracting the terms involving q25n+15 from both sides of (5.21), we find

that

EO(6250n+ 3958) ≡ 6EO(250n+ 158)− EO(10n+ 6) (mod 16). (5.24)

But from (5.20), we have

EO(10n+ 6) ≡ 13EO(250n+ 158) (mod 16).

So, (5.24) turns into

EO(6250n+ 3958) ≡ −7EO(250n+ 158)

≡ 9EO(250n+ 158) (mod 16),

which can be re-written as

EO(250n+ 158) ≡ 9EO(6250n+ 3958) (mod 16), (5.25)

Combining (5.20) and (5.25), we obtain (5.9). This completes the proof of Theorem

5.6.
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5.3 Proof of Theorem 5.7

We recall some necessary background material before going into the proof. The

following result of Newman will be useful for the proof. Let p and q denote distinct

primes, r, s ̸= 0, and r ̸≡ s (mod 2). Set

ϕ(τ) =
∞∏
n=1

(1− xn)r(1− xnq)s =
∞∑
n=0

a(n)xn, (5.26)

ϵ = 1
2
(r + s),∆ = (r+sq)(p2−1)

24
and θ = (−1)

1
2
−ϵ2qs.

Lemma 5.18. [112, Theorem 3] With the notations defined above, the coefficients

a(n) of ϕ(τ) satisfy

a(np2 +∆)− γ(n)a(n) + p2ϵ−2a

(
n−∆

p2

)
= 0,

where

γ(n) = p2ϵ−2α(p)−
(
θ

p

)
L

pϵ−3/2

(
n−∆

p

)
L

,

where α(p) is a constant depending on p.

We are now in a position to prove Theorem 5.7.

From (5.1), we have that
∞∑
n=0

EO(10n+ 8)qn = 5
f 2
2 f

2
5 f10
f 4
1

≡ 5f 2
5 f10 (mod 10).

Extracting the terms involving q5n in the above and then replacing q5 by q, we have
∞∑
n=0

EO(50n+ 8)qn ≡ 5f 2
1 f2 ≡ 5

∞∑
n=0

a(n)qn (mod 10), (5.27)

where f 2
1 f2 =

∞∑
n=0

a(n)qn.

Putting r = 2, q = 2 and s = 1 in (5.26), we have by Lemma 5.18, for any n ≥ 0

a

(
p2n+

p2 − 1

6

)
= γ(n)a(n)− pa

(
1

p2

(
n− p2 − 1

6

))
, (5.28)

where

γ(n) = pα(p)−
(
−4

p

)
L

(
n− p2−1

6

p

)
L

. (5.29)

Setting n = 0 in (5.28) and using the fact that a(0) = 1 and a

(
−(p2−1)

6

p2

)
= 0, we
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obtain

a

(
p2 − 1

6

)
= γ(0). (5.30)

Setting n = 0 in (5.29) and then using (5.30), we obtain

pα(p) = a

(
p2 − 1

6

)
+

(
−4

p

)
L

(
−(p2−1)

6

p

)
L

:= ω(p). (5.31)

With the aid of (5.29) and (5.31), (5.28) can be recast as

a

(
p2n+

p2 − 1

6

)
=

(
ω(p)−

(
−4

p

)
L

(
n− p2−1

6

p

)
L

)
a(n)

− pa

(
1

p2

(
n− p2 − 1

6

))
. (5.32)

Now, replacing n by pn+ p2−1
6

in (5.32), we obtain

a

(
p3n+

p4 − 1

6

)
= ω(p)a

(
pn+

p2 − 1

6

)
− pa(n/p). (5.33)

Case - 1 : ω(p) ≡ 0 (mod 2)

Since ω(p) ≡ 0 (mod 2), from (5.33) we have

a

(
p3n+

p4 − 1

6

)
≡ pa(n/p) (mod 2). (5.34)

Now, replacing n by pn in (5.34), we obtain

a

(
p4n+

p4 − 1

6

)
≡ pa(n) ≡ a(n) (mod 2).

Iterating the above, we obtain that for every integer k ≥ 0,

a

(
p4kn+

p4k − 1

6

)
≡ a(n) (mod 2). (5.35)

Now if p ∤ n, then (5.34) yields

a

(
p3n+

p4 − 1

6

)
≡ 0 (mod 2).

Replacing n by p3 + p4−1
6

in (5.35) and then using the above, we obtain

a

(
p4k+3n+

p4k+4 − 1

6

)
≡ 0 (mod 2). (5.36)

Now, employing (5.36) in (5.27), we readily have (5.10).

