Chapter 3

Generalized Frobenius Partitions
and Modular Equations

3.1 Introduction

In this chapter, we establish a connection between F-partitions and modular equa-
tions. For a brief description of F-partitions and modular equations, one can refer
to Section 1.1 of Chapter 1. We also recall a method [15, Entry 24(v), p .216] of

obtaining a new modular equation from a known modular equation.

Theorem 3.1.1 (Method of Reciprocation). If we replace « by 1 — 3, 5 by 1 — «,
and m by n/m in a modular equation of degree n, then we obtain a new modular

equation of the same degree.

Ramanujan defined a mixed modular equation or a modular equation of compos-
ite degree as follows. Let K, K', Ly, L)}, Lo, L}, L3, and L} denote the complete
elliptic integrals of the first kind corresponding to the moduli /&, v1 — a, /3,
VI=8, 7 VI—7, V8, and V/1 =0, respectively. Let ny, na, ns are three posi-
tive integers such that niny = n3. Suppose that the relations

K L, K L K L

- = _£ == 3.1.1
ni nQK L27 n3K L3 ( )

K Ly
hold. Then a mixed modular equation is a relation among the moduli y/c, \/f3, Vs
and v/8 induced by the relations (3.1.1). In such a case, we say that 3, 7, and J are of
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degrees ny, ny, and ng, respectively, over «, or «, 3, v, and d have degrees 1, ny, no,
and ng, respectively. The adaptation of the method of reciprocation as described in

Theorem 3.1.1 in case of mixed modular equations is given in the following theorem.

Theorem 3.1.2 (Method of Reciprocation for mixed modular equations). Suppose
ni, ng, n3 are three positive integers such that nine = ng and B, v, and 6 are of
degrees ny, na, and ns, respectively, over oo. Let m and m’ denote the multipliers

connecting the pairs o, 8 and 7y, §, respectively.

2
ny

mm/

If we replace o by 1 — 3, B byl —a, vy by 1 =46, 6 by 1 —~, and mm’ by in

a modular equation for the quadruple of degrees 1, ny, ny, and ng, then we obtain a

new modular equation of the same quadruple of degrees.

Partition-theoretic interpretations of Ramanujan’s modular equations has been
initiated by Berndt with the publication of [16]. There are several subsequent works
on the subject in the recent past. For example, see [7, 11, 12, 14, 17, 19, 80, 81, 82].
In majority of these studies, modular equations are transformed into theta function
identities and g-products leading to interpretations in terms of partition functions.

In this work, we obtain two different ¢-product representations of the generating
function for ¢5(n). Equating the representations we derive a new theta function
identity. Then we transcribe the theta function identity to a mixed modular equation
of the quadruple of degrees 1, 3, 5, 15, and then obtain the reciprocal modular
equation as well. To the best of our knowledge, the modular equations are new. It
is interesting to note that a partition function leads to the discovery of new modular
equations. For the known mixed modular equations of the quadruple of degrees 1,
3, 5, 15 and their proofs, we refer to [6, 15].

We use properties of Ramanujan’s general theta functions and integer matrix
exact covering systems in our proofs. A brief introduction to these tools has been

provided in Section 1.1 and Section 1.2 of Chapter 1.
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3.2 Preliminaries

Lemma 3.2.1. With q, z, and a(or k?) defined by (1.1.3), (1.1.2), and (1.1.4),

respectively, we have

1/24
fir = F(—q) = /22 15(1 — ) (%) , (3.2.1)
fo=f(=¢") = V=277 <@)1m7 (3.2.2)
fo= f(=¢") = VZ27¥3(1 — )/ (g)w, (3.2.3)

f8 — f(_q8) — \/22_13/12041/12(1 . a)1/48(1 . /1 — Oé)l/4q_1/3. (324>

Suppose that B has degree n over a. If we replace q by q™ above, then the same

evaluations hold with o replaced by [ and z replaced by z, := o F} (2, 55 15 B)

Proof. Formulae (3.2.1), (3.2.2), and (3.2.3) are given by [15, Entry 12(ii)—(iv), p.

