RESULTS AND DISCUSSIONS

Chapter 4

4.1 Characterization of Air Pollutants (Comfort Parameters, PM2.5 and CO2) in University

Temperature, relative humidity, carbon dioxide (CO₂), and fine particulate matter (PM_{2.5}) were monitored across four classroom microenvironments at Cotton University (CU), an urban campus, over five consecutive days during active classroom hours. Similarly, measurements were conducted at Tezpur University (TU), a rural campus, across four indoor microenvironments- namely, an eatery, two classrooms, and the library main hall- during their respective operational hours. The description of the building and the characteristics of the monitored sites are presented in Table 4.1.

4.1.1. Temperature and Relative Humidity

Indoor temperature and relative humidity are important parameters to assess the well-being and comfort level of the occupants. Table 4.2 show temperature and relative humidity in different microenvironments across CU and TU. The average indoor temperature at CU was 25.57 ± 1.24 °C, while at TU it was higher, averaging 28.78 ± 2.33 °C. This variation may be attributed to differences in the timing of sample collection between the two sites. The average relative humidity was comparable between the two campuses, recorded at $73.01 \pm 4.09\%$ for CU and $72.64 \pm 6.85\%$ for TU. Except for the average indoor temperature observed at CU, the temperature at TU and the relative humidity levels at both campuses exceeded the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) standard 62.1-recommended comfort limits of 27 °C and 65%, respectively. In the present study, the relative humidity exceeded the recommended value by 94.87% of the time. This is mainly due to the region's tropical climate. Similar observations were reported by Sugumar et al. [1] and Asif and Zeeshan [2] in Hyderabad, India and Islamabad, Pakistan, respectively. Furthermore, all the sampling sites relied on natural ventilation except the library which had mechanical ventilation.

4.1.2 Concentrations of PM_{2.5}

The concentrations of PM_{2.5} across CU and TU is shown in Fig. 4.1. The average concentration of PM_{2.5} at CU was $114.49 \pm 28.58 \,\mu\text{g/m}^3$, whereas it was $71.61 \pm 27.88 \,\mu\text{g/m}^3$ (p < 0.05) at TU. Notably, all classroom microenvironments of CU recorded higher PM_{2.5} concentrations than all the monitored sites of TU. Mohd Isa et al. [3], Nunes et al. [4], and Yoon et al. [5] reported similar findings, with urban PM_{2.5} concentration being the highest. This may be attributed to increased automobile emissions and heavy traffic in urban areas [6].

Table 4.1 Building characteristics of different microenvironments of Cotton University and Tezpur University [Here CR=Classroom U=Urban R=Rural ET= Eatery Lib=Library]

	Codes	Building	characterist	ics			No of	No of	No of	No. of	Board type	Distance
		Floor material	Ceiling material	Cracks on floor	Condition of wall painting	Molds on walls	doors	Windows	windows open	students in the classroom		from the main road/main gate
Cotton University	CR1_U	Tiles	Concrete	No	Good	No	1	6	3	35	Blackboard	45 m
Cotton University	CR2_U	Concrete	Gypsum ceiling	Yes	Poor	Yes	1	2	2	17	Blackboard	30 m
CottonUniversity	CR3_U	Tiles	Gypsum ceiling	No	Moderate	No	1	6	3	21	Blackboard	80 m
Cotton University	CR4_U	Concrete	Concrete	Yes	Moderate	No	1	8	3	20	Blackboard	80 m
Tezpur University	ET1_R	PVC flooring	Gypsum ceiling	Yes	Moderate	No	2	5	4	12-15 (per hour) increase at peak hour (28-30)	NA	300 m
Tezpur University	CR2_R	Tiles	Gypsum ceiling	Yes	Good	No	2	11	4	57	Blackboard	1500 m
Tezpur University	CR3_R	Tiles	Gypsum ceiling	No	Good	No	1	3	3	15	Whiteboard	700 m
Tezpur University	LIB4_R	Tiles	Concrete	No	Good	No	1	10	0	12-15 per hour	NA	550 m

Table 4.2 Levels of temperature and relative humidity averaged over the entire day, across different microenvironments in Cotton University and Tezpur University [Here CR=Classroom U=Urban R=Rural ET= Eatery Lib=Library]

Cotton University	Days	Temperature [°C]	Relative Humidity [%]	Tezpur University	Days	Temperature [°C]	Relative Humidity [%]
CR1_U	Day 1	23.87	75.07	ET1_R	Day 1	25.92	74.05
	Day 2	23.99	77.9		Day 2	24.42	77.63
	Day 3	24.58	76.12		Day 3	26.02	79.75
	Day 4	25.67	76.58		Day 4	28.57	75.43
	Day 5	24.65	77.64				
	Average	24.55 ± 0.71	76.66 ± 1.16		Average	26.23 ± 1.72	76.71 ± 2.50
CR2_U	Day 1	27.66	65.14	CR2_R	Day 1	27.925	77.839
	Day 2	23.77	78.22		Day 2	28.905	70.814
	Day 3	24.57	72.5		Day 3	30.968	60.22
	Day 4	24.5	69.94		Day 4	32.853	60.381
	Day 5	25.83	64.56		Day 5	32.661	68.723
	Average	25.27 ± 1.53	70.07 ± 5.64		Average	30.66 ± 2.21	67.60 ± 7.47
CR3_U	Day 1	27.09	71.17	CR3_R	Day 1	29.04	67.28
	Day 2	27.35	69.95		Day 2	30.61	65.52
	Day 3	26.92	71.05		Day 3	30.16	69.69
	Day 4	26.33	72.65		Day 4	31.39	69.79
	Day 5	24.32	75.24		Day 5	30.5	66.42
	Average	26.40 ± 1.22	72.01 ± 2.04		Average	30.34 ± 0.86	67.74 ± 1.93
CR4_U	Day 1	26.26	72.71	LIB4_R	Day 1	27.75	82.27
	Day 2	26.08	79.31		Day 2	26.96	83.75
	Day 3	26.88	69.89		Day 3	27.27	77.2
	Day 4	25.33	73.61		Day 4	27.25	75.16
	Day 5	25.69	70.99		Day 5	27.63	78.21
	Average	26.05 ± 0.59	73.30 ± 3.66		Average	27.37 ± 0.32	79.32 ± 3.58

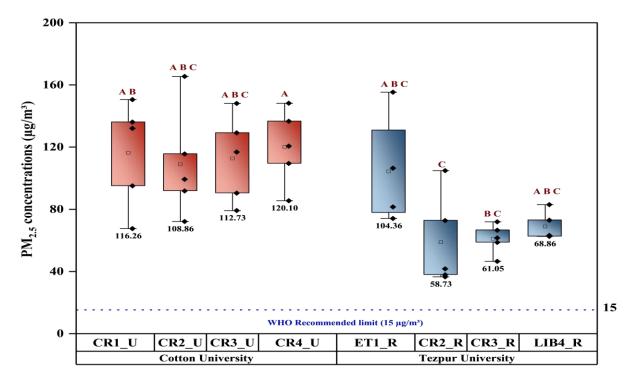


Fig. 4.1 PM_{2.5} concentrations in different microenvironments of Cotton University and Tezpur University

Further; a one-way ANOVA was conducted to compare the mean PM_{2.5} concentrations across the indoor microenvironments. The analysis revealed a statistically significant difference among groups at p < 0.001. Consequently, Tukey Post-hoc analysis was performed (Fig. 4.1). The test indicated that microenvironments not sharing a common alphabet differed significantly at p < 0.05. The concentrations of PM_{2.5} in all the microenvironments were higher than the WHO's 24-hour recommended guideline value of 15 μg/m³. It was 4.5-11 times higher in CU and 2.4-10.4 times higher in TU than WHO guideline value. Because no standards were available for indoor air in India, all the findings were compared with available WHO standard. The classroom 2 (CR2 R) of TU recorded the lowest concentration (58.73μg/m³) among all the sampling sites of TU and CU. This can be attributed to its location, approximately 1.5 km from the main road, the farthest among all sampling sites (Table 4.1). The increased distance from the road, combined with the presence of surrounding vegetation, likely contributed to reduced PM_{2.5} concentration in this site. This observation is further supported by correlation analysis, where PM_{2.5} concentration was found to be significantly negatively correlated with distance from the main road, with a correlation coefficient of $R^2 = -0.87$ (p < 0.05), indicating that as distance increases, PM_{2.5} levels decrease substantially [7].

Among all other microenvironments in TU, eatery (ETI_R) showed the highest PM_{2.5}. This could be attributed to cooking activities in the adjacent room, higher footfall, and poor exhaust ventilation, all of which contribute to increased indoor PM_{2.5} concentration. Dede and Dede [8] also reported that higher foot fall at peak times along with insufficient ventilation may result in high PM_{2.5} concentrations.

Indoor to outdoor ratio (I/O) was analyzed for both the universities as shown in Fig 4.2. If I/O ratio exceed 1, it indicates a strong influence of indoor sources. At CU, the I/O ratios of PM_{2.5} for three classrooms were less than (CR2_U, and CR3_U) or equal to 1 (CR1_U), suggesting that outdoor sources were the primary contributors to indoor PM_{2.5} concentrations. The short distance of these classrooms from a heavily trafficked main road, combined with natural ventilation, likely facilitated the infiltration of outdoor PM into the indoors. Thus, variations in outdoor PM_{2.5} concentrations can have a substantial impact on indoor PM_{2.5} concentrations. Comparable results were reported by Sahu and Gurjar [9]. However, CR4_U exhibited an I/O ratio slightly greater than 1, indicating potential contributions from indoor sources or poor dispersion. At TU, the I/O ratios indicated the presence of strong indoor sources of PM_{2.5}, as all monitored microenvironments exhibited I/O values ranging from 2.46 to 4.37.

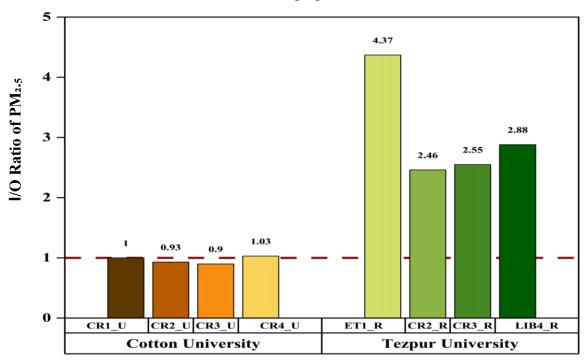


Fig. 4.2 Indoor-to-Outdoor (I/O) ratio of PM_{2.5} in Cotton University and Tezpur University

Although the overall PM_{2.5} concentrations at TU were lower compared to CU, the elevated I/O ratios suggest that the primary source of PM_{2.5} was indoor rather than outdoor infiltration. The higher

I/O ratio observed in the eatery can be attributed to multiple indoor sources. In addition to poor exhaust ventilation and increased footfall during peak hours which contribute to the resuspension of settled dust, other significant sources include cooking emissions such as frying, serving and cleaning activities, and the transport of particulates into indoors via shoes and clothing, all of which further elevate indoor PM_{2.5} concentrations [10-12]. The library main hall exhibited an I/O ratio of 2.88, primarily attributed to dust resuspension from chairs, tables, and bookshelves. Additionally, high occupancy during peak hours and inadequate air filtration in the centralized air-conditioning system could also contribute to elevated indoor PM_{2.5} concentrations [13, 14]. Similarly, in classrooms, indoor sources of PM_{2.5} could be attributed to inadequate cleaning practices. Additional contributing factors include high occupant density and the resuspension of dust through movement, footwear, and clothing [15, 16].

4.1.3 Concentrations of CO₂

The overall average indoor CO₂ concentrations at CU was 573.37 ± 82.75 ppm (Range: 436.53 - 737.42 ppm). At TU, the average CO₂ concentrations was 555.62 ± 81.43 ppm (range: 341.08 - 709.09 ppm). Fig. 4.3 illustrates the CO₂ concentrations across eight microenvironments at two universities. The findings suggest that CO₂ concentrations remained statistically uniform across both CU and TU. A one-way ANOVA conducted to assess differences in CO₂ concentrations across the eight sampling locations revealed no statistically significant difference among group means (p = 0.51). All measurements in the present study were within the acceptable limits established by ASHRAE Standard 62.1 (1000 ppm). Specifically for classrooms, the observed CO₂ concentrations also complied with the United Kingdom's Building Bulletin 101 guideline for educational spaces (1500 ppm). Furthermore, according to the classification by the Hong Kong Indoor Air Quality Management Group (IAQMG), all classrooms in this study fall under the 'Excellent' category, with average CO₂ concentrations remaining below 800 ppm [17-19]. These findings are consistent with those reported by Razali et al. [20], although several other studies have documented significantly higher CO₂ concentrations under similar settings like classrooms, canteens, cafeterias [21-23]

The I/O ratio for all sites at CU and TU, exceeded 1 (Fig 4.4), indicating that indoor sources, primarily human respiration and metabolism significantly contributed to CO₂ accumulation [20, 24]. Typically, in enclosed spaces with many occupants and limited ventilation, CO₂ concentrations often exceed outdoor concentrations due to the accumulation of exhaled CO₂ unless effective ventilation systems are in place [25].

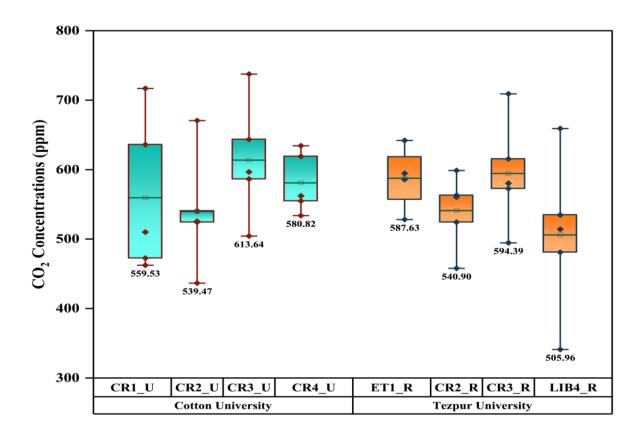


Fig. 4.3 CO₂ concentrations in different microenvironments of Cotton University and Tezpur University

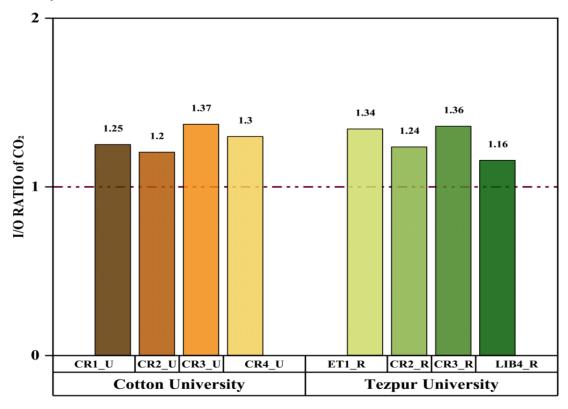
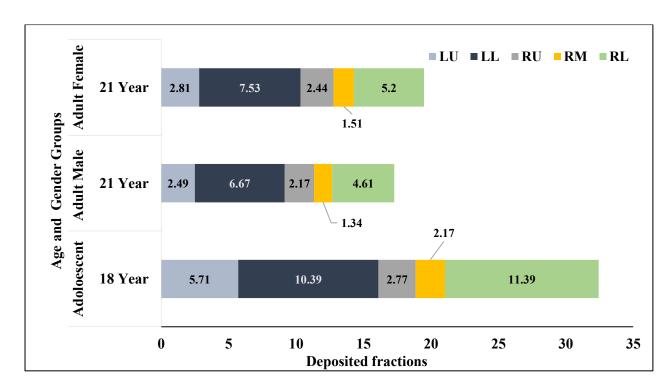


Fig. 4.4 Indoor-to-Outdoor ratio of CO2 in Cotton University and Tezpur University

4.1.4 Application of Multiple-path Particle Dosimetry (MPPD) Model

The MPPD model was employed to evaluate the deposition of PM_{2.5} in the respiratory tracts of university students, with the objective of assessing potential health risks associated with exposure across various university environments [26]. Since university going students are above the age of 18 years in India, we have taken 3 groups for universities viz., 18 year, 21-year-old (male) and 21-year-old (female). The deposition fractions of PM_{2.5} across the selected age categories 18-year-olds (adolescent), 21-year-old male (adult), and 21-year-old female (adult) are presented in Table 4.3. The deposition fractions were found to be consistent across both university locations. Among the groups, total deposition was highest for 21-year-old male, followed by 21-year-old female, and lowest for 18-year-olds [27]. Across all the age and gender group the highest deposition was seen to have taken place in head (41.98%-74.8%) followed by pulmonary (27.91%-14.2%) followed by tracheobronchial (5.08%-3.49%) [28]. A significant portion of PM_{2.5} deposition in the head region can be attributed to due to the combined effects of particles settling and impacting at the larynx and branching points of the airways [29].

Quantification of PM_{2.5} deposition and its lobar distribution revealed that lobar deposition was highest in 18-year-olds, followed by 21-year-old females, and then 21-year-old males. Among the lobes, the highest deposition fractions were observed in the left lower lobe and right lower lobe, while the right middle lobe exhibited the lowest deposition. This is attributed to lobar volume differences. The lower lobes, having a larger volume, tend to accumulate more PM_{2.5}, whereas the middle lobe, with a smaller volume, receives comparatively less deposition, as shown in Fig. 4.5 [30]. The deposition fraction in the lower lobes was approximately 2.5 and 4.6 times higher than those in the upper and middle lobes, respectively. Our findings are consistent with previous studies reported by Junaidi et al. [28] and Khan et al. [31].


The deposited mass (μ g) and deposited mass per unit area (μ g/m²) values, obtained from the MPPD model in different age and gender groups are shown in Fig. 4.6. The color scale indicates differences in deposition density. The total deposited mass of PM_{2.5} followed the trend: 21-year-old adult males > 21-year-old adult females > 18-year-olds (Fig. 4.7). It was observed that PM_{2.5} deposition increases with age and is higher in males compared to their female counterparts [31, 32].

Adults possess larger tidal volumes and a greater lung surface area, enabling them to inhale larger volumes of air [33, 34]. Deposition mass was calculated across the age and gender groups for both the universities (Fig. 4.7). A similar trend was observed for deposition density.

Furthermore, PM_{2.5} deposition at CU both in terms of deposition mass and deposition density was approximately 1.54-1.55 times higher than that at TU across all age and gender groups as shown in the Fig. 4.7 and Fig. 4.8 respectively. This was due to higher PM_{2.5} concentrations are associated with increased deposition in the respiratory tract.

Table 4.3 Total and regional deposition fractions (%) (Head, Tracheobronchial, Pulmonary, Total) of PM_{2.5} in different age categories of university going student

Regions of deposition	Adolescent	Adult Male	Adult Female		
	(18 Year)	(21 Year)	(21 Year)		
Head	41.98	74.8	70.77		
Tracheobronchial	5.08	3.49	3.9		
Pulmonary	27.91	14.20	16.05		
Total	74.97	92.48	90.73		

Fig. 4.5 Lobar deposition fractions of PM_{2.5} in different age categories [Left Upper (LU), Left Lower (LL), Right Upper (RU), Right Middle (RM), Right Lower (RL)]

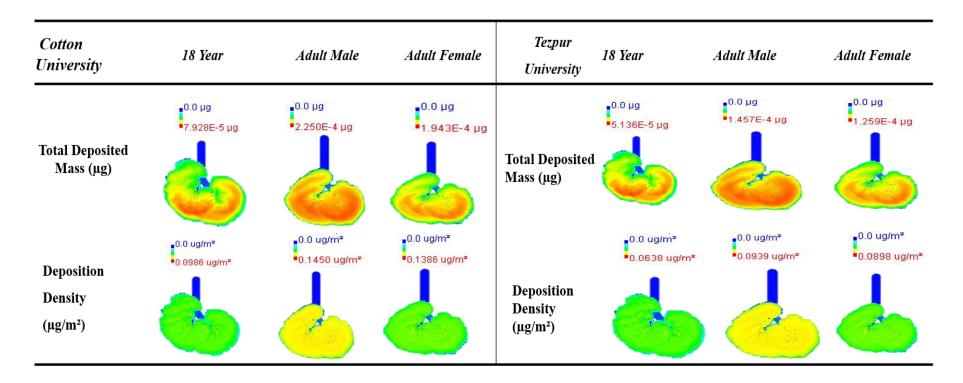


Fig. 4.6 Total deposited mass (μ g) and deposition density (μ g/m³) of PM_{2.5} in lungs across age and gender groups at Cotton University and Tezpur University (MPPD Model)

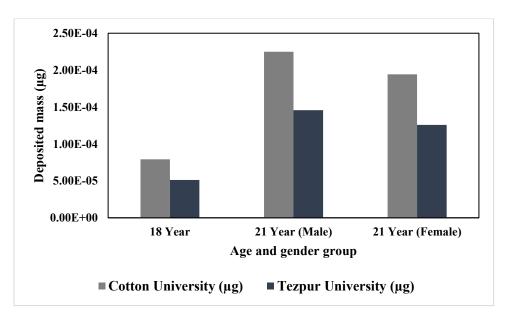


Fig. 4.7 Deposited mass (μg) of PM_{2.5} across age groups and gender in Cotton University vs. Tezpur University

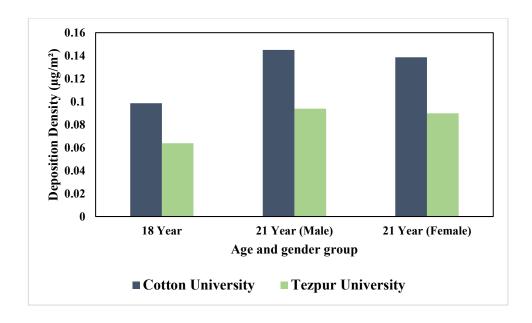


Fig. 4.8 Deposition Density ($\mu g/m^2$) of PM_{2.5} across age groups and gender in Cotton University vs. Tezpur University

4.2 Characterization of Air Pollutants (Comfort parameters, PM_{2.5} and CO₂) in Households of Guwahati and Tezpur

To characterize air pollutants, six households in Guwahati and eight in Tezpur were selected. Measurements were conducted for both indoor and outdoor environments, focusing on PM_{2.5}, CO₂, temperature, and relative humidity. This facilitated a comparative analysis of air quality between the two cities, emphasizing the influence of urbanization and household practices on pollutant levels.

4.2.1 Building Characteristics

A detailed building characteristics and indoor household practices for six households of Guwahati and eight households of Tezpur are presented in Table 4.4a and 4.4b, respectively. The residential building age of the surveyed households ranged from 5 to 30 years in Guwahati and 3 to 30 years in Tezpur. Older buildings often experienced structural issues such as cracks in the walls, poorly sealed windows, and worn-out materials. These problems can make the building more permeable, allowing outdoor pollutants to enter more easily and reducing the ability to maintain good IAQ [35]. Majority of the households (78.6%) had tiled flooring, while 92.9% had concrete ceilings. All sampled households relied on natural ventilation systems except one household in Guwahati (CH2_G). Regarding cleanliness practices, sweeping and mopping were conducted daily in 11 out of 14 households (78.6%), while the remaining 3 households (21.4%) reported cleaning three times a week. Liquefied Petroleum Gas (LPG) was the exclusive cooking fuel used across all households. Smoking indoors was permitted in only 3 households (21.4%). Incense burning and the use of mosquito repellents (in the form of coils or similar products) were observed in all households. Additionally, spray-based household products were used in 10 households (71.4%). Plumbing issues and visible mould growth were reported in 6 households (42.9%).

As presented in Table 4.4a and 4.4b, visible mould growth was observed in approximately 42.9% of the surveyed households. Notably, all households that reported plumbing issues also exhibited visible mould growth, suggesting a possible association with moisture-related infrastructure problems. When assessed the mould growth in relation to residential age (i.e., building age), a weak positive correlation was observed ($R^2 = 0.29$), though this association was not statistically significant. In Tezpur, all households in commercial area, despite having a

Table 4.4 Building characteristics and indoor activities of households in [Here, CH=Household in commercial area, IH=Households in industrial area, RH=Household in residential area, RHu=Household in rural residential area, G=Guwahati and T=Tezpur]

a) Guwahati

Households	Residential Age	Resident Age	Floor type	Area (m²) of sampled room	Ceiling	No of Rooms	Doors leading to outdoors	Windows	No of Windows open	Distance from the main Road	Distance from the kitchen
CH1_G	30	29	Tiles	10.22	Concrete	5	2	3 pane window - 1	0	5 m	0.91
CH2_G	5	5	Tiles	22.25	Concrete	5	2	3 pane window -	0	10 m	1.22
IH3_G	15	13	Tiles	13.38	Concrete	5	1	3 pane window -	0	80 m	Adjacent
IH4_G	10	10	Tiles	11.15	Concrete	4	2	4 pane window-	1	300 m	Adjacent
RH5_G	23	2	Concrete	11.15	Gypsum	6	1	2 pane window - 2	1	500 m	Adjacent
RH6_G	13	12	Tiles	23.78	Concrete	5	3	3 pane window -	2	200 m	Adjacent
Households	Ventilation	No of Occupants	Sweeping- Mopping Frequency	Fuel	Smoking inside home	Incense Burning	Mosquito Repellent (Burning)	Pets present	Spray product Used	Plumbing problem	Mould present
CH1_G	Natural Ventilation	4	Everyday	LPG	✓	✓	√	Х	✓	√	√
CH2_G	Artificial Ventilation	3	Everyday	LPG	Χ	✓	✓	Х	✓	X	Х
IH3_G	Natural Ventilation	3	Everyday	LPG	Х	✓	✓	Х	√	Х	Х
IH4_G	Natural Ventilation	3	Everyday	LPG	Х	✓	✓	X	✓	X	Х
RH5_G	Natural Ventilation	3	Thrice a week	LPG	√	√	✓	Х	✓	✓	√
RH6_G	Natural Ventilation	2	Everyday	LPG	Х	√	√	Х	Х	Х	Х

a) Tezpur

Households	Residential Age	Resident Age	Floor type	Area (m²) of sampled room	Ceiling	No of Rooms	Doors leading to outdoors	Windows	No of Windows open	Distance from the main Road	Distance from the kitchen (m)
RHu1 T	12	12	Concrete	9.29	Concrete	5	1	4 pane window-1	2	30 m	0.61
RHu2_T	30	30	Concrete	12.08	Concrete	3	1	2 pane window-	1	2200 m	2.44
RHu3_T	5	2	Tiles	11.15	Concrete	5	1	4 pane window-1	0	60 m	2.13
CH4_T	3	3	Tiles	15.72	Concrete	3	2	0	0	33.5 m	Adjacent
CH5_T	3	2	Tiles	15.72	Concrete	4	2	0	0	33.5 m	Adjacent
CH6_T	3	1	Tiles	15.72	Concrete	3	2	0	0	52 m	Adjacent
_RHr7_T	11	11	Tiles	32.52	Concrete	4	2	3 pane window-1	2	800 m	Adjacent
RHr8_T	10	3	Tiles	32.52	Concrete	4	3	3 pane window-1	2	1100 m	Adjacent
Households	Ventilation	No of Occupants	Sweeping- Mopping Frequency	Fuel	Smoking inside home	Incense Burning	Mosquito Repellent (Burning)	Pets present	Spray product Used	Plumbing problem	Mould present
RHu1_T	Natural Ventilation	3	Everyday	LPG	X	✓	✓	X	√	X	X
RHu2_T	Natural Ventilation	4	Everyday	LPG	X	✓	✓	X	X	✓	✓
RHu3_T	Natural Ventilation	4	Everyday	LPG	X	✓	√	X	√	X	X
CH4_T	Natural Ventilation	2	Thrice a week	LPG	✓	✓	✓	X	✓	✓	√
CH5_T	Natural Ventilation	2	Everyday	LPG	Χ	✓	✓	Х	√	✓	√
CH6_T	Natural Ventilation	3	Everyday	LPG	Χ	✓	✓	X	√	√	√
RHr7_T	Natural Ventilation	4	Everyday	LPG	X	✓	√	X	Χ	Х	X
RHr8_T	Natural Ventilation	4	Everyday	LPG	X	√	✓	X	Х	X	Х

relatively recent residential age of three years, reported plumbing problems. This may be attributed to substandard plumbing installations, even in newly constructed buildings. During field visits, occupants of these households reported issues such as damaged water pipes. Additionally, factors such as thermal bridging and surface temperatures falling below the dew point were identified as critical in contributing to indoor mould growth [36].

