
Chapter 3

Nonparametric Estimation of
100(1− p) Percent Expected Shortfall:
p→ 0 as Sample Size is Increased

From Chapter 1, we recall that under the assumption that {Xt}t=1,2,··· is a stationary process

and E|X1| <∞, the 100(1− p) ES is given by

ESp = −1

p

∫
x>Qp

xdF (x). (3.1)

In this chapter we review several nonparametric ES estimators and compare their known

properties. Using Monte Carlo simulations we compare the accuracy of these estimators

under the condition that p → 0 as n → ∞ for several asset return time series models,

where n is the sample size. Not much seems to be known regarding the properties of the

ES estimators under this condition. For p close to zero, the ES measures an extreme loss

in the right tail of the loss distribution of the asset or portfolio. Our simulations and real

data analysis provide insight into the effect of varying p with n on the performance of

nonparametric ES estimators.

3.1 Nonparametric methods for estimating expected

shortfall

In this section we review some known nonparametric estimators of ES. Let, F l
k denote the σ-

algebra of events generated by {Xt, k ≤ t ≤ l} for l > k. The α-mixing coefficient introduced

by Rosenblatt[88] is defined as

α(k) = sup
i

sup
A∈F i1,B∈F∞i+k

|P (AB)− P (A)P (B)|.

The series {Xt}t∈N is said to be α-mixing if limk→∞ α(k) = 0. In the sequel we assume that
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1. Assumption 1. ∃ρ ∈ (0, 1) such that α(k) ≤ Cρk for all k ≥ 1 and a positive constant

C.

2. Assumption 2. The distribution function F of Xt is absolutely continuous with prob-

ability density f which has continuous second derivatives in B(Qp), a neighborhood

of Qp. Fk, the joint distribution function of (X1, Xk+1), have all its second derivatives

bounded in B(Qp) for k ≥ 1 and E(|Xt|2+δ) ≤ C for some δ > 0 and a positive C.

Let γ(k) = Cov{(X1 −Qp)I(X1 ≥ Qp), (Xk+1 −Qp)I(Xk+1 ≥ Qp)} for any positive integer

k and

σ2
0(1− p;n) = {V ar{(X1 −Qp)I(X1 ≥ Qp)}+

n−1∑
k=1

γ(k)}.

3.1.1 Empirical estimator

Let F̂ denote the empirical distribution of the observed losses X1, X2, . . . , Xn i.e.

F̂ (x) =
1

n

n∑
i=1

I(Xi ≤ x),

where I(·) is the indicator function and Xi is i.i.d. with distribution F . By standard results

on empirical distribution (see [103]), the pth quantile can be estimated by:

F̂−1(1− p) = X(i), 1− p ∈
[
i− 1

n
,
i

n

)
,

where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics. The empirical estimator of ES is

defined as

Empp = −
∑n

i=[n(1−p)]+1 X(i)

n− [n(1− p)]
,

where [x] denotes the largest integer not greater than x. The empirical estimator can be

re-written as

Empp = −
∑n

t=1 XtI(Xt ≥ q̂p)

[np] + 1
,

where q̂p = X([n(1−p)]+1). Under Assumptions 1-2, Chen [22] obtained the following asymp-

totic property of the empirical estimator. Chen [22] showed that under the Assumptions 1

and 2 and for some positive κ, as n→∞

Empp − ESp =
1

p

{
1

n

n∑
i=1

(Xt −Qp)I(Xt ≥ Qp)− p(ESp −Qp)

}
+ op(n

− 3
4

+κ).

The above equation is a Bahadur type expansion which leads to the following theorem

regarding the asymptotic normality of the empirical estimator Empp.
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Theorem 3.1.1. (Chen [22]) Under Assumptions 1-2, as n→∞

√
npσ−1

0 (1− p;n)(Empp − ESp)
d→ N(0, 1).

The above theorem indicates that the asymptotic standard deviation of Empp equals
σ0(1−p;n)√

np
, which is the standard deviation of 1

np

∑n
i=1(Xt−Qp)I(Xt ≥ Qp). Chen [22] argued

that the asymptotic variance of Empp equals 2πφ(0)
np2

, where φ is the spectral density of {(Xt−
Qp)I(Xt ≥ Qp)}t.

3.1.2 Kernel based estimator

Scaillet [91] proposed an estimator which employs kernel smoothing in both the initial VaR

estimation and the final averaging of the excessive losses. The kernel estimator proposed

by Scaillet [91] is defined as follows. Let K be a kernel function, which is a symmetric

probability density function, G(t) =
∫∞
t
K(u)du and Gh(t) = G(t/h), where h is a positive

smoothing bandwidth. The kernel estimator of the survival function S(x) = 1− F (x) is

Sh(z) =
1

n

n∑
t=1

Gh(z −Xt).

