
CHAPTER 4

Development of a Blockchain-enabled Multi-controller

Architecture in SDN Network

4.1 Introduction
Due to the growing use case of IoT applications in the field such as Healthcare, Industry, and

Autonomous Vehicles, the number of active IoT devices is expected to reach 13.1 billion by

the end of 2022. However, due to the lack of unified IoT regulation, the current IoT ecosys-

tem is vulnerable to various attacks on data privacy, DDoS attacks etc. This requires continu-

ous monitoring and security analysis of end-to-end communication of IoT devices. Integrating

Software-Defined Networking (SDN) with the Internet of Things (IoT) simplifies the manage-

ment of IoT devices; however, it introduces security challenges. Adversaries may manipulate

forwarding rules to redirect communication, compromising user security. The main problem

arises from the single point of failure in SDN due to its centralized control architecture. When

the master controller becomes unresponsive or fails, the entire network can become unstable or

even unusable if no immediate recovery mechanism is in place. This brings the requirement of a

Multicontroller environment to make the network agile and scalable. The SDN architecture also

provides a mechanism to handle large networks by introducing multiple SDN controllers in the

network. This work suggests a way to make SDN controllers more reliable by using multiple

controllers, which helps ensure that services remain available even if one controller fails. Once

the Master controller collapses, the remaining Equal controllers vote for the surety of controller

failure then the most suitable equal controller is assigned as the master controller. The voting

consensus is done through the Blockchain SC. Our proposed model considers response time and

resource utilization of equal controllers, ensuring the most suitable controller assumes the role

of master controller. Additionally, this paper proposes a mechanism to secure the forwarding

path using Blockchain Technology. We introduced a Smart Agent that periodically performs

the verification task by collecting the forwarding rules from the SDN switches. In the next

52

subsection, we elaborate on the working model of the proposed model.

The rest of the chapter is organized as follows: In Section 4.2, we describe the proposed

model in detail. In Section 4.3, we discuss the performance evaluation using various parameters.

In section 4.4, we provide a discussion on the proposed model and results obtained through the

experiment. Finally, we present the concluding remarks in Section 4.5.

4.2 Proposed Model

In our solution, we implement a distributed SDN architecture called SDBlock-IoT, to safeguard

the integrity of flow rules and provide more stability for the network services. The distributed

but logically connected equal controllers maintain awareness of the master controller’s status

by regularly sending PING requests. If the master controller fails to respond, the correctness of

the controller failure is confirmed through a voting consensus on the SC, in which all equal con-

trollers participate. Our approach takes into account the response time and resource utilization

of equal controllers to vote for the new master controller. Subsequently, we assess the scores of

each equal controller and designate the one with the highest score as the new master controller.

The second aspect of our work involves validating OpenFlow rules through the SC.

Flow rules are hashed and recorded on the blockchain. Flow verification occurs during new

flow requests and periodically by the Smart Agent. In a new flow verification request, the agent

computes the hash code of the flow rules and calls the function in the SC. The SC conducts

consensus among blockchain nodes to verify if the hashed code is registered on the SC. If the

hashed code is already registered, access is granted for the flow request; otherwise, the agent

removes the flow from the forwarding devices. Further details on the operational model of our

proposed work are provided in the following section.

4.2.1 Architecture

This subsection presents our proposed solution called SDBlock-IoT to safeguard the integrity of

OpenFlow rules installed on the forwarding devices in an SDN-enabled IoT network. As shown

in Figure 4.1, we have organized the SDBlock-IoT into three distinct layers: the application,

control, and forwarding layers.

53

Figure 4.1: Proposed distributed SDBlock-IoT Architecture.

At the forefront, the application layer takes charge of overseeing and managing the

diverse network applications in operation. Here, the network administrator’s role becomes piv-

otal, involving tasks such as configuring network policies to ensure optimal functionality and

overseeing the entire life cycle of deployed applications. This includes but is not limited to tasks

54

such as ensuring proper configuration settings, troubleshooting issues that may arise during ap-

plication execution, and implementing any necessary updates or modifications to meet evolving

requirements.

The control layer operates in tandem with the application layer, acting as the central

hub for network management. It includes distributed but logically centralized SDN controllers

to provide more efficient availability of network services. These controllers are equipped with

a specialized capability to interact with the blockchain network during the consensus process of

flow verification.

The interaction between the blockchain network and SDN involves a unique interface

known as Web3, which is managed by the Smart Agent operating independently of the dis-

tributed controllers. When there’s a requirement to set up a new flow on the SDN switches, the

dedicated Smart Agent gathers the OpenFlow rules and transmits them to the Smart Contract

through a transaction. After successful verification of the flow, the SDN controller directs the

implementation of flow rules on the forwarding devices.

