
CHAPTER 1

Introduction

1.1 Background of Software-Defined Networking (SDN)

Traditional networking has been the backbone of communication systems for decades, relying

on fixed hardware-based configurations to manage the flow of data between devices [59]. In

these networks, control, and data planes are tightly coupled, meaning that decisions about how

data moves through the network and the actual forwarding of that data occur within the same

devices, such as routers and switches. Because control is distributed across many devices,

traditional networks lack a centralized view of the entire system. This decentralized nature

complicates tasks such as traffic engineering, load balancing, and security policy enforcement

[36]. Traditional networks rely on complex, vendor-specific configurations that are often static

and hard to change. The configuration and management of these networks typically become

complex, and difficult to adapt to dynamic changes in traffic patterns or network demands. Thus,

making changes to network policies or configurations typically requires manual intervention on

each device, leading to a time-consuming and error-prone process. Further, as the number of

devices and the amount of traffic on the network grow, traditional networks struggle to scale

efficiently.

Recognizing these limitations, researchers at Stanford University began exploring a

new approach to networking in 2011, leading to the development of Software-Defined Net-

working (SDN) [88]. It is a new paradigm of networking that redefines how networks are

designed, managed, and operated [15]. The introduction of SDN changes the traditional ap-

proach by centralizing the control plane in a logically centralized controller separated from the

data plane. The initial implementation of SDN was part of a project aimed at creating a more

flexible and manageable Campus Area Network at Stanford University. The goal was to enable

1



network administrators to manage traffic flows dynamically using a centralized software-based

controller, which could program the behavior of network devices via the OpenFlow protocol

[61]. Therefore, the controller is responsible for making decisions about how packets should

be handled, while the data plane is tasked with forwarding packets based on those decisions.

This groundbreaking approach allowed for much greater control and visibility over the network,

drastically reducing the complexity of managing network traffic and enabling real-time response

to network conditions. Later, SDN has evolved beyond academic research and has been widely

adopted in various fields due to its ability to simplify network management, enhance scalabil-

ity, and optimize performance. Some key applications of SDN include Data Center Networks

(DCN) [31, 18, 41], Software-Defined Wide Area Networks (SD-WAN) [110, 30], Internet-

of-Things (IoT) [4, 14], Healthcare [98, 65] and Multipath Routing etc. SDN is extensively

used in data centers, where it plays a crucial role in optimizing resource utilization, reducing

latency, and managing complex network topologies. It helps data centers efficiently handle

large volumes of traffic, automate network provisioning, and implement rapid scaling to meet

dynamic workload demands. SD-WAN allows enterprises to manage wide-area networks more

efficiently and securely. SD-WAN uses SDN principles to route traffic over multiple types of

connections (such as MPLS, broadband, or LTE) based on real-time conditions thus reducing

operational costs. Further, SDN facilitates multipath routing [75, 12, 19, 7], which allows data

to be transmitted over multiple paths simultaneously, increasing redundancy, and bandwidth

utilization. This approach not only improves network performance but also enhances resilience

by providing alternative paths in case of link failures. Therefore, this architectural shift has

paved the way for more agile and responsive network management, enabling rapid innovation

and simplified network operations.

1.2 SDN Architecture

The SDN architecture consists of three main layers: the Application Layer, the Control Layer,

and the Forwarding (Infrastructure) Layer (refer Figure 1.1). Additionally, SDN incorporates

various interfaces that facilitate communication between these layers, including Northbound,

Southbound, and East/West interfaces [60]. Below is a detailed explanation of each component:

2



1.2.1 Application Layer

The Application Layer is the topmost layer of the SDN architecture, consisting of network

applications and services that define the behavior and functionality of the network. These ap-

plications can range from traffic engineering and load balancing to security monitoring and

policy management. They communicate with the SDN controller through the Northbound API,

requesting specific network behaviors or querying network states. The Application Layer lever-

ages the programmability of SDN to dynamically adjust network behavior based on the appli-

cation’s needs, making the network more adaptable and responsive to changing requirements.

Figure 1.1: SDN Architecture

1.2.2 Control Layer

The Control Layer serves as the brain of the SDN architecture [26]. It comprises the SDN

controller, which centralizes the decision-making processes and manages the overall network

behavior. The controller has a global view of the network and is responsible for making deci-

sions on how traffic flows should be handled across the network infrastructure. The controller

communicates with the Data Layer using the Southbound API (e.g., OpenFlow) and interacts

with network applications through the Northbound API. The Control Layer ensures that the net-

work operates according to the policies and instructions set by the applications, adjusting flow

rules dynamically based on current network conditions and demands [35].

