Chapter 5

Various distance spectra, energies
and Wiener index of the

complement of '} .(G)

CCC

The non-commuting conjugacy class graph (abbreviated as NCCC-graph) of a finite non-
abelian group G, denoted by I'yc..(G), is a simple undirected graph whose vertex set
is C1(G) and two distinct vertices a“ and b“ are adjacent if 't/ # ¥a' for all ' € a“
and V' € b%. Thus, Theee(G) is the complement of I'c..(G). In this chapter, we consider
the subgraph I'yc.c(G)[CH(G \ Z(G))] of T'neee(G) induced by CI(G \ Z(G)). For nota-
tional convenience we write I'},...(G) to denote the graph I'y...(G)[CI(G \ Z(G))]. Note
that I';;

ncce

*
Cccc

(G) is the complement of the graph I'}.(G) considered in Chapter 4. In Section

we shall compute distance spectrum, distance Laplacian spectrum, distance signless

(G) for the groups when % is isomor-

*

Laplacian spectrum and Wiener index of I'}..

phic to Z,, x Z, (for any prime p) or D>, (for any integer n > 3). As a consequence, we
shall compute the above-mentioned graph parameters of I'}...(G) when G is the dihedral
group Do, (for n > 3), the dicyclic group Qu,, (for n > 2), the semidihedral group SDsg,
(for n > 2) and the groups Uy, ,,,) (for m > 3 and n > 2), Ugy, (for n > 2) and Vg, (for

n > 2). We shall show that any perfect square can be realized as Wiener index of I'},...(G)
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Chapter 5. Various distance spectra, energies and Wiener index of the complement of I'} . (G)

for certain dihedral groups. We shall also characterize the above-mentioned groups such
that I'}...(G) are D-integral, DL-integral and DQ-integral. In Section we shall com-
pute distance energy, distance Laplacian energy and distance signless Laplacian energy of
I‘*

nccce

(G) for the above mentioned groups using Wiener index. Further, in Section we

*

shall compare various distance energies of I';; ...

(@) and characterize the above-mentioned
groups subject to the inequalities involving various distance energies. In Sections
we shall also consider Problems 1.1.12-1.1.13 and obtain graphs satisfying the equalities
in Problem 1.1.12-1.1.13 through I'}...(G) for the above mentioned groups. This chap-

ter is based on our paper [70] accepted for publication in Journal of Algebra Combinatorics

Discrete Structures and Applications.

5.1 Distance spectra and Wiener index

In this section, we compute distance spectrum, distance Laplacian spectrum, distance

*

signless Laplacian spectrum and Wiener index of I’}

(G) for the groups when % is

isomorphic to
(a) Zp x Zp, where p is any prime.
(b) Day, where n > 3 is any integer.

As consequences, we get various distance spectra and Wiener index of I} ..(G) if G =
Don, Qan, SDsn, Ugnm), Usn and Vg,,. The following simple-minded result is very useful in
computing Wiener index of any finite graph. However, this relation was neglected while

computing Wiener index of various graphs (see [76, 3, 94, 107, 38]).

Lemma 5.1.1. Let I" be any graph having n vertices. Then
1
w() =3 Z p= 9 Z -
BeDL-spec(T") ~veDQ-spec(T")

Proof. From the definitions of DL(T") and DQ(T") we have tr(DL(T))=tr(7(T"))=tr(DQ(T)).
Also,
tr(T(F)) = Z dij = Z d(vi, ’Uj).

1<ij<n 1<ij<n
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Therefore, tr(7(I')) = 2W(I') and so
tr(DL(T")) = tr(DQ(T")) = 2W (T). (5.1.a)
Since trace of a square matrix is equal to the sum of its eigenvalues we have
>,  B=u@LD)=uDQM)= > 7
BEDL-spec(T) ¥€DQ-spec(I')

Hence, the result follows. ]

The following theorem gives various distance spectra and Wiener index of I'}...(G)

nccce

for the groups whose central quotient is isomorphic to Z,, x Zj,.

Theorem 5.1.2. Let G be a finite non-abelian group such that % = Zyp X Ly, where p

is any prime and |Z(G)| > 2. If n = %, where z = |Z(G)| then

D-spec(Theee (@) = {[=2" D@ [0 — 217, [np + 20 — 2)'},

DL-spec(Tecc(G)) = {01, [n(p + DI, [n(p + 1) + n] P =D},
DQ-spec(T™,..(G)) = {[np + 2n — 4FDO=D [nn 4 30 417 [20p + 4n — 4]')

and W (T}

ncce

n(p+1)(n(p+2)—2
(@) = (p )(2(p )=2)

Proof. By Result 1.2.17, we have I'}...(G) = Knj ny,...npy1, Where ng =ng = -+ = nyq 1 =

n= %. Here, [v(I'f...(G))| = (p + 1)n. Therefore, by Result 1.1.14(a), we have

p+1 p+1 p+1
Chp (Theee(@), ) = (@ + 2 VP TT @ —ni+2) = > n [] (@—n;+2)
i=1 i=1 j=1,j#i

= (z+2)"VED) (2 —n+2)P(z — np — 2n + 2)).

Hence, D-spec(I' ...(G)) = {[—2]("_1)(p+1), [n— 2P, [np + 2n — 2]1}.
By Result 1.1.14(b), we have

p+1
Chp(Deee(G), 2) = 2w — n(p+ 1) P [ (@ = (0 + 1n —ny)™

=1

= oz — n(p + 1)(x — nlp+ 1) - )P
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Therefore, DL-spec(Thece(G)) = {[01' [n(p + DI, [ap -+ 1) + n)p DD},
By Result 1.1.14(c), we have

p+1 p+1
ChDQ(cmcc(G)a x) = H(l‘ - n(p + 1) —ni+ 4)%_1 (H(l’ - ’I’L(p + 1) —2n; + 4)_
i=1 i=1

p+1 p+1
Zni H (x —n(p+1) —2n; —|—4)>

i=l  j=lj#i

= (x—np—2n+4)PVOD(p _np— 3n 4+ 4)P(x — 2np — 4n + 4).

Therefore, DQ-spec(T%...(G)) = {[np +2n — 4]PFDC=D) np 4 3n — 4]P, [2np + 4n — 4]1}.
The expression for W (I'}...(G)) follows from Lemma O

If G is a non-abelian group of order p" with |Z(G)| = p"~2, where p is prime and n > 3

then -%. =~ 7, x Z,. Therefore, we have the following corollary.
@ p X Sp & Y-

Corollary 5.1.3. Let G be a non-abelian group of order p™ with |Z(G)| = p"~2, where p

is prime and n > 3. Then

D-spec(T;

nccce

(@) = { (=200 [ —1pn = — 2],

[2(19 —Dp" P+ (p—1)p" 7 — 2] 1} ,
DL-spec(I e (G)) = {[0]1’ [(p2 _ 1) p”_?’}p, [(pQ tp— 2) pn_ﬂ (p+1)((p—1)p"3—1)}

* n— n— n— (p+1)((p—1)p" 31
DQ'SpeC(Fnccc(G)) = { [_2]9 3 + D 2 + D ! - 4} ( ) )

[—3p" 3+ 2p" 2 4" - 4}p 2P +p—2) "t -4 1} :

and W (%, (G)) = (p—l)(p+1)p”‘3((p—l)(p+2)p"‘3—2).

ncee 2

The following theorem gives various distance spectra and Wiener index of I';..(G)

for finite groups whose central quotient is isomorphic to a dihedral group.

Theorem 5.1.4. Let G be a finite non-abelian group with |Z(G)| = z and % = Doy,
(where n > 3).

(a) If n is even then
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D-spec(Teee(G)) = { (20458, [5 = 2]" [} (~VAZ 120 ¥ 172 + 202+ 2~ 5)]
H (\/4n2 —12n 4+ 1724 2nz + 2 — 8)}1},

DLespec(Tee(G)) = {001 [ 2522 g 552, [252] 7,

n—1)z z—2 1
DQspec(Te(G)) = { s = 415521, [582 —a 77 [ 0z
[1 (—v/9n? = 3dn + 41z + 5nz + 32 — 16)] ", [£ (VOn? — 3dn + 41z + 5nz + 32 — 16)]1}
and W(T}eo(G)) = 12 (nz — 2n + 2z — 2).

nccce

(b) If n is odd then
D-spec(Tieee(@) = { (2“5 2[4 (VT =dn Tz 4 mz + 2 - 4)]
[} (V=TT Tz 2 - )],

DL-spec(Tee (G)) = {[0}1, [De]" a3, [(”23’”]2_1}’
DQ-spec(If.(G)) =
{[nz o e LS 74]2_1  [% (—VOn% —46n + 73z + 5nz + 52 — 16)]
[4 (VOn? =460+ 73z + 5z + 52 — 16)] ' |

and W (T} (G)) = 12 (n?z — 2n + 3z — 2).

nccce

Proof. (a) If n is even then by Result 1.2.19, we have I} ...(G) = Kun-1n: . .. Here,
1203
* n+1)z
[0(Thece(@)] = 5.
Using Result 1.1.14(a), we get
min:_, [ 3 3
Chp(Theee(G)yx) = (x +2) 2 H(x —n;+2)— an H (x —nj;+2)
i=1 =1 j=1,j#i
1(n+1)z-3 Z (TL — 1)2
= (z+2)2 (a?—§+2) (az—T+2)(m—f—i—2)
(n—1)z z (n—1)z >
T R L2 o) e = R 9y,
5 (z 5+ ) — z(x 5+ )

Therefore, D-spec(I*

ncce

(©) = {28 5 — oy,

3 (2nz 42 =84 2van? =120 +17) ], [} (202 + 2 = 8 — 2V/An? = 12n+17)}1}.

