CHAPTER 3

Weighted estimates for a one-sided fractional minimal function

3.1 Introduction

In this chapter, we define a fractional version of one-sided minimal function, m_{μ}^{+} for $0 \le \mu < \infty$ on \mathbb{R} . We prove weighted weak and strong type norm estimates for m_{μ}^{+} by defining two new weight classes. We also establish an equivalence relation between the two weight classes.

Let us consider a measurable function f on \mathbb{R} . We denote the one-sided fractional minimal function for f of order $0 \le \mu < \infty$ by m_{μ}^+ and is defined as

$$m_{\mu}^{+}(f)(x) = \inf_{\xi > 0} \frac{1}{\xi^{1+\mu}} \int_{x}^{x+\xi} |f(t)| dt.$$

Considering the limits $x - \xi$ to x, we obtain an another version of one-sided minimal function as follows

$$m_{\mu}^{-}(f)(x) = \inf_{\xi>0} \frac{1}{\xi^{1+\mu}} \int_{x-\xi}^{x} |f(t)| dt.$$

For $\mu = 0$, we get the usual one-sided minimal function m^+ defined in [16]. Thus m_{μ}^+ is a generalization of m^+ . Some authors use forward minimal function for m_{μ}^+ and backward minimal function for m_{μ}^- . As like maximal functions, the results of forward and backward minimal function can be interchangeable with a little modification in the corresponding weight classes.

Corresponding to a non-negative locally integrable function w and a measurable subset Γ of \mathbb{R} , we consider the w measure of Γ as $w(\Gamma) = \int_{\Gamma} w dy$. Given 1 , we consider

This chapter is based on the published work Weighted inequalities for one-sided fractional minimal function by D. Chutia and R. Haloi [12].

p' satisfying $p^{-1} + (p')^{-1} = 1$. Throughout this chapter U and V will denote two weights on \mathbb{R} and we define $\omega = V^{1/p+1}$ for 1 . The letter <math>C refers to an arbitrary positive constant not necessarily same in all cases.

The structure of the chapter is of the following form. The weight classes $W_{p,q}^+$ and $(W_{p,q}^+)^*$ are defined in Section 3.2. We prove the weak and strong type results in Section 3.3 and their equivalence relation is given in Section 3.4.

3.2 Preliminaries

We state a basic lemma required in proving the main results. For the proof we refer [18].

Lemma 3.2.1. Let Γ be an interval in \mathbb{R} . Let $\{P_a\}_a$ be a collection of subintervals of Γ such that given a function w and for $0 \le \mu < \infty$ the relation $\int_{P_a} w dx \le C|P_a|^{1+\mu}$ holds for each a. If $\Lambda = \bigcup_a P_a$, then $\int_{\Lambda} w dx \le C(2|\Lambda|)^{1+\mu}$.

We define the weight class $\mathcal{W}_{p,q}^+$ corresponding to the weak (p,q) estimate for m_{μ}^+ .

Definition 3.2.2. Let $p, q \in (0, \infty)$ with $q \geq p$ and $\mu \in [0, \infty)$. Then the pair of weights $(U, V) \in \mathcal{W}_{p,q}^+$ if

$$\frac{1}{|\Gamma^{-}|} \int_{\Gamma^{-}} U \leq \frac{C}{|\Gamma|^{1+(\mu-\frac{1}{p})q}} \left(\frac{1}{|\Gamma|} \int_{\Gamma} V^{\frac{1}{p+1}}\right)^{(1+\frac{1}{p})q}$$

holds for each interval $\Gamma = [\alpha, \beta]$ in \mathbb{R} with $2|\Gamma^-| = |\Gamma|$ and $\Gamma^- = [\alpha, \lambda]$.

For $\mu=0$ and p=q, $\mathcal{W}_{p,q}^+$ coincides with \mathcal{W}_p^+ , defined by Cruz-Uribe et al. [16]. Thus $\mathcal{W}_{p,q}^+$ is a generalized form of \mathcal{W}_p^+ . In this definition, we consider two intervals Γ^- and Γ with common left end point such that $2|\Gamma^-|=|\Gamma|$. We generalize the Definition 3.2.2 to improve the condition $2|\Gamma^-|=|\Gamma|$. To do this, we consider any subinterval Γ^- of Γ with common left end point such that $0<\frac{|\Gamma^-|}{|\Gamma|}<1$.