3



1.2.3 Forwarding (Infrastructure) Layer

The Forwarding Layer, also known as the Infrastructure Layer, consists of the physical and

virtual network devices such as switches, routers, and other forwarding elements [1]. These de-

vices handle the actual data forwarding tasks, directing traffic based on the flow rules received

from the controller via the Southbound interface. Unlike traditional network devices, SDN for-

warding elements are relatively simple and do not make independent routing decisions; instead,

they rely entirely on the instructions from the SDN controller [86].

1.3 OpenFlow Protocol

The OpenFlow protocol is a pivotal component of the SDN architecture, facilitating commu-

nication between the SDN controller and the forwarding devices within the network [61]. It

is the most widely used Southbound protocol in SDN environments and is fundamental in im-

plementing the centralized control paradigm. Communication between the SDN controller and

the forwarding devices occurs over a secure channel, ensuring that control messages and in-

structions are securely transmitted. Each forwarding device maintains one or more flow tables,

which contain the rules that dictate how incoming packets should be handled.

Figure 1.2: OpenFlow Structure

When a packet arrives at an OpenFlow-enabled switch, the switch matches the packet’s

4



header fields against its flow table entries. If a match is found, the specified action (e.g., forward

to a port, modify the packet, drop the packet) is executed. If no match is found, the packet can

be sent to the controller for further processing. The OpenFlow message structure is shown in

Figure 1.2. OpenFlow protocol messages are used to manage and monitor network devices.

These messages include:

• Flow Modifications: Instructions to add, modify, or delete flow entries in the switch’s

flow table.

• Packet-In: A message sent from a switch to the controller when a packet does not match

any existing flow entries.

• Packet-Out: A command from the controller to the switch to handle specific packets.

• Stats Request/Reply: Used to gather statistics about the flows, ports, and other elements

of the network devices.

1.4 Multi-Controller Architecture

To overcome the limitations of having a single point of control, SDN often employs a multi-

controller architecture [112, 39, 69]. This setup distributes the control tasks among several

controllers, enhancing scalability, fault tolerance, and network performance. In multi-controller

SDN environments, different roles are assigned to controllers to manage the interactions with

forwarding devices and to ensure redundancy and failover capabilities. These roles are master,

slave, and equal [111]. We briefly discuss these controller roles in the following:

a) Master Controller: The master controller is the primary controller with full control and

authority over a set of network devices. The master controller installs flow rules, collects

device statistics, handles packet-in messages, and makes real-time decisions that affect

the network’s operation. If the master controller fails or becomes unreachable, the system

may promote a slave or equal controller to assume the master role, ensuring the continuity

of network operations.

b) Slave Controller: A slave controller acts as a backup to the master and does not have

direct control over the forwarding devices. It operates in a passive role, receiving updates

5



and maintaining synchronization with the network state but not actively managing the

devices. While in slave mode, the controller can query the network for information but

cannot issue control commands to modify the network’s behavior.

c) Equal Controller: An equal controller shares authority with other controllers over a spe-

cific set of network devices. Unlike the strict master-slave relationship, equal controllers

collaboratively manage devices, allowing them to concurrently read and write flow rules.

This setup can improve load balancing and fault tolerance. Since multiple controllers can

issue commands simultaneously, there must be mechanisms in place to resolve conflicts

and ensure consistency. Controllers often rely on synchronization protocols or predefined

rules to prevent conflicting flow modifications.

1.5 Security Challenges

The separation of control plane from the forwarding devices introduce significant flexibility

and programmability, but it also brings a set of challenges that need to be addressed to ensure

network security. Key challenges in SDN networks include maintaining flow rule integrity,

mitigating the risk of a single point of failure, ensuring cross-domain flow integrity, and securely

authenticating users within the network. We briefly discuss each of these challenges in the

below subsection.

a) Forwarding rule integrity: One of the central components of SDN is the flow table,

which resides in the data plane switches and dictates how packets should be handled.

Flow rule integrity can be compromised in several ways, such as through malicious at-

tacks where an adversary injects unauthorized flow rules, or through accidental miscon-

figurations that lead to security breaches or network outages [106, 80, 102, 103, 92, 56].

