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Abstract 

Rapid advances in data capture, transmission and storage technologies have 

enabled modem business and science to collect increasingly large volumes of data. 

Data mining is the technique of analyzing such large datasets in order to reveal 

embedded patterns (regularities and relationships) that are nontrivial. Clustering 

is one of the primary data analysis tasks in data mining. Clustering techniques 

partition a set of objects so that objects with similar characteristics are grouped 

together and different groups contain objects with dissimilar characteristics. It is 

either used as a stand alone tool to get insight into the data distribution pattern of 

a dataset or as a preprocessing step for other data mining algorithms operating on 

the detected clusters. 

The attributes used to describe data objects can be quantitative, qualitative or 

mixture of both. The types of attributes determine the clustering techniques to be 

used to analyze the data. 

Data mining applications place special requirements on clustering algorithms 

including: scalability, ability to find clusters embedded in subspaces of high 

dimensional data, ability to find clusters with widely varying sizes, shapes and 

densities, ability to deal with mixture of attribute types, and insensitivity to the 

order of input records. 

We have developed separate algorithms for clustering numeric, categorical 

and mixed-type data satisfying these requirements. Two application specific 

techniques are also developed. The following are the different algorithms included 

in the thesis. 

1. An Improved Sampling-Based DBSCAN for Large Spatial Databases. 

2. A Parallelization of Density-Based Clustering Technique on Distributed 

Memory Multicomputers. 



3. DDSC: A Density Differentiated Spatial Clustering Technique to detect 

clusters with widely differing densities. 

4. CatSub: Clustering Categorical Data Based on Subspace. 

5. SMIC: A Subspace Preferenced Mixed Type Data Clustering Technique to 

find clusters in large high dimensional datasets with mixture of numeric and 

categorical attributes. 

6. Biclustering Gene Expression Data Using A Node Addition Algorithm. 

7. A Clustering Based Technique For Network Intrusion Detection. 

Experimental results establish the validity of the algorithms proposed. 

Keywords: Clustering, query sampling, distributed clustering, variable density, 

categorical data, mixed-type data, incremental clustering, scalability, outliers, 

gene expression data, biclustering, intrusion detection. 
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Part I 

Introduction 

The objective of Part I is to give basic ideas related to clustering in data mining 

highlighting the problem areas that we want to solve. The goals and objectives of 

the research work are stated. 



Chapter 1 

Introduction 

1.1 Data Mining 

Rapid advances in data capture, transmission and storage technologies have 

enabled modem business and science to collect increasingly large volumes of data. 

Retailers are accumulating their daily trallsactions into large databases. Besides 

direct use of the databases the enterprises can benefit immensely in the areas 

of marketing, adv~rtising and sales if interesting previously unknown customer 

buying patterns can be discovered from tbe volume of gathered past data. In the 

domain of scientific computing large amount of remote sensing data, protein data 

and genome data are collected for inferring some valuable information from them. 

Data mining [HK06, TSK06, HMS04] is the technique of analyzing such large 

datasets in order to extract implicit, previously unknown, and potentially useful 

information that might otherwise remain unknown. It is defined in [HMS04] as 

follows: 

Data mining is the analysis of (often large) observational datasets to find 

unsuspected relationships and to summarize the data in novel ways that are both 

understandable and useful to the data owrzer. 
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The relationships and summaries, for example linear equations, rules, clusters, 

graphs etc., derived through a data mining exercise are often referred to as models 

or patterns. A model structure is a global summary of datasets, while pattern 

structure makes statements only about restricted regions of the space spanned by 

the variables. The observational data referred to in the definition deals with data 

that have already been collected for some purpose other than the data mining 

analysis. This means that the objective of data mining exercise play no role in 

the data collection strategy. For this reason data mining is often referred to as 

secondary data analysis. 