A kernel estimator of Qp, denoted as q̂p,h, is the solution of Sh(z) = 1− p. Then the kernel

estimator of ES is given as

Chenp,h = − 1

np

n∑
t=1

XtGh(q̂p,h −Xt).

In the kernel based method the main problem lies with the selection of bandwidth. Azzalini

[7], Bowman [16], Scaillet [91] and Chen and Tang [23] provide some choice of the bandwidth

parameter. Chen and Tang [23] have obtained the asymptotic bias, variance and the rate

of almost sure convergence of their version of q̂p, under the assumption that {Xt} is a

stationary geometric α−mixing process. The authors suggested the following choice for the

optimal value of h,

hopt =

{
2f 3(Qp)b

σ4(f (1)(Qp))2

}1/3

n−1/3,

where b =
∫
uw(u)H(u)du, and σ2 =

∫
u2w(u)du. H(·) is the distribution function of the

distribution with density w. h involves unknown constants Qp, f and its derivative f (1) at

Qp. Chen and Tang [23] suggested to approximate Qp in h by the corresponding sample

quantile. The authors suggested to approximate f and f (1) by the density and the first

derivative of the Generalized Pareto distribution.
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Theorem 3.1.2. (Chen [22]) Under the Assumptions 1 − 2 and assuming that K is a

symmetric probability density satisfying
∫ 1

−1
uK(u)du = 0,

∫ 1

−1
u2K(u)du = σ2

K and K has

bounded and Lipschitz continuous derivative, Chen [22] proved that as n→∞
√
npσ−1

0 (1− p;n)(Chenp,h − ESp)
d→ N(0, 1)

and furthermore, Bias(Chenp,h) = − 1
2p
σ2
Kh

2f(Qp) + o(h2) and

V ar(Chenp,h) =
1

np
σ2

0(1− p;n) + o(n−1h),

where h = o(1), nh3−β →∞ for some β > 0, and nh4 log2(n) = o(1) as n→∞ (see [22]).

The term σ2
0(1 − p;n) is the same as in Theorem 1. By comparing Theorems 1 and 2 it is

observed that the kernel estimator has the same asymptotic distribution as the unsmoothed

sample estimator Empp. Both Empp and Chenp,h converges to ESp at the rate of
√
np.

The second part of Theorem 2 implies that the kernel estimator does not offer a variance

reduction, due to the presence of the second order term o(n−1h) in V ar(Chenp,h). Also

smoothing brings in a bias. Clearly the asymptotic MSE of the Chenp,h is greater than the

same for the empirical estimator. Therefore, for the purpose of estimating the ES, the kernel

smoothing does not seem to yield an asymptotically efficient estimator.

3.1.3 Estimator of Brazauskas et al.

Let us recall that ES is defined as

ESp = −1

p

∫ 1

1−p
Q(u)du.

Let F̂ denote the empirical cumulative distribution function of X1, · · · , Xn and F̂−1 be its

quantile function. Brazauskas et al. [17] defined an empirical estimator of ESp as follows

ÊSp = −1

p

∫ 1

1−p
F̂−1(u)du. (3.2)

Under the assumption that X1, · · · , Xn are i.i.d. with E|X1| <∞, ÊSp converges to ESp al-

most surely as n is increased (see [17]). To construct point-wise and simultaneous confidence

intervals for ESp Brazauskas et al. [17] obtained the following asymptotic result.

Theorem 3.1.3. (Brazauskas et al. [17]) Let X1, . . . , Xn be i.i.d. random variables with

finite second moment E[X2
1 ]. Let the distribution function F be continuous at the point

F−1(1− p). Then as n→∞
√
n(ÊSp − ESp)

d→ N(0, σ2(1− p)),
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where N(0, σ2(1− p)) denotes a centered normal random variable with the variance

σ2(1− p) =
1

p2

∫ ∞
Qp

∫ ∞
Qp

(F (x ∧ y)− F (x)F (y))dxdy.

3.1.4 Tail-trimmed estimator by Hill

Let X
(−)
t = XtI(Xt < 0) and X

(−)
(1) ≤ X

(−)
(2) · · · ≤ X

(−)
(n) ≤ 0 denote the negative numbers in

the data ordered in increasing order. Let {kn} be an intermediate sequence, where kn →∞
and kn

n
→ 0. Hill[53] defined the following tail trimmed estimator of ES.