Traditional methods, such as static analysis and formal verification, can be used to check

flow rules, but these approaches often struggle with scalability, particularly in large and

dynamic networks where flow rules are frequently updated.

b) Single point of failure: The centralized nature of the SDN control plane, where a single

controller or a small set of controllers manage the entire network, introduces the risk of

a single point of failure. If a controller fails due to a malicious attack, the entire network

6



could become unmanageable, leading to service disruptions or complete network out-

ages. To address this issue, researchers have proposed distributed controller architectures,

where multiple controllers are deployed across the network [95, 2, 47, 107]. However,

this introduces new challenges, such as ensuring consistent state synchronization among

controllers and minimizing the latency introduced by distributed control.

c) Cross-domain flow integrity: In large-scale networks, particularly those spanning mul-

tiple administrative domains, maintaining flow integrity across domain boundaries is a

significant challenge. Each domain may have its policies, protocols, and security re-

quirements, leading to potential conflicts or vulnerabilities when flows traverse multiple

domains [72, 109, 105]. Ensuring that flow rules are consistently enforced across these

boundaries is crucial to maintaining overall network security and performance.

d) Authentication of Users: In SDN networks, where the control plane is centralized, au-

thenticating users becomes even more critical, as unauthorized access to the control plane

could allow an attacker to manipulate flow rules and compromise the entire network

[20, 27, 43, 48].

Therefore, the attacker can exploit vulnerabilities in the control plane to modify or redi-

rect network traffic by changing the output port, leading to security breaches and data leakage.

This creates a potential vulnerability where malicious actors can deceive security applications,

leading to the installation of malicious flow rules on OpenFlow switches. Therefore, the in-

tegrity of these flow rules is essential to maintaining the intended operation of the network and

must be protected from unauthorized modifications.

1.6 Blockchain Technology

Blockchain is a decentralized and distributed ledger technology that records transactions across

multiple nodes in a secure, transparent, and tamper-resistant manner [114]. It operates on a

peer-to-peer network where each node maintains a copy of the ledger, ensuring data consis-

tency and integrity without the need for a central authority. Blockchain’s architecture makes it

highly suitable for applications requiring transparency, traceability, and security, such as finan-

cial transactions [46, 96], supply chain management [25, 83], Healthcare [37, 97, 94], Industry

7



[87, 11, 45], and digital identity verification [82, 24, 33, 113]. At its core, blockchain tech-

nology relies on cryptographic techniques to secure data. The concept behind blockchain is to

record the transaction history in a chain of blocks across its peer-to-peer network. Blocks are

connected in a chain, with each block containing a hash value that corresponds to the previ-

ous block. Therefore, mutating one block will make the entire chain invalid. Each node in the

network takes a copy of the blockchain and performs a validation of transactions. Therefore, a

consensus is made among the nodes before creating a new block, which makes it difficult for

the eavesdropper to tamper with any block (once a block has been tampered with, it is visible

to all nodes involved in the consensus). The consensus algorithms tell how the nodes agree to

add the block to the chain. After the nodes have verified the transaction, it is approved, and

the distributed ledger is updated. The updated ledger is then broadcasted to all nodes on the

blockchain, ensuring that every node has an accurate and current copy of the data (see Fig-

ure 1.3). This immutability, combined with the decentralized nature of blockchain, provides a

robust platform for trustless interactions among parties.

Figure 1.3: Transaction Processing

8



1.6.1 Blockchain Consensus

Consensus algorithms are protocols that allow nodes in a blockchain network to agree on the

state of the ledger, ensuring that all participants have the same version of the truth [104]. Differ-

ent consensus algorithms have been developed to meet various needs, balancing security, speed,

and energy efficiency. We briefly discuss some of these protocols below.

a) Proof of Work (PoW): PoW is one of the earliest consensus algorithms used in blockchain,

notably in Bitcoin. It requires participants (miners) to solve complex cryptographic puz-

zles to validate transactions and add new blocks to the chain. It provides high security

and resistance to attacks. However, it consumes high energy and is slower in transaction

processing.

b) Proof of Stake (PoS): PoS replaces the energy-intensive mining process with a system

where validators are chosen based on the number of tokens they hold and are willing to

stake as collateral. Validators create new blocks and receive rewards based on their stake.

It consumes lower energy consumption compared to PoW but poses potential centraliza-

tion risks if a few entities hold large stakes.

c) Practical Byzantine Fault Tolerance (PBFT): This protocol is designed to tolerate

Byzantine faults and is often used in permissioned blockchains. It operates through a

series of voting rounds where nodes agree on the order of transactions.

