
Chapter 2

VaR, MS and Extreme Quantile
Estimation

From equations (1.1) and (1.3) in Chapter 1, we observe that VaR and MS of an asset turn

out to be extreme quantiles of the marginal distribution of the asset return time series. In

this chapter, we study the accuracy of several nonparametric and extreme value theory based

estimators of extreme quantiles and compare their known properties. We compare their finite

sample performance using Monte Carlo simulation. A new quantile estimator is proposed

which exhibits encouraging finite sample performance while estimating extreme quantile in

the right tail region.

2.1 Nonparametric quantile estimators

In this section we review some known nonparametric and extreme value theory based quantile

estimators.

2.1.1 Sample & kernel quantile estimators

A natural estimator of Qp is obtained as follows

Q̂p = inf{x : F̂ (x) ≥ 1− p},

where F̂ is a distribution function estimator of F based on X1, · · · , Xn. Let X(1), · · · , X(n)

denote the corresponding order statistics. Also let I(·) be the indicator function, with I(S)

equal to 0 or 1 according as the statement S is false or true. If F̂ (x) = 1
n

∑n
i=1 I(Xi ≤ x) i.e.

F̂ is the empirical distribution function, Q̂p equals X([n(1−p)]+1), where bxc denotes the inte-

gral part of x. It is the (1− p)th sample quantile (we call it SQp). Asymptotic properties of

the sample quantile are well known under i.i.d. assumption (see [92]). Recently, asymptotic

properties of the SQp has been studied extensively under various dependence assumptions.
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(See for instance, [99], [106], [68], [104] among most recent). Under strong mixing dependence

(with polynomial mixing rate) assumption, Wang et al. [104] obtained Bahadur represen-

tation of sample quantile which provides insight into the rate of strong convergence of the

SQp under this dependence assumption. Under similar dependence assumption, Lahiri and

Sun [68] obtained an upper bound of the accuracy of normal approximation to the sampling

distribution of the SQp. These results provide insight into the accuracy of the SQp under

strong mixing type dependence assumption. These asymptotic properties are obtained under

the condition that p is kept fixed, as n is increased. The following Theorem provides the

necessary conditions for strong convergence of the sample quantile SQp, under the condition

that p = o(1) as n→∞.

Theorem 2.1.1. Let X1, · · · , Xn be i.i.d. random variables with a continuous density f

satisfying f(x) > 0 ∀x and f(x) → 0 as |x| → ∞. For every δ > 0, ∃x0 > 0 such that∣∣∣f(x±y)
f(x)

− 1
∣∣∣ < δ for all x > x0 and 0 < y < 1. Further let

p = o(1) and εn =

√
2 log(n)√
nf(Qp)

= o(1) as n→∞.

Then as n→∞
SQp −Qp = O (εn) , a.s.

Proof. Under the conditions stated in Theorem 2.1.1, the distribution function F is

continuous and strictly increasing, 0 < F (x) < 1 ∀x and F (x) → 1, as x → ∞. Therefore

Qp is the unique solution of F (x−) < 1− p ≤ F (x) ∀ 0 < p < 1 and Qp →∞ as p = o(1).

Then by Theorem 2.3.2 in page 75, Serfling(1980), we see that for every ε > 0, there exists

a δ = min{F (Qp + ε)− q, q − F (Qp − ε)}, where q = 1− p, such that

P (|SQp −Qp| > ε) ≤ 2 exp(−2nδ2). (2.1)

The above inequality holds for every n and 0 < p < 1. Therefore even under the condition

p = o(1) as n → ∞, the above inequality continues to hold for each fixed n. Under the

stated conditions F (Qp) = q. Therefore, under the conditions on f , F is differentiable and

we have

δ = εmin{f(Qp + θε), f(Qp − θ′ε)} , 0 < θ, θ′ < 1.

Let us define, εn =

√
2 log(n)
√
nf(Qp)

. Under the stated conditions, εn > 0, ∀n and εn = o(1) as

n → ∞. We now apply the inequality (2.1) with εn and under the stated conditions on f

the corresponding δn satisfies

δn =

√
2 log(n)√
nf(Qp)

min{f(Qp + θεn), f(Qp − θ′ε)} ≥
√

log(n)√
n

, for all sufficiently large n.
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Therefore from the inequality (2.1),

P (|SQp −Qp| > εn) ≤ 2

n2
, for all sufficiently large n.

Now by Borel Cantelli Lemma, P (|SQp − Qp| > εn i.o.) = 0. Therefore there exists an

event A with P (A) = 1, such that for each ω ∈ A, the sequence |SQp(w)−Qp|
εn

is bounded. This

completes the proof. �

Remark 1. 1. If p is kept fixed, then the condition εn = o(1) is trivial and Theorem 2.1.1

essentially reduces to the Lemma B in page 96, in Serfling [92].

2. If p = o(1) as n → ∞, the stated conditions on F and f ensure that Qp → ∞ and

0 < f(Qp) = o(1) as n→∞. The condition εn = o(1), ensures that f(Qp) does not converge

to zero too fast as p→ 0 with increase in the sample size n.

3. If the marginal distribution is standard GPD with location parameter µ = 0, scale

σ = 1, shape parameter ξ, then f(Qp) = pξ+1 and Theorem 2.1.1 holds for p = o(1),

provided
√

n
log(n)

pξ+1 →∞ as n→∞.

A wide variety of other nonparametric distribution function estimators are available in

the literature. See for instance [34] for a detailed review and comparison of these estimators.

Using these distribution function estimators in Q̂p we get different versions of Q̂p. For

instance, one can use F̂ (x) equal to a kernel based distribution function estimator defined

as follows

F̂ (x) =
1

nb

n∑
i=1

∫ x

−∞
w

(
t−Xi

b

)
dt.

where b > 0 is the bandwidth and w is a probability density function with zero mean and

finite variance, known as the kernel. b depends on n and b → 0 as n → ∞. In the kernel

based method the main problem lies with the selection of bandwidth. Azzalini, Bowman

and Chen and Tang provide some choice of the bandwidth parameter (see [7], [16], [23]).

Chen and Tang have obtained the asymptotic bias, variance and the rate of almost sure

convergence of their version of Q̂p, under the assumption that {Xt} is a stationary geometric

α-mixing process (see [23]). The authors suggested the following choice for the optimal value

of b,

bopt1 =

{
2f 3(Qp)b

σ4(f (1)(Qp))2

}1/3

n−1/3,

where b =
∫
uw(u)G(u)du, and σ2 =

∫
u2w(u)du. G(·) is the distribution function of the

distribution with density w. bopt1 involves unknown constants Qp, f and its derivative f (1)

at Qp. Chen and Tang suggested to approximate Qp in bopt1 by the corresponding sample

quantile (see [23]). The authors suggested to approximate f and f (1) by the density and
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the first derivative of the Generalized Pareto distribution. We denote the Chen and Tang’s

quantile estimator by C-Tp.

Alemany et al. proposed another bandwidth suitable for kernel based estimation of V aRp

for p close to 0, using Epanechnikov kernel (see [3], proposition 2). Their proposal was based

on minimizing a weighted mean integrated squared error WISE = E{
∫

[F̂ (x)−F (x)]2x2dx}
which assigns more weight in the tail region than the ordinary mean integrated squared

error. The minimization of this criterion leads to the following optimal bandwidth

bopt2 =

(
E(X2

1 )
∫
G(u)(1−G(u))du∫

(f (1)(x))2x2dx(
∫
t2w(t)dt)2

)1/3

n−1/3.

The authors suggested to compute the unknown functionals of f by assuming that f is a

normal density with mean 0 and variance σ2. This leads to bopt2 = σ5/3(8/3)1/3n−1/3. σ is

estimated from the data. Let Alp denote the quantile estimator by Alemany et al. (see [3]).

