Chapter 2

VaR, MS and Extreme Quantile
Estimation

From equations (1.1) and (1.3) in Chapter 1, we observe that VaR and MS of an asset turn
out to be extreme quantiles of the marginal distribution of the asset return time series. In
this chapter, we study the accuracy of several nonparametric and extreme value theory based
estimators of extreme quantiles and compare their known properties. We compare their finite
sample performance using Monte Carlo simulation. A new quantile estimator is proposed
which exhibits encouraging finite sample performance while estimating extreme quantile in

the right tail region.

2.1 Nonparametric quantile estimators

In this section we review some known nonparametric and extreme value theory based quantile

estimators.

2.1.1 Sample & kernel quantile estimators

A natural estimator of @), is obtained as follows

Qp = inf{z: F(z) >1-p},

where F is a distribution function estimator of F based on Xi,-0, Xy Let Xy, -0, X
denote the corresponding order statistics. Also let I(-) be the indicator function, with I(.S)
equal to 0 or 1 according as the statement S is false or true. If F/(z) = LS I(X < a) e
Fis the empirical distribution function, Qp equals X(p1—p)+1), where |x] denotes the inte-
gral part of z. It is the (1 — p)th sample quantile (we call it SQ,). Asymptotic properties of
the sample quantile are well known under i.i.d. assumption (see [92]). Recently, asymptotic

properties of the S@), has been studied extensively under various dependence assumptions.
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(See for instance, [99], [106], [68], [L04] among most recent). Under strong mixing dependence
(with polynomial mixing rate) assumption, Wang et al. [104] obtained Bahadur represen-
tation of sample quantile which provides insight into the rate of strong convergence of the
S, under this dependence assumption. Under similar dependence assumption, Lahiri and
Sun [68] obtained an upper bound of the accuracy of normal approximation to the sampling
distribution of the S@),. These results provide insight into the accuracy of the S@, under
strong mixing type dependence assumption. These asymptotic properties are obtained under
the condition that p is kept fixed, as n is increased. The following Theorem provides the
necessary conditions for strong convergence of the sample quantile S@),,, under the condition

that p = o(1) as n — 0.

Theorem 2.1.1. Let Xy,---, X,, be i...d. random wvariables with a continuous density f
satisfying f(x) > 0 Vx and f(x) — 0 as || — oco. For every § > 0, Jxg > 0 such that
)M — 1‘ < 6 forallx > x9 and 0 <y < 1. Further let

f(=)
v/2log(n)

p=o(1) and €, = ~=~~ = o(1) as n — oo.

Vf(@Qp)
Then as n — oo

SQ,—Qp,=0(€,), as.

Proof. Under the conditions stated in Theorem 2.1.1, the distribution function F' is
continuous and strictly increasing, 0 < F(x) < 1 Vz and F(z) — 1, as * — oo. Therefore
(), is the unique solution of F(z—) <1 —-p < F(z) VO <p<1land Q, — oo as p=o(1).

Then by Theorem 2.3.2 in page 75, Serfling(1980), we see that for every € > 0, there exists
ad=min{F(Q,+¢) —q, ¢— F(Q, —¢€)}, where ¢ =1 — p, such that

P(1SQ, — Q,| > €) < 2exp(—2nd?). (2.1)

The above inequality holds for every n and 0 < p < 1. Therefore even under the condition
p = o(1) as n — oo, the above inequality continues to hold for each fixed n. Under the
stated conditions F'(Q,) = g. Therefore, under the conditions on f, F is differentiable and

we have

§ = emin{f(Q, + 0¢), f(Q,—0e)}, 0<0, ¢ <1.

Let us define, €, = f—m. Under the stated conditions, €, > 0, Vn and ¢, = o(1) as

n — oo. We now apply the inequality (2.1) with €, and under the stated conditions on f

the corresponding ¢, satisfies

_ v2loeln) min € — 0 Vlog(n)

, for all sufficiently large n.
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Therefore from the inequality (2.1),

2
n2

P(|SQp — @yl > €n) <

, for all sufficiently large n.
n

Now by Borel Cantelli Lemma, P(|SQ, — Q,| > €, i.0.) = 0. Therefore there exists an
event A with P(A) = 1, such that for each w € A, the sequence W is bounded. This
completes the proof. O

Remark 1. 1. If p is kept fized, then the condition €, = o(1) is trivial and Theorem 2.1.1
essentially reduces to the Lemma B in page 96, in Serfling [92].

2. If p=o0(1) as n — oo, the stated conditions on F' and f ensure that ), — oo and
0 < f(Qp) =0(1) as n — oo. The condition €, = o(1), ensures that f(Q),) does not converge
to zero too fast as p — 0 with increase in the sample size n.

3. If the marginal distribution is standard GPD with location parameter p = 0, scale
o = 1, shape parameter &, then f(Q,) = p**' and Theorem 2.1.1 holds for p = o(1),

log(n)

provided pstt — 00 as n — oo.

A wide variety of other nonparametric distribution function estimators are available in
the literature. See for instance [34] for a detailed review and comparison of these estimators.
Using these distribution function estimators in Qp we get different versions of Qp. For

instance, one can use F(z) equal to a kernel based distribution function estimator defined

R 1 < [° t—X;
F(x):%Z/ w( 5 >dt.
i=1 /00

where b > 0 is the bandwidth and w is a probability density function with zero mean and

as follows

finite variance, known as the kernel. b depends on n and b — 0 as n — oo. In the kernel
based method the main problem lies with the selection of bandwidth. Azzalini, Bowman
and Chen and Tang provide some choice of the bandwidth parameter (see [7], [16], [23]).
Chen and Tang have obtained the asymptotic bias, variance and the rate of almost sure
convergence of their version of Qp, under the assumption that {X;} is a stationary geometric

a-mixing process (see [23]). The authors suggested the following choice for the optimal value

of b, /
213(Q)b V° _
Popts = {_04(f(1(>(621>)2} i

where b = [uw(u)G(u)du, and 0* = [w*w(u)du. G(-) is the distribution function of the
distribution with density w. bop involves unknown constants @), f and its derivative f M
at (J,. Chen and Tang suggested to approximate @), in b,y by the corresponding sample
quantile (see [23]). The authors suggested to approximate f and f®) by the density and
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the first derivative of the Generalized Pareto distribution. We denote the Chen and Tang’s
quantile estimator by C-T).

Alemany et al. proposed another bandwidth suitable for kernel based estimation of VaR,
for p close to 0, using Epanechnikov kernel (see [3], proposition 2). Their proposal was based
on minimizing a weighted mean integrated squared error WISE = E{ [[F(z) — F(z)]**dx}
which assigns more weight in the tail region than the ordinary mean integrated squared

error. The minimization of this criterion leads to the following optimal bandwidth

s = (DL G0 Gl )”3 1o
opt J(fO(x))222dz( [ tw(t)dt)? |

The authors suggested to compute the unknown functionals of f by assuming that f is a

normal density with mean 0 and variance 0. This leads to by = 0°/3(8/3)3n=1/3. o is

estimated from the data. Let Al, denote the quantile estimator by Alemany et al. (see [3]).

