Dedicated to...

My Family Members, Friends, and
Teachers

নিষ্ঠাৰে সমৰ্পিত...

মোৰ পৰিয়ালৰ সদস্যসকল, বন্ধু-বান্ধৱী, আৰু

শিক্ষাগুৰু সকললৈ



#### **Declaration by the Candidate**

The thesis titled "Studies on the Palladium and Copper Catalysed Synthesis of Some Functionalised Carbocycles and Heterocycles" is submitted to Tezpur University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Sciences. This work is a record of genuine research conducted by me under the supervision of Prof. Utpal Bora, Department of Chemical Sciences, Tezpur University. All assistance and contributions from various sources have been duly acknowledged. I further declare that no part of this thesis has been submitted elsewhere for the award of any other degree.

Date: 19.08.2025 .

Place: Tezpur, Assam, India

Debasish Sarmah

**Department of Chemical Sciences** 

Tezpur University, Assam, India

(TZ167206 of 2016)



#### TEZPUR UNIVERSITY तेजपुर विश्वविद्यालय

#### (A Central University established by an Act of Parliament) (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय)

Dr. Utpal Bora
Professor
Department of Chemical Sciences
Tezpur University, Napaam
Tezpur, Assam-784028, INDIA

डॉ उत्पल बोरा प्रोफेसर रसायन विज्ञान विभाग तेजपुर विश्वविद्यालय, नापाम तेजपुर, असम

#### Certificate from the Supervisor

This is to certify that the thesis titled "Studies on the Palladium and Copper Catalysed Synthesis of Some Functionalised Carbocycles and Heterocycles" submitted to the School of Sciences, Tezpur University, in partial fulfilment of the requirements for the award of the Doctor of Philosophy degree in Chemical Sciences, represents the research work conducted by Mr. Debasish Sarmah under my supervision and guidance. He has been duly registered (Registration No. TZ167206 of 2016), and the thesis presented is considered suitable for the award of the Ph.D. degree. All assistance received from various sources has been properly acknowledged, and no part of this thesis has been submitted elsewhere for the award of any other degree.

Date: 19/08/25

Place: Tezpur, Assam, India

Dr. Utpal Bora, Professor

**Department of Chemical Sciences** 

Tezpur University, Assam, India



#### TEZPUR UNIVERSITY तेजपुर विश्वविद्यालय

#### (A Central University established by an Act of Parliament) (संसद के अविवियम द्वारा स्थावपत केंद्रीय विश्वविद्यालय)

#### Certificate of the External Examiner and ODEC

This is to certify that the thesis entitled "Studies on the Palladium and Copper Catalysed Synthesis of Some Functionalised Carbocycles and Heterocycles", submitted by Mr. Debasish Sarmah to the School of Sciences, Tezpur University in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy in Chemical Sciences, has been examined by us on 19th Aug 2025 and found satisfactory.

The committee recommends for the award of the degree of Doctor of Philosophy.

Supervisor

Date: 19.08.2025

Prof. Utpal Bora 9 25

External Examiner Prof. Parthasarathi Das

Date: 19.08.2025

It is a great honour to take this opportunity to recognise the contributions of several individuals who have played a direct or indirect role in the successful completion of my thesis.

First and foremost, I express my deepest gratitude to my supervisor, **Prof. Utpal Bora**, for his invaluable guidance, constant encouragement, and unwavering motivation throughout my doctoral journey.

I am sincerely thankful to the members of my Doctoral Committee—**Prof. Ashim**Jyoti Thakur and Dr. Sanjeev Pran Mahanta—for their insightful suggestions and support during the course of my research. I also extend my appreciation to **Prof.**Panchanan Puzari, Head of the Department of Chemical Sciences, for his kind support, and to **Prof. Ruli Borah**, former Head of the Department, for her continuous encouragement.

I would also like to thank Dr. Anindita Dewan, DST Women Scientist, Department of Chemical Sciences, for her support and valuable guidance during my research. I am equally grateful to Dr. Pankaj Bharali, Associate Prof., Department of Chemical Sciences, Tezpur University for his helpful suggestions during my work.

I gratefully acknowledge the financial support provided by DST-INSPIRE, Ministry of Science and Technology, Government of India, which enabled me to pursue my doctoral studies.

