
Chapter 2

Common neighborhood energies

and their relations with Zagreb

index

We have seen that various spectra and energies of a graph based on its adjacency ma-

trix and distance matrix have been studied extensively. However, common neighborhood

spectrum and energy of a graph defined by using the common neighborhood matrix are

relatively new concept and not much explored. The (signless) Laplacian spectrum and en-

ergy of a graph based on its common neighborhood matrix is not defined yet. In this chap-

ter, we introduce the concepts of common neighborhood Laplacian spectrum, common

neighborhood signless Laplacian spectrum and their corresponding energies of a graph Γ.

We also introduce the concepts of CNL-hyperenergetic and CNSL-hyperenergetic graphs

analogous to the concepts of L-hyperenergetic and Q-hyperenergetic graphs respectively.

In Section 2.1, we shall establish relations between these energies and the first Zagreb

index of a graph. In Section 2.2, we shall compute common neighborhood Laplacian

spectrum, common neighborhood signless Laplacian spectrum and their corresponding

energies of any finite complete graph and complete bipartite graph. Among other results

we shall show that any finite complete bipartite graph is neither CNL-hyperenergetic nor
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CNSL-hyperenergetic. In Section 2.3, we shall obtain certain relations between various

energies of a graph. Finally, in Section 2.4, we conclude this chapter with several bounds

for common neighborhood Laplacian and signless Laplacian energies of a graph. This

chapter is based on our paper [81] accepted for publication in Bulletin Mathematique de la

Société des Sciences Mathématiques de Roumanie.

2.1 Definition and connection with Zagreb index

Let Γ be any graph. First we observe that the (i, j)-th entry of D(Γ) is given by

D(Γ)i,j =


|v(Γ)|∑
k=1

A(Γ)i,k, if i = j and i = 1, 2, . . . , |v(Γ)|

0, if i ̸= j,

where A(Γ)i,k is the (i, k)-th entry of A(Γ). Thus D(Γ) is a diagonal matrix whose di-

agonal entries are the corresponding row sums of the adjacency matrix of Γ. Similarly,

we define common neighborhood row sum matrix (abbreviated as CNRS-matrix) of Γ as

given below:

CNRS(Γ)i,j =


|v(Γ)|∑
k=1

CN(Γ)i,k, if i = j and i = 1, 2, . . . , |v(Γ)|

0, if i ̸= j,

where CNRS(Γ) is the CNRS-matrix of Γ and CNRS(Γ)i,j is the (i, j)-th entry of CNRS(Γ).

The common neighborhood Laplacian matrix and the common neighborhood signless

Laplacian matrix (abbreviated as CNL-matrix and CNSL-matrix) of Γ, denoted by CNL(Γ)
and CNSL(Γ), respectively, are defined as

CNL(Γ) := CNRS(Γ) − CN(Γ) and CNSL(Γ) := CNRS(Γ) + CN(Γ).

Note that the matrices CNL(Γ) and CNSL(Γ) are symmetric and positive semidefinite.

The set of eigenvalues of CNL(Γ) and CNSL(Γ) with multiplicities are called common

neighborhood Laplacian spectrum and common neighborhood signless Laplacian spec-

trum (abbreviated as CN-Laplacian spectrum and CN-signless Laplacian spectrum) of
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Γ, respectively. We write CNL-spec(Γ) and CNSL-spec(Γ) to denote CN-Laplacian spec-

trum and CN-signless Laplacian spectrum of Γ, respectively. By writing CNL-spec(Γ) =
{[ν1]b1 , [ν2]b2 , . . . , [νℓ]bℓ} and CNSL-spec(Γ) = {[σ1]c1 , [σ2]c2 , . . . , [σm]cm} we mean that

ν1, ν2, . . . , νℓ are the distinct eigenvalues of CNL(Γ) with corresponding multiplicities

b1, b2, . . . , bℓ and σ1, σ2, . . . , σm are the distinct eigenvalues of CNSL(Γ) with correspond-

ing multiplicities c1, c2, . . . , cm. Γ is called CNL-integral and CNSL-integral if

CNL-spec(Γ) and CNSL-spec(Γ) contain only integers respectively. Corresponding to CN-

Laplacian spectrum and CN-signless Laplacian spectrum of Γ we define common neigh-

borhood Laplacian energy and common neighborhood signless Laplacian energy (abbre-

viated as CNL-energy and CNSL-energy) of Γ. The CNL-energy and CNSL-energy of Γ,

denoted by LECN(Γ) and LE+
CN(Γ), are as defined below:

LECN(Γ) :=
∑

ν∈CNL-spec(Γ)

∣∣∣∣ν − tr(CNRS(Γ))
|v(Γ)|

∣∣∣∣ (2.1.a)

and

LE+
CN(Γ) :=

∑
σ∈CNSL-spec(Γ)

∣∣∣∣σ − tr(CNRS(Γ))
|v(Γ)|

∣∣∣∣ . (2.1.b)

This appends two new entries in the list of energies prepared by Gutman and Furtula [59].

Following the concepts of various hyperenergetic graphs [104, 55, 4, 48], we introduce the

concepts of CNL-hyperenergetic and CNSL-hyperenergetic graphs. A graph Γ is called

CNL-hyperenergetic and CNSL-hyperenergetic if

LECN(Γ) > LECN(K|v(Γ)|) and LE+
CN(Γ) > LE+

CN(K|v(Γ)|),

respectively. Also we call Γ is CNL-borderenergetic and CNSL-borderenergetic if LECN(Γ)
= LECN(K|v(Γ)|) and LE+

CN(Γ) = LE+
CN(K|v(Γ)|) respectively. The following lemma is use-

ful in computing CN-Laplacian spectrum and CN-signless Laplacian spectrum of a graph

having disconnected components.

Lemma 2.1.1. If Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γk, then

CNL-spec(Γ) = CNL-spec(Γ1) ∪ CNL-spec(Γ2) ∪ · · · ∪ CNL-spec(Γk)

and

CNSL-spec(Γ) = CNSL-spec(Γ1) ∪ CNSL-spec(Γ2) ∪ · · · ∪ CNSL-spec(Γk)
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counting multiplicities.

