Table of Contents

	Title	Page. No.
Abs	tract	i
Dec	laration	iv
Cert	ificate	v
Ack	nowledgements	vi
Tabl	le of contents	viii
List	of Tables	xi
List	of Figures	xiii
List	List of Abbreviations	
List	of Symbols	xxiii
Cha	apter 1: Introduction	1-18
1.1	Overview of quantum confined materials	1
1.2	Black Phosphorene and its analogous 2D materials	2
1.3	Motivation	4
	1.3.1 Defect engineering: the concept of compound defect	4
	1.3.2 Surface adsorption phenomena	6
	1.3.3 Heterostructure engineering: mixed-phase and mixed-	
	dimensional systems	7
	1.3.3.1 Mixed-phase or isotropic-anisotropic heterostructur	es 7
	1.3.3.2 Mixed-dimensional heterostructures	8
1.4	Objectives of the thesis	10
	References	10
Cha	apter 2: Theoretical background	19-35
2.1	Theoretical foundations of Density functional theory (DFT)	19
	2.1.1 Quantum many-body problem: pre DFT era	19
	2.1.2 Thomas-Fermi model	21
	2.1.3 Theorems of Hohenberg and Kohn	22
	2.1.4 Kohn-Sham equation	23
2.2	The concept of pseudopotential	25

2.3	Many-body perturbation theory (MBPT): an approach beyond DFT	27
	2.3.1 Green's function with screened Coulomb potential (GW)	
	approach	28
	2.3.2 Bethe-Salpeter equation	30
2.4	List of software packages used	32
	References	32
Cha	apter 3: Compound defect in Black Phosphorene	36-52
3.1	Introduction	36
3.2	Model and computational details	37
	3.2.1 DFT parameters	37
	3.2.2 Structural modelling	37
3.3	Stability of compound defect	39
3.4	Electronic properties	42
3.5	Effect of strain	44
3.6	Conclusion	49
	References	50
Cha	apter 4: Compound defect in BP for gas enhanced	
sen	sensing	
4.1	Introduction	53
4.2	Computational details	53
4.3	Surface adsorption	54
	4.3.1 Surface adsorption of NO ₂	57
	4.3.2 Surface adsorption of SO ₂	61
	4.3.3 Surface adsorption of CO, CO ₂ , and NH ₃	62
	4.3.4 Recovery time	65
4.4	Conclusion	66
	References	67
Cha	apter 5: Mixed-phase heterostructure engineering of Sn	S 71-91
5.1	Introduction	71
5.2	Computational details	72

5.3	Structural properties and stability of SnS/h-BN heterostructure	74
5.4	Interlayer charge transport and built-in electric fields	77
5.5	Preserved electronic properties of SnS	79
5.6	Intralayer excitons in presence of electric field	83
5.7	Conclusion	86
	References	87
Cha	apter 6: Mixed-dimensional excitons in SnS/BNNT	
het	heterostructure	
6.1	Introduction	92
6.2	Computational details	93
6.3	Construction, optimization, and interfacial charge dynamics	95
6.4	DFT and quasiparticle corrected electronic structures	99
6.5	Excitons across dimensional boundaries: IDE	103
6.6	Modulating inter-dimensional excitons via strain	105
6.7	Conclusion	108
	References	108
Chapter 7: Conclusions and future prospects		114-117
7.1	Concluding remarks	114
7.2	Future scope of the research work	116
Appendix		118-122
List of Publications		123
List of Conferences/Workshops attended		124