
CHAPTER 5

Development of a Blockchain-enabled Multi-Stage Proposal

Verification in Multi-domain SDN Network

5.1 Introduction
In a multi-domain SDN network, where different administrative domains collaborate to provide

integrated services, ensuring the integrity of network flows becomes a complex challenge. The

seamless flow of data across these domains is essential for optimal network performance and

user experience. Further, various malicious activities, such as rogue controller attacks, replay

attacks, and Distributed Denial of Service (DDoS) attacks introduce vulnerabilities that can

compromise flow integrity, leading to unauthorized flow manipulation and service disruptions

[99]. Rogue controller attack is a type of attack in an SDN network in which the SDN con-

troller is compromised to install malicious or unauthorized OpenFlow rules. These altered rules

can disrupt network traffic, bypass security policies thereby undermining the trust model of the

SDN architecture [108]. These altered rules can disrupt network traffic, bypass security poli-

cies thereby undermining the trust model of the SDN architecture. Various methods have been

proposed in the literature to address these issues. However, the existing security mechanisms

are often inadequate in addressing these issues, especially in dynamic and large-scale networks

where multiple controllers operate independently. Further, most of the existing work has tried

to compare the similarity of the flow rules installed on each domain to preserve the integrity of

flow rules in a multi-domain network. However, this mechanism is not suitable in the practical

scenario as each domain maintains a separate network and thus will have different flow rules.

Researchers have started adopting Blockchain technology to secure the SDN networks. It is

known for its decentralized, tamper-resistant, and transparent nature, and presents a promising

solution to the security challenges faced by multi-domain SDN networks. By utilizing a dis-

tributed ledger, blockchain can ensure that all flow modification requests are securely recorded

and verified across multiple domains.

80

The rest of the chapter is organized as follows: Section 5.2 presents the system ar-

chitecture and detailed design of the proposed model. Section 5.3 describes the experimental

setup and evaluation of the performance and security of the proposed work. Section 5.4 pro-

vides a discussion of the findings and limitations. Finally, Section 5.5 concludes the chapter

and suggests directions for future research.

5.2 Proposed Model

In this chapter, we propose a blockchain-based approach to secure flow modification requests in

multi-domain SDN networks called Cross-DistBlock. Our solution leverages the decentralized

and tamper-resistant properties of blockchain to create a distributed trust model that enhances

the security and integrity of flow modification requests. The system incorporates multi-stage

verification of proposals using digital signatures, verification of participating controllers for

consensus, consensus mechanisms, and adaptive policy enforcement to detect and mitigate ma-

licious activities. Verification is further reinforced by a decentralized chaincode, which dissem-

inates security event information across the network. Further, the adaptive policy enforcement

mechanism dynamically responds to detected threats such as rogue controllers, replay attacks,

and DDoS attacks by installing appropriate network policy on the OpenFlow switches.

Cross-DistBlock distinguishes itself by implementing a multi-stage flow verification

process, which includes digital signatures, controller trust selection, and consensus-based vali-

dation, offering far more comprehensive security than the existing reputation-focused checks in

BCS [8], BMC-SDN [22], and FRChain [101]. Additionally, the adaptive policy enforcement

of Cross-DistBlock dynamically adjusts controller privileges based on real-time trust scores,

allowing immediate restriction of suspected or rogue controllers. BMC-SDN employs a con-

stant fading reputation system that forgets past actions at a steady rate, making it susceptible

to attackers who intermittently switch between malicious and non-malicious actions. Similarly,

BCS does not account for cumulative behavior, instead focusing on shorter-term reputation

scores that may miss sporadic threats. By continuously assessing each controller’s history, the

proposed method minimizes vulnerabilities that could arise from short-term compliance peri-

ods. The proposed method also facilitates inter-domain collaboration through chaincode-based

threat intelligence sharing, which addresses a significant limitation in BCS, BMC-SDN, and

FRChain, where cross-domain coordination and response are absent. A detailed description of

81

the architecture designed is explained in the following subsection.

5.2.1 Architecture

The proposed architecture for preserving flow integrity in a multi-domain SDN network lever-

ages digital signatures, consensus mechanisms, and smart contracts on the blockchain (refer

Figure 5.1). A detailed explanation of the architecture components and their interactions is

given in the following subsection. As illustrated in the figure, the system operates in a multi-

domain SDN environment where each domain is equipped with OpenFlow-enabled switches

and an SDN controller integrated with blockchain functionality. When a flow modification re-

quest is initiated by a controller (Step 1), the controller first captures the essential flow attributes

such as source and destination IP addresses, port numbers, MAC addresses, the intended action

(forward or drop), and the assigned priority level. This information is packaged into a proposal

object, which is digitally signed using the controller’s private key to ensure integrity and authen-

ticity. For intra-domain proposals, the signed proposal is sent only to peer controllers within the

same domain for validation and consensus. For inter-domain proposals, the initiating controller

communicates with controllers from other domains, triggering a broader validation process that

must comply with global trust policies. The Certificate Authority (CA) plays a crucial role at

this stage by authenticating the controller’s identity and verifying its digital signature (Step 3).

Once authenticated, endorsing peers/controllers verify the correctness of the proposal against

the network state stored on the blockchain. This includes applying trust management rules and

adaptive policy enforcement (Step 2), as defined in the deployed smart contract (chaincode).

If the required number of endorsements is achieved, the proposal is forwarded to the Ordering

Service (Step 4), which batches validated proposals into blocks, ensuring transaction ordering

and consistency. The resulting block is then committed to the blockchain ledger, becoming an

immutable record of the network state. Finally, the block is broadcast across all participating

domains (Step 5) to maintain a unified and tamper-proof network view. In the next subsection,

we formulate the system design of Cross-DistBlock.

5.2.2 System Model

The proposed model comprises a set of different administrative domains within the SDN net-

work. Let D be the set of participating domains then D=(D1,D2, ...,Dn). Each domain Di has

82

Figure 5.1: Proposed Multi-Domain verification of network flows in SDN using Blockchain

its own set of controllers and OpenFlow switches). These domains can communicate with each

other through inter-domain flow rules installed on the switches.

