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Chapter 7

Conclusion and problems for

future research

We have begun this thesis with an introductory chapter, in which we have introduced

some notations and recalled certain definitions and results related to groups and graphs.

We have also recalled certain results related to commuting graphs and commuting conju-

gacy class graphs of groups that are useful in this thesis.

In Chapter 2, we have introduced the concepts of CNL-spectrum, CNSL-spectrum,

CNL-energy and CNSL-energy. We have established relations between these energies

and the first Zagreb index of a graph. Additionally, we have introduced the concepts

of CNL-integral, CNSL-integral, CNL-hyperenergetic and CNSL-hyperenergetic graphs

and showed that a complete bipartite graph is CNL-integral, CNSL-integral but neither

CNL- hyperenergetic nor CNSL-hyperenergetic. Furthermore, we have established con-

nections between various graph energies, including energy, Laplacian energy and signless

Laplacian energy. Finally, we have obtained several bounds for CNL-energy and CNSL-

energies of graphs.

In Chapter 3, we have computed CNL-spectrum, CNSL-spectrum, CNL-energy and

CNSL-energy of commuting graphs of the groups QD2n , PSL(2, 2k), GL(2, q), A(n, ν),

A(n, p), D2n and groups whose central quotient is isomorphic to Sz(2), Zp × Zp or D2m.

We have determined when commuting graphs of these groups are CNL(CNSL)-integral
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and CNL(CNSL)-hyperenergetic. Finally, we have compared CN-energy, CNL-energy

and CNSL-energy of commuting graphs of the above-mentioned groups.

In Chapter 4, we have considered the subgraph of CCC-graph of a finite non-abelian

group G induced by the set of conjugacy classes of non-central elements of G which is

denoted by Γ∗
ccc(G). We have computed CN-spectrum, CNL-spectrum, CNSL-spectrum

and their corresponding energies of Γ∗
ccc(G) for finite non-abelian groups whose central

quotient is isomorphic to Zp × Zp (where p is any prime) or the dihedral group D2m (m ≥
3). We have determined whether Γ∗

ccc(G) for these groups are CN-, CNL-, CNSL-integral/

hyperenergetic/borderenergetic. We have also characterized the groups G = D2m, Q4n,

U6n, U(n,m), SD8n and V8n such that Γ∗
ccc(G) is CN-, CNL-, CNSL-integral/hyperenergetic

/borderenergetic. Finally, we have compared various common neighborhood energies of

Γ∗
ccc(G) for the above-mentioned groups and illustrate their closeness graphically.

In Chapter 5, we have considered the complement of Γ∗
ccc(G), denoted by Γ∗

nccc(G),

which is the subgraph of non-commuting conjugacy class graph of a finite non-abelian

group G induced by the set of conjugacy classes of non-central elements of G. We have

computed distance spectrum, distance Laplacian spectrum, distance signless Laplacian

spectrum along with their respective energies and Wiener index of Γ∗
nccc(G) for G when

the central quotient of G is isomorphic to Zp × Zp (for any prime p) or D2m (for any in-

teger m ≥ 3). As a consequence, we have computed various distance spectra, energies

and Wiener index of Γ∗
nccc(G) for the dihedral group, dicyclic group, semidihedral group

along with the groups U(n,m), U6n and V8n. We have showed that any perfect square can

be realized as Wiener index of Γ∗
nccc(G) for certain dihedral groups. We have also char-

acterized the above-mentioned groups such that Γ∗
nccc(G) are D-integral, DL-integral and

DQ-integral. We have computed distance energy, distance Laplacian energy and distance

signless Laplacian energy of Γ∗
nccc(G) for the above-mentioned groups using Wiener in-

dex. We have also compared various distance energies of Γ∗
nccc(G) and characterized the

above-mentioned groups subject to the inequalities involving various distance energies.

In Chapter 6, we have considered commuting conjugacy class graph of a group G,

denoted by Γccc(G), and compute distance Laplacian spectrum and energy of Γccc(G) if

G = D2m, Q4n, U(n,m) and SD8n. We have also considered finite groups whose central

quotient is isomorphic to Zp × Zp (for any prime p) or D2m. As a consequence, it was
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shown that the commuting conjugacy class graphs of these groups are D-integral.

7.1 Problems for future research

During our research we have introduced CNL-spectrum, CNL-energy, CNSL-energy and

studied various spectral properties of commuting graphs, CCC-graphs and NCCC-graphs

of finite groups. We have come up with certain problems for future research. In this

section we list all those problems.

In Chapter 3, we have observed that Γc(G) is CNL(CNSL)-integral for several families

of finite non-abelian groups. Therefore, the following problem arises naturally.

