
Chapter 7

2n-dissection of Euler product

7.1 Introduction1

This chapter is devoted to an elementary proof of Hirschhorn’s conjecture [36] on

2n−dissection of Euler product E(q) := (q; q)∞ =
∞∏
n=1

(1− qn), |q| < 1.

We can view E(q) as a particular case of Ramanujan’s theta function given by

(1.2.1).

In fact,

f(−q,−q2) = (q; q3)∞(q2; q3)∞(q3; q3)∞ = (q; q)∞ = E(q).

For the 3-dissection of E(q), we have [15, Entry 31, p. 48]

E(q) = f(−q12,−q15)− qf(−q6,−q21)− q2f(−q3,−q24).

We also have

E(q) = E(q25)

[
f(−q10,−q15)
f(−q5,−q20)

− q − q2
f(−q5,−q20)
f(−q10,−q15)

]
,

E(q) = E(q49)

[
f(−q14,−q35)
f(−q7,−q42)

− q
f(−q21,−q28)
f(−q14,−q35)

− q2 + q3
f(−q7,−q42)
f(−q21,−q28)

]
,

E(q) = E(q121)

[
f(−q44,−q77)
f(−q22,−q99)

− q
f(−q22,−q99)
f(−q11,−q110)

− q2
f(−q55,−q66)
f(−q33,−q88)

+ q5 + q7
f(−q33,−q88)
f(−q44,−q77)

− q15
f(−q11,−q110)
f(−q55,−q66)

]
,

1The contents of this chapter appeared in Bulletin of the Australian Mathematical Society [61].
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which are respectively, 5-, 7-, and 11- dissections of E(q) and can be found in [15,

p. 82, p. 303, p. 363]. A generalized form of these dissections can be found in the

following theorem.

Theorem 7.1.1. Suppose m is a positive integer with m ≡ 1(mod 6). If m = 6t+1

with t positive, then

E(q1/m)

E(qm)
= (−1)tq(m

2−1)/(24m)

+

(m−1)/2∑
k=1

(−1)k+tq(k−t)(3k−3t−1)/(2n)f(−q2k,−qn−2k)

f(−qk,−qn−k)
.

If m = 6t− 1 with t positive, then

E(q1/m)

E(qm)
= (−1)tq(m

2−1)/(24m)

+

(m−1)/2∑
k=1

(−1)k+tq(k−t)(3k−3t+1)/(2n)f(−q2k,−qn−2k)

f(−qk,−qn−k)
.

Theorem 7.1.1 appears as Theorem 12.1 in [15, p. 274] and are due to indepen-

dent works of Ramanathan [55] and Evans [29]. Recently, this have been reproved by

McLaughlin [48] while establishing some other general dissections involving infinite

products.

Hirschhorn [36, p. 332] gave the 2- and 4- dissections of E(q) as

E(q) = −q(q4, q28; q32)∞(q6, q10, q16; q16)∞ + (q12, q20; q32)∞(q2, q14, q16; q16)∞

(7.1.1)

E(q) = q7(q8, q120; q128)∞(q28, q36, q64; q64)∞ − q2(q24, q104; q128)∞(q20, q44, q64; q64)∞

+ (q40, q88; q128)∞(q12, q52, q64; q64)∞ − q(q56, q72; q128)∞(q4, q60, q64; q64)∞,

(7.1.2)

where (a1, a2, · · · , an; q)∞ := (a1; q)∞(a2; q)∞ · · · (an; q)∞.

Identity (7.1.2) was obtained by 4-dissecting the products (q6, q10, q16; q16)∞ and

(q2, q14, q16; q16)∞ in (7.1.1). Hirschhorn also remarked that we can continue in the

same manner and find the 8-dissection, the 16-dissection and so on. He concluded

by noting the following conjecture on 2n−dissection of E(q).
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Conjecture 7.1.2.