Multiple SDN controllers are located within each domain and are responsible for man-

aging flow rules on OpenFlow switches. Let Ci1,Ci2, ...,Cik participate in verifying flow modi-

fication proposals from domain Di. The network administrator assigns a trust value to each of

the controllers at the time of network deployment. Let Γik be the trust score of the controller Cik

in domain Di. This trust score ensures that rogue controllers are excluded from the consensus

process during proposal verification.

Let S = (S1,S2, ...,Sn) be the OpenFlow switches managed by SDN controllers from

domain Di. These switches handle data packet forwarding based on flow rules installed. Open-

Flow rules determine how data packets should be handled. Let Fj be the flow rules which

contain the information about the match and instruction fields of flow rule structure.

The smart contract (chaincode) manages the proposal creation, verification, and con-

sensus process as well as the trust score of each controller to prevent rogue controllers from

participating in the verification process.

83

5.2.2.1 Proposal creation and Signature

When a controller Cik in domain Di needs to modify a flow rule, it creates a flow modification

proposal. Let Pi j be the flow modification proposal from domain Di regarding flow Fj.

The structure of Fj is defined by the following-

Fj = (d pid, inport,src_IP,dst_IP,src_mac,dst_mac,action, priority) (5.1)

For each domain Di and flow Fj, a proposal is created:

Pi j = Proposal(Di,Fj) (5.2)

This proposal is digitally signed using the controller’s private key as-

Si j = Sign(Pi j,PrivateKDi) (5.3)

Where Sign() is the signing function and Di is the private key.

This proposal and signature are forwarded to the blockchain in the form of transactions.

This transaction invokes the smart contract function for the proposal creation. Transaction of

the proposal is presented as:

Ti j = {Pi j,Si j} (5.4)

84

5.2.2.2 Identification of Proposal Type

The controller has a global view of a particular domain. Therefore, controllers have the infor-

mation of all the hosts connected to it. When a host requests a proposal creation, it checks the

destination IP from the proposal structure. If the destination IP belongs to a host within the

same domain, it is an intra-domain proposal. Otherwise, it is an inter-domain proposal.

To identify the proposal type we define a mapping function to determine the corre-

sponding domain of a particular proposal. Let Md(IP) be the mapping function that maps an IP

address to its corresponding domain.

Md(Pi j(IPj)) = Di i f IPj ∈ Di (5.5)

Now, we determine the domains of source and destination IPs in proposal Fj using the

following-

Dsrc = Md(Pi j(src_IP)) (5.6)

Ddst = Md(Pi j(dst_IP)) (5.7)

Finally, we compare the domains of source and destination IPs of the proposal to deter-

mine the proposal type.

P_Type =

Intra−Domain, if Dsrc = Ddst

Inter−Domain, if Dsrc ̸= Ddst

85

This process of proposal type identification is necessary to trigger the appropriate se-

curity policies and consensus mechanisms.

5.2.2.3 Proposal Verification

After the identification of the proposal type, the next step is proposal verification. In the pro-

posed work, the proposal verification involves into the following three stages:

a) Stage I: Verification of the proposal’s digital signature: The first stage of proposal ver-

ification is to ensure the authenticity and integrity of the proposal using digital signatures.

During the proposal creation, the controller signs the proposal using their private keys.

Therefore, the smart contract uses the proposer’s public key to verify the digital signature

using the following function-

Vi jk =Veri f ySign(Pi j,PublicKCik) (5.8)

Where Veri f ySign() is the verification function using Cik’s public key. This verification

ensures that the proposal has not been tampered with and that it originates from a legiti-

mate source.

b) Stage II: Verification of participating controllers: Once the proposal’s authenticity is

confirmed, the next step is to evaluate the controllers involved in the verification pro-

cess. We divide the controllers into three categories based on their behavior. These are-

Trusted (ϒ), Suspected (Ψ), and Rogue (ℜ). Initially, all the controllers are allotted to

the Trusted list and are assigned a trust score (Γ) of one. Once, the controllers provide

an invalid vote during the controller consensus their trust score is deducted by a factor

of (δ = 0.1) and re-allotted to the Suspected list. Finally, if the trust score goes below

threshold (λ = 0.6) then the controller is re-allotted into the Rogue list. The categoriza-

tion of controllers can be represented as

ϒ = {Cik | ΓCik = 1} (5.9)

86

Ψ = {Cik| λ < ΓCik < 1} (5.10)

ℜ = {Cik| ΓCik ≤ λ} (5.11)

By setting a threshold slightly below one, controllers are warned (by being placed on the

Suspected list) before being classified as rogue. Immediate addition to the Rogue list after

a single invalid vote could lead to false positives. Therefore, this buffer period allows for

more accurate identification of genuinely malicious or unreliable controllers.

This trust score ensures that rogue controllers are excluded from the consensus process

during proposal verification. The trust score for any controller that provides an invalid

vote is updated using the following equation-

ΓCik = ΓCik−δ (5.12)

When the following condition is met, the controller Cik is included in the rogue list ℜ.

i f ΓCik < λ , then ℜ = ℜ∪{Cik} (5.13)

The rogue device list is shared in the Blockchain network to ensure all controllers are

aware of the rogue controllers and are prevented from future participation in the consen-

sus process. Therefore, this stage ensures that only reliable and trustworthy controllers

participate in the proposal verification. Furthermore, this sharing of security events across

SDN domains enables a secure dissemination of critical security information through col-

laboration among different administrative domains.

87

Next, the smart contract identifies the set of verified controllers that will participate in the

consensus process (Stage III). The proposed work divides the participation of controllers

into Intra-Domain and Inter-Domain proposal types. The detailed selection procedure is

discussed below.

Intra-Domain: For intra-domain proposals, controllers within the same domain validate

the proposal through the Verification Smart Contract. This is done to ensure that the

verification process is localized, faster, and consumes fewer resources. Furthermore, this

optimization prevents unnecessary load on the blockchain network and controllers.