Remark 2. The bandwidth proposed by Alemany et al. was obtained under i.i.d. assumption
(see [3]). It remains to be seen how the resulting quantile estimator performs in the presence

of a-mixing type dependence.

Empirical versus kernel estimator

1. Under the assumption that {X;} is a stationary geometric a—mixing process, Chen

and Tang [23] proved that as n — oo

C-T, — Q, = o (n?log(n)), as.,

Under similar assumptions, using the Bahadur type representation of S@, in Wang et
al. and a Bernstein type inequality for strongly mixing processes in Merlevede et al.
we see that ([104], [79])

SQ,—Qp,=o0 (n_l/Q(log(n))3/4) , a.s..

Therefore under similar conditions the sample quantile seem to possess faster rate of

strong convergence, as n is increased.

2. The sampling distributions of both sample quantile and the kernel quantile estimators
can be approximated by normal distributions. However, the following result is known
only for the sample quantile. Under the assumption that {X;} is a stationary a—mixing
process with a(n) < -7 and ¢ > 1, d > 12, Lahiri and Sun [68] proved that there exists
a constant C' > 1 such that for all n > 1,

sup !P (Vn(SQ, — Q) <z) — ‘I/(x)| <

z€R

(2.2)

ER

15



This result provides insight into the accuracy of the normal approximation to the
sampling distribution of S@), under the stated dependence assumption. Such a result

does not seem to be known for the kernel based quantile estimators.

3. The kernel method depends crucially on the choice of the bandwidth b. Under strongly
mixing dependence assumption Chen and Tang obtained asymptotically optimal value
of b, which depends on unknown constants (see [23]). So the optimal b has to be again
estimated from the data. Even with this optimal choice of b the difference in accuracy
between the kernel based estimator and S, can be quite small. For example, from the
simulation study in Chen and Tang we see that for the ARCH(1) model and p = 0.99,
the improvement in the standard deviation and the root mean squared error of their

kernel quantile estimator is less than three percent the same for the SQ, (see [23]).

2.1.2 L-estimator

The sample quantile X(,(1—p)+1) is a natural estimator of the population quantile. But it
is effected by the variability of individual order statistics. An obvious way of improving the
efficiency of sample quantiles is to reduce this variability by forming a weighted average of
all the order statistics, using an appropriate weight function (see [95]). Such an estimator
is commonly called an L—estimator. A popular class of L—estimators is a kernel quantile
estimator defined as follows ([95])

QL = Z [/1—711 w (t_Tp> dt] X(,;),

i=1 n

where w is a density function called the kernel, b > 0 and b — 0 as n — oo. b is called the
bandwidth. Sheather and Marron provide a detailed theoretical analysis of the asymptotic
properties of Q 1 and a data based method for choice of b (which appears to be very com-
plicated) (see [95]). The authors conclude that one can expect only modest improvement
(upto 15 percent) over the sample quantile, even with the best possible L—estimator. Given
this limited improvement, the effort involved in data based choice of b and the contrasting
ease with which one can compute X, (1—p)+1) and its known asymptotic properties, the later

seems to be a more reasonable choice.
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2.1.3 Harrell-Davis (1982)

Harrell-Davis [52] introduced a quantile estimator (we call it H-D estimator) which is a

weighted linear combination of order statistics defined as follows

HD, = Y wX
1=1
wi = Lyn((L=p)(n+1),p(n+1)) = Lim((L = p)(n+1),p(n+1)), i =1, n,

where [,(a,b) denotes incomplete beta function.

Based on simulation study Harrel-Davis suggested that their estimator has much to offer
over the sample quantile especially for extreme quantiles (see page 639, [52]). The H-D
estimator is the limit of a bootstrap average as the number of bootstrap resamples becomes
infinitely large. It is available in R software (see hdquantile function in Hmisc package in R

software for statistical computing).

2.1.4 SV estimators

Sfakianakis and Verginis introduced three L-statistics type estimators, SV'1,, SV2, and
SV3, (see [93]). Among these estimators SV'3, seems to be the appropriate estimator for

Qp, especially for p close to zero. It is defined as follows

SV3p = Z B(i,n,1 —p) X4 + (2Xq) — X2))B(0,n,1 —p),
i=1
where B(i,n,1 — p) is the probability mass function of the Binomial distribution with pa-

rameters n and 1 — p.

2.1.5 Quantile estimation based on Extreme Value Theory (EVT)

In this approach the idea is to let the tails speak for themselves, that is, use merely the
largest returns for the estimation of the extreme quantiles (see [33]). Estimation of quantiles
for values of 1 —p close to 1 by extreme value theory is related to Pickands-Balkema-de Haan
theorem (see [10]). Pickands-Balkema-de Haan theorem claims that if F' is in the domain
of attraction of the Generalized Extreme Value (GEV) (we denote it by F' € D(GEV)),
the conditional distribution of X; — u, given that X; > wu, can be well approximated by
Generalized Pareto distribution (GPD) with tail parameter £ and with some shape parameter
B(u), for u large enough (see [21]). Based on this theorem, a GPD distribution fitted to
the k largest observations in the sample to approximate the tail of the conditional loss

distribution, given that the loss exceeds some threshold value. Let é and B denote the
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maximum likelihood estimates of the GPD (with threshold X(,_x)) based on {X(,—x11) —
Xty - X () — Xm-k)}- Under the assumption that £ > 0, the (1 — p)th quantile of the
loss distribution is approximated by the (1 — p)th quantile of the fitted GPD distribution.

The resulting estimator is given by

B ([n £
EVTL, = X + ¢ ([E(l -p)| - 1) , (2.3)

For small k (i.e. for large threshold), the GPD approximation of the tail of F' is more accurate
(assuming ' € D(GEV)), but lesser observations in the sample are available for fitting the
GPD. In contrast for large k, more data are available for fitting the GPD distribution, but
the GPD approximation to the tail of F' is biased. Consequently, an important issue in this

approach is the choice of k (see [56]). Usually, k is a function of n, satisfying k& — oo and

E = 0(1), as n — oo. From extensive simulation we find that k = [np] + 1 works well for

i.i.d. as well as GARCH(1,1) time series model, especially for p close to zero (k = [np| + 1

satisfies the condition £ = o(1), provided p — 0 as n — c0).

Under i.i.d. assumption the condition that F'is in the domain of attraction of the GEV is

X(n)—bn .
converges in

an

equivalent to the condition that there exists a,, > 0, b, € R such that

law to a GEV distribution, with parameters £ and (3, as n is increased. Drees has extended
the extreme value theory based estimation of extreme quantiles in the presence of S—mixing !
type dependence (which cover a broad class of time series models, including those considered
in this chapter) (see [33]). The author assumed that the common distribution function F
satisfies the property that as A — 0

Fli1—-Xx) 1

A S A AN )
F(1—)) & ’

for some £ > 0. Under this assumption one can argue that for small (positive) £
ko \ ©
where ¢ = d means the ratio ¢/d is close to one. Above approximation naturally leads to the

following estimator

k.n 'AYn
EVT2, = X(n_k) (n—p) : (2.4)

IThe series {X;}sen is said to be S-mixing if

(1) := sup E( sup  |P(A|B) — P(A)\) =0

meN AEnyf+l+1

as | — oo, where Bi" and B;?, ;.| denote the o-fields generated by {X;,1 <t <m} and {Xy,m+1+1 <1t}
(see [33]).
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here 1 < k, < n and k, — o0, ’% — 0, as n — 00. 7, is a suitable estimator of the tail

index 4, say the Hill estimator

Drees have studied extreme quantile estimation in the presence of f—mixing type dependence

(see [33]). For instance, under the assumption that as n — oo, p — 0 in such a way that

log(n(1-p)) n(l-p)
/et B =

VE, (EVT2p
log(kn/np) Q@p

with o7 as defined in Drees [33]. From Remark 2.5, in page 627 in Drees [33] we see that

— 1) % N(0,02.),

for a broad class of f—mixing processes and k = [np| + 1 his EVT estimator EVT2, is a

consistent estimator with relative estimation error of order \/Lﬁﬂ where p — 0 and np — oo

as n is increased.

