
Chapter 1

Introduction

1.1 Motivation

A major concern for the regulators and the owners of financial institutions is the market risk

of a portfolio of assets and the adequacy of capital to meet such risk (see [27]). Market risk

is the risk of losses (negative returns) in positions arising from the movements in market

prices of assets in a portfolio. Orange County is a county in the U. S. state of California. In

December 1994, Orange County stunned the markets by announcing that its investment pool

had suffered a loss of $1.7 billion of Orange County’s $7.4 billion investment portfolio (see

[64], [61]). This was the largest loss ever recorded by a local government investment pool, and

led to the bankruptcy of the county shortly thereafter. The bankruptcy was due to Robert

L. Citron’s investment strategies, which seemed to be an effort to earn high incomes for the

county, without raising taxes, through risky, leveraged positions in bonds (see [64], [61]). The

investment strategy worked excellently until 1994. However a series of interest rate hikes

by the Federal Reserve Bank caused severe losses to the pool. In 1994, Procter & Gamble

reported that it had lost $157 million before taxes ($102 million after taxes) as a result of

derivatives transactions. Procter & Gamble filed suit against Bankers Trust in October 1994

after suffering losses from a Bankers Trust interest-rate swap with the Bank, amended its

complaint to include a Deutschemark swap with Bankers Trust (See [24]). NatWest lost an

estimated 50 million pound in options trading in 1996 (See [76]). Sumitomo Corporation

reported in 1996 that it had lost $1.8 billion over a ten year period as a result of unauthorised

copper trading by its senior trader, Yasuo Hamanaka (See [84]). Baring Bank collapsed

in 1995 after suffering losses of $1.3 billion resulting from poor speculative investments,

primarily in futures contracts, conducted by an employee named Nick Leeson working at the

Singapore office of the company. In 1994, John Meriwether, the famed Salomon Brothers

bond trader, founded a hedge fund called Long-Term Capital Management (LTCM) (see

[70]). Meriwether assembled an all-star team of traders and academics in an attempt to
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create a fund that would profit from the combination of the academics’ quantitative models

and the traders’ market judgement and execution capabilities. Other members were Nobel-

prize winning economists Myron Scholes and Robert Merton, as well as David Mullins, a

former vice-chairman of the Federal Reserve Board who had quit his job to become a partner

at LTCM. Sophisticated investors, including many large investment banks, flocked to the

fund, investing $1.3 billion at inception. But four years later, at the end of September 1998,

the fund had lost substantial amounts of the investors’ equity capital and was teetering on

the brink of default. The main cause of LTCM’s debacle was “flight to liquidity” across the

global fixed income markets and subsequent poor risk management by the fund managers.

Well publicized losses incurred by several institutions such as Orange County, Procter and

Gamble and NatWest, through inappropriate derivatives pricing and management, as well as

fraudulent cases such as Barings Bank and Sumitomo, have brought risk management and

regulation of financial institutions to the forefront of policy making and public discussions

(see [27]). In a financial market, a risk measure is used to determine the amount of capital

to be kept in reserve. The purpose of this reserve is to make the risks taken by financial

institutions, such as banks and insurance companies, acceptable to the regulator. Some of

the well known risk measures of market risk are: Value-at-Risk(VaR), Median Shortfall(MS)

and Expected Shortfall(ES).

1.2 Risk measures

A risk measure is a mapping that assigns real numbers to the possible outcomes of a random

financial quantity, such as an insurance claim or loss of a portfolio (see [17]). Loss due to

price fluctuations or insurance claim size are usually represented by random variables. Let

ψ denote the set of real valued random variables on a probability space (Ω, F , P).

Definition 1.2.1. (Delbaen [30]) A risk measure ρ is a mapping from ψ to R satisfying

certain properties, viz.

1. X ≥ 0⇒ ρ(X) ≤ 0.

2. X ≥ Y ⇒ ρ(X) ≤ ρ(Y ), X, Y ∈ ψ.

3. ρ(λX) = λρ(X), ∀λ ≥ 0, X ∈ ψ.