117



Chapter 5. Various distance spectra, energies and Wiener index of the complement of I'} . (G)

Using Result 1.1.14(b), we get

n z 2 M_ n z z—2
Therefore, DL-spec(T%...(G)) = {[ 1, [%] Jnz) 2 L [#} }
Using Result 1.1.14(c), we get

3 n;—1 3
1)z i 1
ChDQ( nccc = H ( u n; + 4) <H (g; — (TL—;)Z —2n; + 4>
=1 i=1
—Zm I (x_m+21>z_2nj+4>)
= J=1,j#i
z—2
(:c—nz—|—4)(n S| (g;_(n—;Q)Z+4>

(n—1)z (—;(n—i—l)z—l—x—z—&—él)z—l—(—;(n+1)z—(n—1)z+x+4>

S
-

( 2(n+1)z+m—z+4)>.

Therefore, DQ-spec(Te(G)) = {[m - [l )77 [led9z ],

[4 (5nz 432 — 16 — 2v/9n% — 3dn + 41) |, [4 (5nz + 32 — 16 + 2/9n? — 3dn + 41) ]1}. The ex-

*ece(@)) follows from Lemma [5.1.1

(b) If n is odd then by Result 1.2.19, we have I'} ..(G) = K<n;1)z’z. Here, [v(I'...(G))] =
(nt+1)z
.

(n+1)z+x—z+4>2—z(—;(n—i—l)z—(n—l)z—i—m—i—él)

l—ll\’Hl—l l\DM—l

pression for W (T’

Using Result 1.1.14(a), we get

Em

ChD( HCCC(G),ZC) = (I+2)%72 (

2 3
(x—n;+2)— Z H x—nj—|—2)
i=1  j=1,5

) (ngl)z(x—z—FQ)

_z(x_<”‘2”z+2)>.

=1

= (z+2)" T2 ( (a:
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Therefore, D-spec(T}...(G)) = {[—Z]W_Q, [3(nz+2z—4—2Vn?—4n+7)] '

ncce
[%(nz+z—4+zx/n2 4n+7)]1}.
Using Result 1.1.14(b), we get

Chpr (Teee(G), 2) = @ <x _ ; 1>Z>21ﬁ <x (n +2 )z nl)"l

= (90— nt UZ) (z —nz) T (x_ (n+3)z>z_1.

2

Therefore, DL-spec(T .. (G)) = {[011, L e [W*jﬂ]“}.
Using Result 1.1.14(c), we get

2

ChpQ(Theee(G), ) = [ | <o: - (”zl)z — +4>m_1 <ﬁ <x - ("ZI)Z P +4)

=1 =1
2 2
1
—Zni H (x—(n—; )Z—an+4>
i=1 =1,
z—1
n-1)z -1

<x_<’”‘+25)z+4> Sl (;p_ <“+25)Z+4) —z(x—(?mgl)z—i—4>>.

Therefore, DQ-spec(T%...(G)) = {[nz - 4]%_1, [% - 4r_1,

nccce

[1(Bnz+52z—16 — 2v/9In? — 46n + 73)] 1, [2(5nz+52—16+2v9n? — 46n + 73)] ! } The expression
for W(I'},..(G)) follows from Lemma O

Corollary 5.1.5. Let G be the dihedral group Da,, where n > 3.
(a) Ifn is odd then
L (Ve =i 7 +n-3)]
L (Vi —dn T 74n - 3)}1},

D'Spec(rfwcc (G) )

I
—
|
)

‘3
vl
@

DL-spec(Teee(G)) = {01, [242] "5 .

DQ-spec(T o (G)) = {[n — 4, [5 (—\/9712 —46n + 73+ bn — 11)] "

[% (\/9n2 —46n + 73 + 5n — 11)}1}
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and W(T%, (G)) = 212

nccce 4

(b) Ifn and 5 are even then

D-spec(I .. (G)) = {[—2]n24, [—1]1, [% (—\/n2 —6n+17+n— 3)] ' ,

(4 (Va7 =60+ 17 4 3)}1},
DL-spec(I} ... (G))

nccce

DQ-spec(I..(G)) = {[n — 47, [252] " |3 (~vOnZ =68+ 164 + 5n — 10) '

Y

and W (Teo(G)) = 22204,

(3 (VonZ =680+ 164 + 50— 10))] 1}

(c) If n is even and % is odd then

D-SPGC(FECCC (G) )

{[—2]”52, [% (_m+n - 2)]1,
E mm_z)r},
=52’}

, {%—2}1 |3 (—Von? = 92n 292 + 5n - 6)}1,

DL_SpeC(FECCC(G» = {[0}1, [n—&—Z} ! 7[ n-4

=
.

DQ-spec(Tee(@) = {In 4%

1
(3 (VOnZ =920+ 292+ 5n. - 6) | }
and W (Teeo(G)) = 539,
Proof. We know that
1, for n is odd
1Z(G)| =
2, for n is even
and
Do, for n is odd
G

Z(G) =93 Dsyyy, forn=4
Dyyn, for nis even and n > 6.
2

Now, by using Theorem and Theorem we get the required result
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Remark 5.1.6. Given any perfect square k* (where k > 1) if we consider the group

G pu—
shows that every perfect square can be viewed as Wiener index of Tt ...(G) for some dihedral
groups. Hence, Inverse Wiener index Problem is solved for T’

square. However, it may be challenging to solve Inverse Wiener index Problem in general
forT

Dyai41) then by Corollary |5.1.5(a) we have W (I} (G)) = w = k2. This

nccce

*
nccce

(e}

ncce

Corollary 5.1.7. Let G be the group Uy, ,y,), where m > 3 and n > 2.

(a) If m is odd then

(c)

1
D-spec(Teee(G)) = {[—21%“""*"4% 3 (—Vm?=dm T+ mn+n—4)]

B (mmmmn_gr},
DL-spec(Icee (@) = {[0}1, [3(m + 1)71}1 B0 T 3)71]”1}7

DQ-spec(Tieec(G)) = {[mn — a3 T 4 3y 4]

H (—\/9m2 —46m + 73n + 5mn + 5n — 16)} 1 )
(3 (VOmZ = 46m + 73n + 5mn + 5n — 16)] 1}

and W (T (G)) = in (m?n — 2m + 3n — 2).

ncec =12
If m and %5 are even then
D-spec(I...(G)) :{[—2]%““3, n—2", [3 (—2v/m? — 6m + 17n + 2mn + 2n — 8)] g
[4 (2vm? = 6m + 170 + 2mn + 2n — 8)]' },

DL-spec(Tieee(G)) = {[0]", [$(m +2)n])” , fmn] 21, [L(m + 4)n) "7V L

DQ-spec(Tece(G)) = {[mn — 43" [L(m 4 ) — 4] 72 [L(m + 6)n — 4],
[~1 (vOmZ —68m + 164 — 5m — 6) n— 4],

(4 (VOmZ = 68m + 164 + 5m + 6) n — 4] |

and W(T}eo(G)) = tn (m?n — 2m + 8n — 4).

If m is even and 73 is odd then

121
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D-spec(I't...(G)) = {[—2}%““2, [-1(Vm2—8m+28—m—2)n—2] ' ,
3 (Vm? =Sm+ 28 +m+2)n-2]'},

DL-spec(I'*,...(G)) = {[0]1’ [L(m + 2)n]1  [mn]En=2n=1 [L(m 4 6)n] 2n—1};

nccc

DQ-spec(Tece(G)) = {[mn — 43" [L(m 4 6)n — 4],

[~ (VOmZ = 92m + 292 — 5m — 10) n — 4],
(4 (VOmZ =92m +292 + 5m + 10) n— 4]' |

and W (T

nccce

(@) = in (m?*n —2m + 12n — 4).

Proof. We know that

n, for m is odd
1Z(G)| =
2n, for m is even
and
Do, for m is odd

Z(G) Doy, form =4
Dyym, for m is even and m > 6.
2

Hence, by using Theorem [5.1.2] and Theorem we get the required result.
Corollary 5.1.8. Let G be the group Quy, where n > 2.

