Dedicated to my parents and in-laws

DECLARATION

I hereby declare that the thesis entitled "Cold Plasma Pre-treatment and Foam Mat Drying of Pineapple Pulp: Enzyme Inactivation, Interrelating Pulp Rheology with Powder Attributes and Sorption Isotherm" is being submitted to the School of Engineering, Tezpur University, Tezpur, Assam in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research work accomplished by me under the supervision of Prof. Brijesh Srivastava.

All helps from various sources haven been duly acknowledged.

No part of the thesis has been submitted elsewhere for the award of any degree.

Date: 27.10.2025

Place: Tezpur

Arzinarza Bogum (Arjuara Begum)

Registration No. TZ168173 of 2016

तेजपुर विश्वविद्यालय/ TEZPUR UNIVERSITY

(संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय)

(A Central University established by an Act of Parliament) तेजप्र-784028 :: असम/ TEZPUR-784028 :: ASSAM

(सर्वोत्तम विश्वविद्यालय के लिए कुलाध्यक्ष पुरस्कार,2016 औरभारत के 100श्रेष्ठ उच्च शिक्षण संस्थानों में पंचम स्थान प्राप्त विश्वविद्यालय) (Awardee of Visitor's Best University Award, 2016 and 5th among India's Top 100 Universities, MHRD-NIRF Ranking, 2016)

Dr. Brijesh Srivastava

Professor

Department of Food Engineering and Technology

Mobile: +91-7635804240

Phone: 0303712-275712 Email: brijesh@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "Cold Plasma Pre-treatment and Foam Mat Drying of Pineapple Pulp: Enzyme Inactivation, Interrelating Pulp Rheology with Powder Attributes and Sorption Isotherm" submitted to the School of Engineering, Tezpur University in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of original research work carried out by Ms. Arjuara Begum under my supervision and guidance.

All help received by him from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any degree.

Date: 27.10.2025

Place: Tezpur

(Brijesh Srivastava)

Supervisor

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to my supervisor, Prof. Brijesh Srivastava, Department of Food Engineering and Technology, School of Engineering, Tezpur University, Assam, for his exceptional guidance, encouragement, and expertise. His insightful suggestions, patient support, and dedicated involvement from the inception of this research to the successful completion of my thesis have been invaluable.

I am equally grateful to my esteemed doctoral committee members, Dr. M. K. Hazarika, Dr. Nandan Sit (Department of Food Engineering and Technology), Dr. Dilip Dutta (Department of Mechanical Engineering), and Dr. Dambarudhar Mohanta (Department of Physics), Tezpur University, for their constructive feedback and thoughtful guidance throughout the course of my research.

My sincere thanks are also due to Prof. Nandan Sit, Prof. Laxmikant S. Badwaik, former Heads, and Prof. Poonam Mishra, Head of the Department of Food Engineering and Technology, for their essential research resources, continual support, and valuable advice during my Ph.D.

I extend my heartfelt appreciation to all the faculty members of the Department of Food Engineering and Technology for their valuable input and constant encouragement.

I am deeply thankful to Prof. Shambhu Nath Singh, Vice-Chancellor of Tezpur University, for fostering a conducive academic environment and ensuring the availability of facilities that enabled the smooth progress of my doctoral work.

I also gratefully acknowledge the assistance of the technical and non-technical staff of the department for their unfailing cooperation and support.

I sincerely acknowledge the financial assistance provided by the National Agricultural Science Fund (NASF), the Indian Council of Agricultural Research (ICAR), Government of India, and Tezpur University, which was instrumental in carrying out this research.

On a personal note, I am profoundly indebted to my parents, in-laws, family members, and my husband for their unwavering support, unconditional love, and constant encouragement throughout this challenging journey. Their faith in me has been my greatest source of strength and motivation.

Above all, I bow in humble gratitude to the Almighty Allah for His infinite mercy, guidance, and blessings, without which this achievement would not have been possible. Alhamdulillah, all praise is due to Him alone