1.1.1 Data mining tasks 

Data mining is categorized into different types of tasks based upon the different 

types of models or patterns they find. In general, data mining tasks are classified 

into two categories: predictive and descriptive. Predictive mining tasks perform 

inference on the current data in order to make predictions. Descriptive mining 

tasks characterize the general properties of the data in the database. Some of the 

important data mining tasks [HK06] include: 

1. Mining frequent patterns, Association and Correlations: Frequent patterns 

are patterns that occur frequently in data. Mining frequent patterns leads to 

the discovery of interesting associations and correlations within data. 

2. Classification and prediction: Classification is the process of finding a model 

(or function) that describes and distinguishes data classes or concepts, for 

the purpose of being able to use the model to predict the class of objects 

whose class label is unknown. The derived model is based on the analysis 

of training data (i.e. data objects whose class labels are known). 

3. Outlier analysis: A database may contain data objects whose characteristics 

are significantly different from the rest of the data. These data objects are 
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known as outliers. In some applications such as fraud detection, rare events 

can be more interesting than the regularly occurring ones. The analysis of 

outlier data is referred to as outlier mining. 

4. Evolution analysis: Data evolution analysis describes and models trends or 

regularities for objects whose behaviour changes over time. 

5. Cluster analysis: Cluster analysis groups data objects based on information 

found in the data that describes the objects and their relationships. The 

goal is to partition a set of objects into groups, so that objects with similar 

characteristics are grouped together and different groups contain objects 

with dissimilar characteristics. The greater the similarity within a group 

and the greater the difference between groups, the better or more distinct is 

the clustering. 

Our work is primarily on clustering techniques. So, we concentrate on cluster 

analysis only. 

1.2 Cluster Analysis 

Cluster analysis is a primary method of data mining. It is either used as a stand 

alone tool to get insight into the data distribution pattern of a dataset or as a 

preprocessing step for other algorithms operating on the detected clusters. 

1.2.1 Type of data 

Datasets differ in a number of ways. For example, the attributes used to describe 

data objects can be quantitative or qualitative, some datasets contain objects with 

explicit relationship to one another such as time series. The type of data determines 

which tools and techniques can be used to analyze the data. 
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A dataset can often be viewed as a collection of data objects (also called 

records, points, patterns, vectors). In turn data objects are described by a number 

of attributes (also called fields, dimensions, features, variables) that capture the 

basic characteristics of an object. Most frequently a dataset is a file, in which the 

objects are records (or rows) in the file and each field (or column) corresponds to 

an attribute. 

Data representation 

A dataset contains n objects such as employees, with d attributes such as employee 

ID, name, address, age, date of joining and so on. The dataset can be thought of 

as a n x d data matrix {Xij, i = 1,2"" ,n and j = 1,2", . ,d}, where each row 

i represents an object(Xi) and each column j represents an attribute (Aj ). The 

possible values that any object can take for the j-th attribute are defined in the 

domain Dj of the attribute A j . 

Types of attributes 

Based on scale of measurement attributes can be divided into four types: nominal, 

ordinal, interval and ratio. It is convenient to illustrate the concept with two values 

of an attribute. Let us consider the values taken by k-th attribute on i-th and j-th 

objects i.e. Xik and Xjk· 

1. A nominal scale merely distinguishes between categories. That is with 

respect to Xik and Xjk one can only say Xik = Xjk or Xik i= Xjk. 

2. An ordinal scale induces an ordering of the values of the attribute. In 

addition to distinguishing between Xik = Xjk and Xik i= Xjk> the case of 

inequality is further refined to distinguish between Xik > Xjk and Xik < Xjk. 

3. An interval scale assigns a meaningful measure of the difference between 

two values of the attribute. One may say not only that Xik > Xjk but also 
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that Xik is Xik - Xjk units different than Xjk. 

4. A ratio scale is interval scale with a meaningful zero point. If Xik > Xjk 

then one may say that Xik is Xik/Xjk times superior to Xjk. 

Nominal and ordinal attributes are collectively referred to as categorical or 

qualitative attributes. Qualitative attributes, such as employee ID, lack most of 

the properties of numbers. Even if they are represented by numbers, i.e. integers, 

they should be treated more like symbols. The remaining two types of attributes, 

interval and ratio, are collectively referred to as quantitative or numeric attributes. 

