
Chapter 1

Introduction

1.1 Fundamental Concepts

A partition of a positive integer n is a way of expressing n as a sum of positive

integers, known as parts, where different orderings with the same set of parts are

regarded as identical. Alternatively, a partition λ of a positive integer n can be

represented as a finite non-increasing sequence of positive integers (λ1, λ2, . . . , λk)

satisfying n = λ1 + λ2 + . . .+ λk. For example the five partitions of 4 are:

(4), (3, 1), (2, 2), (2, 1, 1), and (1, 1, 1, 1).

The total number of such distinct representations for a given positive integer n is

denoted by p(n).

Beyond the classical definition of partition, there exist several other types of

partitions including overpartitions, plane partitions, regular partitions, tagged-part

partitions, smallest-part partitions, to name a few. By imposing additional condi-

tions on the parts, one can derive numerous other specialized forms of partitions.

These partitions and their associated partition functions are studied from various

perspectives like arithmetic behaviour, combinatorial interpretations, recurrence re-

lations, identification of generating functions etc.

The generating function for p(n), as given by Euler, is

∞∑
n=0

p(n)qn =
1

(q; q)∞
,
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where, for |q| < 1, (a; q)∞ :=
∏∞

n=0(1− aqn) and p (0) = 1.

Ramanujan [56]–[58] found elegant congruence properties for p(n) modulo 5, 7,

and 11, namely, for any non-negative integer n,

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Moreover, Ramanujan offered a more general conjecture which states that if δ =

5a7b11c and λ is an integer such that 24λ ≡ 1 (mod δ), then

p(nδ + λ) ≡ 0 (mod δ).

Ramanujan’s work on partition congruences inspired many researchers to explore

the existence of similar congruences, not only for the partition function p(n) but also

a variety of other partition functions, which are collectively known as Ramanujan-

type congruences.

In this thesis, we primarily investigate arithmetic properties of several classes of

generalized Frobenius partition functions [3]. Our methods are largely elementary

and rely significantly on the properties of Ramanujan’s general theta functions,

which we introduce in Section 1.2.

This thesis is organized into seven chapters including the introductory chapter.

In the next few paragraphs, we present a brief introduction to the fundamental

concepts and terminology that will be used throughout the subsequent chapters,

along with an overview of the thesis structure.

Frobenius pioneered the study of representation of a partition in terms of a 2−

rowed array which was further developed by Andrews [3] in his study of generalized

Frobenius partitions. The basic object used in such studies is the Ferrers diagram

(or Ferrers graph), attributed to N. M. Ferrers by Sylvester [70], which is explained

in detail in the following paragraph.

In a Ferrers diagram, a partition (λ1, λ2, . . . , λk) is represented with the help

of left justified rows of evenly-spaced dots, where the ith row contains λi dots. For
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example, the Ferrers diagram for the partition (5, 4, 4, 3, 2, 1) of 19 is given by

• • • • •
• • • •
• • • •
• • •
• •
•

.

The conjugate partition λ′ of a partition λ is obtained by interchanging the rows

and columns in the Ferrers diagram. Frobenius introduced a method of representing

a partition such that its conjugate can be readily determined. In this method, the

dots above and below the main diagonal in the Ferrers diagram of a partition are

enumerated by rows and columns, respectively, to obtain two strictly decreasing se-

quences (a1, a2, . . . , ar) and (b1, b2, . . . , br) of non-negative integers. Subsequently,

these sequences are presented as rows in a 2 × r matrix also known as Frobenius

symbol which is given by (
a1 a2 . . . ar

b1 b2 . . . br

)
. (1.1.1)

For example, the Frobenius symbol representation for the partition λ = (5, 4, 4, 3, 2, 1)

is

(
4 2 1

5 3 1

)
. We can also verify that the Frobenius symbol representation for

the conjugate (6, 5, 4, 3, 1) of λ is

(
5 3 1

4 2 1

)
, which is a straightforward swap of

the rows of Frobenius notation for λ.

The mention of such objects can be found in the study of group representation

theory by Frobenius [30]. Littlewood [46] and Robinson [59] employed the Frobenius

notation in their study of representation theory of symmetric groups. For additional

information on the use of Frobenius symbol, one can see [72, 73, 74].