Remark 2. The bandwidth proposed by Alemany et al. was obtained under i.i.d. assumption

(see [3]). It remains to be seen how the resulting quantile estimator performs in the presence

of α-mixing type dependence.

Empirical versus kernel estimator

1. Under the assumption that {Xt} is a stationary geometric α−mixing process, Chen

and Tang [23] proved that as n→∞

C-Tp −Qp = o
(
n−1/2 log(n)

)
, a.s.,

Under similar assumptions, using the Bahadur type representation of SQp in Wang et

al. and a Bernstein type inequality for strongly mixing processes in Merlevede et al.

we see that ([104], [79])

SQp −Qp = o
(
n−1/2(log(n))3/4

)
, a.s..

Therefore under similar conditions the sample quantile seem to possess faster rate of

strong convergence, as n is increased.

2. The sampling distributions of both sample quantile and the kernel quantile estimators

can be approximated by normal distributions. However, the following result is known

only for the sample quantile. Under the assumption that {Xt} is a stationary α−mixing

process with α(n) < c
nd

and c > 1, d > 12, Lahiri and Sun [68] proved that there exists

a constant C ≥ 1 such that for all n ≥ 1,

sup
x∈R

∣∣P (√n(SQp −Qp) ≤ x
)
−Ψ(x)

∣∣ ≤ C√
n
. (2.2)
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This result provides insight into the accuracy of the normal approximation to the

sampling distribution of SQp under the stated dependence assumption. Such a result

does not seem to be known for the kernel based quantile estimators.

3. The kernel method depends crucially on the choice of the bandwidth b. Under strongly

mixing dependence assumption Chen and Tang obtained asymptotically optimal value

of b, which depends on unknown constants (see [23]). So the optimal b has to be again

estimated from the data. Even with this optimal choice of b the difference in accuracy

between the kernel based estimator and SQp can be quite small. For example, from the

simulation study in Chen and Tang we see that for the ARCH(1) model and p = 0.99,

the improvement in the standard deviation and the root mean squared error of their

kernel quantile estimator is less than three percent the same for the SQp (see [23]).

2.1.2 L-estimator

The sample quantile X([n(1−p)]+1) is a natural estimator of the population quantile. But it

is effected by the variability of individual order statistics. An obvious way of improving the

efficiency of sample quantiles is to reduce this variability by forming a weighted average of

all the order statistics, using an appropriate weight function (see [95]). Such an estimator

is commonly called an L−estimator. A popular class of L−estimators is a kernel quantile

estimator defined as follows ([95])

Q̂L =
n∑
i=1

[∫ i
n

i−1
n

w

(
t− p
b

)
dt

]
X(i),

where w is a density function called the kernel, b > 0 and b → 0 as n → ∞. b is called the

bandwidth. Sheather and Marron provide a detailed theoretical analysis of the asymptotic

properties of Q̂L and a data based method for choice of b (which appears to be very com-

plicated) (see [95]). The authors conclude that one can expect only modest improvement

(upto 15 percent) over the sample quantile, even with the best possible L−estimator. Given

this limited improvement, the effort involved in data based choice of b and the contrasting

ease with which one can compute X([n(1−p)]+1) and its known asymptotic properties, the later

seems to be a more reasonable choice.
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2.1.3 Harrell-Davis (1982)

Harrell-Davis [52] introduced a quantile estimator (we call it H-D estimator) which is a

weighted linear combination of order statistics defined as follows

H-Dp =
n∑
i=1

wiX(i)

wi = Ii/n((1− p)(n+ 1), p(n+ 1))− I(i−1)/n((1− p)(n+ 1), p(n+ 1)), i = 1, · · · , n,

where Ix(a, b) denotes incomplete beta function.

Based on simulation study Harrel-Davis suggested that their estimator has much to offer

over the sample quantile especially for extreme quantiles (see page 639, [52]). The H-D

estimator is the limit of a bootstrap average as the number of bootstrap resamples becomes

infinitely large. It is available in R software (see hdquantile function in Hmisc package in R

software for statistical computing).

2.1.4 SV estimators

Sfakianakis and Verginis introduced three L-statistics type estimators, SV 1p, SV 2p and

SV 3p (see [93]). Among these estimators SV 3p seems to be the appropriate estimator for

Qp, especially for p close to zero. It is defined as follows

SV 3p =
n∑
i=1

B(i, n, 1− p)X(i) + (2X(1) −X(2))B(0, n, 1− p),

where B(i, n, 1 − p) is the probability mass function of the Binomial distribution with pa-

rameters n and 1− p.

2.1.5 Quantile estimation based on Extreme Value Theory (EVT)

In this approach the idea is to let the tails speak for themselves, that is, use merely the

largest returns for the estimation of the extreme quantiles (see [33]). Estimation of quantiles

for values of 1−p close to 1 by extreme value theory is related to Pickands-Balkema-de Haan

theorem (see [10]). Pickands-Balkema-de Haan theorem claims that if F is in the domain

of attraction of the Generalized Extreme Value (GEV) (we denote it by F ∈ D(GEV)),

the conditional distribution of X1 − u, given that X1 > u, can be well approximated by

Generalized Pareto distribution (GPD) with tail parameter ξ and with some shape parameter

β(u), for u large enough (see [21]). Based on this theorem, a GPD distribution fitted to

the k largest observations in the sample to approximate the tail of the conditional loss

distribution, given that the loss exceeds some threshold value. Let ξ̂ and β̂ denote the
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maximum likelihood estimates of the GPD (with threshold X(n−k)) based on {X(n−k+1) −
X(n−k), . . .,X(n) −X(n−k)}. Under the assumption that ξ > 0, the (1 − p)th quantile of the

loss distribution is approximated by the (1 − p)th quantile of the fitted GPD distribution.

The resulting estimator is given by

EV T1p = X(n−k) +
β̂k

ξ̂k

([n
k

(1− p)
]−ξ̂k
− 1

)
, (2.3)

For small k (i.e. for large threshold), the GPD approximation of the tail of F is more accurate

(assuming F ∈ D(GEV)), but lesser observations in the sample are available for fitting the

GPD. In contrast for large k, more data are available for fitting the GPD distribution, but

the GPD approximation to the tail of F is biased. Consequently, an important issue in this

approach is the choice of k (see [56]). Usually, k is a function of n, satisfying k → ∞ and
k
n

= o(1), as n → ∞. From extensive simulation we find that k = [np] + 1 works well for

i.i.d. as well as GARCH(1,1) time series model, especially for p close to zero (k = [np] + 1

satisfies the condition k
n

= o(1), provided p→ 0 as n→∞).

Under i.i.d. assumption the condition that F is in the domain of attraction of the GEV is

equivalent to the condition that there exists an > 0, bn ∈ R such that
X(n)−bn

an
converges in

law to a GEV distribution, with parameters ξ and β, as n is increased. Drees has extended

the extreme value theory based estimation of extreme quantiles in the presence of β−mixing 1

type dependence (which cover a broad class of time series models, including those considered

in this chapter) (see [33]). The author assumed that the common distribution function F

satisfies the property that as λ→ 0

F−1(1− λt)
F−1(1− λ)

→ 1

tξ
, t > 0,

for some ξ > 0. Under this assumption one can argue that for small (positive) ξ

Qp ≡ Qkn/n

(
kn
np

)ξ
,

where c ≡ d means the ratio c/d is close to one. Above approximation naturally leads to the

following estimator

EV T2p = X(n−kn)

(
kn
np

)γ̂n
, (2.4)

1The series {Xt}t∈N is said to be β-mixing if

β(l) := sup
m∈N

E
(

sup
A∈B∞

m+l+1

|P (A|Bm1 )− P (A)|
)
→ 0

as l→∞, where Bm1 and B∞m+l+1 denote the σ-fields generated by {Xt, 1 ≤ t ≤ m} and {Xt,m+ l+ 1 ≤ t}
(see [33]).