2.1.6 Qantile estimation based on transformation

In this approach we first construct a quantile estimator based on the transformed data

Y, = T(X;), i = 1,--- ,n, where T : R — [0,1] is a monotonic increasing invertible
function. The quantile estimator based on Xi,--- , X, is obtained by back transform, i.e.
Qp(X1,---, X)) = T7H(Qp(Y1, -+, Yy)). This is due to the fact that if Q, is the (1 — p)th

quantile of X3, T(Qp) is the (1 — p)th quantile of Y} and vice versa. T can be chosen to be
a continuous distribution function estimator based on the original data or the distribution

function of a suitable continuous distribution fitted to the data Xy, --- , X,,.

Kernel based transform

Swanepoel and Grann introduced the idea of distribution function estimation based on a
nonparametric transformation of the data (see [100]). Their suggestion was based on the
fact that if Xy,---, X, are identically distributed with distribution function F, with density

f then
S, (2) = %Zn:f( (M) ,

is an unbiased estimator of F'(z), where K is a known distribution function with a symmetric
density supported on [—1,1]. For proof, see the calculations following equation (25) in page
560 in Swanepoel and Grann (see [100]). This result implies that the bias of a kernel based

distribution function estimator can be eliminated by transforming the data. In practice F' is
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unknown, and the authors suggested to replace F'in S,, by another kernel based distribution

function estimator with smoothing parameter say ¢g. This leads to the following distribution

Fya) =+ Z e (Feale) - Fogl0XD),

where F), ,(z) = %Z?:l K (%) , g=ch® 1< a<3. InTheorem 1, page 554, Swanepoel

function estimator

and Grann [100] obtained the asymptotic bias and variance of F,(z). See equations (14) and

(15) in Swanepoel and Grann ([100]). Swanepoel and Grann suggested to use

17
) :[375\/51 v

where 0 = min{S, IQR/1.349}, S and IQR are the sample standard deviation and inter
quartile range respectively (see [100]). The authors claim that using such choice of g and
h, and Epanechnikov kernel considerable bias and MISE (mean integrated squared error)
reduction are achieved.

We hope that an improved distribution function estimator can provide better quantile
estimate. Hence we define a kernel estimator based on Swanepoel and Grann’s distribution

function estimator as follows
S-G, = inf{z : F,(z) > 1—p}. (2.5)

where ﬁn(x) is the Swanepoel and Grann’s distribution function estimator defined above.

First we state an asymptotic property of the estimator ﬁn

Lemma 2.1.2. (Dutta [37]) Let Xy,---, X, be i.i.d. random variables with distribution
function F' and density f which has a bounded derivative. The kernel distribution function
K is differentiable, with a bounded kernel density k with zero mean and finite variance. The

bandwidth sequences g,h satisfies that g = h = o(1) as n — oo. Let b, = o(1) such that

1

—abah?®) < oo. asn — oo, then

nb? — oo, asn — oo and Y oo exp(

> P [IF = Fll > b < .
n=1

Repeating the arguments similar to those used in the proof of the Theorem and the above

Lemma we get the following asymptotic property of the S-G,, estimator.

Theorem 2.1.3. Let Xy,---, X, be i.i.d. random wvariables with a continuous density f

satisfying f(x) > 0 Vo and f(z) — 0 as |x| — oco. For every 6 > 0, Jxg > 0 such that
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’% - 1‘ < 6 for all x > x9 and 0 < y < 1. The kernel distribution function K is

differentiable, with a bounded kernel density k with zero mean and finite variance. Further
let g=h=Cn"Y7, C >0 and

2log(n) _ V2 log(n)
Vf(Qph M f(Qy)

=o(1) as n — oc.

p=o(1) and €, =
Then as n — o0
|S-G, — Qp| = O (&), a.s..
Proof.

P(S$G—-Q>0 = P(1-p>F(Q+0))
= P(FQp"‘E n(Qp+€)>F<Qp+€)_<1_p>)
P( — F|| >51>, where

=F(Q,+¢) —(1—p)=ef(Qy+0e), 0<O <1

And similarly
P(Q, —SG, > ¢) gp(||ﬁn—F|| >52), by =(1—p)— F(Qy—¢) = ef(Q, — 0e), 0< 0 <1

Therefore
P(lQ,—SGC)|>e) <P (Hﬁn _F|| > 5) , 6 =min{o,, &) (2.6)

2\/10g
Vnf(@p
the following inequahty

24/log(n) 2log(n)

Vnf(Qp)h hy/n

We now apply Lemma 2.1.2, with g = h =Cn V", C >0, and b, = ¥ 2108(1) " Phen

Jnh
b = o(1) and the condition > 7 exp(—s=mnb2h?) < oo is satisfied. And therefore under
these conditions

Now let e = ¢, = . Under the stated conditions on f, the corresponding ¢, satisfies

0p = min{ f(Qp + 0¢), f(Qp— 0'e)} >

, for all sufficiently large n.

4H/’fll

ip [||ﬁn —F|| > 5n] < 0. (2.7)

n=1
And therefore under the stated conditions on f, K, p, and assuming ¢ = h = Cn~ %7, C' > 0,

and €, = jﬁ—m = 0(1), as n — oo, using the equations (2.6) and (2.7), we see that

ZP(|QP — 5S-Gyl > €,) <0
n=1
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Therefore under these conditions

1Q, — S-G,| = O (e,), as.

2.2 Simulation & real data analysis

We compare the performance of eight nonparametric quantile estimators, viz. S@Q,, H-D,,
SV 3,, the kernel based estimators C-T,, Al,, S-G, and the two EVT based estimators
EVT1, and EVT?2, for different sample size n and different choices of p. It is difficult
to obtain the exact bias and the MSE of these estimators. Therefore we use Monte Carlo
simulation to approximate the bias, the standard deviation and the MSE of each of these
estimators.

To approximate the bias or the MSE of a statistic 7, using Monte Carlo simulation we
draw m random samples of size n from a test distribution or stochastic process. From each

of the m samples we compute the value of the statistic. Let T'*

ne’

1=1,---,m, be the values.
The bias, variance and the MSE of T, are approximated by = > " T* — T, variance of

T i =1---,m, and % S (T, — T,,)* respectively. In this simulation study we use

m = 1000.