In the proposed work, the Smart Contract (SC) stands as a crucial piece of code imbued

with business logic. Its primary role is to autonomously facilitate the consensus process among

these controllers in instances where the master controller falters in managing the network. Be-

yond this, the SC undertakes the responsibility of scrutinizing forwarding rules, leveraging the

assistance of a Smart Agent to ensure the integrity and validity of the network’s operations.

This ensures a seamless transition and reliable network performance even in the face of poten-

tial master controller failures.

The forwarding layer plays a crucial role in transmitting data packets according to

the configured policies. In this layer, SDN-enabled switches and IoT gateways are situated to

handle the forwarding of IoT traffic within the network. These switches are under the man-

agement and control of distributed SDN controllers, which install OpenFlow rules on them.

Consequently, the traffic is directed by the OpenFlow rules defined on the switches. In the next

subsection, we formally define the system model of the proposed work.

55

Table 4.1: Symbol Table

Symbol Description

Cm Master Controller

EQL[IPe, IPe, ..., IPe] List of Equal Controllers

IPc IP address of Equal Controller

IPm IP address of Master Controller

Vc Vote count

Hc Hashed code of flow rule

d pid Datapath ID

hash_mapp[] Mapping between Hc and d pid

Rules[] List of OpenFlow rules

VCL[] Vote count list

4.2.2 Formulation of proposed SDBlock-IoT

Let C = {c1,c2, ...,cn} be the set of controllers equipped with blockchain public-private key

pairs (Pubci,Prici) to make the transaction. Let S = {s1,s2, ...,sm} be the set of SDN switches

present in the forwarding layer of the IoT network. Let, Mnew be the initial master controller

that takes control of all switches S. Then, all other controllers (excluding the Mnew) are in the

equal controller. This can be mathematically expressed as-

∃Mnew ∈ C such that ∀ci ∈ C−{Mnew}

Every packet/event that is received on the master controller is replicated to all other

Equal controllers. These Equal controllers parallelly log the topology information on their

memory. However, they are prevented from making transactions such as adding switches and

hosts on the blockchain. Because these transactions will simply cost them an unnecessary gas

fee.

Upon receiving a new connectivity request, the SDN controller configures the switch

by installing flow rules R = {r1,r2, ...,rk}, which are essential for processing packets. The flow

56

rules, identified by their unique attributes such as dpid, in_port, src, dst, priority, out_port, and

protocol, undergo hashing using the sha256 algorithm. Simultaneously, these hashed flow rules

are synchronized and recorded on the blockchain as hashed_code H = {h1,h2, ...,hk}. This

ensures the integrity and traceability of the network rules through the secure and decentralized

nature of blockchain technology.

In a real-world situation, an attacker can carry out three distinct types of attacks on a

network: malicious addition, deletion, and modification of flow rules. Consequently, following

such an attack, the state of the flow table on the switch could be altered to any one of the

following conditions:

a) Unauthorized Flow Addition: The attacker may illegitimately introduce new flow rules

into the switch’s flow table, potentially leading to the redirection or interception of net-

work traffic.

R′ = {r1,r2, ...,rk+1,rk+2, ...rk+ j}

(j >= 1, Maliciously adding j flow rules)

b) Malicious Flow Deletion: Another form of attack involves the malicious removal of exist-

ing flow rules from the switch’s table. This act could disrupt normal network operations

and cause service outages.

R′ = {r1,r2, ...,rk− j}

(j >= 1, Maliciously deleting j flow rules)

c) Malicious Flow Modification: The attacker may tamper with existing flow rules, modify-

ing their parameters or destinations. This type of attack aims to manipulate the flow of

network traffic for various purposes.

R′ = {r1,r2, ...,r′k− j,r
′
k− j+1, ...r

′
k}

(j >= 1, Maliciously modifying j flow rules)

4.2.3 Consensus Process for Master Controller Update

The process for updating the new master controller involves two steps: Detection of master

controller failure and controller consensus for the selection of a new master controller. We

explain these two steps in the following subsection.

57

4.2.3.1 Detection of Failure

Detecting a failure in the master controller is crucial for a swift transition to backup controllers

in SDN-enabled networks. The master controller plays a vital role in sustaining network con-

nectivity, and any disruption needs to be swiftly addressed to minimize downtime. To address

this, the proposed work performs consensus among controllers to decide whether the Master

controller is truly unavailable or not and assigns a new Master among the active controllers.

Therefore, the equal controllers need to check the aliveness of the Master controller constantly.