My sincere thanks to the technical and non-technical staff of the department, whose consistent assistance greatly facilitated my research. I am especially thankful to SAIC, Tezpur University, for providing the necessary instrumentation facilities. I also appreciate the support received from Dr. Ratan Boruah, Dr. Dhrubajyoti Talukdar, Dr. Raju K. Borah, Dr. Nipu Dutta, Dr. Biraj J. Borah, Mr. Sankur Phukan, Mr. Biplab Ozah, Mr. Tridip Ranjan Nath, Mr. Prakash Kurmi, and Mr. Manoranjan Sarma during various stages of analysis and experimentation. Additionally, I am thankful to CIF, IIT Guwahati and SAIF NEHU for the instrumentation facilities.

I am also thankful to my collaborators—Dr. Manash Ranjan Das, Senior Scientist, CSIR-NEIST, Jorhat; Dr. Ankur Kanti Guha, Assistant Professor, Cotton University; Dr.

Anup Choudhury, Assistant Professor, Handique Girls' College; and Dr. Nand Kishor Gour, former Assistant Professor (Guest) at Tezpur University—for their collaborative spirit and technical support.

I remain deeply indebted to my lab seniors and lab mates for their help, knowledge-sharing, and constant support. My heartfelt thanks to Dr. Porag Bora, Dr. Khairujjaman Laskar, Dr. Manashi Sarmah, Dr. Rakhee Saikia, and Dr. Prantika Bhattacharjee, as well as to Dr. Dipika Konwar, Mr. Mohendra Tahu, Ms. Arzu Almin, Ms. Dibyashree Dolakasharia, Mr. Manas Jyoti Kalita, Ms. Kristipriya Phukan and Mr. Bhaskar Bora for making this journey a memorable one.

I would especially like to acknowledge the help of Mr. Rajdikshit Gogoi, Ms. Suravi Paul, Mr. Rabu Ranjan Changmai, and Mr. Sanjib Thakuria, whose support proved invaluable during my research. The encouragement, constructive feedback, and inspiration from my seniors—Dr. Raktim Abha Saikia, Dr. Sudhamoyee Kataky, Dr. Prashurya Pritam Mudoi, Dr. Anurag Dutta, and Dr. Arup Jyoti Das—were crucial to my growth as a researcher.

My heartfelt thanks also go to my friends—Dr. Kumar Saurabh, Dr. Sritam Biswas, Mr. Kaustov Kumar Gogoi, Mr. Bhaskar Jyoti Kalita, Ms. Trishna Deka, and Ms. Barasha Das—for their constant encouragement and friendship.

I am grateful to Dr. Nabajyoti Das, Principal, Dakshin Kamrup College, Mirza, for his encouragement, and to my colleagues at the college for their continued support and understanding during this period.

To my beloved family—your unconditional love, support, has been the bedrock of my strength. Words are not enough to express my gratitude to my parents, Mr. Probin Chandra Sarmah and Mrs. Geeta Sarmah, and my sister Ms. Debashree Sarmah who stood by me through every challenge, offering unwavering support and inspiration. Finally, I offer my humble and heartfelt thanks to the Almighty for bestowing upon me the strength, patience, and opportunity to complete this journey.

