
 

 

 

Chapter 2: 

Theoretical 

background 



Chapter 2                                                                                                  Theoretical background 

19 
 

2.1 Theoretical foundations of Density functional theory (DFT) 

2.1.1 Quantum many-body problem: pre DFT era 

The quantum mechanical description of matter, formalized by Schrödinger in 1926, 

provides the foundational framework for understanding electronic systems from first 

principles [1]. For a system of N interacting electrons, the time-independent Schrödinger 

equation becomes a many-body eigenvalue problem, where the full wavefunction 

𝛹(𝑟1, 𝑟2, . . . 𝑟𝑁) depends on 3N spatial coordinates. This high dimensionality makes direct 

solutions computationally prohibitive for systems containing more than a few electrons. 

When the adiabatic or Born-Oppenheimer approximation is invoked, allowing the 

separation of electronic and ionic motions, the electronic Schrödinger equation describing 

electrons in the presence of fixed nuclei takes the form 

[∑ (−
ħ2

2𝑚
𝛻𝑖

2)

𝑖

+
1

2
∑ ∑ 𝑈𝑒𝑒(|𝑟𝑖 − 𝑟𝑗|)

𝑗≠𝑖

+ ∑ ∑ 𝑈𝑒𝑖(|𝑅𝛼 − 𝑟𝑖|)

𝛼𝑖𝑖

] 𝛹𝑒𝑙 = 𝐸𝑒𝑙𝛹𝑒𝑙 

…(2.1) 

or more compactly, 

[𝑇 + 𝑈𝑒𝑒 + 𝑈𝑒𝑖]𝛹𝑒𝑙 = 𝐸𝑒𝑙𝛹𝑒𝑙 

…(2.2) 

where T is the kinetic energy operator, 𝑈𝑒𝑒 represents the electron-electron interaction, and 

𝑈𝑒𝑖 the electron-ion interaction. The principal difficulty arises from the electron-electron 

term, which introduces complex correlations by coupling the motion of every electron to 

one another. 

To manage this complexity, approximate methods such as the Hartree and Hartree-

Fock (HF) approaches were developed [2,3]. In the Hartree approximation, the N-electron 

wavefunction is expressed as a simple product of single-electron orbitals [2] : 

𝛹𝑒𝑙(𝑟1𝑟2. . . 𝑟𝑁) = ∏ 𝛹𝑖(𝑟𝑖) = 𝛹1(𝑟1)𝛹2(𝑟2). . . 𝛹𝑁(𝑟𝑁)

𝑖

 

…(2.3) 
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leading to an expression for the total electronic energy as a sum over one-electron energies: 

𝐸𝑒𝑙 = ∑ 𝐸𝑖

𝑖

= ⟨𝛹𝑒𝑙|𝐻|𝛹𝑒𝑙⟩

= ∫. . . ∫ 𝛹1
∗ (𝑟1). . . 𝛹𝑁

∗ (𝑟𝑁)[𝑇 + 𝑈𝑒𝑖]𝛹1(𝑟1). . . 𝛹𝑁(𝑟𝑁)𝑑𝑟1. . . 𝑑𝑟𝑁

+
1

2
∑ ∑ ∫. . . ∫ 𝛹𝑖

∗ (𝑟𝑖)𝛹𝑗
∗ (𝑟𝑗)

𝑗≠𝑖

[
𝑒2

4𝜋𝜀0𝑟𝑖𝑗
] 𝛹𝑖(𝑟𝑖)𝛹𝑗(𝑟𝑗)𝑑𝑟𝑖𝑑𝑟𝑗

𝑖

 

  …(2.4) 

The Coulomb interaction contributes a classical term involving pairwise electron 

repulsion, often expressed using the Hartree potential. By assuming wavefunction 

normalization, the Coulomb energy can be simplified and represented via the Hartree 

potential as 

𝑊𝐻(𝑟𝑖) =
1

2
∑ ∫

𝑒2

4𝜋𝜀0

|𝛹𝑗(𝑟𝑗)|
2

𝑟𝑖𝑗
𝑑𝑟𝑗

𝑗≠𝑖

 

…(2.5) 

This transforms the many-electron Schrödinger equation into a set of decoupled one-

electron equations of the form 

[−
ħ2

2𝑚
𝛻𝑖

2 + ∑ 𝑈𝑒𝑖(|𝑅𝛼 − 𝑟𝑖|)