Quantitative attributes can be discrete(integer) or continuous. Generally data 

objects are described by attributes of the same type. However, in many real 

databases objects are described by a mixture of attribute types, which we refer 

as mixed-type data. 

1.2.2 Types of clustering methods 

In general, major clustering methods can be. classified into the following 

categories . 

• Partitioning methods. Given a set of objects and a clustering criterion, 

partitional clustering obtains a partition of the objects into k clusters such 

that each cluster contains at least one object and each object belongs to 

exactly one cluster. A partitioning method creates an initial partitioning. 

Then an iterative relocation technique attempts to improve the partitioning 

with respect to an objective function by moving objects from one cluster to 

another. When swapping does not yield any improvements in the objective 

function, it completes finding a locally optimal partition. The general 

criterion of a good partitioning is that objects in a cluster are more similar to 

each other than they are to objects in other clusters. Partitioning clustering 

methods work well for finding spherical-shaped clusters. Main difficulties 
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with these methods include: (1) the number of clusters, k need to be known 

prior to clustering; (2) the method detects spherical-shaped clusters only; 

(3) Detected clusters tend to become uniformly sized . 

• Hierarchical methods. Hierarchical clustering is a set of nested clusters 

that are organized as a tree which is called dendogram. A hierarchical 

method can be classified as being either agglomerative or divisive. An 

agglomerative hierarchical clustering starts by placing each object in its 

own cluster and then iteratively merges these clusters into larger clusters, 

until all objects are in a single cluster or a termination condition holds. The 

divisive approach uses a reverse process by starting with all the objects 

in the same cluster. In each successive iteration, a cluster is split up 

into smaller clusters, until eventually each object is in one cluster, or 

until a termination condition holds. Detection of arbitrary shaped clusters 

is possible using some hierarchical clustering algorithms. Hierarchical 

methods suffer from the fact that once a step (merge or split) is done, it can 

never be undone. These algorithms are computationally expensive. Some 

hierarchical methods have chaining effect - a few objects located so as to 

form a bridge between two clusters causes objects across the clusters to be 

grouped into a single elongated cluster . 

• Density-based methods. In density-based concept a cluster is a dense region 

of objects surrounded by a region of low or no density. Density here is 

considered as the number of data objects in the particular neighbourhood 

of a data object. In this approach general idea is to continue growing the 

given cluster as long as the density in the neighbourhood exceeds some 

threshold. Density-based clustering algorithms suitably handle arbitrary 

shaped clusters as well as clusters of different sizes. Moreover, they can 

effectively separate noise and outliers. Density-based definition of a cluster 

is often employed when the clusters are irregular or intertwined, and when 
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noise and outliers are present. 

• Grid-based methods. Grid-based methods quantize the object space into 

a finite number of cells that form a grid structure. All of the clustering 

operations are performed on the grid structure. The main advantage of this 

approach is its fast processing time, which is typically independent of the 

number of data objects and dependent only on the number of cells in each 

dimension in the quantized space. There are a number of obvious concerns 

about grid-based clustering methods. The grids are square or rectangular 

and do not necessarily fit the shape of the clusters. This can be handled by 

increasing the number of grid cells, but at the price of increasing amount of 

work, if the grid size is halved the number of cells increases by a factor of 

2d , where d is the number of dimensions . 

• Model-based"methods. Model-based methods hypothesize a model for each 

of the clusters and find the best fit of the data to the given model. A model­

based algorithm may locate clusters by constructing a density function that 

reflects the spatial distribution of the data points. It also leads to a way 

of automatically determining the number of clusters based on standard 

statistics. 

The choice of clustering algorithm depends both on the type of data and on 

the particular purpose of the application. Some clustering algorithms integrate the 

idea of several clustering methods, so that it is sometimes difficult to classify a 

given algorithm as uniquely belonging to only one clustering method category. 

1.2.3 Important issues in data clustering 

Clustering is a challenging field of research in which its potential applications 

pose their own special requirements. The following are typical requirements of 

clustering in data mining. 