18



here 1 ≤ kn < n and kn → ∞, kn
n
→ 0, as n → ∞. γ̂n is a suitable estimator of the tail

index γ̂, say the Hill estimator

γ̂n =
1

kn

kn∑
i=1

log
X(n−i+1)

X(n−kn)

.

Drees have studied extreme quantile estimation in the presence of β−mixing type dependence

(see [33]). For instance, under the assumption that as n → ∞, p → 0 in such a way that
log(n(1−p))√

kn
, n(1−p)

kn
→ 0,

√
kn

log(kn/np)

(
EV T2p
Qp

− 1

)
d−→ N

(
0, σ2

T,γ

)
,

with σ2
T,γ as defined in Drees [33]. From Remark 2.5, in page 627 in Drees [33] we see that

for a broad class of β−mixing processes and k = [np] + 1 his EVT estimator EV T2p is a

consistent estimator with relative estimation error of order 1√
np

, where p → 0 and np → ∞
as n is increased.

2.1.6 Qantile estimation based on transformation

In this approach we first construct a quantile estimator based on the transformed data

Yi = T (Xi), i = 1, · · · , n, where T : R → [0, 1] is a monotonic increasing invertible

function. The quantile estimator based on X1, · · · , Xn is obtained by back transform, i.e.

Q̂p(X1, · · · , Xn) = T−1(Q̂p(Y1, · · · , Yn)). This is due to the fact that if Qp is the (1− p)th
quantile of X1, T (Qp) is the (1− p)th quantile of Y1 and vice versa. T can be chosen to be

a continuous distribution function estimator based on the original data or the distribution

function of a suitable continuous distribution fitted to the data X1, · · · , Xn.

Kernel based transform

Swanepoel and Grann introduced the idea of distribution function estimation based on a

nonparametric transformation of the data (see [100]). Their suggestion was based on the

fact that if X1, · · · , Xn are identically distributed with distribution function F , with density

f then

Sn(x) =
1

n

n∑
i=1

K

(
F (x)− F (Xi)

h

)
,

is an unbiased estimator of F (x), where K is a known distribution function with a symmetric

density supported on [−1, 1]. For proof, see the calculations following equation (25) in page

560 in Swanepoel and Grann (see [100]). This result implies that the bias of a kernel based

distribution function estimator can be eliminated by transforming the data. In practice F is
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unknown, and the authors suggested to replace F in Sn by another kernel based distribution

function estimator with smoothing parameter say g. This leads to the following distribution

function estimator

F̃n(x) =
1

n

n∑
i=1

K

(
Fn,g(x)− Fn,g(Xi)

h

)
,

where Fn,g(x) = 1
n

∑n
i=1 K

(
x−Xi
g

)
, g = chα, 1 ≤ α < 3. In Theorem 1, page 554, Swanepoel

and Grann [100] obtained the asymptotic bias and variance of F̃n(x). See equations (14) and

(15) in Swanepoel and Grann ([100]). Swanepoel and Grann suggested to use

g = h =

[
375
√

3

28π

]1/7

σ−4/7n−1/7,

where σ = min{S, IQR/1.349}, S and IQR are the sample standard deviation and inter

quartile range respectively (see [100]). The authors claim that using such choice of g and

h, and Epanechnikov kernel considerable bias and MISE (mean integrated squared error)

reduction are achieved.

We hope that an improved distribution function estimator can provide better quantile

estimate. Hence we define a kernel estimator based on Swanepoel and Grann’s distribution

function estimator as follows

S-Gp = inf{x : F̃n(x) ≥ 1− p}. (2.5)

where F̃n(x) is the Swanepoel and Grann’s distribution function estimator defined above.

First we state an asymptotic property of the estimator F̃n.

Lemma 2.1.2. (Dutta [37]) Let X1, · · · , Xn be i.i.d. random variables with distribution

function F and density f which has a bounded derivative. The kernel distribution function

K is differentiable, with a bounded kernel density k with zero mean and finite variance. The

bandwidth sequences g, h satisfies that g = h = o(1) as n → ∞. Let bn = o(1) such that

nb2
n →∞, as n→∞ and

∑∞
n=1 exp(− 1

4||k||nb
2
nh

2) <∞. as n→∞, then

∞∑
n=1

P
[
||F̃n − F || > bn

]
<∞.

Repeating the arguments similar to those used in the proof of the Theorem and the above

Lemma we get the following asymptotic property of the S-Gp estimator.

Theorem 2.1.3. Let X1, · · · , Xn be i.i.d. random variables with a continuous density f

satisfying f(x) > 0 ∀x and f(x) → 0 as |x| → ∞. For every δ > 0, ∃x0 > 0 such that
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∣∣∣f(x±y)
f(x)

− 1
∣∣∣ < δ for all x > x0 and 0 < y < 1. The kernel distribution function K is

differentiable, with a bounded kernel density k with zero mean and finite variance. Further

let g = h = Cn−1/7, C > 0 and

p = o(1) and εn =

√
2 log(n)√
nf(Qp)h

=

√
2 log(n)

n5/14f(Qp)
= o(1) as n→∞.

Then as n→∞
|S-Gp −Qp| = O (εn) , a.s..

Proof.

P (S-Gp −Qp > ε) = P
(

1− p > F̃n(Qp + ε)
)

= P
(
F (Qp + ε)− F̃n(Qp + ε) > F (Qp + ε)− (1− p)

)
≤ P

(
||F̃n − F || > δ1

)
, where

δ1 = F (Qp + ε)− (1− p) = εf(Qp + θε), 0 < θ < 1.

And similarly

P (Qp − S-Gp > ε) ≤ P
(
||F̃n − F || > δ2

)
, δ2 = (1− p)− F (Qp − ε) = εf(Qp − θ′ε), 0 < θ′ < 1

Therefore

P (|Qp − S-Gp| > ε) ≤ P
(
||F̃n − F || > δ

)
, δ = min{δ1, δ2}. (2.6)

Now let ε = εn =
2
√

log(n)
√
nf(Qp)h

. Under the stated conditions on f , the corresponding δn satisfies

the following inequality.

δn =
2
√

log(n)√
nf(Qp)h

min{f(Qp + θε), f(Qp − θ′ε)} ≥
√

2 log(n)

h
√
n

, for all sufficiently large n.

We now apply Lemma 2.1.2, with g = h = Cn−1/7, C > 0, and bn =

√
2 log(n)
√
nh

. Then

b = o(1) and the condition
∑∞

n=1 exp(− 1
4||k||nb

2
nh

2) < ∞ is satisfied. And therefore under

these conditions
∞∑
n=1

P
[
||F̃n − F || > δn

]
<∞. (2.7)

And therefore under the stated conditions on f,K, p, and assuming g = h = Cn−1/7, C > 0,

and εn =
2
√

log(n)
√
nf(Qp)h

= o(1), as n→∞, using the equations (2.6) and (2.7), we see that

∞∑
n=1

P (|Qp − S-Gp| > εn) <∞.
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Therefore under these conditions

|Qp − S-Gp| = O (εn) , a.s.

�

2.2 Simulation & real data analysis

We compare the performance of eight nonparametric quantile estimators, viz. SQp, H-Dp,

SV 3p, the kernel based estimators C-Tp, Alp, S-Gp and the two EVT based estimators

EV T1p and EV T2p for different sample size n and different choices of p. It is difficult

to obtain the exact bias and the MSE of these estimators. Therefore we use Monte Carlo

simulation to approximate the bias, the standard deviation and the MSE of each of these

estimators.