Let Dx be the domain from where the proposal Pi j originates. Therefore, only controllers

within the same domain Dx participate in the consensus provided these controllers are

verified. Let V be the set of controllers that are verified and eligible to participate in

consensus. This can be represented as follows-

Vintra = {Cx1,Cx2, ...,Cxk}

such that Γxik ≥ λ , and Cxk ̸∈ℜ

Inter-Domain: On the other hand, for inter-domain proposals, controllers from all do-

mains participate to validate the proposal through cross-domain communication facili-

tated by Cross-Domain Contracts. Each controller participates in the consensus mech-

anism to make a more robust and distributed consensus process involving multiple do-

mains. Furthermore, this helps to maintain a reliable network by penalizing controllers

that frequently fail verification, thereby reducing the influence of potentially rogue con-

trollers.

The controllers from all domains participate in the consensus, provided these controllers

are verified. This can be represented as follows-

Vinter = {Ci j f rom all Di}

such that Γi jk ≥ λ , and Ci jk ̸∈ℜ

88

c) Stage III: Consensus among the controllers: The final stage involves reaching a con-

sensus among the verified controllers to validate the proposal. The participation of con-

trollers in the consensus process depends on the P_Type classification.

Now, based on the P_Type, the verified controllers run the consensus among themselves.

We utilize a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm for proposal

validation. The PBFT consensus algorithm ensures that the network can still achieve con-

sensus and make correct decisions despite the presence of faulty or compromised con-

trollers. Let f be the maximum number of faulty controllers the system can tolerate and n

be the total number of participating controllers. Then, according to the PBFT consensus

algorithm, there must be a 2 f +1 number of valid responses from the controllers.

The proposed work leverages proposal integrity to ensure that only valid proposals are

accepted. Thus, each controller in the valid set (Vintra, or Vinter) evaluates the proposal

independently and votes (Vote = (v1,v2, ...,vn)) on its validity.

To validate the integrity of proposals, the controllers recalculate the hash (H ′j) of the

received proposal and compare it with the provided hash (H j). If they match, the corre-

sponding controller votes the proposal as valid. Then, the smart contract collects all the

valid votes from the participating controllers using equation 5.14.

Vote =

Valid, if H ′j = H j

Invalid, if H ′j ̸= H j

ϕ =
n

∑
k=1

Vote(Valid) (5.14)

The proposal is accepted if a majority of controllers vote it as valid. If the proposal Pi j is

rejected, then this will be added to the rogue proposal request.

89

Pi j =

Accepted, if |ϕ|≥ (2 f +1)

Re jected, Otherwise

Once the decision is made about the proposal acceptance, the trust score needs to be up-

dated. This update depends on the invalid votes received from the controllers. Therefore,

the trust score is decremented for invalid vote providers by a factor δ using equation

5.12. Finally, the controllers are re-categorized based on the conditions set in equation

5.9, 5.10, and 5.11.

Therefore, this thorough verification process prevents rogue proposals from compromis-

ing the network and ensures that only legitimate and compliant proposals are executed.

5.2.2.4 Adaptive Policy Enforcement

There are two lists of controllers that require a policy adjustment (i.e. Suspected and Rogue list)

when the proposal is rejected. The suspected controllers are less prone to malicious attacks on

the network compared to the complete rogue controllers. Therefore, we designed two policies

with appropriate actions considering the severity. The controllers from the Suspected list are

treated with leniency and allowed only to participate during the controller consensus for voting.

However, they are restricted from performing proposals for insertion and deletion of existing

OpenFlow rules. On the other hand, the controllers from the Rogue list are treated strictly and

completely isolated from the rest of the network by installing a tight policy on the OpenFlow

switches.

We define a list of actions denoted as A = {A1,A2,A3,A4} which are executed by the

controller based on their behavior in the proposed work. Each of these actions is initiated by

controllers and based on the controller category appropriate actions are executed. The list of

actions with their description is presented in Table 5.1.

The actions listed in Table 5.1 are either allowed or restricted based on the controller

category. In the below, we discussed the network policies for each category.

a) Trusted Controllers: Trusted controllers have full capabilities within the network, in-

90

Table 5.1: Action list with their description.

Action Function Name Description

A1 Proposal(Di,Fj) Proposal creation for insertion and deletion

A2 Veri f ySign(Pi j,PublicKCi) Signature verification of a controller

A3 Vote(v) Controller votes regarding the proposal integrity

A4 Block(Pi j) Block all traffic from Cik

cluding proposing new flow rules, deleting existing rules, and participating in consensus

voting. All actions mentioned in the table are allowed. The network policy (P1) can be

represented as-

P1 =

allowed(A1,A2,A3,A4), ∀Cik ∈ ϒ

restricted(/0), ∀Cik ∈ ϒ

b) Suspected Controllers: Controllers in the Suspected List are allowed to participate in the

consensus voting process but are restricted from proposing new rules or deleting existing

rules. The network policy (P2) can be represented as-

P2 =

allowed(A2,A3), ∀Cik ∈Ψ

restricted(A1,A4), ∀Cik ∈Ψ

c) Rogue Controllers: Controllers in the Rogue List are completely isolated and cannot

participate in any network activities. The network policy (P3) can be represented as-

P3 =

allowed(/0), ∀Cik ∈ℜ

restricted(A1,A2,A3,A4), ∀Cik ∈ℜ

91

Therefore, the proposed adaptive policy enforcement mechanism adjusts the capabili-

ties of controllers based on their trust scores making it secure and resilient against the suspected

and rogue controllers. This approach ensures that appropriate policies are enforced in real time

whenever rogue activities are detected.

We have also prepared a flowchart for better visualization of the entire proposal ver-

ification process (refer Fig 5.2). The flowchart visualizes the steps from initiating a proposal

request to the final decision of policy enforcement, emphasizing the role of different types of

controllers (Trusted, Suspected, Rogue) at each stage.

A user initiates a flow modification request by submitting a proposal to the controller.

This proposal is converted into a transaction and sent to the blockchain network. Next, the smart

contract verifies the digital signature of the proposal using the proposer’s public key. Once

the digital signature is verified the SC determines the proposal type by comparing the source

and destination IP of the proposal. However, if the signature verification fails, the proposal is

discarded and no further action is taken. Therefore, stage (I) prevents unauthorized or malicious

entities from injecting false proposals into the network.