(a) If n is even then

ncce

D-spec(T . (G)) = {[—2]n2, (1%, [ (—2vAn? =120+ 17 + 4n - 6| "

3 (2van? =120 17 + 4n - 6)]1},
DL-spec(Teec(G)) = {[0]', [0 + 1], [20)" 2},

DQ-spec(I%,..(G)) = {[2n —4]"2 [n — 1], [2 (—2v/0n2 — 340 + 41 + 10n — 10)] ",
[4 (2v0n” =340+ 41 + 100 — 10)] }

and W (k..o (G)) =n? —n+ 1.

(b) Ifn is odd then
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D-spec(Iecc(G)) = {[—2J”*17 [} (-2VaZ—dn T +20-2)],

5 (@v? = I+ 7+2n-2)]'},
DL-spec(Ticec(G)) = {[0]', [n +1]*, [2n]" 72, [n + 3] },

DQ-spec(I*,..(G)) = {[2(n —2)"2 [n — 1]L, [5 (~2v/9n? — 46n + 73 + 100 — 6)]
[4 (2v0n7 =460 + 73+ 100 —6)]' |

and W(T%...(G) =n? —n+2.

Proof. We know that |Z(G)| = 2 and % = Zy X Zy or Dy, according as n = 2 or n > 3.

Z(G)

Hence, by using Theorem and Theorem |5.1.4] we get the required result. O

Corollary 5.1.9. Let G be the semidihedral group SDg,, where n > 2.

(a)

If n is even then

D-spec(I% .. (G)) = {[—2]2”2, (1%, [§ (=2v16n2 =240+ 17 + 8n — 6 | "

[i (2\/16712 —24n + 17+ 8n — 6)}1},

DL-spec(I...(G)) = {[0]17 [2n + 1]2’ [4n]2n—2}}

nccc
DQ-spec(I%,..(G)) = {[4n — 4?72 (20 — 1], [2 (—2/36n% — 68n + 41 + 20n — 10)] ",
[4 (23607 = 68n + 41 + 200 — 10)] ' }

and W (T

ncce

(G)) =4n? —2n + 1.

If n is odd then
D-spee(leee(@) = {1227, [3 (4 — VP =T 5 7). [4 (4P =T 77+ 4n)] '},

DL-spec(Iece(G)) = {[0]', [2(n + )], [4n]*" 72, [2(n + 3)]*}

nccce

1

DQ—spec(Fflccc(G))z{[él(n —DPP"32(n+ D]3, [ (—4V9n2 —46n + 73+ 20n + 4)]
[4 (4007 =460 + 73+ 200 + 4)] ' |

and W(T%...(G)) = 4n? — 2n + 10.

Proof. We know that

2, for n is even
1Z(G)| =

4 for n is odd

)
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and
G Dy,, for nis even
Z =
(& D>,, for n is odd.
Hence, by using Theorem we get required result. O

Corollary 5.1.10. Let G be the group Ug,, where n > 2. Then

D-spec(Tieee(G)) = {[-2P"72 [0 = 2", [3n = 2}, DLspec(Teec(G)) = {[0]", 20]",
[Br?" D}, DQ-spec(Tieee(G)) = {Bn — 4P, [(n = DI, (60— 4]' } and W(TecelG))
=n(3n —2).

Proof. We know that |Z(G)| = n and % = Dyy3. Hence, by using Theorem we
get the required result. O

We conclude this section with the following result.
Theorem 5.1.11. Let G be the group Vg,, where n > 2.

(a) Ifn is even then

D-spec(I' ..(G)) = {[0]1, [—2)2n= L [—V4n2 — 12n + 17 + 2n — 1]},
[VAn? =120+ 17 + 20 — 1]},

DL-spec(Ieee(G)) = {[0]', [2n + 2]?, [4n)*" 7%, [2n + 4]7},
DQ-spec(Ti...(G)) = {[4n — 4273, 2n)?, [2n + 21, [ = VOn? — 34n + 41 4 5n — 1] !
[Von? =3an + 41 + 50— 1]}

and W (T ... (G)) = 4n? — 2n + 6.

(b) If n is odd then
D'SpeC(F;ccc(G)) = {[_1]1’ [_2]2n—27 [% (_ v 16n? — 24n + 17 + 4n — 3) ]1’
[3 (V1607 =240 + 17 + 4n - 3)]' },
DL-spec(Teee(G)) = {[0]', [4n]*"72, [2n + 1]},
DQ-spec(Tieee (G)) = {[4n — 4272, 20 1], [§ (V3607 = 680 + 41 + 100~ 5) |,
[ (V3607 =68+ 41+ 100 —5) ' |

and W (Ti...(G)) = 4n? — 2n + 1.

nccce
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Proof. (a) If n is even then by Result 1.2.24, we have I'} ..(G) = Ko,-222. Here,
0T (G))] = 2(n + 1)
Using Result 1.1.14(a), we get
3 3
(x—m%—Q)—Zni H (:U—nj—l—Q)}

i=1 =l

—

Il
—

Chp (T e (G), 7) = (1 + 2)2) [

)

= (x+2)*" x[z(r — 2n +4) — (2n — 2)x — 4(z — 2n + 4)].

Therefore, D-spec('™..(G)) = {[0]1, (221, [2n — 1 — VAn? — 120+ 17]

[2n — 1+ V4n? — 12n + 17]1}.

Using Result 1.1.14(b), we get
3
Chpp (T o (G), ) = z(z — (2n + 2))>! H(x —(2n+2) — )t

=1

= x(z —2n — 2)%(z — 4n)*"3(z — 2n — 4)2.

Therefore, DL-spec(I'}...(G)) = {[0]1, [2n + 2]2, [4n)?" =3, [2n + 4]2}.
Using Result 1.1.14(c), we also get

3 3
Chpq(Teec(G), x) = H(w —(2n+2) —n;+ 4t (H(x —(2n+2)—2n;+4)

ncee
i=1 i=1

—zg:m ﬁ (x—(2n+2)—2nj+4)>

i=1  j=1,j%#i
= (z—4n+4)* 3@ —2n)*(z —2n — 2) ((z — 6n + 6)(z — 2n — 2)

—(2n—2)(z —2n —2) —4(x — 6n +6)).

Thus DQ-spec(T}...(G)) = {[411 — 423 12n)% [2n + 2], [Bn — 1 — V/9n2 — 34n + 41]},
(B — 1+ v9n? = 34n + 41]'}.

(b) If n is odd then by Result 1.2.24, we have I'} ..(G) = Kopn—1,1,1 = [icec(Daxan)-
Hence, the result follows from Corollary O

In the rest part of this section, we characterize various groups considered above such
that I'} .. (G) is D-integral, DL-integral and DQ-integral. By Theorem and Corollary

ncce

5.1.10} the following result follows immediately.
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Theorem 5.1.12. Let G be a finite non-abelian group. Then I'}...(G) is D-integral, DL-

nccce

integral and DQ-integral if
(a) % = 7y X Ly, where p is any prime.
(b) G is isomorphic to Usg,,.

rece(G)), in Corollary — Corollary |5.1.10
and Theorem the following result follows.

In view of the expressions for DL-spec(I;

Theorem 5.1.13. Let G = Dy, (where n > 3), Utn,m) (where m > 3 and n > 2), Qun
(where n > 2), SDg, (wheren > 2) and Vs, (wheren > 2). Then T'}...(G) is DL-integral.

ncccec

The following lemma is useful in characterizing the groups considered in Theorem
5.1.13|such that I'} .. (G) are D-integral and DQ-integral.

Lemma 5.1.14. Let n be any positive integer. Then
(a) n? —4n + 7 is perfect square if and only if n = 1,3.
(b) n? — 8n + 28 is perfect square if and only if n = 2,6.
(c) 4n% — 12n + 17 is perfect square if and only if n = 1,2.
(d) 9n? — 46n + 73 is perfect square if and only if n =1,3,6.
(e) In? — 34n + 41 is perfect square if and only if n = 1,2, 4.
(f) 9n? — 68n + 164 is perfect square if and only if n = 2,4,5,8.
(g) 9n? —92n + 292 is perfect square if and only if n = 2,6,12.

Proof. (a) Let n? — 4n + 7 be a perfect square. Then there exist integers k such that
n? — 4n + 7 = k? which gives (k +n —2)(k —n + 2) = 3. Therefore, we have the following
cases.
Casel. k+n—2=1landk—n+2=3

In this case, we have k +n = 3 and kK — n = 1 which gives k =2 and n = 1.

Case 2. k+n—2=—-1landk—n+2=-3
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In this case, we have k +n =1 and kK — n = —5 which gives k = —2 and n = 3.
Case 3. k+n—2=3andk—n+2=1

In this case, we have k +n =5 and kK —n = —1 which gives k = 2 and n = 3.
Cased. k+n—2=—-3andk—n+2=-1

In this case, we have k +n = —1 and k¥ —n = —3 which gives k = —2 and n = 1.

Hence, the result follows.

(b) If n2—8n+28 is a perfect square then there exist integers k such that n?—8n+28 = k>
which gives (k +n — 4)(k — n 4+ 4) = 12. By considering various cases as above we get

n = 2,6. Hence, the result follows.