𝛼

+ 𝑊𝐻(𝑟𝑖)] 𝛹𝑖 = 𝐸𝑖𝛹𝑖 

…(2.6) 

However, the Hartree approach does not satisfy the antisymmetry requirement of fermionic 

wavefunctions. The HF method resolves this by constructing the wavefunction as a Slater 

determinant, a linear combination of anti-symmetrized products of single-particle orbitals 

[4]: 

𝛹𝑒𝑙(𝑟1𝑟2. . . 𝑟𝑁) =
1

√𝑁!
∑(−1)𝑃

𝑃

𝑃𝛹1
(𝑟1)𝛹2(𝑟2). . . 𝛹𝑁(𝑟𝑁), 

…(2.7) 

and the electronic energy can be written as, 
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𝐸𝑒𝑙 = ⟨𝛹𝑒𝑙|𝐻|𝛹𝑒𝑙⟩ = ∫[𝑇 + 𝑈𝑒𝑒 + 𝑈𝑒𝑖]𝑛(𝑟)𝑑𝑟 

…(2.8) 

where, P is the permutation operator over electron indices, and (−1)𝑃 ensures 

antisymmetry under exchange. The term 𝑛(𝑟)𝑑𝑟 represents the elemental probability of 

finding any electron in the volume element 𝑑𝑟. Despite their significant improvements, 

both Hartree and HF theories still rely on the full many-electron wavefunction and 

inherently neglect dynamic electron correlation, which limits their predictive accuracy for 

many systems. 

These limitations motivated the development of alternative theoretical frameworks that 

would avoid the need for the many-body wavefunction altogether. One such approach 

focused on the electron density 𝑛(𝑟), a function of only three spatial variables, regardless 

of the number of electrons. This shift was motivated by the empirical observation that 

ground-state properties of matter, such as total energy and molecular geometry, correlate 

more directly with the spatial distribution of charge than with the full quantum state. The 

idea of describing the many-body system entirely through its electron density laid the 

conceptual groundwork for the advent of density-based theories. 

2.1.2 Thomas-Fermi model 

In response to the formidable challenges posed by the full many-body Schrödinger 

equation, the Thomas-Fermi (TF) model emerged in the late 1920s as the first theoretical 

framework to describe electronic systems solely in terms of the electron density 𝜌(𝑟) [5,6]. 

Independently proposed by L.H. Thomas and E. Fermi in 1927 and 1928, respectively, the 

TF model represented a fundamental shift from wavefunction-based methods to a density-

based perspective. The central idea was to express the total energy of an atom as a 

functional of the spatially varying electron density, thereby reducing the dimensionality of 

the system. The TF energy functional comprised three main contributions: the kinetic 

energy of a homogeneous electron gas (approximated locally), the interaction of electrons 

with the external potential (typically the nuclear Coulomb attraction), and the classical 

electrostatic repulsion between the continuous electron charge distributions. Assuming 

uncorrelated electron motion, Thomas and Fermi approximated the kinetic energy using a 



Theoretical background                 Chapter 2                                                                                                   

22 
 

local expression derived from the free-electron gas, known as the Thomas-Fermi kinetic 

energy functional, TTF[n]. 

In 1930, Dirac extended this model by introducing an additional term to account 

for exchange effects, based on the exchange energy density of a homogeneous electron gas 

[7]. He showed that even in inhomogeneous systems, such approximations could yield 

reasonably accurate results. Despite these early successes, the Thomas-Fermi model had 

significant limitations. It lacked essential quantum mechanical features such as shell 

structure, failed to include proper exchange and correlation effects beyond Dirac’s 

correction, and provided only a crude representation of the kinetic energy. Consequently, 

it could not reliably predict many of the properties of atoms and molecules, particularly 

those sensitive to the detailed electronic structure. Nevertheless, the TF model introduced 

a transformative concept: that the electron density, not the many-electron wavefunction, 

could serve as the fundamental variable in the theoretical description of electronic systems. 

This conceptual innovation established the groundwork for the development of density 

functional theory (DFT), in which more sophisticated functionals aim to systematically 

improve upon the Thomas-Fermi approximation while retaining its essential density-based 

formulation. 

2.1.3 Theorems of Hohenberg and Kohn 

The modern theoretical foundation of DFT was laid in 1964 by Pierre Hohenberg and 

Walter Kohn, who formalized the groundbreaking idea that all ground-state properties of 

an interacting electronic system are uniquely determined by its electron density 𝑛(𝑟) [8]. 