In general the stochastic process generating the observed data is not known. However in a
Monte Carlo simulation study we can compute the Monte Carlo estimate assuming some test
distribution or data generating process. In this simulation study we consider the following

ten time series models

(1) {X;}iz1,2,.1s an i.i.d. process, marginal distribution GPD with £ = 1/3.
(13) {X;}iz12,..1s an 1.i.d. process, marginal distribution Student’s with 4 df.

(193) {Xi}iz1,2..1s an i.i.d. process, marginal distributionN (0, 1).

To study the effect of dependence on the above mentioned quantile estimators consider the

following ARMA(1,1) models in Drees [33]

Xi—¢Xi1=Z;+07Z;,
(iv) ¢ =0.95, § = —0.6,
(v) ¢ =0.95, 6 = —0.9,
(vi) @ =0.3, 8 =0.9.
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In addition the following GARCH(1,1) models are also considered

X, =017y,
(vii) of = 0.0001 + 0.9X} |,
(viii) of = 0.0001 + 0.4X}? | + 0.507 4,
(iw) of = 0.0751X72 | + 0.919407 .

The first two models are motivated by empirical observations by Cont regarding the extent
of tail heaviness of the marginal asset return distributions (see [26]). Cont mentioned that
when sample moments based on asset return data are plotted against sample size, the sample
variance seems to stabilize with increase in sample size (see [26]). But the behavior of the
fourth order sample moment seems to be erratic as n is increased. This feature is also
exhibited by the sample moments based on i.i.d. draws from the Student’s t-distribution
with four degrees of freedom, which displays a tail behavior similar to many asset return
distributions. Cont also mentioned that the daily return distributions of stocks, market
indices and exchange rates seem to exhibit power law tail with exponent « satisfying, £ = 1/«
varying between 0.2 and 0.4 (see [26]). These observations the motivate choice of the marginal
distributions in () and (z¢). The third model (iii) represents the classical Black-Scholes
assumption on the return model.

The GARCH(1,1) processes are known to model the volatility clustering observed in fi-
nancial time series data. The first two GARCH models are used in the simulation study in
Drees (see [33]). The GARCH model (iz) is the GARCH model fitted to the CNX Nifty daily
loss data for the duration 1st April 2009 to 31st March 2013 (sample size is 995). The data
are obtained from the daily closing values CNX Nifty index during the above mentioned pe-
riod. Source http://www.nseindia.com/products/content/equities/indices/ historical index_
data.htm.

We also consider a small-scale experiment to compare performance of the estimators of
VaR and MS under netting agreements. The term netting is used to describe the process of
offsetting mutual positions or obligations between two parties (see [41]). Suppose a trader
borrows money from a broker, takes a long position on a certain equity and also buys a put
option (short position) of the market index future to hedge against any random fall in the
stock market. The trader can adopt two strategies. In the event of any unforseen downward
movement in the market, he may cover the gains in the put option and take delivery of the
stocks by paying remaining dues to the broker in cash. Otherwise the trader can exit both
the long and short positions at market price, and return the dues to the broker. In this
example a sudden downward market movement is the event that causes default. The first

strategy is not netted, as only positions with positive gains are used to meet the default
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obligation. The second strategy involves netting, where overall portfolio gain is used to meet
the traders obligation to the broker. Our model (z) represents the loss in the second strategy
at time ¢t. To study the effect of netting on VaR estimation let us consider a simple portfolio
made of a long position in one asset and a short position in another one with the same
counter party.

Let Ey;, FEs denote the gains in the long and short positions respectively. The vector
(E1, Eo) is assumed to be Gaussian. m; and o; are mean and standard deviation of Ej,
1 = 1,2 and p is the correlation coefficient. Since Ej; and FEy, are long and short position
gains, we assume that p is negative. Let D; be a Bernoulli random variable, independent of
(E1y, Eo), such that D, = 1 represents a credit event that causes default at time ¢ (and hence
initiation of a netting agreement). In case of default, without any netting arrangement, the
loss at time ¢ equals EY, + Fy,. However under netting arrangement, the loss due to default at
time t equals (Fy; + Fo)" (see Fermanian and Scaillet[41], page 937). Therefore under this
netting arrangement, the loss at time ¢ equals I(D; = 1)(Ey; + Eo) T — I(Dy = 0)(E1s + Eay).

This motivates model (z) in our simulation study
(ZL’) Xt — -[(Dt — 1)(E1t + Egt)+ - I(Dt — O)(Elt + E2t>7

where {(Ey;, FEo)} is an i.i.d. Gaussian process, with m; = 10, mg = —1, p = 0.89 and
o, =1,i=1,2. And we take P(D; = 1) = 0.20, i.e. the chance of default is assumed to be
twenty percent.

Let MSE1, MSE2 denote the Monte Carlo estimates of the MSE of EVT'1, and EVT2,.
MSE3, MSE4 and MSES denote the same for the estimators C-T,, H-D,, and SV'3, respec-
tively. MSEG denotes the Monte Carlo MSE estimate of the quantile estimator Al, using
Epachnikov kernel and bandwidth by,,. MSE7 and MSES are the same for the estimators
S-G,, and the sample quantile SQ,,.

2.3 Findings

From each of the above models (i)-(x), we have the following simulation results

1. Comparison of MSEs. None of the nonparametric estimators can be claimed to be
uniformly the best in terms of their MSE for all the ten models. However, the EVT
based estimator EVT2, by Drees [33] seems to outperform the empirical estimator for
p = 0.01 and 30 < n < 500, based on i.i.d. data (see Table 2.1). For n < 500 and
p < 0.01, Swanepoel and Grann s’ estimator S-G,, performs best under ARMA model
(See Table 2.8).
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The MSE of EV'T2, is also substantially smaller than the same of S-G,,, for the GARCH
models (vii) and (viii) for p = 0.01 and 30 < n < 500 (see Table 2.3). For the GARCH
model (iz), the MSE of EVT2, and SV'3, seems to be only slightly smaller (less than
a percent) than the MSE of the empirical estimator SQ,. SQ, outperforms the other
nonparametric estimators for this model. Under i.i.d. assumption, the H-D estimator
performs well for n = 30 and data generated by the GPD distribution. But in general,
the accuracy of H-D, does not seem to be substantially superior to the S, especially

in the presence of dependence.

. For n <250 and k = [np] + 1, the EVT1, is not defined for p = 0.01. This is due to
the fact that for n < 250 and p = 0.01 (or less), k is small i.e. there are not enough
observations to fit the GPD distribution by maximum likelihood method. So EVT1,
is not recommended for small n and p close to zero. For large sample size, EVT1,
provides slight improvement over the empirical quantile estimator S@),, for p close to

zero and F' equal to a heavy tailed distribution function (See Table 2.1).

. Comparison of bias. For n > 100 and p = 0.01, the sample quantile seems to have
least bias per unit standard deviation under i.i.d. and GARCH models and the bias is
positive (see Tables 2.2 and 2.5). From the Tables 2.2, 2.4 and 2.5, we see that EVT2,
estimator is negatively biased irrespective of the underlying model. Hence, EVT2,
seems to under estimate a quantile in the right tail of /. The sample quantile S@,

seems to exhibit least bias per unit standard deviation (see Tables 2.2, 2.4 and 2.5).

