Bibliography

- [1] Acerbi, C., Nordio, C., and Sirtori, C., Expected shortfall as a tool for financial risk management. arXiv:cond-mat/0102304v1 [cond-mat.stat-mech], 16 Feb, 2001.
- [2] Acerbi, C. and Tasche, D. On the coherence of expected shortfall. *Journal of Banking and Finance*, **26**:1487–1503, 2002.
- [3] Alemany, R., Bolancé, C., and Guillé, M. A nonparametric approach to calculating value-at-risk. *Insurance: Mathematics and Economics*, **52**:255–262, 2013.
- [4] Artzner, P., Delbaen, F., Eber, J. M., and Heath, D. Thinking coherently. *Risk*, **10**:68–71, 1997.
- [5] Artzner, P., Delbaen, F., Eber, J. M., and Heath, D. Coherent measures of risk. *Mathematical Finance*, **9**(3):203–228, 1999.
- [6] Athma, P. and Mamatha, B. ETFS vs index funds in India: growth and progress. A Journal of Economics and Management, 1:54–65, 2012.
- [7] Azzalini, A. A note on the estimation of a distribution function and quantiles by a kernel method. *Biometrika*, **68**(1):326–328, 1981.
- [8] Azzalini, A. A class of distributions which includes the normal ones. *Scandinavian Journal of Statistics*, **12**:171–178, 1985.
- [9] Azzalini, A. and Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. *Journal of the Royal Statistical Society:Series B*, **65**(2):367–389, 2003.
- [10] Balkema, A. A. and de Haan, L. Residual life time at great age. The Annals of Probability, 2(5):792–804, 1974.
- [11] Barndorff-Neilsen, O. E. Normal inverse gaussian distributions and the modelling of stock returns. *Scandinavian Journal of Statistics*, **24**(1):1–23, 1997.

- [12] Bernardi, M. Risk measures for skew normal mixtures. MEMOTEF, Working Paper, Sapienza University of Rome, 2012.
- [13] Biswas, S. and Dutta, S. Assessing the market risk of Indian index funds. *Global Business Review*, **16**(3):511–523, 2015.
- [14] Biswas, S. and Dutta, S. Comparing market risk of Indian balanced, small & mid cap and large cap funds. *IIMB Management Review*. Communicated.
- [15] Blattberg, R. and Gonnedes, N. A comparison of stable and student distribution as dtatistical models for stock prices. *The Journal of Business*, **47**(2):244–280, 1974.
- [16] Bowman, A., Hall, P., and Prvan, T. Bandwidth selection for the smoothing of distribution functions. *Biometrika*, 85:799–808, 1998.
- [17] Brazauskas, V., Jones, B., Madan, L., and Zitikis, R. Estimating conditional tail expectation with actuarial application in view. *Journal of Statistical Planning and Inference*, 138:3590–3604, 2008.
- [18] Broda, S. A. and Paolella, M. S. Expected shortfall for distributions in finance. *Statistical Tools for Finance and Insurance*, 57–99, 2011.
- [19] Bryant, L. L. and Liu, H. C. Management structure and the risk of mutual fund managers. Journal of Finance and Accountancy, 2:77–88, 2009.
- [20] Bryant, L. L. and Liu, H. C. Mutual fund industry management structure, risk and the impacts to shareholders. Global Finance Journal, 22:101–115, 2011.
- [21] Charpentier, A. and Oulidi, A. Beta kernel quantile estimators of heavy-tailed loss distribution. Statistics and Computing, 20:35–55, 2010.
- [22] Chen, S. X. Nonparametric estimation of expected shortfall. *Journal of Financial Econometrics*, 6:87–107, 2008.
- [23] Chen, S. X. and Tang, C. Y. Nonparametric inference of value-at-risk for dependent financial returns. *Journal of Financial Economics*, 3(2):227–255, 2005.
- [24] Cohen, S. S. The Challenge of Derivatives. Fordham Law Review, 63(6), 1995.
- [25] Cont, R., Potters, M., and Bouchaud, J-P. Scaling in stock market data: stable laws and beyond. arXiv:condmat/9705087v1 [cond-mat.stat-mech], 9 May, 1997.