Hillp =
1

np

n∑
t=1

XtI(X
(−)
(kn) ≤ Xt ≤ q̂n,p).

where q̂n,p = X([pn]). kn is the number of trimmed (omitted) tail extremes, representing

an asymptotically vanishing and therefore negligible sample tail proportion kn
n

. Under a

geometric α-mixing condition on {Xt} and few additional regularity conditions (see [53]),

Hillp is a consistent and asymptotically normal estimator, viz. under the assumptions that

{Xt} is strongly mixing with geometric mixing rate, E[X2
t ] <∞, kn →∞ at a slowly varying

rate (e.g. kn ∼ ln(n)) and some of other assumptions in Hill [53],

n1/2(Hillp − ESp)
d→ N

(
0,
S2

p2

)
,

where S2 = limn→∞ S
2
n, S2

n = 1
n
E
(∑n

t=1{X∗n,t − E[X∗n,t]}
)2

and X∗n,t = XtI(−ln ≤ Xt ≤
q1−p). {ln} is a positive sequence such that P (Xt < −ln) = kn

n
.

The advantage of the above tail trimmed ES estimator is that it leads to asymptotically

standard inference even for heavy tailed time series with infinite variance (see [53]). Tail-

trimming is used to dampen the effect of extremes in a sample, ensuring standard Gaussian

inference, and a higher rate of convergence than without trimming when the variance is

infinite (see [53]). Hill [53] suggested to use kn = max{1, [0.25n2/3/(ln(n))2ι]} and ι = 10−10

in his simulation study.

3.1.5 Yamai and Yoshiba’s estimator

Yamai and Yoshiba [107] defined the following estimator of ESp

ESp,β = − 1

n(β − 1 + p)

nβ∑
i=[n(1−p)]

X(i),
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where 0 < 1 − p < β ≤ 1 is a positive constant. The empirical estimator Empp is similar

to the above estimator for β = 1. The estimator is asymptotically normal, with asymptotic

variance equal to

1

n(β − 1 + p)2

[
(1− p)Q2

p + βQ2
1−β +

∫ Q1−β

Qp

x2f(x)dx

−
{
βQ1−β + (1− p)Qp +

∫ Q1−β

Qp

xf(x)dx
}2]

.

The optimal choice β is not specified by Yamai and Yoshiba. The above estimator may also

be looked at as a tail trimmed estimator, where we omit the extreme sample quantiles in

the right tail beyond X(nβ). n− nβ is the number of right tail extremes in the sample that

are trimmed to construct ESp,β.

Remark 4. 1. The asymptotic results obtained in Yamai and Yoshiba [107], Hill [53],

Brazauskas et al. [17] and Chen [22] are obtained under the assumption that p is fixed. Not

much seems to be known about any of these estimators under the condition that p → 0 as

n→∞.

2. If p→ 0 as n→∞ tail trimming in Hill’s estimator Hillp seems to be challenging to

implement, as for even a large sample size only a few values are below q̂n,p (e.g. if p = 0.001

and n ≤ 1000 there is at most one observation below q̂n,p).

3. If p → 0 as n → ∞, we may use β = 1 − rn in the Yamai and Yoshiba’s estimator

ESp,β, where rn converges to zero at a faster rate than p as n → ∞. In this chapter we

use nrn = max{1, 0.25(np)2/3/(ln(np + 1))2ι}. This choice is motivated by the choice of kn

in Hill’s estimator [53]. The difference is that we use np (or np + 1) instead of n in the

formula for kn proposed by Hill. The resulting rn represents the proportion of omitted right

tail extremes beyond X[n(1−p)]. With this choice of β = 1 − rn, ESp,β is always defined for

any combination of n and p.

3.1.6 Filtered historical method

In this method a suitable time series model, such as an ARMA or a GARCH, is fitted to the

asset return data. Let êi, i = 1, 2, . . . , n, denote the residuals of the fitted model. Then the

filtered historical estimator of ES (Magadia [71]) is given by

FHp = −
∑

ηt>q
ηt∑

ηt>q
I(ηt > q)

,

where ηt = êt − 1
n

∑n
t=1 êt and q = η([(1−p)n]+1) is the ([(1 − p)n] + 1)th order statistic of

{η1, . . . , ηn}. The advantages of the filtered historical method are that it maintains the
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correlation structure in the return data without relying on the exact specification of the con-

ditional distribution of asset returns and it takes into account the changing market volatility

conditions (see [108]).

3.2 Simulation study

We compare the MSE of six quantile estimators, viz. the empirical quantile estimator Empp,

the Brazauskas et al.’s estimator ÊSp, Yamai and Yoshiba’s estimator ESp,β, Filtered his-

torical FHp, Hill’s estimator Hillp and the kernel estimator Chenp,h with h = hopt. It is

difficult to compute the exact value of the MSE of these estimators even if the data generat-

ing process is completely specified. The Monte Carlo estimate of the MSE of any estimator

Tn of a parameter θ is defined as 1
B

∑B
j=1(Tnj − θ)2, where B is the number of Monte Carlo

samples each of size n drawn from a given process and Tnj is the estimate based on the jth

Monte Carlo sample, j = 1, · · · , B. We consider ten time series models. The first three of

these models are as follows

(i) {Xi}i=1,2,···is an i.i.d. process, marginal distribution GPD with ξ = 1/3.

