Chapter 5

(k, a)—colored F-partitions

5.1 Introduction

In the introductory chapter, we discussed in details the generalized Frobenius par-
titions or, more simply, F-partitions which is a two-rowed array of the form (1.1.1).
We also saw that the number of parts in each row of (1.1.1) were equal. However,
one can consider F-partitions with unequal row lengths in the Frobenius symbols.
Jiang, Rolen, and Woodbury [37] pioneered the study of such F-partitions while
working on Motzkin paths and introduced the notion of (k, a)-colored F-partition
which is defined as follows:

Given k € Z* and a € Z + £ (a > 0), a (k, a)-colored F-partition of a positive

a; Qaz ... Qp

by by ... bs
nzT%—Zaﬂ-ij

i=1 j=1

satisfying the following conditions:

integer n is a two-rowed array

such that

1. Each entry a;, b; belongs to one of £ copies of nonnegative integers.

2. Each row is decreasing with respect to the lexicographical ordering. (Meaning
if ; and m; are "™ and j'™ copies of the integers [ and m respectively, then we

have [; < m; if and only if l <m or l =m and i < j.)
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3. The pair (r, s) # (0,0) of non-negative integers satisfies

k
r—s=a——.

2

They considered the function

Fi(z, 1) = (_—19(2 bl T>> :

gzn(7)
where z, 7 € C, Re(t) > 0, k € Z*, q¢ := €*™, and ¥(z, 7) is the Jacobi theta

function defined as

. o L1
19(27 7_) — E emin T+27rm(2+z).

ne$+7

Using ¢ := 2™ they established the following:

Theorem 5.1.1. The ¢ coefficient of Fy(z,7) is

OWpalg) = 3 et u ()",

n=0

where ¢y o(n) is the number of (k, a)—colored F-partitions of n.

In particular, C\Ifk’%(q) = CPy(q), where CPy(q) := Z cor(n)q" is the generating
n=0
function for k—colored F-partitions introduced by Andrews [3].

Using Jacobi’s triple product identity (1.2.3), Jiang, Rolen, and Woodbury [37]
established the following key result.

Theorem 5.1.2. The function CVy ,(q) is the constant term (with respect to () of

o0

e[+ ¢ 1+ te)”

n=0

wz’thaGZ—f—g.

Recently, Eckland and Sellers [27] considered the function ¢ty o(n) and derived
a number of congruences satisfied by this function. In [32], Garvan, Sellers, and

Smoot obtained the following infinite family of congruences for ci)s o(n).
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Theorem 5.1.3. If n and « are positive integers with 6n = —1 (mod 5%), then

cthy o(n) =0 (mod 5%).

In this chapter, we consider specific cases of ¢ty o(n) and establish some inter-
esting Ramanujan-type congruences satisfied by these functions. We also present
expressions for the generating functions of cyy 1 (n), cg,0(n), ctbg1(n), chg o(n),
cbg 1(n), and cibg 2(n) in terms of ¢g-products, dissect these generating functions,
and obtain a number of congruences satisfied by these functions.

A key tool employed in this study is integer matrix exact covering system, as
described in Section 1.1 of Chapter 1. We also use identities involving Ramanujan’s
general theta functions and Jacobi’s triple product identity, the details of which
have been presented in Section 1.2 of Chapter 1.

5.2 Ramanujan-type congruences for ciy; ,(n)

In this section, we consider two particular classes of (k, a)-colored F-partitions and

obtain congruences satisfied by these functions.
Theorem 5.2.1. For any prime p and | € ZT,

ctpro(n) =0  (mod p) (5.2.1)
forall a € Z* + %, where Z* = Z\ {kplk € Z}.

Proof. From Theorem 5.1.2, the generating function CW,; ,(q) of ¢ty o(n) is the

constant term in
ST (14 2™ (1 + 271 (5.2.2)
n=0
From (5.2.2), we have

G.(q) == -a H (1+ zpqp’”p) (142" qp") (mod p). (5.2.3)



Using Jacobi’s triple product identity (1.2.3) in (5.2.3), we have

I w_, ™ ™
G.(q) = 5227 Y 2™ (mod p),

75

(5.2.4)

I
i(mi + 1
where m = (my,ma,...,my), A(m) = mei, and B(m) = Z%
i=1

i=1
For the constant term in (5.2.4), we must have

which is interchangeable with

pm1+pm2+...+pml:a—%.

