
CHAPTER 3

Development of a Blockchain-enabled flow integrity in the

OpenFlow networks

3.1 Introduction
The adoption of SDN is going to save error-prone manual configuration by enabling dynamic

automation through a central controller, thus improving network flexibility. In the OpenFlow

protocol, a forwarding device matches the incoming traffic with the flow rules and takes action

as specified in the matching flow rule. However, the flexibility and programmability offered

by SDN controllers create a potential vulnerability where malicious actors can deceive security

applications, leading to the installation of malicious flow rules on OpenFlow switches. More-

over, the attacker can exploit vulnerabilities in the control plane to modify or redirect network

traffic, leading to security breaches and data leakage. The controller is the only device that can

determine whether a flow rule has been tampered with. So, the attacker with a rogue controller

will try to tamper with the flow rules in the switches and cause network failure.

The existing works in the literature mainly emphasize on maintaining a switch version

number to preserve the integrity of flow rules. Consequently, in the event of an unauthorized

flow modification attack, the switch needs to update its original flow rules from the blockchain.

This leads to a substantial surge in verification time and controller overhead particularly as the

frequency of attack increases. The controller latency plays a pivotal role in enhancing network

responsiveness, reliability, and overall performance in SDN environments. This highlights a

significant research gap in the field, necessitating the exploration of more efficient strategies to

preserve the integrity of flow rules provided verification latency is minimal. Therefore, in this

chapter, we plan to develop robust and effective security mechanisms to mitigate malicious flow

manipulation attacks on the SDN switches.

The rest of this chapter is organized as follows. In Section 3.2, we discuss our system

model and architecture of the proposed model in detail. We also give a detailed description of

24



the SC design based on the Ethereum Private Network and the flow verification process. Section

3.3 presents the experimental result analysis and discussion of the results. Section 3.4 presents

the concluding remarks and future directions.

3.2 Proposed Model

In this chapter, we introduce FTISCON (Flow Table Integrity Through Smart Contract), a com-

prehensive OpenFlow security mechanism to preserve the integrity of the flow rules on SDN

switches that leverage blockchain technology. We created a specialized Blockchain Agent re-

sponsible for verifying flow rules before their installation on forwarding devices. This module

operates independently of the SDN controller, reducing the processing burden on the controller

and significantly expediting the flow rule verification process. We implement Smart Contracts

as a key component of FTISCON, streamlining the process of flow rule verification through

the blockchain network. These contracts establish a trust framework that safeguards against

malicious manipulation of flow rules by potential attackers, ensuring the integrity of network

configurations. Finally, we conduct a comprehensive simulation-based experimental study of

FTISCON using the Mininet network emulator. This evaluation encompasses a range of perfor-

mance metrics, including detection rate, execution time, transaction cost, and delay. Addition-

ally, we conduct a time complexity comparison with existing security techniques BlockFlow

[53], BlockSDSec [16], and FRChain [101] to highlight the advantages of the proposed model

in terms of computational efficiency. These protocols specifically focus on improving the secu-

rity and integrity of OpenFlow rules in Software-Defined Networks (SDNs) using blockchain-

based mechanisms, which makes them directly relevant to our study. A detailed description of

the proposed model is given below.

3.2.1 Architecture of the proposed FTISCON

The architecture of the proposed model consists of the following modules- an SDN Controller,

a Blockchain Network, a Smart Contract (SC), and a Blockchain Agent as depicted in Figure

3.1. We briefly explain each module below-

a) SDN Controller: The SDN controller maintains the topology information, forwarding

rules from a central point. The controller can dynamically adjust the network’s routing

25



policies as the network changes. The controller also communicates with the Blockchain

node to store the flow information through the WEB3 API.

b) Blockchain Network: The Blockchain network consists of multiple peer-to-peer nodes

that participate in the consensus for verification of OpenFlow rules. The number of

Blockchain nodes depends upon the application type. The more the number of Blockchain

nodes, the better the security of the system. However, in the Ethereum Private Blockchain

Network, it is recommended to have a minimum bound of seven nodes as a validator. This

will allow up to two nodes to be either malicious or go offline. Each Blockchain node on

the network maintains a copy of the blockchain ledger and participates in the consensus

process. The nodes validate the transactions by following the consensus algorithm such

as Proof-of-Work(PoW), Proof-of-Stake(PoS), etc. to create the next block.

c) Smart Contract: The role of smart contracts in the blockchain is to enable trustless trans-

actions and automated execution of contractual agreements. They allow for the creation

of secure, tamper-proof, and transparent agreements between parties, which are executed

automatically when certain conditions are met. A single SC is used for the proposed

model. It maintains the rules, topology information, and logic for the verification of flow

rules. All the functionalities and business logic are governed by the SC in a decentralized

manner.

d) Blockchain Agent: The Blockchain Agent is a separate entity that is responsible for col-

lecting the flow rules from the OpenFlow switches and forwarding them to the blockchain

network to perform the verification through SC. It is also responsible for removing flows

from the switches if found invalid by the blockchain. This module is kept separate from

the SDN controller to avoid Single-Point-of-Failure (SPOF). Even if the controller fails,

the Agent can do the verification of the flows.

