Chapter 4

F-partitions with £ colors and h
repetitions

4.1 Introduction!

In Chapter 1, we discussed F-partitions which are two rowed array representations of
the form (1.1.1), with additional conditions on the parts. We emphasised mainly on
two F-partition functions ¢x(n) and c@x(n). The function ¢(n) counts the number
of F-partitions where a part can be repeated at most k times while c¢y(n) counts
the number of F-partitions where each part comes from k copies of non-negative
integers. In this chapter, we discuss a more generalized class of F-partitions, which
can be interpreted as a generalization of both ¢y (n) and cog(n).

Let ¢y pn(n) denote the number of F-partitions of n in which each part is repeated
at most h times and is taken from k copies of the nonnegative integers. The order
relation between two colored parts j; and [, is defined by ‘j; < [, if and only if j < I

or j = h and ¢ < h’. For example, the F-partitions enumerated by c¢s 2(2) are
1y 1 1; 1 0q 09 04 02
0:/7\01/) 7 \02/ " \0y /)" \1;/) \1:/) \13/) \ 1o
09 04 09 09 09 09 02 09 09 04
02 01/ \0z 02/ \02 01/ " \0y 01/ \0z 03/
05 04 01 04 01 04 01 04
0; 0:/7\050,/7\0; 0,/ \0y 05/

1Some of contents of this chapter appeared in The Ramanujan Journal [62].
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It is easy to see that ¢r(n) := c¢y x(n) and cor(n) := céy,1(n). Andrews [3] also
indicated that further study of c¢ n(n) is possible beyond the cases with h =1 or
k=1.

Padmavathamma [53] outlined a method for obtaining representations of the
generating functions for c¢y ,(n) for arbitrary positive integers k and h in terms of
infinite products. By employing this method, an infinite product representation for
c®; 2(q), the generating function for c¢s o(n), was found [53, Corollary 1]. However,

there is a misprint in the result and the correct version is as follows:

Theorem 4.1.1. We have,
(=% *)2 (=% 4%) 2 (=% ¢")2 (0" ¢") e
(;0)%
(—=¢;0*)2, (=% ¢°)2. (=4 ¢*)2. (0" ¢ ) o
(¢;9)2%

c®y5(q) =

+ 2q

Kolitsch [43] derived the following congruences for c¢y, ,(n):

Z p(d)cora, n (g) =0 (mod k)

d|(k,n)

and

3 w(d)ensan (g) =0 (mod kK),

d|(k,n)
where K is the product of all prime power factors of k£ which are relatively prime to
h+ 1.

In this chapter, we present expressions for the generating functions of cgq o(n)
and c¢y 3(n), dissect these generating functions, and obtain a number of congruences
satisfied by these functions.

A key tool employed in this study is integer matrix exact covering system, as
described in Section 1.1 of Chapter 1. We also use identities involving Ramanujan’s
general theta functions and Jacobi’s triple product identity, the details of which

have been presented in Section 1.2 of Chapter 1.
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4.2 Preliminaries

Lemma 4.2.1. The following 2-dissection holds.

1 B fi13

hh o BALE TR 2

Proof. Identity (4.2.1) was proved by Baruah and Ojah [9]. ]
Lemma 4.2.2. We have

)= 3 T = oeld) T A, (422)

a(q) =1 (mod 6). (4.2.3)

Proof. Identity (4.2.2) is given by Equation (3.7.18) in [18] and Identity (4.2.3)

follows from Equation (21.1.1) in [36]. O

Lemma 4.2.3. We have

¥lg) = fjf e, (4.2.)
o(q) = (q°) +2¢Q(¢°), (4.2.5)

where

N anzgon S3fsfi
) = n;wq  fifafs

Proof. 1dentities (4.2.4) and (4.2.5) are Eequations (22.6.13) and (26.1.1), respec-

tively, in [36]. O

Lemma 4.2.4. We have

fi = fsa(q’) = 3qfs, (4.2.6)
fif,—a(q)j;ng?) a(q )";9+92§"2, (4.2.7)
L: 13 fis 2f9f18 498
fifs D figg ) g 30 (4.28)
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I8 fafis

B s ity 29
4 16 3.r3 2 r3

;_f?: JJC;SJJ% +2qf§c§9 +4qu%f_i;18_ (4.2.10)

Proof. Identities (4.2.6) and (4.2.7) follow from Equations (21.3.1) and (39.2.8),
respectively, in [36]. Identity (4.2.8) is Equation (22.9.4) in [36]. Identity (4.2.9) is
equivalent to Equation (14.3.2) in [36].