The linear Diophantine equation (5.2.5) has a solution if and only if p divides a — iy

(5.2.5)

2

It means that the constant term in (5.2.2) vanishes modulo p if p does not divide

[
a— ]i, from which the result follows.
Corollary 5.2.2. Ifl € Z" is odd, then for any primep > 3
C?ﬂpz,%(n) =0 (mod p).

1 [
Proof. 1f | and p both odd, then 3 €7+ Ep

1
Also, for a = 3 the congruence (5.2.1) is not true if

1= 2k+1)p,

which does not have a solution k. Hence (5.2.6) follows from (5.2.1).

Corollary 5.2.3. Ifl € Z" is odd, then for all m € Z* J{0}
o am(n) =0 (mod 2).
Proof. For p = 2, the congruence (5.2.1) is not true if

a=2k+1,

]

(5.2.6)

(5.2.7)

which does not have a solution k, if [ is odd and a is even. Thus (5.2.7) follows from

(5.2.1).

O
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1
Theorem 5.2.4. For any prime p and a € Z + Z%, we have

0 b(b+1) [e'S)
n q 2 MmQ, m
> ctprraln)” = S S (mod p),  (5.2.8)
n=0 LJp m=—00
1
where, b =a — ]%

Proof. From Theorem 5.1.2, the generating function CV, 1 4(q) of ci)p11 (1) is the

constant term in

[e.9]

G.(q) == Jha H (1+ zq”“)pJr1 (1+ z_lq")pJrl : (5.2.9)

n=0

From (5.2.9), we find that

Gula) = = T[ (1 27 ) (L 2720m) (L4 247) (L4 71¢7)  (amod p)

n=0
(5.2.10)
Using Jacobi’s triple product identity (1.2.3) in (5.2.10), we have
1 > pm(m—+1 n(n+1
G.(q) = — Z ZPmin=by R (mod p). (5.2.11)
flfp m,n=—oo
For constant term in (5.2.11), we must have pm + n — b = 0, which yields
n=—pm+b. (5.2.12)
Using the value of n from (5.2.12) in (5.2.11), we find that
00 b(b+1) 00
n q 2 Mm?_ m
N i aln)g” = S (mod p),
n=0 flfp m=—o0
which is (5.2.8). O

We recall Ramanujan’s famous partition congruences given by

p(bn+4)=0 (mod 5), (5.2.13)
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p(Tn+5)=0 (mod 7), (5.2.14)

p(1146) =0 (mod 11), (5.2.15)

where p(n) denotes the number of unrestricted partitions of n. We also note that

- 1

Zp(n)q” = 7 lg| < 1. We use (5.2.8) and Ramanujan’s partition congruences
1

n=

0
(5.2.13)—(5.2.15) to establish few Ramanujan-type congruences for the functions
Py, o(n).

Corollary 5.2.5. Forn > 0, we have

cbgo(bn+2) =0 (mod b), (5.2.16)
c)s1(5n) =0 (mod 5), (5.2.17)
chg 2(bn+4) =0 (mod 5). (5.2.18)

Proof. Setting p =5 and a = 2 in (5.2.8), we find that

- n 1 - m2 m
20%,2(”)(] = Emz—ooqw o
— f20f320
= S (mod 5). (5.2.19)

In view of (5.2.13), we observe that the coefficients of ¢°***

on the right side of
(5.2.19) are multiples of 5. This is enough to prove (5.2.18). The proofs of (5.2.16)

and (5.2.17) are similar to the proof of (5.2.18). O

Corollary 5.2.6. Forn > 0, we have

s o(Tn+4) =0 (mod 7), (5.2.20)
s 1 (Tn+1)=0 (mod 7), (5.2.21)
s, 5(Tn+6) =0 (mod 7), (5.2.22)
s 5(Tn+5) =0 (mod 7). (5.2.23)

Proof. For p = 7, setting a = 0,1,2, and 3 in (5.2.8) and using (5.2.14) we obtain
(5.2.20), (5.2.21), (5.2.22), and (5.2.23) respectively. O
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Corollary 5.2.7. For n > 0, we have