4.2.2 Temperature and Relative Humidity

Temperature and relative humidity of households in Guwahati and Tezpur are given in Table 4.5. The average indoor temperature recorded in Guwahati households was 23.55 ± 3.00 °C, with a relative humidity of 71.52 ± 3.46 %. Similarly, the Tezpur households exhibited an average temperature of 22.85 ± 2.78 °C and a relative humidity of 69.59 ± 5.92 %. The average temperature was below ASHRAE standard 62.1 recommended comfort limits of 27 °C. The lower temperature could primarily be attributed to the fact that measurements were conducted between November and April, prior to the onset of the peak summer season. However, the relative humidity levels exceeded the recommended standard threshold at all households. Elevated indoor humidity and damp conditions within buildings can create favorable conditions for microbial growth, which may pose health risks to occupants [37]. Indraganti [38] and Sudarsanam and Kannamma [39] reported lower mean relative humidity levels in indoor household environments in Hyderabad and Tamil Nadu, respectively, compared to those observed in the present study.

4.2.3 Concentrations of PM_{2.5}

 $PM_{2.5}$ concentrations were assessed in all households of Guwahati and Tezpur. The overall average concentrations of $PM_{2.5}$ was $206.17 \pm 106.85 \,\mu\text{g/m}^3$ in Guwahati households and $41.01 \pm 21.95 \,\mu\text{g/m}^3$ for Tezpur households. $PM_{2.5}$ concentrations in Guwahati are significantly higher than Tezpur (p < 0.001). The mean difference is approximately 165 $\mu\text{g/m}^3$ between the two locations, with concentrations in Guwahati being about five times higher than in Tezpur. A one-way Anova analysis revealed a statistically significant difference among households at p < 0.001. Consequently, Tukey Post-hoc analysis was done that indicated that households not sharing a common alphabet differed significantly at p < 0.05 (Fig. 4.9).

In Guwahati, the $PM_{2.5}$ concentrations in all households exceeded WHO's 24-hour guideline value of 15 μ g/m³. These indicate a significant deviation from established air quality benchmarks and suggest a potential risk to occupant health. While in Tezpur, $PM_{2.5}$ concentrations

Table 4.5 Levels of temperature and relative humidity averaged over the entire day, in Guwahati and Tezpur Households

Tezpur Ho	useholds			Guwahati Households					
Locations	Days	Temperature [°C]	Relative Humidity [%]	Locations	Days	Temperature [°C]	Relative Humidity [%]		
RHu1_T	Day 1	23.12	64.07	CH1_G	Day 1	21.83	71.26		
	Day 2 Day 3 Average	20.6 28.21 23.98 ± 3.88	75.84 60.02 66.64 ± 8.22		Day 2 Day 3 Average	21.41 21.12 21.45 ± 0.36	74.44 74.92 73.54 ± 1.99		
RHu2_T	Day 1	23.95	68.83	CH2_G	Day 1	21.75	70.43		
	Day 2 Day 3 Average	24.93 24.94 24.61 ± 0.57	65.9 67.54 67.42 ± 1.47		Day 2 Day 3 Average	21.15 20.81 21.24 ± 0.48	70.72 74.13 71.76 ± 2.05		
RHu3_T	Day 1	20	69.07	IH3_G	Day 1	20.76	73.47		
	Day 2 Day 3 Average	20.89 26.26 22.39 ± 3.39	64.78 63.44 65.76 ±		Day 2 Day 3 Average	$20.8 20.93 20.83 \pm 0.09$	73.05 74.37 73.63 ±		
СН4_Т	Day 1 Day 2 Day 3 Average	19.07 19.17 20.94 19.73 ± 1.05	2.94 77.02 76.36 80.2 77.86 ±	IH4_G	Day 1 Day 2 Day 3 Average	$22.7 22.54 22.81 22.68 \pm 0.13$	0.67 75.36 73.59 75.33 74.76±		
СН5_Т	Day 1 Day 2 Day 3	23.87 23.75 23.68	2.05 57.15 64.64 77.91	RH5_G	Day 1 Day 2 Day 3	27.97 27.71 26.33	1.01 69.55 69.23 71.6		
	Average	23.77 ± 0.10	66.57±		Average	27.34 ± 0.88	70.13±		
СН6_Т	Day 1 Day 2 Day 3 Average	$20.9 20.27 20.99 20.72 \pm 0.39$	10.51 74.24 77.06 68.72 73.34 ±	RH6_G	Day 1 Day 2 Day 3 Average	28.38 27.74 27.17 27.76 ± 0.61	1.28 65.12 64.59 66.15 65.29±		
RHr7_T	Day 1 Day 2 Day 3	20.76 20.74 21.26	4.24 69.79 69.59 73.28				0.79		
RHr8_T	Average Day 1 Day 2 Day 3	20.92 ± 0.30 26.19 28.64 25.36	70.89 ± 2.08 68.94 69.52 66.3						

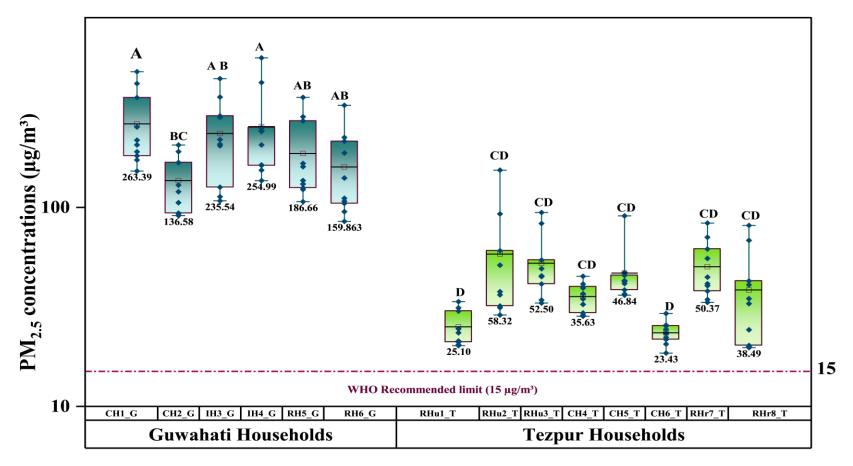


Fig. 4.9 PM_{2.5} concentrations in different households located in Guwahati and Tezpur

in all households exceeded the WHO's 24-hour recommended limit. An overall significant positive correlation ($R^2 = 0.99$) at p <0.001 was observed between indoor and outdoor $PM_{2.5}$ concentrations in households of Tezpur and Guwahati. These findings suggest that outdoor sources do have significant contribution to indoor $PM_{2.5}$ concentrations [7].

In Guwahati, the average concentrations of PM_{2.5} exhibited variation across household categories, with households in industrial area recorded the highest average concentration (245.26 μg/m³), followed by households in commercial area (199 μg/m³) and households in residential area (173.26 µg/m³). Despite being located in a commercial area, household 2 (CH2 G) recorded the lowest PM_{2.5} concentrations among all the households in Guwahati. This may be due to the use of air conditioning systems, which can reduce indoor PM_{2.5} concentrations by trapping PM_{2.5} in filters [40, 41]. In general, households situated near busy roads and areas of intense urban activity exhibited higher PM_{2.5} concentrations especially in naturally ventilated homes [42]. These locations are characterized by elevated emissions from vehicular traffic and industrial operations, leading to the infiltration of PM_{2.5} into indoor environments and, consequently increased exposure levels [7, 15]. As a result, industrial and commercial areas tend to exhibit higher indoor PM_{2.5} concentrations compared to those observed in residential zones. While in Tezpur, the overall average PM_{2.5} concentrations were found to be highest in urban residential households (45.56 µg/m³), followed by rural residential households (43.49 μg/m³), and lowest in commercial households (34.90 μg/m³). The elevated PM_{2.5} concentrations in urban residential areas may be attributed to their proximity to densely populated urban environments, including busy roads, internal streets, and semi-commercial spaces, all of which are potential sources of particulate emissions. In the case of rural residential households, the relatively high PM_{2.5} concentrations may be influenced by ongoing construction activities within the Tezpur University campus, which can contribute to increased PM_{2.5} infiltration into indoor settings.

Table 4.6 shows the I/O ratio for both Tezpur and Guwahati households. An I/O ratio greater than 1 was observed in twelve households, suggesting the presence of potential indoor sources and human activities contributing to elevated indoor PM_{2.5} concentrations. Conversely, I/O ratios below 1 were recorded for two households-RH6_G and CH4_T, with values 0.84 and 0.98, respectively. These ratios indicate that indoor PM_{2.5} concentrations were lower than outdoor concentrations, implying minimal influence from indoor sources and a relatively higher impact from outdoor air. Indoor sources of PM_{2.5} include cooking, smoking, and the burning of incense sticks or other smokegenerating materials.

Previous studies have identified cooking emissions as a major contributor to indoor particulate matter. Specifically, PM_{2.5} emissions during oil heating have been associated with the release of heavy metals and organic compounds, thereby significantly contributing to IAP [43-45]. Studies have further demonstrated that cooking-related particles are not confined to the kitchen, but tend to spread throughout the indoor environment. This diffusion is often facilitated by the opening of kitchen and inner doors, which enables the movement of PM_{2.5} into other parts of the house [46, 47]. The present study showed that 64.3% kitchens were adjacent to the

Table 4.6 The indoor-to-outdoor (I/O) ratios of PM_{2.5} for households in both Guwahati and Tezpur

	Household	I/O RATIO		Household	I/O RATIO
				RHu1_T	1.9
qs	CH1_G	1.44	_	RHu2_T	1.03
Households	CH2_G	1.14	- splou	RHu3_T	1.83
snoj	IH3_G	1.23	Househol	CH4_T	0.98
	IH4_G	1.47		CH5_T	1.61
Guwahati	RH5_G	1.05	Tezpu	CH6_T	2.03
n5	RH6_G	0.84	- Ĭ	RHr7_T	1.82
			_	RHr8_T	1.25

sampling room. Incense burning is a traditional practice prevalent in many cultures, including in India. Additionally, research has shown that the combustion of incense sticks constitutes a significant source of PM_{2.5}, posing potential health risks, particularly to the respiratory system [48]. Additionally, the use of mosquito repellents, particularly in the form of coils or incense, has also been identified as an important indoor source of PM_{2.5} [49]. In the present study, all surveyed households were observed to engage in incense burning and the use of mosquito repellents, both of which may have contributed to elevated indoor PM_{2.5} concentrations.

The diurnal pattern of PM_{2.5} are shown for both Guwahati households and Tezpur households in Fig. 4.10 and 4.11. In general, a noticeable rise in PM_{2.5} concentrations was observed during the morning hours, particularly between 10:00 hours and 12:00 hours. This increase may be attributed to routine household activities such as cooking and cleaning, which are commonly performed during this time. Similarly, PM_{2.5} concentrations were consistently higher during the evening hours, especially between 17:00 hours and 19:00 hours. This evening peak is likely associated with the return of all household members after their work or other activities, dinner preparation, reduced ventilation due to

the closing of windows and doors after dark, and evening puja (prayer) rituals, which often involve the burning of incense sticks and Indian frankincense. Furthermore, field observations indicated that the use of mosquito coils and incense sticks was also prevalent during evening hours, further contributing to increased indoor PM_{2.5} concentrations. These findings suggest that a combination of domestic routines and cultural practices play a significant role in shaping the diurnal variation of PM_{2.5}. Similar morning and evening peaks of PM_{2.5} were reported by Saetae et al. [50], Both et al. [51] and Olszowski [52]. Notably, both indoor and outdoor PM_{2.5} concentrations demonstrated similar diurnal trends, characterized by peaks in the morning and evening hours (Fig. 4.12 a and b). This observation aligns with findings by Singh et al. [53], who reported distinct diurnal patterns in outdoor PM_{2.5} concentrations across five megacities in India, with elevated concentrations during the morning and evening and the lower concentrations in the late afternoon. In the case of Tezpur, outdoor PM_{2.5} data were available for only an eight-hour interval due to equipment malfunction; therefore, the trend analysis was confined to this specific period, as illustrated in Fig. 4.13. The observed similarity between indoor and outdoor PM_{2.5} concentrations is further validated by a strong and statistically significant correlation ($R^2 = 0.99$, p < 0.001).

4.2.4 Concentrations of CO₂

CO₂ concentrations were analyzed across households in both Guwahati and Tezpur. The overall average CO_2 concentrations were 575.52 \pm 98.87 ppm in Guwahati and 556.76 \pm 130.21 ppm in Tezpur. An independent sample t-test revealed no statistically significant difference between the mean CO2 concentrations of the two locations (p = 0.35). However, a one-way ANOVA revealed significant differences among different household categories (p < 0.001). Subsequent Tukey post-hoc analysis showed that households not sharing a common grouping alphabet differed significantly at p < 0.05 (Fig. 4.13). In Guwahati, the highest CO₂ concentrations were observed in households located in industrial areas (640.88 ± 78.22 ppm), followed by those in commercial areas (606.75 ± 88.12 ppm), and the lowest concentrations in residential areas (478.93 \pm 33.64 ppm). A similar trend was observed in Tezpur, where CO₂ concentrations were highest in households situated in commercial areas (625.97 ± 150.97 ppm), followed by urban residential households (534.23 \pm 116.56 ppm), and rural residential households $(486.75 \pm 38.01 \text{ ppm})$. These elevated concentrations are likely influenced by the urban environment, where households in urban residential, commercial, and industrial areas are situated in densely populated settings with limited ventilation and close proximity to markets, highways, and heavy traffic [35, 54]. However, all measurements in the present study indicated that the CO₂ concentration concentrations fall within the established standards mentioned by ASHRAE standard 62.1 (1000 ppm).

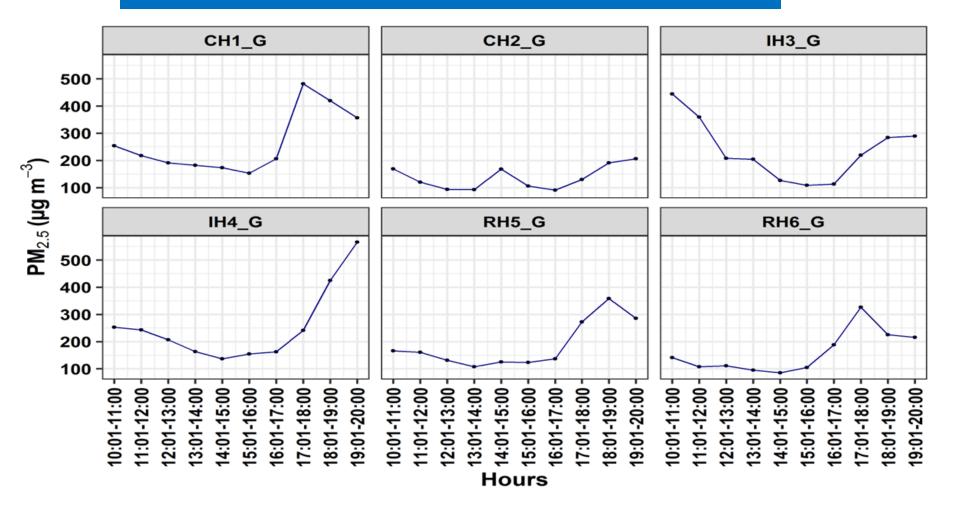
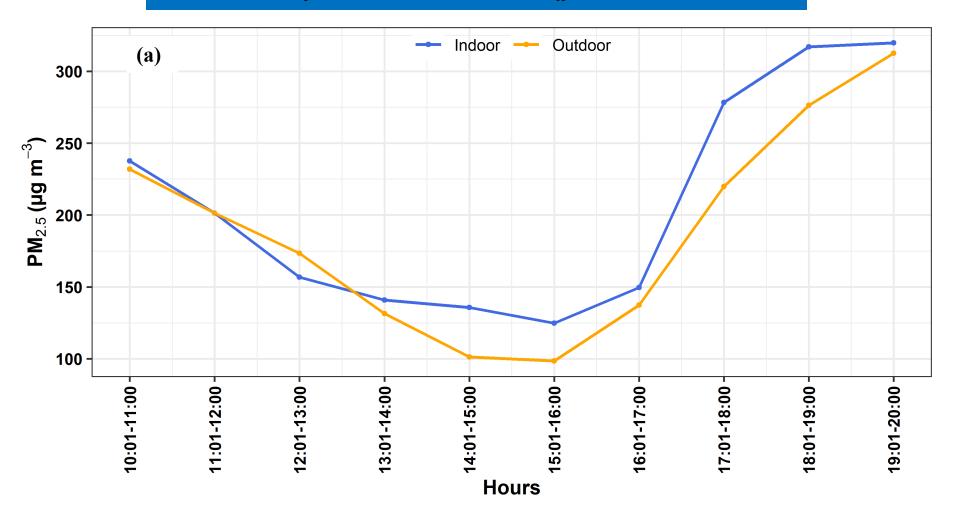



Fig. 4.10 Diurnal variation of PM_{2.5} concentrations averaged over three days across six households in Guwahati, representing commercial, industrial, and residential areas

Fig. 4.11 Diurnal variation of PM_{2.5} concentrations averaged over one day across eight households in Tezpur, representing urban residential, commercial, and rural residential areas.

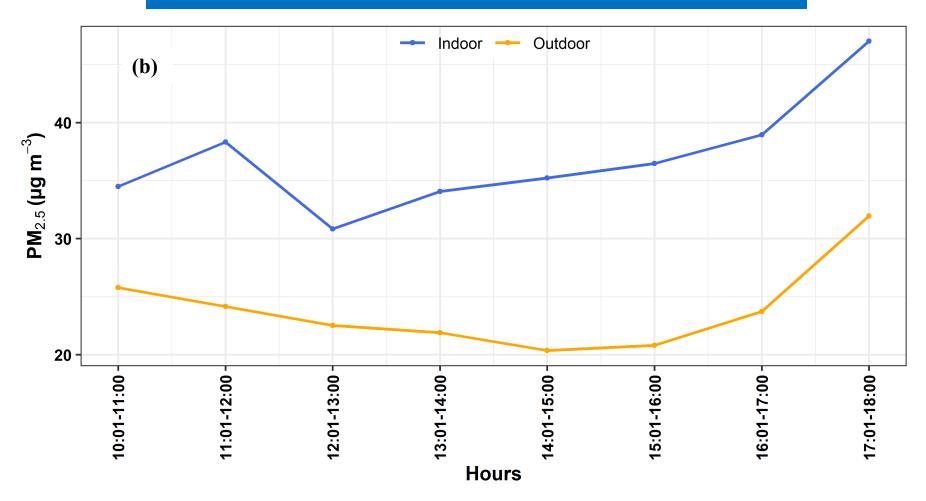


Fig. 4.12 Average hourly trend of PM₂. 5 concentrations in households: (a) Guwahati (average of 6 households) and (b) Tezpur (average of 8 households) measured over the sampling period

The I/O ratio of CO₂ was greater than 1 for all households (Table 4.7), except for Household 2 in the commercial area of Guwahati (CH2_G). This household was the only one equipped with an air conditioning system, which may have facilitated better air circulation and ventilation, thereby maintaining an I/O ratio below 1 (0.98). However, despite this lower ratio, the indoor CO₂ concentration in CH2_G was still higher than those recorded in households located in both the residential areas of Guwahati and rural residential areas of Tezpur, which had I/O ratios greater than 1. This demonstrates that a lower I/O ratio does not necessarily indicate lower indoor CO₂ concentrations, as it also depends on the outdoor concentrations and other structural characteristics that influence indoor air accumulation. The I/O ratio greater than 1 suggest the presence of considerable indoor CO₂ sources and inadequate ventilation [55]. Several factors influence the I/O ratio of CO₂, including site type (residential, commercial, or industrial), the day of the week, and proximity to external pollution sources [56]. Moreover, a strong positive correlation was observed between indoor and outdoor CO₂ concentrations averaged across all households (R² = 0.85, p < 0.001), suggesting that outdoor CO₂ concentrations also play a significant role in shaping indoor air quality [57].

Diurnal variations of indoor CO₂ concentrations are presented in Fig. 4.14 and Fig. 4.15. Indoor CO₂ concentrations were consistently higher in households located in commercial and industrial areas of both Guwahati and Tezpur, particularly during the late afternoon to evening hours. This trend suggests inadequate ventilation and elevated indoor emissions, likely resulting from activities such as incense stick burning and the use of mosquito repellents. In contrast, households in the residential areas of Guwahati (RH5 G, RH6 G) and the rural residential areas of Tezpur (RHr7 T, RHr8 T) maintained lower and more stable CO₂ concentrations highlighting the benefits of natural ventilation, reduced human activity. These households consistently exhibited minimal fluctuations in indoor CO2 concentrations throughout the day. However, a similar trend was not observed for PM2.5 concentrations. This discrepancy may be attributed to localized sources of PM_{2.5} such as proximity to cooking area, unpaved roads, or nearby construction activities. Unlike CO₂, which primarily reflects human respiration and indoor crowding, PM_{2.5} levels are influenced by a broader range of indoor and outdoor activities and materials, making them more variable. Urban residential households in Tezpur (RHu1 T - RHu3 T) showed moderate increases through the day, with evening concentrations nearing 600-800 ppm, pointing to increasing indoor accumulation. Notably, significant variation was observed even within the same household category.

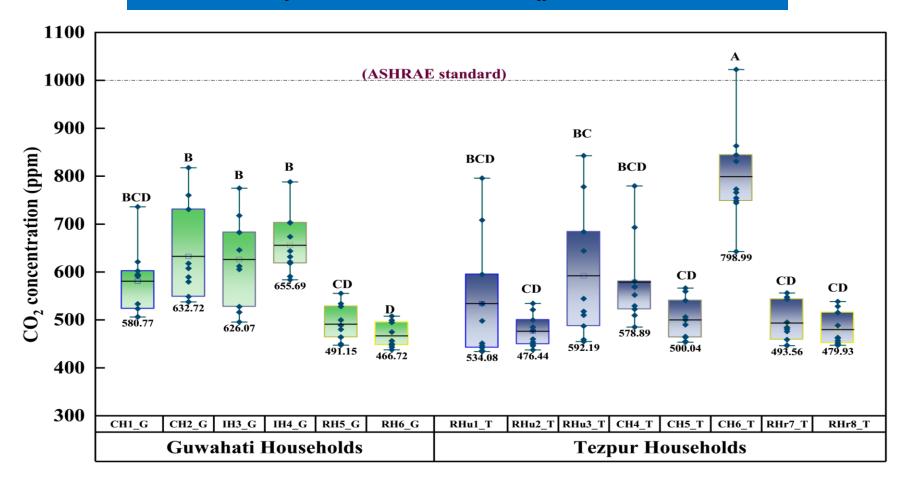


Fig. 4.13 CO₂ concentrations in different households located in commercial, industrial, and residential areas of Guwahati and urban residential, commercial and rural residential areas of Tezpur

For example, among the commercial households in Tezpur, CH6_T recorded the highest indoor CO₂ concentrations (1022.53 ppm) at around 11:00 hours, which remained elevated for the rest of the monitoring period, indicating continuous indoor emissions and insufficient ventilation. To address elevated indoor CO₂ concentrations, the implementation of proper ventilation systems and air conditioning is essential, as these measures promote air circulation and contribute to healthier IAQ [35].

Table 4.7 The indoor-to-outdoor (I/O) ratios of CO2 for households in Guwahati and Tezpur

	Household	I/O RATIO		Household	I/O RATIO
				RHu1_T	1.18
ds	CH1_G	1.30	_ ∞	RHu2_T	1.02
ehol	CH2_G	0.90	plor	RHu3_T	1.25
Households	IH3_G	1.36	ouseholds	CH4_T	1.31
	IH4_G	1.26	H	CH5_T	1.05
Guwahati	RH5_G	1.07	Tezpur	CH6_T	1.82
3	RH6_G	1.02	Ī	RHr7_T	1.07
			_	RHr8_T	1.10

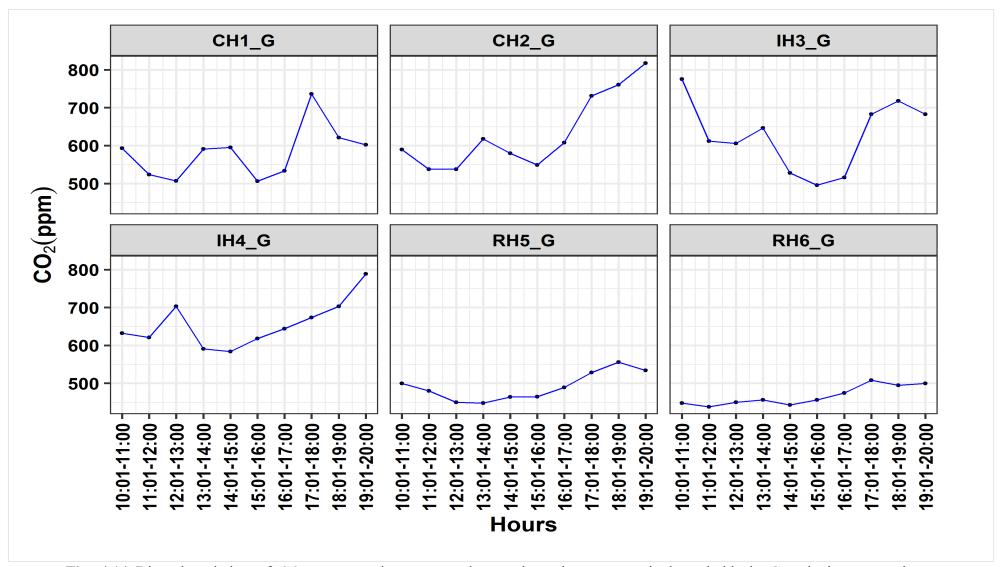


Fig. 4.14 Diurnal variation of CO₂ concentrations averaged over three days across six households in Guwahati, representing commercial, industrial, and residential areas

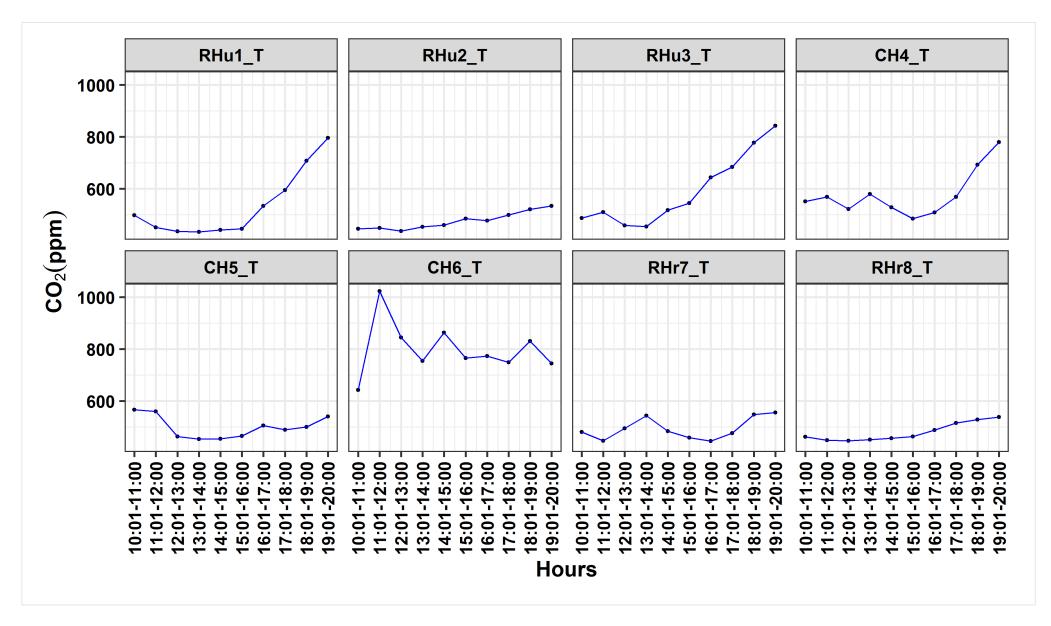
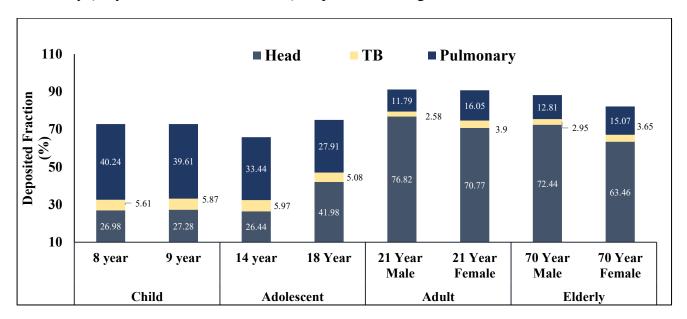
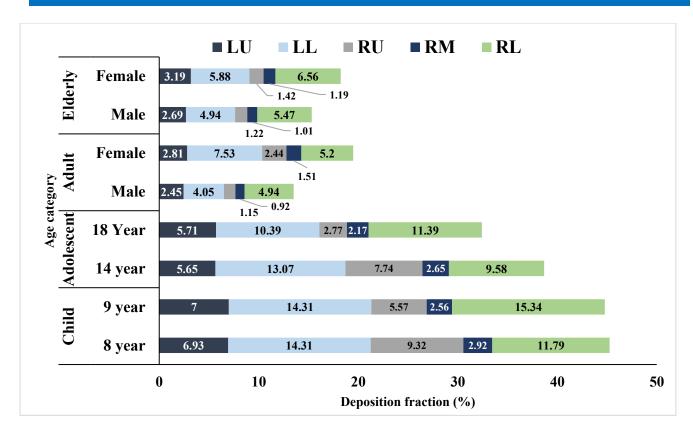



Fig. 4.15 Diurnal variation of CO₂ concentrations averaged over three days across six households in Tezpur, representing urban residential, commercial, and rural residential areas


4.2.5 Application of MPPD Model

The MPPD model was applied to evaluate PM_{2.5} deposition in the respiratory tracts of occupants in households of Tezpur and Guwahati. Deposition fractions were analyzed across different age groups, including children (8–9 years), adolescents (14 and 18 years), adults (21-year-old males and females), and the elderly (70-year-old males and females), as presented in Fig. 4.16.