E(q) =
2n∑
k=1

(−1)n+k+1qck
(
q(2k−1)2n+1

, q2
2n+3−(2k−1)2n+1

; q2
2n+3
)
∞

×
(
q2

2n+1+(2k−1)2n , q2
2n+1−(2k−1)2n , q2

2n+2

; q2
2n+2
)
∞
,

where

if n is odd, ck = P

(
2n+1 − 1

3
− (k − 1)

)
, k = 1, 2, 3, . . . , 2n, (7.1.3)

if n is even, ck = P

(
−2n+1 − 2

3
+ (k − 1)

)
, k = 1, 2, 3, . . . , 2n, (7.1.4)

and

P (n) =
3n2 − n

2
. (7.1.5)

Cao [20] discussed product identities for theta functions using integer matrix

exact covering system. In particular, he gave the following result [20, Corollary 2.2]

involving product of two theta functions.

Theorem 7.1.3. If |ab| < 1 and cd = (ab)k1k2, where both k1 and k2 are positive

integers, then

f(a, b)f(c, d) =

k1+k2−1∑
r=0

a
r(r+1)

2 b
r(r−1)

2 f(a
k21+k1

2
+k1rb

k21−k1
2

+k1rd, a
k21−k1

2
−k1rb

k21+k1
2

−k1rc)

× f(a
k22+k2

2
+k2rb

k22−k2
2

+k2rc, a
k22−k2

2
−k2rb

k22+k2
2

−k2rd).

(7.1.6)

We also consider the following version of Quintuple Product Identity.

Theorem 7.1.4 (Quintuple Product Identity). For a ̸= 0,

(−aq; q)∞(−a−1; q)∞(a2q; q2)∞(a−2q; q2)∞(q; q)∞

= (a3q2; q3)∞(a−3q; q3)∞(q3; q3)∞ + a−1(a3q; q3)∞(a−3q2; q3)∞(q3; q3)∞

= f(−a3q2,−a−3q) + a−1f(−a3q,−a−3q2). (7.1.7)
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We use (7.1.6), (7.1.7) and other properties of Ramanujan’s theta function to

prove Conjecture 7.1.2. In Section 7.2, we mention few preliminary results involving

Ramanujan’s theta function and pentagonal numbers P (n). In Section 7.3, we detail

out the proof of Conjecture 7.1.2.

7.2 Preliminaries

Lemma 7.2.1. For any integer n, we have

f(a, b) = an(n+1)/2bn(n−1)/2f(a(ab)n, b(ab)−n). (7.2.1)

Proof. See [15, Entry 18, p. 34].

Lemma 7.2.2. We have

f(a, b) = af(a2b, a−1). (7.2.2)

Proof. Set n = 1 in (7.2.1).

Lemma 7.2.3. Let P (n) be as in (7.1.5). For positive integers n and k, we have

P (2n+1 + k − 1)− P (k − 1) = 3× 22n+1 + 2n(6k − 7). (7.2.3)

Proof. We have

P (s)− P (t) =
1

2
(s− t)(3s+ 3t− 1). (7.2.4)

Replacing s and t by 2n+1 + k− 1 and k− 1 respectively, in (7.2.4), we find that

P (2n+1 + k − 1)− P (k − 1) =
1

2
× 2n+1(3× 2n+1 + 6k − 7)

= 2n(3× 2n+1 + 6k − 7)

= 3× 22n+1 + 2n(6k − 7).
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Lemma 7.2.4. If n is even and ck = P

(
−2n+1 − 2

3
+ (k − 1)

)
, then

P

(
2n+2 + 2

3
− k

)
= ck + 22n+1 − 2n(2k − 1). (7.2.5)

Proof. We have ck = P

(
−2n+1 − 2

3
+ (k − 1)

)
= P

(
3k − 2n+1 − 1

3

)
.

Hence

P

(
2n+2 + 2

3
− k

)
− ck = P

(
2n+2 − 3k + 2

3

)
− P

(
3k − 2n+1 − 1

3

)
=

1

2

(
2n+2 − 3k + 2

3
− 3k − 2n+1 − 1

3

)
× (2n+2 − 3k + 2 + 3k − 2n+1 − 1− 1)

=
1

2

(
2n+1 − 2k + 1

)
× 2n+1

= 2n
(
2n+1 − 2k + 1

)
= 22n+1 − 2n(2k − 1). (7.2.6)

Identity (7.2.5) follows from (7.2.6).

Lemma 7.2.5. If n is even and ck = P

(
−2n+1 − 2

3
+ (k − 1)

)
, then

P

(
2n+2 + 2

3
+ k − 1

)
= ck + 22n+1 + 3× 2n(2k − 1).