Their work culminated in two seminal theorems that extended and generalized the early 

density-based approaches proposed by Thomas, Fermi, and Dirac [5–7], establishing 

electron density as the fundamental variable in electronic structure theory. 

For practical and general applications, the electron-ion interaction term 𝑈𝑒𝑖 in the many-

body Hamiltonian [Equation (2.2)], is replaced with a more general external potential 𝑉𝑒𝑥𝑡, 

which includes the Coulomb potential of point nuclei or any other external field. The 

electronic Schrödinger equation is then rewritten as: 

[𝑇 + 𝑈𝑒𝑒 + 𝑉𝑒𝑥𝑡]𝛹𝑒𝑙 = 𝐸𝑒𝑙𝛹𝑒𝑙 

…(2.9) 
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The first Hohenberg-Kohn theorem asserts that, for a system of interacting 

electrons in a non-degenerate ground state, the external potential 𝑉𝑒𝑥𝑡(𝑟) is uniquely 

determined, up to a constant, by the ground-state electron density 𝑛(𝑟). This implies that 

the full Hamiltonian, wavefunction, and all observable quantities of the system are 

uniquely defined by the ground-state density alone. Hence, the complex many-electron 

wavefunction can, in principle, be replaced by the much simpler three-dimensional 

function 𝑛(𝑟), without loss of physical information. 

The second Hohenberg-Kohn theorem establishes a variational principle for the energy as 

a functional of the electron density. It states that there exists a universal functional 𝐹[𝑛] 

such that the ground-state energy of any interacting electron system is obtained by 

minimizing this functional with respect to 𝑛(𝑟), subject to the constraint that the total 

number of electrons is conserved: 

𝐸𝑒𝑙 = ⟨𝛹𝑒𝑙|𝐻|𝛹𝑒𝑙⟩ = 𝐹[𝑛] + ∫ 𝑉𝑒𝑥𝑡𝑛(𝑟)𝑑𝑟, 

…(2.10) 

here, 𝐹[𝑛] is a universal functional, independent of the external potential, encompassing 

the kinetic energy and electron-electron interaction: 

𝐹[𝑛] = ⟨𝛹𝑒𝑙|𝑇|𝛹𝑒𝑙⟩ + ⟨𝛹𝑒𝑙|𝑈𝑒𝑒|𝛹𝑒𝑙⟩ = 𝑇[𝑛] + 𝑈𝑒𝑒[𝑛] 

…(2.11) 

Although the Hohenberg-Kohn theorems rigorously establish the existence and variational 

minimization of such a functional, they do not provide an explicit form for 𝐹[𝑛], limiting 

the immediate practical utility of the theory. Nevertheless, this foundational framework 

revolutionized the way electronic structure problems are conceptualized, shifting the focus 

from the prohibitively complex many-body wavefunction to the much more manageable 

electron density. This paradigm shift set the stage for the subsequent development of 

practical and accurate density-functional methods. 

2.1.4 Kohn-Sham equation 

To render density functional theory computationally tractable while preserving accuracy, 

Walter Kohn and Lu Jeu Sham proposed a reformulation in 1965 that introduced an 
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auxiliary system of non-interacting electrons yielding the same ground-state density as the 

real, interacting system [9]. This approach, known as the Kohn-Sham (KS) scheme, 

enabled the exact treatment of the kinetic energy of non-interacting electrons and isolated 

the unknown many-body contributions into a single term: the exchange-correlation energy 

functional. 

The total electronic energy in KS DFT is expressed as: 

𝐸𝑒𝑙[𝑛] = 𝑇0[𝑛] + 𝐸𝑥𝑐[𝑛] + 𝑊𝐻[𝑛] + ∫ 𝑉𝑒𝑥𝑡𝑛(𝑟)𝑑𝑟 

…(2.12) 

here, 𝑇0[𝑛] is the kinetic energy of the non-interacting reference system, 𝑊𝐻[𝑛] is the 

classical electrostatic (Hartree) energy, 𝐸𝑥𝑐[𝑛] is the exchange-correlation energy 

capturing all many-body quantum effects beyond the Hartree approximation. 

