
unllENCB ROOK:
NOT TO "RF T~~UFn

T£ZPUR ""I ... II~ITY lit .. " ,..,

A Study on Clustering Techniques for Numeric,

Categorical and Mixed-type Data

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Bhogeswar Borah

Registration No. 001 of 2007

School of Engineering

Department of Computer Science and Engineering

Tezpur University
July 2008

Abstract

Rapid advances in data capture, transmission and storage technologies have

enabled modem business and science to collect increasingly large volumes of data.

Data mining is the technique of analyzing such large datasets in order to reveal

embedded patterns (regularities and relationships) that are nontrivial. Clustering

is one of the primary data analysis tasks in data mining. Clustering techniques

partition a set of objects so that objects with similar characteristics are grouped

together and different groups contain objects with dissimilar characteristics. It is

either used as a stand alone tool to get insight into the data distribution pattern of

a dataset or as a preprocessing step for other data mining algorithms operating on

the detected clusters.

The attributes used to describe data objects can be quantitative, qualitative or

mixture of both. The types of attributes determine the clustering techniques to be

used to analyze the data.

Data mining applications place special requirements on clustering algorithms

including: scalability, ability to find clusters embedded in subspaces of high

dimensional data, ability to find clusters with widely varying sizes, shapes and

densities, ability to deal with mixture of attribute types, and insensitivity to the

order of input records.

We have developed separate algorithms for clustering numeric, categorical

and mixed-type data satisfying these requirements. Two application specific

techniques are also developed. The following are the different algorithms included

in the thesis.

1. An Improved Sampling-Based DBSCAN for Large Spatial Databases.

2. A Parallelization of Density-Based Clustering Technique on Distributed

Memory Multicomputers.

3. DDSC: A Density Differentiated Spatial Clustering Technique to detect

clusters with widely differing densities.

4. CatSub: Clustering Categorical Data Based on Subspace.

5. SMIC: A Subspace Preferenced Mixed Type Data Clustering Technique to

find clusters in large high dimensional datasets with mixture of numeric and

categorical attributes.

6. Biclustering Gene Expression Data Using A Node Addition Algorithm.

7. A Clustering Based Technique For Network Intrusion Detection.

Experimental results establish the validity of the algorithms proposed.

Keywords: Clustering, query sampling, distributed clustering, variable density,

categorical data, mixed-type data, incremental clustering, scalability, outliers,

gene expression data, biclustering, intrusion detection.

11

TEZPUR UNIVERSITY

Certificate

This is to certify that the thesis entitled "A Study on Clustering Techniques for

Numeric, Categorical and Mixed-type Data" submitted to the Tezpur University

in the Department of Computer Science and Engineering under the School of

Engineering in partial fulfillment of the requirements for the award of the degree

of Doctor of Philosophy in Computer Science is a record of research work carried

out by Mr. Bhogeswar Borah under my personal supervision and guidance.

All helps received by him from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for award of any other

degree.

Date: Ili/f/ot
Place: Tl trf..cH

(Dhruba K. Bhattacharyya) ~

" Professor, ~~

Department of Computer Science e~~1 ~i~
and Engineering, ~ c!f~ ..::,~
Tezpur University ~~ ~.$-

~<lJ'~qj
<tcf

iii

Declaration

I, Bhogeswar Borah, hereby declare that the thesis entitled "A Study on

Clustering Techniques/or Numeric, Categorical and Mixed-type Data" submitted

to the Department of Computer Science and Engineering under the School of

Engineering, Tezpur University, in partial fulfillment of the requirements for the

award of the degree of Doctor of Philosophy, is based on bonafide work carried

out by me. The results embodied in this thesis have not been submitted in part or

in full, to any other university or institute for award of any degree or diploma.

~
tJ.j.o{..o'g

(Bhogeswar Borah)

IV

Acknowledgments

First of all, I wish to express my gratitude to Prof. D. K. Bhattacharyya,

my supervisor, for his guidance and continuing support. His constructive advice,

constant motivation and encouragement have been responsible for the successful

completion of this thesis. I knew little about research at the beginning. He

improved my research and writing skills significantly, which will be useful in

my further career.

My Sincere thanks go to Prof. M. Dutta, Prof. D. K. Saikia and Prof. D. K.

Bhattacharyya for their co-ordination in extending every possible facility as head

of the department for completion of this research work. The help I received from

my dear colleagues need special mention. In particular I would like to thank Dr.

U. Sharma for his help in writing the thesis.

I am thankful to the Tezpur University Authority and the Department of

Science and Technology, Govt of India for providing necessary grants for

attending conferences, publishing journal papers etc.

I am very gniteful to my wife and son for their prayers, continuous

encouragement, love and the patience they showed me. I hope they will be proud

of my achievements, as proud as I am of them.

Last but not the least, I would like to thank all those technical and non­

teaching staff of the department who had helped directly or indirectly towards

the completion of this thesis.

Contents

Part I Introduction

1 Introduction

1.1 Data Mining

1.1.1 Data mining tasks .

1.2 Cluster Analysis.

1.2.1 Type of data. . ..

1.2.2 Types of clustering methods

1.2.3 Important issues in data clustering

1.3 Research Goals and Objectives

1.4 Organization of the Thesis

Part II Clustering Numeric Data

2 Introduction to DBSCAN

2.l Introduction ..

2.2 The Algorithm ...

1

2

2

3

4

4

6

8

10

12

13

14

14

16

3 An Improved Sampling-Based DBSCAN for Large Spatial Databases 20

3.1 Introduction........... 20

3.2 The Query Sampling Procedure. 21

3.2.1 Complexity analysis 26

3.3 Experimental Results . . . 26

VI

3.3.1 Experiment 1 26

3.3.2 Experiment 2 27

3.3.3 Experiment 3 28

3.3.4 Experiment 4 30

4 A Parallelization of Density-based Clustering Technique on a Distributed
Memory Multicomputer 33

4.1 Introduction 33

4.2 Related Works 34

4.3 The Proposed Algorithm 35

4.3.1 Data placement . 35

4.3.2 Local clustering . 38

4.3.3 Merging of local cluster models 38

4.3.4 Complexity analysis 41

4.4 Performance Evaluation. . . 41

5 DDSC: A Density Differentiated Spatial Clustering Technique 46

5.1 Introduction 46

5.2 Related Works. . . . 47

5.3 Proposed Algorithm. 50

5.3.1 Ordered expansion process . 51

5.3.2 Homogeneity test 55

5.3.3 Cardinality test 58

5.3.4 Special treatment for the first core object 58

5.4 The Algorithm 59

5.4.1 Complexity analysis ... 61

5.5 Experimental Results 61

5.5.1 Discussion on Parameters 65

Part III Clustering Categorical Data 67

6 CatSub: Clustering Categorical Data Based on Subspace 68

vii

6.1 Introduction

6.2 Related Works. . . .

6.3 Problem Formulation

6.4 Proposed Algorithm.

6.4.1 Outlier handling

6.4.2 Complexity analysis

6.5 Experimental Validation ..

6.5.1 Accuracy calculation of clustering results

6.5.2 Data sets .,

6.5.3 Result on soybean dataset

6.5.4 Result on zoo dataset

6.5.5 Result on congressional voting dataset.

6.5.6 Result on Wisconsin breast cancer dataset .

6.5.7 Result on mushroom dataset

6.5.8 Scalability test

6.5.9 Discussion on parameters .

Part IV Clustering Mixed-type Data

68

69

71

73

74

78

79

79

79

81

82

83

84

85

86

87

89

7 SMIC: A Subspace Preferenced Mixed Type Data Clustering Technique 90

7.1 Introduction..... 90

7.2 Related Works. . . . 92

7.3 Problem Formulation 93

7.3.1 Entropy ... 94

7.3.2 Entropy of a categorical attribute. 94

7.3.3 Entropy for a numerical attribute . 95

7.3.4 Dissimilarity measure of a cluster 96

7.3.5 Subspace based similarity measure. 97

7.3.6 Summary measures . 97

7.3.7 Cluster structure 98

7.4 Proposed Algorithm. . . 100

viii

7.4.1 Incremental clusteriI).g

7.4.2 Hierarchical clustering

7.4.3 Complexity analysis .

7.5 Experimental Validation ...

7.5.1 Accuracy calculation of clustering result .

7.5.2 Data sets

7.5.3 Result on credit approval dataset

7.5.4 Result on KDD CUP Corrected dataset

7.5.5 Result on soybean dataset

7.5.6 Result on zoo dataset

7.5.7 Result on congressional voting dataset .

7.5.8 Result on Wisconsin breast cancer dataset

7.5.9 Result on mushroom dataset

7.5.10 Scalability test

7.5.11 Order dependency and parameter sensitivity.

Part V Application Development

101

102

106

106

106

107

108

109

109

110

110

110

111

111

111

117

8 Biclustering Gene Expression Data Using A Node Addition Algorithm 118

8.1 Introduction................ 118

8.2 Problem Formulation 120

8.2.1 Incremental computation of score 124

8.3 Proposed Algorithm. 126

8.3.1 Initializing the cluster 126

8.3.2 Extending the cluster . 126

8.3.3 Row extension .. 127

8.3.4 First screening .. 127

8.3.5 Second screening . 128

8.3.6 Column extension 129

8.4 Experimental Results ... 131

lX

9 A Clustering Based Technique For Network Intrusion Detection 138

9.1 Introduction.. 138

9.2 Related Works. . . 140

. 9.3 Methodology . . . 142

9.3.1 Clustering. 143

9.3.2 Detection. 143

904 Experimental Results

904.1 Dataset description

904.2 Performance measures

10 Conclusion

10.1 Directiqns for future works

x

144

144

145

149

150

List of Tables

3.1 Indexing and determination of diagonal M BOs 24

3.2 Indexing and determination of non-diagonal M BOs. 25

3.3 Run-time of I DBSCAN and DBSCAN for increasing dataset
sizes .. 28

3.4 Run-time of IDBSCAN and DBSCAN for constant MinPts
values .. 29

3.5 Run-time of IDBSCAN and DBSCAN for increasing MinPts 30

6.1 A sample dataset 73

6.2 Datasets used in the experiments. . . 81

6.3 Clustering result on soybean dataset. 82

6.4 Accuracy on soybean dataset. 82

6.5 The misclassification matrix of clustering result on zoo dataset. . 83

6.6 The misclassification matrix on zoo dataset reported by Li et al. 83

6.7 Clustering result on Congressional Voting dataset. 84

6.8 Clustering result of ROCK on Congressional Voting dataset. .. 84

6.9 Clustering result on breast cancer dataset. 85

6.10 Clustering result on breast cancer dataset reported by SUBCAD. 85

6.11 Clustering result on Mushroom dataset. 86

6.12 Clustering result by ROCK on Mushroom dataset. . 86

6.13 Execution time for the datasets. . 87

7.1 A sample dataset. .

7.2 Summary measure

Xl

99

100

7.3 Clustering result on Credit approval dataset. . . .

7.4 Accuracy on credit approval dataset.

7.5 Clustering result on KDD CUP Corrected dataset.

7.6 Clustering result on soybean dataset.

7.7 Accuracy on soybean dataset.

7.8 The misclassification matrix of result on zoo dataset.

7.9 Clustering result on Congressional Voting dataset.

7.10 Clustering result on breast cancer dataset.

7.11 Accuracy on breast cancer dataset.

7.12 Clustering result on Mushroom dataset.

7.13 Clustering result by ROCK on Mushroom dataset. .

7.14 Execution time for the datasets ...

8.1 Sample biclusters in yeast dataset.

8.2 Sample biclusters in human dataset.

8.3 Performance of proposed algorithm on yeast data set

108

108

113

114

114

114

115

115

115

116

116

116

132

133

136

8.4 Performance of proposed algorithm on lymphoma data set 136

8.5 Summary ofbiclusters with score less than 100 from yeast data set 137

9.1 Attacks distribution in Corrected KDD dataset 145

9.2 Performance of first phase. 146

9.3 Detection rate of individual attack classes after the first phase 147

9.4 Performance of the algorithm. 147

9.5 Detection rate of individual attack classes after the second phase 147

xii

List of Figures

2.1 E-neighbourhood

2.2 Density reachability and density connectivity

3.1 Location of M BOs for 2-dimensional space .

15

16

22

3.2 Dataset with 13 clusters of various shapes and sizes . 27

3.3 Run-time of I DBSCAN vs DBSCAN for increasing dataset sizes 28

3.4 Run-time of IDBSCAN vs DBSCAN for constant MinPts
values .. 29

3.5 Run-time of IDBSCAN vs DBSCAN for increasing MinPts 30

3.6 Clustering result of DBSCAN on second dataset. 31

3.7 Clustering result of I DBSCAN on second dataset 32

4.1 Overlapp'ed spatial partitioning of a 2-dimensional dataset 36

4.2 Overlap width of2E 39

4.3 Merging oflocal clusters to form global clusters. 40

4.4 Execution time on different number of processors. 43

4.5 Speedup of parallel DBSCAN on different number of processors 43

4.6 Efficiency vs. number of processors employed. 44

4.7 Scaleup of parallel DBSCAN on different sets of data scaled by
the number of processors 45

5.1 Clusters with varying densities. . 47

5.2 Already processed objects within the neighbourhood of currently
processed object p. 54

xiii

5.3 Density variation pattern produced by two adjacent regions with
different densities .. 56

5.4 Dataset2 62

5.5 Result on Dataset! . 63

5.6 Result on Dataset2 . 63

5.7 Result on t4.Sk.dat 63

5.8 Result on t7.10k.dat 64

5.9 Result on tS.Sk.dat . 64

5.10 Result on t5.Sk.dat . 64

5.11 Result on t7.10k.dat with increased MinPts 66

6.1 Scalability of CatSub to the no. of records when clustering KDD
CUP Corrected dataset. 87

7.1 Scalability of S M I C to the no. of records .. 112

8.1 Coherence patterns in submatrix AI J . 121

8.2 First bicluster in Table 8.1 133

8.3 Second bicluster in Table 8.1 134

8.4 Third bicluster in Table 8.1 134

8.5 First bicluster in Table 8.2 135

8.6 Second bicluster in Table 8.2 135

8.7 Third bicluster in Table 8.2 136

9.1 ROC curve 148

XIV

Part I

Introduction

The objective of Part I is to give basic ideas related to clustering in data mining

highlighting the problem areas that we want to solve. The goals and objectives of

the research work are stated.

Chapter 1

Introduction

1.1 Data Mining

Rapid advances in data capture, transmission and storage technologies have

enabled modem business and science to collect increasingly large volumes of data.

Retailers are accumulating their daily trallsactions into large databases. Besides

direct use of the databases the enterprises can benefit immensely in the areas

of marketing, adv~rtising and sales if interesting previously unknown customer

buying patterns can be discovered from tbe volume of gathered past data. In the

domain of scientific computing large amount of remote sensing data, protein data

and genome data are collected for inferring some valuable information from them.

Data mining [HK06, TSK06, HMS04] is the technique of analyzing such large

datasets in order to extract implicit, previously unknown, and potentially useful

information that might otherwise remain unknown. It is defined in [HMS04] as

follows:

Data mining is the analysis of (often large) observational datasets to find

unsuspected relationships and to summarize the data in novel ways that are both

understandable and useful to the data owrzer.

2

The relationships and summaries, for example linear equations, rules, clusters,

graphs etc., derived through a data mining exercise are often referred to as models

or patterns. A model structure is a global summary of datasets, while pattern

structure makes statements only about restricted regions of the space spanned by

the variables. The observational data referred to in the definition deals with data

that have already been collected for some purpose other than the data mining

analysis. This means that the objective of data mining exercise play no role in

the data collection strategy. For this reason data mining is often referred to as

secondary data analysis.

1.1.1 Data mining tasks

Data mining is categorized into different types of tasks based upon the different

types of models or patterns they find. In general, data mining tasks are classified

into two categories: predictive and descriptive. Predictive mining tasks perform

inference on the current data in order to make predictions. Descriptive mining

tasks characterize the general properties of the data in the database. Some of the

important data mining tasks [HK06] include:

1. Mining frequent patterns, Association and Correlations: Frequent patterns

are patterns that occur frequently in data. Mining frequent patterns leads to

the discovery of interesting associations and correlations within data.

2. Classification and prediction: Classification is the process of finding a model

(or function) that describes and distinguishes data classes or concepts, for

the purpose of being able to use the model to predict the class of objects

whose class label is unknown. The derived model is based on the analysis

of training data (i.e. data objects whose class labels are known).

3. Outlier analysis: A database may contain data objects whose characteristics

are significantly different from the rest of the data. These data objects are

3

known as outliers. In some applications such as fraud detection, rare events

can be more interesting than the regularly occurring ones. The analysis of

outlier data is referred to as outlier mining.

4. Evolution analysis: Data evolution analysis describes and models trends or

regularities for objects whose behaviour changes over time.

5. Cluster analysis: Cluster analysis groups data objects based on information

found in the data that describes the objects and their relationships. The

goal is to partition a set of objects into groups, so that objects with similar

characteristics are grouped together and different groups contain objects

with dissimilar characteristics. The greater the similarity within a group

and the greater the difference between groups, the better or more distinct is

the clustering.

Our work is primarily on clustering techniques. So, we concentrate on cluster

analysis only.

1.2 Cluster Analysis

Cluster analysis is a primary method of data mining. It is either used as a stand

alone tool to get insight into the data distribution pattern of a dataset or as a

preprocessing step for other algorithms operating on the detected clusters.

1.2.1 Type of data

Datasets differ in a number of ways. For example, the attributes used to describe

data objects can be quantitative or qualitative, some datasets contain objects with

explicit relationship to one another such as time series. The type of data determines

which tools and techniques can be used to analyze the data.

4

A dataset can often be viewed as a collection of data objects (also called

records, points, patterns, vectors). In turn data objects are described by a number

of attributes (also called fields, dimensions, features, variables) that capture the

basic characteristics of an object. Most frequently a dataset is a file, in which the

objects are records (or rows) in the file and each field (or column) corresponds to

an attribute.

Data representation

A dataset contains n objects such as employees, with d attributes such as employee

ID, name, address, age, date of joining and so on. The dataset can be thought of

as a n x d data matrix {Xij, i = 1,2"" ,n and j = 1,2", . ,d}, where each row

i represents an object(Xi) and each column j represents an attribute (Aj). The

possible values that any object can take for the j-th attribute are defined in the

domain Dj of the attribute A j .

Types of attributes

Based on scale of measurement attributes can be divided into four types: nominal,

ordinal, interval and ratio. It is convenient to illustrate the concept with two values

of an attribute. Let us consider the values taken by k-th attribute on i-th and j-th

objects i.e. Xik and Xjk·

1. A nominal scale merely distinguishes between categories. That is with

respect to Xik and Xjk one can only say Xik = Xjk or Xik i= Xjk.

2. An ordinal scale induces an ordering of the values of the attribute. In

addition to distinguishing between Xik = Xjk and Xik i= Xjk> the case of

inequality is further refined to distinguish between Xik > Xjk and Xik < Xjk.

3. An interval scale assigns a meaningful measure of the difference between

two values of the attribute. One may say not only that Xik > Xjk but also

5

that Xik is Xik - Xjk units different than Xjk.

4. A ratio scale is interval scale with a meaningful zero point. If Xik > Xjk

then one may say that Xik is Xik/Xjk times superior to Xjk.

Nominal and ordinal attributes are collectively referred to as categorical or

qualitative attributes. Qualitative attributes, such as employee ID, lack most of

the properties of numbers. Even if they are represented by numbers, i.e. integers,

they should be treated more like symbols. The remaining two types of attributes,

interval and ratio, are collectively referred to as quantitative or numeric attributes.

Quantitative attributes can be discrete(integer) or continuous. Generally data

objects are described by attributes of the same type. However, in many real

databases objects are described by a mixture of attribute types, which we refer

as mixed-type data.

1.2.2 Types of clustering methods

In general, major clustering methods can be. classified into the following

categories .

• Partitioning methods. Given a set of objects and a clustering criterion,

partitional clustering obtains a partition of the objects into k clusters such

that each cluster contains at least one object and each object belongs to

exactly one cluster. A partitioning method creates an initial partitioning.

Then an iterative relocation technique attempts to improve the partitioning

with respect to an objective function by moving objects from one cluster to

another. When swapping does not yield any improvements in the objective

function, it completes finding a locally optimal partition. The general

criterion of a good partitioning is that objects in a cluster are more similar to

each other than they are to objects in other clusters. Partitioning clustering

methods work well for finding spherical-shaped clusters. Main difficulties

6

with these methods include: (1) the number of clusters, k need to be known

prior to clustering; (2) the method detects spherical-shaped clusters only;

(3) Detected clusters tend to become uniformly sized .

• Hierarchical methods. Hierarchical clustering is a set of nested clusters

that are organized as a tree which is called dendogram. A hierarchical

method can be classified as being either agglomerative or divisive. An

agglomerative hierarchical clustering starts by placing each object in its

own cluster and then iteratively merges these clusters into larger clusters,

until all objects are in a single cluster or a termination condition holds. The

divisive approach uses a reverse process by starting with all the objects

in the same cluster. In each successive iteration, a cluster is split up

into smaller clusters, until eventually each object is in one cluster, or

until a termination condition holds. Detection of arbitrary shaped clusters

is possible using some hierarchical clustering algorithms. Hierarchical

methods suffer from the fact that once a step (merge or split) is done, it can

never be undone. These algorithms are computationally expensive. Some

hierarchical methods have chaining effect - a few objects located so as to

form a bridge between two clusters causes objects across the clusters to be

grouped into a single elongated cluster .

• Density-based methods. In density-based concept a cluster is a dense region

of objects surrounded by a region of low or no density. Density here is

considered as the number of data objects in the particular neighbourhood

of a data object. In this approach general idea is to continue growing the

given cluster as long as the density in the neighbourhood exceeds some

threshold. Density-based clustering algorithms suitably handle arbitrary

shaped clusters as well as clusters of different sizes. Moreover, they can

effectively separate noise and outliers. Density-based definition of a cluster

is often employed when the clusters are irregular or intertwined, and when

7

noise and outliers are present.

• Grid-based methods. Grid-based methods quantize the object space into

a finite number of cells that form a grid structure. All of the clustering

operations are performed on the grid structure. The main advantage of this

approach is its fast processing time, which is typically independent of the

number of data objects and dependent only on the number of cells in each

dimension in the quantized space. There are a number of obvious concerns

about grid-based clustering methods. The grids are square or rectangular

and do not necessarily fit the shape of the clusters. This can be handled by

increasing the number of grid cells, but at the price of increasing amount of

work, if the grid size is halved the number of cells increases by a factor of

2d , where d is the number of dimensions .

• Model-based"methods. Model-based methods hypothesize a model for each

of the clusters and find the best fit of the data to the given model. A model­

based algorithm may locate clusters by constructing a density function that

reflects the spatial distribution of the data points. It also leads to a way

of automatically determining the number of clusters based on standard

statistics.

The choice of clustering algorithm depends both on the type of data and on

the particular purpose of the application. Some clustering algorithms integrate the

idea of several clustering methods, so that it is sometimes difficult to classify a

given algorithm as uniquely belonging to only one clustering method category.

1.2.3 Important issues in data clustering

Clustering is a challenging field of research in which its potential applications

pose their own special requirements. The following are typical requirements of

clustering in data mining.

8

• Discovery of clusters with arbitrary sizes, shapes and densities: Many

algorithms tend to find spherical clusters with similar sizes. They do not

work well when clusters have different sizes. Clusters that have widely

varying densities are harder to detect. It is important to develop algorithms

that can detect clusters with arbitrary sizes, shapes and densities.

• A bility to deal with different types of attributes: The ability to analyze single

as well as mixture of attribute types is demanded by real life applications.

• Ability to cluster huge volume of data (scalability): Algorithms used to

cluster huge volume of data should have linear or near-linear time and space

complexities. Furthennore, algorithms that assume that all the data will fit

in main memory are infeasible for large datasets ..

• Ability to cluster high dimensional data: Many clustering algorithms are

good at having low dimensional data involving less than ten dimensions. It

is a challenge to cluster high dimensional data, especially considering that

such data can be sparse and highly skewed.

• Ability to deal with noise and outliers: Clustering algorithms should be able

to handle outliers in order to improve cluster quality.

• Finding subspace clusters: Clusters may exist in a subset of attributes. It is

not feasible to simply look for clusters in all possible subsets of attributes

for datasets having large number of attributes.

• Order dependence: When the same dataset is presented in different order,

the results produced by some clustering algorithms may become drastically

different. While it would seem desirable to avoid such algorithms,

sometimes the order dependence is relatively minor or the algorithm may

have other desirable characteristics.

9

• Parameter selection: Some user defined parameters are required by many

algorithms. It should not be difficult to choose the proper value of the

parameters. In order to avoid bias over the result it is desirable that a method

requires only limited guidance from the user.

• Interpretability and usability of the clustering results: Clustering algorithms

should produce easy to understand, usable and interpretable results.

A large number of clustering algorithms have been developed in a variety of

domains for different types of applications. None of these algorithms is suitable

for all types of data, clusters, and applications. A specific method can perform

well on one dataset, but very poorly on another. In fact, it seems that there is

always room for a new clustering algorithm that is more efficient or better suited

to a particular type of data, cluster, or application.

1.3 Research Goals and Objectives

The research goals focus on the following issues:

1. Develop scalable algorithms for finding clusters with arbitrary sizes, shapes,

and densities in spatial(numeric) data.

2. Develop an algorithm to cluster large high dimensional categorical datasets.

3. Develop an algorithm to cluster large high dimensional datasets with

mixture of categorical and numeric attributes.