124]. Further, it is easy to verify that

fs =V f(=¢")v(q?). (3.2.5)

Employing [15, Entry 11(iv) p. 123] and [15, Entry 12(iv), p. 124] in (3.2.5), we

arrive at (3.2.4). O

3.3 Two representations for $5(q)
In this section, we derive two different representations for ®5(q).

Theorem 3.3.1. We have

fs 12 frofao £ f2f6f15 42 3 f2fs /3 f30 fr20 (3.3.1)

fifofsf fofsofizo fi fifafofaofoo
Proof. From (2.1.1), we have

D5(q) =

P5(q) = —5- (3.3.2)
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where

o

55 _ § C4m1+3m2+2m3+m4 qQ(m1,m2,m3,m4)

Y

mi,m2,ms3, m4=—00

2 2 2 2
Q(ml,mg,mg,m4) :m1+m2+m3+m4+ E mimj,

1<i<j<4
4 4 4 4
- 4 4 -4 —4
and ¢ =e3. We choose the matrix A = to set up the integer
4 —4 —4 4
4 -4 4 -4
matrix exact covering system
1 15
B — Be, , 3.3.3
{ nr 16 ‘ }T‘_U ( )
11 1 1 ny
1 1 -1 -1 No
where B = , n = , and cg,cq,...,c15 are the solutions
1 -1 -1 1 ns
1 -1 1 -1 Ny
of the congruences Bn = 0 (mod 16). An exclusive representation of (3.3.3) is as
follows:
1 1 1 1 2
0 0 -1 0 0
Bn, Bn + , Bn + , Bn + , Bn + , Bn + ,
-1 0 0 0 -1
0 -1 0 0 0
2 2 2 1 1 1
0 -1 0 0 0 1
Bn + , Bn + , Bn + , Bn + , Bn + , Bn + ,
0 0 0 1 0 0




3 2 2 2

0 0 0 1
Bn + , Bn + , Bn + , Bn +

0 1 0 0

0 0 1 0
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Corresponding to this integer matrix exact covering system, we can write S5 as

a sum of sixteen parts as

[eS)
515 _ E <10n1+4n2+2n4 q10n§+2n%+2n§+2ni

ni,n2,n3,ng=-—00
o
+ 2 : Clom +4no+2n4+2 qlonf+2n§+2n§+2n3+2n2+2n3+1

ni,n2,n3,ng=—00
o
+ 2 : C10n1 +4no+2n4+3 qlonf+2n§+2n§+2n3+2n2+2n4+1

ni,n2,n3,Ng=—00
o0
+ Z ClOnl +4ng+2n4+1 qlonf+2n§+2n§+2n3+2n3+2n4+1

ni,ng, N3, Ng=—00
)
+ § C10n1+4n2+2n4+4 q10n%+2n§+2n§+2nﬁ+5n1+n2+n3+n4+1

ni,n2,n3,Ng=-—00
o0
+ Z ClOnl +4ng+2n4+6 q10n§+2n§+2ng+2n§+5n1 +3n2+3n3+na+3

ni,n2,n3,ng=—00
o0
+ } : (wm +4no+2n4+7 q10n§+2n§+2n§+2ni+5m +3n2+n3+3n4+3

ni,n2,Nn3,N4=—00
o0
+ 2 : Clom +4na+2n4+5 q10n§+2n§+2n§+2n§+5n1 +n2+3n3+3n4+3

ni,n2, N3, N4=-—00
o)
+ } : ClOm +4ng+2n4+8 q10n§+2n§+2n§+2n§+10n1 +2n2+2n3+2n4+4

ni, n2, N3, N4=-—00
o)
+ 2 : C10n1+4n2+2n4+6 q10n§+2n§+2n§+2n3+10n1+2n4+3

ni,n2,n3,ng=-—00
o
+ 2 : C10n1 +4no+2n4+5 q1on§+2n§+2n§+2n§+1on1 +2n3+3

ni,n2,n3,Ng=—00
o
+ Z ClOnl +4ng+2n4+7 q1on§+2n§+2n§+2nﬁ+1on1 +2n2+3

ni,n2,n3,Ng=—00
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o0
+ 2 : anl +4ng+2n4+12 q10n§+2n§+zn§+2n§+15n1+3n2+3n3+3n4+9

ni,n2,n3,ng=—00
o0
+ Z ClOnl +4n2+2n4+10 qun%-l—Qn%+2n§+2n3+15n1+n2+n3+3n4+7

ni,n2,n3,Ng=—00
o0
+ Z Cmm +4ng+2n4+9 q1on%+2n§+2n§+2n§+15n1 +n2+3ng+na+7

ni,n2,ng,ng=—00
00
2 2 2 2
+ § (10711 +4no+2n4+11 q10n1 +2n5+2n35+2n5+15n1 +3n2+n3+n4+7' (334)

