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Abstract

Despite scrious research efforts, electromyogram (EMG) based prosthetic
hands (both commercial variants and rescarch prototypes) are nowhcre near
the original counterparts they intended to replace. EMG based prosthetic
hands arc non-intuitive in the sensc that uscr is required to lcarn to as-
sociate muscle remnants action to unrclated postures of the prosthesis or
being limited to few hand postures based on higher number of EMG chan-
ncls. Morcover, present prosthesis are non-anthropomorphic in terms of the
functional gcometry. Thesc arc some of the main reasons for non-acceptance
of prostheses by the amputecs. Development of a biomimetic hand capable
of reproducing grasping opcrations involved during daily living activitics
(dla) bascd on low channcl EMG signals holds promisc. This would involve
recognition of grasp types bascd on EMG signals and a biomimetic hand

development inspired by human hand anatomy.

Therefore, the prime concerns to be addressed in this rescarch involve: a.
Recognition of six grasp types involved during 70% of dla based on two
channcl EMG signals and b. Decvclopment of a biomimetic hand; a five
fingered extreme upper limb inspired by human hand anatomy capable of

cmulating the grasps based on EMG signals.
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Introduction

The development of interfaces that link the human musculoskeletal system with robotic
devices has becn a major area of research within rehabilitation robotics. Most of the
research is focused on restoration of motor and sensory functions to thosc with de-
gencrative diseases, injury or amputecs. The basic goal is to ecnhance capability for
independent living and vocational productivity by restoring the physical functionality
through usc of prosthesis. Onec of the key focus has been upper limb prostheses for
people with manipulative disabilitics. Bio-signals driven prosthetic hands have becn
found to bc suitable; wherein control is through conveying human’s intention to the
prosthesis. There are two possible bio-signal based schemes covering the approaches

for conveying human’s intention to the prosthesis.
¢ Electrocncephalogram (EEG) based approaches
e Electromyogram (EMG) based approaches

EEG based approaches arc implemented through an interfacc between the brain and
the prosthetic hand to be controlled. The activity of the brain is recognized bascd
on the EEG signals (5). On successful recognition of brain’s activity; the prosthesis
cmulate the amputece’s intention through the interface. Duc to localization of brain
activities and multidimensional aspect of the EEG signals, analysis and classification
of EEG signals arc challenging. Morcover, the appropriate number of channels as well
as their specific location on the scalp requires 1dentification. Failing to do so results in
degradation of system performance. In many cases, there is no clear agreement about

the number and location of necessary channcls to collect EEG signals. Using a small
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number of channcls may causc loss of important information. Conversely, including
morc channcls for data collection provides redundant information, which could degrade
the system performance.

In EMG bascd approachcs, an indirect interface between the brain and the pros-
thetic hand to be controlled is cstablished based on the muscles’ activity through EMG
signals (6) EMG is the clectrical mamfestation of the ncuromuscular activitics and is
known to reflect the voluntary intention of the central nervous systcm (7). Interpreting
the content of the EMG implies the interpretation of the brain’s activity to contract a
muscle or a group of muscles. EMG based approaches for prosthetic hand control is a
targeted remnervation as it collects information from specific muscles; responsible for

specific functions

1.1 EMG Controlled Prosthesis

The concept of .EMG control has cmerged essentially as a control paradigm for pros-
thetic hands 1n which the EMG signals arc acquired from the muscles remnant in the
amputce’s stump. This still have normal inncrvations (8) and thus subjected to volun-
tary control. It allows amputecs intuitively to use the same mental process to effectively

control their prosthesis. A schematic of EMG controlled prosthetic hand is shown in

Figurc 1.1.
Amputees Remnant Prosthetic Hand
Muscle Prototype
Signal
EMG
Acquisition Processed Recl::)gfl(i;tion Movement Translation
System EMG Module Type Module

Figure 1.1: Schematic of EMG controlled Prosthetic Hand



1.1 EMG Controlled Prosthesis

EMG signals gencrated from the remnant muscles of the amputee arc collected
through an EMG Acquisition System. Based on the EMG signals, the type of move-
ment attempted by the user is 1dentified in the EMG Recognmition Module using signal
processing and machine learning tcchniques The information about the identified
movement is passed to the Translation Module whercin a control is developed to com-

mand the prosthetic hand to emulate the 1dentified movement

1.1.1 Problems with EMG Controlled Prosthetic Hands

Although the concept of EMG controlled prosthcsis has been known for several decades,
there remain several issucs to be addressed for its successful implementation. Despite
serious research efforts, EMG based prosthetic hands (both commercial variants and
research prototypes) arc nowherc near to the original counterparts they intended to
replace.

The lack of acceptance stems from an inadequate controllability. EMG bascd pros-
theses are non-intuitive in the sense that user is required to lecarn to associate muscle
remnants action to unrelated posturcs of the prosthesis or being limited to few hand
postures bascd on higher number of EMG channels. Most of the work on EMG based
prosthesis control concentrates in EMG based classification of hand movements instcad
of correlated grasping for the control purpose.

Grasp is the interface between the subject’s hand and the object to be handled.
A single grasp can perform different speafic tasks Such as a hook grasp can be used
for pick and place operation of a mug as well as for pouring water from the mug; i.c.
grasp are generic and task are specific in nature For an effective extrcme upper limb
prosthesis, EMG based grasp classification holds promise (9). This thesis focus on the
six grasp typcs as shown in Figurc 1.2.

. Even though classification of EMG signals has been the subject of considcrable
rescarch; recognition has been either poor while using low channel EMG or only for
a limated set of grasps based on higher number of EMG channels. EMG based grasp
classification performance depends on type of features (10). Therefore, derivation of a
fecature vector resulting in higher recognition rate of grasp typces based on lower number
of EMG channcls is onc of the important issucs.

Another important reason for non-acceptance of prosthcetic hands by the amputees

is their non-anthropomorphism. Present prosthesis arc far from human hand in terms
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of the functional geometry i.e the anatomical geometry that effects the functionality of
the hand (11). Functional geometry can be expressed in terms of static and dynamic
constraints. Static constraints involve dimensions, weight and joint range motions. The

dynamic constraints involve linear inter-joint angular relationships in human finger {12).

1.2 Objectives

The work presented in this thesis stems from the desire to develop a biomimetic hand
with EMG based grasp emulation. Although the use of advanced machine learning and
signal processing techniques have proved useful in EMG based prostheses; higher recog-
nition rate of grasp types based on low number of EMG channels is still a challenge.
Eventhough multifingered hand prostheses using surface EMG (1), (13) have appeared
in the market and advanced research prototypes (2), {14), (15), (16) have been devel-
oped; they are far from the human hand in terms of the functional geometry as well
as controllability. A recognition architecture for grasp types used during daily living
activities (dla) based on low number of EMG channels along with the development of a
biomimetic hand emulating the recognized grasps holds promise. The prime objectives
in this research include:

e Recognition of six grasp types (shown in Figure 1.2) involved during 70% of dla
based on two channel EMG signals - derivation of a low dimensional yet informative
and distinguishing feature vector through exploration of time domain, frequency domain

and time/ frequency domain feature sets.

Figure 1.2: Grasp types: a. Power b. Palm-up ¢. Hook d. Oblique e. Precision and f.
Pinch. These six grasp types are significant for they are involved in 70% of dla (17)
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e Development of a biomimetic hand - a five fingered extreme upper limb inspired
by human hand anatomy capable of cmulating the above grasps based on EMG signals
through a biomimectic approach satisfying the static and dynamic constraints of thc
human hand
This thesis, however, docs not address the issucs for embedment of the control archi-
tecture for the biomimetic hand. The embedment of the EMG acquisition unit, control
architecturc as well as customization of the power supply arc not within the purview of
this thesis. Research is limited to the development of an extreme upper limb prototype
cmulating the grasp types based on EMG signals. To cvaluate or comparc prosthesis
bascd on their conceptual closeness to the human hand, I have also worked on the
following:

e Dcvelopment of an anthropomorphic similarity index for cvaluation of anthropo-
morphism of the biomimetic hand prototype - cvolve a framework for quantification of

anthropomorphism for prosthctic hands.

1.3 Thesis Outline

The remainder of this thesis is divided into six chapters and the content of cach is
summariscd below in order to simplify the rcading.

Chapter 2: Background and Literature Review

Prior to presenting the development of a biomimetic hand with EMG based grasp em-
ulation and its evaluation, it is useful to havc a historical perspective. This chapter
provides the basic concepts of EMG signals and the literature review on the major
componcnts of this thesis: (a) EMG signals and 1ts features for classification of hand
gestures and grasp types, (b) human hand including its characteristics during grasping
opcrations (¢) commercially available prosthetic hands and rescarch prototypes and (d)

EMG bascd control for prosthetic hand opcrations.

Chapter 3: EMG based Grasps Recognition: Initial Results

This chapter begins by discussing the materials and mcthods followed for acquisition
of EMG signals The imitial results on grasp classification arc presented. Three grasps
classification architecture developed for recogmition of six grasp typces arc described.
Entropy as a measure to find the closeness of a mother wavelet function coefficients

with the grasp types is reported. Also sum of wavelet decomposition coefficients has
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been established as a primal feature for grasp recognition.

Chapter 4: EMG based Grasps Recognition: Results with Statistical Anal-
ysis

Following the initial work on EMG based grasp recognition for six grasp types reported
in chapter 3, this chapter proposcs grasp recognition architecture-IV. The focus is on
the derivation of a low dimensional yct informative and distinguishing feature set to
significantly increase the performance of grasp types recognition bascd on lower number
of EMG channcls. A rccognition rate of 97.5% is reported using principal components
of discrete wavelet transform based EMG fcaturcs. The recognition rate obtained is
comparable to that reported in litcrature and better in terms of number of grasp types
vis-a-vis number of EMG channels. The experimental results arc statistically cvaluated

through analysis of variance and Sheffe’s post hoc test. .

Chapter 5: A Biomimetic Hand: Prototype 1.0

Dcevelopment of a biomimetic hand: Prototype 1.0 inspired by human hand anatomy
is described in this chapter. A comparison of Prototype 1.0 vis-a-vis the human hand
is presented. The kincmatic, static and dynamic analysis of Prototype 1.0 satisfying
the dynamic constraints of human hand is presented. This chapter also presents a two
laycred control architecturc comprising of superior hand control (SHC) and local hand
control (LHC) for the developed prototype. The SHC is to perceive the type of grasps
attecmpted by the user based on the results reported in Chapter 4. The LHC is for
emulating the identified grasp type into Prototype 1.0.

Chapter 6: Characteristics of Prototype 1.0 and A BSI

In this chapter, the performance requirements of the prostheses and Prototype 1.0 based
on the rescarch in prosthetic hands and their clinical use are set forth. A framework
for quantification of anthropomorphism leading to a biomimetic similarity index (BSI)
for prosthctic hands is proposed. Prototype 1.0 has been compared with five fairly
cstablished prosthetic hands with reference to human hand through the BSIL

Chapter 7: Conclusions and Future Work
It summarize the work presented in Chapter 2 through Chapter 6 with the concluding
remarks. The issucs to be encountered for further development of Prototype 1.0 arc

mentioned lcading to futurc orientation of this rescarch.



Background and Literature

Review

2.1 Introduction

A long standing goal in Rehabilitation Robotics is the development of anthropomorphic
artificial appendages that can be used as biological counterparts. Although tremendous
technological progress has been made since the days of the wooden peg leg; contem-
porary orthoses and prostheses can not be used during daily living activitics (dla) (4).
However, last four decades have shown continuous advancement in anthropomorphic
artificial limbs leading to improvements in the quality of lifec for the physically chal-
lenged.

The driving issue for realization of multifingered hand prostheses is to mimic human
hand capabilitics. Although commecrcial versions of prosthetic hands including bio-
signals controlled ones have appeared in the market, there still exists a gap between
the current state of art and prostheses that can emulate human hand grasping. This
chapter covers a basic introduction to electromyogram (EMG) signals, which provides
an uscful non-invasive mcasurc of ongoing muscle activity and have been used for
controlling robotic prosthesis (18, 19). The chapter also review the classification of hand
gestures and grasp types based on EMG signals. Commercially available prosthetic

hands and research prototypes are reviewed. Human hand including its characteristics
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during grasping operations is discussed for completeness. Finally EMG based control
for prosthetic hand operations are discussed. In addition, the chapter highlight the
shortcomings of the currvently available prosthetic hands that this research aims ¢o

overcome.

2.2 Electrical Signals from Muscle - Electromyogram

EMG signal is the graphical representation of the electrical activity of muscles. It is the
electrical manifestation of neuromuscular signals associated with muscle contraction.
Surface EMG (sEMG) is the non-invasive electrical recording of muscle activity from
the surface. EMG signal, an accurate and computationally efficient means of classifying
muscle activity have increasingly gained attention for research in prosthesis control (18,
20, 21, 22, 23). The use of advanced machine learning and signal processing techniques
have proved useful in EMG application to control prostheses; which otherwise presented

a challenge due to the complexity of the EMG signal.

2.2.1 Origin of EMG Signals

EMG represents the current generated by the ionic ow across the membrane of the
muscle fibers that propagates through the intervening tissues to reach the detection

surface. Muscles fibers are inncrvated in groups called motor units, which activate on
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Figure 2.1: Superposition of MUAP to form EMG signals
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achigving ncural signals from nervous system and generate a motor unit action poten-
tial (MUAP) The activation of MUAP from the central nervous system is repeated
continuously for as long as the muscle is required to gencratc force or action. These
MUAP from the concurrently active motor units superimpose to form the EMG signal.

A schematic representation of the gencsis of a MUAP is presented in Figure 2.1.

2.2.2 Characteristics of EMG Signal

EMG signal is stochastic in naturc. The amplitude of the EMG signal ranges from 0 to
10 mV and domunant cnergy is limited to the 0 to 500 Hz frequency range (24). EMG
signals are often affected by external and internal sources of noiscs. The EMG signal
acquired from the surface nceds to be preprocessed for accurate recording, display and

analysis.

2.2.2.1 Noises in EMG Signals

Three main sources from where noisc may cmanate arc:

Inherent noise. The electronic components used in the detection and recording of
EMG signals gencrates clectrical noise. This noisc has frequency componcents that
range from 0 Hz to sc;/cral thousand Hz which cannot be climinated. It can only be
reduced by using high quality electronic components, intelligent circuit design and con-

struction tcchniques.

Ambient noise: This noisc originates from sources of clectromagnetic radiation, such
as radio and tclevision transmission, clectrical-power wires, fluorescent lamps etc. The
surfaces of our bodics arc constantly cxposed to clectromagnetic radiation and it is
impossible to avoid this cxposurc. The dominant concern for the ambient noisc ariscs

from the 50 Hz (or 60 Hz) radiation from power sources.

Motion artifacts: Therc arc two main sources of motion artcfact: onc from the
interfacing layers between the detection surface of the clectrode and the skin; the other
from movement of the cable connecting the clectrode to the amphfier The electrical
signals of both noisc sources have most of their cnergy in the frequency range from 0
to 20 Hz.
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2.2.3 EMG signal Acquisition

It is important to use an EMG acquisition unit that provides minimal distortion and
highest signal to noisc ratio (SNR) (25). A good acquisition of thc EMG signal is a
prerequisite for good signal processing. EMG signal is casily affected by undesired signal
that come from different sources. In addition, for surface electrode instrumentation,
complicating issucs may arisc duc to its coupling with skin. Concerns such as impedance
of the skin, its superficial oil content and the density of its dcad cell laycrs arc to namc

a fow.

2.2.3.1 Requirements of EMG Acquisition

The following characteristics arc important for achicving the requirements during EMG

acquisition.

Electrode stability: When an electrode is placed on the sitc of EMG acquisition,
the detection surfaces come in contact with the clectrolytes in the clectrode. A chem-
ical reaction takes place which requires some time to stabilize. This reaction should
remain stable during EMG acquisition and should not change if the clectrical charac-

teristics of the skin change for sweating or humidity.

Input impedance: The source impedance at the interface of the skin and EMG clec-
trode ranges from scveral thousand ohms to several megohms for dry skin. To prevent
attcnuation and distortion of the acquired signal duc to the effects of source impedance,

the input impedance of the differential amplifier should be as large as possible.

Differential Amplification: In order to eliminate the noise signal, a differential
amplification is required. The signal is detected at two sites; clectronic circuitry sub-
tracts the two signals and then amplifies the difference. Any signal that is common to
both detection sites will be removed and signals that are different at the two sites will
be amplified Signals that originate far away from the detection sitcs will appcar as a
common signal, whereas signals in the immediatce vicinity of the detection surfaces will
be different and conscquently will be amplified Thus, relatively distant noise signals

will be removed and relatively local EMG signals will be amplified. The accuracy with

10
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of the functional geometry i.e the anatomical geometry that effects the functionality of
the hand (11). Functional geometry can be expressed in terms of static and dynamic
constraints. Static constraints involve dimensions, weight and joint range motions. The

dynamic constraints involve linear inter-joint angular relationships in human finger (12).

1.2 Objectives

The work presented in this thesis stems from the desire to develop a biomimetic hand
with EMG based grasp emulation. Although the use of advanced machine learning and
signal processing techniques have proved useful in EMG based prostheses; higher recog-
nition rate of grasp types based on low number of EMG channels is still a challenge.
Eventhough multifingered hand prostheses using surface EMG (1), (13) have appeared
in the market and advanced research prototypes (2), {14), (15), (16) have been devel-
oped; they are far from the human hand in terms of the functional geometry as well
as controllability. A recognition architecture for grasp types used during daily living
activities (dla) based on low number of EMG channels along with the development of a
biomimetic hand emulating the recognized grasps holds promise. The prime objectives
in this research include:

e Recognition of six grasp types (shown in Figure 1.2) involved during 70% of dla
based on two channel EMG signals - derivation of a low dimensional yet informative
and distinguishing feature vector through exploration of time domain, frequency domain

and time/ frequency domain feature sets.

Figure 1.2: Grasp types: a. Power b. Palm-up c. ook d. Oblique e. Precision and f.
Pinch. These six grasp types are significant for they are involved in 70% of dla (17)
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conductive medium, they have a higher inherent noise level. Also, these electrodes
do not have long term rcliability because their diclectric propertics arc susceptible to
change with the prescnce of perspiration. For these rcasons, they have not yet found

a significant place in electromyography. Figurc 2 2 (b) shows an active surface electrode.

Needle Electrodes: The most common invasive clectrode is the ncedle clectrode.
The concentric ncedle electrode is the most common. This monopolar configuration
contains one insulated wirc in the cannula. The tip of the wire is bare and acts as a
detection surface The bipolar configuration contains a second wire in the cannula and
provides a sccond detection surface. The two main advantages of the needle clectrode

arc:

e It has relatively small pickup arca cnabling the clectrode to detect individual

MUAPs during rclatively low force contractions.

e The electrodes may be convenicently repositioned within the muscle S0 that the

signal quality may bec improved. Figurc 2.2 (¢) shows a ncedle clectrode.

2.3 EMG Features and Classifiers

2.3.1 EMG Features

Featurcs arc the characteristic pattern representation of a signal with reduced dimen-
sionality. The goal of featurc cxtraction is to find a small number of featurcs that arc
particularly most distinguishing and informative. EMG fecaturcs arc studied in time
domain (TD) , frecquency domain (FD) and time/ frequency domain (TFD) . TD rcp-
resentation is the representation of the signal characteristics versus time. TD featurcs
identifies the attributes of the signal that characterize its temporal structure. The
representation of the signal characteristics versus frequency is the FD representation.
Frequency spectrum of any signal indicates what frequencies exist in that signal. TEFD
featurcs provides the information about both temporal and spectral characteristics of
the signal. For classification of EMG signals, a variety of featurcs has been considered;
cach featurc individually as well as a number of featurcs (in groups) in TD, FD and
TFD (25, 26).

12
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2.3 EMG Features and Classifiers

2.3.1.1 Time Domain Features

TD features based on EMG signal amplitude are the first features considered (27).
Their dircct cxtraction without the nced for mathematical transformation makes these
featurcs the best choice from a computational perspective. Typical TD features are:
mean absolute value (MAV) (27, 28), integrated absolutc value (IAV) (29), variance
(VAR) (28, 30), mcan absolutc valuc slopc (MAVS) (27), Willison amplitude (WAMP)
(30), zcro crossing (ZC) (27), slopc sign changes (SSC) (31), wavcform length (WL)
(31) and EMG histogram (32).

Square integral methods were among the first to be introduced for featurcs extrac-
tion of thc EMG signals in TD. This represents the cnergy of the signal as temporal
characteristics. However the energy in EMG signal is usuvally not cvenly distributed.
The variation of encrgy upon time actually contains the most important attribution for
muscles movements. A higher degree of muscle activity usually recruits more motors
units and conscquently releasc morc MUAP to be detected as EMG.

For instance, a burst of encrgy in EMG signal produces an intense muscle contrac-
tion and fast motion causing the EMG signal to cross a threshold value. This makes the
TD fecatures morc suitable than FD features for recal time control of prosthetic hands
for opcning and closing opcrations (33). Morcover the FD fecatures are much more
cxpensive than TD approaches in terms of computational time (34). The RMS of the
EMG signal was also used to rcpresent features for EMG classification. Ajiboye and
Weir (35) calculated the RMS of cach EMG channcl using a 64 sample window to de-
termine the signal envelop. Four subjects: two healthy and two amputees was used for
real time analysis. EMG pattern belonging to three different classes werc successfully
discriminated and the overall classification accuracy ranged from 94-99%.

On the other hand, the work donc by Shenoy ct al. (36) demonstrated the cffective-
ness of the RMS of the steady statc EMG signals in classifying between many classcs
of the arm movements. Two cxperiments were done by Shenoy’s group. In the first
experiment, the group explored the current classification based paradigms for myoelcc-
tric control to obtain high accuracy (92-98%) on an cight class off-line classification
problem. In the sccond expcriment, an on-linc control system for a four degrees of
freedom (DoF) robot was implemented giving a classification accuracy of more than

90%. This shows that TD fcatures have capability for rcal time control of prosthetic

13
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hands with lower DoF. Although pattern recognition using TD features were successful
to some cxtent, howcever it is argued in literaturc that pattern recognition results using

TD features may not provide high success rate (37).

2.3.1.2 Frequency Domain Features

Frequency domain (FD) featurcs include power spectrum (PS) |, mean and median of
signal frequencies (FMN , FMD ) (38), frequency ratio (FR) (25) etc. A fundamental
concept in the study of signals is the notion of the frequency content of a signal, i.e.
the contribution of each specific frequency in the signal. The need for the study of the
frequency contents of signals cmerged duc to the fact that the information that can not
be readily seen in the TD can be seen in the FD. FD features are more reliable and
accurate than TD features (39).

Onc of the well known techniques for discovering the frequency content of signals
is Fouricr scrics for periodic signals and Fouricr transform for apcriodic signals. The
basic idea behind Fourier analysis in general is to generate the frequency content by
decomposition of the original signal into weighted orthogonal components given by
sinusoids of specific magnitude and phases. The relative weights of the frequency com-
ponent composing the signal are considered as a major factor in determining the shape
of the signal. The magnitudes of the different frequency components are considered as
featurcs when Fourier transform is cmployed in the feature cxtraction process (40).

Many cxpcriments cxist within the literature in which the authors utilized Fouricr
transform for feature extraction from the EMG signals. Nishikawa et al. (41) developed
a discrimination system using a Neural Network (NN) for EMG control prosthesis.
The NN was uscd in the system to learn the relation between the power spectrum of
EMG signal analyzed by fast Fourier transform (FFT) and the movement desired by
the amputee. It was shown that the discrimination system with the NN was able to
discriminate seven hand movements from the EMG signals with the probability of 61%.
In another attempt, Matsumura ct al. (42) proposed a system to classify EMG signals
into seven categories of movements by employing the FET for feature extraction with
the analysis window length of 256 msec and an increment of 128 msec. The classifier
usced was a back propagation NN with an avcrage accuracy rate of 71.67%.

Although this approach is still being used in EMG control, but it is noticed that in

general the classification results when employing the FFT based features are low. An

14



2.3 EMG Features and Classifiers

example includc the work presented by Matsumura ct al. (42) in which the authors
claimed that they presented an effective approach for EMG classification by using FFT
and back propagation NN, while achicving a maximum accuracy of 87.5-89.5% which
is still far from optimal. This can be justificd by the fact that it is well cstablished
in litcraturc that the FFT is a powcrful tool to discover the frequency spectrum of a
certain class of signals i.c. stationary signals. On the other hand, the FFT is not the
optimum tool to be used with non stationary signals such as the EMG as it is unable

to localize the observed frequency components in time.

2.3.1.3 Time/ Frequency Domain Features

TD feature of a signal indicates only the temporal characteristics. FD feature indicates
the spectral characteristics of the signal. TFD features arc localized in both time and
frequency domain. Somc of the methods used in TFD arc short time Fouricer transform
(STFT) , wavclet transform (WT) and wavelet packet transform (WPT) . In STFT,
the EMG signal is mapped into frequency componcents that present within an int‘erva.l
of time. A suitable window size must be dctermined as small window will give good
time resolution but poor frequency resolution and vice versa. The partitioning ratio
of the STFT is fixed once specificd, cach cell has an identical aspect ratio. Further,
STFT analysis does not lead to high recognition rate of hand gestures based on EMG
(43). WT gives good frequency resolution and poor time resolution for low frequencics;
whereas, poor frequency resolution and good time resolution for high frequencics (44).
In EMG signals, high frequency component cxist for short duration of time whereas
low frequency component cxist for longer time (45). Thercfore, WT featurcs arc bet-
ter suited for EMG signal analysis. Wavelets forming a continuous wavelet transform
(CWT) arc subject to the uncertainty principle of Fouricr analysis (46). In contrast,
discrete wavcelet transform (DWT) provides sufficient information for analysis and syn-
thesis of the original signal, with a significant reduction in the computation time (47).
WPT is the gencralization of the WT method that allows the best adapted analysis of
the signal and cause long processing time as compared to WT (48, 49). Table 2.1 sum-
marizes some of the methods used for featurc extraction and EMG based on pattern

rccognition for upper-limb prosthesis control.
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Table 2.1: Typical EMG Recognition for Prosthesis Control

Classifier Features EMG Pattern
Recognition Rate
Bayes (18) Zero Variance 91%
Non Linear Discriminant Coeflicient of AR Model 99%
Function (50)
Fuzzy System (51) FFT Results 80-90%
Ncural Network (52) MAV, Zero Crossing 70-90%
Mchalanobis Function (53) Envclope Amplitude 90%
Fuzzy System (8) Zcro Crossing 90%
Absolute Value slope
Lincar Discriminant Auto/Cross Coorclation 96%
Analysis (49) Short Time Fourier Transform 96.5%
Wavelet Decomposition 97-98%
Wavelet packet Transform 98%
Ncural Network (54) Harmonic Wavelet Packet 95%
Transform

Howcver, the percentage obtained by cach study is subjective. It depends upon
the number of control channcls used and the number of movements to be recognized.
Englehart et al. (48, 49) investigated four channcl sSEMG signal in classifying four
types of upper limb motion by using the TFD method. In comparison with Hudgins
et al. (27) that used two sEMG channel in discriminating four types of upper limb
motion, a lower classification rate was obtained. Even though Ajiboyc and Weir (35)
also used four surface EMG channels in their study but they have a lower classification
accuracy comparcd to the work of Englehart ct al. (48, 49). This is possibly duc to
the feature used to extract the information from the EMG signal that might be not

accuratc cnough in giving the best information.

2.3.2 EMG Classifiers

For controlling a prosthetic hand with EMG signals, the user must produce different
muscle activitics that will be identificd by a systein and then translated into commands.