Fig. 4.16 Regional Deposition of PM_{2.5} in the human respiratory tract [Head Region, TB Region (Tracheobronchial), Pulmonary Region] simulated using the MPPD model for Households of Guwahati and Tezpur across different age groups and gender

The total deposition of inhaled PM_{2.5} ranged from 65.85 - 91.19% with higher deposition in adults and elderly compared to children and adolescents. At a given age, deposition may vary based on several factors, including gender, the structure of the lungs, the breathing cycle, breathing scenario, and body posture [58]. In this study, the highest pulmonary deposition of PM_{2.5} particles was observed in 8-year-old group (40.24%), followed by 9-year-old group (39.61%). These values exceeded the deposition rates recorded in all other age and gender categories, indicating greater vulnerability among younger children to deeper respiratory tract exposure [27, 31]. Higher deposition in children is attributed to their faster breathing rates, smaller alveolar structures, along with relatively larger lung surface area promoting diffusion of finer particles in lower respiratory tract [34, 59]. Adults, in contrast, show lower deposition in pulmonary region, likely because of their larger airways and slower breathing rates, which limit particle retention [60, 61].

Fig. 4.17 PM_{2.5} Deposition Across Lung Lobes [Left Upper (LU), Left Lower (LL), Right Upper (RU), Right Middle (RM), Right Lower (RL)] predicted by MPPD model for households of Guwahati and Tezpur across different age groups and gender

Fig. 4.17 illustrates the lobar distribution of PM_{2.5}, which indicated that children were the most affected group, exhibiting the highest deposition levels. This finding suggests an elevated risk of chronic obstructive pulmonary disease (COPD) and increased respiratory morbidity in children [27, 62, 63]. Among the lung lobes, the right and left lower lobes exhibited the highest PM_{2.5} deposition, primarily due to gravitational settling and their greater volume compared to the upper and middle lobes, which facilitates more particle accumulation in these regions [30, 64]. Further, deposition mass and deposition density per unit area was obtained from the MPPD model for occupants in households of Guwahati and Tezpur as shown in Fig. 4.18 and Fig. 4.19. PM_{2.5} deposition tends to increase with age due to larger tidal volumes and an expanded lung surface area, which enable greater air intake. However, in elderly individuals around 70 years of age, this trend reverses, as tidal volumes begin to decline, leading to reduced PM_{2.5} deposition [31, 33, 34, 65].

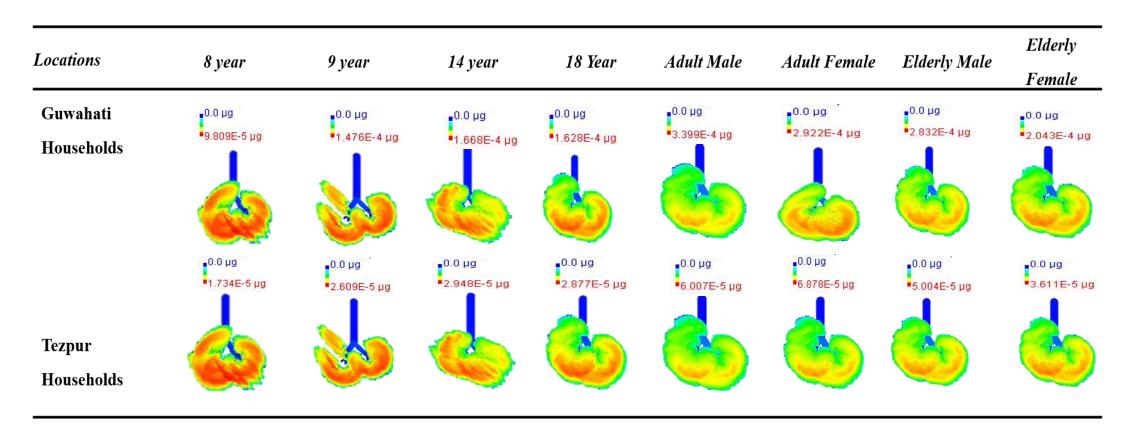
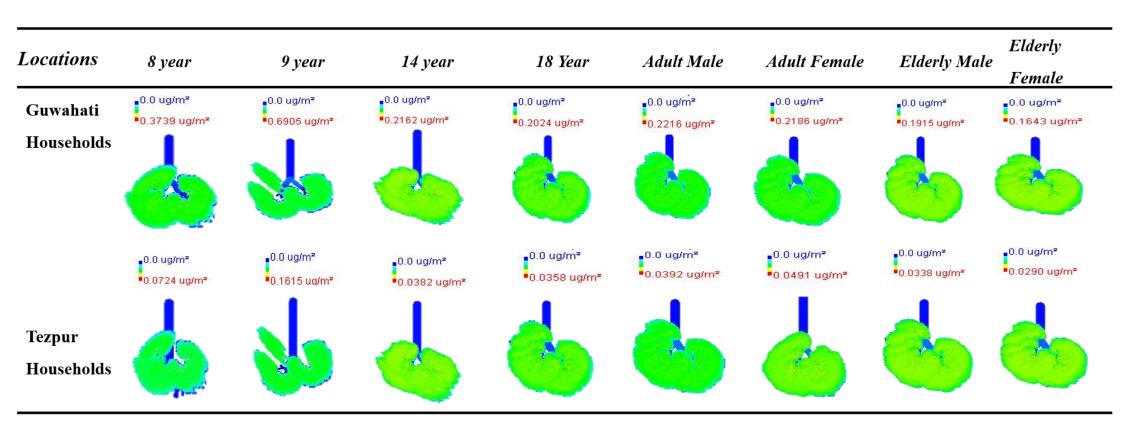
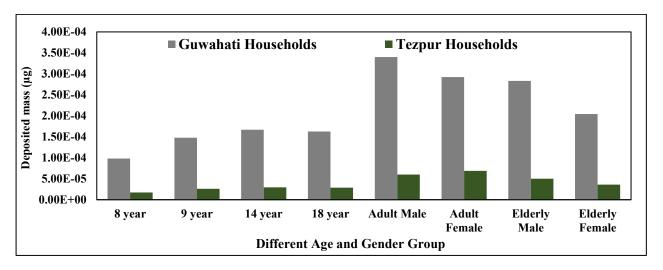




Fig. 4.18 Deposition of PM_{2.5} mass (μg) deposition in human lungs for different age and gender across occupants of Guwahati and Tezpur households

Fig. 4. 19 Deposition of PM_{2.5} per unit surface area (μg/m²) in human lungs for different age and gender across occupants of Guwahati and Tezpur households

Deposited mass per unit area was found to be highest for children (specifically for 9-year-old) and lowest in adults. It is attributed to the large surface area to volume ratio of children compared to adults. Similar results were obtained by Khan et al. [32] and Manojkumar et al. [65]. Fig. 4.20 and Fig. 4.21 demonstrate that occupants of households in Guwahati were exposed to 4.25 to 5.66 times higher total deposited mass and deposited mass per unit area than those in Tezpur. This suggests that residents in Guwahati are subjected to significantly greater indoor exposure to PM_{2.5}.

Fig. 4.20 Deposited mass of PM_{2.5} (μ g) across age groups and gender in occupants of Guwahati vs. Tezpur households

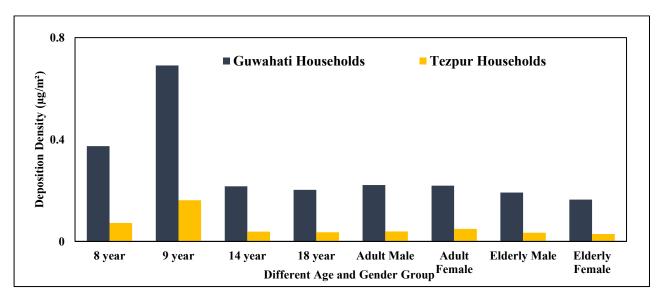


Fig. 4.21 Deposited mass per unit surface area ($\mu g/m^2$) of PM_{2.5} across age groups and gender in occupants of Guwahati vs. Tezpur households

4.3 Characterization of Settled Dust (SD) in University

Elemental concentrations in SD from various microenvironments across both universities were analyzed. The dust composition reflects contributions from both indoor and outdoor sources, serving as a valuable indicator of pollution origins. Given that students spend a significant amount of time in classrooms, libraries, and common areas, prolonged exposure to contaminated dust may pose significant health risks.

4.3.1 Elemental Concentrations

The elemental characterization of SD (mg/kg) was conducted across various microenvironments at CU and TU and are presented in Table 4.8 and Table 4.9 respectively. The overall average concentration at CU was higher (3610.50 ± 7744.05 mg/kg) than TU (3387.13 ± 8830 mg/kg); however, this difference was not statistically significant (p = 0.7). The average decreasing order of elements were Fe>Al>Cr>Mn>Ni>Mg>Pb>Cu>Zn>Co>Cd (CU) and Fe>Al>Mn>Cr>Cu>Mg>Pb>Ni>Zn>Co>Cd (TU). At CU, the microenvironments were classified as academic classrooms and labs, and the library complex, while at TU, they were categorized as academic classrooms and labs, and utility and social spaces.

In India, there is no prescribed limit for elemental concentrations in indoor dust. A few studies have reported the permissible limit of elements in Indian soil. Table 4.10 shows the background value of the soil for the elements, the concentration of elements in Indian soil, and previous published studies on deposited dust in educational institutions in India and abroad. Among all analyzed elements, Fe exhibited the highest concentrations both in CU (24,226.50 \pm 4239.20 mg/kg) and TU (19,431.23 \pm 3305.86 mg/kg), followed by Al with concentrations of 12,857.25 \pm 5362.14 mg/kg in CU and $16,338.18 \pm 18,693.98$ mg/kg in TU. The Fe concentration exceeded concentrations reported by Nath et al. [15], Olujimi et al. [66], Ugwu and Ofomatah [67], Oyebanji et al. [68], Gohain and Deka [69], and Dubey et al. [70] and was comparable to that found by Famuyiwa and Entwistle [71] (Table 4.10). Al concentration, meanwhile, were lower than those reported by Dubey et al. [70], but comparable to concentrations found by Olujimi et al. [66]. However, the concentrations of both Fe and Al were considerably lower than their respective background soil values. These elements are primarily introduced into indoor settings through soil or road dust, which can be transported by wind and human activities [72-74]. Additionally, the presence of Al and Fe in indoor settled dust may also be attributed to vehicular sources, particularly from brake pad wear and exhaust emissions [75].

The present study also recorded the highest concentrations of Ni in SD at both CU and TU, exceeding concentrations reported by Nath et al. [15] in schools of Tezpur and Gohain and Deka [69] at Tezpur University. At CU, Ni concentrations were notably elevated in the library complex, particularly in the reference (LIB RR) and stock (LIB SR) rooms, which are infrequently cleaned and remain closed to regular student access, allowing dust to accumulate over time. The infiltration of outdoor air and lack of maintenance likely contributed to Ni buildup. Lin et al. [76] reported that regular cleaning significantly reduces heavy metal concentrations in indoor dust. At TU, Deka and Hoque [77] previously reported elevated Ni concentrations in PM₁₀, which were attributed to emissions from brick kilns located in nearby rural areas. Ismail et al. [78] also reported that brick kilns gradually release Ni into the atmosphere. Over time, as airborne particulate matter settles onto indoor surfaces, it may contribute to the accumulation of Ni in indoor SD. These findings suggest that the rural setting of Tezpur may be a contributing factor to the elevated Ni concentrations observed in indoor settled dust of Tezpur. The average concentration of Zn was 150.37 ± 45.11 mg/kg at CU and 61.32 ± 44.81 mg/kg at TU. The presence of Zn and Ni in indoor environments is likely influenced by the infiltration of outdoor polluted dust, particularly from traffic emissions and the abrasion of vehicle tires and components [15]. The relatively elevated Zn concentrations observed at CU may be due to its location in a densely populated urban center. Additionally, Zn's presence can also be attributed to sources such as white pigments in paints and electrode materials used in batteries [79].

Pb concentrations in the present study exceeded those reported in most previous studies (Table 4.10). However, they were comparable to findings by Moghtaderi et al. [73] in Shiraz, Iran, and by Al-Rawi et al. [80] at the University of Anbar, Iraq. The accumulation of Pb in classrooms and other university microenvironments may be attributed to paint usage and vehicular emissions [66, 67, 81]. Additionally, Tong and Lam [82] observed that wall paint color significantly influences heavy metal concentrations in indoor dust, with yellow paint associated with higher Cd, Cu, Pb, and Zn concentrations. The presence of Pb may also relate to building age, deteriorated wall surfaces, and floor fissures [83].

Cr concentrations in the present study were the highest among all studies included in Table 4.10. Between CU and TU, average Cr concentrations were notably higher at CU, primarily due to elevated concentrations in the SD collected from the reference and stock rooms of the library complex. Apart from these locations, Cr concentrations were lower or relatively similar across

Table 4.8 Elemental concentrations (mg/kg) in indoor settled dust of Cotton University [Here, CR= Classroom S=Science HSS=Humanities and Social Science LAB= Laboratory LIB=Library MH=Main Hall RR= Reference room SR= Stock room]

	Microenvironmer	nts Al	Cr	Mn		Ni		Со	Cu	Zn	Cd	Pb	Mg		Fe
	CR1_S	16626.00	121.92	826.20		65.64		28.81	133.14	243.24	8.36	234.66	267.00		22560.00
7.0	CR2_S	24102.00	140.22	897.00		64.92		33.26	103.38	129.72	7.22	175.92	277.50		25122.00
00ms	CR3_HSS	8268.00	127.50	736.20		65.28		27.02	109.80	163.14	7.18	180.00	233.88		20190.00
Classrooms	CR4_HSS	10878.00	113.64	615.60		57.41		29.86	71.46	94.02	6.95	132.42	225.96		18918.00
	LAB5_S	14316.00	151.02	890.40		88.62		35.91	172.14	111.78	7.23	179.16	384.54		32256.00
Academic	Average	14838.00 ± 6085.59	130.86 14.85	± 793.08 118.43	±	68.37 ± 11.82		30.97 ± 3.58	117.98 ± 37.44	148.38 ± 58.86	7.39 ± 0.56	180.43 ± 36.29	277.78 63.50	±	23809.20 ± 5283.34
×	LIB_MH	9300.00	130.20	838.80		90.12		29.24	210.72	165.48	7.45	312.06	344.34		23826.00
Complex	LIB_RR	9084.00	2738.40	760.80		1570.80		57.61	278.94	139.86	7.09	262.86	229.86		23232.00
	LIB_SR	10284.00	1409.40	840.00		925.80		50.05	200.04	155.70	7.22	363.48	151.26		27708.00
Library	Average	9556.00 ± 639.65	1426.00 1304.18	± 813.20 45.38	±	862.24 742.38	±	45.63 ± 14.69	229.90 ± 42.80	153.68 ± 12.93	7.25 ± 0.18	312.80 ± 50.31	241.82 ± 97.09		24922.00 ± 2430.95
	Overall average	12857.25 ± 5362.14	616.54 967.16	± 800.63 93.34	±	366.07 571.28	±	36.47 ± 11.25	159.95 ± 68.41	150.37± 45.11	7.34 ± 0.44	230.07± 78.54	264.29 73.10	±	24226.50 ± 4239.20

Table 4.9 Elemental concentrations (mg/kg) in indoor settled dust of Tezpur University [CR=Classroom S=Science HSS=Humanities and Social Science L=Law E= Engineering M= Management LAB= Laboratory LIB=Library ET=Eatery AH=Auditorium Hall

	Microenvironments	Al	Cr	Mn	Ni	Со	Cu	Zn	Cd	Pb	Mg	Fe
	CR1_HSS	7938.00	93.96	483.18	65.10	12.91	79.86	54.19	7.39	85.32	34.44	16248.00
	CR2_HSS	3471.60	101.58	537.90	50.17	17.24	58.99	39.50	4.54	84.12	153.78	19884.00
	CR3_HSS	34644.00	96.48	594.66	39.70	19.10	47.41	30.96	6.07	102.66	495.00	18504.00
•	CR4_L	3559.20	128.88	897.00	73.50	24.91	323.34	63.72	5.74	392.22	139.20	20928.00
d Lak	CR5_E	4019.40	71.58	349.62	36.97	10.83	57.15	31.26	5.26	93.42	90.42	10560.00
is and	CR6_E	30654.00	101.40	603.00	43.23	19.31	59.73	33.95	6.39	118.98	204.12	18960.00
room	CR7_S	5833.20	166.44	519.78	84.18	14.47	129.90	30.96	5.03	87.72	43.67	21330.00
Jassi	LAB8_S	67968.00	1144.20	715.80	418.56	29.50	421.08	193.32	30.28	363.36	475.92	23256.00
mic (CR9_M	3708.00	113.58	618.60	62.94	22.71	76.50	66.90	6.53	118.32	204.30	17322.00
Academic Classrooms and Lab	Average	17977.27 22367.80	± 224.23 : 346.00	± 591.06 = 153.26	± 97.15 ± 121.59	19.00 ± 5.98	139.33 ± 136.39	60.53 ± 51.81	8.58 ± 8.18	160.68 ± 123.98	204.54 ± 170.55	18554.67± 3676.39
	ET1	19584.00	224.58	753.60	63.78	27.02	187.74	39.76	6.55	119.28	11.81	21732.00
	ET2	12684.00	187.92	739.80	51.40	24.52	83.70	40.94	5.78	104.10	27.36	21480.00
aces	AH3	13644.00	92.34	668.40	75.72	21.26	471.66	102.06	7.15	262.08	52.24	21618.00
ial Sp	LIB4	4689.00	129.84	632.40	61.80	25.49	142.68	69.66	6.49	135.90	154.14	20784.00
ınd Soci	Average	12650.25 6122.28	± 158.67 : 58.96	± 698.55 = 57.78	± 63.17 ± 9.97	24.57 ± 2.43	221.45 ± 172.16	63.10 ± 29.42	6.49 ± 0.56	155.34 ± 72.34	61.39 ± 64.04	21403.50 ± 425.66
Utility and Social Spaces	Overall Average	16338.18 18693.98	± 204.06± 285.78	624.13 = 138.42	± 86.70± 100.73	20.71 ± 5.70	164.59 ± 146.17	61.32± 44.81	7.94 ± 6.76	159.04 ± 107.53	160.4± 158.57	19431.23 = 3305.86

Table 4.10 A comparison of elemental concentrations of the present study with other reported studies on settled dust in indoor classrooms in India and abroad

Location	Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg	Fe	Reference
Classrooms, Lab, Library Complex (Cotton University) (n=9)	12857.25	616.54	800.63	366.07	36.47	159.95	150.37	7.34	230.07	264.29	24226.5	Present study
Classrooms, Lab, Utility and Social Spaces (Tezpur University) (n=13)	16338.18	204.06	624.13	86.70	20.71	164.59	61.32	7.94	159.04	160.49	19431.23	Present study
Classrooms (Schools, Tezpur)	6069.20	20.07	223.93	85.51	3.58	13.74	164.93	0.27	18.37	2606.69	8991.05	[15]
Classrooms (Tezpur University)				71.67	3.41		277.14	0.75	54.15		1353.51	[69]
Classrooms (Nigeria)	12400	41.8	254	12.7	21.9	40.9	121	855	27.6	2200	13700	[66]
Classrooms (Ryerson University, Toronto)	-	39	223	47	-	188	890	2.5	41	-	-	[79]
Classrooms (Schools, Shiraz; Islamic Republic of Iran)	-	172.8	288.9	50.1	6.4	40.0	258.8	1	258.8	-	-	[73]
Classrooms (Schools, Sri Serdang, Malaysia)	-	-	-	-	-	53.27	-	1.89	89.05	-	-	[81]
Classrooms (Schools, Southeast, Nigeria)	-	74.47	-	34.17	-	48.01	103.19	-	27.74	-	5826.83	[67]
Classrooms (Schools, Lagos, Nigeria)	32000	130	368	20.9	-	28.1	208	0.5	47.4	-	24500	[71]

Location	Al	Cr	Mn	Ni	Со	Cu	Zn	Cd	Pb	Mg	Fe	Reference
Classrooms (Nursery and Kindergarten Schools, Ogun State, Nigeria)	-	43.45	160.38	37.53	70.62	10.77	33.83	-	-	-	2,018.77	[68]
Lecture rooms, Labs, Offices (University of Anbar, Iraq)	-	141.37	-	-	-	38.88	276.59	1.3	147.42	-	-	[80]
Classrooms (Schools, Agra, India)	6700.13	43.40	252.35	18.38	3.5	51.97	34.29	0.84	36.64	9485.95	16679.17	[70]
Indian natural soil		114		27.7		56.5	22.1	0.9	13.1			[84] [85]
Background value	82300	100	950	75	25	55	70	0.2	12.5	23300	56300	[86]

academic classrooms and laboratories of both CU and TU, as well as in utility and social spaces at TU. The average concentrations recorded were 130.86 ± 14.85 mg/kg in academic classrooms and labs at CU, 224.23 ± 346.00 mg/kg at TU, and 204.06 ± 285.78 mg/kg in TU's utility and social spaces. Furthermore, at TU, a significant exception was observed in a Science laboratory of TU (LAB8_S), which exhibited a markedly elevated Cr concentration of 1144.20 mg/kg. This finding is consistent with Al Hejami et al. (2020), who reported that laboratory dusts often exhibit the highest concentrations of metals such as Cr, likely due to the materials and instruments used in these environments. The average concentration of Cd was 7.34 ± 0.44 mg/kg at CU and 7.94 ± 6.76 at TU. Cheng et al. [87] noted that anthropogenic activities are a major source of Cd in indoor dust. The present study had the highest concentrations of Cd than all other reported studies except Olujimi et al. (2015). Concentrations of Cu were 159.95 ± 68.41 mg/kg at CU and 164.59 ± 146.17 mg/kg at TU. Copper have numerous sources including vehicle emissions, lubricant use, collisions between car components, tire wear and tear, and so on [88, 89].

Cobalt concentrations in the present study were higher than those reported in all referenced studies except Oyebanji et al. [68]. A likely source of Co is mobile device batteries, where it is commonly used as a core component. Additionally, Co is utilized in certain pigments and paints due to its vivid coloration. Over time, the degradation of painted surfaces may contribute to the accumulation of Co in indoor dust [73, 90]. In contrast, Mg concentrations were lower than all values reported in the studies listed in Table 15. The average Mg concentrations was $264.29 \pm 73.10 \text{ mg/kg}$ at CU and $160.40 \pm 158.57 \text{ mg/kg}$ at TU. On the other hand, Mn concentrations were among the highest, measured at $800.63 \pm 93.34 \text{ mg/kg}$ for CU and $624.13 \pm 138.42 \text{ mg/kg}$ for TU. Mg is known to be a minor component of chalk, which may contribute to indoor settled dust in educational settings [91]. Furthermore, natural sources such as soil and construction materials from nearby outdoor areas may introduce Mg- and Mn-containing particles into classrooms via footwear or clothing [92].

4.3.2 Pollution Indices

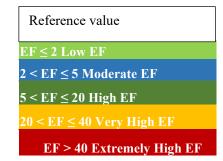
4.3.2.1 Enrichment Factor (EF)

The EF values for CU and TU are presented in Table 4.11 a and b respectively. At CU, Mg and Al consistently exhibited low enrichment (EF < 2) across all sites, suggesting a natural origin. Mn showed "low" to "moderate enrichment", while Co exhibited "moderate enrichment". Cu and Zn demonstrated "moderate" to "high enrichment" levels. Ni and Cr showed a broad EF range,

varying from "low" to "extremely high" depending on the microenvironment. Pb ranged from "high" to "extremely high enrichment", and Cd consistently showed "extremely high" enrichment across all sites. EF values greater than 10 generally indicate anthropogenic influence, including vehicular emissions, paint residues, and construction-related activities [79, 93]

Similarly, TU showed a comparable pattern in EF values. Mg and Al exhibited the lowest EF value, in contrast, Cd showed "extremely high" enrichment across all TU microenvironments, indicating strong anthropogenic contribution.

4.3.2.2 Contamination Factor (CF), Degree of Contamination (C_{degree}) and Pollution Load Index (PLI)


Tables 4.12 a and b present the average values of CF, C_{degree}, and PLI for all elements in settled dust at CU and TU. Notably, very high CF values were observed for Cd and Pb across all sites at both universities, with CF values exceeding 6. Among all sites, LAB8_S at TU recorded the highest CF values for Cd reaching 151.38. Al Hejami et al. [79] also reported elevated Cd concentrations in laboratory environments. The exceptionally high CF values observed in the present study may be attributed to laboratory-related activities, particularly the intensive use of diverse instruments and materials that likely contribute to increased Cd contamination levels. At both universities, all other elements showed CF values ranging from "low" to "considerable" contamination (Al, Mn, Co, Zn, Mg, Fe), except for Cr, Ni, and Cu, which exhibited a wider range from "low" CF to "very high" CF. Higher CF values are generally indicative of anthropogenic sources [94-96]. The overall C_{degree} was found to be very high at both institutions, with values exceeding 32.

PLI values indicate that CU experienced a higher pollution load compared to TU. Most sites at CU showed deterioration of the site quality with PLI values (>1), except CR3_HSS and CR4_HSS, which showed baseline levels of pollution and no pollution levels, respectively. In contrast, all sites at TU exhibited low PLI values below 1, except for LAB8_S, which showed a PLI of 2.60, indicating a considerable pollution load. The differences in pollution levels between the universities may be attributed to their respective locations and surrounding environmental conditions.