Now the following lemma and Result 1.1.16 are useful in deriving relations between

CN-Laplacian energy, CN-signless Laplacian energy and first Zagreb index.

Lemma 2.1.2. Let Γ be a graph with |e(Γ)| edges and the first Zagreb index M1(Γ). Then
tr(CNRS(Γ)) = M1(Γ) − 2 |e(Γ)|.

Proof. From the definition with Lemma 1.1.16 and (1.1.i), we obtain

tr(CNRS(Γ)) =
|v(Γ)|∑
i=1

CNRS(Γ)i,i

=
|v(Γ)|∑
i=1

|v(Γ)|∑
j=1, j ̸=i

|NΓ(vi) ∩ NΓ(vj)|

=
|v(Γ)|∑
i=1

[
deg(vi) mΓ(vi) − deg(vi)

]

= M1(Γ) − 2 |e(Γ)|.

This completes the result.

We conclude this section with the following relations between LECN(Γ), LE+
CN(Γ) and

M1(Γ) which can be obtained from (2.1.a), (2.1.b) and Lemma 2.1.2.

Theorem 2.1.3. Let Γ be a graph with the first Zagreb index M1(Γ). Then

LECN(Γ) =
∑

ν∈CNL-spec(Γ)

∣∣∣∣ν − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

∣∣∣∣
and

LE+
CN(Γ) =

∑
σ∈CNSL-spec(Γ)

∣∣∣∣σ − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

∣∣∣∣ .
2.2 CN-(signless) Laplacian spectrum and CN-(signless)

Laplacian energy

In this section we compute CN-(signless) Laplacian spectrum and CN-(signless) Laplacian

energy of some classes of graphs and discuss their properties.
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Example 2.2.1. For n = 1, it is clear that CNL-spec(K1) = {[0]1}, CNSL-spec(K1) =
{[0]1} and so LECN(K1) = 0, LE+

CN(K1) = 0. Therefore, we consider n ≥ 2. We have

CN(Kn) = (n − 2)A(Kn) and CNRS(Kn) = diag[(n − 1)(n − 2), . . . , (n − 1)(n − 2)],

so CNL(Kn) = (n − 2)L(Kn) and CNSL(Kn) = (n − 2)Q(Kn). Also, L-spec(Kn) =
{[0]1, [n]n−1} and Q-spec(Kn) =

{
[2(n − 1)]1, [n − 2]n−1

}
. Therefore, CNL-spec(Kn) ={

[0]1, [n(n − 2)]n−1
}

and CNSL-spec(Kn) =
{

[2(n − 1)(n − 2)]1, [(n − 2)2]n−1
}

. We have

tr(CNRS(Kn)) = n(n − 1)(n − 2) and so tr(CNRS(Kn))
|v(Kn)| = (n − 1)(n − 2). Therefore,∣∣∣∣0 − tr(CNRS(Kn))

|v(Kn)|

∣∣∣∣ = (n − 1)(n − 2),

∣∣∣∣n(n − 2) − tr(CNRS(Kn))
|v(Kn)|

∣∣∣∣ = n(n − 2) − (n − 1)(n − 2) = (n − 2),

and ∣∣∣∣2(n − 1)(n − 2) − tr(CNRS(Kn))
|v(Kn)|

∣∣∣∣ = (n − 1)(n − 2),

∣∣∣∣(n − 2)2 − tr(CNRS(Kn))
|v(Kn)|

∣∣∣∣ = |(n − 2)2 − (n − 1)(n − 2)| = | − (n − 2)| = n − 2.

Hence, by (2.1.a) and (2.1.b), we obtain

LECN(Kn) = (n − 1)(n − 2) + (n − 1)(n − 2) = 2(n − 1)(n − 2)

and

LE+
CN(Kn) = (n − 1)(n − 2) + (n − 1)(n − 2) = 2(n − 1)(n − 2).

Thus
LECN(Kn) = LE+

CN(Kn) = 2(n − 1)(n − 2). (2.2.a)

By Result 1.1.21, it follows that if Γ1 and Γ2 are two disconnected component of Γ
then ECN(Γ) = ECN(Γ1) + ECN(Γ2). However, LECN(Γ) ̸= LECN(Γ1) + LECN(Γ2) and
LE+

CN(Γ) ̸= LE+
CN(Γ1) + LE+

CN(Γ2), if Γ = Γ1 ∪ Γ2. For example, if Γ = K4 ∪ K6 then by
Lemma 2.1.1 with the above result, it follows that

CNL-spec(Γ) =
{

[0]2, [8]3, [24]5
}

and CNSL-spec(Γ) =
{

[4]3, [12]1, [16]5, [40]1
}

.
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We have

tr(CNRS(Γ))
|v(Γ)| = tr(CNRS(K4)) + tr(CNRS(K6))

10 = 24 + 120
10 = 144

10 .

Therefore, by (2.1.a) and (2.1.b), we obtain

LECN(Γ) = 2 ×
∣∣∣∣0 − 144

10

∣∣∣∣+ 3 ×
∣∣∣∣8 − 144

10

∣∣∣∣+ 5 ×
∣∣∣∣24 − 144

10

∣∣∣∣
= 2 × 144

10 + 3 × 64
10 + 5 × 96

10 = 96,

but LECN(K4) + LECN(K6) = 12 + 40 = 52, and

LE+
CN(Γ) = 3 ×

∣∣∣∣4 − 144
10

∣∣∣∣+ 1 ×
∣∣∣∣12 − 144

10

∣∣∣∣+ 5 ×
∣∣∣∣16 − 144

10

∣∣∣∣+ 1 ×
∣∣∣∣40 − 144

10

∣∣∣∣
= 2 × 104

10 + 24
10 + 80

10 + 256
10 = 672

10 ,

but LE+
CN(K4) + LE+

CN(K6) = 12 + 40 = 52.

Now by using Lemma 2.1.1 and Example 2.2.1, we have the following theorem.