. Small n and p close to zero. For n < 500 and p < 0.01, the MSE and also the bias
(per unit standard deviation) of the S-G, estimator seem to be substantially smaller

than the same of the empirical quantile estimator SQ, for ARMA models (see Tables
2.8 and 2.9).

For n < 500 and p = 0.001 the MSE and the bias of the 5S-G, estimator seems to
be substantially smaller than the same of the empirical quantile estimator S@, for
the GARCH models (see Tables 2.10 and 2.11). Under similar conditions the MSE of
the EVT2, estimator is also substantially smaller than that of the (1 — p)th sample

quantile for i.i.d. model with heavy tailed marginal distributions (see Table 2.6).

. Large n and p close to zero. From the Table 2.10 we see that for n > 500 and p = 0.001
the MSE of the SV; estimators is substantially smaller than that of the (1—p)th sample
quantile 5@, for the GARCH models (vii) and (viii). However for the GARCH (ix)
model, no other estimator seem to produce substantially improved quantile estimate

than the S@Q, for any value of p, especially for large n (see Tables 2.10 and 2.11).
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6. CNX Nifty data analysis. For the GARCH model (iz), the empirical quantile seems
to be the optimal estimator for n > 500 and any value of p. As mentioned above, this
model is a good fit to the CNX Nifty daily loss data for the duration 1st April 2009
to 31st March 2013. In this data the number of observations exceed 500. Therefore
based on the above simulation results we recommend the sample quantile SQ, as the
appropriate estimator of VaR and MS based on the CNX Nifty data (see Table 2.10).

The sample quantile based estimates of the 99 percent VaR and MS of the Nifty index
during 1st April 2009 to 31st March 2013 are equal to —0.013 and —0.015 respectively.
The MS value implies that during 1st April 2009 to 31st March 2013, the chance that
the return of the Nity index on a trading day was less than —1.45 percent seems to be

less than 0.5 percent.

7. Effect of netting. Under model (x), we see that the S-G, estimator outperforms the
empirical estimator for all choices of n and p = 0.01 (see Table A.12 of Appendix A).
We also observe that S-G, estimator outperforms the empirical estimator for n < 500
and p = 0.001. We observe that SV3 estimator outperforms the empirical estimator for
n > 100 and p = 0.01 (see Table 2.12). We also observe that the C-T, estimator seems
to be close to the empirical estimator (see Table 2.14). From Table 2.15, we observe
that SQ), estimator seems to have least bias per unit standard deviation and its bias is
positive. From Table 2.15, we see that SV3 estimator is negatively biased irrespective
of the underlying model. Hence, SV3 seems to under estimate a quantile in the right
tail of F'.

2.4 Concluding remarks

Remark 3. 1. Forn <500 and p = 0.001, the proposed S-G, estimator performs very well
under all the different time series models considered in our simulation study. We recommend
this estimator for estimation of extreme quantiles in the right tail of F', especially for small
n and p. Therefore this estimator appears to be useful for estimation of VaR and MS based
on short term (less than one financial year) asset return data. Under the assumption that
p — 0 as n — 00, investigating the theoretical properties of S-G, seems to be an interesting
but challenging problem.

2. The kernel based quantile estimator using the bandwidth by Alemany et al. [3] was
developed under i.i.d. assumptions. But our simulations reveal that the MSE values of the
Al, and sample quantile are close for ARMA and GARCH models, especially for large n.
For ARMA model, Al, outperforms the sample quantile for small n and p. These obser-
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vations naturally motivate an investigation of the properties of Al, under such dependence
assumptions.

3. VaR and MS estimation in presence of netting. In presence of netting, our new
proposed quantile estimator S-G, performs very well for all choices of n and p = 0.01. But
for p=0.001 the S-G, performs very well for n < 500. Hence, we recommend this estimator

for small n and p. Also for all choices of n and p = 0.01 this estimator is recommended.

Table 2.1: Ratios estimated at 99% for i.i.d. cases.
Dist n MSEL | MSE2 | MSE3 | MSEZ | MSE5 | MSEG | MSET
MSES | MSES | MSES | MSES | MSES | MSES | MSES

GPD 30 NaN | 2.247 | 0.873 | 0.882 | 0.689 | 1.188 | 1.010
100 | NaN | 0.213 | 0.854 | 1.406 | 0.548 | 1.375 | 1.455
250 | NaN | 0.691 | 1.222 | 2.435 | 1.156 | 0.998 | 0.974
500 | 0.886 | 0.814 | 1.269 | 1.251 | 0.939 | 1.004 | 0.994
1000 | 0.916 | 0.872 | 1.040 | 1.008 | 0.887 | 0.994 | 0.972
2500 | 0.979 | 0.961 | 1.154 | 0.992 | 0.939 | 0.991 | 0.976
Student’s t | 30 NaN | 1.512 | 1.817 | 0.926 | 0.821 | 0.999 | 0.921
100 | NaN | 0.356 | 1.297 | 1.299 | 0.591 | 1.264 | 1.232
250 | NaN | 0.751 | 1.095 | 1.702 | 0.931 | 0.961 | 0.900
500 | 0.922 | 0.817 | 1.003 | 1.112 | 0.876 | 0.982 | 0.911
1000 | 0.934 | 0.878 | 0.985 | 1.007 | 0.897 | 0.970 | 0.896
2500 | 0.964 | 0.950 | 1.116 | 0.981 | 0.930 | 0.966 | 0.921
N(0,1) 30 NaN | 1.167 | 0.822 | 0.997 | 1.037 | 0.858 | 0.996
100 | NaN | 0.863 | 0.997 | 1.042 | 0.861 | 1.024 | 1.531
250 | NaN [ 0.873 | 0.937 | 0.941 | 0.760 | 0.890 | 1

500 | 1.170 | 0.936 | 0.976 | 0.915 | 0.831 | 0.942 | 0.886
1000 | 1.096 | 0.983 | 1.022 | 0.910 | 0.864 | 0.943 | 0.947
2500 | 0.995 | 0.952 | 0.981 | 0.916 | 0.893 | 0.938 | 1.072
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Table 2.3: Ratios estimated at 99% for dependent cases.