Definition 3.2.3. Let $\Gamma^- = [\alpha, \lambda]$ be any subinterval of $\Gamma = [\alpha, \beta]$. We set $\pi = \frac{|\Gamma^-|}{|\Gamma|}$ such that $0 < \pi < 1$. For $0 \le \mu < \infty$, the pair $(U, V) \in \mathcal{W}^+_{p,q,\pi}$ if

$$\frac{1}{|\Gamma^{-}|} \int_{\Gamma^{-}} U \leq \frac{C}{\pi (1-\pi)^{(1+\mu)q} |\Gamma|^{1+(\mu-\frac{1}{p})q}} \left(\frac{1}{|\Gamma|} \int_{\Gamma} V^{\frac{1}{p+1}}\right)^{(1+\frac{1}{p})q}$$

holds for some constant C > 0 and 0 .

We need a decomposition of a finite interval in \mathbb{R} to relate the weight classes $\mathcal{W}_{p,q}^+$ and $\mathcal{W}_{p,q,\pi}^+$ which is known as plus-minus decomposition, introduced by Cruz-Uribe et al. [16].

3.2. Preliminaries 32

Definition 3.2.4. Let us consider the finite interval $\Gamma = [\alpha, \beta]$ in \mathbb{R} . We define a sequence $\{\kappa_m\}_{m\geq 0}$ recursively from the interval Γ as, set $\kappa_0 = \alpha$ and for each $m\geq 1$ we define

$$\kappa_m = \frac{\beta + \kappa_{m-1}}{2}.$$

For $m \geq 1$, we construct three subintervals of Γ from the sequence $\{\kappa_m\}$ as $\Lambda_m^- = [\kappa_{m-1}, \kappa_m], \Lambda_m^+ = [\kappa_m, \kappa_{m+1}]$ and $\Lambda_m = [\kappa_{m-1}, \kappa_{m+1}]$. From the construction itself $\Gamma = \bigcup_{m \geq 0} \Lambda_m^-$.

Next, we define a weight class similar to that of Sawyer's testing type condition and use this condition to obtain the strong (p,q) estimate for the minimal function, m_{μ}^{+} .

Definition 3.2.5. Let 0 . If

$$\int_{\Gamma} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Gamma})^{q}} \le C \left(\int_{\Gamma} \omega\right)^{\frac{q}{p}}$$

holds for each interval Γ in \mathbb{R} and for some constant C>0, then $(U,V)\in (\mathcal{W}_{p,q}^+)^*$.

3.3 Weak and strong type results

In this section, we prove the weak as well as strong type weighted estimates for m_{μ}^{+} . The following lemma will be used to prove the weak and strong type results.

Lemma 3.3.1. Suppose $q \ge p$ with $p, q \in (0, \infty)$ and $\pi \in (0, 1)$. Then (U, V) belongs to $\mathcal{W}_{p,q}^+$ if and only if (U, V) lies in $\mathcal{W}_{p,q,\pi}^+$.

Proof. Let $(U, V) \in \mathcal{W}_{p,q,\pi}^+$, $0 < \pi < 1$. If we choose $\pi = \frac{1}{2}$, then it follows from the definition that $(U, V) \in \mathcal{W}_{p,q}^+$.

For the converse part, we break the proof into two parts depending on π .

Case I. The case when $0 < \pi = \frac{|\Gamma^-|}{|\Gamma|} < \frac{1}{2}$, with $\Gamma = [\alpha, \beta]$ and $\Gamma^- = [\alpha, \delta]$. Suppose $\Lambda = [\alpha, \lambda]$ be a subinterval of Γ with $2|\Lambda| = |\Gamma|$. By the definition of $\mathcal{W}_{p,q}^+$, we have

$$\int_{\Lambda} U \le \frac{C|\Lambda|}{|\Gamma|^{1+(\mu-\frac{1}{p})q}} \left(\frac{1}{|\Gamma|} \int_{\Gamma} V^{\frac{1}{p+1}}\right)^{\frac{(p+1)q}{p}}.$$
(3.1)

Since $2|\Lambda|=|\Gamma|>2|\Gamma^-|.$ Thus $\Gamma^-\subset\Lambda.$ From the inequality (3.1), we have

$$\frac{1}{|\Gamma^-|} \int_{\Gamma^-} U \le \frac{1}{|\Gamma^-|} \int_{\Lambda} U \le \frac{C|\Lambda|}{|\Gamma^-||\Gamma|^{1+(\mu-\frac{1}{p})q}} \left(\frac{1}{|\Gamma|} \int_{\Gamma} \omega\right)^{(1+1/p)q}$$

$$\leq \frac{C}{\pi (1-\pi)^{(1+\mu)q} |\Gamma|^{1+(\mu-\frac{1}{p})q}} \left(\frac{1}{|\Gamma|} \int_{\Gamma} \omega\right)^{(1+1/p)q}.$$

Thus $(U, V) \in W_{p,q,\pi}^+, \ 0 < \pi \le \frac{1}{2}$.

