Chapter 2

Generating Functions and
Congruences for F-partitions

2.1 Introduction!

In Section 1.1 we discussed F-partitions and two particular cases of it enumerated
by ¢r(n) and cor(n). Andrews [3] gave the following general form for the generating
function ®x(q) of ¢x(n).

Z C(k_l)ml+(k_2)m2+m+mk71qQ(mlym%~~~7mk71)
d(q) = b — , 2.1.1
@ (¢ @)k, (211)
where
Q(my, ma, ..., mp_1) =mi+ms+...+mi_ | + Z m;m;, (2.1.2)
1<i<j<k—1

and C — 627ri/(k+l)'

In particular, Andrews found the following elegant infinite product representa-

tions for ®1(q), P2(q), and P5(q).

st 1
v = Il === = -y

!Some contents of Sections 2.3 and 2.4 appeared in Integers [60].
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7 (1= q9)
®3(q) = }_[1 (1 — ¢5=1)(1 — ¢"2)2(1 — ¢6»3)3(1 — ¢6—4)2(1 — ¢6n—5)(1 — ¢'2)’

For the second general class of F-partitions, k-copies ji, j2,- - , jrx of each non-
negative integer j are considered and an order relation between two copies j; and [,
is defined by “j; < I, if and only if j <l or j =1 and ¢ < h”. Also j; is said to be
distinct from [, unless j = [ and i = h. Further, c¢y(n) represents the number of
F-partitions of n using these k-copies of integers with strict decrease in each row.

Moreover, the generating function for cgy(n) is given by [3],

o0

Z qQ(m17m27~--,mk—1)

mi,m2,...,Mk_1=—00

(a5 @)k,

> cr(n)g" =
n=0
where Q(my, ma, ..., mg_1) is defined in (2.1.2).
In [3], it was also proved that
P2(5n + 3) = cp2(bn+3) =0 (mod 5),
cor(n) =0 (mod k?) if k is a prime and does not divide n.
Since the publication of the Memoir [3] a number of authors worked on these parti-

tion functions and uncovered a host of congruences mostly for c¢y(n). For example,

Sellers [68] established that
¢3(3n+2) =0 (mod 3).

Lovejoy [47] established modular forms whose Fourier coefficients are related to

cp3(n) and proved the following congruences modulo 5, 7, 11, and 19 for c@s(n):

chs(45n +23) =0 (mod 5),
ch3(45n +41) =0  (mod 5),
ch3(63n+50) =0 (mod 7),
c63(99n 4+ 95) =0 (mod 11),

co3(17In+50) =0 (mod 19).



15

Baruah and Sarmah [8] represented the generating function for c¢4(n) in terms of

g-products and established the following congruences modulo powers of 4 for cgy(n):

cps(2n+1) =0 (mod 4?),
cps(dn +3) =0 (mod 4%),
cps(dn+2)=0 (mod 4).
Xia [77] proved the following congruences modulo 5 for cgy(n):
ch4(20n +11) =0 (mod 5).
Hirschhorn and Sellers [35] proved the following characterization of c¢4(10n + 1)

modulo 5:

E+1 (mod b) if n = k(3k + 1) for some integer k,
cps(10n +1) =
0 (mod 5) otherwise.

From the above characterization they found the following infinite set of Ramanujan-
type congruences modulo 5 satisfied by c¢4(n): Let p > 5 be prime and let r be an
integer, 1 < r < p—1, such that 12r 41 is a quadratic non-residue modulo p. Then,

for all n > 0,
cps(10pn +10r +1) =0 (mod 5).

Garvan and Sellers [31] proved several infinite families of congruences for cgy(n),
where k is allowed to grow arbitrarily large. In particular, they proved that, if p is

a prime, r is an integer such that 0 < r < p and if
cop(pn+1r)=0 (mod p)
for all n > 0, then

copnir(pn+7) =0 (mod p)

forall N >0 and n > 0.

As a corollary, they proved a number of congruences modulo 3, 5, 7, and 11 for
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copn+k(pn + 1) for p=3, 5, 7, and 11 and particular values of k.
For some other congruences and families of congruences involving generalized Frobe-
nius partition we refer to [1, 10, 22, 24, 25, 28, 34, 40, 41, 42, 45, 51, 54, 69, 71, 76, 78].
Kolitsch [38, 39] introduced the function cg,(n), which denotes the number of
F-partitions of n with k& colors whose order is k& under cyclic permutation of the
k-colors. For example, the F-partitions enumerated by cg,(2) are
1, 1, 1, 1, 0, 0, 04 d 04 here the subscrint
, , , , an , where the subscripts rep-
0,)°\0o,) \o,)" \o, ) \1. )7 \1,) \u, 1, PR Tep
resent the two colors viz. red and green of the non-negative integers. The generating

function for c¢,(n) is given by [39],

Yy gem
S G = =
n=0

(¢; @)%
where the sum of the right extends over all vectors m = (my, mq, ..., my) with
m.I =1 and Q(m) = 3% (m; — myy1)? wherein T=(1,1,...,1) and my1 = my.