In stage (II), the controllers are divided into two sets (inter-domain and intra-domain)

to determine who will participate in the consensus process considering the trust score of each

controller. Cross-DistBlock handles inter-domain proposal requests by including controllers

from all participating domains in the consensus process, but only if they’ve been verified as

non-rogue. This verification step ensures that only trusted controllers contribute to the decision-

making process, thereby minimizing risks of compromised controllers influencing the outcome.

Additionally, Cross-DistBlock employs chaincode to share threat intelligence across domains,

so each domain is kept informed of any flagged controllers from other domains. This shared in-

formation strengthens inter-domain trust by allowing for coordinated responses to any emerging

threats. By maintaining transparency and tracking trust scores across domains, Cross-DistBlock

effectively mitigates cross-domain trust issues and limits the impact of potentially compromised

controllers, even when domain interests may vary.

Stage (III) involves the consensus for the decision of proposal acceptance. Each par-

ticipating controller independently evaluates the hash of the proposal and compares it with the

provided hash to validate the integrity of the proposal. All the valid votes are collected by the

SC and compared against the threshold set by the PBFT algorithm. Therefore, if the majority of

92

Figure 5.2: Flowchart of the proposed proposal verification process

controllers (including the Trusted and Suspected ones) vote in favor, the proposal is accepted.

Otherwise, the proposal is rejected. On the other hand, if the hash of the proposal does not

match, the trust score of the corresponding controller is decremented and forwarded for the

network policy update.

Based on the updated trust score, the suspected and rogue controllers will have a new

policy installed on them. The adaptive policy enforcement mechanism isolated the rogue con-

trollers by installing OpenFlow rules to block traffic from these controllers. Therefore, the

proposed multi-staged approach strengthens the security of the network by ensuring that only

authentic, untampered, and properly vetted proposals are accepted. In the next subsection, we

discuss the smart contract design of the proposed work.

5.2.3 Chaincode Design

Chaincode is a self-executing program that executes actions without requiring manual inter-

vention once predefined conditions are met. It is similar to the Smart contracts of Ethereum

Blockchain. It plays a crucial role in simplifying and automating the proposal verification pro-

93

cess in our work. Apart from automation, the chaincode provides a transparent and immutable

ledger. Therefore, every action taken by the controller is transparent, providing clear account-

ability. Once these actions are recorded on the blockchain, they cannot be altered, ensuring the

integrity of verification. Further, the chaincode operates in a decentralized manner and there-

fore, does not rely on a single entity.

The key components of chaincode design require managing the proposal verification,

trust score of controllers, and adaptive policy enforcement. We have two structures for proposal

and controller. The proposal structure includes details of the proposer, OpenFlow rules param-

eters, and verification status. The controller structure includes its ID, domain, trust score, and

status (Trusted, Suspected, Rogue). The chaincode also includes functionality for adding con-

trollers, categorizing controllers, handling proposal verification, voting for the final decision,

and finally updating trust scores.

Algorithm 9 Proposal Creation Algorithm
Input: dpid: Datapath ID of switch, s_ip: Source IP, d_ip: Destination IP, in_port: Ingress

Port, s_mac: Source MAC address, d_mac: Destination MAC address, action: Action to

perform, p: Priority of the proposal

Output: P_ID : Proposal ID

1: Initialize a new proposal object

2: P_ID← NewProposal(d pid,s_ip,d_ip, inport,s_mac,d_mac,action, p)

3: Compute the cryptographic hash of the proposal

4: Hash← cHash(Proposal)

5: Store the proposal on the blockchain

6: Return P_ID

Algorithm 9 presents the steps for the submission of a new proposal to the blockchain,

which calculates its hash, and stores it. Algorithm 10 presents the voting consensus for proposal

integrity. Since we used the PBFT algorithm for the voting among controllers, it allows n−1
3

numbers of malicious controllers that provide false votes. Therefore, at least 2 f +1 valid votes

are required to reach the consensus despite the presence of faulty controllers. Next, the trust

score is decremented for the controller that provides invalid votes (refer Algorithm 11) and

controller status is updated based on the trust score.

94

Algorithm 10 Voting Consensus Algorithm

Input: controller[]: List of valid controller instances, P_ID: Flow modification proposal to

be validated.

Output: Status : Consensus status (True/False)

1: Compute Fault Threshold

2: n← len(controller[])

3: f← (n−1)/3

4: Initialize Vote Count

5: validVotes← 0

6: Collect Votes

7: for c ∈ controller[] do

8: if verifyProposal(P_ID) then

9: validVotes← validvotes+1

10: end if

11: end for

12: Check PBFT condition

13: if validVotes≥ (2∗ f+1) then

14: return True

15: end if

16: return False

95

Algorithm 11 Update Trust Score Algorithm

Input: controller[]: List of valid controller instances participating in the consensus

Output: TrustScore[]: Updated trust score of each controller.

1: for c ∈ controller[] do

2: if isValid[c] == False then

3: TrustScore[c]← TrustScore[c]−0.1

4: end if

5: Classify controller status based on trust score.

6: Condition 1:

7: if TrustScore[c]< 0.1 then

8: Status[c]← ’Suspected’

9: end if

10: Condition 2:

11: if TrustScore[c]< 0.6 then

12: Status[c]← ’Rogue’

13: end if

14: Condition 3:

15: if TrustScore[c]> 0.6 then

16: Status[c]← ’Trusted’

17: end if

18: Store updated controller state on the blockchain

19: end for

96

5.3 Experimental Results

The experimental evaluation aims to demonstrate the effectiveness, performance, and scala-

bility of the proposed blockchain-based proposal verification system for multi-domain SDN

networks. The evaluation focuses on verifying the system’s ability to detect, and prevent rogue

flow modification requests and maintain network security and integrity. In the next subsection,

we discuss the environment setup for the simulation of the proposed work.

5.3.1 Environment Setup

We created a virtual Hyperledger Fabric to simulate the Blockchain network. It is a modular

architecture that allows for highly customized configurations, enabling organizations to tailor

the network according to specific needs, enhancing scalability and efficiency. Other frameworks

such as Ethereum lack this level of modularity. Therefore, Hyperledger Fabric is a more suitable

choice for multi-domain SDN environments compared to Ethereum.