Theorem 2.2.2. Let Γ = l1Km1 ∪ l2Km2 ∪ l3Km3, where liKmi denotes the union of li

copies of the complete graphs Kmi on mi vertices for i = 1, 2, 3. Then
CNL-spec(Γ) =

{
[0]l1+l2+l3 , [m1(m1 − 2)]l1(m1−1),

[m2(m2 − 2)]l2(m2−1), [m3(m3 − 2)]l3(m3−1)
}

and

CNSL-spec(Γ) =
{

[2(m1 − 1)(m1 − 2)]l1 , [(m1 − 2)2]l1(m1−1), [2(m2 − 1)(m2 − 2)]l2 ,

[(m2 − 2)2]l2(m2−1), [2(m3 − 1)(m3 − 2)]l3 , [(m3 − 2)2]l3(m3−1)
}

.

Example 2.2.3. We now compute CN-(signless) Laplacian spectrum and CN-(signless)
Laplacian energy of the complete bipartite graph Km,n on (m + n)-vertices. For this, let
v(Km,n) = {v1, v2, . . . , vm, vm+1, vm+2, . . . , vm+n} and {v1, v2, . . . , vm}, {vm+1, vm+2,

. . . , vm+n} be two partitions of v(Km,n) such that every vertex in one set is adjacent to
every vertex in the other set. We have

CN(Km,n) =

n A(Km) 0

0 m A(Kn)


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and

CNRS(Km,n) = diag

(m − 1)n, . . . , (m − 1)n︸ ︷︷ ︸
m-times

, (n − 1)m, . . . , (n − 1)m︸ ︷︷ ︸
n-times

 .

Thus we have

CNL(Km,n) =

n L(Km) 0

0 m L(Kn)

 and CNSL(Km,n) =

n Q(Km) 0

0 m Q(Kn)

 .

Since L-spec(Km) =
{
[0]1, [m]m−1} and L-spec(Kn) =

{
[0]1, [n]n−1}, therefore,

CNL-spec(Km,n) =
{

[n × 0]1, [n × m]m−1, [m × 0]1, [m × n]n−1
}

=
{

[0]2, [mn]m+n−2
}

.

We have tr(CNRS(Km,n))
|v(Km,n)| = mn(m + n − 2)

m + n
and so

∣∣∣∣∣0 − tr(CNRS(Km,n))
|v(Km,n)|

∣∣∣∣∣ = mn(m + n − 2)
m + n

and
∣∣∣∣∣mn − tr(CNRS(Km,n))

|v(Km,n)|

∣∣∣∣∣ = 2mn

m + n
.

Hence, by (2.1.a), we get

LECN(Km,n) = 2mn(m + n − 2)
m + n

+ 2mn(m + n − 2)
m + n

= 4mn(m + n − 2)
m + n

.

In particular, for m = n, we obtain CNL-spec(Km,n) =
{

[0]2, [m2]2m−2
}

and LECN(Km,n)
= 4m(m − 1).

Again since Q-spec(Km) =
{

[2(m − 1)]1, [m − 2]m−1
}

and Q-spec(Kn) =
{

[2(n −

1)]1, [n − 2]n−1
}

, therefore,

CNSL-spec(Km,n) =
{

[2n(m − 1)]1, [n(m − 2)]m−1, [2m(n − 1)]1, [m(n − 2)]n−1
}

.

Note that if m = n = 1 then K1,1 = K2. Hence, CNSL-spec(Km,n) = CNSL-spec(K2)
= {[0]2} and LE+

CN(K1,1) = LE+
CN(K2) = 0. We now assume that n ≥ 2 or m ≥ 2. Now,∣∣∣∣∣2n(m − 1) − tr(CNRS(Km,n))

|v(Km,n)|

∣∣∣∣∣ =
∣∣∣∣2n(m − 1) − mn(m + n − 2)

m + n

∣∣∣∣
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=


n(n − 1)

n + 1 , if m = 1

n(m + n)(m − 2) + 2mn

m + n
, if m ≥ 2,

∣∣∣∣∣n(m − 2) − tr(CNRS(Km,n))
|v(Km,n)|

∣∣∣∣∣ =
∣∣∣∣n(m − 2) − mn(m + n − 2)

m + n

∣∣∣∣ = 2n2

m + n
,

∣∣∣∣∣2m(n − 1) − tr(CNRS(Km,n))
|v(Km,n)|

∣∣∣∣∣ =
∣∣∣∣2m(n − 1) − mn(m + n − 2)

m + n

∣∣∣∣
=


m(m − 1)

m + 1 , if n = 1

m(m + n)(n − 2) + 2mn

m + n
, if n ≥ 2,

and ∣∣∣∣∣m(n − 2) − tr(CNRS(Km,n))
|v(Km,n)|

∣∣∣∣∣ =
∣∣∣∣m(n − 2) − mn(m + n − 2)

m + n

∣∣∣∣ = 2m2

m + n
.

For m = 1 and n ≥ 2, by (2.1.b), we have

LE+
CN(Km,n) = n(n − 1)

n + 1 + (n + 1)(n − 2) + 2n

n + 1 + 2(n − 1)
n + 1 = 2(n − 1)(n + 2)

n + 1 .

For m ≥ 2 and n = 1, by (2.1.b), we have

LE+
CN(Km,n) = (m + 1)(m − 2) + 2m

m + 1 + 2(m − 1)
m + 1 + m(m − 1)

m + 1 = 2(m − 1)(m + 2)
m + 1 .

For m, n ≥ 2, by (2.1.b), we have

LE+
CN(Km,n)

= n(m + n)(m − 2) + 2mn

m + n
+ 2n2(m − 1)

m + n
+ m(m + n)(n − 2) + 2mn

m + n
+ 2m2(n − 1)

m + n

= 4(m2(n − 1) + n2(m − 1))
m + n

.
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Hence

LE+
CN(Km,n) =



0, if m = 1 and n = 1

2(n − 1)(n + 2)
n + 1 , if m = 1 and n ≥ 2

2(m − 1)(m + 2)
m + 1 , if m ≥ 2 and n = 1

4(m2(n − 1) + n2(m − 1))
m + n

, if m, n ≥ 2.

In particular, for m = n, we obtain CNSL-spec(Km,n) =
{

[2m(m−1)]2, [m(m−2)]2(m−1)
}

and LE+
CN(Km,n) = 4m(m − 1).

Proposition 2.2.4. Let Γ be the complement of a graph Γ and Γ1 + Γ2 be the join of two
graphs Γ1 and Γ2.

