Chapter 6

A Restricted Class of F-partitions

6.1 Introduction

In Chapter 1, we have discussed F-partitions whereas in Chapter 4 we discussed
a more general class of F-partitions in which each part can be repeated at most
h times and comes from k—copies of a non-negative integer. In this chapter, we
explore a restricted class of F-partitions enumerated by the function ay ;(n), which

is defined in the next paragraph.

Let ag, ;(n) denote the k-colored (say 71,72, ...,r;) F-partition of a positive inte-
ger n in which there are no odd parts of some ¢ colours, say 1,7, ...,r; in the top
row and no even parts of the colours rq,7s,...,7; in the bottom row. For example,

the F-partitions enumerated by as 1(2) are
(o) () () G- G2
0,/ \1:/) \12) \1;) " \13/)"
Let Ay ;(q) denote the generating function for ay ;(n).
Padmavathamma [52] obtained the representations for the function Ay ;(q) for
k =2,3 and i < k in terms of g—products and proved that Ay ;(q) = cdr(q?), where

cor(q) is the generating function for the number of F-partitions with k—colors. As

an illustration of the work in [52], we have the following:

Theorem 6.1.1. We have

Zas,z(n)qn _ (—¢%q ()qo;;)—q 4 )oo ((_q5;q8)oo (_qs;qs)oo (_qz;q4)io

n=0
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+2¢° (=4 ¢%) (=74 %) (=4 q4)io)-

From Andrews’ general principle 1.1.1, the generating function Ay ;(q) of ax, ;(n)

is given by

Ak,z(Q) = OTZ( (1 + anJrl)k—i (1 + Zq2n+1)i (1 + Zﬁlq )k—i (1 4 Zlq2n+1)i)

n=0

CT, ((—zq; O (2 ) (25T (— g qz);>

CTZ( L i ) fi(e g, zq)). (6.1.1)

—
e

In our work, we obtain the generating functions for ax ;(n) for k = 2,3 and i < k

and find some interesting congruences for these functions. Moreover, we obtain the
generating function for a, »(n) and obtain few congruences. In the last section of
this chapter, we derive an identity connecting the generating functions for as (n)

and agy, ,(n), where p is a prime.

6.2 Generating function for as 1(n)

Theorem 6.2.1. For n > 0, we have

S ana(n)g” = 25 (6:2.1
~ fife
Proof. Setting k =2 and ¢ =1 in (6.1.1), we find that
1 -1 -1
Ao (q) = OT. | - f(z7, 2q)f (27 ¢, 2q)
fifa

1 > my (my+1) > 2
=CT,| — ZMgT T 2" g™

(6.2.2)
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From (1.2.14), we have

2y _ J2f3
fla,a7) = Fh (6.2.3)
Employing (6.2.3) in (6.2.2), we arrive at (6.2.1). O
Corollary 6.2.2. We have
S o BAE | B )
2 = e s (024
;aQ,l(Qn +1)g" = 2%. (6.2.5)
Proof. Using (1.2.18) in (6.2.2), we have
S n_ TifofT o fafofsfos o folsfis
N Ty Ty A

Extracting the terms having even powers of ¢ in (6.2.6) and then replacing ¢* by g,
we arrive at (6.2.4).
Similarly, extracting the terms having odd powers of ¢ in (6.2.6) followed by dividing

the equation by ¢ and then replacing ¢* by ¢, we arrive at (6.2.5).

O

Corollary 6.2.3. Forn > 0, we have
az1(2n+1)=0 (mod 2). (6.2.7)
Proof. Congruence (6.2.7) follows directly from (6.2.5). O

Corollary 6.2.4. If n can not be expressed as a sum of two times a pentagonal
number and three times three pentagonal numbers or two times a pentagonal number,

three times a pentagonal number, and siz times a pentagonal number then

az1(2n+1)=0 (mod 4). (6.2.8)
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Proof. From (6.2.5), we have
> a2+ 1)q" =2/ f3 (6.2.9)
n=0
=2fofsfs (mod 4), (6.2.10)

where we use the fact that 2f; = 2f2™ (mod 4). From (6.2.9) and (6.2.10), we

arrive at (6.2.8), in view of Euler’s pentagonal number theorem. O

6.3 Generating function for a3 ;(n),i =1,2

In this section we present the generating functions and few congruences for the

functions ag 1(n) and as 2(n).

Theorem 6.3.1. We have

S ag1(n)g" = ﬁ (p(@)f(g".¢") + 20D f(a.7) . (63.)