12.0(11n4+10) =0 (mod 11), (5.2.24)
co1(11n+5) =0 (mod 11), (5.2.25)
o 2(1ln+1)=0 (mod 11), (5.2.26)
cyo.3(11n+9) =0 (mod 11), (5.2.27)
1o 4(1ln+7)=0 (mod 11), (5.2.28)
1 5(11n+6) =0 (mod 11). (5.2.29)

Proof. For p = 11, setting a = 0,1,2,3,4, and 5 in (5.2.8) and using (5.2.15), we
obtain (5.2.24), (5.2.25), (5.2.26), (5.2.27), (5.2.28), and (5.2.29) respectively.  [J

Remarks 5.2.8. The listing of congruences in the above corollaries is by no means

exhaustive. One can choose other values of a to derive more such congruences.

We now emphasize on the exact generating functions of few particular instances

of ety o(n).

5.3 Generating function for cy, %(n)

In this section, we present a representation of the generating function for cty 1 (n).

Theorem 5.3.1. Forn > 0, we have

> 3
Y ey 1 (n)g" = 37?" (5.3.1)
n=0

Proof. From Theorem 5.1.2, the generating function C\Ilgvé(q) of c¢37%(n) is the

constant term in

o0

Gy(z) = = H (1 + zq”“)3 (1 + z_lqn)3

n=0

3
1 ad m(mt1)
i

m=—00
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oo
mq(mq+1) | mo(mao+1) , mg(mg+1)
Z Zm1+m2+m3+1q 1 21 +2 22 +58 23 ] (532)

1
i

mi,m2, M3=—00

Extracting the constant term in (5.3.2), we have

= 1 = P n2 nin n n
> ey 1(n)g" = 7 Do gritratmnatmne, (5.3.3)
n=0 ni,Ng=—00
Using (1.2.21) in (5.3.3), we have
>ty " =
n=0 1
3
_ql3
4
1
which is (5.3.1). O

Corollary 5.3.2. Forn > 0, we have
C@Z)&%(n) =0 (mod 3). (5.3.4)
Proof. (5.3.4) follows directly from (5.3.1). O

Remarks 5.3.3. The corollary (5.3.4) also follows from corollary (5.2.1).

5.4 Generating function and congruences for ci, o(n)
In this section, we present a representation of the generating function for cipy o(n).

Theorem 5.4.1. For n > 0, we have

© 9 10 £2
; s o(n)q" = 4 ff% 7 + 2];?18 fg . (5.4.1)

Proof. From Theorem 5.1.2, the generating function CWy (q) of ¢y o(n) is the

constant term in

[e.9]

G.(q) :=2* H (1+ Zq”+1)4 (1+ z_lq”)4

n=0
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4
1 b m(m+1)
2 m
z° X 7 g Z"qg 2
1 m=—oo
o0
_ i Z Zm1+m2+m3+m4+2 m1(721+1)+m2(7g2+1)+m3(7g3+1)+m4("214+1)
= 1 q .
fl mi,m2,ms, m4g=—00
(5.4.2)
Extracting the constant term in (5.4.2), we find that
oo 1 o
2 2 3
§ :61/14’0(71)(]” — F § : qml+m2+m3+m1m2+m1m3+m2m3+2m1+2m2+2m3+1.
n=0 1 mi,ma, m3=—00
(5.4.3)

Using the integer matrix exact covering system (2.3.4), we can split the right side

of (5.4.3) into 4 sums as

[e's) [e's)
1 2 2 2
n __ 2n5+2ns5+2n5+2n1+2n2+2n3+1
E s o(n)q" = — E gt
n=0

fl ni,n2,N3=—00
o0
+ Z q2n%+2ng+2n§+4n1 +4no+2n3+4
ni,nN2,N3=—00
o0
+ Z q2n§+2n§+2n§ +4n1+2no+4ng+4

ni,n2,N3=—0o0

o0

+ } : q2n§+2n§+2n§+2m +4no +4n3+4>

ni,n2,N3=—00

_ fi;* (8qv°(¢*) + 64" f2(q7, ") (q")) - (5.4.4)

Using (1.2.15) in (5.4.4), we find that

> ctuo(n)g" = %?4) {40%(¢”) +2¢°(0) }

NN
iR R

This completes the proof of (5.4.1). O

+2
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Theorem 5.4.2. Forn > 0, we have