Case - 2 : ω(p) ≡ 1 (mod 2)

Next, replacing n by p2n+ p(p2−1)
6

in (5.33), we obtain

a

(
p5n+

p6 − 1

6

)
= a

(
p3
(
p2n+

p(p2 − 1)

6

)
+
p4 − 1

6

)
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= ω(p)a

(
p3n+

p4 − 1

6

)
− pa

(
pn+

p2 − 1

6

)
=
(
ω2(p)− p

)
a

(
pn+

p2 − 1

6

)
− pω(p)a(n/p). (5.37)

Now, as ω(p) ≡ 1 (mod 2) and p ≥ 5 is an odd prime, we have ω2(p) − p ≡ 0

(mod 2). Therefore (5.37) can be written as

a

(
p5n+

p6 − 1

6

)
≡ a(n/p) (mod 2). (5.38)

Replacing n by pn in (5.38), we obtain

a

(
p6n+

p6 − 1

6

)
≡ a(n) (mod 2).

Using the above repeatedly, we see that for every integer k ≥ 0,

a

(
p6kn+

p6k − 1

6

)
≡ a(n) (mod 2). (5.39)

Next, if p ∤ n, (5.38) yields

a

(
p5n+

p6 − 1

6

)
≡ 0 (mod 2).

Replacing n by p5n+ p6−1
6

in (5.39) and then using the above, we obtain

a

(
p6k+5n+

p6k+6 − 1

6

)
≡ 0 (mod 2). (5.40)

Invoking (5.40) in (5.27), we readily arrive at (5.11). This completes the proof.

5.4 Proofs of Theorems 5.9 and 5.11

Proof of Theorem 5.9. From (5.1), we have
∞∑
n=0

EO(10n+ 8)qn ≡ 5f20 (mod 10). (5.41)

Invoking (1.8) in the above, we have
∞∑
n=0

EO(10n+ 8)qn ≡ 5
∞∑

k=−∞

q10k(3k−1) (mod 10).

If we wish to consider values of the form EO(10(pn+ r)+ 8), then we need to check

whether pn + r = 10j(3j − 1) is possible for some integer j. Therefore, to achieve

our goal it is enough to show that no such representation exists. Note that, if

pn+ r = 10j(3j−1) is true for some j, then r ≡ 10j(3j−1) (mod p). Equivalently,

this can be written as 30r + 25 ≡ (30j − 5)2 (mod p), which is not possible as
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(
30r + 25

p

)
L

= −1. Hence, the desired congruence holds and this completes the

proof.

Proof of Theorem 5.11. From (5.1), we have
∞∑
n=0

EO(10n+ 8)qn ≡ 5f 4
5 (mod 10).

Extracting the terms involving q5n and then replacing q5 by q, we have
∞∑
n=0

EO(50n+ 8) ≡ 5f 4
1 ≡ 5f1 · f 3

1 (mod 10). (5.42)

Employing (1.8) and (3.49) in (5.42), we arrive at
∞∑
n=0

EO(50n+ 8)qn ≡ 5
∞∑
n=0

∞∑
k=−∞

q
n(n+1)

2
+

k(3k−1)
2 (mod 10).

The above can be re-written as
∞∑
n=0

EO(50n+ 8)q24n+4 ≡ 5
∞∑
n=0

∞∑
k=−∞

q3(2n+1)2+(6k−1)2 (mod 10).

It is not difficult to see that if N is of the form 3x2 + y2 and
(

−3
p

)
L
= −1, the

highest exponent of p dividing N is even. Also, observe that the highest exponent

of p dividing 24
(
p2α+1(pn+ j) + p2α+2−1

6

)
+ 4 for j ∈ {1, 2, . . . , p − 1} is 2α + 1,

which is odd. Therefore, extracting the terms involving q
24

(
p2α+1(pn+j)+ p2α+2−1

6

)
+4

from both sides with j ∈ {1, 2, . . . , p− 1}, (5.13) is evident.

Remark 5.19. As a consequence of (1.8) and (5.41), we now have the following

result.

EO(10n+ 8) ≡

5 (mod 10), if n = 30k2 − 10k for k ∈ Z,

0 (mod 10), Otherwise.

5.5 Proof of Theorem 5.13

From (5.1), we recall that
∞∑
n=0

EO(10n+ 8)qn = 5
f 2
2 f

2
5 f10
f 4
1

.
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Invoking (4.17) and (2.33) in the above and then extracting the terms involving odd

powers of q, we have
∞∑
n=0

EO(20n+ 18)qn = 20
f 2
2 f

4
4 f

5
20

f 2
10f

2
40

· f
2
5

f 8
1

− 10q2
f 14
2 f

2
40

f 4
4 f20

· f
2
5

f 12
1

≡ 20
f 4
4 f

5
20

f 2
2 f10f

2
40

− 10q2
f 8
2 f

2
40

f 4
4 f20

· f 2
5 (mod 40).

Employing (4.17) in the above and then extracting the terms involving odd powers

of q, we have
∞∑
n=0

EO(40n+ 38)qn ≡ 20q3f 19
5

≡ 20q3f80f
3
5 (mod 40). (5.43)

Comparing the coefficients of the terms of the form q5n+r for r ∈ {0, 1, 2, 4}, we

readily arrive at (5.14).