ni,n2,n3,N4=—00

We divide the sums on the right side of (3.3.4) into four groups 77, 15, T3, and Ty,
where T} consists of the first four sums, 7T, consists of the next four sums, and so

on. We have

T, = < Z Clan10n2> ( Z C4nq2n2) < Z q2n2> ( Z Can2n2>
+ qC2< f: Clan10n2> ( f: C4n 2n2+2n) ( f: 2n2+2n> ( Z CQn 2n? )

n=—oo n=—oo n=—oo n=—oo

+ QC3< i <10nq10n2> ( i C4nq2n2+2n) < i q2n2> ( i C2nq2n2+2n>

n=—oo n=—oo n=—oo n=—0o0

+ QC< f: Clan10n2) ( f: <—4nq2n2) ( f: 2n2+2n) ( Z CQn 2n2+2n)

= [(¢7", ¢V F(CT, PP F(CT2P, ¢
+2qCF(C10", O™ FICTT, ClaYelad) FICTP P )
+qCCf(¢", ) (¢, CMaNeld) F(CTP P
+2qCf (10", (09" FICT e, CMP)w(ah) F(CTE )

= (""", ") (@) (¢, ¢ ) F(C2, ) — af (¢7 2D F(CT7 ¢

+2¢q (g (f (PP, C2) F(CT2, Ca) + (L PN F(CTP, ¢Ca?))).
(3.3.5)

)
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Setting a = —q, b= —q, ¢ = —(?q, d = —(2q in (1.2.12), we have

F(CE, )V TP, Cd) — af (P PN (T2 Cat) = o(—a) f(—CPa, —¢2q).
(3.3.6)

Also setting a = ¢, b= (¢, ¢ = (3, d= (3¢ in (1.2.12), we have
F(CE, PP (2 Ca) + (PN (TP, Ca?) = (G CA TP, ¢
= f<C7 C71q2>f(_q27 _1)

— 0, (3.3.7)

where we use (1.2.5) in the last equality.

Using (3.3.6) and (3.3.7) in (3.3.5), we have
71 = p(=q)(d*) F(¢q", (24" f(=CPq, —C%q). (3.3.8)
In a similar way, we have

T = —q(@)p(—a) (4", ¢*¢*) F(CT1 ¢aP), (3.3.9)
T3 = —2¢°C(a") o (=) F(¢%, %) f(=CPa, —C ), (3.3.10)
Ty = —qC(@)p(=a) f(C?¢°, Ca) F(CT¢a?). (3.3.11)

Using (3.3.8), (3.3.9), (3.3.10), and (3.3.11) in (3.3.4), we have

S5 = p(=a)p(d*) F(*a", ¢2¢") F(=CPq, —Cq)
— (@)~ F(C2¢", Ca’) F(CT Cd?)
= 2¢°C(q") (=) F(CP ) f(=CPa, —CPq)
— aCh(@)p(—a) F(C2, ") F(CTH )
= p(=q) (f(=C%q, —Ca)((@®) F(CPq", CT2a") — 26°C(g") F(CP ¢T267))
— (@) F(CHCa)(f(C%4, ) + CF(CT2¢°, ¢Pg™))). (3.3.12)
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Using (1.2.4), we have

f(=C%q,—Cq) = (C*4,6") (4 6*) o (0 07
_ oo H C 2q2k’ 1 <2q2k71)

k>1

= (%) [JA = (€2 + )™+ %)

k>1
_ (qQ;QQ)ooH(l + q2k—1 +C]4k_2)
k>1
_ (q25q2)00(q33q6>oo
(¢: 4%
2
_ ﬁﬁ (3.3.13)
Replacing ¢ by —¢'° in (3.3.13), we have
P TN o L N S
( q'%; ¢? )oo f20f30f120
Using (1.2.4), we have
G %) = (= 6™) oo (=207 7)o (67 ¢7) o
— (g 2000H1+C220k20 (14 (242
k>1
— (1 + ) (g ¢®) OOH 14 g2 (1 4 ¢2g20%)
k>1
— —(¢®; ) OOH ¢ 4 1)
k>1
(0% )00 (=% ¢%)
a (—4%°;¢2) o
f30.f120
— 3.3.15
faofeo ( )

