
Chapter 1

Introduction and preliminaries

The energy of a finite simple graph Γ is the absolute sum of the eigenvalues of its adja-

cency matrix. In 1978, Gutman [54] introduced this notion in order to estimate the total

π-electron energy of a molecular graph. The study of this notion gets its popularity from

the beginning of the 21st century (see [5, 6]). Among many other graph energies some

well-studied energies are Laplacian energy, signless Laplacian energy, distance energy,

distance Laplacian energy and distance signless Laplacian energy. In 2011, Alwardi et

al. [4] introduced the concept of common neighborhood energy of a graph. In our study,

we shall introduce the concepts of common neighborhood Laplacian spectrum, common

neighborhood Laplacian energy, common neighborhood signless Laplacian spectrum and

common neighborhood signless Laplacian energy of a graph.

Another widely studied topic in Algebraic Graph Theory is the graphs defined on

groups (see [21, 22, 75]). Among those graphs, we shall consider commuting graph, com-

muting conjugacy class graph and non-commuting conjugacy class graph and investigate

their common neighborhood and distance spectral aspects for certain families of finite

non-abelian groups. In particular, we shall consider the dihedral group D2m = ⟨x, y :
xm = y2 = 1, y−1xy = x−1⟩ (for m ≥ 3), the dicyclic group Q4n = ⟨x, y : x2n =
1, xn = y2, y−1xy = x−1⟩ (for n ≥ 2), the semidihedral group SD8n = ⟨x, y : x4n =
y2 = 1, y−1xy = x2n−1⟩ (for n ≥ 2), the quasihedral group QD2n = ⟨x, y : x2n−1 =
y2 = 1, y−1xy = x2n−2⟩ (for n ≥ 4), the Suzuki group (of order 20) Sz(2) = ⟨x, y :

1



Chapter 1. Introduction and preliminaries

x5 = y4 = 1, y−1xy = x2⟩, the projective special linear group PSL(2, 2k) (for k ≥ 2),

the general linear group GL(2, q) (for any prime power q > 2). the Hanaki groups

A(n, v) and A(n, p) and the groups U(n,m) = ⟨x, y : x2n = ym = 1, x−1yx = y−1⟩ (for

m ≥ 3 and n ≥ 2), U6n = ⟨x, y : x2n = y3 = 1, x−1yx = y−1⟩ (for n ≥ 2) and

V8n = ⟨x, y : x2n = y4 = 1, yx = x−1y−1, y−1x = x−1y⟩ (for n ≥ 2).

In this chapter, we recall some definitions, notations and results from Graph Theory

and Group Theory that are required in the subsequent chapters. More precisely, we recall

certain results and problems on various spectra and energies, Wiener index, first Zagreb

index, commuting graph and commuting conjugacy class graph.

In Chapter 2, we shall introduce the concepts of common neighborhood (signless)

Laplacian spectrum and energy. We shall establish relations between these energies and

the first Zagreb index of a graph. Additionally, we shall introduce the concepts of CNL-

integral, CNSL-integral, CNL-hyperenergetic and CNSL-hyperenergetic graphs and show

that a complete bipartite graph is CNL-integral, CNSL-integral but neither CNL- hyper-

energetic nor CNSL-hyperenergetic. Furthermore, we shall establish connections between

various graph energies, including energy, Laplacian energy and signless Laplacian energy.

Finally, we shall obtain several bounds for common neighborhood Laplacian and signless

Laplacian energies of graphs.

In Chapter 3, we shall compute common neighborhood Laplacian spectrum, common

neighborhood signless Laplacian spectrum, common neighborhood Laplacian energy and

common neighborhood signless Laplacian energy of commuting graphs of the groups

QD2n , PSL(2, 2k), GL(2, q), A(n, ν), A(n, p), D2n and groups whose central quotient is

isomorphic to Sz(2), Zp × Zp or D2m. We shall determine when commuting graphs of

these groups are CNL(CNSL)-integral and CNL(CNSL)-hyperenergetic. Finally, we shall

compare common neighborhood energy, common neighborhood Laplacian and common

neighborhood signless Laplacian energy of commuting graphs of the above-mentioned

groups.

In Chapter 4, we shall consider the subgraph of commuting conjugacy class graph

of a finite non-abelian group G induced by the set of conjugacy classes of non-central

elements of G which is denoted by Γ∗
ccc(G). We shall compute common neighborhood

spectrum, common neighborhood Laplacian spectrum, common neighborhood signless
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Laplacian spectrum and their corresponding energies of Γ∗
ccc(G) for finite non-abelian

groups whose central quotient is isomorphic to Zp × Zp (where p is any prime) or the

dihedral group D2m (m ≥ 3). We shall determine whether Γ∗
ccc(G) for these groups are

CN-, CNL-, CNSL-integral/hyperenergetic/borderenergetic. We shall also characterize

the groups G = D2m, Q4n, U6n, U(n,m), SD8n and V8n such that Γ∗
ccc(G) is CN-, CNL-,

CNSL-integral/hyperenergetic/borderenergetic. Finally, we shall compare various com-

mon neighborhood energies of Γ∗
ccc(G) for the above-mentioned groups and illustrate

their closeness graphically.

In Chapter 5, we shall consider the complement of Γ∗
ccc(G), denoted by Γ∗

nccc(G), which

is the subgraph of non-commuting conjugacy class graph of a finite non-abelian group G

induced by the set of conjugacy classes of non-central elements of G. We shall compute

distance spectrum, distance Laplacian spectrum, distance signless Laplacian spectrum

along with their respective energies and Wiener index of Γ∗
nccc(G) for G when the central

quotient of G is isomorphic to Zp × Zp (for any prime p) or D2m (for any integer m ≥ 3).

As a consequence, we shall compute various distance spectra, energies and Wiener in-

dex of Γ∗
nccc(G) for the dihedral group, dicyclic group, semidihedral group along with

the groups U(n,m), U6n and V8n. We shall show that any perfect square can be realized

as Wiener index of Γ∗
nccc(G) for certain dihedral groups. We shall also characterize the

above-mentioned groups such that Γ∗
nccc(G) is D-integral, DL-integral and DQ-integral.

We shall compute distance energy, distance Laplacian energy and distance signless Lapla-

cian energy of Γ∗
nccc(G) for the above-mentioned groups using Wiener index. We shall

also compare various distance energies of Γ∗
nccc(G) and characterize the above-mentioned

groups subject to the inequalities involving various distance energies.