In most of the cases, this identification is accomplished through a classification algo-
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rithm i. e. a classifier that estimates the class of data as represented by a featurc
vector representing the original signal in reduced dimcensionality. Several classification
algorithms were cmployed for recognition of EMG signals (8, 20, 25, 55, 56). This scc-
tion review the most popular classification algorithms for EMG recognition and their
important propertics arc highlighted.

Scveral pattern rccognition algorithms have been used over the past decades to
correctly classify desired limb motions (8, 20, 25, 55, 56). Lce and Saridis (57) had
constructed a proof of concept on EMG signal pattern recognition system for real-
time control of a prosthetic arm. Early approaches in this arca involved simple single
channel signal identification and included work by Graupe (58) for EMG classification
using an autoregressive model with rcasonable success. Park and Lee (28) prescnted
a fuzzy bascd decision making system to classify six distinct motions: clbow flexion
and cxtcnsion, wrist pronation and supination and in and out humcral rotation for
six subjects. Englerhart ct al. (48) compared FD and TD mcthods to preprocess
EMG signals and introduced WPT with satisfactory results. Englerhart ct al. (49)
applicd combination of wavclet packet and principal componcent analysis (PCA) to
cxtract suitable fecaturcs from myoclectric signals to classify six classes of hand motions.
Identification of limb motion based on EMG signals have been attcmpted through
various methods including multilayer NN (49), sclf-organized maps (59) and fuzzy logic
(FL) (20).

2.3.2.1 Linear Discriminant Analysis (LDA)

The aim of LDA (also known as FIsher’s LDA) is to find the hyper-planes that separate
the data representing different classes (60, 61). LDA assumes normal distribution of
the data with cqual covariance matrices. The scparating hyper-planc is obtained by
sceking the projection that maximizes the distance between the means of the classes
and minimizes the inter-class variance. LDA classification rule is to assign an object to
the group with highest conditional probability (i. ¢. Bayc’s rule) (18). LDA classifier
is derived as the minimum error classifier for normally distributed classes with equal
covariance matrices. Assuming each group belonging to a certain class has multivariate

normal distribution and all groups have the samc covariance matrix, onc get what is
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called a lincar discriminant analysis formula that is given by:

-1 -1
1
g"«(x) = log[P(w’L)] - 5.“’1 Z ,u"L + ,U"LTZI = wzo + ’LU?:L‘

where g, represent a set of lincar functions, g, :,2 = 1,2, ..., ¢ for a ¢ class problem,
P(w,) is the probability of class, w,,u, is thc mcan of class 2 and | represent its
covariance matrix. Assuming all class covariance matrices arc the same i. e. ) =),
Wyo... and w,... are the coeflicient of the linear discriminant tunction g,.

LDA is one of the simplest linear classifiecr. Howcver, 1t is optimum only for data nor-
mal distribution with equal covariancc matrices. In some application, the assumption
of equal covariancc is reasonable because the propertics of the noisc do not change very
much from onc signal to another. However in complex non-lincar pattern recognition,
the assumption of equal covariance is not truc. Although thesc arc not optimum, the
simplicity and robustness of the linear classifier compensatc for the loss in performance

in many cascs (62).

2.3.2.2 Support Vector Machine (SVM)

The SVM is a relatively new classification technique developed by Vapnik (63). SVM
belong to the famly of kernel based classifiers. It has shown bctter performance in
a number of real world problems (64). SVM implicitly map the data into the feature

space where a dccision boundary scparates the classes that may cxist (65). If data is

Figure 2.3: SVM Classifiet with hyperplane H and margm of width 2y

lincar, a lincar kernel scparating hyper planc may be used to classify the data and is
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known as lincar SVM. Figure 2.3 illustrates this. The choscen hyperplane H separates
the two regions Q+ and -, representing the two classes of points respectively. The
dotted lines indicate the margin. Now let w be the normal to the hyperplane H. The
classifier labels a data point z as +1 or -1, based on whether (w x + b) is greater than
1 or less than -1 b is the bias term chosen to maximize the margin of the decision
boundary v while still classifying the data points corrcctly.

For the classification of non-linear and high transitional data, the formulation of
linear hyper plane is extended to build non-linear SVM kernel. Non-linear kernel trans-
forms the input data into fcaturc spacec of higher dimensions. In this high dimensional
space, data can be lincarly scparable by applying lincar SVM formulation (66). It im-
plicitly maps the data to another space, generally of much higher dimensionality, using
a kernel function It trics to find the optimal decision boundary by maximizing the
margin between the boundaries of different classes controlled through a rcgularization
constant c.

Grid search

During classification through SVM, there are two paramcters: ¢ and . The goal is
to identify good ¢ and v so that the classifier can accurately classify the testing data.
The standard method of exploring the value of ¢ and « on the two dimensional spacc is
via grid-scarch; whercin the grid points arc gencrally chosen on a logarithmic scale and
classifier accuracy is estimated for each point on the grid. There is a range of paramcter
values that yield optimal classifier performance; furthermore, these equivalent points
in paramcter space fall along a ridge in paramcter space.

The grid-scarch is straightforward but seems naive. In fact, there arc scveral ad-
vanced methods which can save computational cost, for cxample, approximating the
cross-validation ratc. However, there are two motivations why I prefer the simple grid-
scarch approach. One is that, psychologically, it may not safec to use methods which
avoid doing an cxhaustive parameter scarch by approximations or heuristics. The other
reason is that the computational time required to find good parameters by grid scarch
is not much more than that by advanced mecthods since there arc only two parameters.
Furthermorc, the grid-search can be easily parallelized because each ¢ and + is inde-
pendent. Many of advanced methods arce iterative processes, c.g. walking along a path,

which can be hard to parallchze.
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2.3.2.3 Artificial Neural Networks (ANN)

An ANN is an information processing paradigm inspired by the way of biological ner-
vous systems. It is comprised of parallel arrays of non-lincar interconnected processing
elements called neurons. An ANN is configured for a specific application like pattern
recognition through a learning process. An ANN learns as people learns by examples.
Learning in biological systcms involves adjustments to the synaptic connection that
cxist between the biological neurons. This is truc for ANN as well (67). Multilayer
perceptron neural network (MLP) trained with back propagation algorithm is the most
well known paradigm of ANN employed in the classification of EMG signals (68). It is
suitable structurcs for non-lincarly scparable input data. In an MLP modcl, the neu-
rons are organized in the form of layers. Neurons in a iaycr get input from the previous
layer and feed their output to the next layer. In this type of networks, connections to
the neurons in the same or previous layers are not permitted. The back propagation
training algorithm is an intcractive gradicnt algorithm dcsign to minimize the mean
square error between the actual output of a MLP and the desired output (69) done by
modifying the connection weights between the layers.

The MLP is onc of the first classifiers that proved cffective for EMG based control
(70). The MLP structurc is usually determined by trial and crror, as the most appro-
priate number of hidden layers and the number of neurons per layer vary from problem
to problem. Englehart et al. (48) proved that despite the fact that the MLP enjoys an
advantage over LDA of being dapablc of prescribing non-lincar class boundarics, but
the LDA performance was shown to out performs that of MLP when dealing with EMG
features (38).

2.3.2.4 Fuzzy Logic (FL)

In recent years, FL proved to bring new possibilitics in the biomedical signal analysis
problems. Several studies were found in the literature on the application of FL based
algorithm for EMG based control (71), most of which reported to achieved much better
results than thosc achicved by conventional methods (50, 72). Fuzzy clustering methods
like the fuzzy c-mcans algorithm (8) and the ISO-FUZ (51) methods were utilized
in different ways in EMG recognition problems as classifiers and in both cases they

achicved good accuracics, depending on the complexity of the problem. The work
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done by Chen ct al (71) came with better result than that achicved by Hudgins ct
al. (27) whilc using fuzzy clustering techniques on the same data sct. The Fuzzy c-
means clustering was also utilized with features extracted by the WT and projected
with independent component analysis reporting a promising performance (73). But
application of FL for EMG bascd control has some limitations like: the output in FL
is not binary, 1t classifies data pomnts from the continuous variable domain; it is quite
arbitrary to determine a number of fuzzy scts, cclationship among different rules that
should be donc a-priori is unclear as well as the design and computing algorithm can
be hard to follow (74).

2.3.2.5 k Nearest Neighbour Classifier (kiNIN)

The kNN classifier is a quite trivial, where it simply memorizcs ‘the training data. All
the work is done by the classifier at run-time. Given a new instance, z to be classified,
the classifier finds the k-tramning cxamples that are most similar to z, and looks at
their labels. Whichever labels occurs most frequently among the k nearcst neighbours;
is choscn as the predicted label for x Loote et al (75) reported that kNN algorithms
are not very popular in the EMG classification problem probably becausc they arc
known to be very scnsitive to the course of dimensionality, which madc them fail in

several EMG classification experiments (76).

Another two important aspects related to the classification of EMG signals along with
the featurc sets and classification algorithms are dimensionality reduction of features

and cross validation of the classification results

Dimensionality Reduction of Features

The dimensionality reduction of featurc sets as well as deriving a featurc vector with
uncorrelated featurc components is often necessary for increasing classification perfor-
mance. This process should preserve as much of the relevant information as possible
while reducing the number of dimcnsions. The two main strategies of dimensionality

reduction arc fcature selection and featurc projection.

Featurc Projection. This method, instcad of scarching the best subsct of fecatures (v),

tries to dectcrmine the best combination of the original features (V) to form a new
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feature set (Z), generally smaller than the original one. Moreover, if the map f: V —
Z is linear, finding the coefficients of this projection could be quit¢ a fast and simple
process. PCA or Singular Value Decomposition provides a linear map from the original
set of variables into a reduced-dimensional set of uncorrelated variables (the principal
componcents); minimizing the mean-squarc crror between the original feature set and
the projected one. The transformed variables arc ranked according to their variance,

thereby reflecting a decreasing effectiveness in representing the original set of variables.

Featurc Sclection: In this casc, the best subsct z € Z C RY of the original featurc
sct v e VC RM is chosen according to some criteria for judging whether one subsct
is better than another. The ideal criterion for classification should be the minimiza-
tion of the pr?)bability of misclassification, but generally simpler criteria based on the
ability to distinguish classcs arc chosen. In general, feature sclection methods use class
membership to determine discriminant power. As the original identity of the features

is maintained, the utility of each individual feature is known.

Cross-validation

Cross-validation is a statistical method of evaluating and comparing learning algo-
rithms by dividing data into two segments: one used to learn or train a model and
the other used to test the model. In typical cross-validation, the training and test-
ing sets must cross-over in successive rounds such that each data point has a chance
of being tested. The basic form of cross-validation is k-fold cross-validation. In k-
fold cross-validation, the data is first partitioned into k equally or nearly equally sized
folds. Subscquently k itcrations of training and testing are performed such that within
each iteration a different fold of the data is held-out for testing while the remain-
ing k-1 folds are used for learning. Kohavi (77) compared several approaches to esti-
mate accuracy: cross-validation (including regular cross-validation, leave-one-out cross-
validation, stratified cross-validation) and bootstrap (sample with replacement), and
recommended 10-fold cross-validation as the best model selection method, as it tends
to provide less biased estimation of the accuracy. In 10-fold cross validation, data arc
divided into ten subsets. Nine out of ten subsets are used for training and the re-
maining one subset is used for testing. This procedure is then repeated for ten times,

using a different subsets for testing in each case. The ten test performances obtained
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are averaged and the average test performance is declared as the estimate of the true

generalized performance of the classifier.

2.4 EMG based Grasp Classification

2.4.1 State of Art

Even though a number of classification and pattern recognition techniques of EMG
signals for hand gestures (55, 56) and robotic control (8) has been reported, discrimi-
nating grasping operations is still an open problem. Elliott (78) appear to be the first
to work on classification of grasp types bascd on EMG signals. This work proposcd
four featurc cxtraction techniques: Envclope Maxima, Legendre Polynomials, Haar
wavelets, EMG histogram for classification of six grasp types: small cylinder, large
cylinder, small sphcre, large sphere, small disk and key grasps. Among these, EMG
histogram bascd fecaturc cxtraction produced maximum classification ratc of 81%. The
reported results were based on four channel EMG signals and are subject dependent.
Ferguson and Dunlop (43) arc among the pioncer to report the classification of grasp
typcs based on EMG signals. They have developed a system for identification of grasp
types based on muscle movements. Four clectrodes were placed on extensor muscles
of the forcarm. Four grasp types: cylindrical, spherical, pinch and key were under
study. The feature set and the classifiers vary from subject to subject. Features used
include FFT, Autorcgressive modclling, wavelet decomposition, deconvolution analyses
followed by the classifier based on neural network and Mahalanobis classifier. Mcan
value of the success rates was around 75-80%. Martelloni et al. (79) have performed
the classification of three grasp types: cylindrical, spherical and kcy grasps based EMG
signals. The classification was using MAV of EMG signals through SVM. The reported
result was for a limited group of subjects; only three with a recognition rate of 84-93%
based on cight EMG channecls.

More recently, Castellini et al. (22) have reported classification of only three distinct
types of grasps. index precision grasp, other fingers precision grasp and power grasp
bascd on ten surface clectrodes with a recognition rate of 90%. Castellini et al. (80) has
shown the classification of two grasp types. precision and power based on scven channel
EMG signals. The classification was using TD features through SVM. The results

reports classification of the grasp types with cross-subject analysis. The cxperimental
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results showed a classification of 97% in the baseline condition i.e. while the subject
would keep her/his arm still and relaxed on a table and was asked to grasp and 95% in
the dla condition. More recently, Liarokapis et al. (81) have reported the classification
of three grasp types used during dla based on 16-number of EMG channels. Six classifier
performances arc cvaluated and Liarokapis ¢t al. (81) reported highest recognition rate

of 99% for Random Forest classifier.

2.4.2 Limitations

From the review on recognition of grasp types based on EMG signals, it can be seen
that the results reported by the Elliott (78) et al. is limited to a recognition rate of
81% only. Further, both Ferguson’s and Martelloni’s results are subject dependent as
well as the recognition rates are low. Both of their experiments involve higher number
of EMG channels for lower number of grasp types recognition. Although recent results
by Castellini ct al. (22) and Liarokapis ct al. (81) have shown highcer recognition rates,
their results are limited to a fewer number of grasp types. Castellini et al. results are
based on ten number of EMG channels and that of Liarokapis et al. on 16-number of

EMG channcls; which arc significantly higher.

2.4.3 Focus of our Work

It has been seen that a serious effort for classification of grasp types based on EMG
signals have been done by the researchers for last two decadcs. Grasp recognition
is an important step for anthropomorphic movement control of extreme upper limb
prosthesis. Furthermore, the goal should be towards higher recognition rate based on
lower EMG channel for more number.of grasp types used during dla. Therefore, an
EMG based grasps classification architecture based on lower number of EMG channels
with higher recognition rates holds promise. In this line, this research concentrated on
the derivation of a low dimensional yet informative and distinguishing feature set for
classification of six grasp types used during 70% of dla based on two channels EMG
signals.
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2.5 Review of Prosthetic Hands

This scction reviews the current status of the prosthetic hand development covering
their function, mechanical structurc and control mechanisms. A brief history and com-
mercially available prosthetic hands arc also included in this chapter. An introductory

explanation of the human hand and physiology is also included.

2.5.1 Human Hand

The human hand is a complex anatomical structure consisting of bones, muscles, ten-
dons, skin and thc complex relationships between them. It consists of five digits: four
fingers and one thumb. Each finger constitutes of three interlinking segments: proximal,
intermediate and distal phalanges. Thumb is made up of only the proximal and distal
phalanges. The first phalanx is connected to the metacarpal bone. The metacarpal
bones constitute the palm and are connected to the carpal bones. Movements of carpal
bones allow the hand to rotate with respect to the arm. The joints on the finger
arc named: distal interphalangeal (DIP), proximal interphalangeal (PIP), metacarpo
phalangeal (MCP) joints. Figurc 2.4 shows the bones and joints of the hand.

Each joint is characterized by the gcometry of the contacting surfaces and by a joint

range of movement (RoM) as illustrated in Table 2.2.

Table 2.2: Finger joint range of motion of human hand (in degrees) (83)

Thumb Index Middle Ring Little
MCP (Abduction | 0to 90 | -30 to 30 | -20 to 20 | -30 to 30 | -30 to 30
/ Adduction)
MCP Flexion 0 to 100 | -30 to 90 | -30 to 90 | -30 to 90 | -30 to 90
PIP Flexion 0to110 | O0to 110 | O to 110 | 0 to 110
DIP Flexion 0to90 | 0to 70 0to 70 0to 70 0to 70

Each finger can move in the frontal plane to go closer to the medial axis (adduction);
can move far from the medial axis (abduction); can flex and extend in sagital plane
(plane at right anglcs to the frontal planc) at each of the joints. Each digit (except the
thumb) has three flexion/extension and onc abduction/adduction DoF. Thumb is able

to move in opposition with other fingers along with abduction and adduction. Thumb
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Figure 2.4: (a) Bones and (b) Joints of Human Hand (Figure is adapted from (82) )

is missing one joint therefore have two flexion/extension DoF. This makcs a total of (4
x 4 + 3) = 19 DoF excluding the wrist. The wrist has three rotational DoF, hence the
human hand have 22 DoF in total. These fingers and DoF's are selectively used during
different grasping operations. The forearm muscles are connccted to the bones via the
tendons which act as transmission media for actuation of the fingers (84). Figure 2.5
shows the muscles on exterem upper limb of the human hand.

According to the grasp to be formed, the ncuromuscular signals gencrates the EMG
signals for actuation of the muscles. These EMG signals carrics the information about
the grasp type to be performed by the amputces and can be used to identify it. Using
the EMG signals to dircct the prototype for emulating the attempted grasp gives a
natural fecling of control.

The constraints of the human hand are categorized as static and dynamic con-
straints. Static constraints includes dimensions of the hand, finger phalanges and palm,
finger joint RoM and DoF. The linear inter-joint angular relationships in human finger
arc cxpresscd as dynamic constraints and results in a natural curling motion of the

fingers (12). These are defined as follows:
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Figure 2.5: Muscles on Extreme Upper Limb (Figure is adapted from (82) )
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2.5.1.1 Human Hand Grasping

T'ype of grasp is the interface between a person’s hand and the object being handled.
For activities such as lifting, lowering, carrying, pushing and pulling etc., different type
of grasp is required. Different studies have reported a number of basic grasp types.
Studies on the number of possible grasps have resulted in different categorizations

based on different parameters such as:
e Grasp appearance (85)
e Contact area involved (86)

e Functions (87)
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Taylor and Schwartz (85) have defined six grasp types: Cylindrical, fingertip, hook,
palm up, spherical and latcral based on the shape of the grasps. According to Napier
(86), grasps are classified as power and precision. When people usc objects in cveryday
tasks, the choice of grasp is dictated less by the sizc and shapc of the objects than by
the task thcy want to accomplish. Even during the course of a single task with a single
object, the hand adopts different grasp types. An extensive list of grasp typcs based
on the functions to be performed during dla is available in (87). This allows onc to
understand the rclationship between the task requirements and the grasping solutions
adopted to mect thosc requircments. Heumer ct al. (88) identified six different grasp
types, whereas Fiex et al. (89) has a classification that identifies seventeen grasp types.
In this thesis, six grasp types: power, palm-up, hook, oblique, precision and pinch
as shown in Figurc 1.2 were considered. Power grasp involves having larger contact arca
between the palm and the fingers of the hand with the grasped objeccts. Power grasp is
mostly used in situations where an object necds to be grasped with stability. Holding
an object like a book or a plate on the palm without curling the fingers forms a palm-
up grasp. This grasp is mostly uscd during lifting or pushing an object. Hook grasp
involves holding the objects within the hollow formed by the thumb, palm and the other
fingers. The oblique grasp differs from the hook in the sense that the thumb supports
the object in lateral to the other fingers instead of in opposition in the casc of hook
grasp. Holding an object with the thumb, index and middle finger having contact of
the object with the distal and middle phalanges forms the precision grasps. Grasp like
holding a pen or pencil with the fingertip of the index, middle and thumb lcads to the
formation of the pinch grasp. The powcr, palm-up, oblique and hook are concentrated
morc towards the stability during the grasping while the pinch and precision focus
morc on the sensitivity and dexterity. These six grasp types are significant for they
are involved in 70% of dla (17). These grasp types has been explored for classification
using surface EMG and the Prototype 1.0 is devcloped to exccute the above grasps.

2.5.2 Prosthetic Hands: State of Art

Prosthetic hands arc designed to provide a replaccment for upper limb amputees and arc
mainly categorized as passive and functional types. A passive prosthesis is a cosmetic

type where it just provides visual replacement of the amputation, while the functional
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prostheses are used to mimic the function of a natural hand. The functional type can

be divided into two catcgorics: body powcred and externally powered.

2.5.2.1 Brief History of Prosthetic Hands

Prosthetic hands have been found centuries ago with the main aim to provide the
amputces with a replacement of their natural arm. It had been found as carly as 330
BC on an Egyptian mummy; which was a cosmetic hand prosthesis (90). In the 15
century, passive hand prosthescs were developed and used for several decades. Passive
prosthetic hands involve a moveable thumb only or by using knob activation to lock
the thumb and fingers configuration to select the chosen position (90).

The beginning of 19%* century showed the start of actively operated prosthescs.
These prosthesis arc called body powered; where a harncss is tied to the shoulder
and connccted to device via a cable. When the user moves the shoulder, the cable is
tightened and causc the device to open and close. Count of Beaufort from France had
designed a body powcred prosthesis back in 1860 wherc the hand was made of wood
and the moveable thumb was controlled by a cable connected to a shoulder girdle (90).

World War I had causcd a large number of amputecs. The development and usc
of the body powcred prostheses were boosted during this time. Plastic materials were
introduced into prosthetics after the World War IT and further development on the
body powcred prostheses continued with gradual growth.

Extcrnal powcred prosthescs were introduced at the end of 19 century and can
be divided two types: pncumatically and electrically powered. Pneumatically pow-
ered used carbon dioxide to power up the prostheses while clectrically powered used
rechargeable batterics. Howcever, the pncumatically powered device was not practical
as it was noisy and more difficult to operate. Later, EMG based prosthcscs had been
introduced wherc an electrical signals is generated with the muscle contraction to con-
trol the prosthetic device. When a skeletal muscles contracts, small voltages can be
detected on the skin surface which are amplified and conditioned to opcrate an clce-
trically powered prosthesis. It has been reported that the EMG controlled prosthetic
hand was first proposed and built by Reiter in 1948. By end 70’s, the EMG controlled

prosthctic hands became popular in the arca if rchabilitation robotics (90).
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2.5.2.2 Commercially Available Prosthetic Hands

i-Limb: The prosthetic hand i-Limb by Touch Bionics is a five fingered hand. All
fingers are identical and consists of two phalanxes: the proximal and intermediate one;
the distal phalanx is actually fused in a fixed position with the intermediate phalanx.
The thumb is identical to the other fingers and is fixed on a passive joint that allows to
move it in opposition to other fingers. Each finger is actuated by an independent direct
current (DC) motor placed in the palm. Motion is transmitted to the finger by means
of a rigid transmission based on a toothed belt. The hand is meant to be used by mono
lateral amputees in order to perform a grasp. The subject should use healthy hand to
rotate the thumb and send an EMG closing command. At this point all fingers start
to move towards the palm and independently stop until a force level is reached. The

hand can perform pinch, power and lateral grasps (1). Figure 2.6 shows the i-Limb.

Figure 2.6: The i-Limb Hand (From (1)).

This hand is the first to market prosthetic device with five individually powered
digits. The finger kinematics is fixed; the dynamic relationship between MCP and PIP
joint angle, while the finger is moving is fixed. The independent actuation, results in
a short of compliant grasp since each finger effectively flex when the object has been
gripped and high number of contact points between hand and object is present. The
hand is covered by a soft cosmetic glove, that mimics the natural skin and improved
compliance.

There is no scientific literature or available information regarding the sensory system

of the hand, from the analysis of the mechanical design (where no structurally integrated
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sensors are placed in the fingers), and from viewing the available material from the
company wcbsite, it is rcasonable to think that only scnsors available, arc rclated to the
DC motors and could be both encoders and current sensors. The desired finger speed
is controlled through instantancous EMG signal amplitude of the muscle cmployed
for closing In this manner, all fingers close until there is muscle activity but thosc
fingers that get in contact with the object before the others, incvitably start gripping
until their motor current becomes higher than the limit value. In the sccond case,
the desired torque proportional to the DC motor current is proportional to the EMG
signal amplitude, the fingers move with fixed velocity and stop when the torque value
is rcached

Even though EMG controlled prosthetic devices have gained increasingly impor-
tancc, the scarch for somcthing better has continued to achicve human like functionality

and controllability.

2.5.2.3 Research Prototypes of Prosthetic Hands

MANUS Hand: Among the rescarch prototypes, MANUS hand was developed with
cnhanced mobility so that the basic grasping modes i.c. hook, precision, cylindrical,
power, tip and lateral grasp of human hand could be recached. MANUS hand posscsses
threce DoF. The other joints arc coupled to the driven ones by underactuated mecha-
nisms. It possess five fingers and the resulting prototype is approximatcly 20% larger
than an average human hand. It weights around 1200 gram; which is morc than twice
than that of a human hand. It could achieved a maximum grasping forcc of 60 Newton
(N) was obtamned at the fingertip (2).

MANUS Hand proposcs a prosthesis having 10 joints of which three arc independently
driven and others are coupled to the driven ones through different types of mechanisms.

Three independent mechanisms can be found in the MANUS Hand prototype:
¢ The index/ middle mechanism coupling six DoFs
e The thumb mechanism coupling three DoFs
¢ The wrist mechanism

In addiction to the active joints, bendable joints have been included in the fourth and

fifth fingers, using a martensitic structure so they can be placed manually in a position
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and assist the index and middle fingers. The index and middle fingers are actuated by
means of one single brush-less DC motor and the MCP joints of the two fingers are

linked. Figure 2.7 shows the Manus hand. The force and position sensors are distributed

Figure 2.7: The Manus Hand (From (2)).

in the hand. Both kinds of sensors were specifically designed from Hall effect pick-ups.
Position sensors were developed by placing a permanent magnet opposite to the Hall
effect sensor. In between, a cam made of ferromagnetic steel modifies the reluctance
of the magnetic circuit resulting in a linear relation between cam rotation and output
voltage. The force sensors are embedded in the finger tips and are also based on Hall
effect pick-ups. In this case, the permanent magnet is spring mounted and the resulting
magnetic field at the Hall effect sensor location results in a linear relationship between
force exerted and output voltage.

The control arcitecture of MANUS Hand comprises a host microcontroller (master)
and three local microcontrollers (slaves). Each local controller is in charge of the active
compliance control of each active joint. The host controller is also in charge of the
EMG command decoding. The digit specific control scheme is through an impedance
control that allow the fingers to behave as virtual springs. For every grasping mode,

the finger performance is determined by a set of desired positions and finger stiffness.
Southampton Hand: It is a five fingered hand, actuated through six electrical mo-

tors. Two of them are used to actuate the flexion/ extension and rotation of the thumb

while the remaining four motors are assigned to individual finger flexion/ extension.
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2.5 Review of Prosthetic Hands

Each finger is made from six bar linkages, which when flexed or extended, curl in an
anthropomorphic trajectory. It possesses six Dol with with 14 joints in it. The hand
weights around 520 gram including the actuation system which is close to that of a
human hand. The grasping force at the end of each fingertip is 9 N. Figure 2.8 shows

the Southampton hand.

Figure 2.8: The Southampton Hand (From (3)).

Each finger is equipped with an array of film sensors which can be used to monitor
the force exerted by the finger as well as to detect the onset of object slip and measure
temperature. These are located on a cantilever type structure placed on the distal
phalanx of each finger. The array consist of three different types of sensor included upon
the fingertip cantilever: static force sensors, dynamic force sensors and temperature
Sensors.