4. ρ(X + k) = ρ(X)− k, ∀k ∈ R, X ∈ ψ.

The term “coherent” risk measure is reserved for risk measures that satisfies one more

additional property, viz. subadditivity. Artzner et al. introduced the concept of coherent

risk measure (see [4], [5]).
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Definition 1.2.2. (Delbaen [30]) A risk measure ρ on ψ is said to be coherent if in addition

to the properties 1− 4, ρ also satisfies the following “subadditivity” property, viz.

ρ(X + Y ) ≤ ρ(X) + ρ(Y ),∀X, Y ∈ ψ.

1.3 Some well known risk measures

VaR, ES and MS are three well known measures of market risk, and they are defined as

follows.

• Value-at-risk (VaR): VaR is a popular measure of market risk associated with an

asset or portfolio of assets (see [57], [65]). It is defined as an extreme quantile of the

marginal loss distribution. It is a cut-off value that separates future loss events into

risky and non-risky scenarios (see [98]). VaR’s use was recommended by the Basel

Committee on Banking Supervision in 1996 as a benchmark risk measure and has been

widely used by financial institutions for asset management and minimization of risk.

Let {Yt}nt=0 be the price or market value of a portfolio over n consecutive periods of

a time unit (say daily closing values of an index or stock). In the sequel we assume

that Xt = − log(Yt/Yt−1), t = 1, · · · , n, are the negative proxy returns or returns over

these n consecutive time units (say days). We assume that {Xt}t=1,2,··· is a stationary

process with a continuous marginal distribution function F . For 0 < p < 1, the

(1− p)th quantile of the distribution with distribution function F is defined as

Qp = inf{x : F (x) ≥ 1− p},

the 100(1−p) percent VaR, denoted by V aRp, is the negative (1−p)th quantile of the

marginal distribution of Xt (see [33]), i.e.

V aRp = −Qp. (1.1)

Therefore

P (log(Yt/Yt−1) < V aRp) = P (Xt > Qp) = p,

i.e. the chance of getting return less than V aRp is equal to p. Hence estimation

of V aRp based on X1, · · · , Xn essentially reduce to the problem of estimation of the

quantile Qp.

V aRp satisfies the properties 1− 4 in Definition (1.2.1) (see [5]). But it fails to satisfy

the “subadditivity” property. Hence, VaR is not a coherent risk measure.
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• Expected shortfall (ES): Artzner et al. ([4], [5]) have shown that VaR does not

provide any information about the size of the potential loss when it exceeds the VaR

level. More importantly, VaR is not able to distinguish portfolios which bear different

levels of risk (see [1], [90]). To address these issues, another risk measure called the

expected shortfall was introduced by Artzner et al. (see [5]). ES is defined as the

mean of the conditional return distribution, given the event that the return is less than

the VaR. Under the assumption that E|X1| < ∞, the 100(1 − p) expected shortfall,

denoted by ESp, is given by

ESp = E(log(Yt/Yt−1)|| log(Yt/Yt−1) < V aRp)
1

= −E{Xt||Xt > −V aRp} = −E{Xt||Xt > Qp}

= −1

p

∫
x>Qp

xdF (x) = −1

p

∫ 1

1−p
Qudu. (1.2)

It is closely linked to VaR, and is regarded as a good supplement to the VaR (See [1],

[2]). ES is a coherent risk measure (see [5]). Yamai and Yoshiba showed that ES is easily

decomposed and optimized, while VaR is not (see [107]). The decomposition of risk is

a useful tool for managing portfolio risk (see [107]). For example, risk decomposition

enables risk managers to select assets that provide the best risk-return trade-off, or

to allocate economic capital to individual risk factors (see [107]). The concept of

VaR decomposition was proposed by Garman in 1997 (see [46]). Yamai and Yoshiba

described the method of decomposing VaR and ES which was developed by Hallerbach

in 1999 and Tasche in 2000 (see [51], [101]).