In Chapter 6, we shall consider commuting conjugacy class graph of a group G, de-

noted by Γccc(G), and compute distance Laplacian spectrum and energy of Γccc(G) if G =
D2m, Q4n, U(n,m) and SD8n. We shall also consider finite groups whose central quotient

is isomorphic to Zp × Zp (for any prime p) or D2m. Further, we shall show that the com-

muting conjugacy class graphs of these groups are D-integral. Finally, in Chapter 7, we

shall summarize the work done in this thesis and present several open problems that can

be explored in future studies.
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1.1 Notations and results of Graph Theory

For all the standard notations and basic definitions of Graph Theory we refer to [24].

Throughout the thesis, we write Γ to denote a finite simple undirected graph with vertex

set v(Γ) and edge set e(Γ). The order of Γ is |v(Γ)| and the size of Γ is |e(Γ)|. For any

two vertices u, v ∈ v(Γ), we write uv to denote the edge between u and v. The degree

of a vertex v in Γ, denoted by deg(v), is the number of vertices adjacent to v. We write

∆ = max{deg(u) : u ∈ v(Γ)} and δ = min{deg(u) : u ∈ v(Γ)} to denote the maximum and

minimum degree of Γ respectively. If the degree of the vertices of Γ are listed in a sequence

then that sequence is called degree sequence of Γ. A graph Γ is called regular graph if all the

vertices of Γ have same degree. If deg(v) = r for all v ∈ v(Γ) then Γ is called r-regular

graph. A u − v walk in Γ is a sequence of vertices in Γ beginning with u and ending at v

such that consecutive vertices in the sequence are adjacent. If u = v then we say that the

walk u − v is closed. A u − v walk in Γ in which no vertices are repeated is a u − v path. A

path of order n is denoted by Pn. Again, a u − v trail in Γ is a u − v walk in which no edge

is traversed more than once. A circuit in a graph is a closed trail of length 3 or more. A

circuit that repeats no vertex, except for the first and last vertex, is a cycle. A cycle of order

n is denoted by Cn. A cycle in Γ that contains every vertex of Γ is called a Hamiltonian

cycle. Γ is called acyclic if it has no cycle. An acyclic connected graph is known as tree.

The distance between two vertices u and v, denoted by d(u, v), is the length of a shortest

u − v path in Γ. If u and v are not connected in Γ then we write d(u, v) = ∞. Derived graph

of Γ, denoted by Γ†, is the graph with vertex set v(Γ), in which two vertices are adjacent

if their distance in Γ is two. A graph Γ is said to be complete graph if every two distinct

vertices are adjacent. A complete graph of order n is denoted by Kn. The size of Kn is

n(n − 1)/2. The complement of Γ is denoted by Γ. A graph Γ is a k-partite graph if v(Γ) can

be partitioned into k subsets V1, V2, . . . , Vk (called as partite sets) such that if uv is an edge

of Γ then u and v belongs to different partite sets. Additionally, a k-partite graph Γ is said

to be complete k-partite graph if every two vertices in different partite sets are joined by an

edge. We denote a complete k-partite graph by Kn1,n2,n3,...,nk
if ni = |Vi| for 1 ≤ i ≤ k. A

complete 2-partite graph is called a complete bipartite graph. The complete bipartite graph

K1,s or Ks,1, where s ≥ 1 is known as star graph. A graph Γ1 is called a subgraph of a graph
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Γ, denoted by Γ1 ⊆ Γ, if v(Γ1) ⊆ v(Γ) and e(Γ1) ⊆ e(Γ). Again, a subgraph Γ2 of a graph

Γ is called an induced subgraph of Γ if whenever u and v are vertices of Γ2 and uv is an

edge of Γ then uv is an edge of Γ2 as well. If Γ2 is an induced subgraph of Γ and S is a

non-empty subset of v(Γ) such that S = v(Γ2) then we call Γ2 is induced by S and it is

denoted by Γ[S].
Let Γ1 and Γ2 be two vertex disjoint graphs. Then the union of Γ1 and Γ2, denoted by

Γ1 ∪ Γ2, is the graph whose vertex set is v(Γ1) ∪ v(Γ2) and edge set is e(Γ1) ∪ e(Γ2). For

subgraphs Γ1, Γ2, . . . , Γk (k ≥ 2) of a graph Γ with mutually disjoint vertex sets, we write

Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γk, if every vertex and every edge of Γ belongs to exactly one of these

subgraphs. In such case, we say that Γ is a union of Γ1, Γ2, . . . , Γk. If Γ1 = Γ2 = · · · = Γk

then we write kΓ1 = Γ1 ∪ Γ2 ∪ · · · ∪ Γk. The join of two graphs Γ1 and Γ2, denoted by

Γ1 + Γ2, is the graph consisting Γ1 ∪ Γ2 and all edges joining a vertex of Γ1 and a vertex

of Γ2. Again, two graphs Γ1 and Γ2 are said to be isomorphic if there exists a one to one

correspondence ϕ form v(Γ1) to v(Γ2) such that uv ∈ e(Γ1) if and only if ϕ(u)ϕ(v) ∈ e(Γ2).

If Γ1 and Γ2 are isomorphic then we write Γ1 ∼= Γ2.

1.1.1 Spectrum, (signless) Laplacian spectrum and their corresponding

energies

For any graph Γ, let A(Γ) and D(Γ) be its adjacency matrix and degree matrix respectively.

The Laplacian matrix and signless Laplacian matrix of Γ are given by

L(Γ) := D(Γ) − A(Γ) and Q(Γ) := D(Γ) + A(Γ)

respectively. The spectrum, Laplacian spectrum and signless Laplacian spectrum of Γ are the

sets of eigenvalues of A(Γ), L(Γ) and Q(Γ) with multiplicities respectively. Let Spec(Γ),

L-spec(Γ) and Q-spec(Γ) be the spectrum, Laplacian spectrum and signless Laplacian

spectrum of Γ respectively. Then Spec(Γ) = {[α1]a1 , [α2]a2 , . . . , [αl]al}, L-spec(Γ) = {[β1]b1 ,

[β2]b2 , . . . , [βm]bm} and Q-spec(Γ) = {[γ1]c1 , [γ2]c2 , . . . , [γq]cq }, where α1, α2, . . . , αl are the

eigenvalues of A(Γ) with multiplicities a1, a2, . . . , al; β1, β2, . . . , βm are the eigenvalues of

L(Γ) with multiplicities b1, b2, . . . , bm; γ1, γ2, . . . , γq are the eigenvalues of Q(Γ) with mul-

tiplicities c1, c2, . . . , cq respectively. Sometimes we also write Spec(Γ) =
{

α1, α1, . . . , α1︸ ︷︷ ︸
a1-times

,
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α2, α2, . . . , α2︸ ︷︷ ︸
a2-times

, . . . , αl, αl, . . . , αl︸ ︷︷ ︸
al-times

}
; similarly for other spectra of Γ. A graph Γ is called in-

tegral, L-integral and Q-integral respectively if Spec(Γ), L-spec(Γ) and Q-spec(Γ) contain

only integers. The study of integral graphs began with the following question.