(c) If 4n% — 12n + 17 is a perfect square then there exist integers k such that 4n? —
12n + 17 = k? which gives (k + 2n — 3)(k — 2n + 3) = 8. By considering various cases as

above we get n = 1,2. Hence, the result follows.

(d) Let 9n? — 46n + 73 be a perfect square. Then there exist integers k such that
9n? — 46n + 73 = k? which implies 9n? — 46n + (73 — k?) = 0. Since n is a positive
integer the discriminant Q = (—46)% — 4 x 9 x (73 — k?) = 36k%> — 512 of the quadratic
equation must be a perfect square. Let 36k% — 512 = a? for some integers a. Then we
get (6k + a)(6k — a) = 512. If (6k + a) = 1 then (6k —a) = 512 and so k = L% and
a= %; a contradiction. If 6k 4+ a = 2 then 6k —a = 256 and so k = 21528 and a = —127; a

contradiction. Similarly, it can be seen that the cases when (6k+a) = —1, (6k—a) = —512
and 6k + a = —2, 6k — a = 256 are not possible. Therefore, without loss of generality, we
consider the following cases.
Case 1. 6k +a =4 and 6k — a = 128. In this case, we get k = 11 and a = —62.
Case 2. 6k +a = —4 and 6k — a = —128. In this case, we get £k = —11 and a = 62.
Case 3. 6k +a = 8 and 6k — a = 64. In this case, we get k = 6 and a = —28.
Case 4. 6k +a = —8 and 6k — a = —64. In this case, we get Kk = —6 and a = 28.
Case 5. 6k + a = 16 and 6k — a = 32. In this case, we get k =4 and a = —8.
Case 6. 6k +a = —16 and 6k — a = —32. In this case, we get k = —4 and a = 8.

Thus the possible values of k are +4, 46 and +11. Therefore, 9n?> — 46n + 73 = 16,

9n?—46n+73 = 36 and In® —46n+73 = 121. On solving these equations we get n = 1, 3, 6.
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Therefore, 9n? — 46n + 73 is perfect square if and only if n = 1, 3, 6.

(e) If 9n? —34n+41 is a perfect square then there exist integers k such that 9n? — 34n +
41 = k2. The discriminant of this quadratic equation is Q = 36k?—320. Let 36k%—320 = a?
for some integer a. Then (6k+a)(6k—a) = 320. Now by considering various cases as in the
proof of part (d) we get k = £3, £4, £7. Therefore, 9n? —34n+41 = 9, In? —34n+41 = 16
and 9n? — 34n + 41 = 49. On solving these equations we get n = 1,2,4. Therefore,
9n? — 34n + 41 is a perfect square if and only if n = 1,2, 4.

(f) If 9n? — 68n + 164 is a perfect square then there exist integers k such that 9n? —
68n + 164 = k2. The discriminant of this quadratic equation is Q = 36k% — 1280. Let
36k2 — 1280 = a? for some integer a. Then (6k + a)(6k — a) = 1280. Now by considering
various cases as above we get k = +6,+7, +8, +14, +£27. Therefore, 9n? — 68n + 164 = 36,
In?—68n-+164 = 49, In®>—68n+164 = 64, In®>—68n+164 = 196 and In?>—68n+164 = 729.
On solving these equations we get n = 2,4,5,8. Therefore, 9n? — 68n + 164 is a perfect
square if and only if n = 2,4,5, 8.

(g) If 9n? — 92n + 292 is a perfect square then there exist integers k such that 9n? —
92n + 292 = k2. The discriminant of this quadratic equation is Q = 36k — 2048. Let
36k? — 2048 = a? for some integer a. Then (6k + a)(6k — a) = 2048. Now by considering
various cases as above we get k = +8,4+12, £22, +43. Therefore, In? — 92n + 292 = 64,
9n? — 92n + 292 = 144, 9n? — 92n + 292 = 484 and 9In? — 92n + 292 = 1849. On solving
these equations we get n = 2,6, 12. Therefore, 9n? — 68n + 164 is perfect square if and only
if n = 2,6,12. O

We conclude this section with the following characterization.

Theorem 5.1.15. Let G = Dy, (where n > 3), Utn,m) (where m > 3 and n > 2), Qup
(where n > 2), SDg, (where n > 2) and Vg, (where n > 2). Then

(a) Tcec(G) ds D-integral if and only if G = D, Ds, D12, Un3), Un.a), Unys), T8, The,

S Doy, Vig and Ugy, for n > 2.

(b) r: (G) 18 DQ—mtegml lf and only ZfG = Dﬁ, Dg, D12, D16, U(n73), U(n74), U(nyﬁ),

ncce

Ungys Tz, Ti2, The, SD16, SDas, Vie, Va2 and Usy, for n > 2.
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Proof. (a) Consider the following cases.

Case 1. G = Dy, where n > 3.

If n is odd then by Corollary [5.1.5(a), it is sufficient to show that 1(—v/n% —4n + 7+n—3)
and (vn? —4n+ 7+ n — 3) are integers. By Lemma (a), we have n = 3 and so
3(—Vn?—4n+7+4+n—3)=—1and 3(v/n? —4n+ 7+ n — 3) = 1. Therefore, if n is odd
then I} ..(G) is D-integral if and only if G = Ds.

If n and § are even then in view of Corollary M(b), it is sufficient to show that
%(—\/m +n —3) and % (\/m+ n — 3) are integers. Putting n = 5
in Lemma (c) we get that n? — 6n + 17 is a perfect square if and only if n = 4.
Therefore, %(—\/m—i— n—3)=—1 and % (\/m—i—n — 3) = 2. So, in
this case I'}...(G) is D-integral if and only if G = Dsg.

If n is even and % is odd then in view of Corollary c), it is sufficient to show that

2(—vn? — 8n + 284+n—2) and 3(Vn? — 8n + 28+n—2) are integers. By Lemma(b)
we have n =6 and so (—vn? —8n+28+n—2) =0and 3(vn? —8n+28+n—2) =4.
Therefore, If n is even and % is odd then I';...(G) is D-integral if and only if G = Dys.
Case 2. G = Uy ), where m > 3 and n > 2.
If m is odd then by Corollary |5.1.7(a), it is sufficient to show that %(mn +n—4-—
Vm? —4m + Tn) and 1 (mn+n—4++v'm? — 4m + 7Tn) are integers. By Lemma (a), we
have m = 3 and so % (—\/mn+mn+n—4) =n—2and % (\/mn—i—
mn +mn —4) = 3n — 2. Therefore, if m is odd then I'} ..(G) is D-integral if and only if
G =Ups).-

If m and % are even then in view of Corollary (b), it is sufficient to show that
i (—2mn +2mn + 2n — 8) and % (2\/mn + 2mn + 2n — 8) are
integers. Putting n = 7 in Lemma (c) we get that m? — 6m + 17 is a perfect square
if and only if m = 4. Therefore, % (—2\/mn—l— 2mn + 2n — 8) =n—2 and
3 (2\/mn +2mn + 2n — 8) = 4n — 2. So, in this case I'} ..(G) is D-integral if
and only if G = Uy, 4).

If m is even and % is odd then in view of Corollary (c), it is sufficient to show that
—% (\/m-m—2)n—2 and % <\/m+m—|—2)n—2 are integers.
By Lemma [5.1.14(b) we have m = 6 and so —% (\/m —m — 2) n—2=2n-—2
and % (\/m—i— m + 2) n — 2 = 6n — 2. Therefore, If m is even and % is odd
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then I';...(G) is D-integral if and only if G = Uy, ¢).

Case 3. G = Q4n, Where n > 2.

If n is even then by Corollary [5.1.8(a), it is sufficient to show that 1(=2VAn2—12n+17
+4n — 6) and 1(2v4n? — 12n + 17 + 4n — 6) are integers. By Lemma (c), we have
n=2andso (—2V4n2 — 12n + 174+4n—6) = —1 and }(2v4n? — 12n + 17+4n—6) = 2.
Therefore, if n is even then I'} .. (G) is D-integral if and only if G = Ts.

If n is odd then in view of Corollary m(b), it is sufficient to show that 3(2n — 2 —
2v/n? —4dn +7) and §(2n—2+2v/n? — 4n + 7) are integers. By Lemma a), we have
n:3andso%(—2\/m+2n—2) :Oand%(2\/m+2n—2) = 4. So,
in this case I'}..(G) is D-integral if and only if G = Ts.

Case 4. G = SDg,,, where n > 2.

If n is even then by Corollary [5.1.9(a), it is sufficient to show that §(—2v/16n2 — 24n + 17
+8n — 6) and 1(8n — 6 + 2v/16n? — 24n + 17) are integers. Putting n = 2n in Lemma
5.1.14)c), we get that 16n2 — 24n + 17 is a perfect square if and only if n = 1. Therefore,
if n is even then I'} ..(G) is not D-integral.