To prove (4.2.10), we first note that

4
(w5 0o (07 20 = L2, (4.2.11)
i Jor

where w denotes a primitive cube root of unity. Replacing ¢ with wg and w?q in
(4.2.9), multiplying the two resulting equations, and then employing (4.2.11), we
obtain (4.2.10). O

4.3 Generating function for c¢; o(n)
In this section, we present a representation of the generating function for ce¢q 2(n).

Theorem 4.3.1. Forn > 0, we have

« I i
2 conalnd = g M

n=0

Proof. From Andrews’ general principle 1.1.1, the generating function c¢®; 2(q) of
cpo,2(n) is given by
n=0

= O (L0 s (1o ) (1= ') (=)’

(
= o (el (o), (0570l (750)2, )
(
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o0

1 4 mp (mg+1)
= CT, (_ (_1)m1+m2+m3+m4 qZkzl gk
>

mi,m2,ms3, Mm4=—00

< Zm1+m2+m3+m4wm1+m2—m3—m4)’ (431)

where w is a cube root of unity other than 1. Extracting the constant term in (4.3.1),

we find that

1 [o.¢]
c®22(q) = - > P 2ma gk mS kg mamamams tmam (4.3.2)

i

mi1,m2, M3=—00

Using the integer matrix exact covering system (2.3.4), we can write (4.3.2) as a

linear combination of four parts as

oS [
1 2 2 2 2 2 2
C(I)Z Q(C]) = — E w4n3 q2n1+2n2+2n3 + 2 E : w4n3+2q2n1+2n2+2n3+2n2+2n3+1
fl ni,n2,N3=—00 ni,n2,N3=—00

o0

dng 2n2+42n242n242n1+2ns+1
+ w q 1 2 3

ni,n2,N3=—00

1 0o 2 ) ) 2 )
_ F ( < Z q2n2> ( Z wnq2n2> +q ( Z q2n2+2n) ( Z wnq2n2>
1 n=-—o00 n=—o0 n=—o0 n=-—o0
+ 2q ( i q2n2> ( f: q2n2+2n) ( io: wn+2q2n2+2n) >

L (P w0 @) + A () g o )

i
+4q0 () (g*) fw™h wat))
= 1 (gt ™ () + a0(0")} + AP0l a") flo '),

(4.3.3)

Using (1.2.15) in (4.3.3), we have
Bal) = 75 (flodt ™ P 0) + gt 0@l o ). (434)

Now, from (2.6.12), we have

flug,w™lq) = UBEN; (4.3.5)

fafsfiz
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Also, from (2.6.14), we have

2
flw ™ wg) =(1+w) i;: (4.3.6)
Replacing ¢ by ¢% and ¢* in (4.3.5) and (4.3.6) respectively, we have
o 1oy Jafsfh
T ) = o 43.1)
-1 4y oy fifa
flw ™ wq®) = (1 +w ) ol (4.3.8)
Using (1.2.6), (1.2.7), (4.3.7), and (4.3.8) in (4.3.4), we have
Jafs /i o f1 R f4f24)
“Pa2ll) = g (f4f6f24 7Rl TR A S R
LR i fa )
7 (fff2f6f24 i) 43.9)
This completes the proof of Theorem 4.3.1. O

4.4 Dissections and congruences for cg; 2(n)

In this section, we present 2- and 4-dissections for ¢®s 2(g), and some congruences

satisfied by cgq 2(n).