4. Develop algorithms to solve real life problems of

(a) Biclustering gene expression data.

(b) Network intrusion detection.

10

Research objectives supporting these goals are:

1. The DBSCAN algorithm, that detects clusters with variable sizes and

shapes, is to be extended to make it scalable to large spatial datasets.

2. The DBSCAN algorithm is also to be extended in a different way so that

it detects clusters with variable densities.

3. The categorical clustering algorithm to be developed should be a single­

pass incremental one without the need of storing the data objects in main

memory so that large datasets can be handled. The algorithm should also

be subspace-based in order to cluster high dimensional datasets. Outliers

handling capability is needed to make the algorithm more efficient.

4. The mixed categorical and numeric data clustering algorithm to be

developed should also be subspace-based incremental algorithm so that

it becomes suitable for clustering large high dimensional datasets.

Incremental algorithm may produce a large number of clusters. So

the algorithm should use a second phase consisting of an agglomerative

hierarchical clustering technique to reduce the number of clusters to the

desired level.

5. An algorithm is to be developed to find biclusters in gene expression data.

The algorithm should find small or big biclusters as desired by the user.

It should be able to extend a smaller bicluster by adding more rows and

columns if possible.

6. One of the algorithms to be developed for clustering large high dimensional

datasets is to be utilized for network intrusion detection.

11

1.4 Organization of the Thesis

The remainder of the thesis is organized into four parts corresponding to the works

on numeric, categorical and mixed-type data and application development. Part

11 consists of Chapters 2-5 related to the extension of DB SCAN algorithm,

which is introduced in Chapter 2. Chapter 3 presents our sampling-based

DBSCAN algorithm for large spatial datasets. We parallelize DBSCAN in

Chapter 4. Chapter 5 includes our DDSC algorithm to detect clusters with

widely differing densities. The only chapter in Part III contains the new algorithm

CatSub, we have developed to cluster large high dimensional categorical datasets.

An algorithm (SM IC) for clustering datasets with mixture of categorical and

numeric attributes is presented in Chapter 7 of Part IV. Part V consists of Chapter

8 & 9 containing techniques for extracting biclusters in gene expression data and

network intrusion detection respectively. Finally the concluding remarks are given

in Chapter 10.

12

Part II

Clustering Numeric Data

The DBSCAN [EKSX96] is an important clustering algorithm that can

detect clusters with arbitrary sizes and shapes beside detecting noise and outliers

in spatial (numeric) datasets. But the algorithm becomes very slow if applied

to cluster a huge volume of data. Another shortcoming of DBSCAN is that

it cannot detect clusters with widely varying densities. In this part we present

three different algorithms that extend DBSCAN so that the drawbacks are

removed. Firstly, an introduction to DBSCAN is presented in Chapter 2.

We attempt to make DBSCAN scalable by using i) query sampling and ii)

parallel processing. The first technique is presented in Chapter 3 and the second

technique is presented in Chapter 4. In Chapter 5 we extended DBSCAN to

detect clusters with widely varying densities.

Chapter 2

Introduction to DBSCAN

2.1 Introduction

Density-based clustering locates regions of high densities separated from one

another by regions of low densities. The DBSCAN (Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise) [EKSX96] is a

simple and effective density-based algorithm for clustering spatial datasets. Data

objects to be clustered consists of numeric attributes so that the objects can be

treated as points in a multi-dimensional real space. The algorithm provides a

number of important concepts essential for any density-based clustering approach.

Density of a particular point in the dataset is estimated by counting the number

of points within a specified radius, f. of the point including the point itself. The

technique is graphically illustrated in Figure 2.1. The basic ideas of DBSCAN

clustering involve a number of definitions, which are produced below. The set of

points is represented by X and the distance function between any two points p

and q is represented by dist(p, q) .

• f.-neighbourhood: The f.-neighbourhood of a point p, denoted by N,(p), is

defined as Nf(p) = {q E X I dist(p, q) ::; t}.

14

p

Figure 2.1: to-neighbourhood

• Core point: If the (-neighbourhood of a point contains at least MinPts

number of points, then the point is called a core point i.e. a point P is core

ifJN,(p)J ~ MinPts.

• Direct density-reachability : A point P is directly density-reachable from a

point q with respect to (and MinPts ifp E N,(q) and IN,(q)J ~ MinPts.

Directly density-reachable is symmetric for pairs of core points. In general,

it is not symmetric if one core point and one border point are involved.

• Density reachability: A point P is density-reachable" from a point q with

respect to (and M inPts if there is a chain of points PI, ... , Pn, PI = q,

Pn = P such that PHI is directly density-reachable from Pi. Density­

reachability is a canonical extension of direct density-reachablity. This

relation is transitive, symmetric for core points, although not symmetric

in general.

• Density-connectivity: A point P is density-connected (refer Figure 2.2) to a

point q with respect to to and M inPts if there is a point 0 such that both, p

and q are density-reachable from 0 with respect to to and MinPts. Density­

connectivity is a symmetric relation.

• Cluster: A cluster C with respect to (and M inPts is a non-empty subset

of X satisfying the following conditions:

15

1. Vp, q : if p E C and q is density-reachable from p with respect toE and

M inPts, then q E C. (Maximality).

2. Vp, q E C : p is density-connected to q with respect to E and M inPts

(Connectivity).

• Noise : Let C1 , ... , Ck be the clusters of the dataset X with respect to

parameters E and MinPts. Then noise is defined as the set of points in

the database X not belonging to any cluster ci i.e. noise= {pIpE X, Vi

p (j. Ci}·

• Border point : A border point is not a core point, but it falls within the

E-neighbourhood of a core point.

•
• •

(a) p density-rea.cbable from q. but q (b) p &n•i q density-o:..•nnootod to
not density-reach3ble frc•m p. ~ other by o.

Figure 2.2: Density reachability and density connectivity

2.2 The Algorithm

To find a cluster, D BSCAN starts with an arbitrary point p and retrieves all points

density-reachable from p with respect to E and M inPts. If p is a core point, this

procedure yields a cluster with respect to E and M inPts. If p is a border point,

no points are density-reachable from p and DB SCAN visits the next point of the

16

database. Below, a basic version of DBSCAN is reproduced from [EKSX96].

DBSCAN(SetO f Points, E, MinPts)

II SetOfPoints is UNCLASSIFIED

ClusterId:= nextId(NOISE);

FOR i FROM 1 TO SetO f Points.size DO

Point := SetO f Points.get(i);

IF Point.ClId = UNCLASSIFIED THEN

IF ExpandCluster(SetO f Points, Point, ClusterId, E, MinPts) THEN

Cluster I d := nextI d(Cluster I d)

END IF

END IF

END FOR

END; II DBSCAN

The most important function used by DBSCAN is ExpaondCluster which is

presented below:

ExpandCluster(SetO f Points, Point, ClId, E, MinPts) Boolean;

seeds := SetO f Points.regionQuery(Point, E);

IF seeds. size < MinPts THEN II no core point

SetO f Point.changeClI d(Point, NOI SE);

RETURN False;

ELSE II all points in seeds are density-reachable from Point

SetO f Points.changeClI ds(seeds, ClI d);

seeds.delete(Point) ;

WHILE seeds < > Empty DO

currentP := seeds.firstO;

result := SetO f Points.regionQuery(currentP, E);

17

IF result. size >= MinPts THEN

FOR i FROM 1 TO result. size DO

resultP := result.get(i);

IF resultPClIdIN {UNCLASSIFIED, NOISE} THEN

IF resultPClId = UNCLASSIFIED THEN

seeds.append(resultP) ;

END IF;

SetO f Points.changeClI d(resultP, ClI d);

END IF; II UNCLASSIFIED or NOISE

END FOR;

END IF; II result. size >= MinPts

seeds .delete(currentP);

END WHILE; II seeds <> Empty

RETURN True;

END IF

END; II ExpandCluster

A call of SetO f Points.regionQuery(Point, to) returns the to-neighborhood

of Point in SetO f Points as a list of points. Region queries can be supported

efficiently by spatial access methods such as R *-trees [BKSS90]. The height of

an R*-tree is O(log n) for a dataset of n points in the worst case and a query

with a small query region has to traverse only a limited number of paths in the

R *-tree. Since the to-neighborhoods are expected to be small compared to the size

of the whole data space, the average run time complexity of a single region query

is O(log n). For each of the n points of the database, there is one region query.

Thus, the average run time complexity of DBSCAN is O(n log n). The ClId

(clusterId) of points which have been marked to be NO I S E may be changed

later, if they are density-reachable from some other point of the database. This

happens for border points of a cluster.

18

If two clusters C1 and C2 are very close to each other, it might happen that

some point p belongs to both, C1 and C2. Then p must be a border point in both

clusters because otherwise C1 would be equal to C2 since global parameters are

used. In this case, point p will be assigned to the cluster discovered first. Except

from these rare situations, the result of DB SCAN is independent of the order in

which the points of the database are visited.

Since global values are used for f and MinPts, DBSCAN may merge two

clusters into one cluster, if two clusters of different density are close to each

other. Let the distance between two sets of points S1 and S2 be defined as

dist(S1,S2) = min{dist(p,q) I p E S1, q E S2}. Then, two sets of points

having at least the density of the thinnest cluster will be separated from each other

only if the distance between the two sets is larger than f. It means that DB SCAN

can not detect clusters with variable densities.

Subsequent three chapters contain our work on extending DBSCAN so that

it can cluster very large datasets consuming lesser execution time and detect

clusters with variable densities.

19

Chapter 3

An Improved Sampling-Based

DBSCAN for Large Spatial

Databases

3.1 Introduction

DBSCAN computes E-neighbourhood for each of the n objects in the dataset.

The complexity of a neighbourhood query is 0 (n) without using any spatial index

structure and using a spatial index structure such as a R *-tree [BKSS90] it is

O(log n). Accordingly the run-time complexity of DBSCAN becomes 0(n2)

or O(n log n). For very large databases the neighbourhood query becomes time

consuming even if a spatial index is used. Execution time of the algorithm can be

reduced using two approaches : (i) by reducing the query time; (ii) by reducing

the number of queries. We proposed to speed up DBSCAN using the second

approach. Zhou et al. [ZZHOO] used a query sampling method to reduce the

number of queries performed but the algorithm is not detailed. We provide an

20

improved DB SC AN named I DB SC AN algorithm by incorporating an efficient

sampling method that greatly reduces the number of queries without introduction

of much error.

3.2 The Query Sampling Procedure

Starting with the first object in the dataset DBSCAN serially examines each

object performing neighbourhood query whenever a previously unlabeled object

is found. If the object happens to be a core one, all the unlabeled objects in

its neighbourhood are labeled with a new cluster-id and copied to the seeds-list.

Then the expand-cluster procedure goes on deleting one object at a time from the

seeds-list, evaluates neighbourhood query for the deleted object and appends to

the seeds-list all the unlabeled neighbours found after marking them with present

cluster-id. When the seeds-list becomes empty a cluster is completed and search

for next cluster begins.

Instead of copying to the seeds-list all the unlabeled neighbours of a core

object selectively copying a few of them may suffice. Because neighbourhood

of a core object present in the seeds-list may be covered by neighbourhoods

of already processed objects leaving no unlabeled objects to be copied to the

seeds-list. Such queries can be avoided without losing accuracy in the clustering

result. A procedure to select only the necessary seeds leaving out avoidable

ones is needed. Certainly, some of the outer neighbours are good candidates

to be selected as seeds while inner neighbours may be left out. We provide an

efficient procedure for selecting only the necessary seeds so that a large number

of queries are avoided. The procedure may occasionally eliminate a few necessary

seeds, resulting in breaking down of a bigger cluster into smaller ones at loosely

connected sparse regions. Otherwise the clustering results should be the same as

produced by original DBSCAN.

21

The shape of the neighbourhood will be a hyper sphere with radius E as the

objects considered are multi-dimensional. Consider a query object lying at the

origin of a d-dimensional space. The coordinate axes intersect the hyper sphere

at 2d points, which are called marked boundary objects(M BOs). The axes also

divides the hyper sphere into 2d quadrants. Consider a hyper cube with side length

2E completely enclosing the hyper sphere with radius E. The corner points of

the hyper cube are also considered as M BOs. Thus, there are 2d + 2d M BOs.

For example, consider the two-dimensional object q located at coordinate (0,0) as

shown in Figure 3.1. We have eight distinct M BOs : A(-E, -E), B(O, -E), C(E, -E),

D(E, 0), E(E, E), F(O, E), G(-E, E), H(-E, 0). The neighbourhood region of object p

is divided into four quadrants. In each quadrant we can identify three M BOs. In

lower left quadrant - H, A,and B, in lower right quadrant - B, C, and D etc.

A B c

Figure 3.1: Location of M BOs for 2-dimensional space

Given the neighbours of a query object our sampling procedure will select

at most 2d + 2d objects as seeds. Corresponding to each M BO the unlabeled

object closest to it is selected as seed provided that the object is not closer to any

other M BO. Thus some M BO may not contribute any seed. Furthermore within

the neighbourhood of the current query object there will be many already labeled

objects that can not be new seeds. Therefore we adopt an efficient procedure to

select the seeds requiring a single pass over the previously unlabeled neighbours

only. Let, the seed attached to each M BO be initialized to null and the distance

of the seed to the M BO be set to a high value. Some of the null values will be

22

replaced by selected seeds using the following procedure:

For each unlabeled object in the neighbourhood of the query object do:

1. Locate the quadrant in which the object lies.

2. Compute the distances of the object to each of the (d + 1) M BOs in that

quadrant.

3. Find the shortest distance and the corresponding M BO.

4. Replace the seed attached to the M BO by the object if the object is closer

to the M BO than the previous seed.

How to find the quadrant in which an object lies and also the corresponding

M BOs? For this the M BOs need to be indexed so that they can be accessed

directly using their index numbers. We identify two types of M BOs for the sake

of indexing:

• Diagonal M BOs which are the corner points of the hyper cube as stated

earlier .

• Non-diagonal M BOs which are the points of intersection of the hyper

sphere with the axes.

Index for a diagonal M EO becomes the index for the corresponding quadrant

also. Let, the q-th object in the dataset, (Xql, X q2,· .. , Xqd) be a query object

which has the k-th object, (Xkl, Xk2,· .. , Xkd) as one of the neighbours. Let, W =

{ Wi, i = 1, 2., . . . , d} represents weights such that:

Wi = {+1 if
-1 if

Xqi - Xki > 0

Xqi - Xki < 0
(3.1)

23

When the weight vector multiplied by the neighbourhood radius E is added to the

query object we get the diagonal M BO of the quadrant in which the neighbour is

located. Treat wi as zero if it is negative, consider the modified weight sequence

as a binary number and convert the binary number to decimal. It will give the

index for this diagonal M BO as well as the index for the quadrant. The indices

of the diagonal M BOs will be in the range [0, 2d - 1]. For three-dimensional

objects the diagonal M BOs along with their indices are shown in Table 3.1.

Table 3.1: Indexing and determination of diagonal M BOs

WI W2 W3 Binary(124) Index MBO

-1 -1 -1 000 0 (Xq! - E, Xq2 - E, Xq3 -E)

+1 -1 -1 100 (Xql + E, Xq 2 - E, Xq3 -E)

-1 + 1 -1 010 2 (Xqi - E, x92 + E, Xq3 -c)

+1 + 1- 1 110 3 (x91 + E, X92 + E, Xq3 - E)

-1- 1 + 1 001 4 (x91 - E, Xq2 .- E, x 93 +c)

+1 -1 + 1 101 5 (Xql + E, Xq2 - E, Xq3 +c)

-1 + 1 + 1 011 6 (Xql - E, Xq 2 + E, Xq3 + c)

+1 + 1 + 1 111 7 (Xql + E, Xq2 + E, Xq3 +E)

There are 2d non-diagonal M BOs. Each axis has two M BOs - one to the

positive side and the other to the negative side of the axis. The indices for these

M BOs are also found based on the weights vector computed in Equation 3.1. At

a time consider the weight(+ 1 or -1) on a single dimension only and treat weights

of remaining dimensions to be zeros. Convert the number so obtained to decimal

by taking place value of different dimensions to be 1, 2, 3, · · · , d starting from the

lowest dimension. These indices will be in the range [-d, +d]. Add a bias of

2d + d so that the indices become positive and come after the indices for diagonal

M BOs. All the d number of M BOs in a quadrant can be located in this manner

24

as shown in Table 3.2 for 3-dimensional data.

Table 3.2: Indexing and determination of non-diagonal M BOs

WI Wz W3 Binary(123) Decimal Index MBO

-1- 1- 1 -100 -1 10 (x91 - f, 0, 0)

0-10 -2 9 (0, Xq2 - E, 0)

00-1 -3 8 (0, 0, Xq3 - E)

+1- 1- 1 +100 1 12 (x91 + E, 0, 0)

0-10 -2 9 (0, Xq2 .,.... E, 0)

00-1 -3 8 (0, 0, Xq3 - E)

-1 + 1- 1 -100 -1 10 (x91 - E, 0, 0)

0 + 10 2 13 (0, Xq2 + E, 0)

00- 1 -3 8 (0, 0, Xq3 - E)

+1 + 1- 1 +100 1 12 (x91 + E, 0, 0)

0 + 10 2 13 (0, Xq2 + E, 0)

00-1 -3 8 (0, 0, Xq3 - E)

-1 -.1 + 1 -100 -1 10 (Xql - E, 0, 0)

0-10 -2 9 (0, Xq2 - E, 0)

00 + 1 3 14 (0, 0, Xq3 +E)

+1-1+1 +100 1 12 (x91 + E, 0, 0)

0-10 -2 9 (0, Xq2 - E, 0)

00 + 1 3 14 (0, 0, Xq3 +E)

-1 + 1 + 1 -100 -1 10 (xql - E, 0, 0)

0 + 10 2 13 (0, Xq2 + E, 0)

00+ 1 3 14 (0, 0, Xq3 +E)

+1 + 1 + 1 +100 1 12 (xql + E, 0, 0)

0 + 10 2 13 (0, Xq2 + E, 0)

00 + 1 3 14 (0, 0, Xq3 +E)

25

3.2.1 Complexity analysis

IDBSCAN uses one more function named JindseedsO than DBSCAN. Use

of this function does not increase the overall complexity of DBSCAN which is

O(n log n). The extra function used has worst time complexity O(sd), where

s is the neighbourhood size and d is the dimensionality of the dataset which are

expected to be small compared to the size n of the dataset.

3.3 Experimental Results

We have evaluated the performance of the IDBSCAN algorithm in comparison

to that of DBSCAN. For doing this two 2-dimensional synthetic datasets were

created containing circular, rectangular, triangular and S-shaped clusters having

different sizes. Values of each attribute fall in the range [0, 1000]. The first dataset

contains l3 clusters shown in Figure 3.2 by black dots separated by white spaces.

Retaining the cluster shapes to be the same several variants of the dataset were

created with increased number of objects (without duplicates). There are some

random variations of densities at different regions of the datasets. The second

dataset shown in Figure 3.6 contains 4 clusters. The proposed I DBSCAN and

DBSCAN were implemented in C++ in aU GHz, HCL Infinity-2000 machine

with 128 MB RAM. R*-tree indexing was also used with both ofthe algorithms.

In Experiments 1-3 IDBSCAN as well as DBSCAN recovered the same

set of 13 clusters present in the first dataset.

3.3.1 Experiment 1

The execution performances of I DBSCAN and DBSCAN were compared for

datasets of increasing sizes. Value of E parameter were kept constant for all

datasets while using progressively higher values for M inPts as density of the

26

Figure 3.2: Dataset with 13 clusters of various shapes and sizes

datasets increases with increase in size. Table 3.3 presents the results. It is clear

from the graphical presentation (Figure 3.3) of the results that I DB SCAN is

faster than DB SCAN. As the dataset size increases the speed difference between

DBSCAN and IDBSCAN also increases.

3.3.2 Experiment 2

In this experiment, with increasing dataset sizes, E values were decreased so

that the M inPts values remained constant. Table 3.4 shows the results for two

different MinPts values. Besides showing speed difference between DBSCAN

and I DB SCAN the graph presented in Figure 3.4 also shows that I DB SCAN

27

Table 3.3: Run-time of I DB SCAN and DB SCAN for increasing dataset sizes

Data size

100000

200000

400000

800000

€ MinPts Time(sec.) I DB SCAN Time(sec.) DBSCAN

8 7 32 62

8 20 63 284

8 40 125 1160

8 75 423 5834

Epsilon= 8

K(O ,------------------------.
.. 60Xl +------------7-r-----l
~ 50).J +---------------J.'-----l
~ 4(XXJ // r~---D-B_S_C-AN~j
.E JCXXJ / 1---IDB SCAN
" 20CO +-------------1-'---------l ,; ~
~ 1CXXJ+--------~--~-------l

~ _____.
o+-~--~~~-r==-=~==~~

100000 20COOO 4CXXJOO enxro
Size of Dataset

Figure 3.3: Run-time of I DBSCAN vs DB SCAN for increasing dataset sizes

is less affected by variation in MinPts. Execution performance of DBSCAN

deteriorates for higher values of M inPts .

3.3.3 Experiment 3

In this experiment the run-time behaviour of both the algorithms have been studied

by varying MinPts in the same dataset. The results are presented in Table 3.5

and Figure 3.5. As MinPts increases, DB SCAN becomes slower, whereas the

28

Table 3.4: Run-time of I DB SCAN and DB SCAN for constant MinPts values

Data size

100000

200000

400000

800000

100000

200000

400000

800000

(M'inPts Time(sec.) I DB SCAN Time(sec.) DBSCAN

7

5

5

4

10

8

6

5

2&D

c: 2(XI)

§
1&D (/)

.Iii
Cl 1CXXl
E
t= &D

0

3 33

3 78

3 158

3 498

12 27

12 65

12 140

12 455

1 o:xro 2o:xxxJ 4<XIXXl a:xx:co
Size of Dat......,l

56

124

624

1410

73

211

749

2366

--.-DB SCAN. MinJDin ts
:3

--- IDBSCAN. Minpoin ts
= 3

~DB SCAN. MinJDin ts
= 12

--.- IDB SCA N. Minpoin ts
= 12

Figure 3.4: Run-time of I DB SCAN vs DB SCAN for constant MinPts values

performance of the IDBSCAN improves. Even for smaller values of MinPts,

a distinct time gap between I DBSCAN and DBSCAN can be observed.

In the above experiments results produced by I DBSCAN and DB SCAN

are the same. But sometimes I DB SCAN may break down a bigger cluster at

29

Table 3.5: Run-time of I DBSCAN and DB SCA N for increasing MinPts

Data size E MinPts Time(sec.) I DBSCAN Time(sec.) DBSCAN

400000 5 3 158 624

400000 6 20 141 878

400000 8 40 125 1160

400000 10 60 119 1454

Dataset Size= 400000

1000

i: 1400
0 I <DO ¥ 1000 (I)

c: 000

• eoo
~ 1-+-DBSCAN

t==:::;~----=:::::::::==============~ --- 108 S CAN
E 400
I= <DO

0
3 40 60

Size of Minpointll

Figure 3.5: Run-time of IDBSC AN vs DBSCAN for increasing MinPts

loosely connected sparse regions as shown in the following experiment.

3.3.4 Experiment 4

Results produced by DB SCAN and I DBSC AN on the second dataset are

shown in Figures 3.6 and 3. 7 respectively. DB SCAN produced 4 clusters while

I D E SC AN produced 5 clusters as it had broken down the S-shaped cluster into

two. It can be noticed that the region where the breaking occurs is relatively

30

sparse. Such results may be desired in some applications .

-..
: . . ~~

.. . ·.

. . ~ . :·
. ; :::

,• : 1•,' •' I''
• ... :

...
·' . . .'. ·, ~- '. -: : ~ \ -
. ··- : .. ;,·· . '

•'
': .. . , . . · . . : .

.·. ·:.: ..
. '. ': ·: ·:: ·. ' .. : · ·. -.~ .-· .. ,:~. -: :.

· ·.'..:
. ;.- ...

, .
.. r · ·.·· .
·. •' ~·- .. :

....
•:·: .··

.·. ·t· . . ··
:. .. ·

. : i ... •,

._ .. ·, .

.. ·.•

·· ·.

Figure 3.6: Clustering result of DBSCAN on second dataset

Based on the results of the experiments, it can be concluded that the proposed

I DB SCAN speeds up DB SCAN by a constant factor and is capable ofhandling

larger volume of data. Occasionally, a DBSCAN cluster may be broken into

smaller clusters by I DBSCAN.

In the next chapter we speed up DBSCAN by a large factor using parallel

processing without any compromise on the clustering results produced.

31

.. .
. ~ ':• .

. ; :,':

:=.; :: .
··.:.:.

:::.~
:. ··

. . . '
. : ·_.', : .. :· .· {.,

' ...
,·:

.. ... -...
·:. ·, ~- • • :. j • • • •

.. ~ • I ' ' ~ • • • , ' ·, , , :~ • • •

... _: ;.' · ,\: . . · . . _:: · .. ,.·.--~ :·.· ':-: .· .
. , .. '

- ·

:.: •.

:,.·.,-_:: ..

Figure 3.7: Clustering result of I DBSCAN on second dataset

32

Chapter 4

A Parallelization of Density-based

Clustering Technique on a

Distributed Memory Multicomputer

4.1 Introduction

Massive datasets measuring in gigabytes and even terabytes containing millions of

data objects are quite common in business and scientific world today. When used

to cluster large datasets, clustering algorithms put high demand on space and time

requiring high performance machines to get results in a reasonable time. Very

large datasets cannot be processed in-core, that is, in the main memory of a single

processor machine. Disk-based algorithms are likely to be considerably slower.