Case II. The case when $\frac{1}{2} < \pi = \frac{|\Gamma^-|}{|\Gamma|} < 1$. We choose the smallest $M_0 \in \mathbb{N}$ such that $\pi \leq 1 - \frac{1}{2^{M_0}}$. As M_0 is the smallest, so

$$1 - \pi < \frac{1}{2^{M_0 - 1}}. (3.2)$$

Let $\{\Lambda_m^-\}_m$ be a collection of subintervals of Γ formed by the plus-minus decomposition of the interval Γ . We have,

$$\Gamma^{-} \subset \cup_{m=1}^{M_0} \Lambda_m^{-}. \tag{3.3}$$

From the definition of $\mathcal{W}_{p,q}^+$, we have

$$\int_{\Lambda_{m}^{-}} U \leq \frac{C|\Lambda_{m}^{-}|}{(2|\Lambda_{m}^{-}|)^{1+(\mu-\frac{1}{p})q}} \left(\frac{1}{2|\Lambda_{m}^{-}|} \int_{\Gamma} V^{\frac{1}{p+1}}\right)^{\frac{(p+1)q}{p}} \\
\leq C|\Gamma^{-}| \left(\frac{\Gamma}{2|\Lambda_{m}^{-}|}\right)^{(1+\mu)q} \left[\frac{1}{|\Gamma|^{1+(\mu-\frac{1}{p})q}} \left(\frac{1}{|\Gamma|} \int_{\Gamma} V^{\frac{1}{p+1}}\right)^{\frac{(p+1)q}{p}}\right].$$
(3.4)

For $m \geq 1$, we have

$$\frac{|\Gamma|}{2|\Lambda_{-}^{m}|} \le 2^{m-1}.\tag{3.5}$$

Using the estimates (3.2), (3.3), (3.4) and (3.5), we obtain

$$\frac{1}{|\Gamma^{-}|} \int_{\Gamma^{-}} U \leq \frac{1}{|\Gamma^{-}|} \sum_{m=1}^{M_{0}} \int_{\Lambda_{m}^{-}} U \leq \frac{CM_{0}}{2} \frac{1}{\pi (1-\pi)^{(1+\mu)q}} \left[\frac{1}{|\Gamma|^{1+(\mu-\frac{1}{p})q}} \left(\frac{1}{|\Gamma|} \int_{\Gamma} V^{\frac{1}{p+1}} \right)^{\frac{(p+1)q}{p}} \right].$$

We prove the two weighted weak type estimate for m_{μ}^{+} in the following theorem.

Theorem 3.3.2. Suppose $q \geq p$ with $p, q \in (0, \infty)$ and $\mu \in [0, \infty)$. Then the following statements are equivalent.

- (i) The pair of weights $(U, V) \in \mathcal{W}_{p,q}^+$.
- (ii) For $\gamma > 0$ the following estimate

$$U\left(\left\{t \in \mathbb{R} : m_{\mu}^{+}(f)(t) < \frac{1}{\gamma}\right\}\right) \leq \frac{C}{\gamma^{q}} \left(\int_{\mathbb{R}} \frac{V}{|f|^{p}}\right)^{\frac{q}{p}}$$
(3.6)

holds for a suitable positive constant C.

3.3. Weak and strong type results

Proof. (i) \implies (ii). We prove the statement for the function f with $\frac{1}{f}$ having compact support and the result for any measurable f follows due to the method developed in [16].

We assume that $(U,V) \in \mathcal{W}_{p,q}^+, 0 . For each <math>\gamma > 0$, we denote the set $O_{\gamma} = \{t \in \mathbb{R} : m_{\mu}^+(f)(t) < \frac{1}{\gamma}\}$. Since the minimal function is upper semi-continuous and $\frac{1}{f}$ has compact support, so we get a disjoint sequence of bounded and open interval $\{\Gamma_k\}_{k\geq 1}$ such that $O_{\gamma} = \bigcup_{k\geq 1} \Gamma_k$. Also by the plus-minus decomposition of Γ_k , we have

$$\frac{1}{|\Lambda_m^+|^{1+\mu}} \int_{\Lambda_m} |f| \le \frac{8^{1+\mu}}{\gamma}.$$
 (3.7)