Kolitsch [38] found that, for all integers k > 2,
cpp(n) =0 (mod k).
Sellers [66, 67] established that
cop(kn) =0 (mod k*) for k=2, 3,5, 7, and 11.

The above results are then generalised by Kolitsch [44].

Baruah and Sarmah [8] established the following congruences modulo powers of 4

for cg,(n) :

co,(2n) =0 (mod 4%),
co,(4n+3) =0 (mod 4%),
co,(4n) =0 (mod 4%).
Existence of such wide variety of results for c¢y(n) and c¢,(n) for various values

of k motivates us to investigate the functions ¢(n), and to search for new results.

A key feature of this chapter is the representation of the generating function for
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¢r(n) for various values of k in terms of g-products and dissection of some of them
to obtain congruences.

A key tool employed in this study is integer matrix exact covering system, as
described in Section 1.1. We also use identities involving Ramanujan’s general theta
functions and Jacobi’s triple product identity, the details of which are presented in

Section 1.2.

2.2 Preliminaries

In this section, we list few lemmas that play important roles in the proofs of our

main results.

Lemma 2.2.1. The following 2-dissection holds.
o fiaf1g i fofse

- = + . 2.2.1
fi o Bfofs it (221)
Proof. Identity (2.2.1) is Equation (3.41) in [75]. O
Lemma 2.2.2. The following 2-dissection holds.
3 2
h_ f2f§f20 —qf4f‘;°. (2.2.2)
Js Jafiofso " Jsfio
Proof. For proof, see [33, 50]. ]
Lemma 2.2.3. The following 2-dissection holds.
1 fi e fifoo o o fifio
— — 9 + 5q popJalw 2.2.3
R Ehe R E TR (225)
Proof. For proof, see [49]. O
Lemma 2.2.4. The following identities hold.
3 f5 i
- 44220 92.2.4
Fifh e TR, 224
51 5 o
= 4 5g20 2.2.5
fifh T TR, 229

Proof. For proofs, see [13]. O
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2.3 Generating function for ¢,(n)

Theorem 2.3.1. Forn > 0, we have

- 12°fs 13 F5 f2fro
04(2n)q" = + 2¢q — 8¢ , 2.3.1
2 0l = g+ Mg~ Sy z31)
- 13 1%
o4(2n + 1)¢" = ) 2.3.2
2 i+ 00" = 232
Proof. From (2.1.1), we have
Sy
) (43 9)% (23.3)
where Sy = Z C3m1+2m2+m3qm%+m§+m§+m1m2+m2m3+m1m3 with ¢ = e2mi/5.

mi,m2,M3=—00

Using the integer matrix exact covering system

1
Bn,Bn+ | 0 |,Bn+
0
where
-1 1 1 ny
B = 1 -1 1 and m = Ngy
1 1 -1 ns

linear combination of four parts as

o0

2

ni,n2,n3=—o0

<2n2 +4ns q2n% +2n§ +2n§

Sy =

o

D

ni,n2,n3=—0o0

3+2no+4ns
¢ q

o0

D

ni,n2,n3=—0o0

242no+4ns
¢ q

o0

D

ni,n2,nN3=—00

0 0
1 |.,Bn+1] o0 ; (2.3.4)
0 1

, obtained in [8], we can write Sy as a

2n2+2n3+2n3+2n2+2n3+1
2n?+2n2+2n2+2n1+2n3+1

C1+2n2+4n3 q2n% +2n% +2n§+2n1 +2no+1
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— < i q2n%>< i C2n2q2n%>< i C4n3q2n§>
np=—00 ng=-—00 n3=-—00

+qC3( Z q2n%>< Z C2n2q2n%+2n2>( Z C4n3q2n§+2n3>

ni=-—0o0 n2=-—00 ng=—00
_l_qCZ( io: q2n%+2n1) < f: <2n2q2n§> ( io: <4n3q2n§+2n3>
n1=-—00 n2=—00 n3=—0o0
v 30 ) (3 e (30 ). s
np=-—0o0 ng=—00 n3=—oo
Now using Jacobi’s triple product identity (1.2.2), we have
Z quk2 _ H (1 + (¢ 1 2k: 1) (1 +Cq2k_1) (1 _q2k)
k=—o00 k>1
= (¢ ) (—Cas ) (&5 @)
= [(¢q, ¢*q). (2.3.6)

From the second version of Jacobi’s triple product identity (1.2.3), we obtain

o0

kZ (DR = (¢ 0) L (Ca @) (@ D)
= f(=¢7 —Ca).
Therefore, we have
ki ¢ F = F(C, Ca) = F(C, Ca). (2.3.7)
Using (2.3.6) and (2_.3.0;)), we have

Z P = F(EP, ) = FEP, ), (2.3.8)

Z ¢ = F(SP COF) = F(CU Ca), (2:3.9)
_i ¢ = (S5, ) = F(CP (P, (2.3.10)
i g = £ Mt = F(C . (2.3.11)

n=—oo
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We recall (1.2.6) and (1.2.7) to note that