Southampton hand is controlled through sEMG signals in the conventional two site
manner while a microprocessor and sensor system provide feedback for the prosthesis
to self regulate prehensile movement and grip force. It is the hierarchical control phi-
losophy, the Southampton Adaptive Manipulation Scheme (SAMS) that co-ordinates
the different DoF to achieve a stable grip. It attempts to minimize the contact force

between the hand and object by maximizing the contact between them. The controller
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2.5 Review of Prosthetic Hands

achieves this by selecting between the different possible grips by detecting the object
with sensors on the surface of the fingers and then adopting the most appropriate pos-
ture and applying the lightest possible touch. If the object slips, this is detected and
the hand automatically increases the grip force until the sliding stops. Consequently
the operator only needs to make the strategic decisions and the rest of the control is

devolved to the microprocessor (3).

DLR Hand - II: In 1997, DLR developed one of the first articulated hands with
completely integrated actuators and electronics (91). Due to the maintenance prob-
lems with Hand-I and in order to reduce weight and production cost, the fingers and
base joints of Hand-11 were realized as an open skeleton structure. The open structure
is covered by four semi-shells and fingertip housing realized in stereolitography and vac-
uum mold. This enables to test the influence of different shapes of the outer surfaces
on the grasping tasks without redesigning finger parts. Figure 2.9 shows the DLR-II

hand.

Figure 2.9: The DLR-II Hand (From (3)).

The three independent joints of each finger are equipped with appropriate actuators.
The actuation systems essentially consist of brushless DC motors, tooth belts, harmonic
drive gears and bevel gears in the base zone. The configuration differs between the
different joints. The base joint with its 2 DoF is of differential bevel gear type, the

harmonic drive gears for geometric reasons being directly coupled to the motors. The
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differential type of joint allows to use the full power of the two actuators for flexion
or cxtension. Since this is the motion where most of the available torque has to be
applied, it allows to usc the torque of both actuators jointly for most of the time. The
actuation system in the medial joint is designed to mect the conditions in the basc
joints when the finger is in stretched position and can apply a forcc of upto 10 Newton
on the fingertip.

Each joint in the hand is equipped with strain gaugc basc joint torque scnsors and
specially designed potentiometers bascd on conductive plastics. Besides the torque sen-
sors in each joint, each fingertip is equipped with six dimensional force torque scnsors.
Salisburry (92) implemented cartesian stiffness control by using fingertip force sensors.
The stiffness control scheme has the disadvantage of not being able to activcly control
the complete system dynamices, specifically the system damping parameter. When the
hand performs any fine manipulation, there is always need that the fingertip should be
soft in the direction normal to the contact surface and hard tangential to the contact
surface. Therefore the impcdancc should be adaptable to the orientation of the fin-
gertip. Therefore a cartesian impedance controller has been build. In steady state, all
mcasurcd and desired velocity and acccleration valucs arc zero. This induces that the
value of the steady state torque is stiffness multiplied by the steady state deformation

and the fingertip behaves like a programmable spring.

RTR-IT Hand: In 2002, the Scuola Superiorc Sant’ Anna, Italy has been working
in this field for almost two decades firstly providing the MARCUS hand (93) and then
proposed a novel three articulated fingered, under-actuated prosthetic hand named
RTR-II (4). The hand has been developed with the aim of replicating the natural fin-
gers movement, and allowing different prehensile patterns: precision, power and lateral
grasp. The hand has three fingers: middle, index and the thumb. Sincc the under-
actuated mechanisms based on Soft gripper proposed by S. Hirose (94), have been
applied to both fingers and thumb, these are able to automatically wrap around the
objects. Figure 2.10 shows the RTR-II hand.

Two DC motors, located in the carbon fibre palm structure, actuate the 9 DoF's
hand: one motor is applicd for the thumb opposition movement, the other for the
contemporary flexion of all fingers The index and middle fingers arc connected to

the motors by means of an adaptive grasp mechanism based on a linear slider and

35



2.5 Review of Prosthetic Hands

Figure 2.10: The RTR-1I Hand (From (4)).

two compression springs, the slider is connected to the motor through a lead/ screw
transmission. In order to reduce the number of actuators and to perform an adaptive
grasp between the fingers, a differential grasp system based on compression springs and
a linear slider has been designed.

The RTR 1II is provided with position sensors for the thumb opposition and the
flexion/ extension slider. A cable tension sensor on the cable that drives the index
finger and a force sensor on the tip of the thumb were used. Both the slider position
sensor and the thumb position sensor are based on Hall effect sensor. The Hand is
provided with a hierarchical control architecture composed of a top level control module
(TCM), a low level control module (LCM) and a sensory processing module (SPM).
Core of the system is the LCM that deals both with sensory triggers detected by the
SPM and with high level commands generated by the TCM based on user intensions.

2.5.2.4 Limitations

Although the prosthetic hands discussed above are closer to the natural counterpart in
terms of geometry, they deviate from the human hand in terms of dynamic constraints,
joint range of motion, number of joints, number of fingers, weight ete. A detailed
comparison of all the static and dynamic constrains are presented in Chapter 6. Further,
the control through EMG signals is non-intuitive.

The MANUS Hand is controlled via EMG signals from of the residual muscle of
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the user. In this technique, signal muscle EMG signal is used to generate the grasping
commands. In order to do this, a command language comprising of three bits has been
developed based on the EMG signal amplitude. Each bit has defined three bit levels.
Accordingly, an input comprise of three muscle contraction to generatc threc EMG
levels and 27 commands. However no information relevant to the pattern recognition
has been published authors (95). The opening and closing of the Southampton Hand
is being controlled through two site switch mechanism activated by EMG signals. No
EMG basced control was available originally for the DLR Hand-II. The control of the
hand and the fingers was done through an external computer. Latcr, Castcllini ct al.
(80) proposed scven channel EMG based control for the Hand. Following the proposed
method, DLR Hand-1I can perform precision and power grasps. The RTR-II Hand can
perform grasping task limited to only opening and closing by mcans of EMG signals
generated by two antagonist muscles of forcarm.

Thercfore, the devclopment of a biomimetic hand replicating the human hand in
form and function is of importance so that the user can fell it as if it were a natural
part of the body. Furthermore, it requires a more intuitive control method through

proper pattcrn rccognition.

2.5.2.5 Focus of our Work

The work presented in this thesis focus on the development of a prosthetic hand pro-
totypc following a biomimetic approach. The aim is to harmonizc both physical and
functional aspects to mimic the human hand satisfying the static and dynamic con-
straints. The prototype is to be controlled morc intuitively for performing six grasp
types used during 70% of dla. The control is through rccognition of six grasp typcs
based on two channcl EMG signals. The cmphasis is on following the human finger

joint trajectorics by the prototype finger joints during the emulation of six grasp types.

2.6 Summary

In this chapter, a background on the basic concepts related to EMG and its acquisition
is discussed. The chapter reviews the TD, FD and TFD fcatures for recognition of
EMG patterns. The limitations cxhibited by the features in different domains were

also mentioned. The pattern recognition algorithms contributing towards EMG pattern
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recognition and their shortcomings were also reviewed. This review emphasizes that
the recognition of grasp typcs to be emulated by a prosthetic hand holds promise.
Towards the end of the chapter, current prosthetic hands; both commercial variants
and research prototypes were discussed. The focus of the thesis in order to minimize

the gaps between the state of art and a prosthesis to be used during dla is mentioned.

38



3

EMG based Grasps Recognition:
Initial Results

Upper limb prosthesis and their control mterfaces have changed in the past four
decades. Most of the prosthesis developed carlier would be inappropriate due to their
non-anthropomorphic actuation. EMG implics the interpretation of the brain’s activ-
ity to contract a muscle or a group of muscles; and extreme upper limb amputees can
gencratc EMG from residual forcarm muscles similar to the healthy subject (8). Grasp
rccognition bascd on EMG signals holds promisc.

This chapter presents three grasp recognition architectures based on EMG signals.
It starts with the materials and methods for acquisition of EMG signals generated
during grasping opcrations. Six grasp types usced during 70% of dla (as detailed in
Chapter 1) have been investigated. Higher grasp recognition rate based on lower num-
ber of EMG channcls for higher number of grasp types is a challenge; further, major
difficulties (are detailed in section 2.2 3) are attenuation and distortion due to the
effects of input impedance, mmherent EMG noises, electrode stability ctc. The grasp
recognition architecturcs in this Chapter investigates the recognition of six grasp types
as detailed in Chapter 1 based on two channel EMG.

With a sct of computationally less complex features: bascline zcro crossing, turning
points (96, Chapter 8) and Fast Fouricr Transform (FFT) phasc angle (97), grasp
recognition architecturc-I 1s a two tier classifier comprising of lincar kernel Support
Vector Machine (SVM) followed by a FFT classifier. Classification with lincar kernel

SVM and FFT classifier is computationally less time consuming and less complex (65,
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97). Architecture-I yields an average recognition rate of 77% (98), which is low vis-a-
vis the results reported in literature (22). Following the advantages of TEFD features
over TD and FD features as stated in Chapter 2, grasp recognition architecture-II
has reported a recognition rate of 80% using continuous wavelet transform (CWT)
coefficients and 84% using Discrete Wavelet Transform (DWT) as the fcaturc set (99);
and Radial Basis Function (RBF) kernel SVM as the classifier.- In grasp recognition
architecture-III, sum of DWT coefficients has been established as a primal feature for

classification of grasp types with an average recognition rate of 86% (100).

3.1 Materials and Methods

3.1.1 Subjects and Experiment

Eighty subjects (sixty male and twenty female) in the age group of 20 to 45 years,
without any known history of ncuromuscular disorder took part in the cxperiment.
The study used healthy subjects and relied on the fact that amputees who have lost
their hand are able to generate EMG signals from the forearm muscles that are very
similar to that generated by healthy subjects (8). The acquisition of EMG signals from
the subjects was after the administrative permission from the Tezpur University Ethics

Committee.

3.1.1.1 Experimental Protocol

EMG signals were acquired continuously from the state of pre-shape initiation by the
user for the six grasp types. We categorized six types of macro stages as cnumerated be-

low (MO to M5) during the process of grasping. These stages are along the lines of (101).

MO: Rest position: The starting point of the grasp preparation. Fingers stay at rest in
half closed arrangement. They are motionless.

M1. Grasp preparation: Fingers arc opening or closing taking the posturc depending
on the type of grasp to be performed.

M2. Grasp Closing: Precedes the grasp. The fingers move taking the posture depend-
ing on the size of the object to be grasped.

M3. Grasping: The fingers squeeze the object with a force dependant on the knowledge

and observed behavior of the object.
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M4. Mamntaining the Grasp: With force adjustment, fingers decrcasc or incrcasc the
squeeze depending on the object deformation and slip.

M5. Recleasing the Grasp and returning to Rest: Fingers slowly reduce squceze and
return to half close position of rest.

A period of around 40 scconds was allowed between two consccutive grasps during signal
collection. This is in order to mect the featurcs of robotic rehabilitation interventions
(102).

3.2 EMG Acquisition and Preprocessing

3.2.1 EMG Acquisition

At the start of the experiment, subjects were given a demonstration towards main-
taining fingers at rest position and how to perform the six grasping opcrations. Prior
to the recording, the participants were cncouraged to familiarize themsclves with the
experimental protocol and with the EMG acquisition equipment. Each subject was
asked to rest the right arm on the arm rest of the chair with the fingers in a half closed
statc in horizontal dircction. The skin where clectrodes arc to be placed was moistencd
using an electrode gel. Ag/AgCl clectrodes arc used over 80% of surface EMG appli-
cations (103, chapter 8: p 299) and are superior than other surface clectrodes because
they arc non-polarized in nature (104). Table 3 1 shows the placement of the Ag/AgCl
clectrodes over the forcarm muscles and their respective functions. This follows the
clectrodc placement discussed in (8), without following any optimization algorithm for
it. Figure 3.1 shows thc muscles for placement of clectrodes on a subject’s forearm.
The clectrodes were placed such that the longitudinal axes of the clectrodes were
parallcl to the longitudinal axis of the muscle (101). A total of (80 subjects x 6 grasp
types) = 480 two channcl EMG signals were acquired. In most previous works, morc
than two numbcer of EMG channel have been uscd for patterns rccognition (8, 79).
However, users suffer from the inconvenience of carrying many cabled clectrodes (105).
This fact is most obvious while using prosthesis. Further, more number of channcls
includes increased processing as well as cost of the system. Based on these facts,
two channcl EMG signals have been used in this experiment. Figure 3.2 shows the

experimental sct-up during EMG acquisition
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Table 3.1: Placement of EMG Electrode
Electrode | Electrode Specific Muscle Functions (82)
Number Leads
Electrodel | Leadll | Extensor Digitorum Extension of proximal,
middle and distal phalanges

of fingers

Lead12 Flexor Digitorum Flexion of proximal,
middle distal phalanges

of fingers and wrist

Electrode2 | Lead21 Flexor Carpi Flexion-Extension and
Ulnaris abduction-adduction of
the wrist
Lead22 Extensor Carpi Abduction of the wrist
Radialis Longus and flexion-extension of
the palm

Extensor Carpi
Radialis Longus
Muscle

(a) (b)

Figure 3.1: Electrode placement on the Forearm Muscles with (a) anterior view and (b)
posterior view. Longitudinal axes of the electrodes are placed in line with the longitudinal

axes of the corresponding muscles.
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Ag-AgCl Surface Electrode EMG Acquisition (Hook Grasp)
-

EMG Unit 4/25 T EMG Acquisition (Precision Grasp)

Figure 3.2: Experimental Set-up during Acquisition of EMG Signals

3.2.2 EMG Preprocessing

The raw EMG signals obtained for six grasp types needs to be prepocessed for accurate
record, display and analysis. After the signal acquisition, EMG signals were filtered

using a band pass filter; consisting of a high pass filter to reduce motion artefacts
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3.3 Grasp Recognition Architecture-I

and a low pass filter to reduce base line drift. The signal is next amplified with an
instrumentation amplifier of high common mode rejection ratio (CMRR) of 110 dB.
Also a notch filter is incorporated to eliminate power line noise. This is performed using
the bio-amplifier ML4818 in AD Instrument’s Power Lab 4/25T EMG unit with the
specification settings as detailed in Table 3.2. The EMG signal obtained after filtration
and amplification is called integrated electromyogram (IEMG) signal. Even though the
term integrated EMG refers to amplified and filtered signal including rectification,; it is
used in this research to refer to the preprocessed EMG signal only; without rectification.
The preprocessed IEMG signal was digitized at a sampling ratc of 10 kHz. Two channcl
EMG signals were recorded for a period of 250 msec. This is to meet the rcal time
constraint that the response time of myoelectric control system should be less than 300
mscc (106). The collected IEMG signals from one subject for the six grasp types arc
shown in Figurc I:1 through Figurc I:6 in Appendix-L.

Table 3.2: Bio-amplifier specification settings during EMG Acquisition

Parameter Value
CMRR 110 dB

Low pass cutoff 2 kHz
High pass cutoff .| 10 Hz
Notch filter cutoff 50 Hz
Amplification range | +/-5 V

3.3 Grasp Recognition Architecture-I

Figure 3.3 shows the schematic diagram of the grasp recognition architecture-1. The
fundamental blocks are thc EMG Unit, Featurc Extraction Unit and the Classifier
Unit. The preprocessing in the EMG Unit is as per steps detailed in section 3.2.2. The
characteristic pattern representation of a signal with reduced dimensionality called
features are extracted in the Feature Extraction Unit. Feature extraction is the step
to cxtract the uscful informations of the signals for successful classification. Based on

these features, the classifier perform the classification opcration.
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Figure 3.3: Schematic of the Grasp Recognition Architecture-1

3.3.1 Feature Set

Following set of teatures are used for grasps classification in architecture-1:

¢ Bascline Zcro Crossings (BZC): Number of times a signal crosses the zero ampli-

tude linc.
e Turning Points (TP) : Sum of number of peaks and valleys in a given signal.

o FFT phasc angle: Phasc angle of a Fourier transformed signal.

Featurecs arc extracted from the IEMG signals in 50 mscce frame. Rectangular win-
dow function was applicd in cach frame. BZC and TP extracted from EMG signals
represents muscle strength and fatigue (107). I used these features for classification as
the strength involved during different grasping are different (108). FFT phasc angle
posscss many important informations of the signal and is alone sufficient to completely

reconstruct the signal (109).

3.3.2 Classifier

The classification 1s 1n two stages Number of BZC and TP of five individual windows
werc considered as the input featurcs in stage I. The feature for classification in stage
1T is FFT phasc angle.
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Stage I: SVM Classifier

Classification of the extracted feature set in the SVM classifier was accomplished in
two phascs: training and testing. In the training phase, 40 numbers of user wearing the
electrodes performs the grasp type decided a priori. The feature set is extracted from
IEMG signals. This constitutes the training data set; which is passed through a lin-
ear kerne] SVM classifier. SVM performs the classification of the feature sct following
the mathematical formulation stated in section 2.3.2.2 in Chapter 2.The slope of the
separating hyperplane was considered for classification of the grasp types. For testing,
another 40 subjects were allowed to perform the six grasp types randomly twice. The
featurc vector for cach IEMG signal was cxtracted and fed to the classifier. Power
and palm-up were classified correctly. Hook/ oblique were included in a single cluster;

pinch/ precision into another cluster. These results arc tabulated in Table 3.3.

Table 3.3: Results of SVM Classifier
Grasp Decision Clusters

Types Boundary
Slopcs
Power 0.4 to 0.52 | Cluster 1
Palm-up | -0.22 to -0.32 | Cluster 2
Hook / | -0.55 to -1.88 | Cluster 3
Oblique
Pinch / 3.9 to 6.6 | Clustcr 4
Precision

Stage II: FFT Classifier

For sampled vector data, Fourier analysis is performed usfng the discrete Fourier trans-
form (DFT) . The FFT is an efficient algorithm for computing the DFT of a sequence.
FFT has been used to detect muscle fatigue, force production and muscle fiber signal
conduction velocity (54). Important information about a transform sequence includes
its magnitude and phase. I have used the FFT phasé angle (109). However, the per-
formance of the FFT classifier was not considered against any other classifier. The

slope of the FF'T phase angle at discrete frequencies was the observation parameter for
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categorizing cluster 3 into hook and oblique; cluster 4 into pinch and precision. The
results of the FFT classifier are tabulated in Table 3.4.

Table 3.4: Results of FFT Classificr

Grasp Types | Slope of FFT Phasc angle
400 Hz 600 Hz
Oblique -0.42 to -0.25 | 0.46 to 0.58
Hook 0.26 to 0.34 0.78 to 0.88
Pinch 0.51 to 0.62 | -0.26 to -0.11
Precision 0.93 to 1.3 0.12 to 0.34

3.3.3 Results of Grasp Recognition Architecture-I

The architecturce-I for recognition of grasp types using low channel forcarm EMG sig-
nals has identified six graspé in two stages. Following Subasi ct al. (110), thc average

recognition rate for each graép types was calculated as:

Recognition rate = & x 100%
where B
N = Number of correctly classified grasp d'urfing testing

G = Total number of grasps used in testing

Table 3.5 shows the grasp recognition results of architecture-1. An average recogni-

tion rate of around 77% is achieved (98). The confusion matrix in Figure 3.4 shows

Table 3.5: Recognition Rates of Architecture-I

Grasp Type Identified | Recognition Rate
Power 75%
Palm-up 75%
Oblique 75%
Hook 62.6%
Pinch 87.5%
Precision 87.5%

47
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the classification and misclassification of grasp types obtained through architecture-
[. 80 number of input signals pertaining to each grasp type was passed to classifier.
75% of power grasp are classified correctly; 25% are misclasified as oblique. 75% of
palm-up are classified correctly; 25% are misclassified as power and oblique. 75% of
oblique are classified correctly; 25% arc misclassified as hook and power. 62.5% of hook
are classified correctly; 37.5% are misclassified as power and oblique. 87.5% of pinch
are classified correctly; 12.5% are misclassified as precision and 87.5% of precision are

classified correctly; 12.5% are misclassified as pinch. The main limitation of the grasp
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Figure 3.4: Confusion matrix for classification based on Architecture-I

recognition architecture-I was its lower recognition rate. It produced an average error
rate of 23%. One of the main reason for low recognition rate was that architecture-
1 does not take into account subjectivity of the EMG signals. The EMG signals of
different subjects for the same grasp type are never absolute because of the variation
in impedance between the muscle of interest and electrodes (111). Furthermore it is
dependent upon electrode application and placement (112), muscle fatigue (113), con-
traction velocity and muscle length, cross talk from nearby muscles and slight variation
in task execution (114) etc. It would be almost impossible to control all these factors
during EMG acquisition. Therefore, some kind of technique is required wherein all the

EMG signals are converted into a scale that is common to all measurement occurrences.
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Normalization controls for the aforcmentioned variables and facilitates the comparison

of EMG signals between subjects as well between days for the same subject (115).

3.4 Grasp Recognition Architecture-1I

The schematic diagram of grasp recognition architecturce-II is shown in Figure 3.5. The
preprocessing of the EMG signals were as dctailed in section 3.3. In order to overcome
the limitation of subjectivity as in architecture-I, a Normalization Unit as detailed in
scction 3.4.1 is introduced in the grasp recognition architecturc-I1.

As dctailed in scction 2.3.1.3 in Chapter 2, WT is better suited for EMG classifica-
tion therefore, grasp recognition architecture-II and IIT are based on WT features.

EMG EMG UNIT
Signal } | Band Pass/
| Notch Filter Feature Extraction
IL | Normalization- | Continuous
Amphfier v Unit v Wavelet
IEMG nlEMG Transform
Signal
Pinch
Precision Classifier Unit \V4 12
Oblgggﬁ —— Multiclass - Entropy Estimation
Palm-up SVM
Power

Figure 3.5: Schematic of the Grasp Recogmition Architecture-II

3.4.1 Normalization

To reduce the influence of EMG signal subjectivity as discusscd towards the end of the
scction 3.3.3, signals were normalized for making the method to work for all subjects.
Normalization is through maximum voluntcer contraction (MVC) as reference point
(116). However, working of the mcthod for all subjects can be cvaluated only after
clinical trials; which is not within thc purview of this thesis. The IEMG signal on
normalization is called normalized IEMG (nlEMG) signals. The normalized Root Mcan
Squarc (RMS) of IEMG signals is obtaincd as follows:
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Normalized RMS of IEMG =

RMS(IEMG,) — MunamumRMS(IEMG)
MazimumRMS(IEMG) — MwnimumRMS(IEMG)

where

IEMG, = 1" sample valuc of IEMG signal

RMS(IEMG,) = RMS valuc of :** samplc of IEMG

MazimumRMS(IEMG) = maximum RMS value of IEMG

MwmamumRMS(IEMG) = minimum RMS valuc of IEMG

The nIEMG signals for the six grasp typcs under study are shown in Figure 1.7 through
Figure I:12 in Appendix-1.

3.4.2 Feature Set

The feature vector for grasp classification in architecture-II was derived using CWT.
The proper wavelet basis function was sclected through computation of entropy of
the preprocessed EMG signals and WT coeflicients of six different wavelct families:
Gaussian, Daubcchics, Morlet, Mayer, Mcxicanhat and Symlct. The CWT coefficients
were derived at 11, 21, 35 and 101 scale index. The purposc of CWT is to decomposc
a signal into localized contributions characterized by scale parameter. The CWT of a

signal f(x) is defined as an inner product of the signal and the wavelet bascs as follows:

W(s,b) =< f(z).9s(z) > (3.1)

Where 1, () is referred to as wavclet bases and W(s,b) is referred to as WT
coefficient of signal f(z). The 9;4(z) can be formed from a basic wavelet ¥(z) by a

scrics of scaling and shifting operations. The wavelcet basc is defined as:

Ys,p(z) = 1/59((z — b)/s) (3-2)

Where s > 0 and b are any rcal numbers. The variable s indicates the scale of
the particular basis function and the variable b specifies its shift operation. Using the
wavclet bascs in cquation 3 2, the wavelet transform defined in cquation 3.1 can be

computed as:

W(s,b) = 1//(s). / ® @)l - b)/s) (3.3)

T=-00

50



3.4 Grasp Recognition Architecture-II

The CWT given by equation 3.3 is the convolution of signal with the wavelet func-
tion shifted over the entire signal defined by the wavelet scale (117). The transform
coefficients produce by this process are the correlation of the basis function with the
signal. CWT bascd featurc extraction for efficient classification of grasp types is de-
pendent on the appropriate choice of the mother wavelet function. This work proposed
cntropy mcasurc to sclect an optimum wavelet function.

The entropy is a measure of uncertainty of information in a statistical description of
a system. The features extraction through CWT is followed by the entropy cstimation.
The entropy of wavelet transform coefficients of the wavelet familics under study arc

cstimated. The entropy H for random variable X is defined as (118):

H(X) = P(X =a)logP(X = a,) (3.4)

)

Where @ is the possible values of X. To select the optimum wavelet function in
representing the EMG signals of grasp types, the entropy of nIEMG signal of six grasp
types with entropy of the decomposition coefficients of wavelet functions under study
were comparcd. The sclection of the CWT mother wavelet function based on cntropy

measurcment is detailed in section 3.4.4.

3.4.3 Classifier

In this study, One-vs-All method is carried out for classification of grasp types. The
classification steps of One-vs-All SVM for six grasp types are:

e Labcl all the training samples of the onc of the grasp types as positive samples.
e Labcl all the training samples of other grasp types as ncgative samples.

¢ Usc all positive and negative samples as input to train a SVM and corresponding

classification planes are obtained.

o Label the trained SVM as SV Mj; representing that SV M is used for differenti-

ating thc grasp typc used for training from other five grasp types.

e Repeat the previous step for other five grasp types, finally six of the SVMs arc
obtained as SVM,, SV My, SVM;, SVMy, SVMs, SV Ms.
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3.4.4 Results of Grasp Recognition Architecture-II

Following the formulation for recognition rate as stated in section 3.3.3, the average
rccognition rates for six grasp typcs obtained using CWT cocflicients at scale index 11,
21, 35 and 101 arc shown in Table 3.6. Rcsults with Gaussian CWT has been found
highest with an avcrage rccognition rate of 80% over six grasp types. To investigate the
rclation of recognition rate with scalc index, a range of scale index have been considered
to access the changes of accuracics with wavelet functions. Table 3.6 shows variation

of scale index has little effect on the average recognition rates of six grasp types.

Table 3.6: Average recognition rates over six grasp types through CWT coeflicients al
different scale index

Wavelet Functions Recognition Rate
scale index 11 | scale index 21 | scale index 35 | scale index 101

Gaussian 79% 80% 80% 81%
Morlet 7% 7% 76% 76%
Meyer 75% 74% 74% 74%
Symict 4 74% 74% 73% 74%
Db 72% 73% 73% 4%
Mexicanhat 70% 1% 1% 2%
Haar 62% 62% 62% 62%

The arrangement of wavelet functions into an increasing order of grasp recognition

rates result in the following scquence 3.5.

Haar < Mexicanhat < Daubechies8 < Symletd < Meyer < Morlet

< Gaussian (3.5)

Table 3.7 shows the entropy values of CWT coefficients of nIEMG signal. The
average entropy of the nIEMG signals for the six grasp typcs are cstimated as shown
in Table 3.8. From Table 3.8, averagc cntropy of thc nIEMG signal is measured as
1.09 x 103.
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Table 3.7: Entropy Measure of Wavelet coefficients

Wavelet Function | Average Entropy Values

Gaussian 3.07 x 10%
Morlet 346 x 103
Meyer 4.22 x 108
Symlet 4 425 x 103
Daubcchics 8 4.33 x 10°
Mexicanhat 5.12 x 103
Haar 8 60 x 103

Table 3.8: Entropy Measure of nIEMG Signals for Grasp Types Under Study

Grasp Types | Average Entropy Values
Hook 1.01 x 103
Oblique 104 x 103
Palm-up 104 x 103
Pinch 126 x 103
Power 104 x 103
Prccision 119 x 10°

The increasing order of cntropy values of wavelct transform coefficients and nIEMG

signals results into the sequence 3.6.