To approximate the bias or the MSE of a statistic Tn using Monte Carlo simulation we

draw m random samples of size n from a test distribution or stochastic process. From each

of the m samples we compute the value of the statistic. Let T ∗ni, i = 1, · · · ,m, be the values.

The bias, variance and the MSE of Tn are approximated by 1
m

∑m
i=1 T

∗
ni − Tn, variance of

T ∗ni, i = 1, · · · ,m, and 1
m

∑m
i=1(T ∗ni − Tn)2 respectively. In this simulation study we use

m = 1000.

In general the stochastic process generating the observed data is not known. However in a

Monte Carlo simulation study we can compute the Monte Carlo estimate assuming some test

distribution or data generating process. In this simulation study we consider the following

ten time series models

(i) {Xi}i=1,2,···is an i.i.d. process, marginal distribution GPD with ξ = 1/3.

(ii) {Xi}i=1,2,···is an i.i.d. process, marginal distribution Student’s with 4 df.

(iii) {Xi}i=1,2,···is an i.i.d. process, marginal distributionN(0, 1).

To study the effect of dependence on the above mentioned quantile estimators consider the

following ARMA(1,1) models in Drees [33]

Xi − φXi−1 = Zi + θZi−1,

(iv) φ = 0.95, θ = −0.6,

(v) φ = 0.95, θ = −0.9,

(vi) φ = 0.3, θ = 0.9.
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In addition the following GARCH(1,1) models are also considered

Xt = σtZt,

(vii) σ2
t = 0.0001 + 0.9X2

t−1,

(viii) σ2
t = 0.0001 + 0.4X2

t−1 + 0.5σ2
t−1,

(ix) σ2
t = 0.0751X2

t−1 + 0.9194σ2
t−1.

The first two models are motivated by empirical observations by Cont regarding the extent

of tail heaviness of the marginal asset return distributions (see [26]). Cont mentioned that

when sample moments based on asset return data are plotted against sample size, the sample

variance seems to stabilize with increase in sample size (see [26]). But the behavior of the

fourth order sample moment seems to be erratic as n is increased. This feature is also

exhibited by the sample moments based on i.i.d. draws from the Student’s t-distribution

with four degrees of freedom, which displays a tail behavior similar to many asset return

distributions. Cont also mentioned that the daily return distributions of stocks, market

indices and exchange rates seem to exhibit power law tail with exponent α satisfying, ξ = 1/α

varying between 0.2 and 0.4 (see [26]). These observations the motivate choice of the marginal

distributions in (i) and (ii). The third model (iii) represents the classical Black-Scholes

assumption on the return model.

The GARCH(1,1) processes are known to model the volatility clustering observed in fi-

nancial time series data. The first two GARCH models are used in the simulation study in

Drees (see [33]). The GARCH model (ix) is the GARCH model fitted to the CNX Nifty daily

loss data for the duration 1st April 2009 to 31st March 2013 (sample size is 995). The data

are obtained from the daily closing values CNX Nifty index during the above mentioned pe-

riod. Source http://www.nseindia.com/products/content/equities/indices/ historical index

data.htm.

We also consider a small-scale experiment to compare performance of the estimators of

VaR and MS under netting agreements. The term netting is used to describe the process of

offsetting mutual positions or obligations between two parties (see [41]). Suppose a trader

borrows money from a broker, takes a long position on a certain equity and also buys a put

option (short position) of the market index future to hedge against any random fall in the

stock market. The trader can adopt two strategies. In the event of any unforseen downward

movement in the market, he may cover the gains in the put option and take delivery of the

stocks by paying remaining dues to the broker in cash. Otherwise the trader can exit both

the long and short positions at market price, and return the dues to the broker. In this

example a sudden downward market movement is the event that causes default. The first

strategy is not netted, as only positions with positive gains are used to meet the default
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obligation. The second strategy involves netting, where overall portfolio gain is used to meet

the traders obligation to the broker. Our model (x) represents the loss in the second strategy

at time t. To study the effect of netting on VaR estimation let us consider a simple portfolio

made of a long position in one asset and a short position in another one with the same

counter party.

Let E1t, E2t denote the gains in the long and short positions respectively. The vector

(E1t, E2t) is assumed to be Gaussian. mi and σi are mean and standard deviation of Eit,

i = 1, 2 and ρ is the correlation coefficient. Since E1t and E2t are long and short position

gains, we assume that ρ is negative. Let Dt be a Bernoulli random variable, independent of

(E1t, E2t), such that Dt = 1 represents a credit event that causes default at time t (and hence

initiation of a netting agreement). In case of default, without any netting arrangement, the

loss at time t equals E+
1t+E

+
2t. However under netting arrangement, the loss due to default at

time t equals (E1t + E2t)
+ (see Fermanian and Scaillet[41], page 937). Therefore under this

netting arrangement, the loss at time t equals I(Dt = 1)(E1t +E2t)
+− I(Dt = 0)(E1t +E2t).

This motivates model (x) in our simulation study

(x) Xt = I(Dt = 1)(E1t + E2t)
+ − I(Dt = 0)(E1t + E2t),

where {(E1t, E2t)} is an i.i.d. Gaussian process, with m1 = 10, m2 = −1, ρ = 0.89 and

σi = 1, i = 1, 2. And we take P (Dt = 1) = 0.20, i.e. the chance of default is assumed to be

twenty percent.

Let MSE1, MSE2 denote the Monte Carlo estimates of the MSE of EV T1p and EV T2p.

MSE3, MSE4 and MSE5 denote the same for the estimators C-Tp, H-Dp and SV 3p respec-

tively. MSE6 denotes the Monte Carlo MSE estimate of the quantile estimator Alp using

Epachnikov kernel and bandwidth bopt2. MSE7 and MSE8 are the same for the estimators

S-Gp and the sample quantile SQp.

2.3 Findings

From each of the above models (i)-(x), we have the following simulation results

1. Comparison of MSEs. None of the nonparametric estimators can be claimed to be

uniformly the best in terms of their MSE for all the ten models. However, the EVT

based estimator EV T2p by Drees [33] seems to outperform the empirical estimator for

p = 0.01 and 30 < n ≤ 500, based on i.i.d. data (see Table 2.1). For n ≤ 500 and

p ≤ 0.01, Swanepoel and Grann s’ estimator S-Gp performs best under ARMA model

(See Table 2.8).
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The MSE of EV T2p is also substantially smaller than the same of S-Gp, for the GARCH

models (vii) and (viii) for p = 0.01 and 30 < n ≤ 500 (see Table 2.3). For the GARCH

model (ix), the MSE of EV T2p and SV 3p seems to be only slightly smaller (less than

a percent) than the MSE of the empirical estimator SQp. SQp outperforms the other

nonparametric estimators for this model. Under i.i.d. assumption, the H-D estimator

performs well for n = 30 and data generated by the GPD distribution. But in general,

the accuracy of H-Dp does not seem to be substantially superior to the SQp especially

in the presence of dependence.

2. For n ≤ 250 and k = [np] + 1, the EV T1p is not defined for p = 0.01. This is due to

the fact that for n ≤ 250 and p = 0.01 (or less), k is small i.e. there are not enough

observations to fit the GPD distribution by maximum likelihood method. So EV T1p

is not recommended for small n and p close to zero. For large sample size, EV T1p

provides slight improvement over the empirical quantile estimator SQp, for p close to

zero and F equal to a heavy tailed distribution function (See Table 2.1).

3. Comparison of bias. For n ≥ 100 and p = 0.01, the sample quantile seems to have

least bias per unit standard deviation under i.i.d. and GARCH models and the bias is

positive (see Tables 2.2 and 2.5). From the Tables 2.2, 2.4 and 2.5, we see that EV T2p

estimator is negatively biased irrespective of the underlying model. Hence, EV T2p

seems to under estimate a quantile in the right tail of F . The sample quantile SQp

seems to exhibit least bias per unit standard deviation (see Tables 2.2, 2.4 and 2.5).