In such a situatio'n parallel clustering can be employed to exploit main memories

of several processors. Even for the cases when datasets can be processed in-core,

the fastest available serial computer may fail to deliver results in a reasonable

time. Parallel and distributed computing [ZakOO] is expected to relieve current

33

clustering methods from the sequential bottleneck, providing the ability to scale

to massive datasets and improving the response time. Such algorithms divide the

data into partitions, which are processed in parallel. The results from the partitions

are then merged.

In this chapter a parallel implementation of D B SCAN algorithm is presented

on a distributed memory multicomputer [WA03] i.e. a low cost shared-nothing

parallel environment where each of the processors is a personal computer having

private memory and disk. The processors are connected by a communication

network. Data parallelization is used with static load balancing. We provide

a good data decomposition among the processors and minimize communication

between them. Our parallelization is analytically and empirically validated.

4.2 Related Works

There are several efforts directed towards scaling up clustering algorithms for

huge datasets commonly encountered in data mining. Parallelization of k­

means algorithm [SB99, DMOO, ZSP03] received a lot of attention in the past.

In [0Is95, JKOO] parallel agglomerative hierarchical clustering algorithms were

reported. A parallel implementation of AutoClass is presented in [FLPTOO].

A parallel DBSCAN algorithm (PDBSCAN) is presented in [XJK99] using

the shared-nothing architecture. Here, the authors used a distributed version of

the R*-tree (dR*-tree), in which the data is spread among multiple computers

and the indices on the data are replicated on every computer. The main program

of P DB SC AN, i.e. the master, starts a clustering slave on each available

computer in the network and distributes the whole data onto the slaves. Every

slave clusters only its local data and there is some interference between computers

while performing local clustering. Local cluster models are then merged together

to obtain global clustering.

34

The method proposed in this paper is more efficient than the earlier method

proposed in [XJK99]. In the proposed approach only the master communicates

with the slaves for data transferring and collecting local clustering results back.

No interference between computers in the parallel environment is needed reducing

the communication overhead.

4.3 The Proposed Algorithm

The DBSCAN algorithm is adapted for parallel clustering using a message­

passing multicomputer. The parallel environment is created by connecting a

number of personal computers through a network. Each computer consists of

a processor, local memory and disk. Processors can send messages to other

processors through the network. The volume of data to be clustered is retained in

the secondary memory of a particular computer, which we call as the client. The

large dataset may not be accommodated into the main memory of the client. So

the dataset is divided into P roughly equal parts and transmitted to P different

computers, which we call as servers or processors. The servers process the

received data concurrently to produce local clusters, which are then sent back

to the client for merging in order to obtain global clusters for the original dataset.

There is no communication amongst the servers. Communication is needed only

for data transfer in blocks between the client and the servers. The main tasks to be

performed are: data placement, local clustering, and merging local cluster models

to get global clusters for the whole dataset. Methods for performing each of the

tasks are presented below.

4.3.1 Data placement

Data division parallel processing with static load balancing is used here. The

dataset is spatially divided into nearly equal partitions with some overlap between

35

two adjacent partitions and no subsequent movements of data betWeen partitions

take place. The input dataset X consists of n d-dimensional objects with i-th

object being represented as Xi = { xi1 , xi2 , · • · , Xid}. Values of each attribute

Aj, j E {1, 2, · · · , d} fall in the given range [minAj, maxAjl· The dataset X

is spatially divided into p partitions 81, 82, ... , 8 p based on the values of a

particular dimension (say Ak). There is some overlap between adjacent partitions

such that X = 8 1 U 82 U · · · U Sp with Sin Si+l f. 0 fori = 1, 2, · · · , P- 1

and Sin Sj = 0 for ji- jj ~ 2, i, j E {1, 2, · · · , P}. The partially overlapped

partitions are shown in Figure 4.1 for 2-dimensional case. An overlap of width 2t:

occurs between two adjacent partitions. Overlapped regions are much smaller than

the partitions. The objects falling in an overlapped region are locally clustered

in both the adjacent partitions. Thus they provide the necessary information for

merging together the local clustering results of the two partitions. The overlap

width should be at least 2E, because the neighbourhood radius is E and the spatial

width of the smallest possible cluster will be 2E. To create P partitions of the

. ,,
'

•
. ~ . ,,

,,
pmtition2 (£0

... .. ~

JXiltitioul (Sr)
.. ~

pattition3(S3)
~' ~ 2£

c1-Min_A1 c2 C3 .\.ft.?x_..-1!
A· fSnltt din'IE'rt-.ion\

Figure 4.1: Overlapped spatial partitioning of a 2-dimensional dataset

36

dataset in this manner based on a particular dimension Ak , we need to select P + 1

constants in the value range [MinAk' MaxAkl for convenience of marking the

boundary of the partitions. Let Ci, i = 1,2,··· , P + 1 represent constants such

that Cl = MinAk, CP+l = MaxAk, and Ci < cHI. Now, overlapped partitions

are created as :

Sl = {Xj I Xj EX, Cl ::; Xjk ::; C2 + €}

Si = {Xj I Ci - €::; Xjk::; Ci+l +€}, i = 2,3,···,P-l

Sp = {Xj I XjinX, cp - € ::; Xjk ::; CP+l}

Load balancing

Partition Si is sent to server Mi, i = 1,2, ... , P for concurrent clustering. Since

no data movement takes place after the partitions are created, care should be taken

so that each server receives nearly equal number of data objects for processing.

This will ensure that all the servers finish clustering job at the same time provided

the servers have same processing speed. Ifthe processors have different processing

speed then the input data should be distributed to the servers proportionate to

their processing speed. We assume equal processing speed for the servers so

that they receive nearly equal amount of data. To ensure this the value range

of the selected dimension Ak i.e. [minAk, maxAkl is divided into m intervals

each having a width of € by using the limits ai, i = 1,2,··· ,m + 1. Thus,
m = r(MaxAk~MinAk)l

al = MinAk;

ai = ai-l + €, i = 2,3,··· , m + 1;

Let, frequency of data objects with k-th dimension value falling in the i-th interval

be represented by Ii so that:

Ii = l{j I (Xj EX), ai ::; Xjk < aHdl, i = 1,2, ... , m;

Now, the constants Ci described in the previous section are computed as Ci = at

for some t E {I, 2,··· ,m+l} such that:

37

"£~ h :::; i.n'.:::; ,,£~+l h for i = 1,2,··· , P

where, n' = r ~ 1 is the average number of objects in each partition.

This will ensure that each partition gets number of objects nearly equal to n'.

4.3.2 Local clustering

When the client finishes sending data, the process of clustering will concurrently

run in all the servers. First R *-tree is created for the received data and then

DBSCAN algorithm is run. When clustering job is finished the servers will

remain ready for sending the results of clustering back to the client.

4.3.3 Merging of local cluster models

The partitioning process may convert an inherently core (i.e. core in the original

dataset) object to non-core if the object falls near the boundary of a partition. In

this context the following lemma is important.

Lemma 1 if an overlap of width at least 210 between two adjacent partitions Si

and Si+1 is used then an inherently core object p E Si n Si+1 will remain as core

in at least one of the two partitions.

Proof: Consider a core object p in the original dataset. After partitioning p E

Si n Si+l such that p is placed at a distance d1 from the right boundary of Si and

at a distance d2 from left boundary of Si+l so that d1 + d2 = 2E. It is shown

in Figure 4.2 for 2-dimensional case. N, (p) represent the set of objects in 10-

neighbourhood of object p. If d1 < 10 then p may not remain core in Si, since

N,(p) will not be a subset of Si' But in that case d2 > 10 because d1 + d2 = 2E and

d1 < E. So, N,(p) will be a subset of Si+l and consequently p will remain a core

object. Similarly p may be found to be core in Si but non-core in Si+l' 0

38

partition S,

Figure 4.2: Overlap width of2E

Each server Mi finds clusters in partition Si. With respect to the dataset X,

we can think of two types of clusters. A cluster may be totally contained within a

partition Si or a cluster may span over more than one partitions. In the later case

we need to merge the clusters obtained in two adjacent partitions. The following

lemma states the conditions for merger of two clusters found in the two adjacent

partitions.

Lemma 2 Let C1 and C2 are clusters found in two adjacent partitions Si and

Si+l respectively. If p E C1 n C2 and p is a core object in at least one of the

partitions then cl and c2 need to be merged. Ifp is not a core object in either of

the partitions then p should be included either in cl or in c2 but not in both.

Proof: Suppose x E C1 in Si andy E C2 in Si+l· Ifp is found to be a core object

either in Ci Or in C2 Or in both, then X and y are density reachable from p since p

is a core object and p E C1 n C2 . Sox is density connected toy and x, y should

belong to the same cluster i.e. clusters C1 and C2 need to be merged. If p is not

core in either of the partitions then p is a border object which can be included in

any one of C1 or C2. 0

The merging of clusters is done as follows. Each server Mi, i = 1, 2, · · · , P

while clustering the partition Si prepares a list Li recording whether each object

p E Sin Si+l is a core, non-core or noise object. The job of merging is done by the

39

client. It first collects the local clustering result from partition 8 1 along with list

L1 from M 1 and forms the initial merged result G. It then collects clustering result

of partition Si and list Li, i = 2, 3, · · · , P -1. The lists Li- 1 and Li are consulted

by the client to determine the status of each object p E Si-1 n Si and merges Si

with G based on lemma 2. The following lemma proves that the resulting clusters

are the same as the clusters obtained by applying DB SCAN on dataset D.

Lemma 3 If clustering results of all the partitions are merged based on lemma 2

then the merged result is the same as the clustering result obtained by DB SCAN.

Proof. DB SCAN clusters are maximal set of density connected objects. The

condition of density connectivity is established by lemma 2 and the condition of

maximality is satisfied by merging clustering results of all the partitions. D

The ideas of connectivity and maximality are also depicted in Figure 4.3. A

directed edge indicates the two clusters that are to be merged across partitions.

A maximal connected sub-graph of directed edges indicate a cluster in the given

dataset X.

Ctm-tH labels in 5,,

Figure 4.3: Merging oflocal clusters to form global clusters

40

4.3.4 Complexity analysis

The complexity of DBSCAN algorithm with R*-tree is O(n log n). Each of the

P computers runs D BSC AN in parallel with a dataset of size p+v, where v is the

average number of objects present in an overlapped region. Therefore complexity

of DBSCAN now becomes O((~ +v)log(~+v)). The time complexity for load

balancing step will be O(n). For ideal cases time complexity for data placement

step can be taken to be O(n). Global clustering step will visit each object of each

overlapped area to determine clusters to be merged. Also it will update global

clusters for each object of the local clusters. So complexity of global clustering

step will be O(P.v + n). Therefore the overall complexity can be obtained as

0((~ +v) log(~ +v) + P.v +n). If P is increased with increase in n so that nj P

remains manageable by a single processor the algorithm will remain scalable.

4.4 Performance Evaluation

A sequential algorithm is evaluated in terms of its execution time expressed

as a function of its input size. On the other hand the execution time of a

parallel algorithm depends not only on the input size but also on the parallel

architecture and the number of processors employed. By adding more processors

we would like to decrease the execution time or increase the volume of data

handled. We now empirically study the desirable characteristics of our parallel

algorithm by measuring execution time, speedup, efficiency and scaleup factors.

The performance of the parallel DBSCAN will be measured relative to the

sequential DB SCAN. The sequential DB SCAN is very slow for larger datasets.

So, we have limited the dataset size to maximum of 800000 2-dimensional data

objects in our experiments. Since the datasets are limited, we limit the number

of processors used to maximum of 6 only. We have synthetically generated

different datasets containing 13 arbitrarily shaped clusters, circular, semicircular,

41

triangular, rectangular, S-shaped etc. Datasets of sizes 100000, 200000, 300000,

400000, 500000, 600000 and 800000 are created containing the same 13 clusters

but density increasing gradually. The structure of the datasets was shown in

Figure 3.2.

Since there is no inter-processor communication except for a single processor

communicating with each of the remaining processors, we used client-server

computing. Programs are developed using C++ in LINUX environment. Each

processor has the same specification Pentium III with 1.0 Ghz speed and 128

MB RAM. The processors are connected through a 10/100 Mbit Ethernet LAN.

To smooth out any fluctuations each measurement was repeated 5 times and the

average was taken.

1. Parallel Execution Time: The parallel execution time, denoted by T(P), of

a program is the time required to run the program on a P-processor parallel

computer. When P = 1, T(l) denotes the sequential run time of a program

on a single processor. Figure 4.4 shows the graph of execution time versus

number ot-processors used. It can be seen that the execution time decreases

significantly as the num ber of processors increase.

2. Speedup: A measure of relative performance between a mUlti-processor

system and a single processor system is the speedup factor defined as

S(P) = T(l)/T(P). Ideally a system with m processors should yield

a speedup of m (linear speedup) when the sequential algorithm that

is parallelize is of linear (O(n) complexity. However, parallelizing a

linear algorithm, linear speedup is difficult to achieve because of the

communication cost and speed difference of the processors. The relation

between speedup and number of processors used is shown in Figure 4.5.

Note that for our algorithm S(P) > 1, i.e. super-linear speedup is

achieved. Because the sequential algorithm adapted here is of complexity

O(n log n). This can be compared to the sub-linear speedup reported by

42

1200 -.!
1000

....

~ -0

BOO ~ \ - --+- 800000 data
I

.... \
600 ~

·~ ------ 600000 data
400 '\' 0
200 :;

II-..,_'-.... -t! - 0)IC

1.1.1

1 2 3 4 5 6
Uumber of 1nocessors

Figure 4.4: Execution time on different number of processors.

Xu et al. [XJK99] for P DBSCAN. Our algorithm is better as it achieves

higher speedup.

15

~
...
0

10 t; -+--- 800000 data

....-/ ~----- .::

I
= -a- 600000 data 1/::/ 5 1 400000 data
....
~

I I 0
1 2 3 4 5 6

tltmber d 1>rocessors

Figure 4.5: Speedup of parallel DB SCAN on different number of processors

43

3. Efficiency : Speedup does not measure whether the processors in a parallel

computer are being used efficiently. The efficiency of a program on P

processors, E(P), is defined as the ratio of speedup achieved and the

number of processors used to achieve it. Thus, E(P) = S(P) / P =

T(l)/ (P.T(P)) For our parallel program E (P) is shown in Figure 4.6. It

is seen from the graph that if too many processors are used then efficiency

is dropped.

3
2.5

...._

/ ---
2

~

~ --+- 800000 data ,-- ----- --t ,..

1.5 ~/ ·- tl
- 600000 data "L"' .. J._ ·;:;

1 rl = 400000 data w
0.5

0 ._

1 2 3 4 5 6

tlumber of 1Jrocessors

Figure 4.6: Efficiency vs. number of processors employed

4 . Scaleup: Another figure of merit of a parallel algorithm is scaleup which

captures how well the parallel algorithm handles larger datasets when more

processors are available. Scalability has been a rather imprecise term. Our

scalability study measures execution time by keeping the problem size per

processor fixed while increasing the number of processors. The scaleup

characteristic for the proposed parallel DB SCAN is shown in Figure 4. 7.

It is clear that the algorithm scales well.

The experimental results presented here demonstrate that the proposed algorithm

44

1-- Daa size=100CO~I\Uiltler of processors I

1 2 3 4 5 6

Utll~Jer of processors

Figure 4.7: Scaleup of parallel DBSCAN on different sets of data scaled by the

number of processors

is indeed a feasible approach to parallel clustering. The algorithm is found to be

scalable both in terms of speedup and scaleup. Thus, large spatial datasets can be

clustered efficiently.

In the previous chapter and the present one we extended DB SCAN to cluster

larger datasets . In the next chapter we concentrate on extending the algorithm so

that nested clusters, i.e. clusters within a cluster, can be extracted based on density

difference.

45

Chapter 5

DDSC: A Density Differentiated

Spatial Clustering Technique

5.1 Introduction

Although many algorithms exist for finding clusters with different sizes and

shapes, there are a few algorithms that can detect clusters with different

densities. Basic density based clustering techniques such as DBSCAN and

DENCLUE [HK98] treats clusters as regions of high densities separated by

regions of no or low densities. So they are able to suitably handle clusters of

different sizes and shapes besides effectively separating noise (outliers). But they

fail to identify clusters with differing densities unless the clusters are separated by

sparse regions. For example, in the dataset shown in Figure 5.1, DBSCAN finds

a single cluster instead of finding the three distinct clusters that can be visualized

based on density.

We propose an extension of the DBSCAN algorithm to detect clusters with

differing densities. Extracted clusters are non-overlapped spatial regions such

that within a region the density is reasonably homogeneous. Adjacent regions are

46

Figure 5.1: Clusters with varying densities.

separated into different clusters if there is significant change in densities. The

clusters may be contiguous i.e. not separated by any sparse region as required

by DBSCAN. Thus natural clusters in a dataset can be extracted. An added

advantage is that the sensitivity of the input parameter t, which is an important

disadvantage of DBSCAN, is reduced significantly.

5.2 Related Works

The DBSCAN [EKSX96] is a basic density based clustering algorithm. The

density associated with an object is obtained by counting the number of objects

in a region of specified radius, t, around the object. An object with density

greater than or equal to a specified threshold, MinPts, is treated as core (dense),

otherwise non-core (sparse). Non-core objects that do not have a core object

within the specified radius are discarded as noise. Clusters are formed around

core objects by finding sets of density connected objects that are maximal with

respect to density-reachability. DBSCAN can find clusters with variable sizes

and shapes, but there may be wide variation in local densities within a cluster

since it uses global density parameters M inPts and t, which specify only the

lowest possible density of any cluster.

47

To find clusters that are naturally present in a dataset different local densities

need to be identified and separated into clusters. The OPTICS [ABKS99]

algorithm adopts DBSCAN to achieve this goal. The proposed algorithm

also extends DBSCAN in a different manner to achieve the same goal.

OPTICS computes an ordering of the objects augmented by reachability

distance, representing the intrinsic hierarchical clustering structure. This cluster

ordering, displayed by the so called reach ability-plots, is the basis for both

automatic and interactive cluster analysis. Valleys in this plot indicate clusters.

The parameter ~ is crucial for identifying the valleys as ~-clusters.

DENCLU E (DENsity CLUstEring) [HK98] takes a more formal approach

to density based clustering by modeling the overall density of a set of objects as

the sum of influence functions associated with each object. The resulting overall

density function will have local peaks, i.e., local density maxima, and these local

peaks can be used to define clusters in a straightforward way. Specifically, for each

data object, a hill climbing procedure finds the nearest peak associated with that

object, and the set of all data objects associated with a particular peak (called a

local density attractor) becomes a (center-defined) cluster. However, if the density

at a local peak is too low, then the objects in the associated clusters are classified

as noise and discarded. Also, if a local peak can be connected to a second local

peak by a path of data objects, and the density at each object on the path is above a

minimum density threshold, ~, then the clusters associated with these local peaks

are merged. Thus, clusters of any shape can be discovered. It has trouble with

data that contains clusters of widely different densities.

CH AM ELEON [KHK99] and SN N [ESK03] algorithms attempts to

obtain clusters with variable sizes, shapes and densities based on k-nearest

neighbour graphs. CHAM E LEO N finds the clusters in a dataset by using a

two-phase algorithm. In the first phase it generates a k-nearest neighbour graph

that contains links between a point and its k-nearest neighbours. This approach

reduces the influence of noise and outliers and provides an automatic adjustment

48

for differences in densities. Then it uses a graph partitioning algorithm to cluster

the data items into a large number of relatively small sub-clusters. During the

second phase, it uses an agglomerative hierarchical clustering algorithm to find the

genuine clusters by repeatedly combining sub-clusters. No cluster can contain less

than a user specified number of instances. It has problems when the partitioning

process does not produce sub-clusters.

The SN N (Shared Nearest Neighbour) clustering algorithm uses k-nearest

neighbour approach to density estimation. It constructs a k-nearest neighbour

graph in which each data object corresponds to a node which is connected to

the nodes of the k-nearest neighbours of that data object. From the k-nearest

neighbour graph a shared nearest neighbour graph is constructed, in which edges

exist only between data objects that have each other in their nearest neighbour

lists. A weight is assigned to each edge based on the number and ordering of

shared neighbours. Clusters are obtained by removing all edges from the shared

nearest neighbour graph that have a weight below a certain threshold T. S N N can

detect clusters of different sizes, shapes and densities.

The clustering techniques stated above try to find clusters with variable sizes,

shapes and densities. The proposed algorithm is an alternative to these algorithms.

It is simpler and produces good quality results consuming less execution time.

For example OPTICS produces an ordering of the objects by performing k­

NN queries in the first step and then it produces variable density clusters using a

second step requiring more execution time. DEN C LU E and S N N use several

parameters, proper tuning of the parameter values is very important for getting

good quality results.

49

5.3 Proposed Algorithm

The proposed algorithm partitions given dataset into a set of spatial regions

(clusters) such that adjacent regions significantly differ in density. Lesser amount

of local density variations exist within a cluster, but going from the present region

to a neighbouring region greater amount of local density variation will be noticed.

As before, given numeric dataset, X, consists of n d-dimensional objects

represented by Xij, i = 1,2,· .. n, j = 1,2, ... ,d. Recall that the neighbourhood

within a given radius E of an object p is represented by Nf(p) = {q E

X I dist (p, q) :::; E}. It is spherically shaped for Euclidean distance function

dist(p,q). The neighbourhood size of an object p i.e. INf(p) I represents the

density around it. Let us use a list wP' p = 1,2,,··, n to store density of

each object in the dataset X. Initially, density of each object is unknown,

which is represented by wp = -1, p = 1,2, ... , n. When neighbourhood

query is performed, density of p is assigned as wp = INf(p)l. Object p is

called a core object if wp ~ MinPts. The dataset is to be partitioned into

a set of non-overlapped clusters. Let us denote the cluster label of p by cpo

Initially all objects are assigned the label -1 to indicate unlabeled objects, that

iscp = -1, Vp E {1,2,··· ,n}.

For detection of clusters separated by density variations the concepts of

processed objects, candidate objects, unprocessed objects and homogeneous core

objects are required. The definitions are presented below.

• A processed object p is one, whose density is already evaluated, i.e. wp ~ 1.

Evaluating the density of an object by performing neighbourhood query is

called processing. \

• A candidate object is already included in a cluster, but its density is yet to

be evaluated, i.e. cp ~ 0 and wp = -1.

• An unprocessed object p has wp = -1, cp = -1, that is its density as well

50

as cluster label are not evaluated .

• A homogeneous core object p is a core object (wp ~ MinPts) such that the

density of any of its neighbours does not differ with respect to the density

of the core object itself by more than a specified threshold a. That is, 'r/q E

Nf(p), wp/wq ::; a ifwp ~ Wq or wq/wp ::; a ifwp < Wq where a > 1 is a

constant.

The algorithm starts a cluster with a homogeneous core object and goes on

expanding it by including other directly density reachable homogeneous core

objects until non-homogeneous core objects, that indicate wide variation in

densities, are detected. An ordering is imposed upon the sequence in which the

objects will be processed while expanding a cluster.

5.3.1 Ordered expansion process

A new cluster is created with a core object and its neighbours, that are inserted

into the seeds-list. This initial cluster is expanded when each object in the seeds­

list is processed in turn. Objects are deleted from the front end of the seeds-list

for processing while new members are entered at the back end. When an object is

processed it may contribute some new objects which are ordered before entering

into the seeds-list. The following are the steps for ordered-processing of an object

p taken out from the seeds-list.

1. If p is a core object perform steps 2-5;

2. Find the list Lp of unlabeled objects in Nf (p) : Lp = {q I q E Nf (p), cq =

-I};

3. Arrange the objects in Lp in ascending order of their distance to p to obtain

the sorted list L~ = {ql, q2, q3, ... , qt} with size t = 1 Lp 1, qo = P such that:

L~ = {qi I qi E Lp, i = 1,2,··· , t, dist(qi-l,P) ::; dist(qi,P)};

51

4. Append L~ to seeds-list;

5. Mark all unlabeled and noise objects in Nf(p) with present cluster-id:

Vq{ q E Nf(p), cq S O} : cq = cluster-id;

Steps 2-3 impose an ordering on the seeds for entering into the seeds-list.

Steps 4-5 cause expansion of the cluster. The ordered expansion process of

a cluster iteratively deletes an object from the seeds-list and performs ordered

processing (steps 1-5) for each deleted object until the list becomes empty, when

detection of a cluster completes.

This ordered expansion process has some important properties as presented in

the lemmas to follow. In DBSCAN, unlabeled neighbours are inserted into the

seeds-list in the order in which they are obtained. So already processed objects

and candidate objects (waiting in the seeds-list to be processed) are intermixed in

the same spatial region. In the discussions to follow we consider 2-dimensional

objects for simplicity in graphical presentation, although the ideas are applicable

to higher dimensions as well.

Lemma 4 During ordered expansion process, already processed objects form a

spatial region which is contiguous and non-overlapped with the region formed by

candidate objects.

Proof: When a cluster is first created by processing a core object 0, all its

neighbours inside the circle of radius E become candidates to be processed next.

Presently, there is only a single object 0 in the region of already processed objects,

which is surrounded by the region formed by candidate objects. The region of

already processed objects grows as candidates become processed and contribute

some new candidates. Consider that the next object to be processed currently is p.