(ii) {Xi}i=1,2,···is an i.i.d. process, marginal distribution Student’s-t with 4 df.

(iii) {Xi}i=1,2,···is an i.i.d. process, marginal distributionN(0, 1).

The first two models are motivated by empirical observations by Cont [26] regarding the

extent of tail heaviness of the marginal asset return distributions. Cont [26] mentioned that

when sample moments based on asset return data are plotted against sample size, the sample

variance seems to stabilize with increase in sample size. But the behavior of the fourth order

sample moment seems to be erratic as n is increased. This feature is also exhibited by the

sample moments based on i.i.d. draws from the Student’s t-distribution with four degrees

of freedom, which displays a tail behavior similar to many asset return distributions. Cont

also mentioned that the daily return distributions of stocks, market indices and exchange

rates seem to exhibit power law tail with exponent α satisfying, ξ = 1/α varying between

0.2 and 0.4. These observations motivate the choice of the marginal distributions in (i) and

(ii). The third model (iii) represents the classical Black-Schole’s assumption on return time

series.

To study the effect of dependence on the above mentioned quantile estimators we consider
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the following ARMA(1,1) models in Drees[33]

Xi − φXi−1 = Zi + θZi−1,

(iv) φ = 0.95, θ = −0.6,

(v) φ = 0.95, θ = −0.9,

(vi) φ = 0.3, θ = 0.9.

In addition the following GARCH(1,1) models are also considered

Xt = σtZt,

(vii) σ2
t = 0.0001 + 0.9X2

t−1,

(viii) σ2
t = 0.0001 + 0.4X2

t−1 + 0.5σ2
t−1,

(ix) σ2
t = 0.0386X2

t−1 + 0.9424σ2
t−1.

The GARCH(1,1) time series is known to model the volatility clustering observed in financial

time series data. The first two GARCH models are used in the simulation study in Drees

[33]. The model (ix) is the GARCH model fitted to CNX NIFTY daily loss data for the

duration 1st April 2012 to 31st March 2015 (details are mentioned in the section on data

analysis).

We also consider a small-scale experiment to compare performance of the estimators of

ES under netting agreements. The term netting is used to describe the process of offsetting

mutual positions or obligations between two parties (see [41]). Suppose a trader borrows

money from a broker, takes a long position on a certain equity and also buys a put option

(short position) of the market index future to hedge against any random fall in the stock

market. The trader can adopt two strategies. In the event of any unforseen downward

movement in the market, he may cover the gains in the put option and take delivery of the

stocks by paying remaining dues to the broker in cash. Otherwise the trader can exit both

the long and short positions at market price, and return the dues to the broker. In this

example a sudden downward market movement is the event that causes default. The first

strategy is not netted, as only positions with positive gains are used to meet the default

obligation. The second strategy involves netting, where overall portfolio gain is used to meet

the traders obligation to the broker. Our model (x) represents the loss in the second strategy

at time t. To study the effect of netting on ES estimation let us consider a simple portfolio

made of a long position in one asset and a short position in another one with the same

counter party.

Let E1t, E2t denote the gains in the long and short positions respectively. The vector

(E1t, E2t) is assumed to be Gaussian. mi and σi are mean and standard deviation of Eit,
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i = 1, 2 and ρ is the correlation coefficient. Since E1t and E2t are long and short position

gains, we assume that ρ is negative. Let Dt be a Bernoulli random variable, independent of

(E1t, E2t), such that Dt = 1 represents a credit event that causes default at time t (and hence

initiation of a netting agreement). In case of default, without any netting arrangement, the

loss at time t equals E+
1t +E+

2t. However under netting arrangement, the loss due to default

at time t equals (E1t +E2t)
+ (see [41], page 937). Therefore under this netting arrangement,

the loss at time t equals I(Dt = 1)(E1t+E2t)
+−I(Dt = 0)(E1t+E2t). This motivates model

(x) in our simulation study

(x) Xt = I(Dt = 1)(E1t + E2t)
+ − I(Dt = 0)(E1t + E2t),

where {(E1t, E2t)} is an i.i.d. Gaussian process, with m1 = 10, m2 = −1, ρ = 0.89 and

σi = 1, i = 1, 2. And we take P (Dt = 1) = 0.20, i.e. the chance of default is assumed to be

twenty percent.