In an AMS Memoir [3], Andrews introduced the idea of generalized Frobenius

partitions, or simply F-partitions, which arise naturally as a combinatorial object

associated to elliptic theta functions. A generalized Frobenius partition is an array
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as in (1.1.1) but the entries in the rows are allowed to be non-increasing. Suppose

ϕk(n) denotes the number of F-partitions of n that allow up to k repetitions of an

integer in any row. For example, the eleven partitions enumerated by ϕ3(4) are(
3

0

)
,

(
0

3

)
,

(
2

1

)
,

(
1

2

)
,

(
20

00

)
,

(
00

20

)
,

(
11

00

)
,

(
00

11

)
,

(
10

10

)
,

(
100

000

)
, and

(
000

100

)
.

Andrews gave the generating function of ϕk(n) and obtained elegant q-product rep-

resentations for the generating functions for ϕ1(n), ϕ2(n), and ϕ3(n).

In [3], it was also proved that, for all n ≥ 0,

ϕ2(5n+ 3) ≡ 0 (mod 5).

Andrews also considered another general class of F-partitions, enumerated by cϕk(n),

using k-copies j1, j2, · · · , jk of each nonnegative integer j with strict decrease in each

row. An order relation between two copies ji and lh is defined by “ji < lh if and

only if j < l or j = l and i < h”. Also ji is said to be distinct from lh unless j = l

and i = h.

Since the publication of the Memoir [3], generalized Frobenius partitions emerged

as a rich area of study, with several researchers discovering congruences for ϕk(n)

and cϕk(n). For example, Sellers [66] established that, for all n ≥ 0,

ϕ3(3n+ 2) ≡ 0 (mod 3).

Recently, Andrews et.al. [5] proved that, for all n ≥ 0,

ϕpl−1(pn+ r) ≡ 0 (mod 2),

where p ≥ 5 is a prime, l is a positive integer and 0 < r < p such that 24r + 1 is

quadratic nonresidue modulo p.

Chapter 2 of this thesis is mainly devoted to representations of the generating

functions for ϕk(n), k = 4, 7, 8, 11, 15. We also prove a few congruences modulo

small powers of 2 and 5 for ϕ4(n) in Section 2.4. Moreover, we establish two infinite

families of congruences modulo 2 satisfied by ϕ8(n) in Section 2.7.
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We now define a modular equation as introduced by Ramanujan. For 0 < k < 1,

the complete elliptic integral of the first kind associated with the modulus k, is

defined by

K := K(k) :=

∫ π/2

0

dθ√
1− k2 sin2 θ

.

The number k′ :=
√
1− k2 is called the complementary modulus. One of the classical

results in the theory of elliptic functions asserts that [15, p. 101]

z := φ2(q) =
2

π
K(k) = 2F1

(
1

2
,
1

2
; 1; k2

)
, (1.1.2)

where 2F1 (a, b; c; z) , |z| < 1, denotes the ordinary hypergeometric series, φ(q) =
∞∑

n=−∞

qn
2

,

q := exp

(
−πK

′

K

)
with K ′ = K(k′), (1.1.3)

and

k =

√
1− φ4(−q)

φ4(q)
. (1.1.4)

LetK, K ′, L, and L′ denote complete elliptic integrals of the first kind associated

with the moduli k, k′, l, and l′, respectively. Suppose that

n
K ′

K
=
L′

L
(1.1.5)

for some positive integer n. A relation between k and l induced by (1.1.5) is called

a modular equation of degree n. Following Ramanujan, set α = k2 and β = l2. We

often say that β has degree n over α. If we set zn := φ2(qn), then the multiplier

m of degree n is defined by m :=
z1
zn

. In his notebooks [56], Ramanujan recorded

more than 100 modular equations and in his lost notebook [57], Ramanujan recorded

additional modular equations.

In Chapter 3 of this thesis, we find two representations for the generating function

for ϕ5(n) in terms of q-products. Equating these two representations, we derive two

mixed modular equations for the quadruple of degrees 1, 3, 5, and 15.
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Let cϕk, h(n) represent the number of F-partitions of a positive integer n where

each part may appear at most h times, is taken from k copies of the non-negative

integers, and a strict order relation between the colored parts is maintained. For

example, the four partitions enumerated by cϕ2, 2(1) are(
01
01

)
,

(
02
01

)
,

(
01
02

)
, and

(
02
02

)
.