S o f2 [

> et o(2n + 1)g" = 32 o (5.4.5)
n=0
10
me 0(2n)¢" = 6f118f6 32qm, (5.4.6)
0 44 20f9 34f2 flOflle
ey o(4n +1)g" = 32 + 1536¢ 2% + 768¢ 25 + 4096¢> 2228
2 TP E Ty 21
(5.4.7)
- 132 fa e 2 f3 P
ey 0(dn + 3)q" = 384 + 2048¢ + 64 + 3072q .
2 g e O »
(5.4.8)
Proof. Using (1.2.17) in (5.4.1), we find that
i ( ) 23 1f8 2 f
s o(n)g" = 6 +32¢ +32¢ 5.4.9
n=0 v f18f6 f210f ( )

Equating the terms involving ¢***1 in (5.4.9), dividing the resulting identity by ¢,
and replacing ¢* by ¢ we arrive at (5.4.5). Similarly, equating the terms involving
¢*" in (5.4.9) and replacing ¢* by ¢ we derive (5.4.6).

Using (1.2.16) and (1.2.17) in (5.4.5) and extracting the terms involving ¢*" and

2n+1

¢t we arrive at (5.4.7) and (5.4.8), respectively. O

Corollary 5.4.3. Forn > 0, we have

Uy o(n) =0 (mod 2), (5.4.10)
Wy o(2n+1)=0 (mod 32), (5.4.11)
ao(dn+3) =0 (mod 64), (5.4.12)
s o(8n+5) =0 (mod 128), (5.4.13)
s o(8n+T7)=0 (mod 256), (5.4.14)
ao(16n+11) =0 (mod 1024), (5.4.15)

c4.0(16n+15) =0 (mod 1024). (5.4.16)
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Proof. The congruences (5.4.10), (5.4.11), and (5.4.12) follow directly from (5.4.1),

(5.4.5), and (5.4.8), respectively.
From (5.4.7), we find that

S 44
by, o(4n +1)¢" = 32— 23—
2 T
226
=32 mod 128).
i | )

Extracting the odd parts in (5.4.17), we obtain (5.4.13).

From (5.4.8), we have

N > fa 23
cq,0(4dn + 3)q" = 384 + 64
2 ool 4 8" = S8 + 01
16 28 £2
= 384f2f2f4 T 642 1§8 (mod 256).
8 4

Extracting the odd parts in (5.4.18), we obtain (5.4.14).

Further, from (5.4.8), we have

S 0 — gy ds [2° 3
> et o(dn + 3)g" = 384 oz T 64
o 1778 1 Ja
16 30 £2
= 3847 2fo =+ 64?1 ’i@ (mod 1024).
8 1/4
Using (1.2.17) in (5.4.20) and extracting the terms involving ¢*", we have

oo 16 16

> et o(8n+3)g" = 38471 2f2 +eadl 2f2

2 I; f:

_ sl
= 448F (mod 1024),
i
from which (5.4.15) follows.
From (5.4.19), we have
S [32fa f2°f2
cthy, o(4n + 3)q" = 384 + 64
2 R
16 30 £2
= 3847 2fo =+ 64}%1 f183 (mod 1024).
8 1/4

(5.4.17)

(5.4.18)

(5.4.19)

(5.4.20)

(5.4.21)
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Using (1.2.17) in (5.4.21) and extracting terms involving ¢**** we find that

% 20 £6
D et o(Bn+T)g" = 2561 1{4
n=0 2
6
= 25697 (mod 1024). (5.4.22)
2
Congruence (5.4.16) follows from (5.4.22). O

Remarks 5.4.4. Congruences (5.4.11) and (5.4.12) have been proved in [37].

5.5 Generating function and congruences for ci), 1(n)

In this section, we present a representation of the generating function for ciy 1(n).