We used the Python-based Ryu controller to handle the SDN network. It is a

lightweight, flexible, and easy-to-deploy SDN controller, making it ideal for research and

prototyping compared to other controllers such as OpenDayLight, Beacon, ONOS, Faucet,

Floodlight, etc [34]. However, the ONOS controller also supports modular architecture. These

controllers are complex and resource-intensive, which can introduce additional overhead in a

research setting.

The experimental setup created for this simulation is presented in Figure 5.3. We used

four docker containers to deploy and run the experiment. The first container is used for Certifi-

cate Authority (CA) that manages certificates for network participants, ensuring secure identity

management. The ordering services are deployed on the second container. They maintain a log

of all transactions and deliver it to the appropriate peers for validation. The remaining two con-

tainers are used to deploy two separate administrative domains in which virtual topology and

chaincode are deployed. The chaincode encapsulates the logic for adding controllers, verifying

proposals, managing trust scores, and applying adaptive policies on the switches.

We created a custom Python script that generates the virtual topology in the Mininet.

The topology configuration is presented in Table 5.2. We used a linear topology in our experi-

97

Figure 5.3: Experimental topology for simulation of the proposed work.

ments. This choice was made to facilitate clear and manageable interactions between controllers

and domains, enabling a straightforward analysis of performance and security metrics. Two sets

of controllers are created, one for each domain. We selected 16 controllers, with 8 per domain,

to align with the PBFT consensus requirements, allowing for a minimum of 2 controllers to

act as rogue in each domain during the intra-domain proposal verification experiment without

compromising the overall consensus. These controllers act as endorsers and validators in the

consensus process. The switches can communicate with the controllers through the southbound

protocol called OpenFlow (version 1.3).

Table 5.2: SDN Configuration.

Devices Configuration

SDN Controller Ryu (Version)

No. of Domains 2

No. of Controllers 16 (8 per domain)

No. of Switches 8 (4 per domain)

No. of Hosts 8 (1 per switch)

The flow of messages for every transaction follows the following steps.

98

a) Submits flow modification proposal: The client/host sends the flow modification proposal

to the SDN controller for endorsement (Marked with 1 in Figure 5.3).

b) Endorsement of the proposal: The certificate authority checks the membership of the en-

dorser/controller to authenticate the transaction (Marked with 2). Then it executes the

chaincode that is deployed for the proposal verification (Marked with 3). If the authenti-

cation fails, the endorsement result is returned to the host (Marked with 4).

c) Ordering Service: After the transaction has been approved by the peers, the transaction

is sent to the ordering services (Marked with 5). The orderer then creates a block and

broadcasts it to all the peers from different domains (Marked with 6).

d) Update the ledger: Finally, the newly created block is updated in the ledger by network

peers/controllers.

5.3.2 Performance evaluation

In this subsection, we measure the performance of the proposed method in terms of latency

due to the signature verification, voting scheme, and adaptive policy enforcement to check the

strength of the proposed work. In our comparative analysis, we evaluated the performance of

our proposed method against three other blockchain-based approaches: FRChain [101], BCS

[8], and BMC-SDN [22]. These methods have been widely recognized for their effectiveness

in securing SDN networks, particularly in scenarios involving rogue controllers and other ma-

licious activities.

We carefully implemented the BCS, BMC-SDN, and FRChain methods to enable a

meaningful comparison with our proposed Cross-DistBlock approach. To maintain consis-

tency, we used Mininet and the Ryu controller as our primary network emulation environment,

aligned with the environment configurations used in each original method. The smart con-

tracts from each of the existing methods were translated to chaincode, as this allowed us to

standardize the blockchain implementation across our test cases. Each competing method was

implemented according to the original paper’s specifications. The constant fading reputation

system of BMC-SDN was configured to match its original decay parameters, ensuring that the

forgetting rate mirrored the behavior outlined in their methodology. Similarly, BCS was set up

with two redundant sub-controllers as per its specifications, and FRChain was optimized for

99

a small-scale network to reflect the original method’s system constraints. To evaluate the per-

formance consistently, we used the same performance metrics specified in the original studies,

such as attack detection rate, consensus latency, and attack detection time. This ensured that

the results accurately reflected the effectiveness of each method. Where specific network condi-

tions or parameters (e.g., traffic volumes, attack types) were mentioned in the original studies,

we applied the same conditions to replicate the intended test environment.

5.3.2.1 Latency

The total latency incurred in the proposal verification process can be a combination of three

main components- Time for digital signature verification (Tsign), voting time (Tvoting), and policy

enforcement time (Tpolicy). Therefore, the latency of the proposed work can be expressed as:

Tlatency = Tsign +Tvote +Tpolicy (5.15)

The time taken to verify the digital signature of the proposal P can be expressed as:

Tsign = fsign(P) (5.16)

where, fsign(P) is the function representing the time complexity of signature verifica-

tion.

However, the number of controllers participating in voting depends on whether the

proposal is intra-domain or inter-domain. Let K number of controllers participate in the voting.

Then, for intra-domain K = Nintra and for inter-domain K = Ninter.

Therefore, the time taken to complete the voting can be expressed as:

Tvote = fvote(K) (5.17)

100

The time taken to enforce the adaptive policies can be expressed as:

Tpolicy = fpolicy(P1,P2,P3) (5.18)

where, P1, P2, and P3 are the policies mentioned in subsection 5.2.2.4.

We measure the latency for proposal verification on the virtual setup presented in Fig-

ure 5.3. Initially, we measure the average time required for voting with varying numbers of

proposals. The number of proposals ranges from 10 to 1000.

101

Table 5.3: Average latency for signature verification, voting, and policy enforcement with in-

creasing proposal request.