1.6.2 Ethereum Smart Contracts

Similar to real-world contracts, a Smart Contract (SC) is a digital contract in the form of a

computer program that runs on the Blockchain network. SC is a self-executed program and

is triggered when certain conditions are satisfied without consulting any central authority. It

is mainly used to automate the operations in the network [73]. Ethereum provides an imple-

mentation of SC to automate the network characteristics. Since SC is stored on the blockchain,

they are also immutable and accessible publicly. This makes the SC tamper-proof. Solidity and

Vyper are the two programming languages used to write SC on the Ethereum platform. The

Ethereum SC contains few functions and machine states. The functions are used to change the

machine state in the blockchain. Therefore, it is useful for automating the verification of flow

9



rules on the blockchain without the need for intervention. Furthermore, the decentralized ar-

chitecture of blockchain technology makes it suitable for the integrity of SDN flow tables. The

immutable nature of blockchain prevents the malicious manipulation of flows by the attacker

and makes it potential for SDN integrity. So, it can be used to strengthen the integrity of SDN

and make it more robust.

1.7 Motivation

This research is motivated by the need to develop a comprehensive security framework that not

only addresses the existing vulnerabilities in SDN but also leverages the strengths of blockchain

technology to build a more resilient and trustworthy network environment. Our work seeks to

bridge the gap between SDN’s potential and its security challenges, contributing novel solu-

tions that enhance flow integrity, controller resilience, cross-domain collaboration, and secure

authentication in SDN-based IoT ecosystems.

1.8 Problem Statement

The architectural shift in the SDN network has introduced critical security challenges that

threaten the integrity, reliability, and scalability of SDN deployments. One of the primary

issues is the integrity of flow rules within SDN-enabled networks, as unauthorized modifica-

tions to these rules can lead to severe security breaches. Additionally, the centralized nature

of the SDN controller creates a single point of failure, making the network vulnerable to tar-

geted attacks and operational failures. As SDN scales into multi-domain environments, ensur-

ing cross-domain flow integrity becomes increasingly complex, requiring robust coordination

and verification mechanisms. Moreover, the integration of SDN with IoT introduces additional

security concerns, particularly the authentication of users and devices, which is essential to

prevent unauthorized access and ensure reliable communication. Existing solutions lack the

comprehensive security framework needed to address these multi-faceted challenges effectively,

particularly in dynamic and large-scale SDN environments. Therefore, there is a pressing need

for innovative approaches that combine SDN with blockchain technology to enhance flow rule

integrity, mitigate single points of failure, secure cross-domain interactions, and authenticate

devices and users in a trustworthy manner.

10



1.9 Research Objectives

The existing literature techniques often struggle to maintain flow integrity, leaving networks

vulnerable to attacks that can manipulate or disrupt data flows. Similarly, the reliance on cen-

tralized controllers can create single points of failure, making networks susceptible to outages

or attacks. Managing flow integrity across multiple domains adds another layer of complexity,

as does ensuring robust authentication of users and devices. Therefore, this thesis primarily

focuses on enhancing the security and resilience of SDN-enabled networks.

This thesis aims to address the identified challenges through the following four objectives:

a) To develop a methodology to maintain flow integrity in the OpenFlow-based net-

work: In an SDN network, OpenFlow rules dictate how traffic should navigate the net-

work, making the flow table a prime target for security threats like DoS attacks. There-

fore, in this thesis, we propose a technique to ensure the integrity of OpenFlow rules in

SDN networks through the blockchain smart contract.

b) To develop a Blockchain-enabled SDN Multi-Controller architecture that provides

high availability of network services: The reliance on a single controller in network

architecture presents a significant vulnerability, as the failure of this central controller can

lead to a complete network outage. Therefore, we employ the multi-controller architec-

ture of SDN to make the network more agile and scalable.

c) To develop a solution for ensuring flow integrity across multiple domains: Deploying

SDN across multiple domains presents distinct security challenges, particularly regarding

the integrity and security of flow modification requests. Furthermore, various malicious

activities, including rogue controller attacks, replay attacks, and Distributed Denial of

Service (DDoS) attacks, create vulnerabilities that can compromise flow integrity. In the

literature, similar flow rules are often installed on each domain, and rogue flow modifi-

cations are checked. However, in practice, each domain maintains separate flow rules.