There are mainly two situations that can arise on the master controller. The master controller is

completely down or it has changed its role to slave. Therefore, a new Master controller needs

to be placed from the active equal controllers to manage the network.

Initially, the network admin generates a list of public-private key pairs E1(pub, pri),

E2(pub, pri),..., En(pub, pri) for all the controllers for making the transaction on the blockchain.

This information is stored on the blockchain through the SC function RegisterController(E_i(pub,

pri)) for further communication on the blockchain network. Next, the equal controllers keep

monitoring the aliveness status of the master controller by sending ping requests. The Master

controller replies with an ICMP packet if the controller is alive. Otherwise, the requesting con-

troller sends an update request/vote count (Vc) on the SC. Similarly, the other controllers also

send the update request.

Each equal controller monitors the aliveness status of the master controller. The voting

of the update request is done based on the following two conditions:

a) If Alive(Mold) == True, the master controller is alive and no action is taken.

b) If Alive(Mold) == False, the equal controller sends a vote for a master controller failure.

After the vote collection phase, a decision is made to find the status of the master con-

troller. However, if a compromised equal controller lies and the vote count does not reach the

total number of equal controllers, it could potentially disrupt the election process for determin-

ing the new master controller. In such a scenario, the consensus system may not be able to

reach an agreement on the new master controller. Therefore, we incorporated threshold (Θ)

within the smart contract. By setting thresholds for the number of valid votes required to make

a decision, we ensure that the consensus process remains robust even in the presence of mali-

cious or compromised controllers. If the false vote crosses the threshold, the consensus process

58

is halted, and appropriate actions, such as retrying the election process or invoking a fallback

mechanism are taken.

We set up the threshold value as follows:

Θ =
1
3
×Ne (4.1)

where Θ is the threshold and Ne is the total number of equal controllers. By allow-

ing for the possibility of one-third of the equal controllers failing, the network can uphold its

operational reliability, even if several failures occur simultaneously. When only a fraction of

controllers report the master controller as failed, it might suggest isolated problems or delib-

erate tampering. Therefore, taking action only when this threshold is met helps to minimize

the chances of unnecessary alerts due to false alarms, while still promptly addressing genuine

issues.

Let Vc be the vote count received from the equal controllers regarding the master con-

troller’s status. Let VCL[] be the list of votes for the corresponding equal controllers. This list

is maintained by the smart contract to keep track of the compromised equal controllers. So, the

final vote count can be expressed as

Vc =
Ne

∑
i=1

VCL[i] (4.2)

We divide the decision based on four scenarios during the detection of master controller

failure. These are discussed below-

a) All Equal Controllers Report Master Controller as Alive: In this scenario, all equal con-

trollers have successfully detected the aliveness of the master controller. This indicates

a normal operational state where the network functions as expected. No further action is

needed as all controllers are in sync with the master. This condition can be expressed as:

(Vc == Ne)

b) All Equal Controllers Report Master Controller as Failed: If all equal controllers unan-

59

imously report that the master controller is not alive, it signifies a failure in the master

controller. In response, the network initiates a consensus process to select a new master

controller. This ensures that the system remains functional even in the event of master

controller failure. This condition can be expressed as: (Vc == 0)

c) Some Equal Controllers Report Master Controller as Failed: If the vote count indicates

that less than or equal to one-third of the total equal controllers report the master con-

troller as failed, it suggests a potential compromise or malfunction in some equal con-

trollers. This could be due to connectivity problems or tampering attempts. To mitigate

the risk of tampering, the system initiates a re-voting process and notifies the network ad-

ministrator to redeploy a new set of equal controllers with fresh configurations and keys.

This condition can be expressed as: (Vc <= Θ)

d) Majority of Equal Controllers Report False Information: When the vote count exceeds

one-third of the total equal controllers reporting the master controller as failed, it indicates

a critical situation where a significant portion of the system may be compromised or

malfunctioning. In such an extreme scenario, the system cannot rely on re-voting and

must take immediate action. An event is emitted to notify the network administrator,

prompting them to redeploy both the master controller and a new set of equal controllers

with updated configurations and keys to restore system integrity. This condition can be

expressed as: (Vc > Θ)

In Algorithm 4, we outlined the failure detection procedure. If the master controller is

identified as failed, we increment the vote count by one, indicating that the master controller

is inactive. Once the vote is given by all the equal controllers, the smart contract executes the

consensus function for selecting a new master controller. This crucial step allows the system

to respond promptly to the detection of a failed master controller, ensuring the reliability of the

overall system.