• Median shortfall (MS): So and Wong introduced this risk measure and named it

Median Shortfall(MS) (see [98]). By definition, MS is the median of the conditional

return distribution, given that the return is less than the VaR level (see [98]). Let Θp

denote the distribution function of this conditional return distribution. It is defined as

follows

Θp(x) = P{log(Yt/Yt−1) ≤ x|| log(Yt/Yt−1) < V aRp}2

= P{Xt ≥ −x||Xt > Qp}

=
1

p
P{Xt ≥ −x,Xt > Qp}.

1X is an integrable random variable on (Ω,F , P ). F is a σ-field and G ⊂ F and G is a σ-field then E(X||G)
is a random variable on (Ω,G, P ) such that it is integrable and satisfies the equation

∫
G
E[X||G]dP =

∫
G
XdP ,

G ∈ G.
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The median of this distribution is called the Median Shortfall, denoted by MSp (see

[98]). Under the assumptions that F is continuous and strictly increasing on R, it is

easy to verify that for y ≥ −Q0.5p, Θp(y) ≥ 1
2

and for y < −Q0.5p, Θp(y) < 1
2
. Hence

MSp = − inf{x : Θp(x) ≥ 0.5} = −Q0.5p. (1.3)

The marginal loss distribution F and the quantile function Q are unknown. Therefore

V aRp, ESp and MSp are unknown in practice. From (1.1) and (1.3), we see that estimation

of V aRp and MSp based on X1, · · · , Xn essentially reduce to the problem of estimation of

the quantiles of the marginal loss distribution.

1.3.1 Literature review

With an appropriate model for the unknown F , the estimation of the above mentioned risk

measures become straight forward (viz. with a model for F , one can approximate the above

risk measures by Monte Carlo methods). Over the years, different authors have suggested

different distributions to model F . The normal distribution is not an appropriate model

for skewed or heavy tailed data. Several skewed extensions of the normal distribution have

been proposed in the literature. For instance, the skew-normal distribution due to Azzalini

(see [8]). Broda and Paolella, Wilhelmsson, Gurny and Zhu and Galbraith discussed several

parametric estimators of ES (see [12], [18], [105], [50], [109]). The skew-normal distribution

was used to estimate the ES by Bernardi (see [12]). The skew t-distribution was used to

estimate the ES by Azzalini and Capitanio and Jones and Faddy (see [9], [63]). Asset

return data are known to exhibit heavy tails (see [26]). To model this feature, Mandelbrot

assumed the marginal return distribution to be stable distributions (see Mandelbrot [74]).

Other popular choices for modeling the marginal loss distribution include the Student’s t,

Weibull, Pareto distributions, mixtures of lognormal and Pareto distributions and hyperbolic

distributions. See Blattberg and Gonnedes [15], Eberlein et al. [38] and Prause [83] for a

discussion on these distributions. Normal Inverse Gaussian distribution and exponentially

truncated stable distributions were suggested by Barndorff-Neilsen [11] and Cont et al. [25],

respectively, as models for the marginal loss distribution. Simonato in 2011 suggested an

ES estimator based on the Johnson family of distributions developed by Johnson (see [62],

[96]).

However a drawback of the model based approach is that the resulting quantile estimates,

and hence the estimated risk measures, are sensitive to model mis-specification. A mis-

specification of the model can induce substantial errors (see [21]). Modarres et al. (see [80])

2Given two events A and B from the σ-field F of a probability space (Ω,F , P ) with P (B) > 0, the

conditional probability of A given B is defined as P (A||B) = P (A∩B)
P (B) .
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considered the accuracy of estimators of upper quantiles of a right skewed distribution under

model uncertainty. The authors compared the bias and MSE of the maximum likelihood, the

sample quantile and tail-exponential method based quantile estimates. The authors observed

that fitting log-normal distribution to the asset return data, when the return distribution

is actually log-logistic or log double exponential, is fairly robust for estimating quantiles of

sample sizes 100 ≤ n < 1000. The authors use the criterion of bias and root mean squared

error (RMSE) to assess the accuracy of the quantile estimators. However for small samples

n ≤ 30, the model based extreme quantile estimators are not reliable in the presence of

model misspecification (see [80]).