No of Proposals Tsign (ms) Tvote (ms) Tpolicy (ms) Ttotal (ms)

100 50 176.0 51 277.0

150 74 265.2 70 409.2

200 99 354.4 98 551.4

250 126 439.5 122 687.5

300 149 528.0 150 827.0

350 171 617.5 179 967.5

400 202 707.0 195 1104.0

450 223 798.5 220 1241.5

500 248 885.0 250 1383.0

550 270 973.0 275 1518.0

600 299 1063.0 298 1660.0

650 318 1152.5 318 1788.5

700 351 1240.0 347 1938.0

750 379 1330.5 373 2082.5

800 401 1423.0 397 2221.0

850 433 1511.5 424 2368.5

900 457 1602.0 449 2508.0

950 483 1694.5 473 2650.5

1000 504 1785.0 500 2789.0

Table 5.3 presents the latency for each primary component of proposal verification.

From the table, we can observe that the average time taken for signature verification fluctuates

between 0.3 to 1.2 ms per proposal. Again, the consensus time taken by the controllers to vote

on the proposal’s validity varies between 1.7 to 2 ms per proposal. Finally, the time required

to enforce network policies based on the voting outcome alternates between 0.8 to 1 ms per

proposal. Further, Tsign and Tpolicy introduce minor fluctuations in total latency and have less

impact on overall latency compared to Tvote. The consistent voting time (Tvote) also ensures that

the consensus process remains robust even as the number of proposals grows. Therefore, total

102

latency grows linearly with the increase in the number of proposals. This linear relationship

indicates that the system handles scalability effectively, without introducing exponential delays.

5.3.2.2 Throughput Analysis

We also measure the throughput of the proposal verification. Throughput is a measure of the

number of proposal requests the system can process in a given period. To perform this experi-

ment, we consider the same setup as before.

We use the total latency values (Ttotal) from Table 5.3, to calculate throughput for each

number of proposals. We calculate throughput (Tp) by dividing the number of proposals by the

total latency time.

Tp =
No. o f proposals

Ttotal
(5.19)

From the Figure 5.4, we can observe a slight variations in throughput due to the minor

fluctuations in latency components like Tsign and Tpolicy. However, throughput remains fairly

consistent across different loads, indicating that the system handles scaling well without signif-

icant drops in performance.

5.3.3 Security Analysis

We simulate and evaluate the performance of the proposed work under various attack scenarios

such as rogue controller attacks, replay attacks, and DDoS attacks. We discuss the detailed

analysis of these scenarios in the following subsection.

5.3.3.1 Rogue Controller Attack

Here, a rogue controller sends malicious flow modification requests on the blockchain. We

have prepared a script that generates a synthetic OpenFlow rule which is irrelevant to the orig-

inal network configuration. The steps for simulating malicious flow injection is presented in

Algorithm 12. This algorithm tries to install a malicious flow on switch S11 from controller C11.

We remove the key from the CA to perform this experiment.

103

Figure 5.4: Throughput and total latency of the proposal verification with increasing number of

proposal.

The CA maintains a list of valid public keys for all legitimate controllers. Each cer-

tificate binds the controller’s identity to its public key, ensuring only authorized controllers can

initiate flow modification requests. If the signature verification fails or if the proposer’s public

key is not found in the CA’s list, the proposal is immediately flagged as rogue and rejected.

Therefore, the rogue flow modification request is detected in Stage I of the proposed work by

verifying the digital signature.

5.3.3.2 Replay Attack

In this type of attack, the attacker captures the legitimate flow modification requests and replays

them to the network. To simulate this attack, we provide the legitimate flow details to the target

controller C11 which then perform the attack on the network. The steps for replay attack is

presented in Algorithm 13.

Since a replay attack reuses an old request, the digital signature remains valid, and

104

Algorithm 12 Simulating Malicious Flow Injection by Rogue Controller
Input: dpid: Datapath ID of switch, s_ip: Source IP, d_ip: Destination IP, in_port: Ingress

Port, s_mac: Source MAC address, d_mac: Destination MAC address, action: Action to

perform, p: Priority of the proposal, C_ip: IP of the controller

Output: As : Action Status

1: Form a json file using Input for flow modification command

2: Create a hash of the flow

3: h← Hash(d pid + s_ip+d_ip+ s_mac+d_mac+action+ p+C_ip)

4: Crate an URL for flow modification

5: url← (htt p : //controlleri p : 8080/stats/ f lowentry/add)

6: Apply REST post command

7: r← POST (url,h)

8: Display the response

Algorithm 13 Simulating replay attack by legitimate controller
Input: C_ip: IP address of the SDN controller, R_c: A list of previously captured flow

modification requests

Output:Re-sends each flow modification request to the controller and prints the HTTP re-

sponse status

1: Start

2: for request ∈ Rc[] do

3: Construct the URL as:

4: url← ”htt p : //+ controller_ip+ : 8080/stats/ f lowentry/add”

5: Send an HTTP POST request to url with request as JSON body

6: Receive and store the HTTP response

7: Wait for 1 second

8: end for

105

stage I of our method will likely not detect the replay attack. To counter replay attacks, the pro-

posal includes a timestamp and a nonce (a unique, one-time-use number). Each new proposal

must have a fresh timestamp and nonce that are unique and within a valid time window. The

controllers check the timestamp and nonce to ensure the request is new and not a replay. If a

proposal is detected as a replay (due to an invalid timestamp or nonce), it is rejected and an

adaptive policy enforcement mechanism restrict the attacker from replaying the attack.

5.3.3.3 DDoS Attack

Here, the attacker generates a large volume of flow modification requests to overwhelm the

controllers and network. The steps for DDoS attack on the controller is presented in Algorithm

14.

Algorithm 14 Algorithm for DDoS attack by rogue controller
Input: C_ip: IP address of the SDN controller, F_m: Flow entry data to be sent repeatedly,

R: Number of requests to simulate the attack

Output: Status : Action Status

1: Initialize an empty list called threads

2: for i ∈ R do

3: Create new thread

4: Create a new URL to make flow modification request

5: Sends an POST command to C_ip

6: r← POST (url,F_m)

7: Display the response r

8: end for

We plot a graph (refer Figure 5.5) to show the latency incurred due to the DDoS at-

tack on the network. Additionally, it also measures the latency during proposal verification

under normal conditions, during an initial DDoS attack, and during a subsequent DDoS attack.

Additionally, we also compare the result with the proposed method and another without it.