(a) If Γ = Kn1 + Kn2 + · · · + Knk
then

CNL-spec(Γ) = {[0]1, [(n1 + n2 + · · · + nk)(n1 + n2 + · · · + nk − 2)](n1+n2+···+nk−1)},

CNSL-spec(Γ) = {[2(n1 + n2 + · · · + nk − 1)(n1 + n2 + · · · + nk − 2)]1,

[(n1 + n2 + · · · + nk − 2)2]n−1}

and

LECN(Γ) = 2(n1 + n2 + · · · + nk − 1)(n1 + n2 + · · · + nk − 2) = LE+
CN(Γ).

(b) If Γ = Km + Kn then

CNL-spec(Γ) =
{

[0]2, [mn]m+n−2
}

and LECN(Γ) = 4mn(m + n − 2)
m + n

,

CNSL-spec(Γ) =
{

[2n(m − 1)]1, [n(m − 2)]m−1, [2m(n − 1)]1, [m(n − 2)]n−1
}

and

LE+
CN(Γ) =



2(n − 1)(n + 2)
n + 1 , if m = 1 and n ≥ 2

2(m − 1)(m + 2)
m + 1 , if m ≥ 2 and n = 1

4(m2(n − 1) + n2(m − 1))
m + n

, if m, n ≥ 2.
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Proof. The results follow from Examples 2.2.1 and 2.2.3 noting that Kn1 +Kn2 +· · ·+Knk
=

Kn1+n2+···+nk
and Km + Kn = Km,n.

Proposition 2.2.5. The graph Km,n is not CNL-hyperenergetic.

Proof. By Examples 2.2.1 and 2.2.3, we obtain

LECN(Km+n) − LECN(Km,n) = 2(m + n − 1)(m + n − 2) − 4mn(m + n − 2)
m + n

= [m(m − 1) + n(n − 1)] (m + n − 2)
m + n

≥ 0

with equality if and only if m = n = 1. Therefore,

LECN(Km+n) ≥ LECN(Km,n)

with equality if and only if m = n = 1. Hence, the result follows.

Corollary 2.2.6. If Sk denotes the star graph with one internal node and k leaves then

CNL-spec(Sk) =
{

[0]2, [k]k−1
}

and LECN(Sk) = 4k(k − 1)
k + 1 .

Moreover, Sk is not CNL-hyperenergetic.

Proof. The result follows from Example 2.2.3 and Proposition 2.2.5, noting that Sk =
K1,k.

Proposition 2.2.7. The graph Km,n is not CNSL-hyperenergetic.

Proof. If m = n = 1 then we have LE+
CN(K1,1) = LE+

CN(K2) = 0. Therefore, we consider
the case when m, n are not equal to 1 simultaneously. By Example 2.2.1, we have

LE+
CN(Km+n) = 2(m + n − 1)(m + n − 2). (2.2.b)

For m = 1 and n ≥ 2, by (2.2.b) and Example 2.2.3, we have

LE+
CN(Km+n) − LE+

CN(Km,n) = 2n(n − 1) − 2(n − 1)(n + 2)
n + 1

= 2(n − 1)(n2 − 2)
n + 1 > 0.
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For n = 1 and m ≥ 2, by (2.2.b) and Example 2.2.3, we have

LE+
CN(Km+n) − LE+

CN(Km,n) = 2m(m − 1) − 2(m − 1)(m + 2)
m + 1

= 2(m − 1)(m2 − 2)
m + 1 > 0.

For m, n ≥ 2, by (2.2.b) and Example 2.2.3, we have

LE+
CN(Km+n) − LE+

CN(Km,n)

= 2(m + n − 1)(m + n − 2) − 4(m2(n − 1) + n2(m − 1))
m + n

= 2(m3 + n3 + m + n) + (m − n)2 + 2mn(m + n − 2) > 0,

since m + n − 2 > 0. Therefore,

LE+
CN(Km+n) ≥ LE+

CN(Km,n).

Hence, the result follows.

Corollary 2.2.8. If Sk denotes the star graph with one internal node and k leaves then

CNSL-spec(Sk) =
{

[0]1, [2(k − 1)]1, [k − 2]k−1
}

and LE+
CN(Sk) = 2(k − 1)(k + 2)

k + 1 .

Moreover, Sk is not CNSL-hyperenergetic.

Proof. The result follows from Example 2.2.3 and Proposition 2.2.7, noting that Sk =
K1,k.

We conclude this section with the following example of CNL-hyperenergetic and

CNSL-hyperenergetic graph.

Example 2.2.9. Let us consider the graph Γ = K2n−2 ∪ nK2, where n ≥ 2. Here |v(Γ)| =
4n − 2. By Example 2.2.1, we have

LECN(K|v(Γ)|) = LE+
CN(K|v(Γ)|) = 2(4n − 3)(4n − 4).

Again, by Theorem 2.2.2, (2.1.a) and (2.1.b), we have

LECN(Γ) = 4(n − 2)(n − 1)(2n − 3)(2n + 1)
2n − 1 and LE+

CN(Γ) = 8(n − 2)(n − 1)n(2n − 3)
2n − 1 .
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Therefore,

LECN(K|v(Γ)|) − LECN(Γ) = −4n
(
4n3 − 32n2 + 53n − 25

)
2n − 1 < 0 if and only if n ≥ 6

and

LE+
CN(K|v(Γ)|) − LE+

CN(Γ) = −8(n − 1)2 (2n2 − 13n + 3
)

2n − 1 < 0 if and only if n ≥ 7.

Hence, Γ = K2n−2 ∪ nK2 is CNL-hyperenergetic if and only if n ≥ 6 and CNSL- hyperen-
ergetic if and only if n ≥ 7.

2.3 Relation between various energies

In this section we derive some relations between ECN, LECN, LE+
CN, E, LE and LE+ of a

graph Γ.

Theorem 2.3.1. Let Γ be any graph with |e(Γ)| edges. Then ECN(Γ) ≤ E(Γ)2 + 2|e(Γ)|.

Proof. By Results 1.1.17 and 1.1.10, we obtain

ECN(Γ) = E(CN(Γ))

= E(A(Γ)2 − D(Γ))

= E(A(Γ)2 + (− D(Γ))) ≤ E(A(Γ)2) + E(− D(Γ)). (2.3.a)

Let Spec(Γ) = {λ1, λ2, . . . , λn}, where n = |v(Γ)|. Then Spec(A(Γ)2) = {λ2
1, λ2

2, . . . , λ2
n}.