Question 1.1.1. Which graphs have integral spectra?

The Question 1.1.1 was posed by Harary and Schwenk [63] in 1973 (also see [12] for more

information). Ahmadi et al. [1] highlighted the significance of integral graphs in design-

ing network topologies for perfect state transfer networks. After that Grone and Merris

[53] in 1994 and Simic and Stanic [97] in 2008 introduced the notions of L-integral and

Q-integral graphs respectively.

Let E(Γ), LE(Γ) and LE+(Γ) be the energy, Laplacian energy and signless Laplacian energy

of Γ respectively. We have

E(Γ) :=
∑

α∈Spec(Γ)
|α|, (1.1.a)

LE(Γ) :=
∑

β∈L-spec(Γ)

∣∣∣∣β − tr(D(Γ))
|v(Γ)|

∣∣∣∣ (1.1.b)

and

LE+(Γ) :=
∑

γ∈Q-spec(Γ)

∣∣∣∣γ − tr(D(Γ))
|v(Γ)|

∣∣∣∣, (1.1.c)

where tr(D(Γ)) is the trace of D(Γ). In 1978, Gutman [54] introduced the notion of E(Γ),

which has been studied extensively by many mathematicians over the years (see [58] and

the references therein). In 2006, Gutman and Zhou [62] introduced the notion of LE(Γ);

and in 2008, Gutman et al. [57] introduced the notion of LE+(Γ). Some bounds of LE(Γ)
and LE+(Γ) are given below.

Result 1.1.2. [33, Theorem 3.1 and Remark 3.8] Let Γ be a connected graph with maxi-
mum degree ∆. Then

(a) LE(Γ) ≥ 2
(
∆ + 1 − 2|e(Γ)|

|v(Γ)|

)
, with equality if and only if Γ ∼= K1,n−1.

(b) LE(Γ) ≤ 4|e(Γ)|
(
1 − 1

|v(Γ)|

)
.
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Result 1.1.3. [36, Theorem 5.5] Let Γ be a graph with degree sequence d1, d2, . . . , d|v(Γ)|.
Then

LE(Γ) ≤
|v(Γ)|∑
i=1

√(
di − 2|e(Γ)|

|v(Γ)|

)2
+ di.

Result 1.1.4. [51, Theorem 3.1] Let Γ be a connected graph of order n ≥ 3 with m

edges and having maximum degree ∆ and minimum degree δ. Then LE+(Γ) ≥ ∆ + δ +√
(∆ − δ)2 + 4∆ − 4m

n , with equality if and only if Γ ∼= K1,n−1.

Result 1.1.5. [51, Theorem 4.1] Let Γ be a connected graph of order n with m edges and
having maximum degree ∆. Then LE+(Γ) ≤ 2

(
2m + 1 − ∆ − 2m

n

)
, with equality if and

only if Γ ∼= K1,n−1.

In [57], Gutamn et al. showed that E(Γ) = LE(Γ) for certain classes of graphs such as

Γ = pC6 ∪qK2 (where p, q are positive integers), regular graph etc. Also, they showed that

E(Γ) ≤ LE(Γ) for the graphs Γ = Ka,b, Ka ∪ Kb, Kbn(k) (the graph obtained by deleteing

k independent edges from the complete graph Kn), Kcn(k) (the graph obtained by

deleting the (k(k − 1))/2 edges of a complete graph Kk from the complete graph Kn) etc.

Based on these observations, they posed the following conjecture.

Conjecture 1.1.6. (E-LE Conjecture) For any finite simple graph Γ,

E(Γ) ≤ LE(Γ). (1.1.d)

Later on Conjecture 1.1.6 was disproved in [73, 99]. However, comparison of various

graph energies became interesting due to the E-LE Conjecture.

In [29], Das et al. showed that LE(Γ) = LE+(Γ) if Γ is a bipartite graph or a regular

graph. They further showed that LE(Γ1) > LE+(Γ1), LE(Γ2) < LE+(Γ2) and LE(Γ3) =
LE+(Γ3), where the graphs Γ1, Γ2 and Γ3 are as given below.

Figure 1.1: The graph Γ1 Figure 1.2: The graph Γ2 Figure 1.3: The graph Γ3
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These examples of graphs illustrate that LE(Γ) and LE+(Γ) are not comparable in general.

Thus, Das et al. [29] posed the following problem.

Problem 1.1.7. [29, Problem 1] Characterize all the graphs for which LE(Γ) > LE+(Γ),
LE(Γ) < LE+(Γ) and LE(Γ) = LE+(Γ).

The concept of hyperenergetic graph was introduced by Walikar et al. [104] and Gut-

man [55], independently in 1999. A graph Γ is called hyperenergetic if E(Γ) > E(K|v(Γ)|).

In a similar way, L-hyperenergetic and Q-hyperenergetic graphs were defined and intro-

duced in [48]. That is, a graph Γ is called L-hyperenergetic and Q-hyperenergetic if LE(Γ) >

LE(K|v(Γ)|) and LE+(Γ) > LE+(K|v(Γ)|) respectively. Also, Γ is called borderenergetic,

L-borderenergetic and Q-borderenergetic if E(Γ) = E(K|v(Γ)|), LE(Γ) = LE(K|v(Γ)|) and

LE+(Γ) = LE+(K|v(Γ)|) respectively. The concepts of borderenergetic, L-borderenergetic

and Q-borderenergetic graphs were introduced by Gong et al. [52], Tura [102] and Tao

et al. [100] in the years 2015, 2017 and 2018 respectively. In 1978, Gutman [54] posed the

following conjecture.

Conjecture 1.1.8. [54] For any finite graph Γ ≇ K|v(Γ)|, we have E(Γ) < 2 (|v(Γ)| − 1).
In other words, Γ is not hyperenergetic.

This Conjecture was disproved by several mathematicians (see [56]). In 2004, Balakr-

ishnan [11] posed the following problem.

Problem 1.1.9. [11, Open problem 1] Prove that Kn − H, where v(Kn) = {1, 2, . . . , n}
and H = (1 2 3 · · · n) a Hamiltonian cycle of Kn, is not hyperenergetic for n ≥ 4.