8 



• Discovery of clusters with arbitrary sizes, shapes and densities: Many 

algorithms tend to find spherical clusters with similar sizes. They do not 

work well when clusters have different sizes. Clusters that have widely 

varying densities are harder to detect. It is important to develop algorithms 

that can detect clusters with arbitrary sizes, shapes and densities. 

• A bility to deal with different types of attributes: The ability to analyze single 

as well as mixture of attribute types is demanded by real life applications. 

• Ability to cluster huge volume of data (scalability): Algorithms used to 

cluster huge volume of data should have linear or near-linear time and space 

complexities. Furthennore, algorithms that assume that all the data will fit 

in main memory are infeasible for large datasets .. 

• Ability to cluster high dimensional data: Many clustering algorithms are 

good at having low dimensional data involving less than ten dimensions. It 

is a challenge to cluster high dimensional data, especially considering that 

such data can be sparse and highly skewed. 

• Ability to deal with noise and outliers: Clustering algorithms should be able 

to handle outliers in order to improve cluster quality. 

• Finding subspace clusters: Clusters may exist in a subset of attributes. It is 

not feasible to simply look for clusters in all possible subsets of attributes 

for datasets having large number of attributes. 

• Order dependence: When the same dataset is presented in different order, 

the results produced by some clustering algorithms may become drastically 

different. While it would seem desirable to avoid such algorithms, 

sometimes the order dependence is relatively minor or the algorithm may 

have other desirable characteristics. 
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• Parameter selection: Some user defined parameters are required by many 

algorithms. It should not be difficult to choose the proper value of the 

parameters. In order to avoid bias over the result it is desirable that a method 

requires only limited guidance from the user. 

• Interpretability and usability of the clustering results: Clustering algorithms 

should produce easy to understand, usable and interpretable results. 

A large number of clustering algorithms have been developed in a variety of 

domains for different types of applications. None of these algorithms is suitable 

for all types of data, clusters, and applications. A specific method can perform 

well on one dataset, but very poorly on another. In fact, it seems that there is 

always room for a new clustering algorithm that is more efficient or better suited 

to a particular type of data, cluster, or application. 

1.3 Research Goals and Objectives 

The research goals focus on the following issues: 

1. Develop scalable algorithms for finding clusters with arbitrary sizes, shapes, 

and densities in spatial(numeric) data. 

2. Develop an algorithm to cluster large high dimensional categorical datasets. 

3. Develop an algorithm to cluster large high dimensional datasets with 

mixture of categorical and numeric attributes. 

4. Develop algorithms to solve real life problems of 

(a) Biclustering gene expression data. 

(b) Network intrusion detection. 
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Research objectives supporting these goals are: 

1. The DBSCAN algorithm, that detects clusters with variable sizes and 

shapes, is to be extended to make it scalable to large spatial datasets. 

2. The DBSCAN algorithm is also to be extended in a different way so that 

it detects clusters with variable densities. 

3. The categorical clustering algorithm to be developed should be a single­

pass incremental one without the need of storing the data objects in main 

memory so that large datasets can be handled. The algorithm should also 

be subspace-based in order to cluster high dimensional datasets. Outliers 

handling capability is needed to make the algorithm more efficient. 

4. The mixed categorical and numeric data clustering algorithm to be 

developed should also be subspace-based incremental algorithm so that 

it becomes suitable for clustering large high dimensional datasets. 

Incremental algorithm may produce a large number of clusters. So 

the algorithm should use a second phase consisting of an agglomerative 

hierarchical clustering technique to reduce the number of clusters to the 

desired level. 

5. An algorithm is to be developed to find biclusters in gene expression data. 

The algorithm should find small or big biclusters as desired by the user. 

It should be able to extend a smaller bicluster by adding more rows and 

columns if possible. 