Haar > Mezicanhat > Daubechies 8 > Symlet 4 > Meyer > Morlet
> Gaussian > nIEMG (3.6)

From scquence 3 5 and 3.6, it 1s clear that (a) wavelet function coefficients having en-
tropy valucs closc to that of the nIEMG signal produces higher recognition rate (b)
wavelet function coefficients having entropy values far from that of nTEMG results into
lesser rccognition ratc. Based on this result, it has been hypothesized that wavclet
function coefficients having entropy values close to the entropy values of nIEMG pos-
scsscs maximum informations about the grasp types. Gaussian wavelet function was
reported to be posscssing maximum information about the grasp types producing an
average rccognition rate of 80% (119).

In continuation to the grasp recognition results with CWT, cight DWT coefficients:
Bior 1.3, Bior 2.3, Coif 3, Coif 4, Symlct 4 (Sym 4), Symlct 8 (Sym 8), Haar and
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3.4 Grasp Recognition Architecture-II

Daubichies 8 (dB8) at third, fourth and fifth level of decomposition have been consid-
ered for classification of grasp types under study through grasp recognition architecture-
I1. The approximate coefficients contain the most important information of the signal
(120) and have been used to constitute the feature set. Table 3.9 shows the results of

the grasp recognition architecture-II with DWT coeflicients as featurc sct.

Table 3.9: Recognition rate of six grasp types through DWT at third, fourth and fifth
level of decomposition

Wavelet Grasp Types
Function Power | Palm-up | Hook | Oblique | Precision | Pinch

Bior 1.3 | third level | 82% 82% 1% | 90% 80% 95%
fourth level | 72% | 80% 64% | 84% 72% 72%

fifth level 70% 82% 2% | 85% 82% 92%

Bior 2.2 | third level | 80% 83% 64% | 8% 76% 90%
fourth level | 80% | 82% 2% | 85% 6% 82%

fifth level 88% 82% 8% | 86% 80% 92%

Coif 3 third level | 82% 82% 83% | 88% 70% 81%
fourth level | 74% 82% 68% | 84% 74% 74%

fitth level 84% 82% 2% | 78% 84% 88%

Coif 4 | third level | 80% | 82% 64% | 88% 82% 90%
fourth level | 84% 82% 2% | 84% 74% 84%

‘ fifth level 80% 82% 80% | 78% 74% 88%
Sym 4 third level | 82% 83% 80% | 88% 82% 84%
fourth level | 84% 82% 2% | 84% 74% 84%

fifth level 86% 84% 86% | 8% 76% 88%

Sym 8 | third level | 80% 83% 78% | 88% 84% 94%
fourth level | 84% 80% 66% | 84% 72% 84%

fifth level 84% 82% 2% | 8% 78% 90%

Haar | third level | 82% | 82% 65% | 87% 80% 88%
' fourth level | 82% | 82% 64% | 84% 82% 82%
fifth level 86% 83% 70% | 80% 78% 94%

dB8 third level | 82% 82% 65% | 88% 82% 95%
fourth level | 86% | 82% 64% | 84% 76% 90%

fifth level 86% 83% 70% | 86% 82% 90%
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At the third level of decomposition, even though the recognition rate of oblique,
palm-up, pinch and powcr grasps based on Haar wavelet is better than that of Symlct
8; the avcrage rccognition rate over all six grasp types is poor comparcd to Symlet
8. At the fourth level of decomposition, all of the wavelets have similar recognition
rates for oblique and palm-up grasp types. For pinch and power, recognition based on
Symlet 8 wavelet is better than the other wavelets. At the fifth level of decomposition,
except for pinch grasp, where classification with Symlet 8 wavelet have higher recog-
nition rate, other wavelets exhibit similar recognition rates for all other grasp types.
Irrespective of the wavelet function, the average recognition rate is higher at third level
of decomposition.

An average rccognition rate of 80% using CWT and 84% using DWT were achieved.
Morcover, the CWT computation may consume significant amount of timc and rec-
sources depending on the resolution required. The DWT, which is based on sub band
coding is found to yicld a fast computation of WT. DWT is casy to implcment and
reduces the computation time and resources required. Based on the results, DWT is
recommended as more cfficient and suitable for EMG based grasps recognition (121).

The classification results obtained from grasp recognition architecture-II is not high
enough as compared to those rcported in the literaturce (122). Moreover, When the
energy of the signal is finite, not all values of a decomposition are needed to exactly
reconstruct the original signal. In such cases, DWT is sufficicnt and CWT is redundant
(123). Energy of EMG signals are finite (124). Furthermore, the wavelet coefficients
of Haar WT function was found to possess the frequency informations of the original
signal (125, 126, 127, 128) as wcll results based on Haar WT was found better for morc
number of grasp types. Therefore DWT Haar wavelet coefficients were used in the

grasp recognition architecture-IIL.

3.5 Grasp Recognition Architecture-III

Figure 3.6 shows the schematic diagram of the grasp recognition architecture-III. The
fundamental blocks: EMG Unit, Normalization Unit, Featurc Extraction Unit and the

Classifier Unit are as detailed in section 3.3 and 3.4.
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3.5 Grasp Recognition Architecture-III

EMG EMG Unit
S‘g_al_s$ BandPass/
Notch Filter
)| Normalization
Amplifier Unit
[EMG J[ nIEMG
Feature
Pinch Classifier Extraction
Precision
Oblique RBF || _SWC Haar
Hook< Kernel Wavelet
Palm-up SVM Transform
Power

Figure 3.6: Grasp Recognition Architecture-II1

3.5.1 Feature Set

Grasp rccognition architecture-II1 cxplores sum of discrete wavelet decomposition coef-
ficients (SWC). SWC can be interpreted as the difference between two approximations
at subsequent scales (125) and corresponds to the frequency components of the original
signal (126, 127). During grasping, the number of motor units firing varics according
to the involvement of the forearm extensor and flexor muscles (129). Further, the firing
rate of motor units associated with control and co-ordination of finger movements dur-
ing grasping operations, varies according to the grasps (128). Consequently EMG for
each of the grasp types is the composite of different frequeney components. Thercfore,
it has been hypothesized that SWC is a primal feature for classification of grasp types
based on EMG signals (98).

3.5.2 Classifier

For the classification of non-lincar and high transitional data, the formulation of linear
SVM hyperplane as discussed in section 3.4.3 is extended to build non linear SVM
kernel. Non linear kernel transforms the input data into feature space of higher dimen-
sions. In this high dimensional space, data can be lincarly separable by applying linear
SVM formulation (24).
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3.5 Grasp Recognition Architecture-111

In continuation to the mathematical formulation of SVM in section 2.3.2.2 in Chap-

ter 2, the optimal hyper plane is characterized by:
e Maximum margin of scparation between any training point and hyper plane i.c.
max(w‘b)minﬂm —zi|l:z € H<w,z>+b=0;
1i=1,2,...,m
e The normal vector that leads to the largest margin is calculated as

. 1
MAN (e beR)T(W) = 5”“’”2 (3.7
subjected to
vi(<w,z>+b)>1;4=1,2,...,m (3.8)

where y; is label corresponding to the i*? training sample and

y, = +lif <w,z; >+b>1or
y, = —lif <wz;>+b<1
The function 7 in equation 3.7 is called the objective function and equation 3.8 is

inequality constraint. Together they form a constrained optimization problem. By

introducing Lagrange multipliers o; > 0 and Lagrangian

L(w,b,a) = Ll ~ 3" mau(us(< w,z > +5) = 1) (3.9)

=1
The Lagrangian L has to be minimized with respect to the primal variables w and

b and maximized with respect to the dual variable ¢; i.e.
0 0
= = d — L1 =0
8bL(w,b,a) 0an 5w (w,b, )

which leads to ’
m m
Z oy, =0andw = Z 0L YiT; (3.10)
i=1 i=1

By substituting the above in cquation 3.9, the primal variables w and b are eliminated

and arrived at the dual optimization problem:
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m m
1
maz,w(a) = E =g E Moy Yy, < Tp, Ty >
=1 2,7=1

subjected to o, > 0, i=1,2,.. .,m and

m
Z a,.y, =0
=1

Using cquation 3.10, the hyper planc decision function can be written as

m
f(z)= sgn(z Y0y < T, T, > +b)

1=1
By applying kernel trick (k), the normal vector becomes an expansion in featurc spacc
and no longer correspond to a single vector from input space. Thus the decision function

is of the form

f(fli) = Sgn(z yzazk(x’ mz) + b)

=1

and thc following quadratic problem

m m
1
ma:caw(a) = E oy — 5 g azajyzy]k(x‘hx])
1=1 2,7=1

subjected to

m
a, > 0and Zazyz=0;05a1§c

1=1

where c is the regularization constant.

In terms of selecting a kernel function to use with the SVM, there is no method
that can determine what kernel function should be used for a particular application.
According to (130), the RBF kernel should be the first choice. Another rcason to use
the RBF kernel 1s that there are less difficulties with mathematical computations. A

RBF kerncl 1s used as the kernel function & in our mcthod,
k(z, ) = ezp(—7(|| 2. — = |1)?)

wherc v is the kernel parameter. The v = 273 and ¢ = 238 arc selected through a

random itcrative process for the cxperiment.
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3.5.3 Results of Grasp Recognition Architecture-III

Recognition rates of classifying the EMG signals into six grasp types using the grasps
recognition architecture-I1I are tabulated in Table 3.10. Given these rates, the average

rate of recognition of a grasp types was 86% (100).

Table 3.10: Recognition Rates of Architecture-111

Identified Grasp Types | Recognition Rdﬂ
Hook 94%
Oblique 94%
palm-up 88%
Pinch 88%
Power 88%
Precision 66%

The confusion matrix in Figure 3.7 shows the classification and misclassification of

grasp types obtained through Architecture-III. 80 number of input signals pertaining to

I Power
N Piam-up
B Oblique
[ Hook
100 A Pinch
I Frecision

Number of Inputs

Output

Figure 3.7: Confusion matrix for classification based on Architecture-II1

each grasp type was passed to classifier. 88% of power grasp are classified correctly; 12%

are misclasified as oblique. 88% of palm-up are classified correctly; 12% are misclassified



3.6 Summary

as power and oblique. 94% of oblique are classified correctly; 6% are misclassified as
hook. 94% of hook are classified correctly; 6% are misclassificd as oblique. 88% of
pinch are classified correctly; 12% are misclassified as preciston and 66% of precision are
classified correctly; 34% are misclassified as precision. A much lesser misclassification
ratc than that of 14% is desirable for a reliable emulation of grasp types by a prosthetic
hand.

3.6 Summary

A strategy for classification of grasp types based on two channcl EMG signals is pre-
sented. Three grasp recognition architectures have been proposed. Architecture-I is
a two stage classifier with an average recognition rate of 77%. From cxpcriments in
Architecturc-I1, it has been hypothesized that CWT function coefficients of the EMG
signals having entropy values close to the cntropy values of prerpocessed EMG signals
posscss maximum informations about the grasp types. In Architecture-ITII, SWC is
established as a primal feature for classification of grasp typcs with an average recogni-
tion ratc of 86%. Derivation of a wholesome feature sct for increasing the recognition

rate is the focus of work for Chapter 4.
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4

EMG based Grasps Recognition:
Results with Statistical Analysis

Following the initial work on EMG based grasp recognition for six grasp types reported
in Chapter 3, this chapter focus on the derivation of a low dimensional yet informa-
tive and distinguishing feature set to significantly increase the performance of a low
channel EMG based grasps recognition architecture. In quest of an efficient feature
set for higher recognition rate, grasps classification experiments have bcen carried out
with four groups of featurcs: Timc Domain (TD), Frequency Domain (FD), Time/
Frequency Domain (TFD) and Principal Component Analysis (PCA) of TFD features.
The transition from one feature set to another is based on the linear relationship of each
feature set with the grasp types based on RZ-value of analysis of variance (ANOVA)
. Classification is through grasp recognition architecture-IV using RBF kernel SVM;
cross validated through 10-fold cross validation. Following the experiments on grasps
recognition, the classification results are evaluated through statistical analysis finding

the relative performance of the feature sets through Sheffe’s post hoc test.

4.1 Grasps Recognition Architecture-IV

Figure 4.1 shows the schematic diagram of the proposed EMG based grasp recognition
architecture-IV. The architecture comprises of four fundamental units: EMG Unit,
MVC normalization Unit, Feature Extraction Unit followed by the Classifier Unit. The

EMG unit comprises of the amplifier, band pass and notch filter. The prc-proccessing
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4.1 Grasps Recognition Architecture-IV

and normalization of the raw EMG signals are in line with the experimental details
reported in section 3.4.1 of Chapter 3. The TD, FD, TFD and PCA of TFD features
extracted from the nIEMG in the Feature Extraction Unit are fed to the classifier in
separate groups. The classifier is a RBF kernel SVM with a 10-fold cross validation
unit. Identifying thc RBF kerncl paramters ¢ and -y through grid scarch and 10-fold
cross validation of the classifier results are as stated in section 2.3.2.2 and 2.3.2.5 of
Chapter 2.

Unit [ Unit ) Ex‘{j’;‘:""

]

Classifier

E K-fold Cross

Raw EMG # EMG Normalization ' Feature

Grasp Validation
. RBF kernel
SVM

...........................

Figure 4.1: Proposed EMG based Grasp Recognition Architecture

4.1.1 Classification with Time Domain Feature
4.1.1.1 Feature Set

In continuation to the discussion on TD featurcs in Chapter 2, following TD features

have been used for recognition of grasp types through the grasp recognition architecture-
Iv.

e Mean Absolute Value (MAV)

This is the mcan absolute valuc of a signal and is measured as (34):
N

MAV =1/N Y |zl
k=1
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where
N = Total numbecr of samples in the signal

X = k" sample value of the signal.

Root Mcan Squarc (RMS) Valuc
RMS is modcled as amplitude modulated Gaussian random process and is related

to the constant force and non-fatiguing contraction (106) and can be cxpressed as

N
RMS =1/N,|> 3
n=1
Variance (VAR)
This fcaturc is the measure of the of EMG signal’s power (34) and is mcasurcd

as

zZ

VAR=1/(N-1)) z}
k=1

Characteristic point counts
TP and ZC were viewed as the characteristic points describing a waveform. The
turn count registered a local extreme value as a turning point and the zero-crossing

count was determined as the number of times the signal completely traversed both
sides of the bascline (106).

The TP count increased by onc if
T — Tp+1 <0 and zp — 241 <0
or xx — k-1 > 0 and zp — k41 > 0

and the ZC count increased by one if

zk > 0 and T4y <0

or zx < 0 and x4 > 0
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4.1.1.2 Classifier

During experiment with TD features, the Feature Extraction and Classification Unit
shown in Figure 4.1 is as shown in Figure 4.2. The TD features ZC, MAV, RMS value,
VAR, TP are extracted from the nIEMG signals following the mathematical definitions
as detailed in section 4.1.1.1.

Time Domain Feature Extraction Unit

—
nlEMG
{C MAV RMS VAR y’
Y
N
j [ Feature Vector
10 fold Cross Validation
Girasp SVM et
arameter
Types < C= 24,pY= 232

Figure 4.2: Classification with TD Features

Classifier Parameter Setting In the classifier, various values of ¢ and «y are tried
and one of the best set obtained through grid search is picked up for grasp classification.
The grid search is used with 10 search intervals for v and 11 search intervals for ¢ and
hence the classifier evaluates a total of 10 x 11 = 110 grid points. A range of value
of logac = {-5, -4, -3, ..., 5} and logyy = {2, 2.2, 24, ..., 3.8} are considered for grid
search. Figure 4.3 shows the grid search result for TD features. A value of ¢ =274 and
v = 232 is chosen for classification. The lowest value of -y and corresponding ¢ value is

chosen from the set in order to avoid overfitting of the classifier (131).
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Figure 4.3: Results of Grid search for finding the values of C and v with TD features

4.1.1.3 Results with Time Domain Features

Cross Validation Table 4.1 shows the recognition rates obtained during cach test
for 10-fold cross validation for the six grasp types under study. The average of the

10-fold test results produce average recognition rate of grasp types.

Table 4.1: Recognition rates in % with the testing folds along the columns and grasp
types along the rows obtained through 10-fold cross validation. Classification is based on
TD features

Ist | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th
Hook 625 | 75 7 | 875 1625 | 75 ™ | 875 | 75 ()
Oblique 75 75 625 TS5 | 875 (&8T5 | T5 ™ 625 75
Palm-up | 75 75 [ 875 | 75 | 625 | 75 | 875 | 87.5 | 87.5 | 62.5
Power 87.5 | 875 | 87.5 | 75 | 87.5 | 87.5 | 875 | 75 | 87.5 | 87.5
Pinch 62.5 | 62.5 | 87.5 | 625 | 625 | 75 | 625 | T5 7 | 62.5
Precision | 62.5 | 62.5 | 87.5 | 62.5 | 62.5 | 62.5 | 87.5 | 87.5 | 87.5 | 62.5

Following the formulation for recognition rate as stated in section 3.3.3, the average

recognition rate for each grasp types with TD features is shown in Figure 4.4.

The confusion matrix in Figure 4.5 shows the classification and misclassification of
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Recognition Rate
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Figure 4.4: Recognition Rate with TD Features

grasp types based on TD features. 80 number of input signals (pertaining to each grasp

Number of Inputs

Qutput

A oo

'lf_inﬁ
| I ovicue
|

| Jpower

Figure 4.5: Confusion Matrix for classification based on 1'D features

type) was passed to classifier; Figure shows classification as well as misclassification for

each of these signals. Numeric value (on bars) represent the number of signals classified

for the particular type corresponding to color legend shown. For example corresponding

to input 1: 80 signals of hook type are passed; 60 are classified as hook (aka input 1),

66
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12 are misclassified as oblique (aka output 2) and 8 are misclassified as power (aka
output 4).

Following (132), the misclassification rate (R) is calculated as:

Number of off-diagonal data in confusion matrix
Total number of Testing data

From Figurc 4.5, it is found that the TD features gives an average misclassification
rate of 24%; 25% hook is misclassified as oblique and power, 25% oblique is misclassified
as hook and power, 22.5% palm-up is misclassified as hook, oblique and palm-up, 15%
power is misclassified as hook, oblique and palm-up, 31.25% pinch is misclassified as
hook, oblique and precision, 27.5% precision is misclassified as hook, oblique and pinch.

The average recognition rate for six grasp types with TD features is 76%.

4.1.1.4 Linear Relationship

The purpose of ANOVA is to test for significant differences between means of several
groups of data and provide statistical significance. Basically ANOVA is performed using
two techniques: One-way ANOVA and two-way ANOVA. In a one-way ANOVA, one
test simultaneously whether there exist differences between two or more group’s means.
This differs from a two-way ANOVA approach in that in a one-way ANOVA test, one
evaluate whether all groups’ means are equal or not, but do not care which ones differ
and which oncs arc cqual. In this test, assumption is that onc have independent samples
from each groups. Two-way ANOVA is an extension of one-way ANOVA and differ in
that the groups in a two-way ANOVA have two categories of defining characteristics
instead of one. ANOVA can exﬁress the statistical significance of the groups in terms
of p-valuc and R2-valuc.

P value: The p-value tests the null hypothesis that data from all groups are with

identical means. Therefore, the p-value answers:

e If all the groups have the same mean, what is the chance that random sampling

would result in means as far apart?

o If the overall p-value is large, the data do not give you any reason to conclude that
the means differ. Even if the group means were equal, it would not be surpriscd

to find sample means this far apart just by chance.
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o If the overall p-valuc is small, then it is unlikely that the differences you observed
arc duc to random sampling. Onc can rcject the idea that all the groups have
identical means This doesn’t mean that every mean differs from cvery other

mean, only that at least onc differs from the rest.

R? - Value: R2-Value is the fraction of the overall variance of all the data in all the
groups attnibutable to differences among the group means. It comparces the variability
among group mecans with the variability within the groups. A large valuc mecans that
a large fraction of the variation is due to the treatment that defines the groups. The
RZ%.value is calculated from the results of ANOVA and cquals the between group sum-of-
squarcs divided by the total sum-of-squarcs. It is a descriptive statistic that quantifies
the strength of the rclationship between group membership and the variable measured.
A higher lincar rclationship of a featurc sct with the grasp types depicted by higher
R2-value, which 1eflects that the featurc sct posscss more information about the grasp
typcs.

Force involved during grasping varies with grasp types (133). The average EMG
provides dircct mcasurcment of force involved during grasping (134). Average EMG
is a function of fcatures. From theses facts, it has been hypothesized that the linear
rclationship of the force with the average EMG depicts the relationship of the features
with the grasps. Bascd on the above facts, the next step is followed to scarch the linear
rclationship of the featurc set with the grasp types. The R2-valuc for the TD features
with the grasp types was derived through onc-way ANOVA. The results of ANOVA
analysis is tabulated in Tablc 4.2.

Table 4.2: ANOVA with TD Features

Source 88 df MS F  Prob.
Columns 1.172721c+011 1 1.17234¢+011 543 0.0481

Errors 1.72721c4+011 8 2.15901c¢+010

Total 2.89955¢+011 8

wherc
88 = sum of squarcs

df = dcgrees of freecdom
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MS = mean square
F = F-ratio
Prob. = Probability or significance of F

The R2-valuc is calculated as follows:

R? —value = 1- SS(Error)/SS(Total)
= 1-0.59
= 041
Having noted a poor linear relationship of the TD features with the grasp types as

well as a low recognition rates as comparable to those reported in the literature (122);

the next experiment is on the recognition of grasp types based on FD features.

4.1.2 Classification with Frequency Domain Feature

4.1.2.1 Feature Set

In continuation to the discussion on FD features in Chapter 2, following FD features
have been used for recognition of grasp types through grasp recognition architecture-IV.

e FFT Phase Angle: Fast Fourier Transform has been used to detect muscle fatigue,
force production and fibre signal conduction velocity (54). Important information
about a transform scquence includes its magnitude and phasc. The FFT phase
angle ¢(F(f(z))) of a signal f(x) is calculated as follows:

FFT(f(z)) = F(z)
— / f(_,l:)e—i%uxdm

/—00 f(z){cos(2muz) — isin(2muzx))dz

where i=+/~1 and u (=1,2,3,....u) is called the frequency variable.
The FFT phase angle is defined as

$(F(z)) = tan™"(b/a)
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where a=cos(2mux) and b=sin(27ux)

Power Spectral Density (PSD) : The PSD of the EMG provides information on
muscle properties such as fatiguc and force production (135). The PSD defines

how the power of a signal is distributed with frequency and is defined as

PSD = |F(z))?

Frequency Median (FMD): FMD is the frequency at which the spectrum is divided

into two regions with cqual power (106). It can be cxpressed as:

M
FMD=1/2% P,
=1

where P, is the EMG power spectrum at frequency bin j.
Frequency Mcan (FMN)
FMN is the average frequency. FMN is calculated as the sum of the product of

the power spectrum and the frequency divided by the total sum of spectrogram
intensity (106). FMN is calculated as

M M
FMN =Y f,P/Y P,
=1 =1
where f, is the frequency of spectrum at frequency bin j.

Frequency Ratio (FR): FR indicates the cxtent of contraction and rclaxation of
muscle. A high FR means that the degree of contraction of the muscle is high, a
low FR mcans the oppositc (25). By applying the FFT to thc EMG in TD, the

FR is calculated as:

FR= IF(m)llowfrequency/lF(T)|h.zghfrequency

4.1.2.2 Classifier

During cxperiment with FD featurcs, the Feature Extraction and Classification Unit
are as shown in Figure 4.6. The FD fcaturcs: FFT phase angle, PSD, FMD, FMN and
FR are cxtracted from the nIEMG signals following the mathcmatical definitions as
detailed in scction 4.1.2.1.
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Frequency Domain Feature Extraction Unit
250 msec
o e e “ r
nlEMG
FFT Phase PSD FMD FMN  FR
\ angle )
H Feature Vector
G 10 fold Cross Validation
Tas)
T ez SVM parameters
yp = 24, y= 2}

Figure 4.6: Classification with FD Features

Classifier Parameter Setting A range of value of logac = {-5, -4, -3, ..., 5} and

logey = {2, 2.2, 2.4, ..., 3.8} is considered for grid search. Figure 4.7 shows the grid

log-c D{

Figure 4.7: Results of Grid search for finding the values of C and y with FD features
search result for FD features. A value of ¢ = 273 and v = 23 was chosen for classification.

4.1.2.3 Results with Frequency Domain Features

Cross Validation The results of each testing fold for 10 fold cross validation based
on FD features are shown in Table 4.3. The average recognition rate for each grasp type

with FD features during each test for 10-fold cross validation is shown in Figure 4.8.
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Table 4.3: Recognition rates in % with the testing folds along the columns and grasp

types along the rows obtained through 10-fold cross validation based on FD Features.

[ 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | Sth | 9th | 10th

Hook 62.5 | 75 75 75 75 75 | 100 | 100 | 100 | 75
Oblique | 87.5 | 87.5 | 75 75 5 75 | 875 | 875 | 15 6]

Palm-up | 75 75 | 100 | 100 | 87.5 | 87.5 | 87.5 | 87.5 | 87.5 | 87.5
Power 75 | 875 | 875 | 75 | 87.5 | 87.5 | 87.5 | 87.5 | 87.5 | 87.5
Pinch 5 | 75 75 75 75 | 62.5 | 87.5 | 87.5 | 62.5 | TS

Precision | 62.5 | 62.5 | 87.5 | 87.5 | 62.5 62? 87.5 | 87.5 | 62.5 | 62.5
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Figure 4.8: Recognition Rate with F'D Features

The confusion matrix in Figure 4.9 shows the classification and misclassification of
the grasp types based on FD features. Following the formulation for recognition rate as
detailed in section 4.1.1.3 and results from Figure 4.8 and Figure 4.9, it is found that the
FD features gives an average misclassification rate of 19%; 18.75% hook is misclassified
as oblique and power, 20% oblique is misclassified as hook and power, 12.5% palm-up is
misclassified as hook and oblique, 15% power is misclassified as hook and oblique, 25%
pinch is misclassified as precision and hook, 27.5% precision is misclassified as hook

and pinch. The average recognition rate for six grasp types with FD features is 81%.
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Number of inputs

Figure 4.9: Confusion Matrix for classification based on FD Features

Table 4.4: ANOVA with FD Features

Source 88 df MS F Prob.
Columns  1.01156e+008 1  1.01156e+008 12.34 0.0079

Errors 6.56027e+007 8  8.20033e4-006

Total 1.66759e+-008 9

4.1.2.4 Linear Relationship

Finding the recognition rates of the grasp types based on FD features; the linear re-
lationship of the FD features has been evaluated following the formulation in sec-
tion 4.1.1.4. The R%-value derived through one-way ANOVA. The results of ANOVA
analysis is tabulated in Table 4.4.

The R2-value is calculated as follows:

R? — value = 1— SS(Error)/SS(Total)
= 1-0.39
= 0.61

It has been found that the average recognition rate with F'D features is higher as com-
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4.1 Grasps Recognition Architecture-IV

pared to TD featurcs. The R? - value for FD features also reflect that FD features are
having morc information about the grasp types than TD featurcs. In scarch of a featurc
sct with a higher grasp recognition rate as well as with a higher linear relationship with

the grasp types; rest experiments have been conducted with TFD features.