3.2.2 Smart Contract Design

A smart contract is a program that automatically executes a task when predefined conditions

are triggered on the blockchain. The main objective of SC is to simplify and automate the

operations of flow rule verification without the need for a centralized third party. All parties can

perform the transaction in a trustless manner, solely depending on the digital contract. The data

26



Figure 3.1: Proposed Blockchain-Enabled SDN flow security System Architecture.

stored on the blockchain is shared between the validators to provide total transparency of the

transactions to all parties.

We maintain two structures for storing the topology and flow rule information. The SC

allows the creation and update operation on the blockchain for both topology and flow tables

through the SC functions.

The switch structure consists of the following fields in the SC- switch_id, switch_name,

and flows. The flow rule structure has the following fields- switch_id, flow_id, src_mac,

dst_mac, protocol, inport, outport, and priority.

The different functions available in the SC are discussed below:

a) addSwitches: This function is invoked by the SDN controller as soon as a new switch

joins the network. It stores the dpid of the switch on the blockchain. Algorithm 1 rep-

resents the steps required for switch registration in the blockchain. Switches register

themselves by providing datapath_id and transaction timestamps.

b) addRule: As the user tries to communicate over the network, the controller identifies the

route to the destination in the form of OpenFlow rules. This function is invoked by the

SDN controller to store a new flow rule on the blockchain.

27



c) verifyRule: The blockchain agent invokes this function to verify the forwarding rules.

Upon receiving this function call, the blockchain peers perform the consensus to validate

the transaction. Then, it performs the similarity of the hashes with the flow information

received from the agent and already stored hash. If it matches the hash value, then the

flow verification is successful; otherwise, an event is generated by the SC to remove the

flow from the switch.

Table 3.1: Notation Table

Symbol Definition

C SDN Controller

BA Blockchain Agent

Si OpenFlow enabled SDN switch

IPc IP address of SDN Controller

Wc Ethereum Wallet address of SDN Controller

Wba Ethereum Wallet address of Blockchain Agent

ts The time at which the transaction was initiated

src Source MAC

dst Destination MAC

inport Ingress port number

p Priority of the flow rule

d pidi Datapath ID of SDN Switch si

tn_id Unique identifier for the transaction

drop Packet is blocked by the controller

out port Packet is transmitted through the given outport

normal Packet is transmitted as traditional Layer 2 convention

fold Flow rule already present on the blockchain

fnew New flow rule request for verification

28



3.2.3 System Initialization

Let S = {s1,s2, ...,sm} be the set of switches in the SDN network where each si consists of the

d pid that is used to specify the switch is being modified.

Let the set of all transactions be denoted as T = {tn1, tn2, ..., tnm}, where each trans-

action tni takes place between the SDN and blockchain network. Since the flow rules are a

combination of match and action fields, let us denote M(tni) as the set of match fields in trans-

action tni.

M(tni) = {m1,m2, ...,mn} where each mi = {src,dst, p, inport}. We have used these

four match fields to match the packet. However, we can also use the remaining fields to match

the packet. Similarly, let A(tni) = {a1,a2, ...,an} be the action field specified in transaction tni

where each ai = {drop|out port|normal}.

Let F = { f1, f2, ..., fn} be the set of existing flow rules in the network, where fi is the

set of match field mi and action field ai i.e. f = {(m1,a1),(m2,a2), ...,(mn,an)}.

The transaction between SDN and Blockchain can occur in three scenarios: i) During

the network components registration ii) During the addition of new flow rules and iii) During

the verification of flow rules.

3.2.4 Threat Model

The threat model of the proposed model is illustrated in Figure 3.2. Our threat model encom-

passes potential risks on the SDN switches from various perspectives. Firstly, the normal flow

of communication between the SDN controller and switch is marked using the green dashed

line (Figure 3.2 Circle Mark 1). Next, we account for the threat of an attacker intercepting

OpenFlow messages between the SDN controller and switches to execute an attack (Figure 3.2

Circle Mark 2). Additionally, we consider the scenario where an attacker may deploy a rogue

controller to orchestrate a malicious attack on the SDN switches (Figure 3.2 Circle Mark 3).