Theorem 4.4.1. For n > 0, we have

g Ca,a(2n +1)g" =8 {f;ﬁﬁ f%zi (4.4.1)
nio Cho,o(2n)q" = 77 f;{? f12 _ 16¢7 }{;‘ 1{22 + 16q%, (4.4.2)

— 1024q i;{g S +512¢ ]{1361 g fi , (4.4.3)
. f2%fs 3 fo 150 1t 13 fs

chyo(dn+1)¢" =8 —4 + 96¢ — 384q
Z 2.2( ) BROfE S fls e B
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RS 2 f2° 11 fta 2[5 1i° fs
384 512¢q — 1024 .
R T T
(4.4.4)
Proof. From (4.3.9), we have
- n_ 3 fsft fifo

= —4q 4.4.5
2 = e R 49)

Using (1.2.17) in (4.4.5), we have

N o Qﬂfgffg( it 4f4f8) gy it ( i 4f4f8)
2 conana” = Tpe b s A0 o TR T4

_ f33f122 41f8f122+162 f8f12 4 f420f24
f217f6fs7f24 213f6f24 f2f4f6f24 216f§’f12

— 16q 2 fi ];8 ff 2 (4.4.6)
12

+ 8¢

2n+1

Extracting the terms involving ¢ and ¢*" in (4.4.6) we obtain, respectively,

S fuf§ f20f12
cpp o(2n + 1)g" = 82 6 2 4.4.7
2 = T, D
and
- 315 [5 12 i fif3
ch,2(2n 2 16g R + 16—,
2 cona2" = e — 1007 = 00 e
which are (4.4.1) and (4.4.2).
Using (1.2.17) and (4.2.1) in (4.4.7), we have
S g2 fafs ( i fffé‘) ( [ 17 fif3 )
cPa2(2n+1)¢" = + 49—+ +q
2 020+ 1) fo \7Ef ) \Brsim TR R
f20f12 ( i fifs )
+ 4q . 4.4.8
f4 fo \f3'fs 2 448)
Extracting the terms involving ¢! and ¢*" in (4.4.8), we obtain, respectively,
8f 39f 30f4 4f f
Ca, o (An + 3)g" = 8322 642220 4 96200 1 38402 412
;) 22U 80" =8 iy~ g T 0 13
15 6 £14 p4
rooag B | o B

f24f3 121f??f122
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and
Soocbatin+ 00" =87y — s fb i ook - sl
+ 384q—f1221: gﬁﬁ: +512 Qf%;gf;g 12 _ 1024¢ 2/, }120;56

which are (4.4.3) and (4.4.4). O
Corollary 4.4.2. Forn > 0, we have

cp22(2n+1)=0 (mod 4). (4.4.9)
Proof. Congruence (4.4.9) immediately follows from (4.4.1). O
Corollary 4.4.3. For n > 0, we have

Choa(dn+3) =0 (mod 8). (4.4.10)
Proof. Congruence (4.4.10) immediately follows from (4.4.3). O

Corollary 4.4.4. If n can not be expressed as a sum of a pentagonal number, four

times a pentagonal number, and twelve times a pentagonal number then
cpo.2(dn+3) =0 (mod 16). (4.4.11)

Proof. From (4.4.3), we have

s 48 £2
> chaa(dn+3)q" = 8352—{;22 (mod 16). (4.4.12)
n=0 fl f4 f6

Using the elementary facts that f'% = f5% (mod 16) and 82 = 8f+ (mod 16) in

2m

(4.4.12), we find that

; o, 2(4n + 3)q" ]}41 ’;}62

= 8f1fsfi2 (mod 16),

which yields (4.4.11). O
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Corollary 4.4.5. If n can not be expressed as a sum of two times a pentagonal
number and three times a pentagonal number then

cpa2(An+1) =0 (mod 8). (4.4.13)

Proof. From (4.4.4), we have

13 fo
E cPao(dn+1)¢" = 4—=>——"— (mod 8). 4.4.14
2, 2 ) fgﬁf f ( ) ( )
Now using the elementary facts that f5 = fi* (mod 8) and 4f* = 4f;  (mod 8)

n (4.4.14), we find that

[e.9]

> choa(dn+1)g" =4fofs (mod 8), (4.4.15)
n=0
from which (4.4.13) follows. O

Corollary 4.4.6. If n can not be expressed as a sum of two times a pentagonal

number and three times a triangular number then
cpo.2(dn+1) =0 (mod 8). (4.4.16)

Proof. Replacing ¢ by —¢q in (4.4.15), we have

D (—1)"cgoa(dn+1)q" = 4fs (—¢% —¢*)
n=0
f2f6 m
e (mod 8), (4.4.17)

where we have also used (1.2.8).