Problem 7.1.1. Characterize all finite non-abelian groups G such that Γc(G) is CNL
(CNSL)-inetgral.

It has been observed that the commuting graphs of some AC-groups are CNL(CNSL)-

hyperenergetic but some are not CNL(CNSL)-hyperenergetic. Therefore, it will be inter-

esting to find conditions such that commuting graphs of finite AC-groups are CNL(CNSL)

-hyperenergetic. More generally, we have the following problem.

Problem 7.1.2. Characterize all finite non-abelian groups G such that Γc(G) is CNL
(CNSL)-hypernergetic or not CNL(CNSL)-hyperenergetic.

In Chapter 4, we have computed CN-/CNL-/CNSL-spectrum and energy of Γ∗
ccc(G)

for certain families of finite non-abelian groups. We have shown that Γ∗
ccc(G) is CN-,

CNL- and CNSL-integral for all the groups considered in Chapter 4. In view of this, the

following problem arises naturally.

Problem 7.1.3. Characterize all finite non-abelian groups G such that Γ∗
ccc(G) is CN-,

CNL- and CNSL-integral.

The existence of finite non-abelian groups G such that Γ∗
ccc(G) is CN-hyperenergetic

is not clear. However, there are finite non-abelian groups G such that Γ∗
ccc(G) is CN-

borderenergetic (see Theorem 4.3.4), CNL-hyperenergetic/CNL- borderenergetic and

CNSL-hyperenergetic/CNSL-borderenergetic (see Corollary 4.3.6). Thus the following

problem is worth considering.
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Problem 7.1.4. Characterize all finite non-abelian groups G such that Γ∗
ccc(G) is CN-

borderenergetic/CN-hyperenergetic/CNL-hyperenergetic/CNL-borderenergetic/CNSL-
hyperenergetic/CNSL-borderenergetic.

In Section 4.4, we have found several classes of finite non-abelian groups G such that

ECN(Γ∗
ccc(G)) = LECN(Γ∗

ccc(G)) = LE+
CN(Γ∗

ccc(G)). Thus, we pose the following problem.

Problem 7.1.5. Characterize all finite non-abelian groups G such that

ECN(Γ∗
ccc(G)) = LECN(Γ∗

ccc(G)) = LE+
CN(Γ∗

ccc(G)).

In Section 4.4, we have also found several classes of finite non-abelian groups G such that

ECN(Γ∗
ccc(G)) < LE+

CN(Γ∗
ccc(G)) < LECN(Γ∗

ccc(G)). As shown in Result 1.2.26, there are

several classes of finite non-abelian groups G such that E(Γ∗
ccc(G)) < LE+(Γ∗

ccc(G)) <

LE(Γ∗
ccc(G)). It follows that there exist finite non-abelian groups such that E(Γ∗

ccc(G)),

LE+(Γ∗
ccc(G)), LE(Γ∗

ccc(G)) and ECN(Γ∗
ccc(G)), LE+

CN(Γ∗
ccc(G)), LECN(Γ∗

ccc(G)) behave sim-

ilarly. Thus, the following problem arises naturally.

Problem 7.1.6. Determine all the finite non-abelian groups G such that E(Γ∗
ccc(G)),

LE+(Γ∗
ccc(G)), LE(Γ∗

ccc(G)) and ECN(Γ∗
ccc(G)), LE+

CN(Γ∗
ccc(G)), LECN(Γ∗

ccc(G)) satisfy sim-
ilar inequalities.

It is worth noting that problem similar to Problem 7.1.6 can also be asked for any finite

graph. For the groups G consider in Chapter 4, we have

ECN(Γ∗
ccc(G)) ≤ LECN(Γ∗

ccc(G)). (7.1.a)

In view of this it is too early to conjecture (similar to Conjecture 1.1.6) that the inequality

(7.1.a) holds for any finite non-abelian group. However, one may consider the following

problem.

Problem 7.1.7. Determine all the finite non-abelian groups such that the inequality
(7.1.a) does not hold. In general, determine all the finite graphs Γ such that the inequality
ECN(Γ) ≤ LECN(Γ) does not hold.
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In Chapter 5, we have solved Inverse Wiener index Problem (Problem 1.1.24) for

Γ∗
nccc(G) when n is a perfect square (see Reamrk 5.1.6). However, the solution of Inverse

Wiener index Problem is not known for Γ∗
nccc(G) when n ̸= 2, 5 is any positive integer. We

pose the following problem in general.

Problem 7.1.8. Solve the Inverse Wiener index Problem for various graphs defined on
finite groups.

In Chapter 6, we have computed DL-spectrum and DL-energy of CCC-graph of the

groups D2m, Q4n, U(n,m), V8n and SD8n. We have also considered the groups whose cen-

tral quotient is isomorphic to Zp × Zp or D2m. Note that CCC-graphs of these groups are

DL-integral (see Theorem 6.1.9). Thus we have the following problem.