Lastly, we consider the scenario of attackers exploiting various APIs to inject malicious flows

(Figure 3.2 Circle Mark 4). Furthermore, we have identified and formulated three specific types

of attacks that a potential attacker could carry out on the SDN switches. These are detailed as

follows.

29



a) Flow Modification Attack: An attacker attempts to modify an existing flow rule on

a switch by changing its action and match field. Therefore, when an attacker initiates

modification transaction tni with modified match field m′i and action a′i, the flow becomes:

(mi,ai)→ (m′i,a
′
i) f or i = 1,2, ...,n. Then, the set of modified flow rules will be-

f ′ = {(m1,a1),(m′i,a
′
i), ...,(mn,an)} (3.1)

This can be mathematically expressed as:

∀(mi,ai) ∈ f ′ : ∃(m′j,a′j) ∈ f ′ such that (mi = m j) and (ai ̸= a′j)

The above formulation states that for every original flow rule (mi,ai) in the OpenFlow

switch, there exists a modified flow rule (mi = m j) in the set f ′ such that the action field

is modified.

b) False Flow Insertion Attack: In this attack, the attacker tries to install a false flow rule

on the switch, containing a malicious action. This exploit has the potential to trigger an

overflow attack.

When the attacker initiates the false flow insertion attack, a new flow rule (m′i,a
′
i) is added

to the switch. Therefore, the flow (m′i,a
′
i) must be in the updated set of flow rules f ′ along

with the existing flow rules. The updated flow table on the switch is given by the below

equation:

f ′ = {(m1,a1),(m2,a2), ...,(mn,an),(m′i,a
′
i)} (3.2)

This can be mathematically expressed as:

∀(mi,ai) ∈ f ′ : ∃(m′j,a′j) ∈ f ′ such that (mi ̸= m j) and (ai ̸= a′j)

c) Flow Deletion Attack: Here the attacker attempts to remove an existing flow rule from

the switch. Let, the flow rule to be deleted as (m′i,a
′
i) where m′i represents the match

30



field and a′i represents the action field. Therefore, when this attack is executed, the cor-

responding flow rule (m′i,a
′
i) must not be present in the original flow table of the switch.

The updated flow table on the switch is given by the below equation:

f ′ = {(m1,a1),(m2,a2), ...,(mn−i,an−i)} (3.3)

Figure 3.2: Threat Model of flow rule modification in SDN network.

31



3.2.5 Transaction Formulation

3.2.5.1 Network Component Registration

The SDN Controller and Blockchain Agent create their wallet address Wc and Wba respectively.

They register themselves on the SC using the tn(C) and tn(BA) respectively. Similarly, the

SDN switch is added to the blockchain using the tn(si) transaction as per the algorithm 1. The

transactions are given below:

tn(C) = {tnid,Wc, IPc, ts} (3.4)

tn(BA) = {tnid,Wba, IPba, ts} (3.5)

tn(si) = {tnid,Wc, IPc,d pidi, ts} ∀ si ∈ S (3.6)

The transaction tn(C) and tn(BA) will run only once but tn(si) will run for each SDN

switch in the network. The SC checks the duplication of the switch and then stores the si in the

SWList.

Algorithm 1 addresses the process of automating the registration of OpenFlow switches

on the blockchain. The smart contract (SC) verifies both the switch’s dpid and the timestamp

associated with the registration request. It then assesses whether the dpid is already registered by

cross-referencing it with the existing dpid entries. This algorithm holds significant importance

in the blockchain network’s validation of flow rules, as it determines the legitimacy of switch

registration.

32



Algorithm 1 OpenFlow Switch Registration Function
Input: Datapath ID dpid, Registration timestamp ts, Switch List in the SC SWList

1: Set status← False

2: SC will check (dpid, ts)

3: if d pid ∈ SWList then

4: return status

5: else

6: status← True

7: return status

8: end if

3.2.5.2 New Flow Rule Registration

Let fold be the existing flow rule on the blockchain and fnew be the new flow rule that needs to

be registered on the blockchain. Then,

fold = {mold,aold} and fnew = {mnew,anew}

For the addition of a new flow rule on the blockchain, the BA sends the transaction as:

tn(C) = {tnid,W_c, IP_c, f _new, ts} (3.7)

When a new flow registration requests AddFlow(tn(C)) is received by the blockchain,

the SC verifies that the flow rule specified in fnew does not conflict with existing flow rules in

the network. Therefore, the transaction tn(C) is broadcasted to the network and is verified by

the SC. If the transaction is valid, the new flow rule is added to the flow table of the specified

switch, and the updated state of the flow table is recorded on the blockchain.