Proof. Similar to proof of Lemma 7.2.4.

Lemma 7.2.6. If n is odd and ck = P

(
2n+1 − 1

3
− (k − 1)

)
, then

P

(
2n+1 + 2

3
+ k − 1

)
= ck + 2n+1(2k − 1).

Proof. Similar to proof of Lemma 7.2.4.

Lemma 7.2.7. If n odd is and ck = P

(
2n+1 − 1

3
− (k − 1)

)
, then

P

(
2n+3 + 2

3
− k

)
= ck + 5× 22n+1 − 3× 2n(2k − 1).

Proof. Similar to proof of Lemma 7.2.4.
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7.3 Proof of the main result

Theorem 7.3.1. Conjecture 7.1.2 holds good.

Proof. We set a = −q, b = −q2, c = −q22n+2
d = −q22n+3

, k1 = k2 = 2n+1, and

r = k − 1 in (7.1.6) to obtain

f(−q,−q2)f(−q22n+2

,−q22n+3

) =
2n+2∑
k=1

(
(−1)k+1q

(k−1)(3k−4)
2

× f(−q7×22n+1+2n(6k−7),−q5×22n+1−2n(6k−7))

× f(−q5×22n+1+2n(6k−7),−q7×22n+1−2n(6k−7))

)
.

(7.3.1)

Noting that f(−q,−q2) = E(q), f(−q22n+2
,−q22n+3

) = E(q2
2n+2

) and P (k − 1) =

(k − 1)(3k − 4)

2
, we rewrite (7.3.1) as

E(q)E
(
q2

2n+2
)
=

2n+2∑
k=1

(−1)k+1qP (k−1)f(−q7×22n+1+2n(6k−7),−q5×22n+1−2n(6k−7))

× f(−q5×22n+1+2n(6k−7),−q7×22n+1−2n(6k−7))

=
2n+2∑
k=1

Tk, (7.3.2)

where

Tk = (−1)k+1qP (k−1)f(−q7×22n+1+2n(6k−7),−q5×22n+1−2n(6k−7))

× f(−q5×22n+1+2n(6k−7),−q7×22n+1−2n(6k−7)). (7.3.3)

Now

T2n+1+k = (−1)2
n+1+k+1qP (2n+1+k−1)

× f(−q7×22n+1+2n(6(2n+1+k)−7),−q5×22n+1−2n(6(2n+1+k)−7))

× f(−q5×22n+1+2n(6(2n+1+k)−7),−q7×22n+1−2n(6(2n+1+k)−7)). (7.3.4)
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Employing (7.2.3) and simplifying the exponents of the arguments of the theta

functions, we rewrite (7.3.4) as

T2n+1+k = (−1)k+1qP (k−1)q3×22n+1+2n(6k−7)f(−q13×22n+1+2n(6k−7),−q−22n+1−2n(6k−7))

× f(−q11×22n+1+2n(6k−7),−q22n+1−2n(6k−7)). (7.3.5)

Adding (7.3.3) and (7.3.5), we find that

Tk + T2n+1+k = (−1)k+1qP (k−1)

(
f(−q7×22n+1+2n(6k−7),−q5×22n+1−2n(6k−7))

× f(−q5×22n+1+2n(6k−7),−q7×22n+1−2n(6k−7))

+ q3×22n+1+2n(6k−7)f(−q13×22n+1+2n(6k−7),−q−22n+1−2n(6k−7))

× f(−q11×22n+1+2n(6k−7),−q22n+1−2n(6k−7))

)
. (7.3.6)

Setting a = q3×22n+1+2n(6k−7), b = q3×22n+1−2n(6k−7), c = −q22n+2
, and d = −q22n+3

in

(7.3.6) we obtain

Tk + T2n+1+k = (−1)k+1qP (k−1)

(
f(ac, bd)f(ad, bc) + af(

b

c
,
c

b
abcd)f(

b

d
,
d

b
abcd)

)
.

(7.3.7)

Employing (1.2.12) in (7.3.7), we have

Tk + T2n+1+k = (−1)k+1qP (k−1)f(a, b)f(c, d)

= (−1)k+1qP (k−1)f(q3×22n+1+2n(6k−7), q3×22n+1−2n(6k−7))

× f(−q22n+2

,−q22n+3

)

= (−1)k+1qP (k−1)f(q3×22n+1+2n(6k−7), q3×22n+1−2n(6k−7))E
(
q2

2n+2
)
.