Debasish Sarmah

| Scheme No.  | Scheme Caption                                           |      |  |
|-------------|----------------------------------------------------------|------|--|
| Chapter 1   |                                                          |      |  |
| Scheme 1.1  | Unprecedented cross-couplings under palladium and        | 1.4  |  |
|             | copper catalysis                                         |      |  |
| Scheme 1.2  | Classical and oxidative cross-couplings                  | 1.5  |  |
| Scheme 1.3  | Palladium catalysed cross-coupling: the general          | 1.7  |  |
|             | mechanisms                                               |      |  |
| Scheme 1.4  | Oxidative addition via nucleophilic displacement         | 1.8  |  |
| Scheme 1.5  | Concerted mechanism for oxidative addition               | 1.8  |  |
| Scheme 1.6  | Boronic acid/boronate activation by the base             | 1.10 |  |
| Scheme 1.7  | Transmetallation pathways post oxidative addition to     | 1.11 |  |
|             | Pd(0)                                                    |      |  |
| Scheme 1.8  | Three-membered transition state pathway for              | 1.12 |  |
|             | reductive elimination                                    |      |  |
| Scheme 1.9  | Palladium (II) acetate catalysed cross-coupling of aryl  | 1.13 |  |
|             | diazonium salts with arylboronic acids                   |      |  |
| Scheme 1.10 | Oxidative addition of diazonium to palladium center 1.14 |      |  |
| Scheme 1.11 | Cross-coupling of aryldiazonium salts with arylboronic   |      |  |
|             | acids in the presence of Pd/C as catalyst                |      |  |
| Scheme 1.12 | (a) First ever palladium catalysed cross-coupling of     | 1.15 |  |
|             | nitroarenes with arylboronic acids; (b) Oxidative        |      |  |
|             | addition via three membered transition state             |      |  |
| Scheme 1.13 | Heck's pioneering synthesis of internal alkene           | 1.15 |  |
| Scheme 1.14 | Mizoroki–Heck reaction with aryl iodides                 | 1.16 |  |
| Scheme 1.15 | Pd nanomaterials in Heck reaction                        | 1.17 |  |
| Scheme 1.16 | Heck reactions in green solvents                         | 1.19 |  |
| Scheme 1.17 | Heck reaction in PEG-400                                 | 1.20 |  |
| Scheme 1.18 | Intramolecular Heck cyclisation for the synthesis of     | 1.21 |  |
|             | four, five and six membered carbocycles                  |      |  |
| Scheme 1.19 | Intramolecular Heck cyclisation for the synthesis of     | 1.22 |  |
|             | five and six membered nitrogen and oxygen                |      |  |
|             | heterocycles                                             |      |  |
| Scheme 1.20 | Site selectivity control in C-H activation               | 1.23 |  |

| Scheme 1.21 | Outer sphere C-H activation 1.23                              |      |  |
|-------------|---------------------------------------------------------------|------|--|
| Scheme 1.22 | Directing group assisted C-H activation mechanisms            |      |  |
| Scheme 1.23 | Carboxylic acid directed cyclisation involving terminal 1.25  |      |  |
|             | alkene under Pd(II) catalysis                                 |      |  |
| Scheme 1.24 | Ortho- arylations of benzoic acids under Pd(II)               | 1.26 |  |
|             | catalysis                                                     |      |  |
| Scheme 1.25 | HFIP mediated <i>ortho</i> -arylation of benzoic acid at room | 1.27 |  |
|             | temperature                                                   |      |  |
| Scheme 1.26 | Aryl trifluoroborate salts as arylating agents                | 1.27 |  |
| Scheme 1.27 | (a) and (b) alkenylation and arylation of benzylic acids      | 1.28 |  |
|             | under Pd(II) catalysis                                        |      |  |
| Scheme 1.28 | C2 methylation of benzoic acid under carboxylic acid          | 1.29 |  |
|             | assistance                                                    |      |  |
| Scheme 1.29 | Dual alkylation via C-H activation for the synthesis of       | 1.29 |  |
|             | five and six membered lactones                                |      |  |
| Scheme 1.30 | Chan-Evans-Lam arylation, the breakthrough                    | 1.33 |  |
|             | processes                                                     |      |  |
| Scheme 1.31 | Silica-supported copper material for Chan-Lam                 | 1.35 |  |
|             | reaction                                                      |      |  |
| Scheme 1.32 | Carbon support-based copper catalysts for Chan-Lam            | 1.36 |  |
|             | cross-couplings                                               |      |  |
| Scheme 1.33 | General catalytic pathway for Chan-Lam coupling               | 1.37 |  |
| Chapter 2   |                                                               |      |  |
| Scheme 2.1  | Transition metal catalysed C-H functionalisation              | 2.2  |  |
| Scheme 2.2  | Decarboxylative C6 arylation using a bulky solvent            | 2.2  |  |
| Scheme 2.3  | Optimised reaction condition for C6 – arylation               | 2.5  |  |
| Scheme 2.4  | Reaction of 1a with 4-bromoanisole and 4-                     | 2.11 |  |
|             | chloroanisole                                                 |      |  |
| Scheme 2.5  | Protodecarboxylation experiments with the ortho-              | 2.13 |  |
|             | arylated carboxylic acid                                      |      |  |
| Scheme 2.6  | Mechanistic pathway of the C6 arylation step                  | 2.14 |  |
| Scheme 2.7  | Concerted proton transfer mechanism for                       | 2.14 |  |
|             | protodecarboxylation                                          |      |  |