If n is odd then in view of Corollary (b), it is sufficient to show that i(4n —
4v/n? —4n+7) and 1(4vn? —4n + 7 + 4n) are integers. By Lemma (a), we have
n =3 and so 3(4n—4vn? —4dn +7) = 2 and 1(4vn? — 4n + T+4n) = 10. So, in this case
I} cc(G) is D-integral if and only if G = SDay.

Case 5. G = Vg, where n > 2.

If n is even then in view of Corollary [5.1.11f(a), it is sufficient to show that 2n — 1 —
V4An2 — 12n + 17 and 2n—1++/4n2 — 12n + 17 are integers. By Lemma (c), we have
n=2and so —V4n? —12n+17+2n —1 =0 and vV4n?2 — 12n+ 17 +2n — 1 = 6. So, in
this case I'f...(G) is D-integral if and only if G = V.

If n is odd then by Corollary m(b), it is sufficient to show that (4n — 3 —
V16n2 — 24n +17) and 1 (4n — 3 + V16n2 — 24n + 17) are integers. Putting n = 2n in
Lemma (c), we get that 16n? — 24n + 17 is a perfect square if and only if n = 1.
Therefore, if n is odd then I’} ..(G) is not D-integral.

Case 6. GG = Uy, where n > 2.
By Corollary [5.1.10} it follows that I'}..(G) is D-integral for n > 2.
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(b) Consider the following cases.
Case 1. G = Dy, where n > 3.
If n is odd then by Corollary [5.1.5(a), it is sufficient to show that 1(=9v9n? — 46n + 73
+5n —11) and +(9v9n? — 46n + 73+ 5n — 11) are integers. By Lemma (d)7 we have
n =3 and so (—9v9n? — 46n + 73+5n—11) = 0 and 7(9v9n? — 46n + 73+5n—11) = 0.
If n is odd then I'}...(G) is DQ-integral if and only if G = Ds.

Note that ”T is an integer if n is even. If n and § are even then in view of Corol-
lary [5.1.5(b), it is sufficient to show that 1(5n — 10 — v/9n2? — 68n + 164) and (5n —
10+ V9n2 — 68n + 164) are integers. By Lemma (f), we have n = 4,8 and so
$(=V9n? —68n + 164 + 5n — 10) = 1 or 4 and $(v/9n2 — 68n + 164 + 5n — 10) = 4 or

11 according as n = 4 or n = 8. Therefore, if n and § are even then I';...(G) is DQ-

integral if and only if G = Dsg, D1s.

If n is even and % is odd then in view of Corollary - , it is sufficient to show
that 1(—v9n2 —92n +292 + 5n — 6) and (v9n? —92n + 292 + 5n — 6) are integers.
By Lemma [5.1.14(g), we have n = 6 and so +(—v/9n2 —92n +292 + 51 — 6) = 4 and
(V9?2 —92n 4292 + 5n — 6) = 8. Therefore, I'; . (G) is DQ-integral if and only if
G = Da.

Case 2. G = U, ), where m > 3 and n > 2.

If m is odd then by Corollary (a), it is sufficient to show that 1(5mn + 5n — 16 —
VOm?2 — 46m + 73n) and 1 (5mn +5n — 16 +v9Im?2 — 46m + 73n) are integers. By Lemma
5.1.14(d), we have m = 3 and so *(5mn + 5n — 16 — v9m? — 46m + 73n) = 4(n — 1) and
1(5mn—+5n—16++v/9m? — 46m + 73n) = 6n—4. Again for m is odd, (m+3) —4 is integer.
So if m is odd then I'}...(G) is DQ-integral if and only if G = Uy, 3).

Note that (m+4) — 4 and (m+6) — 4 are integers if m is even. If m and % are even
then in view of Corollary (b), it is sufficient to show that —(v9m? — 68m + 164 —
5m—6)n—4 and } (VOm? = 68m + 164 + 5m + 6) n—4 are integers. By Lemma.1.14(f),
we have m = 4,8 and so —3(v/9m? — 68m + 164 — 5m — 6)n — 4 = 5n — 4 or 8n — 4 and
1 (\/9m2 —68m+164+5m+6)n—4:8n—40r 15n — 4 according as m =4 or m = 8.
Therefore, if m and % are even then I'}, ..(G) is DQ-integral if and only if G = U, 4y, U, 8)-

If m is even and % is odd then in view of Corollary (c), it is sufficient to show that
— 1 (VOmZ =92m +292 — 5m — 10) n—4 and & (V9m? — 92m + 292 + 5m + 10) n—4 are

ncce (
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integers. By Lemma (g), we have m = 6 and so — 1 (vV9m? — 92m + 292—5m—10)n—
4 =8n—4 and $(5m + 10 + V9m2 — 92m + 292)n — 4 = 12n — 4. Again for m is even
M — 4 is an integer. Therefore, I';...(G) is DQ-integral if and only if G = U, ¢).
Case 3. G = @4, Where n > 2.

If n is even then by Corollary [5.1.8(a), it is sufficient to show that 1(—2v/9n2—34n+41
+10n — 10) and $(2v/9n? — 34n + 41 + 10n — 10) are integers. By Lemma (e), we
have n = 2,4 and so 2(—2v9n% —34n + 41 4 10n — 10) =1 or 4 and 3(2v/9n2—34n + 41

(G) is DQ-integral

+10n—10) =4 or 11 according as n = 2 or n = 4. If n is even then I'} .
if and only if G = Ty, Ti6.

If n is odd then by Corollary [5.1.8(b), it is sufficient to show that §(10n — 6 —
2v/9n2 — 46n + 73) and 1(10n — 6+ 2v/9n? — 46n + 73) are integers. By Lemma (d),
we have n=3 and so 1 (—2v9n2 — 46n + 73+10n—6) =4 and 1 (10n—6+2v/9n2 — 46n + 73)
= 8. If n is odd then I'}_..(G) is DQ-integral if and only if G = T}».

Case 4. G = SDg,,, where n > 2.

If n is even then by Corollary (a), it is sufficient to show that (—2v/36n2 — 68n + 41+
20n — 10) and %(2v/36n2 — 68n + 41 4+ 20n — 10) are integers. Putting n = 2n in Lemma
(e), we have n = 2 and so 1(20n — 10 — 2v/36n? — 68n + 41) = 4 and 1(20n —
10 + 2v/36n2 — 68n +41) = 11. If n is even then I'}...(G) is DQ-integral if and only if
G = SDxs.

If n is odd then by Corollary (b), it is sufficient to show that %(QOn +4 —
4v/9n? — 46n + 73) and £(20n+4+4v/9n? — 46n + 73) are integers. By Lemma (d),
we have n=3 and so (20n+4—4v/9n? — 46n + 73) =12 and }(20n+4—4v/9n? — 46n + 73)
= 20. If n is odd then I'}..(G) is DQ-integral if and only if G = SDaa.

Case 5. G = Vg,, where n > 2.

If n is even then by Corollary a), it is sufficient to show that —v/9n2 — 34n + 41 +
5n — 1 and v9n2? — 34n + 41 + 5n — 1 are integers. By Lemma (e)7 we have n = 2,4
and s0 —vVOn2 —34n+41+5n—1=6or 12 and vI9n2 —34n+41 +5n — 1 = 12 or 26

according as n = 2 or n = 4. If n is even then I'} ..(G) is DQ-integral if and only if
G = Vig, Vs2.

If n is odd then by Corollary [5.1.11{(b), it is sufficient to show that %(10n — 5 —
V/36nm2 — 68n + 41) and %(10n — 5 4+ 1/36n2 — 68n + 41) are integers. Putting n = 2n
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in Lemma [5.1.14(e), we get that 36n? — 68n + 41 is a perfect square if and only if n = 1.
Therefore, if n is odd then I'}..(G) is not DQ-integral.

Case 6. G = Uy, where n > 2.
By Corollary [5.1.10}, it follows that I'}...(G) is DQ-integral for n > 2. O

5.2 Various distance energies

*

In this section we compute various distance energies of I'};..(G) for the groups considered
in Section 5.1} In view of (5.1.4), we have *PLI) — 2W(D) _ (D) Therefore,

@ @) [o(I)]
EpL(l)= Y. [—Ap[M)|and EpgM) = > |y—Ap(D),
BEDL-spec(T") ~veDQ-spec(T")

where Ap(T') = tr(lls(Ili()?) = Z\Z&) Thus, W (I') plays a crucial role in computing distance
Laplacian and signless Laplacian energies of I'.
We begin with the class of finite groups whose central quotients are isomorphic to

Zy % Zy for any prime p.

Theorem 5.2.1. Let G be a finite non-abelian group such that % = Zyp X Ly, where p

is any prime and |Z(G)| > 2. If n = (p_TI)Z, where z = |Z(G)|, then

4, forn=1

Ep (Mhcee(@)) = EpL(Theee(G)) = EpQ(Thecec(G)) =
4n—1)(p+1), forn>2.