From each of the above models (i)-(x) and for each combination of n and p, we draw 1000

Monte Carlo samples of size n. From each of these samples compute the values of the six

estimators of ESp for various values of p. From these values we compute the Monte Carlo

estimate of the MSE of that estimator for different choices of n, p and the underlying time

series model. In each case, let the Monte Carlo estimates of the MSE of the estimators Empp,

ÊSp, ESp,β, FHp, Hillp and kernel based estimator Chenp,h be denoted by MSE1-MSE6

respectively. In Tables 3.3-3.5, we report the ratios MSE2
MSE1

, · · · , MSE6
MSE1

for p varying from 0.05

to 0.001 for the i.i.d, ARMA and the GARCH models respectively. The values of the ratio

of the MSEs in Tables 3.3-3.5 are reported for n equal to 100, 250, 500 and 1000. In Table

3.6, we report these ratios for the process generated by model (x).

3.3 Findings

From the Tables 3.1-3.6 we have the following observations.

1. No estimator uniformly out performs the other estimators. However we can identify

some conditions under which some of these estimators performs well.

2. Large n and small p. For np > 1, the Yamai and Yoshiba’s ESp,β (with our choice of

β) clearly outperforms the empirical estimator for the GARCH(1,1) time series model

and i.i.d. processes with heavy tailed marginal densities (see the values of the ratio
MSE3
MSE1

in Tables 3.3 and 3.5).

If n ≥ 500 and p = 0.01, 0.001 the estimators ÊSp and FHp seem to be more accurate

than the empirical estimator Empp for data generated by the i.i.d process with Student-

t marginal density and ARMA models (iv) and (v) (see Tables 3.3 and 3.4). For ARMA
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model (vi) if n = 1000 and p = 0.01, 0.001 the estimators ÊSp and FHp seem to be

more accurate than the empirical estimator Empp (see Table 3.4). For the GARCH

models (vii) and (viii), the estimators ÊSp and FHp seem to outperform the empirical

estimator Empp for p = 0.001 and n = 1000 (see Table 3.5). The FHp estimator seems

to outperform Empp for n ≥ 250 and for all p for ARMA models (iv), (v) and (vi)

(see Table 3.4). In general, the estimators ESp,β, ESp and FHp seem to be suitable

for estimation of ESp especially for small p and large sample size, such that np > 1.

3. n ≤ 500. If the marginal density is GPD, the estimators ÊSp and ESp,β seem to

outperform Empp for n ≤ 500 and p ≥ 0.01 (see Table 3.3). For the ARMA models,

the FHp estimator seems to perform well for n = 250 and p = 0.001 (See Table 3.4).

For the GARCH model (ix) and n ≤ 250, the FHp seems to outperform the empirical

estimator Empp for all values of p (see Table 3.5).

4. Effect of decreasing p. The effect of decreasing p keeping n fixed (i.e. as we attempt

to estimate more extreme quantiles based on the same sample size), on the relative

accuracy of the nonparametric estimators seems to be model specific. For ARMA

models, the accuracy of the estimators ÊSp and FHp in comparison to the empirical

estimator seems to increase as p→ 0, keeping n fixed (see Table 3.4). This implies that

for stationary time series data where ARMA models are a good fit, extreme quantiles

can be estimated more accurately by ÊSp and FHp than the sample quantile. For the

GARCH model (ix) and n = 1000, the accuracy of the Yamai and Yoshiba’s ESp,β,

compared to Empp, seems to improve as p→ 0.

5. Effect of netting. Under model (x), we see that the estimator ÊSp proposed by

Brazauskas et al. [17] outperforms the empirical estimator for all choices of n and

p. See Table 3.6. For np < 1, the other nonparametric estimators perform poorly

compared to the empirical estimator. For np > 1, Yamai and Yoshiba’s estimator

ESp,β and ÊSp outperform the empirical estimator for data generated by model (x).

The accuracy of only ÊSp seems to increase as p→ 0, keeping n fixed, in presence of

netting arrangement.

Remark 5. 1. The above observations suggest that estimators ESp,β, ÊSp and FHp are

preferable choices for estimation of ES for large n and small p, such that np > 1. However

for np < 1, the gain in accuracy using these estimators compared to Empp varies widely

with the process generating the data. If the data is generated by a GARCH(1, 1) model, the

filtered historical estimator FHp seems to perform well.
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2. Performance of Hillp estimator. We see that asymptotic variance of Hillp estimator

is S2

np2
which can be large for fixed n and small p. This explains the poor performance of the

Hillp for small p.

3. Kernel Smoothing for ES estimation. The values of the ratio MSE6
MSE1

in Tables 3.1-

3.3 indicate that the kernel based estimator performs poorly compared to the empirical ES

estimator, and that there is no reason to use kernel smoothing for ES estimation. Earlier

we observed that Kernel smoothing does not yield an asymptotically efficient estimator. So

kernel smoothing is not recommended for ES estimation.