- [26] Cont, R. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance. 1:223–236, 2001.
- [27] Danielsson, J. and De Vries, C. G. Value-at-risk and extreme returns. Annals of Economics and Statistics, 60:239–270, 2000.
- [28] Das, S. K. Semi urban investors attitude and preferences in mutual fund investment: a case study of Nagaon districts of Assam. *International Journal of Marketing, Financial Services & Management Research*, 1(9):70–91, 2012.
- [29] Deb, S. G. Performance of Indian equity mutual funds vis-a-vis their style benchmarks. The ICFAI Journal of Applied Finance, 14(1):49–81, 2008.
- [30] Delbaen, F. Coherent risk measures on general probability spaces. In Sandmann, K., and Schönbucher, P. J., editors, Advances in Finance and Stochastics, pages 1-37, ISBN:978-3-662-04790-3. Springer Berlin Heidelberg, 2002.
- [31] Dhanalakshmi, K. A Comparative analysis on performance of SBI and HDFC equity, balanced and gilt mutual fund. Vidyaniketan Journal of Management and Research, 1(2):107–117, 2013.
- [32] Dowd, K. Estimating VaR with order statistics. *Journal of Derivatives*, **8**(3):23–30, 2001.
- [33] Drees, H. Extreme quantile estimation for dependent data, with application to finance. Bernoulli, 9(1):617–657, 2003.
- [34] Dutta, S. Local smoothing for kernel distribution function estimation. *Communications in Statistics-Simulation and Computation*, 44(4):878–891, 2015.
- [35] Dutta, S. and Biswas, S. Extreme quantile estimation based on financial time series. Communications in Statistics-Simulation and Computation, 46(6), 2017.
- [36] Dutta, S. and Biswas, S. Nonparametric estimation of 100(1-p) percent expected shortfall: $p \to 0$ as sample size is increased. Communications in Statistics-Simulation and Computation, 2016, DOI:10.1080/03610918.2016.1152370.
- [37] Dutta, S. Some asymptotic properties of kernel based distribution function estimators. Working Paper, 2017.
- [38] Eberlein, E., Keller, U., and Prause, K. New insights into smile, mispricing and value at risk: the hyperbolic model. *The Journal of Business*, **71**:371–405, 1998.

- [39] Embrechts, P., Klüppelberg, K., and Mikosch, T. Modeling Extremal Events for Insurance and Finance. Springer, Berlin, 1997.
- [40] Engle, R. F. and Granger, C. W. J. Co-integration and error correction: representation, estimation and testing. *Econometrica*, **55**(2):251–276, 1987.
- [41] Fermanian, J. D. and Scaillet, O. Sensitivity analysis of VaR and expected shortfall for portfolios under netting agreements. *Journal of Banking and Finance*, 29:927–958, 2005.
- [42] Fernandes, K. Evaluating Index Fund Implementation in India, Retrieved on March 21 2013, from http://www.nseindia.com/content/press/jul2003b.pdf, 2003.
- [43] Fristedt, B. and Gray, L. A Modern Approach to Probability Theory. Birkhäuser, 1997.
- [44] Gajera, A., Vyas, P., and Patoliya, P. Risk and return analysis of BSE small, medium and large capitalization indices. *Scholedge International Journal of Management and Development*, **2**(4):32–37, 2015.
- [45] Gencay, R. and Selcuk, F. Extreme value theory and value-at-risk: relative performance in emerging markets. *International Journal of Forecast*, 20:287–303, 2000.
- [46] Garmen, M. Taking VaR to pieces. Risk, 10(10):70-71, 1997.
- [47] Glasserman, P. Monte Carlo Methods in Financial Engineering. Springer-Verlag New York, Inc., 2004.
- [48] Gouriéroux, C., Scaillet, O., and Laurent, J. P. Sentivity analysis of values at risk. Journal of Empirical Finance, 7:225–245, 2000.
- [49] Gringlatt, M. and Titman, S. The persistence of mutual fund performance. *The Journal of Finance*, **47**(5):1977–1984, 1992.
- [50] Gurny, P. Quantification of the equity and currency risk within value at risk methodology. *Modelling and Management of Financial Risks*, 26–35, 2008.
- [51] Hallerbach, W. G. Decomposing portfolio value at risk: a general analysis. Tinbergen Institute Discussion Paper, TI 99–034/2, 1999.
- [52] Harrell, F. E. and Davis, C. E. A new distribution-free quantile estimator, *Biometrika*, 69(3):635–640, 1982.