Flow rule fold and fnew are in conflict when the match field of both flows overlap but

actions specified by the two rules are different. We can express this condition as:

33



mold ∩ mnew ̸= /0 (3.8)

aold ̸= anew (3.9)

The condition in equation 3.8 signifies that there is a potential conflict between fold and

fnew. Equation 3.9 signifies that the action specified by the two rules is ambiguous. Therefore,

if the above two conditions are satisfied then the fnew will not be added to the blockchain ( fold

and fnew are in conflict).

Algorithm 2 Flow Rule Registration Function
Input: Datapath ID dpid, New flow rule to be added fnew, Controller and Blockchain Agent

wallet address Wc,Wba

1: Set status← False

2: if (mold == mnew) ∨ (aold == anew) then

3: return status

4: end if

5: Compute h = sha256(abiencode( fnew,Wc,Wba))

6: if d pid ∈ SWList then

7: if Rules[h] ̸= h then

8: Rules[h]← fnew)

9: status← True

10: end if

11: end if

12: return status

Algorithm 2 concentrates on automating the registration of flow rules on the blockchain

network. Initially, the blockchain nodes verify the similarity between the OpenFlow match and

action fields of new and old flow rules. If a conflict is detected, the transaction is rolled back.

34



Otherwise, the transaction is reverted as there is a conflict between the old and new flow rules.

Then, the algorithm proceeds to compute the hash and securely store the flow rules on the

blockchain. This implementation significantly boosts efficiency in storing new flow rules by

leveraging hash calculations, ultimately minimizing verification delays.

3.2.5.3 Verification Transaction

The BA sends the request Veri f yFlow(tn(BA)) to the blockchain for each flow present on the

SDN switch to preserve the integrity and avoid any potential flow modification attack. The

transaction for verification request is expressed as:

tnnew(BA) = tnid,Wba, IPba, fnew, ts} (3.10)

The SC receives tnnew(BA) containing match (mnew) and action (anew) for the verifica-

tion. It then compares these fields with the transaction history (tnold) associated with the flow

rule to determine if there is a similar flow rule already in the blockchain ledger. The conditions

are expressed as:

∃! mnew ∈ tnold (3.11)

aold = anew (3.12)

Equation 3.11 signifies that the match field mnew exists exactly once in tnold and equa-

tion 3.12 signifies that both the actions are equivalent. If such a transaction exists, the function

returns true, indicating that the fnew is similar to an fold . If no such transaction exists, the

function returns false.

35



Algorithm 3 Flow Rule Verification Function
Input: Datapath ID dpid, New flow rule to be added fnew, Controller and Blockchain Agent

wallet address Wc,Wba

1: Set status← False

2: if (mnew /∈ tnold) ∨ (aold ̸= anew) then

3: return status

4: end if

5: Compute h = sha256(abiencode( fnew,Wc,Wba))

6: if d pid ∈ SWList && Wba ∈ Agent_Addr then

7: if Rules[h] = h then

8: status← True

9: else

10: emit event Invalid()

11: return status

12: end if

13: end if

14: return status

The algorithm 3 outlines the steps carried out by the SC function in the flow verification

process. Firstly, it validates equations 3.11 and 3.12 and applies a hashing code to assess the

integrity of the flow rules. If any alterations are detected in the flow, the SC function will alert

the administrator, advising them to eliminate the respective flow from the OpenFlow switch

by generating an SC event. This step ensures that all the OpenFlow switches have the correct

flow rules installed on them and function as intended, adding an essential layer of security and

reliability to the network operation.

3.2.6 Flow Rule Verification in FTISCON

The Blockchain Agent periodically collects the flow rules from the switches. For every new

PACKET_IN message, the controller will send a copy of the Blockchain network. The algo-

rithm 3 is executed through a Blockchain Network. Therefore, proof-of-correctness is done

through the Consensus algorithm (Proof-of-Work in our case). The Blockchain nodes reach

36



Figure 3.3: Sequence diagram of exchange messages for flow rule verification.

an agreement by following the consensus algorithm. Once the consensus is successful among

the nodes, a new block is added to the chain containing flow rule information. Subsequently,

the controller will send add_flow command to the OpenFlow switch. The Agent then calls SC

function veri f yFlow(F) to check the similarity between the flows installed on the switch and

Blockchain. If flow verification fails due to a flow modification attack, the SC will automati-

cally emit an event to remove flow from the switch. Figure 3.3 illustrates the sequence diagram

of message exchange between nodes.