It is easy to see that the function cϕk, h(n) indeed is a generalisation of the functions

ϕk(n) and cϕk(n), since ϕk(n) = cϕ1, k(n) and cϕk(n) = cϕk, 1(n).

Padmavathamma [53] outlined a method for obtaining representations of the

generating functions for cϕk, h(n) for arbitrary positive integers k and h in terms

of infinite products, more precisely for the functions cϕ2, 2(n) and cϕ2, 3(n). As an

illustration of this work, we include the following result.

∞∑
n=0

cϕ2,2(n)q
n = A0(q)

2
(
q4; q4

)
∞

(
−q2; q4

)2
∞ + 2q−1(qB0(q))

2
(
q4; q4

)
∞

(
−q4; q4

)2
∞ ,

where A0(q) = Φ2(q), the generating function for F-partitions with 2 repetitions and

qB0(q) is the generating function for symbols of the form(
α1 α2 . . . αr αr+1

β1 β2 . . . βr

)
,

which is very much similar to that of Φ2(q) with the additional condition that there

is an extra element in the top row.

In Sections 4.3 and 4.5, we derive representations for the generating functions of

cϕ2, 2(n) and cϕ2, 3(n) followed by congruences modulo small powers of 2 and 3 for

these functions in Sections 4.4 and 4.6.

Chapter 5 is dedicated to a more generalized class of F-partitions called (k, a)-

colored F-partitions, enumerated by cψk, a(n), which is a two rowed array of the

form (
a1 a2 . . . ar

b1 b2 . . . bs

)
such that

n = r +
r∑

i=1

ai +
s∑

j=1

bj,
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where the parts ai, bj are taken from k copies of nonnegative integers, each row is

decreasing with respect to the lexicographical ordering and r − s = a − k
2
, (r, s) ̸=

(0, 0). It is observed that there is a difference in the number of parts in the top and

bottom row which is given by a− k
2
. In the case, when this difference is zero, that

is, a = k
2
, we have cψk, k/2(n) = cϕk(n).

The notion of (k, a)−colored F-partitions was introduced by Jiang, Rolen, and

Woodbury in [37], where they established a bijection between (k, a)-colored F-

partitions and equivalence classes of (k, a)-Motzkin paths. Recently, Sellers and

Eichhorn [28] found some interesting results for the function cψ2, 0(n) which is equiva-

lent to the Drake’s [26] function ψ2l(n). In our work, we derive q-product representa-

tions for the generating functions of cψ2,0(n), cψ3, 1
2
(n), cψ4, 0(n), cψ4, 1(n), cψ6, 0(n),

cψ6, 1(n), cψ6, 2(n), dissect these generating functions, and obtain a few congruences

satisfied by these functions.

In Chapter 6, we discuss a restricted family of F-partitions, enumerated by

ak, i(n), which counts the number of F-partitions with k−colors for any positive

integer n with the restriction that there are no odd parts of some i colors in the

top row and no even parts of these colors in the bottom row. For example, the

F-partitions enumerated by a3, 1(1) are(
01
02

)
,

(
01
03

)
,

(
02
02

)
,

(
03
03

)
,

(
03
02

)
,

(
02
03

)
.

The idea of such restricted F-partitions originated in chapter 7 of [4], where a repre-

sentation for the generating function of a2, 1(n) was given with an alternate notation

a(n). Padmavathamma [52] continued the work and obtained representations for

the generating functions of ak, i(n) for k = 2, 3 and i < k.

In Sections 6.2, 6.3, and 6.4 of this chapter we find representations for the gen-

erating functions of a2, 1(n), a3, i(n), i < 3, and a4, 2(n), respectively. Additionally,

we obtain few congruences modulo small powers of 2 for these functions in Section

6.5.

A t-dissection of any power series A(q) is given by A(q) =
t−1∑
k=0

qkAk(q
t), where

Ak(q
t) are power series in qt.
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In the final chapter of the thesis, that is, Chapter 7 we present an elementary proof of

2n-dissection formula for E(q) := (q; q)∞ =
∞∏
n=1

(1−qn) as conjectured by Hirschhorn

[36, p. 332]. Our proof relies upon sum to product identities for Ramanujan’s general

theta functions as explained by Cao in [20].