Model 0 MSET | MSE2 | MSE3 MSET | MSE5 | MSEG | MSET
ARMEA MSES | MSES | MSES MSES | MSE8 | MSE8 | MSES
(0.95,-0.9) | 30 NaN | 1.0633 | 0.7585 1.0209 | 1.0959 | 0.8317 | 0.6788
100 | NaN | 0.957 | 0.922 1.023 | 0.946 | 0.998 | 0.833
250 | NaN | 0.950 | 0.905 0.922 ]0.821 | 0.910 | 0.769
500 | 1.247 | 0.985 | 1.092 0.885 | 0.870 | 0.930 | 0.795
1000 | 1.184 | 1.031 | 0.981 0.903 |0.913 |0.949 | 0.853
2500 | 1.245 | 1.014 | 0.985 0.901 |0.917 | 0.937 | 0.876
ARMA
(0.95,-0.6) | 30 NaN | NaN 0.923 1.029 | 1.090 | 0.878 | 0.7636
100 | NaN | NaN 1.028 0.990 | 1.108 | 0.973 | 0.883
250 | NaN | 1.051 | 0.929 0.927 10.981 | 0.958 | 0.876
500 | 1.139 | 1.053 | 1.218 0.963 |0.995 | 0979 | 0.913
1000 | 1.032 | 1.002 | 1.026 0975 10.979 | 0978 |0.922
2500 | 1.005 | 0.997 | 1.156 0.985 |0.982 | 0.987 | 0.957
ARMA
(0.3,0.9) 30 NaN | 0.955 | 0.880 1.032 | 1.107 | 0.771 | 0.672
100 | NaN | 0.965 | 0.954 0.983 ]0.958 | 0.948 | 0.871
250 | NaN |[0.929 | 1.131 0.958 ]0.843 | 0.891 | 0.819
500 | 1.101 | 0.942 | 1.016 0.949 | 0.886 | 0.934 | 0.862
1000 | 1.090 | 0.993 | 0.990 0944 10.923 | 0.932 | 0.868
2500 | 1.021 | 0.987 | 1.058 0.954 |0.943 | 0946 | 0.932
GARCH
(0.9) 30 NaN | 1.218 | 34.031 0.942 | 0.854 | 1.015 | 1.442
100 | NaN | 0.620 | 15.103 1.017 | 0.703 | 0.996 | 1.081
250 | NaN | 0.607 | 12.866 1.340 [ 0.884 |1 1.169
500 | 0.571 | 0.714 | 14.285 1.407 | 1.045 | 1.062 | 1.411
1000 | 0.939 | 0.848 | 15.151 1.462 | 1.254 | 1.052 | 2.024
2500 | 0.856 | 0.909 | 15.454 1.090 | 1.023 | 1.006 | 3.087
GARCH
(0.4,0.5) 30 NaN | 1.093 | 51.631 0.989 |0.981 | 1.005 | 1.626
100 | NaN | 0.811 | 19.722 1.003 | 0.862 | 1.049 | 1.331
250 | NaN | 0.751 | 13 1.104 | 0.897 | 1.000 | 1.342
500 | 0.749 | 0.799 | 11.714 1.122 | 0.941 | 1.030 | 1.467
1000 | 0.780 | 0.820 | 8.604 1.171 | 1.041 | 1.011 | 1.704
2500 | 0.959 | 0.987 | 9.230 1.067 | 1.026 | 0.996 | 2.512
GARCH
(0.075,
0.919) 30 NaN | 0.976 | 2219.411 | 0.989 | 1.060 | 0.995 | 11.197
100 | NaN | 0.998 | 1053.511 | 1.003 | 0.999 | 0.991 | 8.233
250 | NaN | 0.997 | 644.549 | 1.104 | 0.979 | 0.999 | 6.465
500 | 0.996 | 0.989 | 462.904 | 1.123 | 0.992 | 0.993 | 5.787
1000 | 0.974 | 0.984 | 290.94 1.171 | 0.996 | 1.002 | 4.837
2500 | 0.976 | 0.986 | 205.076 | 1.067 | 0.997 | 1.002 | 4.800
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Table 2.6: Ratios estimated for i.i.d. cases with varying p.

Dist 0 1 p | MSEL [ MSEZ [ MSE3 [ MSET [ MSE5 [ MSEG [ MSET
MSES | MSER | MSES | MSES | MSES | MSES | MSES

GPD 250 1 0.95 |0.903 | 0.901 | 0.994 | 1.009 | 0.865 | 1.217 | 0.936
097 |0.834 | 0.825 | 0.995 | 1.031 | 0.878 | 1.064 | 0.933

0.99 | NaN | 0.691 | 0.999 | 2.237 | 1.156 | 0.998 | 0.982

0.999 | NaN | 5.416 | 0.993 | 0.917 | 0.751 | 1.025 | 0.992

500 | 0.95 |0.964 | 0.954 | 0.996 | 0.979 | 0.918 | 1.025 | 0.943

0.97 |0.904 | 0.890 | 1.000 | 1.018 | 0.920 | 0.990 | 0.961

0.99 | 0.886 | 0.814 | 1.046 | 1.298 | 0.939 | 1.004 | 1.009

0.999 | NaN | 0.402 | 0.999 | 0.733 | 0.471 | 0.999 | 0.991

1000 | 0.95 | 0.957 | 0.952 | 0.997 | 0.971 | 0.930 | 0.965 | 0.954

0.97 10974 1 0.963 | 0.999 | 0.982 | 0.922 | 0.970 | 0.962

0.99 |0.916 | 0.872 | 1.012 | 1.052 | 0.887 | 0.994 | 0.979

0.999 | NaN | 0.305 | 1.680 | 1.354 | 0.563 | 1.414 | 1.318

Student’s t | 250 | 0.95 | 0.972 | 0.957 | 0.936 | 0.943 | 0.897 | 0.932 | 0.921
0.97 10.920 | 0.891 | 0.968 | 1.014 | 0.862 | 0.915 | 0.875

0.99 | NaN | 0.751 | 0.990 | 1.761 | 0.931 | 0.961 | 0.866

0.999 | NaN | 4.130 | 0.989 | 0.932 | 0.812 | 0.980 | 0.974

500 | 0.95 | 1.027 | 0.995 | 0.978 | 0.955 | 0.930 | 0.931 | 0.953

0.97 10985 | 0.946 | 0.983 | 0.974 | 0.882 | 0.932 | 0.867

0.99 |0.922 | 0.817 | 1.026 | 1.207 | 0.876 | 0.982 | 0.929

0.999 | NaN | 0.494 | 0.999 | 0.780 | 0.527 | 0.996 | 0.993

1000 | 0.95 | 0.996 | 0.984 | 0.980 | 0.957 | 0.936 | 0.941 | 0.978

0.97 10.992 | 0.964 | 0.984 | 0.954 | 0.918 | 0.940 | 0.910

0.99 |0.934 | 0.878 | 0.996 | 1.065 | 0.897 | 0.970 | 0.886

0.999 | NaN | 0.468 | 1.225 | 1.231 | 0.619 | 1.317 | 1.103

N(0,1) 250 | 095 |1.016 | 0.981 | 0.913 | 0.912 | 0.856 | 0.907 | 0.978
0.97 | 1.024 | 0.960 | 0.913 | 0.861 | 0.837 | 0.903 | 0.884

0.99 | NaN | 0.873 | 0.933 | 0.942 | 0.760 | 0.890 | 0.771

0.999 | NaN | 1.248 | 0.872 | 1.011 | 1.053 | 0.825 | 0.611

500 | 0.95 | 1.028 | 0.982 | 0.941 | 0.909 | 0.912 | 0.932 | 0.954

0.97 | 1.048 | 0.970 | 0.944 | 0.945 | 0.878 | 0.917 | 0.945

0.99 | 1.170 | 0.936 | 0.965 | 0.935 | 0.831 | 0.942 | 0.893

0.999 | NaN | 0.829 | 0.976 | 0.901 | 0.849 | 0.960 | 0.753

1000 | 0.95 | 1.013 | 0.990 | 0.933 | 0.933 | 0.937 | 0.944 | 1.059

0.97 | 1.039 | 1.004 | 0.943 | 0.922 | 0.911 | 0.934 | 1.053

0.99 | 1.096 | 0.983 | 0.960 | 0.921 | 0.864 | 0.943 | 0.920

0.999 | NaN | 0.824 | 0.996 | 1.048 | 0.828 | 1.182 | 0.823
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Table 2.8: Ratios estimated for ARMA model with varying p.
NModel Coelf [0 | 1—p | J31 [ 3 | I [ aoer T [ oo | aroy
(0.95,—0.9) 250 1 0.95 | 1.0572 | 1.0207 | 0.9516 | 0.9157 | 0.9245 | 0.9267 | 0.9118