Theorem 5.5.1. For n > 0, we have

o 6
> e a(n)g" = 4;—?7. (5.5.1)
n=0

Proof. From Theorem 5.1.2, the generating function CWy4 1(q) of ¢y 1(n) is the

constant term in

o0
4 14
G.(q) =2 H (1+2¢"")" (14 27'¢")
n=0
1 [ < )
m(m+1)
=2z X f_12 ( Z qu 2 )
m=—o00
1 s 1 1 1 1
= Z gty g P L) g maat) g et
mi,m2,ms3, m4=—00
(5.5.2)
Extracting the constant term in (5.5.2), we find that
oo 1 oo
Z by, 1(n)q" = F Z qm%+m§+m§+m1m2+m1m3+m2m3+m1+m2+m3' (5.5.3)
n=0 1 mi,ma, M3=—0oQ

Using the integer matrix exact covering system (2.3.4), we write the right side of

(5.5.3) as

) 1 )
n __ 2n2+2n2+2n2+n1+n2+n3
E chy 1(n)q —F E g TR
n=0 1

ni,n2,N3=—00
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+ q2 E q2n%+2n§+2n§+3n1 +3ng+ns

+ q2 E q2n%+2n%+2n§+3n1 +no+3ns

niy,n2,N3=—00
00
+q2 § : q2nf+2n§+2n§+n1+3n2+3n3
ni,nz,n3=—0oo

1

= -1 (¥*(0) +3¢%(q))
fi
f3
— 472
f
O
Corollary 5.5.2. Forn > 0, we have
cPg1(n) =0 (mod 4), (5.5.4)
Py 1(Tn+3) =0 (mod 7), (5.5.5)
a1 (25n+ k) =0 (mod5), ke {5, 15,20}, (5.5.6)
Proof. Congruence (5.5.4) follows directly from (5.5.1).
From (5.5.1), we have
N n_ o (f3)°
Z chy1(n)g" =4 (mod 7). (5.5.7)
n=0 f7
From [36, Eqn. 3.7.1], we have
f3 = H(qd") = 3¢*7(¢") +5¢°K (¢")  (mod 7), (5.5.8)

where
H(q) = (¢*,q",q%4") .,
J(q) = (¢ d54")

K(q) = (¢.4% d"5d")
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and (aq, a9, ..., ax; ) is given by (1.2.25).
Using (5.5.8) in (5.5.7), we find that

fz

—30¢°J(¢") K (¢"*) + 25¢"° K*(¢""))  (mod 7). (5.5.9)

> cyi(n)g" = i(H 2(¢") = 6¢°H (¢ J (¢"*) + 9¢" J*(¢"*) + 10¢°H (¢"*) K (¢**)
n=0

Congruence (5.5.5) follows from (5.5.9).

From (5.5.1), we observe that, modulo 5,

= 10 1
g 1(n)g" =4 x = X
; ) fs  el=q)
a0
— gy 0, 2L ;1). (5.5.10)
fs (=)
Employing 1.2.22, extracting the terms involving ¢°", and using (1.2.29) in (5.5.10),
we have
S f2 #'(=q)
cPq1(5n)¢" =4 X &= %
HZ:O 11(6m) fi (=)
YINELEN f3  (mod 5). (5.5.11)
10
Replacing ¢ by ¢% in (1.2.24), we have
fi=Jo+Jo (mod5), (5.5.12)

where J; consists of terms in which the power of ¢ is congruent to ¢ modulo 5. Using

(5.5.12) in (5.5.11), we arrive at (5.5.6). 0

Remarks 5.5.3. Congruence (5.5.5) appeared as a conjecture in [37].

5.6 Generating functions and congruences for cy ,(n),
a=20,1,2

In this section, we present representations of the generating functions for cig o(n),

cbg1(n), and cihg 2(n).
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Theorem 5.6.1. Forn > 0, we have

& L RRE g U, SRR LR
D Woolmd" =g i 48R S iy et O
(5.6.1)

Proof. From Theorem 5.1.2, the generating function C'Wq ¢(q) of cibg o(n) is the

constant term in

G.(q) =2 H (1+ zq”Jrl)6 (1+ z_lq")6

n=0
m(m+1)
= Z X —= E 2™ q 2
m=—o00

1 oo
_ (Zm1+m2+m3+m4+m5+m6+3

6 2 :

fi

mi,m2,ms, m4,ms, me=—00

X q (5.6.2)

mq(mq+1) | mo(mo+1)  mg(mg+1)  my(my+1) , mg(mg+1)  mg(mg+1)
121 + 222 + 323 + 424 + 525 + 626 >'