(7.3.8)

From (7.3.2), we have

E(q)E
(
q2

2n+2
)
=

2n+1∑
k=1

(Tk + T2n+1+k) . (7.3.9)
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Using (7.3.8) in (7.3.9), we find that

E(q) =
2n+1∑
k=1

(−1)k+1qP (k−1)f(q3×22n+1+2n(6k−7), q3×22n+1−2n(6k−7))

=
2n+1∑
k=1

Hk,

where Hk = (−1)k+1qP (k−1)f(q3×22n+1+2n(6k−7), q3×22n+1−2n(6k−7)).

We now arrange Hs
k in pairs so that each of these pairs can be reduced to quin-

tuple products. For this purpose we consider two separate cases according as n is

even or odd.

Case I n is even.

We consider

S1 =

2n+1−2
3∑

k=1

(
H 2n+2+2

3
−k+1

+H 2n+2+5
3

+k−1

)
, (7.3.10)

S2 =
2n∑

k= 2n+1+1
3

(
H

k+1− 2n+1+1
3

+H 2n+2+5
3

−k

)
. (7.3.11)

It may be noted that S2 is the sum of H1, H2, · · · , H 2n+1+4
3

and S1 is the sum of

H 2n+1+7
3

, H 2n+1+10
3

, · · · , H2n+1 and so

E(q) = S1 + S2. (7.3.12)

We also note that ck is given by (7.1.4).

Now

H 2n+2+2
3

−k+1
= (−1)

2n+2+2
3

−kq
P
(

2n+2+2
3

−k
)

× f(q
3×22n+1+2n

(
6
(

2n+2+2
3

−k+1
)
−7

)
, q

3×22n+1−2n
(
6
(

2n+2+2
3

−k+1
)
−7

)
).

(7.3.13)

Employing Lemma 7.2.4 in (7.3.13) and simplifying the exponents of the arguments
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of the theta functions, we find that

H 2n+2+2
3

−k+1
= (−1)kqck+22n+1−2n(2k−1)f

(
q7×22n+1−3×2n(2k−1), q−22n+1+3×2n(2k−1)

)
.

(7.3.14)

Also

H 2n+2+5
3

+k−1
= (−1)

2n+2+5
3

+kq
P
(

2n+2+2
3

+k−1
)

× f

(
q
3×22n+1+2n

(
6
(

2n+2+2
3

+k
)
−7

)
, q

3×22n+1−2n
(
6
(

2n+2+2
3

+k
)
−7

))
.

(7.3.15)

Employing Lemma 7.2.5 in (7.3.15) and simplifying the exponents, we obtain

H 2n+2+5
3

+k−1
= (−1)k+1qck+22n+1+3×2n(2k−1)f

(
q7×22n+1+3×2n(2k−1), q−22n+1−3×2n(2k−1)

)
.

(7.3.16)

Using (7.2.2) in (7.3.16), we find that

H 2n+2+5
3

+k−1
= (−1)k+1qckf

(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)
. (7.3.17)

Replacing the expressions forH 2n+2+2
3

−k+1
andH 2n+2+5

3
+k−1

from (7.3.14) and (7.3.17),

respectively, in (7.3.10), we find that

S1 =

2n+1−2
3∑

k=1

(−1)k+1qck
(
f
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)

− q2
2n+1−2n(2k−1)f

(
q7×22n+1−3×2n(2k−1), q−22n+1+3×2n(2k−1)

))
. (7.3.18)

Further,

H
k+1− 2n+1+1

3

= (−1)k−
2n+1+1

3 q
P
(
k− 2n+1+1

3

)

× f

(
q
3×22n+1+2n

(
6
(
k+1− 2n+1+1

3

)
−7

)
, q

3×22n+1−2n
(
6
(
k+1− 2n+1+1

3

)
−7

))
= (−1)k+1qckf

(
q2

2n+1+3×2n(2k−1), q5×22n+1−3×2n(2k−1)
)
. (7.3.19)
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Also

H 2n+2+5
3

−k
= (−1)

2n+2+5
3

−k+1qP ( 2
n+2+5

3
−k−1)

× f

(
q
3×22n+1+2n

(
6
(

2n+2+5
3

−k
)
−7

)
, q

3×22n+1−2n
(
6
(

2n+2+5
3

−k
)
−7

))
.