Table 4.11 Enrichment factors of elements in different microenvironments of

(a) Cotton University

Academic										
Classrooms	Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg
and Lab										
CR1_S	0.50	3.04	2.17	2.18	2.88	6.04	8.67	104.29	46.85	0.03
CR2_S	0.66	3.14	2.12	1.94	2.98	4.21	4.15	80.88	31.54	0.03
CR3_HSS	0.28	3.56	2.16	2.43	3.01	5.57	6.50	100.05	40.15	0.03
CR4_HSS	0.39	3.38	1.93	2.28	3.55	3.87	4.00	103.39	31.53	0.03
LAB5_E	0.30	2.64	1.64	2.06	2.51	5.46	2.79	63.10	25.02	0.03
Library Complex	Al	Cr	Mn	Ni	Со	Cu	Zn	Cd	Pb	Mg
LIB_MH	0.27	3.43	2.09	2.84	2.76	9.05	5.59	102.08	58.99	0.03
LIB_RR	0.27	66.36	1.94	50.76	5.58	12.29	4.84	85.93	50.96	0.02
LIB_SR	0.25	28.64	1.80	25.08	4.07	7.39	4.52	73.39	59.08	0.01

(b) Tezpur University

Academic Clas	ssrooms Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg
and Lab		_		•						8
CR1_HSS	0.33	3.26	1.76	3.01	1.79	5.03	2.68	127.96	23.65	0.01
CR2_HSS	0.12	2.88	1.60	1.89	1.95	3.04	1.60	64.34	19.05	0.02
CR3_HSS	1.28	2.94	1.90	1.61	2.32	2.62	1.35	92.37	24.99	0.06
CR4_L	0.12	3.47	2.54	2.64	2.68	15.82	2.45	77.17	84.41	0.02
CR5_E	0.26	3.82	1.96	2.63	2.31	5.54	2.38	140.24	39.85	0.02
CR6_E	1.11	3.01	1.88	1.71	2.29	3.22	1.44	94.87	28.26	0.03
CR7_S	0.19	4.39	1.44	2.96	1.53	6.23	1.17	66.44	18.52	0.00
LAB8_S	2.00	27.70	1.82	13.51	2.86	18.53	6.69	366.47	70.37	0.05
CR9_M	0.15	3.69	2.12	2.73	2.95	4.52	3.11	106.18	30.77	0.03
Utility and	Social Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg
Spaces	Al	Ci	14111	111	Co	Cu	ZII	Cu	1 0	Mig
ET1	0.62	5.82	2.06	2.20	2.80	8.84	1.47	84.79	24.72	0.00
ET2	0.40	4.93	2.04	1.80	2.57	3.99	1.53	75.78	21.83	0.00
AH3	0.43	2.40	1.83	2.63	2.22	22.33	3.80	93.13	54.60	0.01
LIB4	0.15	3.52	1.80	2.23	2.76	7.03	2.70	87.85	29.45	0.02

Reference value
EF ≤ 2 Low EF
2 < EF ≤ 5 Moderate EF
5 < EF ≤ 20 High EF
20 < EF ≤ 40 Very High EF
EF > 40 Extremely High EF

Table 4.12 Contamination Factor (CF), Degree of Contamination (Cd), and Pollution Load Index (PLI) across different microenvironments of

(a) Cotton University

Location	Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg	Fe	C_{degree}	PLI
CR1_S	0.20	1.22	0.87	0.88	1.15	2.42	3.47	41.79	18.77	0.01	0.40	71.19	1.2
CD2 S	0.29	1.40	0.04	0.87	1.33	1 00	1 05	26.00	14.07	0.01	0.45	50 10	1.1
CR2_S	0.29	1.40	0.94	0.87	1.33	1.88	1.85	36.09	14.07	0.01	0.45	59.19	1.1
CR3_HSS	0.10	1.28	0.77	0.87	1.08	2.00	2.33	35.88	14.40	0.01	0.36	59.08	1.0
													0.0
CR4_HSS	0.13	1.14	0.65	0.77	1.19	1.30	1.34	34.74	10.59	0.01	0.34	52.20	0.9
LAB5 E	0.17	1.51	0.94	1.18	1.44	3.13	1.60	36.15	14.33	0.02	0.57	61.04	1.2
<u>Litbs_L</u>	0.17	1.01	0.71	1.10		0.10	1.00	00.15	1 1.00	0.02		01.07	1.2
LIB_MH	0.11	1.45	0.88	1.20	1.17	3.83	2.36	43.20	24.96	0.01	0.42	79.62	1.3
LIB_RR	0.11	27.38	0.80	20.94	2.30	5.07	2.00	35.46	21.03	0.01	0.41	115.52	2.1
LIB_SR	0.12	14.09	0.88	12.34	2.00	3.64	2.22	36.12	29.08	0.01	0.49	101.01	<i>1.9</i>

Contamination Factor	or
Low CF	CF < 1
Moderate CF	1 < CF < 3
Considerable CF	3 < CF <6
Very high CF	CF > 6
Degree of Contamin	ation
Low Cdegree	< 8
Moderate Cdegree	8-16
Considerable Cdegre	e 16-32
Very high Cdegree	> 32
Pollution Load Index	X
No pollution	< 1
Only baseline levels	of
pollutants are presen	t 1
Deterioration of	
quality	>1

(b) Tezpur University

Location	Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg	Fe	Cdegree	PLI
CR1_HSS	0.10	0.94	0.51	0.87	0.52	1.45	0.77	36.93	6.83	0.00	0.29	49.20	0.58
CR2_HSS	0.04	1.02	0.57	0.67	0.69	1.07	0.56	22.72	6.73	0.01	0.35	34.43	0.58
CR3_HSS	0.42	0.96	0.63	0.53	0.76	0.86	0.44	30.36	8.21	0.02	0.33	43.53	0.78
CR4_L	0.04	1.29	0.94	0.98	1.00	5.88	0.91	28.69	31.38	0.01	0.37	71.48	0.95
CR5_E	0.05	0.72	0.37	0.49	0.43	1.04	0.45	26.30	7.47	0.00	0.19	37.51	0.46
CR6_E	0.37	1.01	0.63	0.58	0.77	1.09	0.49	31.95	9.52	0.01	0.34	46.75	0.76
CR7_S	0.07	1.66	0.55	1.12	0.58	2.36	0.44	25.17	7.02	0.00	0.38	39.36	0.62
LAB8_S	0.83	11.44	0.75	5.58	1.18	7.66	2.76	151.38	29.07	0.02	0.41	211.08	2.60
CR9_M	0.05	1.14	0.65	0.84	0.91	1.39	0.96	32.67	9.47	0.01	0.31	48.38	0.72
ET1	0.24	2.25	0.79	0.85	1.08	3.41	0.57	32.73	9.54	0.00	0.39	51.85	0.76
ET2	0.15	1.88	0.78	0.69	0.98	1.52	0.58	28.91	8.33	0.00	0.38	44.21	0.68
AH3	0.17	0.92	0.70	1.01	0.85	8.58	1.46	35.76	20.97	0.00	0.38	70.80	0.97
LIB4	0.06	1.30	0.67	0.82	1.02	2.59	1.00	32.43	10.87	0.01	0.37	51.13	0.80

Contamination Factor							
Low CF	CF < 1						
Moderate CF	1 < CF < 3						
Considerable CF	3 < CF <6						
Very high CF	CF > 6						

Degree of Contamination						
Low Cdegree	< 8					
Moderate Cdegree	8-16					
Considerable Cdegree	16-32					
Very high Cdegree	> 32					

< 1
1
>1

4.3.2.3 Geo-accumulation Index (I_{geo} index)

The I_{geo} values for both universities are presented in Table 4.13 a and b for CU and TU, respectively. At CU, the I_{geo} values for Pb range from 2.13 (I_{geo} Class 2) to 5.84 (I_{geo} Class 6). Cd was classified as "extremely contaminated" i.e., I_{geo} Class 6, at all sites. The reference room (LIB_RR) and the stock room (LIB_SR) of the library complex were found to be "heavily to extremely contaminated" and "moderately to heavily contaminated" with Ni, respectively. For Cr, levels ranged from "moderately to heavily contaminated" to "extremely contaminated". LIB_RR was also "moderated contaminated" by Cu. Besides this, all other elements showed "uncontaminated to moderately contaminated" levels i.e., they belong to I_{geo} Class 1.

At TU, the majority of elements, except Pb and Cd, were classified under I_{geo} Class 1 (uncontaminated to moderately contaminated) across nearly all sites (n=17). In contrast, Pb levels ranged from I_{geo} Class 2 (moderately contaminated) to Class 6 (extremely contaminated) at all locations. Similarly, Cd showed I_{geo} values ranging from Class 5 (heavily to extremely contaminated) to Class 6. Notably, in LAB8_S, in addition to high I_{geo} values for Pb and Cd both Cu and Cr exceeded Class 1 I_{geo} category. Cu was categorized under I_{geo} Class 2 (moderately contaminated), while Cr fell into I_{geo} Class 3 (moderately to highly contaminated).

The contamination levels due to Pb could be because it is a highly persistent metal, and its accumulation in soil from historical sources cannot be overlooked, despite eliminating Pb from fuel in 2000 [97]. The source of Cd, Cr, Ni, Cu could be traffic density, vehicular emissions, burning of fossil fuels etc. [98, 99].

Table 4.13 Geo-accumulation Index (Igeo) in microenvironments of (a) Cotton University

Microenvironments	CR1_S	CR2_S	CR3_HSS	CR4_HSS	LAB5_E	LIB_MH	LIB_RR	LIB_SR
Al	0.04	0.06	0.02	0.03	0.06	0.02	0.02	0.03
Cr	0.24	0.28	0.26	0.23	0.28	0.29	5.50	2.83
Mn	0.17	0.19	0.16	0.13	0.19	0.18	0.16	0.18
Ni	0.18	0.17	0.17	0.15	0.17	0.24	4.20	2.48
Со	0.23	0.27	0.22	0.24	0.27	0.23	0.46	0.40
Cu	0.49	0.38	0.40	0.26	0.38	0.77	1.02	0.73
Zn	0.70	0.37	0.47	0.27	0.37	0.47	0.40	0.45
Cd	8.39	7.24	7.20	6.97	7.24	8.67	7.12	7.25
Pb	3.77	2.82	2.89	2.13	2.82	5.01	4.22	5.84
Mg	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.001
Fe	0.08	0.09	0.07	0.07	0.09	0.08	0.08	0.10

(b) Tezpur University

Microenvironments	CR1_HSS	CR2_HSS	CR3_HSS	CR4_L	CR5_E	CR6_E	CR7_S	LAB8_S	CR9_M	ET1	ET2	AH3	LIB4
Al	0.02	0.01	0.08	0.01	0.01	0.07	0.01	0.17	0.01	0.05	0.03	0.03	0.01
Cr	0.19	0.20	0.19	0.26	0.14	0.20	0.33	2.30	0.23	0.45	0.38	0.19	0.26
Mn	0.10	0.11	0.13	0.19	0.07	0.13	0.11	0.15	0.13	0.16	0.16	0.14	0.13
Ni	0.17	0.13	0.11	0.20	0.10	0.12	0.23	1.12	0.17	0.17	0.14	0.20	0.17
Со	0.10	0.14	0.15	0.20	0.09	0.15	0.12	0.24	0.18	0.22	0.20	0.17	0.20
Cu	0.29	0.22	0.17	1.18	0.21	0.22	0.47	1.54	0.28	0.68	0.31	1.72	0.52
Zn	0.16	0.11	0.09	0.18	0.09	0.10	0.09	0.55	0.19	0.11	0.12	0.29	0.20
Cd	7.41	4.56	6.09	5.76	5.28	6.41	5.05	30.38	6.56	6.57	5.80	7.18	6.51
Pb	1.37	1.35	1.65	6.30	1.50	1.91	1.41	5.83	1.90	1.91	1.67	4.21	2.18
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe	0.06	0.07	0.07	0.07	0.04	0.07	0.08	0.08	0.06	0.08	0.08	0.08	0.07

4.4. Characterization of Settled Dust in Households

Settled dust in households comprises a complex mixture of particles originating from both indoor and outdoor sources. Understanding the composition of household dust provides critical insights to understand the indoor air quality and human exposure pathways.

4.4.1 Elemental Concentrations

The concentrations of various elements in household samples from six residences in Guwahati and eight in Tezpur are presented in Table 4.14 and Table 4.15, respectively. The average elemental concentrations, arranged in decreasing order, was found to be Al > Fe > Mn > Mg > Cu > Pb > Cr > Zn > Ni > Co > Cd for Guwahati, and Al > Fe > Mg > Cr > Mn > Ni > Cu > Zn > Pb > Co > Cd for Tezpur. Based on the standard deviation values, a wide variation in elemental concentrations was observed among households in both cities, indicating heterogeneous pollution sources.

In Guwahati, households in commercial areas recorded the highest concentrations for elements such as Al (37,440 \pm 25,472.81 mg/kg), Mn (872.85 \pm 448.91 mg/kg), Co (21.77 \pm 10.34 mg/kg), Cu (199.23 \pm 60.03 mg/kg), Zn (71.65 \pm 0.41 mg/kg), Cd (11.69 \pm 7.61 mg/kg), and Pb (211.35 \pm 89.56 mg/kg). Conversely, Cr (130.92 \pm 34.62 mg/kg), Ni (99.32 \pm 68.11 mg/kg), and Mg (544.68 \pm 13.41 mg/kg) concentrations were highest in households of industrial area. Households in residential areas showed consistently lower concentrations of all analyzed elements. In Tezpur, households in urban residential area showed the highest concentrations of Al (34118.00 \pm 2752.06 mg/kg), Cd (6.80 \pm 0.56 mg/kg), and Pb (116.33 \pm 10.84 mg/kg). The commercial area households recorded the highest concentrations of Cr (2405.96 \pm 2339.32 mg/kg), Mn (705.80 \pm 88.04 mg/kg), Ni (1432.65 \pm 1474.65 mg/kg), Co (50.54 \pm 33.68 mg/kg), Cu (173.42 \pm 78.54 mg/kg), and Fe (23678.00 \pm 8007.92 mg/kg). In contrast, rural residential households exhibited the highest concentrations for Zn (188.43 \pm 165.00 mg/kg) and Mg (8767.50 \pm 11368.16 mg/kg).

Table 4.16 presents a comparative analysis of elemental concentrations observed in the present study and the reported studies from India and abroad. The table also includes reference values for natural Indian soil and background soil levels. Among the elements analyzed, Fe and Al consistently exhibited the highest concentrations across all studies. These elements primarily originate from crustal sources and are commonly introduced into indoor environments via tracked soil or wind-blown dust. Additional anthropogenic contributors to indoor Fe and Al

concentrations include construction activities, packaging materials, and vehicular emissions [100, 73].

Elements such as Zn, Cd, Ni, Cu, and Pb are commonly classified as traffic-related elements (TREs) [101]. Their presence is predominantly attributed to traffic-associated processes, including emissions from the combustion of fossil fuels, friction between vehicle components or between vehicles and road surfaces, and the mechanical abrasion of roadways due to continuous vehicular activity [101-103]. These elements can thereby infiltrate indoor environments, especially in urban areas with high traffic density. The mean concentrations of these TREs were highest in households located in commercial area (114.71 mg/kg), followed by those in industrial area (74.77 mg/kg), and then residential area (56.44 mg/kg). However, statistical analysis revealed no significant difference in TRE concentrations among the three areas (p = 0.27). Though not significant, the concentration of TREs in SD of commercial areas are 2.03 and 1.53 times higher in residential and industrial areas, respectively. In Tezpur, the highest average concentration of TREs was recorded in households from the commercial area (362.11 mg/kg), followed by rural residential households (105.84 mg/kg), and urban residential households (56.83 mg/kg). Households in commercial areas exhibited 6.37 times higher TRE concentrations than urban residential and 1.86 times higher than rural residential households. However, no significant difference among the sites were found (p=0.23). The elevated TRE concentrations in rural residential households could not be clearly explained; however, it is inferred that ongoing construction activities within the premises and other indoor sources may have contributed to the increase in the above elements. Commercial households showed highest concentrations of TREs in both Tezpur and Guwahati. This elevated concentrations in households of commercial area suggest a strong influence of urban traffic dynamics and associated activities.

Cu and Zn, recognized as key tracers of non-exhaust vehicular emissions, particularly from brake and tire wear, indicate significant contamination of roadside environments. The presence of these elements suggests the infiltration of traffic-related particles into indoor settings [104]. Additionally, the elevated Zn concentrations may also be linked to the use of rubber materials and zinc-based paints. Indoor sources also contribute notably to Pb concentrations, particularly in older buildings where deteriorating lead-based paint, carpets could release Pb into SD [105]. In addition, traffic activities and vehicular emissions further exacerbate Pb accumulation in indoors [106].

Table 4.14 Elemental concentrations (mg/kg) in indoor settled dust from households in commercial, industrial, and residential areas of Guwahati

		Locations	Al		Cr		Mn		Ni		Co	Cu	Zn		Cd	Pb	Mg	Fe
Households	in	CH1_G	19428		73.38		555.42		60.78		14.46	156.78	71.94		6.31	148.02	388.02	22908
Commercial Areas	;	CH2_G	55452		136.32		1190.28		98.45		29.09	241.68	71.36		17.08	274.68	484.92	22932
		Average	37440	±	104.85	±	872.85	±	79.61	±	21.77 ±	199.23 ±	71.65	±	11.69 ±	211.35 ±	436.47 ±	22920.0
			25472.81		44.51		448.91		26.64		10.34	60.03	0.41		7.61	89.56	68.52	0 ±
																		16.97
Households	in	IH3_G	8118		106.44		529.74		51.16		17.35	66.06	44.02		5.57	103.26	554.16	15258
Industrial Areas		IH4_G	24510		155.4		682.8		147.48		22.8	120	73.98		6.26	129.9	535.2	18996
		Average	16314	±	130.92	±	606.27	±	99.32	±	20.08	93.03 ±	59.00	±	5.92 ±	116.58 ±	544.68 ±	17127.0
			11590.89		34.62		108.23		68.11		±3.85	38.14	21.19		0.49	18.84	13.41	0 ± 2643.17
Households	in	RH5_G	5578.2		48.77		408.12		69.18		11.32	74.22	45.62		bdl	25.5	336.72	13212
Residential Areas		RH6_G	39132		102.08		772.08		41.08		22.91	164.4	37.48		4.73	102.64	556.44	21972
		Average	22355.10	±	75.43	±	590.10	±	55.13	±	17.12	119.31	41.55	±	2.15 ±	64.07 ±	446.58 ±	17592.0
			23726.12		37.70		257.36		19.87		± 8.19	± 63.77	5.76		3.64	54.54	155.37	0 ±
																		6194.26
		Overall	25369.7	±	103.73	±	689.74	±	78.02	±	19.66 ±	137.19 ±	57.40	ŧ	7.99 ±	130.67 ±	475.91 ±	19213 ±
		Average	19077.28		39.20		275.80		39.25		6.50	65.36	16.71		5.12	82.02	93.06	4166.47

Table 4.15 Elemental concentrations (mg/kg) in indoor settled dust from households in urban residential, commercial, and rural residential areas of Tezpur

	Locations	Al	Cr	Mn		Ni		Со		Cu		Zn		Cd	Pb		Mg	Fe
Households in	RHu1_T	32298	88.38	632.4		54.41		19.19		79.56		46.67		7.41	125.7		464.04	18354
Residential Areas	RHu2 T	32772	72.24	588.66		38.27		16.51		38.26		70.62		6.68	104.46		391.02	14172
(Urban)	RHu3_T	37284	106.3	784.2		47.51		25.12		60.47		47.32		6.3	118.84		456.84	23568
	Average	34118.00 ±	88.97 ±	668.42	±	46.73	±	20.27 =	±	59.43	±	54.87	±	6.80 ±	116.33	±	437.30 ±	18698.00
		2752.06	17.04	102.63		8.1		4.4		20.67		13.65		0.56	10.84		40.24	± 4707.44
Households in	CH4_T	19476	101.88	646.8		44.55		17.53		112.14		38.41		6.41	96.84		209.58	15450
Commercial Areas	CH5_T	2094	2337	663.6		1272.6		49.27		146.16		219.96		4.47	85.38		3846.6	31446
	CH6_T	13476	4779	807		2980.8		84.84		261.96		53.75		4.59	103.56		136.26	24138
	Average	11682.00 ± 8828.78	2405.96 ± 2339.32	705.80 88.04	±	1432.65 1474.65	±	50.54 = 33.68	±	173.42 78.54	±	104.04 100.68	±	5.16 ±1.09	95.26 ±9.19		1397.48 ± 2121.32	23678.00 ± 8007.92
Households in	RHr7_T	26856	113.4	455.1		190.14		11.27		99.72		71.76		5.86	119.28		729	13368
Residential Area (Rural)	RHr8_T	3522.6	78.42	383.16		108.72		8.42		63.36		305.1		4.23	90.18		16806	17994
	Average	15189.30 ±16499.21	95.91 ± 24.73	419.13 50.87	±	149.43 57.57	±	9.84 ±2.02	2	81.54 25.71	±	188.43 165.00	±	5.05 ±1.15	104.73 20.58	±	8767.50 ± 11368.16	15681.00 ± 3271.08
	Overall Average	20972.33 ±13562.08	959.58 ± 1731.55	620.12 145.88	±	592.13 1052.64	±	29.02 = 25.82	±	107.70 70.88	±	106.70 99.51	±	5.74 ± 1.18	105.53 14.62	±	2879.92 ± 5757.70	19811.25 ± 6164.00

Table 4.16 A comparison of elemental concentrations of the present study with other reported studies on settled dust in households in India and abroad

Locations		Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg	Fe	Reference
Households, Guwahati,	Commercial	37440	104.85	872.85	79.61	21.77	199.23	71.65	11.69	211.35	436.47	22920	This study
Assam	Industrial	16314	130.92	606.27	99.32	20.08	93.03	59	5.92	116.58	544.68	17127	
	Residential	22355.1	75.43	590.1	55.13	17.12	119.31	41.55	2.15	64.07	446.58	17592	-
Households, Tezpur,	Residential (Urban)	34118	88.97	668.42	46.73	20.27	59.43	54.87	6.8	116.33	437.3	18698	-
Assam	Commercial	11682	2405.96	705.8	1432.65	50.54	173.42	104.04	5.16	95.26	1397.48	23678	-
	Residential (Rural)	15189.3	95.91	419.13	149.43	9.85	81.54	188.43	5.05	104.73	8767.5	15681	
Households, Penang State, Malaysia	Seberang Jaya City (Urban)	-	-	-	15.07	-	6.84	17.6	-	33.27	-	-	[107]
Households, Jharia,	Jharia Commercial	7500	42.3	700	25.9	14.9	56.1	-	0.37	70.5	4000	23900	[108]
Jharkhand India													
India													
	Jharia Residential	7500	53.6	600	45.3	17.6	44.7	-	0.41	49.8	3600	22600	
Households, Nairobi,	Nairobi City (Urban)	-	82.65	-	-	-	-	321.77	27.40	129.12	-	-	[109]
Kenya													
Households, Chengdu,	Urban area	-	82.7	-	52.6	-	161	675	2.37	123	-	-	[87]
China													

Locations		Al	Cr	Mn	Ni	Со	Cu	Zn	Cd	Pb	Mg	Fe	Reference
Households, Bushehr, Iran	Bushehr (Urban)	-	117.95	-	46.33	-	164.12	496.45	3.34	151.84	-	-	[110]
Households, Athens, Greece	Athens (Urban)	4217	65.2	128	29.9	-	339	401	0.5	46.1	-	4913	[111]
Households, Turkey, Ankara	Ankara (Urban)	-	23.8	65.9	32.3	-	65.7	263	-	27.5	-	-	[112]
Households, Kuangshan, Huize Country, Yunnan province, China	Mining town (Pb/Zn ore mining area)	-	124	1010.3	-	-	174	3029	25.2	927	-	-	[113]
Households, Ramadi, Iraq	Ramadi City (Urban)	-	0.51	-	1.49	-	1.25	1.9	0.007	0.92	-	-	[114]
Indian natural soil			114		27.7		56.5	22.1	0.9	13.1			[84] [85]
Background value		82300	100	950	75	25	55	70	0.2	12.5	23300	56300	[86]

Furthermore, Cd, commonly used in motor vehicle accumulators, can be released into the environment during combustion and subsequently infiltrate indoor environments. Likewise, Ni primarily originates from engine oil and fuel additives, with oil combustion and waste incineration contributing up to 70% of its atmospheric emissions. In addition to these outdoor sources, tobacco smoke serves as a significant indoor contributor of Cd, Ni, and Pb, further intensifying heavy metal exposure within indoor settings [115-117].

From the table, it is evident that average TRE concentrations were higher in studies conducted by Cheng et al. [87], Ogilo et al. [109], Hashemi et al. [110], and Stamatelopoulou et al. [111] than the present study. Exceptionally high TRE concentrations were reported in households from Kuangshan, China, an area characterized by intensive Pb/Zn ore mining activity (Cao et al. 113].

Manganese concentrations in Tezpur and Guwahati are comparable to Jharia in Jharkhand, a study by Rout et al. [108]. Higher concentrations of Mn were found by Cao et al. [113]. Additionally, lower concentrations were reported by Stamatelopoulou et al. [11] in Athenes, Greece, and Gul et al. [112] in Ankara, Turkey than the present study. The presence of Mn in indoor environments can be attributed to both automotive emissions and its natural abundance in soil, which may be introduced through resuspended dust or soil tracking [118, 119].

Cr concentrations exhibited considerable variability, particularly in Tezpur. Notably, two households-CH5_T and CH6_T recorded exceptionally high Cr concentrations of 2337 mg/kg and 4779 mg/kg, respectively. Despite being located in the same neighbourhood as CH4_T (commercial area), these two households demonstrated a stark difference in Cr concentrations. The mean Cr concentration was 103.73 mg/kg in Guwahati and significantly higher (Tezpur at 863.61 mg/kg). The average Cr level in Guwahati households aligns with those reported by Cao et al. [113], Hashemi et al. [110], Ogilo et al. [109] and Cheng et al. [87] which recorded concentrations of 124 mg/kg, 117.95 mg/kg, 82.65 mg/kg and 82.7 mg/kg, respectively. However, the average Cr concentration in Tezpur far exceeds those in previously reported studies, largely due to the unusually high values in the two aforementioned households. Cr in indoor environments may originate from both anthropogenic and indoor sources. These include metal-rich slag used in tile production, indoor smoking, Cr-Ni plated household items, and automotive components such as plating and alloys, as well as road markings that use yellow paint [120-122]. However, this exceptional increase of Cr at these two sites could not be known.

The concentrations of Mg observed in the present study is comparable to the values reported by Rout et al. [108]. Natural sources, such as soil and construction materials from nearby outdoor sites, may contribute to indoor Mg concentrations as Mg-containing dust can be tracked indoors via footwear or clothing [92].

4.4.2 Pollution Indices

4.4.2.1 Enrichment Factor

The enrichment factor (EF) is a useful indicator for determining whether an element originates from natural sources or is influenced by anthropogenic activities. An EF value less than 2 suggests minimal or low enrichment, typically pointing to a predominantly natural origin. In the present study, EF values for Al and Mg were consistently below 2 across all households in both Guwahati and Tezpur, indicating their primary origin from natural sources such as crustal material or soil [73; 123]. Conversely, an EF greater than 10 suggests significant enrichment and strong association with anthropological activities [123].

Varying levels of elemental enrichment were observed in both Guwahati and Tezpur, as presented in Tables 4.17 and 4.18. In Guwahati, the highest EF values for TREs were found in households from the commercial area (39.83), followed by the industrial area (28.15) and the residential area (12.58). These values indicate "very high enrichment" in the commercial and industrial area, and "high enrichment" in the residential area. Khajooee et al. [124], that reported that indoor elemental levels are often exacerbated by urban environmental conditions, such as traffic congestion and densely populated built environments. Additionally, Nath et al. [15] emphasized that location significantly influences the elemental composition of SD. Similarly, in Tezpur, the average EF values for TREs across all three household types were classified as "very high": 27.34 for urban residential households, 28.54 for commercial households, and 29.68 for rural residential households. Despite Tezpur being an urban agglomeration, consistently high EF for TREs were observed across all sites.

Cadmium showed "extremely high" EF across all locations except RH5_G. Lead also ranged from "high" EF to "extremely high" EF for both Guwahati and Tezpur. These findings suggest that elemental concentrations may also be influenced by broader infrastructural and sanitation-related factors [67]. Additionally, location-specific variables such as household practices, building materials, and adjacent land use pattern may further shape the elemental composition of indoor dust.

Table 4.17 Enrichment Factors of elements in indoor settled dust from households in commercial, industrial, and residential areas of Guwahati

Elements	Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg
Households in Comme	rcial Are	a								
CH1_G	0.58	1.80	1.44	1.99	1.42	7.01	2.53	77.56	29.10	0.04
CH2_G	1.65	3.35	3.08	3.22	2.86	10.79	2.50	209.62	53.95	0.05
Households in Industr	ial Area									
IH3_G	0.36	3.93	2.06	2.52	2.56	4.43	2.32	102.70	30.48	0.09
IH4_G	0.88	4.61	2.13	5.83	2.70	6.47	3.13	92.83	30.80	0.07
Households in Residen	itial Area									
RH5_G	0.29	2.08	1.83	3.93	1.93	5.75	2.78	bdl	8.69	0.06
RH6_G	1.22	2.62	2.08	1.40	2.35	7.66	1.37	60.57	21.04	0.06

Table 4.18 Enrichment Factors of elements in indoor settled dust from households in urban residential, commercial, and rural residential areas of Tezpur

Elements	Al	Cr	Mn	Ni	Co	Cu	Zn	Cd	Pb	Mg		
Households in Urban Residential Area												
RHu1_T	1.2	2.71	2.04	2.23	2.35	4.44	2.05	113.65	30.85	0.06		
RHu2_T	1.20	2.71	2.04	2.23	2.35	4.44	2.05	113.65	30.85	0.06		
RHu3_T	1.08	2.54	1.97	1.51	2.40	2.63	1.61	75.25	22.71	0.05		
Households in Commer	cial Area	ı										
CH4_T	0.86	3.71	2.48	2.16	2.55	7.43	2.00	116.75	28.23	0.03		
CH5_T	0.05	41.84	1.25	30.38	3.53	4.76	5.63	40.03	12.23	0.30		
CH6_T	0.38	111.47	1.98	92.7	7.92	11.11	1.79	53.54	19.32	0.01		
Households in Rural Ro	esidential	Area										
RHr7_T	1.37	4.78	2.02	10.68	1.90	7.64	4.32	123.43	40.19	0.13		
RHr8_T	0.13	2.45	1.26	4.54	1.05	3.60	13.64	66.22	22.57	2.26		

4.4.2.2 Contamination Factor, Degree of Contamination (Cdegree) and Pollution Load Index (PLI)

Table 4.19 showed the average CF factor for households at different sites in Guwahati and Tezpur. Aluminum, Mn, Mg, and Fe exhibited low contamination levels, with CF values < 1, indicating their likely origin from resuspended dust and natural soil sources [15]. Cobalt and Zn showed "low" to "moderate" CF across all households, while Cu demonstrated "moderate" to "considerable" contamination. Furthermore, CF values for Cr and Ni ranged from "low" to "very high" CF. In contrast Cd, and Pb consistently displayed "very high" CF values, reflecting their strong association with anthropogenic activities [94-96]. Households in commercial areas of both Guwahati and Tezpur exhibited the highest CF values for maximum elements. The C_{degree} values also suggested a "very high" level of contamination overall. PLI values less than 1 were found for households in industrial and residential areas of Guwahati and households in urban residential areas of Tezpur. PLI value less than 1 indicate negligible pollution and an acceptable household environmental quality. PLI values more than 1 were found for households of commercial areas of both Guwahati and Tezpur and rural residential areas of Tezpur reflecting site deterioration.