4.1.3 Classification with Time/ Frequency Domain Feature

4.1.3.1 Feature Set

WT provides a time/ frequency representation of a signal. The WT is a signal de-
composition mcthod on a sct of basis functions, obtained by dilations, contractions
and shifts of a unique function, the wavelet prototype. They are much better suited
for representing short bursts of high-frequency signals or long-duration, slow varying
signals. EMG signals do have such bchavior and hence wavelet transform should be an
ideal tool for their analysis (45).

WT can be classified as CWT and DWT. The wavelets forming a CWT are sub-
jected to the uncertainty principle of Fourier analysis (44). Further in CWT, calculating
wavelet coefficients at every possible scale is a fair amount of work and it gencrates an
awful lot of data (136). In contrast, DWT may be considercd in the context of uncer-
taintity principle (44) as well as for dealing with smaller size coeflicients. In the case of
DWT, a time-scale representation of the signal is obtained using digital filtering tech-
niques and the scale is determined by up sampling and down sampling operations (45).
The signal to be analyzed is passed through filters with different cut-off frequencies
at different levels. At each decomposition level, the half band filters produce signals
spanning only half the frequency band. This doubles the frequency resolution as the
uncertainty in frequency is reduced by half. With this approach, the time resolution
becomes arbitrarily good at high frequencics, while the frequency resolution becomes
arbitrarily good at low frequencies (44). DWT decomposcs a signal into an approx-
imation signal and detail signal. The detail coefficients D; and the approximation
coefficients A; at level j can be obtained by filtering the signal with an L-samplc high

pass filter g, and an L-sample low pass filter h. Both approximation and detail signals
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are down sampled by a factor of two (137). This can be expressed as follows:

L-1

Ajln] = H(A;a[n]) = > _ hlkl4;_1[2n — K]
k=0
L-1

Djln] = G(Dj-1[n]) = ) glklA;-1[2n ~ ]
k=0

where H and G represent the convolution/ down sampling operators. Sequences gfn]
and h[n] arc associated with wavelet function ¢(t) and the scaling function ¢(t) through

inner products:

gln] = (¥(t), V2.9(2t — n))
hin] = ((t), V2.6(2t — n))

In theory, there exist an infinite set of wavelet functions. Following Phinyomark
(138), we consider five basic wavelet functions: Symlct 4, Coifiet 2, Daubechics (db2),
Biorthogonal (bior 1.3) and Harr. The dominant cnergy of EMG signals is concentrated
in the range of 10-150 Hz (138). In order to extract the most important features, we
used third level of DWT decomposition approximate coefficients for feature extraction
(139). The approximate cocfficients contain the most important information of the sig-
nal (120) and is thereforc used for deriving the feature sct. The approximate coefficients
obtained through Symlet 4, Coiflet 2, db2, bior 1.3 and Haar DWT for the six grasp
types are shown in Figure 7.0 through 7.0 in Appendix-1I. The energy, zero crossings,
turning points, mecan absolute valuc, RMS valuc, variance, sum of DWT approximate
coefficients constitute the feature set. The DWT based EMG features werc derived as

follows:

e Energy of Approximate Wavelet Decomposition Coefficients (EWC)

o0
EWC = / A, [n)%dt

where

A,[n] is the wavelet decomposition approximate coefficients at level j.
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e Sum of Wavelet Decomposition Coefficients (SWC?)

N
SWC =3 Aln]

n=1

e Mean Absolute Value of Wavelet Decomposition Coefficients (MWC)

N
MWC =1/N " |A,[n]|

n=1
where
N is the total number of wavelet coefficients.
e Variance of Wavelet Decomposition Coefficients (VWC)
N
VWC =1/N-1)_ A}’
n=1
o Zero Crossings of Wavelet Decomposition Coefficients (ZWC)
N
ZWC = F(A[n].4,n - 1)

n=1

where

F = 1:1fA)nl.An-1] <O0.

= ( elsewhere

s Turning points of Wavelet Decomposition Coefficients (TWC)

TWC =) F(((a—1)-a)<0)

where
a = lif4,[n] > A,)n-1]
a = =lifA)[n} < 4,[n - 1]
F = 1lif({a-1) —a)<0.

'SWC corresponds to the frequency components of the original signal (100)
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e RMS Value of Wavelet Decomposition Coefficients (RMSWC)

RMSWC =1/N,|>" A[n]?
n=1
With the wavelet mother function as rows and above featurcs as columns, the featurce
matrix is constructed. The feature sct of seven features obtained for two channcl EMG

signals; over b discrete wavelet functions constitute the feature matrix of size (5 x 14).

4.1.3.2 Classifier

During experiment with TFD features, the Feature Extraction and Classification Unit
of the proposed architccture shown in Figure 5.4 is as shown in Figurc 4.10. The
nlEMG signal 1s transformed into TFD through Symlet 4, Coiflet 2, db2, bior 1.3 and
Harr wavelet functions. The approximate coefficients at third lcvel of decomposition
of cach wavclet function is used for feature extraction. The energy, zcro crossings,
turning points, mecan absolute value, RMS valuc, variance, sum of DWT approximate
coefficients has been derived following the mathematical definitions described in scc-
tion 4.1.3.1.

Classifier Parameter Setting A range of value of logac = {-5, -4, -3, ..., 5} and
logay = {2, 2.2, 24, ..., 3.8} is considered for grid search. Figurc 4.11 shows the grid

search result for TFD featurcs. A valuc of c= 272and y=22 % is choosen for classification.

4.1.3.3 Results with Time/ Frequency Domain Features

Cross Validation The results obtained with 10-fold cross validation based on TFD
features arc shown in Table 4.5. The average of the 10-fold cross validation results gives
the average recognition rate for cach grasp types.

Figurc 4.12 shows the recognition rate for cach grasp types with TFD features.
The classification and misclassification of the grasp types bascd on the TFD features
arc shown in the confusion matrix in Figurc 4.13. From Figurc 4.13, it is found that
the TFD featurcs gives an average misclassification rate of 11.03%; 8.75% hook is
misclassified as oblique and power, 10% oblique is misclassified as hook and power,

12.5% palm-up is misclassified as hook, oblique and power, 10%power is misclassified
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Time/Frequency Domain Feature Extraction Unit
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Figure 4.10: Classification with TFD Features

Table 4.5: Recognition rates in % with the testing folds along the columns and grasp
types along the rows obtained through 10-fold cross validation based on TFD Features.

Ist | 2nd | 3rd | 4th | 5th | 6th [ 7th | 8th | 9th | 10th
Hook 75 | 87.5]87.5(87.5{ 100 | 87.5 | 100 | 100 | 100 | 87.5
Oblique | 87.5 | 87.5 | 100 | 87.5| 75 | 87.5 100 | 75 | 100 | 100
Palm-up | 87.5 | 87.5 | 87.5 | 100 | 100 { 87.5 | 75 [ 87.5 [ 87.5| 75
Power | 87.5)87.5]| 100 | 875|875 100 ; 75 | 100 | 756 | 100
Pinch 87.5 | 160 | 100 | 87.5 ) 87.5 | 87.5 { 100 | 75 75 | 100
Precision | 87.5 | 87.5 | 87.5 | 87.5 | 100 | 75 | 100 | 75 | 100 | 100

as hook and oblique, 10% pinch 1s misclassificd as hook and precision, 10% precision

is misclassified as hook and pinch. Provided these classification accuracy, the average
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Figure 4.11: Results of Grid search for finding the values of C and ~ with TFD features
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Figure 4.12: Recognition Rate with TFD Features
recognition rate for six grasp types with TFD features is 88.97%.

4.1.3.4 Linear Relationship

Finding the recognition rates of the grasp types based on TFD features; the linear
relationship of the TEFD features has been evaluated following the formulation in sec-
tion 4.1.1.4. The R%value derived through one-way ANOVA. The results of ANOVA

analysis is tabulated in Table 4.6. The R?-value is calculated as follows:
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Number of Inputs

Figure 4.13: Confusion Matrix for classification based on TFD features

Table 4.6: ANOVA with TFD Features
Source 5§ df MS F Prob.
Columns 1.94525 1 1.94525 18.48 0.0026
Errors 0.84226 8 0.10528
Total 2.78751 9

R? —wvalue = 1— SS(Error)/SS(Total)
= 1-0.30
= 0.70

It has been found that the recognition rate with TFD features is higher than that of
TD and FD features. Also the linear relationship as reflected by R%-value is higher for

TED features than TD and FD features.
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4.1.4 Classification with PCA of Time/ Frequency Domain Feature

4.1.4.1 Feature Set

The reduction in dimensionality of the featurc sct as well as deriving a feature vector
with uncorrclated feature components is often nccessary for increasing classification
performance. This process prescrve as much of the relevant information as possible
while reducing the number of dimensions. Featurc projection methods such as PCA
identifies the best subset of features combining the original fcaturcs into a smaller
feature set (123).

In order to obtain the most informative and distinguishing low dimensional feature
vector, PCA is applicd on the feature matrix of DWT based EMG features derived in
scction 4.1.3.1. By dimensionality reduction, classes can be computed more efficiently
and easily by the classification algorithm (42). The steps for PCA implementation is

presented in equations from 4.1 to 4.4.

1. Substract the mean from the data to accomplish zero mean data

where x[n] and E[x] are the data and mcan respectively.

2. Obtain the covariance matrix of the data

C. = (BBl (42)

3. Dectermine the eigenvectors and corresponding eigen values of the covariance ma-

trix.

[V, 0] = eig(Cy) (4.3)
where T represents the cigen vectors and v is the cigen values.

4. After sorting the eigenvalues in descending order, first three corresponding cigen
valucs arc chosen for further experiment. The projected data which contains the

fecaturc vector is given by equation 4.4.
y=2n).v(:k) (4.4)

wherc n > k and k is the desired reduced dimension. This algorithm tunes the

signal for classification and generally improves classification accuracy (140).
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The covariance matrix is of size (5x5) whose eigen vectors are principal components
(PCs) and respective eigen values are PC weights (i.e. the amount of explained vari-
ance). The PCs are then ordered in descending order according to their weights and first
three PCs are chosen for further experiment. Now multiplying the PCs matrix by orig-
inal feature matrix, a new (3x14) dataset is obtained whose values are uncorrelated.
This new dataset is the derived feature vector. The classifier used for classification
with PCA of TFD features is the one detailed in section 4.1.3.2 followed by the steps

discussed in section 4.1.4.1.

4.1.4.2 Classifier Parameter Setting

A range of value of logoc = {-5, -4, -3, ..., 5} and logay = {2, 2.2, 2.4, ..., 3.8} is
considered for grid search. Figure 4.14 shows the grid search for result for PCA of

TFD features. A value of c= 2 'and y=222 is chosen for classification.

log:e OF

Figure 4.14: Results of Grid search for finding the values of C' and v with PCA of TF

domain features

4.1.4.3 Results with PCA of Time/ Frequency Domain Features

Cross Validation The results obtained during 10-fold cross validation based on the
PCA of TFD features are shown in Table 4.7.
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Table 4.7: Recognition rates in % with the testing folds along the columns and grasp
g g g g

types along the rows obtained through 10-fold cross validation based on PCA of TFD

),

features.
Ist | 2nd | 3rd | 4th | 5th | 6th | 7th | 8h | 9th | 10th
Hook 100 { 100 | 100 | 100 | 100 { 100 | 100 | 100 | 87.5 | 100
Oblique | 100 { 87.5 | 100 | 160 { 100 { &87.5 { 100 { 100 { 100 { 100
Palm-up | 100 | 100 | 100 | 100 | 87.5 | 100 | 100 | 100 | 100 | 87.5
Power 87.5 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
Pinch 100 | 100 | 87.5 | 100 | 100 | 100 | 100 )} 75 | 100 | 100
Precision | 100 | 100 | 100 | 100 | 75 1()L ﬂ&& 87.5

Figure 4.15 shows the recognition rate for each grasp types with PCA of TFD

features. The classification and misclassification of the grasp types based on the PCA
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Figure 4.15: Recognition Rate with PCA of TFD features

of TFD features are shown in the confusion matrix in Figure 4.16. From Figure 4.16,
it is found that the PCA of TFD features gives an average misclassification rate of
2.5%; 1.25% hook is misclassified as oblique, 2.5% oblique is misclassified as hook,
2.5% palm-up is misclassified as oblique, 3.5% power is misclassified as hook, 1.25%
pinch is misclassified as precision, 3.75% precision is misclassified as pinch. The average

recognition rate for six grasp types with PCA of TFD features is 97.5% (141).
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Figure 4.16: Confusion Mairix for classification based on PCA of TID features

Table 4.8: ANOVA with PCA of TFD Features

Source 58 df MS F Prob.
Columns  1.24737¢4008 1 1.24737e4+008 2563  0.001
Errors  3.89392¢+007 8 0 4.86741e+006
Total 1.63676e+008 9

4.1.4.4 Linear Relationship

Finding the recognition rates of the grasp types based on PCA of TFD features; the
linear relationship of the PCA of TFD features has been evaluated following the for-
mulation in section 4.1.1.4.

The R?-value is derived through one-way ANOVA. The results of ANOVA analysis is
tabulated in Table 4.8.

The RZ%-value is calculated as follows:

R* —wvalue = 1- SS(Error)/SS(Total)
= 1-0.23
= '0.77
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4.2 Statistical Analysis

It is secn that the PCA of TFD fecatures have highest lincar relationship with the
grasp typcs as wcll as the grasp rccognition rate obtained using PCA of TFD featurcs
is comparable to that reported in the literaturc (122). Following these, the next stcp
of the experiment has been done for cvaluating the relative performance of the feature

scts.

4.2 Statistical Analysis

The purposc of statistical analysis in pattern recognition 1s to assess the classification
results (142). Although the uncertainty associated with cngincering cxpceriments is
generally far less and can often be quantified through caretully controlled cxperiments;
the interest for statistical evaluation for the experiments on EMG classification have
changed over the past decade duc to its complex patterns and random bchaviour. More-
over, the pattern recognition algorithms are probabilistic in nature (143). Furthermore,
many of the experimental results are subjected to databasc samplings and sizes. To
know the truth of the experimental results, onc needs to cvaluate it through statistical
mcans. Statistical analysis is usced to cvaluate the relative significance of the feature
sets consideied for classification of grasp types vis-a-vis the results of grasp rccognition
architecturc-IV Plcasc note that statistical analysis as discussed here has no role in
distilling the dccided featurce vector and is not required to be performed in real-time

environment. Statistical analysis has been accomplished in two main steps:

e First the fcaturc groups under study were subjected to onc-way ANOVA with
featurce sct as a factor and rejects the null hypothesis of cqual means. In order to
find the differences between two groups of feature sets, ANOVA was pcrformed
between TD and FD, TD and TFD, TD and PCA of TFD, FD and TFD, FD
and PCA of TFD, TFD and PCA of TFD.

e Therelative performance of the features scts have been cvaluated through Scheffe’s
post hoc test using the results of ANOVA.

4.2.1 ANOVA analysis

Following the discussion on ANOVA analysis in scction 4.1.1.4, onc way ANOVA was

performed to find the sigmficance of variance of the four featurc sets under study using
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the Statistical ’foolbox in Matlab 2009. The results of ANOVA analysis for each two
fcature sets under study are tabulated in Table 4.9 through Tablec 4.14 whercin MS
= Mean square error, df = Degrees of freedom, p-value = probability value. The
number of groups represents the number of feature sets under study and the size of
groups represents the number of features in the featurce scts. These results provides the
significance of variance for the features sets under study. It is common to dcclarc that
a ANOVA result is significant if the p-value is less than 0.05 (144). From the Table 4.9,

it is seen that the variance of TD and FD features are not of significance.

Table 4.9: ANOVA Results for TD (G;) and FD (G2) features

Paramcters Valucs
MS 0.003
df 9
Number of Groups (Gy) 2
Size of Group 1 (G1) 5
Size of Group 2 (G3) 5
p-valuc 0.11

From the Table 4.10 through Table 4.14, it is clear that the variance of TD features
with TFD as wcll as with PCA of TFD featurcs; FD fcaturcs with TFD as well as with
PCA of TFD features are of significant. These values are evaluated to find the relative

significance of the features sets under study through Scheffe’s post hoc test.

Table 4.10: ANOVA Results for TD (G;) and TFD (G»)features

Paramcters Valucs
MS 0.0003
df 9
Number of Groups (Gn) 2
Size of Group 1 (G1) 5
Size of Group 2 (G3) 35
p-valuc 0.02
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Table 4.11: ANOVA Results for TD (G1) and PCA of TFD (G3) features

Parameters Values
MS 0.0001
df 9
Number of Groups (Gy) 2
Sizc of Group 1 (G;) 5
Size of Group 2 (Gs) 25
p-value 0.005

Table 4.12: ANOVA Results for FD (G;) and TFD (G3) features

Parameters Values
MS 0.0001
df 9
Number of Groups (Gn) 2
Size of Group 1 (G,) 5
Size of Group 2 (Gs) 25
p-value 0.0153

Table 4.13: ANOVA Results for FD (G;) and PCA of TFD (G;) features

Parameters Values
MS 0.00008
df 9
Number of Groups (Gn) 2
Sizc of Group 1 (G1) 5
Size of Group 2 (G2) 25
p-value 0.014

4.2.2 Sheefe’s Post hoc Test

The relative significance of the feature groups were evaluated through Shecfe’s post
hoc test. Whenever an ANOVA is used to examine the differences among more than

two groups, a post hoc procedure is used to compare differences between all pairs of
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Table 4.14: ANOVA Results for TFD (G;1) and PCA of TFD (G2) features

Parameters Values
MS 0.00008
df 9
Number of Groups (Gn) 2
Sizc of Group 1 (G;) 35
Size of Group 2 (G2) 25
p-value 0.0075

means. Post hoc comparisons arc morc appropriate for multiple tests. Sheffe’s post
hoc test is a statistical tcst that is used to make comparisons among group means in
ANOVA experiment. Sheffe’s post hoc test are used when [i] sample sizes are unequal
and [ii] most conscrvative test is desired. Following the ANOVA analysis results in
section 4.2.1, Sheffe’s post hoc test are performed using the on-linc tool available at
www.statestodo.com (145). Table 4.15 shows the significance levels among the pairs of

features. The bold entries represent a mean difference among the feature sets that are

Table 4.15: Results of Sheffes post hoc test upon the recognition obtained using four sets
of features

Feature Set I Feature Set II Significance, P
Time Domain Frequency Domain 0.110
Time/ Frequency Domain , 0.020
PCA of Time/ Frequency Domain 0.005
Frequency Domain Time Domain 0.110
Time/ Frequency Domain 0.025
PCA of Time/ Frequency Domain 0.014
Time/ Frequency Domain | Time Domain 0.020
Frequency Domain 0.025
PCA of Time/ Frequency Domain 0.027
PCA of Time/ Frequency | Time Domain 0.005
Domain Frequency Domain 0.014
Time/ Frequency Domain 0.027
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4.3 Summary

significant. From the experiment between TD features with other three feature sets,
it has been found that the difference of TD features with respect to TFD and PCA of
TFD features are significant but not the case with FD features. From the experiment
between FD features and other feature scts, it has been found that the difference of
the FD featurcs with respect to the TFD and PCA of TFD featurcs are significant but
not the case with TD features. This satisfies the significant level between TD and FD
featurcs as found in the experiment with TD features. From the experiment between
TFD featurcs with other features, it has been found that the difference of the TFD
fecaturcs with respect to the TD, FD as well as PCA of TFD features are significant.
From cxperiment between PCA of TFD with other feature sets, it has been found that
the difference of the PCA of TFD features is significant with respect to the TD, FD
and TFD featurcs. This is in linc to the results of the experiments with the other three
feature sets. Moreover, the significant levels resulted in Sheffe’s post hoc test are in
linc with the recognition rates obtained using TD, FD, TFD and PCA of TFD features
through the grasp recognition architecture-1V. c.g. Recognition rates with TD and FD
features are not of much difference as compared to that with the TFD and PCA of

TFD features. Likewise, the casc is truc for FD, TFD and PCA of TFD fcaturcs.

4.3 Summary

Four scts of EMG features: TD, FD and TFD were cvaluated for classification of six
grasp types used during 70% of DLA. Featurcs obtained through PCA of DWT based
EMG featurces produced highest recognition rate of 97.5%. As tabulated in Table 4.16,
grasp classification based on PCA of TFD feature vector is better as compared to thosc
reported in literature in terms of [i]. recognition rate [ii]. number of EMG channels used
and [iii]. number of grasp types recognized. Figure 4.17 shows grasp recognition crror
averaged across the subjects for the four featurce scts. The recognition rate increascs
as the featurc sct progresses from TD to PCA of TFD. Futher, PCA of TFD have
lowest recognition crror across all grasp types. The results of this chapter highlight the

following:
e PCA of TFD have the highest lincar relationship with grasp types.

e PCA of TFD is the most superior feature sct among the featurce scts examined.
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4.3 Summary

Table 4.16: Comparison of Grasp Types Recognition Rates

Author Number of | Number of EMG | Recognition
Grasp Types Channels Rates
Ferguson and Dunlop(43) Four Four 75-80%
Martelloni et al. (79) Three Eight 84-93%
Castellini et el. (22) Three Ten 90%
Castellini et al. (80) Two Seven 97%
PCA based Classification (141) Six Two 97.5%
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Figure 4.17: Grasp Recognition Error Average across all Subjects; Also shown is the

grasp recognition error for each grasp type

e Thereis a distinct trend towards improvement of recognition rates in TD features—

frequency domain features — TFD features — PCA of TFD features.

The superior result using PCA of TFD features can be substantiated by the fact

that statistical independence of the features is achieved through dimensionality reduc-

tion using PCA. In the original feature set, information is liberally dispersed amongst

the original feature set, PCA consolidate this information much more effectively by

discarding less useful information.

TD and FD features possess only temporal and

spectral features respectively; whereas TFD features represents the original signal over

both time and frequency.
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A Biomimetic Hand: Prototype
1.0

This chapter details the development of a five fingered extreme upper limb prosthetic
hand prototype: Prototype 1.0. The focus is on emulating the six grasping operations
involved during 70% of dla using EMG based grasps classification.

The approach for development of an anthropomorphic hand should be to take refer-
ence of human hand (146). Biomimetic approach for development of a prosthetic hand
has appeared as a significant opportune towards mimicking the natural counterparts
(147) as well in tackling the challenges of present artificial hands (148). Biomimesis is
the understanding of nature, its models, systcms, processes and elements to emulate
or take inspiration from these designs and processes; and imitate them into artificial
system (149, 150). Although some of the laboratory prototypces (2, 14, 15) have been
developed following biomimetic approaches, they are far from the human hand in terms
of the static and dynamic constraints (12).

The biomimetic approach is followed to harmonize both physical and functional
aspects of the human hand. The cmulation of grasp types is through a two laycred
architecture: SHC and LHC. SHC is for recognition of user’s intended grasp based
on EMG signals and LHC is for actuating the fingers in the prototype to emulate
the identified grasp. Prototype 1.0 can perform the six grasp typcs undcr static and

dynamic constraints, which arc responsible for natural movement (151).
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5.1 Biomimetic Approach

5.1 Biomimetic Approach

An ideal upper limb prototypc should be perccived as a part of the natural body by
the amputees. Towards this goal, Prototype 1.0 is developed following a biomimetic
approach as shown in Figure 5.1. The approach comprises of five steps. It involves:
[i] Study of the human hand physiology [ii] Material selection based on the expected
propertics in the prototype [iii] development of bio-mechanical structure ! [iv] develop-

ment of control architecture [v] development of biomimetic hand prototype. Study of

Human Hand
Physiology

|

Expected Properties in the
Prototype

R . | | Operations (Grasping)
i " Speafic Gravity © Static Constraints {
: " Fr‘Ctlonal Propeny : "-'-_r-'___'.._:._._::::.'::::::::::::::.’::::::::.’

Control (EMG Actuation) |
Dynamic Constraints :

| Material Selection | ------------- ] ----------------
Bio-mechanical Structure Control Architecture

| |

Biomimetic Hand
Prototype

Figure 5.1: Biomimetic Approach followed for development of Prototype 1.0

the human hand physiology in terms of the anatomy, grasping opcrations, static and
dynamic constraints, EMG based actuation; the first stage of thc biomimetic approach
is detailed in Chapter 2.

!With reference to (152), bio-mechanical structure means the the physical representation of human
. hand anatomy quantitatively for this research
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5.1 Biomimetic Approach

5.1.1 Material selection

The approach for building the prototype is to duplicate any of the features and prop-
erties which affect the characteristics of human hand. So the work scck to usc mate-
rials that can mimic the human hand propertics. The goal has always been for size
and weight similar to human hands vis-a-vis grasp functionality. Following (153), two
propertics. specific gravity and cocfficient of friction have been considered for mate-
rial sclection. Heavy weight is onc of the main rcasons for non-acceptance of artificial
hands by the amputees {154). Moreover, an object grasped by the hand should not slip.
These lcads to specific gravity and cocflicient of friction as the important propertics for
sclection of the material to be used for development of the prototype. Following (153)
and (155), four materials: nylon, teflon, steel and aluminum arc under study. From
Table 5 1, nylon and teflon are found to bear properties close to that of human hand.
Nylon is stable, undeformable and has low friction and low specific gravity Further,
cost of nylon is more than five times lesser than that of teflon. Thercfore, nylon is
selected for the skeletal structure of the hand. The building blocks of the human hand
and that of Prototype 1.0 arc tabulated in Table 5.2.

Table 5.1: Comparison of primitive characteristics (required to replicate human hand
properties) for four materials under study

Nylon Teflon | Steel { Aluminum | Human Hand
Specific Gravity 1.13 2.15 | 7.85 2.64 0.96 - 1.2
Co-cfficient of friction | 0.15 - 0.25 | 0.04 0.8 1.35 0.72 - 0.7

Table 5.2: Building blocks of Human hand versus the Prototype 1.0

Human Hand Prototype 1.0

The skcletal of the hand Nylon as links, joints and palm
Set of muscles, which are embedded in | A set of DC geared motors

between the skin surface and skeleton | embedded in the palm

Mass-spring system, inter-linking the | Tendon system interlinking

skin, skeleton and muscle the skeletal and actuators
Joint hicrarchy which matches the A joint hicrarchy which matches
structurc of the skeleton the structure of natural hand
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5.1 Biomimetic Approach

5.1.2 Bio-mechanical Structure

The development of the mechanical prototype is based on the knowledge gathered
from the study of the human hand physiology. The skeletal structurc of the prototype
is developed using the material sclected with reference to the study carried out in
section 5.1.1.

Human anatomical terminologics has been used to describe Prototype 1.0. The
prototype comprises of five fingers. Each finger consists of threc links replicating the
distal, middle and proximal phalanges of human finger; thumb consist of two links. The
links are connected through revolute joints corresponding to DIP, PIP and MCP joints.
The palm is two picce and can move inward and outward to form grasp modes. The
palm accommodatcs the actuators. The wrist is of two concentric cylindrical structurcs
made of nylon.

In the prototype, the joints have been obtained with an extended knuckle structure
at cach link to prevent the backward movement of the succeeding link. The curvature
of the phalanges are with reference to the human anatomical structure and therefore
can flex and extend in the joint range corresponding to the humari finger as recorded
in Table 5.3.

Table 5.3: Finger joint range of motion of the prototype (in degrees) measured using
Jamar Plastic Goniometer

Thumb Index Middle Ring Little
MCP [(0to100| 0to90 | 0to 90 | 0to 90 | Oto 90
Flexion
PIP 0to 110 | 0to 110 | O to 110 | 0 to 110
Flexion
DIP 0to9 [ 0to70 | 0to70 | Oto70 | Oto 70
Flexion

Figure 5.2(a) shows the dimensional representation of the index finger. Figure 5.2(b)
is a planner schematic structure of the index finger and 5.2(c) represents the routing
of the tendons through the joints of the finger. Figure 5.2(b) and (c) arc for kincmatic

and dynamic analysis of the prototype as detailed in section 5.1.3.