Let, q be the object which has contributed p to the seeds-list i.e. p E Ne(q) and q

is already processed. Let, s = dist(p, q). Draw a circle with radius s centered

52

at q. All objects inside the circle will be already processed objects, because

according to the ordered expansion process, each object r inside the circle will be

processed before p, which is lying on the circle, since dist(r, q) < dist(p, q). This

contiguous region of already processed objects grows by one object after including

the currently processed object p. So, the region will still remain contiguous after

inclusion of the object p. 0

At least one processed object is present in the neighbourhood of currently

processed object. There is a maximum limit for the number of processed objects

that may be present in the neighbourhood of currently processed object.

Lemma 5 For uniformly distributed objects at most 50% neighbours in the

neighbourhood of the currently processed object are already processed.

Proof: Consider that 0 is the first core object detected for expanding a cluster.

Ordered expansion procedure processes the objects one by one starting from the

nearest neighbour of 0; initial few objects have less than 50.% already processed

objects in their neighbourhoods at the time of processing them. Let the currently

processed object p, lying on the circle Cl with radius E centered at 0 as shown

in Figure 5.2, be the farthest object in the neighbourhood of object o. The

neighbourhood of p is shown by circle C2. The area of intersection of the two

circles (Nf (0) n Nf(p)) contains already processed objects. Using the formula for

circular segmentl, the area of intersection [Wei] of the two circles is calculated

to be 39% of the area of circle C2. Assuming uniform distribution of objects

and m = INf(p)l, this region will contain 0.39m objects. Here, p is selected ,
such that the present region of already processed objects is small enough to be

included inside the circle of radius Eo But as the cluster grows the region of already

processed objects grows in size. Then the already processed objects and candidate

objects in the neighbourhood of the currently processed object can be separated

I A(R, d) = R2cos-1(dj R) - dJ(R2 - d2), R is the radius, d is distance of the segment from

the center

53

Figure 5.2: Already processed objects within the neighbourhood of currently

processed object p.

with an arc of a circle of larger radius. When the cluster becomes bigger this

boundary can be a straight line, in which case 50% of the neighbourhood of the

currently processed object will be already processed. 0

Proposed algorithm does not require that objects are uniformly distributed.

It detects clusters that are reasonably homogeneous i.e. some amount of density

variation is allowed within a cluster. Significant variation of density will cause

separate clusters to be identified. Lemmas 4 & 5 provide us an approach for

detecting density variations while a cluster is being expanded. The density of

each of the already processed object is known as its density value was stored

at the time of processing it. So, we can ensure that the density of the current

object processed should not differ much with those of already processed objects

in its neighbourhood, otherwise this current object should not be expanded i.e.

previously unclustered objects found in its neighbourhood should not be added to

the seeds-list. Below we formalize this homogeneity test.

54

5.3.2 Homogeneity test

Let, p be the current object being processed and Lp be the list of already processed

objects (wp ~ I, \:fp E Lp) present in the neighbourhood of p. The current

object p is homogeneous to the region of already processed objects if the following

conditions hold for each q E Lp :

(5.1)

Wq .f - > a2 2 Wq < Wp
Wp

(5.2)

In the Inequalities 5.1 and 5.2 aI, a2 E (0,1] are two constants indicating allowed

density difference limits within the neighbourhood of an object. The values of a1

and a2 can be determined based upon an input parameter a as described below.

Let us consider two contiguous uniformly distributed regions R1 and R2 as

shown in Figure 5.3, such that R2 is a times denser than Rb with a > 1. The

minimum density difference required for separating clusters is indicated by a.

If the density difference is less than a, the two regions will be merged into a

single cluster. Assume that the current object to be processed, p is located at

the boundary of the two regions. Consider two objects q E R1 and r E R2

such that dist(p, q) = dist(p, r) = E and p, q, r are in a straight line. Let,

Wq = IN,(q)1 = m. Then, Wr = IN,(r)1 = am, and wp = INf(p)1 = (1 + a)~.
Density of any object between q andp will be higher than m but less than (l+a)~.

Similarly, density of each object between p and r will be higher than (1 + a) ~

but less than am. So, the objects between q and r form a transition (bordering)

region containing objects with different densities. When a transition region is

encountered cluster expansion in that direction may get stopped. A transition

region may be encountered while going from a lower density region to a higher

density one or from a higher density region to a lower density one. So, two

different density factors 0::1 and 0::2 are needed to avoid order dependency. Values

55

. . .
m (l+a-}r:n/2· • am·

Figure 5.3: Density variation pattern produced by two adjacent regions with

different densities.

of the two factors can be computed based on the object p. While expanding a

cluster, if a lower density region is entered, the density difference limit between

the density of the current object with any of the already processed objects in its

neighbourhood, a 1 is computed as :

wp (1 + a)~ 1 + a
al = -= = --

Wr am 2a
(5.3)

Similarly, entering a higher density region, the density difference limit a2 is

computed as :

2

1+a
(5.4)

The two factors a 1 and a 2 determines the allowed variation in local density within

a cluster so that the density of the cluster can be called relatively homogeneous.

Above, we have stated about the maximum density difference allowed for a

single object to be called homogeneous to the region of already processed objects.

To stop growth of a cluster in any spatial direction a non-homogeneous region of

width at least E should be encountered in that direction. The following lemma

establishes the idea.

56

Lemma 6 The growth of a cluster in any spatial direction is stopped if a non­

homogeneous region of width at least E is encountered in that direction.

Proof: Referring back to Figure 5.3, object p is the current object being processed.

Object p becomes non-homogeneous, if in the neighbourhood of p there is at least

one already processed object that crosses the allowed density variation limit. Let,

the region Nf.(q) n Nf(p) contain processed objects and wq/wp :s a2, causing

object p to become non-homogeneous. Then p will not be expanded but growth of

the present cluster can not be stopped by p alone. Since, there are some candidates

for expanding the cluster lying after p and those candidates were contributed by

the objects present between q and p when they were processed. These candidate

objects form a region of width at most E, that is spread up to just before object

T. To stop growth of the cluster in the direction of q to T, none of these objects

should expand when processed. That is, each of these objects should become non­

homogeneous because of presence of some predecessors, lying between q and p,

that have density difference greater than allowed limit. This will really be the case

if the region between p and T (region R2) is denser than the region between q and

p (region Rt} by a factor greater than a. 0

From lemma 6 it becomes clear that a cluster extends beyond its expected

boundary as some non-homogeneous objects (border objects) are also included

in the cluster. It is because we are performing homogeneity test only on one

part of the neighbourhood. We cannot test the remaining part simultaneously

because density information of these objects will be obtained only when they are

processed. Another problem is that the region of already processed objects falling

in the neighbourhood of currently processed object may contain very few objects

that may lead to the single linkage effect. To alleviate these two problems we

impose the following requirements on the currently processed object. We call it

cardinality test.

57

5.3.3 Cardinality test

The number of already processed objects present in the neighbourhood of currently

processed object should be within a certain minimum and maximum limits. The

maximum limit is taken to be 50% of the neighbourhood size based on lemma 5.

The volume of intersection of two d-dimensional hyper spheres with radius E

situated at a distance of E apart gives the minimum limit for d-dimensional data

objects. The situation is shown for 2-dimensional data in Figure 5.2. The area of

intersection for two circles is approximately 39% of the area of a circle. For

two spheres the volume of intersection is approximately 31% [Wei]. As the

dimension increases this volume decreases. We take the minimum limit to be

1!d %, where dis the dimension of the data objects. Consider currently processed

object p in Figure 5.3. Proceeding from q top i.e. going from lower to higher

density, minimum possible number of already processed objects contained in the

neighbourhood of p are 1~d· Similarly, proceeding from r top i.e. going from

higher to lower density, maximum possible number of alre~dy processed objects

contained in the neighbourhood of p is a:;. So, the two limits expressed as a

fraction to the density of the currently processed object are

m

{3 l+d
min = (1 + o:)~

arn.

{3 2
max = (1 + o:)~

2

(1 + d)(1 + o:)

0:

1+o:

5.3.4 Special treatment for the first core object

(5.5)

(5.6)

The homogeneity test and cardinality test are not applicable to the starting core

object of the cluster, as no objects of the cluster are processed before it. However,

it must be ensured that the first object does not lie at the boundary of two widely

differing density regions. In fact, it must not lie within a distance of E/2 from

the boundary. Otherwise the two differing density regions will be merged into a

58

single cluster. Because, a non-homogeneous region of width at least E will not be

encountered in that case to stop the growth of the cluster across the boundary as

required by lemma 6.

To avoid this problem we reject the outer neighbours of the first core object

and enter into the seeds-list only those neighbours that lie within a radius of t:/2

from the object. Cardinality test is also not applied while these few seeds are

expanded.

5.4 The Algorithm

The steps in DDSC clustering algorithm are listed below.

Algorithm DDSC

Inputs: X, n, d, E, MinPts, a;

Outputs: Cluster label for each of then object in X;

Steps:

01. Set cluster-id=O;

02. FORp=l TOn DO

03. {Set wp=-1;

04. Set cp=-1;

05. }

06. Compute:

ct: 1 = (1 + a)/(2 * n);

a2 = 2/(1 +a) ;

f3min = 2/((1 +d)* (1 +a));

!3max = a/(1 +a) ;

59

07. For p=1 TO n DO

08. {IF (cp == -1) THEN

09. {Find Nt(p);

10. Set wp = INt(p)l;

11. IF (wp < MinPts) THEN

12. Set cp=O; II noise object

13. ELSE

14. {Set cluster-id=cluster-id+1;

15. Set cp=cluster-id;

16. Find R = {q I q E Nt(p) , dist(p, q) <= E/2, cq = -I};

17. Append list R to seeds-list;

18. Set m = IRI;
19. FOR i=1 TO m

20. {Delete an object q from seeds-list;

21. Set Wq = IN.(q)1

22. Perform ordered-processing for object q;

23. } IIEND FOR

24. WHILE (seeds-list is NOT EMPTY) DO

25. {Delete an object q from the seeds-list;

26. Set Wq = IN,(q)l;

27. IF (wp >= MinPts) THEN

28. IF (homogeneity-test(q, cd, a2) succeeds) THEN

29. IF (cardinality-test(q, {Jmin, {Jmax) succeeds) THEN

30. perform ordered-processing for q;

31. END IF;

32. END IF;

33. END IF;

33. } II END WHILE

34. } II END IF

60

35. } II END IF

36. } II END FOR

37. END DDSC;

5.4.1 Complexity analysis

The most time consuming part of the algorithm is the neighbourhood queries. The

neighbourhood size is expected to be small compared to the size of the dataset. So,

the different tests performed on the neighbourhood will not consume much time.

While expanding a cluster the list of newly contributed seeds by each object of the

cluster need to be sorted. For all objects only a small fraction of the neighbours

become new seeds, whereas some objects contribute no new seeds at all. Sorting

the lists will not consume much time as the size of the list to be sorted is small.

The time required for a neighbourhood query is 0 (log n) by using a spatial access

method such as R *-tree. Neighbourhood query is performed for each of the n

objects in the dataset. So the run time complexity is O(n log n).

5.5 Experimental Results

In this section we evaluate the performance of the DDSC and compare the result

with CHAM E LEO Nand S N N algorithms. We implemented the algorithm

in C++. Experiments were conducted on a 1.66 GHz HCL laptop with 512 MB

RAM running LINUX operating system.

Synthetic datasets are used in the experiments. The CHAM E LEO N

datasets - t4.Sk.dat, t7.10k.dat, tS.Sk.dat and t5.Sk.dat, used in [KHK99] are

downloaded from [gla]. We have created two dataset - Datasetl shown in

Figure 5. J and Dataset2 shown in Figure 5.4. Datasetl contains 24000 objects

arranged in three nested circular regions, the middle region being twice as much

61

Figure 5.4: Dataset2

denser than the neighbouring ones. Dataset2 contains 8100 objects. Four

triangular regions and a rectangular region are generated such that a region is

at least two times denser than the neighbouring regions. These can be visualized

in the upper part of the figure. Local density variations are present within each

region. Two regions are produced using Gaussian density generator.

The clustering results for Datasetl and Dataset2 are shown in Figures 5.5

and 5.6. Different colours are used to indicate the clusters. It can be seen from

the figures that the circular, triangular and rectangular clusters are extracted based

on differences in densities although they are not separated by sparse regions. The

three nested clusters with different densities in Datasetl are properly extracted.

Bigger portions of the Gaussian clusters in Dataset2 are also detected, which

means that inside a cluster the local densities may gradually change within limits,

bigger changes prevent the expansion of the clusters.

Figures 5.7-. 5.10 show clustering result of our algorithm on

CH AM ELEON datasets : t4.Sk.dat, t7.l0k.dat, tS.Sk.dat and t5.Sk.dat

respectively. Clusters with different sizes, shapes and densities are

_ extracted and noises are discarded. Similar results were reported for

CHAM E LEO N [KHK99] and S N N [ESK03] algorithms.

62

Figure 5.5: Result on Dataset!

·~~~ ~ ..
. '.:;:_.:,_<; ·::':'.?,!-:·

Figure 5.6: Result on Dataset2

'

' ~?i";,;. i -"~:};

'.r:~··r,:_._._~-~::·.·:~.:. ·.· ~_,',.:.~:-.r:_:_·:_._~::_-..• _--_-_:._·_~-~_:_.·_·_ · . . : ~{~ . f.i?t!il .. · ·
' : ~ ~~"~ ~<t~ ~- -·~) ··o~,··.·~--~· :;,-~:·._·~··: .. _·,··,.·.~.--''-:1 __ -__ ~~._·.-.. -•. -~--~.~~~-·.·.',·."':.:.. __ : __ :_:·: __ -.-.' __ : __ ::_.~-'{_.·_·_···:;,::_ .

. ~ - -~.,--.'~-· __ ·.-:·· l :,t·_·._._· •. -~_· •.. ~.~~-.k_~_:-:t_·-:.. __ ~-,:.·_~--~.:_.:_~.~0_-.~.~:--~-:_·.·,_.·._ .· ~ .. -~:~ :~ ,; ~~if~-~:T,~("?Y f- ,~",:;~.3-:;;.

Figure 5.7: Result on t4.8k .dat

63

~s .. ;I~ ·. : ~·:: ::?:.-~·~.;!~~·~:· ~·t/~~::~;-~~

.. \iiK#~hZ1L\{\~iti·k;~b:iit~~ .
;fui;·~{;· ·

'&~t!.!H~s!'··-

Figure 5.8: Result on t7.10k.dat

Figure 5.9: Result on t8.8k.dat

Figure 5.10: Result on t5.8k .dat

64

5.5.1 Discussion on Parameters

We have performed several experiments on the datasets to study the effects on

changing values of the parameters a, 10 and MinPts. It is observed that, the

proposed algorithm is less sensitive to the input parameters 10 and M inPts. For

example, DBSCAN produces the clustering result shown in Figure 5.8 for the

dataset t7.10k.dat with 10 values in the range [5.7, 6.1] and Minpts=4 only.

It shows that accuracy of result of DBSCAN depends on proper selection of

parameter values within a narrow range of possibility. But proposed algorithm

produces this result for 10 in the range [13.0,17.0] and MinPts in the range [4,

29]. For increased values of MinPts, some very small clusters may be treated

as noise. For example the result for t7.10k.dat with MinPts=29 and 10=17 is

shown in Figure 5.11. Here the smaller clusters found in Figure 5.8 are not

present. If value of a is increased significantly allowing more density variations,

adjacent clusters may be merged together. On the other hand significant decrease

in a value, increases the number of clusters as bigger clusters are broken down.

Smaller change in a values does not cause noticeable change in the detected

clustering structure. Thus DDSC algorithm offers a wide range for choosing the

parameter values, increasing the scope of getting correct result even if parameter

values are not selected very carefully.

We have repeated the above mentioned experiments several times, each time

the objects of the dataset are shuffled randomly. The results produced the same

set of clusters except changes in cluster memberships of a few bordering objects.

All these results show that our algorithm can find clusters with variable sizes,

shapes, and densities. Noises are also properly separated.

65

Figure 5.11: Result on t7.10k.dat with increased MinPts

66

Part III

Clustering Categorical Data

We have developed a scalable, subspace based algorithm for clustering high­

dimensional categorical data. The algorithm is presented in Chapter 6.

Chapter 6

CatSub: Clustering Categorical

Data Based on Subspace

6.1 Introduction

Many algorithms [And02] have been developed for clustering numeric data, based

on the use of similarity measures that exploit inherent geometrical structures of

numeric data. Comparatively lesser number of studies have focused on clustering

categorical data, where the domains of the individual attributes are discrete

valued and not naturally ordered and therefore distance functions are not naturally

defined. Moreover, categorical datasets are generally high dimensional. Most of

the common clustering algorithms fail to perform efficiently and accurately for

high dimensional data, because such dataset do not exhibit clusters over the full

set of dimensions. Many of the dimensions are often irrelevant or correlated and

different clusters may have different subsets of relevant dimensions. Subspace

clustering algorithms [PHL04] find a subset of relevant dimensions for each

cluster. Subspaces of different clusters are almost always allowed to be

overlapping. Some algorithms allow the clusters to be overlapping, while others

68

find a set of disjoint clusters that cover the entire dataset. Some algorithms also

detect outliers, which are the objects that do not belong to any of the clusters.

This chapter presents our algorithm named Cat Sub (Clustering Categorical

Data Based on Subspace) to efficiently cluster large, high dimensional datasets

containing categorical attributes. We define a similarity measure and a searching

strategy to find relevant subspaces and corresponding clusters. Outliers, if any,

are detected along with the set of disjoint clusters. The proposed algorithm scales

well to larger datasets as it requires only a single scan of the dataset which need

not be stored in main memory.

6.2 Related Works

Huang [Hua98] proposed the k-modes algorithm to tackle the problem of

clustering large categorical datasets in data mining. The k-modes algorithm

extends the k-means algorithm by using a simple matching dissimilarity measure

for categorical objects, modes instead of means for clusters, and a frequency based

method to update modes in the clustering process to minimize the clustering cost

function. However, due to non-uniqueness of the modes the clustering results

depend strongly on the selection of modes during the clustering process.

C ACTU S [GGR99] computes summary information from the dataset and

use them to discover a set of candidate clusters which are then validated to

determine the actual set of clusters. The algorithm uses two scans over the dataset

and can find clusters in subsets of attributes. The disadvantage of this algorithm

is the fast increase in running time when the number of dimensions grow.

Guha et al. [RGS99] introduced ROCK, an adaptation of an agglomerative

hierarchical clustering algorithm, which heuristically optimizes a criterion

function defined in terms of the number of links between tuples. Informally, the

number of links between two tuples is the number of common neighbours they

69

have in the dataset. Starting with each tuple in its own cluster, they repeatedly

merge the two closest clusters till the required number of clusters remain. Since

the complexity of the algorithm is cubic in the number of tuples in the dataset,

they cluster a sample randomly drawn from the dataset, and then partition the

entire dataset based on the clusters from the sample.

ST I RR [GKR88] is a categorical clustering method, investigated in terms

of certain types of non-linear dynamical systems, for assigning and propagating

weights on the categorical values in a table. ST I RR highly depends on the choice

of its combining operator, and it produces clusters that might require a heavy post­

processing stage.

Squeezer is a scalable categorical clustering algorithm introduced

in [HXD02]. The algorithm reads each tuple t in sequence, either assigns t to an

existing cluster (initially none), or creates t as a new cluster, which is determined

by the similarities between t and a cluster. Number of clusters created by the

algorithm may grow faster making the algorithm slower.

Barbara et a1. introduced COOLCAT [BCL02], a categorical clustering

algorithm based on the idea of entropy reduction within the generated clusters. It

first bootstraps itself using a sample of maximally dissimilar pairs from the dataset

to create initial clusters. The remaining objects are then added incrementally.

The authors propose to remove the wrong fitting points at defined times during

the execution and re-clustering them. In [LM004] a Monte-Carlo procedure to

find optimal partitions by minimizing an entropy-based criterion is presented for

categorical data.

The algorithm, CLICK [PZ04] is able to detect subspace clusters in

categorical datasets. It finds clusters based on search method for k-partite

maximal cliques.

LI M EO [ATMS04] is a scalable hierarchical categorical clustering

algorithm that builds on the information bottleneck(IB) framework for quantifying

70

the relevant information preserved when clustering. The IB framework is used to

define a distance measure for categorical attributes and tuples. LIMBO handles

large datasets by producing a memory bounded summary model for the data.

The MU LIC [AAW04] algorithm offers major improvements over

traditional k-modes algorithm, so that the results are more accurate. A

preprocessing of the objects in the dataset is performed, that imposes an ordering

of the objects. Each cluster consists oflayers formed gradually through iterations,

by reducing the similarity criterion for inserting objects in layers of a cluster at

different iterations.

A technique, SU BC AD (SUBspace Clustering for high Dimensional

Categorical Data) is presented in [GW04]. An objective function is used to

determine the subspace associated with each cluster. A biclustering framework

is proposed in [PRBOS] to compute a bi-partition from collections of local

patterns which capture locally strong associations between objects and properties.

A Subspace Clustering Algorithm, PARTCAT [GWY06] proposes a neural

network architecture for clustering high dimensional categorical data.

6.3 Problem Formulation

The dataset to be clustered, X = {Xl, X 2 , ..• , Xn} contains n objects, each

described by d categorical attributes All A2 , ••• , Ad having finite and discrete

valued domains D1 , D2 , ... , Dd respectively. For each i (1 ::; i ::; n) and for

each j (1 ::; j ::; d) let, Xij be the j-th component of object Xi and Xij take on

one of the possible values defined in domain Dj of attribute A j . Each object is

represented as

(6.1)

Let, the i-th and k-th objects be such that 0/j E {I, 2, ... ,d} Xij = Xkj) i.e.

the two objects have a common value in each of the attributes. We call an attribute

71

having a common value over a set of objects to be a matching attribute. Ideally,

all attributes in a cluster should be matching attributes. In real life situations, all

the attributes may not be equally important for determining cluster membership

of an object. Thus in a cluster only a subset of attributes may be matching

attributes. Minimum number of such matching attributes (M inAtt) needed to

form a cluster can be specified. A cluster should also contain at least MinObj

number of objects. Two clusters may have the same set of matching attributes with

differing matching values. It means that the matching value should be indicated

along with a matching attribute. Let, a set of matching attribute and value pairs be

represented by the set:

M A V = {(j , v) I j ~ {I, 2, ... , d}, v E D j } (6.2)

The set M AV together with the set of objects T ~ {I, 2, ... , n} represent a

cluster C, which is the set:

C = {T, MAV} (6.3)

There is no overlap between the objects of any two clusters, but the subspaces

consisting of matching attributes may overlap. If Cl.T and C2 .T denote the set

of objects in any two of the set of clusters the dataset is partitioned into then

Cl.T n C2 .T = <P.

Example: Consider a small dataset shown in Table 6.1 with seven objects

defined over five attributes A, B, C, D and E. The domains for the attributes

are respectively, Dl = {aI, a2, a3}, D2 = {bI, b2}, D3 = {el, c2, c3, c4},

D4 = {dI, d2, d3} and D5 = {eI, e2}. Clusters Cl and C2 can be identified in

the dataset with parameters MinAtt = 2 and MinObj = 3:

C1 = {T = {I, 2, 4},MAV = {(2,b2), (3,c4), (5,e2)}}

C2 = {T = {3, 5, 7}, M AV = {(I, a3), (2, bI), (3, c2)}}

Let us consider a new object (8-th in the dataset) with the values

(aI, b2, c3, dI, e2). This object can be inserted into cluster Cl so that after

72

Table 6.1: A sample dataset

Serial no. A1 A2 A3 A4 A5

a3 b2 c4 dl e2

2 a2 b2 c4 d3 e2

3 a3 bl c2 dl el

4 a2 b2 c4 dl e2

5 a3 bl c2 d3 el

6 al b2 cl d2 e2

7 a3 bl c2 d2 el

insertion of the object the cluster becomes,

C1 = {T = {1, 2, 4, 8}, M AV = {(2, b2), (5, e2)}}

Notice that after inserting the new object the number of matching attributes for C1

get reduced to 2 which is still not less than MinAtt. If MinAtt > 2, the object

can not be inserted in cluster C1.

6.4 Proposed Algorithm

The proposed algorithm CatSub finds a set of disjoint clusters and outliers that

cover the given dataset. A single-pass incremental algorithm is developed without

the need of storing the data objects in main memory. Clusters are determined

by the subspaces of matching attributes. It is expected that the clusters found

should be of bigger sizes having more objects as well as attributes. Finding such

clusters in noisy high dimensional data is a difficult job. A strategy is provided

here to find the subspaces and the corresponding clusters in an optimal way. The

strategy is based on defining a similarity measure sim(C, C') of a cluster C' with

another cluster C so that C' can be merged with C if found similar. For measuring

73

similarity between a cluster C and an object t a cluster C' is created with t such

that:

C' = {T = {t}, M AV = {(I, Xtl), (2, Xt2), ... , (d, Xtd)}} (6.4)

In general, the cluster C' will be a temporary cluster which has not collected the

required number of objects to be recognized as a permanent cluster, while the

cluster C is an existing cluster. Therefore, the function sim(C, C') need not be

symmetrical. The subspace based similarity function is given below.

sim(C, C') = { 0
m - MinAtt + (2.o+IC.;.}Avl-m)

ifIC.MAVI- m ~ 8

otherwise

(6.5)

where, m = IC.MAV n C'.MAVI is the cardinality of the set of matching

attributes that remains if C' is merged with C. The expression (IC.M AVI - m)

in Equation 6.5 computes the reduction in number of matching attributes after the

merger. This reduction should be less than a specified threshold, 0, otherwise the

similarity value returned should be set to zero. The lesser is the reduction, the

higher will be the value of the fractional part of the similarity measure indicating

more similarity.

