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Figure 5.19 EIS spectra of MoO3 and HxMoO3 after a)1st D and b)100th D; Bode 

plot after c)1st D and d)100th D.   
121 

Figure 5.20 The relationship curve between Z′ and ω-1/2 in the low-

frequency region. 
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Figure 5.21 GITT profile of (a) MoO3, (b) HxMoO3, during one complete 

charge/ discharge cycle at a current rate 0.1 mAcm-2 (c) 

Demonstration of a Single titration step during discharged state 

of HxMoO3 (d) enlarged view of one portion of the discharge 

curve with measured titration step highlighted on it; (e) GITT 

measurement of MoO3 for one complete cycle, d) 

demonstration of a Single titration step during discharged state 

of MoO3. 

123 

Figure 5.22 (a) XRD patterns of HxMoO3 after cycling, Enlarged view of 

the XRD patterns in the range of (b) 10o -35o, (c) 11o -13o (d) 

20o -30o and (e) 33o -35o of discharged state electrode 
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Figure 5.23 (a-c) HRTEM and SAED pattern of discharged state electrode 

of HxMoO3 (D- discharge, C-charge). 
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LIST OF ABBREVIATIONS AND SYMBOLS 

Abbreviation/Symbol  Name 

% : Percent 

LIB : Lithium-ion battery 

AIB : Aluminum ion battery  

Al : Aluminum 

Al3+ ion 

K+ ion 

: 

: 

Aluminum ion 

Potassium ion 

Ca : Calcium 

cm : Centimetre 

Cu : Copper 

Conc. : Concentration 

mg : Milligram 

Li : Lithium 

Na : Sodium 

K : Potassium 

Zn : Zinc 

Mg : Magnesium 

Ca : Calcium 

CV : Cyclic voltammetry 

ɣ : Gamma  

g/l : Gram per litre  

min : Minute  

ml : Millilitre 

mA : Milliampere 

V : Voltage 

Å : Angstrom 

h : hour 

PVDF : Polyvinylidene fluoride 

NMP : N-Methyl-2-pyrrolidone 

mM : Millimolar 

Mg : Magnesium 
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HRTEM 

  

: High Resolution Transmission Electron 

Microscope 

XRD 

XPS 

FESEM 

 

FTIR 

 

PL  

: 

: 

: 

 

:  

 

: 

X-ray diffraction 

X-ray photoelectron spectroscopy 

Field Emission Scanning Electron Microscopy 

Fourier-transform infrared spectroscopy 

Photoluminescence Spectroscopy 

Raman spectra 

Photo Luminiscence 

TMDC  : Transition-metal dichalcogenide 

MHz : Megahertz 

kHz : Kilohertz 

w.r.t. : with respect to 

nm : Nanometre 

m : Micrometre 

Ag-1 : Ampere per gram 
oC : Degree Celsius 

Ω : Ohm 

Rct : Charge transfer resistance 

GITT : Galvanostatic intermittent titration technique 

EIS : Electrochemical impedence 

spectroscopy 

GCD : Galvanostatic charge-discharge 

CV : Cyclic voltammetry 

KOH : Potassium hydroxide 

AlCl3 : Aluminium Chloride 

SHE : Standard Hydrogen Electrode 

Wh : Watt-hour 

HxMoO3 

mAhg-1 

: 

:  

Hydrogen doped MoO3 

Mili Ampere hour per gram 
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