Let M be a real square symmetric matrix of size n. Then the spectrum of M , denoted

by Spec(M), is defined as Spec(M) = {µ1, µ2, . . . , µn}, where µ1, µ2, . . . , µn are eigenval-

ues (not necessarily distinct) of M . If Spec(M) = {µ1, µ2, . . . , µn} then the energy of M ,

denoted by E(M), is defined as

E(M) =
n∑

i=1
|µi|.

The following results are useful in our study.
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Result 1.1.10. [34, Lemma 2.10] Let M1 and M2 be two real square symmetric matrices
of order n and let M = M1 + M2. Then

E(M) ≤ E(M1) + E(M2).

Result 1.1.11. [36, Lemma 5.1] Let A be a real symmetric matrix of order n and let
d1, d2, . . . , dn be the diagonal entries of the matrix A2. Then

E(A) ≤
n∑

i=1

√
di.

1.1.2 Various distance spectra and energies

Let Γ be a connected graph with v(Γ) = {v1, v2, . . . , vn}. Let D(Γ) be the distance matrix of

Γ. Define T (Γ) as a diagonal matrix whose i-th diagonal entry T (Γ)i,i is the transmission

of vertex vi in Γ given by T (Γ)i,i =
∑n

j=1 dij , where dij is the (i, j)-th element of D(Γ).

Note that dij = d(vi, vj) is the distance between vi and vj . The distance Laplacian matrix

DL(Γ) and the distance signless Laplacian matrix DQ(Γ) are defined as follows:

DL(Γ) := T (Γ) − D(Γ) and DQ(Γ) := T (Γ) + D(Γ).

The distance spectrum D-spec(Γ), distance Laplacian spectrum DL-spec(Γ) and distance sign-

less Laplacian spectrum DQ-spec(Γ) of Γ are the sets of eigenvalues of D(Γ), DL(Γ) and

DQ(Γ) respectively, each with their corresponding multiplicities. We write D-spec(Γ) =
{[λ1]d1 , [λ2]d2 , . . . , [λr]dr }, DL-spec(Γ) = {[µ1]f1 , [µ2]f2 , . . . , [µs]fs} and DQ-spec(Γ) =
{[ν1]g1 , [ν2]g2 , . . . , [νt]gt}, where λ1, λ2, . . . , λr are the eigenvalues of D(Γ) with multiplici-

ties d1, d2, . . . , dr; µ1, µ2, . . . , µs are the eigenvalues of DL(Γ) with multiplicities f1, f2, . . . ,

fs; ν1, ν2, . . . , νt are the eigenvalues of DQ(Γ) with multiplicities g1, g2, . . . , gt respectively.

A connected graph Γ is called distance integral (D-integral), distance Laplacian integral (DL-

integral) and distance signless Laplacian integral (DQ-integral) if D-spec(Γ), DL-spec(Γ) and

DQ-spec(Γ), respectively, consist solely of integer eigenvalues. The study of D-spec(Γ)
was pioneered by Indulal and Gutman [65] in 2008, while the concepts of DL-spec(Γ)
and DQ-spec(Γ) were introduced by Aouchiche and Hansen [5] in 2013. For further read-

ing on distance (Laplacian) spectra, we refer to [6, 87] and the references therein. The

distance matrices have a wide range of applications across various fields, including the
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design of communication networks, network flow algorithms, graph embedding theory

and even in areas such as molecular stability, branching and model boiling points of an

alkane, psychology, phylogenetics, software compression, analysis of internet infrastruc-

tures, modeling of traffic and social networks etc. as noted in [6]. However, we shall not

address any of these applications in our work.

In analogy to energy E(Γ), Laplacian energy LE(Γ) and signless Laplacian energy

LE+(Γ) of a graph Γ Indulal et al. [65], Gutman et al. [108] and Das et al. [29] introduced

distance energy ED(Γ), distance Laplacian energy EDL(Γ) and distance signless Laplacian energy

EDQ(Γ) of Γ as given below:

ED(Γ) :=
∑

λ∈D-spec(Γ)
|λ|, (1.1.e)

EDL(Γ) :=
∑

µ∈DL-spec(Γ)

∣∣∣∣µ − tr(DL(Γ))
|v(Γ)|

∣∣∣∣ (1.1.f )

and

EDQ(Γ) :=
∑

ν∈DQ-spec(Γ)

∣∣∣∣ν − tr(DQ(Γ))
|v(Γ)|

∣∣∣∣ . (1.1.g)

Various results on ED(Γ) have been obtained by several mathematicians (for example see

[6, 65, 98, 106, 109]). Further, several bounds of ED(Γ), EDL(Γ) and EDQ(Γ) and relations

among these three energies have been explored in [29, 37, 108] and the references therein.

In 2018, Das et al. [29] posed the following problems.

Problem 1.1.12. [29, Problem 3] Characterize all the graphs for which EDL(Γ) = EDQ(Γ).

Problem 1.1.13. [29, Problem 4] Is there any connected graph Γ (≇ Kn) such that E(Γ) =
LE(Γ) = LE+(Γ) = ED(Γ) = EDL(Γ) = EDQ(Γ)?

In our study, we consider Problem 1.1.12 and Problem 1.1.13 for certain subgraphs

of non-commuting conjugacy class graphs and obtain graphs satisfying the equalities in

Problem 1.1.12 and Problem 1.1.13.

The following result gives characteristic polynomials of D(Γ), DL(Γ) and DQ(Γ) for

certain graphs.
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Result 1.1.14. Let Γ = Kn1,n2,...,nk
be a complete k-partite graph, where 2 ≤ k ≤∑k

i=1 ni − 1. Then

(a) [72, Lemma 2.5] the characteristic polynomial of D(Γ) is given by

ChD(Γ, x) = (x + 2)|v(Γ)|−k

 k∏
i=1

(x − ni + 2) −
k∑

i=1
ni

k∏
j=1,j ̸=i

(x − nj + 2)

 .

(b) [72, Lemma 2.8] the characteristic polynomial of DL(Γ) is given by

ChDL(Γ, x) = x(x − |v(Γ)|)k−1
k∏

i=1
(x − |v(Γ)| − ni)ni−1.

(c) [72, Lemma 2.12] the characteristic polynomial ChDQ(Γ, x) of DQ(Γ) is given by
k∏

i=1
(x − |v(Γ)| − ni + 4)ni−1

(
k∏

i=1
(x − |v(Γ)| − 2ni + 4) −

k∑
i=1

ni

k∏
j=1,j ̸=i

(x − |v(Γ)| − 2nj + 4)
)

.