Arjuara Begum

Date: 27.10.2025

Place: Tezpur

LIST OF TABLES

Table No.	Table of Title	
Table 2.1	PPO and POD inactivation in fruits using thermal and	12
	non-thermal methods	
Table 2.2	Comparative studies on foam-mat drying of fruit	19
	juices/pulps	
Table 3.1	List of equipment with make and model used in the study	32
Table 4.1	PPO Enzymatic modeling kinetic parameters of Cold	66
	plasma-treated pineapple pulp at 2 mm sample depth	
Table 4.2	POD Enzymatic modeling kinetic parameters of Cold	67
	plasma-treated pineapple pulp at 2 mm sample depth	
Table 4.3	PPO Enzymatic modeling kinetic parameters of Cold	68
	plasma-treated pineapple pulp at 3 mm sample depth	
Table 4.4	POD Enzymatic modeling kinetic parameters of Cold	69
	plasma-treated pineapple pulp at 3 mm sample depth	
Table 4.5	PPO Enzymatic modeling kinetic parameters of Cold	70
	plasma-treated pineapple pulp at 4 mm sample depth	
Table 4.6	POD Enzymatic modeling kinetic parameters of Cold	71
	plasma-treated pineapple pulp at 4 mm sample depth	
Table 4.7	ANOVA Table for the response PPO	75
Table 4.8	ANOVA Table for the response POD	75
Table 4.9	Selection criteria for the process standardization	76
Table 4.10	Solutions of the process standardization of PPO and POD	77
Table 4.11	Validation of the standardized combination	77
Table 4.12	Color value of cold-plasma-treated Pineapple pulp	78
Table 4.13	Total Color change, chroma, and hue of cold plasma-	
	treated Pineapple pulp	
Table 4.14	Model Validation by A _f and B _f -value of PPO enzymes	81
Table 4.15	Model Validation by A _f and B _f -value of POD enzymes	82
Table 4.16	Model Validation by AIC and BIC-value of PPO enzymes	83
Table 4.17	Model Validation by AIC and BIC-value of POD enzymes	84
Table 4.18	Effect of Cold plasma treatment on the TPC of pineapple	87
	pulp	
Table 4.19	DPPH free radical scavenging activity of cold plasma	88
	treated pineapple pulp	

Table 4.20	Effect of Cold plasma treatment on the pH of pineapple	89
Table 4.21	Effect of Cold plasma treatment on the conductivity of	90
	pineapple pulp	
Table 4.22	Foaming properties of cold plasma-treated pineapple pulp	
Table 4.23	Thin Layer Drying Models of Foam Mat Dried Pineapple	95
	Pulp	
Table 4.24	Physical and rehydration properties of foam dried	96
	pineapple powder	
Table 4.25	Lower half correlation matrix among foaming and powder	99
	properties of foam	
Table 4.26	Chemical properties of the pineapple pulp powder	100
Table 4.27	Statistical analysis of the table for responses to foam	100
	expansion, foam density, foam stability, and drainage	
	volume	
Table 4.28	Criteria for standardization of the foaming process	101
Table 4.29	Solutions of the foaming standardization	101
Table 4.30	ι Validation of the standardized combination	101
Table 4.31	Suitability of different rheological models for pineapple	105
	pulp foam obtained with varying level of skimmed milk	
	powder (SMP) at different shear-rates	
Table 4.32	Various drying models fitted with pineapple pulp foam	109
	prepared with different levels of skimmed milk powder	
	(SMP)	
Table 4.33	Dynamic rheological parameters of cold plasma treated	110
	pineapple pulp (1 Hz)	
Table 4.34	Thixotropic model coefficients and physical properties of	112
	untreated pineapple foam with varying SMP and shear-	
	rates	
Table 4.35	Thixotropic model coefficients and physical properties of	113
	cold plasma-treated pineapple foam with varying SMP and	
	shear-rates	
Table 4.36	Physical and rehydration properties of foam-dried	116
	pineapple powder	
Table 4.37	Lower half correlation matrix among foaming, rheological	117
	and powder properties of foam	

Table 4.38	Lower half correlation matrix of treated samples among	
	foaming, rheological and powder properties of foam	
Table 4.39	Isotherm model parameters with their statistical	122
	performance parameters of pineapple powder packed in PP and AL pouches	
Table 4.40	Model validation parameters (A_f and B_f) and selection parameters (AIC and BIC) of the moisture sorption isotherms of pineapple powder packed in PP and AL pouches at 30, 40, and 50 °C	127
Table 4.41	Physicochemical properties of foam mat dried powder stored in PP and AL pouches under accelerated storage conditions	133
Table 4.42	Thermodynamic properties of foam mat dried powder stored in PP and AL pouches	134

LIST OF FIGURES

Figure No.	Caption	Page No.
Figure 2.1	Flowchart of the foaming process	16
Figure 3.1	Work plan flowchart of objective # 1	34
Figure 3.2	Cold Plasma Parallel plate attachments	34
Figure 3.3	Work plan flowchart of objective # 2	41
Figure 3.4	The schematic diagram of a methodology for objective #3	45
Figure 3.5	Workplan flowchart of objective # 4	50
Figure 4.1	Relative activity of (a) PPO (b) POD of cold plasma treated pineapple pulp at 2 mm sample depth under different voltages of 15-25 kV and treatment time for 3-15 min.	58
Figure 4.2	Relative activity of (a) PPO (b) POD of cold plasma treated pineapple pulp at 3 mm sample depth under different voltages of 15-25 kV and treatment time for 3-15 min.	59
Figure 4.3	Relative activity of (a) PPO (b) POD of cold plasma treated pineapple pulp at 4 mm sample depth under different voltages of 15-25 kV and treatment time for 3-15 min.	60
Figure 4.4	Relative activity of PPO and POD of cold plasma-treated pineapple pulp at 2 mm sample depth fitted to first-order kinetic model, Weibull model, Two-Fractional model, Peleg and Logistic model	62
Figure 4.5	Relative activity of PPO and POD of cold plasma-treated pineapple pulp at 3 mm sample depth fitted to first-order kinetic model, Weibull model, Two-Fractional model, Peleg and Logistic model	63
Figure 4.6	Relative activity of PPO and POD of cold plasma-treated pineapple pulp at 4 mm sample depth fitted to first-order kinetic model, Weibull model, Two-Fractional model, Peleg and Logistic model	64
Figure 4.7	PCA Biplot of kinetic parameters for cold plasma-treated pineapple pulp	85
Figure 4.8	Principal component analysis (PCA) biplot among independent variable (SMP concentration) and dependent functions (foaming and powder properties)	97
Figure 4.9	Sample shear-stress versus time plot of experimental data and	106