4. Small n and p close to zero. For n ≤ 500 and p ≤ 0.01, the MSE and also the bias

(per unit standard deviation) of the S-Gp estimator seem to be substantially smaller

than the same of the empirical quantile estimator SQp for ARMA models (see Tables

2.8 and 2.9).

For n ≤ 500 and p = 0.001 the MSE and the bias of the S-Gp estimator seems to

be substantially smaller than the same of the empirical quantile estimator SQp for

the GARCH models (see Tables 2.10 and 2.11). Under similar conditions the MSE of

the EV T2p estimator is also substantially smaller than that of the (1 − p)th sample

quantile for i.i.d. model with heavy tailed marginal distributions (see Table 2.6).

5. Large n and p close to zero. From the Table 2.10 we see that for n ≥ 500 and p = 0.001

the MSE of the SV3 estimators is substantially smaller than that of the (1−p)th sample

quantile SQp for the GARCH models (vii) and (viii). However for the GARCH (ix)

model, no other estimator seem to produce substantially improved quantile estimate

than the SQp for any value of p, especially for large n (see Tables 2.10 and 2.11).
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6. CNX Nifty data analysis. For the GARCH model (ix), the empirical quantile seems

to be the optimal estimator for n ≥ 500 and any value of p. As mentioned above, this

model is a good fit to the CNX Nifty daily loss data for the duration 1st April 2009

to 31st March 2013. In this data the number of observations exceed 500. Therefore

based on the above simulation results we recommend the sample quantile SQp as the

appropriate estimator of VaR and MS based on the CNX Nifty data (see Table 2.10).

The sample quantile based estimates of the 99 percent VaR and MS of the Nifty index

during 1st April 2009 to 31st March 2013 are equal to −0.013 and −0.015 respectively.

The MS value implies that during 1st April 2009 to 31st March 2013, the chance that

the return of the Nity index on a trading day was less than −1.45 percent seems to be

less than 0.5 percent.

7. Effect of netting. Under model (x), we see that the S-Gp estimator outperforms the

empirical estimator for all choices of n and p = 0.01 (see Table A.12 of Appendix A).

We also observe that S-Gp estimator outperforms the empirical estimator for n ≤ 500

and p = 0.001. We observe that SV3 estimator outperforms the empirical estimator for

n ≥ 100 and p = 0.01 (see Table 2.12). We also observe that the C-Tp estimator seems

to be close to the empirical estimator (see Table 2.14). From Table 2.15, we observe

that SQp estimator seems to have least bias per unit standard deviation and its bias is

positive. From Table 2.15, we see that SV3 estimator is negatively biased irrespective

of the underlying model. Hence, SV3 seems to under estimate a quantile in the right

tail of F .

2.4 Concluding remarks

Remark 3. 1. For n ≤ 500 and p = 0.001, the proposed S-Gp estimator performs very well

under all the different time series models considered in our simulation study. We recommend

this estimator for estimation of extreme quantiles in the right tail of F , especially for small

n and p. Therefore this estimator appears to be useful for estimation of VaR and MS based

on short term (less than one financial year) asset return data. Under the assumption that

p→ 0 as n→∞, investigating the theoretical properties of S-Gp seems to be an interesting

but challenging problem.

2. The kernel based quantile estimator using the bandwidth by Alemany et al. [3] was

developed under i.i.d. assumptions. But our simulations reveal that the MSE values of the

Alp and sample quantile are close for ARMA and GARCH models, especially for large n.

For ARMA model, Alp outperforms the sample quantile for small n and p. These obser-
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vations naturally motivate an investigation of the properties of Alp under such dependence

assumptions.

3. VaR and MS estimation in presence of netting. In presence of netting, our new

proposed quantile estimator S-Gp performs very well for all choices of n and p = 0.01. But

for p = 0.001 the S-Gp performs very well for n ≤ 500. Hence, we recommend this estimator

for small n and p. Also for all choices of n and p = 0.01 this estimator is recommended.

Table 2.1: Ratios estimated at 99% for i.i.d. cases.
Dist n MSE1

MSE8
MSE2
MSE8

MSE3
MSE8

MSE4
MSE8

MSE5
MSE8

MSE6
MSE8

MSE7
MSE8

GPD 30 NaN 2.247 0.873 0.882 0.689 1.188 1.010
100 NaN 0.213 0.854 1.406 0.548 1.375 1.455
250 NaN 0.691 1.222 2.435 1.156 0.998 0.974
500 0.886 0.814 1.269 1.251 0.939 1.004 0.994
1000 0.916 0.872 1.040 1.008 0.887 0.994 0.972
2500 0.979 0.961 1.154 0.992 0.939 0.991 0.976

Student’s t 30 NaN 1.512 1.817 0.926 0.821 0.999 0.921
100 NaN 0.356 1.297 1.299 0.591 1.264 1.232
250 NaN 0.751 1.095 1.702 0.931 0.961 0.900
500 0.922 0.817 1.003 1.112 0.876 0.982 0.911
1000 0.934 0.878 0.985 1.007 0.897 0.970 0.896
2500 0.964 0.950 1.116 0.981 0.930 0.966 0.921

N(0,1) 30 NaN 1.167 0.822 0.997 1.037 0.858 0.996
100 NaN 0.863 0.997 1.042 0.861 1.024 1.531
250 NaN 0.873 0.937 0.941 0.760 0.890 1
500 1.170 0.936 0.976 0.915 0.831 0.942 0.886
1000 1.096 0.983 1.022 0.910 0.864 0.943 0.947
2500 0.995 0.952 0.981 0.916 0.893 0.938 1.072
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Table 2.3: Ratios estimated at 99% for dependent cases.
Model n MSE1

MSE8
MSE2
MSE8

MSE3
MSE8

MSE4
MSE8

MSE5
MSE8

MSE6
MSE8

MSE7
MSE8

ARMA
(0.95,-0.9) 30 NaN 1.0633 0.7585 1.0209 1.0959 0.8317 0.6788

100 NaN 0.957 0.922 1.023 0.946 0.998 0.833
250 NaN 0.950 0.905 0.922 0.821 0.910 0.769
500 1.247 0.985 1.092 0.885 0.870 0.930 0.795
1000 1.184 1.031 0.981 0.903 0.913 0.949 0.853
2500 1.245 1.014 0.985 0.901 0.917 0.937 0.876

ARMA
(0.95,-0.6) 30 NaN NaN 0.923 1.029 1.090 0.878 0.7636

100 NaN NaN 1.028 0.990 1.108 0.973 0.883
250 NaN 1.051 0.929 0.927 0.981 0.958 0.876
500 1.139 1.053 1.218 0.963 0.995 0.979 0.913
1000 1.032 1.002 1.026 0.975 0.979 0.978 0.922
2500 1.005 0.997 1.156 0.985 0.982 0.987 0.957

ARMA
(0.3,0.9) 30 NaN 0.955 0.880 1.032 1.107 0.771 0.672

100 NaN 0.965 0.954 0.983 0.958 0.948 0.871
250 NaN 0.929 1.131 0.958 0.843 0.891 0.819
500 1.101 0.942 1.016 0.949 0.886 0.934 0.862
1000 1.090 0.993 0.990 0.944 0.923 0.932 0.868
2500 1.021 0.987 1.058 0.954 0.943 0.946 0.932