In the next subsection, we delve into the consensus process used to designate a new

master controller. This decision is determined by assessing the response time and resource uti-

lization of the equal controllers. This critical procedure ensures that the most suitable controller

assumes the role of master based on its performance metrics. Additionally, we explore the fac-

tors influencing this selection and how they contribute to the overall efficiency and stability of

the system.

60

Algorithm 4 Master controller failure detection
Input: m : Total number of controllers, Ne: Total number of equal controllers, Vc: Vote

Count, Alive(i): Aliveness status of controller i, VCL[]: Vote count list

Output: VCL[] Vote Count List

1: Generate key pairs: E1(pub,pri),E2(pub,pri), ...,En(pub,pri)

2: Register the Controllers: RegisterController(Ei(pub,pri))

3: Assign threshold: Θ← (1
3 x Ne)

4: Initialize Vc← 0

5: for i ∈ EQL.length do

6: if Alive(mold) == True then

7: VCL[i]← 1

8: Vc← Vc +1

9: else

10: VCL[i]← 0

11: end if

12: end for

13: // Vote collection and Decision making

14: if Vc == Ne then

15: No Action: Controller is Alive

16: end if

17: if Vc == 0 then

18: ExecuteConsensus(VCL[])

19: end if

20: if Vc <= Θ then

21: Initiate Re−voting

22: emit NotifyAdmin()

23: else

24: Initiate Re−voting

25: emit NotifyAdmin() to redeploy equal controller

26: return VCL[]

27: end if

61

4.2.3.2 Consensus for Update

To mitigate the issue of single-point-of-failure, our proposed solution deploys multiple equal

controllers that actively monitor the status of the master controller. Every equal controller

keeps track of both response time and resource utilization. Subsequently, a comprehensive

assessment of these two factors is conducted to determine the ultimate score, which plays a

crucial role in selecting the next master controller. This evaluation process ensures that the

controller with optimal performance in terms of response time and resource utilization emerges

as the preferred choice for the role of the master controller.

Response time reflects the latency between controller and network devices. A con-

troller with lower response time is closer (network-wise) to the devices and can react faster to

events, thereby ensuring efficient management of the network. Resource utilization indicates

the current load on the controller in terms of CPU, memory, or bandwidth usage. Selecting a

controller with lower utilization ensures that the new master is not already overburdened and

has sufficient resources to manage the additional responsibilities. These two parameters ensure

that the newly selected master controller is not only reachable quickly but also capable of han-

dling control tasks without degrading performance or risking overload. This approach enhances

the overall resiliency and reliability of the network.

Let us formalize the consensus method to decide on the master controller among the

equal controllers considering these two criteria. Let RespTime[i] denote the response time of

Controller i when pinging the master controller, and ResUtil[i] represents the resource utiliza-

tion (such as CPU and memory) of equal controller i. The calculated score for equal controller

i is denoted as Score[i]. Now, we define specific scoring functions for each controller con-

sidering the scaling and weighting factors. The scoring functions take into consideration the

response time (RespTime[i]) and resource utilization (ResUtil[i]) metrics to assess and rank the

performance of each equal controller.

a) Scaling factors: Let K1 and K2 be the scaling factors for response time and resource

utilization, respectively. The scaling factor plays a crucial role in determining how response

time and resource utilization contribute to the overall score. Essentially, the scaling factor

influences the significance of each parameter in the decision-making process. It’s important

to note that a higher value for the scaling factor implies a greater emphasis on response time

when calculating the score. Therefore, we expect the value of K1 to be greater than that of K2,

62

highlighting the prioritization of response time in the evaluation process.

b) Weighting factors: Let α and β be the weighting factors for response time and

resource utilization, respectively. The weighting factor determines the relative importance of

response time compared to resource utilization and other factors. A higher weighting factor for

response time indicates that it should have a stronger influence on the final score. Therefore,

the value of α is expected to be greater than the value of β .

We use a linear scaling approach to determine the score for response time and resource

utilization. The mathematical formulation is as follows:

ScoreRespTime[i] = K1/(RespTime[i]+ ε) (4.3)

ScoreResUtil[i] = K2/(ResUtil[i]+ ε) (4.4)

where K1 > K2 (Provides more priority to response time) and ε is a small constant to

avoid division by zero.

Let us now combine the factors by weighting them appropriately to calculate the overall

score for each controller.

Score[i] = α ∗ScoreRespTime[i]+β ∗ScoreResUtil[i] (4.5)

Finally, we can select the controller with the highest score as the new master controller.

MasterController = argmax(Score[i]) (4.6)

In Algorithm 5, we elaborate on the consensus process for updating the master con-

troller. Once all equal controllers detect the master controller as being down, the SC examines

63

response time and CPU utilization for the final score assessment. Following the reassignment

of the new master, the equal controller is removed from the equal controller list to prevent am-

biguity in subsequent consensus procedures. Consequently, the vote count is reset to zero. This

ensures a streamlined and unambiguous transition in the event of a master controller failure.