Result 1.1.15. [101, Corollary 2.2] If Γ = Ka + (bKc ∪ Kd) then the distance Laplacian
characteristic polynomial of Γ is given by

ChDL(Γ, x) = x
(
x − (bc + d + a)

)a(
x − (2bc − c + 2d + a)

)b(c−1)

×
(
x − (2bc + d + a)

)d−1(
x − (2bc + 2d + a)

)b
.

1.1.3 Common neighborhood spectrum and energy

Let v(Γ) = {v1, v2, . . . , vn}. The neighborhood of a vertex vi in Γ, denoted by NΓ(vi), is

the set {vj : vj is adjacent to vi and i ̸= j}. Note that deg(vi) = |NΓ(vi)|. Let mΓ(vi) be the

average degree of the adjacent vertices of vi in Γ. If vi is an isolated vertex in Γ then we assume

that mΓ(vi) = 0. Hence, deg(vi) mΓ(vi) =
∑

vj : vivj∈e(Γ)
deg(vj). The common neighborhood of

two vertices vi and vj , denoted by N(vi, vj), is the set containing all the vertices other than

vi and vj that are adjacent to both vi and vj . Thus, N(vi, vj) = NΓ(vi) ∩ NΓ(vj). We have

the following result.

Result 1.1.16. [27] Let Γ be a graph of order |v(Γ)|. Then for each vi ∈ v(Γ),

|v(Γ)|∑
k=1, k ̸=i

|NΓ(vi) ∩ NΓ(vk)| =
∑

vj : vivj∈e(Γ)

(
deg(vj) − 1

)
= deg(vi) mΓ(vi) − deg(vi).

11
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The common neighborhood matrix CN(Γ) of Γ (also known as CN-matrix) is given by

CN(Γ)i,j =


|N(vi, vj)|, if i ̸= j

0, if i = j,

where CN(Γ)i,j is the (i, j)-th entry of CN(Γ). The CN-matrix of Γ can be obtained by the

following result.

Result 1.1.17. [4, Proposition 2.7] Let Γ be any graph. Then CN(Γ) = A(Γ)2 − D(Γ).

The common neighborhood spectrum (also known as CN-spectrum) of Γ, denoted by

CN-spec(Γ), is the set of eigenvalues of CN(Γ) with multiplicity. We write CN-spec(Γ) =
{[ρ1]h1 , [ρ2]h2 , . . . , [ρu]hu} where ρ1, ρ2, . . . , ρu are the eigenvalues of CN(Γ) with multi-

plicities h1, h2, . . . , hu respectively. The common neighborhood energy (also known as CN-

energy) of Γ, denoted by ECN(Γ), is defined as

ECN(Γ) =
∑

ρ∈CN-spec(Γ)
|ρ|. (1.1.h)

A graph Γ is called CN-hyperenergetic if ECN(Γ) > ECN(K|v(Γ)|). The concepts of CN-

spectrum and CN-energy are relatively new and not much explored. These concepts were

introduced by Alwardi et al. [4] in 2011. The following results are useful in our study.

Result 1.1.18. [49, Theorem 1] Let Γ = l1Km1 ∪ l2Km2 ∪· · ·∪ lkKmk
, where liKmi denotes

the disjoint union of li copies of the complete graphs Kmi on mi vertices for i = 1, 2, . . . , k.
Then

CN-spec(Γ) =
{

[−(m1 − 2)]l1(m1−1), [(m1 − 1)(m1 − 2)]l1 , [−(m2 − 2)]l2(m2−1),

[(m2 − 1)(m2 − 2)]l2 , . . . , [−(mk − 2)]lk(mk−1), [(mk − 1)(mk − 2)]lk
}

.

Result 1.1.19. [80, Theorem 2] Let Γ = l1Km1 ∪ l2Km2 ∪· · ·∪ lkKmk
, where liKmi denotes

the disjoint union of li copies of the complete graphs Kmi on mi vertices for i = 1, 2, . . . , k.
Then

ECN(Γ) = 2
k∑

i=1
li(mi − 1)(mi − 2).

12
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Using Result 1.1.18 and Result 1.1.19, we get the following result.

Result 1.1.20. Let Γ = l1Km1 ∪ l2Km2 ∪ l3Km3 , where liKmi denotes the disjoint union
of li copies of Kmi for i = 1, 2, 3. Then

CN-spec(Γ) =
{

[−(m1 − 2)]l1(m1−1), [(m1 − 1)(m1 − 2)]l1 , [−(m2 − 2)]l2(m2−1),

[(m2 − 1)(m2 − 2)]l2 , [−(m3 − 2)]l3(m3−1), [(m3 − 1)(m3 − 2)]l3
}

and

ECN(Γ) = 2l1(m1 − 1)(m1 − 2) + 2l2(m2 − 1)(m2 − 2) + 2l3(m3 − 1)(m3 − 2).

Result 1.1.21. [4, Proposition 2.4] If the graph Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γn then

ECN(Γ) = ECN(Γ1) + ECN(Γ2) + · · · + ECN(Γn).

Result 1.1.22. [4, Proposition 2.12] If Γ is a triangle- and quadrangle-free graph then
ECN(Γ) = E(Γ†).

We conclude this section with the following result.

Result 1.1.23. [4, Corollary 2.13-2.15]

(a) If T is a tree then ECN(T ) = E(T †).

(b) If Pn is a n-vertex path then ECN(Pn) = E(P⌊ n
2 ⌋) + E(P⌈ n

2 ⌉).

(c) For n-vertex cycle Cn, if n ≥ 3 is odd then ECN(Cn) = E(Cn); if n = 4 then
ECN(Cn) = 4 E(K2) = 8; if n ≥ 6 is even then ECN(Cn) = 2 E(C n

2
).

1.1.4 Topological index

Topological indices of a graph are numerical quantities derived from the graph. The oldest

topological index is the Wiener index originated from the work of Wiener [105] in 1947.

Let Γ be any graph with v(Γ) = {v1, v2, . . . , v|v(Γ)|}. The Wiener index of Γ, denoted by

W (Γ), is defined as W (Γ) = 1
2
∑

1≤i,j≤|v(Γ)| d(vi, vj). For various results on Wiener index

we refer to [38, 107] and the references there in. One interesting problem regarding Wiener

index is given below.

13
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Problem 1.1.24. (Inverse Wiener index Problem) Given any positive integer n find a
graph Γ from a prescribed class such that W (Γ) = n.

Considering the family of all graphs Gutman et al. [61] solved the Inverse Wiener

index Problem for n ̸= 2, 5. The Inverse Wiener index Problem is also solved for bipartite

graphs with some exceptional values of n (see [103] for details). More precisely, we have

the following results.

Result 1.1.25. [61, Theorem 1] Let C be the set of all connected graphs and W(C) :=
{W (Γ) : Γ ∈ C}. Then N \ W(C) = {2, 5}.