[ee)

olq) == fla, )= > 4", (2.3.12)
k=—o00
v(q) = f(g, q iq’“’f“ Z gt/ (2.3.13)

k——oo

Using (2.3.8), (2.3.9), (2.3.10), (2.3.11), (2.3.12), and (2.3.13) in (2.3.5), we have

Si=o(@®)f(CE, CP) (% Ca®) + alPold®) F(EP, Ca') (G Ca)
+2¢C°Y(¢) F(CP, CaP) (G Cat) +2qCu () F(CE, () F(C, Cgt). (2.3.14)

Now

F(&, Ca) F(C Ca?)
(% a") (—C% aY) (¢ aY) L (—Ca% aY) . (a% a")2
= (—¢d% ¢*) (% oY) (¢ ) (¢a*ds df)  (—a% q)

2
(g% a2,
(=% ¢4

— H (1 4 Cq4n+2) (1 + C2q4n+2) (1 4 C3q4n+2) (1 4 C4q4n+2) (1 +q4n+2)

X

(q* ¢M)%

=% ¢
T 20n+10 M
_,Ho L) (=% 4%
= (4" ¢*) (¢ &), (& &)
_ (¢*; ¢ )2 2. 2 8. 8
(0% ") (0" ¢0) (75 ) (65 0)
_ fafsf
= R, (2.3.15)

Similarly, we find that

F(¢&, G f¢, ¢'e)
= (=% ") _ (=Cah q") (¢ aY) (¢t gt (a" a")2
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H 1 +C3 4n +C2q4n+4> (1 +Cq4n) (1 +C4q4n+4) (q4; q4)io

=(1+0) (1 + Cs) H (1 4 <—3q4n+4) (1 4 C2q4n+4) (1 4 Cq4n+4) (1 4 C4q4n+4)
n=0
(q4‘ q4)2
20n+20 (q q )
H (1+4 ( 7* ¢*)
:_l_20_ 20 (CIMJ)OO
¢? (=% ) (—q% %)
1 fwlih
¢ f fs
1
NS ﬁﬁg (2.3.16)

Next, we take
Alg) = f(& G f(C', ¢a®) + CF(C ¢l F(SPe, ).
Setting a = ¢, b= (¢, ¢ = ®¢%, and d = * in (1.2.12), we have
A(g) = f(¢, C"P) F(E ). (2.3.17)
Now
F& CP) (3 C)
= (¢ P (' ) (¢ P (~Ca ) (6 )
H 1 +Cq2n 1 +C4q2n+2) (1 +C2q2n) (1 +C3q2n+2) (qz; q2)io

= 00 (1 ¢ T (G (14 ) (16 ) (14 )
* (¢ ¢)
~g Il
- %( 7% 1 oo ((QQ;;quio
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1 fao f3

T T s (2.3.18)
From (2.3.17) and (2.3.18), we have
3
A = £, AP, GF) 4 CHG (IR, O =~ P22 2319

Employing (2.3.15), (2.3.16), and (2.3.19) in (2.3.14), we have

_ Fafs 135 3 /9 ( 1f4f40> (_1@)
Sa ()ff +qCe(q%) N +2qC(q") STl

_ f4 Xf2f8f20_ f45 ><f4f40 2 fs f2f20
318 fiofao f2f8 JsJ20 f4 Jaf1o

Rfh S, B

N fofsfiofo fzfsfzo 12 f10 (2.3.20)
Using (2.3.20) in (2.3.3), we find that
1 f2 13 f3 fao fzfsfm)
P, (0) = —
@) f <f2f8f10f40 f2f8f20 —2 fifo
_ L[ AR <f2f8f20 B f4f40> B féq’fszfzo}
A {fzzfszfzo fafiofao f8f10 & fifio | (23.21)
Using (2.2.2) in (2.3.21), we have
1R ﬁ_ f2f8f20>
%w*iﬁ<ﬁﬁﬁo B e
I 2% [3 12 fao (2.3.22)

T B e 2R

Using (1.2.17) and (2.2.3) in (2.3.22), we have

ﬁﬁ)(ﬁ»_zﬁ& b o S >
200 \FThe TR U T R e
f313 a0 ( i f4f8)

-2 4

1 fifio \f2*f§ * 2

_ ( f410f10 2 f415f40 zfgfzo)

Dy(q) =

22 2 T %

A R 2ﬁo)
+G¢¥& e U ) (2.3.23)
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Extracting the terms involving ¢?* in (2.3.23) and then replacing ¢* by ¢, we find

that

ffflo
fifs

15 £2
2 f20

q
FEfi o

& 10
> a(2n)q" = Lo Js +2 — 8¢
n=0

~ ffifo
which is (2.3.1).
Similarly, extracting the terms involving ¢! in (2.3.23), dividing both sides of

the resulting identity by ¢, and replacing ¢* by ¢, we find that

B I
[ A

> eu2n+1)g" =5 (2.3.24)
n=0

Now multiplying (2.2.4) by 5 and (2.2.5) by 4, then subtracting the resulting equa-

tions, we have

3 B b
5 —4 = . 2.3.25
i iR B (23:29)
- 3 i -
Multiplying (2.3.25) by —==5 5, we obtain
ITIifs
fi%fE AR RS
Using (2.3.26) in (2.3.24), we find that
- 3 1
O4(2n + 1)¢" = ,
2 e+ i = G
which is (2.3.2). O