Algorithm 5 Consensus for Master controller update

Input: IPe : IP address of equal controller, EQL[] : List of equal controllers, RespTime[] :

List of response time, ResUtil[] : List of resource utilization, K1,K2 : Scaling factor con-

stants, α,β : Weighting factor constant, Vc : Vote Count of IPe

Output: currentMaster : Current Master

1: Initialize score[] to keep score for each controller.

2: if Vc == EQL.length then // master controller is down

3: for i ∈ EQL[] do

4: ScoreRespTime[i]← K1/(RespTime[i]+ ε)

5: ScoreResUtil[i]← K2/(ResUtil[i]+ ε)

6: Score[i]← α ∗ScoreRespTime[i]+β ∗ScoreResUtil[i]

7: end for

8: index← max(score[])

9: currentMaster← EQL[index]

10: Reset the vote count Vc← 0

11: EQL[IPe].pop() // Remove the IPe from EQL[]

12: return currentMaster

13: end if

4.2.3.3 Smart Contract Design

At the initial deployment of the SDN controller, the SC registers the IP address of the current

Master controller (IPm) and the list of equal (EQL[IPe, IPe,, IPe]) controllers. The SC has

defined functions related to controller consensus. These are- addMaster(IPm), addEqual(IPe),

updateMaster(IPe), and updateEqual(IPe). Functions addMaster(IPm) and addEqual(IPe) are

invoked by the SDN controller to store the controller IP address on the blockchain. When Mas-

ter update request updateMaster(IPe) is received, the SC counts the number of votes received

64

so far from the controllers. Once the vote count reaches the total number of equal controllers,

the SC decides to assign one of the active controllers as a new Master. Next, updateEqual(IPe)

function is executed to remove the current master IP address from the equal controller list which

is no longer an equal controller.

In Figure 4.2, we depict the process of controller consensus and the communication

sequence involved in selecting a new master controller. To illustrate this, let’s consider the

scenario with one network administrator, a smart contract, one master controller, and two equal

controllers. The sequence diagram showcases the exchange of messages among these entities

during the master controller selection process.

In the initial phase, the network administrator deploys the Smart Contract (SC) on the

blockchain network. Subsequently, the SC address is integrated into both the master and equal

controllers. The SC facilitates the registration of the IP addresses of the master (IPm) and equal

controllers (IPe1, IPe2) using the addMaster() and addEqual() functions. During step 3, the SC

employs the onlyAdmin modifier, as discussed in subsection 4.2.6, to validate the registered IP

addresses and enlists them in the admin list.

Now, let’s consider a scenario in step 4 where the master controller experiences a fail-

ure, rendering it unresponsive to ping requests from IPe1 and IPe2. In response, step 5 in-

volves the SC checking the voteCount for each update request, such as updateMaster(IPe1)

and updateMaster(IPe2). Subsequently, in step 6, the SC initiates the consensus process for

updating the master controller, a topic explored in detail in subsection 4.2.3.2. Following the

successful update of the master controller, the voteCount is reset, and the equal controller list

undergoes necessary updates.

In the next subsection, we delve into the second aspect of the proposed model, focusing

on the protection of forwarding rules within an SDN-enabled IoT network. In this part of the

discussion, we will not only explore the safeguarding measures but also delve into pertinent

details surrounding the management and security of forwarding rules in the context of SDN-

enabled IoT networks.

65

Figure 4.2: Controller Consensus Sequence Diagram.

4.2.4 Forwarding Rule Management in the Blockchain

To perform the verification of OpenFlow rules, we register the flow rules on the blockchain

through the SC. In this work, we use the on-chain method to register the flow rules. The for-

warding devices cannot directly communicate with the SC. Therefore, the SDN controller acts

as an intermediary between them. The controller uses Web3.py library to communicate with the

SC. We discuss the SC design for flow rule management below.

We define a structure on the SC to register the flow rules as shown in Algorithm 6.

The structure contains dpid of the switch and hashed_code (Hc). The Hc is assigned as the

key to reducing the time required for flow rule verification. Because the iterative method and

linear search will gradually consume more time as the number of flow rules increases. The

algorithm checks for duplicate flows on the blockchain before registering the flows by checking

the hashed value of the new flow. If it matches then the transaction is reverted to its previous

66

state. This function is invoked multiple times as the Master changes. Therefore, Hc will help

to find the duplicate flow rules on the blockchain. This will also minimize the gas cost required

for the transaction. If there is no duplicate flow entry, the SC will register the flow rule on the

blockchain.