Applying the variational principle to this functional, subject to particle number 

conservation, yields a set of single-particle Schrödinger-like equations known as the KS 

equations: 

(−
ħ2

2𝑚
𝛻𝑖

2 + 𝑣𝐾𝑆(𝑟)) 𝛹𝑖(𝑟) = 𝐸𝑖𝛹𝑖(𝑟) 

…(2.13) 

where the effective KS potential 𝑣𝐾𝑆(𝑟) is given by: 

𝑣𝐾𝑆(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑥𝑐(𝑟) 

…(2.14) 

and the exchange-correlation potential is defined as the functional derivative: 

𝑉𝑥𝑐(𝑟) =
𝛿𝐸𝑥𝑐(𝑛)

𝛿𝑛(𝑟)
 

…(2.15) 

The KS equations are solved self-consistently: starting with an initial guess for the electron 

density, the KS potential is constructed, the equations are solved for the orbitals 𝛹𝑖(𝑟), and 



Chapter 2                                                                                                  Theoretical background 

25 
 

a new density is computed. This procedure is iterated until convergence is achieved, known 

as the self-consistent field (SCF) method. 

The KS formulation transformed DFT into a quantitatively reliable and computationally 

efficient method. By allowing systematic approximations for 𝐸𝑥𝑐(𝑛), such as the local 

density approximation (LDA) and generalized gradient approximation (GGA), the KS 

framework has become the most widely used approach in electronic structure calculations 

across condensed matter physics, quantum chemistry, and materials science. 

2.2 The concept of pseudopotential 

In practical electronic structure calculations, solving the KS equations directly for all 

electrons in an atom, including both core and valence electrons, poses significant 

computational challenges. Core states are localized in the vicinity of the nucleus, where 

valence states oscillate in order to maintain orthogonality with the core functions. This 

results in a large kinetic energy (kinetic energy pressure) for the valence electrons in the 

core region, which roughly cancels the large potential energy from the Coulomb interaction 

(this can nicely be seen in the work by Schwarz et al. [10]). The core electrons, which are 

tightly bound and localized close to the nucleus, exhibit rapid oscillations in their 

wavefunctions due to the strong Coulomb potential. These oscillations necessitate the use 

of very fine spatial grids or large plane-wave basis sets to accurately describe the 

wavefunction, significantly increasing the computational cost.  

However, the core electrons are chemically inert and do not participate directly in bonding 

or chemical reactivity. It is primarily the valence electrons that determine the electronic, 

structural, and chemical properties of materials. Capitalizing on this observation, the 

pseudopotential approximation was introduced by G. A. Hellmann as a means to remove 

the explicit treatment of core electrons while retaining their influence on the valence 

electrons [11]. Initially, he termed the pseudopotentials as ‘Zusatzpotential’. 

The basic idea is to replace the all-electron potential (which includes the singular Coulomb 

potential near the nucleus) with a smoothed, effective potential, called the pseudopotential, 

that reproduces the correct valence electron behaviour outside a chosen core cutoff radius 

rc (as depicted in Fig. 2.1). In this region, the pseudopotential is constructed such that the 

valence pseudo-wavefunction matches the true all-electron wavefunction in both value and 

derivative, ensuring norm conservation and transferability. 
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Figure 2.1: Comparison between the wavefunction in the true Coulomb potential of the 

nucleus (blue) and that in the corresponding pseudopotential (red). Both the wavefunctions 

and the potentials coincide beyond a specific cutoff radius rc. (Image taken from the 

Quantum Espresso Hands-on Tutorial file by N. T. Hung, A. R. T. Nugraha and R. Saito 

group from Tohoku University, Sendai, Japan; Image source: 

https://flex.phys.tohoku.ac.jp/QE/workshop_QE_2016/DFT-hands-on-nguyen.pdf). 

Mathematically, the KS equation for valence electrons in the pseudopotential approach is 

written as: 

(−
ħ2

2𝑚
𝛻𝑖

2 + 𝑉𝑝𝑠𝑒𝑢𝑑𝑜(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑥𝑐(𝑟)) 𝛹𝑖(𝑟) = 𝐸𝑖𝛹𝑖(𝑟) 

…(2.16) 
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where V𝑝𝑠𝑒𝑢𝑑𝑜(𝑟) replaces the bare nuclear Coulomb potential and the effects of the core 

electrons. It is usually non-local, meaning it depends not only on the position but also on 

the angular momentum of the valence electron. 

There are various types of pseudopotentials used in practice: 

➢ Norm-conserving pseudopotentials [12,13]: maintain the same norm (integrated 

charge) of the pseudo and all-electron wavefunctions inside the core. 