| Chapter 3   |                                                                |      |
|-------------|----------------------------------------------------------------|------|
| Scheme 3.1  | Transition metal catalysed cross-couplings; b) Suzuki-         |      |
|             | Miyaura cross-coupling in the synthesis of Losartan            |      |
| Scheme 3.2  | Palladium catalysed de-nitrative transformations               | 3.4  |
| Scheme 3.3  | Pd@LC catalysed C-C bond formations                            | 3.7  |
| Scheme 3.4  | Plausible reaction mechanism                                   | 3.17 |
| Scheme 3.5  | Cu(II) catalysed cross-coupling of nitroarenes with            | 3.20 |
|             | phenols                                                        |      |
| Scheme 3.6  | Cu(II) catalysed cross-coupling of nitroarenes with            | 3.21 |
|             | phenols                                                        |      |
| Scheme 3.7  | Palladium catalysed O-arylation of phenols.                    | 3.21 |
| Scheme 3.8  | General procedure for O-arylation                              | 3.24 |
| Scheme 3.9  | Reaction mechanism for <i>O</i> -arylation                     | 3.27 |
| Chapter 4   |                                                                |      |
| Scheme 4.1  | Palladium catalysed cyclisation strategies for indole          | 4.2  |
|             | synthesis                                                      |      |
| Scheme 4.2  | Synthesis of 2-haloaniline – propiolate ester adducts          | 4.7  |
| Scheme 4.3  | N-arylation of 2-haloaniline and propiolate ester              | 4.8  |
|             | adducts                                                        |      |
| Scheme 4.4  | Synthesis of $N$ -allyl and $N$ , $N$ -diallyl-2-iodoanilines. | 4.8  |
| Scheme 4.5  | N-alkylation of $N$ -allyl-2-iodoanilines                      | 4.8  |
| Scheme 4.6  | Intramolecular Heck cyclisation for the synthesis of           | 4.10 |
|             | carbocycles                                                    |      |
| Scheme 4.7  | Intramolecular Heck cyclisation for the synthesis of           | 4.10 |
|             | heterocycles                                                   |      |
| Scheme 4.8  | Intramolecular Heck cyclisation for the synthesis of           | 4.11 |
|             | indoles                                                        |      |
| Scheme 4.9  | Pd(II) – PEG system for C-C bond formation – indole            | 4.12 |
|             | synthesis                                                      |      |
| Scheme 4.10 | Cyclisation of 2-iodo-N-vinylanilines using Pd(II)-PEG         | 4.16 |
|             | system                                                         |      |
| Scheme 4.11 | Cyclisation attempt on N-cinnamoyl-2-iodoaniline               | 4.19 |

| Scheme 4.12 | Cyclisation attempt on O-allyl-2-iodophenol and N-                              |      |  |  |
|-------------|---------------------------------------------------------------------------------|------|--|--|
|             | benzyl-2-iodoaniline                                                            |      |  |  |
| Scheme 4.13 | One pot sequential synthesis of 9a and 9b                                       | 4.20 |  |  |
| Scheme 4.14 | Scaling the cyclisation of 3a to gram scale                                     | 4.21 |  |  |
| Scheme 4.15 | Mechanism of Heck cyclisation of <i>N</i> -vinyl-2-                             | 4.26 |  |  |
|             | iodoanilines                                                                    |      |  |  |
| Scheme 4.16 | Plausible mechanism for the cyclisation of N-allyl-2-                           | 4.27 |  |  |
|             | iodoaniline for the generation of the 3-methylindole                            |      |  |  |
|             | moiety                                                                          |      |  |  |
| Scheme 4.17 | Synthesis of carbocycles and heterocycles <i>via</i>                            | 4.30 |  |  |
|             | intramolecular Heck cyclisation involving aryl/vinyl                            |      |  |  |
|             | bromides                                                                        |      |  |  |
| Scheme 4.18 | Synthesis of indole systems <i>via</i> intramolecular Heck                      | 4.30 |  |  |
|             | cyclisation involving aryl bromides                                             |      |  |  |
| Scheme 4.19 | Optimised reaction condition for the cyclisation of $3a_{\scriptscriptstyle 0}$ |      |  |  |
|             | to 19a                                                                          |      |  |  |
| Scheme 4.20 | Cyclisation of N-vinyl-2-bromoanilines                                          | 4.33 |  |  |
| Scheme 4.21 | Cyclisation attempt on <i>N</i> -cinnamoyl-2-bromoaniline                       | 4.36 |  |  |
| Scheme 4.22 | One pot cyclisation to form 19a                                                 | 4.36 |  |  |
| Scheme 4.23 | Scaling the cyclisation of $3a_{\text{o}}$ to gram scale                        | 4.37 |  |  |
| Scheme 4.24 | Reaction mechanism for the Pd catalysed cyclisation of                          | 4.38 |  |  |
|             | 3a₀ to 19a                                                                      |      |  |  |
| Chapter 5   |                                                                                 |      |  |  |
| Scheme 5.1  | Fabrication of the copper nanomaterial                                          | 5.4  |  |  |
| Scheme 5.2  | General procedure for the N-arylation of imidazoles                             |      |  |  |
|             | with arylboronic acid                                                           |      |  |  |
| Scheme 5.3  | Reaction mechanism for N-arylation                                              | 5.20 |  |  |
| Chapter 6   |                                                                                 |      |  |  |
| Scheme 6.1  | Carboxylic acid directed ortho-arylation under Pd(II)                           | 6.1  |  |  |
|             | catalysis                                                                       |      |  |  |