Table 4.19 Contamination Factor (CF), Degree of Contamination (C_{degree}), and Pollution Load Index (PLI) Across households of different areas in Guwahati and Tezpur

	Guwahati Hou	seholds		Tezpur Househ	olds	
Elements	Households in Commercial	Households in Industrial	Households in Residential	Households in Urban	Households in Commercial	Households in Rural
	Area	Area	Area	Residential Area	Area	Residential Area
Al	0.45	0.20	0.27	0.41	0.14	0.18
Cr	1.05	1.31	0.75	0.89	24.06	0.96
Mn	0.92	0.64	0.62	0.70	0.74	0.44
Ni	1.06	1.32	0.74	0.62	19.10	1.99
Co	0.87	0.80	0.68	0.81	2.02	0.39
Cu	3.62	1.69	2.17	1.08	3.15	1.48
Zn	1.02	0.84	0.59	0.78	1.49	2.69
Cd	58.47	29.58	10.76	33.99	25.78	25.24
Pb	16.91	9.33	5.13	9.31	7.62	8.38
Mg	0.02	0.02	0.02	0.02	0.06	0.38
Fe	0.41	0.30	0.31	0.33	0.42	0.28
C_{degree}	84.80	46.04	22.04	48.95	84.59	42.41
PLI	1.25	0.94	0.72	0.87	2.02	1.17

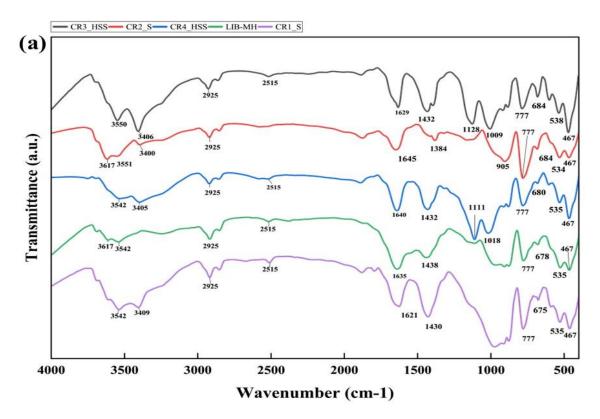
4.4.2.3 Geo-accumulation Index (Igeo index)

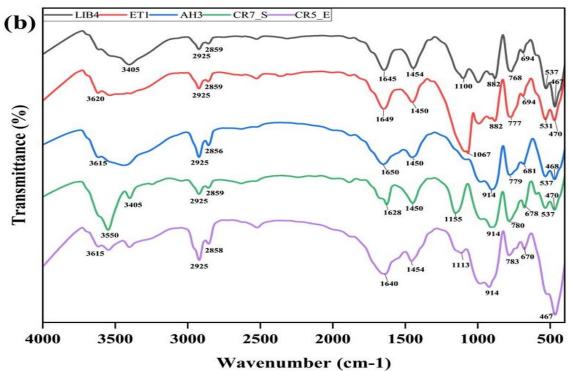
The I_{geo} index values presented in Table 4.20 indicate that, when averaged by household at each locality, all assessed elements except Cr, Ni, Cd and Pb fall under Class 1 contamination levels, corresponding to "uncontaminated to moderately contaminated" conditions. This reflects relatively low overall pollution levels for most elements. However, Cd was classified as "extremely contaminated" in all localities of Guwahati and Tezpur, except in the residential areas of Guwahati, where Cd levels were categorized as "moderately to heavily polluted." Similarly, Pb levels were deemed "moderately contaminated" in all localities of Guwahati and Tezpur, with the exception of the commercial area in Guwahati, where Pb reached the "heavily contaminated" category. These findings suggest significant anthropogenic contributions as the primary sources of Cd and Pb contamination.

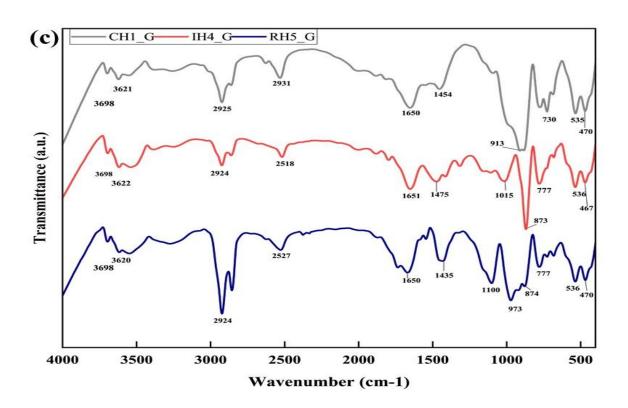
Table 4.20 Geo-accumulation Index (Igeo) in different households of Guwahati and Tezpur

Guwahati	Households			Tezpur Househol	ds	
Elements	Households in	Households in	Households in Residential	Households in Urban	Households in	Households in Rural
	Commercial Area	Industrial Area	Area	Residential Area	Commercial Area	Residential Area
Al	0.09	0.04	0.05	0.08	0.03	0.04
Cr	0.21	0.26	0.15	0.18	4.83	0.19
Mn	0.18	0.13	0.12	0.14	0.15	0.09
Ni	0.21	0.27	0.15	0.13	3.83	0.40
Со	0.17	0.16	0.14	0.16	0.41	0.08
Cu	0.73	0.34	0.44	0.22	0.63	0.30
Zn	0.21	0.17	0.12	0.16	0.30	0.54
Cd	11.73	5.94	2.16	6.82	5.17	5.06
Pb	3.39	1.87	1.03	1.87	1.53	1.68
Mg	0.00	0.00	0.00	0.00	0.01	0.08
Fe	0.08	0.06	0.06	0.07	0.08	0.06

4.5 Mineralogy of Elements


To assess the mineralogical composition and functional group characteristics of the indoor SD samples, FTIR and XRD were employed. These analytical tools help identify the chemical bonding, organic and inorganic constituents, and crystalline mineral phases, providing a comprehensive understanding of the dust's composition.


4.5.1 FTIR Spectroscopy


The FTIR spectrum of the indoor dust from different microenvironments of CU, TU, households of Guwahati, and households of Tezpur are shown in Fig. 4.21 (a-d) respectively. FTIR spectral analysis of indoor dust samples from CU (4.21a), TU (4.21b), and households in Guwahati (4. 21 c) and Tezpur (4.21 d) revealed a composite mixture of silicate, carbonate, clay, metal oxide, and organic components, reflecting a combination of crustal origin, construction materials, and anthropogenic pollution.

Quartz was the dominant mineral identified across all sites. Strong Si-O-Si stretching and bending vibrations were observed at 465 cm⁻¹, 467 cm⁻¹, 468 cm⁻¹, 470 cm⁻¹, 538 cm⁻¹, 694 cm⁻¹, 777 cm⁻¹, 779 cm⁻¹, 780 cm⁻¹, 783 cm⁻¹, 1067 cm⁻¹, 1100 cm⁻¹, confirming its widespread presence [125-131]. Quartz, derived mainly from crustal and soil sources, get resuspended in indoor environments through human activity, open windows, and dust infiltration. Its presence is of health concern due to the carcinogenicity of inhalable crystalline silica, which is linked to silicosis, pulmonary fibrosis, and lung cancer [132, 133]. Clay minerals were identified by O-H stretching bands between 3617- 3698-cm⁻¹, Al-OH bending around 907-914 cm⁻¹, and overlapping Si-O stretching near 1100 cm⁻¹. These minerals, including kaolinite, illite, and montmorillonite, originate from weathered soils, construction dust, and degraded plaster [134, 135]. They not only contribute to indoor particulate matter but also act as adsorbents of heavy metals and organic pollutants, potentially increasing dust toxicity [136]. FTIR bands at 1432-1450 cm⁻¹, 873-882 cm⁻¹, 2518-2527 cm⁻¹, and occasionally 876- 905-cm⁻¹ signify the presence of carbonates, primarily calcite and occasionally dolomite. These are likely derived from building materials such as cement, gypsum, and chalkboards, which degrade over time [92, 125]. Iron and Al oxides were identified through low-frequency bands between 531 cm⁻¹, 534 cm⁻¹, 535 cm⁻¹, 536 cm⁻¹, 537 cm⁻¹, 538 cm⁻¹, 1113 cm⁻¹, attributed to metal-oxygen stretching in minerals like hematite (Fe₂O₃) and gibbsite (Al (OH)₃) [125, 129, 136,137]. These oxides may enter indoor dust via road dust, combustion residues, or corroded building materials. Inhalation of iron-rich particulates is associated with oxidative stress, pulmonary inflammation, and other respiratory issues [133, 136].

C–H stretching bands observed at 2926–2859 cm⁻¹ across all sites indicate the presence of aliphatic hydrocarbons, which may arise from synthetic textiles, cleaning agents, or vehicular emissions entering indoor spaces [138]. Additionally, peaks at 873 cm⁻¹, 874 cm⁻¹, 1650 cm⁻¹, 2515 cm⁻¹, and 1430 cm⁻¹ reflect carbonyl (C=O) functional groups, pointing to indoor contamination by aldehydes, ketones, and possibly volatile organic compounds (VOCs), which are associated with endocrine disruption and carcinogenic risks in long-term exposure [138]. In a study by Mahmud

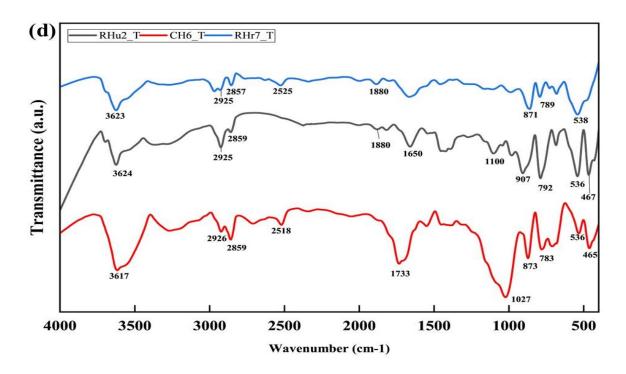


Fig 4.22 FTIR spectrum of the indoor dust from different microenvironments of (a) Cotton university, (b) Tezpur University, (c) Households of Guwahati, and (d) Households of Tezpur

Table 4.21 FTIR peaks and their functional Groups and Minerals present in indoor dust of **(a)** Cotton University

Minerals/ Tentative assignment	Observed wavelength	References
Quartz, Si-O symmetric bending, Si-O symmetric stretching,	467	[125]; [126]
Feldspar, Si-O asymmetrical bending vibration Haematite, Fe-O Si-O structure, Si-O-Al structure Out of plane bending of the aromatic ring C-H bonds	534 535 538 675	[137] [125] [127], 2007 [128]
Proto, Si-O bending	678 680	[125]
Out of plane bending of the aromatic ring C-H bonds	684	[128]
Quartz, Si-O symmetric bending, Si-O symmetric stretching,	777	[125]; [128]
Nacrite, Si-O stretching, Al-Al-OH deformation, O-H stretching	905	[125]
Kaolinite	1009	[130]
Feldspar, Al-O coordination, Si-O stretching, O-H bending, O-H stretching, O-H deformation	1111	[125]
O–Si–O stretching of silica, sulfates Si–OH of alumino-silicate lattice, kaolinite, illite, smectite	1128	[139]
Cerussite, C-O bending Calcite, doubly degenerate asymmetric Stretching, CO ₃ stretching, C=O stretching, combinational mode, O-H stretching	1384 1430, 1432	[125] [125]
Vibrations of CO ₃ ²⁻ in calcite, dolomite groups. C-H bending vibrations of CH ₃ and CH ₂ groups	1438	[128]
Kaolinite, Si-O deformation, O-H deformation, O-H stretching	1621	[125]
O-H bending of water Calcite, double degenerate asymmetric Stretching, CO ₃ stretching, C=O stretching, combinational mode, O-H stretching	1629 1635	[139] [125]
Illite Palygorskite, Si-O deformation, Si-O stretching, O-H deformation	1640 1645	[130] [125]
Calcite, doubly degenerate asymmetric stretching, CO ₃ stretching, C=O stretching, combinational mode, O-H stretching	2515	[125]
Organic carbon (2922- 2925) Stretching of O-H bond in water, carboxyl and hydroxyl group	2925 3400, 3405, 3406, 3409, 3542, 3550 3551	[130] [128]
Oxides	3617	[139]

(b) Tezpur University

Minerals and their tentative assignment	Observed wavelength	References
Quartz, Si-O symmetric bending, Si-O symmetric stretching,	467, 468	[125], [126]
Quartz, Si-O asymmetric stretching vibrations	470	[129]
Fe-o stretching of Haematite	531	[136]
Haematite, Fe-O	537	[125]
Vermiculite, Si-O symmetrical bending, O-H out of plane bending	670	[125]
Out of plane bending of the aromatic ring C-H bonds,	678	[128]
Proto, Si-O bending	681	[125]
Quartz, Si-O symmetric bending, Si-O symmetric stretching,	694	[125], [137], [130]
Carbonate, Kaolinite	768	[139]
Quartz, Si-O symmetric bending, Si-O symmetric stretching,	777	[125], [128]
Symmetric stretching of Si-O in quartz (795-800)	779, 780	[128],[140]
Carbonate, Kaolinite	783	[139]
Vibration of CO ₃ - ² in calcite and minerals of the calcite and dolomite group	882	[128]
Fundamental vibration in illite	914	[128], [130]
, Quartz, Si-O stretching	1067	[125]
Quartz, Si-O asymmetric stretching vibrations	1100	[129]
Feldspar, Al-O coordination, Si-O stretching, O-H bending, O-H stretching, O-H deformation	1113	[125]
Carbonates O-H bending of water Illite	1155 1450 1628 1640	[139], [136] [139] [130]
C=O, stretching vibrations in amides	1650	[128]
Palygorskite, Si-O deformation, Si-O stretching, O-H	1645	[125]
deformation	1649	[123]
Organic carbon	2925	[130]
Symmetric and asymmetric C-H stretching of CH ₃ and CH ₂	2859	[128]
group	2856	
O-H stretching, N-H, Carboxyl, alcohols and phenols/ amine & amide, hydroxyl group	3405	[128]
Stretching of O-H bond in water, carboxyl and hydroxyl group	3550	[128]
Oxides	3615	[139]
Kaolinite	3620	[130], [141]

(c) Household of Guwahati

Minerals and their tentative assignment	Observed	References
	wavelength	
Quartz, Si-O symmetric bending, Si-O symmetric stretching,	467	[125], [126]
Quartz, Si-O asymmetric stretching vibrations	470	[129]
Haematite, Fe-O	535	[125]
Feldspar (535) Si-O asymmetrical bending vibration	536	[137]
Out of plane bending of the aromatic ring C-H bond	730	[128]
Quartz, Si-O symmetric bending, Si-O symmetric stretching,	777	[125], [130]
Out of plane bending of the aromatic ring C-H bond	873	[128]
Calcite, doubly degenerate asymmetric Stretching, CO3	874	[125], [137],
stretching, C=O stretching, combinational mode, O-H stretching	0.1.2	[130]
Fundamental vibration in illite	913	[128]
Stretching Si-O	973	[142]
Smectite	1015	[139]
Quartz, Si-O asymmetric stretching vibrations	1100	[129]
Vibrations of CO ₃ - ² in calcite minerals and dolomite groups, C-H bending vibrations of CH ₃ and CH ₂ groups	1435	[128]
C-H aliphatic carbon	1454	[143]
Carbonates	1475	[139]
C=O, stretching vibrations in amides	1650	[128]
	1651	
Calcite, doubly degenerate asymmetric Stretching, CO3 stretching, C=O stretching, combinational mode, O-H stretching	2518	[125]
Vibrations of CO ₃ ⁻¹ in calcite and minerals of the calcite and dolomite groups	2527	[128]
Symmetric and asymmetric C-H stretching of CH ₃ and CH ₂ groups	2931	[128]
Organic carbon, C-H stretching	2924	[125]
Organic carbon	2925	[130]
Kaolinite	3620	[130]
	3621	
Walling of the standard of the	2722	[125]
Kaolinite, Si-O deformation, O-H deformation, O-H stretching (OH) assigned to surface hydroxyl groups of kaolinite clay	3622 3698	[125] [126], [139]
mineral	3070	[120], [137]

(d) Household of Tezpur

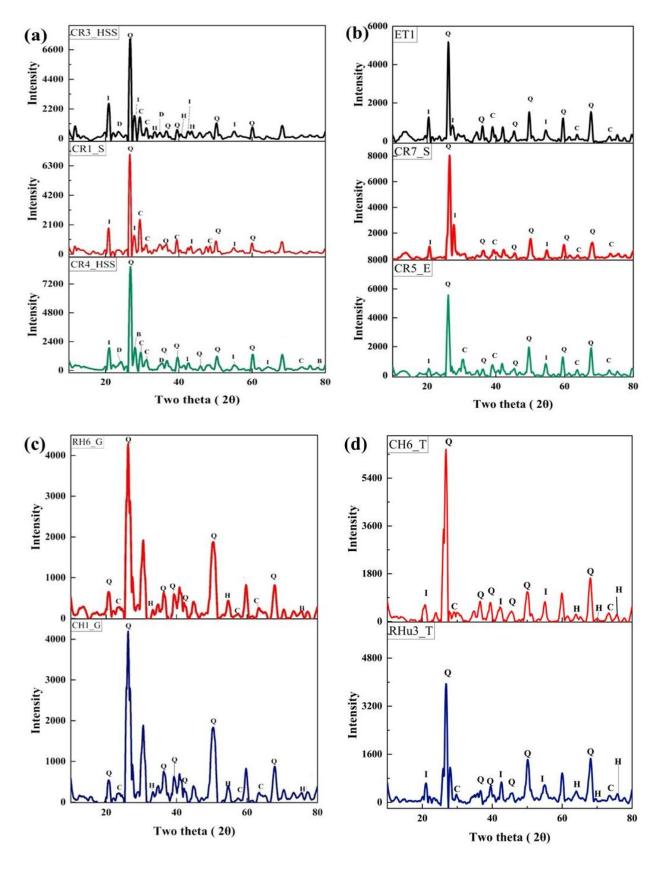
Minerals and their tentative assignment	Observed wavelength	References
Quartz, Si-O symmetric bending, Si-O symmetric stretching	465, 467	[131] [125]
Haematite, Fe-O	536	[125]
Feldspar, Si-O asymmetrical bending vibration	538	[129]
Quartz, Si-O asymmetric stretching vibrations Aliettile , O-H stretching	783 789	[129] [125]
Out of plane bending of the aromatic ring C-H bond 792 871		[128]
Calcite, doubly degenerate asymmetric stretching, CO ₃ stretching, C=O stretching, combinational mode, O-H stretching	873	[125]
Nacrite, Si-O stretching, Al-Al-OH deformation, O-H stretching	907	[125]
Kaolinite, Si-o stretching	1027	[137]
Quartz, Si-O asymmetric stretching vibrations	1100	[120]
		[129]
C=O, stretching vibrations in amides	1650 1733	[128]
Overtones and combination bands for quartz and silicates	1880	[128], [130]
Calcite, doubly degenerate asymmetric Stretching, CO ₃ stretching, C=O stretching, combinational mode, O-H stretching	2518	[125]
Vibrations of CO_3 $^{2-}$ in calcite and minerals of the calcite and dolomite groups	2525	[128]
Organic carbon stretching vibration Carbonate (calcite or aragonite) (overtone/combination	2857 2527	[140] [139]
band) Symmetric and asymmetric CH stretching of CH ₃ and CH ₂ groups	2859,2926	[128]
Organic carbon Oxides	2925 3617	[130] [139]
Kaolinite, Si-O deformation, O-H deformation, O-H stretching	3623	[125]
Kaolinite, stretching O-H bond	3624	[130]

and Mohiuddin [144], conducted in a university campus in Bangladesh, the FTIR analysis of indoor deposited particles found the presence of hydroxyl (-OH), aliphatic carbon (-CH₂), carbonyl (-CO) and amino (-NH₂) groups.

4.5.2 XRD

The XRD peaks of the samples are shown in Fig. 4.23 (a) CU, (b) TU (c) Households of Guwahati, (d) Households of Tezpur. From the XRD study, six minerals can be identified viz. Quartz (Q), Dolomite (D), Calcite (C), Illite (I), Haematite (H), and Bornite (B), (Table 4.22). The XRD analysis of SD samples revealed a varied group of minerals, reflecting a combination of both natural (geogenic) and human-induced (anthropogenic) sources. The analysis of SD confirmed quartz as the dominant mineral phase across all sites. A study conducted by Kumar & Jain [145] in Dhanbad, India found that calcite, dolomite, haematite, vaterite, and quartz were found in the household dust. Another study of indoor deposited particles in a university campus at Bangladesh found that Quartz was found predominantly in all samples [144]. Carbonate minerals, specifically calcite (CaCO₃) and dolomite (CaMg(CO₃) 2), were also identified. These minerals are common in limestone-derived construction materials, road aggregates, and soil dust, often resuspended by vehicular movement or wind turbulence in urban settings [92, 134]. Calcite was found in all the sites whereas dolomite was found in CR3 HSS and CR4 HSS of Cotton University. Illite, a potassium-rich phyllosilicate, is found in all the sites except in the households of Guwahati. Hematite (Fe₂O₃) was observed in the samples of CR3 HSS of Coton University and Households of Guwahati and Tezpur. Bornite (Cu₅FeS₄) was found only in CR4 HSS of Cotton University.

The XRD results were supported by FTIR analysis, with both techniques revealing complementary and consistent mineralogical signatures. This cross-validation enhances the reliability and robustness of the mineralogical characterization of the settled dust samples.



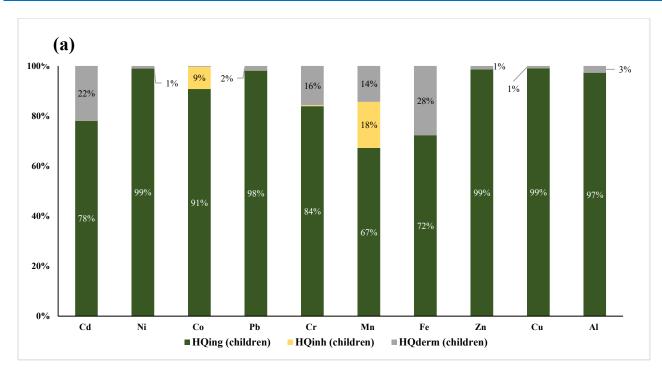

Fig 4.23 XRD peaks of the indoor dust of (a) Cotton University, (b) Tezpur University, (c) Households of Guwahati, and (d) Households of Tezpur

Table 4.22 Minerals and corresponding XRD peak positions (2θ) and calculated interplanar spacing and plane (d_{hkl})

Mineral	2θ (degrees)	d (Å)	hkl Plane
Quartz	26.64, 36.55, 39.47, 45.80, 68.15, 50.14, 68.13, 39.46, 59.96, 50.14, 20.85, 42.47, 67.75	3.34, 2.46, 2.28, 1.98, 1.37, 1.82, 1.38, 2.28, 1.54, 1.82, 4.26, 2.13, 1.38	[203], [112], [203], [102],
Dolomite	24.14, 35.44, 50.72, 60.04, 35.44, 68.20, 61.35, 41.69, 70.36	3.68, 2.53, 1.80, 1.54, 2.53, 1.37, 1.51, 2.17, 1.34	
Calcite	29.41, 31.42, 73.73, 39.42, 48.51, 29.80, 63.69, 57.40, 63.06	3.04, 2.85, 1.28, 2.28, 1.87, 3.00, 1.46, 1.60, 1.47	2 3 2 3 2 3 2 3
Ilite	20.91, 42.55, 55.25, 64.33, 43.46, 27.72	4.25, 2.12, 1.66, 1.45, 2.08, 3.22	[112], [224], [242], [-335], [223], [114]
Haematite	43.52, 33.15, 40.86, 63.97, 69.50, 54.09	2.08, 2.70, 2.21, 1.45, 1.35, 1.69	[202], [104], [113], [300], [208], [116]
Bornite	28.24, 78.07	3.16, 1.22	[111], [024]

4.6 Health Risk Assessment

The non-carcinogenic and carcinogenic health risk assessments of elements are presented in Tables 4.23 (a-d) for CU, TU, households of Guwahati and households of Tezpur, respectively. In CU and TU, adult exposure via ingestion accounted for 73.17% and 71.54% of the total hazard index (HI), followed by dermal contact (23.21% and 24.44%) and then inhalation (4.03% and 4.47%). Similarly, in households of Guwahati ingestion contributed 78.67% to HI for children and 71.71% for adults. In Tezpur, ingestion comprised 78.73% for children and 73.60% for adults followed by dermal and inhalation pathways. These findings underscore ingestion as the primary route of exposure. Fig. 4.24 a and b showed the contribution of HQ_{ing}, HQ_{inh}, and HQ_{dermal} to HI for each element in children and adults, respectively. With the exception of Co and Mn, where the route of exposure was in the order HQ_{ing}>HQ_{inh}>HQ_{derm}, all other elements had the order HQ_{ing}>HQ_{derm}>HQ_{inh}. Notably, Mn exposure was highest through inhalation in adults. Previous studies had also reported oral ingestion as the major pathway for exposure of dust in humans [15, 146-148].

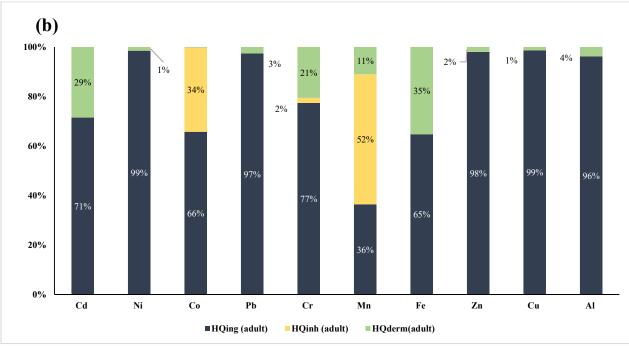


Fig. 4.24 Contribution of HQ_{ing}, HQ_{inh}, and HQ_{dermal} to the HI for each element in (a) children (b) adults

The overall hazard index (HI) values for adults remained below 1 across all study sites, including both universities and households in Tezpur and Guwahati. This indicates that elemental concentrations in SD of the sampled area were within acceptable limits and are unlikely to pose significant non-carcinogenic health risks to adults. In contrast, HI values for children exceeded 1 in all household samples, suggesting a potential non-carcinogenic health risk, primarily through the

ingestion pathway. In children the HI value has gone up to 2.5. This elevated risk in children may be attributed to their frequent hand-to-mouth behavior, increased likelihood of playing on the ground, and a higher rate of metal absorption in their developing bodies [147, 149, 150]. Although the HI values for adults remained below the threshold limit, it is important to recognize that prolonged exposure and increased concentrations of elements could elevate health risks over time. Specifically, the accumulation of these elements in body tissues may contribute to adverse neurological and developmental effects [94,151, 152]. Consequently, regular monitoring and comprehensive assessments of both university microenvironments and residential settings are essential for early risk detection and management.