Using $(U, V) \in \mathcal{W}_{p,q}^+$ and the inequality (3.7), we get

$$\int_{\Gamma_k} U = \sum_{l} \int_{\Lambda_m^-} U \leq \frac{3^{(1+\mu)q}C}{\gamma^q} \sum_{m} \frac{1}{|\Lambda_m|^{(1+\mu)q}} \left(\int_{\Lambda_m} V^{\frac{1}{p+1}} \right)^{\frac{(p+1)q}{p}} \left(\frac{(8|\Lambda_m^+|)^{(1+\mu)q}}{\int_{\Lambda_m} |f|} \right)^q \\
\leq \frac{C}{\gamma^q} \sum_{m} \left(\int_{\Lambda_m} \frac{V}{|f|^p} \right)^{\frac{q}{p}} \\
\leq \frac{C}{\gamma^q} \left(\sum_{m} \int_{\Lambda_m} \frac{V}{|f|^p} \right)^{\frac{q}{p}} \quad \text{(since } p \leq q) \\
\leq \frac{C}{\gamma^q} \left(\int_{\Gamma_k} \frac{V}{|f|^p} \right)^{\frac{q}{p}} \quad \text{for each } k.$$

Thus

$$U(O_{\gamma}) = U(\cup_{k} \Gamma_{k}) = \sum_{k} U(\Gamma_{k}) \le \sum_{k} \frac{C}{\gamma^{q}} \left(\int_{\Gamma_{k}} \frac{V}{|f|^{p}} \right)^{\frac{q}{p}} \le \frac{C}{\gamma^{q}} \left(\int_{\mathbb{R}} \frac{V}{|f|^{p}} \right)^{\frac{q}{p}}.$$

(ii) \Longrightarrow (i). Let $\Gamma = [\alpha, \beta]$ be a finite interval in \mathbb{R} . Let $\Gamma^- = [\alpha, \delta]$ and $\Gamma^+ = [\delta, \beta]$ be two subintervals of Γ with $|\Gamma^-| = |\Gamma^+|$. For $f = V^{\frac{1}{p+1}}/\chi_{\Gamma}$ and $t \in \Gamma^-$, we obtain

$$m_{\mu}^{+}(f)(t) \le \frac{1}{|\Gamma^{+}|^{1+\mu}} \int_{\Gamma} V^{\frac{1}{p+1}}.$$
 (3.8)

We choose $\gamma > 0$ such that

$$\frac{1}{\gamma} = \frac{1}{|\Gamma^+|^{1+\mu}} \int_{\Gamma} V^{\frac{1}{p+1}}.$$
 (3.9)

Incorporating the estimates (3.8) and (3.9) in the inequality (3.6), we get

$$\begin{split} U(\Gamma^{-}) &\leq U\Bigg(\bigg\{t \in \mathbb{R}: m_{\mu}^{+}(f)(t) < \frac{1}{\gamma}\bigg\}\Bigg) \leq \frac{C}{\gamma^{q}}\Bigg(\int_{\Gamma} \frac{V}{V^{\frac{p}{p+1}}}\Bigg)^{\frac{q}{p}} \\ &= C\frac{\left|\Gamma^{-}\right|}{\left|\Gamma\right|^{1+(\mu-\frac{1}{p})q}}\Bigg(\int_{\Gamma} V^{\frac{1}{p+1}}\Bigg)^{\frac{(p+1)q}{p}}. \end{split}$$

Thus $(U, V) \in \mathcal{W}_{p,q}^+$ and completes the proof.

We obtain the two weighted strong type (p,q) estimate using $(\mathcal{W}_{p,q}^+)^*$ condition as follows.

Theorem 3.3.3. Let us assume $q \geq p$ with $p, q \in (0, \infty)$. Then we have the following equivalent statements.

- (i) The pair of weights $(U, V) \in (\mathcal{W}_{p,q}^+)^*$.
- (ii) The strong (p,q) holds for the fractional one-sided minimal function, that is

$$\int_{\mathbb{R}} \frac{U}{(m_{\mu}^{+}(f))^{q}} \leq C \left(\int_{\mathbb{R}} \frac{V}{|f|^{p}} \right)^{\frac{q}{p}}.$$

Proof. (i) \implies (ii). For each $\kappa \in \mathbb{Z}$, we define

$$\Omega_{\kappa} = \left\{ t \in \mathbb{R} : m_{\mu}^{+}(f)(t) < \frac{1}{2^{\kappa}} \right\}.$$