0.97 | 1.068 | 1.004 |0.947 |0.943 |0.888 | 0.910 | 0.851

0.99 | NaN 0.950 | 0.938 |0.939 |0.825 | 0.910 | 0.799
0.999 | NaN 1.185 | 0.868 | 1.017 | 1.062 | 0.835 | 0.623

500 ] 0.95 | 1.111 | 1.0564 |0.974 | 0.948 |0.954 | 0.938 | 1.080
0.97 | 1.168 | 1.070 | 0.967 | 0.941 |0.936 | 0.932 | 0.828

0.99 |1.247 | 0985 |0.960 | 0.957 | 0.870 | 0.930 | 0.840
0.999 | NaN 0.886 | 0.967 | 0.908 |0.924 | 0.952 | 0.736

1000 | 0.95 | 1.063 | 1.028 | 0.977 | 0978 |0.971 |0.949 | 1.180
0.97 | 1.107 | 1.050 | 0.955 | 0.955 | 0.968 | 0.955 | 1.011

0.99 |1.184 | 1.031 |0.966 | 0.944 |0.913 | 0.949 | 0.862
0.999 | NaN 0.891 | 1.020 | 1.039 | 0.889 | 1.102 | 0.944
(0.95,—0.6) 250 |1 0.95 | 1.027 |1.018 | 0.991 | 0.915 | 0.989 | 0.987 | 0.951
0.97 | 1.051 | 1.031 |0.990 |0.944 |0.985 |0.973 | 0.914

0.99 | NaN 1.051 | 0.983 |0.939 |0.981 |0.958 | 0.879
0.999 | NaN 0.921 |0.921 | 1.017 |1.077 | 0.845 | 0.672

500 | 0.95 | 1.019 |1.009 |0.994 |0.991 | 0.986 | 0.9804 | 0.9442
0.97 |1.038 | 1.017 |0.992 | 0.976 |0.988 | 0.982 | 0.919

0.99 |1.139 | 1.053 |0.989 | 0.960 |0.995 | 0.979 | 0.896
0.999 | NaN 1.099 |0.98 | 1.056 | 1.156 | 0.941 | 0.787

1000 | 0.95 | 1.012 | 1.009 | 0.997 | 0.989 |0.995 |0.991 | 0.974
0.97 | 1.019 |1.011 | 0.997 | 0.988 |0.993 | 0.989 | 0.991

0.99 |1.032 | 1.002 |0.990 | 0.976 |0.974 |0.978 | 0.915
0.999 | NaN 1.119 | 1.004 | 0.996 | 1.102 | 1.003 | 0.855
(0.3,0.9) 250 | 0.95 |1.015 | 0991 |0.961 |0.946 |0.915 | 0.918 | 0.882
0.97 | 1.039 |0.997 |0.957 | 0.961 | 0.900 | 0.919 | 0.890

0.99 | NaN 0.929 |0.972 |0.993 |0.843 | 0.891 | 0.869
0.999 | NaN 1.051 |0.913 | 1.015 |1.072 |0.773 | 0.601

500 10.95 |1.045 |1.014 |0.976 | 0.966 | 0.948 | 0.938 | 0.971
0.97 | 1.040 ]0.991 |0.983 |0.982 | 0.926 | 0.934 | 0.845

0.99 | 1.101 |0.942 |0.985 | 1.010 | 0.886 | 0.929 | 0.871
0.999 | NaN 0.914 ] 0.986 | 0.927 |0.936 | 0.925 |0.799

1000 | 0.95 | 1.032 |1.014 | 0.975 | 0.981 | 0.956 | 0.933 | 0.881
0.97 | 1.055 ] 0.991 |0.982 | 0.985 | 0.947 | 0.930 | 1.002

0.99 | 1.090 |0.942 |0.985 |0.978 |0.923 |0.932 | 0.788
0.999 | NaN 0.914 ]0.998 | 1.018 | 0.886 | 0.993 | 0.875
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Table 2.10: Ratios estimated for GARCH model with varying p.

Model Coefl |1 [ 1—p | BSEL | MSEZ [ WSES [ MSET | M [ mSE [
a=09 250 | 0.95 |0.862 | 0.874 | 502.127 | 1.1790 | 0.997 | 0.997 | 21.081
0.97 |0.797 | 0.831 | 127.887 | 1.498 | 1.026 | 0.999 | 6.554
0.99 | NaN 0.607 | 22.454 1.324 | 0.884 | 1.0000 | 1.169
0.999 | NaN 1.358 | 2.909 0.978 | 0.956 | 0.999 | 0.763
500 ] 0.95 [0.936 |0.938 | 619.296 | 1.059 | 0.991 | 0.998 | 36.187
0.97 |0.911 | 0.931 | 269.253 | 1.137 | 1.003 | 1.002 | 12.610
0.99 | 0.550 | 0.624 | 19.244 1.511 | 1.045 | 1.062 | 1.411
0.999 | NaN 0.762 | 2.307 0.879 |0.734 |1 0.912
1000 | 0.95 | 0.982 | 0.982 | 718.174 | 1.038 | 0.980 | 1.058 | 59.782
0.97 ]0.956 | 0.961 | 302.152 | 1.067 | 1.002 | 1.026 | 21.052
0.99 | 0.910 | 0.854 | 28.349 1.182 | 1.254 | 1.052 | 2.024
0.999 | NaN 0.752 | 1.907 1.072 | 0.781 | 0.912 | 0.980
a =04,
=05 250 1095 [0.929 |0.951 | 161.733 | 1.085 | 1.026 | 0.999 | 9.344
0.97 | 0.815 | 0.900 | 70.594 1.151 | 0.957 | 0.999 | 3.371
0.99 | NaN 0.751 | 16.545 1.072 | 0.897 | 1.000 | 1.208
0.999 | NaN 1.090 | 5.494 1.004 | 1.017 | 0.997 | 0.553
500 | 0.95 |0.968 | 0.966 | 184.817 | 1.076 | 0.975 | 0.998 | 14.098
0.97 |0.872 | 0.931 | 101.86 1.048 | 0.979 | 1.013 | 5.126
0.99 |0.710 | 0.799 | 17.538 1.057 | 0.941 | 1.030 | 1.186
0.999 | NaN 0.914 | 2.251 0.977 | 0.898 | 0.999 | 0.879
1000 | 0.95 | 0.990 | 0.984 | 252.187 | 1.024 | 0.989 | 1.002 | 21.016
0.97 |0.982 | 0.962 | 116.344 | 1.031 | 1.002 | 1.003 | 10.479
0.99 | 0.816 | 0.820 | 26.623 1.171 | 1.041 | 1.011 | 2.118
0.999 | NaN 0.784 | 1.211 1.024 | 0.824 | 1.006 | 0.894
a = 0.075,
£ =0.919 250 1 0.95 | 0.956 | 0.965 | 1905.106 | 1.005 | 0.981 | 1.000 | 18.392
0.97 |0.979 | 0.989 | 1152.501 | 0.986 | 1.008 | 1.000 | 13.384
0.99 | NaN 0.997 | 1204.665 | 1.014 | 0.979 | 0.999 | 8.206
0.995 | NaN 1 413.582 | 0.936 | 0.965 | 0.995 | 3.671
0.999 | NaN 0.937 | 365.082 | 1.013 | 1.041 | 0.995 | 0.666
500 | 0.95 |0.969 |0.980 | 1016.256 | 1.027 | 0.986 | 1.001 | 13.839
0.97 ]0.969 | 0.979 | 931.328 | 1.021 | 0.998 | 0.996 | 9.864
0.99 | 0.9966 | 0.989 | 508.175 | 0.995 | 0.992 | 0.993 | 5.912
0.995 | NaN 0.999 | 334.377 | 0.984 | 0.989 | 1.000 | 3.372
0.999 | NaN 1.058 | 235.944 | 1.025 | 1.081 | 0.999 | 0.333
1000 | 0.95 | 0.969 | 0.977 | 602.071 | 1.005 | 0.997 | 1.001 | 19.276
0.97 ]0.962 | 0.972 | 609.922 | 1.010 | 0.997 | 0.999 | 7.365
0.99 |0.974 |0.984 | 382.135 | 1.017 | 0.996 | 1.002 | 3.478
0.995 | 0.976 |1 223.585 | 1.009 | 0.990 | 1.007 | 2.900
0.999 | NaN 1.050 | 187.984 | 0.994 | 1.041 | 0.998 | 2.181
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Table 2.12: Ratios estimated under netting condition at 99%.