In actuarial science and in financial risk management, practitioners are interested in

measuring downside risks (see [21]). Therefore their interest is focused on modeling the

tails of the asset return distributions (see [21]). Gençay and Selçuk, Matthys and Beirlant,

McNeil, McNeil et al. and Embrechts et al. use the Extreme Value Theory (EVT) for

modeling tails of loss distributions and for estimating extreme quantiles (see [45], [75], [77],

[78], [39]). From Pickands-Balkema-de Haan theorem (see [10]) it is known that tails of loss

distribution should be either Pareto type or exponential type. Therefore the EVT based

approach also depends on correct specification of the tails of the loss distribution.

In order to have a distribution-free approach, several authors have considered nonparamet-

ric methods for estimating the extreme quantiles of the marginal loss distribution. Hyndman

and Fan ([58]) in 1996, defined quantile estimators as weighted averages of two consecutive

order statistics. Harrell-Davis in 1982 introduced a quantile estimator which is a weighted

linear combination of order statistics (see [52]). Dowd in 2001 proposed a VaR estimator

based on sample quantile (see [32]). In 2000, Gouriérox et al. introduced nonparametric ker-

nel VaR estimators (see [48]). Kernel based VaR estimators were also discussed by Chen and

Tang in 2005 and Charpentier and Oulidi in 2010 (see [23], [21]). Sheather and Marron in

1990 and Sfakianakis and Verginis in 2008 discussed the L-estimators (see [95], [93]). There

are several nonparametric ES estimators, the empirical estimator and the ES estimators

discussed by Brazauskas et al., Chen, Scaillet, Yamai and Yoshiba, Magadia, Hill, Inui and

Kijima and Peracchi and Tanase (see [17], [22], [91], [107], [71], [53], [60], [85]). Swanepoel

and Grann [100] introduced the idea of distribution function estimation based on a nonpara-

metric transformation of the data. An improved distribution function estimator can lead

to improved quantile estimator, and estimators of the above mentioned risk measures. This

issue is addressed in the Chapters 2 and 3.
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1.4 Asset returns

1.4.1 Empirical properties of asset returns

Cont studied statistical properties of prices of stocks, commodities and market indices, using

data from various markets and instruments for more than half a century (see [26]). Proper-

ties, common across a wide range of instruments, markets and time periods are called stylized

empirical facts. Stylized facts are obtained by taking a shared factor among the properties

observed in investigation of different markets and instruments. Stylized statistical properties

of asset return data observed by Cont [26] are as follows.

• Absence of autocorrelations: (linear) autocorrelations of asset returns are often

insignificant, except for very small intraday time scales (' 20 minutes) for which

microstructure effects come into play.

• Heavy tails: the (unconditional) distribution of returns seem to display a power-law

or Pareto-like tail, with a tail index which is finite, higher than two and less than

five. In particular this excludes stable laws with infinite variance and the normal

distribution. However the precise form of the tails is difficult to determine.

• Gain/loss asymmetry: one observes large drawdowns in stock prices and stock index

values but not equally large upward movements.3

• Aggregational Gaussianity: as one increases the time scale ∆t over which returns

are calculated, their distribution looks more and more like a normal distribution. In

particular, the shape of the distribution is not the same at different time scales.

• Intermittency: returns display, at any time scale, a high degree of variability. This

is quantified by the presence of irregular bursts in time series of a wide variety of

volatility estimators.

• Volatility clustering: different measures of volatility display a positive autocorre-

lation over several days, which quantifies the fact that high-volatility events tend to

cluster in time.

• Conditional heavy tails: even after correcting returns for volatility clustering (e.g.

via GARCH-type models), the residual time series still exhibit heavy tails. However,

the tails are less heavy than in the unconditional distribution of returns.

