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“There is plenty of room at the bottom.” 

~Richard P. Feynman (Dec, 1959) 

1.1 Overview of quantum confined materials 

The term ‘quantum confinement’ describes the phenomenon that occurs when the 

dimensions of a material are reduced to the nanoscale, typically below its exciton Bohr 

radius [1–4]. In the case of two-dimensional (2D) materials, quantum confinement occurs 

along the out-of-plane direction, while charge carriers remain free to move in the other two 

in-plane directions [5–8]. This reduced dimensionality leads to a significant alteration in 

the electronic, optical, and vibrational properties of the material [9, 10]. As the material is 

thinned down to a few atomic layers, or even a single monolayer, the energy bands become 

discretized along the perpendicular reciprocal space direction, enhancing quantum effects 

and introducing phenomena that are not observed in their bulk counterparts. This unique 

confinement, combined with the high surface-to-volume ratio and symmetry-breaking 

effects, results in a wide range of novel physical behaviours such as tunable bandgaps, 

enhanced carrier mobility, and strong light-matter interactions. 

 

Figure 1.1: Different allotropes of carbon-based quantum confined material. 

The realization of these extraordinary properties began with the groundbreaking discovery 

of graphene in 2004 by Andre Geim and Konstantin Novoselov, who mechanically 

exfoliated a single layer of carbon atoms from graphite [11]. Graphene, a honeycomb 

lattice of carbon atoms, possesses outstanding electrical conductivity, tensile strength, and 

thermal conductivity [12, 13]. Its groundbreaking properties sparked intense global interest 

and rapidly accelerated research into 2D materials. As researchers soon realized that 
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graphene was only the tip of the iceberg, a broader field of 2D materials emerged. In 2005, 

hexagonal boron nitride (h-BN), a compound composed of boron and nitrogen atoms in a 

similar honeycomb structure, was also successfully exfoliated and characterized [14]. h-

BN stands out for its high thermal and chemical stability, making it a versatile material for 

various applications [14–16].  

The momentum continued with the discovery of silicene in 2010, a monolayer of silicon 

atoms arranged in a graphene-like structure [17]. Silicene showed promise due to its 

intriguing electrical and optical properties [18, 19]. That same year marked another 

significant breakthrough with the discovery that monolayer molybdenum disulfide (MoS2) 

possesses a direct semiconducting bandgap [20–22]. This finding not only enabled the 

development of 2D materials for electronics, optoelectronics, and catalysis, but also 

ushered in a new era focused on the transition metal dichalcogenide (TMDC) family [23]. 

TMDCs have the general chemical formula MX2, where M is a transition metal 

(e.g., Mo, W, Nb, Ta) and X is a chalcogen (S, Se, or Te). These materials form layered 

structures held together by weak van der Waals (vdW) forces, allowing exfoliation down 

to monolayers. Depending on the specific combination of metal and chalcogen, TMDCs 

can exhibit semiconducting, metallic, or even superconducting behaviour, making them 

highly tunable for diverse applications [23, 24]. Following MoS2, several other TMDCs 

were successfully exfoliated and studied. In 2012, monolayer molybdenum diselenide 

(MoSe2) was reported, showing a direct bandgap and strong photoluminescence [25]. 

Around 2012-2013, tungsten diselenide (WSe2) was isolated and recognized for its 

semiconducting nature and robust excitonic effects [26]. In 2013, tungsten disulfide (WS2) 

gained attention due to its pronounced spin-orbit coupling and strong optical response [27]. 

Subsequently, in 2014, molybdenum ditelluride (MoTe2) was introduced as a near-infrared 

semiconductor with tunable structural phases, expanding the spectral range of 2D 

optoelectronics [28].  

1.2 Black Phosphorene and its analogous 2D materials 

In this thesis, the primary focus shifts toward another emerging class of 2D 

materials, black phosphorous and its isostructural counterpart, tin(II) sulfide (SnS), which 

belong to the transition metal monochalcogenide (TMMC) family. The first successful 

exfoliation of monolayer black phosphorous, also known as black phosphorene (BP) was  
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Figure 1.2: Optimized geometrical structures of (a-c) BP and (d-f) SnS monolayers (3×3 

supercell). Panels (a) and (d), and (b) and (e) show side views along the armchair and 

zigzag directions, respectively, while panels (c) and (f) present the top views. 

reported in 2014, demonstrating a direct bandgap and high hole mobility, which sparked 

widespread interest for its potential in next-generation nano electronic devices [29, 30]. 