Cond n MSE1 MSE2 MSE3 MSE4 | MSES MSE6 | MSE7
. MSES MSES8 | MSES MSES | MSES MSES8 | MSES

Netted | 30 NaN | NaN | 0.941 | 1.041 | 1.200 | 1.836 | 0.771
100 | NaN | NaN | 1.006 | 1.013 | 0.940 | 1.437 | 0.896
250 | NaN | NaN | 0.982 | 0.856 | 0.778 | 1.232 | 0.799
500 | 1.436 | NaN | 0.996 | 0.880 | 0.834 | 1.177 | 0.778
1000 | 1.043 | 1.085 | 0.991 | 0.944 | 0.892 | 1.070 | 0.792
2500 | 1.057 | 1.017 | 0.990 | 0.932 | 0.920 | 1.274 | 0.878

Table 2.13: Bias/sd estimated under netting condition at 99%.

Cond. n Bias Bias Bias Bias Bias Bias Bias Bias
sd(EVT1y) sd(EVT2y) sd(C-Typ) sd(H-Dp) sd(SV3p) sd(ALp) sd(S-Gp) sd(SQp)

Netted | 30 NA NA -0.504 | -0.635 |-0.953 |0.734 |-0.157 |-0.515
100 | NA NA -0.017 | -0.015 |-0.403 | 0.748 | 0.125 -0.035

250 | NA NA -0.149 | 0.089 -0.169 | 0.784 | 0.250 -0.200
500 | -0.817 NA -0.006 | -0.026 |-0.019 |0.749 | 0.117 -0.208

1000 | -0.335 -0.342 0.013 0.196 -0.096 | 0.598 | 0.173 0.056
2500 | -0.312 -0.214 0.015 0.036 0.232 0.243 | 0.270 -0.059

Table 2.14: Ratios estimated under netting condition with varying p.

Cond. 1 n 1= MSET | MSEZ | MSE3 | MSEA | MSE5 | MSE6 | MSET
: D | 3%SER | MSES | MSES | MSER | MSES | MSES | MSER

Netted | 250 | 0.95 | 1.130 | NaN | 0.981 | 0.897 | 0.912 | 1.068 | 0.875
0.97 | 1.085 | NaN | 0.978 | 0.861 | 0.881 | 1.061 | 0.865
0.99 | NaN | NaN | 0.982 | 0.856 | 0.778 | 1.232 | 0.799
0.999 | NaN | NaN | 0.939 | 1.019 | 1.088 | 0.596 | 0.618

500 | 0.95 | 1.062 | NaN | 0.986 | 0.933 | 0.910 | 1.044 | 0.887
0.97 | 1.156 | NaN | 0.986 | 0.900 | 0.889 | 1.222 | 0.883
0.99 | 1.436 | NaN | 0.996 | 0.880 | 0.834 | 1.177 | 0.778
0.999 | NaN | 0.937 | 0.993 | 0.919 | 1.072 | 0.624 | 0.769

1000 | 0.95 | 1.013 | NaN | 0.992 | 0.932 | 0.926 | 1.001 | 0.882
0.97 | 1.105 | NaN | 0.992 | 0.925 | 0.897 | 1.087 | 0.914
0.99 | 1.043 | 1.085 | 0.991 | 0.944 | 0.892 | 1.070 | 0.792
0.999 | NaN | 0.857 | 0.990 | 1.020 | 0.805 | 0.946 | 0.906
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Table 2.15: Bias/sd estimated under netting condition with varying p.

Cond.

n

1-p

Bias

Bias

Bias

Bias

Bias

Bias

Bias

Bias

sd(BVT1,) | sd(EVT2,) | 5d(C-Tp) | sd(H-Dp) | 5d(SV3,) | sd(ALp) | sd(S-Gp) | sd(SQp)
Netted | 250 | 0.95 | -0.358 NA 0.020 -0.047 |-0.182 | 0.363 | 0.101 -0.034
0.97 | -0.368 NA 0.063 0.031 -0.231 | 0.557 | 0.261 0.043

099 | NA NA -0.149 | 0.089 -0.169 | 0.784 | 0.250 | -0.200

0.999 | NA NA -0.631 | -0.862 |-1.066 | 0.432 |-0.089 |-0.686

500 | 0.95 |-0.217 NA 0.067 0.096 -0.051 ] 0.387 | 0.226 | 0.055

0.97 |-0.385 NA 0.135 0.050 -0.140 | 0.618 | 0.233 |-0.013

0.99 |-0.817 NA -0.006 |-0.026 |-0.019 |0.749 |0.117 |-0.208

0.999 | NA -0.714 -0.149 | -0.377 ]-0.948 | 0.255 |0.119 | -0.167

1000 | 0.95 |-0.141 NA -0.194 | 0.083 0.198 0.371 | 0.146 | -0.069

0.97 |-0.329 NA -0.012 | -0.040 |-0.004 | 0.500 | 0.322 0.034

0.99 |-0.335 -0.342 0.013 0.196 -0.096 | 0.598 | 0.173 | 0.056

0.999 | NA -0.445 0.068 -0.003 |-0.238 | 0.555 |0.348 | 0.121
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