2.4 Congruences for ¢,(n)
Corollary 2.4.1. Forn > 0, we have

¢4(4n+3) =0 (mod 2). (2.4.1)



Proof. Using (1.2.6) and (1.2.9), we rewrite (2.3.2) as

2 o2+ i = G
_ela) fio
w2 (—q) [

From (1.2.27), we find that

(&% &, ¢% ¢®)wo

o(q) = —p(q*) +2

©(¢*) (mod 2).

Similarly, (1.2.26), we have
0’ (—q) = ¢°(¢*) (mod 2).

Using (2.4.3) and (2.4.4) in (2.4.2), we find that

J10
©(q?)

D du(2n+1)g" =
n=0

from which (2.4.1) follows.

(¢, ¢* 47 ¢®)o

(mod 2),

24

(2.4.2)

(2.4.3)

(2.4.4)

]

Corollary 2.4.2. If N is a positive integer such that N is not a multiple of 5, then

we have
$4(2N+1)=0 (mod 2).

Proof. From (2.4.2), we have

l\D|

oo 2
n=0

w2 (=q) f5
From (1.2.28) and (1.2.29), we have

e(q) = ¢(¢°) (mod 2),
¢*(—q) = ¢*(—¢°) (mod 2).

Using (2.4.7) and (2.4.8) in (2.4.6), we arrive at (2.4.5).

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)
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Corollary 2.4.3. Forn > 0, we have

1 (mod 2) if n = %kﬂ)for some integer k,
Ps(dn+1) = (2.4.9)

0 (mod 2) otherwise.

Proof. Employing (2.2.3) in (2.3.2), we have

N S T LY LR i
2 Ou(n 4 1" = g~ Aoy 4 10078 A T
_|_4 2f410f20_20 2f4f20 _8 3f4 f20f40

fat fio f2%fr0 2R

f4f10f20 5 1% fi 4 6f40
25¢° + 20q + 4q . (2.4.10)
f3 2 f3 BRI
Extracting the terms involving ¢*" in (2.4.10) and then replacing ¢* by ¢, we find
that
Z G4(4n + 1)q
n=0
B g BB B A o R . P
Il 1213 fs 1o T 17 f P fifE o
= % + q?lo (mod 2). (2.4.11)
Now, from (2.2.3), we have
fgj J;;O =f; (mod 2). (2.4.12)
From (2.4.11) and (2.4.12), we find that
Z ds(dn+1)¢" = f5  (mod 2),
n=0
=1+ ¢ (mod2). (2.4.13)
Now (2.4.9) follows from (2.4.13). O

Corollary 2.4.4. Forn > 0, we have

¢4(10n +6) =0 (mod 5). (2.4.14)



Proof. We have
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e = i
= oo+ 2020t -2 2 (mods). )
From (1.2.22), we have
¢(q) = Lo+ L1 + La, (2.4.16)
where Lo = 0(¢*°), L1 = 2qf(¢*®, ¢*®) and L, = 2¢" f(¢°, ¢*).
From (1.2.23), we have
fi=Eo+ B+ Ey, (2.4.17)
where Ey = %, By = —qfos, and By = —¢? fos R(¢°) and from (1.2.24), we have

ff) = J() —|— Jl (mod 5),

where Jo = (¢'°, ¢'°, ¢®°; ¢*)o and J1 = —=3¢(¢°, ¢*°, ¢*°; ¢*°) .

(2.4.18)

Using (2.4.16), (2.4.17), and (2.4.18) in (2.4.15), we find that there are no terms of

the form ¢°**3

Corollary 2.4.5. For n > 0, we have

, n >0 in the resulting congruence, from which (2.4.14) follows. [

k+1 (mod 5) if n=k(3k + 1) for some integer k,

0 (mod 5) otherwise.
Proof. We have

S 3 fi

6a(2n + 1)g" = 2010

2 ln+ D" = s

17

= -——=— (mod 5).
g met?