Algorithm 6 Flow rule management in Smart Contract
Input: Hc : Hashed flow rule, dpidi: Datapath ID of the switch i

Output: txn : Transaction hash from the Blockchain

1: if hash_mapp[Hc] == d pidi then

2: Revert transaction txn← revert()

3: Return txn

4: else

5: txn = Rules(Hc,d pidi) // Register the rule

6: hash_mapp[Hc]← d pidi

7: return txn

8: end if

4.2.5 Flow Verification by Smart Agent

Flow rules on the forwarding devices need to be verified to see if the flow has been modified by

any external adversaries. In this letter, we utilize the blockchain SC to verify the flow rules to

avoid false flow rule injection and modification attacks.

A Smart Agent is brought in to handle the verification task separately from the SDN

controller, without using complex technical language. The flow verification is performed twice,

one at the time of the first flow request and another by the Agent. The Agent is fed with the in-

formation regarding the Contract address and ABI (Application Binary Interface) to execute the

functions on the SC. Then flow rules are collected periodically from all the switches on the net-

work. The Agent computes the hash code of the flow rules and invokes the verifyFlow(Hc) func-

tion. The Blockchain nodes perform the consensus by taking the hashed code of the flow rules

with the code present in the SC. If the Hc matches the hashed code present on the blockchain

then the connectivity request will be granted access. Otherwise, the Agent will remove that

particular false or modify that flow from the switch. The process of flow rule verification is

67

presented in Algorithm 7.

Algorithm 7 Flow rule verification by Smart Agent
Input: r : Flow rule to be verified

Output: status

1: Compute Hc← sha256(abiencode(r))

2: if hash_mapp[Hc] then

3: status← True

4: else

5: status← False

6: emit event Invalid()

7: end if

8: return status

4.2.6 Use of Admin modifier in Smart Contract

The modifiers in Ethereum SC check the conditions before executing the function. If the func-

tion does not satisfy the requirements, the function execution stops. The modifier serves as

a validation check for SC functions. Therefore, we employ this concept in our SC to restrict

the execution of certain functions from unauthorized wallet accounts. The account associated

with the owner of the SC will be the first admin wallet address admins[wa1]. When an SDN

controller is deployed, their account is added to the admins[] list. Therefore, an admin can only

add another account to the admins[] list. We defined a modifier onlyAdmin and placed it before

all the functions in the SC. So, the SC checks if the wallet address is allowed to execute the

function otherwise the transaction is reverted to its previous state. However, the caller will have

to pay gas costs even if the execution is not complete. This way unauthorized controllers will

not be able to take control of the network. We present the onlyAdmin modifier in Algorithm 8.

68

Algorithm 8 onlyAdmin modifier in Smart Contract

Input: msg.sender : Wallet address of sender, admin[] : List of Admins

Output: admin : Status of Admin

1: Set admin← False

2: for i = 0; to i < admins.length do

3: if msg.sender == admins[i] then

4: admin← True

5: break

6: end if

7: end for

8: if !admin then

9: revert()

10: end if

4.3 Performance Evaluation and Results

4.3.1 Physical Environment Setup

In Figure 4.3, four virtual machines (VMs) are initialized and successfully communicate with

each other. The SC is deployed on the Ethereum Private blockchain from VM4, and the contract

address is shared with controller VM1 (Master), controller VM2 (Equal), and controller VM3

(Equal). To emulate the distributed multi-controller environment, we connect two Hardware

switches (Allied Telesis OpenFlow switch) to all the SDN controllers. The Agent on VM4

continuously verifies flow rules through the SC. We set up the Mosquitto MQTT broker on the

VM4 to receive the IoT traffic from the IoT sensors. Each IoT sensor publishes a message

to the MQTT broker. For each IoT sensor device appropriate flow rules are installed on the

switches by the SDN controller. We also used the DITG network traffic generator to test the

performance with an increasing number of OpenFlow rules. The device specification for the

network topology is presented in Table 4.2.

69

Table 4.2: The Device Specification Table

Devices Specifications

Operating System Ubuntu 20.04.1 LTS

RAM 4 G

Core Intel Xeon(R) W-2145

CPU 3.70GHz x 4

OF version OpenFlow 1.3

Hardware Switch AT-X230-28GP PoE

MQTT Broker Mosquitto 5.0

DITG 3.2

4.3.2 Experimental Results

In this subsection, we describe the numerical performance evaluation results in physical hard-

ware devices. We compare the results with three other existing methods (BlockFlow [53],

BlockSDSec [16] and FRChain [101]) that are close to our method.