Following this, SnS began to attract attention as a 2D material due to its structural and 

electronic similarities to BP [31]. Like BP, SnS is a group IV–VI compound with a 

puckered orthorhombic structure and pronounced in-plane anisotropy, making it a 

promising candidate for optoelectronic and thermoelectric applications [32–35]. The first 

successful isolation of SnS nanosheets was reported by Brent et al. in 2015 [36]. They 

employed liquid-phase exfoliation to produce SnS nanosheets with an average thickness 

corresponding to 3-4 bilayers. This pioneering work demonstrated the potential of SnS as 

a two-dimensional material with promising electronic and optical properties. 
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Unlike the three-atom-thick hexagonal structure of TMDC monolayers, BP and 

SnS are composed of two atomic layers and adopt an orthorhombic crystal structure. This 

class of materials has garnered considerable attention due to their inherent in-plane 

anisotropy and distinctive physicochemical characteristics [37]. The anisotropy arises from 

their puckered structural geometry, which creates two non-equivalent in-plane orthogonal 

lattice parameters, commonly referred to as the armchair (ac) and zigzag (zz) axes. The 

monolayer unit cell comprises four atoms, each covalently bonded to three neighbours, 

forming zigzag rows of alternating elements. Lone pairs on each atom push the bonds into 

tetrahedral coordination, resulting in two short in-plane bonds and one long out-of-plane 

bond. This unique geometry creates pronounced anisotropy along the ac and zz directions 

[38, 39]. The structural anisotropy of BP and SnS monolayer along with their lattice 

parameters are shown in Fig. 1.2 [40, 41]. Notably, in BP, all four atoms in the unit cell 

are phosphorus (P), whereas in monolayer SnS, the unit cell comprises two tin (Sn) and 

two sulfur (S) atoms, positioning it as a key representative of the TMMC family. 

1.3 Motivation 

1.3.1 Defect engineering: the concept of compound defect 

Defects in quantum-confined materials play a pivotal role in tailoring their properties for 

a wide range of applications. These defects can originate intrinsically, due to lattice 

imperfections, or extrinsically, through external processing methods [42]. The strategic 

manipulation of these imperfections, commonly referred to as defect engineering, enables 

precise control over the electronic, optical, mechanical, and chemical behaviour of 

materials [43–46]. Defects in materials are commonly classified into categories such as 

point defects, line defects, grain boundaries, and other forms of extended structural 

irregularities [47].  

Point defects such as vacancies and interstitials can introduce localized electronic 

states within the band structure, significantly affecting electrical conductivity, carrier 

mobility, and chemical reactivity [48–50]. Dislocations, also known as line defects, can 

alter mechanical properties and are instrumental in engineering materials for desired 

deformation behaviour [51]. Similarly, grain boundaries can influence charge and heat 

transport, thereby affecting the thermal and electrical conductivity of the material. 

Substitutional doping, wherein host atoms are replaced with foreign elements, allows for 
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precise tuning of the band structure and electronic properties [52–56]. Additionally, ad- 

atoms can modify the surface reactivity and interaction dynamics, offering new pathways 

for catalytic or sensing applications [57, 58]. 

To achieve desired properties, doping is a widely employed technique, particularly 

in 2D materials like graphene, TMDCs, and BP [59, 60]. In this context, n-type and p-type 

doping serve as essential strategies for tuning charge carrier concentrations. n-type doping 

introduces donor atoms, which contribute extra electrons, thereby increasing electrical 

conductivity and electron mobility. These dopants can either substitute host atoms or 

adsorb onto the surface. In contrast, p-type doping introduces acceptor atoms, that create 

holes, enhancing hole mobility. p-type behaviour is typically achieved by substituting 

atoms in the lattice or creating controlled vacancies. The choice and concentration of 

dopants significantly affect electrical, optical, thermal, and mechanical properties, making 

doping a central aspect of defect engineering [61–63]. 

Among intrinsic point defects, vacancies are especially impactful in 2D systems 

[64, 65]. Vacancies can form during exfoliation, fabrication, or under external stimuli like 

temperature fluctuations and chemical treatments. Vacancies introduce local lattice 

distortions and strain fields, which alter the mechanical strength, flexibility, and response 

to external forces. Electronically, they contribute to mid-gap defect states that influence 

conductivity, carrier mobility, and optical absorption [48, 49, 66, 67]. 

It is important to note that in recent years, extensive research on defect-engineered 

materials has primarily focused on single-point defect models, where only one type of 

defect, such as a vacancy or a dopant, is considered. However, in practical scenarios, there  

Table 1.1: Vacancy formation energies of BP, graphene, silicene, WSe2, and SnS. 