For the remaining part of the proof see [35, Theorem 1.3].
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Corollary 2.4.6. For n > 0, we have

¢4(10n+5) =0 (mod 4), (2.4.19)

¢4(10n+7) =0 (mod 4). (2.4.20)

Proof. From (2.3.2), we have

)

Z Ps(2n+1)¢" = ;2 jzi (mod 4)
=0 1

= p(a)f:- (2.4.21)
Using (1.2.22) in (2.4.21), we have

> da2n+ 1" = (0(q™) — 20f(¢", ¢%°) — 2¢* f(*,¢™)) £ (mod 4). (2.4.22)

n+2

Extracting the coefficients of ¢ and ¢°"*3 in (2.4.22), we arrive at (2.4.19) and

(2.4.20) respectively. O

Corollary 2.4.7. For n > 0, we have

$4(20n+7) =0 (mod 8), (2.4.23)

¢4(20n 4+ 15) =0 (mod 8). (2.4.24)

Proof. From (2.3.2), we have

Z da(2n +1 (f1> f2 Jio (mod 8). (2.4.25)
fs f
Using (2.2.2) in (2.4.25), and then extracting the terms involving ¢*" !, we have
Z¢4(4n+3>qn =6 flflO
n=0 f2f5
— 6/, x fJ}O (mod 8). (2.4.26)
5

Using (1.2.23) in (2.4.26), we have

(%S) 3
> Gu(dn+3)g" = (ﬁ — ¢ - q4R(q10)> ﬁ;—gﬂ) (mod 8). (2.4.27)
n=0



Extracting the coefficients of ¢°"+!

(2.4.24) respectively.

Corollary 2.4.8. Forn > 0, we have

¢4(10n +4) =0 (mod 4),

¢4(10n +8) =0 (mod 4).

Proof. From (2.3.1), we have

: Ny B,
2 " = e+ 2

s

—f1 X _+QQf4f1o (mod 4).

Now, from (1.2.23), we have

1
R(q')
3 1 3q
=) B

fo= —¢* — ¢"R(¢"),

Using (2.4.31) and (2.4.32) in (2.4.30), we find that

—3¢°R*(¢°) — ¢"R*(¢°) + 5¢°.

> n _ f f10 o f5
D O = ey 2 gy — 37y — 200 o + 50
2 3(,5
— 3q5—f5};1§q ) _ 2¢° fHR(q") — qﬁ—fﬁléq ) (mod 4).
Congruences (2.4.28) and (2.4.29) follow from (2.4.33).
2.5 Generating function for ¢;(n)
Theorem 2.5.1. For n > 0, we have
N " ol s Sifo Tt forfs
= + 2¢q .
Z¢7(n)q f1f2f4fgf221f224f84 f113 frfs fra fos faz

28

and ¢°"™ in (2.4.27), we arrive at (2.4.23) and

]

(2.4.28)

(2.4.29)

(2.4.30)

(2.4.31)

(2.4.32)

(2.4.33)

O

(2.5.1)
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Proof. From Andrews’ general principle 1.1.1, the generating function ®7(q) of ¢7(n)

¢7(q) = CT. (H ( zjq’”“) (Z zjqnj)) : (2.5.2)

where C'T,(S(z, q)) is the coefficient of z° in the sum S(z, q¢). We also refer CT.(S(z, q))

is given by

as the constant term in S(z, q).

Factoring the sums on the right side of (2.5.2), we find that

o0

®,(q) = CT, (H (1 + an+1) (1 + z2q2n+2) (1 i Z4q4n+4)

n=0

% (1 + z—lqn) (1 +Z—2q2n) (1 +Z—4q4n)>

ot ( ), z4q4>)

1 s mq(my1+1) | mg(mo+1) | mg(mg+1)
= COT, < Z zm1+2m2+4m3q 5 + 5 + - > '
Jifafa s e
(2.5.3)
For the constant term, we require
Using (2.5.4) in (2.5.3), we find that
1 - > >
b7(q) = Z q3ll+8lll2+10l2. (2.5.5)
filats 1, la=—o0
1 2 1 -1
Now, the set S = { Bn, Bn + , Bn + , where B = and m =
0 0 1 2
n . . . . ..
, forms an integer matrix exact covering system for Z2. Using this integer
N2

matrix exact covering system in (2.5.5), we have

[e'9) 1 00 , , r e , .

Z¢7(n)q”: Z orit2ng | g3 Z O+l +Am+ldng
Jifofa

n=0

ni,nyg=—00 ni,N2=—00
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o0

+q12 2: q6n§+21n§+8n1+28n2>

ni,ne=—00

= f1;2f4 (e(®)e(@®) + @ f(d,d") fla", %)

+ (]12Jc(q727 q14)f<q77’ q49))

= f1}2f4 (e(@®)e(a™) +2¢°f(a*,4"°) f(d", 4™)) - (2.5.6)

From lemma 1.2.13, we have

- f22f3f12

) = , 2.5.7
e, q) e (2.5.7)
Replacing ¢ by ¢% and ¢” respectively in (2.5.7), we find that
2
2 10y _ Jifefau
: = : 2.5.8
@0 = o oo (253)
2
7 35y _ JiafaSsa
) = [alzls 2.5.9
0 = e (259)
Employing (1.2.6), (2.5.8), and (2.5.9) in (2.5.6) we derive (2.5.1). O

2.6 Generating function for ¢s(n)

In this section, we present a g-product representation for the generating function of

¢8 (n)

Theorem 2.6.1. For n > 0, we have

i¢8(n)qn f4f6f128f254 +2 4 f22f6f36f428 (2.6.1)
n=0

T S el Bl lE L 22 fafisfos

Proof. From Andrews’ general principle 1.1.1, the generating function ®g(q) of ¢g(n)
is given by

Jj=0

ds(q) = CT, <H (Z zjq”j+j> (Z z_qu)) ) (2.6.2)
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Factoring the sums on the right side of (2.6.2), we find that

(e 9]

Ps(q) = CT. (H (14 2¢™" + 22¢2"2) (1 4 23¢%™+3 4 26¢57+9)

n=0

X (1 + 2 4 2T 2q2") (1 + 23 2 6q6”)>
= CT, ((wzq; @)oo (W27 @)oo (W?2G; @)oo (W25 @)oo
) (0 ) (72 ) (P2 )l —3;q3>oo), (2.63)

where w is a cube root of unity other than 1.