Employing the elementary fact 4f2 = 4f12 (mod 8) in (4.4.17), we find that

o0

D (1)"caa(dn + 1)q" = 4f21)(¢%)  (mod 8),

n=0

from which (4.4.16) follows. O
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4.5 Generating function for c¢; 3(n)
In this section, we present a representation of the generating function for c¢q 3(n).

Theorem 4.5.1. Forn > 0, we have

Proof. From Andrews’ general principle 1.1.1, the generating function ¢®, 5(q) of

cpo.3(n) is given by

C(I)273(q) _ CTZ (H (1 +an+1 +22q2n+2 + Z3q3n+3) (1 4o q 4o 2q2n s 3q3n) )

n=0
=(CT, (H (1 + an+1)2 (1 + Z2q2n+2)2 (1 + z_lq”) (1 + 2_2(]2")2)
n=0
=CT. ((—zq; 0% (=2 4), (== ha) L, (=275 qQ)io)- (4.5.2)

Using Jacobi’s triple product identity (1.2.3) in (4.5.2), we obtain

oo 2 ) 2
6@273( ) CT 1 Z quw Z Z2nqn(n+1)
1313

m=—oco n=—oco
—CT. ( 1 i Zm1+m2+2m3+2m4q’"1<”;1“)+’"2<m2“)+m3(m3+1)+m4(m4+1))_
FE R S
(4.5.3)
Extracting the constant term in (4.5.3), we find that
1 > 2 32 32
0(132,3((1) - Z qm1+3m2+3m3+2m1mz+2m1m3+4m2m3' (4.5.4)

fi3

mi, M2, M3=—00

Now we consider the matrix

20 0
B=10 2 -2
0 2 2
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Clearly det(B) = 16 = 437! and

which is an integer matrix. Therefore by the procedure for obtaining series-product
identities obtained in [20], the matrix B can be used to obtain integer matrix exact

covering system for Z* which is given by

m m
Ng — N3 | > Ng — N3

Ng + N3 n2+n3+1

Employing this integer matrix exact covering system in (4.5.4), we have

1 - n2 TL2 TL2 nin
@y 3(q) = fQ—f?( Z gitons+2ngtnng
1J2

ni,n2,n3=—0o0

[e.9]

+ Z qn§+10n§+2n§+4n1n2+2n1 +10n2+2n3+3>

ni,n2,N3=—00

1 > > )
:_f2f2(< > q)( 2 )
1J2

nz=-—oo ni,N2=—00

+q3< Z q2n§+2n3> ( Z q(n1+2n2)2+6n§+2(n1+2n2)+6n2>)

- %(@(QZM‘W(‘J% +2q%(g") (Z q) ( 2 Q>>
= Fla) (ol)ola") + 400100 0™)
st

which is (4.5.1). O
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4.6 Dissections and congruences for c¢; 3(n)

In this section, we give a 2-dissection for ¢®, 3(¢) and deduce some congruences

satisfied by c¢o 5(n).

Theorem 4.6.1. For n > 0, we have

S £ 2 I
cPa 3(2n)q" = + 4q 4.6.1
N T T A (4.6.1)
and
= 1218 fiffy
cPa3(2n+1)¢" =4 + 164q : 4.6.2
2 consnt V" =4 1607 (46.2)
Proof. Using (4.2.2), (1.2.6), and (1.2.7) in (4.5.5), we have
> cpas(n)g" = f42f2 (2(*)e(q®) + 4% (") ¥ (q"))
n=0 1J4
ARNBE S fo S
3¢5 3.2 £2
— {2-]204-]20122 +4q2fif83f24 (463)
Jif6Is fa Jififa
Using (1.2.17) in (4.6.3) and extracting the terms involving ¢*" and ¢*"™! respec-
tively, we have
i 2 fa 2 It
cPa 3(2n)q" = + 4q
2 03 = e T M
and
- 1316 fift
cPa3(2n+1)¢" = 455 + 16g ,
2 cons(n+ 1" = A + 1002 00
which are (4.6.1) and (4.6.2). O
Corollary 4.6.2. Forn > 0, we have
cpo.3(2n+1)=0 (mod 4). (4.6.4)