4.3.2.1 Latency for New Controller Selection

We measure the time required for the selection of a new Master controller to take control of

the network from the failure. Once the Master controller is unavailable, the remaining Equal

controllers start voting on the SC for the new master. Since all events are replicated to all the

controllers there is no need for a temporary buffer to store the events. Due to this, even when

the Master controller crashes the events are delivered at least once.

We experimented by sending continuous traffic in the SDN-IoT network. In the middle,

we shut down the Master VM and recorded the time for which there was no traffic on the

network. The latency of the SDBlock-IoT mainly depends on detecting the Master failure,

the execution time for the consensus algorithm for the new Master, and OFPRoleRequest()

instruction to SDN switches. We performed ten iterations of this experiment to measure the

latency for the new master controller selection (see Table 4.3). With frequent controller failures,

the time for a new master controller selection increases exponentially. The average latency for

70

Figure 4.3: Network topology used in our experiment.

Master controller recovery is 52.87ms with a standard deviation of 1.31ms.

We also tested the performance of the proposed method to observe the time for con-

troller recovery due to flow modification attacks. The comparison of the result is depicted in

Figure 4.4. From the figure, we observe that the controller update time increases linearly with

the increasing number of flow mod attacks. However, the proposed method significantly en-

hances the responsiveness of network service availability by providing a minimum update time

compared to existing methods.

71

Table 4.3: Latency for new Master controller Selection

Iteration
Average time (ms)

Detection Selection OFPRoleRequest Total

1 16.81 25.71 12.39 54.95

2 14.45 25.18 13.10 52.73

3 15.51 25.36 12.97 53.84

4 14.22 23.99 13.51 51.72

5 16.85 25.06 11.53 53.44

6 15.12 26.78 13.12 55.02

7 14.49 24.37 13.04 51.90

8 14.12 23.63 13.36 51.11

9 14.70 24.08 13.50 52.28

10 15.52 24.21 12.01 51.74

Figure 4.4: Latency for controller recovery due to flow mod attack.

72

Figure 4.5: Controller overhead on different numbers of flow modification attacks.

4.3.2.2 CPU Utilization of Master Controller

The CPU Utilization of the master controller during the flow modification attack is depicted

in Figure 4.5. A different number of flow modification attacks is performed for 120 seconds

to observe the effect on the CPU of the controller. From the figure, we observe that with the

increased attack rate, the CPU consumption also climbs up. However, the proposed method

provides adequate protection against flow modification attacks.

4.3.2.3 Flow Verification Latency

Another experiment is conducted to measure the verification time for malicious flow modi-

fication attacks. We inject an attack script on the SDN switch from an external module to

maliciously add, delete, and modify the flow rules. Initially, we install a fixed dummy flow i.e.

k = 3000 on the switch.

The agent regularly gathers information about how data flows through the switches and

executes the verifyFlow() function on the SC. For different values of j, we tested the verification

time of the flow rules. We perform all three attacks (add, delete, and modify) on the forwarding

73

Figure 4.6: Flow verification latency with an increasing number of flow rules.

device. Figure 4.6 shows that the proposed method can precisely detect the modification attack

with a relatively low average verification time.

4.3.2.4 Transaction Cost

One of the most important factors in the system while using blockchain is the transaction cost.

The amount of gas required for the transaction is computed as the product of the gas price and

the unit of gas used. We set the standard gas price of 21000gwei for our experiment.

74

Figure 4.7: Transaction Cost for SC function execution.

Figure 4.7 shows the amount of total average transaction cost on different numbers of

flow rules. The result shows that the proposed method requires less cost compared to the other

three methods. The use of multiple controllers will not cost any extra transaction costs on the

blockchain network. Because only the Master controller can modify the machine state.

These are the results obtained from the two Allied Telesis hardware switches. We have

conducted further experiments to assess the performance of a large number of flow rules. To

mimic real-world scenarios of large-scale networks, we set up a virtual network using Mininet,

consisting of 20 Open vSwitch (OVS) switches. Through a custom Python script, we deployed

500 dummy flow rules on each switch within this virtual environment. This comprehensive

test aimed to simulate the challenges posed by managing a vast number of flow rules across

numerous switches.

We performed additional experiments on this virtual topology to measure the flow ver-

ification latency and latency for controller recovery.

Firstly, we measure the flow verification latency during the flow modification attack.