A simple incremental clustering algorithm reads each object t in sequence,

inserts t in an existing cluster based upon the similarity between t and the clusters

or a new cluster is created with t if it is not similar enough to be inserted in any

one of the existing clusters. This procedure may create a large number of smaller

clusters making the algorithm slower. The problem becomes more prominent in

datasets containing outliers. So, outliers handling procedures are needed.

6.4.1 Outlier handling

Besides a set of valid clusters the algorithm also creates an extra Outliers cluster

containing outlier objects. Initially a cluster is created with a singe object in it.

74

As similar objects are inserted the number of object', in the cluster may cross

the minimum number of objects (MinObj) limit, otherwise it will be merged

with Outliers cluster. In order to prevent outliers from occupying space and

consuming search time, we create three different lists of clusters - C andidateList,

Cluster List and ExtraList. Elements of each list are clusters as defined

by Equation 6.3. Creating the three different lists also helps in finding larger

subspaces by gradual reduction of the similarity threshold. Unlike Cluster List

that can grow to any size, CandidateList and ExtraList are of fixed size as

specified by the parameter M axSize. At the beginning of clustering all the lists

are empty. The similarity threshold 6 defined in Equation 6.5 takes on three

different values - 61, 62 and 63 for inserting an object in a cluster present in

Cluster List, CandidateList and ExtraList respectively. The three thresholds

take low, medium and high values in the range [1, d), where d is the number of

attributes. An object read from hard disk is first tried for insertion in a cluster

present in Cluster List with similarity threshold 61 allowing for a small or no

decrease in the number of matching attributes. If the object" could not be inserted

in Cluster List, then Candidate List is tried with threshold 62, which assumes a

value less than say 30% of d with a minimum value of 1. Failure in inserting again

will invite ExtraList for trial with a very loose threshold value 63 allowing for

much higher decrease in the number of matching attributes. Maximum possible

value is 63=d - MinAtt. If the object could not be inserted in a cluster in

ExtraList also, a new cluster is created with the object and it is inserted in

CandidateList. When Candidate List becomes full, a cluster in it is transferred

to ExtraList to make room for the new cluster. If ExtraList also becomes

full with transferred clusters a cluster is removed from it and merged with the

Outliers cluster. Whenever an object gets inserted in a cluster, present in either

CandidateList or ExtraList, the number of objects in the cluster should be

examined. If it collects M inObj objects the cluster is transferred to Cluster List,

which is the list of valid clusters.

75

After all the objects in the dataset are processed, detected clusters are found in

the Cluster List. At this time, CandidateList and ExtraList may contain some

clusters with number of objects less than MinObj. Now, an attempt is made to

merge each of those clusters with the best fit cluster in Cluster List using the

loose threshold 53. If the merging is not possible, the clusters are merged with the

Outliers cluster.

The proposed algorithm is presented below.

Algorithm CatSub

Inputs: X, n, d, MinAtt, MinObj, MaxSize, 51, 82, 83;

Outputs: The list of valid clusters found in Cluster List and Outliers cluster;

Steps:

01. Initialize Cluster List, CandidateList and ExtraList to NULL;

02. FOR i=l ton DO

03. {x=X.getNextObject();

04. index=ClusterList.findBestCluster(x, MinAtt, 51);

05. IF (index!= NULL) THEN

06. ClusterList[index].merge(i, x);

07. ELSE

08. {index=CandidateList.findBestCluster(x, MinAtt, 82);

09. IF (index !=NULL) THEN

10. { CandidateList[index].merge(i; x);

11. IF (sizeof(CandidateList[index].T) == MinObj) THEN

12. Transfer cluster CandidateList[index] to Cluster List;

13. }

14. ELSE

15. {index=ExtraList.findBestCluster(x, MinAtt, 53);

16. IF (index!= NULL) THEN

76

17. {ExtraList[index].merge(i, x);

18. IF(sizeof(ExtraList[index].T) == MinObj) THEN

19. Transfer cluster ExtraList[index) to Cluster List;

20. }

21. ELSE

22. {C==createClusterStructure(i, x);

23. Insert cluster C in CandidateList;

24. IF (sizeof(CandidateList) == MaxSize) THEN

25. {Transfer the oldest cluster in CandidateList to ExtraList;

26. IF (sizeof(ExtraList) == MaxSize) THEN

27. Merge the oldest cluster from ExtraList with Outliers;

28. } Ilend IF

29. } Ilend IF

30. } Ilend IF

31. } Ilend IF

32. } Ilend FOR

33. FOR each cluster C in CandidateList DO

34. {index=Cluster List.findBestCluster(C, 83);

35. IF (index !== NULL) THEN

36. ClusterList[index].merge(C);

37. ELSE Outliers.merge(C);

38. } Ilend FOR

39. FOR each cluster C in ExtraList DO

40. {index=ClusterList.jindBestCluster(C, 83);

41. IF (index !== NULL) THEN

42. ClusterList[index].merge(C);

43. ELSE Outliers.merge(C);

44. } Ilend FOR

45. END CatSub.

77

An object read from the dataset is inserted in an existing cluster returning

the maximum sim value defined in Equation 6.5. The searching is done by

the function findBestClusterO and the procedure mergeO inserts the object

in the best cluster found. If an object cannot be inserted in anyone of the

existing clusters in Cluster List and after loosening the similarity threshold in

Candidate List and ExtraList, a new cluster structure is created as defined in

Equation 6.3 and it is inserted in CandidateList. When CandidateList becomes

full due to its fixed size, the oldest cluster in it is transferred to ExtraList to make

room for the new cluster. Instead of searching for the oldest cluster a pointer can

be maintained to point to the clusters in a round robin manner and the cluster

pointed to by it can be transferred. ExtraList is also dealt with in a similar

manner.

6.4.2 Complexity analysis

The algorithm requires only one pass through the dataset to produce a set of

clusters. Number of comparisons required for each object is proportional to the

number of clusters(c) already existing in Cluster List, since at most M axSize

(a constant) comparisons are needed for each of CandidateList and ExtraList

which are small in size. Therefore, the maximum time complexity becomes,

O(nc), where n is the total number of objects in the dataset. It is expected

that large datasets also possess large clusters causing c to be smaller. For each

cluster the (Attribute, value) pairs are stored in main memory. Size of the

(Attribute, value) pairs depends upon the number of attributes (d). Therefore,

space complexity is O(cd).

78

6.5 Experimental Validation

Experimental evaluation of our algorithm is performed with some of the

commonly used real-life datasets available in the VCI Machine Learning

Repository [BM98]. The selected datasets have labeled objects i.e. they are

already classified into some c1asses(c1usters). We attempt to recover those clusters

for measuring the accuracy of the algorithm. The results are compared with

results reported by other algorithms such as k-modes [Hua98], ROCK [RGS99],

SU BC AD [GW04] etc. for the same datasets. We implemented the algorithm

in C++. As our algorithm produces a set of disjoint clusters, the clusters can be

considered to be defined over the full set of attributes. So, we have not reported

the subspaces which has caused the discovery of the clusters. Experiments were

conducted on a 1.66 GHZ HCL laptop with 512 MB RAM running LINUX

operating system.

6.5.1 Accuracy calculation of clustering results

A commonly used measure for evaluating the quality of a clustering result is the

clustering accuracy(r). It is defined in [Hua98] as follows:

1 k

r = - 2:ai
n i=l

(6.6)

where ai is the number of data objects occurring in both cluster i and its

corresponding class, and k is the number of clusters obtained in a dataset with

n objects. The clustering error e is defined as: e = 1 - r.

6.5.2 Data sets

The datasets used are described below:

79

• The Soybean (small) disease dataset has 47 instances, each being

described by 35 attributes, all categorical. Each instance is labeled as one of

four diseases: D 1, D2, D3 and D4. Except for D4, which has 17 instances,

all other diseases have 10 instances each.

• The zoo dataset. The database contains 101 animals, each of which has 15

Boolean attributes and one categorical attribute besides animal name and

type. The animals are divided into seven classes.

• The Congressional votes dataset. This dataset contains the United

States Congressional Voting Records for 1984. Each record contains a

Congressman's votes on 16 issues(e.g. education spending, crime etc.}.

All the attributes are Boolean("yes" or "no") with a few of votes containing

missing values. We treated missing values as another domain value for the

attribute. A classification field with the labels "Democrat" or "Republican"

is provided for each record. There are 435 records, 168 Republican(R) and

267 Democrat(D) instances.

• Wisconsin breast cancer dataset. The Wisconsin breast cancer dataset

has 699 records, each of which is described by 10 categorical attributes.

There are 16 records that have missing values. Records are labeled with

two classes - 458 Benign and 241 Malignant.

• Mushroom dataset. It contains 8124 tuples, each representing a mushroom

characterized by 22 attributes, such as color, shape, odor etc. Mushroom are

classified as either poisonous (3916 tuples) or edible (4208 tuples). There

are 2480 missing values.

• KDD CUP 1999 Corrected Network Intrusion Data. The dataset

contains 311029 data records, each representing a connection between two

network hosts according to some well defined network protocol and is

described by 41 attributes (38 continuous or discrete numerical attributes

80

and 3 categorical attributes) such as duration of connection, number of

bytes transferred, number of failed login attempts etc. Each record was

labeled as either normal or one specific kind of attack. There are 37 different

attacks present in the dataset. We have converted the numeric attributes to

categorical attributes by discretization (for example, taking logarithm to the

base 2 of all numeric values).

The datasets used are summarized in Table 6.2

Table 6.2: Datasets used in the experiments.

Datasets Objects Attributes Classes

Soybean small 47 35 4

Zoo 101 16 7

Congressional Votes 435 16 2

Wisconsin breast cancer 699 10 2

Mushroom 8124 22 2

KDD CUP Corrected 311029 41 38

6.5.3 Result on soybean dataset

The CatSub algorithm clustered the soybean small disease dataset into four

clusters C1. C2, C3 and C4 . The dataset also contains four original classes

Dl, D2, D3 and D4. The misclassification matrix of the result obtained is

shown in Table 6.3. Parameter values used corresponding to the result are:

Min0bj=4, MinAtt=20, o1=1, o2=8, o3=10. The algorithm is able to cluster

the dataset with an accuracy of 0.99. Accuracies reported by k-modes [Hua98]

and SU EGAD [GW04] for the same dataset are also shown in Table 6.4.

81

Table 6.3: Clustering result on soybean dataset.

Clusters D1 D2 D3 D4

c1 10 0 0 0

c2 0 10 0 0

c3 0 0 10 1

c4 0 0 0 16

Table 6.4: Accuracy on soybean dataset.

Algorithm Accuracy

CatSub 0.99

k-rnodes 0.95

SUBCAD 0.93

6.5.4 Result on zoo dataset

The zoo dataset is already classified into 7 classes. The misclassification matrix

of the clustering result (parameter values used are: Min0bj=4, MinAtt=9,

0"1=1, 0"2=1, 0"3=1) obtained by applying our algorithm on the dataset is

shown in Table 6.5. Column headings label the existing classes in the dataset

and row headings label clusters obtained. The accuracy achieved is r =
36+ 20+ 5i

0
\ 3+0+8+B = 0.89. Li et al. [LM004) also reported clustering result for

zoo dataset. It is reproduced in Table 6.6 for comparison. Accuracy obtained by

the algorithm is 0. 79.

82

Table 6.5: The misclassification matrix of clustering result on zoo dataset.

Clusters 1 2 3 4 5 6 7

c1 36 0 0 0 0 0 0

c2 0 20 0 0 0 0 0

c3 0 0 5 0 4 0 0

c4 2 0 0 13 0 0 0

c5 3 0 0 0 ·o 0 0

c6 0 0 0 0 0 8 2

c1 0 0 0 0 0 0 8

Table 6.6: The misclassification matrix on zoo dataset reported by Li et al.

Clusters 2 3 4 5 6 7

c1 32 0 0 0 2 2

c2 0 20 0 0 0 0 0

c3 9 0 1 0 0 0 0

c4 0 0 0 13 0 0 0

c5 0 0 0 0 0 0 0

c6 0 0 0 0 0 6 0

c1 0 0 4 0 2 0 8

6.5.5 Result on congressional voting dataset

We treated missing values in the congressional voting dataset as separate

categories in the domains of the attributes and clustered the full dataset with 435

records. Our algorithm detected the clusters shown in Table 6. 7 (parameter values:

Min0bj=4, MinAtt=1, 81=1, 82=1, 53=1). Note that the third cluster is formed

83

with outliers. Accuracy obtained, excluding the outliers, is r = 15~7g24 = 0.91.

Some algorithms like ROCK [RGS99] clustered 372 records of the dataset after

eliminating records with missing values. Clustering result reported for ROCK is

reproduced in Table 6.8. Accuracy of the result obtained is 0.93.

Table 6.7: Clustering result on Congressional Voting dataset.

Cluster Republican Democrat

c1 156 37

c2 2 224

c3 10 6

Table 6.8: Clustering result of ROCK on Congressional Voting dataset.

Cluster Republican Democrat

144

5

22

201

6.5.6 Result on Wisconsin breast cancer dataset

Clustering result obtained for the breast cancer dataset is presented in Table 6.9.

Parameter values used are: Min0bj==4, MinAtt==2, 81==1, £52==1, £53==1. The

third cluster consists of outliers. Note that most of the records in this cluster

belong to the Malignant class. The objects in Malignant class differ widely from

one another, therefore the algorithm collected them into the Outliers cluster. In

contrast the objects from the Benign class are separated into "the first two clusters

of somewhat similar objects. Considering the third cluster as a valid one the

84

accuracy of the result obtained is 0.91. Gan and Wu [GW04] applied SU BC AD

to cluster 683 records of the dataset after eliminating 16 records with missing

values. They obtained an accuracy of0.87 with the result shown in Table 6.10.

Table 6.9: Clustering result on breast cancer dataset.

Cluster Benign

359

57

42

Malignant

7

12

222

Table 6.10: Clustering result on breast cancer dataset reported by SUB CAD.

Cluster Benign

4

440

6.5. 7 Result on mushroom dataset

Malignant

158

81

Our algorithm extracted 20 clusters (parameter values used: M in0bj=8,

MinAtt=8, 61=1, 62=5, 63=8) from the Mushroom dataset. The result is shown

in Table 6.11. All of the clusters are pure. The ROCK algorithm had reported

21 clusters shown in Table 6.12. ROCK had found one impure cluster with 32

edible and 72 poisonous mushrooms.

85

Table 6.11: Clustering result on Mushroom dataset.

Clusters 1 2 3 4 5 6 7 8 9 10

Edible 192 0 288 0 32 16 0 0 0 192

Poisonous 0 1728 0 36 0 0 8 288 1296 0

Clusters 11 12 13 14 15 16 17 18 19 20

Edible 0 48 48 0 1728 0 0 768 0 896

Poisonous 72 0 0 32 0 192 8 0 256 0

Table 6.12: Clustering result by ROCK on Mushroom dataset.

Clusters 1 2 3 4 5 6 7 8 9 10 11

Edible 96 0 704 96 768 0 1728 0 0 0 48

Poisonous 0 256 0 0 0 192 0 32 1296 8 0

Clusters 12 13 14 15 16 17 18 19 20 21

Edible 48 0 192 32 0 288 0 192 16 0

Poisonous 0 288 0 72 1728 0 8 0 0 36

6.5.8 Scalability test

Execution time needed for each of the experiments are shown in Table 6.13. To

ascertain the nature of scalability, execution times needed by CatSub algorithm

to cluster first 50000, 100000, 150000, 200000, 250000, and 300000 records of

the KDD CUP Corrected dataset are evaluated and plotted in Figure 6.1. The

graph shows that the execution time tend to increase almost linearly. Most of

the clusters obtained in each case were pure clusters containing either attack or

normal records. We also computed the accuracy in retrieving attack or normal

records and found that the accuracy is more than 0.94 in each case.

86

Table 6.13: Execution time for the datasets.

Datasets Objects Attributes Classes Accuracy Time(s)

Soybean small 47 35 4 1.00 0.00

Zoo 101 16 7 0.90 0.00

Congressional Votes 435 16 2 0.89 0.0

Wisconsin breast cancer 699 10 2 0.92 0.01

Mushroom 8124 22 2 0.99 0.22

60

50
~

"' "'0
c:
8 40
Q)

~
Q)

E 30
;
c:
0 :s 20
<J
Q)
X w

10

Dataset size (in thousands)

Figure 6.1: Scalability of CatSub to the no. of records when clustering KDD CUP

Corrected dataset.

6.5.9 Discussion on parameters

Although five parameters are used in the algorithm they are not difficult to

determine. The parameter MinObj specifies the minimum number of objects

for recognizing a cluster. Using a small value such as 4 or 8 is recommended

if no domain knowledge is available to fix the value of the parameter. M inAtt

specifies the minimum number of attributes over which all the objects in a cluster

87

should agree. It can have a value as small as 1. Most frequently the parameter 81

should be set to 1. A value of zero can also be used to obtain tight clusters with

larger number of matching attributes. The parameter 82 as well as 83 should have

a minimum value of 1. Bigger values can be used if the dataset contains large

number of attributes. In that case 82 should be less than 30% and delta3 should

be less than 50% of total number of attributes. For low dimensional data the value

for each of 01, 82 and 53 can be set to 1.

Incremental algorithms generally become order dependent. The order

dependency of our algorithm becomes minor due to use of the three parameters

81, 82 and 83. The experiments mentioned above were repeated several times,

each time the records are shuffled randomly. The results obtained did not differ

much, which means that order dependency of the algorithm is minor.

All the results presented suggest that the proposed algorithm can produce

good quality results for small or large categorical datasets.

88

Part IV

Clustering Mixed-type Data

There are not many algorithms available for clustering datasets containing

mixture of numeric and categorical attributes. In Chapter 7 we present an efficient

new algorithm developed by us for clustering large high dimensional mixed-type

datasets. The algorithm works based on entropy calculations of clusters using

different methods for numeric and categorical attributes.

Chapter 7

SMIC: A Subspace Preferenced

Mixed Type Data Clustering

Technique

7.1 Introduction

Very often, real world databases contain both numeric and categorical attributes,

requiring specialized algorithms to cluster such data. Some strategies [And73] for

dealing with such problems are:

1. Partitioning of attributes: Two parallel but separate analyzes can be

performed, one based on numeric attributes and the other based on

categorical attributes. Relative weighing of the attribute types and the

joint or interactive effects between attributes would be of importance. A

systematic and meaningful method of integrating such separate analysis is

required.

90

2. Conversion of attributes: Attributes can be converted from one type to

another. The choice of how to homogenize the set of attributes should be

influenced strongly by which attribute type is the most numerous.

3. Disagreement indices: It is necessary to equalize the attributes in some

appropriate sense. The attributes can be equalized by attribute-by-attribute

disagreement between data objects. When two data objects have identical

responses on an attribute there is zero difference or disagreement between

them. Within a finite dataset there is a maximum level of observed

disagreement on any attribute. If the maximum disagreement is scored

as one, then all disagreement on an attribute may be represented by a

disagreement index ranging from zero to one. Disagreement on attributes

of every type may be expressed in this manner.

Using the third approach we present an efficient algorithm for clustering

large high dimensional datasets containing mixture of categorical and numeric

attributes. Disagreement between data objects for each attribute is measured

by entropy computation. The algorithm can be used for clustering categorical

datasets as well. Although the algorithm can be used for clustering datasets with

numeric attributes alone it is not recommended, since nature of a numeric dataset

is very much different than nature of a categorical or mixed-type dataset and our

algorithm is specifically designed for mixed-type datasets. Important features of

the algorithm are :

• It provides a solution for the mixed-type attribute clustering problem.

• It produces good quality results efficiently.

• Use of subspace based similarity measure makes the algorithm suitable for

clustering high dimensional datasets.

91

• The algorithm is scalable as it uses an incremental algorithm to group

similar objects together using only a single pass over the dataset. Then

clusters are merged hierarchically to produce desired number of clusters.

• Outliers can be handled efficiently.

7.2 Related Works

The proposed algorithm can cluster datasets with mixture of categorical and

numeric attributes as well as datasets with categorical attributes alone. The

number of works available on mixed-type data is small. Some of them are

mentioned below. Related works on some categorical clustering algorithms were

presented in chapter 6.

Huang [Hua98] extended the k-means algorithm to the k-modes algorithm to

tackle the problem of clustering large categorical datasets in data mining. Further,

Huang also combined the k-modes algorithm with the· k-means algorithm

resulting in the so-called k-prototypes algorithm for clustering objects described

by mixed numeric and categorical attributes. However, k-prototypes also produce

locally optimal results like k-means.

A clustering algorithm for mixed-type data was proposed by Le [LH03].

The algorithm chooses k number of largest sets from non-expandable strongly

connected sets, which had been built by using breadth first search algorithm. The

remaining objects are assigned to some clusters by testing the minimum distance

of the object with all clusters. Problem with this algorithm is that it may produce

less than k number of clusters initially. Also, some clusters are reprocessed.

In [YTRC05], cluster ensemble approach based on divide-and-conquer

technique is presented for clustering mixed type datasets. First, the original mixed

dataset is divided into two sub-datasets : the pure categorical dataset and pure

numeric dataset. Next, existing well established clustering algorithms designed

92

for different types of datasets are employed to produce corresponding clusters.

Last, the clustering results on the categorical and numeric datasets are combined

as a categorical dataset, on which the categorical data clustering algorithm is used

to get the final clusters.

An algorithm for clustering mixed type data is presented in [HXd]. It uses a

CF*-tree to pre-cluster datasets. Then the dense regions stored in the leaf nodes

are treated as single points and k-prototype algorithm is used to cluster such

points.

7.3 Problem Formulation

For each individual attribute of the dataset, entropy is calculated and normalized

to the range [0, 1]. Different methods are used for calculating entropy for numeric

and categorical attributes. Computing a dissimilarity measure of individual

attributes based on- normalized entropy values causes homogenization of the

attributes. Then a subspace-based similarity measure is defined for an individual

cluster. To achieve scalability in clustering large high dimensional datasets, an

incremental method of clustering is to be used avoiding storage of the data objects

in the main memory. Therefore, a cluster summary measure is defined based upon

which the similarity of the cluster obtained by merging an object or another cluster

to an existing cluster can be computed easily. A cluster structure is the ultimate

data structure to be stored in the main memory.

The given set ofn objects X = {Xl, X 2 , ... , Xn} is described by d attributes

AI, A2 , ••• , Ad that may be either numeric or categorical. For each i (1 ::; i ::; n)

and for each j (1 ::; j ::; d), Xij represent the j-th component of object Xi and

Xij take on one of the possible values defined in domain D j of attribute Aj . An

attribute Aj is categorical if its domain D j is discrete valued, ordered or unordered

while Aj is numeric if its domain is continuous valued and ordered. An object Xi

93

will be represented by its object-id i and an attribute Aj will be represented by its

attribute-id j so that a set of objects T ~ {I, 2, 3, ... , n} together with a set of

attributes represent a subspace based cluster C. Each attribute Aj of a cluster C

can be treated as a random variable taking a number of possible values defined in

its domain D j. So, entropy of each attribute and hence entropy of a cluster can be

computed. The dataset will be partitioned into a set of disjoint clusters and a set

of outliers.

7.3.1 Entropy

Suppose that a probabilistic experiment involves the observation of a discrete

random variable Y. Let, Dy = {Yl, Y2, ... , YT} is the set ofT possible values

that Y can take on and probability ofY = Yi is Pyp 1 ~ i ~ T so that

(7.1)

It is assumed that all Py; are strictly greater than zero. Then entropy, Hy of the

random variable Y, is to be interpreted as the average uncertainty associated with

the events (Y = Yi). It is defined in [Ash90] as:

T

Hy = - LPy;lo92(Py,). (7.2)
i=l

Hy is a bounded variable. Its lower value is 0 and upper value is l092(T). The

joint entropy ofm independent random variables Y1, Y2 , ..• , Ym is obtained as

(7.3)

7.3.2 Entropy of a categorical attribute

Let the domain of a categorical attribute A j , 1 ~ j ~ d be represented as :

(7.4)

94

where, Vjk denotes the k-th category and dj is the total number of categories in Dj

i.e. dj = IDjl. Let, tjk(C) denote the frequency of occurrence of attribute value

Vjk, 1 ::; k ::; dj in a given cluster C consisting of set of objects T, so that

(7.5)

Frequency of occurrence tjk divided by total number of objects in the cluster gives

the probability Pjk of category Vjk, that is

(C)
_ tjk(C)

pjk ---
nc

(7.6)

where nc = ITI denotes the total number of objects in cluster C. So, entropy of

attribute Aj for the cluster C, denoted by H j (C) is computed as

dj

Hj(C) = - LPjk(C)l092(Pjk(C)). (7.7)
k==l

It is assumed here that 0 = l092(0). The maximum value that Hj(C) can attain

is l092 (dj). This value is achieved when all dj categories of the attribute Aj are

present in the cluster with equal frequencies. This entropy is to be minimized for

better clusters.

7.3.3 Entropy for a numerical attribute

A numeric attribute takes continuous values. Therefore, method of calculating

entropy is somewhat different than for categorical attributes. Given a cluster C

with nc objects, a numeric attribute Aj can be thought of as a random variable

with nc possible values. Hence, entropy can be computed with nc probabilities

as shown below. We assume that the dataset is preprocessed such that values

taken by all numeric attributes are positive (nonzero) real numbers. Zero values,

if present, can be replaced by a very small positive quantity less than all valid

95

values in the dataset. Let,

sumj(C) = I: Xkj

kET

(7.8)

represent the sum of the j-th attribute values of the set of objects (T) in the cluster.