Employing (1.2.4) in (2.6.3), we have
®s(q) = CT, <f1 S f(—wzg, —w?2 ) f(—w?zq, —wz ) f(—w2i?, —w?27P)
X f(—w223q3,—w23)). (2.6.4)
Using (1.2.12) in (2.6.4), we have
0u(0) = O, (173 (120 27) () = o3 (o) (20, 720)
x (f(2°°,27°) f(w*®, wa®) — w2 fw,w?q®) f(2°¢°, Z‘qu))>
= O £620.00) P20 w272 £,

—wz 7’ f(Wq,wq) fw,w’¢®) f(2°¢%, 272) f(2°¢°, 27 %)
—wz ! f(w,w?@®) f (W, wa®) f(2Pq, 27%q) F(2%¢°, 27°)

e (0, w00 (2, z-2q>f<zﬁq3,z-6q3>)). (2.6.5)

We observe that f(2%¢?, 272) f(2%¢, 27%¢?) is even in 2z and hence

CT. (wz?’f (Wq,wq) f(w,w?®) f(2%¢%, 272 f(2°, z6q3)) =0. (2.6.6)

Similarly

CT. (wz‘lf(w, W) [ (WP’ wa’) [(22q, 27 2q) F(2°°, 2‘6)> =0. (2.6.7)
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Using (2.6.6) and (2.6.7) in (2.6.5), we find that
04(0) = O (g (F620,00) (0P, w0 (G2 72) £,
R
b o PP ) ) )

=(CT, (A(q) Z Z2m+6nqm(m+1)+3n(n+1) + B(q) Z 22m+6n4qm2+3n2)’

(2.6.8)
where
1 23 3
Alg) = 7 2f(w ¢ wq) f(w g, wq’), (2.6.9)
1
2
B(q) = = 2f(w wq®) f(w, w*d°). (2.6.10)
i
Extracting the constant term in (2.6.8), we obtain
) Z q12n2 + B(q) Z q12n2712n+4
= Al@)p(a™) +2¢" B(q)v(¢*). (2.6.11)
Now,
flwg,w’q) = (~wg; %)  (—*a: %) (5 d°)
— 5 H (1 + wg?™*1) (1 + wig?™+)
n=0
— f2£[0 <'1 T ol
_ fz(—q?’;qG)oo
(=4 ¢%)
fifaf
= 2.6.12
Fofotia (26.12)

Replacing ¢ by ¢® in (2.6.12), we have

3 2.3\ __ f3f12f128
flwg®,wq®) = ot (2.6.13)
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Also,

fw,0?q) = (~w; @) (—w*a:0)  (¢30) o0

o0

=fi H (14 wg™) (1+w’¢™)

n=0
oo

= fi (1 +UJ) H (1 +qu+1) (1 +w2qn+1)
n=0

B 0 1+q3n+3
_f1(1+w)g<1+qn+l)
=h{l+w) (—4:9)o
fifs

f2f3'

Replacing ¢ with ¢? and ¢° in (2.6.14), we obtain

= (1+w) (2.6.14)

f22f12

flw,wq®) = (1+w) o Te

(2.6.15)

and

[3 f36
frzfig’

respectively. Using (2.6.12) and (2.6.13) in (2.6.9), we have

A
AD = 5

Also, using (2.6.15) and (2.6.16) in (2.6.10), we have

_ fifefss
B =

Employing (1.2.6), (1.2.7), (2.6.17), and (2.6.18) in (2.6.11), we arrive at (2.6.1). [

flw,w?¢®) = (1 +w) (2.6.16)

(2.6.17)

(2.6.18)

2.7 Congruences for ¢g(n)

In this section, we establish two congruences satisfied by ¢s(n) and extend these

congruences into infinite families.
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Theorem 2.7.1. Forn > 0, we have

¢s(16n+3) =0 (mod 2), (2.7.1)

¢5(128n +107) =0 (mod 2). (2.7.2)

Proof. From (2.6.1), we have

- _ Tafefisfon
Ps(n)q" =

fufaf3fo ftafse fis
_ o S
=7 X ™ (mod 2). (2.7.3)

Using (2.2.1) in (2.7.3), extracting the terms having odd powers of ¢, then dividing

the resulting expression by ¢ and replacing ¢ by ¢, we obtain

S n_ f2fshs
> onton+ 0" =
= Jobs (mod 2). (2.7.4)