Using (1.2.4) once again, we find that

FICHCP) = (¢ ) oo (€% ) (656 ) o
= (% )oe [ [+ (1 + (™)

k>1
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= (L @) [T+ )1+ ™)

k>1

=1+ D)o [JO+ 7 + ¢
k>1

= (1+¢ (%)
=1+ Yfe. (3.3.16)

Replacing ¢ by ¢® in (3.3.16), and then multiplying by ¢, we find that
G T =1+ 0@7%¢7)e = 1+ Q) fise (3.3.17)
Setting @ = ¢ and b= ("'¢° in (1.2.11), we find that
FGCTH) = F(C°,C207) + CF (P ¢2d). (3.3.18)
From (3.3.17) and (3.3.18), we have
F(E%¢°,C%q7) + CF(Pa,CT%¢%) = (1 + Q) frse (3.3.19)

Using (3.3.13), (3.3.14), (3.3.15), (3.3.16) and (3.3.19) in (3.3.12), we obtain

S5 = ¢(—4q) <@ (@(qﬂM + 2q3w(q4)f220f120)

fite f20f30.f120 faofe0
—q(1+¢)(1+ C‘l)w(q)fﬁfm). (3.3.20)
Using (1.2.6), (1.2.7), (1.2.9) in (3.3.20) and noting the fact that (14+¢)(1+¢™1) = 3,
we have
_ hhsfihofwls s Jifof3 3 f30f120
5 Rfafifwfufin I Rt O
Using the expression for S5 from (3.3.21) in (3.3.2), we arrive at (3.3.1). O

We present another representation of ®5(g) in terms of ¢-products by a similar

but shorter method.
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Theorem 3.3.2. We have

fsfiat5 s Jifali
d5(q) = +2¢° ———. (3.3.22)
D= bbbt T2 Rl fofe
Proof. From Andrews’ general principle 1.1.1, we have
®s5(q) = CT, (H(l bt g 2R S g A gintd | 5 gPnes)
n=0

X (14 270"+ 272" + 273¢"" + 274" + z5q5”)> . (3.3.23)

where CT,(S(z,q)) is the co-efficient of 2° in the expansion of S(z,q).

Factoring the products on the right side of (3.3.23), we find that

D5(q) = CT.((—2¢; Q) os (W2 ) oo (W27 0% ) oo (—2 5 Qoo (W2 %5 %) oe (W22 ¢%) ),

(3.3.24)

where w is a cube root of unity other than 1. Employing (1.2.4) in (3.3.24), we have

B5(q) = OTZ( P o) (w2, 22 f( =, —w22q2>)

(400 (@5 4*)2%

_ot (
(4 @)oo (4% ¢*)5%
« Z (_1)m1+m2w%(3m%+3m§+m1—m2)22m1+2m2+m3

mi,m2, M3=—00

ml(m1+1)+m2(m2+1)+m3(733+1>>

X q
ey ED IR A s M CEED
1J2

mi, mg=—00
Using the integer matrix exact covering system

1 -1 nq 1 -1 nq 0

1 1 %) 1 1 %) 1

in (3.3.25), we find that

9 S
1 2 2 2 2
_ —ng 10n5+2n —no+1 _10n5+2n5+10n1+2n2+3
®5(q) = Iz E W — E w g

1J2

ni,ne=—00 ni,ng=—00
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= f11f§ (") f(wa?, w*q®) — 2w (¢*) f (w, w?q)) . (3.3.26)
We note that
Fwa?, w*q?) =(—wa*; ¢") oo (—0?¢% ") (0"5 ") e = Zﬁﬁi (3.3.27)
and
Forta") ~(—wig)m(—Pb ¢l = (L) DAT2 (3328)

fafi2’

Using (1.2.6), (1.2.7), (3.3.27), and (3.3.28) in (3.3.26), we arrive at (3.3.22). O

3.4 Modular equations for the quadruple of de-

grees 1, 3, 5, and 15

In this section, we derive two modular equations for the quadruple of degrees 1, 3,

5, and 15 using Theorem 3.3.1 and Theorem 3.3.2.