94



5.1 Biomimetic Approach

X, ds Extensor, Tendon (h 5)

Flexor Tendon (h )

Flexor Motor (m)
pulley
Extensor Motor (m ')

pulley

()

Figure 5.2: (a) Dimensional representation of the index finger. The lengths of the proxi-

mal, middle and distal phalanxes are 40 mm, 30 mm and 20 mm respectively. The radius of
rotation (Ry, R2, R3) of the three joints (MCP, PIP and DIP) are 14 mm, 8 mm and 6 mm
respectively. (b) A planner schematic structure of a finger (other than the thumb). Each
link L;(¢ = 1,2, 3) corresponds to the proximal, middle and distal phalanges. MCP, PIP
and DIP joint angles are 61, 62 and 603 respectively. (¢) Tendon routing the finger joints.
dy,d> and d3 are the distance of the center of mass of the phalanges from the respective
joints MCP, PIP and DIP (FEi, E> and Ej3) respectively. Iy, Iz and I3 are the moment
of inertias of the three phalanges about an axis passing through their center of masses.
mi, mg and ms are the masses of the proximal, middle and distal phalanges respectively.
a and b are half the finger width and distance of the tendon guides form the finger joints.

Each finger is actuated with two motors; one for flexion and another for extension.
The little and ring finger are actuated through the common motors. Abduction and
adduction is not implemented in Prototype 1.0. The prehension of the palm is obtained
through one single motor. The wrist of the prototype is actuated though three DC
motors placed in mutually perpendicular axes. The developed prototype posscss a
total of (3 x 3 of fingers + 2 of thumb + 1 of the palm + 3 of wrist) = 15 DoF.
Arrangement of the actuators and tendons as well as the digits of the prototype in its
ventral view is shown in Figure 5.3. Each finger tip is equipped with film like force
sensors to measure the fingertip force. The specification of the used actuator units

(geared DC motors) arc in Table 5.4.
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5.1 Biomimetic

Approach

Table 5.4: Specification of the Actuating Motors

Parameter Finger Motor Wrist Motor

Gear Ratio 0.03 0.06

No load Speed 250 Revolutions 300 RPM
Per Minute (RPM)

No Load Torque 0.076 Nm 0.090 Nm

Diameter 160 mm 160 mm

Length 300 mm 350 mm

Diameter of motor pulley 10 mm 10 mm

Figure 5.3: Ventral View of Prototype 1.0

5.1.2.1 Tendon System

N + 1 tendon configuration is used as media to transmit forces from actuators to the

finger’s joints. N+1 tendon configuration is one in which a single tendon pulls on all the

joints in one direction and one or more additional tendons which generate torques in

opposite direction (156). Such a system is important from a biomimetic point of view

96



5.1 Biomimetic Approach

as most of the muscles and tendons involve in flexion-extension of the human body
parts form agonist-antagonist pair. In thc prototype, the agonist and antagonist ten-
dons mimic the flexor digitorum superficialis and flexor digitorum profundus; cxtensor
digitorum communis and extensor indicis tendons of human finger (82). Thin tendons
made of polymeric fibers have been used. Extensor and flexor tendons arc placed on
the dorsal and ventral side of each finger and connected to individual actuation unit in
the palm. The tendons connected to the pulley of the motor, passing through a series
of hollow guides are fixed at the finger tips. This rephceates the agonist-antagonistic
tendon system of human hand (157). Table 5.5 shows the characteristics of a human

hand vis-a-vis Prototypc 1.0.

Table 5.5: Characteristics of Human hand and Prototype 1.0

Charactcristics Human Hand | Prototype 1.0
Number of DoF 22 15
Wrist Mobility 03 03
Total Volume 50 cc 47cc
Each finger length 92 mm 90 mm
Bach finger diamcter 14 mm 14 mm
Wrist width 65 mm 65 mm
Palm width 90 mm 90 mm
and thickncss and 45 mm and 45 mm
Total weight 400 gram 520 gram

In this comparison, onc of the distinguishing fcaturc of the biomimetic hand from
the human hand is the number of DoF. The thumb of Prototype 1.0 possess signifi-
cantly lower DoF - two DoF as compared to the five DoF of the human hand thumb.
Prototype 1.0 thumb possess two flexion-extension axis of rotation at DIP and MCP
joint. However in human thumb, the DIP joint have one flexion-cxtension DoF, MCP
and CMC joints have one flexion-extension and one abduction-adduction DoF in each.
Further, the abduction-adduction of the remaining four fingers arc not implemented in
Prototypc 1.0. This results in Prototype 1.0 with scven DoF lesser than that of the

human hand.
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5.1 Biomimetic Approach

5.1.3 Development of Control Architecture

The proposed control architecture is two layered: superior hand control (SHC) and local
hand control (LHC). Figure 5.4 shows thc schematic representation of the developed
control architecturc. SHC is to perceive the type of grasps attempted by the user and
the LHC is to compute the grasp primitives i.e. finger joint torques and angles to

emulate the identified grasp type.

£ Grasp Planning
s
Q
& t
: I
q iIEvoked Action Potentials or eemennany,
= ) —> :
e Electromyogram ) !
2 | ! Machine !
[ t H . :
s Grasp Recognition Architecture [+ Leamning :
7 R [ FOU '
!
Visual Feedback ! Grasp Type
...... ‘.-.-..._.__._._-._._._._....._-.__..‘
: Trarlsformation of the Grasp Type |
- ' mto the fingers to be actuated
£ R RSO SO
5 ! Actubtion of Motors corresponding :| © i
= . fothe Grasp Recognized . 1] 1 Kinematic |
5 i i Analysis
= V' Grasp Primitives [ ----oiiiii .
5 s ; i
| PID Control : Dynamic ;
] - . Analysis !
i 1
3 l

Fingertip force sensbr !
feedbabk

Prosthetlc Hand equipped with
Force Sensor

Figure 5.4: Schematic of Control Architecture indicating two main states: Superior Hand
Control and Local Hand Control
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5.1 Biomimetic Approach

5.1.3.1 Superior Hand Control

The SHC provides the information about the grasp types to be performed by Prototype
1.0 bascd on EMG signals acquired from forcarm muscles. In accordance to the visual
information about the object to be grasped, the human brain plans the type of grasp to
be formed for holding the object. Accordingly, thec motor commands gencrated in the
brain arc scnt down through the spinal cord to the forcarm muscles. The motor com-
mands initiates the forcarm surface EMG. The grasp recognition architecture recognize
the grasp typc attcmpted by the uscr based on the forearm EMG.

The grasp rccognition module comprises of four fundamental units: EMG Unit,
MVC normalization Unit, Featurc Extraction Unit followed by the Classifier Unit. The
EMG unit comprises of the amplifier, band pass and notch filter. The EMG signals were
acquired following thec experimental protocol as detailed in section 3.1.1.1 in Chapter
3. The raw EMG signals extracted from the subjects required processing for accu-
ratc rccording, display and analysis. The EMG signal obtained after filtration and
amplification is called IEMG signal The MVC normalization unit applics normaliza-
tion algorithm to avoid the test case subjectivity and gencrates nIEMG signals. The
characteristic patterns of a signal in a reduced dimension called features arc extracted
from nIEMG signals in the feature cxtraction unit and a featurc vector is gencrated.
The featurc vector: PCA of TFD EMG featurc is fed to the classifier. The classifier
is a RBF kernel SVM. The details of the grasp recognition architecture is claborate in
Chapter 4 and here mentioned in bricf for completencss. The information about the

identified grasp type is passed to the LHC.

5.1.3.2 Local Hand Control

The LHC is the interface between the SHC and Prototype 1.0. Human hands arc ca-
pable of grasping objects with dexterous motion. As such, fingers typically grasps by
curling around the objects following stercotypical trajectorics (158). Manual grasping
is more stablc and secure than the current prosthesis grasping. Therefore, it is of inter-
est to reproduce the natural movement of fingers in order to perform stable grasping
opcrations by the prosthetic hands.

LHC identifies the fingers to be actuated for performing the grasp type identificd

via SHC. The dcrivation of the grasp primitives arc through kinematic, static and
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5.2 Kinematics, Statics and Dynamics

dynamic analysis. Based on the kinematic and static analysis of the finger model as
shown in Figure 5.2, the LHC determines the relation between the finger joint torques
and the actuating motor torque. This is achieved satisfying the human finger dynamic
constraints; responsible for stable grasping (151). Based on the joint angles for natural
curling of the human finger (159), the finger joint torques are determined through
dynamic analysis such that the joint angle trajectorics arc similar to that of the human
finger. The corresponding finger-tip force is determined through kinematic and static
analysis. A proportional integral derivative (PiD) controller is implemented to maintain

the fingertip force.

5.2 Kinematics, Statics and Dynamics

For kinematic, static and dynamic analysis, the index finger of Prototypc 1.0 is schemat-
ically represented as shown in Figure 5.2(b). L1, L2 and L3 are the distance of the
center of mass of the phalanges from the respective joints PIP, MCP and DIP shown
as di,ds and d3 respectively in Figure 5.2(b). R;, Rz and Rg arc the radius of the
joints B, £y and Fs. I, I and I3 be the moment of incrtias of the three phalanges
about an axis passing through their center of masses. mj,my and mg are the masses
of the proximal, middle and distal phalanges respectively. The distance from the end

of tendon guide to the finger joint is b and radius of the finger is a.

5.2.1 Kinematic Analysis of a Finger

The Denavit-Hartenberg parameters describing finger kinematics are illustrated in Ta-
ble 5.6; where 8; is the joint angle from X;_1 axis to X; axis about Z;_; axis, d; is the
distance from the origin of (i — 1)** coordinate frame to the intersection of Z;_; axis
with X;_, axis along Z;_1 axis, a; is the offset distance from intersection of Z;_; axis
with X; axis and «; is the offset angle from Z ._1 axis to Z; axis about the X; axis with
i=1,23.

Direct kinematic equations are used to obtain the fingertip position and orientation
accoréling to the joint angles. With three revolute joints, the finger has three rotational
DoF (8 = {6;,6,,63}T) leading to the finger cnd cffector having pose (F = {z,y,a}7).
To analyze the three joint link shown in Figure 5.2(b), the first stcp is to cstablish

the mapping from joint angles (the vector of three generalized rotational coordinates
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5.2 Kinematics, Statics and Dynarnics

Table 5.6: Denavit-Hartenberg Parameters of the Finger

Link | ai_1 | a1 d, | 6
1 0 0 016
2 0 Ly =40mm |0 | 9
3 0 Lo=30mm |0 | 65

g = {61,02,03}T) to link end point position and orientation of the finger for a given
set of link lengths L = {L;, L2, L3}. From the Denavit-Hertcnberg parameters of the
finger as stated in Table 5.6, the fingertip pose Z with respect to the base frame can
be computed as:

i Gz(9)
£=G()= Gy(e_)
Ga(0)
x LiCi+ LoCia+ LgCiag
y | = LiS; + LgSie + L3Syss (5.1)
(o} 0; + 69+ 03

where G(6) is the geometric model defined by the trigonometric equations for the
end point position {z,y}T and orientation {a} of the last link as a function of § and link
lengths of the finger L. Cj, C12 and Cj23 denotes cosby, cos(61 +02) and cos(f; +62+63)
and Si, Siz and Sjo3 denotes sin(6, ), sin(6, + 62) and sin(6; + 02 + 63) respectively.

5.2.1.1 Tendon Actuation

Flexion and extension of the fingers is performed by puiling and releasing the flexor
and extensor tendons. The finger joint angles depends on the tendon length pulled L,
and rcleascd s by the flexor motors. Tendon length while the finger is maximally
extended is I, = Ly + Lg + Ls. When the finger is flexed, the flexor tendon is pulled
by the motor. Let I be the resulting flexor tendon length and 6, 85, 95 be the joint

angles respectively. Change in flexor tendon length &, is the difference of I, and ;.
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5.2 Kinematics, Statics and Dynamics

l'm. = lo - l:c
= (L] + Ly + Lg) —
(LiCy 4+ LeCyp + L Crs) (5.2)

Both anatomical and ecmpirical studics show a lincar inter-joint angular relationships
in human finger exrpessed as dynarmic constraints (12) and results in a natural curling
motion of the fingers. The dynamic constraints of human hand finger is represented

using the following

pci= = g5 (5.3)
02

pc2=2 _ 15 (5.4)
O

In order to replicate the natural motion of human finger into the prototype, the dy-
namic constraints of human fingers have been considered for computation of the tendon
length. Substituting thc constraints in cquations (5.3) and (5.4) into cquation (5.2),

following relation between #, and [, is obtained.

bm = (Li+La+Ls)~—
(Licos(01) + Lgcos(2.6;) + Lgcos(4.01/3)) (5.5)

In a similar way, the length of the extensor tendon released by the extensor motor

is given as:

b = (L;+ Lg+ Lg)+
(Ly cos(0;) + L2008(2.61) + Lgcos(4.0;/8)) (56)

Since, L, is the length of the tendon pulled by the motor; L, can be computed using
equation 5.6 given diamcter of the pulley connected to the motor, D; time of rotation

of the motor, 4t and revolution per minute of the motor, N.
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5.2 Kinematics, Statics and Dynamics

ln = TDNGt (5.7)

The values of D and N are known a priori as in Table 5.4. 6t is computed from force
sensory feedback. The start time is achieved from initiation of the actuating signal
to the motor and the time of contact is on receiving a feedback signal from fingertip

SCnsor.

5.2.2 Static Analysis of a Finger

5.2.2.1 Joint Torques and Fingertip Forces

The joint torques exactly balances finger tip forces in static equilibrium situations. The
rotational kinetic input to the end effector is net of three torques (7 = {m, 72, 3}T) at
MCP, PIP and DIP joints respeetively to produce the output wrench vector
0
V_V _ ( Offingertip > (58)
1 fingertip

The Jacobian transpose maps finger tip forces into equivalent joint torques (156).

The joint torques T which balances the wrench vector W is given as:
7= J(O)TW (5.9)

Where J(0) is the Jacobian matrix relating the joint space to the fingertip space.
The three link finger as shown in Figure 5.2(b) is applying force and moment through

the fingertip on the environment. These are given by the following equations:
Offingertip = (f-'z:) fya O)T (510)
Onfingertip = (0; 0, nz)T (5'11)

Let the forces fingertify, ... and moment f&gertPn .. .. be denoted as (f., f’,0)T
fingertip fingertip z:Jy
- and (0,0,n})7.

fz Ciza Sz O fz
fy | = | ~S123 Cizzs 0. | fy (5.12)
0 0 0 1 0
and
0,0,n)T = (0,0,n,)T (5.13)
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5.2 Kinematics, Statics and Dynamics

Equation 5.13 results from the fact that rotation matrix ?R in cquation 5.12 has
(0 0 1) in the last column and row. In order to obtain static forces and moments
acting on links of a serial manipulator, when the fingertip (or end effector) is subjected
to external forces and moments; the joints of the manipulator are assumed to be locked.
The manipulator can be viewed as a structurc. Using cquations of static cquilibrium,
the following pair of cquations ( 5.14 and 5.15) arc obtaincd [Plcasc refer to (160, pp.
167) for complete derivation].

, = :+1[R]1+1fz+1 (5-14)
'n, = La[Bng + Oy XU, (5.15)

Here f, = force cxerted on the link {2} by link {z — 1}, n, = moment excrted on link
{2} by link {2 — 1}. *O,4, is thc vector from O, to O,41. ;R = Rotation matrix of
{2+ 1}** framc with respect to {2}t frame. The leading superscript ¢ signifies that the
vectors are described in {2} frame.

Above equations can be used to compute forces and moments when the forces and
monients at the fingertip are known. Applying the above iterative formula at the
fingertip going towards the base for the finger shown in Figure 5.2(b).

fori =3

3 = (f5,£,,0)7 (5.16)
*ng = (0,0,n} +13.f,)" (5.17)

fori=2
% = (C3.f5— S3.fyS3-f5+ Ca.fy, 0)7 (5.18)
ny = (0,0,m] + 1S fy + Cs.fy) +1a.fy)T (5.19)

fori=1
'fi = (Cos.fi— Ses.fy, Sos.fr+ Co3.fy,0)7 (5.20)

i = (0,0,n) + l(Sas.fi + Cas f}) +1a(Ss.fo + Cs.f)) + 5. f;)T  (5.21)

The joints can only apply torques about Z axis in order to have static cquilibrium.
Therefore for a scrial link manipulator with rotary joints, the torque rcquired at joint

i can be computed by equation 5.22 (160, pp. 168).

n o= 'n.tZ, (5.22)
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5.2 Kinematics, Statics and Dynamics

Where *Z, is a vector along Z axis at joint i.

Torques required at the joints to keep the finger in equilibrium arc as follows:

n = 'nmtZ,

= n, + fo(liS23 +12S3) + f,(LCa3 + 12C3 + I3) (5.23)
Ty = 2n2.222

=, + floS3 + fi(12C3 + I3) (5.24)
T3 = 3n3.323

= 1+ fyls (5.25)

_ Rearranging cquations 5.23 through 5.25, the joint torques can be cxpressed as:

T1 L1So3+ LyS3 L1Cos+LoCs+ Ly 0 0 0 1
T2 = | Ly5;3 LoC3+ L3 0 001
73 0 Lj 0 001
fz
fy
0
0 (5.26)
0
n,
Substituting from equations 5.12 and 5.13 into equation 5.26:
sl —~LyS; — L3Syo — L3S103 LiCi+LoCio+L3Cio3 0 0 0 1
T2 | = | —L2S12 — L3S123 LyChra + L3Clas 0001
73 —L38123 L30123 0 0 01
fz
fy
0
0 (5.27)
0
n,

The term in the square bracket is the transpose of the Jacobian J(6).
The contact between the object to be grasped and fingertip (of the three link finger)

is assumed to be point contact with friction as shown in Figure 5.5. The contact can

not resist any moment applied around its normal. Thus n, = 0 (161).
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Figure 5.5: Schematic of point contact between the object and finger tip

With this assumption, equation 5.27 can be reduced to

3! —L181 — LyS12 — L3S193  L1C1+LeCra + L3Craz 0

72 | = | —LaS1p — L3S123 LyCra + L3Chas 0

T3 ~L385123 L3Cr23 0
fz
7 (5.28)
0

From 5.28, the fingertip force (fz, fy) in terms of the joint torques can be computed

as:
f = (L2C12)11 — (L1C1 + LoCha)7e + LiCi(T3) (5.29)
’ L1Ly(C1S12 — $1C12) '
5, = (L2S12)71 — (L1S1 + LaS12)7e + L1S1(73) (5.30)

L1 Ly(C1 512 — 51Ch2)
5.2.2.2 Tendon Forces and Joint Torques

Next step is to describe how forces applied at the end of the tendons arc related to the
torque applied at the joints. Figure 5.2(c) illustrates the flexor (h1) and extensor (h2)
tendons routing the finger joints. Following (156, pp. 293), the extension function for

the flexor and extensor tendons are given as:

h1 (8)=lm+2Va2+b2cosltan Y a/b}01/2)-2b—Rg02—Rs0s (5.31)
he(8) = L + R16; + Refs + Rsl3 (5.32)
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Where (R;, Rz, R3) are radius of rotation of the three joints (MCP, PIP and DIP)
respectively. a and b are half the finger width and distance of the tendon guides form
the finger joints as shown in Figure 5.2(c).

The coupling matrix relating the force at the ends of the tendons and the joint

torques is as given bclow.

Ohy /dO; Ohs/dl;
H.=| Oh;/dbs Ohg/dOs (5.33)
Ohy /dBs Ohs/dBs
The joint torque in terms of tendon force is computed as:
T = H.F (5.34)
—2va? + B2sin(tanHa/b) + 61/2) Ry P
= | -Ry Ry |} (5.35)
F
—Rs R3

Where F = [F} FQ]T; Fy and F; are the forces on the flexor and extensor tendons
respectively.

Considering the motor torque T = [Ty T3)T; Ty for flexion and T for cxtension

of the finger:
ARl [+ 0 T '
[F2]_[Ol L}[B (5.36)

T2
Where 71 and 79; are the radius of the pulleys connected to the flexor and extensor
motors.

Using equation 5.35 and 5.36, the joint torques can be expressed as a function of motor

torques as follows:

T
1 = -2V a2+ b2sin(tan"(a/b) + 491/2)7‘—1 + Rl?- (5.37)
1 2
T T:
Ty = —Rz—l +R2—2 (538)
1 T2
T T:
T3 = —R3-—1- + R3_2 (539)
1 T2

For a tendon network; the tendon forces chosen to exert a given vector of joint

torques have the form

F=Hlr+ Fy (5.40)
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Where H} = (H.)T((H.)(H:)T)™' is the pscudo-inverse of the coupling matrix. Fy
is tendon internal force to cnsurc that tendons remain taut and chosen as small as
possible.

Using cquation 5.36 in cquation 5.40, the relation between the motor torque and joint
torquc is obtained as:

T = [ 61 22 ] [H} T+ Fy] (5.41)

Using the values of 71, 72 and 73 from cquation 5.37 through 5.39 into equation 5.29
and 5.30; the fingertip force (fz, fy) can be computed in terms of the tendon actuation

motor torque as:

fo = ((LaCu)(-2VaT s Bsinlion™(a/) + 6,/2)

T: T
—(L1C1 + LaCha)(— Rz— + R2-—2) + Li1Cy(— Rz— + Rs—)}

{L1L2(C1S12 — 51C12)}~ g (5.42)
fu = {(L2S12)(-2Va? + b2sin(tan™"(a/b) + 01/2)— + Rl%

—(L1S1 + LaSio)(— RgZ + Rg——) + LySi(— RgTl + R3—)}

{(L1L2(C1512 - 51012)} ! (5.43)

5.2.3 Dynamic Analysis of a Finger

The goal of dynamic analysis is to determine the motor torque required to be applied
such that the finger joints follow the human finger joint trajectorics. Finger joint
torques for Prototype 1.0 for emulating the natural curling is to be cstimated. In order
to do this, joint torques as a function of vclocity and acccleration arc determined for
a finger of Prototype 1.0 using equations of motion for a serial link manipulator as
detailed in (160, pp. 159).

5.2.3.1 Equations of motion

The cquations of motion for a scrial link manipulator is given as:

[M(6))d + [C(0,0))0 + G(6) =T (5.44)
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Where [M(6)] is the n x n mass matrix. C(6,6) is the n x n matrix with [C(6, )]0
representing an n X 1 vector of centripetal and Coriolis terms. G(6) is an n x 1 vector
containing the gravity terms and 7 is the n x 1 vector of joint torques.

Le¢y, Lep and L arc the distances of the center of mass of the three phalanges (of the
finger) from their respective joint origins, viz. Oy, 02 and Os. Let the masscs of the
three links be my, moe and ma and their link incrtia about the axis through center of
masscs arc I, Is and I3

The end effector veloaity can be computed as a function of the joint velocities 6 =
91,92,93, ...,(9'1 through the Jacobian matrix J. The same mcthodology can be used
to compute the velocity of a genceric point of the manipulator, and in particular the
velocity V., = ¢ of the center of mass p, that results function of the joint velocitics
61,05,63 only: [Pleasc refer to (162)]

& o= b1+ 02+ .+ J40, (5.45)
= J, (5.46)
W= Jab+ 0+ + L0, (5.47)
= Ji6, (5.48)
(5.49)
Where
Jex = DerJe2r- 10,0 0] (5.50)
Jog = [61:902) 1 9nr 0 -0 (5.51)
(5.52)
With
[ ]ZJ ] — [ Zy-1 X (Par — py-1) (5.53)
Jury Zy-1

Jacobians Jj, , and J; | for computing the mass matrix with reference to the base frame
{Xo,Y,} tor the three link finger under study are yielded as follows

fori=1

(5.54)

.
€
o
|
- oo
coco
coco
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-LayS5; 0 0
Jc,l = Lclcl O 0 (555)
0 00
fori =2
000
Ju2z=]0 0 0 (5.56)
1 10
—L1S1 ~LeaS1y —LeaSip O
Jeo= | LiCi+ LpCia Lp2Ci2 0 (5.57)
0 0 0
fori =3
0 00
Jus=10 0 0 (5.58)
1 1 1
—LyS1 — L1512 — Le3S123 —LaS12 — LeaS123 —Le3Si23
Je3 = | L1Cy+ LyCia + Le3Craz  LoCrz + LezCraz Le3Chos (5.59)

0 0 0

The equation for mass matrix; which is positive definite and symmetric is given as
follows [Please refer to (163, pp. 175)];

M = M, (5.60)

n
=1
n
Y midlJen+ I My, (5.61)

=1
For the three link finger under study, the elements of the mass matrix are as follows:
Mu = Ni+L+L+mi(La)® +ma(L® + L + 2L1 Lo Ch)
ma(Da? + Lo? + Les? + 2Ly LoCy + 2Ly Le3Cs + 2Ly LeaCas)  (5.62)
My, = My
= I+ I+ mo(Lea® + L1 LeaCa) + my(La? + Leg® + L1 LoCo
+L1 Le3Cag + 2L L3 Cs) (5.63)
(5.64)
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My = Ma

= I3+ m3(Les® + L1L3Co3 + L2 Le3Ca) (5.65)
My, = Ip+I3+moLe® +ma(La)® + Les® + 2L2LesCis) (5.66)
My = Ms;

= I3+ m3(Les”® + L2LcsCs) (5.67)
M3y = I3+ mgL.? (5.68)

The [C(6,6)]6 is a n x 1 vector V whose clements arc quadratic functions of joint ve-

locitics §. The k* clement of this vector is given as [Please refer to (162)]

Vi = C,b (5.69)

1=1

Where the clements Cy, arc computed as

n
Cky =Y Cyybs (5.70)
=1
With
1 0M oM, oM, ) .
Coyk = 5( BG:U + 89:1 - 89,: ), which is known as Christoffel symbols  (5.71)

Following the above formulation, the elements of [C(6, 9)] for the three link finger

shown in Figure 5.2 are

Cn = —(maL1L3Ss +myLiLySy +m3aLiLe3Sas)fs
—(m3LaLe3Ss + m3LyLe3Sas)fa (5.72)
Cia = —(mgL1LeaSa+ maliLySs + maLliL3S23)01 — (maLyLeySs)
+m3L1LySy + m3L1Lc3Sas3)bs ~ (maLiLesSag + maLaLesSs)f3 (5.73)
Cis = —(maLlaLcaSs+maliLe3Sas)1 — (MaliLeaSas + maLaLe3Ss)fs
—(maLyLe3Sa3 + m3LoLe3S3)03 ‘ (5.74)
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Cy = —(maL1LeaSa+m3LyLaSs + m3LyLe3Sas)f — (maLaLesSs)ds (5.75)

Cos = —(maLyL3S3)f3 (5.76)
Ciz = —(malyLesSs)fh ~ (m3LaLesSs)fs — (malaLesSs)fs (5.77)
Cs1 = (maLyLc3Ss+maLiLeaSas)6y + (m3LaLesSs)6s (5.78)
Csz = (mgLaLc3Ss)b1 + (msLaLesSs)6a (5.79)
Csz = 0 (5.80)

Finally the gravity terms G, of the gravity vector G(#) are computed from the expres-
sion {Please refer to (163, pp. 177)}: '

n
G, =~ ijgTJzJ (5.81)
J=1
Where
g=0 -g O]T; g being the acceleration due to gravity
Which results into the gravity terms as follows:

G1 = migLlaCi+mag(La + LeaChz) + mag(L1Cr + LaCy + LeaCias) (5.82)
G2 = magLeoCia + m3g(LaCiz + L3Cia) (5.83)
G3 = mgchgclzg (584)

Using the mass matrix from cquation 5.60, centripctal and coriolis matrix from equa-

tion 5.70 and gravity terms from 5.81, the joint torques arc computed as follows:

n My My Mz ] ( 6 Cn Crz Cis 61 Gy
Ty |=| Moy Mz Mo3 02 Cn Cyp C b2 Gy | (5.85)
T3 M3y Msy Mas 65 Cs1 Cy Cs3 63 Gs

5.2.3.2, Torques for Natural Curling

In order to find the motor torques to be applied to the flexor and extensor motors for
natural curling of the finger, the velocity and acceleration corrcsponding to the human
finger joints during natural curling are obtained. These velocitics and accclerations
are used for finding the joint torques through the equations of motion which in turn
is used for determining the flexor and extensor motor torques. The steps followed for

determination of the finger joint torques are enlisted below:
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e The human finger joint trajectories have been adopted from the Figure 3 reported

in (159) and are shown in Figure 5.6.