4. ES estimation in the presence of netting. In presence of netting, the ES estimator

proposed by Brazauskas et al. [17] is recommended. Other nonparametric estimators may

perform poorly compared to the empirical estimator in presence of netting, especially for

np < 1. The FHp estimator, seems to perform poorly for the data generated by the netting

model (x). The FHp estimator is obtained by fitting an ARMA or a GARCH model to

the asset return data. We fitted GARCH model (as this seems to be the appropriate model

for Nifty return data) to compute FHp. The poor performance of the FHp estimator in

the presence of netting is perhaps due to the fact that the GARCH model may not be an

appropriate model for the returns generated by the netting model (x).

3.4 Data analysis

The S & P Nifty is a well diversified 50 stock index accounting for 22 sectors of the In-

dian economy. For investors in the Indian equity market, it is of natural importance to

assess the market risk of the Nifty index for a number of purposes, such as benchmark-

ing performance of mutual funds (See for instance, Biswas and Dutta [13]). We apply

the above nonparametric estimators to estimate the expected shortfall of the S & P CNX

Nifty index based on the daily closing values of the index from 1st April 2007 to 31st

March 2015. These data are collected from national stock exchange(NSE) website (see

http://www.nseindia.com/products/content/equities/indices/indices.htm). There are 1983

daily return values in our data. In Appendix A, we have reported the monthly returns of

Nifty index from 1st April 2007 to 31st March 2015. The mean and standard deviation of

these data are −1.86× 10−04 and 0.007 respectively (indicating that the Nifty daily returns

during 1st April 2007 to 31st March 2015 were closely scattered around zero). However there

were 1476 trading days during this period where the Nifty daily return exceeded one percent.

In Table 3.2, we report five nonparametric estimates of the 99 and 99.9 percent ES of the

Nifty index during the period under study. We do not use the kernel based estimator, as it

is found perform poorly in our simulations.
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In Table 3.2, we observe discrepancy among the ES estimates for p = 0.001. For real

data the underlying data generating process is unknown. However, the GARCH model (ix)

fits well to this data. Also the asset return data are known to exhibit similar features as

an i.i.d. process with Student’s t, with 4 degree of freedom, as the marginal density (see

[26]). In Table 3.1, we report the ratio of the Monte Carlo estimates of the MSEs of the

estimators ÊSp, ESp,β, FHp and Hillp to the same for the empirical estimator Empp based

on samples of size n = 1983 generated by the GARCH (ix) model (fitted to the Nifty data)

and Student’s t distribution, with 4 degrees of freedom. From Table 3.1 we see that, the 99.9

percent ES estimates obtained by Yamai and Yoshiba’s estimator ESp,β and Hill’s estimator

Hillp perform poorly for sample of size n = 1983 generated by the GARCH (ix) model.

The ÊSp, FHp estimates are almost equal for both the 99 and 99.9 percent ES estimates.

The 99 and 99.9 percent ES estimates based on the Nifty return data are equal to −1.4 and

−1.8 percent respectively. These values serve as important benchmark of (daily) market risk

in National Stock exchange, India, during 1st April 2007 to 31st March 2015.

Table 3.1: Ratios estimated for Student’s t distribution and GARCH model with varying p.
Model Coeff. n 1-p MSE2

MSE1
MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

Student’s t 1983 0.99 0.890 0.897 0.959 0.931
0.999 0.874 0.521 0.998 343.110

GARCH(α = 0.039, β = 0.942) 1983 0.99 1.007 3.392 0.964 6.909
0.999 1.096 5.266 0.873 2631.265

Table 3.2: Estimating ES of nifty returns at 99% and 99.9%.

Index 1-p Empp ẼSp ESp,β FHp Hillp
CNX Nifty 0.99 −0.015 −0.014 −0.015 −0.014 −0.015

0.999 −0.035 −0.018 −0.031 −0.018 −0.028
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Table 3.3: Ratios estimated for i.i.d. cases with varying p.
Dist n 1-p MSE2

MSE1
MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

GPD 100 0.95 0.801 0.547 1.296 0.885 7.808
0.97 0.785 0.482 1.179 0.855 5.881
0.99 0.710 0.368 1.094 0.721 3.191
0.999 1.011 42.282 1.107 3.581 2.051

250 0.95 0.876 0.969 1.795 0.827 3.498
0.97 0.897 0.594 1.504 0.780 4.210
0.99 0.642 0.496 1.097 0.512 5.370
0.999 2.253 5.914 2.459 15.515 6.001

500 0.95 0.858 1.572 2.278 1.783 4.900
0.97 0.868 1.010 1.652 1.037 5.347
0.99 0.476 0.460 0.822 0.972 6.460
0.999 1.218 0.824 1.385 57.741 7.205

1000 0.95 0.899 1.895 3.607 2.409 9.239
0.97 0.953 1.548 2.344 1.832 10.401
0.99 0.584 1.115 1.212 1.002 12.865
0.999 0.395 0.304 0.596 110.798 13.011