Extracting the constant term in (5.6.2), we have

> ctbeo(n)g" = % > RS (5.6.3)
n=0

mi,m2,ms3, mq4, ms=—00

where
Z mmJ+3Zmz—|—3.
1<%,5<5

Using the integer matrix exact covering system

( 3\
0 0 0
1 0 1
Bn,Ban+| o |.Bn+| o | .Bn+| -1 , (5.6.4)
0 0 0
0 1 1
\ J
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1 -1 0 0 O 1
11 0 0 0 Na
where B=| -1 0 1 =1 0 and m = | pn; |, obtained in [10], we can
o 0 0 1 -1 n
0 0 0 1 1 ns

split the right side of (5.6.3) into 4 parts as

2
- 1 - n2 n2 nin. n n S n2 S n2 n
S st = ol 3 g (3747 (37 g
1

n=0 n1,Ng=—00 n=—oo n=—oo

00 00
+ 2q7 ( Z q2n§+2ni+2n1n4+5n1+4n4> ( Z qn2>

ni,ng=—00 n=-—o00

X (i qn2+n> ( f: qn2+4n>
+ qS ( i q2"?+2”?;+2n1n4+6n1+6n4> ( i qn2+n>2 ( i qn2+3n> ]

ni,ng=—oo n=—oo n=-—oo
(5.6.5)
Using the integer matrix exact covering system
1
Bn, Bni + , (5.6.6)
0
1 1 [
where B = and m = , we find that
-1 1 m

0o 00 e )
E : q2n%+2ni+2n1n4+3n1+3n4 — E q2n2 2 q6n2+6n
ni,ng=—00 n=—oo n=—oo
o) 00
5 2n2+2n 6n2+12n
+a | X > a
n=—oo n=—oo

= o(®) f(1,4") +2¢°Y(¢") f (¢, ¢")

= 20(¢*)¥(q"?) + 2¢7 (g e(¢°). (5.6.7)
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Similarly, we deduce that

oo

Z g Rmna S — 90— (0 Vb (), (5.6.8)

n1,Ng=—00

and

oo

Z q2n%+2nz+2n1n4+6n1+6n4 — q—690<q2)90(q6) + 4q_4¢(q4)¢(q12). (569)

ni,ng=—00

Using (5.6.7), (5.6.8), and (5.6.9) in (5.6.5), we have

> eveo(n)g" = filﬁ (4902(Q)90(q6)¢(q2)¢(q4) +8¢° ()0 () () (g%
+ 80(0*)p(¢°) ¥ (¢*) + 4a9* (@) p(a*) o (a*) b (q*?)
F 3PP ) ) (5.6.10)
Using (1.2.6) and (1.2.7) in (5.6.10), we arrive at (5.6.1). O

Corollary 5.6.2. Forn > 0, we have

cbgo(n) =0 (mod 4), (5.6.11)
cbgo(dn+2) =0 (mod 8), (5.6.12)
cPgo(An+3) =0 (mod 8). (5.6.13)

Proof. Congruence (5.6.11) follows directly from (5.6.1).

From (5.6.1), we have

S w_ y J3fS D £ 131
2 ctnoln" = A
=4fy +4qf8 (mod 8). (5.6.14)

Extracting the terms involving ¢** and ¢***! in (5.6.14), we obtain

[e.9]

> cio(2n)q" = 4f5  (mod 8), (5.6.15)

n=0
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and

ZC%O (2n+1)¢" = 4f2 (mod 8), (5.6.16)

n=0

respectively.

Congruences (5.6.12) and (5.6.13) follow from (5.6.15) and (5.6.16), respectively. []

Theorem 5.6.3. Forn > 0, we have

SR fRf fofsfor
S T e fda O g TN gy

Proof. From Theorem 5.1.2, the generating function CW¢ 1(q) of cibs 1(n) is the

icw&l(n) n f214f6 f2f4f12 (5617)

constant term in

o0

6 _ 6
G.(q) = 2* H (1+2¢")" (1+27"'¢")
n=0
1 = ’
222x—6<z 2Mq 2“)
N\
— i f: m1+mao+ma+mg+ms+me+2
1 mi,m2,ms, mq,ms, Mme=—00
% qm1(77211+1)+m2(77212+1>+m3(77213+1>+m4(772l4+1)+m5(77215+1)+m6(77216+1)> . (5618)
Extracting the constant term in (5.6.18), we have
o 1 o0
> et 1 (n)g" = 7 > g?m, (5.6.19)
n=0 L my,ma, m3, ma, ms=—oc