Thus we get a disjoint sequence of bounded open intervals $\{\Gamma_{i,\kappa}\}_i$ with $\Omega_{\kappa} = \bigcup_i \Gamma_{i,\kappa}$ and for each $t \in \Gamma_{i,\kappa} = (\delta_{i,\kappa}, \epsilon_{i,\kappa})$,

$$\int_{t}^{\epsilon_{i,\kappa}} |f| \le 2^{1+\mu-\kappa} |\epsilon_{i,\kappa} - t|^{1+\mu}. \tag{3.10}$$

We construct another pairwise disjoint set $\Omega_{i,\kappa}$ for each integer i and κ as

$$\Omega_{i,\kappa} = \left\{ t \in \Gamma_{i,\kappa} : m_{\mu}^+(f)(t) \ge \frac{1}{2^{\kappa+1}} \right\}.$$

Then

$$\int_{\mathbb{R}} \frac{U}{(m_{\mu}^{+}(f))^{q}} = \sum_{i,\kappa} \int_{\Omega_{i,\kappa}} \frac{U}{m_{\mu}^{+}(f)^{q}} \leq \sum_{i,\kappa} \int_{\Omega_{i,\kappa}} 2^{(\kappa+1)q} U$$

$$\leq 2^{q(2+\mu)} \sum_{i,\kappa} \int_{\Omega_{i,\kappa}} \left(\frac{1}{|\epsilon_{i,\kappa} - t|^{1+\mu}} \int_{t}^{\epsilon_{i,\kappa}} |f| \right)^{-q} U.$$

Let η stand for usual Lebesgue measure and ζ represent the counting measure defined respectively in \mathbb{R} and \mathbb{Z} . Using the argument in [55], we consider a measure ν on $\mathcal{Z} = \mathbb{Z} \times \mathbb{Z} \times \mathbb{R}$ as $\zeta \times \zeta \times \eta$. Let ρ be a weight on \mathcal{Z} defined by

$$\rho(i,\kappa,t) = \left(\frac{1}{|\epsilon_{i,\kappa} - t|^{1+\mu}} \int_{t}^{\epsilon_{i,\kappa}} \omega dy\right)^{-q} \chi_{\Omega_{i,\kappa}}(t) U(t).$$

We define two operators \mathcal{L} and \mathcal{G} by

$$\mathcal{L}(g)(i,\kappa,t) = \chi_{\Omega_{i,\kappa}}(t) \frac{1}{\int_t^{\epsilon_{i,\kappa}} g\omega dy} \int_t^{\epsilon_{i,\kappa}} \omega dy, \quad \mathcal{G}(g)(i,\kappa,t) = \chi_{\Omega_{i,\kappa}}(t) \frac{1}{\int_t^{\epsilon_{i,\kappa}} \omega dy} \int_t^{\epsilon_{i,\kappa}} g\omega dy.$$

Using Hölder's inequality with exponent s and s' for s > 1, we have

$$\frac{1}{\int_{t}^{\epsilon_{i,\kappa}} g\omega dy} \int_{t}^{\epsilon_{i,\kappa}} \omega dy \leq \frac{1}{\int_{t}^{\epsilon_{i,\kappa}} g\omega dy} \left(\int_{t}^{\epsilon_{i,\kappa}} g\omega dy \right) \left(\frac{1}{\int_{t}^{\epsilon_{i,\kappa}} \omega dy} \left(\int_{t}^{\epsilon_{i,\kappa}} g^{1-s'} \omega dy \right) \right)^{s-1}$$

$$= \left(\frac{1}{\int_{t}^{\epsilon_{i,\kappa}} \omega dy} \left(\int_{t}^{\epsilon_{i,\kappa}} g^{1-s'} \omega dy \right) \right)^{s-1}.$$

This implies that

$$\mathcal{L}(g)(i,\kappa,t) \le \left(\mathcal{G}(g^{1-s'})(i,\kappa,t)\right)^{s-1}.$$
(3.11)

We first assume the strong $(\frac{q}{p}, \frac{q^2}{p^2})$ inequality of the operator \mathcal{G} with respect to the weights ω and $\rho d\nu$ in \mathbb{R} and \mathcal{Z} , respectively. Considering $s = 1 + \frac{q}{p^2}$ and the estimate (3.11), we have

$$2^{q(2+\mu)} \int_{\mathcal{Z}} \mathcal{L}\left(\frac{|f|}{\omega}\right)^q \rho d\nu \leq 2^{q(2+\mu)} \left(\int_{\mathbb{R}} \left(\left(\frac{\omega}{|f|}\right)^{s'-1}\right)^{\frac{q}{p}} \omega\right)^{\frac{p}{q} \times \frac{q^2}{p^2}} \leq C \left(\int_{\mathbb{R}} \frac{V}{|f|^p}\right)^{\frac{q}{p}}.$$