Student t 100 0.95 0.833 0.512 0.862 1.023 18.923
0.97 0.765 0.394 0.909 0.954 12.411
0.99 0.645 0.226 0.963 0.878 5.119
0.999 1.010 131.555 0.992 7.425 2.967

250 0.95 0.781 0.932 0.791 0.775 6.022
0.97 0.687 0.832 0.770 0.622 7.997
0.99 0.435 0.790 0.756 0.363 8.094
0.999 1.690 18.632 1.699 37.739 9.888

500 0.95 0.814 1.580 0.771 2.008 11.899
0.97 0.690 0.881 0.744 0.949 12.003
0.99 0.414 0.403 0.704 0.985 14.058
0.999 0.728 2.802 0.751 145.212 15

1000 0.95 0.831 1.744 0.806 2.630 28.870
0.97 0.741 1.263 0.805 1.658 29.988
0.99 0.483 0.982 0.897 0.954 31.178
0.999 0.233 0.171 0.271 386.689 32.001

N(0,1) 100 0.95 1.083 0.413 0.816 1.562 75.720
0.97 1.103 0.234 0.870 1.682 59.934
0.99 1.041 0.114 0.937 1.654 35.583
0.999 1.024 2551.701 0.981 15.991 14.523

250 0.95 0.727 0.993 0.554 0.841 47.554
0.97 0.581 3.525 0.462 0.697 49.008
0.99 1.495 9.432 0.914 0.355 50.451
0.999 0.081 520.594 0.075 78.565 51.665

500 0.95 0.741 1.221 0.578 3.059 115.559
0.97 0.625 0.489 0.497 1.355 120.898
0.99 1.103 0.508 0.981 1.377 131.968
0.999 0.028 125.381 0.027 312.661 132.010

1000 0.95 0.808 1.328 0.654 4.104 104.897
0.97 0.776 0.871 0.640 3.399 108.433
0.99 1.493 0.337 1.402 1.180 110.688
0.999 0.011 0.207 0.014 2251.25 112.001
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Table 3.4: Ratios estimated for ARMA model with varying p.
Model Coeff. n 1-p MSE2

MSE1
MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

(0.95,−0.9) 100 0.95 1.147 0.465 0.675 1.567 134.021
0.97 1.151 0.280 0.765 1.633 114.420
0.99 1.072 0.116 0.882 1.699 68.529
0.999 1.022 1895.102 0.977 16.256 26.177

250 0.95 0.882 1.0423 0.484 0.980 10.112
0.97 0.665 2.857 0.413 0.794 12.007
0.99 1.119 7.273 0.865 0.388 74.978
0.999 0.117 370.223 0.107 77.841 20.990

500 0.95 0.878 1.194 0.468 2.626 29.010
0.97 0.671 0.567 0.425 1.293 30.898
0.99 0.234 0.424 0.173 1.489 80.121
0.999 0.043 85.846 0.038 485.339 35.890

1000 0.95 1.048 1.285 0.5 3.3888 95.119
0.97 0.829 0.910 0.518 2.7461 99.885
0.99 0.340 0.370 0.248 1.3596 101.444
0.999 0.018 0.142 0.016 1921 104.998

(0.95,−0.6) 100 0.95 1.107 0.746 0.559 1.249 11.501
0.97 1.310 0.543 0.63 1.324 11.277
0.99 1.182 0.246 0.759 1.457 10.024
0.999 1.013 684.283 0.922 18.784 5.547

250 0.95 1.092 1.061 0.554 1.106 9.887
0.97 1.138 1.109 0.640 1.123 12.001
0.99 0.833 1.739 0.553 0.956 21.140
0.999 0.368 139.002 0.315 90.996 17.785

500 0.95 1.070 1.070 0.539 1.392 20.456
0.97 1.109 0.829 0.618 1.143 23.665
0.99 0.790 0.396 0.472 1.298 27.406
0.999 0.133 32.893 0.110 589.164 30.642

1000 0.95 1.052 1.081 0.509 1.490 69.897
0.97 1.084 0.972 0.596 1.445 71.888
0.99 0.878 0.624 0.597 1.206 74.769
0.999 0.051 0.108 0.038 8887.656 76.991

(0.3,0.9) 100 0.95 1.090 0.502 0.744 1.352 40.802
0.97 1.104 0.312 0.82 1.478 34.922
0.99 1.162 0.133 0.918 1.590 24.574
0.999 1.02 1602.712 0.979 17.120 9.008

250 0.95 0.875 0.992 0.624 0.965 8.771
0.97 0.693 2.407 0.536 0.824 11.877
0.99 1.068 5.652 0.897 0.456 38.761
0.999 0.148 296.705 0.137 82.549 18.991