In order to assess the lifetime cancer risks linked to heavy metal exposure through SD inhalation, the cancer risk values for Cd, Ni, Co, Pb, and Cr were calculated. In most settings, including university spaces and households, the LCR values consistently followed the descending order: Cr > Co > Ni > Cd > Pb. Notably, a deviation from this trend was observed in the Library Complex of CU as well as in households situated in the commercial and rural residential areas of Tezpur, where the sequence shifted to Cr > Ni > Co > Cd > Pb. Cancer risk values for these elements showed that Cr posed the highest risk while Pb exhibited the lowest risk. Our findings are consistent with Nath et al. [146] and Somsunun et al. [148]. The individual carcinogenic effects of these elements were not significant in the present study, as the carcinogenic risk for all elements was within the acceptable limits of 10^{-6} to 10^{-4} given by HHRA [153]. Similar findings are reported by Bhandari et al. [154] and Tan et al. [155]. The assessment reveals no significant LCR via inhalation exposure to indoor dust in the sampled locations of both Guwahati and Tezpur. However, in Guwahati, ongoing infrastructure development and widespread construction activities may contribute to a gradual decline in indoor environment, potentially increasing health risks over time. In Tezpur, although current LCR levels appear within safe limits, the urban expansion observed in both residential and commercial zones could similarly alter indoor environmental conditions. These findings highlight the need for continued surveillance and effective mitigation strategies to safeguard indoor environmental health in both urban centers.

Table 4.23 Hazard Quotients (HQ), Hazard Index (HI), and Carcinogenic Risk (CR) for adults exposed to elements in indoor dust in (a) Cotton University

Microenviro	Elements	HQ _{ing}	HQ _{inh}	Hq _{derm}	НІ	ΣΗΙ	CR
nments		(adult)	(adult)	(adult)			
Academic	Cd	4.05E-03	5.95E-07	1.62E-03	5.66E-03	0.31	5.18E-09
Classrooms and Labs	Ni	1.87E-03	2.67E-07	2.77E-05	1.90E-03		6.39E-09
	Co	8.49E-04	4.38E-04	4.23E-06	1.29E-03		3.38E-08
	Pb	2.82E-02	4.13E-06	7.51E-04	2.90E-02		8.43E-10
	Cr	1.43E-02	3.77E-04	3.81E-03	1.85E-02		6.11E-07
	Mn	9.05E-03	1.30E-02	2.75E-03	2.48E-02		
	Fe	1.27E-01	7.99E-05	6.90E-02	1.96E-01		
	Zn	7.90E-04	1.16E-07	1.58E-05	8.06E-04		
	Cu	4.71E-03	6.90E-07	6.27E-05	4.78E-03		
	Al	2.37E-02		9.46E-04	2.47E-02		
Library	Cd	3.94E-03	5.79E-07	1.57E-03	5.51E-03	0.61	5.03E-09
Complex	Ni	3.07E-02	4.38E-06	4.53E-04	3.11E-02		1.05E-07
	Co	1.40E-03	7.22E-04	6.98E-06	2.13E-03		5.57E-08
	Pb	4.90E-02	7.17E-06	1.30E-03	5.03E-02		1.46E-09
	Cr	2.04E-01	5.35E-03	5.42E-02	2.63E-01		8.68E-06
	Mn	9.19E-03	1.32E-02	2.79E-03	2.52E-02		
	Fe	1.35E-01	8.49E-05	7.33E-02	2.08E-01		
	Zn	7.98E-04	1.17E-07	1.59E-05	8.14E-04		
	Cu	9.44E-03	1.38E-06	1.26E-04	9.57E-03		
	Al	1.54E-02		6.15E-04	1.60E-02		

(b) Tezpur University

Microenvir	Elements	HQing	HQinh	Hq _{derm}	НІ	ΣΗΙ	CR
onments		(adult)	(adult)	(adult)			
Academic	Cd	3.22E-03	4.73E-07	1.28E-03	4.50E-03	0.23	4.11E-09
Classrooms and Labs	Ni	1.56E-03	2.23E-07	2.31E-05	1.58E-03		5.32E-09
	Co	4.85E-04	2.50E-04	2.42E-06	7.37E-04		1.93E-08
	Pb	2.12E-02	3.10E-06	5.64E-04	2.18E-02		6.32E-10
	Cr	1.20E-02	3.14E-04	3.18E-03	1.55E-02		5.10E-07
	Mn	6.57E-03	9.46E-03	1.99E-03	1.80E-02		
	Fe	9.57E-02	6.03E-05	5.21E-02	1.48E-01		
	Zn	2.34E-04	3.44E-08	4.67E-06	2.39E-04		
	Cu	4.16E-03	6.09E-07	5.53E-05	4.22E-03		
	Al	1.87E-02		7.48E-04	1.95E-02		
Social and	Cd	5.67E-03	8.34E-07	2.26E-03	7.94E-03	0.33	7.25E-09
Utility spaces	Ni	3.33E-03	4.75E-07	4.91E-05	3.37E-03		1.13E-08
	Co	6.64E-04	3.43E-04	3.31E-06	1.01E-03		2.64E-08
	Pb	2.92E-02	4.27E-06	7.77E-04	3.00E-02		8.72E-10
	Cr	3.45E-02	9.06E-04	9.17E-03	4.46E-02		1.47E-06
	Mn	7.77E-03	1.12E-02	2.36E-03	2.13E-02		
	Fe	1.13E-01	7.10E-05	6.13E-02	1.74E-01		
	Zn	4.35E-04	6.39E-08	8.67E-06	4.43E-04		
	Cu	9.40E-03	1.37E-06	1.25E-04	9.52E-03		
	Al	3.47E-02		1.38E-03	3.61E-02		

(c) Households of Guwahati

	Elements	HQ _{ing}	HQ _{inh}	HQ _{derm}	HI	ΣΗΙ	HQ _{ing}	HQ _{inh}	HQ _{derm}	HI	ΣΗΙ	CR
		(children)	(children)	(children)			(adult)	(adult)	(adult)			
Households in	Cd	6.48E-03	1.81E-07	1.82E-03	8.30E-03	1.4	3.24E-03	4.77E-07	1.29E-03	4.54E-03	0.2	4.14E-09
Industrial Area	Ni	5.44E-03	1.48E-07	5.64E-05	5.50E-03		2.72E-03	3.88E-07	4.02E-05	2.76E-03		9.28E-09
	Co	1.10E-03	1.08E-04	3.85E-06	1.21E-03		5.50E-04	2.84E-04	2.74E-06	8.37E-04		2.19E-08
	Pb	3.65E-02	1.01E-06	6.81E-04	3.72E-02		1.83E-02	2.67E-06	4.85E-04	1.87E-02		5.44E-10
	Cr	2.87E-02	1.43E-04	5.36E-03	3.42E-02		1.43E-02	3.77E-04	3.82E-03	1.85E-02		6.11E-07
	Mn	5.54E-02	1.51E-02	1.18E-02	8.23E-02		6.92E-03	9.96E-03	2.10E-03	1.90E-02		
	Fe	7.30E-01	8.74E-05	2.79E-01	1.01E+00		9.12E-02	5.75E-05	4.96E-02	1.41E-01		
	Zn	2.51E-03	7.03E-08	3.52E-05	2.55E-03		3.14E-04	4.62E-08	6.27E-06	3.21E-04		
	Cu	2.97E-02	8.27E-07	2.78E-04	3.00E-02		3.72E-03	5.44E-07	4.94E-05	3.77E-03		
	Al	2.09E-01		5.84E-03	2.14E-01		2.61E-02		1.04E-03	2.71E-02		
Households in	Cd	1.28E-02	3.58E-07	3.59E-03	1.64E-02	2.1	6.41E-03	9.42E-07	2.56E-03	8.97E-03	0.3	8.19E-09
Commercial Area	Ni	4.36E-03	1.18E-07	4.52E-05	4.41E-03		2.18E-03	3.11E-07	3.22E-05	2.21E-03		7.44E-09
	Co	1.19E-03	1.17E-04	4.18E-06	1.31E-03		5.97E-04	3.08E-04	2.98E-06	9.07E-04		2.37E-08
	Pb	6.62E-02	1.84E-06	1.24E-03	6.74E-02		3.31E-02	4.84E-06	8.80E-04	3.40E-02		9.87E-10
	Cr	2.30E-02	1.15E-04	4.29E-03	2.74E-02		1.15E-02	3.02E-04	3.06E-03	1.48E-02		4.90E-07
	Mn	7.97E-02	2.18E-02	1.70E-02	1.18E-01		9.96E-03	1.43E-02	3.02E-03	2.73E-02		
	Fe	9.77E-01	1.17E-04	3.73E-01	1.35E+00		1.22E-01	7.70E-05	6.64E-02	1.89E-01		
	Zn	3.05E-03	8.53E-08	4.28E-05	3.10E-03		3.82E-04	5.61E-08	7.62E-06	3.89E-04		
	Cu	6.37E-02	1.77E-06	5.94E-04	6.43E-02		7.96E-03	1.16E-06	1.06E-04	8.07E-03		
	Al	4.79E-01		1.34E-02	4.92E-01		5.98E-02		2.39E-03	6.22E-02		
Households in	Cd	2.36E-03	6.59E-08	6.60E-04	3.02E-03	1.5	1.18E-03	1.73E-07	4.70E-04	1.65E-03	0.2	1.51E-09
Residential Area	Ni	3.02E-03	8.19E-08	3.13E-05	3.05E-03		1.51E-03	2.16E-07	2.23E-05	1.53E-03		5.15E-09
	Co	9.38E-04	9.19E-05	3.28E-06	1.03E-03		4.69E-04	2.42E-04	2.34E-06	7.13E-04		1.87E-08
	Pb	2.01E-02	5.57E-07	3.74E-04	2.04E-02		1.00E-02	1.47E-06	2.67E-04	1.03E-02		2.99E-10
	Cr	1.65E-02	8.25E-05	3.09E-03	1.97E-02		8.27E-03	2.17E-04	2.20E-03	1.07E-02		3.52E-07
	Mn	5.39E-02	1.47E-02	1.15E-02	8.01E-02		6.74E-03	9.70E-03	2.05E-03	1.85E-02		
	Fe	7.50E-01	8.98E-05	2.86E-01	1.04E+00		9.37E-02	5.91E-05	5.10E-02	1.45E-01		
	Zn	1.77E-03	4.95E-08	2.48E-05	1.80E-03		2.21E-04	3.26E-08	4.42E-06	2.26E-04		
	Cu	3.81E-02	1.06E-06	3.56E-04	3.85E-02		4.77E-03	6.98E-07	6.34E-05	4.83E-03		
	Al	2.86E-01		8.00E-03	2.94E-01		3.57E-02		1.43E-03	3.72E-02		

(d) Households of Tezpur

	F	Elements	HQ _{ing} (children)	HQ _{inh} (children)	HQ _{derm} (children)	HI	ΣΗΙ	HQ _{ing} (adult)	HQ _{inh} (adult)	HQ _{derm} (adult)	HI	ΣΗΙ	CR
Households	in	Cd	7.45E-03	2.08E-07	2.09E-03	9.54E-03	1.7	3.72E-03	5.48E-07	1.49E-03	5.21E-03	0.3	4.76E-09
Residential		Ni	2.56E-03	6.95E-08	2.66E-05	2.59E-03		1.28E-03	1.83E-07	1.89E-05	1.30E-03		4.36E-09
Area (Urban))	Co	1.11E-03	1.09E-04	3.89E-06	1.22E-03		5.55E-04	2.87E-04	2.77E-06	8.45E-04		2.21E-08
		Pb	3.64E-02	1.01E-06	6.80E-04	3.71E-02		1.82E-02	2.66E-06	4.84E-04	1.87E-02		5.43E-10
		Cr	1.95E-02	9.73E-05	3.64E-03	2.32E-02		9.75E-03	2.56E-04	2.59E-03	1.26E-02		4.16E-07
		Mn	6.10E-02	1.67E-02	1.30E-02	9.07E-02		7.63E-03	1.10E-02	2.32E-03	2.09E-02		
		Fe	7.97E-01	9.54E-05	3.04E-01	1.10E+00		9.96E-02	6.28E-05	5.42E-02	1.54E-01		
		Zn	2.34E-03	6.53E-08	3.27E-05	2.37E-03		2.92E-04	4.30E-08	5.83E-06	2.98E-04		
		Cu	1.90E-02	5.28E-07	1.77E-04	1.92E-02		2.37E-03	3.47E-07	3.16E-05	2.41E-03		
		Al	4.36E-01		1.22E-02	4.48E-01		5.45E-02		2.18E-03	5.67E-02		
Households	in	Cd	5.65E-03	1.58E-07	1.58E-03	7.23E-03	2.5	2.83E-03	4.16E-07	1.13E-03	3.95E-03	0.6	3.61E-09
Commercial		Ni	7.85E-02	2.13E-06	8.14E-04	7.93E-02		3.93E-02	5.60E-06	5.80E-04	3.98E-02		1.34E-07
Area		Co	2.77E-03	2.72E-04	9.69E-06	3.05E-03		1.38E-03	7.15E-04	6.91E-06	2.11E-03		5.51E-08
		Pb	2.98E-02	8.29E-07	5.57E-04	3.04E-02		1.49E-02	2.18E-06	3.97E-04	1.53E-02		4.45E-10
		Cr	5.27E-01	2.63E-03	9.84E-02	6.28E-01		2.64E-01	6.92E-03	7.01E-02	3.41E-01		1.12E-05
		Mn	6.45E-02	1.76E-02	1.37E-02	9.58E-02		8.06E-03	1.16E-02	2.45E-03	2.21E-02		
		Fe	1.01E+00	1.21E-04	3.85E-01	1.39E+00		1.26E-01	7.95E-05	6.86E-02	1.95E-01		
		Zn	4.43E-03	1.24E-07	6.21E-05	4.50E-03		5.54E-04	8.15E-08	1.11E-05	5.65E-04		
		Cu	5.54E-02	1.54E-06	5.17E-04	5.59E-02		6.93E-03	1.01E-06	9.22E-05	7.02E-03		
		Al	1.49E-01		4.18E-03	1.54E-01		1.87E-02		7.45E-04	1.94E-02	_	
Households	in	Cd	5.53E-03	1.55E-07	1.55E-03	7.08E-03	1.3	2.77E-03	4.07E-07	1.10E-03	3.87E-03	0.2	3.54E-09
Residential		Ni	8.19E-03	2.22E-07	8.49E-05	8.27E-03		4.09E-03	5.85E-07	6.05E-05	4.16E-03		1.40E-08
Area (Rural)		Co	5.39E-04	5.29E-05	1.89E-06	5.94E-04		2.70E-04	1.39E-04	1.34E-06	4.10E-04		1.07E-08
		Pb	3.28E-02	9.11E-07	6.12E-04	3.34E-02		1.64E-02	2.40E-06	4.36E-04	1.68E-02		4.89E-10
		Cr	2.10E-02	1.05E-04	3.92E-03	2.51E-02		1.05E-02	2.76E-04	2.80E-03	1.36E-02		4.48E-07
		Mn	3.83E-02	1.05E-02	8.15E-03	5.69E-02		4.78E-03	6.89E-03	1.45E-03	1.31E-02		
		Fe	6.68E-01	8.00E-05	2.55E-01	9.24E-01		8.35E-02	5.26E-05	4.55E-02	1.29E-01		
		Zn	8.03E-03	2.24E-07	1.12E-04	8.14E-03		1.00E-03	1.48E-07	2.00E-05	1.02E-03		
		Cu	2.61E-02	7.25E-07	2.43E-04	2.63E-02		3.26E-03	4.77E-07	4.33E-05	3.30E-03		
		Al	1.94E-01		5.44E-03	2.00E-01		2.43E-02		9.69E-04	2.52E-02		

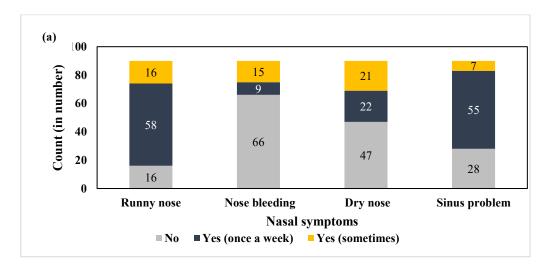
4.7 Sick Building Syndrome

This study is an attempt to assess the prevalence of Sick Building Syndrome (SBS) and its associated risk factors in 550 households of Guwahati, aiming to provide insights into indoor environmental quality (IEQ) (which encompasses not only indoor air quality (IAQ) but also factors such as access to daylight, thermal and acoustic comfort, and lighting conditions) and its impact on residents' health.

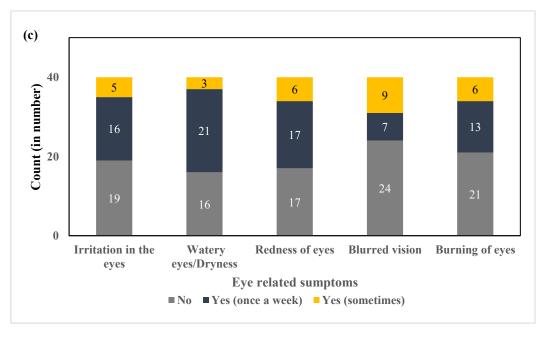
4.7.1 Personal Details, Neighborhood, Description of Indoor Activities and Perception of IAQ by Occupants

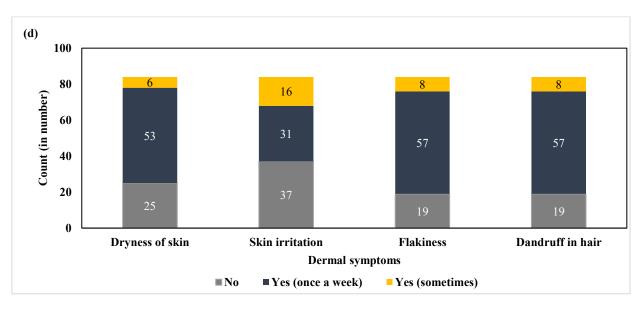
The demographic characteristics of the participants, along with information on building and neighborhood features, lifestyle factors including indoor activities, and perceptions of indoor air quality, are summarized in Table 4.24. Among the respondents, 44.4% were men and 55.6% were women. The age distribution was as follows: 20-29 years (53.6%), 30-39 years (18.5%), 40-49 years (14.7%), 50–59 years (6.2%), and 60–69 years (6.9%). A medical history was reported by 37.5% of participants, with allergic rhinitis being the most common condition (12.9%). Children were being raised in 31.6% of the households. Regarding the age of residential buildings, 6.4% were <1 year old, 6.9% were 1-<3 years, 10.2% were 3-<5 years, 10% were 5-<10 years, 31.5% were 10-<20 years, and 35.1% were over 20 years old. Within 50 meters of most residences, neighboring structures included other houses (74.9%) and stores (26.9%). A total of 31.3% of participants lived in apartments, while 68.7% resided in detached houses. Regarding flooring materials, 54.2% of homes had tile or marble flooring, followed by concrete and other materials. A daily cleaning frequency was reported by 82.5% of participants, while 17.5% reported cleaning less frequently. Indoor smoking was permitted in 22.7% of households. Spray products were used in 59.1% of homes, and incense burning was reported by 84.6% of households. Mosquito repellents (coils or vaporizers) were used in 75.6% of homes. Pets were kept indoors in 32.5% of households. 72.5% of the homes had walls in good condition, showing no signs of cracks or peeling paint. However, mould growth on walls was observed in 14% of the households. 77.8% of occupants perceived that air pollution is present indoors, while 7.3% of households experienced poor ventilation.

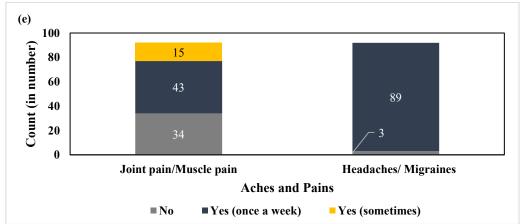
4.7.2 Basic Details about Occurrence of SBS (Nasal Problem, Throat Problem, Eye Related Problem, Aches and Pain, Dermal Problem and General Complaints)


The symptoms experienced by the occupants and their frequency of occurrence (once a week or sometimes) are presented in Fig. 4. 25 (a-f). The onset of any one: nasal symptoms (sinus/runny nose/ nose bleeding/dry nose) were reported by 90 participants (16.36%), throat symptoms (sore


throat/dry cough) by 37 (6.72%), eye problems (redness/burning/watery/dryness/irritation of eyes/blurred vision) by 40 participants (7.27%) dermal problems (skin irritation, dryness, flakiness and dandruff) by 84 (15.27%), aches and pains (Headaches/migraines/joint pains/muscle pains) by 92 (16.72%) and general complaints (drowsiness/dizziness/faintness/breathing problem/digestion problem) by 119 (21.6%) participants. Among these, 64.4% experienced a runny nose once a week, while 61.1% reported sinus problems. Among respondents with throat issues, 54.05% experienced a dry cough and 81.08% reported a sore throat. Eye-related symptoms were also common, with eye irritation (40%), watery or dry eyes (52.5%), redness (42.5%), blurred vision (17.5%), and a burning sensation (32.5%) reported to occour once a week. Among those reported dermal symptoms, flakiness and dryness were the most frequently experienced, occurring at least once a week. Headaches and migraines were highly prevalent, affecting 96.7% of those complaining of aches and pains. Similarly, 68.9% of those with general complaints reported digestive problems.


Table 4.24 The demographic characteristics of the participants, neighborhood features, lifestyle factors, indoor activities, and perceptions of indoor air quality among occupants


Personal Details			Neighbourhood/Housing		
Gender	N	%	Age of residential building (years)	N	%
Male	244	44.4	<1	35	6.4
Female	306	55.6	1 to <3	38	6.9
Age (years)	N	%	3 to <5	56	10.2
20-29	295	53.6	5 to <10	55	10
30-39	102	18.5	10 to <20	173	31.5
40-49	81	14.7	>20	193	35.1
50-59	34	6.2	Residence history (years)	N	%
60 and above	38	6.9	<1	85	15.5
Medical History	N	%	1 to <3	78	14.2
None	344	62.5	3 to <5	67	12.2
Allergic conjunctivitis	14	2.5	5 to <10	50	9.1
Allergic rhinitis	71	12.9	10 to <20	127	23.1
Mental illness	35	6.4	Neighbourhood environments within 50 m	N	%
Asthma	17	3.1	Housing	412	74.9
Atopic dermatitis	19	3.5	Strores	148	26.9
Food allergy	14	2.5	Factory	19	3.5
More than one	36	6.5	Mainroad	93	16.9
Raising Children at home	N	%	Playground	28	5.1
Yes	174	31.6	Type of House	N	%
No	326	59.3	Apartment/Flats	172	31.3
			Detached house	378	68.7


Structure of House	N	%	Cracks on Floor	N	%
Assam type (Ikra house)	120	21.8	Yes	96	17.5
Reinforced Cement Concrete house (RCC house)	430	78.2	No	454	82.5
Flooring material			Count of Condition of wall painting	N	%
Others	15	2.7	Average	132	24
Concrete	237	43.1	Bad	19	3.5
Tiles/Marble	298	54.2	Good	399	72.5
Ceiling material	N	%	Moulds on walls	N	%
Asbestos	90	16.4	No	473	86
Concrete	429	78	Yes	77	14
Other	31	5.6	Visible dust in the house	N	%
C. Description of Indoor activities			No	181	32.9
Cleaning frequency	N	%	Yes	369	67.1
Everyday	454	82.5	D. Perception of Indoor air		
Not Everyday	96	17.5	Indoor air pollution present	N	%
Indoor cigarette smoking	N	%	Yes	428	77.8
Yes	125	22.7	No	122	22.2
No	425	77.3	Ventilation inside the household	N	%
Spray products used	N	%	Well Ventilated	510	92.7
Yes	325	59.1	Poorly Ventilated	40	7.3
No	225	40.9	Pollution comes from outside	N	%
Incense burning	N	%	Yes	398	72.4
Yes	475	86.4	No	152	27.6
No	75	13.6	If yes, it remains inside for a longer period of time	N	%
Mosquito repelling	N	%	Yes	106	19.3
Yes	416	75.6	No	292	53.1
No	134	24.4			
Pet present	N	%			
Yes	179	32.5			
No	371	67.5			
Cooking fuel	N	%			
Non-LPG	7	1.3			
LPG	543	98.7			

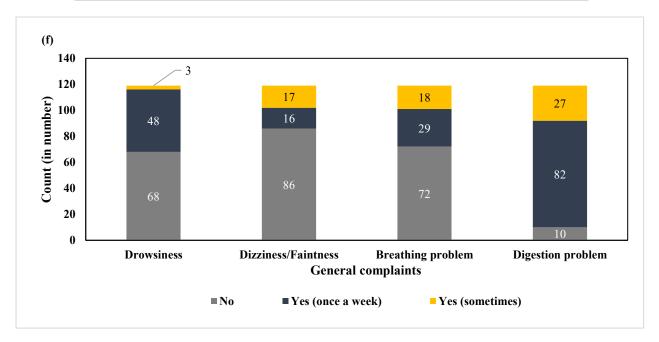


Fig. 4.25 Frequency and occurrence of SBS symptoms a) Nasal b) Throat c) Eye d) Dermal d) Aches and Pain f) General complaints

Binomial logistic regression analysis for SBS (nasal problems, throat problems, dermatology problems, eye related problems, general problems and aches and pain) is shown in Table 4.25. According to previous studies, it has been reported that multiple SBS are more common in women [156, 157]. In the present study as well lower odds were shown for throat, dermatological, and general symptoms among male participants compared to females, though these differences were not statistically significant. Notably, for the present study male participants showed significantly higher odds of experiencing nasal problems compared to females (AOR = 1.77; 95% CI: 1.03–3.05).

Residents in buildings aged 5–<10 years showed elevated odds of nasal symptoms (AOR = 2.97; 95% CI: 0.55–15.99), although not statistically significant. General health symptoms demonstrated a trend of decreasing odds with older buildings, with marginal significance observed for structures aged over 20 years (p = 0.07). Meanwhile, the high and unstable odds for eye and throat problems suggest potential data irregularities or sample limitations.

Several studies have identified age as a relevant factor in the prevalence of SBS, with individuals over 30 years reported to be more vulnerable to its symptoms [158, 159]. The present findings support this, revealing a clear age gradient in risk: participants aged 40–49 (AOR = 2.77, 95% CI: 1.37–5.58), 50–59 (AOR = 8.97, 95% CI: 3.60–22.33), and 60 and above (AOR = 5.77, 95% CI: 2.43–13.68) exhibited significantly elevated odds of general complaints linked to SBS, compared to those aged 20–29.

Smoking was associated with elevated adjusted odds across almost all symptom, with the strongest and statistically significant association observed for aches and pain (AOR = 1.78, 95% CI: 1.00–3.16). Previous evidence also implicates both smoking history and exposure to secondhand smoke as important risk factors in the development of SBS-related symptoms [156, 160].

Mould/dampness in the wall is yet another factor that played a major role in SBS symptoms. Individuals exposed to mould reported higher odds of aches and pains (AOR = 2.27, 95% CI: 1.18–4.37), suggesting a borderline strong association at p=0.06. Lu et al. [161] found that the presence of mould or dampness on floors and ceilings has been linked to symptoms such as fatigue and headaches [161]. Moreover, high levels of mould exposure may trigger cold-like symptoms, skin rashes, and worsen asthma conditions [162]. Cracks on the floor were linked to increased odds across multiple symptoms, with a statistically significant association observed for dermatological symptoms (AOR = 2.02; 95% CI: 1.05–3.85; p = 0.03) and a marginally significant for nasal symptoms (p = 0.06). Supporting this, Igwe et al. [163] identified active bacterial and fungal growth in wall cracks and on wooden surfaces, indicating a strong link between microbial contamination

and the onset of SBS. In addition, the presence of visible dust has been significantly associated with various SBS-related symptoms such as drowsiness, dizziness, and respiratory and digestive issues (AOR = 2.03; 95% CI: 1.08-3.81; p = 0.03). Similarly, Yussuf et al. [157] reported that the prevalence of SBS was five times higher in households with significant dust accumulation.

Regarding medical history, individuals with previous health conditions showed elevated odds across four categories (nasal, throat, aches and pain, general complaints) of SBS symptoms. Notably, those with a history of allergic rhinitis or mental illness demonstrated a greater susceptibility to developing SBS. It suggests that pre-existing health conditions may amplify sensitivity to SBS. Suzuki et al. [156] reported similar findings in Japan.

The findings from the binomial logistic regression analysis underscore the interrelated nature of factors contributing to SBS, wherein demographic characteristics, building age and condition, environmental exposures such as dust and mould, lifestyle factors like smoking, and underlying medical histories collectively influence the risk and manifestation of SBS-related symptoms. These insights emphasize the need for integrated indoor environmental management strategies and targeted interventions for vulnerable populations.