In the following steps, we elaborate on the process of flow rule verification in detail:

a) Initially our Blockchain Agent collects the OpenFlow rules from the switches in a certain

time interval.

b) When a particular host requests a new flow for communication, the SDN switch requests

a new flow F1.

37



c) Simultaneously, the controller also transmits a duplicate of the flow rule to the blockchain,

creating a transaction.

d) This transaction is verified by the blockchain nodes and the corresponding flow rule is

stored in the blockchain.

e) Now the SDN Controller sends the flow rules for installation on the switch.

f) The Blockchain Agent initiates the VerifyFlow(F1) on the Blockchain network.

g) The SC checks for the similarity between the received flow F1 and the flow present on

the blockchain. Once the flow is successfully verified, a positive response is sent back to

the BA (This is denoted with the green line in Figure 3.3).

h) The modified flow information is sent to the SDN controller attack for the new flow

verification.

i) The BA repeats the steps f and g. Once SC declares that F1 is invalid, a negative response

is sent back to the BA (Denoted with a red line).

3.3 Experimental Results

This section describes the experimental setup, SC analysis, and evaluation based on the results

obtained by the proposed model.

3.3.1 Environment Setup

This subsection provides an overview of the simulation environment for both SDN and Blockchain

networks. To simulate the SDN network we utilize the Mininet framework to create virtual

switches and hosts which implement Open vSwitch as a software switch. The SDN controller

is implemented using a Python-based Ryu controller. The controller utilizes the OpenFlow V1.3

to communicate with the data plane. However, the proposed model is designed to be compati-

ble with all subsequent versions of the OpenFlow, including but not limited to OpenFlow V1.3.

The controller makes the network discovery using LLDP (Link Layer Discovery Protocol) and

stores the global overview of the entire network. We run the Blockchain Agent on a separate

virtual machine to communicate with the blockchain.

38



A private Blockchain network is created using the Ethereum framework. We chose

private blockchains because they are much faster, cheaper, and have higher scalability. We

adopted PoW as the consensus algorithm for the proposed model. The corresponding wallet

accounts are created to make transactions on the network. These Blockchain nodes can execute

the functions present in the SC for which it requires Ethers in their account. We implemented

the SC using the Solidity programming language and deployed it on the Blockchain network.

The specifications of the network components are shown in Table 3.2.

Table 3.2: Experimental Setup Table

SDN Network

Content Name Version Quantity

Controller Ryu 4.34 1

South Bound API OpenFlow 1.3 -

North Bound API POSTMAN v9.4 -

Switch OpenVSwitch 2.16.x 5

End Host Ubuntu 18.04 LTS 2

Blockchain Network

Smart Contract Solidity 0.4.22 1

Nodes Geth v1.11.4 5

Consensus PoW - -

3.3.2 Smart Contract Deployment

In this subsection, we discuss the deployment of SC in remix IDE(A tool to develop, deploy,

and administer the SC on the browser) to visualize the transactions on the blockchain. Figure

3.4 depicts the execution of the addRules() function in a SC. The SDN controller sends a

transaction to the Blockchain network as soon as it detects a new switch in the network. Then the

SC executes the addRules() function and does the necessary authentication of the transaction.

The Blockchain Agent verifies the flow rules installed on the switch by calling the

veri f yRule() function on the SC. Figure 3.5 depicts the successful verification of flow rules.

39



Figure 3.4: The execution of addRules() function in Smart Contract.

Figure 3.5: The execution of valid verifyRule() function in Smart Contract.

We modify the output port of flow_id one to three, then call the veri f yFlow() function. Figure

3.6 shows that the SC successfully detects the malicious flow modification.

40



Figure 3.6: The execution of invalid verifyRule() function in Smart Contract.

3.3.3 Performance Evaluation

In this subsection, we present the performance evaluation of the FTISCON in terms of Detec-

tion Rate, Execution Time, Delay, and Transaction Cost incurred due to the execution of SC

functions. We have implemented the BlockSDSec [16], BlockFlow [53], and FRChain [101]

methods and used the same configuration to compare the performances. We perform the exper-

iment for ten iterations for each analysis and plot the average result.

To test the performance of FTISCON, we deploy our SC on the Ethereum Virtual Ma-

chine (EVM) running on Windows 10 Pro Dell PC Intel(R) Xeon(R) W-2145 CPU, 3.70GHz

64GB RAM machine. In the next subsection, we discuss the analysis of the proposed model.