Hence the result follows. Now, it is left to establish the boundedness of \mathcal{G} . As the operator \mathcal{G} satisfies the strong type (∞, ∞) , thus applying Marcinkiewicz interpolation theorem, it is sufficient for us to establish the weak type $(1, \frac{q}{p})$ of \mathcal{G} . That is we need to show that

$$\int_{\{|\mathcal{G}(g)| > \gamma\}} \phi d\tau \le C \left(\frac{1}{\gamma} \int g \omega dx\right)^{\frac{q}{p}}.$$

Let $\theta_{i\kappa}(\gamma) = \inf \mathcal{E}_{i,\kappa}(\gamma)$, where $\mathcal{E}_{i,\kappa}(\gamma) = \{t \in \Omega_{i,\kappa} : \mathcal{G}(g)(i,\kappa,t) > \gamma\}$ and $\Lambda_{i\kappa} = \Lambda_{i\kappa}(\gamma) = [\theta_{i\kappa}(\gamma), \epsilon_{i\kappa})$. Then

$$\frac{1}{\int_{\Lambda_{-}} \omega} \int_{\Lambda_{i\kappa}} g\omega \ge \gamma$$

and either $\Lambda_{i_1\kappa_1} \cap \Lambda_{i_1\kappa_2} = \phi$ or one is contained in the other.

Let $\{\Lambda_j\}$ be the maximal elements of the family $\{\Lambda_{i\kappa}\}$ so that Λ_j 's are disjoint. Thus

$$\int_{\{|\mathcal{G}(g)| > \gamma\}} \phi d\tau = \sum_{\kappa,i} \int_{\mathcal{E}_{i,\kappa}(\gamma)} \left(\frac{1}{|\epsilon_{i,\kappa} - t|^{1+\mu}} \right)^{-q} U dt$$

$$= \sum_{j} \sum_{\{(\kappa,i): \Lambda_{i\kappa} \subset \Lambda_{j}\}} \int_{\mathcal{E}_{i\kappa}(\gamma)} \left(\frac{1}{|\epsilon_{i,\kappa} - t|^{1+\mu}} \right)^{-q} U dt$$

$$\leq \sum_{j} \int_{\Lambda_{j}} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Lambda_{j}})^{q}} dt$$

$$\leq C \sum_{j} \left(\int_{\Lambda_{j}} \omega dt \right)^{\frac{q}{p}} \leq C \sum_{j} \left(\frac{1}{\gamma} \int_{\Lambda_{j}} g \omega dt \right)^{\frac{q}{p}} \leq C \left(\frac{1}{\gamma} \int_{\mathbb{R}} g \omega dt \right)^{\frac{q}{p}}.$$

This proves that H is weak $(1, \frac{q}{p})$ and hence it concludes the proof.

(ii) \Longrightarrow (i). We take, $f = \omega/\chi_{\Gamma}, \omega = V^{\frac{1}{p+1}}$ and hence it follows immediately.

3.4 Relation between weak and strong type estimates

The following result is quite interesting as it gives the equivalence between the two weight classes $\mathcal{W}_{p,q}^+$ and $(\mathcal{W}_{p,q}^+)^*$.

Theorem 3.4.1. Suppose that $q \geq p$ with $p, q \in (0, \infty)$. Then the weight classes $W_{p,q}^+$ and $(W_{p,q}^+)^*$ are equivalent, that is a pair (U, V) satisfies the $W_{p,q}^+$ condition if and only if it satisfies the condition $(W_{p,q}^+)^*$.

We prove Theorem 3.4.1 using the following two lemmas. Next, we state these two lemmas and the equivalence between $W_{p,q}^+$ and $(W_{p,q}^+)^*$ follows immediately.