(7.3.20)

Employing Lemma 7.2.4 in (7.3.20) and simplifying the exponents, we have

H 2n+2+5
3

−k
= (−1)kqck+22n+1−(2k−1)2nf

(
q7×22n+1−3×2n(2k−1), q−22n+1+3×2n(2k−1)

)
.

(7.3.21)

Using (7.3.19) and (7.3.21) in (7.3.11), we find that

S2 =
2n∑

k= 2n+1+1
3

(−1)k+1qck
(
f
(
q2

2n+1+3×2n(2k−1), q5×22n+1−3×2n(2k−1)
)

− q2
2n+1−(2k−1)2nf

(
q7×22n+1−3×2n(2k−1), q−22n+1+3×2n(2k−1)

))
. (7.3.22)

From (7.3.12), (7.3.18), and (7.3.22), we find that

E(q) =

( 2n+1−2
3∑

k=1

+
2n∑

k= 2n+1+1
3

)
(−1)k+1qck

(
f
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)

− q2
2n+1−2n(2k−1)f

(
q7×22n+1−3×2n(2k−1), q−22n+1+3×2n(2k−1)

))
=

2n∑
k=1

(−1)n+k+1qck
(
f
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)

− q2
2n+1−2n(2k−1)f

(
q7×22n+1−3×2n(2k−1), q−22n+1+3×2n(2k−1)

))
.

(7.3.23)

Case II n is odd.

In this case we consider the sums

S3 =

2n+1+2
3∑

k=1

(
H 2n+1+2

3
−k+1

+H 2n+1+5
3

+k−1

)
, (7.3.24)
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S4 =
2n∑

k= 2n+1+5
3

(
H 2n+1+2

3
+k

+H 2n+3+5
3

−k

)
. (7.3.25)

It may be noted that S3 is the sum of H1, H2, · · · , H 2n+2+4
3

and S4 is the sum of

H 2n+2+7
3

, H 2n+2+10
3

, · · · , H2n+1 and so

E(q) = S3 + S4. (7.3.26)

It may also be noted that ck is given by (7.1.3).

We have

H 2n+1+2
3

−k+1
= (−1)

2n+1+2
3

−kq
P
(

2n+1+2
3

−k
)

× f

(
q
3×22n+1+2n

(
6
(

2n+1+2
3

−k+1
)
−7

)
, q

3×22n+1−2n
(
6
(

2n+1+2
3

−k+1
)
−7

))
= (−1)kqckf

(
q2

2n+1+3×2n(2k−1), q5×22n+1−3×2n(2k−1)
)
. (7.3.27)

Similarly

H 2n+1+5
3

+k−1
= (−1)

2n+1+5
3

+kq
P
(

2n+1+5
3

+k−2
)

× f

(
q
3×22n+1+2n

(
6
(

2n+1+5
3

+k−1
)
−7

)
, q

3×22n+1−2n
(
6
(

2n+1+5
3

+k−1
)
−7

))
.

(7.3.28)

Using Lemma 7.2.6 in (7.3.28) and simplifying the exponents, we have

H 2n+1+5
3

+k−1
= (−1)k+1qck+(2k−1)2n+1

f
(
q2

2n+1−3×2n(2k−1), q5×22n+1+3×2n(2k−1)
)
.

(7.3.29)

Now we employ (7.2.2) in (7.3.29) to obtain

H 2n+1+5
3

+k−1
= (−1)k+1qck+(2k−1)2n+1

q2
2n+1−3×2n(2k−1)

× f
(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

)
= (−1)k+1qck+22n+1−2n(2k−1)f

(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

)
.

(7.3.30)
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Using (7.3.27) and (7.3.30) in (7.3.24), we find that

S3 =

2n+1+2
3∑

k=1

(−1)kqck
(
f
(
q2

2n+1+3×2n(2k−1), q5×22n+1−3×2n(2k−1)
)

− q2
2n+1−2n(2k−1)f

(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

))
. (7.3.31)

Also

H 2n+1+2
3

+k
= (−1)

2n+1+2
3

+k+1q
P
(

2n+1+2
3

+k−1
)

× f

(
q
3×22n+1+2n

(
6
(

2n+1+2
3

+k
)
−7

)
, q

3×22n+1−2n
(
6
(

2n+1+2
3

+k
)
−7

))
.