| Scheme 6.2 | Lignocellulose supported palladium nanomaterial                      | 6.2 |
|------------|----------------------------------------------------------------------|-----|
|            | catalysed Suzuki-Miyaura type cross-coupling and de-                 |     |
|            | nitrative cross-coupling                                             |     |
| Scheme 6.3 | Pd(II)/PEG system for intremolecular Heck Cyclisation                | 6.3 |
| Scheme 6.4 | Copper oxide nanomaterial supported over copper                      | 6.3 |
|            | catalysed Chan-Lam arylation                                         |     |
| Scheme 6.5 | Construction of 5,6-dihydro-2 <i>H</i> -pyran-2-ones <i>via</i> β-C- | 6.4 |
|            | H activation of cinnamic acids                                       |     |
| Scheme 6.6 | Intramolecular Heck cyclisation involving indolyl                    | 6.4 |
|            | systems for the synthesis of $\pi$ -extended heterocycles            |     |
| Scheme 6.7 | Lignocellulose supported palladium catalysed cross-                  | 6.5 |
|            | coupling of aryl diazonium salts with phenols                        |     |
| Scheme 6.8 | Supported copper nanomaterials catalysed reductive                   | 6.5 |
|            | cross-coupling of aryl nitrates                                      |     |

## **List of Figures**

| Figure No. | Figure Caption                                                   | Page No. |
|------------|------------------------------------------------------------------|----------|
| Chapter 1  |                                                                  |          |
| Figure 1.1 | Utility of transition metals in organic synthesis                | 1.2      |
| Figure 1.2 | Essential materials synthesised using Suzuki-Miyaura             | 1.9      |
|            | cross-coupling as key step                                       |          |
| Figure 1.3 | Natural products synthesised with intramolecular                 | 1.20     |
|            | Heck reaction as a key step                                      |          |
| Figure 1.4 | Arylating agents in Chan-Lam coupling                            | 1.33     |
| Chapter 2  |                                                                  |          |
| Figure 2.1 | Proposed reaction's potential energy diagram                     | 2.15     |
|            | calculated using the M06-2X/def2-TZVP 1 level of                 |          |
|            | theory                                                           |          |
| Figure 2.2 | Optimised structures of the species involved in the C6           | 2.17     |
|            | arylation step                                                   |          |
| Figure 2.3 | <sup>1</sup> H NMR Spectrum of 3a (3,4',5-Trimethoxy-1,1'-       | 2.24     |
|            | biphenyl) in CDCl <sub>3</sub>                                   |          |
| Figure 2.4 | <sup>13</sup> C NMR Spectrum of 3a (3,4',5-Trimethoxy-1,1'-      | 2.24     |
|            | biphenyl) in CDCl <sub>3</sub>                                   |          |
| Figure 2.5 | <sup>1</sup> H NMR Spectrum of 3d (3,5-dimethoxy-4'-nitro-1,1'-  | 2.25     |
|            | biphenyl) in CDCl <sub>3</sub>                                   |          |
| Figure 2.6 | <sup>13</sup> C NMR Spectrum of 3d (3,5-dimethoxy-4'-nitro-1,1'- | 2.25     |
|            | biphenyl) in CDCl <sub>3</sub>                                   |          |
| Chapter 3  |                                                                  |          |
| Figure 3.1 | Synthesis of Pd@LC catalyst                                      | 3.9      |
| Figure 3.2 | (a-d) TEM images of the nanomaterial; (e) Particle size          | 3.10     |
|            | distribution                                                     |          |
| Figure 3.3 | Marketed drugs based on diaryl ethers                            | 3.20     |
| Figure 3.4 | Hot filtration profile                                           | 3.26     |
| Figure 3.5 | <sup>1</sup> H NMR Spectrum of 13c (4'-methoxy-[1,1'-biphenyl]-  | 3.35     |
|            | 4-carbaldehyde) in CDCl <sub>3</sub>                             |          |
| Figure 3.6 | <sup>13</sup> C NMR Spectrum of 13c (4'-methoxy-[1,1'-biphenyl]- | 3.35     |
|            | 4-carbaldehyde) in CDCl <sub>3</sub>                             |          |