Therefore, our work emphasizes real practical scenarios for preserving the integrity of

flow in a multi-domain network.

d) To develop a blockchain token-based authentication of users in SDN networks that

ensures the authenticity of users accessing the network: Authentication plays a crucial

11



role in securing IoT networks by ensuring that only authorized users and systems can

access and control the devices connected to the network. Furthermore, the centralized

architecture, in which all the data and resources are controlled by a single entity, can be

a drawback in the modern world because it can lead to a lack of security, scalability, and

decentralization.

1.10 Methodologies/Approaches

The research work presented in this thesis is aimed at enhancing the security and resilience of

Software Defined Networking (SDN) through the integration of blockchain smart contracts. The

thesis is divided into four primary contributions. First, the preservation of flow table integrity

in a single SDN controller architecture through the smart contract. Second, the development

of a multi-controller architecture to prevent network collapse due to controller failure. Third,

the development of multi-stage flow verification of OpenFlow rules in a multi-domain SDN

network that uses the digital signature and consensus among the controllers for the acceptance

of flow modification proposal. Finally, the development of token-based authentication of users

to access the network devices in an SDN-enabled network. The methodologies used in this

research include system design, blockchain integration, implementation of smart contracts, and

experimental validation. Further, we adopt a hybrid approach combining theoretical modeling

with experimental validation.

1.10.1 Blockchain Integration

A private Ethereum blockchain is integrated into the SDN environment to serve as a decentral-

ized ledger for storing and verifying flow rules. Smart contracts are developed using Solidity

to automate the process of recording flow rules on the blockchain. The smart contracts are also

tested using the Remix IDE independently. We integrated the Hyperledger Fabric in the third

contribution to utilize the advantage of modular architecture.

12



1.10.2 Experimental Validation

The experiments are conducted using Mininet, a network emulator that provides a realistic en-

vironment for testing SDN architectures. The Ethereum blockchain is deployed on a private

network, and the smart contracts are deployed on the blockchain to perform the flow verifica-

tion task. We utilize the Web3.py library to communicate with the blockchain network. The

proposed methodologies are validated through a series of controlled experiments in a simulated

SDN environment. We tested the proposed technique in both normal and various attack scenar-

ios. We compared the results obtained in our method with the latest existing methods including

FRChain [101], BlockFlow [53], BlockSDSec [16], BCS [8], and BMC-SDN [22]. Further, we

also conducted experiments on SDN hardware switches (Allied Telesis) using Ryu controller to

demonstrate the effectiveness of our approach.

1.10.3 Performance Measure

We measure the performance of the proposed method using various parameters including la-

tency for flow verification, verification success rate, consistency of flow rules, transaction cost

for execution of smart contract functions, controller overhead, and complexity of the proposed

techniques. Further, we tested the performance under various conditions to assess the effec-

tiveness of the proposed solutions in maintaining flow table integrity and ensuring network

resilience.

1.11 Thesis Contributions

As part of our research, four different approaches have been developed to secure the OpenFlow

rules in an SDN-enabled network using blockchain technology. Each of these methods is briefly

explained with results in the following subsections.

13



1.11.1 Development of a Blockchain-enabled Flow Integrity in the OpenFlow-

based network

The separation of the control plane from the forwarding devices in SDN enhances the flexibility.

However, it also brings the vulnerability that can be exploited by adversaries to manipulate flow

rules on SDN switches. To address this challenge, we developed FTISCON, a method that pre-

serves the integrity of flow rules by storing a copy of the flow rule on the blockchain. Our threat

model addresses three main risks: flow modification attacks, false flow insertion attacks, and

flow deletion attacks. Using blockchain smart contracts, we streamline the flow verification pro-

cess to protect against malicious alterations. In our approach, a Blockchain Agent continuously

verifies flow rules through the decentralized blockchain network. This module operates inde-

pendently from the SDN controller, reducing its processing load and accelerating the flow rule

verification process. Experimental results demonstrate that our method effectively identifies all

three attack types and significantly reduces execution time compared to existing methods.

1.11.2 Development of a Blockchain-enabled Multi-Controller architec-

ture in SDN network.

To ensure resiliency in the event of a master controller failure, we have developed a Blockchain-

enabled SDN Multicontroller architecture (SDBlock-IoT) designed to eliminate the single point

of failure. In this system, multiple equal controllers are employed, any of which can take over

network control if needed. The process begins with the detection of a master controller failure,

where equal controllers continuously monitor its status by sending PING requests. If the master

controller is active, it responds with an ICMP message. If no response is received, the equal

controllers then vote via a smart contract to confirm the failure of the master controller. Next,

the equal controllers perform a consensus process considering the response time and resource

utilization of all equal controllers to appoint a new master controller. This architecture ensures

increased resilience by incorporating a mechanism that dynamically selects the equal controller

with optimal performance as a master controller in the event of failure, thus minimizing disrup-

tions and optimizing network performance. The experimental result shows that the proposed

model significantly enhances the responsiveness of network service availability by providing a

minimum update time compared to existing methods.