➢ Ultrasoft pseudopotentials [14]: relax the norm-conservation condition, allowing 

for even softer potentials and lower plane-wave cutoffs. 

➢ Projector Augmented-Wave (PAW) method [15,16]: combines the efficiency of 

pseudopotentials with the accuracy of all-electron methods by reconstructing the 

full wavefunction from a pseudo-wavefunction. 

 

2.3 Many-body perturbation theory (MBPT): an approach beyond DFT 

DFT, particularly within the KS framework, has become an indispensable tool for 

electronic structure calculations, yielding high-quality results across a wide range of 

systems, from periodic crystals to isolated molecules and nanostructures [17]. However, 

standard DFT is fundamentally a ground-state theory, limiting its ability to accurately 

describe phenomena involving electronic excitations and excited states [18]. Although KS 

eigenvalues are often interpreted as approximate quasiparticle (QP) energies, this 

interpretation is not formally justified. This limitation is especially evident in the 

underestimation of band gaps in semiconductors and insulators, sometimes by several 

electron volts [19]. 

To overcome these limitations and access excited-state properties with greater accuracy, 

Many-Body Perturbation Theory (MBPT) provides a more rigorous theoretical framework. 

It does so by introducing the concept of quasiparticles, renormalized electronic excitations 

that account for many-body interactions. MBPT has proven capable of producing band 

structures and band gaps in good agreement with experimental data [19]. The first 

successful QP calculations were performed in the mid-1980s [20], while the incorporation 

of many-body effects in ab initio calculations to study the optical properties of 

semiconductors emerged in the 1990s [21,22]. 
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2.3.1 Green’s function with screened Coulomb potential (GW) approach 

MBPT builds upon the exact solution of the many-body Schrödinger equation by 

systematically treating electron-electron interactions as perturbations to a non-interacting 

reference system. The central mathematical object in this framework is the single-particle 

Green’s function, which encodes information about electronic excitations and can be used 

to calculate both quasiparticle and optical spectra. A thorough treatment of Green's 

function formalism and many-body techniques in condensed matter physics can be found 

in Refs. [23–25]. In practical implementations such as those used in the Yambo code, the 

starting point for MBPT is the non-interacting system derived from the KS DFT solution 

[26,27]. In this formalism, the single-particle states are labelled as ∣nk⟩, where n is the band 

index and k is a point on the Brillouin Zone (BZ) sampling grid. The non-interacting 

Green's function 𝐺𝑛𝑘
0 (𝜔) is expressed as: 

𝐺𝑛𝑘
0 (𝜔) =

𝑓𝑛𝑘

𝜔 − 𝜀𝑛𝑘 − 𝑖0+
+

1 − 𝑓𝑛𝑘

𝜔 − 𝜀𝑛𝑘 + 𝑖0+
 

…(2.17) 

where 𝑓𝑛𝑘 is the occupation factor and 𝜀𝑛𝑘 are the KS energies. 

The exact Green’s function 𝐺𝑛𝑘(𝜔) is related to 𝐺𝑛𝑘
0 (𝜔) via the Dyson equation: 

𝐺𝑛𝑘(𝜔) = [(𝐺𝑛𝑘
0 (𝜔))

−1

− 𝛴𝑛𝑘(𝜔) + 𝑉𝑛𝑘
𝑥𝑐]

−1

 

…(2.18) 

A key physical distinction between a bare particle and a quasiparticle lies in the screening 

of the particle by polarization of the surrounding electronic medium. To model this effect, 

Yambo employs the GW approximation for the electronic self-energy Σ, where the self-

energy is computed using the non-interacting Green's function G0 and the dynamically 

screened Coulomb interaction W, with ∈ being the dielectric function. 

The GW self-energy is typically decomposed into exchange (x) and correlation (c) parts: 

𝛴𝑛𝑘(𝜔) = 𝛴𝑛𝑘
𝑥 + 𝛴𝑛𝑘

𝑐 (𝜔) 

…(2.19) 
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The exchange part is simply the Fock term of the HF self-energy, and it can be rewritten 

as 

𝛴𝑛𝑘
𝑥 = ⟨𝑛𝑘|𝛴𝑥(𝑟1, 𝑟2)|𝑛𝑘⟩ = − ∑ ∫

𝑑𝑞

(2𝜋)3
∑ 𝑣(𝑞 + 𝐺)