Result 1.1.26. [61, Theorem 3] Let B be the set of all connected bipartite graphs and
W(B) := {W (Γ) : Γ ∈ B}. Then

N \ W(B) = {2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 33, 37, 39}.

However, Inverse Wiener index Problem is not solved for graphs defined on groups,

in particular for non-commuting conjugacy class graphs. In Chapter 5, we shall consider a

subgraph of non-commuting conjugacy class graphs of groups and solved Inverse Wiener

index Problem when n is a perfect square.

The first degree based topological index of a graph is the Zagreb index. There are two

types of Zagreb indices namely the first Zagreb index and second Zagreb index. These

were introduced by Gutman and Trinajstić [60] in 1972. In our study, we have considered

only the first Zagreb Index. The first Zagreb index of Γ, denoted by M1(Γ), is defined as the

sum of the squares of the degrees of the vertices of Γ. Thus,

M1(Γ) =
|v(Γ)|∑
i=1

deg(vi)2 =
∑

vivj∈e(Γ)

(
deg(vi) + deg(vj)

)
.

It was shown in [30] that

M1(Γ) =
|v(Γ)|∑
i=1

deg(vi) mΓ(vi). (1.1.i)

Mathematical properties on the first Zagreb index was reported in [19, 27, 28, 32]. We shall

conclude this section by listing certain relation between (signless) Laplacian energy and

first Zagreb index of a graph.

14
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Result 1.1.27. [33, Equation no. (13)–(15)] Let Γ be any graph. Then

(a) LE(Γ) ≤ 2|e(Γ)| + M1(Γ) − 4|e(Γ)|2
|v(Γ)| .

(b) LE(Γ) ≤
√

|v(Γ)|
(
2|e(Γ)| + M1(Γ) − 4|e(Γ)|2

|v(Γ)|

)
.

(c) LE(Γ) ≤ 2|e(Γ)|
|v(Γ)| +

√
(|v(Γ)| − 1)

(
2|e(Γ)| + M1(Γ) − 4|e(Γ)|2

|v(Γ)| − 4|e(Γ)|2
|v(Γ)|2

)
.

Result 1.1.28. [50, Theorem 2.3] Let Γ be a graph of order |v(Γ)| ≥ 5 having maximum
degree ∆, second maximum degree ∆′ and first Zagreb index M1(Γ). Let v1 and v2 be
maximum and second maximum degree vertices in Γ. Then

LE+(Γ) ≥


2M1(Γ)
|e(Γ)| + 2∆′ − 8|e(Γ)|

|v(Γ)| , if v1 and v2 are not adjacent

2M1(Γ)
|e(Γ)| + 2β − 8|e(Γ)|

|v(Γ)| , if v1 and v2 are adjacent,

where β = ∆+∆′−
√

(∆−∆′)2+4
2 and equality occurs if and only if Γ ∼= K|v(Γ)|−2,2.

Result 1.1.29. [51, Theorem 3.3] Let Γ be a connected graph of order |v(Γ)| ≥ 3 having
first Zagreb index M1(Γ). Then

LE+(Γ) ≥ 2
(

M1(Γ)
|e(Γ)| − 2|e(Γ)|

|v(Γ)|

)
.

1.2 Notations and results of Group Theory

In this section, we recall some definitions, notations and results of Group Theory that are

useful in our study. However, for all the standard notations and basic results we refer

to [89, 90]. Throughout this thesis, we shall write G to denote a finite non-abelian group

with center Z(G) = {z ∈ G : zx = xz for all x ∈ G}.

The centralizer of an element x ∈ G, denoted by CG(x), is given by CG(x) = {y ∈ G :
xy = yx}. A group G is called an n-centralizer group if the number of distinct centralizers

of G is n. Below we mention some characterizations of n-centralizer finite groups given

by Belcastro and Sherman [14].

Result 1.2.1. [14, Theorem 2] A finite group G is 4-centralizer if and only if G
Z(G)

∼= Z2×Z2.
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Result 1.2.2. [14, Theorem 4] A finite group G is 5-centralizer if and only if G
Z(G)

∼= Z3×Z3

or G
Z(G)

∼= D6.

A group G is called a p-group if the order of every element in G is a power of the prime

number p. Ashrafi [10] obtained the following characterization of (p + 2)-centralizer finite

p-group.

Result 1.2.3. [10, Theorem 12] If G is a finite non-abelian p-group then G is (p + 2)-
centralizer if and only if G

Z(G)
∼= Zp × Zp.

A group G is called an AC-group if CG(x) is abelian for all x ∈ G \ Z(G). In our study,

we shall consider the following families of AC-groups: dihedral group D2m = ⟨x, y : xm =
y2 = 1, y−1xy = x−1⟩ (for m ≥ 3), dicyclic group Q4n = ⟨x, y : x2n = 1, xn = y2, y−1xy =
x−1⟩ (for n ≥ 2), semidihedral group SD8n = ⟨x, y : x4n = y2 = 1, y−1xy = x2n−1⟩ (for

n ≥ 2), quasihedral group QD2n = ⟨x, y : x2n−1 = y2 = 1, y−1xy = x2n−2⟩ (for n ≥ 4),

Suzuki group (of order 20) Sz(2) = ⟨x, y : x5 = y4 = 1, y−1xy = x2⟩ and the groups

U(n,m) = ⟨x, y : x2n = ym = 1, x−1yx = y−1⟩ (for m ≥ 3 and n ≥ 2), U6n = ⟨x, y : x2n =
y3 = 1, x−1yx = y−1⟩ (for n ≥ 2), V8n = ⟨x, y : x2n = y4 = 1, yx = x−1y−1, y−1x = x−1y⟩
(for n ≥ 2), projective special linear group PSL(2, 2k) (for k ≥ 2), general linear group

GL(2, q) (for any prime power q > 2) and the Hanaki groups A(n, v) and A(n, p).

The conjugacy class of x ∈ G, denoted by xG, is given by xG = {xg : g ∈ G}, where

xg := gxg−1. We write Cl(G) to denote the set of all the conjugacy classes of G. That is,

Cl(G) = {xG : x ∈ G}. Also, Cl(X) = {xG : x ∈ X} for any subset X of G.

A group G is called nilpotent if it has a central series, that is normal series 1 = G0 ≤
G1 ≤ · · · ≤ Gn = G such that Gi+1/Gi is contained in the center of G/Gi for all i. We have

the following result regarding finite nilpotent group.