Therefore,

E(A(Γ)2) =
n∑

i=1
|λ2

i | ≤
(

n∑
i=1

|λi|
)2

= E(Γ)2.

Again, let Spec(D(Γ))={deg(v1), deg(v2), . . . , deg(vn)}. Then Spec(− D(Γ))= {− deg(v1),
− deg(v2), . . . , − deg(vn)}. Therefore,

E(− D(Γ)) =
n∑

i=1
| − deg(vi)| =

n∑
i=1

deg(vi) = 2 × |e(Γ)| = E(D(Γ)).

Hence, the result follows from (2.3.a).
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Corollary 2.3.2. Let Γ be any graph of order |v(Γ)| with |e(Γ)| edges. Then ECN(Γ) ≤
2|e(Γ)| (|v(Γ)| + 1).

Proof. It is well-known that E(Γ) ≤
√

2 |e(Γ)| |v(Γ)|. Using the above result with Theorem
2.3.1, we obtain

ECN(Γ) ≤ E(Γ)2 + 2|e(Γ)| ≤ 2 |e(Γ)| |v(Γ)| + 2|e(Γ)|.

Hence the result follows.

Theorem 2.3.3. Let Γ be any graph with |e(Γ)| edges and the first Zagreb index M1(Γ).
Then LECN(Γ) ≤ ECN(Γ) + 2 (M1(Γ) − 2 |e(Γ)|) and LE+

CN(Γ) ≤ ECN(Γ) + 2
(
M1(Γ) −

2 |e(Γ)|
)
.

Proof. By Theorem 2.1.3, we have

LECN(Γ) =
∑

ν∈CNL-spec(Γ)

∣∣∣∣ν − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

∣∣∣∣
≤

∑
ν∈CNL-spec(Γ)

|ν| +
∑

ν∈CNL-spec(Γ)

∣∣∣∣M1(Γ) − 2 |e(Γ)|
|v(Γ)|

∣∣∣∣
= E(CNL(Γ)) + M1(Γ) − 2 |e(Γ)|

|v(Γ)|
∑

ν∈CNL-spec(Γ)
1

= E (CNRS(Γ) − CN(Γ)) + M1(Γ) − 2 |e(Γ)|.

Using Lemmas 1.1.10 & 2.1.2 and the fact that E(CN(Γ)) = E(− CN(Γ)) & E(CNRS(Γ)) =
tr(CNRS(Γ)), we obtain

LECN(Γ) ≤ E(CNRS(Γ)) + E(CN(Γ)) + M1(Γ) − 2 |e(Γ)|

= ECN(Γ) + 2 (M1(Γ) − 2 |e(Γ)|) .

Similarly, the bound for LE+
CN(Γ) follows from Theorem 2.1.3 and Lemma 1.1.10.

As a consequence of Theorems 2.3.1 and 2.3.3, we get the following relations between

E(Γ), LECN(Γ) and LE+
CN(Γ).
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Corollary 2.3.4. Let Γ be any graph with |e(Γ)| edges and the first Zagreb index M1(Γ).
Then LECN(Γ) and LE+

CN(Γ) are bounded above by

E(Γ)2 + 2
(
M1(Γ) − |e(Γ)|

)
.

Remark 2.3.5. Theorem 2.3.1 gives relation between ECN(Γ) and E(Γ). Theorem 2.3.3
and Corollary 2.3.4 give relations between LECN(Γ), LE+

CN(Γ), ECN(Γ) and E(Γ). However,
using the facts that

E(A(Γ)2) =
n∑

i=1
|λ2

i | = 2|e(Γ)| ≤ E(Γ)2

and ∑
ν∈CNL-spec(Γ)

|ν| = tr(CNRS(Γ)) = M1(Γ) − 2 |e(Γ)| =
∑

σ∈CNSL-spec(Γ)
|σ|,

we get the following better upper bounds for ECN(Γ), LECN(Γ) and LE+
CN(Γ):

ECN(Γ) ≤ 4|e(Γ)| ≤ 2E(Γ)2, (2.3.b)

LECN(Γ) ≤ 2 tr(CNRS(Γ)) = 2
(
M1(Γ) − 2 |e(Γ)|

)
≥ LE+

CN(Γ). (2.3.c)

In Section 2.4, we shall obtain more bounds for LECN(Γ) and LE+
CN(Γ).

Recall that the derived graph of Γ, denoted by Γ†, is the graph with vertex set v(Γ), in

which two vertices are adjacent if and only if their distance in Γ is two.

Theorem 2.3.6. If Γ is a triangle- and quadrangle-free graph then LECN(Γ) = LE(Γ†)
and LE+

CN(Γ) = LE+(Γ†), where Γ† is the derived graph of Γ.

Proof. If Γ is a triangle- and quadrangle-free graph then CN(Γ) = A(Γ†). Therefore,
CNRS(Γ) = D(Γ†) and so CNL(Γ) = L(Γ†) and CNSL(Γ) = Q(Γ†). Hence, CNL-spec(Γ)
= L-spec(Γ†) and CNSL-spec(Γ) = Q-spec(Γ†). Since tr(CNRS(Γ)) = tr(D(Γ†)) and
v(Γ) = v(Γ†), by (2.1.a) and (2.1.b), we have

LECN(Γ) =
∑

ν∈L-spec(Γ†)

∣∣∣∣∣ν − tr(D(Γ†))
|v(Γ)|

∣∣∣∣∣ = LE(Γ†)

and
LE+

CN(Γ) =
∑

σ∈Q-spec(Γ†)

∣∣∣∣∣σ − tr(D(Γ†))
|v(Γ)|

∣∣∣∣∣ = LE+(Γ†).
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Corollary 2.3.7. (a) If T is a tree then LECN(T ) = LE(T †) and LE+
CN(T ) = LE+(T †).

(b) If Pn is the path on n vertices then LECN(Pn) = LE(P⌈ n
2 ⌉)+LE(P⌊ n

2 ⌋) and LE+
CN(Pn)

= LE+(P⌈ n
2 ⌉) + LE+(P⌊ n

2 ⌋).