	model fitting for pineapple pulp at a shearrate of 10s ⁻¹ with	
	2%, 4%, and 6% skimmed milk powder (SMP) that were	
	whipped for 2 min	
Figure 4.10	Sample shear stresses versus time plot of experimental data	107
	and model fitting for cold plasma treated pineapple pulp at a	
	shear rate of $10s^{-1}$ with 2%, 4%, and 6% skimmed milk	
	powder (SMP) that were whipped for 2 min	
Figure 4.11	Steady rheology of cold plasma treated pineapple pulp foam	108
	with (a) 2% SMP, (b) 4% SMP, and (c) 6% SMP whipped for	
	120 s	
Figure 4.12	Principal component analysis (PCA) biplot of untreated	119
	pineapple pulp among independent variable (SMP	
	concentration) and dependent functions (time-dependent	
	rheological parameters, foaming and powder properties)	
Figure 4.13	Principal component analysis (PCA) biplot of cold plasma-	120
	treated pulp among independent variable (SMP concentration)	
	and dependent functions (time-dependent rheological	
	parameters, foaming and powder properties)	
Figure 4.14	Moisture sorption isotherms of pineapple powder packed in	124
	PP pouch at 30, 40, and 50 °C showing the fitted curves of	
	GAB and Henderson model.	
Figure 4.15	Moisture sorption isotherms of pineapple powder packed in	125
	AL pouch at 30, 40, and 50 °C showing the fitted curves of the	
	GAB and Henderson models.	
Figure 4.16	Effect of EMC on the (a) net isosteric heat of sorption and (b)	129
	sorption entropy of pineapple pulp powder using GAB and	
	Smith models output	
Figure 4.17	Sample plot of net isosteric heat of sorption versus sorption	130
	entropy	
Figure 4.18	PCA Biplot of Sorption entropy and isosteric heat of foam	131
	dried pineapple pulp powder	

LIST OF ABBREVIATIONS

Abbreviations	Full form
CP	Cold plasma
ACP	Atmospheric cold plasma
DBD	Dielectric barrier discharge
PPO	polyphenoloxidase
POD	peroxidase
PME	Pectin Methyl esterase
CMC	Carboxymethyl cellulose
EU	European Union
SMP	Skimmed milk powder
PVPP	Polyvinyl polypyrolidone
WT	Whipping time
SSP	Sorenson's phosphate
EV	Expansion volume
FD	Foam density
FS	Foam stability
DV	Drainage volume
MR	Moisture ratio
CI	Carr index
HR	Hausner ratio
WSI	Water solubility index
WAI	Water absorption index
PCA	Partial component analysis
RSM	Response surface methodology
DPPH	2,2-diphenyl-1-picrylhydrazyl
FCR	Folin-Cocteau reagent
PME	Pectin methylesterase
RA	Residual activity
TSS	Total soluble solids
TA	Titratable acidity

TPC Total phenolic content

SD Standard deviation

RMSE Root means square error

AIC Akaike information criterion

GAE Gallic acid equivalent

EC Electrical conductivity

SPSS Statistical Package for Social Sciences

ANOVA Analysis of variance

LIST OF SYMBOLS

Symbols	Full form
mg	Milligram
g	Gram
kV	Kilovolt
mm	Millimeter
mL	Milliliter
%	Percentage
oC	Degree Celsius
σ^2	Variance
μm	Micrometer
β	Shape factor
δ	Scale factor
min	Minute
S	Second
U	Unit
A_{f}	Accuracy factor
B_{f}	Bias factor
oB	Degree brix
ΔE	Total colour difference
\mathbb{R}^2	Coefficient of determination
cm	Centimeter
ε	Porosity
ρ_{d}	Particle density
ρ_b	Bulk density
G'	Storage modulus
G"	Loss modulus
б	Maximum stress
G_{e}	Equilibrium stress
η^*	Complex viscosity
δ	Phase angle
σ_0	Yield stress
ω	Frequency
σ_{max}	Maximum stress