Table 4.25 Binomial logistic regression analysis for SBS, nasal problems, throat problems, dermatology problems, eye related problems, general problems and aches and pain

Factors	Nasal problem (AOR, 95% Cl)	Throat Problem (AOR, 95% Cl)	Dermatology (AOR 95% Cl)	Eye Problem (AOR, 95% Cl)	General Problem (AOR, 95% Cl)	Aches and Pain (AOR, 95% Cl)
Gender	(11010, 7070 01)	(11016, 7574 01)	(Holt 9570 Cl)	(1010,7570 01)	(1010, 3070 01)	(11010, 7370 01)
Female	1	1	1	1	1	1
Male	1.77 (1.03, 3.05)	0.97 (0.43, 2.19)	0.70 (0.41, 1.2)	1.51(0.82, 2.78)	0.91(0.54, 1.53)	1.03 (0.61, 1.72)
Residential Building Age	(1.00, 0.00)	3.57 (S.1.5, <u>2</u> .1.5)	3.70 (3.11, 11 <u>2</u>)	1101(0102, 2170)	331(001, 100)	1100 (0.01, 11, 2)
<1	1	1	1	1	1	1
1-<3	1.26 (1.19,8.27)	AOR >10,000 (non-significant p value)	4.57 (1.02, 20.48)	AOR >10,000 (non-significant p value)	0.78 (0.21, 2.82)	0.88 (0.23, 3.40)
3-<5	3.67 (6.69,19.62)	significant p value)	1.91 (0.43, 8.42)	significant p value)	0.78 (0.21, 2.82)	0.72 (0.2, 2.54)
5-<10	2.97 (5.55, 15.99)	-	2.13 (0.50, 9.18)	-	0.35 (0.16, 1.79)	0.72 (0.2, 2.34)
10-<20	1.81 (3.37,8.91)	-		-		
>20	3.23 (6.66,15.92)	-	1.44 (0.37, 5.59)	-	0.38 (0.13, 1.12)	0.60 (0.20, 1.77)
		-	1.44 (0.37, 5.73)	-	0.35 (0.11, 1.07)	0.68 (0.22, 2.05)
Floor type		1	1	1	1	1
Marbles/Title	1.28 (0.73,2.26)	1 05 (0.45, 0.45)	1	1	1	1
Concrete	2.76 (0.50,15.16)	1.05 (0.45, 2.45)	0.75 (0.42, 1.33)	0.95 (0.5, 1.8)	0.82 (0.48, 1.4)	0.75 (0.43, 1.31)
Others	2.70 (0.30,13.10)	2.32(0.15, 35.45)	2.86 (0.56, 14.67)	0.89 (0.12, 6.46)	1.06 (0.18, 6.28)	1.5 (0.25, 9.15)
Ceiling Type						
Concrete	1 1.08 (0.47,2.49)	1	1	1	1	1
Asbestos	` ' '	1.14 (0.32, 4.03)	0.85 (0.36, 1.98)	0.34 (0.11, 1.02)	1.3 (0.59, 2.87)	0.85 (0.37, 1.94)
Others	0.34 (0.07,1.61)	0.63(0.10, 3.92)	0.34 (0.08, 1.37)	0.94 (0.24, 3.65)	0.3(0.06, 1.34)	0.39 (0.09, 1.69)
Type of House						
Detached House	1	1	1	1	1	1
Apartments	0.86(0.44,1.67)	1.57(0.59, 4.18)	0.76 (0.39, 1.48)	1.36 (0.64, 2.88)	0.49 (0.25, 0.93)	0.92 (0.49, 1.74)
Structure of House						
Assam Type	1	1	1	1	1	1
RCC House	1.02 (0.45,2.32)	0.67(0.19, 2.29)	0.54 (0.24, 1.21)	0.51 (0.2, 1.28)	1.05 (0.48, 2.29)	0.59 (0.26, 1.31)

Factors	Nasal problen (AOR, 95% Cl)	n Throat Problem (AOR, 95% Cl)	Dermatology Problem (AOR 95% Cl)	Eye Problem (AOR, 95% Cl)	General Problem (AOR, 95%Cl)	Aches and Pain (AOR, 95% Cl)
Age						
20-29	1	1	1	1	1	1
30-39	1.16 (0.58,2.30)	0.91 (0.33, 2.5)	0.72 (0.33, 1.54)	1.04 (0.47, 2.32)	1.26 (0.62, 2.54)	0.84 (0.40, 1.75)
40-49	0.94 (0.42,2.10)	1.31 (0.45, 3.81)	0.88 (0.39, 1.98)	1.18 (0.51, 2.75)	2.77 (1.37, 5.58)	1.62 (0.78, 3.39)
50.50	1.74 (0.64,4.74)	Non-significant p	0.17 (0.04.5 (5)	0.06 (0.20, 2.20)	0.07 (2.60, 22.22)	1.05 (0.70, 4.70)
50-59	1.97 (0.75,5.14)	value	2.17 (0.84, 5.65)	0.96 (0.28, 3.29)	8.97 (3.60, 22.33)	1.85 (0.72, 4.73)
60 and above Frequency of	,	0.56 (0.10, 3.16)	2.08 (0.79, 5.50)	1.03 (0.29, 3.61)	5.77 (2.43, 13.68)	2.18 (0.87, 5.46)
cleaning	1	1	1	1	1	1
Not Everyday						
Everyday	1.25 (0.60,2.61)	1.36 (0.45, 4.14)	0.43 (0.22, 0.83)	1.40 (0.59, 3.33)	0.86(0.44, 1.68)	1.01(0.5, 2.02)
Smoking		, ,		, ,	, ,	, ,
Non smoking	1	1	1	1	1	1
Smoking	1.06 (0.58,1.95)	1.45 (0.59, 3.60)	1.10 (0.59, 2.03)	0.77 (0.37, 1.60)	1.52 (0.85, 2.70)	1.78 (1, 3.16)
Incense burning		(****,*****)	(,)	(,)	(,)	(-,)
Not Burning	1	1	1	1	1	1
Burning	0.83 (0.36,1.91)	2.98 (0.60, 14.77)	1.01 (0.45, 2.23)	0.56 (0.23, 1.33)	0.70 (0.31, 1.55)	1.12 (0.5, 2.56)
Mosquito repellent		=1, 0 (0.00, - 1.1.7)		(0.20)	.,, (,)	(,)
Not burned	1	1	1	1	1	1
Burned	1.37 (0.71,2.66)	0.61 (0.25, 1.53)	1.33(0.69, 2.56)	1.21 (0.59, 2.49)	0.97(0.53, 1.79)	1.11 (0.59, 2.08)
Pets		(,)	(,)	-1 (*127, -117)	,(,	(,)
No pets present	1	1	1	1	1	1
Pets present	0.89 (0.51,1.54)	0.48(0.19, 1.22)	0.99 (0.57, 1.72)	1.59(0.86, 2.96)	1.32 (0.80, 2.2)	0.76 (0.44, 1.31)
Cooking fuel		0.10(0.15, 1.22)	0.55 (0.67, 1.72)	1105 (0100, 2150)	1102 (0100, 212)	01,0 (0111, 1101)
Not LPG	1	1	1	1	1	1
LPG	0.38 (0.05,2.67)	0.31 (0.02, 4.86)	1.00(0.13, 7.36)	1.05 (0.08, 13.87)	0.37 (0.07, 1.96)	0.19 (0.04, 1.02)
Spray products		,,	(0.10, /.00)	(0.00, 10.07)	(0.07, 1.20)	(0.0., 2.02)
Not Used	1	1	1	1	1	1
Used	0.84 (0.50,1.44)	1.09 (0.49, 2.42)	0.90 (0.52, 1.54)	0.69 (0.37, 1.29)	0.97 (0.59, 1.61)	1.17 (0.69, 1.97)

Factors	Nasal problem (AOR, 95% Cl)	Throat Problem (AOR, 95% Cl)	Dermatology Problem (AOR 95% Cl)	Eye Problem (AOR, 95% Cl)	General Problem (AOR, 95%Cl)	Aches and Pain (AOR, 95% Cl)
Cracks On Floor						
Not Present	1	1	1	1	1	1
Present	1.56 (0.82, 2.97)	1.80 (0.70, 4.59)	2.02 (1.05, 3.85)	1.43 (0.68, 3.02)	1.85 (0.98, 3.47)	1.16 (0.60, 2.25)
Condition of wall						
Good	1	1	1	1	1	1
Average	0.12 (0.60,2.06)	1.31 (0.54, 3.19)	1.00 (0.53, 1.87)	1.71 (0.86, 3.39)	0.97 (0.53, 1.78)	1.1 (0.6, 2.04)
Bad	0.49 (0.12,1.94)	1.47 (0.3, 7.20)	1.08 (0.30, 3.9)	0.47 (0.09, 2.6)	0.80 (0.22, 2.89)	0.21 (0.04, 1.12)
Moulds present			, ,		, ,	
Not Present	1	1	1	1	1	1
Present	2.27 (1.18,4.37)	2.15(0.82, 5.68)	1.66 (0.84, 3.28)	1.75 (0.84, 3.67)	1.54 (0.81, 2.94)	1.86 (0.97, 3.55)
Visible Dust Present	t					
Not Present	1	1	1	1	1	1
Present	1.57 (0.84,2.92)	0.57 (0.23, 1.37)	0.87 (0.48, 1.57)	1.56 (0.77, 3.16)	2.03 (1.08, 3.81)	0.92 (0.52, 1.66)
Medical History						
None	1	1	1	1	1	1
Allergic conjunctivitis	0.78 (0.16,3.90)	2.56 (0.26, 25.61)	2.55 (0.72, 8.94)	1.46 (0.34, 6.37)	2.45 (0.71, 8.44)	1.76 (0.48, 6.36)
Allergic rhinitis	3.10 (1.61,5.97)	5.73 (2.29, 14.33)	0.69 (0.31, 1.57)	0.95 (0.39, 2.31)	2.04 (1.03, 4.04)	1.21 (0.59, 2.49)
Mental illness	0.79 (0.25,2.55)	0.41 (0.05, 3.51)	1.38 (0.51, 3.72)	1.84 (0.66, 5.18)	2.13 (0.82, 5.50)	3.05 (1.32, 7.08)
Asthma	8.13 (2.56,25.76)	5.45(1.13, 26.29)	2.74 (0.84, 8.94)	2.42 (0.66, 8.85)	2.10 (0.59, 7.54)	0.87 (0.18, 4.16)
Atopic dermatitis	1.10 (0.27,4.50)	1.21(0.13, 11.09)	1.27 (0.32, 5.09)	0.43 (0.05, 3.59)	0.83 (0.19, 3.58)	0.36 (0.04, 2.97)
Atopic definantis	0.58 (0.07,5.03)	0(0, 0)	1.27 (0.32, 3.07)	>10000 (very high p	0.03 (0.17, 3.30)	0.30 (0.04, 2.77)
Food allergy		, ,	1.09 (0.22, 5.46)	value)	2.29 (0.52, 10.03)	1.09 (0.21, 5.49)
Any one	2.53 (1.00,6.43)	3.28(0.79, 13.57)	1.79 (0.70, 4.59)	1.07 (0.31, 3.70)	4.18 (1.73, 10.11)	3.05 (1.26, 7.37)

4.8 References

- [1] Sugumar, P., Krishnan, T., Abhinav, B. L. V. V. D. S. S., Bhavana, P., Kavya, B. S., Yeshwanth, V., and Krishna, K. M. Investigation of Indoor Air Quality and Thermal Comfort of a College Building in Hyderabad, India. In *IOP Conference Series: Earth and Environmental Science*, volume 1074(1), pages 012025. IOP Publishing, 2022. DOI: https://doi.org/10.1088/1755-1315/1074/1/012025
- [2] Asif, A., Zeeshan, M., and Jahanzaib, M. Indoor temperature, relative humidity and CO₂ levels assessment in academic buildings with different heating, ventilation and airconditioning systems. *Building and Environment*, 133: 83-90, 2018. DOI:https://doi.org/10.1016/j.buildenv.2018.01.042
- [3] Mohd Isa, K. N., Jalaludin, J., Mohd Elias, S., Mohamed, N., Hashim, J. H., and Hashim, Z. Evaluation of the relationship between fractional exhaled nitric oxide (FeNO) with indoor PM₁₀, PM_{2.5} and NO₂ in suburban and urban schools. International Journal of *Environmental Research and Public Health*, 19(8): 4580, 2022. DOI: https://doi.org/10.3390/ijerph19084580
- [4] Nunes, R. A. O., Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., and Sousa, S. I. V. Particulate matter in rural and urban nursery schools in Portugal. *Environmental Pollution*, 202: 7-16, 2015. DOI: https://doi.org/10.1016/j.envpol.2015.03.009
- [5] Yoon, C., Lee, K., and Park, D. Indoor air quality differences between urban and rural preschools in Korea. *Environmental Science and Pollution Research*, 18: 333-345, 2011.DOI: https://doi.org/10.1007/s11356-010-0377-0
- [6] Mainka, A., Brągoszewska, E., Kozielska, B., Pastuszka, J. S., and Zajusz-Zubek, E. Indoor air quality in urban nursery schools in Gliwice, Poland: Analysis of the case study. Atmospheric Pollution Research, 6(6): 1098-1104, 2015. DOI: https://doi.org/10.1016/j.apr.2015.06.007
- [7] Abdel-Salam, M. M. Investigation of PM_{2.5} and carbon dioxide levels in urban homes. *Journal of the Air and Waste Management Association*, 65(8): 930-936, 2015. DOI: https://doi.org/10.1080/10962247.2015.1040138
- [8] Dede, G., and Dede, C. Determination of indoor air quality in university student canteens. *Sakarya University Journal of Science*, 25(6): 1322-1331, 2021. DOI: https://doi.org/10.16984/saufenbilder.669802
- [9] Sahu, V., and Gurjar, B. R. Spatio-temporal variations of indoor air quality in a university library. *International Journal of Environmental Health Research*, 31(5): 475-490, 2021. DOI: https://doi.org/10.1080/09603123.2019.1668916

- [10] Alves, C., Nunes, T., Silva, J., and Duarte, M. Comfort parameters and particulate matter (PM₁₀ and PM_{2.5}) in school classrooms and outdoor air. Aerosol and Air Quality Research, 13(5): 1521-1535, 2013. DOI: https://doi.org/10.4209/aaqr.2012.11.0321
- [11] Du, B., Gao, J., Chen, J., Stevanovic, S., Ristovski, Z., Wang, L., and Wang, L. Particle exposure level and potential health risks of domestic Chinese cooking. *Building and Environment*, 123: 564-574, 2017. DOI: https://doi.org/10.1016/j.buildenv.2017.07.031
- [12] Liang, X., Li, Z., Zhang, H., and Hong, X. Study of the characteristics and comprehensive fuzzy assessment of indoor air chemical contamination in public buildings. *Frontiers in public health*, 9: 579299, 2021. DOI: https://doi.org/10.3389/fpubh.2021.579299
- [13] Li, Z., Wen, Q., and Zhang, R. Sources, health effects and control strategies of indoor fine particulate matter (PM_{2.5}): A review. *Science of the Total Environment*, 586: 610-622, 2017. DOI: https://doi.org/10.1016/j.scitotenv.2017.02.029
- [14] Sansuddin, N., and Nordin, S. M. Assessment of PM₁₀ and PM_{2.5} Concentrations at Different Floor Levels of USM Health Campus's Library. Journal of Energy and Safety Technology (JEST), 5(1): 63-72, 2022. DOI: https://doi.org/10.11113/jest.v5n1.105
- [15] Nath, A., Saikia, D., Nonglait, M. L., and Deka, P. Assessment of indoor air quality and characterization of indoor settled dust in schools of Tezpur, Northeast India. *Air Quality, Atmosphere and Health*, 18(3): 793-814, 2025. DOI: https://doi.org/10.1007/s11869-024-01679-z
- [16] Toyinbo, O., Phipatanakul, W., Shaughnessy, R., and Haverinen-Shaughnessy, U. Building and indoor environmental quality assessment of Nigerian primary schools: A pilot study. Indoor air, 29(3):510-520, 2019. DOI: https://doi.org/10.1111/ina.12547
- [17] ASHRAE standard 62.1. *Ventilation for Acceptable Indoor Air Quality*. Retrieved on 26 Jan. 2025 from https://www.lorisweb.com/LEEDv4/graphics/ASHRAE%20Standards/ASHRAE-D-86152%2062.1-2010.pdf, 2010.
- [18] Building Bulletin 101. Ventilation of School Buildings. Regulations Standards Design Guidance ISBN 011-2711642. Retrieved on 20 Jan 2025 from https://science.cleapss.org.uk/resource/building-bulletin-101.pdf], 2006
- [19] IAQMG, A Guide on Indoor Air Quality Certification Scheme for Offices and Public Places. Retrieved on 27 Nov 2024 from https://www.iaq.gov.hk/wp-content/uploads/2021/04/new-iaq-guide eng.pdf], 2003.

- [20] Razali, N. Y. Y., Latif, M. T., Dominick, D., Mohamad, N., Sulaiman, F. R., and Srithawirat, T. Concentration of particulate matter, CO and CO₂ in selected schools in Malaysia. *Building and environment*, 87: 108-116, 2015.
- [21] Andamon, M. M., Rajagopalan, P., and Woo, J. Evaluation of ventilation in Australian school classrooms using long-term indoor CO₂ concentration measurements. *Building and Environment*, 237: 110313. DOI:https://doi.org/10.1016/j.buildenv.2023.110313, 2023.
- [22] Schibuola, L., and Tambani, C. Indoor environmental quality classification of school environments by monitoring PM and CO₂ concentration levels. *Atmospheric Pollution Research*, 11(2): 332-342. DOI:https://doi.org/10.1016/j.apr.2019.11.006, 2020
- [23] Cetin, M., and Sevik, H. Indoor quality analysis of CO₂ for Kastamonu University. *In Conference of the International Journal of Arts and Sciences*, volume 9(3), page 71, 2016.
- [24] Sahu, V., and Gurjar, B. R. Spatial and seasonal variation of air quality in different microenvironments of a technical university in India. *Building and Environment*, 185: 107310. DOI: https://doi.org/10.1016/j.buildenv.2020.107310,2020.
- [25] Di Gilio, A., Palmisani, J., Pulimeno, M., Cerino, F., Cacace, M., Miani, A., and de Gennaro, G. CO₂ concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environmental research, 202: 111560, 2021. DOI: https://doi.org/10.1016/j.envres.2021.111560
- [26] Shukla, A., Indaliya, R., and Tandel, B. N. Effect of Indoor Air Quality on Respiratory Health of Children: An MPPD Model Approach. *Aerosol Science and Engineering*, 1-15, 2024. DOI: https://doi.org/10.1007/s41810-024-00253-5
- [27] Junaidi, E. S., Jalaludin, J., and Latif, M. T. Application of multiple-path particle dosimetry (MPPD) model in aged-specify schoolchildren airways exposed to ambient particulate matter in Malaysia. *Aerosol Science and Technology*, 1-18, 2025. DOI: https://doi.org/10.1080/02786826.2025.2502492
- [28] Gupta, S. K., and Elumalai, S. P. Size-segregated particulate matter and its association with respiratory deposition doses among outdoor exercisers in Dhanbad City, *India. Journal of the Air and Waste Management* Association, 67(10): 1137-1145, 2017. DOI: https://doi.org/10.1080/10962247.2017.1344159
- [29] Betha, R., Behera, S. N., and Balasubramanian, R. 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. *Environmental science and technology*, 48(8): 4327-4335, 2014. DOI: https://doi.org/10.1021/es405533d

- [30] Islam, M. S., Saha, S. C., Sauret, E., Gemci, T., and Gu, Y. Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract. *Journal of Aerosol Science*, 108: 29-43, 2017. DOI: https://doi.org/10.1016/j.jaerosci.2017.03.004
- [31] Khan, S., Gurjar, B. R., and Sahu, V. Deposition modeling of ambient particulate matter in the human respiratory tract. *Atmospheric Pollution Research*, 13(10): 101565, 2022. DOI: https://doi.org/10.1016/j.apr.2022.101565
- [32] Kumar, V., Hashmi, H., Ansari, N. G., and Singh, J. Incense smoke (IS) inhalation exposure system: physicochemical characterization, IS particle deposition and clearance in human airway using MPPD model. *Particuology*, 87: 271-285, 2024. DOI: https://doi.org/10.1016/j.partic.2023.08.014
- [33] Hofmann, W. Modelling inhaled particle deposition in the human lung—A review. *Journal of Aerosol Science*, 42(10): 693-724, 2011. DOI: https://doi.org/10.1016/j.jaerosci.2011.05.007
- [34] Rissler, J., Gudmundsson, A., Nicklasson, H., Swietlicki, E., Wollmer, P., and Löndahl, J. Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults. *Particle and fibre toxicology*, 14: 1-12, 2017. DOI: https://doi.org/10.1186/s12989-017-0190-8
- [35] Nibagwire, D., Ana, G. R., Kalisa, E., Twagirayezu, G., Safari Kagabo, A., and Nsengiyumva, J. Analysis of the influence of exogenous factors on indoor air quality in residential buildings. *Frontiers in Built Environment*, 11: 1528453, 2025. DOI: https://doi.org/10.3389/fbuil.2025.1528453
- [36] Haas, D., Habib, J., Galler, H., Buzina, W., Schlacher, R., Marth, E., and Reinthaler, F. F. Assessment of indoor air in Austrian apartments with and without visible mold growth. *Atmospheric Environment*, 41(25): 5192-5201, 2007. DOI: https://doi.org/10.1016/j.atmosenv.2006.07.062
- [37] Geving, S., and Holme, J. Mean and diurnal indoor air humidity loads in residential buildings. *Journal of Building Physics*, 35(4): 392-421, 2012. DOI: https://doi.org/10.1177/1744259111423084
- [38] Indraganti, M. Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India. *Applied Energy*, 87(3): 866-883, 2010. DOI: https://doi.org/10.1016/j.apenergy.2009.08.042
- [39] Sudarsanam, N., and Kannamma, D. Investigation of summertime thermal comfort at the residences of elderly people in the warm and humid climate of India. *Energy and Buildings*, 291: 113151. 2023. DOI: https://doi.org/10.1016/j.enbuild.2023.113151

- [40] Yassin, M. F., AlThaqeb, B. E., and Al-Mutiri, E. A. Assessment of indoor PM_{2.5} in different residential environments. *Atmospheric environment*, 56: 65-68, 2012. DOI: https://doi.org/10.1016/j.atmosenv.2012.03.051
- [41] Liu, Y., Ma, H., Zhang, N., and Li, Q. A systematic literature review on indoor PM_{2.5} concentrations and personal exposure in urban residential buildings. *Heliyon*, 8(8), 2022.
- [42] Chang, T. J. Numerical evaluation of the effect of traffic pollution on indoor air quality of a naturally ventilated building. *Journal of the Air and Waste Management Association*, 52(9): 1043-1053, 2002. DOI: https://doi.org/10.1080/10473289.2002.10470846
- [43] Tang, R., and Pfrang, C. Indoor particulate matter (PM) from cooking in UK students' studio flats and associated intervention strategies: evaluation of cooking methods, PM concentrations and personal exposures using low-cost sensors. *Environmental Science: Atmospheres*, 3(3): 537, 2023. DOI: https://doi.org/10.1039/D2EA00171C
- [44] Gorjinezhad, S., Kerimray, A., Amouei Torkmahalleh, M., Keleş, M., Ozturk, F., and Hopke, P. K. Quantifying trace elements in the emitted particulate matter during cooking and health risk assessment. *Environmental science and pollution research*, 24: 9515-9529, 2017. DOI:https://doi.org/10.1007/s11356-017-8618-0
- [45] Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. Measurement of emissions from air pollution sources. 4. C1– C27 organic compounds from cooking with seed oils. *Environmental Science & Technology*, 36(4): 567-575, 2002 DOI:https://doi.org/10.1021/es002053m.
- [46] Abdullahi, K. L., Delgado-Saborit, J. M., and Harrison, R. M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. *Atmospheric Environment*, 71: 260-294, 2013. DOI: https://doi.org/10.1016/j.atmosenv.2013.01.061
- [47] Liu, Y., Dong, J., Wang, Y., Zheng, W., and Jiang, Y. Numerical investigation on the influence of natural make-up air in Chinese-style residential kitchen on indoor environment in a partitioned household. *Sustainable Energy Technologies and Assessments*, 46, 101244, 2021.DOI: https://doi.org/10.1016/j.seta.2021.101244
- [48] Chy, S., Aun, S., Hang, L., Amin, M., Hata, M., Or, C., ... and Furuuchi, M. Determination of Particulate Matters and Total Suspended Particles emitted from Incense Burning. *In IOP Conference Series: Earth and Environmental Science*, volume 1199(1), page 012019, 2023. IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/1199/1/012019

- [49] Huang, Y., Wang, J., Chen, Y., Chen, L., Chen, Y., Du, W., and Liu, M. Household PM_{2.5} pollution in rural Chinese homes: levels, dynamic characteristics and seasonal variations. *Science of the Total Environment*, 817, 153085, 2022. DOI: https://doi.org/10.1016/j.scitotenv.2022.153085
- [50] Saetae, S., Abulude, F. O., Arasaki, K., Ndamitso, M. M., Akinnusotu, A., Oluwagbayide, S. D., and Nakayama, T. Seasonal and Diurnal Variations of Indoor PM_{2.5} in Six Households in Akure, Nigeria. *Atmosphere*, 16(5): 603, 2025. DOI: https://doi.org/10.3390/atmos16050603
- [51] Both, A. F., Balakrishnan, A., Joseph, B., and Marshall, J. D. Spatiotemporal aspects of real-time PM_{2.5}: low-and middle-income neighborhoods in Bangalore, India. *Environmental science and technology*, 45(13): 5629-5636, 2011. DOI: https://doi.org/10.1021/es104331w
- [52] Olszowski, T. Influence of individual household heating on PM_{2.5} concentrations in a rural settlement. *Atmosphere*, 10(12): 782. 2019. DOI: https://doi.org/10.3390/atmos10120782
- [53] Singh, V., Singh, S., and Biswal, A. Exceedances and trends of particulate matter (PM_{2.5}) in five Indian megacities. *Science of the Total Environment*, 750: 141461, 2021. DOI: https://doi.org/10.1016/j.scitotenv.2020.141461
- [54] Khumukcham, R., and Singh Khoiyangbam, R. Determination of particulate matter fractions PM_{2.5}, PM₁₀ and CO₂ in urban schools in Imphal, India. The holistic approach to environment, 13(1): 22-31, 2023. DOI: https://doi.org/10.33765/thate.13.1.3
- [55] Kalimeri, K. K., Saraga, D. E., Lazaridis, V. D., Legkas, N. A., Missia, D. A., Tolis, E. I., and Bartzis, J. G. Indoor air quality investigation of the school environment and estimated health risks: Two-season measurements in primary schools in Kozani, Greece. *Atmospheric Pollution Research*, 7(6): 1128-1142, 2016. DOI: https://doi.org/10.1016/j.apr.2016.07.002
- [56] Villanueva, F., Notario, A., Cabañas, B., Martín, P., Salgado, S., and Gabriel, M. F. Assessment of CO₂ and aerosol (PM_{2.5}, PM₁₀, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain. *Environmental Research*, 197: 111092, 2021. DOI: https://doi.org/10.1016/j.envres.2021.111092
- [57] Radaideh, J. A., and Shatnawi, Z. Correlation between indoor and outdoor air. *WIT Transactions on Ecology and the Environment*, 198: 357-367, 2015.