Materials Single vacancy (eV) Double vacancy (eV) References 

BP 1.51-1.63 1.91-3.04 [40, 42] 

Graphene 7.80 7.52 [42] 

Silicene 3.77 3.70 [42] 

WSe2 
5.30 (W) - 

[68] 
2.63 (Se) - 

SnS 
4.75 (Sn) - 

[69] 
6.03 (S) - 
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is a strong likelihood that multiple types of defects coexist within a single material. For 

example, the above table (Table 1.1) compares the vacancy formation energies of BP and 

SnS with other 2D materials such as graphene, silicene, and the TMDC material WSe2. It 

is evident that the energy required to form single or double vacancies in BP is significantly 

lower compared to these other 2D systems. This suggests that vacancies are an inevitable 

feature of BP, and may naturally arise during exfoliation or any other growth process. 

Consequently, any study involving BP should carefully consider the likely presence and 

effects of such vacancies, as they can critically influence the physiochemical 

characteristics of the material. 

Now, if BP is doped with foreign elements such as O, N, S, Al, etc., the material can 

simultaneously host both a dopant atom and a vacancy, resulting in existence of two 

different point defects. This specific combination of multiple defect types within a single 

host material is referred to as a ‘compound defect’. The formation likelihood, stability, and 

influence of such a compound defect on the structural and electronic properties of BP are 

thoroughly examined in Chapter 3 of this thesis. 

1.3.2 Surface adsorption phenomena 

A particularly valuable outcome of defect engineering is the enhancement of surface 

reactivity. Defects such as vacancies or dopant sites act as active centres for gas adsorption, 

significantly improving the sensitivity and selectivity of materials in gas sensing 

applications. Given the vacancy-prone nature of BP, it has been extensively studied for 

toxic gas molecule adsorption using single-point defect models. For example, 

Kaewmaraya et al. showed that vacancies in BP substantially enhance its sensitivity to H2S 

and SO2 molecules [70]. Similarly, studies by Meshginqalam et al. demonstrated that 

vacancy formation increases the adsorption energies for NOx and SOx molecules in BP 

[71]. 

On the other hand, dopants also introduce defect sites, often enhancing surface reactivity. 

In this context, Suvansinpan et al. investigated BP doped with seventeen different 

elements, concluding that doping enhances chemical activity for nitrogen-based gas 

adsorption via electronic hybridization and charge transfer mechanisms [52]. In essence, 

the adsorption of target gas molecules at these defect sites can lead to measurable changes 

in electrical or optical signals, making defect-engineered BP ideal for next-generation 

sensors [49, 71–75]. 
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Interestingly, when multiple defect types, such as a vacancy and a dopant atom, 

coexist within the same host material, forming a compound defect, their collective 

influence on the physicochemical properties of BP remains largely underexplored. 

Understanding the influence of such complex defects is especially important for surface-

related applications, as they can further enhance surface reactivity and introduce additional 

dangling bonds, enabling stronger and more selective interactions with external molecules. 

This makes compound defects particularly attractive for catalysis, chemical sensing, and 

surface functionalization. The impact of such a compound defect is comprehensively 

investigated in Chapter 4 of this thesis, focusing on the surface adsorption of five 

environmentally detrimental gas molecules, and highlighting their potential in 

environmental monitoring and sensing technologies. 

1.3.3 Heterostructure engineering: mixed-phase and mixed-dimensional systems 

Heterostructure engineering refers to the strategic stacking or integration of different 

materials to tailor and combine their distinct physical, chemical, or electronic properties 

into a single functional system. In the context of 2D materials, where layers can be as thin 

as a single atomic sheet, this concept becomes particularly influential. By vertically or 

laterally assembling atomically thin materials with varying band structures, carrier 

mobilities, optical responses, and lattice symmetries, one can construct custom-designed 

platforms exhibiting emergent properties that are not present in the individual components 

[76–79]. 

This thesis focuses on two 2D materials: BP and SnS. BP is prone to defect 

formation, particularly vacancies, which although often seen as detrimental, can in fact 

enhance surface interactions. This makes BP an attractive candidate for gas sensing 

applications, where defect-mediated adsorption plays a vital role. On the other hand, SnS 

stands out for its excellent optoelectronic properties and has been extensively explored in 

photovoltaic and photo-detection applications. Unlike BP, SnS is significantly more stable 

with respect to vacancy formation (refer to Table 1.1), making it a robust platform for 

optoelectronic devices via heterostructure engineering. 