Result 1.2.4. [39, Corollary E] Let G be a finite group. Then G is nilpotent if and only
if for every pair of distinct primes p and q and for every pair of elements x, y ∈ G with x

a p-element and y a q-element, x and yg commute for some g ∈ G.

A group G is said to be solvable if it has an abelian series that is 1 = G0�G1�· · ·�Gn =
G in which each factor Gi+1/Gi is abelian. We would like to mention the following result

regarding finite solvable group.
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Result 1.2.5. [39, Theorem A] Let G ba a finite group. Then the following are equivalent.

(a) G is solvable.

(b) For all x, y ∈ G, there exists an element g ∈ G for which ⟨x, yg⟩ is solvable.

(c) For all x, y ∈ G of prime power order, there exists an element g ∈ G for which ⟨x, yg⟩
is solvable.

Characterization of finite groups through various graphs defined on it has been an

active area of research over the last 50 years. A number of graphs have been defined on

groups (see [21]) among which we shall consider the commuting graph, commuting con-

jugacy class graph and the complement of commuting conjugacy class graph also known

as non-commuting conjugacy class graph.

1.2.1 Commuting graph

Let G be a finite non-abelian group with center Z(G). The commuting graph of G, denoted

by Γc(G), is a simple undirected graph whose vertex set is G \ Z(G) and two vertices x

and y are adjacent if they commute. This graph was originated from the work of Brauer

and Fowler [20] published in the year 1955. However, after Neumann’s work [82] on

its complement (also known as non-commuting graph) in 1976, the commuting graph

became popular. Various aspects of commuting graphs of finite non-abelian AC-groups

can be found in [2, 13, 66, 79].

Some results on structures of commuting graphs for various families of finite non-

abelian groups are given below.

Result 1.2.6. [42, page no. 89] The commuting graph of the quasidihedral group QD2n ,
where n ≥ 4, is given by

Γc(QD2n) = K2n−1−2 ∪ 2n−2K2.

Result 1.2.7. [42, page no. 89] The commuting graph of the projective special linear
group PSL(2, 2k), where k ≥ 2, is given by

Γc(PSL(2, 2k)) = (2k + 1)K2k−1 ∪ 2k−1(2k + 1)K2k−2 ∪ 2k−1(2k − 1)K2k .
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Result 1.2.8. [42, page no. 90] The commuting graph of the general linear group GL(2, q),
where q = pn > 2 and p is a prime, is given by

Γc(GL(2, q)) = q(q + 1)
2 Kq2−3q+2 ∪ q(q − 1)

2 Kq2−q ∪ (q + 1)Kq2−2q+1.

Result 1.2.9. [42, page no. 91] Let F = GF (2n) (where n ≥ 2) and ν be the Frobenius
automorphism of F , that is ν(x) = x2, for all x ∈ F . Then the commuting graph of the
group

A(n, ν) :=

U(a, b) =


1 0 0

a 1 0

b ν(a) 1

 : a, b ∈ F


under matrix multiplication U(a, b)U(a′, b′) := U(a + a′, b + b′ + a′ν(a)) is given by

Γc(A(n, ν)) = (2n − 1)K2n .

Result 1.2.10. [42, page no. 91] Let F = GF (pn), where p is a prime. Then the com-
muting graph of the group

A(n, p) :=

V (a, b, c) :=


1 0 0

a 1 0

b c 1

 : a, b, c ∈ F


under matrix multiplication V (a, b, c)V (a′, b′, c′) := V (a + a′, b + b′ + ca′, c + c′) is given by

Γc(A(n, p)) = (pn + 1)Kp2n−pn .

Result 1.2.11. [42, page no. 90] Let G be a finite non-abelian group such that G
Z(G)

∼=
Sz(2). Then Γc(G) = K4|Z(G)| ∪ 5K3|Z(G)|.

Result 1.2.12. [43, page no. 227] Let G be a finite non-abelian group such that G
Z(G)

∼=
Zp × Zp, where p is a prime. Then Γc(G) = (p + 1)K(p−1)|Z(G)|.

Result 1.2.13. [43, page no. 228] Let G be a finite group such that G
Z(G)

∼= D2m, m ≥ 2.
Then Γc(G) = K(m−1)|Z(G)| ∪ mK|Z(G)|.
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In [42, 43], Spec(Γc(G)) is computed for various families of finite groups and ob-

tained various groups such that Γc(G) is integral. In [44], Dutta and Nath have com-

puted L-spec(Γc(G)) and Q-spec(Γc(G)) for various families of finite groups and obtained

various groups such that Γc(G) is L-integral and Q-integral. In [95, 46, 40], E(Γc(G)),

LE(Γc(G)) and LE+(Γc(G)) have been computed for many families of finite groups and

many finite groups have been obtained for which Γc(G) is hyperenergetic. It was also

shown that E(Γc(G)) ≤ LE(Γc(G)) for all the groups considered in [40]. In [49], Fasfous

et al. have computed CN-spectrum of commuting graphs of several families of finite non-

abelian groups and determine certain finite non-abelian groups such that their commut-

ing graphs are CN-integral. In [80], Nath et al. have computed CN-energy of commuting

graphs of variuos families of finite non-abelian groups and determine several groups such

that their commuting graphs are CN-hyperenergetic. Some of the results of [80] are listed

below.

Result 1.2.14. [80, Theorem 3] Let G be a finite group with center Z(G).

(a) If G
Z(G)

∼= Sz(2) then ECN(Γc(G)) = 2(61|Z(G)|2 − 57|Z(G)| + 12).

(b) If G
Z(G)

∼= Zp × Zp (for any prime p) then ECN(Γc(G)) = 2(p + 1)((p − 1)|Z(G)| −
1)((p − 1)|Z(G)| − 2).

(c) If G
Z(G)

∼= D2m (m ≥ 2) then ECN(Γc(G)) = 2((m2 −m+1)|Z(G)|2 −(6m−3)|Z(G)|+
2m + 2).

Result 1.2.15. [80, Theorem 4] Let G be a finite non-abelian group.

(a) If G = QD2n (n ≥ 4) then ECN(Γc(G)) = 2(2n−1 − 3)(2n−1 − 4).

(b) If G = PSL(2, 2k) then ECN(Γc(G)) = 24k+1 − 4 × 23k+1 + 22k+1 + 6 × 2k+1 + 12.

(c) If G = GL(2, q) then ECN(Γc(G)) = 2q6 − 6q5 − 2q4 + 10q3 + 6q2 + 2q.

Result 1.2.16. [80, Theorem 5] Let G be a finite non-abelian group.

(a) If G = A(n, ν) then ECN(Γc(G)) = 2(2n − 1)2(2n − 2).