3

Replacing ¢ by ¢ in (1.2.18) and using it in (2.7.4), isolating the terms with odd

powers of ¢, then dividing the expression by ¢ and replacing ¢* by ¢, we have

= w_ Nifoftafr
; ¢8(4n + 3)q =4 f§f24f36
— é f2f36 m
=g x 22 (mod 2) (2.7.5)

Using (2.2.1) in (2.7.5), extracting the terms with even powers of ¢, and then re-

placing ¢* by ¢, we find that

f5 fafis % J1/18

> és(8n+3)g" =g
n=0

I fe E
= qu—flzg (mod 2). (2.7.6)
o

Congruence (2.7.1) follows from (2.7.6).
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Extracting the terms with odd powers of ¢ in (2.7.6), then dividing the expression

by ¢ and replacing ¢* by ¢, we have

i ¢s(16n + 11)¢" = fifs
— fs
_J }J;IS (mod 2). (2.7.7)

Using (1.2.19) in (2.7.7), extracting the terms with even powers of ¢, and replacing

¢ by ¢, we have

00 2
D s W = gl
_b b
=7 X 7. (mod 2). (2.7.8)

Using (2.2.1) in (2.7.8), extracting the terms with odd powers of ¢, then dividing

the equation by ¢ and replacing ¢ by ¢, we obtain

S W Nl Bfsfis
2 0u(04n+ 43" = TeE X T
= f‘*Ji; ® (mod 2). (2.7.9)
Congruence (2.7.2) follows from (2.7.9). O

Corollary 2.7.2. For k> 0, and n > 0, we have

Ps (26’”471 + 26%%) =0 (mod 2), (2.7.10)
s (26k+7n + &;6“) =0 (mod 2). (2.7.11)
Proof. Extracting the terms with even powers of ¢ in (2.7.9) and then replacing ¢
by ¢, we have
i¢8(128n +43)¢" = % (mod 2). (2.7.12)
n=0

From (2.7.4) and (2.7.12), we find that

ds(2n+ 1) = ¢5(128n +43)  (mod 2). (2.7.13)
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[terating (2.7.13), we obtain for k£ > 0,

26k+1 |

#s(2n +1) = ¢g (26k+1n +

) (mod 2). (2.7.14)

Replacing n by 8n + 1 and 64n + 53 respectively in (2.7.14), we have

Sed 26k+3 +1 B
o | 2770 + —5 )= ¢s(16n +3) (mod 2), (2.7.15)
26k+6 1
bs (26’”771 + M%) = ¢5(128n 4+ 107) (mod 2). (2.7.16)

Using (2.7.1) and (2.7.2) in (2.7.15) and (2.7.16), respectively, we obtain (2.7.10)
and (2.7.11). O

2.8 Generating function for ¢;(n)

Theorem 2.8.1. Forn > 0, we have

N w_ _ Jafoffsfios ot 2 o fso fisa v
nz_o“bll(”)q T R Rl el e L SR AE Fufus oo o

fuf6 fo f6.f.foo fa06 f3 frafis oo (2.8.1)

25
f1f2f§f122f18f33f132f198 * 2q f12f3f4f62f92f326f198'

+ 2q12

Proof. From Andrews’ general principle 1.1.1, the generating function ®q;(q) of

¢11(n) is given by

o 11 11
®1,(q) = CT, <H ( qunj+j> (Z qunj>> .
n=0 \j=0 j=0

=CT, <H (1 + Z3q3n+3) (1 + Z6q6n+6) (1 Tt 4 Z2q2n+2) (1 I Z_3q3")

n=0
(1 + z—6q6n) (1 + Z—lqn + z—2q2n)>
o (%ﬂzgqi TG, 20 f(—wegy—w =)

x f(—wtzq, —wz_l)), (2.8.2)
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where w is a cube root of unity other that one.

Using (1.2.12) in (2.8.2), we have

<I>11(q) — CTZ (z;f(z6q6,z6) % (f(276q3, ZGqQ> 4 Z73f(z6q37276q9))
f1f3f6

x (f(z7%22¢) f(wg,w™q) — 27w f(27, 2‘261)f(w‘1,wq2))>

= %CTZ (f(2‘6, PO (20, 20 f(272 22 flwg,w ™)
f1 f3f6

T2 (270250 f(270P, 20 f(2Pq, 2 Pq) fw Tt we?)

+ 270 f(270, 250 F (0%, 2700 f (272, 2°¢P) f(wq,w™ ')

T 0 F(20 20 F (PP, 2 ) W qu)) . (28.3)

Now,

=0, and

CT. (wlzlf(z6, POV ) (PP ) o qu))
) 0.