- [53] Hill, J.B. Expected shortfall estimation and gaussian inference for infinite variance time series. 2013.
- [54] Historical Index data. National Stock Exchange, Retrieved on April 5 2015, from http://www.nseindia.com/products/content/equities/indices/historical_index_data.htm, 2015.
- [55] Hong, H. and Stein, J.C. A unified theory of underreaction, momentum trading, and overreaction in asset markets. *The Journal of Finance*, **4**(6):2143–2183, 1999.
- [56] Huisman, R., Koedijk, K. G., Kool, C. J. M., and Palm, F. Tail-index estimates in small samples. *Journal of Business and Economic Statistics*, **19**(1):208–216, 2001.
- [57] Hull, J. C. Risk Management and Financial Institutions. John Wiley & Sons, Inc., Hoboken, New Jersey, 4th edition, 2015.
- [58] Hyndman, R. J. and Fan, Y. Samples quantiles in statistical packages. *The American Statistician*, **50**(4):361–365, 1996.
- [59] Index Archive Data. *Bombay Stock Exchange*, Retrieved on April 5 2015, from www.bseindia.com/indices/IndexArchiveData.aspx, 2015.
- [60] Inui, K. and Kijima, M. On the significance of expected shortfall as a coherent risk measure. *Journal of Banking and Finance*, **29**:853–864, 2005.
- [61] Jacque, L. L. Global Derivative Debacles: From Theory to Malpractice. World Scientific, ISBN: 978-981-4338-45-5, 2010.
- [62] Johnson, N. L. System of frequency curves generated by methods of translation. Biometrika, 36:149–176, 1949.
- [63] Jones, M. C. and Faddy, M. J. A skew extension of the t-distribution with applications.

 Journal of the Royal Statistical Society: Series B, 65(1):159–174, 2003.
- [64] Jorion, P. Big Bets Gone Bad:Derivatives and Bankruptcy in Orange County. Academic Press, 1995.
- [65] Jorion, P. Value-at-Risk. New York: MacGraw-Hill, 3rd edition, 2006.
- [66] Karrupaswamy, R. and Vanaja, V. A study on the performance of selected large cap and small and mid cap mutual fund schemes in India. The International Journal of Management, 2(3):7–13, 2013.

- [67] Keswani, S. Effect of fund size on the performance of balanced mutual funds an empirical study in Indian context. *International Journal of Multidisciplinary Research*, 1(4):18– 38, 2011.
- [68] Lahiri, S. N. and Sun, S. A Berry-Esseen theorem for sample quantiles under weak dependence¹, The Annals of Applied Probability, **19**(1):108–126, 2009.
- [69] Large Cap Funds. *The Economic Times*. Retrieved on 23 May 2016 from http://economictimes.indiatimes.com/definition/large-cap-funds, 2016.
- [70] Lowenstein, R. When Genius Failed: The Rise and Fall of Long-Term Capital Management. Random House Trade Paperback Edition, 2001.
- [71] Magadia, J. Confidence interval for expected shortfall using bootstrap methods, 4th Annual BSP-UP Professional Chair Lectures, 21–23 February, Bangko Sentral ng Pilipinas, Malate, Manila, 2011.
- [72] Malik, N. S. and Mittal, S.K. Performance evaluation of mutual funds in India-A risk-adjusted return analysis, *Amity Management Analyst*, **2**(2):90–104, 2007.
- [73] Malkiel, B. G. The efficient market hypothesis and its critics. *Journal of Economic Perspectives*, **17**(1):59–82, 2003.
- [74] Mandelbrot, B. The variation of certain speculative prices. *The Journal of Business*, **36**(4):392–417, 1963.
- [75] Matthys, G. and Beirlant, J. Estimating the extreme value index and high quantiles with exponential regression models. *Statistica Sinica*, **13**:853–880, 2003.
- [76] McMenamin, J. Financial Management: An Introduction. Routledge, 1999.
- [77] McNeil, A. J. Estimating the tails of loss severity distributions using extreme value theory. In: 28th International ASTIN Colloquium, 1997.
- [78] McNeil, A. J., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton, 2005.
- [79] Merlevède, F., Peligrad, M., and Rio, E. A bernstein type inequality and moderate deviations for weakly dependent sequences. *High Dimensional Probability V*, 273–292, 2009.