Proof. The congruence (4.6.4) follows directly from (4.6.2). O
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Corollary 4.6.3. For n > 0, we have
cpe,3(8In+34) =0 (mod 3). (4.6.5)

Proof. Using (4.2.3), (4.2.5), and (4.2.8) in (4.5.5), we have

S e (n)d” ( f:?ﬁ fsz) (o) +240°) (mod 3).  (4.6.6)

n=0

Extracting the terms involving ¢***! in (4.6.6) and using the fact that f? = f
(mod 3), we find that

> chos(3n+1)g" = 20(q )f1f3 +20(q )f3f6
2. 72 Tif
f3 Ji2 3y J3J6
+2 mod 3). 4.6.7
=Phng TRy edd (46D
Using (4.2.8) in (4.6.7) and then extracting the terms involving ¢*"*2, we find that
S Siffy
> o 3(9n+ 7" (mod 3). (4.6.8)
— fif3f
Employing (4.2.8) in (4.6.8) and extracting the terms involving ¢*", we obtain
Z C¢273(27TL + 7) f3 f4
2 “of
f3 Ji2
mod 3). 4.6.9
g MY 09

3n+1

Using (4.2.8) again in (4.6.9) and extracting the coefficients of ¢°"*', we arrive at

(4.6.5). O
Corollary 4.6.4. Forn > 0, we have
cpo,3(18n +13) =0 (mod 8). (4.6.10)
Proof. From (4.6.2), we have
o n_  f2 1318

2 1 =4
2 cons(n+ " =455

(mod 8). (4.6.11)
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Using the elementary fact that 4f7 = 4fo (mod 8) in (4.6.11), we find that

o0

Zcqbz,g(Zn +1)g" = 4f;
n=0
= 4f—Zii (mod 8). (4.6.12)
fife

Using (4.2.8) and (4.2.6) in (4.6.12) and extracting the terms involving ¢*", we obtain

Bl _ o lh3f
Y

Z e 3(6n + 1)¢" = da(q)a(q?)
n=0

I Y
=475 —4¢°=5 (mod 8), (4.6.13)
f fi
where we also use the fact that 4a(q) =4 (mod 8).
Using (4.2.7) in (4.6.13) and extracting the terms involving ¢*" 2, we have
= fi 1 Wiwic
o 3(18n + 13)¢" = 4a(q?) —4da(q
2 conal1n + 13)q" = dale’) i = dela") gy
N
R PY £
_Rfy B
B f
=0 (mod 8). (4.6.14)
Congruence (4.6.10) follows from (4.6.14). O
Corollary 4.6.5. Forn > 0, we have
Cha5(162n+7) =0 (mod 16). (4.6.15)

Proof. Using the elementary facts that f'* = f3* (mod 16) and 4f* = 4f2" (mod 16)

— J2m

in (4.6.2), we obtain

oo 512 £5
nz:% cpo,3(2n+1)¢" = 4%%%2

= 4o(q) f3 x f_g (mod 16). (4.6.16)
3
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Employing (4.2.4) and (4.2.6) in (4.6.16) and extracting the terms involving ¢*", we

find that
oo 3
> cha3(6n + 1)g" = 4b(—q)p(q )ftz + 4qib(q )%{6 (mod 16).  (4.6.17)
n=0 1
Using (4.2.4) and (4.2.10) in (4.6.17) and extracting the terms involving ¢*"*!, we
have
e 3 £6
> con (180 + T)a" = —40(~a el L +ave) L
n=0 f2 f6
= —4¢(—q3)f12§4 + 41(q) f§§36 (mod 16). (4.6.18)
f5 fé

Employing (4.2.4), (4.2.6), and (4.2.9) in (4.6.18) and extracting the terms involving

", we have

nio% coo,3(bdn + 7)¢" = 4q¢(q3)% (mod 16). (4.6.19)

Using (4.2.9) in (4.6.19) and extracting the coefficients of ¢*", we obtain (4.6.15). O

Corollary 4.6.6. For n >0 and k € {9,29,39,49}, we have
cpe,3(B0n + k) =0 (mod 8). (4.6.20)

Proof. Using the elementary facts that f5% = (mod 8) and 42 = 4f5  (mod 8)

—2m

n (4.6.2), we have

= WA
2 conant V" = 4

E4f19

Now, using (1.2.23) in (4.6.21), we have

o0

Z cha,3(2n + 1)q" = 4 fos fa00 (%@ —q— QQR(QE)))

n=0



X (% — ¢ - qu(cfm)) (mod 8).