# **List of Figures**

| Figure 3.7 | <sup>1</sup> H NMR       | Spectrum             | of       | 13d                 | (4-(4-(tert-          | 3.36 |
|------------|--------------------------|----------------------|----------|---------------------|-----------------------|------|
|            | Butyl)phenox             | y)benzaldehy         | de) in   | CDCl <sub>3</sub>   |                       |      |
| Figure 3.8 | <sup>13</sup> C NMR      | Spectrum             | of       | 13d                 | (4-(4-(tert-          | 3.36 |
|            | Butyl)phenox             | y)benzaldehy         | de) in   | CDCl <sub>3</sub>   |                       |      |
| Chapter 4  |                          |                      |          |                     |                       |      |
| Figure 4.1 | ORTEP diagra             | m of 9a with !       | 50% pı   | obabilit            | y ellipsoids          | 4.22 |
| Figure 4.2 | Hydrogen bon             | ding pattern         | of 9a    |                     |                       | 4.23 |
| Figure 4.3 | TEM images a             | nd <i>d</i> -spacing | of the   | in-situ g           | generated Pd          | 4.24 |
|            | nanoparticles            |                      |          |                     |                       |      |
| Figure 4.4 | Particle size            | distribution         | histog   | ram for             | the <i>in-situ</i>    | 4.24 |
|            | generated Pd             | nanoparticles        |          |                     |                       |      |
| Figure 4.5 | (a) Reusability          | y profile of th      | e react  | tion 3a t           | o 4a; (b), (c)        | 4.25 |
|            | TEM images of            | of the catalyst      | post 3   | <sup>rd</sup> cycle | showing the           |      |
|            | agglomerated             | nanomateria          | l        |                     |                       |      |
| Figure 4.6 | <sup>1</sup> H NMR Spe   | ctrum of 9a          | (Dime    | ethyl 1 <i>F</i>    | <i>H</i> -indole-2,3- | 4.47 |
|            | dicarboxylate]           | ) in CDCl3           |          |                     |                       |      |
| Figure 4.7 | <sup>13</sup> C NMR Spe  | ectrum of 9a         | (Dim     | ethyl 1 <i>I</i>    | <i>H</i> -indole-2,3- | 4.47 |
|            | dicarboxylate]           | ) CDCl <sub>3</sub>  |          |                     |                       |      |
| Figure 4.8 | <sup>1</sup> H NMR Spect | rum of 10c (3        | 3, 6-Dir | nethyl-1            | .H-indole) in         | 4.48 |
|            | CDCl <sub>3</sub>        |                      |          |                     |                       |      |
| Figure 4.9 | <sup>13</sup> C NMR Spec | trum of 10c (3       | 3, 6-Dii | methyl-1            | .H-indole) in         | 4.48 |
|            | CDCl <sub>3</sub>        |                      |          |                     |                       |      |
| Chapter 5  |                          |                      |          |                     |                       |      |
| Figure 5.1 | FTIR Spectra             | of (a) Coppe         | er (II)  | acetate;            | (b) Copper            | 5.6  |
|            | nanomaterial             | obtained usin        | g wast   | e papaya            | peel extract          |      |
| Figure 5.2 | SEM image of             | the Cu-nano          | materi   | al showi            | ng spherical          | 5.7  |
|            | morphology               |                      |          |                     |                       |      |
| Figure 5.3 | SEM-EDS map              | pings of the r       | nanoca   | talyst; (e          | e) EDX of the         | 5.7  |
|            | nanocatalyst             |                      |          |                     |                       |      |
| Figure 5.4 | Solid UV-Vis s           | pectrum of th        | e nano   | catalyst            |                       | 5.8  |