CT. (z?’f(z67 POV, 20 f(272 ) flwg,w )

Hence, (2.8.3) reduces to

D14 (q) = %CTZ (f(z‘ﬁ,26q6>f(z‘6q3,Zﬁqg)f(Z‘Z,ZQqQ)f(wq,w‘ch)

e (0, ) F(0gP, 20 (2, z-2q>f<w—1,wq2>)

(e 9]

1 2 2 2
= — CTZ f(wq, W 1Q) E : ZZml+6m2+6m3qm1+3m2+6m3+m1+3m2+3m3
fitsfs S
)
_ _ _ 2 2 2 _
—w 1f(w 1’ wq2> § : Z2m1+6m2+6m3 4qm1+3m2+6m3+3m2 3m3> )

mi,m2, M3=—00

(2.8.4)

Extracting the constant term in (2.8.4), we have

[e.e]

1 — m?2 mi1mso m2
cI)H(q) = %(f(wq,w 1q) Z q12 2+18 +15m3

mi,M2=—00
[e.e]

_ w—lf(w—l’ qu) Z q12m%+18m1m2+15m%—m1—15m2+4). (2.8.5)

m1, ma=—00
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Using the integer matrix exact covering system

1 -1
Bn, Bn + , Bn + )
0 0
where
1 2 n
B = and m = , we can split the sum on the right side of
-1 1 N9
(2.8.4) into 3 sums as
1 - .
(I)11<Q) — —CTZ f(w%wlq)( q9n1+99n2
fifsfo nh;m

o)

+9 }: q9n§+99n§6n166n2+12)

ni,n2=—00
[e's)

- WQf(Wfla wq2)< Z q9”%+99n§f99n2+25

ni,neg=—00

oo
+9 2 : q9n§+99n§+12n1+33n2+7>>

ni,ne=—00

= % (f(w% w™lq) (@(q9)90(q99) +2¢"f(¢%, ¢") f(d*, q165))

o w2f(w’1,wq2) <2q25¢(q9)w(q198) 4 2q7f<q73’ q21)f(q66, q132))) )

(2.8.6)

Using (1.2.6), (1.2.7), (1.2.13), (1.2.14), (2.6.12), and (2.6.14) in (2.8.6), we arrive
at (2.8.1). O

2.9 Generating function for ¢5(n)

Theorem 2.9.1. Forn > 0, we have
> is(n)g" = m (s@(qw)@(qw)@(qm) +2¢°f (¢, ) f (%, a') F (", 4°)
n=0

+2¢° (¢, ) f(d*, 4"%) fq"?, QQS)). (2.9.1)
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Proof. From Andrews’ general principle 1.1.1, the generating function ®;5(¢q) of

¢15(n) is given by
(o) 15 15
P15(q) = CT. (H ( qunj+j> <Z qunj>>
n=0 \ j=0 =0
=CT, (H (1 + an+1) (1 i Z2q2n+2> (1 4 Z4q4n+4) (1 + Z8q8n+8)
n=0
X (1 —+ Z—lqn> (1 4 Z—2q2n> (1 + Z—4q4n> (1 + Z—8q8n>)

ZOTZ( 1 f(zq,Z‘l)f(z2q272‘2)f(z4q47z“*)f(quS,z‘S))

fifafafs
_ 1 = mi+2mo+4ms+8my )
= CTZ(—f1f2f4f8 > z X(q) ), (2.9.2)

mi,m2,m3, M4=—00

where

m1(77211+1)+2m2(72n2+1)+4m3<72n3+1)+8m4(72n4+1)

X(q) =q
Extracting the constant term in (2.9.2), we have

o0

1
Po@) = pper 2L

mi,m2, m3=—00

3m24+10m2+36m3+8m1ma+16m1ms+32mams (2 9 3)

Using the integer matrix exact covering system

—
|
—_
[\
|
[\

Bu,Bi+ | o |,Ba+| o |.Ba+| o |.Ba+| o :

0 0 0 0
where
-1 0 4 nq
B = 2 —1 0 and m = ny |, we can split the right side of (2.9.3)
-1 0 1 ns

into 5 sums as

1 > 2 2 2
P — 15n7+10n5+20n3
YA ( 2, ¢

ni,n2,n3=—00
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o0
+ 2 : q15n%+10n§+20n§—12n1—16n2—16n3+12

ni,n2,nN3=—0o0
o0
+ Z q15n§+10n§+20n§—6n1—8n2—8n3+3

ni,n2,n3=-—00
o0
+ Z q15n§+10n§+20n§+6n1 +8n2+8n3+3

ni,n2,n3=—00

o
+ 2 : q15n§+10n§+20n§+12n1 +16n2+16n3+12>

ni,n2,nN3=—00

=TI f21f4 = (90(6110)90(6115)90@20) +2¢"% (%, ¢*) (7%, ¢%) (¢*, %)

+ 2q3 (q97q21) (q2’q18) <q12’q28)>.

This completes the proof of Theorem 2.9.1. O

2.10 Concluding remarks

Existence of congruences for ¢y (n) is rare compared to c¢r(n). However computa-

tional evidences support possibility of the following congruences for ¢g(n).

Conjecture 2.10.1. For n > 0, we have

#s(200n +179) =0 (mod 2),
¢5(400n 4+ 242) =0 (mod 2),

¢s(400n 4+ 342) =0 (mod 2).



	06_chapter 2