3.3.3.1 Detection Rate Analysis

We analyze the integrity of the proposed model by modifying the flow rules explicitly by using

the FLOW_MOD command from the POSTMAN API which modifies the existing flow rules

on the switches. A sample of flow modification code is depicted in Figure 3.7 in which the

output port of the OpenFlow switch is modified to 99. Moreover, the matching field can be

made blank to modify the entire table on the switch.

41



Figure 3.7: A sample of synthetic flow modification attack generated from POSTMAN API.

To evaluate the accuracy of the attack detection rate we compare the number of real-

time alert events generated in the SC for each flow verification transaction. Therefore, the attack

detection rate of the FTISCON can be expressed as

DR =
No.o f Alert Event in SC

No.o f FLOW_MOD
×100 (3.13)

We applied the threat model to verify the superiority of the proposed model over the

existing work and tested the ability to preserve the integrity of flow rules using the proposed

model. We measure the detection rate of all four methods using the same Blockchain config-

uration. We tested two scenarios where the attacker manipulates the match fields and another

scenario where the action field is manipulated. Table 3.3 shows that all four methods can detect

the attack successfully in both cases and delete the flows from the switch. However, the time

required to remove the flows from the switch in the BlockFlow method takes comparatively

42



Figure 3.8: Execution time comparison with respect to the number of Flows.

more time than our method.

3.3.3.2 Execution Time Analysis

We evaluate the system performance to find out the impact of the network size on the verification

of flow rules on the blockchain. We scale up the number of OpenFlow rules up to 3000 to

evaluate the time required for verification. Figure 3.8 shows the results.

For a very small number of flows, all four schemes take about the same amount of time.

But as the number of flows grows, the time taken by FTISCON tends to taper down a bit, while

for BlockFlow it continues to grow linearly. For BlockSDSec the time taken remains close to

that of BlockFlow. This is because the Controller has to delete the flow rules and re-install

the entire rule set on the switch as soon as it detects a new switch version. The delay in this

process makes these schemes slower. For a higher number of flows, FTISCON takes 52.36%,

48.62%, and 35.67% less execution time compared to BlockFlow, BlockSDSec, and FRChain

respectively.

43



Table 3.3: Detection and Delay Comparison Table

Methods
Detection rate(%) Delay (sec)

max min avg

FTISCON 100 0.09 0.02 0.04

FRChain [101] 100 1.66 0.11 0.73

BlockFlow [53] 100 1.75 0.52 1.09

BlockSDSec [16] 100 1.56 0.36 0.94

3.3.3.3 Delay Analysis

The computational delay involved in the operations on the Blockchain is as follows:

D = SDi + V Di + InstDi (3.14)

Where SDi is the time required for storing flow i on the blockchain, V Di is the veri-

fication delay of flow i and InstDi is the time required for installing flow i on the switch. We

measure these delays during execution and compute the average delay for each of the schemes

as shown in Table 3.3.

3.3.3.4 Transaction Cost Analysis

Another factor that needs to be analyzed in the Blockchain network is the transaction cost. We

use the standard Gas Price set by Ethereum (i.e. 21000 gwei) to make the transaction.

The equation of transaction cost is expressed as:

Transaction Cost = gas price × gas used (3.15)

Figure 3.10 shows the result of transaction costs incurred by various SC functions. The

44



Figure 3.9: Gas Consumption comparison with respect to the number of Flows.

transaction cost for addRule() will vary as per the number of flow rules. However, only a mere

reading of Blockchain data will not cost gas. Therefore, the methods verifyFlow() will not cost

any fee. We plot the result of transaction cost with an increasing number of flows in Figure

3.9. From the figure, we observe that BlockFlow and BlockSDSec consume more gas com-

pared to the proposed model. As we add more flows, the transaction cost rises proportionally.

Nonetheless, the FRChain manages to consume the same amount of gas in fewer flows but it

also increases with an increasing number of flows.

3.3.3.5 CPU Overhead on SDN Controller

The attacker often sends a large number of flow modification packets to overwhelm the SDN

controller thereby causing it to crash or become unresponsive. The CPU overload may arise on

the SDN controller due to a large number of flows entering the network in a short period. Then

the SDN controller will experience a high CPU overhead due to the need to process a large

number of flow updates.