6. One of the algorithms to be developed for clustering large high dimensional 

datasets is to be utilized for network intrusion detection. 
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1.4 Organization of the Thesis 

The remainder of the thesis is organized into four parts corresponding to the works 

on numeric, categorical and mixed-type data and application development. Part 

11 consists of Chapters 2-5 related to the extension of DB SCAN algorithm, 

which is introduced in Chapter 2. Chapter 3 presents our sampling-based 

DBSCAN algorithm for large spatial datasets. We parallelize DBSCAN in 

Chapter 4. Chapter 5 includes our DDSC algorithm to detect clusters with 

widely differing densities. The only chapter in Part III contains the new algorithm 

CatSub, we have developed to cluster large high dimensional categorical datasets. 

An algorithm (SM IC) for clustering datasets with mixture of categorical and 

numeric attributes is presented in Chapter 7 of Part IV. Part V consists of Chapter 

8 & 9 containing techniques for extracting biclusters in gene expression data and 

network intrusion detection respectively. Finally the concluding remarks are given 

in Chapter 10. 
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Part II 

Clustering Numeric Data 

The DBSCAN [EKSX96] is an important clustering algorithm that can 

detect clusters with arbitrary sizes and shapes beside detecting noise and outliers 

in spatial (numeric) datasets. But the algorithm becomes very slow if applied 

to cluster a huge volume of data. Another shortcoming of DBSCAN is that 

it cannot detect clusters with widely varying densities. In this part we present 

three different algorithms that extend DBSCAN so that the drawbacks are 

removed. Firstly, an introduction to DBSCAN is presented in Chapter 2. 

We attempt to make DBSCAN scalable by using i) query sampling and ii) 

parallel processing. The first technique is presented in Chapter 3 and the second 

technique is presented in Chapter 4. In Chapter 5 we extended DBSCAN to 

detect clusters with widely varying densities. 



Chapter 2 

Introduction to DBSCAN 

2.1 Introduction 

Density-based clustering locates regions of high densities separated from one 

another by regions of low densities. The DBSCAN (Density-Based Algorithm 

for Discovering Clusters in Large Spatial Databases with Noise) [EKSX96] is a 

simple and effective density-based algorithm for clustering spatial datasets. Data 

objects to be clustered consists of numeric attributes so that the objects can be 

treated as points in a multi-dimensional real space. The algorithm provides a 

number of important concepts essential for any density-based clustering approach. 

Density of a particular point in the dataset is estimated by counting the number 

of points within a specified radius, f. of the point including the point itself. The 

technique is graphically illustrated in Figure 2.1. The basic ideas of DBSCAN 

clustering involve a number of definitions, which are produced below. The set of 

points is represented by X and the distance function between any two points p 

and q is represented by dist(p, q) . 

• f.-neighbourhood: The f.-neighbourhood of a point p, denoted by N,(p), is 

defined as Nf(p) = {q E X I dist(p, q) ::; t}. 
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p 

Figure 2.1: to-neighbourhood 

• Core point: If the (-neighbourhood of a point contains at least MinPts 

number of points, then the point is called a core point i.e. a point P is core 

ifJN,(p)J ~ MinPts. 

• Direct density-reachability : A point P is directly density-reachable from a 

point q with respect to (and MinPts ifp E N,(q) and IN,(q)J ~ MinPts. 

Directly density-reachable is symmetric for pairs of core points. In general, 

it is not symmetric if one core point and one border point are involved. 

• Density reachability: A point P is density-reachable" from a point q with 

respect to ( and M inPts if there is a chain of points PI, ... , Pn, PI = q, 

Pn = P such that PHI is directly density-reachable from Pi. Density­

reachability is a canonical extension of direct density-reachablity. This 

relation is transitive, symmetric for core points, although not symmetric 

in general. 

• Density-connectivity: A point P is density-connected (refer Figure 2.2) to a 

point q with respect to to and M inPts if there is a point 0 such that both, p 

and q are density-reachable from 0 with respect to to and MinPts. Density­

connectivity is a symmetric relation. 

• Cluster: A cluster C with respect to ( and M inPts is a non-empty subset 

of X satisfying the following conditions: 
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1. Vp, q : if p E C and q is density-reachable from p with respect toE and 

M inPts, then q E C. (Maximality). 

2. Vp, q E C : p is density-connected to q with respect to E and M inPts 

(Connectivity). 