We start the simulation with normal proposal verification from t = 0 to t = 50. Then,

we introduce the attack at t = 50 with a large proposal request (30000 requests per second). In

the proposed method, the graph shows that the latency starts to rise linearly with the increasing

106

Figure 5.5: Latency comparison of the proposed method with other existing methods during

DDoS attack.

number of proposal requests due to the attack in all four methods. At (t = 120), the DDoS attack

causes a significant spike in latency. Then, the latency begins to stabilize at (t = 147) as the

adaptive policy enforcement installs flow rules that block all traffic from the rogue controller

and isolate the network in the proposed method. This demonstrates that the proposed method

can stabilize the network in 97 ms, which matches the results obtained from average latency

for proposal verification. However, in the existing methods, the DDoS attack persists and the

latency keeps increasing and these methods take a longer time to detect and mitigate the attack.

At t = 250, we send a second DDoS attack. In the existing methods, the latency spikes

again and continues to rise, indicating network instability. This is due to their lack of an adap-

tive policy enforcement mechanism. However, in the proposed method, the latency remains

stable due to the earlier policy installed. This shows the effectiveness of the adaptive policy

enforcement mechanism in mitigating the impact of repeated attacks.

The absence of adaptive policies in existing methods became evident when we sub-

jected the network to repeated DDoS attacks. During the first DDoS attack, all methods, in-

107

cluding ours, successfully detected and mitigated the attack by initiating the voting, consensus,

and block creation processes. However, when the DDoS attack was applied a second time, the

limitations of the other methods were highlighted. FRChain, BCS, and BMC-SDN all had to

undergo the entire process of voting, consensus, and block creation once again, which signifi-

cantly increased the network’s latency and processing overhead.

We provided a summary of the latency comparison due to the DDoS attack in Table

5.4. This table effectively demonstrates the robustness of the proposed method in maintaining

network performance and security even during repeated attacks. The experimental results show

that Cross-DistBlock achieves a latency improvement of 20.49% over BCS, 28.15% over BMC-

SDN, and 49.21% over FRChain.

Table 5.4: Latency comparison due to the DDoS attack.

Methods Latency in 1st attack (ms) Latency in 2nd attack (ms)

Cross-DistBlock 97 0

BCS [8] 122 123

BMC-SDN [22] 135 133

FRChain [101] 191 190

We also measured the latency incurred by the network with increasing network de-

mands, particularly in a high-traffic scenario. The latency graph clearly illustrates that as the

number of proposal requests increases, all methods experience an increase in latency. How-

ever, the rate of increase differs significantly among the methods. For FRChain, BCS, and

BMC-SDN, the latency rises sharply as the number of proposals grows. This is primarily due

to their reliance on traditional consensus mechanisms, which require substantial computational

resources and time, particularly in scenarios with a high volume of requests.

We also measure the scalability of the proposed method by increasing the request count

per second. Fig 5.6 shows that our proposed method shows a more gradual increase in latency.

Initially, when the proposal requests are relatively low (around 1,000 to 10,000), all methods

perform comparably. However, as the request count reaches higher levels (20,000 to 50,000),

the advantages of our method become evident. This demonstrates that our method not only

scales better but also maintains more consistent performance under heavy load.

108

Figure 5.6: Latency comparison of the proposed method with increasing traffic during DDoS

attack.

5.3.3.4 Controller Overhead

Since the controllers are given the role of endorser for proposal verification, the load on these

controllers will increase, These controllers need to execute the chaincode functions to decide

on the proposal. Therefore, we compare the CPU consumption of these controllers with and

without the proposed method.

We simulate these two cases on the given experimental setup. In the initial period, the

CPU consumption starts at 24% and increases up to 29% linearly. After a while, we perform

the DDoS attack at around t = 90. Due to the attack, the CPU consumption rises to 42% while

using the proposed method. After a while, the CPU consumption remains stable at 42% due to

the adaptive policy enforcement at t = 122. On the other hand, CPU consumption spikes to 71%

and remains high in cases without the proposed method. When we stop the attack a t = 130, the

CPU consumption starts to drop.

At t = 150, we apply a second attack on the network. With the proposed method, CPU

consumption remains stable at 29% due to its previously installed OpenFlow rules. However,

109

Figure 5.7: CPU consumption of endorser/controller due to proposal verification in DDoS attack

scenario.

without the proposed method, the CPU consumption escalates and the system becomes un-

responsive. Therefore, the proposed method effectively stabilizes CPU consumption after an

attack, compared to a scenario where no mitigation measures are in place.

5.4 Discussion

In this subsection, we discuss the security and effectiveness of Cross-DistBlock.

Our approach leverages a chaincode that maintains a list of controllers along with an

accumulated invalid vote count they have provided. This vote count serves as a historical record,

indicating whether a controller has been consistently trusted, is suspected, or has become rogue.

By accumulating these instances of invalid voting rather than relying solely on frequency, the

system is designed to recognize sporadic patterns of threat behaviour over time. By focusing

on cumulative inconsistencies rather than isolated incidents, our system can detect controllers

110

exhibiting sporadic invalid votes over time, allowing us to flag intermittent threats even if they

do not consistently vote invalidly.

In our setup, a controller’s trust threshold is set at 0.6. This threshold enables each con-

troller to cast up to four invalid votes before it is removed from the network. This buffer period

allows for more accurate identification of genuinely malicious or unreliable controllers. More-

over, this system enables the network administrator to take corrective actions against controllers

listed as suspected, even before they are formally classified as rogue. This proactive approach

serves as an effective safeguard against colluding controllers that attempt to subtly manipulate

the network.

Latency was a critical metric in evaluating the performance of the proposal verification

process. The latency measurements included the time taken for digital signature verification,

voting by controllers, and the enforcement of adaptive policies. Under normal conditions, the

latency increased linearly with the number of proposal requests. However, during an attack,

the latency spiked due to the additional processing required to isolate rogue components. The

results showed that after the attack was mitigated, the latency stabilized and returned to accept-

able levels. Without the proposed method, the latency continued to increase, highlighting the

effectiveness of our approach in maintaining low latency during and after attacks.