where

Z mm]+22ml

1<4,5<5

Using Integer matrix exact covering system (5.6.4) in (5.6.19), we have

2
N n 1 - n?4+2n24+2n1n ni-+2n. > n > n24om
ZC%J(”)Q :FIQ< Z AT 2ngF2ninat2m+2 4> <Z q2> <Z q2+2>
1

n=0 ni,n4g=—0o0 n=—oo n=—oo

+ 2q4 ( Z q2n%+2ni+2n1n4+4n1+3n4> ( Z qn2>

ni,n4g=—00 n=-—00
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% (i qn2+3n> (i qn2+n>
4 q5 ( i q2n§+2ni+2n1n4+5n1+5n4> ( i qn2+n)2 ( i qn2+2n> ] )

(5.6.20)
Employing Lemma 1.2.21, we have
Z q2n%+2nz+2n1n4+2n1+2n4 _ C((]Q)
ni,Ng=—00
3
= 3f—6. (5.6.21)
f2

Using the integer matrix exact covering system (5.6.6), we find that

o0

Z g2t A s =Ly o (fle,d")+ a7 f(¢’.q")., (5.6.22)

ni,ng=—00

and

o0

S g o) £(g", ¢°) + 20700 (a") (%, 4"). (5.6.23)

ny,Ng=——00

Now setting a = ¢~1,b = ¢* in (1.2.11), we have

fla,d'™+ a7 f(@’q") = fla,q"). (5.6.24)

Using (5.6.24) in (5.6.22), we have

(o)

Z q2n§+2nﬁ+2n1n4+4n1+3n4 — qilw(q)f(qfl, q4) = quw(q)f(q, q2>. (5625)

n1,N4=—00
Employing (5.6.21), (5.6.23), and (5.6.25) in (5.6.20), we have
c n)q" = — | ==

n=0

(q) + 8p(Q)v(q)* (@) f(a,¢%) + 4e(0)e(d*)*(¢*) f (4", ¢°)

+ 8q(q)¥ (g (@®) f(4*, ¢') (5.6.26)

Using (1.2.6), (1.2.7), (1.2.13), and (1.2.14) in (5.6.26), we arrive at (5.6.17).
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Corollary 5.6.4. For n > 0, we have
g 1(2n+1) =0 (mod 4). (5.6.27)
Proof. From (5.6.17), we find that

icd% l(n) n _ f214f6

: 712 16
n=0 f f
3! 2ff 6 (mod 4). (5.6.28)
4
Congruence (5.6.27) follows from (5.6.28). O

Theorem 5.6.5. For n > 0, we have

NV 1 S S £ Y T
Z“”“ i fh R T, Py (0629)

Proof. From Theorem 5.1.2, the generating function CWg o(q) of ctbg 2(n) is the

constant term in

oo

G.(q) = = H (1+ zq”+1)6 (1+ z_lq”)6

n=0

—ZX—(Z 2"q 2“)

m=—00
o0

— i Z (Zm1 +ma+ma+ma+ms+me+1
6
1

mi,m2,ms,mq,ms, me=——00

X g (5.6.30)

m1(77211+1)+m2(77212+1>+m3(77213+1>+m4(77214+1>+m5(77215+1)+m6(77216+1)>

Extracting the constant term in (5.6.30), we have

o0

> b a(n)g" = % > RS (5.6.31)
n=0

mi, M2, M3, M4, Ms=—00

where

Z mmj—i-ZmZ

1<4,5<5
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Using Integer matrix exact covering system (5.6.4), we have