Extracting the terms involving ¢°"™ in (4.6.22), we have

Z ch2,3(10n + 9)q" = 4qfs fao

n=0
=4qf) (mod 8).

The congruences (4.6.20) follow from (4.6.23).

Corollary 4.6.7. Forn >0 and k > 0, we have
2%+2 _

a3 (2 x 5% t2p 49 x 1

Proof. Extracting the terms involving ¢°**! in (4.6.23), we have

D o 5(50n +19)g" = 4f)  (mod 8).
n=0
Comparing (4.6.21) and (4.6.25), we have
cpo,3(2n + 1) = cgo 3(50n +19)  (mod 8).

Now (4.6.24) follows from (4.6.26) by induction on n.

4.7 Ramanujan-type congruences for c¢; ;(n)

+ 1) = cpa3(2n+1) (mod 8).
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(4.6.22)

(4.6.23)

(4.6.24)

(4.6.25)

(4.6.26)

Theorem 4.7.1. Suppose that p is a prime and k € Z*. If n is not a multiple of p,

then

Chpi,p—1(n) =0 (mod p).

(4.7.1)

Proof. From Andrews’ general principle 1.1.1, the generating function C®,; ,—1(q)

of ¢dp, p—1(n) is given by

oo /p—l Pk /p1 pk
C(I)pk,pfl(Q) =CT, (H ( qukz(n—i-l)) (Z z_qu"> )
k=0

n=0
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— CT. (ﬁ (H (1= &2q")"* (1 - §jz_1q”)pk>>, (4.7.2)

n=0 \j=1
where ¢ is a p** root of unity other than 1.
From (4.7.2), we have

00 p—1
CPpp-1(q) = CT, H (H (1 _ gm’zpqpnﬂ)k (1 B fpjz_pqp”) k))

n=0 \j=1

=on ([T (1= o™ 1 vy )

n=0
 — B
=CT.| —= Y (—z)X<m>qY<m>> (mod p), (4.7.3)
p m=00
where
m = (mh ma, 7mpk—k) )
pk—k
X(m) - Z pmg,
i=1
S pma(m; + 1)
Y (m) = Z : 2’

Extracting the constant term in (4.7.3), we have

oo 1 0o _
> chprp-1(n)g" = T > ¢7") (mod p), (4.7.4)

n=0 p =00

where
W = (m17 ma,... 7mpk7kfl) ; (475)
Z(m') = Z pmgmy. (4.7.6)
1<s,t<pk—k—1

Combining (4.7.5), (4.7.6) with (4.7.4), we arrive at (4.7.1). O

4.8 Concluding remarks

The g-series expansions of ¢®; 5(q) and ¢®5 3(q) up to ¢* are

c®y.5(q) =1+ 4q + 17¢° + 40¢° + 99¢* + 2164° + 453¢° + 888¢" + 1705¢° + 31244°
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+ 5614¢'% + 9800¢"" + 16792¢'% + 28164¢'* + 46547¢'* + 756004"°

+ 121239¢% 4 1917964¢'" + 300017¢'® + 463976¢*° + 710648¢%° + - - -
and

c®y.3(q) =1+ 4q + 17¢° + 52¢° + 131¢* + 308¢° + 682¢° + 14244" + 28474°
+ 5496¢” + 1028640 + 18748¢™ + 33375¢"% + 58184¢" + 995894
+ 167620¢"° + 277822¢'® + 4541244¢'" + 732883¢'® + 1168820¢"°

+1843728¢%° + - - - .

Using elementary techniques we are able to establish a few congruences modulo
powers of 2 and 3 for c¢s o(n) and c¢o 3(n). However, computational evidences
suggest that these results are not exhaustive. In particular, the g-series expansions

of the above functions support the following congruences.

Conjecture 4.8.1. For n > 0, we have

cpa,2(20n +11) =0  (mod 5),
Cpo,3(45n +19) =0  (mod 5),
cp2.3(50n +39) =0 (mod 16),

c2.3(50n +49) =0 (mod 16).
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