Proof of (5.15). From (5.43), we have
∞∑
n=0

EO(40n+ 38)qn ≡ 20q3f80f
3
5 (mod 40). (5.44)

Extracting the terms of the form q5n+3, and then replacing q5 by q, we have
∞∑
n=0

EO(200n+ 158)qn ≡ 20f16f
3
1 (mod 40).

Employing (1.8) and (3.49) in the above, we find that
∞∑
n=0

EO(200n+ 158)qn ≡ 20
∞∑
n=0

∞∑
k=−∞

q
n(n+1)

2
+

16·k(3k−1)
2 (mod 40)

which can be re-written as
∞∑
n=0

EO(200n+ 158)q24n+19 ≡ 20
∞∑
n=0

∞∑
k=−∞

q3(2n+1)2+16(6k−1)2 (mod 40).

We know that if N is of the form 3x2 + 16y2 and
(

−3
p

)
L

= −1, the highest

exponent of p dividing N is even. Note that the highest power of p dividing

24
(
p2α+1(pn+ j) + 19

24
(p2α+2 − 1)

)
+ 19 for j ∈ {1, 2, . . . , p − 1} is 2α + 1, which

is odd. Therefore, extracting the terms involving q24(p
2α+1(pn+j)+ 19

24
(p2α+2−1))+19 from

both sides with j ∈ {1, 2, . . . , p− 1}, (5.15) is evident.
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5.6 Proof of Theorems 5.15 and 5.16

We present two proofs of Theorem 5.15. But before going into the proofs, we recall

the following results. First, we recall a result of D. Chen and R. Chen [50].

Theorem 5.20. [50, Theorem 4.3] If N is sufficiently large, then

#{n ≤ N : EO(2n) ≡ 1 (mod 2)} ≤
√
6N + 1. (5.45)

Next, we recall the following result due to Landau [103].

Theorem 5.21. Let s(n) and r(n) be two quadratic polynomials. Then(∑
n∈Z

qr(n)

)(∑
n∈Z

qs(n)

)
is lacunary modulo 2.

First proof of Theorem 5.15. From (5.1), we have
∞∑
n−0

EO(10n+ 8)qn ≡ 5f 2
5 f10 ≡ 5

f 3
10

f 2
5

≡ 5
∞∑
n−0

EO(2n)q5n (mod 10). (5.46)

Clearly for n ≥ 0 and N ≥ 1, we have

#{0 ≤ n ≤ N : EO(2n) ≡ 1 (mod 2)}+#{0 ≤ n ≤ N : EO(2n) ≡ 0 (mod 2)}

= N + 1.

The above can be re-written as

#{0 ≤ n ≤ N : EO(2n) ≡ 0 (mod 2)}
N

= 1 +
1

N

− #{0 ≤ n ≤ N : EO(2n) ≡ 1 (mod 2)}
N

.

With (5.45) in mind and letting N → ∞, we arrive at

lim
N→∞

#{0 ≤ n ≤ N : EO(2n) ≡ 0 (mod 2)}
N

= 1, (5.47)

which means that EO(2n) is almost always divisible by 2. Hence with the aid of

(5.46), we conclude that EO(10n+ 8) is almost always divisible by 10, namely

lim
N→∞

#{0 ≤ n ≤ N : EO(10n+ 8) ≡ 0 (mod 10)}
N

= 1.

This completes the proof.
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Remark 5.22. Note that a different proof of a more general version of (5.47) can

be found in the work of Burson and Eichhorn [43, Corollary 3.5].

Second proof of Theorem 5.15. From [86, Eq. (2.3.1)], we recall that

f 3
1 =

∞∑
k=−∞

(4k + 1)q2k
2+k. (5.48)

From (5.1), we have
∞∑
n−0

EO(10n+ 8)qn ≡ 5f 2
5 f10 ≡ 5 · f5 · f 3

5 (mod 10).

Invoking (1.8) and (5.48) with q → q5 in the above and then applying Lemma 5.21,

we complete the proof.

Proof of Theorem 5.16. From (5.44), we recall that
∞∑
n=0

EO(40n+ 38)qn ≡ 20q3f80f
3
5 (mod 40). (5.49)

For n ≥ 0, let a(n) be defined as
∞∑
n=0

a(n)qn = f80f
3
5 .

Invoking (1.8) with q → q80 and (5.48) with q → q5 in the above and then applying

Lemma 5.21, we conclude that a(n) is lacunary modulo 2.

Now, re-writing (5.49) as
∞∑
n=0

EO(40n+ 38)qn ≡ 20
∞∑
n=0

a(n)qn+3 (mod 40).

Due to the fact that a(n) is lacunary modulo 2, clearly EO(40n + 38) is lacunary

modulo 40. This completes the proof.
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