Lemma 3.4.2. Let the pair $(U, V) \in \mathcal{W}_{p,q}^+$, $0 . We consider any finite interval <math>\Gamma = [\alpha, \beta]$ in \mathbb{R} . Then

$$\int_{\Gamma^{-}} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Gamma})^{q}} \leq C \left(\int_{\Gamma^{-} \cup \Gamma^{+}} \omega\right)^{\frac{q}{p}}$$

 $holds \ for \ \Gamma^- \ \ and \ \Gamma^+, \ where \ \Gamma^- = [\alpha, \delta] \ \ and \ \Gamma^+ = [\delta, \lambda] \ \ with \ \ 2|\Gamma^-| = |\Gamma| = 4|\Gamma^+|.$

Proof. Let $\gamma > 0$ and consider $\Omega_{\gamma} = \left\{ x \in \Gamma^{-} : m_{\mu}^{+}(\omega/\chi_{\Gamma})(x) < \frac{1}{\gamma} \right\}$. Thus we obtain a sequence of intervals $\{\Gamma_{j}\}$ that are disjoint and that satisfy $\Omega_{\gamma} = \bigcup_{j} \Gamma_{j}$. Also, we have

$$\int_{\Gamma^{-}} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Gamma})^{q}} dx = q \int_{0}^{\infty} \gamma^{q-1} U(\Omega_{\gamma}) d\gamma = I_{1} + I_{2},$$

where $I_1 = q \int_0^{\epsilon} \gamma^{q-1} U(\Omega_{\gamma}) d\gamma$ and $I_2 = q \int_{\epsilon}^{\infty} \gamma^{q-1} U(\Omega_{\gamma}) d\gamma$, for some $\epsilon > 0$ and the value of ϵ to be specified later. Now, we obtain

$$I_1 = q \int_0^{\epsilon} \gamma^{q-1} U(\Omega_{\gamma}) d\gamma \le U(\Gamma^-) q \int_0^{\epsilon} \gamma^{q-1} = U(\Gamma^-) \epsilon^q.$$
 (3.12)

For a fixed interval $\{\Gamma_j\}$, we construct two sequences of intervals $\{\Lambda_m^-\}$ and $\{\Lambda_m^+\}$ as the plus-minus decomposition of the interval Γ_j . Then

$$U(\Gamma_j) = \sum_{m \ge 1} U(\Lambda_m^-) \le 3^{(1+\mu)q} C \sum_{m \ge 1} \frac{3|\Lambda_m^-|}{2|\Lambda_m|^{1+(1+\mu)q}} \left(\int_{\Lambda_m} \omega\right)^{(1+1/p)q}$$
(3.13)

$$\leq C \sum_{m>1} \left(\frac{1}{\gamma}\right)^{(1+1/p)q} |\Lambda_m|^{(1+\mu)\frac{q}{p}} \leq C \left(\frac{1}{\gamma}\right)^{(1+1/p)q} |\Gamma_j|^{(1+\mu)\frac{q}{p}}.$$
(3.14)

Using the disjoint decomposition of Ω_{γ} and the inequality (3.14), we thus obtain

$$I_{2} = q \int_{\epsilon}^{\infty} \gamma^{q-1} U(\Omega_{\gamma}) d\gamma \leq q \int_{\epsilon}^{\infty} \gamma^{q-1} \left(\frac{1}{\gamma}\right)^{\frac{(p+1)q}{p}} |\Gamma^{-}|^{(1+\mu)\frac{q}{p}}$$

$$\leq C \left(\frac{1}{\epsilon}\right)^{\frac{q}{p}} |\Gamma^{-}|^{(1+\mu)\frac{q}{p}}.$$
(3.15)

We choose ϵ such that

$$\epsilon^{q} = \frac{\left(\omega(\Gamma^{-} \cup \Gamma^{+})\right)^{\frac{q}{p}}}{U(\Gamma^{-})}.$$
(3.16)

As the pair $(U, V) \in \mathcal{W}_{p,q}^+$, we have

$$U(\Gamma^{-}) \leq C \frac{3^{1+(1+\mu)q} |\Gamma^{-}|}{2|\Gamma^{-} \cup \Gamma^{+}|^{1+(1+\mu)q}} \left(\omega(\Gamma^{-} \cup \Gamma^{+})\right)^{\frac{(p+1)q}{p}}$$

$$\leq \frac{C}{|\Gamma^{-}|^{(1+\mu)q}} \left(\omega(\Gamma^{-} \cup \Gamma^{+})\right)^{\frac{(p+1)q}{p}}.$$
(3.17)

From the inequality (3.16) and (3.17), we obtain

$$\left(\frac{1}{\epsilon}\right)^{\frac{q}{p}} \le \frac{C}{|\Gamma^{-}|^{(1+\mu)\frac{q}{p}}} \left(\omega(\Gamma^{-} \cup \Gamma^{+})\right)^{\frac{q}{p}}.$$
(3.18)

Using the inequality (3.12), (3.15), and (3.18), we conclude that

$$\Gamma_1, \Gamma_2 < (\omega(\Gamma^- \cup \Gamma^+))^{\frac{q}{p}}.$$

Hence the proof is complete.