Ihen 2 g } Dot 4 gt §

4 [

($184

Ril}

L 04 LXY [{ el 04 0.6 6.2 4 X a2 4

;0
)

Flexiomn angle |
PIP

M(P

02 4 X 02 4 .6 0.2 04 Lb 0.2 (4 0.6

l ———— Lxpenment Simulation ]

Figure 5.6: Human Finger Joint Trajectories. The trajectories in red are for human
fingers and in blue are for the dynamic model of human hand proposed in (159). Digit 2,
3.4, 5 in the figure represents the index, middle, ring and little finger. The x-axis is the
flexion angle in degree and y-axis is the time in scc.

e The trajectories in Figure 5.6 are digitized using Engauge Digitizer 5.1 (164) that

converts an image file showing a graph into numbers.

— The equation representing the digitized finger joint trajectories are obtained
through polynomial curve fitting. Figure 5.7 and-Table 5.7 shows the digi-
tized finger joint trajectories and representative equations respectively. The
choice of a particular polynomial order was based on absolute value error

between the digitized and curve fitted trajectories.
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Figure 5.7: Digitized and Curve Fitted Finger Joint Trajectories. The x-axis is the flexion

angle in degree and y-axis is the time in sec.
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Table 5.7: Curve Fitted Finger Joint Trajectories for Natural Curling

Finger | Joints | Curve Fitted Trajectories

Index MCP | 1.1e 4 004z% — 2.5¢ + 004z° + 1.9¢ + 004z* ~ 6.7¢ + 00323
+1.1e + 00322 — 64z + 0.85

PIP | —7.3e 4+ 004z" + 2.1e + 0052 — 2.4e + 00525 + 1.3¢ + 005z*
—3.7e + 004z3 + 4.7e + 00322 — 2.3¢ + 002z + 21

DIP | ~1.5¢ + 00428 + 3.9¢ + 004z5 — 3.9¢ + 004z? + 1.7e + 00423
—3e + 003z2 + 1.8e 4 002z — 21

Middle | MCP | 1.2e 4+ 00527 — 3.6e + 005x% + 4.1e + 00525 — 2.3e + 005z*
+6.3¢ + 004z> — 7.2e + 00322 + 2.6e + 002z + 1.4

PIP | 9.6e + 00528 — 2.1e + 006z” + 1.8¢ + 0062° — 6.7¢

+005z° + 9.3e + 004z* +3.9¢ + 0032° — 1.3¢

+003z% + 672 + 19

DIP | 2.1e + 00527 — 4.2e + 00525 + 3.2e + 0052° — le 4 005z*
+8.7e + 003z + 1.7e + 00322 — 662 — 8.1

Ring MCP | 3.9e + 00528 ~ 1.3e + 00627 + 1.8e + 00625 — 1.3e

+006z° + 5.1e + 0052* — 1e + 005z° + le + 00422 — 4.3¢
+002z — 2.3

PIP | 5e + 00610 + 2e + 007x° — 3.4e 4 0728 + 3.1e + 077
—1.7e + 0725 + 5.9¢ + 062° — 1.3e + 06z* + 1.7e + 052>
—1.3e +04z% + 5.1e + 02z + 6.7

DIP | 2.9¢ + 006z — 1.2e + 007z° + 2.3¢ + 007z® — 2.3¢ + 007z7
+1.4e + 00728 — 5.5¢ + 062° + 1.3¢ + 062* — 1.6¢ + 0523
+1.1e + 0422 ~3.2e + 022 — 6.1

Little | MCP | 1.2¢ + 0062° — 4.6e + 00628 + 7e + 00627 — 5.7¢ + 00625
+2.6e + 006z° — 7.2¢ + 005z* + 1.1e + 005z° — 8.6e + 003z
+2.6e + 002z — 6.5

PIP | 5.8¢ + 005z° — 2e + 00628 + 2.9¢ + 00627 — 2.1e + 006z5
+8.8¢ + 005z% — 2.1e + 005z* + 2.9¢ + 004z® — 2.3e

+003z2 + 522+ 77

DIP | —1.9e+ 005z° + 7.8¢ + 00528 — 1.3¢ + 00627 + 1.2¢ + 006x°
—6.8e + 005z° + 2.2¢ + 005z* — 4e + 004z3 + 3.9¢ + 003z
—1.3e+ 002z + 1.2
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e The finger joint velocity and acceleration corresponding to the equation repre-

senting the finger joint trajectories are determined.

e Vclocity and acceleration valucs corresponding to the natural curling opcrations
of the human finger along with the finger specification of Prototype 1.0 were fed

into equation 5.85 to find the corresponding joint torques.

e The corresponding average joint torques required for replicating the finger joint
angles arc presented in Table 5.8, The simulation results for finger joint trajecto-
ries, velocity and acceleration are presented in Figure III.1 through Figure II1.12

in Appendix-III.

o Using Equation 5.41, motor torques requircd corresponding to the finger joint

torques are determined.

Table 5.8: Average Finger Joint Torques for Natural Curling Operations

Finger | Joints | Torque (Nm)
Index MCP 0.090
PIP 0.051
DIP 0.020
Middle | MCP 0.110
PIP 0.071
DIP 0.021
Ring MCP 0.081
PIP 0.061
DIP 0.022
Little MCP 0.071
PIP 0.041
DIP 0.011
Thumb | MCP 0.070
DIP 0.031

e The fingertip forces corresponding to the motor torques are determined through
Equation 5.42 and 5.43. Table 5.9 shows the average fingertip forces correspond-

ing to the joint torques.
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Table 5.9: Average Fingertip Forces corresponding to the Joint Torques

Finger | Avcrage Fingertip Force
Index 1.12 N
Middle 1.30 N
Ring 1.00 N
Little 091 N
Thumb 132 N

In the preceding sections, the methods for computing the joint torques required by
Prototype 1.0 to replicate the natural curling operations were presented. Given thesc
joint torques, cquation to determine the motor torques for a tendon driven system
is presented. Finally fingertip forces corresponding to the motor torques for natural
curling are determined. In the next section we discuss a feedback control based on the

fingertip forces.

5.2.4 PID Control

This section reports the simulation of a PID controller for emulating the grasp types
by Prototype 1.0. The goal of the PID controller is to inhibit the fingertip force from
exceeding the desired force. The selection of the PID controller is based on the fact that
it has better static and dynamic performance (165). The input to the actuator required
for generating the fingertip force as in Table 5.9 is applied through a PID controller.
The difference of the required force and the actual actual force is fed as error into the
PID controller. The steps for design and simulation of the PID controller is detailed in

the following sections.

5.2.4.1 System Linearity

The system lincarity is checked by applying a pulse width modulated (PWM) voltage
to the driver circuit of the motor and finding the corresponding output of the fingertip
force. Figure 5.8 represents the relationship of the input voltage versus the fingertip
force sensor outputdirect determining the linearity range of the system. It has been
found that the system is lincar within a range of input voltage 1.75 volt (V) to 10.00
V with an output fingertip force in the range of 0.6 N to 45 N.
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Figure 5.8: Linearity range of the System

5.2.4.2 System Transfer Function

Once the linear operating range of the system is obtained, the next step is to find the
transfer function for the system. The transfer function relating the input voltage v,
and output angular velocity w of the motor in Laplace domain is as follows (163):

w(s) K;

va(s)  (Ls+R)(Js+b) + K K, (5.86)

Where

Moment of inertia of the rotor (J) = 0.01

Motor viscous friction constant (b) = 0.1 Nmsec

Electromotive force constant (K,) = 0.01 V /radian/sec

Motor torque constant (K;) = 3.3 Nm/ Amp

Electric resistance (R) = 1 ohm

Electric inductance (L) = 0.5 Henry

The transfer function of the used DC geared motor used determined using the above

specifications (166) as follows:

3.3
0.005s2 + 0.06s + 0.1001

G(s) = (5.87)
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5.2.4.3 PID Controller Design

Following design criteria arc set for design of the PID controller.

e Overshoot < 5% e Settling Time < 0.5 scc e Steady state crror < 2%

The transfer function of a PID controller (165) is given as follows:

T(s)=K,+ K;/s+ Kps (5.88)

where

Kp = Proportional Gain

Kp = Differential Gain

K; = Integral Gain

The values of the controller gains have been sclected through manual tuning using
proportional gain Kp to decrease the rise time, differential gain Kp to rcduce the
overshoot and settling time and integral gain K; to climinate the steady-statc crror.

The process is followed in line with (167) and is tabulated in Table 5.10. The response

Table 5.10: Process followed for Controller Gain Selection

Parameters Rise Time Overshoot | Small Change | Steady State
Error
K, Dccreasc Incrcase | Small Change Dccreasc
K; Decrease Increase Increase Eliminate
Kp Small Change | Decreasc Dccerease No Change

of the PID controller with different values of the gains is shown in Figure 5.9. A sct
of values of K, = 1.7, Kp = 5.35 and K; = 0.0085 arc sclected for almost zero steady

state crror, zero overshoot and 0.2 sce sctting time.

5.2.4.4 Simulation Results

The simulation of the designed PID controller was carricd out in MATLab. The
schematic of the simulation model is shown in Figurc 5.10.

The fingertip force corresponding to the joint torques for the desired finger joint
trajectories obtaincd from the dynamic and static analysis is fed to the PID controller.

The gains of the PID controller were sct as obtained in scction 5.2.4.3. The PID control
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Figure 5.10: Schematic of the Simulation Model

signal is converted into a PWM signal through a PWM generator. The PWM signal
drive the motor actuating the fingers on Prototype 1.0. The torques measured at the
output of the motor was fed back through the feedback path. The force corresponding

to the resulting torque i.e. actual fingertip force obtained through the feedback transfer
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Figure 5.11: Simulated DIP, PIP and MCP Joint Trajectories of Index, Middle, Ring
and Little Finger. The x-axis is Time in See and Y-axis is flexion angle in degree

function is fed back to the PID controller. The controller minimizes the difference of the
actual fingertip force and desired fingertip force. In the simulation, the corresponding
joint torques are computed as a function of the motor torque using Equation 5.41.

Resulting finger joint trajectories are shown in Figure 5.11.
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5.3 Graspability of Prototype 1.0

Figure 5.12 shows Prototype 1.0 performing the six grasp types under study. The

Figure 5.12: Prototype 1.0 performing grasp types: a. Power bh. Palm-up c. Precision d.
Hook e. Pinch and f. Obligque

posture and/ or number of fingers involved in each grasps are different as detailed
in section 2.5.1.1 in Chapter 2. Prototype 1.0 can grasp a the objects like cricket
tennis ball, square bar. circular bar and table tennis ball stably. The video of Pro-
totype 1.0 pertorming six grasp types through off-line EMG controlled is available in
http://www.tezu.ernet.in/ ber/video.html.

While grasping. Prototype 1.0 is subjected to the limitation of grasping an object
with the thumb mimicking the thumb of human hand. This is mainly because of its
lesser DoF' as discussed towards the end of the section 5.1. The thumb being only of
two DoF., can not grasp an object with its tip. Further, for the absence of abduction-
adduction of four fingers, Prototype 1.0 can not grasp objects of larger size. However,

it can emulate all the six grasp under study.
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5.4 Summary

This chapter presented the development of a biomimetic hand prototype: Prototype
1.0. The prototypc has been developed following a biomimetic approach inspired by
human hand anatomy. It mimics thc human hand both in gcometry and function. The
prototype cxhibits all the functionality cxcept abduction/ adduction movement of the
digits. During grasping opcrations by human hand, objccts arc held firmly because of
the palm prehension; which is achieved in the prototype by making the palm a two picce
structure in order to have proper grasp modcs. The human wrist is a complex structurc
with eight carpcl bonces of semicircular surface giving threc DoF. This is achicved in
the prototypc by arranging three motors in mutually perpendicular axes. The thumb
mechanism in the prototype is a simplified version of the human thumb. Further, the
dynamic constraints have been considered for tendon actuation in the hand as stated
in section 5.2.1.1. This is subscquently used in the control of the hand.

Following a two layered control architccture, the prototype reproduce the grasping
opcrations involved during 70% of dla with 97.5% accuracy. Control is two layered:
a SHC rccognizes grasp type attempted by the user based on EMG signals; a LHC
was implemented to control the finger joint torques and angles in the prosthesis for
the grasp attempted. SHC recognized six grasp types used during 70% of dla. Grasp
recognition was through RBF kerncl SVM using PCA of TFD features. The control in
the LHC was based on kinematic, static and dynamic analysis. Prototype 1.0 cmulates
the grasping opcrations following the joint angle trajcctorics of the human finger during

natural curling opcrations.
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6

Characteristics of Prototype 1.0
and A Similarity Index

Extreme upper limb prosthesis is a well rescarched topic. Therc are number of research
prototypes and a few commercially launched variants. For a wider acceptance among
amputees, prosthetic hands need to be anthropomorphic i.c. replicate the human hand
in form and function. However it is difficult to compare and rank prosthetic hands on
the extent of their being anthropomorphic. Thercfore this chapter focus to cvolve a
framework for quantification of anthropomorphism for prosthetic hands.

Prototypc 1.0 is cvaluated in terms of the performance requirements of prosthetic
hands. The requirements listed here arc based on the research in prosthetic hands and
their clinical use (16, 168, 169, 170). The characteristics indicating the anthropomor-
phism arc categorized as physical, kinematic and dynamic characteristics. The sclection
of the charactceristics are based on the functional requirements of human hand to have a
clinical score such as Action Research Arm Test (ARAT) (168) and Southampton Hand
Asscssment Procedurce (SHAP) (16) cquivalent to that of normal upper limb (16, 168).
Thesce characteristics includces joint range of motion (RoM), DoF, dynamic constraints
and fingertip force; requirements of a robotic hand to be used as prosthesis (169) such
as number of joints, number of fingers and number of actuators; gecometrical and gen-
cral characteristics to mimic the human hand in form and function (84, 170) such as
weight and length. The characteristics of Prototype 1.0 vis-a-vis five established pros-
thetic hands viz. DLR Hand, Manus Hand, i-Limb, Southampton Hand and Utah/
MIT Hand arc cvaluated.
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6.1 Characteristics of Prototype 1.0

In continuation to the characteristics evaluation, the chapter propose a framework
for quantification of anthropomorphism of prosthetic hands. A Biomimctic Similarity
Index (BSI) for comparison of prosthetic hands is reported following the quantification
of anthropomorphism. The BSI of Prototype 1.0 is compared with five fairly established
prosthetic hands vis-a-vis human hand.

6.1 Characteristics of Prototype 1.0

6.1.1 Physical Characteristics

6.1.1.1 Size

Prosthetic hands are expected to possess the shape and size of a human hand. A
prosthetic hand with unnatural shape and size is far from human hand in terms of
the functional geomctry; which makes it unappcaling to the uscer (20). The size of
Prototype 1.0 has been computed in terms of the finger length, finger diameter, hand
length, palm width, palm thickness and total volume. Table 6.1 illustrates the size of

Prototype 1.0 with respect to the human hand.

Table 6.1: Size of Human hand and Prototype 1.0

Performance Human Hand | Prototype 1.0
Each finger diameter 14 mm 14 mm
Each finger length 92 mm 96 mm
Hand Length 210 mm 190 mm
Total Volume 50 cc 47cc
Wrist width 65 mm 65 mm
Palm width and thickncss 90 mm 90 mm
Palm thickness 45 mm 45 mm

The size of prosthetic hands are commonly expressed in terms of the extreme upper
limb length (171). The prosthetic hand structure should have a length between 180-198
mm and a width of 75-90 mm to match normal human hand size (1). Table 6.2 shows
the length of prosthetic hands including Prototype 1.0. Lengths arc in the ranges of
180 mm to 210 mm.
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6.1 Characteristics of Prototype 1.0

Table 6.2: Length of Prosthetic Hands and Prototype 10

Hands Length in mm
DLR Hand 190
Manus Hand 198
i-Limb 180
Southampton Hand 185
Utah/ MIT Hand 188

| Prototype 1.0 210

6.1.1.2 Weight

Weight is one of the main reasons for non-acceptance of prosthetic hands by the am-
putees (154). Kay and Rakic (172) have set a requirement that the hand including
cosmetic glove should remain under 370 grams while other group (173) advocate a 500
gram weight limit. According to (2), an adult-sized prosthetic hand should weigh less
than 400 grams; the average weight of human hand (171). The weight of Prototype 1.0
is 520 grams. Figure 6.1 shows the weight of prosthetic hands versus number of joints.

Figure 6.2 shows the weight of prosthetic hands versus number of actuators.
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Figure 6.1: Weights of Prosthetic Hands and Research prototypes versus number of Joints
(Adapted from (171, Table I and II))
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6.1 Characteristics of Prototype 1.0
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Figure 6.2: Weights of Prosthetic Hands and Research prototypes versus number of
Actuators (Adapted from (171, Table I and II))

6.1.1.3 Degrees of Freedom

Low DoF characterize low grasping functionality, lesser flexibility and may lead to
unstable grasps (4). Figure 6.3 shows the DoF of prosthetic hands (including Prototype
1.0) versus the number of joints. It is seen that the DoF increases with the increase in

number of joints. The human hand possess 22 DoF.

25, T T T — T v + T -
Human Hand
¢
ly 1
Prototype 10 DLR Hand
€
§up * o :
H
£ ¢
s Hmb Utaty MIT
g N tand
2 10r
[=]
Manus sun-*vbn
s Hand Hand &
-~ P s
) ] ] 10 12 14 16 18 20 z 2
Number of Joints

Figure 6.3: DoF versus Number of Joints for Prosthetic Hands (Adapted from (171,
Table I and II))
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6.1 Characteristics of Prototype 1.0

6.1.2 Kinematic Characteristics

6.1.2.1 Dynamic Constraints

The finger joint motions must integrate among themselves to form stablc grasps. Hu-
man finger joint angles follow inter-joint angular relationships. Dynamic constraints
(12) ensure such an integration during motion (168) as detailed in Chapter 5. ARAT
score revealed that dynamic constraints are highly disrupted in stroke subjects (168).
Table 6.3 shows the dynamic constraints for Prototype 1.0 vis-a-vis prosthetic hands.
Dynamic constraints for Prototype 1.0 are evaluated following the mathematical for-
mulation in equation 2.1 and 2.2 in Chapter 2; and from simulation results in Chapter
5.

6.1.2.2 Range of Motion

Finger joint range of motion (RoM) is one of the characteristics that determines the
work volume of the hand. For an anthropomorphic prosthetic hand, the finger joint
RoM should be close to that of human finger. Each joint in human hand is charactecrized
by the geometry of tﬁe contacting surfaces and by an angle of movement. Table 6.3
lists the RoM of Prototype 1.0 vis-a-vis other prosthetic hands. The RoM of Prototype

1.0 is measurced using Jamar Plastic Goniometer.

Table 6.3: Finger joint RoM and Dynamic Constraints (Adapted from (171, Table III
and IV})

MCP PIP DIP Dynamic Constraints

Flexion | Flexion | Flexion | DC1 DC2
i-Limb 0to90 | 0to 90 | 0 to 20 1 4.5
Manus Hand 0to70 | 0to40 ) Oto40 | 1.57 1
Utah/ MIT Hand 0to90 | 0to90 | 0to 90 1 1
DLR Hand 0to90 | 0to90 | 0 to 90 1 1
Southampton Hand | 0t0 90 | 0to 110 | Oto 70 | 0.8 1.57
Prototype 1.0 0to90 | 0to 110 0to70 | 0.8 1.57
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6.1 Characteristics of Prototype 1.0

6.1.2.3 Number of Actuators and Hand Complexity

Number of actuators is one of the important characteristics of a prosthetic hand as
it decides the number of DoFs and the weight of the hand. Furthermore, several
joints results in unnatural movements by the prosthetic hands (84). One of the aims of
biomimetic robotics is to reduce the number of actuators keeping similar hand dexterity
(174). With this, the little and ring finger in Prototype 1.0 are actuated through com-
mon actuators. Moreover, these two fingers moves together for grasping all spherical
objects (175). Figure 6.4 shows the number of actuators versus DoF of the prosthetic

hands. Human hand possess 38 number of actuators (25).
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Figure 6.4: Number of Actuator versus DoF (Adapted from (171, Table I and II))

6.1.3 Dynamic Characteristics
6.1.3.1 Achievable Grasps

Increasing the number of achievable grasp types increases the functionality (176).
Grasp-ability of the most of the prosthetic hands in literature are limited to two to
four grasp types (177, 178). Prototype 1.0 can execute six grasp types: power, palm-
up, oblique, hook, pinch and precision as shown in Figure 5.12.
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6.2 Biomimetic Similarity Index

6.1.3.2 Finger Tip Force

Figure 6.5 shows the precision grasp force of the prosthetic hands versus their weights.
Figure 6.6 shows the precision grasp force versus number of actuators. A minimum of 3
N fingertip force is required in human hand to form a stable grasp (179). Human hand
can generate & maximum of 20 N fingertip force. The fingertip force of the prosthetic
hands under study ranges from 2 N to 60 N. Prototype 1.0 can generate a fingertip
force in the range of 0.6 N to 45 N.
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Figure 6.5: Precision Grasp Force of Prosthetic hands and research prototype versus
weights (Adapted from (171, Fig.5))

In addition to the above characteristics, number of fingers is an important emphasis

to mimic the human hand (180, chapter 23).

6.2 Biomimetic Similarity Index

For a wider acceptance among amputees, prosthetic hands intends to be anthropomor-
phic i.e. replicate the human hand in form and function. However, it is often difficult to
compare and rank prosthetic hands on the extent of their being anthropomorphic. BSI
reflects extent of anthropomorphism and allows a quantitative comparison of different

prosthetic hands with reference to the human hand.
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6.2 Biomimetic Similarity Index
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Figure 6.6: Precision Grasp Force of Prosthetic hands and research prototypes versus
number of actuators (Adapted from (171, Fig.2)

6.2.1 Metric for Similarity

A similarity measure determines the relative closeness of the objects to a reference
object. Ranking the objects based on the magnitudes of their similarity measure with
respect to the reference object computes the degree of similarity of the objects vis-a-
vis the reference object. This similarity measure can be mapped to the range 0 to 1;
where 1 shows absolute similarity. A quantitative framework based on matrix algebra
for computation of such a similarity measure for exploiting functionality of products in
design-by-analogy have been put forward by McAdams and Wood (181). The similarity
is influenced by customer needs which drive the product functions having a key impact
on the resulting design. Along these lines, this section give a method for computing
biomimetic similarity of prosthetic hands. BSI is intended to give the closeness of
the prosthetic hands under investigation to the human hand. The philosophy of the
similarity measure is that anthropomorphism of a prosthetic hand can be expressed in
terms of functional, geometric and general characteristics. Given a similarity index for
individual prosthesis, one could rank these prostheses; one with the highest similarity
index being the closest to the human hand.

A function-vector would be required to represent the prosthesis’ functional, geo-
metrical and general characteristics influencing anthropomorphism. Although anthro-

pomorphism is subjective, there exist characteristics that prompt one to project the
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6.2 Biomimetic Similarity Index

right characteristics (182). With this to bring objectivity to the process of defining
biomimetic similarity bascd on anthropomorphism, the contexzt of anthropomorphism
is characterized within Formal Concept Analysis (FCA). This follows the work reported
for creating a sccurity pattern latticc in (183). This characterization is based on the
surveys cncompassing clinical practice in the litcaturce (16, 168) as well as rescarch in
prosthetic hands (169, 170, 171, 178, 184). The central notion of FCA is Galois con-
nection (185), a duality between objects and attributes in an application. The process
of defining BSI makes exphcit this rclationship between requircments for anthropomor-

phism and cxpected functionalitics of the prosthesis based on literature review.

Formal Context: A formal context is given as < O, A, I >, where O is the set
of objects (called the extent); A is the sct of attributes (called the intent) and I is a

mapping between O and A. Formal context can be seen as a table between objects and

attributes.

Formal Concept: Formal concept analyzes data which describe relationship be-
tween a particular sct of objects and a particular sct of attributes. A formal concept

for a context < O, A, I > 1s defined by a two tuple < O,, A, > such that
i. 0,COand A, C A
ii. Every object in O, has every attribute in A,

iii. For every object in O that is not in O,, there is an attribute in A, which that

object docs not have and

iv. For cvery attribute in A that is not in A,, therc is an object in O, that does not

have that attribute.

Function-Vector: A function-vector is the description of the extreme upper limb
in terms of its charactcristics that are required to be achieved by the prosthesis in order
to completely represent the natural counterpart. Concept covering the charactceristics of
anthropomorphism is taken as the function-vector. It is described in terms of functional,
geometrical and general characteristics of prosthesis.

A formal context of anthropomorphism is constructed for [i.]. clarity in understand-

ing the object to attributc rclation and [1i ] deciding on the minimal sct of attributes
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6.2 Biomimetic Similarity Index

covering all of the given objects. Table 6.4 shows the formal context of anthropomor-
phism.
Graphical interpretation of the prosthesis function-vector and similarity projection

of such a vector on to the human hand is shown in Figure 6.7.
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Figure 6.7: Graphical interpretation of prosthesis function-vector similarity projection
on human hand

Each prosthesis is represented as P, in terms of its function-vector Fp,. £y is
the human hand function-vector. Prosthetic A (resp. Prosthetic B) is represented as
a function of its functional, gcometric and gencral charactcristics (Fa,Ga,Ca) (resp.
(FB,GpB,Cg)). The solid lincs in Figurc 6.7 represents the function-vectors for the
prosthescs and the human hand. The component characteristics of cach prosthesis is
represented as dotted lincs. The projection of Prosthetic A (resp. Prosthetic B) to the
human hand as shown in Figurc 6.7 begets the BSI P4 {resp. Pg).

Prosthetic-Functional Matrix: In order to carry out similarity projcction bascd

on a function-vector, a prosthetic-functional matrix, ® is constructed. The prosthetic-

functional matrix results out of collccting the prostheses’ function-vectors as rows and
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6.2 Biomimetic Similarity Index

prostheses under investigation as columns.

6.2.2 Function-Vector Characteristics

An approach to derive the concept that best describes the anthropomorphism is pre-
sented in this section. It is through FCA supported by the rescarch in clinical practice
and prosthetic hands (16, 168, 169, 170). Functional, gcometric and genceral character-
istics arc the objects indicating anthropomorphism. Formal context of anthropomor-
phism is expressed as

(0,A, 1)

where

O = {Functional, Geometric, General} is the set of objects

A = {DoF, RoM:MCP, RoM:DIP, RoM.PIP, DC1, DC2, Fingcrtip Force, Number of
Fingers, Number of Joints, Hand Length, Weight, Number of Actuators} is the sct of
attributes

I is the relation between O and A; expressed as per Table 6.4. The object to attribute
mapping is bascd on

a. functional recquirements of human hand to have a clinical score cquivalent to that

of normal upper limb (16, 168)
b. requircments of a robotic hand to bc uscd as prosthesis (169) and

c. geomctrical and gencral characteristics to mimic the human hand in form and
function (84, 170).