In the Figure 4.8, it is evident that the proposed model exhibits a consistent linear increase as

the number of flow modification attacks rises, and it demonstrates quicker processing times

75

compared to existing models. This indicates the robustness and efficiency of the proposed

approach in handling varying attack scenarios. Furthermore, the results obtained from the hard-

ware switch and the OVS switch implementations yield similar results, highlighting the consis-

tency and reliability of our findings across different system configurations. This suggests that

our proposed model is not only effective but also adaptable to large-scale network infrastruc-

tures.

Figure 4.8: Flow verification latency with an increasing number of flow rules on simulated

network.

Similarly, we have experimented to measure the latency for controller recovery follow-

ing flow modification attacks within a simulated network environment. The findings revealed a

consistent linear escalation in the network update time across the simulated network (Shown in

Figure 4.9). Intriguingly, when compared to the simulated setup, the results obtained from the

hardware switch exhibited a steeper upward trajectory.

76

Figure 4.9: Latency for controller recovery due to flow mod attack on the simulated network.

4.4 Discussion

Our proposed model incorporates a distributed multi controller architecture, which enhances

the resiliency of the system by distributing control responsibilities across multiple controllers.

This distributed approach mitigates the risk of single points of failure and improves fault tol-

erance, ensuring robust operation even in the face of controller failures or attacks. We have

devised a voting algorithm through the Smart Contract that can detect the master controller

failure even in the presence of a compromised equal controller. To mitigate the impact of

misbehaving controllers, we incorporated threshold-based consensus within the smart contract.

Setting a threshold at 1/3 of the total equal controllers balances the need for prompt detection of

abnormal behavior with the risk of false positives. A lower threshold might trigger alarms too

frequently, leading to unnecessary interventions or disruptions in normal operation. Conversely,

a higher threshold might delay detection of genuine issues, allowing them to escalate. Achiev-

ing absolute security against attacks or failures often comes with significant resource costs, both

in terms of computational overhead and infrastructure redundancy. Therefore, we allow for a

certain degree of fault tolerance to balance the need for resilience with resource constraints.

77

In our proposed model, all controllers are required to register themselves on the

blockchain using their public-private key pairs for making transactions. This registration

process ensures the authenticity and integrity of transactions initiated by controllers. Each

controller’s public key is associated with its identity on the blockchain, facilitating secure com-

munication and transaction validation. By leveraging distributed decision-making mechanisms,

we enhance the resilience and robustness of our scheme against potential attacks. In addition

to that, the updated voting mechanism will give the probability of the controller being attacked.

The fourth condition of the master controller failure detection algorithm takes action if the

voting does not satisfy the given threshold. That is if more than 1
3 of the equal controllers give

a false vote there is a chance that some of the equal controllers are hacked.

On the other hand, the integrity of flow rules is preserved through the blockchain. The

existing methods maintain a switch version for each state change, leading to increased overhead

as the entire flow rule needs to be fetched from the blockchain upon detection of manipulation.

In contrast, our proposed model strategically reinstalls only the recently changed flow rules,

rather than the entire flow, from the blockchain. This selective reinstallation approach signif-

icantly reduces the time required for verification (Figure 4.6), as only the affected flow rules

need to be retrieved and verified. For every transaction in the blockchain, there is computa-

tional work needs to be done by the blockchain nodes to verify the flow rules. The proposed

model selectively re-installs the original flow rules and thus minimizes unnecessary transaction

costs (Figure 4.7) and controller overhead (Figure 4.5) associated with fetching and reinstalling

unchanged flow rules. This streamlined process optimizes the efficiency of flow verification,

particularly in scenarios with frequent state changes or large-scale networks.

Additionally, the FRChain initiates a voting mechanism once an unmatched flow rule

is detected. If there is an illegal transaction in the block then a negative vote is given by the con-

troller. This voting result determines whether the flow table is safe or not. However, FRChain

does not perform well when the number of nodes in the network increases as it takes longer

to complete the voting process. Our approach directly compares the hash codes stored on the

blockchain with those from the switches. Therefore, this significantly reduces the time required

for decision-making, as retrieving hash codes from the blockchain dictionary incurs constant

time overhead. These are the reason that makes the proposed model superior to the existing

models.

78

4.5 Conclusion

We proposed SDBlock-IoT, a scheme to provide security to forwarding rules on OpenFlow

switches for IoT devices. We integrate blockchain technology to verify the flow rules through

SC. The proposed method achieves nominal verification time while preserving the integrity

of flow rules. In addition, a multi-controller architecture is designed to eliminate the single

point of failure where other Equal controllers take control of the network with minimal latency.

We carried out an extensive experimental performance analysis based on network update

time, latency for flow verification, CPU overhead on the controller due to attack, and finally,

transaction cost. The real-world implementation of the proposed method shows superior

performance in comparison to existing methods.

79

	08_chapter 4