Lemma 3.4.3. Let $\{\mathcal{K}_l\}_{l\geq 0}$ be a decreasing sequence of nested intervals with the property that $|\mathcal{K}_l| \to 0$ as $l \to \infty$. Then for the pair $(U, V) \in \mathcal{W}_{p,q}^+, 0 , we have$

$$\lim_{l \to \infty} \int_{\mathcal{K}_l} \frac{U}{m_{\mu}^+(\omega/\chi_{\mathcal{K}_l})^q} = 0.$$

Proof. As the sequence $\{\mathcal{K}_l\}$ is decreasing, thus for $0 \leq \mu < \infty$, m_{μ}^+ satisfies

$$m_{\mu}^{+}(\omega/\chi_{\mathcal{K}_{l}}) \leq m_{\mu}^{+}(\omega/\chi_{\mathcal{K}_{l+1}}), \ k \geq 0.$$

Also, letting $l \to \infty$, we have $1/m_{\mu}^{+}(\omega/\chi_{\mathcal{K}_{l}}) \to 0$ a.e. on \mathcal{K}_{0} .

We set $\Gamma^- = \mathcal{K}_0$ and by the Lemma 3.4.2, we obtain

$$\int_{\mathcal{K}_0} \frac{U}{m_{\mu}^+(\omega/\chi_{\mathcal{K}_0})} < \infty.$$

Using the property $\mathcal{K}_{l+1} \subset \mathcal{K}_l$ and from the dominated convergence theorem, we have

$$\lim_{l \to \infty} \int_{\mathcal{K}_l} \frac{U}{m_{\mu}^+(\omega/\chi_{\mathcal{K}_l})} \le \lim_{l \to \infty} \int_{\mathcal{K}_0} \frac{U}{m_{\mu}^+(\omega/\chi_{\mathcal{K}_l})} = 0.$$

Hence the result holds.

Proof of Theorem 3.4.1. Clearly $(\mathcal{W}_{p,q}^+)^*$ implies $\mathcal{W}_{p,q}^+$. We only need to establish the other part.

Let $(U, V) \in \mathcal{W}_{p,q}^+$. For a interval $\Gamma = [\alpha, \beta]$ in \mathbb{R} , we establish the inequality

$$\int_{\Gamma} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Gamma})^{q}} \leq C\omega(\Gamma)^{\frac{q}{p}}$$

for any arbitrary C > 0. Suppose $\{\Lambda'_m\}$ be a sequence of intervals defined by $\Lambda'_m = [\kappa_m, \beta]$ for each $m \geq 1$, where $\{\kappa_m\}$ is the sequence constructed to form the plus-minus decomposition, Λ^-_m and Λ^+_m , of the interval Γ . Then $\Gamma = \Lambda^-_1 \cup \Lambda'_1$ and thus we have

$$\int_{\Gamma} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Gamma})^{q}} \leq \int_{\Lambda_{1}^{-}} + \int_{\Lambda_{1}^{\prime}}.$$

From the Lemma 3.4.2

$$\int_{\Lambda_1^-} \le C\bigg(\omega(\Lambda_1)\bigg)^{\frac{q}{p}}.$$

For the second integral, we write $\Lambda'_1 = \Lambda^-_2 \cup \Lambda'_2$ and we repeat the process. Continuing this process up to l many times, we get

$$\int_{\Gamma} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Gamma})^{q}} \leq C \sum_{m=1}^{l} \left(\omega(\Lambda_{m}) \right)^{\frac{q}{p}} + \int_{\Lambda'_{l}} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Lambda'_{l}})^{q}}.$$

Using Lemma 3.4.3, we obtain

$$\int_{\Lambda'_l} \frac{U}{m_{\mu}^+(\omega/\chi_{\Lambda'_l})^q} \to 0 \text{ as } l \to \infty.$$

Now, letting $l \to \infty$ and by the relation $\frac{q}{p} \ge 1$, we obtain

$$\int_{\Gamma} \frac{U}{m_{\mu}^{+}(\omega/\chi_{\Gamma})^{q}} \leq C \left(\sum_{m=1}^{\infty} \omega(\Lambda_{m})\right)^{\frac{q}{p}} \leq C \left(\omega(\Gamma)\right)^{\frac{q}{p}}.$$

Hence the proof is complete.