## **List of Figures**

| Figure 5.5  | (a) – (c) TEM and HR-TEM images of the nanocatalyst; 5                     |      |  |
|-------------|----------------------------------------------------------------------------|------|--|
|             | (d) Particle size distribution histogram for the                           |      |  |
|             | nanocatalyst                                                               |      |  |
| Figure 5.6  | Powder XRD pattern for the synthesised nanomaterial                        | 5.10 |  |
| Figure 5.7  | (a) Cu 2p spectrum, (b) C 1s spectrum, (c) O 1s                            | 5.11 |  |
|             | spectrum of the nanocatalyst                                               |      |  |
| Figure 5.8  | TGA profile of the material                                                | 5.12 |  |
| Figure 5.9  | Catalyst reusability profile                                               | 5.17 |  |
| Figure 5.10 | SEM images of the catalyst post 3 <sup>rd</sup> cycle                      | 5.17 |  |
| Figure 5.11 | TEM image post reuse showing agglomeration 5                               |      |  |
| Figure 5.12 | PXRD pattern post 3 <sup>rd</sup> cycle 5.                                 |      |  |
| Figure 5.13 | a) Cu 2p and b) C 1s spectra of the reused catalyst 5.                     |      |  |
| Figure 5.14 | <sup>1</sup> H NMR Spectrum of 3o (1-(4-Nitrophenyl)-1 <i>H</i> -          | 5.28 |  |
|             | benzo[ $d$ ]imidazole) in CDCl $_3$                                        |      |  |
| Figure 5.15 | <sup>13</sup> C NMR Spectrum of 3o (1-(4-Nitrophenyl)-1 <i>H</i> -         | 5.28 |  |
|             | benzo[d]imidazole) in CDCl <sub>3</sub>                                    |      |  |
| Figure 5.16 | <sup>1</sup> H NMR Spectrum of 3q (1-(4-Methoxy-3-                         | 5.29 |  |
|             | methylphenyl)-1 $H$ -benzo[ $d$ ]imidazole) in CDCl <sub>3</sub>           |      |  |
| Figure 5.17 | <sup>13</sup> C NMR Spectrum of 3q (1-(4-Methoxy-3-                        | 5.29 |  |
|             | methylphenyl)-1 <i>H</i> -benzo[ <i>d</i> ]imidazole) in CDCl <sub>3</sub> |      |  |

### **List of Tables**

| Table No.  | Table Caption                                               | Page No.    |
|------------|-------------------------------------------------------------|-------------|
| Chapter 1  |                                                             |             |
| Table 1.1  | Arylation of nucleophilic centers, historical               | 1.31 - 1.32 |
|            | context                                                     |             |
| Chapter 2  |                                                             |             |
| Table 2.1  | Optimisation of the reaction conditions                     | 2.4         |
| Table 2.2  | Substrate scope with iodoarenes                             | 2.6         |
| Table 2.3  | Substrate scope with benzoic acids                          | 2.7         |
| Table 2.4  | Scope with o-toluic, o-anisic and 2,3,4-                    | 2.8         |
|            | trimethoxybenzoic acids                                     |             |
| Table 2.5  | Molecular structure (ORTEP Diagram) of 3bd with             | 2.9         |
|            | 50% probability ellipsoids along with                       |             |
|            | crystallographic data.                                      |             |
| Table 2.6  | Selected bond lengths and bond angles of 4b                 | 2.10 - 2.11 |
| Table 2.7  | Stepwise Gibbs' free energy changes                         | 2.16        |
| Chapter 3  |                                                             |             |
| Table 3.1  | Optimisation of the reaction conditions                     | 3.12        |
| Table 3.2a | Aryl diazonium salts and Arylboronic acids used             | 3.13        |
|            |                                                             |             |
| Table 3.2b | Substrate scope studies                                     | 3.15        |
| Table 3.3  | a-d) TEM images of the catalyst post $3^{\rm rd}$ cycle and | 3.16        |
|            | the corresponding reusability profile, hot                  |             |
|            | filtration profile and particle size distribution           |             |
| Table 3.4  | Optimisation of the reaction conditions                     | 3.23        |
| Table 3.5  | Substrate scope studies.                                    | 3.26        |
| Chapter 4  |                                                             |             |
| Table 4.1  | Optimisation of the reaction conditions:                    | 4.14 - 4.15 |
|            | cyclisation of 3a to 9a                                     |             |
| Table 4.2  | Substrate scope studies for Heck cyclisation of <i>N</i> -  | 4.17        |
|            | unprotected adducts                                         |             |
| Table 4.3  | Substrate scope studies for Heck cyclisation of <i>N</i> -  | 4.18        |
|            | protected adducts                                           |             |
|            |                                                             |             |