Therefore, we perform an analysis of the CPU consumption of an SDN controller to

identify if the controller is under heavy load and potentially being targeted by a flow modifica-

45



Figure 3.10: Gas Consumption comparison for different SC functions.

tion attack. We perform a Flow_Mod attack on the OpenFlow switch by injecting a synthetic

flow modification attack at a different rate. We start at 100 Flow_Mod/second and the CPU

consumption remains stable, as the Controller can handle the traffic using its available process-

ing resources (refer Figure 3.11). However, after a certain point (around 500-600 packets/sec-

ond), the CPU consumption starts to increase more rapidly with each incremental increase in

packet_IN rate. This is because the controller is required to process more and more packets. Fi-

nally, at around 1500 packets/second, the CPU consumption reaches its saturation point where it

cannot process any more packets. The graph for CPU consumption shows a curve that initially

steps upward slowly, then steepens as the packet_IN rate increases.

3.3.3.6 Communication Overhead on SDN Controller

In this subsection, we analyze the communication overhead on the SDN controller due to the

modification attack. Existing approaches rely on the switch version concept, which requires the

reinstallation of the entire flow from the latest switch version.

Let’s denote the initial number of flow rules as j and the initial version number as

v = j. After a single flow modification attack, the version number is updated on the blockchain

46



Figure 3.11: Overhead on Controller CPU with an increasing number of Flow_Mod packets.

as v = j + 1. In the existing approach, the flow rules from previous versions need to be re-

installed on the switch. This involves flushing out the existing j flow rules and reinstalling j

flows. Therefore, the controller overhead is double the initial number of flow rules. If n flow

modification attacks occur, the controller will have to handle the reinstallation of flow rules for

each attack. Therefore, the controller overhead (On) after n flow modification attacks can be

expressed as (On) = 2. j.n

In the proposed model, only the affected flow rules need to be reinstalled and there is no

need to flush existing flows. Therefore, the controller overhead (On) after n flow modification

attacks can be expressed as (On) = n. This shows a significant reduction in controller overhead

compared to the existing approach.

3.3.4 Security Analysis

In this section, we briefly discuss the security analysis based on authenticity, integrity and re-

siliency against single-point-of-failure.

a) Authenticity: The clients need to authenticate with their public-private key pairs to com-

47



municate with the SC and participate in the verification/consensus process. Thus any

unauthorised client cannot access the SC functions to tamper with the data.

b) Integrity: The flow information is stored on the blockchain using some hashing algo-

rithm. Once a particular block is altered the hash of the block changes. This makes the

remaining block invalid. Therefore, blockchain can preserve the integrity of the flow

rules.

c) Resiliency: The decentralized nature of the peer-to-peer networks increases the system’s

robustness. As more and more nodes participate in the consensus mechanism, the like-

lihood of failure decreases. Therefore, the fate of the data is not controlled by a single

person, group, or organization. The attack from a malicious node cannot disrupt the net-

work entirely because the remaining nodes in the blockchain network will keep running

the consensus process.

3.3.5 Complexity Analysis

In this subsection, we discuss the time and space complexity of the proposed model. The

complexity of the FTISCON mainly depends on the number of flow rules present on the SDN

switch because these flows are to be stored and verified. The time complexity for different

operations is discussed below:

a) Flow Registration: During the registration of fnew, the SC first checks for flow conflict.

So, it needs to iterate throughout all the existing flow rules ( fold). However, the pro-

posed model utilizes the dictionary (key-value pair) structure to store the flow rules on

the blockchain. The hashed value for the fnew is stored as the key during the flow storage

on the blockchain. Therefore, the overall time for a fnew registration operation is O(1) +

O(consensus). The time complexity of the consensus algorithm is difficult to express as it

depends on several factors such as the computational power of the network, the difficulty

level set for the mathematical puzzle, and the rate of block creation.

b) Flow Verification: For the verification of fnew, the SC generate the hash( fnew) before

iterating on the dictionary for similarity check. Then the hashed value is then compared

with the hashed of fold dictionary. Therefore, the time complexity for verification of fnew

is O(1).

48



Table 3.4: Time complexity comparison table

Solution Registration Verification

BlockSDSec [16] O( fold) O( fold) + O(consensus)

BlockFlow [53] O( fold) O(2 fold) + O(consensus)

FRChain [101] O( fold) O( fold) + O(consensus)

FTISCON O(1) O(1) + O(consensus)

We evaluate the ability to detect malicious flow manipulation for all three attacks on

a Mininet emulator. We also compared the time required for the registration and verification

process of a new flow rule in BlockSDSec, BlockFlow, FRChain, and our proposed model

(refer Table 3.4). The comparison table shows that the existing methods iterate through all

the previous transactions before registering the flow on the blockchain. Similarly, during the

verification, the existing methods perform the matching operation with the existing flow rules.