Proof. By Theorem we have D-spec(I...(G)) = {[=2] D@D [n — 2]P, [np + 2n —
2]'}. Therefore,

Ep(Theee(@)) = (n = D)(p+ 1) X [ = 2[+px |n = 2|+ 1 x |np +2n — 2|
=2n—1(p+1)+px|n—2/4+1x (np+2n—2).

Hence, Ep(I'}...(G)) =4 or 4(n — 1)(p + 1) according as n = 1 or n > 2, noting that

nccce

1, forn=1
n—2| =
n—2, forn>2.
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By Theorem we have DL-spec(I%..(G)) = {[0]}, [n(p + 1)]?, [n(p + 1) + n]PFD=1}
and W (Do (G)) = et =2) - Pherefore, Ap ([iee(G)) = n(p + 2) — 2. We have

nccce

EDL(F;CCC(G)) =1x |0 - AD(F;CCC(G))| +p X |TL(p + 1) - AD(F:;CCC(G))‘
+(p+1)(n—=1) x|n(p+1) +n— Ap(I...(G))]

=Inp+2n—-2+px[2—n|+(@+1)(n—1)x |2].

Hence, Epp, (T ..(G)) =4 or 4(n — 1)(p+ 1) according as n =1 or n > 2.

By Theorem we also have DQ-spec(T%...(G)) = {[np + 2n — 4]@+DC=D [np + 3n —
417, [2np + 4n — 4]'}. We have

+px|(np+3n—4) — Ap(I'}eee (G)] +1 X |(2np 4+ 4n — 4) — Ap(Theee (G))]

ncce

=(n—-1p@+1)x|—2[+px|n—2/+|np+2n -2

Therefore, Epq(Tic..(G)) = 4 or 4(n — 1)(p + 1) according as n = 1 or n > 2. Hence, the result
follows. 0

n—

Corollary 5.2.2. Let G be a non-abelian group of order p™ with |Z(G)| = p"~2, where p

is prime and n > 3. Then

4(]7 4 1) (pn+1 _ pn _ p3)

ED(F;CCC(G)) - EDL(F;CCC(G)) = EDQ (F;CCC(G)) = p3

Remark 5.2.3. It is noteworthy that the first couple of equalities in Problem 1.1.13 were
obtained in [23] for Tt ...(G) where G is a group whose central quotient is isomorphic to
L X L. We attempt to solve Problem 1.1.13 by computing various distance energies of
I} o (G) for this class of groups. Unfortunately, the third equality in Problem 1.1.13 does

not hold though the last couple of equalities hold.

We now consider the class of finite groups whose central quotient is isomorphic to the
dihedral group Dy, for n > 3. This class of groups includes the well-known groups viz.
Doy, (where n > 3), Uy, 1) (Where m > 3 and n > 2), Quqp, (Where n > 2), SDg,, (where
n > 2) and Ug, (Where n > 2).
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Theorem 5.2.4. Let G be a finite non-abelian group with |Z(G)| = z and Z(%) = Doy,
(where n > 3).
(a) If n is even then
2 —3+V4n2 —12n + 17, for z =2
Ep(IMicec(G)) = § 6n — 5, for z=3
2(nz+ 2z —6), for z > 4.
2, —
2(2nt 27":fj_—1&-3)+5z 6)= form=4& 2=2,3
EDL(FECCC(G)) -
n222+2n22—3nz2;irlbz—4n+2z2+2z—4’ otherwz'se.
EDQ (F;klccc(G)) =
2 2 __ _ 2__ — —
n2z+n((v9n 34n+41+i)(;+81))+(\/9n 3dn+41-5)z 87 forz=2 & n>4;

z=3 & n=4,6;

z=4&n=4
(622 + 92 — 20), forn=4& z>5
2(n2(22—3)+n(v9n2—26n+33—62+4)+v9n2—26n+33+42+7) .
PICESY , otherwise.

(b) If n is odd then

%(4\/712Tn+7+n—3), forz=1

ED(F;CCC(G)) =
%(nz+z—4), for z > 2.
e, forn=35&z=1
3n?z—2nz—8n+112—8 form=7& z=1;, n=3& z > 2;
EDL(F:;CCC(G)) = e ’ | o
n=5& z=2
n222+2n2z—4n22;f7112—4n+322 tdz=d - therwise.
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2 _8n—Tz—
n z+10n7§+18n Tz 87 fO?”TL:3 & 2 > 2;

n=5& z2=3,4,5

Lt VaOn—46) + 73— 25 4+9)2 -4, forn=3&z=1
(z=D)(n((n=4)244)+32+4) forn=>5& z > 6;
EDQ(F;CCC(G)) = il B
n=7& z>56
%<n+\/n(9n746)+7 fnl—_&+9)zf4, form=5& z=1,2;

n=7&2=1,2,3

2 (2 (ni“ - 5) z+n(2z —3) +/n(9n — 46) + 73 + 9) , otherwise.

Proof. (a) If n is even then z # 1. By Theorem a), we have
D-spec(T% .. (G)) = {[_2]§<n+1>z—3, 5 -2 4 (2n2+ 2 — 84 2VA2 = 120+ 17) |,

(1 (2nz+z—8—z\/4n2—12n+17>]1}.
We have Ay := | = 2| =2; Ay =[5 —2[ =2
Ag:= H <2nz+zf8+zx/4n2712n+17)‘

or 5 — 2 according as z = 2,3 or z > 4;

z
2
i (2nz+zf 8 4+ 2v/4n2 — 12n + 17) and

—_8— 2_
_ 2nz42—-8 zx4/4n 12n+17, for z = 172

1
Ay = ‘ <2nz+z—8—z\/4n2 — 12n—|—17>’ =
4 2nz4+z—8—2zvV4n?2—12n+17 for 2 >3
i > 3.

I

Hence,

1
B (Thee(@) = (512 8 A 1 g 1 A5 41 s

2n —3++V4n2 —12n + 17, for z =2
= 3y6n—2>5, for z=3

2(nz +z — 6), for z > 4.

By Theorem [5.1.4(a), we have DL-spec([}...(G)) = {[0]1, [WFTD'Z]2, [nz] <n;1)z_1,

[%}Zd} and W (Tl (G)) = 12 (n?z — 2n + 22 — 2). Therefore, Ap (I (G)) =
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n2z—2n42:-2 We have

n+1
2
. n?z —2n + 2z — 2
Ly := ‘OAD(FHCCC(G))‘ - n+1 ’
] . —n?z 4 2nz +4n — 32+ 4
Ly := ’2<n+1)Z_AD(FnCCC(G))‘ - 2n+2 7
) n(z +2) — 22 + 2
L3 = Nz — AD(l—‘nCCC(G))‘ = n -+ 1
and
L4 = E(n + 2)2: - AD<F1’1CCC(G)> = 2
I z+3721;i‘21”_22+4, otherwise.
Hence,

n—1)z

EDL(F;CCC(G)) =1x L1 +2xLy+ (( B)

—1)XL3—|—(2—2>XL4

2(2n22—2n(2+3)+5z—6)
n+1 ’

form=4& 2=2,3

n2z242n22—3nz2—2nz—4n+22%2422—4
n+1

,  otherwise.

nccce

(82 _ 4]" L (5nz + 32 — 16 — 20/0n? — 34n + 41) |,
[ (5nz + 32 — 16 + 2/9nZ — 34n + 41) ]1}.

By Theorem [5.1.4(a), we also have DQ-spec(I'...(G)) = {[nz—4]“"31”—1, [tz _g)*72

We have

nz—2n—2z—2 _ .
— forz=2&n > 4;

By =

(nz—4>—AD<r;m<G>>]— Sk m—d6 s—d&n—d

_ nz—2n—2z—2 :
= "=t T, otherwise,

_nzz—3nz+4n+2z+4
N 2n + 2

)

Bri= | (P25 4) - Ap(Th ()
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nz —dnz+4n+ z + 4
2n + 2

Bg = ’

(5

U 4) - B0 =

nccc

1
By = Z VOn? = 34n + 412 + 5nz + 32 — 16) — Ap (Thece(G))

n2z—+8nz—8n—52—8(nz+2)v9In2—34n+41 forn—=4& »>5

B 4(n+1) ’
) _n?z—+8nz—8n-—5z (Sﬁz)ﬂ)\/m, otherwise
and
By = u (VOn? = 34n + 412 + 5nz + 32 = 16) — Ap(Theee(G))
_ n?z+8nz—8n—5z — 8+ (nz+2)vVIn? — 3dn + 41
4(n+1) '
Hence,
Epq(Theec(G)) = ((71—21),2_1) XB1+(2—2)xBy+1xB3+1xBs+1x Bs
n2z+n((\/m+82)(:;jg+(\/m—5)z—8’ for 2 =2 & n > 4:
z2=3 & n=4,6;
— z=4&n=4
(622492 —20), forn=4&2>5
z(n?(2z—3)+n(\/W(in+23(3n—+61z)+4)Jr\/smﬂzw)7 otherwise.