### **List of Tables**

| Table 4.4 | Substrate scope studies for the cyclisation of 2- 4.19     |             |
|-----------|------------------------------------------------------------|-------------|
|           | iodo- <i>N</i> -allylanilines                              |             |
| Table 4.5 | Crystallographic data for 9a                               | 4.21 – 4.22 |
| Table 4.6 | Selected bond lengths and bond angles of 9a                | 4.23        |
| Table 4.7 | Optimisation of the reaction conditions for the            | 4.32        |
|           | cyclisation of $3a_0$ to $19a$ .                           |             |
| Table 4.8 | Substrate scope for the cyclisation of <i>N</i> -vinyl-2-  | 4.35        |
|           | iodoanilines                                               |             |
| Table 4.9 | Substrate scope for the cyclisation of <i>N</i> -alkyl and | 4.35        |
|           | benzyl adducts                                             |             |
| Chapter 5 |                                                            |             |
| Table 5.1 | Optimisation of the reaction conditions                    | 5.14        |
| Table 5.2 | Substrate scope studies for C-N bond formation             | 5.16        |

# **Abbreviations and Symbols**

| Abbreviation/Symbol | Meaning                             |
|---------------------|-------------------------------------|
| Δ                   | Heat                                |
| %                   | Percentage                          |
| °C                  | Degree centigrade                   |
| δ                   | Chemical shift                      |
| J                   | Coupling constant                   |
| Å                   | Angstrom                            |
| Ar                  | Aryl                                |
| Ac                  | Acetyl                              |
| <sup>t</sup> BuOH   | Tertiary butyl alcohol              |
| DABCO               | 1,4-Diazbicyclo[2.2.2]octane        |
| DBU                 | 1,8-Diazabicyclo[5.4.0]undec-7-ene  |
| DMA                 | Dimethyl acetamide                  |
| DMF                 | Dimethyl formamide                  |
| DMSO                | Dimethyl sulfoxide                  |
| DCE                 | Dichloroethane                      |
| DCM                 | Dichloromethane                     |
| DFT                 | Density functional theory           |
| EDX                 | Energy dispersive X-Ray             |
| equiv.              | Equivalents                         |
| EtOH                | Ethyl alcohol                       |
| FT-IR               | Fourier transform infrared          |
| g                   | gram                                |
| GO                  | Graphene oxide                      |
| h                   | hour(s)                             |
| НОМО                | Highest occupied molecular orbital  |
| LUMO                | Lowest unoccupied molecular orbital |
| mmol                | milli mole (s)                      |
| MHz                 | Mega-hertz                          |
| Me                  | Methyl                              |
| МеОН                | Methyl alcohol                      |
| m                   | multiplet                           |
|                     |                                     |

## **Abbreviations and Symbols**

milli gram mg

MS molecular sieves

Milli litre mL

nm Nano metre (s) NP Nanoparticle

Nuclear magnetic resonance NMR

parts per million ppm

PEG Polyethylene glycol

Powder X-ray diffraction p-XRD

R Alkyl group

r.d.s. Rate determining step

SHE Standard hydrogen electrode

SEM Scanning electron microscopy triplet

t

**TMS** Tetramethyl silane

Transmission electron microscopy TEM

UV-Vis Ultraviolet visible

Water extract of banana peel ash WEB XPS X-ray photoelectron spectroscopy