𝐺

|𝜌𝑛𝑚(𝑘, 𝑞, 𝐺)|2

𝐵𝑍

𝑓𝑚(𝑘−𝑞)

𝑚

 

…(2.20) 

where 𝜌𝑛𝑚(𝑘, 𝑞, 𝐺) are the reciprocal lattice vectors, and 𝑣(𝑞 + 𝐺) =
4𝜋

|𝑞+𝐺|2. The 

correlation part of the self-energy is given by 

𝛴𝑛𝑘
𝑐 (𝜔) = ⟨𝑛𝑘|𝛴𝑐(𝑟1, 𝑟2; 𝜔)|𝑛𝑘⟩

= −𝑖 ∑ ∫
𝑑𝑞

(2𝜋)3
∑

4𝜋

|𝑞 + 𝐺|2

𝐺,𝐺ʹ

𝜌𝑛𝑚(𝑘, 𝑞, 𝐺)

𝐵𝑍

𝜌𝑛𝑚(𝑘, 𝑞, 𝐺)𝜌𝑛𝑚
∗ (𝑘, 𝑞, 𝐺ʹ)

𝑚

× ∫ 𝑑𝜔ʹ 𝐺𝑚𝑘−𝑞
0 (𝜔 − 𝜔ʹ) ∈𝐺𝐺ʹ

−1 (𝑞, 𝜔ʹ) 

…(2.21) 

The energy integral entering Equation (2.21) can be solved once the inverse dielectric 

function is known. The equation of motion for ∈−1 follows from that of the reducible 

response function χ [24,25]. The GW approximation for the self-energy is obtained when 

χ is calculated within the random phase approximation (RPA) [28].  

The noninteracting response function is easily calculated in terms of the bare Green’s 

function G0: 

𝜒𝐺𝐺ʹ
0 (𝑞, 𝜔) = 2 ∑

𝑑𝑘

(2𝜋)3
𝜌𝑛ʹ𝑛𝑘

∗ (𝑞, 𝐺)𝜌𝑛ʹ𝑛𝑘(𝑞, 𝐺ʹ)𝑓𝑛𝑘−𝑞(1 − 𝑓𝑛ʹ𝑘)

𝑛𝑛ʹ

× [
1

𝜔 + 𝜀𝑛𝑘−𝑞 − 𝜀𝑛ʹ𝑘 + 𝑖0+
−

1

𝜔 + 𝜀𝑛ʹ𝑘 − 𝜀𝑛𝑘−𝑞 − 𝑖0+
] 

…(2.22) 

As the direct numerical evaluation of ∈−1 over many frequency points is computationally 

expensive, Yambo implements the plasmon-pole approximation (PPA). In this scheme, 

∈−1 is modelled as:  
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∈𝐺𝐺ʹ
−1 (𝑞, 𝜔) ≈ 𝛿𝐺𝐺ʹ + 𝑅𝐺𝐺ʹ(𝑞)[(𝜔−𝛺𝐺𝐺ʹ(𝑞) + 𝑖0+)−1−(𝜔+𝛺𝐺𝐺ʹ(𝑞) − 𝑖0+)−1] 

…(2.23) 

The residues 𝑅𝐺𝐺ʹ and plasmon frequencies 𝛺𝐺𝐺ʹ are determined by fitting the model to 

match the exact dielectric function at ω=0 and ω = iEPPA, with EPPA being a user-defined 

parameter. 

Starting from Equation (2.18), and assuming 𝑓𝑛𝑘 = 0 or 1, we obtain: 

(𝜔 − 𝜀𝑛𝑘)𝐺𝑛𝑘(𝜔) = 1 + [𝛴𝑛𝑘(𝜔) − 𝑉𝑛𝑘
𝑥𝑐]𝐺𝑛𝑘(𝜔) 

…(2.24) 

To proceed, a first-order Taylor expansion of the self-energy around 𝜀𝑛𝑘 is performed: 

𝐺𝑛𝑘(𝜔) = 𝑍𝑛𝑘 [
𝑓𝑛𝑘

𝜔 − 𝐸𝑛𝑘
𝑄𝑃 − 𝑖0+

+
1 − 𝑓𝑛𝑘

𝜔 − 𝐸𝑛𝑘
𝑄𝑃 + 𝑖0+

] 

…(2.25) 

here, the quasiparticle energy 𝐸𝑛𝑘
𝑄𝑃

 is given by: 