14



1.11.3 Development of a blockchain-enabled multi-stage proposal verifi-

cation in multi-domain SDN network

Without robust security mechanisms, multi-domain SDN networks are susceptible to a wide

range of attacks that can have severe consequences, including network downtime, data loss,

and compromised user privacy. Further, various malicious activities, such as rogue controller

attacks, replay attacks, and Distributed Denial of Service (DDoS) attacks introduce vulnerabil-

ities that can compromise flow integrity, leading to unauthorized flow manipulation and service

disruptions. To address these challenges, we propose Cross-DistBlock, a multi-stage flow ver-

ification in multi-domain SDN networks, implemented through smart contracts. This method

ensures that flow modification proposals undergo three security checks before a final decision

is made (digital signature, selecting the non-rogue controllers, and voting consensus). All pro-

posals are digitally signed using the private key of the proposing domain. SDN controllers then

independently verify the digital signatures of these proposals, and a proposal is accepted only

if the majority of controllers within the domain verify it successfully. If a controller casts an

invalid vote, its trust score is reduced, and it is added to the rogue list if the score drops be-

low a certain threshold. Additionally, we introduced a novel framework for sharing security

events across SDN domains through smart contracts. An adaptive policy enforcement mech-

anism is also designed to proactively address potential security threats by isolating infected

network components and inserting proactive flow rules to mitigate threats before they esca-

late. A thorough security analysis confirms that the integrated use of blockchain and adaptive

policy enforcement significantly strengthens the overall security posture of multi-domain SDN

networks.

1.11.4 Development of a blockchain token-based authentication of users

in SDN network

In this work, we developed a distributed Token-based user authentication through Blockchain

to provide secure access control of network services in an SDN-IoT network. By verifying both

the device and user identities, the authentication process helps prevent fraudulent activities and

ensures data integrity. The process is automated through a smart contract that issues a token

for each user request. This authentication process is divided into four phases: registration,

15



authentication, token distribution, and validation. When a user requests authentication, the

smart contract checks whether the IoT device is registered on the blockchain. Upon successful

authentication, a digital token is generated for each device access request via the smart contract.

These tokens, created by network peers, serve as identification for users or devices in subsequent

system interactions. The smart contract verifies the token’s signature by decoding it into a

specific format to ensure it has not been tampered with. Additionally, the smart contract can

revoke tokens upon unsuccessful authentication attempts to prevent attacks on the system. The

performance of the authentication process is evaluated based on success rate, latency, security,

and the gas cost associated with authentication. Experimental results indicate that the proposed

system effectively resists tested attack scenarios, demonstrating a high level of security.

1.12 Thesis Organization

Figure 1.4 presents the flow of chapters, highlighting key components and their interrelation-

ships. The rest of the dissertation is organized as follows:

a) Chapter 1 provides an overview of traditional networking and introduces the concepts of

Software-Defined Networking (SDN) and blockchain technology. It defines the research

problem, outlines the motivation behind this study, states the objectives, and highlights

the key contributions.

b) Chapter 2 presents a comprehensive review of the literature related to Software-Defined

Networking (SDN), blockchain integration, existing security solutions and finding re-

search gap.

c) Chapter 3 describes the proposed smart contract–based solution for preserving flow table

integrity in OpenFlow networks, including its design, implementation, and performance

evaluation.

d) Chapter 4 presents a distributed SDN controller architecture to mitigate the risk of single

points of failure and improves fault tolerance, ensuring robust operation even in the face

of controller failures or attacks.

e) Chapter 5 presents a framework for maintaining flow integrity across multi adminis-

trative domain in SDN environments including its components, workflow, and security

16



mechanisms.

f) Chapter 6 presents an authentication method using blockchain tokens to secure user and

device authentication in SDN-IoT networks, detailing its design, implementation, and

security evaluation.

g) Finally, chapter 7 concludes the thesis with a summary of key findings, a discussion of

their implications, and potential directions for future research.

Figure 1.4: Block diagram of thesis organization.

17


	05_chapter 1