Problem 7.1.9. Can one determine all finite non-abelian groups such that their CCC-
graph is DL-integral?

At this moment we do not have techniques to compute spectrum, Laplacian spectrum,

signless Laplacian spectrum, distance spectrum and distance signless Laplacian spectrum

of CCC-graph of a finite non-abelian group G. It may be interesting to develop such tech-

niques through which one can compute energy (E), Laplacian energy (LE), signless Lapla-

cian energy (LE+), distance energy (ED) and distance signless Laplacian energy (EDQ) of

CCC-graph of G and check whether

E(Γccc(G)) = LE(Γccc(G)) = LE+(Γccc(G)) = ED(Γccc(G)) = EDL(Γccc(G)) = EDQ(Γccc(G)).

This may lead to answer (partially) Problem 1.1.13. We have seen that the CCC-graphs of the

groups considered in Chapter 6 are not complete. Therefore, it is obvious to ask the following

question.

Question 7.1.10. For which groups CCC-graphs are complete?

There are certain generalization of CCC-graphs known as nilpotent conjugacy class graph (in

short NCC-graph) and solvable conjugacy class graph (in short SCC-graph) introduced in [77] and

[15] respectively. The NCC-graph (SCC-graph) of G is a graph whose vertex set is Cl(G) and two

distinct vertices aG and bG are adjacent if there exist some elements x ∈ aG and y ∈ bG such that
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⟨x, y⟩ is nilpotent (solvable). Questions similar to Question 7.1.10 are also interesting for NCC- and

SCC-graphs of groups. In this regard we prove the following results which are published in our

paper [22].

For any subgroup H of G, we have G acts transitively on the set of right cosets of H by right

multiplication. Therefore, G contains an element x fixing no coset of H in G. That is, no conjugate

of x lies in H . Thus we have the following proposition.

Proposition 7.1.11. Let H be a proper subgroup of a finite group G. Then G has a conjugacy

class disjoint from H.

The following theorem answers Question 7.1.10.

Theorem 7.1.12. Let G be a finite group. Then the CCC-graph (resp., the NCC-graph, the SCC-

graph) of G is complete if and only if G is abelian (resp. nilpotent, solvable).

Proof. Let C1, C2, . . . , Cr be the conjugacy classes of G. Suppose that G is abelian (resp. nilpotent,

solvable). Then for any two element x ∈ Ci and y ∈ Cj (i ̸= j) we have that ⟨x, y⟩ is abelian (resp.

nilpotent, solvable). Hence, any two distinct vertices in CCC-graph (resp. NCC-graph, SCC-graph)

of G is complete.

Suppose that the CCC-graph of G is complete. Let h = h1 ∈ C1. By the definition of CCC-

graph, there exist hi ∈ Ci for all i such that hi commutes with h = h1. Therefore, by Proposition

7.1.11, we have ⟨h1, h2, . . . , hr⟩ = G and so h ∈ Z(G). Since h is arbitrary, G is abelian.

Suppose that the NCC-graph of G is complete. Let g, h ∈ G such that g is a p-element and h is

a q-element for two distinct primes p and q. Since NCC-graph of G is complete there exists x ∈ G

such that ⟨g, hx⟩ is nilpotent. By Result 1.2.4, it follows that g commutes with hx and hence G is

nilpotent.

Suppose that SCC-graph of G is complete. Let g, h ∈ G. Then there exists an element x ∈ G

such that ⟨g, hx⟩ is solvable. Hence, by Result 1.2.5, it follows that G is solvable.

A vertex of a graph is called a dominant vertex if it is adjacent to all other vertices of the graph.

Regarding dominant vertices of CCC-graphs we prove the following result.

Theorem 7.1.13. The set of dominant vertices Γccc(G) is Cl(Z(G)).
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Proof. If g ∈ Z(G) then gG is adjacent to all the vertices of Γccc(G). Therefore, gG is dominant

vertex of Γccc(G).

Suppose that gG is a dominant vertex of Γccc(G). Then for all h ∈ G, there exists x ∈ G such

that g commutes with hx. Therefore, CG(g) meets every conjugacy class of G. By Proposition

7.1.11, we have CG(g) = G and hence g ∈ Z(G). This completes the proof.

At this time we do not know about the dominant vertices of NCC- and SCC-graphs. We pose

the following problem for future research.

Problem 7.1.14. Describe the dominant vertices of the NCC- and SCC-graph of a finite group.

We conclude this thesis noting that NCC- and SCC-graphs of groups are not studied much and

can be studied in the light of similar problems mentioned problems.
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