500 0.95 0.915 1.132 0.610 2.269 19.891
0.97 0.742 0.589 0.542 1.210 22.654
0.99 1.021 0.414 0.767 1.381 55.870
0.999 0.056 68.484 0.050 504.652 29.008

1000 0.95 0.974 1.204 0.676 2.964 67.909
0.97 0.873 0.892 0.667 2.393 70.876
0.99 0.332 0.407 0.326 1.284 73.001
0.999 0.0234 0.131 0.022 1766.340 77.991
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Table 3.5: Ratios estimated for GARCH model with varying p.
Model Coeff. n 1-p MSE2

MSE1
MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

α = 0.9 100 0.95 0.727 0.812 0.909 0.627 3.091
0.97 0.750 0.878 1 0.651 2.650
0.99 0.842 0.992 1 0.846 2.368
0.999 1.004 55.238 0.998 6.057 1.792

250 0.95 0.714 0.388 0.857 0.519 4.110
0.97 0.857 0.718 0.929 0.503 3.339
0.99 0.947 1.066 0.487 0.554 2.166
0.999 1.237 13.562 1.220 8.926 1.668

500 0.95 1 0.425 1 0.421 1.988
0.97 0.857 0.487 1 0.548 2.225
0.99 0.908 0.892 0.554 0.510 3.400
0.999 0.835 2.946 0.835 18.612 2.877

1000 0.95 0.714 0.501 0.857 0.492 1.890
0.97 0.765 0.477 1 0.475 2.118
0.99 1.057 0.537 0.914 0.553 2.007
0.999 0.260 1.073 0.317 34.376 3.007

α = 0.4,
β = 0.5 100 0.95 1 0.993 1 0.812 6.250

0.97 0.923 0.904 1 0.861 5.385
0.99 1 0.549 0.967 1.072 4.533
0.999 1.005 118.903 0.995 11.758 2.439

250 0.95 0.833 0.722 0.833 0.738 4.314
0.97 0.818 1.007 0.909 0.713 3.388
0.99 0.881 1.233 0.524 0.668 1.343
0.999 1.410 18.288 1.371 41.339 1.579

500 0.95 1 0.657 1 0.763 5.565
0.97 0.857 0.711 0.857 0.777 4.899
0.99 0.936 1.040 0.581 0.773 2.454
0.999 0.721 4.213 1 144.041 2.123

1000 0.95 1 0.668 1 0.691 3.003
0.97 0.8 0.669 1 0.663 3.123
0.99 1 0.732 0.75 0.703 3.243
0.999 0.256 0.649 0.278 214.734 2.898

α = 0.039,
β = 0.942 100 0.95 1.067 0.639 0.878 1.234 28.735

0.97 1.085 0.412 0.876 1.328 25.773
0.99 1.132 0.163 0.876 1.532 19.558
0.999 1.015 1136.792 0.890 16.267 7.963

250 0.95 1.0190 0.985 0.8932 0.929 52.340
0.97 1.030 1.784 0.880 0.851 48.019
0.99 1.054 3.732 0.861 0.536 36.995
0.999 1.046 198.688 0.867 76.171 15.182

500 0.95 0.991 1.069 1.101 1.440 94.051
0.97 0.992 0.806 1.014 1.034 83.831
0.99 1.008 0.598 0.967 1.130 64.171
0.999 1.084 44.486 0.861 465.255 27.300

1000 0.95 0.981 1.063 1.162 1.561 167.376
0.97 0.973 0.960 1.124 1.346 147.621
0.99 0.957 0.618 1.056 0.935 105.575
0.999 1.020 0.147 0.923 8786.198 45.317
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Table 3.6: Ratios estimated under netting condition with varying p.
Cond. n 1-p MSE2

MSE1
MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

Netted 100 0.95 0.002 0.798 11.087 2363.455 92.191
0.97 0.001 0.528 4.870 6.629 40.244
0.99 0.001 0.333 1.128 21157.49 9.533
0.999 0.0003 140900.9 8.424 82.171 903.181

250 0.95 0.002 37.876 2684.69 248.784 23165.62
0.97 0.001 292.190 2082.328 132.957 17030.18
0.99 0.001 684.977 1030.044 76.519 8430.355
0.999 0.0003 21664.07 194.412 125.840 1927.13

500 0.95 0.002 0.036 200.635 5670.24 1762.368
0.97 0.001 0.240 74.402 11885.21 620.636
0.99 0.001 0.871 10.268 8827.538 84.167
0.999 0.0004 4412.415 357.420 788.548 3135.653

1000 0.95 0.002 0.088 755.047 7788.671 6756.13
0.97 0.001 0.102 279.155 16395.45 2440.59
0.99 0.001 0.021 34.567 2836.48 290.682
0.999 0.0005 0.365 1.043 1262574 9.257
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