Andrews [3] devised the following general principle for determining the generating

functions for F-partitions.

Andrews’ General Principle 1.1.1. If fA(z) := fA(z, q) =
∑
PA(m,n)z

mqn

denotes the generating function for PA(m,n), the number of ordinary partitions of
n into m parts subject to the set of restriction A, then fA(zq)fB(z

−1) has as its
constant term (coefficient of z0) the generating function

ΦA,B(q) :=
∑

n≥0 ϕA,B(n)q
n,

where ϕA,B(n) is the number of F-partitions of n of the form (1.1.1) in which the
top row is subject to the set of restrictions A and the bottom row is subject to the
set of restrictions B.

In Chapters 2–6, we use Andrews’ general principle 1.1.1 extensively to obtain

the generating functions for various F-partitions.

We conclude this section with a brief discussion of an integer matrix exact cov-

ering system as described by Cao [20].

An exact covering system is a partition of the set of integers into a finite set of

arithmetic sequences. An integer matrix exact covering system is a partition of Zn

(The set of all n-tuples with entries from Z) into a lattice and a finite number of its

translates without overlap.

Let

S =
∞∑

x1, x2, ··· , xn=−∞

f(x1, x2, · · · , xn).

We change the variables from xi to yi by the transformation y = Ax, where A is an

integer matrix with detA ̸= 0, x =


x1

x2
...

xn

, and y =


y1

y2
...

yn

. Then as given in [8],

S can be written as a linear combination of k parts using the integer matrix exact
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covering system
{
By + 1

d
Bcr

}k−1

r=0
for Zn, where B = sgn(sn(A))

A∗

dn−1(A)
with A∗ =

adjoint of A, dk(A) = kth determinantal divisor of A, sn(A) =
dn(A)

dn−1(A)
, d = |sn(A)|

and y ≡ cr (mod d), r = 0, 1, · · · , k − 1 is the solution set of By ≡ 0 (mod d).

Several integer matrix exact covering systems were developed and used by Baruah

and Sarmah [8, 10] to obtain the generating functions for F-partitions with 4 and

6 colors respectively. In our work, we use those covering systems together with few

new covering systems for Zn with small values of n using the procedure for obtaining

series-product identities given by Cao [20, 21]. In the next section, we introduce

Ramanujan’s general theta functions and record few useful identities related to these

functions.

1.2 Ramanujan’s general theta functions

Ramanujan’s general theta function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1, (1.2.1)

which is equivalent to Jacobi’s classical theta function

ϑ3(z, q) :=
∞∑

n=−∞

qn
2

e2niz, with |q| < 1.

In fact

f(a, b) = ϑ3(z, q), where a = qe2iz, b = qe−2iz.

For z ̸= 0 and |q| < 1, Jacobi’s triple product identity is given by

∞∑
n=−∞

znqn
2

=
(
−zq; q2

)
∞

(
−q/z; q2

)
∞

(
q2; q2

)
∞ , (1.2.2)

which can be recasted in the form

∞∑
n=−∞

(−1)nznq
n(n+1)

2 = (zq; q)∞
(
z−1; q

)
∞ (q; q)∞ . (1.2.3)
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Using Ramanujan’s general theta function, we can rewrite (1.2.2) in the form

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (1.2.4)

It is easy to verify that

f(a, b) = af(a−1, a2b),

f(a, b) = f(b, a),

f(1, a) = 2f(a, a3),

f(−1, a) = 0. (1.2.5)

We also use the following two special cases of f(a, b):

φ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
f 5
2

f 2
1 f

2
4

, (1.2.6)

ψ(q) := f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
f 2
2

f1
, (1.2.7)

where, here and throughout the thesis, fk := (qk; qk)∞. The product notation used

in the above two identities appear from Jacobi’s triple product identity (1.2.4).

Further, it is easy to note that

(−q;−q)∞ =
f 3
2

f1f4
, (1.2.8)

φ(−q) = f(−q,−q) = (q; q2)2∞(q2; q2)∞ =
f 2
1

f2
. (1.2.9)

After Ramanujan, we also define

χ(q) := (−q; q2)∞ =
f 2
2

f1f4
. (1.2.10)

We also use the following identities involving Ramanujan’s theta functions.