3This property is not true for exchange rates where there is a higher symmetry in up/down moves.
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• Slow decay of autocorrelation in absolute returns: the autocorrelation function

of absolute returns decays slowly as a function of the time lag, roughly as a power law

with an exponent β ∈ [0.2, 0.4]. This is sometimes interpreted as a sign of long-range

dependence.

• Leverage effect: it refers to the observed tendency of an asset’s volatility to be

negatively correlated with the asset’s return.

• Volume/volatility correlation: trading volume is correlated with all measures of

volatility.

No parametric model is known to capture all or most of these stylized properties of asset

return data. Hence, we do not specify any particular model. Instead we assume that the

asset return time series is a stationary α−mixing process.

A stationary process {Xt} is a stochastic process where the finite dimensional distributions

of the vectors (Xt1 , Xt2 , · · · , Xtk) and (Xt1+h, Xt2+h, · · · , Xtk+h) are identical for any choice

of t1, · · · , tk and h. Stationarity is necessary to ensure that the marginal distribution of Xt

does not depend on t. But it is not sufficient to ensure that the empirical averages indeed

converges to the desired expectation. One needs an ergodic property which ensures that

the averages converge to the expectation. In the sequel we assume that the time series

{Xt} is a stationary α-mixing process. Let, F l
k denote the σ-algebra of events generated by

{Xt, k ≤ t ≤ l} for l > k. The α-mixing coefficient introduced by Rosenblatt[88] is defined

as

α(k) = sup
i

sup
A∈F i1,B∈F∞i+k

|P (AB)− P (A)P (B)|.

The series {Xt}t∈N is said to be α-mixing if limk→∞ α(k) = 0. Mixing implies ergodicity

(Fristedt and Gray [43], Theorem 6 in Section 28.5).

The estimators obtained under such general assumptions are nonparametric in nature, i.e.

they are not dependent on exact specification of a model for the stochastic process. While

these nonparametric estimators are in general robust against model risk (i.e. misspecification

of the underlying model), but a major concern about them is the sample size required to

estimate the parameters accurately (see [23]). Therefore studying the accuracy of the various

nonparametric estimators is an important problem in finance.

1.4.2 Data

We have collected the data on the daily and monthly NAV of twenty one index funds and the

closing price of the underlying benchmark indices are collected for the duration 1st April,
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2007 to 31st March, 2015. We have also collected the data on the daily and monthly NAV

of 20 balanced funds, 36 small & mid cap funds and 45 large cap funds and closing price of

the NSE S & P Nifty index in National Stock Exchange, India, from 1st April, 2007 to 31st

March, 2015. These data are collected from AMFI and NSE websites (see Historical Index

Data, 2015 and NAV History Report, 2015). During this period the Indian equity market

witnessed lot of volatility. For instance, the S & P Nifty index crashed from above 6000 in

2007 to below 2600 in 2008, and again bounced back above 6000 level in 2010. After that

the Nifty index remained below 6000 level up to 2012, but again rallied above 6000 level

in 2013. In 2014 and 2015 the Nifty index held the 6000 level, moved up even above 8000

level. For each fund, the daily and the monthly returns during this period are computed. In

the Chapters 4 and 5, these data are used to compare the performances of the Indian index,

balanced, small & mid cap and large cap funds during 1st April, 2007 to 31st March, 2015.

In Appendix A, we reported the returns of 122 mutual funds and two benchmark indices for

monthly NAV and the closing prices during 1st April, 2007 to 31st March, 2015.

1.5 Monte Carlo simulation

Monte Carlo simulation has become an important tool in risk management. Monte Carlo

methods are based on the analogy between probability and volume (see [47]). Monte Carlo

method means sampling randomly from a universe of possible outcomes and taking the

fraction random draws that fall in a given set as an estimate of the set’s volume (see [47]).

The law of large numbers ensure that this estimate converges to the correct value as the

number of draws increases. The central limit theorem provides information about the likely

magnitude of the error in the estimate after a finite number of draws (see [47]). Let us

consider the problem of estimating the integral α =
∫ 1

0
f(x)dx. The integral α can be

re-written as

α =

∫ 1

0

f(x)dx = E[f(U)],

where U follows uniform distribution on [0, 1]. Let U1, U2, · · · , UB be independent random

variables following uniform distribution on [0, 1]. The Monte Carlo estimator of α is defined

as

α̂B =
1

B

B∑
i=1

f(Ui).