𝐸𝑛𝑘
𝑄𝑃 = 𝜀𝑛𝑘 + 𝑍𝑛𝑘[𝛴𝑛𝑘(𝜀𝑛𝑘) − 𝑉𝑛𝑘

𝑥𝑐], 

…(2.26) 

and the renormalization factor 𝑍𝑛𝑘 is: 

𝑍𝑛𝑘 = [|1 −
𝑑𝛴𝑛𝑘(𝜔)

𝑑𝜔
|

𝜔=𝜀𝑛𝑘

]

−1

 

…(2.27) 

Equations (2.26) and (2.27) constitute the core of the quasiparticle approximation in the 

GW framework [28], allowing for the accurate prediction of band structures and electronic 

excitation energies that go significantly beyond standard DFT. 

2.3.2 Bethe-Salpeter equation 

While the GW approximation provides accurate quasiparticle energies by incorporating 

many-body effects beyond standard DFT, it does not account for interactions between 
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excited electrons and the holes they leave behind. These electron-hole interactions are 

particularly important in optical absorption and emission processes, where they give rise 

to excitonic effects that significantly modify the spectrum. To accurately describe such 

phenomena, one must solve the Bethe-Salpeter Equation (BSE), which governs the 

dynamics of electron-hole pairs in an excited state [18,29]. The BSE is derived from the 

equation of motion for the two-particle Green’s function, and it takes the form of an 

effective eigenvalue problem for the excitonic Hamiltonian. The BSE can be written as: 

(𝐸𝑐𝑘 − 𝐸𝑣𝑘)𝐴𝑣𝑐𝑘
𝑆 + ∑ < 𝑣𝑐𝑘|𝐾𝑒ℎ

𝑘𝑣′𝑐′

|𝑣′𝑐′𝑘′ > 𝐴𝑣′𝑐′𝑘′
𝑆 = 𝛺𝑠𝐴𝑣𝑐𝑘

𝑆  

…(2.28) 

where 𝐸𝑐𝑘 and 𝐸𝑣𝑘 are GW quasiparticle energies of conduction and valence bands, 

respectively. 𝐴𝑣𝑐𝑘
𝑆  is the exciton amplitude, 𝛺𝑠 is the exciton eigenvalue (excitation 

energy), and 𝐾𝑒ℎ is the electron-hole interaction kernel, which includes both screened 

Coulomb attraction and exchange repulsion. 

In equation (2.28), the first term represents the independent particle transition energy 

between valence (v) and conduction (c) bands at a given k-point, while the second term 

captures the effects of electron-hole interactions. The interaction kernel 𝐾𝑒ℎ consists of 

two main contributions: 

𝐾𝑒ℎ = 𝐾𝑑𝑖𝑟 + 𝐾𝑒𝑥𝑐 

…(2.29) 

𝐾𝑑𝑖𝑟 is the direct interaction, which describes the screened Coulomb attraction between 

the excited electron and the hole it leaves behind. 𝐾𝑒𝑥𝑐 is the exchange term, which 

accounts for the antisymmetry of the electron-hole wavefunction and is typically derived 

from the unscreened Coulomb interaction. 

The solution of the BSE provides the exciton energies 𝛺𝑠 and the corresponding 

amplitudes 𝐴𝑣𝑐𝑘
𝑆 , which describes the composition of each excitonic state in terms of 

valence-to-conduction transitions across the BZ. These quantities can be used to construct 

the macroscopic dielectric function and compute the optical absorption spectrum. 
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2.4 List of software packages used 

Quantum ESPRESSO: an integrated suite of open-source codes for electronic-structure 

calculations and materials modelling based on DFT, plane waves, and pseudopotentials 

[30,31]. 

YAMBO: a post-processing code for calculating excited-state properties of materials 

using MBPT, particularly within the GW and BSE frameworks [26,27]. 

VESTA: a 3D visualization and modelling software used to construct, analyse, and 

visualize crystal structures, volumetric data, and isosurfaces. It also enables the 

manipulation and assembly of complex layered structures, making it particularly useful for 

heterostructure modelling [32]. 

XCrySDen: a graphical program primarily used to display crystal structures and is 

particularly useful for visualizing the reciprocal lattice and BZ in electronic structure 

calculations [33]. 

Bader: a tool used to perform Bader charge analysis, enabling partitioning of charge 

density among atoms based on zero-flux surfaces in the electron density [34]. 
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