(c) Let Cn be the cycle on n vertices.

(i) If n is odd and n ≥ 3 then LECN(Cn) = LE(Cn) and LE+
CN(Cn) = LE+(Cn).

(ii) If n is even and n > 4 then LECN(Cn) = 2 LE(C n
2
) and LE+

CN(Cn) =
2 LE+(C n

2
). Also, LECN(C4) = 2 LE(C4) = LE+(C4) = 2 LE+(C4) = 8.

Proof. (a) Follows from Theorem 2.3.6 noting that T is triangle- and quadrangle-free.
(b) Follows from Theorem 2.3.6 noting that Pn is triangle- and quadrangle-free and

P †
n

∼= P⌈ n
2 ⌉ ∪ P⌊ n

2 ⌋.

(c) Let Cn be the cycle on n vertices.
(i) If n = 3 then C3 = K3. Therefore, LECN(C3) = LE+

CN(C3) = 4 = LE(C3) =
LE+(C3).

If n is odd and n > 3 then Cn is triangle- and quadrangle-free. Also, (Cn)† ∼= Cn.
Hence, the result follows from Theorem 2.3.6.

(ii) If n is even and n > 4 then Cn is triangle- and quadrangle-free. Also, (Cn)† ∼=
C n

2
∪ C n

2
. Therefore, by Theorem 2.3.6, we get

LECN(Cn) = LE(C n
2

∪ C n
2
) = 2 LE(C n

2
)

and
LE+

CN(Cn) = LE+(C n
2

∪ C n
2
) = 2 LE+(C n

2
).

If n = 4 then it is easy to see that CNRS(C4) = D(C4), which is a 4 × 4 diago-
nal matrix such that every element in the diagonal is equal to 2, and CNL-spec(C4) =
CNSL-spec(C4) = {[0]2, [4]2}. Therefore, by (2.1.a) and (2.1.b), we have

LECN(C4) = LE+
CN(C4) = 8.

Again, L-spec(C4) = Q-spec(C4) = {[0]1, [2]2, [4]1} and so LE(C4) = LE+(C4) = 4. Thus,
LECN(C4) = 2 LE(C4) and LE+

CN(C4) = 2 LE+(C4).
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2.4 More bounds for LECN(Γ) and LE+
CN(Γ)

In this section we shall obtain several bounds for LECN(Γ) and LE+
CN(Γ). Since the ma-

trices CNL(Γ) and CNSL(Γ) are positive semidefinite, the elements of CNL-spec(Γ) and

CNSL-spec(Γ) are non-negative. Thus we may write CNL-spec(Γ) = {ν1, ν2, . . . , ν|v(Γ)|}
and CNSL-spec(Γ) = {σ1, σ2, . . . , σ|v(Γ)|}, where ν1 ≥ ν2 ≥ · · · ≥ ν|v(Γ)| and σ1 ≥ σ2 ≥
· · · ≥ σ|v(Γ)|. We have

|v(Γ)|∑
i=1

νi =
∑

ν∈CNL-spec (Γ)
ν = tr(CNRS(Γ)) =

∑
σ∈CNSL-spec (Γ)

σ =
|v(Γ)|∑
i=1

σi.

Also,

∑
ν∈CNL-spec(Γ)

(
ν − tr(CNRS(Γ))

|v(Γ)|

)
=

∑
σ∈CNSL-spec(Γ)

(
σ − tr(CNRS(Γ))

|v(Γ)|

)
= 0.

Let α, β (1 ≤ α, β ≤ |v(Γ)|) be the largest integers such that

να ≥ tr(CNRS(Γ))
|v(Γ)| = M1(Γ) − 2 |e(Γ)|

|v(Γ)| and σβ ≥ tr(CNRS(Γ))
|v(Γ)| = M1(Γ) − 2 |e(Γ)|

|v(Γ)| .

(2.4.a)

Let Sα(Γ) =
α∑

i=1
νi and S+

β (Γ) =
β∑

i=1
σi. Then we have the following useful lemmas.

Lemma 2.4.1. For any graph Γ, we have

LECN(Γ) = 2Sα(Γ) − 2α tr(CNRS(Γ))
|v(Γ)| = 2Sα(Γ) −

2α
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|

and

LE+
CN(Γ) = 2S+

β (Γ) − 2β tr(CNRS(Γ))
|v(Γ)| = 2S+

β (Γ) −
2β
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)| ,

where |e(Γ)| is the number of edges and M1(Γ) is the first Zagreb index in Γ.

Lemma 2.4.2. For any graph Γ, we have

LECN(Γ) = max
1≤i≤|v(Γ)|

 2Si(Γ) −
2i
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|


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and

LE+
CN(Γ) = max

1≤i≤|v(Γ)|

2S+
i (Γ) −

2i
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|

 ,

where |e(Γ)| is the number of edges and M1(Γ) is the first Zagreb index in Γ.

Proof. Let k (1 ≤ k ≤ |v(Γ)|) be any integer. For k < α, by (2.4.a), we obtain

Sα(Γ) − Sk(Γ) =
α∑

i=k+1
νi ≥

(α − k)
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)| .

For k > α, we obtain

Sk(Γ) − Sα(Γ) =
k∑

i=α+1
νi <

(k − α)
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)| ,

that is,

Sα(Γ) − Sk(Γ) >
(α − k)

(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)| .

Moreover, Sα(Γ) = Sk(Γ) for k = α. Thus for any value of k (1 ≤ k ≤ |v(Γ)|), we obtain

Sα(Γ) − Sk(Γ) ≥
(α − k)

(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|

and so

2Sα(Γ) − 2α tr(CNRS(Γ))
|V (Γ)| ≥ 2Sk(Γ) −

2k
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)| .

This gives

2Sα(Γ) − 2α tr(CNRS(Γ))
|v(Γ)| = max

1≤i≤|v(Γ)|

2Si(Γ) −
2i
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|

 .

Similarly, it can be seen that

2S+
β (Γ) − 2β tr(CNRS(Γ))

|v(Γ)| = max
1≤i≤|v(Γ)|

2S+
i (Γ) −

2i
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|

 .