If f is integrable over [0, 1] then, by strong law of large numbers, α̂B → α with probability

1 as B → ∞ (see [47]). If f is square integrable on [0, 1], then by CLT
√
B(α̂B − α) is

asymptotically normal, as B is increased. i.e. α̂B is
√
B−consistent. This idea can be

extended estimate the bias or mean squared error of an estimator.

9



Let Tn ≡ Tn(X1, · · · , Xn) be an estimator of a parameter θ, where {Xi}i=1,2,··· is a

stationary process. The Monte Carlo estimate of the MSE of any estimator Tn is defined as

1

B

B∑
j=1

(Tnj − θ)2,

where B is the number of Monte Carlo samples each of size n drawn from a given process

and Tnj is the estimate based on the jth Monte Carlo sample, j = 1, · · · , B.

In the Chapters 2 and 3, the accuracy (in terms of MSE) of the various nonparametric

estimators are compared using Monte Carlo simulation. In the simulation study we consider

the following ten time series models

(i) {Xi}i=1,2,···is an i.i.d. process, marginal distribution GPD with ξ = 1/3.

(ii) {Xi}i=1,2,···is an i.i.d. process, marginal distribution Student’s t with 4 df.

(iii) {Xi}i=1,2,···is an i.i.d. process, marginal distributionN(0, 1).

To study the effect of dependence on the quantile estimators we consider the following

ARMA(1,1) models in Drees [33]

Xi − φXi−1 = Zi + θZi−1,

(iv) φ = 0.95, θ = −0.6,

(v) φ = 0.95, θ = −0.9,

(vi) φ = 0.3, θ = 0.9.

In addition the following GARCH(1,1) models are also considered

Xt = σtZt,

(vii) σ2
t = 0.0001 + 0.9X2

t−1,

(viii) σ2
t = 0.0001 + 0.4X2

t−1 + 0.5σ2
t−1,

(ix) σ2
t = 0.0751X2

t−1 + 0.9194σ2
t−1.

The first two GARCH models are used in the simulation study in Drees (see [33]). The

GARCH model (ix) is the GARCH model fitted to the CNX Nifty daily loss data for the

duration 1st April 2009 to 31st March 2013(sample size is 995).

The last model in our simulation study is the following model

(x) Xt = I(Dt = 1)(E1t + E2t)
+ − I(Dt = 0)(E1t + E2t),

where {(E1t, E2t)} is an i.i.d. Gaussian process, with m1 = 10, m2 = −1, ρ = 0.89 and

σi = 1, i = 1, 2. And we take P (Dt = 1) = 0.20, i.e. the chance of default is assumed to be

twenty percent. Xt represents the loss under a netting arrangement.
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The term netting is used to describe the process of offsetting mutual positions or obli-

gations between two parties (see [41]). To study the effect of netting on VaR, MS and ES

estimation we consider a simple portfolio made of a long position in one asset and a short

position in another one with the same counter party. Let E1t, E2t denote the gains in the

long and short positions respectively. The vector (E1t, E2t) is assumed to be Gaussian. mi

and σi are mean and standard deviation of Eit, i = 1, 2 and ρ is the correlation coefficient.

Since E1t and E2t are long and short position gains, we assume that ρ is negative. Let Dt

be a Bernoulli random variable, independent of (E1t, E2t), such that Dt = 1 represents

a credit event that causes default at time t (and hence initiation of a netting agreement).

In case of default, without any netting arrangement, the loss at time t equals (E+
1t + E+

2t).

However under netting arrangement, the loss due to default at time t equals (E1t + E2t)
+

(see [41], page 937). Therefore under this netting arrangement, the loss at time t equals

I(Dt = 1)(E1t + E2t)
+ − I(Dt = 0)(E1t + E2t).
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