Therefore, the proposed model is better in terms of time complexity when compared to existing

methods for similar tasks.

3.3.6 Discussion

In this subsection, we discuss the security and effectiveness of FTISCON. The related study

work shows that the SDN network cannot guarantee the complete integrity and privacy of Open-

Flow rules. Some of the works in the literature use Blockchain Technology to prevent the flow

rule modification attack. The adversary may install false flow rules or modify the existing flow

rules present in the switches. In this work, we have proposed a model to prevent the flow

rule modification attack using Blockchain Technology in which flow rules are stored on the

Blockchain and verified by the Blockchain Agent.

The Blockchain Agent acts as a trusted node that communicates with the Blockchain

nodes and collects flow rules from the switches. In the design of our model, we keep the SDN

controller and Blockchain Agent separate from each other. This is to protect the verification

process from eventual attacks on the SDN controller. The FTISCON will be able to survive

even if the controller goes offline. Furthermore, the communication overhead on the controller

will be less as the verification process is handled by the Blockchain Agent. This is one of the

49



advantages of our model. However, if the Blockchain Agent is compromised, the controller will

not be able to do the verification.

Blockchain Technology offers immutability, transparency, and integrity of the data

through SC automation. The changes made to the EVM state will be recorded in the trans-

action history. Therefore, it makes it easier for the system to track down the adversary and

isolate the compromised part of the network. However, the difficulty of making changes in the

functionality of SCs are issue [71]. If any error or loophole occurs in the run-time, it is almost

impossible or expensive to correct.

The performance analysis result shows that FTISCON is significantly better in terms of

execution time and transaction cost. This is due to the separation of Controller and Agent. The

experimental result shows that FTISCON possesses a reduction in execution time as one of our

primary objectives. However, the SDN controller has to look if any duplicate flows are being

stored on the blockchain and this is done to reduce the unnecessary filling up of Blockchain

storage as well as to reduce transaction cost. Thus making it economically acceptable in the

real scenario. On the other hand, the BlockFlow [53] needs to invoke deleteRule() function

multiple times. This causes the model to pay more gas fees to make these transactions.

The proposed model is deployed and tested in a Private local Blockchain network to

make the transaction processing faster. However, there are various other methods of deployment

and testing available such as Testnet, and Mainnet.

The current Ethereum 1.0 platform uses heavyweight Ethash PoW as a consensus algo-

rithm. Since PoW is based on the ability to compute hashes per second, it becomes slow with the

increasing complexity level. Another vulnerability of PoW is the 51% attack where the attacker

gains control over more than half of the total miners. By adopting PoW in our work we sought

to ensure a more direct and relevant comparison with existing benchmarks and established sys-

tems. This approach was selected to ensure that our findings and conclusions are applicable

to real-world scenarios and in line with the prevailing industry standards. However, we also

acknowledge that there are alternative consensus mechanisms, such as Proof of Stake (PoS),

Delegated Proof of Stake (DPoS), and Practical Byzantine Fault Tolerance (PBFT), which offer

distinct advantages in terms of energy efficiency, security, and scalability. The development of

Ethereum 2.0 will make it faster as it will implement the Proof-of-Stake to validate the transac-

tions where it replaces the miners with validators. Ethereum 2.0 distributes the transaction data

50



within the Ethereum network which increases the throughput of the network substantially.

The SDN and blockchain operate fundamentally on two different paradigms. There-

fore, the integration of both of these technologies presents a set of technical challenges. How-

ever, the rise of Web3 facilitates a smooth ecosystem to build a decentralized application through

Smart Contracts. It provides transparency to view and verify the transaction on the blockchain.

Since the flow verification is automated through the SC, the proposed model also inherits the

standing challenges of SC. Additionally, protecting the system from various attacks, both on

the blockchain and SDN infrastructure, is a paramount challenge. Since the proposed model is

tested on a private blockchain network, the number of consensus nodes is small. However, as

the number of consensus nodes increases, the scalability issue of the system will grow.

3.4 Conclusion

In this chapter, we presented FTISCON, a scheme to protect flow rule modification attacks

on OpenFlow switches in SDN using blockchain and incorporating an SC implementation for

flow rule verification. A proof-of-concept implementation of the scheme is carried out using

Ethereum private blockchain. Informal analysis based on the attack detection and experimental

studies on running time and transaction cost is presented that validate the potential of FTIS-

CON. The Performance analysis shows that the proposed model can significantly reduce the

execution time, transaction cost, and delay incurred due to the flow verification compared to

BlockFlow, BlockSDSec, and FRChain.

51


	07_chapter 3