- [58] Salma, I., Balásházy, I., Winkler-Heil, R., Hofmann, W., and Záray, G. Effect of particle mass size distribution on the deposition of aerosols in the human respiratory system. *Journal of Aerosol Science*, 33(1): 119-132, 2002. DOI:https://doi.org/10.1016/S0021-8502(01)00154-9
- [59] Madureira, J., Slezakova, K., Silva, A. I., Lage, B., Mendes, A., Aguiar, L., ... and Costa, C. Assessment of indoor air exposure at residential homes: inhalation dose and lung deposition of PM₁₀, PM_{2.5} and ultrafine particles among newborn children and their mothers. *Science of The Total Environment*, 717: 137293, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.137293
- [60] Deng, Q., Ou, C., Chen, J., and Xiang, Y. Particle deposition in tracheobronchial airways of an infant, child and adult. *Science of the Total Environment*, 612: 339-346, 2018. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.240
- [61] Ou, C., Hang, J., and Deng, Q. Particle deposition in human lung airways: effects of airflow, particle size, and mechanisms. *Aerosol and Air Quality Research*, 20(12): 2846-2858, 2020. DOI: https://doi.org/10.4209/aagr.2020.02.0067
- [62] Guo, C., Zhang, Z., Lau, A. K., Lin, C. Q., Chuang, Y. C., Chan, J., ... and Lao, X. Q. Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: a longitudinal, cohort study. *The Lancet Planetary Health*, 2(3): e114-e125, 2018.
- [63] Zhao, Y., Wang, S., Lang, L., Huang, C., Ma, W., and Lin, H. Ambient fine and coarse particulate matter pollution and respiratory morbidity in Dongguan, China. *Environmental Pollution*, 222: 126-131, 2017. DOI: https://doi.org/10.1016/j.envpol.2016.12.070
- [64] Asgharian, B., Price, O., and Oberdörster, G. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung. *Inhalation toxicology*, 18(7): 473-481, 2006. DOI: https://doi.org/10.1080/08958370600602009
- [65] Manojkumar, N., Srimuruganandam, B., and Nagendra, S. S. Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway. *Ecotoxicology and Environmental Safety*, 168: 241-248, 2019. DOI: https://doi.org/10.1016/j.ntt.2023.107174
- [66] Olujimi, O., Steiner, O., and Goessler, W. Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria. *Journal of African Earth Sciences*, 101: 396-404, 2015. DOI: https://doi.org/10.1016/j.jafrearsci.2014.10.007

- [67] Ugwu, K. E., and Ofomatah, A. C. Concentration and risk assessment of toxic metals in indoor dust in selected schools in Southeast, Nigeria. SN Applied Sciences, 3: 1-13, 2021. DOI: https://doi.org/10.1007/s42452-020-04099-7
- [68] Oyebanji, F. F., Olatunde, K. A., Kasumu, H. O., Akinola, T. S., Afinuomo, A., Tiamiyu, O., and Arowolo, T. A. Elemental Profiling, Pollution and Health Risks Assessments of Classroom Dust from Selected Nursery and Kindergarten Schools Ogun State, Nigeria. Environmental Research, *Engineering and Management*, 79(3): 108-126, 2023. DOI: https://doi.org/10.5755/j01.erem.79.3.32606
- [69] Gohain, M., and Deka, P. Trace metals in indoor dust from a university campus in Northeast India: implication for health risk. *Environmental monitoring and assessment*, 192: 1-14. 2020. DOI: https://doi.org/10.1007/s10661-020-08684-6
- [70] Dubey, S., John, R., Singh, M., Khare, P., and Taneja, A. Seasonal variation in metals concentration associated with settled dust and their risk assessment in school children of Agra (India). *Environmental Advances*, 15: 100480, 2024. DOI: https://doi.org/10.1016/j.envadv.2023.100480
- [71] Famuyiwa, A. O., and Entwistle, J. A. Characterising and communicating the potential hazard posed by potentially toxic elements in indoor dusts from schools across Lagos, Nigeria. *Environmental Science: Processes & Impacts*, 23(6): 867-879. 2021.DOI: https://doi.org/10.1039/D0EM00445F
- [72] Kumar, S., and Jain, M. K. A comparative study of health risks of selected potentially toxic metals in household dust from different socio-economical houses of Dhanbad city, India. *Air Quality, Atmosphere and Health*, 17(7): 1547-1564, 2024. DOI: https://doi.org/10.1007/s11869-024-01527-0
- [73] Moghtaderi, M., Ashraf, M. A., Moghtaderi, T., Teshnizi, S. H., and Nabavizadeh, H. Heavy metal concentration in classroom dust samples and its relationship with childhood asthma: a study from Islamic Republic of Iran. *Eastern Mediterranean Health Journal*, 26(5): 594-601, 2020.
- [74] Muhamad-Darus, F., Nasir, R. A., Sumari, S. M., Ismail, Z. S., and Omar, N. A. Nursery Schools: Characterization of heavy metal content in indoor dust. *Asian Journal of Environment-Behaviour Studies*, 2(5): 63-70, 2017. DOI: https://doi.org/10.21834/aje-bs.v2i5.223
- [75] Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., and Kokot, S. Source characterisation of road dust based on chemical and mineralogical composition. *Chemosphere*, 87(2):163-170, 2012.

- [76] Lin, Y., Fang, F., Wang, F., and Xu, M. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China. *Environmental monitoring and assessment*, 187:1-9, 2015. DOI: https://doi.org/10.1007/s10661-015-4763-4
- [77] Deka, P., and Hoque, R. R. Diwali fireworks: early signs of impact on PM₁₀ properties of rural Brahmaputra Valley. *Aerosol and Air Quality Research*, 14(6): 1752-1762, 2014. DOI: https://doi.org/10.4209/aaqr.2013.09.0287
- [78] Ismail, M., Ahmad, T., Ali, S., Ali, S., Haq, N. U., and Naveedullah. Heavy metals (Pb and Ni) pollution as affected by the brick kilns emissions. *Sarhad Journal of Agriculture*, 36(3): 1001-1009, 2020.
- [79] Al Hejami, A., Davis, M., Prete, D., Lu, J., and Wang, S. Heavy metals in indoor settled dusts in Toronto, Canada. *Science of the Total Environment*, 703: 134895, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.134895
- [80] Al-Rawi, A. S., Aljumialy, A. M., Saod, W. M., and Al-Heety, E. A. Pollution level and sources of heavy metals in indoor dust from College of Science, University of Anbar Campus, Iraq. *In IOP Conference Series: Earth and Environmental Science*, volume 1300 (1), page 012019. IOP Publishing, 2024.
- [81] Praveena, S. M., Abdul Mutalib, N. S., and Aris, A. Z. Determination of heavy metals in indoor dust from primary school (Sri Serdang, Malaysia): estimation of the health risks. *Environmental Forensics*, 16(3): 257-263. 2015. DOI: https://doi.org/10.1080/15275922.2015.1059388
- [82] Tong, S. T., and Lam, K. C. Are nursery schools and kindergartens safe for our kids? The Hong Kong study. *Science of the Total Environment*, 216(3): 217-225. 1998. DOI: https://doi.org/10.1016/S0048-9697(98)00161-2
- [83] Popoola, O.E., Bamgbose, O., Okonkwo, O.J., Arowolo, T.A., Popoola, A.O., Awofolu, O.R. Heavy Metals Content in Classroom Dust of Some Public Primary Schools in Metropolitan Lagos, Nigeria. *Research Journal of Environmental Sciences*, 4: 460-465, 2012.
- [84] Kumad, M.S., Malik, R.S., Singh, A.S., Dahiya, I.S. Background levels of heavy metals in agricultural soils of Indo-Gangetic plains of Haryana. *Journal of the Indian Society of Soil Science*, 3: 700-705, 1989.
- [85] Gowd, S.S., Reddy, M.R., Govil, P.K. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. *Journal of Hazardous Materials*, 174 (1-3): 113-121. 2010. DOI: https://doi.org/10.1016/j.jhazmat.2009.09.024

- [86] Taylor, S.R. Abundance of chemical elements in the continental crust: a new table. *Geochimica et cosmochimica acta*, 28(8):1273-1285, 1964. DOI: https://doi.org/10.1016/0016-7037(64)90129-2
- [87] Cheng, Z., Chen, L. J., Li, H. H., Lin, J. Q., Yang, Z. B., Yang, Y. X., ... and Zhu, X. M. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. *Science of the Total Environment*, 619: 621-629. 2018. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.144
- [88] Darus, F. M., Nasir, R. A., Sumari, S. M., Ismail, Z. S., and Omar, N. A. Heavy metals composition of indoor dust in nursery schools building. *Procedia-Social and Behavioral Sciences*, 38: 169-175, 2012. DOI: https://doi.org/10.1016/j.sbspro.2012.03.337
- [89] Tan, S. Y., Praveena, S. M., Abidin, E. Z., and Cheema, M. S. Heavy metal quantification of classroom dust in school environment and its impacts on children health from Rawang (Malaysia). *Environmental Science and Pollution Research*, 25: 34623-34635, 2018. DOI: https://doi.org/10.1007/s11356-018-3396-x
- [90] Moghtaderi, M., Teshnizi, S. H., Moghtaderi, T., Ashraf, M. A., and Faraji, H. The safety of schools based on heavy metal concentrations in classrooms' dust: A systematic review and meta-analysis. *Iranian journal of public health*, 49(12): 2287, 2020. DOI: https://doi.org/10.18502/ijph.v49i12.4809
- [91] Goel, S., Patidar, R., Baxi, K., and Thakur, R. S. Investigation of particulate matter performances in relation to chalk selection in classroom environment. *Indoor and Built Environment*, 26(1): 119-131, 2017. DOI: https://doi.org/10.1177/1420326X15607951
- [92] Anake, W. U., and Nnamani, E. A. Physico-chemical characterization of indoor settled dust in Children's microenvironments in Ikeja and Ota, Nigeria. *Heliyon*, 9(6), 2023. DOI: https://doi.org/10.1016/j.heliyon.2023.e16419
- [93] Lu, X., Zhang, X., Li, L. Y., and Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi'an, China. *Environmental research*, 128: 27-34, 2014. DOI: https://doi.org/10.1016/j.envres.2013.11.007
- [94] Alghamdi, M. A., Hassan, S. K., Alzahrani, N. A., Almehmadi, F. M., and Khoder, M. I. Risk assessment and implications of schoolchildren exposure to classroom heavy metals particles in Jeddah, Saudi Arabia. *International Journal of Environmental Research and Public Health*, 16(24): 5017, 2019. DOI: https://doi.org/10.3390/ijerph16245017

- [95] Kadhum, S. A. A preliminary study of heavy metals pollution in the sandy dust storms and its human risk assessment from middle and south of Iraq. *Environmental Science and Pollution Research*, 27(8): 8570-8579, 2020. DOI: https://doi.org/10.1007/s11356-019-07380-4
- [96] Rehman, A., Liu, G., Yousaf, B., Zia-ur-Rehman, M., Ali, M. U., Rashid, M. S., ... and Javed, Z. Characterizing pollution indices and children health risk assessment of potentially toxic metal (oid) s in school dust of Lahore, Pakistan. *Ecotoxicology and Environmental Safety*, 190: 110059, 2020. DOI: https://doi.org/10.1016/j.ecoenv.2019.110059
- [97] Check, L., and Marteel-Parrish, A. The fate and behavior of persistent, bioaccumulative, and toxic (PBT) chemicals: examining lead (Pb) as a PBT metal. *Reviews on Environmental Health*, 28(2-3): 85-96, 2013.DOI: https://doi.org/10.1515/reveh-2013-0005
- [98] Zhang, C., Qiao, Q., Appel, E., and Huang, B. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. *Journal of Geochemical Exploration*, 119: 60-75, 2012. DOI: https://doi.org/10.1016/j.gexplo.2012.06.014
- [99] Liu, P., Wu, Q., Wang, X., Hu, W., Liu, X., Tian, K., .. and Khim, J. S. Spatiotemporal variation and sources of soil heavy metals along the lower reaches of Yangtze River, China. *Chemosphere*, 291: 132768. 2022. DOI:https://doi.org/10.1016/j.chemosphere.2021.132768
- [100] Ciacci, L., Reck, B. K., Nassar, N. T., and Graedel, T. E. Lost by design. *Environmental Science and Technology*, 49(16): 9443-9451, 2015. DOI:https://doi.org/10.1021/es505515z
- [101] Wang, G., Zeng, C., Zhang, F., Zhang, Y., Scott, C. A., and Yan, X. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation. *Science of the Total Environment*, 581: 811-821, 2017. DOI:https://doi.org/10.1016/j.scitotenv.2017.01.018
- [102] Suzuki, K., Yabuki, T., and Ono, Y. Roadside Rhododendron pulchrum leaves as bioindicators of heavy metal pollution in traffic areas of Okayama, Japan. *Environmental monitoring and assessment*, 149:133-141, 2009. DOI:https://doi.org/10.1007/s10661-008-0188-7
- [103] Harrison, R. M., Laxen, D. P., and Wilson, S. J. Chemical associations of lead, cadmium, copper, and zinc in street dusts and roadside soils. *Environmental Science & Technology*, 15(11): 1378-1383, 1981.

- [104] Adamiec, E. Chemical fractionation and mobility of traffic-related elements in road environments. *Environmental Geochemistry and Health*, 39: 1457-1468, 2017. DOI:https://doi.org/10.1007/s10653-017-9983-9
- [105] Fergusson, J. E., and Kim, N. D. Trace elements in street and house dusts: sources and speciation. *Science of the Total Environment*, 100: 125-150, 1991. DOI:https://doi.org/10.1016/0048-9697(91)90376-P
- [106] Fu, H., Yang, Z., Liu, Y., and Shao, P. Ecological and human health risk assessment of heavy metals in dust affected by fireworks during the Spring Festival in Beijing. *Air Quality, Atmosphere & Health*, 14(1): 139-148, 2021.DOI: DOI:https://doi.org/10.1007/s11869-020-00920-9
- [107] Wahab, N. A. A., Darus, F. M., Isa, N., Sumari, S. M., and Hanafi, N. F. M. Heavy metal concentration of settled surface dust in residential building. *The Malaysian Journal of Analytical Sciences*, 16(1): 18-23, 2012.
- [108] Rout, T. K., Masto, R. E., Padhy, P. K., Ram, L. C., George, J., and Joshi, G. Heavy metals in dusts from commercial and residential areas of Jharia coal mining town. *Environmental Earth Sciences*, 73(1): 347-359, 2015. DOI:https://doi.org/10.1007/s12665-014-3429-9
- [109] Ogilo, J.K., Onditi, A.O., Salim, A.M., Yusuf, A.O. Assessment of levels of heavy metals in paints from interior walls and indoor dust from residential houses in Nairobi City County, Kenya. *Chemical Science International Journal*, 21(1): 1-7, 2017. DOI: https://doi.org/10.9734/CSJI/2017/37392
- [110] Hashemi, S. E., Fazlzadeh, M., Ahmadi, E., Parand, M., Ramavandi, B., Taghizadeh, F., and Arfaeinia, H. Occurrence, potential sources, in vitro bioaccessibility and health risk assessment of heavy metal in indoor dust from different microenvironment of Bushehr, Iran. *Environmental geochemistry and health*, 42: 3641-3658, 2020. DOI:https://doi.org/10.1007/s10653-020-00598-z
- [111] Stamatelopoulou, A., Dasopoulou, M., Bairachtari, K., Karavoltsos, S., Sakellari, A., and Maggos, T. Contamination and potential risk assessment of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in house settled dust collected from residences of young children. *Applied Sciences*, 11(4):1479. 2021. DOI:https://doi.org/10.3390/app11041479
- [112] Gul, H. K., Gullu, G., Babaei, P., Nikravan, A., Kurt-Karakus, P. B., and Salihoglu, G. Assessment of house dust trace elements and human exposure in Ankara, Turkey. *Environmental Science and Pollution Research*, 30(3): 7718-7735, 2023. DOI:https://doi.org/10.1007/s11356-022-22700-x

- [113] Cao, S., Wen, D., Chen, X., Duan, X., Zhang, L., Wang, B., ... and Wei, F. Source identification of pollution and health risks to metals in household indoor and outdoor dust: A cross-sectional study in a typical mining town, China. *Environmental pollution*, 293: 118551, 2022. DOI:https://doi.org/10.1016/j.envpol.2021.118551
- [114] Ibrahim, F. K., Mustafa, H. K., Mohammed, A. A., and Al-Heety, E. Concentration, pollution level, and sources of heavy metals from household dust in Ramadi City, Iraq. *Asian Journal of Water, Environment and Pollution*, 21(3): 35-43, 2024 DOI:https://doi.org/10.3233/AJW240032
- [115] IPCS, Environmental Health Criteria 108, Nickel. Retrieved on 27 Feb. 2025 from https://iris.who.int/bitstream/handle/10665/37667/924157108X-eng.pdf?sequence=1, 1991
- [116] Järup, L. Hazards of heavy metal contamination. *British medical bulletin* 68(1): 167-182, 2003.DOI: https://doi.org/10.1093/bmb/ldg032
- [117] Khoder, M. I., Hassan, S. K., and El-Abssawy, A. A. An evaluation of loading rate of dust, Pb, Cd, and Ni and metals mass concentration in the settled surface dust in domestic houses and factors affecting them. *Indoor and Built Environment*, 19(3): 391-399, 2010. DOI:https://doi.org/10.1177/1420326X10367284
- [118] Lu, X., Wang, L., Lei, K., Huang, J., and Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. *Journal of Hazardous Materials*, 161(2-3): 1058-1062, 2009. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.052
- [119] Kabadayi, F., and Cesur, H. Determination of Cu, Pb, Zn, Ni, Co, Cd, and Mn in road dusts of Samsun City. *Environmental Monitoring and Assessment*, 168: 241-253, 2010. DOI:https://doi.org/10.1007/s10661-009-1108-1
- [120] Liu, M., Ma, G., Zhang, X., Liu, J., and Wang, Q. Preparation of black ceramic tiles using waste copper slag and stainless-steel slag of electric arc furnace. *Materials*, 13(3): 776, 2020. DOI:https://doi.org/10.3390/ma13030776
- [121] Fresquez, M. R., Gonzalez-Jimenez, N., Gray, N., Valentin-Blasini, L., Watson, C. H., and Pappas, R. S. Electrothermal vaporization-QQQ-ICP-MS for determination of chromium in mainstream cigarette smoke particulate. *Journal of Analytical Toxicology*, 41(4): 307-312, 2017. DOI:https://doi.org/10.1093/jat/bkx010
- [122] Madany, I. M., Akhter, M. S., and Al Jowder, O. A. The correlations between heavy metals in residential indoor dust and outdoor street dust in Bahrain. *Environment International*, 20(4): 483-492, 1994. DOI:https://doi.org/10.1016/0160-4120(94)90197-X

- [123] Pan, Y., Wang, Y., Sun, Y., Tian, S., and Cheng, M. Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport. *Science of the Total Environment*, 461: 761-771, 2013. DOI:https://doi.org/10.1016/j.scitotenv.2013.04.065
- [124] Khajooee, N., Modabberi, S., Khoshmanesh Zadeh, B., Razavian, F., Gayà-Caro, N., Sierra, J., and Rovira, J. Contamination level, spatial distribution, and sources of potentially toxic elements in indoor settled household dusts in Tehran, Iran. *Environmental Geochemistry and Health*, 46(2): 56, 2024. DOI:https://doi.org/10.1007/s10653-023-01838-8
- [125] Kumar, R., and Rajkumar, B. Mineralogical characterization of atmospheric dust using FTIR and XRD. *Environmental Monitoring and Assessment*, 186(9): 6011–6020. 2014. DOI:https://doi.org/10.1007/s10661-014-3833-0
- [126] Spence, A., Wallace, T., and Barracks, E. FT-IR spectroscopy analysis of HF-treated mineral soils, a direct approach for deciphering organo-mineral interactions. *MethodsX*, 10: 102088. 2023. DOI:https://doi.org/10.1016/j.mex.2023.102088
- [127] Nayak, P. S., and Singh, B. K. Instrumental characterization of clay by FTIR, XRF, BET and, TPD-NH3. *Bulletin of Materials Science*, 30(3): 235–238, 2007. DOI:https://doi.org/10.1007/s12034-007-0042-5
- [128] Bernier, M. H., Levy, G. J., Fine, P., and Borisover, M. Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples. *Geoderma*, 209–210: 233–240, 2013. DOI:https://doi.org/10.1016/j.geoderma.2013.06.017
- [129] Hlavay, J., Jonas, K., Elek, S., and Inczedy, J. Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods—II. Investigations on Quartz and Feldspar. *Spectrochimica Acta Part A*, 26(2):139–143, 1978.
- [130] Murthuza, K. M., Surumbarkuzhali, N., Thirukumaran, V., Ganesh, D., & Balasubramaniyan, R. R. G. The use of spectroscopy techniques to determine the mineral content of soils in the Tiruvannamalai District of Tamil Nadu, India. *Journal of Radiation and Nuclear Applications*, 8(1): 17–22, 2023. DOI:https://doi.org/10.18576/jrna/080103
- [131] Bora, J., Deka, P., Bhuyan, P., Sarma, K. P., and Hoque, R. R. Morphology and mineralogy of ambient particulate matter over mid-Brahmaputra Valley: application of SEM–EDX, XRD, and FTIR techniques. *SN Applied Sciences*, 3: 1-15, 2021. DOI:https://doi.org/10.1007/s42452-020-04117-8

- [132] Ross, M. H., Murray, J., and Witschi, H. Health effects of exposure to respirable crystalline silica. *Journal of Occupational Medicine*, 35(3): 252–258, 1993.
- [133] Bazarbayev, A., Omarova, A., Bekbayeva, A., and Zhumanov, M. Toxicological effects of inhalable particulate matter on respiratory health. *Environmental Research*, 213: 113657, 2022. DOI: https://doi.org/10.1016/j.envres.2022.113657
- [134] El-Zahhar, A. A., Idris, A. M., Fawy, K. F., and Arshad, M. SEM, SEM-EDX, μ-ATR-FTIR and XRD for urban street dust characterisation. International journal of environmental analytical chemistry, 101(7): 988-1006, 2021. DOI:https://doi.org/10.1080/03067319.2019.1674849
- [135] Ramasamy, V., and Ponnusamy, V. Analysis on air suspended particles of Coimbatore—a FTIR study. *Indian Journal of Physics*, 83: 301-312, 2009.DOI: https://doi.org/10.1007/s12648-009-0127-7
- [136] Neupane, B., Lamsal, A., and Tripathi, A. FTIR analysis and risk assessment of indoor dust in academic institutions. *Aerosol and Air Quality Research*, 20(6): 1290–1301, 2020. DOI: https://doi.org/10.4209/aaqr.2020.03.0115
- [137] Sivakumar, S., Ravisankar, R., Raghu, Y., Chandrasekaran, A., and Chandramohan, J. FTIR spectroscopic studies on coastal sediment samples from Cuddalore District, Tamilnadu, India. *International Journal of Advanced Chemical Science and Knowledge*, 1(1): 40–46, 2012.
- [138] Sahu, V., Elumalai, S. P., Gautam, S., Singh, N. K., and Singh, P. Characterization of indoor settled dust and investigation of indoor air quality in different micro-environments. *International Journal of Environmental Health Research*, 28(4): 419-431, 2018. https://doi.org/10.1080/09603123.2018.1481498
- [139] Tinti, A., Tugnoli, V., Bonora, S., and Francioso, O. Recent applications of vibrational midinfrared (IR) spectroscopy for studying soil components: A review. *Journal of Central European Agriculture*, 16(1): 1–22, 2015. DOI:https://doi.org/10.5513/JCEA01/16.1.1535
- [140] Meftah, N., and Mahboub, M. S. Spectroscopic characterizations of sand dunes minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD analyses. *Silicon*, 12(1): 147–153, 2020. DOI:https://doi.org/10.1007/s12633-019-00109-5
- [141] Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., and Chen, Z. Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy. *Geoderma*, 335: 94–103, 2019. DOI:https://doi.org/10.1016/j.geoderma.2018.08.003

- [142] Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., and Paul, E. Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy as a method of characterizing changes in soil organic matter. *Soil Science Society of America Journal*, 77(5): 1591–1600, 2013. DOI:https://doi.org/10.2136/sssaj2013.04.0131
- [143] Maria, S. F., Russell, L. M., Turpin, B. J., Porcja, R. J., Campos, T. L., Weber, R. J., and Huebert, B. J. Source signatures of carbon monoxide and organic functional groups in Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) submicron aerosol types. *Journal of Geophysical Research: Atmospheres*, 108(23), 2003. DOI:https://doi.org/10.1029/2003jd003703
- [144] Mahmud, M., and Mohiuddin, K. A. B. M. Micro-characterization of indoor deposited particles using FTIR, SEM EDS, and XRD techniques: A case study of a university campus, Bangladesh. *Aerosol and Air Quality Research*, 24(5): 230236. 2024. DOI:https://doi.org/10.4209/aaqr.230236
- [145] Kumar, S., and Jain, M. K. Characterization and morphometric study of household settled dust: A case study in Dhanbad, the coal capital of India. *Applied Geochemistry*, 144:105398. 2022. DOI: https://doi.org/10.1016/j.apgeochem.2022.105398
- [146] Nath, A., Paul, B., and Deka, P. Chemical characterization of road dust during diwali festival in Guwahati city of Assam, Northeast India. *Environmental Monitoring and Assessment*, 196(5): 484, 2024. DOI:https://doi.org/10.1007/s10661-024-12628-9
- [147] Ardashiri, S., and Hashemi, S. E. Health risk assessment of heavy metals in indoor dust from Bushehr, Iran. *Iranian Journal of Health, Safety and Environment*, 5(2): 966-971, 2018.
- [148] Somsunun, K., Prapamontol, T., Kuanpan, T., Santijitpakdee, T., Kohsuwan, K., Jeytawan, N., and Thongjan, N. Health Risk Assessment of Heavy Metals in Indoor Household Dust in Urban and Rural Areas of Chiang Mai and Lamphun Provinces, Thailand. *Toxics*, 11(12): 1018.2023. DOI:https://doi.org/10.3390/toxics11121018
- [149] Gope, M., Masto, R. E., George, J., and Balachandran, S. Tracing source, distribution and health risk of potentially harmful elements (PHEs) in street dust of Durgapur, India. *Ecotoxicology and Environmental Safety*, 154:280-293, 2018.
- [150] Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., and Kermani, M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. *Science of the total environment*, 505: 712-723, 2015.

- [151] Martin, S., and Griswold, W. Human health effects of heavy metals. *Environmental Science and Technology briefs for citizens*, 15(5), 1-6, 2009.
- [152] Sulaiman, F. R., Bakri, N. I. F., Nazmi, N., and Latif, M. T. Assessment of heavy metals in indoor dust of a university in a tropical environment. *Environmental forensics*, 18(1): 74-82, 2017. DOI:https://doi.org/10.1080/15275922.2016.1263903
- [153] Human Health Risk Assessment, Revision 2, *Chlor-Alkali (Former) Superfund Site Berlin, New Hampshire*. Retrieved on 27 Jan. 2025 from https://semspub.epa.gov/work/01/550299.pdf, 2012
- [154] Bhandari, S., Shakya, S., Adhikari, B., Shrestha, M., Shakya, B. D., Pradhananga, A. R., ... and Shakya, P. R. Non-carcinogenic and Carcinogenic Risk Assessment of Heavy Metals Exposure to Indoor Dust in Kathmandu, Nepal. *Journal of Nepal Chemical Society*, 42(1): 16-28, 2021. DOI:https://doi.org/10.3126/jncs.v42i1.35324
- [155] Tan, S. Y., Praveena, S. M., Abidin, E. Z., and Cheema, M. S. Heavy metal quantification of classroom dust in school environment and its impacts on children health from Rawang (Malaysia). *Environmental Science and Pollution Research*, 25: 34623-34635, 2018. DOI:https://doi.org/10.1007/s11356-018-3396-x
- [156] Suzuki, N., Nakayama, Y., Nakaoka, H., Takaguchi, K., Tsumura, K., Hanazato, M., ... and Mori, C. Risk factors for the onset of sick building syndrome: A cross-sectional survey of housing and health in Japan. *Building and Environment*, 202: 107976, 2021. DOI:https://doi.org/10.1016/j.buildenv.2021.107976
- [157] Yussuf, S. M., Dahir, G., Salad, A. M., Hayir T. M, M., Hassan, S. A., and Gele, A. Sick building syndrome and its associated factors among adult people living in Hodan district Moqadishu Somalia. *Frontiers in Built Environment*, 9: 1218659, 2023. DOI:https://doi.org/10.3389/fbuil.2023.1218659
- [158] Jeong, I., Kim, I., Park, H. J., Roh, J., Park, J. W., and Lee, J. H. Allergic diseases and multiple chemical sensitivity in Korean adults. *Allergy, asthma and immunology research*, 6(5): 409-414, 2014. DOI: http://dx.doi.org/10.4168/aair.2014.6.5.409
- [159] Caress, S. M., and Steinemann, A. C. Prevalence of multiple chemical sensitivities: a population-based study in the southeastern United States. *American journal of public health*, 94(5): 746-747, 2004.
- [160] Jones, A. P. Indoor air quality and health. *Atmospheric environment*, *33*(28): 4535-4564, 1999. DOI:https://doi.org/10.1016/S1352-2310(99)00272-1

- [161] Lu, C., Deng, Q., Li, Y., Sundell, J., and Norbäck, D. Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China. *Science of the Total Environment*, 560: 186-196, 2016.
- [162] Singh, J., Yu, C. W. F., and Kim, J. T. Building pathology, investigation of sick buildings—toxic moulds. *Indoor and Built Environment*, 19(1): 40-47, 2010. DOI:https://doi.org/10.1177/1420326X09358808
- [163] Igwe, A. E., Ezeobi, A. A., Okeke, F. O., Ibem, E. O., and Ezema, E. C. Causes and remedies of sick building syndrome: a systematic review. In *E3S Web of Conferences*, volume, 434, page 02007. EDP Sciences. 2023. DOI:https://doi.org/10.1051/e3sconf/202343402007