GARCH
(0.9) 30 NaN 1.218 34.031 0.942 0.854 1.015 1.442

100 NaN 0.620 15.103 1.017 0.703 0.996 1.081
250 NaN 0.607 12.866 1.340 0.884 1 1.169
500 0.571 0.714 14.285 1.407 1.045 1.062 1.411
1000 0.939 0.848 15.151 1.462 1.254 1.052 2.024
2500 0.856 0.909 15.454 1.090 1.023 1.006 3.087

GARCH
(0.4,0.5) 30 NaN 1.093 51.631 0.989 0.981 1.005 1.626

100 NaN 0.811 19.722 1.003 0.862 1.049 1.331
250 NaN 0.751 13 1.104 0.897 1.000 1.342
500 0.749 0.799 11.714 1.122 0.941 1.030 1.467
1000 0.780 0.820 8.604 1.171 1.041 1.011 1.704
2500 0.959 0.987 9.230 1.067 1.026 0.996 2.512

GARCH
(0.075,
0.919) 30 NaN 0.976 2219.411 0.989 1.060 0.995 11.197

100 NaN 0.998 1053.511 1.003 0.999 0.991 8.233
250 NaN 0.997 644.549 1.104 0.979 0.999 6.465
500 0.996 0.989 462.904 1.123 0.992 0.993 5.787
1000 0.974 0.984 290.94 1.171 0.996 1.002 4.837
2500 0.976 0.986 205.076 1.067 0.997 1.002 4.800
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Table 2.6: Ratios estimated for i.i.d. cases with varying p.
Dist n 1− p MSE1

MSE8
MSE2
MSE8

MSE3
MSE8

MSE4
MSE8

MSE5
MSE8

MSE6
MSE8

MSE7
MSE8

GPD 250 0.95 0.903 0.901 0.994 1.009 0.865 1.217 0.936
0.97 0.834 0.825 0.995 1.031 0.878 1.064 0.933
0.99 NaN 0.691 0.999 2.237 1.156 0.998 0.982
0.999 NaN 5.416 0.993 0.917 0.751 1.025 0.992

500 0.95 0.964 0.954 0.996 0.979 0.918 1.025 0.943
0.97 0.904 0.890 1.000 1.018 0.920 0.990 0.961
0.99 0.886 0.814 1.046 1.298 0.939 1.004 1.009
0.999 NaN 0.402 0.999 0.733 0.471 0.999 0.991

1000 0.95 0.957 0.952 0.997 0.971 0.930 0.965 0.954
0.97 0.974 0.963 0.999 0.982 0.922 0.970 0.962
0.99 0.916 0.872 1.012 1.052 0.887 0.994 0.979
0.999 NaN 0.305 1.680 1.354 0.563 1.414 1.318

Student’s t 250 0.95 0.972 0.957 0.936 0.943 0.897 0.932 0.921
0.97 0.920 0.891 0.968 1.014 0.862 0.915 0.875
0.99 NaN 0.751 0.990 1.761 0.931 0.961 0.866
0.999 NaN 4.130 0.989 0.932 0.812 0.980 0.974

500 0.95 1.027 0.995 0.978 0.955 0.930 0.931 0.953
0.97 0.985 0.946 0.983 0.974 0.882 0.932 0.867
0.99 0.922 0.817 1.026 1.207 0.876 0.982 0.929
0.999 NaN 0.494 0.999 0.780 0.527 0.996 0.993

1000 0.95 0.996 0.984 0.980 0.957 0.936 0.941 0.978
0.97 0.992 0.964 0.984 0.954 0.918 0.940 0.910
0.99 0.934 0.878 0.996 1.065 0.897 0.970 0.886
0.999 NaN 0.468 1.225 1.231 0.619 1.317 1.103

N(0,1) 250 0.95 1.016 0.981 0.913 0.912 0.856 0.907 0.978
0.97 1.024 0.960 0.913 0.861 0.837 0.903 0.884
0.99 NaN 0.873 0.933 0.942 0.760 0.890 0.771
0.999 NaN 1.248 0.872 1.011 1.053 0.825 0.611

500 0.95 1.028 0.982 0.941 0.909 0.912 0.932 0.954
0.97 1.048 0.970 0.944 0.945 0.878 0.917 0.945
0.99 1.170 0.936 0.965 0.935 0.831 0.942 0.893
0.999 NaN 0.829 0.976 0.901 0.849 0.960 0.753

1000 0.95 1.013 0.990 0.933 0.933 0.937 0.944 1.059
0.97 1.039 1.004 0.943 0.922 0.911 0.934 1.053
0.99 1.096 0.983 0.960 0.921 0.864 0.943 0.920
0.999 NaN 0.824 0.996 1.048 0.828 1.182 0.823
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Table 2.8: Ratios estimated for ARMA model with varying p.
Model Coeff. n 1− p MSE1

MSE8
MSE2
MSE8

MSE3
MSE8

MSE4
MSE8

MSE5
MSE8

MSE6
MSE8

MSE7
MSE8

(0.95,−0.9) 250 0.95 1.0572 1.0207 0.9516 0.9157 0.9245 0.9267 0.9118
0.97 1.068 1.004 0.947 0.943 0.888 0.910 0.851
0.99 NaN 0.950 0.938 0.939 0.825 0.910 0.799
0.999 NaN 1.185 0.868 1.017 1.062 0.835 0.623

500 0.95 1.111 1.054 0.974 0.948 0.954 0.938 1.080
0.97 1.168 1.070 0.967 0.941 0.936 0.932 0.828
0.99 1.247 0.985 0.960 0.957 0.870 0.930 0.840
0.999 NaN 0.886 0.967 0.908 0.924 0.952 0.736

1000 0.95 1.063 1.028 0.977 0.978 0.971 0.949 1.180
0.97 1.107 1.050 0.955 0.955 0.968 0.955 1.011
0.99 1.184 1.031 0.966 0.944 0.913 0.949 0.862
0.999 NaN 0.891 1.020 1.039 0.889 1.102 0.944

(0.95,−0.6) 250 0.95 1.027 1.018 0.991 0.915 0.989 0.987 0.951
0.97 1.051 1.031 0.990 0.944 0.985 0.973 0.914
0.99 NaN 1.051 0.983 0.939 0.981 0.958 0.879
0.999 NaN 0.921 0.921 1.017 1.077 0.845 0.672

500 0.95 1.019 1.009 0.994 0.991 0.986 0.9804 0.9442
0.97 1.038 1.017 0.992 0.976 0.988 0.982 0.919
0.99 1.139 1.053 0.989 0.960 0.995 0.979 0.896
0.999 NaN 1.099 0.986 1.056 1.156 0.941 0.787

1000 0.95 1.012 1.009 0.997 0.989 0.995 0.991 0.974
0.97 1.019 1.011 0.997 0.988 0.993 0.989 0.991
0.99 1.032 1.002 0.990 0.976 0.974 0.978 0.915
0.999 NaN 1.119 1.004 0.996 1.102 1.003 0.855

(0.3,0.9) 250 0.95 1.015 0.991 0.961 0.946 0.915 0.918 0.882
0.97 1.039 0.997 0.957 0.961 0.900 0.919 0.890
0.99 NaN 0.929 0.972 0.993 0.843 0.891 0.869
0.999 NaN 1.051 0.913 1.015 1.072 0.773 0.601

500 0.95 1.045 1.014 0.976 0.966 0.948 0.938 0.971
0.97 1.040 0.991 0.983 0.982 0.926 0.934 0.845
0.99 1.101 0.942 0.985 1.010 0.886 0.929 0.871
0.999 NaN 0.914 0.986 0.927 0.936 0.925 0.799

1000 0.95 1.032 1.014 0.975 0.981 0.956 0.933 0.881
0.97 1.055 0.991 0.982 0.985 0.947 0.930 1.002
0.99 1.090 0.942 0.985 0.978 0.923 0.932 0.788
0.999 NaN 0.914 0.998 1.018 0.886 0.993 0.875
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Table 2.10: Ratios estimated for GARCH model with varying p.
Model Coeff. n 1− p MSE1