Proof. Setting k =3 and ¢ =1 in (6.1.1), we find that

As1(q) = CT.| -+ 2 (=71, 20) f (27 "¢, 2q)
Jife

2
1 - m(mt1) - 2
=CT, Mg 2 2Mg™
= CT. <—1 > zl+m+nq“’§”+m“’;*”+n2> . (6.3.2)

Extracting the constant term in (6.3.2), we have

C n 1 G 132 m+3m2 m
Z a371(n)q — f2f Z qg(Sl +4lm~+3m= 41+ ) (633)
n=0 1J2

l,m=—00

Using the integer matrix exact covering system

Bm, B + ,
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1 -1 n
where B = and 7 = ' , we can split the right side of (6.3.3) into
2 sums as
S 1 = 2 2 > 2 2
Za&l(n)q" — f2f ( Z q5”1+n2+’ﬂ1 + Z q5n1+n2+6n1+n2+2>
n=0 1J2 ni,ng=—00 ni,na=—00
1 J—
=7 (@) f(q", %) +2¢*¢(*) fla ')
i
1
= (e(a) f(q*.q%) + 2q1(q*) f(a, ")) -
i
This completes the proof of Theorem 6.3.1. O

Theorem 6.3.2. We have

> anan)a” = 1 (A6 0) + 200 ). (634

Proof. The proof of (6.3.4) is similar to the proof of (6.3.1). We omit the details. [

n=0

6.4 Generating function for a, o(n)

In this section, we present the generating function and few congruences for the

function ay 2(n).

Theorem 6.4.1. We have

N fifs . fafih
as 2(n)q" = + 4q : 6.4.1
; 1.2(7) fif frz [ fafe (64.1)
Proof. Setting k =4 and ¢ = 2 in (6.1.1) the generating function Ay 2(q) of a4 2(n)
is given by
1
A4,2( ) - CTZ( 212 f(Z_17 ZQ>2f(Z_IQ7 ZQ)2>
fifs

2 2
1 o mq(m o
=L o | X #me™ET > A
fl f2 m]=—00 ma=—00
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o0
= CT. <f2_1f_2 > zm1+m2+m3+m4q’”“”£””+’”2(”;2*”+m§+mi>
1.2 mi, mg, m3, mg=—00
o
_ f2]_f2 Z q%(3m%+3m§+4m§+4m1m2+4m1m3+4m2m3+m1+m2). (642)
L2 iy, ma, ma=—o0
Using the integer matrix exact covering system
1
Bn,Bn+ | 0 ,
0
0 1 1 ny
where B=| 0 1 =1 andn = | p, |, we can split the right side of (6.4.2)
1 -1 0 ns

into 2 sums as

o0 1 o0
Z as2(n)q" = — Z q2n§+3n§+n§+nz
fifs

n=0 ni,ng, N3=—00

o)

+ q2 § q2n%+3n%+n§+2n1 +4n2+n3>

ni,n2,n3=—o0

- f%lfg (@)@ (. a") + 1L g g ) F(La?)
- ﬁ (@)@ F( q) + 4@ (@) @) . (64.3)
Replacing ¢ by ¢% in (1.2.14), we have
2 4y _ f4f62
fla.q") = Toha (6.4.4)
Using (1.2.6), (1.2.7), (1.2.13), and (6.4.4) in (6.4.3), we find that
- . fifR faf2 frz
2 a2l = e+ e (6.45)
which is (6.4.1). O
Corollary 6.4.2. We have
- n [3°f3 F3 18 [t f2f6foa
2 @220 = e+ ST R A (6.4.6)



Z CL472(47’L + 2)
n=0

o0

ZCL42 47’L+3

n=0

Proof. Using (1.2.16), (1.2.17), and (1.2.18) in

oo
>_a12(n)g
n=0

)g" = 4

n_ Jofsfifiy

1313 fofsfo
fifz

1 312

faf2 1o
fifsfoa

6f3f24

31313

+4
Ffs

+ 8¢

+

q =
fE 18 134
+ 64q

+12

Z a4,2(4n + 1)
n=0

8 3f8f12f16f48f4

+ 4q

+ 56q

Ebor

+ 48¢ 2f2

f128f4f8f12
16 £3 £2 14
i
8 2f2f3f4 f12

s

5 faf§ fis

I 21tk
fl%fiofa R Y R T

10 8 6
LIS gy IS,
ot BBIES

8f8 f12
oA

+ 4q

+

+ 64q

+ 128¢q

[ 3 [ 313 fis
fE 13 fr2 P18 15
S 15 f3 fa 1 fi fia
f124fsf1z f10 18 3

f23f3f4f12 2f3f46f24

S TR

3218 f220f3f82f{12
[ fafro L1 f3
f3 fsfi fro

f8fe

(6.4.1), we have

+12

+12¢ + 64q + 128¢

+ 160q

f3" f3frz
fE8 £l fe
32 f3fi 3
[P

=16

+ 32 + 32

+ 32¢q + 256¢q

“fsfif5
Ofs fta

8 2f16f24f4

2 J8 frafas
I3 fas !

15 fos TS

f6f8f4 f8f24f4
05 S o fas

fefi®
214f5?f12

+
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(6.4.7)

(6.4.8)

12 fsfafro

(6.4.9)

f3 1 S8
fi® frz

(6.4.10)

(6.4.11)

(6.4.12)

Extracting the terms with even powers of ¢ in (6.4.12) and then replacing ¢ by ¢,

we arrive at (6.4.6).