Hence, the result follows from Lemma 2.4.1.
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Let (a) := (a1, a2, . . . , an) ∈ Rn and (b) := (b1, b2, . . . , bn) ∈ Rn be such that a1 ≥ a2 ≥
· · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. Then (a) is said to be majorize (b) if

k∑
i=1

ai ≥
k∑

i=1
bi for 1 ≤ k ≤ n − 1 and

n∑
i=1

ai =
n∑

i=1
bi.

It is well-known that the spectrum of any symmetric, positive semidefinite matrix ma-

jorizes its main diagonal (see [53]). Since CNL(Γ) and CNSL(Γ) are symmetric and pos-

itive semidefinite for any graph Γ, we have the following lemma when the elements of

CNL-spec(Γ), CNSL-spec(Γ) and main diagonal elements of CNRS(Γ) are arranged in de-

creasing order.

Lemma 2.4.3. For any graph Γ, CNL-spec(Γ) and CNSL-spec(Γ) majorize main diag-
onal elements of CNRS(Γ) when the elements of CNL-spec(Γ), CNSL-spec(Γ) and main
diagonal elements of CNRS(Γ) are arranged in decreasing order.

We write the main diagonal elements of CNRS(Γ) as CNRS(Γ)i,i for 1 ≤ i ≤ |v(Γ)|,
where CNRS(Γ)1,1 ≥ CNRS(Γ)2,2 ≥ · · · ≥ CNRS(Γ)|v(Γ)|,|v(Γ)|. Now we give lower

bounds for LECN(Γ) and LE+
CN(Γ) analogous to the bound given in Result 1.1.2 for LE(Γ).

Theorem 2.4.4. Let Γ be a graph with |e(Γ)| edges and the first Zagreb index M1(Γ).
Then

LECN(Γ) ≥ 2
(

∆ (δ − 1) − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

)
and

LE+
CN(Γ) ≥ 2

(
∆ (δ − 1) − M1(Γ) − 2 |e(Γ)|

|v(Γ)|

)
,

where ∆ and δ are the maximum degree and the minimum degree in Γ, respectively.

Proof. Let v1 be the maximum degree vertex in Γ. Then deg(v1) = ∆ and mΓ(v1) ≥ δ as
δ is the minimum degree in Γ. As a consequence of Lemma 2.4.3 with Lemma 1.1.16, we
obtain

ν1 ≥ CNRS(Γ)1,1 = deg(v1) mΓ(v1) − deg(v1) = ∆
(
mΓ(v1) − 1

)
≥ ∆ (δ − 1)

and

σ1 ≥ CNRS(Γ)1,1 = deg(v1) mΓ(v1) − deg(v1) = ∆
(
mΓ(v1) − 1

)
≥ ∆ (δ − 1),
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Using the above result with Lemma 2.4.2, we obtain

LECN(Γ) ≥ 2 S1(Γ) −
2
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)| = 2 ν1 −

2
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|

≥ 2
(

∆ (δ − 1) − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

)
.

Similarly,

LE+
CN(Γ) ≥ 2 σ1 −

2
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)| ≥ 2

(
∆ (δ − 1) − M1(Γ) − 2 |e(Γ)|

|v(Γ)|

)
.

Theorem 2.4.5. Let Γ be a graph with |e(Γ)| edges and the first Zagreb index M1(Γ).
Then

LECN(Γ) ≥ 2

 α∑
i=1

CNRS(Γ)i,i −
α
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|


and

LE+
CN(Γ) ≥ 2

 β∑
i=1

CNRS(Γ)i,i −
β
(
M1(Γ) − 2 |e(Γ)|

)
|v(Γ)|

 ,

where α and β are as given in (2.4.a) and CNRS(Γ)i,i = deg(vi) (mΓ(vi) − 1).

Proof. By Lemma 1.1.16, we have CNRS(Γ)i,i = deg(vi) (mΓ(vi) − 1). By Lemma 2.4.3,
we obtain

k∑
i=1

νi ≥
k∑

i=1
CNRS(Γ)i,i and

k∑
i=1

σi ≥
k∑

i=1
CNRS(Γ)i,i for 1 ≤ k ≤ |v(Γ)|.

In particular, we have

α∑
i=1

νi ≥
α∑

i=1
CNRS(Γ)i,i and

β∑
i=1

σi ≥
β∑

i=1
CNRS(Γ)i,i.

Therefore,

Sα(Γ) ≥
α∑

i=1
CNRS(Γ)i,i and S+

β (Γ) ≥
β∑

i=1
CNRS(Γ)i,i.

Hence, the result follows from Lemma 2.4.1.
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Using Lemma 2.4.1, we also have the following upper bounds for LECN(Γ) and

LE+
CN(Γ) analogous to the bound given in Result 1.1.2(b).

Theorem 2.4.6. Let Γ be a graph of order |v(Γ)| with |e(Γ)| edges and the first Zagreb
index M1(Γ). Then LECN(Γ) and LE+

CN(Γ) are bounded above by

2
(

1 − 1
|v(Γ)|

) (
M1(Γ) − 2 |e(Γ)|

)
.

Proof. We have

Sα(Γ) ≤ S|v(Γ)|(Γ) = tr(CNRS(Γ)) = M1(Γ) − 2 |e(Γ)|

and

S+
β (Γ) ≤ S+

|v(Γ)|(Γ) = tr(CNRS(Γ)) = M1(Γ) − 2 |e(Γ)|.

Therefore, by Lemma 2.4.1 with 1 ≤ α ≤ |v(Γ)|, we obtain

LECN(Γ) ≤ 2
(

1 − 1
|v(Γ)|

) (
M1(Γ) − 2 |e(Γ)|

)
.

Similarly, we get the bound for LE+
CN(Γ).

Note that the bounds obtained in Theorem 2.4.6 are better then the bounds obtained

in (2.3.c). We conclude this section with another upper bounds for LECN(Γ) and LE+
CN(Γ)

analogous to the bound obtained in Result 1.1.3. The Result 1.1.11 is useful in this regard.