Throughput was measured as the number of successfully processed transactions per

unit of time. The results indicated that our system maintained a high throughput under normal

conditions, with a slight decrease during attack scenarios. The introduction of the adaptive pol-

icy enforcement mechanism caused a temporary reduction in throughput due to the additional

overhead of isolating rogue components. However, once the malicious entities were isolated,

the throughput returned to normal levels, demonstrating the system’s ability to recover quickly

after an attack.

Rogue controllers pose a serious threat to the integrity of the SDN environment. Our

approach successfully identified and isolated rogue controllers through a continuous evalua-

tion of their trust scores. The smart contract’s capability to maintain a rogue list and prevent

these controllers from participating in the consensus process was crucial in ensuring the valid-

ity of network operations. Experimental results showed that when rogue controllers attempted

to manipulate network rules, they were quickly detected, and their influence on the network

was neutralized. The trust score mechanism effectively reduced the risk of malicious activities

111

within the network, as controllers with trust scores falling below the threshold were promptly

isolated, preventing further damage.

Replay attacks were addressed by incorporating digital signatures and hash verifica-

tion within the proposal verification process. The system recalculated the hash of incoming

proposals and compared them with the stored hash values. In cases where a mismatch was

detected, the proposal was flagged as invalid, and no further action was taken. This approach

successfully prevented replay attacks, as any attempt to resend a previously valid transaction

was immediately recognized and rejected. Our experiments demonstrated that the hash-based

verification process was robust against replay attacks, ensuring that only legitimate proposals

were executed.

The proposed method effectively mitigates Distributed Denial of Service (DDoS) at-

tacks by employing an adaptive policy enforcement mechanism. Therefore, it provides a sub-

stantial advantage over the existing methods. After the first DDoS attack, our system dynami-

cally adjusted the security policies, isolating the malicious entities and ensuring that subsequent

attacks did not require the same intensive verification process. As a result, when the second

DDoS attack was launched, our method was able to maintain network stability with minimal

additional latency, as the adaptive policies had already fortified the network against similar

threats. The results indicate that while FRChain, BCS, and BMC-SDN are effective in their

initial response to attacks, their lack of adaptive policies limits their ability to efficiently han-

dle repeated threats, making them less suitable for dynamic and continuously evolving network

environments.

During the attack, the network experienced a significant increase in CPU consump-

tion, peaking at 42% when the first attack was detected. However, the adaptive policy quickly

isolated the malicious traffic, stabilizing the CPU usage. When a second DDoS attack was

launched, the CPU consumption remained stable, indicating that the network was resilient to

subsequent attacks due to the preemptive isolation of rogue nodes. In contrast, without the

proposed method, the CPU consumption continued to rise, reaching up to 90%, which severely

degraded the network performance and demonstrated the importance of our method in main-

taining network stability under attack conditions.

In our approach, once a controller is identified as rogue, it is immediately removed from

participating in the consensus process to prevent further actions. Our proposed adaptive policy

112

enforcement mechanism dynamically adjusts the capabilities of controllers based on their trust

scores, enhancing security and resilience against suspected or rogue controllers. This design

ensures that security policies are applied in real time as soon as any rogue behaviour is detected,

limiting the impact on network operations.

Currently, our system can effectively block all network traffic originating from a rogue

controller, safeguarding the network from any further malicious influence until the controller

can be re-deployed by the network administrator. To further strengthen our approach, we can

incorporate a mechanism that revalidates the proposals approved by a rogue controller, allowing

us to rollback or remove any unauthorized flows it may have installed.

Increasing the number of controllers and the size of the network adds overhead, partic-

ularly due to the blockchain’s consensus mechanism. Specifically, the blockchain’s consensus

mechanism incurs increased communication and computational demands as more controllers

participate in the network.

To manage scalability, our approach includes an adaptive policy that adjusts the con-

sensus participation scope of controllers based on the type of proposal request. Intra-domain

consensus is conducted among controllers within the same domain, ensuring local reliability

with minimized communication overhead. For inter-domain consensus, selected controllers

from each domain participate to maintain a cross-domain agreement without requiring the in-

volvement of every controller in the network. This selective inter-domain participation helps

reduce the burden on the network, achieving a balance between security and performance as the

network scales.

5.4.1 Use Cases

a) Smart City: In smart city deployments, different aspects of city infrastructure- such as

transportation, energy grids, public safety, and communication networks are often man-

aged by separate entities or departments, each representing a different domain. Mul-

tidomain SDN helps integrate these diverse networks into a unified management frame-

work, allowing for coordinated traffic management, data sharing, and service provision-

ing across the city. For example, traffic management systems can be linked with public

transportation networks and emergency services, enabling real-time adjustments to traffic

flows in response to incidents or changing conditions. By providing centralized control

113

and dynamic policy enforcement, the proposed security solution ensures seamless con-

nectivity across multiple domains.

b) Healthcare System: Healthcare systems often operate across multiple domains, such as

different departments within a hospital or between various healthcare providers. The

proposed model’s multidomain SDN approach ensures seamless and secure data flow

across these domains, even when they are managed by different organizations or have

distinct security policies. Additionally, healthcare IoT networks are vulnerable to rogue

devices that could attempt to introduce malicious data or disrupt normal operations. The

proposed model includes a mechanism to detect and isolate rogue devices or controllers

by maintaining a trust score for each network controller.

5.5 Conclusion

In this chapter, we tackled the critical issue of securing flow modification requests in multi-

domain SDN networks by introducing a blockchain-based approach called Cross-DistBlock.

By leveraging the decentralized and immutable characteristics of blockchain technology, we

established a strong trust model that ensures the integrity and authenticity of flow proposals.

Our solution employs a stage-wise proposal verification process combined with adaptive

policy enforcement, which effectively detects and mitigates threats from rogue or malicious

controllers. Experimental results validate the effectiveness of our approach in maintaining

network stability, even in the face of attacks like DDoS, rogue controller activities, and

replay attacks. The successful integration of Hyperledger Fabric with Ryu SDN controllers

highlights the practical feasibility of our framework, providing a secure and scalable solution

for managing SDN networks across multiple domains. This work sets a solid foundation for

advancing research in securing SDN environments, emphasizing the critical role of blockchain

technology in enhancing network security and trust.

114

	09_chapter 5