(b) If G = A(n, p) then ECN(Γc(G)) = 2(pn + 1)(p2n − pn − 1)(p2n − pn − 2).
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The energy, Laplacian energy and signless Laplacian energy of non-commuting graphs

of various finite groups were computed and compared in [48, 96].

1.2.2 Commuting conjugacy class graph

In our study, we shall also consider the commuting conjugacy class graph (abbreviated as

CCC-graph) of a finite non-abelian group. The CCC-graph of G is a simple undirected

graph, denoted by Γccc(G), whose vertex set is Cl(G) and two distinct vertices aG and

bG are adjacent if there exist x ∈ aG and y ∈ bG such that x and y commute. Note that

Γccc(G) is the compressed version of conjugacy supercommuting graph of G (see [9, 8]).

In 2009, Herzog, Longobardi and Maj [64] introduced and studied the concept of CCC-

graph of a finite group. In particular, Herzog et al. [64] considered the induced subgraph

Γccc(G)[Cl(G\{1})]; more generally Γccc(G)[Cl(G\Z(G))], where 1 is the identity element

of G. We write Γ∗
ccc(G) to denote the subgraph Γccc(G)[Cl(G\Z(G))] of Γccc(G). Note that

Γccc(G) = K|Z(G)| + Γ∗
ccc(G), (1.2.a)

where Γ1 + Γ2 is the join of two graphs Γ1 and Γ2. In 2016, Mohammadian et al. [78]

have characterized finite groups such that Γ∗
ccc(G) is triangle-free. Later on, Salahshour

and Ashrafi [92, 93] obtained Γ∗
ccc(G) for several families of finite AC-groups. Salahshour

[91] also obtained Γ∗
ccc(G) if G is a finite group such that G

Z(G) is isomorphic to a dihedral

group. Characterizations of various classes of finite non-abelian groups G through energy,

(signless) Laplacian energy and genus of their Γ∗
ccc(G) can be found in [16, 17, 18]. These

results on CCC-graphs of finite non-abelian groups can also be found in our paper [22].

Some results on structures of Γ∗
ccc(G) are given below.

Result 1.2.17. [92, Theorem 3.1] Let G be a finite non-abelian group with center Z(G)
and G

Z(G)
∼= Zp × Zp, where p is prime. Then

Γ∗
ccc(G) = (p + 1)Kn,

where n = (p−1)|Z(G)|
p .

Result 1.2.18. [92, Corollary 3.2] Let G be a finite non-abelian p-group of order pn and
|Z(G)| = pn−2, where p is prime and n ≥ 3. Then

Γ∗
ccc(G) = (p + 1)Kpn−3(p−1).

20



Chapter 1. Introduction and preliminaries

Result 1.2.19. [91, Theorem 1.2] Let G be a finite group with center Z(G) and G
Z(G) is

isomorphic to D2m. Then

Γ∗
ccc(G) =


K (m−1)|Z(G)|

2
∪ 2K |Z(G)|

2
, if 2 | m

K (m−1)|Z(G)|
2

∪ K|Z(G)|, if 2 ∤ m.

Result 1.2.20. [93, Proposition 2.1] For the dihedral group D2m,

Γ∗
ccc(D2m) =


K m−1

2
∪ K1, if 2 ∤ m

K m
2 −1 ∪ 2K1, if 2 | m and 2 | m

2

K m
2 −1 ∪ K2, if 2 | m and 2 ∤ m

2 .

Result 1.2.21. [93, Proposition 2.2] For the dicyclic group Q4n,

Γ∗
ccc(Q4n) =


Kn−1 ∪ 2K1, if 2 ∤ n

Kn−1 ∪ K2, if 2 ∤ n.

If G = U(n,m) then |Z(G)| = n or 2n according as m is odd or m is even and so G
Z(G)

is isomorphic to D2m or D2× m
2

according as m is odd or m is even. Therefore, by Result

1.2.19, we have the following result for Γ∗
ccc(U(n,m)).

Result 1.2.22. For the group U(n,m),

Γ∗
ccc(U(n,m)) =



K (m−1)n
2

∪ Kn, if 2 ∤ m

K (m−2)n
2

∪ 2Kn, if 2 | m and 2 | m
2

K (m−2)n
2

∪ K2n, if 2 | m and 2 ∤ m
2 .

Remark 1.2.23. The cases when m is even and m
2 is even or odd were not considered

in [93, Proposition 2.3]. Therefore, the structure of Γ∗
ccc(U(n,m)) given in [93, Proposition

2.3] is not correct.

Result 1.2.24. [93, Proposition 2.4] For the group V8n,

Γ∗
ccc(V8n) =


K2n−2 ∪ 2K2, if 2 | n

K2n−1 ∪ 2K1, if 2 ∤ n.
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Result 1.2.25. [93, Proposition 2.5] For the semidihedral group SD8n,

Γ∗
ccc(SD8n) =


K2n−1 ∪ 2K1, if 2 | n

K2n−2 ∪ K4, if 2 ∤ n.

We conclude this chapter with the following relations among E(Γ∗
ccc(G)), LE(Γ∗

ccc(G))
and LE+(Γ∗

ccc(G)) for certain families of groups.

Result 1.2.26. [16, Theorem 4.6] Let G be a finite non-abelian group. Then we have the
following.

(a) If G is isomorphic to D6, D8, D12, Q8, Q12, U(n,2), U(n,3), U(n,4)(n ≥ 2), V16 or SD24

then
E(Γ∗

ccc(G)) = LE+(Γ∗
ccc(G)) = LE(Γ∗

ccc(G)).

(b) If G is isomorphic to D20, Q20, U(2,5), U(3,5) or U(2,6) then

LE+(Γ∗
ccc(G)) < E(Γ∗

ccc(G)) < LE(Γ∗
ccc(G)).

(c) If G is isomorphic to D14, D16, D18, D2n(n ≥ 11), Q16, Q24, Q4m(m ≥ 8), U(n,5), (n ≥
4), U(n,m)(m ≥ 6 and n ≥ 3), U(n,m)(m ≥ 8 and n ≥ 2), V8n(n ≥ 3), SD16 or
SD8n(n ≥ 4) then

E(Γ∗
ccc(G)) < LE+(Γ∗

ccc(G)) < LE(Γ∗
ccc(G)).

(d) If G is isomorphic to Q28 or U(2,7) then E(Γ∗
ccc(G)) = LE+(Γ∗

ccc(G)) < LE(Γ∗
ccc(G)).

(e) If G is isomorphic to D10 then E(Γ∗
ccc(G)) < LE+(Γ∗

ccc(G)) = LE(Γ∗
ccc(G)).
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