(b) If n is odd then by Theorem |5.1.4(b), we have D-spec(I'}...(G)) = {[—2] gl -2,

[A(nz+2—4—2vn? —4n—|—7)]1, [L(nz+2—4+2vn? —4n—|—7)]1}.

We have
—tnz4+2z—-4—2vn2—4n+7) for z=1
1 2
Ai::‘2 (nz+z—4—zvn2—4n—|—7)‘:
%(nz+z—4—zx/n2—4n+7),forz>2
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and
o= |2 (netz—dt oV —dn+7) | = 2 (nz 42— 4+ 2V — a0+ 7)
27 |5 5 )
Hence,
ED(FHCCC(G)):((Q)_2)X|_2|+1XA/1+1XA,2
%(4\/m+n—3), for z =1
%(nz—i—z—él), for z > 2.

By Theorem [5.1.4(b), we have DL-spec(I';...(G)) = {[0]1, [%]1, [nz] (n—21)z_1’

[(n?)z}'z*l} and W (T} (G)) = 32 (n?z — 2n + 3z — 2). Therefore, Ap (T (G)) =
n’z=2n432-2 Ve have

n+1
9 2
—2n+3z—-2| n°z—2n+3z—2
L i=10—-Ap((T* =|-= -
1 ‘O D( nccc(G)) n+1 n+1 ’
—n?2+2nz+4n—5z+4 = =
(n+1)z . B TR , forn=35&z=1
L/2 = ’ - AD(FHCCC(G)) = 2 X
_-n z+2;zzi‘21”—52+4’ otherwise,
+2n—32+2| nz+2n—32+2
- AN (G ‘ _|n2 =
3= [nz D(Mcee(G)) n+1 n+1
and
_n22+4321421n—3z+47 forn=3& 2 > 13
LZ: (Q)_AD(FHCCC(G))’: n:5&z:1,2, n=T7& z=1
_ 7n2z+4g7zli;ln*3z+4 , otherwise.
Hence,

-1
EDL(P;CCC(G)):1><L'1+1><L;+((”2)2—1) L+ (1) x I
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By Theorem

2n2z—4n+62—4 _ —
T forn=3,5&z2=1
3"22_2"2_531”“‘1”_8 forn=7&2=1,n=3& 2> 2;
n+ ) ’ — 4
n=5& z=2
n22242n%z—4nz>—2nz—4n+322+42—4 otherwise
n+1 ) :
(n—1)z
5.1.4(b), we also have DQ-spec(I'}...(G)) = {[nz—4] 7 L [% -

4]’2717 [1(5nz 452 — 16 — 2/9n? — 46n + 73)]1; [L(5nz+ 52— 16 + 2v/9n? — 46n + 73)]1}'

We have

B =

Bé =

(nz—4>—AD<r:;CCC<G>>\=

TN ()|

—mesdndad for ;=12 &n > 3; 2=3 & n=3,5,7,9;

z2=4,5&n=3,5n=3& 2> 1;
n=5&1<2<5;, n="7&2=1,2,3

nz—2n—3z—2
n+1

, otherwise,

n’z—4dnz+4n+3z+4
2n+ 2

)

1
By = (—V/9n2 =460+ 732 + 5nz + 52 — 16) — Ap(Tiece(G))

2 8n—Tr—8— VOnZ— 460173
n?z+10nz—8n—7z—8—(nz+2)v9In?—46n+73 forn=3& 2> 2

and

_ n22410nz—8n—7z—8—(nz+2)vV9n?—46n+73

4(n+1) ’

n=5&2>3; n=7& z>56

otherwise

4(n+1) ’

1
B, = )4 (VOn2 = 46n 4 732 + 5nz + 52 — 16) — Ap(Theee(G))

n?z +10nz — 8n — 7z — 8 + (nz + 2)V9In? — 46n + 73

4(n+1)
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Hence,
—1
Epg(ew(G)) = <<"2)Z - 1) W Bl +(:—1)x By+1x By+1x B,
n2z+10ni;18n—7z—8’ forn=3& 2> 2:
n=5&2=3,4,5
%<n+\/n(9n—46)+7 —%—1—9)2—4, forn=3&z=1
_ (z—l)(n((n;ﬁzi+4)+3z+4)’ forn =5 & 2 > 6:
n="7& z>56
%(n—{—\/n(9n—46)+73—n1—_'(_51+9)2—4, forn=5& z=1,2;
n=7&2=1,2,3
12 (2 (%H - 5) z+n(2z — 3) + /n(9n — 46) + 73 + 9) , otherwise.

O]

Since the groups Ds,, (Where n > 3), Utnm) (where m > 3 and n > 2), Q4, (Where
n > 2), S Dg, (Wheren > 2) and Us,, (Where n > 2) belong to the class of groups considered
in Theorem we have the following corollaries.

Corollary 5.2.5. Let G be the dihedral group Da,, where n > 3.

(a) If n is odd then Bp(Dieeo(G)) = § (V07 = 4n+7+n —3),

2(n—1)2

rut forn=3,5
EDL(F:;CCC(G)) = Z
3n ;-14-01n+37 fOT n>T
2, forn =3

and Epq (I (G)) = %(\/9122 —46n+ 73 +n — nl—fl + 1), form=5,7

%(\/9n2—46n+73—n+n1—f1— ), forn >9.
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(b) If n and % are even then Ep(I'}...(G)) = vn? —6n+ 17 +n — 3,

. 4, form =14
Ep, (T =
DL( nccc( )) 4(n2—5n+4) fOr 0 s
n+2 ) =
4, forn =4
and Epq (e (G)) =
n2+(v9n?—68n+164+8)n+2(v/9n?—68n+164—18) >
3(nT2) , form>8.
(c) If nis even and 5 is odd then Ep(I'}...(G)) = 5(%_2),
. 73712_”1.334_28» forn=26,10
EDL(Fnccc(G)) = 9
An?—6n+8) otherwise
n+2 )
n2+71—2~_7§7447 fOT n==~06
and Epq(Thece(G)) = { 1 (\/9712 ~02n + 292 +n — 54 4 10) . forn=10, 14
% (\/9n2 —92n 4292 4+ n + %1-82 - 22) ,  otherwise.

Corollary 5.2.6. Let G be the group Uy ), where m > 3 and n > 2.
(a) If m is odd then Ep (T} (G)) = 5(mn +n —4),

Epr, (F;klccc (G)) =

3m2n—2mn—8m+11n—8
m+1 ’

m2n24+2m2n—4mn?—2mn—4m+3n?+4n—4
m—+1

otherwise

and Epq(eec(G)) =
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2
m n+10mn711_:18m—7n—8’ form=3&n > 2;

m=5&n=3,4,5

(nfl)(m((m;j_)ln+4)+3n+4)7 fO’f‘ m=>5&n > 6:
m="7&n > 56
%<m+\/m(9m—46)—|—7 —ml—f?l—i—9)n—47 form=5&n=2;

m=7&n=2,3

in (2 (mi—i-l - 5) n+m(2n — 3) + /m(9m — 46) + 73 + 9) , otherwise.

(b) If m and % are even then

i} 12(n — 1), form =4
ED(FHCCC(G)) =
2(mn+2n —6), form >38,
( @) 12(n — 1), form =4
EpL (I (@) =
2m2n(n+1)—4m(3r:jjr-;z+1)+8(2n2+n—1)’ form > 8
and Epq(leec(G)) =
12(n — 1), form =4
136 _ _
=2, form=8&n =2
£ (24n? +18n — 20) form=8&n >3
n ’ITL2 n— m me— m — n me— m n .
(m? (4n—3)+m(v9m?—52 +1322(ij+;r)8)+2(\/9 2 52m+ 132416 +14))7 otherwise.
(c) If m is even and 2 is odd then Ep (I (G)) = 3(mn +2n — 4),
3m2n_4m5,?122)+44n_16, form==6&n >2;
EpL(Tcee (@) =
2(mzn(n+1)—2m(4n2+n+1)+12n2+8n—4) .
otherwise

m—+2 )
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and
m2n+47n(5;;§)*4(7”+4)7 form=6&n > 2;
m=10&n =2
n— m2n m —on n
Epo(Theee (@) = § Crtllminim@smionts) form=10&n > 3

m=14&mn > 28

in (\/9m2 —92m + 292 — 8(572:26)” +m(4n — 3) + 18) otherwise.

Corollary 5.2.7. Let G be the group Quyn, where n > 2.

(a) If n is even then BEp(Ii...(G)) = 2n — 3 +V4n2 — 12n + 17,

. 4, forn =2
EDL(FHCCC(G)) = )
§n"—20n+8 ;3_01"+8, forn >4
. 4, forn =2
d Epq(T =
and Epq(Tneee(G) = 2 omsimratoay s vom—simram—o .
Y , form>4.
(b) If n is odd then Ep(T}...(G)) = 5(n —1),
6n2—12n+14 forn =3,5
+1 ) -9
EDL(F;CCC(G)) - ) "
8n”—24n 116 _n%ﬂl‘m, otherwise
8, forn=3
i} 2\/17—{—%, formn=5
and Epq(I'ec.(G)) =
8v/3 + 10, forn=17
VOn?2 —46n + 73 +n + n?%l — 11, otherwise.