1.3.3.1 Mixed-phase or isotropic-anisotropic heterostructures 

In terms of optoelectronic properties, Maity et al. (2021) theoretically investigated 

excitonic behaviour in a SnS/GeSe heterostructure and found that its type-II band 
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alignment facilitates the formation of anisotropic interlayer excitons [80]. These excitons 

exhibit spatial separation of charge carriers across the two different layers, significantly 

prolonging their recombination lifetime, which in turn enhances the photovoltaic 

performance of SnS-based devices. This heterostructure was later experimentally realized 

by Sutter et al. in 2023 [81]. In recent years, various SnS-based heterostructures, formed 

by stacking SnS with materials such as BP, GeS, SnSe, etc., have been explored both 

theoretically and experimentally, showing potential across a range of applications [32, 35, 

82–86]. It should be mentioned that SnS heterostructures based on similar lattice structures 

are extensively studied, but those with dissimilar lattices (orthorhombic-hexagonal) remain 

relatively underexplored, yet offer promising avenues for the development of mixed-phase 

heterostructures. One of the primary challenges in modelling such dissimilar systems arises 

from their high lattice mismatches and angular disparities. Furthermore, most hexagonal 

2D materials, such as h-BN, MoS2, MoSe2, WS2, WSe2, and MoTe2 exhibit in-plane 

isotropic optical and electronic properties [87–90]. In contrast, SnS, owing to its puckered 

orthorhombic crystal structure, displays in-plane anisotropy [41]. This makes one such 

orthorhombic-hexagonal heterostructure also an in-plane anisotropic/isotropic 

heterostructure. An in-plane isotropic nature leads to the quasi-2D particles, whereas, an 

anisotropic nature leads to quasi one-dimensional (1D) particles [91]. Hence, in-plane 

anisotropic/isotropic 2D heterostructures lead to the formation of quasi-1D/2D particle 

systems allowing for the manipulation of high binding energy quasi-1D particle 

populations. These systems are particularly advantageous for advanced optoelectronic 

applications, offering tunable properties that are difficult to achieve in conventional 

heterostructure with similar lattices. In Chapter 5 of this thesis, one such mixed-phase 

anisotropic/isotropic heterostructure is investigated as a strategic approach to enhance the 

optoelectronic performance of SnS-based devices. 

1.3.3.2 Mixed-dimensional heterostructures 

vdW interactions are not limited to interplanar forces in layered materials; rather, any 

passivated, dangling-bond-free surface can interact with another through vdW forces. This 

fundamental property allows layered 2D materials to be integrated with a wide variety of 

materials of differing dimensionalities, giving rise to mixed-dimensional vdW 

heterostructures. These combinations, involving 2D + nD (where n = 0, 1, or 3) materials, 

have emerged as a broad and versatile class of heterostructures, opening new avenues for 

material design and functional applications [92, 93]. 
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Mixed-dimensional vdW systems are particularly compelling because they merge the 

quantum confinement effects of lower-dimensional materials with the planar charge 

transport properties of 2D materials. This synergy enhances light-matter interactions, 

carrier separation, and surface functionalization capabilities. For instance, CNT/WSe2 

mixed-dimensional heterostructures, with varying CNT chiralities, can significantly 

modulate band alignment and facilitate efficient exciton transfer, enabling exciton 

generation within CNTs [94]. Similarly, CNT-graphene heterostructures, formed via 

covalently bonded seamless junctions, can significantly reduce electrical and thermal 

contact resistance owing to their excellent electron and phonon transport properties [95]. 

The distinct confinement of charge carriers in each component contributes to novel 

physical behaviours, making these engineered systems highly promising for applications 

in optoelectronics, and energy harvesting. The interfacial charge dynamics and 

optoelectronic properties of an SnS-based 2D/1D mixed-dimensional heterostructure is 

extensively discussed in Chapter 6 of the thesis. 

 

 

Figure 1.3: Schematic overview of the research works presented in the thesis. Chapters 3 

and 4 focus on defect engineering in BP, while Chapters 5 and 6 explore heterostructure 

engineering involving SnS-based systems. 
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1.4 Objectives of the thesis 

1. To model and study engineered BP and its isostructural SnS system, providing new 

perspective on their physiochemical properties using density functional theory 

(DFT). 

2. To investigate the ground state geometrical structure, electronic and optical 

properties of the systems under consideration. 

3. To explore the effect of external perturbation (e.g., strain, electric field, etc.) with 

a potential to tune the aforementioned properties of the systems. 

4. To understand the correlation between the properties of the engineered materials 

and their potential applications (such as energy storage, gas sensor, etc.). 

5. To strengthen our insight of the mechanisms involved in order to deepen current 

knowledge. 
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