Theorem 3.4.1. Let o, 3, 7, and d be of the first, third, fifth, and fifteenth degrees,
respectively. Let m denote the multiplier connecting o and 3, and let m' be the

multiplier relating v and 6. If

P <7<1 —O\Qs(—?)‘*(i - 7; - 5)2>1/8 (3.4.1)
and
o <a<1 - g;(—?wi - Q; = 5)2) e | (542)
then
(Ga=) (7+3) 2" (mrrmri=) (o)
_ 3.2 (343)
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Proof. From (3.3.1) and (3.3.22), we have

f3 12 frofaofé 3 fafof15 +2q3f2f3f8f20f120
i f2fo £3 fa0 f50.f120 fi i fafe fao foo
f8f12f250 3 f4f24f40

= Fafifolifotn 2 i fiofe

(3.4.4)

Rearranging the ¢g-products in (3.4.4), we have

1Y (B (e (S ) g (1) (Y () (Y (4
(ff’fzfg A AV Y AV ) AR A TN AV A

(] o > < o ) 3< 13 ) (f24) (f40)
N (f2f4> (f6f24 fofi o f51s) \fiz) \ fao (3.4.5)

Employing (3.2.1), (3.2.2), (3.2.3), and (3.2.4) in (3.4.5) while noting that 3, v, and

0 are of degrees 3, 5, and 15, respectively, over «, we obtain

5500 2 qll/24 (1— 5)1/12
21 (1—a)12(1 — 1T — a a)l/? B1/24

51/6
(1 — N6 /T A4
(=" ") (1 —0)1/48(1 — /T —0)1/4
_g.9-1/3V 3715 !

o o —aye A )12 612 (1 — 5)/0

56 (1 _ \/1—)1/2 (1 _ 5)1/12 71/4(1 _ 7)1/16 (1 _ m>1/4
+2 \/:1 1/24(1 — q)5/12 ' B1/24 ' (1—T—7)/A ' §1/12(1 — §)1/48
. 2,1/2 5 (1 — 1 - a)1/4 61/6 71/2
o \/z:1 a1/6(1 _ a)5/48 ' (1— 5)1/48(1 _ m)m ' (1— m)uz
1/12 (1_m)1/4
o 1/2\/:1(1 — Q)P B(1— T — )/t BUR(1— )/ (1=V1=7)"

(3.4.6)

Multiplying (3.4.6) by 2°/6, 7 and noting that m = 2 and m! = ﬁ, we arrive at
25 Z3 <15
(3.4.3) after using the expressions for P and @) from (3.4.1) and (3.4.2), respectively.

]

Theorem 3.4.2. We have

()™ (e )
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Y ) L A Sa VS R e
’ ((1 —a)?(1 - 7)204578) (Q + Q’) 2 ; (3.4.7)
where
P ((1 + Vo) (1 — )1 — \/3)2)1/8
(1= VO)(1+ D)1+ VB)
and

(1= VB) (1 +va) 1+ Vo)

Proof. We employ the method of reciprocation 3.1.2 (¢« - 1 -5, f — 1 — a,

Q@+ﬂﬂﬂmﬂww_

v —=1-6,0 - 1—~, and mm’ — 9/mm’) to the modular equation (3.4.3) to

obtain (3.4.7). O

The theta function identity (3.4.4) underlying the modular equations (3.4.3) is

also quite intriguing. We can easily recast (3.4.4) in the following form

Theorem 3.4.3. We have

Fofsfi fisfizfoafinfin + 20° 13 fs fs o fr2 fan foa 30 f10.fia0
= f§f2f5f52f§0f30f60f120 + 3qf§f4f62f82f120f12f15f20f24f30f420f60f120
+2¢° 7 13 fo fs o o f30.f 10 feo frzo- (3.4.8)

Remark 3.4.1. Few curious observations on the identity (3.4.8) are as follows:

1. The identity (3.4.8) is of level 120 in the sense that in each term [], ; 7 we
have i’s are divisors of 120. Further, all divisors of 120 appears in (3.4.8),

except the divisor 5.

2. The identity (3.4.8) is of degree 19 in the sense that in each term [, ; 7 we

have > j =19. Further, each exponent j is a divisor of 12.

3. For each term [], ; f7in (3.4.8), we have S ij = 11 (mod 24). As such, we
can easily recast (3.4.8) in terms of Dedekind’s eta-functionn(z) := ¢"/**(¢; @)oo,

q = exp(2miz).
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