The cntrics for I, the matrix of relation between objects and attributes is shown in
Table 6.4. Figure 6.8 shows the formal concept lattice for the context of anthropo-
morphism (186). Eight concepts as tabulated in Table 6.5 are observed; including the

functional, gcometric and gencral characteristics as individual concepts.
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6.2 Biomimetic Similarity Index

Table 6.4: Formal Context of Anthropomorphism.
Objects

. Functional | Geometric | General
Attributes

DoF
RoM:MCP
RoM:PIP
RoM:DIP

DC1

DC2

Fingertip Force

XIX|IXIXIX|X]|X

Number of Fingers

Number of Joints X
Palm Length
Weight

Number of Actuators X |

Eum'nanaf Geametnical and Gcnzml]

Nuazber of Fogars, Wegh, Palm Langth, Frogerup Foree. Nutches of Jomurs.

DoF Rodl 3CP, Ro3{. PIP, RoM, DIP, DCY, DC2, Numbes of Actaxices, ]

Figure 6.8: Concept Lattice for the context of anthropomorphism. Grey boxes are at-
tributes and white boxes are objects
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6.2 Biomimetic Similarity Index

Table 6.5: Concepts of Anthropomorphism

({General, Geometric},{Palm Length})

({General, Functional},{Fingertip Force})

({Geometric, Functional},{Number of Joints})

({General},{ Weight})

({Geometric},{Number of Fingers})

({Functional},{DC1, DC2, RoM:MCP, RoM:DIP, RoM:PIP, DoF, Number of Actuators})

({},{DoF, RoM:MCP, RoM:DIP, RoM:PIP, DC1, DC2, Fingertip Force,
Number of Fingers, Number of Joints, Palm Length, Weight, Number of Actuators})

({Functional, Geometric, General},{})

6.2.3 Derivation of A Biomimetic Similarity Index

McAdams and Woods (181) procedure is followed to arrive at a quantitative metric of
similarity to a given reference for prosthetic hands. The human hand is considered as
reference. To compensate the variations in function-vectors of the prosthetic hands,

the elements of ® are weighted using the weighing function:

5o
Vij = &y
nj K
where
®;; = Element of the metric ® at the i** row and jthcolurnn

_ sum of all the elements in ®

T= number of columns

7; = Columns sum of
m

Wy o= Z H(®y;) with m = total number of clements in @
j=1
m n

A=) ) H(y)
i=1 j=1

H is the Heaviside function and is defined as

H(z) = lwhenz#0

0 otherwise
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6.2 Biomimetic Similarity Index

The weighted prosthetic-functional matrix is normalized to make its norm unity. The
inner product of the normalized prosthctic-functional matrix and human hand function-
' vector Zy gives projection of the prostheses on to the human hand. The index so
obtained is a measure of biomimetic similarity and christened BSI. A BSI of unity
represents the human hand.

The prosthetic-functional matrix @ for i- Limb, Manus Hand, Utah/MIT Hand,

DLR/HIT, Southampton and Prototype 1.0 are constructed as shown below.

o
>
s %
= T o § B
o ] =~ E =% :g
& = = &
B L 2 ~ = _2 %
2 £ : 9§ = = g
s 3 ¢ & 3 3 3
a. ) = © a 0 o}
DoF 15 11 3 13 15 6 22
RoM: MCP Joint 90 90 70 90 90 90 90
:PIP Joint 110 90 40 90 90 70 110
:DIP Joint 70 20 40 90 90 70 70
Constraints: DC1 0.8 1 1.7 1 1 -8 .8
. DC2 1.57 4.5 1 1 1 1.57 1.57
Fingertip Force 45 108 60 2 10 92 20
Number of Fingers 5 5 5 4 5 5 5
Number of Joints 18 11 9 18 20 14 22
Palm Length 210 180 198 188 190 185 190
Weight 520 615 1200 900 1500 520 400

Number of Actuators 12 5 2 32 15 6 38

The human hand is considered as the reference. The human hand matrix S is given

below.
HumanHand

DoF 22
RoM: MCP Joint 90
.PIP Joint 110
:DIP Joint 70
Constraints: DC1 08
: DC2 1.57
Fingertip Force 20
Number of Fingers 5
Number of Joints 22
Palm Length 190
Weight 400
Number of Actuators 38

To make the importance of all the elements in the prosthetic-functional matrix

equal, cach clements of the prosthetic-functional matrix is weighted with the weighing
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6.2 Biomimetic Similarity Index

function V,;. The weighted matrix N is shown below.

R

- 3 P

= 3

. 5 B v 3 &

; AN I

< =t z ~ = 5

2 E g 3 € 5 E

£ % f 35 3 & =
DoF 255 198 034 170 138 114 425
RoM MCP Joint 1530 1620 804 118 830 1724 1739
PIP Joint 1870 1620 459 1180 830 1341 2126
DIP Joint 1190 360 459 1180 830 1341 1352
Constraints DC1 13 018 020 013 009 015 015
DC2 027 031 on D13 009 D030 D30
Fingertip Force 765 194 689 026 090 176 386
Number of Fingers 08 090 057 052 045 095 097
Number of Joints 306 198 103 234 184 268 425
Palm Length 3570 3240 2276 2444 1756 3540 3672
Weight 8840 11070 13795 11700 13864 9966 77 30

Number of Actuators \ 204 090 023 416 1383 114 734

To review the functional similarity of the prosthetic hands, the function-vectors in
the weighted prosthetic-functional matrix is normalized so that their norm is unity. On

normalization, N becomes N and is given as:

°
< - L‘é g <
—

£ 2 5 5 & & £
DoF 003 002 001 001 011 001 005
RoM MCP Jomnt 015 013 005 009 006 015 020
PIP Joint 018 013 003 009 006 012 023
DIP Jont 012 003 003 009 001 012 014
Constraints DC1 002 001 001 001 001 DO1 001
DC?2 001 001 001 001 001 001 001
Fingertip Force 008 002 005 001 001 002 004
Number of Fingers 001 001 001 001 001 001 0O1
Number of Joints 003 002 001 002 002 002 005
Palm Length 035 027 016 020 033 033 040
Weight 089 094 098 096 091 091 085

Number of Actuators \002 001 001 003 001 001 008

The inncr product of the reference matrix § and the N gives the projection of the
prosthetic hands onto the human hand in function-vector space. This is a measure of

biomimetic similarity. The similarity index shows the extend of anthropomorphism of
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the prosthetic hands under study including Prototype 1.0 with reference to the human
hand.

el
o &

. = <
i g = k] 2 &
[ G = & Q. oo
& oo} = a g
o = < [~

£ ] ~ o
g § & ® » £ ¢
2 3 s 8 = g 3
o L2 D a w =
BSI \ 096 094 089 092 089 095 1.00

6.3 Summary

A formalism have been presented to compute BSI for prosthetic hands. The BSI re-
flects extent of anthropomorphism and is a measure of closeness of a prosthetic hand to
human hand. This allows a quantitative comparison of different prosthetic hands. This
was computed over a set of functions that reflect functional and geometric biomimesis
represented as a function-vector. The function-vector was characterized within a for-
mal context of anthropomorphism; the context was constructed using FCA. This gives
objectivity to what would one like to term as anthropomorphic and allows to decide
which of the attributes contributes or best describes anthropomorphism of a prosthetic
hand. The decision of the function-vector was arrived through a literature review of re-
search in clinical practice and prosthetic hands. The objectivity of anthropomorphism
is subjective to the set of attributes in the function-vector. A different set of attributes
in the function-vector would result in different anthropomorphic measures. Defining
the attributes in the function-vector remains as an open challenge.

Five prosthetic hands: DLR Hand, i-Limb, Manus Hand, Utah/ MIT Hand and
Southampton Hand apart from the Prétotype 1.0 have been considered for computing
the BSL. It was interesting to note that BSI reflects quantitatively what onc could
qualitatively derive from (171). Southampton Hand and i-Limb could be categorized
into one cluster and the remaining three (Manus, Utah/MIT and DLR) into another
cluster as per tabulations reported in (171). Propertics of Prototype 1.0 arc closer to
Southampton Hand and i-Limb. Prototypc 1.0, Southampton and i-Limb have BSI
of 0.96, 0.94 and 0.95 respectively; whereas the hands in the other cluster: Manus,
Utah/MIT and DLR have BSI of 0.89, 0.92 and 0.89 respectively. BSI is a quantitative

categorization of prosthetic hand’s similarity.
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7

Conclusions and Future Work

In this chapter, I shall summarize the main results of the thesis and point to the
dircctions towards futurc work. First, I shall discuss the results on the EMG based
recognition of six grasp types used during 70% of dla. Then, I shall summarize the
results on the biomimetic hand with EMG based grasp emulation followed by the BSI
for prosthetic hands. This summary leads to the issues to be encountered for future

research and discussed 1n the final section.

7.1 Conclusions

In recent ycars, much rescarch has been done in the area of rehabilitation robotics world-
wide I have presented a general understanding of the ficld and particular insight into
the lincs of rescarch in Chapter 1, which originated and inspired the work undertaken in
this thesis. The litcrature review starting from EMG based grasp recognition towards
the control of a prosthetic hand grasping reveals that a biomimetic hand with EMG
bascd grasp cmulation holds promisc.

This research highlighted some of the important issucs involved in successful use
of prosthetic hands as if it were a natural part of the body. Present prosthesis (both
commercial and research prototypes) are far from the natural counterparts in terms
of both EMG based control and functional geometry. Further, they arc non-intuitive
being controlled through dissociate muscle remnants action or higher number of EMG
channels. The work reported in this thesis focused on the development of a biomimetic

hand with EMG based grasp cmulation. Dcvelopment of such a hand involves the
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7.1 Conclusions

recognition of grasp types used during dla as well as a biomimetic hand development
inspired by human hand anatomy. I have concentrated on the recognition of six grasp
types; powcer, palm-up, oblique, hook, pinch and precision based on EMG signals.
These six grasps are of significance as they arc used during 70% of dla. A biomimetic
hand mimicking the functional geometry i.c. both static and dynamic constraints of
the human hand was developed.

7.1.1 EMG based Grasp Recognition

The material and methods followed for acquisition of EMG signals were discussed in
Chapter 3. An cxperimental protocol for acquisition of EMG signals from the resting
state of the hand to grasping statc followed by the relcasing the grasp and returning to
the rest has been presented. The chapter discusses threc grasp recognition architectures
and initial expcrimental results were presented. In architecture-1, six grasp types under
study have been recognized with an average recognition rate of 77%. The classification
was through a SVM classifier followed by a FFT classifier In the grasp recognition
architecture-11, classification was done in a single step through a lincar kernel SVM and
an average rccognition rate of 80% and 84% werc achicved using CWT and DWT fea-
tures. SWC have been used as feature set for classification through a RBF kernel SVM
in grasp recognition architecture-111. An average rccognition rate of 86% was achicved
for the six grasp types. Through these grasp recognition architectures, following facts

have been established:

e CWT tunction cocficicnts ot the EMG signals having cntropy values close to
the entropy values of prerpocessed EMG signals possess maximum informations

about the grasp types.
e SWC 1s established as a primal feature for classification of grasp types.

EMG bascd grasp recognition result comparable to that reported in the litcrature is
prescnted in Chapter 4. This chapter focuses on the derivation of a low dimensional
yet informative and distinguishing feature set to significantly increase the performance
of low channcl EMG bascd grasp typcs recognition. Grasps classification experiments
have been carricd out with four groups of fcatures: TD, FD, TFD and PCA of TFD

features 1n quest of an efficient teature set for higher recognition rate. The transition
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from onc feature set to another is bascd on the linear relationship of each feature set
with the grasp types. It was based on the R2-valuc obtained through ANOVA. PCA of
TFD featurcs reported an average recognition rate 97.5% for the six grasp types under
study based on two channcl EMG. The reported result is better in terms of the number
of EMG channcls involved, number of grasp typcs and the recognition rate as prescnted
in Tablc 4.16 in Chapter 4.

7.1.2 A Biomimetic Hand with EMG based Grasp Emulation

The development of a biomimetic hand inspired by human hand anatomy is reported
in Chapter 5. The prototype has been devcloped following a biomimetic approach
inspired by human hand anatomy. It mimics the human hand in its form satisfying the
static and dynamic constraints. This results into a BSI of 0.96; which is the highest
among the BSI of five fairly established prosthetic hands as elaborated in Chapter 6.
Further, the dynamic constraints have been considered for tendon actuation in the hand
as stated in scction 5.2.1.1. This is subscquently used in the control of the hand. A
two laycred control architecture: SHC and LHC is presented in Figure 5.4. SHC is for
the rccognition of the grasp types attcmpted by the user bascd on the EMG signals.
The LHC emulate the 1dentified grasp type in Prototype 1 0 Prototype 1.0 follows the

human-like finger joint trajectories and ensures stable grasping opcrations.

7.1.3 A Biomimetic Similarity Index

An index for comparative cvaluation of the available prosthetic hands with reference
to the human hand is of importance. Towards the cnd of this rescarch, a BSI for cvalu-
ation of the prosthetic hands in terms of anthropomorphism is proposed in Chapter 6.
Five fairly cstablished prosthetic hands have becn comparcd with Prototype 1.0. Pro-
totype 1.0, devcloped through a biomimetic approach reports the highest BSI of 0.96.
Biomimetic design leads to higher anthropomorphism of robotic hands; biomimetic
design should result in a higher BSI. Prototype 1.0 is a casc in point.

A similar mctric for comparing the anthropomorphic motion capability of artificial
hands have been reported parallel to my work by a group of rescarchers supported by
Europcan Union (EU) IST FP7 Intcgrated Project, EU European Research Council
project and Swedish Foundation for Strategic Research. The metric is for comparing

the anthropomorphic motion capability of robotic and prosthetic hands. The metric is
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based on the evaluation of how many different postures or configurations a hand can
perform by studying the reachable set of fingertip poses. It docs not take into account
the functional as well as geometric charactcristics required to replicate a prosthetic
hand as in the casc of BSI reported in this thesis (187). Furthermore, although scores
such as ARAT and SHAP can bc uscd for cvaluating prosthctic hands; it is often
difficult to rank one with respect to other based on its extent of anthropomorphism.
Therefore, formulation of a biomimetic index for comparison of prosthetic hands is
novel and hitherto not reported in the litcrature. A high BSI i.e., anthropomorphism
alonc may not be the only criteria for wider acceptance of a prosthetic hands. Clinical

studics can only cvaluate BSI as a critcria.

7.2 Future Work

There remain many avenucs for further research. Some of the issucs to be explored for
further improvement of Prototype 1.0 concern with the EMG bascd grasp recognition
whilst others may lead to the application of Prototype 1.0 as a prosthetic hand for

amputees.

7.2.1 Further evaluation of the EMG based Grasp Recognition

7.2.1.1 Use of Different Classifier

As prescnted in Chapter 3 and 4, the work concentrated on EMG based grasp classifica-
tion through SVM. ANN, FL based classifiers are the most used method in classifying
the EMG signals. Even though the developed grasp recognition system has shown its
usefulness in classifying the EMG signals, a further cvaluation using ANN, FL based
classifiers is needed In addition to this, a neuro-fuzzy classifier could also be inves-
tigated as it is a combination of ANN and fuzzy logic and may improve the system
performance. All these methods would require training data from the individual uscr

of the system which is a disadvantage.

7.2.1.2 Use of Different Data Sets

In the work presented in this thesis, the system was tested with EMG data from normal
healthy subjects. It is expected that there will be not much difference in the system

performance between healthy people and people with amputation based on the rescarch
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findings reported in (8) However, for final implementation of the prototype as a
prosthesis, study on the grasp rccognition system that uses amputees EMG from their

remnant muscle 1s needed.

7.2.2 Implementation into a Microcontroller

A biomimetic hand prototypc with EMG basced grasp cmulation: Prototype 1.0 has been
developed. 1t is very important to implement the EMG bascd grasp cmulation system
in a microcontroller for a real time application to provide a practical and small system.
The most critical part is to implement the EMG based grasp recognition architecture
into a microcontroller. In addition, it should be accompanicd with the miniaturization
of the driver circuit so that the complete system can be fitted into an artificial slave
One of the challenges in this is to usc a power supply (i.c. battery) of smaller size as
well of longer back-up. Another task to be completed for real time application is to
usc a skin-covering to imitate the natural acsthetic. A dedicated clinical trials with the
amputecs is onc of another important aspects so that the prototype can rcach the end

user with a good warranty.
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Appendix-I: IEMG and nIEMG
Signals

EMG is easily affected by undesired signal that come from different sources such as
clectromagnctic interference between the signal carrying conductors with other signal
carrying conductors, ground lincs, power lines, clectromagncetic radiation cte. In ad-
dition, for surface electrode instrumentation, subjective issues may arise due to its
coupling with skin. After acquisition, EMG signal was filtered using a band-pass filter
to reduce noisc. The signal was next amplified with a high CMRR amplifier. Also a
notch filter at 50 Hz to eliminate power line noise was exerted. Finally the signal was
sampled at 10 KHz sampling rate and transferred to an HP based personal computer
for further analysis. This appendix shows the IEMG signals for the six grasp types in
Figurc 1.1 through to Figurc 1.6 for a singlc subject.
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Figure 1.1: IEMG signal for Power Grasp
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Figure 1.2: TEMG signal for Palm-up Grasp
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Figure 1.4: IEMG signal for Oblique Grasp
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Figure 1.5: IEMG signal for Precision Grasp
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Figure 1.6: IEMG signal for Pinch Grasp

In order to overcome the subjectivity of the signals, MVC normalization was uscd.
The specifications of the preprocessing unit is as stated in section 3.2.2 in Chapter 3.
The nIEMG signals for the six grasp types are shown in Figure 1.7 through Figure 1.12
in this appendix. The preprocessed two channel nTEMG signals shown in this appendix

are for six grasp types of onc subject.
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Figure 1.7: Normalized IEMG signal for Power Grasp
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Figure 1.8: Normalized IEMG signal for Palm-up Grasp
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Figure 1.9: Normalized IEMG signal for Hook Grasp
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Figure 1.10: Normalized IEMG signal for Oblique Grasp
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Figure 1.11: Normalized IEMG signal for Precision Grasp
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Figure I 12: Normalized IEMG signal for Pinch Grasp
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Appendix-II: EMG Signals in
Time/ Frequency Domain

WT is one of the most powerful signal processing tools for EMG recognition. I have
investigated thec EMG features from third level wavelet decomposition of the EMG sig-
nal as reported in Chapter 4. The results in this appendix shows the approximate WT
coefficients at first, second and third level of decomposition using five mother wavelet
functions: Biorthogonal, Symlet 4, Coiflet 2, Daubichies 2 and Haar for two channel
EMG signals for onc subject performing six grasp types. The approximate coefficients
obtained at first, second and third level of decomposition through Biorthogonal WT
for the six grasp types under study are shown in Figure II.1 through Figure I1.12.
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Figure 11.1: Biorthogonal WT coefficients of EMG channel 1 for power grasp
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First Level Approximate coefficients of Biorthogonal WT
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Figure I1 2 Biorthogonal WT coefficients of EMG channel 2 for power grasp
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Figure II 3 Symlet 4 WT coefficients of EMG channel 1 for palm-up grasp
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Figure 114 Biorthogonal WT coefficients of EMG channel 2 for palm-up grasp
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Figure II 5 Biorthogonal WT coefficients of EMG channel 1 for hook grasp
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Figure I1.6: Biorthogonal WT coefficients of EMG channel 2 for hook grasp
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Figure I1.7: Biorthogonal WT coefficients of EMG channel 1 for oblique grasp
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Figure I1.8: Biorthogonal WT coefficients of EMG cpannel 2 for oblique grasp
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Figure 11.9: Biorthogonal WT coefficients of EMG channel 1 for pinch grasp
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Figure I1.10. Biorthogonal WT coefficients of EMG channel 2 for pinch grasp
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Figure I1.11: Biorthogonal WT coefficients of EMG channel 1 for precision grasp
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Figure IT 12 Biorthogonal WT coefficients of EMG channel 2 for precision grasp

The approximate coefficients obtained at first, second and third level of decompo-
sition through Coiflet 2 WT for two channel EMG ot six grasp types under study are
shown in Figure 11.13 through Figurc 11.24.
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Figure 11.13 Coiflet 2 WT coefficients of EMG channel 1 for power grasp
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Figure 11.14: Coiflet 2 WT coefficients of EMG channel 2 for power grasp
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Figure 11.15: Coiflet 2 WT coefficients of EMG channel 1 for palm-up grasp
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Figure 11.16: Coiflet 2 WT coefficients of EMG channel 2 for palm-up grasp
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Figurc 11.17: Coiflet 2 WT cocfficients of EMG channcl 1 for hook grasp
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Figure 11.18 Coiflet 2 WT coefficients of EMG channel 2 for hook grasp
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Figure I1.19: Coiflet 2 WT cocflicients of EMG channel 1 for oblique grasp
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Figure I1.20: Coiflet 2 WT coefficients of EMG channel 2 for oblique grasp
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Figure 11.21: Coiflet 2 WT coefficients of EMG channel 1 for pinch grasp
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Figure 1122 Coiflet 2 WT coefficients of EMG channel 2 for pinch grasp
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Figure I1 23 Coiflet 2 WT coefficients of EMG channel 1 for precision grasp
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Figure T1.24: Coiflet 2 WT coefficients of EMG channel 2 for precision grasp

The approximate coefficients obtained at first, second and third level of decomposi-
tion through Daubichics WT for two channcl EMG of six grasp typcs undcr study are
shown in Figurc 11.25 through Figurc 11.36.
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Figure I1.25: Daubechies WT coefficients of EMG channel 1 for power grasp
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Figure 11 26 Daubechies WT coefficients of EMG channel 2 for power grasp
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Figure 11 27 Daubechies WT coefficients of EMG channel 1 for palm-up grasp

182



Appendix-II

Amplitude Amplitude

Amplitude

-

First Level Approximate coefficients of Daubechies 2 WT

Number of Samples

0 200 40 600 800 1000 1200 1400

Number of Samples
Second Level Approximate coefficients of Daubechies 2 WT
L 1 1 L 1 L

0 100 200 300 400 500 600 700

Number of Samples
Third Level Approximate coefficients of Daubechies 2 WT
0 50 100 150 200 250 300 350

Figure I1.28: Daubechies WT coefficients of EMG channel 2 for palm-up grasp
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Figure 11.29: Daubechies WT coefficients of EMG channel 1 for hook grasp
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Figure I1.30: Daubechies WT coefficients of EMG channel 2 for hook grasp
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Figure I1.31: Daubechies WT coefficients of EMG channel 1 for oblique grasp
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Figure I1.32: Daubechies WT coefficients of EMG channel 2 for oblique grasp
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Figure 11.33: Daubcchics WT cocfficients of EMG channcl 1 for precision grasp
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Figure 11.34: Daubechies WT coefficients of EMG channel 2 for precision grasp
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Figure I1.35: Daubechies WT coefficients of EMG channel 1 for pinch grasp
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Figure I1.36 Daubechies WT coefficients of EMG channel 2 for pinch grasp

The approximate cocflicicnts obtained at first, second and third level of decomposi-
tion through Haar WT for two channcl EMG of six grasp types under study arc shown
in Figurc I1.37 through Figurc 11.48.
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Figure 11.37: Haar WT coefficients of EMG channel 1 for power grasp
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Figure 11.38: Haar WT coefficients of EMG channel 2 for power grasp
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Figurc I1.39: Haar WT cocfficients of EMG channel 1 for palm-up grasp
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Figure 11.40: Haar WT coefficients of EMG channel 2 for palm-up grasp
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Figure 11.41: Haar WT coefficients of EMG channel 1 for hook grasp
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Figure I1 42 Haar WT coefficients of EMG channel 2 for hook grasp
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Figure I1 43 Haar WT coefficients of EMG channel 1 for obhique grasp
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Figure 11 44 Haar WT coefficients of EMG channel 2 for oblique grasp
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Figure 11 45 Haar WT coefficients of EMG channel 1 for precision grasp
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Figure 11.46 Haar WT coefficients of EMG channel 2 for precision grasp
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Figure 11.47 Haar WT coefficients of EMG channel 1 for pinch grasp
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First Level Approximate coefficients of Haar WT
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Figure 11.48: Haar WT coefficients of EMG channel 2 for pinch grasp

The approximate coefficients obtained at first, second and third level of decompo-
sition through Symlet WT for two channcl EMG of six grasp types under study are
shown in Figurc 11.49 through Figure I1.60.
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Figure 11.49: Symlet 4 WT coefficients of EMG channel 1 for power grasp
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First Level Approximate coefficients of Symlet 4 WT

° 2 . T T T y T
°
2
£ 1) 1
€
< ) ' i A L L !
0 200 400 60 800 1000 1200 1400
Number of Samples
Second Level Approximate coefficients of Symlet 4 WT
o 4 . : T r T :
b=
2
27 i
g WAl
< 0 1 1 1 1 1
0 100 200 300 400 500 600 700
Number of Samples
Third Level Approximate coefficients of Symlet 4 WT
4 T . . : , v

Amplitude
N

0 50 100 150 200 250 300 350
Number of Samples

Figure I1.50: Symlet 4 WT coefficients of EMG channel 2 for power grasp
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Figurc I1.51: Symlct 4 WT cocfficients of EMG channel 1 for palm-up grasp
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Flrst Level Approx|mate coefﬁc:ents of Symlet 4 WT
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Figure 11.52: Symlet 4 WT coefficients of EMG channe! 2 for palm-up grasp
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Figure 11.53: Symlet 4 WT coeflicients of EMG channel 1 for hook grasp
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First Level Approximate coefficients of Symlet 4 WT
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Figure 11.54: Symlet 4 WT coefficients of EMG channel 2 for hook grasp
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Figure I1.55: Symlet 4 WT coefficients of EMG channel 1 for oblique grasp
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First Level Approximate coefficients of Symlet 4 WT
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Figure 11.56: Symlet 4 WT coefficients of EMG channel 2 for oblique grasp
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Figure I1.57: Symlet 4 WT coefficients of EMG channel 1 for precision grasp
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First Level Approximate coefficients of Symlet 4 WT
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Figure I1.58: Symlet 4 WT coefficients of EMG channel 2 for precision grasp
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Figure 11.59: Symlet 4 WT coefficients of EMG channel 1 for pinch grasp
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First Level Approximate coefficients of Symlet 4 WT

2 T — T - —

Y]
hel
2
E
< 0 1 L 1 1 1
0 20 400 600 800 1000 1200 1400
Number of Samples

Second Level Approximate coefficients of Symiet 4 WT

o 2 — T —
©
2
i ]
E
< 0 ] ' - A - 1 1
0 100 200 300 400 500 600 700
Number of Samples
Third Level Approximate coefficients of Symlet 4 WT
© 4 - v T T v -r
©
2
3 2 e e a1
£
< 0 i 1 i T A - 1
0 50 100 150 200 250 300 350
Number of Samples

Figure II 60: Symlet 4 WT coefficients of EMG channel 2 for pinch grasp
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Appendix-I1I: Simulation Results
of Prototype 1.0

For stable grasping, the finger joint trajectories of Prototype 1.0 should follow the
human finger joints trajcctorics. For finding the torques (as tabulated in Table 5.8)
to be applied to the finger joints of Prototype 1.0 to follow natural trajectories, the
corresponding finger joint trajectory, velocity and acceleration have been computed.
The results of finger joint trajectories, velocities and accelerations are shown in this

appendix in Figure II1.1 through Figure 111.12.
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Figure II1.1: Joint trajectory, velocity and acceleration of the Index Finger DIP joint
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Figure III 6: Joint trajectory, velocity and acceleration of the Middle Finger MCP joint
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