Probability of each value Xkj, k E T taken by j-th attribute becomes su::i(C) ' and

hence entropy H j (C) is computed as :

(7.9)

The maximum value that Hj (C) can take is lOg2 (nc). This value is attained when

all of the nc values of the numeric attribute are the same. Which means that

entropy is more when the data values are uniform and less when data values are

more random. So, for better clusters entropy for numeric attributes need to be

maximized. This is opposite to the entropy for categorical attributes where the

entropy is to be minimized.

7.3.4 Dissimilarity measure of a cluster

Attributes are homogenized by computing dissimilarity measures for individual

attributes based on normalized entropy values. Let, G j (C) indicates dissimilarity

of j-th attribute in the cluster C. It is computed as,

if Aj is categorical

if Aj is numeric
(7.10)

The entropy computed for an attribute is divided by maximum possible entropy so

that entropy of each attribute is normalized in the range [0,1]. Higher entropy of a

categorical attribute indicates that the objects are more dissimilar, whereas higher

entropy for numeric attributes indicate similar objects. So, to obtain a dissimilarity

measure entropy of numeric attributes are subtracted from one.

96

Dissimilarity measure for a cluster C, G(C) is obtained by summing the

dissimilarity measures for each attribute. That is

d

G(C) = L Gj(C). (7.11)
j=l

Dissimilarity measures need to be minimized for better clustering.

7.3.5 Subspace based similarity measure

We define the similarity measure, S(C) of a cluster to be the count of attributes

for which the dissimilarity measures are nearly equal to zero :

S(C) = I{ j I Gj(C) ~ E, j E {I, 2, ... , d}}1 (7.12)

where, E is a very small quantity (for example 0.0001).

7.3.6 Summary measures

A cluster summary measure,

F(C) = {Fl(C), F2 (C), (7.13)

consists of attribute summary measures, Fj (C) for each of the d attributes.

Summary measure of a new. cluster, obtained by merging two existing clusters,

can be computed easily from the summary measures of the existing clusters.

Summary measure for a categorical attribute

Let, Fj (C) represents the summary measure of a categorical attribute Aj for a

given cluster C. The attribute value frequencies defined in Equation 7.5 provide

the required summary measure. That is,

(7.14)

97

Summary measure Fj(Cp U Cq) for the merger of two clusters Cp and Cq is :

Fj(CpUCq) = {tjl(Cp)+tj1 (Cq), tj2(Cp)+tj2(Cq), ... , tjdj(Cp)+tjdj(Cq)}

(7.15)

Summary measure for a numeric attribute

Summary measure for a numeric attribute Aj in cluster C contains only two entries

which are nothing but the sum and entropy of the attribute values defined by

Equations 7.8 and 7.9 respectively.

Fj(C) = {sumj(C), Hj(C)}. (7.16)

Given the summary measures for two clusters Cp and Cq , summary measure

Fj (Cp U Cq) is calculated as shown below.

(7.17)

h Z sumj(Op) d Z sumj(Oq) Th
were, 1 = . (0 uO) an 2 = . (0 uO). us, sum] p q sum] p q

(7.19)

7.3.7 Cluster structure

During the clustering process the cluster summary measure need to be maintained

along with the list of objects, T ~ {I, 2, ... , n}. Total number of objects in

the cluster (no) and similarity measure (8) can also be stored for computational

efficiency. So creation of a new cluster C means the creation of the following

structure:

C= {no, 8, T, F} (7.20)

98

where S and F are given by Equations 7.12 and 7.13 respectively.

Example: A sample dataset shown in Table 7.1 consisting of 8 records defined

over five categorical and two numeric attributes. Domains of the categorical

attributes are: D1 = {b, a}, D4 = {u, y, l, t}, D 5 = {g, p, gg}, D6 = {t, !}

and D 7 = {g, p, s}. Domains of numeric attributes are positive real numbers.

Consider a cluster consisting of three records (nc = 3) and T = {1, 4, 6}. The

Table 7.1: A sample dataset.

A1 A2 A a A4 A5 A6 A1
b 19.40 0.75 u g t s

b 21.17 0.25 y p f g

b 17.50 22.00 1 gg t p

b 19.17 0.01 y p s

b 21.25 1.50 u g f g

a 18.78 0.38 gg s
b 33.67 1.25 u g f g

b 26.75 4.50 y p f g

cluster structure for this cluster is shown in Table 7.2. Summary measures F1,

F4, F5, F6 and F7 for categorical attributes consists of two, four, three, two and

three entries respectively as their domain sizes contain corresponding number of

elements. The entries represent frequency of occurrence for each category in the

domain. For example, the first entry(3) in F1 indicates that the first category(b) of

domain D 1 occurs three times, while the second entry(O) indicates no occurrence

for the second category(a) of the domain. F2 is a summary measure for numeric

attribute. Its first entry stores the sum of the attribute values, 57.35 = 19.40 +
19.17 + 18.78 and the second entry, 0.99992 represents the corresponding entropy

measures for the attribute. Dissimilarity measures for the attributes are computed

99

to be G1 = 0.9182, Gz = 0.00002, G3 = 0.3781, G4 = 0.4591, G5 = 1.0,

G6 = 0.0 and G7 = 0.0. Out of these values G 2 , G6 and G7 are less than 0.0001.

So, similarity measure for the cluster S = 3.

Table 7.2: Summary measure

tobj s T F1 Fz F3 F4 F5 FB F1

3 3 1 3 57.35 1.14 2 1 3 0

4 0 0.99992 0.6219 0 1 0 0

6 1 1 3

0 0

7.4 Proposed Algorithm

The proposed algorithm can cluster large, high dimensional datasets consisting of

a mixture of categorical and numeric attributes. For each attribute, the attribute

type (AttType) and domain size (Asize) should be provided as input. Attribute

type provides the information for selecting the appropriate method for computing

entropy for an attribute. Memory space is reserved for storing a summary measure

based on the domain size. Summary measure of a numeric attribute has only two

entries. Therefore domain size entered for all numeric attributes should be 2. Two

phases of clustering are used. In the first phase, an incremental algorithm places

objects, read sequentially from the hard disk, into existing clusters (initially none)

based upon subspace similarity. Then, a hierarchical algorithm in the second

phase reduces number of clusters by hierarchically merging them until required

number of clusters are produced. Outliers handling is done in both the phases. The

same incremental algorithm presented in CatSub (refer Chapter 6) for clustering

categorical data is also used here with new similarity measure, summary measure

100

and cluster structure.

7.4.1 Incremental clustering

The purpose of this step is to form initial clusters with objects which are highly

similar over a subset of attributes. Subspace based similarity measure of a cluster,

S, introduced in Equation 7.12 provides the number of attributes which have

dissimilarity measure nearly equal to zero. A cluster should contain at least

M inAtt number of such attributes, i.e. S 2 M inAtt for any cluster, where

MinAtt is an input parameter. To achieve scalability each data object read

sequentially from the hard disk is inserted on the fly in an existing cluster or a

new cluster is created with the object. Inserting a new object in an existing cluster

may decrease its S value, but this decrease should be less than a given threshold,

S, otherwise the object should not be inserted in the cluster. Minimum possible

value for S is zero and maximum possible value is total number of attributes(d)

minus MinAtt. To determine the cluster, C, where an object x can be inserted,

we define the following similarity function:

{
S(C')

sim(C,x) = 0
if S(C) - S(C') ~ Sand S(C') 2 MinAtt

otherwise
(7.21)

where, C' indicates the cluster obtained if object x is merged with C. The

object will be inserted in the cluster returning the maximum nonzero sim value.

A sequential search procedure is· used to find the best cluster.. Search space

increases if outlier objects are allowed to create small clusters. To handle outliers

three different lists of clusters - Cluster List, CandidateList and ExtraList

are used. Initially all the lists are empty. If an object is not inserted in any

of the clusters present in any of the three lists a new cluster is created with the

object and the cluster is placed in the CandidateList. Maximum possible size

for CandidateList and ExtraList are fixed at maxSize. When the Candidate

101

list becomes full, the oldest cluster in it is transferred to ExtraList to make room

for the new cluster. If the ExtraList also becomes full with transferred clusters,

the oldest cluster in it is removed and merged with Outliers cluster. Whenever an

object gets inserted in a cluster, included in either CandidateList or ExtraList,

the number of objects present in the cluster should be examined. If it collects

MinObj (say, 4) objects then the cluster is transferred to Cluster List, which

is the list of valid clusters. Cluster List can grow to any size. The threshold 5

defined in Equation 7.21 takes three different forms - 01, <52 and <53 for inserting

an object in a cluster present in Cluster List, CandidateList and ExtraList

respectively. The three thresholds take low, medium and high values in the range

[0, d], where d is the number of attributes. An object read from the hard disk

is first tried for insertion in a cluster in Cluster List with a very low value of

threshold 51. If it is not inserted, then CandidateList is tried with threshold 52

assigned a medium value (say, less than 30% of d with minimum value of 1). If

not inserted again, ExtraList is tried with a very loose threshold <53 allowing for

much higher decrease in S value. Maximum possible value is <53=d - M inAtt.

If the object could not be inserted in a cluster in ExtraList also, a new cluster

structure is created and inserted in CandidateList.

7.4.2 Hierarchical clustering

The first step may produce a large number of clusters. One may expect a

reduced number of clusters or the number of clusters required (reqd) may be

specified. Therefore, a bottom up hierarchical clustering technique is used to

iteratively reduce number of clusters by merging the two least dissimilar clusters at

a time until required number of clusters remain or maximum allowed dissimilarity

measure (Gmax) of a cluster is crossed. Dissimilarity between a pair of clusters

is measured using G (C), presented in Equation (7.11) as shown below.

(7.22)

102

Final set of clusters are obtained when the hierarchical algorithm gets terminated.

At this point an attempt is made for merging each of the sub clusters that remain

in CandidateList and ExtraList with any one ofthe final clusters if maximum

allowed dissimilarity threshold(Gmax) permits the merger, otherwise they are

merged with Outliers cluster.

The algorithm is presented below.

Algorithm SMIC

Inputs: X, n, d, MinAtt, MinObj, MaxSize, 81, 82, 83, {AttTypei, i =

1, 2, · · · , d}, {Asizei, i = 1, 2, · · · , d};

Outputs: The list of valid clusters found in Cluster List and Outliers cluster;

Steps:

01. Set MaxSize=lOO, Gmax=0.5*d;

02. Initialize Cluster List, CandidateList and ExtraList to NULL;

03. FOR i=1 ton DO

04. {x = X.getNextObject();

05. ClusterList.findBestCluster(x, MinAtt, 81, index, maxSim);

06. IF (index!= NULL) THEN

07. ClusterList[index].merge(x, i, maxSim);

08. ELSE

09. { CandidateList.jindBestCluster(x, MinAtt, 82, index, maxSim);

10. IF (index !=NULL) THEN

11. {CandidateList[index].merge(x, i, maxSim);

12. IF (CandidateList[index].nC === MinObj) THEN

13. Transfer cluster CandidateList[index] to Cluster List;

14. }

15. ELSE

103

16. {ExtraList.findBestCluster(x, MinAtt, 63, index, maxSim);

17. IF (index != NULL) THEN

18. {ExtraList[index].merge(x, i, maxSim);

19. IF (ExtraList[index].nC == MinObj) THEN

20. Transfer cluster ExtraList[index] to Cluster List;

2l. }

22. ELSE

23. {C = createClusterStructure(x, i);

24. Insert cluster C in CandidateList;

25. IF (sizeof(CandidateList) == MaxSize) THEN

26. {transfer the oldest cluster in Candidate List to ExtraList;

27. IF (sizeof(ExtraList) == MaxSize) THEN

28. Delete the oldest cluster in ExtraList and merge it to

Outliers;

29. }

30. }

3l. }

32. }

33. } Ilend FOR

II Hierarchical Clustering

34. NoOfClusters = sizeof(ClusterList);

35. WHILE (NoOfClusters > reqd)DO

36. {ClusterList.findMergePair(index1, index2, minDissimilarity);

37. IF (minDissimilarity >= Gmax) BREAK;

38. Cluster List[index1].merge(Cluster List[index2]);

39. NoOfClusters = NoOfClusters -1;

40. }

104

41. FOR each cluster C in Candidate List DO

42. {Cluster List.findMinDissimilar(C, index, minDissimilarity);

43. IF (minDissimilarity <= Gmax) THEN

44. Cluster List[index].merge(C);

45. ELSE Outliers.merge(C);

46. }

47. FOR each cluster C in ExtraList DO

48. { Cluster List. f indM inDissimilar(C, index, minDissimilarity);

49. IF (MinDissimilarity <= Gmax) THEN

50. Cluster List[index].merge(C);

51. ELSE Outliers.merge(C);

52. }

53. FOR each cluster C present in Cluster List DO

54. OUTPUT C.T;

55. END SMIC.

Details of the functions used can be derived from the description presented in

Section 7.3. The function findBestCluster(;r;, MinAtt, 0, inde;r;, maxSim)

returns the index of the best cluster where an object x should be inserted.

It also returns- maxSim, the similarity value computed using Equation 7.21

when the object gets inserted in the best cluster. The computation is based

upon first computing subspace based similarity measure S as described in

Equation 7.12. Actual insertion of the object into the cluster is done by the

function merge(x, i, maxSim) which takes as input the object x, its serial

number i and the computed maxSim so that the cluster summary measure can

be updated.

105

7.4.3 Complexity analysis

The algorithm requires only one pass through the dataset to produce a set of

initial clusters. Number of comparisons required for each object depends upon

the number of initial clusters (c) created. It is expected that large datasets also

possess large clusters causing c to be smaller, as outliers are removed during

clustering. Efficient implementation of the hierarchical clustering phase, as

suggested in [And73], makes its complexity to be O(c2
). Therefore, the overall

complexity becomes, O(nc + c2), where n is the total number of objects in the

dataset. For each cluster the cluster structure is to be stored in main memory.

Size of the cluster structure depends upon the number of attributes (d). Therefore,

space complexity is O(cd).

7.5 Experimental Validation

We perform experimental evaluation of the S M I C algorithm using some datasets

available in the UCI Machine Learning Repository [BM98]. The selected datasets

have labeled objects i.e. they are already classified into some classes(clusters).

Accuracy of our algorithm is calculated with respect to those known clusters.

Besides mixed-type datasets categorical datasets are also used for evaluating the

algorithm. Experiments are conducted by implementing the algorithm in C++ on

a l.66 GHz HCL laptop with 512 MB RAM running LINUX operating system.

7.5.1 Accuracy calculation of clustering result

We use the clustering accuracy measure, r to evaluate the quality of the clustering

algorithm. The clustering accuracy(exactness) measure is defined in [Hua98] as

106

follows:

1 k

T = - Lai
n i=l

(7.23)

where ai is the number of data objects occurring in both cluster i and its

corresponding class, k is the number of clusters and n is the number of objects in

the dataset. Further, the clustering error e is defined as: e = 1 - T.

7.5.2 Data sets

The real life datasets used to evaluate performance of our algorithm on clustering

datasets with mixed categorical and numeric attributes are described below. The

categorical datasets used in Chapter 6 for testing CatSub algorithm are also

used here to test the performance of the algorithm on clustering datasets with

categorical attributes alone. Accuracy obtained by CatSub for each dataset is also

reported along with accuracies obtained by SM IC so that the two algorithms can

be compared.

• The credit approval dataset contains mixed data. It has 690 instances

each described by six numeric and nine categorical attributes. The instances

are classified into two classes, approved(A) labeled as + and rejected(R)

labeled as -.There are 37 instances having missing values on seven

attributes. The dataset contains 307 approved instances and 383 rejected

instances. We have removed 24 instances having missing values in numeric

attributes as we have not used any method to deal with missing values in

numeric attributes .

• KDD CUP 1999 Corrected Network Intrusion Data. The

dataset [UoC99] contains 311 029 data records, each representing a

connection between two network hosts according to some well defined

107

network protocol and is described by 41 attributes (38 continuous or

discrete numerical attributes and 3 categorical attributes) such as duration

of connection, number of bytes transferred, number of failed login attempts

etc. Each record was labeled as either normal or one specific kind of

attack. There are 3 7 different attacks present in the dataset. Total number

of normal records is 60593, rest are attacks.

7.5.3 Result on credit approval dataset

The credit approval dataset contains both categorical and numeric attributes.

Clustering result and accuracy obtained for this dataset are shown in Tables 7.3

and 7. 4. The result is obtained with parameter values: M in0bj=4, M inAtt = 4,

81=1, 82=4, 83=5, reqd=2. Accuracies reported by two other algorithms k­

sets [LH03] and k-prototypes [Hua98] are also included for comparison.

Table 7.3: Clustering result on Credit approval dataset.

Cluster Approved Rejected

c1 211 92

22 275

Table 7.4: Accuracy on credit approval dataset.

Algorithm Accuracy

SMIC 0.83

k-sets 0.83

k-proto~pes 0.81

108

7.5.4 Result on KDD CUP Corrected dataset

The algorithm is used to extract 40 clusters using the parameter values:

MinObj=20, MinAtt=35, 81=1, 82=2, 83=5, reqd=39). The result is shown

in Table 7.5. Our aim is to extract pure clusters that contain either attack records

or normal records. It can be seen from the table that most of the clusters are pure

clusters. Some attack records in the dataset are so similar to normal records that

it is very hard to separate them. The 40-th cluster consists of outliers. We have

set M inAtt value to be 35 which means that objects in a cluster are similar over

as many as 35 attributes out of 41 attributes. As most of the normal records are

not similar over so many attributes they are separated into the Outliers cluster.

Some attack records also remains merged with the outliers cluster. To separate

them the outliers cluster may be clustered again with a lower M inAtt value. The

clustering accuracy becomes r=0.94.

7.5.5 Result on soybean dataset

We used the 8M IC algorithm to find four clusters in the soybean small disease

dataset. The result obtained is shown in Table 7.6, where CiS are the cluster names

produced by our algorithm, and Dl, D2, D3, and D4 are the names of the original

classes. There is one to one correspondence between the disease classes and the

clusters obtained, which means that the S M I C algorithm is able to cluster the

dataset with 100% accuracy. Accuracies reported by some other algorithms, k­

sets [LH03] and k-modes [Hua98] and SUB CAD [GW04] for the same dataset

are also shown in Table 7.7. Parameter values used to run the program are:

MinObj=4, MinAtt=18, 61=1, 62=5, 63=10, reqd=4.

109

7.5.6 Result on zoo dataset

The misclassification matrix of the clustering result obtained with MinObj=3,

MinAtt=10, 51=1, 52=3, 53=4, reqd=7 is shown in Table 7.B. The column

headings label the existing clusters in the dataset. A row-heading, Ci indicates a

cluster obtained by our algorithm with row sum giving the total number of objects

present in the cluster. The accuracy achieved is r = 37+20+0tO\3+4+8+9 = 0.90.

Accuracy figure obtained by Cat Sub was 0.89. Li et al. [LM004] reported an

accuracy of 0.82 for their method.

7.5;7 Result on congressional voting dataset

We have used reqd=2 in order to extract the two known clusters in the

congressional voting dataset. The result obtained by clustering all the 435

records of the dataset is presented in Table 7.9. Other parameter values used are:

MinObj=3, MinAtt=3, 51=1,52=5,53=8. The third cluster consists of outliers.

Accuracy obtained is r = 15~!;18 = 0.88.

7.5.8 Result on Wisconsin breast cancer dataset

Result obtained for the breast cancer dataset is presented 10 Table 7.10.

Corresponding parameter values used are: MinObj=8, MinAtt=4, 61=1,52=2,

83=2, reqd=2. Similar to the result obtained for CatSub (refer Chapter 6) the

third cluster consist of outliers. We have considered it as a valid cluster because

it signifies that the objects in Malignant class differ widely from one another,

which separates them from the Benign class with somewhat similar objects. The

dataset is clustered with an accuracy of 0.92 which is better than reported by other

algorithms as shown in Table 7.11.

110

7.5.9 Result on mushroom dataset

The dataset is clustered in order to obtain minimum number of clusters such that

all clusters are pure. The result (parameter values used: MinObj=8, MinAtt=14,

81:;: 1, 82=4, 83=8, reqd= 19) with 19 clusters is shown in Table 7.12 that includes

one impure cluster containing 32 edible and 72 poisonous mushrooms. The

ROCK algorithm had reported 21 clusters shown in Table 7.13 with the same

impure cluster. All pure clusters are produced by 8M IC algorithm with 27

clusters (the result is not shown here).

7.5.10 Scalability test

Execution times of 8M I C for each of the datasets used in the experiments are

shown in Table. 7.14. To ascertain the nature of scalability, execution times needed

to extract 20 cluster in first 50000, 100000, 150000, 200000, 250000, 300000

and 311029 records of the KDD CUP Corrected dataset are evaluated and plotted

in Figure 7.1. The graph shows that the execution time tend to increase almost

linearly. The scalability of 8M I C can be compared with that of C at8ub presented

in Figure 6.1. It is seen that C at8ub is faster than 8M I C. It is due to the fact that

8M IC performs more computation in order to calculate the similarity measure

and also it includes a hierarchical clustering phase.

7.5.11 Order dependency and parameter sensitivity

Incremental algorithms generally become order dependent. To test the order

dependency of the algorithm we have repeated the above mentioned experiments

several times, each time the records are shuffled randomly. Small difference in the

results are noticed. It indicates minor order dependency for the algorithm.

The main input parameters are M inAtt and 82. M inAtt has a wide range

of input values. For example, M inAtt has the possible range [2, 22] for the

111

600

500
U>
"0 c:
0 400 0
Q)

.!!!-
Q)

E 300
"" c:
0
:g 200
0
Q)
)(
w

100

Dataset size (in thousands)

Figure 7.1: Scalability of S M I C to the no. of records.

Mushroom dataset with 22 attributes. The same clustering result reported in

Table 7.12 is obtained for any value of MinAtt in the range [2,16], with the

other parameter 82 set to 4. Acceptable results are obtained for 82 in the range [2,

6]. It was observed in all the experiments that 82 should be provided with a value

which is less than 30% of the dimensionality of the dataset, minimum possible

value being 1. In general value of 01 should be set to 1. 83 should be greater than

or equal to 82. A value greater than 2 can be used for MinObj, typical values are

4, 8. Larger values can be used if small clusters are not acceptable.

It is clear from the results presented that the proposed algorithm can produce

good quality results for small or large datasets with categorical or mixed type

attributes.

112

Table 7.5: Clustering result on KDD CUP Corrected dataset.

Cluster-no Normal Attack Cluster-no Normal Attack

11625 9571 21 8851 0

2 4 28910 22 0 249

3 36 131178 23 0 3812

4 0 1451 24 0 119

5 0 61 25 0 259

6 0 239 26 0 143

7 0 359 27 0 124

8 2 281 28 0 37957

9 0 20 29 0 44

10 2 5279 30 0 337

11 53 107 31 614 0

12 457 0 32 0 525

13 0 22 33 0 180

14 0 2403 34 0 84

15 0 138 35 1888 0

16 3369 0 36 0 92

17 0 22 37 413 0

18 155 0 38 0 195

19 0 70 39 0 21

20 0 16164 40 33124 10020

113

Table 7.6: Clustering result on soybean dataset.

Clusters Dl D2 D3 D4

c1 10 0 0 0

c2 0 10 0 0

c3 0 0 10 0

c4 0 10 0 17

Table 7.7: Accuracy on soybean dataset.

Algorithm Accuracy

SMIC 1.00

k-sets 1.00

CatSub 0.96

k-modes 0.95

SUB CAD 0.93

Table 7.8: The misclassification matrix of result on zoo dataset.

Clusters 1 2 3 4 5 6 7

c1 37 0 0 0 0 0 0

c2 0 20 1 0 0 0 0

c3 4 0 0 0 0 0 0

c4 0 0 3 13 0 0 0

c5 0 0 1 0 4 0 0

c6 0 0 0 0 0 8 1

c1 0 0 0 0 0 0 9

114

Table 7.9: Clustering result on Congressional Voting dataset.

Cluster Republican Democrat

c1 155 43

c1 9 218

c2 4 6

Table 7.10: Clustering result on breast cancer dataset.

Cluster Benign Malignant

c1 409 2

c2 0 10

c3 49 229

Table 7.11: Accuracy on breast cancer dataset.

Algorithm Accuracy

SMIC 0.92

CatSub 0.91

SUBCAD 0.87

115

Table 7.12: Clustering result on Mushroom dataset.

Clusters 2 3 4 5 6 7 8 9 10

Edible 192 0 288 0 32 1744 0 0 192 48

Poisonous 0 1722 0 36 72 0 1304 288 0 0

Clusters 11 12 13 14 15 16 17 18 19

Edible 48 0 0 0 765 518 96 186 99

Poisonous 0 32 198 264 0 0 0 0 0

Table 7.13: Clustering result by ROCK on Mushroom dataset.

Clusters 1 2 3 4 5 6 7 8 9 10 11

Edible 96 0 704 96 768 0 1728 0 0 0 48

Poiionous 0 256 0 0 0 192 0 32 1296 8 0

Clusters 12 13 14 15 16 17 18 19 20 21

Edible 48 0 192 32 0 288 0 192 16 0

Poisonous 0 288 0 72 1728 0 8 0 0 36

Table 7.14: Execution time for the datasets.

Datasets Objects Attributes Classes Accuracy Time(s)

Soybean small 47 35 4 1.00 0.01

Zoo 101 16 7 0.90 0.02

Congressional Votes 435 16 2 0.89 0.2

Credit approval 690 15 2 0.86 0.18

Wisconsin breast cancer 699 10 2 0.92 0.27

Mushroom 8124 22 2 0.99 4

KDD CUP Corrected 311029 41 2 0.93 575

116

Part V

Application Development

Our techniques for solving two real life problems are the content of this part.