MSE8
MSE2
MSE8

MSE3
MSE8

MSE4
MSE8

MSE5
MSE8

MSE6
MSE8

MSE7
MSE8

α = 0.9 250 0.95 0.862 0.874 502.127 1.1790 0.997 0.997 21.081
0.97 0.797 0.831 127.887 1.498 1.026 0.999 6.554
0.99 NaN 0.607 22.454 1.324 0.884 1.0000 1.169
0.999 NaN 1.358 2.909 0.978 0.956 0.999 0.763

500 0.95 0.936 0.938 619.296 1.059 0.991 0.998 36.187
0.97 0.911 0.931 269.253 1.137 1.003 1.002 12.610
0.99 0.550 0.624 19.244 1.511 1.045 1.062 1.411
0.999 NaN 0.762 2.307 0.879 0.734 1 0.912

1000 0.95 0.982 0.982 718.174 1.038 0.980 1.058 59.782
0.97 0.956 0.961 302.152 1.067 1.002 1.026 21.052
0.99 0.910 0.854 28.349 1.182 1.254 1.052 2.024
0.999 NaN 0.752 1.907 1.072 0.781 0.912 0.980

α = 0.4,
β = 0.5 250 0.95 0.929 0.951 161.733 1.085 1.026 0.999 9.344

0.97 0.815 0.900 70.594 1.151 0.957 0.999 3.371
0.99 NaN 0.751 16.545 1.072 0.897 1.000 1.208
0.999 NaN 1.090 5.494 1.004 1.017 0.997 0.553

500 0.95 0.968 0.966 184.817 1.076 0.975 0.998 14.098
0.97 0.872 0.931 101.86 1.048 0.979 1.013 5.126
0.99 0.710 0.799 17.538 1.057 0.941 1.030 1.186
0.999 NaN 0.914 2.251 0.977 0.898 0.999 0.879

1000 0.95 0.990 0.984 252.187 1.024 0.989 1.002 21.016
0.97 0.982 0.962 116.344 1.031 1.002 1.003 10.479
0.99 0.816 0.820 26.623 1.171 1.041 1.011 2.118
0.999 NaN 0.784 1.211 1.024 0.824 1.006 0.894

α = 0.075,
β = 0.919 250 0.95 0.956 0.965 1905.106 1.005 0.981 1.000 18.392

0.97 0.979 0.989 1152.501 0.986 1.008 1.000 13.384
0.99 NaN 0.997 1204.665 1.014 0.979 0.999 8.206
0.995 NaN 1 413.582 0.936 0.965 0.995 3.671
0.999 NaN 0.937 365.082 1.013 1.041 0.995 0.666

500 0.95 0.969 0.980 1016.256 1.027 0.986 1.001 13.839
0.97 0.969 0.979 931.328 1.021 0.998 0.996 9.864
0.99 0.9966 0.989 508.175 0.995 0.992 0.993 5.912
0.995 NaN 0.999 334.377 0.984 0.989 1.000 3.372
0.999 NaN 1.058 235.944 1.025 1.081 0.999 0.333

1000 0.95 0.969 0.977 602.071 1.005 0.997 1.001 19.276
0.97 0.962 0.972 609.922 1.010 0.997 0.999 7.365
0.99 0.974 0.984 382.135 1.017 0.996 1.002 3.478
0.995 0.976 1 223.585 1.009 0.990 1.007 2.900
0.999 NaN 1.050 187.984 0.994 1.041 0.998 2.181

36



T
ab

le
2.

11
:

B
ia

s/
sd

es
ti

m
at

ed
fo

r
G

A
R

C
H

m
o
d
el

w
it

h
va

ry
in

g
p.

M
o
d
el

C
o
eff

.
n

1
−
p

B
ia
s

sd
(E
V
T

1
p
)

B
ia
s

sd
(E
V
T

2
p
)

B
ia
s

sd
(C

-T
p
)

B
ia
s

sd
(H

-D
p
)

B
ia
s

sd
(S
V

3
p
)

B
ia
s

sd
(A
L
p
)

B
ia
s

sd
(S

-G
p
)

B
ia
s

sd
(S
Q
p
)

α
=

0.
9

25
0

0.
95

−
0.

09
9

−
0.

05
6

41
.1

99
0.

26
4

0.
08

9
0.

06
0

2.
59

9
0.

06
0

0.
97

−
0.

08
7

−
0.

02
7

27
.6

85
0.

28
8

0.
15

3
0.

09
4

2.
05

8
0.

09
4

0.
99

N
A

−
0.

04
0

18
.5

29
0.

25
0

0.
15

6
0.

14
6

0.
77

8
0.

14
1

0.
99

9
N

A
−

0.
34

2
2.

39
8

−
0.

83
8
−

0.
85

8
−

0.
67

6
−

0.
30

2
−

0.
67

9
50

0
0.

95
−

0.
14

6
−

0.
08

8
43
.6

22
0.

19
1

0.
02

8
−

0.
00

2
2.

96
0

−
0.

00
4

0.
97

−
0.

09
5

−
0.

02
4

36
.8

44
0.

23
1

0.
10

0
0.

06
8

2.
47

1
0.

06
4

0.
99

−
0.

17
5

−
0.

01
6

9.
71

0
0.

23
7

0.
20

3
0.

15
0

0.
96

0
0.

14
8

0.
99

9
N

A
−

0.
28

3
1.

04
8

−
0.

35
1
−

0.
32

9
−

0.
09

7
0.

00
7

−
0.

09
7

10
00

0.
95

−
0.

13
9

−
0.

09
9

44
.7

41
0.

21
1

−
0.

02
7
−

0.
03

7
2.

33
3

−
0.

04
7

0.
97

−
0.

09
3

−
0.

04
4

34
.7

58
0.

24
8

0.
05

1
0.

02
8

2.
00

6
0.

02
3

0.
99

−
0.

05
0

0.
02

4
13
.6

78
0.

20
6

0.
16

4
0.

13
4

1.
00

2
0.

12
9

0.
99

9
N

A
−

0.
01

9
0.

60
4

−
0.

13
0

0.
00

5
0.

07
6

0.
10

0
0.

06
3

α
=

0.
4,

β
=

0.
5

25
0

0.
95

−
0.

09
9

−
0.

04
9

31
.9

26
0.

17
8

0.
04

2
0.

02
6

2.
36

6
0.

02
6

0.
97

−
0.

11
6

−
0.

04
3

24
.5

13
0.

15
8

0.
06

8
0.

05
4

1.
71

9
0.

05
3

0.
99

N
A

−
0.

17
4

7.
71

6
0.

13
6

−
0.

04
1
−

0.
02

2
0.

59
0

−
0.

02
2

0.
99

9
N

A
−

0.
55

0
4.

92
5

−
1.

08
2
−

1.
10

9
−

0.
91

7
−

0.
30

1
−

0.
92

2
50

0
0.

95
−

0.
11

1
−

0.
10

5
28
.5

44
0.

17
3

0.
01

6
0.

01
8

2.
71

3
0.

01
5

0.
97

−
0.

13
2

−
0.

08
1

23
.6

07
0.

12
4

0.
04

8
0.

03
7

1.
64

3
0.

03
1

0.
99

−
0.

25
2

−
0.

13
3

9.
44

9
0.

12
5

0.
04

8
0.

04
8

0.
51

6
0.

04
3

0.
99

9
N

A
−

0.
54

7
2.

06
7

−
0.

66
2
−

0.
58

3
−

0.
31

5
0.

14
1

−
0.

31
5

10
00

0.
95

−
0.

09
8

−
0.

08
2

28
.6

99
0.