- [80] Modarres, R., Nayak, T. K., and Gastwirth, J. L. Estimation of upper quantiles under model and parameter uncertainty. Computational Statistics and Data Analysis, 28:529– 554, 2002.
- [81] Muruganandan, S. and Prasad, S. Performance persistence of Indian fund of mutual funds: with special reference to bull and bear market period. *IOSR Journal of Eco*nomics and Finance, 18–27, 2010.
- [82] Nav History Report. Association of Mutual Funds in India, Retrieved on April 5 2015, from http://www.amfiindia.com/NavHistoryReport_Frm.aspx, 2015.
- [83] Prause, K. The generalized hyperbolic model. PhD Dissertation, University of Freiburg, 1998.
- [84] Peachey, A. N. Great Financial Disasters of Our Time. Intersentia, 3rd Revised edition, 2011.
- [85] Peracchi, F. and Tanase, A. V. On estimating the conditional expected shortfall. *Applied Stochastic Models in Business and Industry*, **24**:471–493, 2008.
- [86] Rai, R. S., Raman, T. V., & Shreekanth, G. Comparing returns between 'Large' and 'Mid & Small' cap equity mutual funds in India, *Indian Journal of Applied Research*, 4(12), 2014.
- [87] Rathnamani, V. Investor's preferences towards mutual fund industry in Trichy. *Journal of Bussiness and Management*, **6**(6):48–55, 2013.
- [88] Rosenblatt, M. A central limit theorem and a strong mixing condition. *Proceedings of the National Academy of Sciences*, **42**:43–47, 1956.
- [89] Sarkar, S. S., Dutta, S., and Dutta, P. A review of Indian index funds. *Global Business Review*, **14**(1):89–98, 2013.
- [90] Scaillet, O. The origin and development of VaR, in modern risk management: a history. 15th anniversary of Risk Magazine, Risk Publications, 151–158, 2003.
- [91] Scaillet, O. Nonparametric estimation and sensitivity analysis of expected shortfall. Mathematical Finance, 14(1):115–129, 2004.
- [92] Serfling, R. Approximation Theorems of Mathematical Statistics. New York: Wiley, 1980.
- [93] Sfakianakis, M. E. and Verginis, D. G. A new family of nonparametric quantile estimators. *Communications in Statistics Simulation and Computation*, **37**:337–345, 2008.

- [94] Sharpe, W. The Sharpe ratio. Journal of Portfolio Management Fall, 49–58, 1994.
- [95] Sheather, S. J. and Marron, J. S. Kernel quantile estimators. *Journal of the American Statistical Association*, 85:410 416, 1990.
- [96] Simonato, J.-G. The performance of Johnson distributions for computing value at risk and expected shortfall. *The Journal of Derivatives*, **19**:7–24, 2011.
- [97] Singh, S. K. Invest in Mid and Small-Cap Funds for High Returns, Retrieved from http://articles.economictimes.indiatimes.com, June 17, 2013.
- [98] So, M. K. P. and Wong, C. M. Estimation of multiperiod expected shortfall and median shortfall for risk management. *Quantitative Finance*, **12**(5):739–754, 2012.
- [99] Sun, S. X. The Bahadur representation for sample quantiles under weak dependence. Statistics and Probability Letters, **75**(12):1238–1244, 2006.
- [100] Swanepoel, J. W. H. and Graan, F. C. V. A new kernel distribution function estimator based on a non-parametric transformation of the data. *Scandinavian Journal of Statistics*, 32(4):551–562, 2005.
- [101] Tashe, D. Risk contributions and performance measurement. Working Paper, Munich University of Technology, 2000.
- [102] Treynor, J. L., Priest, W. W., Fisher, L., and Higgins, C. A. Using portfolio composition To estimate risk. Financial Analysts Journal, 24(5):93–100, 1968.
- [103] Van Der Vaart, A. W. Asymptotic Statistics. Cambridge University Press, 1998.
- [104] Wang, X. J., Hu, S. H., and Yang, W. Z. The Bahadur representation for sample quantiles under strongly mixing sequence. *Journal of Statistical Planning and Inference*, 141(2):655–662, 2011.
- [105] Wilhelmsson, A., Value at risk with time varying variance, skewness and kurtosis-the NIG-ACD model. The Econometrics Journal, 12:82–104, 2009.
- [106] Wu, W. B. On The Bahadur representation of sample quantiles for dependent sequences. *The Annals of Statistics*, **33**(4):1934–1963, 2005.
- [107] Yamai, Y. and Yoshiba, T. Comparative analysis of expected shortfall and value-atrisk: their estimation error, decomposition, and optimization. *Monetary and Economic* Studies, 87–122, 2002.

- [108] Yuan, H. Calculation of expected shortfall via filtered historical simulation. Project report, Uppsala University, June 2011.
- [109] Zhu, D. and Galbraith, J. W. Forecasting expected shortfall with a generalized asymmetric Student-t distribution. 2009 CIRANO Working Paper, 2009.