Chapter 8 contains biclustering of gene expression data. A technique for network

intrusion detection is presented in Chapter 9.

Chapter 8

Biclustering Gene Expression Data

U sing ANode Addition Algorithm

8.1 Introduction

DNA microarray technology has made it possible to simultaneously monitor the

expression level of thousands of genes during important biological processes and

across collection of related samples. The samples may come from different tissues,

organs, or individuals. The samples may also correspond to different time points

or different environmental conditions. This kind of data, are arranged in a data

matrix, where each row represents a gene and each column a condition. Each

element ofthis matrix is a real number, which represents the expression level of a

gene under a specific condition.

It is not easy to interpret the meaning of huge amount of gene expression data.

A first step towards addressing this challenge is the use of clustering techniques,

which are essential for extracting correlated patterns and natural classes present

in the data. Gene expression data clustering can be performed in two ways -

(1) grouping of genes according to their expression under multiple conditions;

118

(2) grouping of conditions based on the expression of a number of genes.

However, many activation patterns are common to a group of genes only under

specific experimental conditions. It is therefore desirable to develop a distinct

type of clustering algorithm, known as biclustering, that performs simultaneous

grouping of genes and conditions. Biclustering was first described in the literature

by Hartigan [Har72]. Cheng and Church [CCOO], were the first to introduce

biclustering in gene expression data analysis. They introduced the concept of

mean squared residue score to capture the coherence of a subset of genes under

a subset of conditions. The goal of biclustering is to find biggest volume (the

size of the bicluster in terms of number of entries) biclusters with lowest mean

squared residues. Moreover, the row variance should be large enough to eliminate

the trivial biclusters where the subset of genes do not have any fluctuation or have

very little fluctuations. It has been proved that the problem of finding biclusters

satisfying these criteria is NP-hard in general.

A set of heuristic algorithms using the concept of node deletion/addition were

designed by Cheng and Church [CCOO] to either find one· bicluster or a set of

biclusters. The main drawback of their method is that discovered biclusters need

to be masked with random values so that successive runs discover new biclusters.

There exists substantial risks that these random numbers will interfere with the

future discovery of biclusters, especially those cases that have overlap with

discovered ones. Yang et al. [YWWY03] further developed the ideas of Cheng and

Church by dealing with missing values in the bicluster. They introduced the FLOC

algorithm to find several biclusters simultaneously. Many other biclustering

algorithms [L002, KBCG03, ZTOT04] are proposed in the literature to perform

gene expression data analysis. A survey of biclustering algorithms for biological

data can be found in [M004].

We provide an efficient node addition algorithm to find a set of biclusters

without the need of masking discovered biclusters. Use of incremental method

of computing score makes the algorithm faster. Initialized with a gene and a

119

subset of conditions, a bicluster is extended by adding more genes and conditions

until its score approaches delta or no more additions are possible. The method

provides facility to study individual genes, besides generating a large number of

biclusters with different initializations. Biclusters with lower or higher scores

within a specified limit can be generated by parameter setting, thus increasing the

scope for detecting interesting biclusters. If some smaller biclusters are found to

be interesting they can be extended again and studied further.

8.2 Problem Formulation

The gene expression matrix with N rows and M columns is represented as:

A= {aij•i=1,2, ... ,N,j=1,2, ... ,M}

{Xi, i = 1, 2, ... , N} = {Yj, j = 1, 2, ... , M}

Each entry aij in this matrix corresponds to the logarithm of the relative abundance

of mRN A of gene Xi under a specific condition }j. The i-th gene and the j-th

condition are given by Xi = {ail, ai2, ... , aiM} and }j = { a1j, a2j, ... , aNj}.

The i-th gene Xi can be denoted by its label i only. Let, I ~ {1, 2, ... , N} is a

subset of genes and J ~ {1, 2, ... , M} be a subset of conditions. We use Au

or simply (I, J) to denote the sub matrix of A that contains only the elements aij

belonging to set of rows I and set of columns J. For example, consider a sample

expression matrix shown in Equation 8.1. For subset ofrows I = {1, 3, 5} and

subset of columns J = {2, 4, 5, 7} the submatrix A1 J is shown in Equation 8.2.

36 70 87 40 55 24 50 54

52 14 56 19 22 57 89 99

A= 84 80 76 50 65 71 60 30 (8.1)

64 98 35 46 25 33 32 91

27 70 93 30 45 66 40 40

120

AIJ = { ~~ :~ :: :~ }

70 30 45 40

(8.2)

Such a submatrix AI 1 is called a bicluster. Given a gene expression data set, the

problem is to extract biclusters that exhibit some form of homogeneity. The values

of each row of the bicluster shown in Equation 8.2 are plotted using line graphs in

Figure 8.1. It can be seen from the figure that values of the first and the second row

rise and fall with complete coherence. All the rows are not completely coherent.

Still it can be said that the bicluster is homogeneous to some extent. To measure

this homogeneity we use MeanS quareResidue, which was originally used by

Cheng and Church [CCOO]. The following notations concerning a bicluster AIJ

are used here :

60
~
" ~

50

40

1strow-
2nd row ----•----
3rd row ·····•····

3QL--------+~------~------~

1 2 3 4
Columns

Figure 8.1: Coherence patterns in submatrix AI 1

aiJ is the mean of the i-th row,

aij is the mean of the j-th column,

aiJ = IIIiJI LiEI,jEJ aij = 1}1 LiE! aiJ = 1j1 LjEJ aJj, is the mean of the

sub matrix,

X/ = { aij, j E J} is a row vector defined over set of columns J,

C M 1 = { a1j, j E J} is the vector of column means,

121

RM I = {aiJ, i E I} is the vector of row means.

Let t(X/) represents transformed row X(obtained by subtracting the row

mean from the value of each element of the row, so that

t(X() = {aij - ail, j E J}

The coherence score between two rows xl and xt is defined as :

J J 1 J J 2 C(Xi , X k) = m(t(Xi) - t(Xk))

I ~I L:(aij - aiJ - akj + akJ)2.
jEJ

(8.3)

(8.4)

A score of zero indicates complete coherence. Higher scores indicate more

incoherence. For a bic1uster AIJ consider a fixed row that mayor may not belong

to the bic1uster. Coherence score of each row of the bic1uster is the coherence

score between the row and the fixed row. Let this fixed row be the column means

vector, CMJ. The mean squared residue score for the i-th row Xi, denoted by

H (i) is nothing but the coherence score between Xi and the column means vector

CM J , so that:

H(i) = C(X(, CMJ) = I~I (t(X/) - t(CMJ))2

1 '" 2 -IJI 6(aij - aiJ - alj + aIJ)
jEJ

1 '" 2 1 2 m f;/Ti j) = m(~) (8.5)

where, Tij = aij - aiJ - alj + au, i E I, j E J is the residue of each element

of the i-th row and R; = {Tij, j E J} is the row vector of residues. Note that

Ri = t(xf) - t(CMJ). It can be shown easily that,

L Tij = 0 and L rij = 0 (8.6)
iEI jEJ

122

The mean squared residue score (or simply, score) H(1, J) ofa bicluster (1, J) is

computed by taking the average of mean squared residue score of all rows of the

bicluster.

H(I, J)
1

TiT ~H(i)

= III~JI. L (aij - aiJ - alj + aIJ)2
1EI,)EJ

(8.7)

A bicluster (I, J) with mean squared residue score H(I, J) < 6 for some 6 > a
is called a o-bicluster. The row variance of a bicluster (I, J) is defined as

1 ~ 2
V(I, J) = IIIIJI . ~ (aij - aiJ)

1EI,)EJ

(8.8)

. Let H'(I, J) be the mean squared residue score ofbic1uster (I, J) computed

with respect to a row vector ZJ -1= CMJ, that mayor may not belong to the

bicluster.

Lemma 7 H'(I, J) > H(I, J).

Proof: Let, R~ = {r~j' j E J} be the row vector of residues corresponding to

i-th row computed with respect to ZJ -1= CMJ and Ri = {rij, j E J} be the

corresponding residue vector computed with respect to CMJ = {alj, j E J}.

Let, W = {Wi, j E J} be a row vector such that:

We have,

So,

R~ -Ri t(X/) - t(ZJ) - t(X/) + t(CMJ)

t(CMJ) - t(ZJ)

W

123

(8.9)

Hence,

R~ = R; + W with {rL = rij + Wj, j E J}

Now,

.1 '" '" 2 2 IIIIJI ~ ~((rij) + 2rijWj + (Wj))
tEl JEJ

III~JI L L(rij)2 + III~JI I:?= 2rijWj + III~JI ?= Z)Wj)2
tEl JEJ tEl JEJ tEl JEJ

= H(I, J) + III21JI L rij I: Wj + I~I L(Wj)2
iEI jEJ jEJ

H(I, J) + 1~IZ)Wj)2 [since L rij = 0]
jEJ jEJ

H(I, J) + a positive quantity

=> H'(I, J) > H(I, J)

o

8.2.1 Incremental computation of score

Calculation of the mean squared residue score or simply the score of a bicluster,

H(I, J) requires O(nm) effort, where n = III and m = PI. After adding a row

124

or a column to a bic1uster its new score can be computed from scratch requiring

O(nm) effort again. But storing the present score, row means and column means,

the new score can be computed easily by spending only O(m) or O(n) effort

depending upon whether a new row or a new column is added. The procedure is

described below.

Consider a bicluster AIJ = (1, J) with mean squared residue score

H(I, J), n = /I/, m = 11/. Let after adding a new row Xk(k rJ. 1), the new set

of rows becomes I' = 1 U k. New column means vector CM,J = {a/lj, j E J}

is computed from C Mas:

Bic1uster mean for (I', J) is given by

Score for the k-th row is computed as

1
H(k) = - I)akj - akJ - a/lj + a/IJ)

m jEJ

The new score of the bic1uster is computed by summing the score contributed by

the new row akj, j E J, and the new score contributed by the old matrix (1, J),

and then dividing the sum by (n + l)m. That is

H(1', J) = mH(k) + mnH'(1, J)
(n + l)m

where,

New score after adding a column can be computed in an analogous way.

125

8.3 Proposed Algorithm

Given the expression matrix A and a threshold 8, a node addition algorithm is

provided here to extract biclusters (<5-clusters) with mean squared residue score

less than 8. It finds one bicluster at a time starting with an initial bicluster

which is extended by adding more rows and columns. Different initialization will

create possibly different biclusters. An incremental method of computing score is

used. This requires the row means (RMJ), column means (CMI) and the score

(H(I, J)) to be stored. In the algorithm presented below, it is assumed that these

parameters along with the given expression matrix, aij, i E {I, 2, ... , N},] E

{I, 2, ... , M}, the size of the bicluster (I, J) in terms of number ofrows (n) and

columns (m) are global values.

8.3.1 Initializing the cluster

The initial bicluster (I, J) may be as small as a single row containing a subset of

columns or it may be a large bicluster with the possibility of further extension.

If not given as input, the initial biclusters may be created by randomly selecting

a row t E {I, 2, ... , N}, and a subset of columns J, such that I = {t}, J ~

{I, 2, ... , ,M}, score = 0, CMJ = {atj,] E J}, RMI = {aiJ}.

8.3.2 Extending the cluster

An initial bicluster (I, J) with iIi = n, iJi = m and score « <5 is given. More

rows and columns can be added to the cluster allowing the score to increase up

to 8. First, row extension is performed keeping the set of columns fixed. Then

column extension is tried, keeping set of rows fixed. Repetition of the two steps

are needed to extract a bicluster.

126

8.3.3 Row extension

A simple procedure for adding rows is to visit each row of the data matrix A,

include it in the bicluster if the row is not included already and the score after

inclusion still remains less than 8. This simple procedure may greedily insert

some less coherent rows which greatly increase the score, thus preventing later

inclusion of more rows. As a result biclusters with lesser volume will be obtained.

To avoid this problem we can make one scan over A, compute new score for every

possible insertion of a row that is not already included in the cluster and insert that

particular row which causes the least increase in the score of the bicluster. This

procedure will be very costly, since it inserts a single row in a complete scan over

the data matrix. We adopt an intermediate procedure that adds several rows in a

single scan so that fewer scans are needed to get a bicluster. A row passes through

two screenings before being inserted in a cluster.

8.3.4 First screening

The column means of the initial bicluster before extension is stored in the

row vector C M J. Coherence score of each row i with respect to C M J, i.e.

C(X/, CMJ) is computed. Ifthe C(X/, CMJ) value is greater than a threshold

e the row is not considered for addition. The value of e is computed from the

value of 8 as e = a8, where a > 0 is another constant. Lower value of a leads

to detection of more coherent biclusters with lower score, while higher value of

a finds biclusters with higher score.

127

8.3.5 Second screening

In the second screening the amount of increase in score is considered. A row is

added only if increase in score satisfies the following condition :

newscore - score :S <5 - newscore

:::?- newscore :S (score+ o)/2 (8.10)

Here, score and newscore respectively represent the present score and the new

score obtained after including the row in the bicluster. The row extension procedure

is given below.

Procedure extendRow(B, o)

Inputs: Data matrix, A= aij, i = l..N, j = l..M, bicluster (I, J) with score=

H(I, J), column means CMJ = {a1j, j E J}, row means RM1 = {aiJ, i E I}.

Outputs: New bicluster (I', J) with I' 2 I.

Steps:

1. for each row i E {l..N}, i ~ I repeat steps 2-10;

2. ifC(Xf, CMJ) 2: B skip row i;

3. I' = I U { i};

4. incrementally compute, newscore = H(I', J);

5. if(newscore >(score+ 8)/2) skip steps 6-10;

6. CMJ = {(n *ali+ aij)/(n + 1), j E J};

7. RM1 = RM1 U {aiJ};

8. I= I';

9. n = n + 1;

10. score = new score;

11. return;

128

8.3.6 Column extension

A random subset of columns is used in the initial bicluster. So , J Jj may be as big

as M. If JJJ < M column extension need to be performed. Column extension

should not increase the score in greater amounts as number of columns is less

compared to number of rows. Otherwise lesser scope will remain for adding more

rows. A threshold J' ~ 8 is used for column extension. The procedure is given

below.

Procedure extendColumn(8')

Inputs : Data matrix, A = aij, i = 1 .. N, j = 1 .. M, bicluster (I, J) with score =

H(I, J),columnmeansCMJ = {a1j, j E J},rowmeansRM1 = {aiJ, i E I}.

Outputs: New bicluster (I, J') with J' 2 J.

Steps:

1. for each column j E {l..M}, j tJ. J repe-at steps 2-9;

2. J' = J u {j};

3. incrementally compute, newscore = H(I, J');

4. if (newscore > (score+ 8')/2) skip steps 5-9;

5. RM1 = {(m * aiJ + aij)j(m + 1), i E I};
6. CMJ = CMJ U {a1j};

7. J = J';

8. m = m+ 1;

9. score= newscore;

10. return;

To extract a bicluster a few calls to the extendRow() and extendColumn()

procedures should be made after initializing it. First extendRow() procedure is

called. If no extension is resulted a new initialization should be tried. A single

129

call to extendRow() procedure will detect a bicluster whose score may be far

less than J. It is extended further by performing a column extension. Then

repeated calls to extendRow() procedure can be made till there is no addition

of rows. Practical execution shows that number of new rows added during later

calls goes on diminishing and after a few calls row extension stops completely.

Leaving a little scope for further expansion we may use only a single call to

extendRow() procedure at this place. It need to be ensured that the cluster can not

be extended without allowing the score to increase. So, calls to extendColumn()

and extendRow() procedures should be made once again with J set to present

score. According to lemma 7, these last calls will add columns or rows (if any)

that will not increase the present score but will possibly decrease it. The complete

procedure for extracting T('.5:. N) number of biclusters is given below. In the

algorithm, the step 8 can be repeated until no addition of rows is possible. In that

case biclusters with score nearly equal to J will be obtained.

Procedure findBiclusters()

Inputs : Data matrix, A = aij, i = l..N, j = l..M, score limit 8, constant a,

constant T.

Outputs: A set ofT biclusters with scores '.5:. 8.

Steps:

1. repeat steps 2-12 for T times;

2. randomly select J ~ {1, 2, ... , M}, randomly select i E {1, 2, ... , N}, set

I= {i}, score= 0, CMJ = {ai1, j E J}, RM1 = {aiJ, i E I};

3. e = m5;

4. extendRow(e, 8);

5. if no extension is achieved go to step 2;

6. 8' = (score+ 8)/2;

7. extendColumn(o');

130

8. extendRows((), 8);

9. 8' = score;

10 extendColumn(8');

11. extendRows(B, 8');

12. print the bicluster (I, J);

13. return;

8.4 Experimental Results

The biclustering algorithm is tested on two gene expression datasets downloaded

from http://arep.med.harvard.edulbiclustering. The first dataset is the yeast data

containing 2884 genes and 17 conditions. Integer valued elements range between

o and 600 with 34 missing values. There are 4026 genes and 96 conditions

in the second dataset, human lymphoma data. This matrix of integers range

between -750 and 650, with 47639 missing values. We replaced missing values

with uniformly distributed random numbers within the data range. These are the

datasets used by Cheng and Church [CCOO] to test their biclustering algorithm.

We use the same 8 values (300 for yeast dataset and 1200 for lymphoma dataset)

as used by Cheng and Church so that the results become comparable.

The proposed algorithm can detect biclusters with lower or higher score within

the given limit of 8 by using different values for the parameter 0:. Lower values

of 0: are used to detect small biclusters with lower scores while larger values of

0: cause detection of bigger biclusters whose scores approach the given limit of

c5. This is demonstrated with the three biclusters shown in Table 8.1 extracted

from yeast dataset using three different values of 0:. Those three biclusters having

increasingly bigger sizes are plotted in Figure 8.2- 8.4 in order to visualize the

coherence of the genes. The serial numbers of genes present in the first bicluster

131

are- (216, 217, 616, 1022, 1623, 1795,2375, 2538), which are also present in

the second bicluster -(216, 217,526,616, 1022, 1184, 1476, 1623, 1795,2086,

2278, 2375, 2538) and the third bicluster- (58, 59, 105, 216, 217, 424, 448, 453,

457,526,616,862,972,1022,1184,1286,1320,1417,1475,1476,1590,1623,

1725, 1795, 1981,2086,2087,2278,2375,2467, 2538) along with other genes.

These biclusters include more genes than bicluster no. 66 (score=164.06, genes :

217 616 1476 1623 1795 2086) reported by Cheng and Church in [CCOO]. All

these biclusters contains the full set of 17 conditions. It means that our method

can detect bigger volume biclusters than Cheng and Church method.

1.0

1.2

2.0

Table 8.1: Sample biclusters in yeast dataset

300

300

300

score

144.15

198.93

295.03

no. ofgenes

8

13

31

no. of conditions

17

17

17

Sample biclusters extracted from the human lymphoma dataset are shown in

Table 8.2 and are plotted in Figures 8.5- 8. 7. All the 96 conditions are present in

each of the three biclusters, genes present in the biclusters are respectively: (143,

144, 145), (124, 126, 143, 144, 145, 195, 2371) and (124, 126, 131, 136, 143,

144, 145, 158, 170, 172, 195,205, ...).

We have extracted 100 hi clusters from each of the yeast and lymphoma

datasets by random row initialization. The results are presented in Table 8.3 and

8.4. Results of Cheng and Church(CC) method are also included for comparison.

Again average volume of biclusters extracted by our algorithm are found to be

bigger.

All the biclusters extracted from the datasets may not be biologically

132

CY.

1.0

2.5

5.0

Table 8.2: Sample biclusters in human dataset

1200

1200

1200

450

400

Q) 350
:::l
iii
> 300 c
0
"iii
VI 250 ~
a.
X
UJ 200

150

100

score

132.97

1003.26

1196.01

'·.

no. ofgenes

3

7

53

no. of conditions

96

96

96

· ... :::.:::\,, /~--
'"'"/ '"·-·-,-!._

2 4 6 8 10 12 14 16
conditions

Figure 8.2: First bicluster in Table 8.1

interesting. We have not analyzed the biological significance of the biclusters.

Instead of generating just 100 biclusters, our algorithm can generate a large

number of biclusters. A set of biclusters with smaller residues and smaller

volumes may be extracted for significance analysis. For example we got 208

biclusters with average score less than 100 from the yeast dataset. Each bicluster

contains at least one gene not contained in other clusters. Table 8.5 gives

a summary of the biclusters. If some of them are found to be biologically

interesting, they can be extended again and studied further. We may also filter

out small biclusters with higher scores for study.

133

450

400

350
4>
::J
(ij 300
>
c
0 250 ·u;
"' ~

200 a.
X
w

150

100

50
2 4 6 8 10 12 14 16

conditions

Figure 8.3: Second bicluster in Table 8.1

450

400

350
4> 300 ::J

(ij
>
c 250
0 ·u;
"' 200
~
a.
X 150 w

100 \ ·.
\ 'v.

50 \

0
\,,.

2 4 6 8 10 12 14 16
conditions

Figure 8.4: Third bicluster in Table 8.1

134

Q)
:::>
"iii
>
c:
0
"iii

"' I!! a.
X

UJ

Q)
:::>
"iii
>
c:
0
"iii

"' ~ a.
X

UJ

200

150

100

50

0

-50

-100

-150

-200

200

150

100

50

0

-50

-100

-150

-200

10 20 30 40 50 60 70 80 90

conditions

Figure 8.5: First bicluster in Table 8.2

10 20 30 40 50 60 70 80 90

conditions

Figure 8.6: Second bicluster in Table 8.2

135

.,
:::>

~
c:
.Q
~
a.
)(
w

200

150

100

50

0

-50

-100

·150

-200
10 20 30 40 50 60 70 80 90

conditions

Figure 8.7: Third bicluster in Table 8.2

Table 8.3: Performance of proposed algorithm on yeast data set

Algo AYg. score AYg. genes AYg. conds. AYg. Vol. row coY. Cell coY.

cc
Our

204.3

199.0

166.8

195.3

12.1

11.9

1577.0

1773.2

0.91

0.96

0.81

0.79

Table 8.4: Performance of proposed algorithm on lymphoma data set

Algo AYg. score AYg. genes AYg. conds. AYg. Yol. row coY. Cell coY.

cc
Our

850.1

831.9

269.2

374.3

24.5

25.2

136

4596.0

5615.0

0.92

0.93

0.37

0.44

Table 8.5: Summary ofbiclusters with score less than 100 from yeast data set

Avg. score Avg. genes Avg. cond. Avg. Vol. Row cov. Cell cov.

74.6 39.9 11.9 354.7 0.73 0.49

137

Chapter 9

A Clustering Based Technique For

Network Intrusion Detection

9.1 Introduction

Security of the information stored on computers connected to publicly accessible

networks has become critical issue due to different types of intrusion attacks.

Intrusion detection allows organizations to protect their systems from the threats

that come with increasing network connectivity and reliance on information

systems. According to [BMO I] intrusion detection is the process of monitoring

the events occurring in a computer system or network and analyzing them for signs

of intrusions, defined as attempts to compromise the confidentiality, integrity,

availability, or to bypass the security mechanisms of a computer or network.

Intrusions are caused by attackers accessing the systems from the Internet,

authorized users of the systems who attempt to gain additional privileges for

which they are not authorized, and authorized users who misuse the privileges

given to them. Intrusion Detection Systems (IDSs) are software or hardware

products that automate this monitoring and analysis process.

138

Based upon information source intrusion detection systems are classified into

network-based and host-based. Network-based IDSs analyze network packets,

captured from network backbones or LAN segments, to find attackers. Host-based

IDSs operate on information such as operating system audit trails, and system logs

collected from within an individual computer system.

Different approaches are used in intrusion detection such as machine learning,

pattern matching, neural networks, data mining, etc. Some approaches detect

attacks in progress in real time while others provide after-the-fact information

about the attacks providing help to reduce the possibilities of future attacks of the

same type. In general there are two types of approaches for network intrusion

detection: misuse detection and anomaly detection. Misuse detection searches

for specific pattern (attack signature) in the data. Previously known attacks

are effectively detected without generating large number of false alarms. Such

methods can not detect new types of attacks because their signatures are not

known. Anomaly detection builds models for normal behaviour and automatically

detects significant deviations from it. Supervised or unsupervised learning can be

used. In a supervised approach, the model is developed based on training data

that are known to be normal. Unsupervised approaches work without any training

data. The main advantage of anomaly detection is that it can detect previously

unknown attacks, since no knowledge of attacks is needed to train the normality

model. But, it may fail to detect some known attacks if the behaviour of them are

not significantly different from what is considered to be normal. Moreover, the

false alarm rate tends to be higher.

In recent years considerable attention has been given to data mining

approaches for intrusion detection. Anomaly detection often tries to cluster

test dataset into groups of similar instances - either attacks or normal data.

Intrusion detection problem is then reduced to the problem oflabeling the clusters

as intrusive or normal traffic. For labeling, unsupervised anomaly detection

algorithms model normal behaviour by using the following two assumptions - i)

139

the number of normal instances vastly outnumber the number of anomalies and ii)

anomalies themselves are qualitatively different than the normal instances. If the

assumptions hold attacks can be detected based on cluster sizes. Larger clusters

correspond to normal data, and smaller clusters correspond to attacks. But this

simple method is likely to produce lower detection rate as the assumptions are

not always true. For example in denial of service attacks a large number of very

similar instances are generated that may form larger clusters. On the others hand

some less frequently used protocols such as jtp may generate few records that

may be wrongly classified as an attack cluster. Some attacks such as R2L and

U2R are qualitatively very similar to normal instances which means that such

attacks may remain mixed with normal records creating impure clusters. Again,

test data instances to be clustered contain a large number of features. All features

are not equally important for distinguishing betWeen different normal and attack

instances. Therefore subspace based algorithm should produce better clustering

result in this case.