Corollary 5.2.8. Let G be the semidihedral group SDg,, where n > 2.
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(a) If n is even then Ep(Tke.(G)) = V1602 — 24n + 17 + 4n — 3,

nccce

%, forn =2

EpL (F;ccc (G)) =
32n2—40n+8

T otherwise

4n2 + 2 (\/36712 —68n + 41 + 4) n 4 V3602 — 68n + 41 — 9
and Epq(Ihecc(G)) = :

2n+1
(b) If n is odd then Ep(T}...(G)) = 10n,
. 24, forn =3
EDL(FHCCC(G>) - )
2471;73:3171-#&)7 otherwise
74”2*:??_36, forn=3,5

and EpQ(I'eec(G)) =

2 (\/9n2 —46n + 73 4+ 5n + nﬁ—_fl — 31) ,  otherwise.

Corollary 5.2.9. Let G be the group Usy, where n > 2. Then Ep(I'}...(G)) =10(n — 1)
and EDL(P;CCC(G)) = EDQ(F;CCC(G)) = 8(” - 1)

We conclude this section with the following result.
Theorem 5.2.10. Let G be the group Vg,, where n > 2.

(a) If n is even then Ep(I'}...(G)) =4(2n — 1),

nccce

; 12, forn =2
Epr (T}, =
DL( nccc( )) 12(2n2—5n+3)
———, forn>4
12, forn =2
and EDQ (F;CCC(G)) = %’ fOT "
2(5n2—20n+(n+17)l+;1(9”—34”4“23) ,  forn >6.
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(b) Ifn is odd then Ep(T}...(G)) = V16n2 — 24n + 17 + 4n — 3,

8 (4n? —5n + 1)
2n+1

EpL (P;CCC (G)) =

An2 +2 (\/36n2 ~68n + 41 +4) n+v36n2 —63n+41—9

and Epq(IMiec.(G)) = 2n + 1

Proof. (a) If n is even then by Theorem|5.1.11[a), we have D—spec(Ffmc(G)):{[O]17 [—2]2n L,

20 — 1 —VAnZ — 120+ 17)", [2n — 1 + vV4n® — 12n + 17]1}.

We have
A =2n—1- \/4n2—12n+17‘ =2n—1—V4n2 — 12n+ 17
and
Ay = 2n—1+\/4n2—12n—{—17‘ =2n— 1+ V4n2 — 12n + 17.
Hence,

Ep (I

nccce

(@)=1x0]+2n—1)x|—=2|+1x A1 +1x A

=4(2n —1).

—_

By Theorem [5.1.11{(a), we have DL-spec(I'}...(G)) = { [0]%, [2n+2]2, [4n]?"—3, [2n+4]2}

nccce

and W (L. (G)) = 3(8n% — dn +12). Therefore, Ap(I}ie..(G)) = 4”2;%. We have
. 4n? —2n +6
Ly := ‘0 - AD(FHCCC(G))‘ = niﬂ’
. 2(n?—3n+2
s = (20 +2) - Ap(Tie0) = =212,
6(n—1)

L3 :=

4n — AD<F:CCC(G))’ = n4+1
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and

@nt )~ Ap(Thn(G)| = 4 ormn =2
Ly:=|2n+4) — DF:}CCCG = )
2(nn_++l), for n > 4.

Hence,

EDL<F* (G))ZlXL1+2XL2+(2n—3)XL3+2XL4

ncce

12, forn =2

12(2n2—5n+3)
n+1 )

for n > 4.

By Theorem 5.1.11|(a), we also have DQ-spec(I'}i..(G))={[4n — 4]>"73 [2n]?, [2n + 2],
[ = V97 =34n +41 + 50— 1], [VOn? = 34n + 41 + 50— 1] ' }.

We have
_2(:;15), forn=2,4
By = ‘(471 - 4) - AD(F;CCC(G))’ =
2(:_;15)’ for n > 6,
2 (n2 —2n + 3)
= — Ap (Tt =
B> 2n D( nccc(G))‘ n+1 ’
. 2(n?2—-3n+2
Bg = ’(2n+2)_AD(Fnccc(G))‘ - ( n+1 )’

Zron—-7- 1)vV9n?2 — 34n + 41
B4::‘571—1—\/9n2—34n+41—AD(F:‘1CCC(G))’:—n +on (n+1)v9n? — 34n +

n+1
and
246n—T 1)v/9n?2 — 34 41
B5::‘\/9n2—34n+41+5n—1—AD(F;CCC(G))‘:n FOn =74 (nt D)von® - 34n +41
n+1
Hence,

EDQ(F* (G)):(Q’n—3)XB1+2XBQ+1X33+1XB4+1XB5

nccce
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12, forn =2

= 15@’ forn=4
2(5n2—20n+(n+1)y/n(9n—34)+41+23

( AGARRAAL JharE ) for n > 6.

n+1 ’

(b) If n is odd then by Result 1.2.24, we have I} ..(G) = Kon—11,1 = Iicec(Daxan). Hence, the
result follows from Corollary O

5.3 Comparing different distance energies

Motivated by Problem 1.1.7 — Problem 1.1.13, in this section, we compare the distance
energy, distance Laplacian energy and distance signless Laplacian energy of I'},...(G) for
the finite non-abelian groups discussed in the previous sections. We choose graphical
method to compare various distance energies of I'}...(G). The following figures describe
the comparison among Ep(I'}...(G)), EpL(Ieec(G)) and Epq(Ie..(G)) for the groups

G = Doy, Qun, SDgp, Usy, and Vay,.

200 —r——T—T— T T T T T

T T

S &

] S 150 |

< 9

$ A

* 8 * g

& o

Kl 8 100 [~

g b

& = L

g 5

=1 I~

3] o 50 [

v i3

9 9

g g L

A A ok

nisodd (n > 3) — nand % areeven (n > 4) —

Figure 5.1: Distance energies of Figure 5.2: Distance energies of
Tcce(D2n), n is odd [fece(D2n), n and T are even
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Figure 5.3: Distance energies of
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Figure 5.5: Distance energies of
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Figure 5.7: Distance energies of

Ticec(SDsy), n is even
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800 T T T
Ep
H EprL |
—_— EDQ
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600 [

400 [

[
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o

200 |-

Distance energies of F:CCC (Vgn) —
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niseven(n > 2) — nisodd (n > 3) —
Figure 5.9: Distance energies of Figure 5.10: Distance energies of
Theec(Van), n is even Thcee(Van), n is odd

By observing the Figures[5.1]— we get the following result.

Theorem 5.3.1. Let G = Dy, (where n > 3), Quy (where n > 2), SDg, (wheren > 2),
Van (where n > 2) and Ug,, (where n > 2). Then

(8) Ep(Tieee(G)) = EpL(Ticee(G)) = Enq(Tieee(G)) if and only if G = D or Ty or Vig;

nccce

(b) EDL(F:CCC(G)) = EDQ(F;CCC(G)) < ED(F;CCC(G)) Zf and Only ZfG = Dg or D12 or
Tyo or SDay or Ugy, (n > 2);

(C) EDL(F;CCC(G)) < EDQ(F;CCC(G)) < ED(F;CCC(G)) if and only if G = Dio;

(d) EDQ(FECCC(G)) < EDL(F;CCC(G)) < ED(FECCC(G)) if and only if G = D14 or Dig or
or DQO or D22 or D26 or T20 or SD40,’

(e) EDQ(FECCC(G)) < ED(F;CCC(G)) < EDL(]‘_‘:(ICCC(G)) if and only if G = Doy, (77, is odd
and n > 15; n is even, % is odd and n > 18) or Qu, (n is odd and n > 9) or SDsg

or SD79 or SDgg or vss;

(f) ED(F;CCC(G)) < EDL(P;CCC(G)) < EDQ(P;CCC(G)) if and only if G = Dyg or Tie or
SD16;

(g) ED(F;CCC(G)) < EDQ(F;CCC(G)) < EDL(P;CCC(G)) Zf and Only ZfG = DQH (n, % are
even and n > 12) or Quy, (n is even and n > 6) or SDg, (n is even and n > 4; n is

odd and n > 13) or Vg, (n is even and n > 6; n is odd);
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(h) Epq (FECCC(G)) <Ep (]‘_‘ECCC(G)) = Epr, (F;CCC(G)) if and only if G = Dag or Tss.
We conclude this chapter with the following corollary related to Problem 1.1.12.

Corollary 5.3.2. Let G = Ds,, (where n > 3), Qun (where n > 2), SDg,, (where n > 2),
Van (where n > 2) and Us,, (where n > 2). Then Epp,(I}..(G)) = EpqQ(Ticec(G)) if and

nccce

only ZfG = DG,Dg, D12 or Tg, T12 or V16, SD24 or Uﬁn (n Z 2).
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