0o oo - 9 .
> ca(n)g" = %[ ( > q2n?+2ni+2mn4+m+n4> ( S qn2> ( 3 qn2+n>
n=0 1

n1,N4a=—00 n=-—o00 n=-—00

00 S
+ 2q2 ( Z q2n%+2n3+2n1n4+3n1+2n4> ( Z qn2>

ni,ng=—00 n=-—00

77,2 n n2 n
N B - ;
+q3< Z q2n§+2n§+2n1n4+4n1+4n4> (Z qn2+n> ] (5.6.32)

ni,ng=—00 n=-—o00

Using the integer matrix exact covering system (5.6.6), we find that

o0

[e%S) [e%S)
2n%+2ni+2n1n4+n1 +n4 __ 2n? 6n2+42n
q = q q

ni,ng=—00 n=-—o00 n=-—o00

+ q3 ( i q2n2+2n> ( i q6n2+8n>

n—=—odo n=—oo

= o(¢®) f(q*, ¢%) + 2¢*(¢") f(q 2, ¢")

= o(®) flq*, a®) +2q0 (") f(®. ¢°).  (5.6.33)

In a similar way, we find that

o0

n2 TL2 nin n n. —
> gerrtrrmmain e — =y (q) f(q, ¢°), (5.6.34)
ni,Ng=—00
and
- 2n242n24+2n1ng+4ni +4ng —2 fg
5 g-ritem =3¢ “=-. (5.6.35)

f2
ni,Ng=—00

Using (5.6.33), (5.6.34), and (5.6.35) in (5.6.32), we find that
> b a(n)g" = fif (2<p(q2)<p2(q)w(q2)f (¢", ¢%) + 40(Q)v(d*)¢*(a) f (4, 4%)
+ 4@V (@ ¢) + 24q§—§w3<q2>). (5.6.36)

Using (1.2.6), (1.2.7), (1.2.13), and (1.2.13) in (5.6.36), we arrive at (5.6.29). O
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Corollary 5.6.6. For n > 0, we have

cPs2(2n+1)=0 (mod 4), (5.6.37)
cbg2(dn+2) =0 (mod 4), (5.6.38)
cPg2(dn+1) =0 (mod 8). (5.6.39)

Proof. From (5.6.29), we have

= AR
2 cUsalmd" =275 70

=2f2 (mod 4), (5.6.40)

from which (5.6.37) follows.
Extracting the terms involving ¢?" in (5.6.40) we find that

Z ceo(2n)q" = 2f}

n=0

=2f, (mod 4). (5.6.41)

Congruence (5.6.38) follows from (5.6.41).
From (5.6.29), we have

N A 1 T
ZC‘”“ M= 2 g, ey Ay, mod®)

=9 f27f42f122 + 212f6 +4 f2f6f8f24

ftfifsfa 4f4fff6 72 fafr
f2f12 f2f6f8f24
" R b A5 A (5.6.42)

(mod 8)

Employing (1.2.16) in (5.6.42) and extracting the terms involving odd powers of ¢,

we find that
N et = o1l < f1 f16> 13 fofsfos
;C%Q(szrl) 2f8f24 T1 ks i fafr2 (mod 8)
_4 f2f4f12f16 _|_4qf23f6f8f24 (5643)

f8f24 f4f12
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Dividing (5.6.43) by ¢ and then replacing ¢ by ¢, we find that

o0 2 £2 12 £2 3
nE:O cea(2n +1)¢" = 4f1§£52f8 + 4f1 iifm (mod 8)
_ B ffsfafie
=4 21y +4 7 (mod 8). (5.6.44)

Employing (1.2.20) in (5.6.44), extracting the terms having even powers of ¢ and

then replacing ¢? by ¢ we obtain

N R AR
cso(dn+1)¢" =4 +4 mod 8
; oaldn+1) 2k e 0
RER AR
=4 +4 mod 8
sig T ppr tmed®
=8f/. (5.6.45)
Congruence (5.6.39) follows from (5.6.45). O

5.7 Concluding remarks

A closer look at the respective generating functions of the associated (k, a)-colored

Frobenius partition functions reveals the following relations.

Theorem 5.7.1. We have

ey 3(n) =cgr(n—1) n>1,
cbg a(n) = chg2(n —2) n > 2,

cbg 5(n) = chg.1(n —3) n > 3.

From the above identities, it will be interesting to explore possibility of existence of
other such results.

We have established few congruences for ci)g,o(n), cig,1(n) and ci)g, 2(n) modulo
powers of 2. However, computational evidence supports the existence of more such

congruences. For instance, we have the following conjecture.



Conjecture 5.7.2. Forn > 0, we have

cbg 0(64n+ k) =0 (mod 16),

k € {5,25,33,41,45}.
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