We address these issues in the proposed unsupervised anomaly detection

technique that uses the C atSub algorithm presented in Chapter 6 to cluster the test

dataset based on subspaces over which data records are highly similar. Anomalies

are then detected on the basis of subspace sizes and also on cluster cardinality.

9.2 Related Works

Clustering is a widely used technique in anomaly detection. Some algorithms use

training datasets and others work in unsupervised manner. Portnoy et al. [PESO 1]

presented an unsupervised anomaly detection algorithm which train on unlabeled

data in order to detect new intrusions. The training dataset is clustered using a

modified incremental k-mearis algorithm. The algorithm starts with an empty set

of clusters, and generates the clusters with a single pass through the dataset. For

140

each data instance in the dataset, it computes the distance between it and each of

the centroids of the clusters in the cluster set so far. The cluster with the shortest

distance is selected, and if that distance is less than some constant W (cluster

width) then the instance is assigned to that cluster. Otherwise a new cluster is

created with the instance as its center. This algorithm does not use any outlier

handling method and consequently a large number of very small clusters may be

created causing increase in execution time of the algorithm. After clustering, each

cluster is labeled as normal or intrusive based on the number of instances in the

cluster. Some percentage ofthe clusters containing the largest number of instances

were labeled as normal and the rest of the clusters were labeled as anomalous. The

labeled clusters were then used to detect intrusions in test datasets. A test instance

is given the cluster label of the cluster which is closest to the instance.

Yu Guan et al. [GGB03] presented the Y -means algorithm which is an

improved k-means algorithm. The algorithm handles outliers by splitting and

merging clusters that automatically adjust the number of clusters k. No training

data is used. Clusters are labeled according to their population, that is, if the

population ratio of one cluster is above a given threshold, all the instances in the

cluster will be classified as normal; otherwise they are labeled intrusive.

Most anomaly detection algorithms require a set of purely normal data to train

the model, and they implicitly assume that anomalies are outliers i.e. patterns not

observed before. Lazarevic et al. [LEK+03] focus on several outlier detection

schemes in order to see how efficiently these schemes may deal with the problem

of anomaly detection.

ADWICE (Anomaly Detection With fast Incremental Clustering) [BNT04]

uses the first phase of the existing BIRCH clustering framework to implement fast,

scalable and adaptive anomaly detection. It uses training data assumed to consist

only of normal data to construct the CF tree. After being trained, it is used to

detect anomalies in unknown data. When a new data point arrives detection starts

with a top down search from the root to find the closest cluster feature. When

141

search is done, the distance from the centroid of the cluster to the new data point

is computed. The new data point is considered normal if the distance is lower than

a limit otherwise it is an anomaly. The number of alarms is then further reduced

by application of an aggregation technique.

In [LL05] Leung et al. proposed a density based and grid based clustering

algorithm, named as fpM AF I A, that uses adaptive grid algorithm adopted from

pM AF I A and F P-tree growth method for frequent item set mining. They aim

to discover clusters from large volume of high dimensional input data. Any point

that falls inside the clusters are labeled as normal. The small percentage of points

that do not belong to any clusters are labeled as abnormal.

S. Petrovic et al. [PAOC06] used the k-means algorithm for clustering

and proposed a cluster labeling strategy based on a combination of clustering

evaluation techniques. The Davis Bouldin clustering evaluation index and the

comparison of centroid diameters of the clusters are combined in order to respond

adequately to the properties of attack vectors. Compactness of the corresponding

clusters and separation between them distinguish between normal from abnormal

behaviour in the analyzed network.

9.3 Methodology

Our algorithm works based on two principles. First, the clustering algorithm

should be such that it is able to distinguish minor differences between normal

and attack instances so that as far as possible pure clusters are formed with only

one kind of instances - either attack or normal. Secondly, besides cluster sizes

some other criteria need to be used for labeling clusters.

142

9.3.1 Clustering

The dataset to be clustered is high dimensional containing many attributes. For

example KDD CUP 1999 dataset contains 41 numeric and categorical attributes.

All attributes are not equally important for distinguishing between different

normal and attack records. Therefore we use a subspace based algorithm for

clustering the dataset. Certainly the mixed-type data clustering algorithm, S M I C,

proposed in Chapter 7 would have been a better choice. But, we want to utilize

another strategy - conversion of attributes (refer Chapter 7) for dealing with

mixed-type data. Continuous attributes can be easily converted to categorical

type by discretization (taking logarithm to the base 2). Therefore, the clustering

algorithm used here is our categorical clustering algorithm, CatSub presented in

Chapter 6. The assumptions used for detecting anomalies are:

1. Some attacks are similar over very large subspaces, other attacks are similar

over smaller subspaces or have lower occurrences.

2. Normal records are similar over medium sized subspaces.

9.3.2 Detection

Detection is done in two phases. In the first phase clustering is performed by

tuning the MinAtt parameter of the CatSub algorithm so that clusters produced

are of larger subspaces only. The clusters so. produced are labeled as attacks

based upon our first assumption. As normal records are not similar over very

large subspaces they will be separated by the clustering algorithm into a group of

outliers. Attacks that form smaller or medium subspaces also become outliers.

In the second phase the cluster containing outliers is clustered again. This

time the parameter indicating minimum subspace size (MinAtt) is set to a low

value. Outliers, if found, are labeled as attacks. The clusters with cardinalities

143

below a specified threshold are also labeled as attacks. Remaining clusters contain

normal records.

9.4 Experimental Results

In this section we perform performance evaluation of the proposed anomaly

detection algorithm. The experiments were done in a 1.66 GHz HCL laptop with

512 MB RAM. C++ programs were used in LlNUX environment.

9.4.1 Dataset description

We tested the algorithm on the Corrected dataset available in KDD Cup 1999

intrusion detection benchmark datasets [UoC99] containing a wide variety of

intrusions simulated in a military network environment. The dataset contains

311029 data records, each represents a connection between two network hosts

according to some well defined network protocol and is described by 41 attributes

(38 continuous or discrete numeric attributes and 3 categorical attributes) such

as duration of connection, number of bytes transferred, number of failed login

attempts, etc. Each record is labeled as either normal or one specific kind of

attack. There are 37 different attacks present in the dataset. The attacks fall in

one of the four categories: User to Root (U2R), Remote to local (R2L), Denial

of Service (DOS) and PROBE.

• Denial of Service(DOS) : Attackers try to prevent legitimate users from

using a service. For example, SYN flood, smurf, teardrop etc.

• Remote to Local (R2L) : Attackers do not have an account on the victim

machine, hence try to gain access. For example, guessing password.

• User to Root (U2R) : Attackers have local access to the victim machine and

144

try to gain super user privilege. For example, buffer overflow attacks.

• PROBE : Attacker tries to gain information about the target host. For

example, Port-scan, ping-sweep etc.

Number of samples of each category of attack in Corrected KDD dataset is shown

in Table 9.1. It can be noticed that number of DOS attacks far more exceeds the

Table 9.1: Attacks distribution in Corrected KDD dataset

DOS U2R R2L PROBE Normal Total

229853 70 16347 4166 60593 311029

normal instances which is not expected in practice. It is because the goal of the

KDD datasets was to produce good training sets for learning methods that use

labeled data. The labels are not used during the clustering process, but are used

for evaluating the detection performance of the algorithm.

9.4.2 Performance measures

We report the detection rate (DR) and the false positive rate(F P R) for

evaluating the performance of the proposed anomaly detection algorithm. The

detection rate is defined as the number of intrusion instances successfully

detected divided by the total number of intrusion instances present in the

dataset. The false positive rate is defined as the number of normal

instances incorrectly labeled as intrusion divided by the total number of normal

instances. A good method should provide high detection rate together with

low false positive rate. The trade-off between the detection rate and

false positive rate is reported by using Receiver Operating Characteristic(ROC)

curves. An intrusion detection system can operate at any point on the ROC

145

curve. To prepare the ROC curve different values of detection rates and

false positive rates are obtained by varying one parameter (M inObj) in the

clustering algorithm.

Performance of the first phase of the algorithm is shown in Table 9.2.

Detection rate of the individual attack classes are also shown in Table 9.3. It can be

seen that the first phase has difficulty in detecting U2R and PROBE attacks but

it detects DOS attacks with higher accuracy. Performance of the algorithm as a

whole (including both first and second phases) is shown in Table 9.4. Performance

of the algorithm in detecting individual attack categories is shown in Table 9.5.

The detection rate becomes higher as the second phase is able to detect some

attacks that could not be detected in the first phase. Figure 9.1 shows the

ROC curve for the algorithm. It can be seen that detection rate remains higher

than 90%. The area under the ROC curve is more than many other anomaly

detection methods reported in the literature, which indicates that our method is

very promising.

Table 9.2: Performance offirst phase.

MinObj False positive rate Detection rate

4 0.0 0.662

40 0.042 0.723

100 0.128 0.844

600 0.159 0.909

1000 0.315 0.966

146

Table 9.3: Detection rate of individual attack classes after the first phase

MinObj U2R R2L DOS PROBE

4 0 0.8999 0.9771 0.6306

40 0 0.6847 0.9353 0.3802

100 0 0.5053 0.8799 0.2259

600 0 0.1982 0.7742 0.0007

1000 0 0.0000 0.7214 0.0007

Table 9.4: Performance ofthe algorithm.

MinObj False positive rate Detection rate

4 0.015 0.917

40 0.057 0.936

100 0.143 0.961

600 0.174 0.975

1000 0.360 0.982

Table 9.5: Detection rate of individual attack classes after the second phase

MinObj U2R R2L DOS PROBE

4 0.5000 0.9279 0.9862 0.9606

40 0.6714 0.7545 0.9931 0.8502

100 0.6000 0.5980 0.9898 0.7991

600 0.6143 0.2909 0.9845 0.7736

1000 0.6142 0.0927 0.9786 0.7736

147

0.99

0.98

0.97

~ 0.96
c:
0 0.95
~
$
Q) 0.94 Cl

0.93

0.92

0.91
0 0.1 0.2 0.3 0.4

False positive rate

Figure 9.1: ROC curve

148

Chapter 10

Conclusion

We have attempted to develop clustering algorithms possessing certain

requirements that a good clustering algorithm should possess. Our main concern is

developing faster algorithms so that larger datasets can be clustered as demanded

by present day data mining applications. To achieve this we have proposed a

sampling procedure, a parallel processing technique, and incremental clustering

algorithms. Finding clusters with widely varying sizes, shapes and densities is

another concern. A solution is provided for this problem. Categorical datasets

are generally high dimensional. Clustering high dimensional datasets containing

a large number of records is a harder problem, since cluster may be determined

by subsets of attributes. A subspace-based technique is proposed for clustering

large high dimensional categorical datasets. The problem becomes compounded

when the dataset contains a mixture of categorical and numeric attributes. The

categorical data clustering algorithm is extended for clustering datasets with

mixed categorical and numeric attributes, which is one of our major contributions.

Gene expression data analysis is one of the active fields of research where

clustering techniques "need to be applied. It requires a specialized type of

algorithm known as biclustering. We have proposed an efficient algorithm for

149

biclustering gene expression data. Network intrusion detection is another area

where clustering techniques can be applied. A network intrusion detection

technique is also proposed based on one of our clustering algorithms.

Altogether we have developed seven algorithms, which are validated by

experimental results.

10.1 Directions for future works

• The query sampling procedure applied in IDBSCAN can be used to

sample the dataset first followed by applying DBSCAN to the reduced

dataset.

• The DDSC algorithm for detecting clusters with widely varying densities

can be extended so that it detects subspace clusters in high dimensional

spatial data. Parallel implementation of the algorithm can be considered.

• The Cat Sub algorithm can be made more efficient by employing a tree data

structure instead of linear lists of clusters.

• using a density-based approach for mixed-type data clustering technique

may be more beneficial.

• The gene expression data clustering technique can be modified to detect

several biclusters at a time. Node deletion can also be considered along with

node addition. Biological significance analysis of the extracted clusters will

be an important task.

• The assumptions made In the network intrusion detection algorithm

produced promising results for KDD CUP Corrected dataset. To validate

the assumptions more extensive study may be performed with other sources

of data including data collected from real networks.

150

Bibliography

[AAW04] B Andreopoulos, A An, and X Wang. Mulic: Multi-layer increasing

coherence clustering of categorical data sets. Technical report, York

University, 2004.

[ABKS99] M Ankerst, M Breunig, H-P Kriegel, and J Sander. Optics: Ordering

objects to identify the clustering structure, proc. acm sigmod. In

International Conference on Management of Data, pages 49-60,

1999.

[And73]

[And02]

M R Anderberg. Cluster Analysisfor Applications. Academic Press,

New York, 1973.

P Andritsos. Data clustering techniques. Technical report,

University of Toronto, Department of Computer Science, Mar 2002.

[Ash90] R B Ash. Information Theory. Dover Publications, Inc, New York,

1990.

[ATMS04] P Andritsos, P Tsaparas, R J Miller, and K C Sevcik. Limbo

Scalable clustering of categorical data. In Proceedings

of the 9th International Conference on Extending Database

Technology(EDBT), Mar 2004.

151

[BCL02] D Barbara, J Couto, and Y Li. Coolcat: An entropy-based algorithm

for categorical clustering. In Proceedings of the 11th ACM CIKM

Conference, pages 582-589, 2002.

[BKSS90] N Beckmann, H-P Kriegel, R Schneider, and B Seeger. The r*-tree:

[BM98]

[BM01]

[BNT04]

[CCOO]

[DM001

An efficient and robust access method for points and rectangles.

In Proceedings of ACM-SIGMOD International Conference On

Management of Data (SIGMOD90), pages 322-331,1990.

C BIage and C Merz. Uci repository of machine learning databases.

http://www.ics.uci.edul mlearn/MLRepository.html, 1998.

R Bace and P Mel!. Intrusion detection systems. In NIST Special

Publications SP 800-31, Nov 2001.

K Burbeck and S Nadjm-Tehrani. Adwice - anomaly detection

with real-time incremental clustering. In Information Security and

Cryptology - ICISC 2004, Lecture Notes on Computer Science,

Volume 350612005, pages 407-424, 2004.

Y Cheng and G M Church. Biclustering of expression data.

In Proceedings of the 8th International Conference on Intelligent

Systemsfor Molecular Biology(ISMB'OO), pages 93-103, 2000.

I S Dhilon and D S Modha. A data-clustering algorithm on

distributed memory multiprocessors. In Large Scale Parallel Data

mining, Lecture Notes in Artificial Intelligence, 1759, pages 245-

260,2000.

[EKSX96] MEster, H-P Kriegel, J Sander, and X Xu. A density-based

algorithm for discovering clusters' in large spatial data sets with

noise. In 2nd International Conference on Knowledge Discovery

and Data Mining, pages 226-231, 1996.

152

[ESK03] L Ertoz, M Steinbach, and V Kumar. Finding clusters of different

sizes, shapes, and densities in noisy, high dimensional data. In

Proceedings of Second SIAM International Conference on Data

Mining, January 2003.

[FLPTOO] D Foti, D Lipari, C Pizzuti, and D Talia. Scalable parallel clustering

for data mining on multicomputers. In 15 IPDPS 2000 workshops,

pages 390-398,2000.

[GGB03]

[GGR99]

[GKR88]

[gla]

[GW04]

Y Guan, A Ghorbani, and N Belacel. V-means: A clustering

method for intrusion detection. In Proceedings of the Canadian

Conference on Electrical and Computer Engineering, Montreal,

Quebec, Canada, May 2003.

J Gehrke, V Ganti, and R Ramakrishnan. Cactus: Clustering

categorical data using summaries. In Proceedings of the 5th

International Conference on Knowledge Discovery and Data

Mining(KDD '99), pages 73-83, 1999.

D Gibson, J Kleinberg, and P Raghavan. Clustering categorical data

: An approach based on dynamical systems. In Proceedings of 25th

International Conference on Very Large Databases, 1988.

http://www.glaros.dtc.umn.edulgkhome/cluto/cluto/down­

load.

G Gan and J Wu. Subspace clustering for high dimensional

categorical data. ACM SIGKDD Explorations Newsletter, 6(2):87-

94,2004.

[GWY06] G Gan, J Wu, and Z Yang. Partcat: A subspace clustering

algorithm for high dimensional categorical data. In Proceedings of

2006 International Joint Conference on Neural Networks, Sheraton

153

[Har72]

[HK98]

[HK06]

[HMS04]

[Hua98]

[HXd]

[HXD02]

[JKOO]

Vancouver Wall Centre Hotel, Vancouver; BC, Canada, pages 4406-

4412, July 2006.

J A Hartigan. Direct clustering of data matrix. Journal of American

Statistical Association, 67(337): 123-129, 1972.

A Hinneburg and D Keirn. An efficient approach to clustering

in large multimedia data sets with noise. In 4th International

Conference on Knowledge Discovery and Data Mining, pages 58-

65, 1998.

J Han and M Kamber. Data Mining Concepts and Techniques.

Morgan Kaufman, 2006.

D Hand, H Mannila, and P Smyth. Principles of Data Mining.

Prentice-Hall ofIndia, New Delhi, 2004.

Z Huang. Extensions to the k-means algorithm for clustering large

data sets with categorical values. Data Mining and Knowledge

Discovery, 2(2):283-304, 1998.

Z He, X Xu, and S deng. Clustering mixed numerical

and categorical data A cluster ensemble approach.

http://arxiv.org/ftp/cs/papers/0509/0509011.pdf.

Z He, X Xu, and S Deng. Squeezer: An efficient algorithm

for clustering categorical data. Journal of Computer Science and

Technology, 17(5):611-624, 2002.

E K Johnson and H Kargupta. Collective, hierarchical clustering

from distributed, heterogeneous data. In Large Scale Parallel Data

Mining, LNCS 1759, 2000.

154

[KBCG03] Y Kluger, R Basri, J T Chang, and M Gerstein. Spectral biclustering

of micro array data : co clustering genes and conditions. Genome

Research, 13(4):703-716,2003.

[KHK99] G Karypis, E H Han, and V Kumar. Chameleon: A hierarchical

clustering algorithm using dynamic modeling. Computer, 32(8):68-

75, 1999.

[LEK+03] A Lazarevic, LErtoz, V Kumar, A Ozgur, and J Srivastava.

[LH03]

[LL05]

[LM004]

[L002]

[M004]

A comparative study of anomaly detection schemes in network

intrusion detection. In SIAM International Conference on Data

Mining, 2003.

S Q Le and T B Ho. A k-sets clustering algorithm for categorical and

mixed data. In Proceedings of the 6th SANKEN (ISIR) International

Symposium, pages 124-128,2003.

K Leung and C Leckie. Unsupervised anomaly detection in network

intrusion detection using clusters. In Proceedings of the Twenty­

eight Australasian Conference on Computer Science, Newcastle,

Australia, pages 333-342, 2005.

T Li, SMa, and M Ogiharar. Entropy-based criterion in categorical

clustering. In Proceedings of the 21 sf International Conference on

Machine Learning, 2004.

L Lazzeroni and A Owen. Plaid models for gene expression data.

Statistica Sincia, 12(1):61-86,2002.

S C Manderia and A L Oliveira. Biclustering algorithms for

biological data analysis : a survey. IEEEIACM Transactions on

Computational Biology and Bioinformatics, 1(1):24-45,2004.

155

[01s95] C F Olson. Parallel algorithms for hierarchical clustering. In

Parallel Computing, 21, pages 1313-1325, 1995.

[PAOC06] S Petrovic, G Alvarez, A Orfila, and J Carbo. Lebelling clusters

in an intrusion detection system using a combination of clustering

evaluation texchniques. In Proceedings of the 39th Hawaii

International Conference on System Sciences, 2006.

[PES01]

[PHL04]

[PRB05]

[PZ04]

[RGS99]

[SB99]

[TSK06]

L Portnoy, E Eskin, and S Stolfo. Intrusion detection with unlabeled

data using clustering. In Proceedings of ACM CSS Workshop on

Data Mining Applied to Security(DMSA-2001), Nov 2001.

L Parsons, E Haque, and H Liu. Subspace clustering for

high dimensional data: A review. ACM SIGKDD Explorations

Newsletter, 6(1):90-1 05, 2004.

R G Pens a, C Robardet, and J-F Boulicaut. A biclustering

framework for categorical data. In A. Jorge et al.(Eds.): PAKDD

2005, LNAI 3721, pages 645-650, 2005.

M Peters and M J Zaki. Click: Clustering categorical data using

k-partite maximal cliques. Technical report, CS Department, RPI,

2004.

R Rastogi, S Guha, and K Shim. Rock: A robust clustering

algorithm for categorical attributes. In Proceedings of the 15th

International Conference on Data Engineering, 1999.

K Stoffel and A Belkoniene. Parallel k-means clustering for large

data sets. In Proceedings Euro-Par99, LNCS 1685, pages 1451-

1454, 1999.

P-N Tan, M Steinbach, and V Kumar. Introduction to Data Mining.

Pe~rson Addison Wesley, 2006.

156

[UoC99]

[WA03]

[Wei]

[XJK99]

Irvine University of California. Kdd cup 1999 data.

http://kdd.ics. uci.edul databases/kddcup99/kddcup99 .html, 1999.

B Wilkinson and M Allen. Parallel Programming Techniques and

Applications. Pearson Education, Second Indian Reprint, 2003.

E W Weisstein. Sphere-sphere intersection.

http://www.mathworld.wolarm.comJC.irc1e-Circ1elntersecton.html.

From Math World - A Wolfram Web Resource.

x Xu, J J ger, and H P Kriegel. A fast parallel clustering algorithm

for large spatial databases. In Data Mining and Knowledge

Discovery, 3, pages 263-290, 1999.

[YTRC05] J Yin, Z Tan, J Ren, and Y Chen. An efficient clustering algorithm

for mixed type attributes in large dataset. In Proceedings of the 4th

International Conference on Machine Learning and Cybernetics,

pages 18-21, Aug 2005.

[YWWY03] J Yang, HWang, W Wang, and P S Yu. Enhanced biclustering

of expression data. In proceedings of the 3rd IEEE Symposium on

Bioinformatics and Bioengineering (BIBE'03), pages 321-327, Mar

2003.

[ZakOO]

[ZSP03]

Mohammed J Zaki. Parallel and distributed data mining. In Large

Scale Parallel Data Mining, Lecture Notes in Artificial Intelligence,

1759, pages 1-23,2000.

B Zhou, J-Y Shen, and Q-K Pengo Parcle: A parallel clustering

algorithm for cluster system. In Proceedings of 2nd International

Conference on Machine Learning and Cybernetics, 2003.

157

[ZTOT04] Z Zhang, A Teo, B C Ooi, and K-L Tan. Mining deterministic

biclusters in gene expression data. In Proceedings of the Fourth

IEEE Symposium on Bioinformatics and Bioengineering (BIBE '04),

2004.

[ZZHOO] S Zhou, A Zhou, and Y Hu. Combining sampling technique

with dbscan algorithm for clustering large spatial databases. In

Knowledge Discovery and Data Mining,' Current Issues and New

Applications, PAKDD2000, Apr 2000.

158

List of Publications:

1. B Borah and D K Bhattacharyya. An Improved Sampling-Based DBSCAN

for Large Spatial Databases. In proceedings of International Conference

on Intelligent Sensing and Information Processing(ICISIP-2004), January,

2004, pages 92-96.

2. B Borah and R K Das and D K Bhattacharyya. A Parallelization of Density­

Based Clustering Technique on A Distributed Memory Multicomputer. In

proceedings of the 12-th International Conference on Advanced Computing

and Communications(ADCOM-2004), December, 2004, pages 536-541.

3. B Borah and D K Bhattacharyya. Image Retrieval by Content using

Segmentation Approach. In proceedings of First International Conference

on Pattern Recognition and Machine Intelligence(PReMI 2005), Kolkata,

December, 2005, pages 551-556.

4. B Borah and D K Bhattacharyya. An Entropy Based Hierarchical Clustering

Algorithm for Categorical and Mixed Type Data. In proceedings of National

Workshop in Networks, Data Mining and Artificial Intelligence Trends and

Future Directions(NWTAC 2006), January, 2006, Tezpur University, pages

153-162.

5. B Borah and D K Bhattacharyya. A Clustering Technique Using

Density Difference. In proceedings of International Conference on Signal

Processing, Communications and Networking(ICSCN-2007), March, 2007,

pages 585-588.

6. B Borah and D K Bhattacharyya. SCUDD: Spatial Clustering Using

Density Difference. In proceedings of National Conference on Trends

in Advanced Computing(NCTAC-2007), March, 2007, Tezpur University,

pages 138-146.

159

7. B Borah and D K Bhattacharyya. Bic1ustering Expression Data Using

Node Addition Algorithm. In proceedings of the 1S-th International

Conference on Advanced Computing and Communications(ADCOM-

2007), December, 2007, pages 307-312.

8. B Borah and D K Bhattacharyya. DDSC: A Density Differentiated Spatial

Clustering Technique. Journal of Computers, Vol. 3, No.2, February, 2008,

pages 72-79.

9. B Borah and D K Bhattacharyya. CatSub: Clustering Categorical Data

Based on Subspace, The Icfai Journal of Computer Sciences, Vol. 2, No.2,

April, 2008, pages 7-20.

10. B Borah and D K Bhattacharyya. SMIC: A Subspace Preferenced

Mixed Type Data Clustering Technique, International Journal of Reliability,

Quality and Safety Engineering(submitted).

160