Lemma 1.2.1. For |ab| < 1, we have

f(a, b) = f(a3b, ab3) + af(
b

a
, a5b3). (1.2.11)

Proof. For proof see [20, p. 3, Entry 1.1].
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Lemma 1.2.2. For ab = cd,

f(a, b)f(c, d) = f(ad, bc)f(ac, bd) + af(c/a, a2bd)f(d/a, a2bc). (1.2.12)

Proof. For proof see [15, p. 45, Entry 29].

Lemma 1.2.3. We have

f(q, q5) =
f 2
2 f3f12
f1f4f6

, (1.2.13)

f(q, q2) =
f2f

2
3

f1f6
. (1.2.14)

Proof. The proofs follows from direct applications of Jacobi’s triple product identity
(1.2.4).

Lemma 1.2.4. The following 2-dissections hold.

φ2(q) = φ2(q2) + 4qψ2(q4), (1.2.15)

1

f 2
1

=
f 5
8

f 5
2 f

2
16

+ 2q
f 2
4 f

2
16

f 5
2 f8

, (1.2.16)

1

f 4
1

=
f 14
4

f 14
2 f

4
8

+ 4q
f 2
4 f

4
8

f 10
2

. (1.2.17)

Proof. Identity (1.2.15) is Equation (1.10.1) in [36], whereas identity (1.2.16) is
simply another variant of (1.2.15). Identity (1.2.17) is equivalent to Equation (1.9.4)
in [36].

Lemma 1.2.5. The following 2-dissections hold.

f3
f1

=
f4f6f16f

2
24

f 2
2 f8f12f48

+ q
f6f

2
8 f48

f 2
2 f16f24

, (1.2.18)

f1
f3

=
f2f16f

2
24

f 2
6 f8f48

− q
f2f

2
8 f12f48

f4f 2
6 f16f24

, (1.2.19)

f1f3 =
f2f

2
8 f

4
12

f 2
4 f6f

2
24

− q
f 4
4 f6f

2
24

f2f 2
8 f

2
12

. (1.2.20)

Proof. Identities (1.2.18) and (1.2.19) have been proved by Xia and Yao [79] whereas
identity (1.2.20) is Equation (30.13.1) in [36].

Lemma 1.2.6. We have

c(q) :=
∞∑

m,n=−∞

qm
2+mn+n2+m+n = 3

f 3
3

f1
. (1.2.21)

Proof. Identity (1.2.21) is obtained by combining (22.3.1) and (22.1.7) in [36].
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Lemma 1.2.7. The following 5-dissection holds.

φ(q) = a+ 2qb+ 2q4c, (1.2.22)

where a = φ(q25), b = f(q15, q35), c = f(q5, q45).

Proof. Identity (1.2.22) is Equation (36.3.2) in [36].

Lemma 1.2.8. The following 5-dissection hold.

f1 = f25

(
1

R(q5)
− q − q2R(q5)

)
, (1.2.23)

where

R(q) :=
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

Proof. Identity (1.2.23) is given by Equation (8.1.1) in [36].

Lemma 1.2.9. We have
f 3
1 ≡ J0 + J1 (mod 5), (1.2.24)

where J0 = (q10, q15, q25; q25)∞, J1 = −3q(q5, q20, q25; q25)∞, and

(a1, a2, . . . an; q)∞ = (a1; q)∞( a2; q)∞ . . . (an; q)∞. (1.2.25)

Proof. Identity (1.2.24) is given by Equation (3.2.6) in [36].

Lemma 1.2.10. The following identities hold for φ(q).

φ2(q) = φ2(q2) + 4qψ2(q4), (1.2.26)

φ(q) + φ(q2) = 2
(q3, q5, q8; q8)∞
(q, q4, q7; q8)∞

, (1.2.27)

φ(q) + φ(q5) = 2
(q2, q8, q10, q12, q18, q20; q20)∞
(q, q4, q9, q11, q16, q19; q20)∞

, (1.2.28)

φ2(q)− φ2(q5) = 4q(−q, −q3, −q7, −q9, q10, q10; q10)∞. (1.2.29)

Proof. Equations (1.2.26), (1.2.27), (1.2.28), and (1.2.29) are Equations (1.10.1),
(34.1.1), (34.1.7), and (34.1.20) in [36] respectively.
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