Theorem 2.4.7. Let Γ be a graph of order |v(Γ)| with |e(Γ)| edges and the first Zagreb
index M1(Γ). Then

(a) LECN(Γ) ≤
|v(Γ)|∑
i=1

√√√√(CNRS(Γ)i,i − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

)2
+

|v(Γ)|∑
k=1, k ̸=i

|NΓ(vi) ∩ NΓ(vk)|2,

(b) LE+
CN(Γ) ≤

|v(Γ)|∑
i=1

√√√√(CNRS(Γ)i,i − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

)2
+

|v(Γ)|∑
k=1, k ̸=i

|NΓ(vi) ∩ NΓ(vk)|2,

where CNRS(Γ)i,i = deg(vi)
(
mΓ(vi) − 1

)
for 1 ≤ i ≤ |v(Γ)| are main diagonal elements of

CNRS(Γ) such that CNRS(Γ)1,1 ≥ CNRS(Γ)2,2 ≥ · · · ≥ CNRS(Γ)|v(Γ)|,|v(Γ)|.
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Proof. (a) Let M = CNL(Γ) − tr(CNRS(Γ))
|v(Γ)| I|v(Γ)|, where I|v(Γ)| is the identity matrix of

size |v(Γ)|. Then Spec(M) =
{

νi − tr(CNRS(Γ))
|v(Γ)| : 1 ≤ i ≤ |v(Γ)|

}
, where CNL-spec(Γ) =

{ν1, ν2, . . . , ν|v(Γ)|}. We have

M2 =
(

CNL(Γ) − tr(CNRS(Γ))
|v(Γ)| I|v(Γ)|

)2

=(CNL(Γ))2 − 2 tr(CNRS(Γ))
|v(Γ)| CNL(Γ) + (tr(CNRS(Γ)))2

|v(Γ)|2 I|v(Γ)|.

Therefore, the i-th diagonal element of M2 is

(M2)i,i = (CNL(Γ))2
i,i − 2 tr(CNRS(Γ))

|v(Γ)| (CNRS(Γ))i,i + (tr(CNRS(Γ)))2

|v(Γ)|2 .

We have

(CNL(Γ))2 =
(

CNRS(Γ) − CN(Γ)
)2

= CNRS(Γ)2 − CNRS(Γ) CN(Γ) − CN(Γ) CNRS(Γ) + CN(Γ)2.

Therefore,

(CNL(Γ))2
i,i =(CNRS(Γ))2

i,i + (CN(Γ))2
i,i = (CNRS(Γ)i,i)2 +

|v(Γ)|∑
k=1, k ̸=i

(CN(Γ)i,k)2.

Hence,

(M2)i,i =
(

CNRS(Γ)i,i − tr(CNRS(Γ))
|v(Γ)|

)2
+

|v(Γ)|∑
k=1, k ̸=i

(CN(Γ)i,k)2.

Since tr(CNRS(Γ)) = M1(Γ) − 2 |e(Γ)|, by Result 1.1.11, we obtain

E(M) ≤
|v(Γ)|∑
i=1

√√√√√(CNRS(Γ)i,i − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

)2
+

|v(Γ)|∑
k=1, k ̸=i

|NΓ(vi) ∩ NΓ(vk)|2.

Hence the result follows noting that

LECN(Γ) = E(M).
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(b) Let N = CNSL(Γ) − tr(CNRS(Γ))
|v(Γ)| I|v(Γ)|, where I|v(Γ)| is the identity matrix of size

|v(Γ)|. Then Spec(N) =
{

σi − tr(CNRS(Γ))
|v(Γ)| : 1 ≤ i ≤ |v(Γ)|

}
, where CNSL-spec(Γ) =

{σ1, σ2, . . . , σ|v(Γ)|}. We have

N2 =
(

CNSL(Γ) − tr(CNRS(Γ))
|v(Γ)| I|v(Γ)|

)2

=(CNSL(Γ))2 − 2 tr(CNRS(Γ))
|v(Γ)| CNSL(Γ) + (tr(CNRS(Γ)))2

|v(Γ)|2 I|v(Γ)|.

Therefore, the i-th diagonal element of N2 is

(N2)i,i = (CNSL(Γ))2
i,i − 2 tr(CNRS(Γ))

|v(Γ)| (CNRS(Γ))i,i + (tr(CNRS(Γ)))2

|v(Γ)|2 .

We have

(CNSL(Γ))2 =
(

CNRS(Γ) + CN(Γ)
)2

= CNRS(Γ)2 + CNRS(Γ) CN(Γ) + CN(Γ) CNRS(Γ) + CN(Γ)2.

Therefore,

(CNSL(Γ))2
i,i =

(
CNRS(Γ)i,i

)2
+

|v(Γ)|∑
k=1

(CN(Γ)i,k)2.

Hence,

(N2)i,i =
(

CNRS(Γ)i,i − tr(CNRS(Γ))
|v(Γ)|

)2
+

|v(Γ)|∑
k=1

(CN(Γ)i,k)2.

Since tr(CNRS(Γ)) = M1(Γ) − 2 |e(Γ)|, by Result 1.1.11, we have

E(N) ≤
|v(Γ)|∑
i=1

√√√√√(CNRS(Γ)i,i − M1(Γ) − 2 |e(Γ)|
|v(Γ)|

)2
+

|v(Γ)|∑
k=1

|NΓ(vi) ∩ NΓ(vk)|2.

Hence, the result follows noting that

LE+
CN(Γ) = E(N).
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We conclude this chapter with the following result.

Theorem 2.4.8. If Γ is a r-regular graph of order |v(Γ)| then LECN(Γ) and LE+
CN(Γ) are

bounded above by
|v(Γ)|∑
i=1

√√√√√|v(Γ)|∑
k=1

|NΓ(vi) ∩ NΓ(vk)|2.

Proof. Since Γ is a regular graph, by Lemma 1.1.16, we obtain

tr(CNRS(Γ)) =
|v(Γ)|∑
i=1

|v(Γ)|∑
j=1, j ̸=i

|NΓ(vi) ∩ NΓ(vk)|

=
|v(Γ)|∑
i=1

deg(vi)
(
mΓ(vi) − 1

)

=
|v(Γ)|∑
i=1

r (r − 1) = |v(Γ)| r (r − 1)

and
CNRS(Γ)i,i = r (r − 1) = tr(CNRS(Γ))

|v(Γ)| , 1 ≤ i ≤ |v(Γ)|.

From Theorem 2.4.7, we get the result.
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