Extracting the terms with odd powers of ¢ in (6.4.12) followed by dividing the

equation by ¢, and then replacing ¢ by ¢, we arrive at (6.4.7).
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Using (1.2.17) and (1.2.18) in (6.4.6), we have

5 f6f816f428 +48¢ 4f6f8f48f 8 4f6f8 foafa

Z as,2(2n)q" = 64q +12

— TN RN 5
g o DTl g £ 0
o R v el oo G
rour R 2f6§225;i5;1§ S 7
g e B 04

Extracting the terms involving even powers of ¢ in (6.4.13) and then replacing ¢?
by ¢, we arrive at (6.4.8).

Extracting the terms with odd powers of ¢ in (6.4.13) followed by dividing the
equation by ¢, and then replacing ¢* by ¢, we arrive at (6.4.10).
Using (1.2.17) and (1.2.18) again in (6.4.7), we have

& FeF2FALE el TSR fof2fonf
4 4 8 48J 4 3 8J48J4 3 8 4
2 aaal2n+ " = 04q" it 820° et - 2900 2
N N S N A
AP g olsali | gy plsTin]i
f8f16f24 f2 f f24
2f6f8f]_6f24f4 f6f24f4 f12f4
TR g 10 e
+ 32 f6f16f24f + 4 f122fj4 + 4 f6f126f£14f22 (6414)

f222f8f12f48 f227f§)f24 f226f8}0f122f428

Extracting the terms involving even powers of ¢ in (6.4.14) and then replacing ¢
by ¢, we arrive at (6.4.9).
Extracting the terms with odd powers of ¢ in (6.4.14) followed by dividing the

equation by ¢, and then replacing ¢* by ¢, we arrive at (6.4.11).
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Corollary 6.4.3. Forn >0,

as2(4n+2) =0 (mod 2), (6.4.15)
as2(2n+1)=0 (mod 8), (6.4.16)
ag2(4n+3)=0 (mod 16). (6.4.17)

Proof. Congruences (6.4.15) and (6.4.17) follow directly from (6.4.10) and (6.4.11),
respectively.

Also from (6.4.7), we have

- n_ SRR R
;a4,2(2n+ )" =4 07, +4f§f8f24
=4f7 +4f}

=38f> (mod 8)

=0 (mod 8). (6.4.18)

Congruence (6.4.16) follows from (6.4.18).

O
6.5 Ramanujan-type congruences for ay ;(n)
Theorem 6.5.1. For any prime p and n > 0, we have
asp p(pn) = asg,1(n) (mod p). (6.5.1)

Proof. From Andrews’ general principle 1.1.1, the generating function A, ,(q) of
asgp, p(n) is given by

(e 9]

Agy p(q) = CT, (H (14 2" ™) (14 27" (1 + 2> (1 + Z—1q2n+1)p>

n=0

=CT, (H (14 27¢"P) (14 27P¢"") (1 + 2P¢"*P) (1 + Z_pq2p"+p)> (mod p)
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EOTZ< L f(z_p,zpqp)f(z_pqp,zpqp)> (mod p)

fpf?p
. 1 > pmi+pma Pm1(m1+1)+pm2
=CT, T Z 2 qg 2 2| (mod p). (6.5.2)
PI2P i, me=—o0

Extracting the constant term from (6.5.2), we have

G 1
Za%,p(n)qn = T Z qun (3n+1) (mod p)
n=0 PJ4P p=—0o
¢, ¢*
_/ <f fg ) (mod p). (6.5.3)
pJzp
Replacing ¢ by ¢? in (1.2.14), we have
fof3
P g7) = 6.5.4
f(d".a™) T o (6.5.4)
Employing (6.5.4) in (6.5.3), we find that
ZCLQP » f2f6 (mod p). (6.5.5)
g

3

Extracting the terms in (6.5.5) where the powers of ¢ are multiple of p and then

replacing ¢P by ¢, we have

fi
asp.p(pn)q" = mod p). 6.5.6
Z 2p,p F2fs ( ) ( )
Comparing (6.2.1) and (6.5.6), we arrive at (6.5.1). O

Corollary 6.5.2. For any prime p and n > 0,
azp,p(pn+7) =0 (mod p), (6.5.7)
where r € {1, 2, ..., p—1}.

Proof. Congruence (6.5.7) follows directly from (6.5.5). O
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