19
3

−
0.

00
6
−

0.
01

0
2.

92
6

−
0.

01
2

0.
97

−
0.

08
2

−
0.

04
0

23
.6

50
0.

12
3

0.
02

7
0.

02
1

2.
83

2
0.

01
7

0.
99

−
0.

14
0

−
0.

04
8

14
.3

26
0.

12
2

0.
05

1
0.

04
2

1.
42

0
0.

03
6

0.
99

9
N

A
−

0.
19

3
1.

12
3

−
0.

31
1
−

0.
15

4
−

0.
01

4
0.

00
1

−
0.

02
3

α
=

0.
07

5,
β

=
0.

91
9

25
0

0.
95

−
0.

10
5

−
0.

08
8

12
8.

86
6

0.
06

5
−

0.
05

0
−

0.
04

4
2.

75
6

−
0.

04
4

0.
97

−
0.

24
4

−
0.

21
5

12
8.

48
8
−

0.
03

2
−

0.
16

4
−

0.
16

3
2.

44
0

−
0.

16
3

0.
99

N
A

−
0.

54
9

12
8.

71
2
−

0.
30

3
−

0.
47

5
−

0.
44

4
1.

91
9

−
0.

44
4

0.
99

5
N

A
−

38
.3

07
11

1.
82

4
−

0.
59

1
−

0.
74

8
−

0.
72

3
1.

56
8

−
0.

43
4

0.
99

9
N

A
−

1.
50

2
12

2.
05

8
−

1.
65

2
−

1.
91

1
−

1.
76

3
0.

51
1

−
1.

77
0

50
0

0.
95

−
0.

07
2

−
0.

05
3

11
8.

43
6

0.
10

7
−

0.
02

8
−

0.
02

2
2.

55
4

−
0.

02
3

0.
97

−
0.

17
9

−
0.

15
1

12
2.

76
4

0.
02

4
−

0.
11

5
−

0.
11

1
2.

26
8

−
0.

11
2

0.
99

−
0.

52
8

−
0.

45
0

11
7.

79
9
−

0.
19

3
−

0.
38

5
−

0.
37

6
1.

92
8

−
0.

37
7

0.
99

5
N

A
−

40
.2

08
10

3.
09

1
−

0.
46

4
−

0.
58

7
−

0.
56

2
1.

54
0

−
1.

32
3

0.
99

9
N

A
−

1.
42

6
12

2.
99

−
1.

09
6
−

1.
49

2
−

1.
25

2
−

0.
73

8
−

1.
25

2
10

00
0.

95
−

0.
02

9
−

0.
01

7
91
.0

02
0.

12
6

0.
00

2
0.

00
1

3.
08

2
0.

00
1

0.
97

−
0.

08
5

−
0.

06
9

11
0.

34
9

0.
05

6
−

0.
04

5
−

0.
04

2
2.

21
1

−
0.

04
4

0.
99

−
0.

30
3

−
0.

26
4

10
8.

96
9
−

0.
11

9
−

0.
22

2
−

0.
21

7
1.

59
2

−
0.

22
0

0.
99

5
−

0.
49

1
−

42
.2

56
82
.6

61
−

0.
29

0
−

0.
35

2
−

0.
33

8
1.

48
0

−
0.

34
1

0.
99

9
N

A
−

0.
98

4
11

8.
18

5
−

0.
71

2
−

0.
96

2
−

0.
80

1
1.

17
7

−
0.

81
8

37



Table 2.12: Ratios estimated under netting condition at 99%.
Cond. n MSE1

MSE8
MSE2
MSE8

MSE3
MSE8

MSE4
MSE8

MSE5
MSE8

MSE6
MSE8

MSE7
MSE8

Netted 30 NaN NaN 0.941 1.041 1.200 1.836 0.771
100 NaN NaN 1.006 1.013 0.940 1.437 0.896
250 NaN NaN 0.982 0.856 0.778 1.232 0.799
500 1.436 NaN 0.996 0.880 0.834 1.177 0.778
1000 1.043 1.085 0.991 0.944 0.892 1.070 0.792
2500 1.057 1.017 0.990 0.932 0.920 1.274 0.878

Table 2.13: Bias/sd estimated under netting condition at 99%.
Cond. n Bias

sd(EV T1p)
Bias

sd(EV T2p)
Bias

sd(C-Tp)
Bias

sd(H-Dp)
Bias

sd(SV 3p)
Bias

sd(ALp)
Bias

sd(S-Gp)
Bias

sd(SQp)

Netted 30 NA NA -0.504 -0.635 -0.953 0.734 -0.157 -0.515
100 NA NA -0.017 -0.015 -0.403 0.748 0.125 -0.035
250 NA NA -0.149 0.089 -0.169 0.784 0.250 -0.200
500 -0.817 NA -0.006 -0.026 -0.019 0.749 0.117 -0.208
1000 -0.335 -0.342 0.013 0.196 -0.096 0.598 0.173 0.056
2500 -0.312 -0.214 0.015 0.036 0.232 0.243 0.270 -0.059

Table 2.14: Ratios estimated under netting condition with varying p.
Cond. n 1− p MSE1

MSE8
MSE2
MSE8

MSE3
MSE8

MSE4
MSE8

MSE5
MSE8

MSE6
MSE8

MSE7
MSE8

Netted 250 0.95 1.130 NaN 0.981 0.897 0.912 1.068 0.875
0.97 1.085 NaN 0.978 0.861 0.881 1.061 0.865
0.99 NaN NaN 0.982 0.856 0.778 1.232 0.799
0.999 NaN NaN 0.939 1.019 1.088 0.596 0.618

500 0.95 1.062 NaN 0.986 0.933 0.910 1.044 0.887
0.97 1.156 NaN 0.986 0.900 0.889 1.222 0.883
0.99 1.436 NaN 0.996 0.880 0.834 1.177 0.778
0.999 NaN 0.937 0.993 0.919 1.072 0.624 0.769

1000 0.95 1.013 NaN 0.992 0.932 0.926 1.001 0.882
0.97 1.105 NaN 0.992 0.925 0.897 1.087 0.914
0.99 1.043 1.085 0.991 0.944 0.892 1.070 0.792
0.999 NaN 0.857 0.990 1.020 0.805 0.946 0.906
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Table 2.15: Bias/sd estimated under netting condition with varying p.
Cond. n 1− p Bias

sd(EV T1p)
Bias

sd(EV T2p)
Bias

sd(C-Tp)
Bias

sd(H-Dp)
Bias

sd(SV 3p)
Bias

sd(ALp)
Bias

sd(S-Gp)
Bias

sd(SQp)

Netted 250 0.95 -0.358 NA 0.020 -0.047 -0.182 0.363 0.101 -0.034
0.97 -0.368 NA 0.063 0.031 -0.231 0.557 0.261 0.043
0.99 NA NA -0.149 0.089 -0.169 0.784 0.250 -0.200
0.999 NA NA -0.631 -0.862 -1.066 0.432 -0.089 -0.686

500 0.95 -0.217 NA 0.067 0.096 -0.051 0.387 0.226 0.055
0.97 -0.385 NA 0.135 0.050 -0.140 0.618 0.233 -0.013
0.99 -0.817 NA -0.006 -0.026 -0.019 0.749 0.117 -0.208
0.999 NA -0.714 -0.149 -0.377 -0.948 0.255 0.119 -0.167

1000 0.95 -0.141 NA -0.194 0.083 0.198 0.371 0.146 -0.069
0.97 -0.329 NA -0.012 -0.040 -0.004 0.500 0.322 0.034
0.99 -0.335 -0.342 0.013 0.196 -0.096 0.598 0.173 0.056
0.999 NA -0.445 0.068 -0.003 -0.238 0.555 0.348 0.121
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