(7.3.32)

Using Lemma 7.2.6 in (7.3.32) and simplifying the exponents, we obtain

H 2n+1+2
3

+k
= (−1)k+1qck+2n+1(2k−1)f

(
q2

2n+1−3×2n(2k−1), q5×22n+1+3×2n(2k−1)
)
.

(7.3.33)

Employing (7.2.1) in (7.3.33), we find that

H 2n+1+2
3

+k
= (−1)k+1qck+2n+1(2k−1)q2

2n+1−3×2n(2k−1)

× f
(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

)
= (−1)k+1qckq2

2n+1−2n(2k−1)f
(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

)
.

(7.3.34)

Further,

H 2n+3+5
3

−k
= (−1)

2n+3+5
3

−k+1q
P
(

2n+3+5
3

−k−1
)

× f

(
q
3×22n+1+2n

(
6
(

2n+3+5
3

−k
)
−7

)
, q

3×22n+1−2n
(
6
(

2n+3+5
3

−k
)
−7

))
.

(7.3.35)

Using Lemma 7.2.7 in (7.3.35), we find that

H 2n+3+5
3

−k
= (−1)kqck+5×22n+1−3×2n(2k−1)f

(
q−5×22n+1+3×2n(2k−1), q11×22n+1−3×2n(2k−1)

)
.

(7.3.36)
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Employing (7.2.2) in (7.3.36), we have

H 2n+3+5
3

−k
= (−1)kqck+5×22n+1−3×2n(2k−1)q−5×22n+1+3×2n(2k−1)

× f
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)

= (−1)kqckf
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)
. (7.3.37)

From (7.3.34), (7.3.37), and(7.3.25), we find that

S4 =
2n∑

k= 2n+1+5
3

(−1)kqck
(
f
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)

− q2
2n+1−2n(2k−1)f

(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

))
. (7.3.38)

Replacing the expressions for S3 and S4 from (7.3.31) and (7.3.38), respectively,

in (7.3.26), we have

E(q) =

( 2n+1+2
3∑

k=1

+
2n∑

k= 2n+1+5
3

)
(−1)kqck

(
f
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)

− q2
2n+1−2n(2k−1)f

(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

))
=

2n∑
k=1

(−1)n+k+1qck
(
f
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)

− q2
2n+1−2n(2k−1)f

(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

))
.

(7.3.39)

From (7.3.23) and (7.3.39) we find that, for any positive integer n

E(q) =
2n∑
k=1

(−1)n+k+1qck
(
f
(
q5×22n+1−3×2n(2k−1), q2

2n+1+3×2n(2k−1)
)

− q2
2n+1−2n(2k−1)f

(
q−22n+1+3×2n(2k−1), q7×22n+1−3×2n(2k−1)

))
,

(7.3.40)

where appropriate expressions for ck are chosen according as n is even or odd.
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Setting A = −q−22n+1+2n(2k−1) and Q = q2
2n+2

in (7.3.40) we obtain

E(q) =
2n∑
k=1

(−1)n+k+1qck
(
f(−A3Q2,−A−3Q) + A−1f(−A3Q,−A−3Q2)

)
. (7.3.41)

Employing quintuple product identity in (7.3.41), we find that

E(q) =
2n∑
k=1

(−1)n+k+1qck(−AQ;Q)∞(−A−1;Q)∞(A2Q;Q2)∞(A−2Q;Q2)∞(Q;Q)∞

=
2n∑
k=1

(−1)n+k+1qck(A2Q,A−2Q;Q2)∞(−AQ,−A−1, Q;Q)∞

=
2n∑
k=1

(−1)n+k+1qck(q2
n+1(2k−1), q2

2n+3−2n+1(2k−1); q2
2n+3

)∞

× (q2
2n+1+2n(2k−1), q2

2n+1−2n(2k−1), q2
2n+2

; q2
2n+2

)∞.

Thus we have completed the proof of Conjecture 7.1.2.
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