• Noise : Let C1 , ... , Ck be the clusters of the dataset X with respect to 

parameters E and MinPts. Then noise is defined as the set of points in 

the database X not belonging to any cluster ci i.e. noise= {pIpE X, Vi 

p (j. Ci}· 

• Border point : A border point is not a core point, but it falls within the 

E-neighbourhood of a core point. 

• 
• • 

(a) p density-rea.cbable from q. but q (b) p &n•i q density-o:..•nnootod to 
not density-reach3ble frc•m p. ~ other by o. 

Figure 2.2: Density reachability and density connectivity 

2.2 The Algorithm 

To find a cluster, D BSCAN starts with an arbitrary point p and retrieves all points 

density-reachable from p with respect to E and M inPts. If p is a core point, this 

procedure yields a cluster with respect to E and M inPts. If p is a border point, 

no points are density-reachable from p and DB SCAN visits the next point of the 

16 



database. Below, a basic version of DBSCAN is reproduced from [EKSX96]. 

DBSCAN(SetO f Points, E, MinPts) 

II SetOfPoints is UNCLASSIFIED 

ClusterId:= nextId(NOISE); 

FOR i FROM 1 TO SetO f Points.size DO 

Point := SetO f Points.get(i); 

IF Point.ClId = UNCLASSIFIED THEN 

IF ExpandCluster(SetO f Points, Point, ClusterId, E, MinPts) THEN 

Cluster I d := nextI d( Cluster I d) 

END IF 

END IF 

END FOR 

END; II DBSCAN 

The most important function used by DBSCAN is ExpaondCluster which is 

presented below: 

ExpandCluster(SetO f Points, Point, ClId, E, MinPts) Boolean; 

seeds := SetO f Points.regionQuery(Point, E); 

IF seeds. size < MinPts THEN II no core point 

SetO f Point.changeClI d(Point, NOI SE); 

RETURN False; 

ELSE II all points in seeds are density-reachable from Point 

SetO f Points.changeClI ds(seeds, ClI d); 

seeds.delete(Point) ; 

WHILE seeds < > Empty DO 

currentP := seeds.firstO; 

result := SetO f Points.regionQuery(currentP, E); 
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IF result. size >= MinPts THEN 

FOR i FROM 1 TO result. size DO 

resultP := result.get(i); 

IF resultPClIdIN {UNCLASSIFIED, NOISE} THEN 

IF resultPClId = UNCLASSIFIED THEN 

seeds.append(resultP) ; 

END IF; 

SetO f Points.changeClI d(resultP, ClI d); 

END IF; II UNCLASSIFIED or NOISE 

END FOR; 

END IF; II result. size >= MinPts 

seeds .delete( currentP); 

END WHILE; II seeds <> Empty 

RETURN True; 

END IF 

END; II ExpandCluster 

A call of SetO f Points.regionQuery(Point, to) returns the to-neighborhood 

of Point in SetO f Points as a list of points. Region queries can be supported 

efficiently by spatial access methods such as R *-trees [BKSS90]. The height of 

an R*-tree is O(log n) for a dataset of n points in the worst case and a query 

with a small query region has to traverse only a limited number of paths in the 

R *-tree. Since the to-neighborhoods are expected to be small compared to the size 

of the whole data space, the average run time complexity of a single region query 

is O(log n). For each of the n points of the database, there is one region query. 

Thus, the average run time complexity of DBSCAN is O(n log n). The ClId 

(clusterId) of points which have been marked to be NO I S E may be changed 

later, if they are density-reachable from some other point of the database. This 

happens for border points of a cluster. 
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If two clusters C1 and C2 are very close to each other, it might happen that 

some point p belongs to both, C1 and C2. Then p must be a border point in both 

clusters because otherwise C1 would be equal to C2 since global parameters are 

used. In this case, point p will be assigned to the cluster discovered first. Except 

from these rare situations, the result of DB SCAN is independent of the order in 

which the points of the database are visited. 

Since global values are used for f and MinPts, DBSCAN may merge two 

clusters into one cluster, if two clusters of different density are close to each 

other. Let the distance between two sets of points S1 and S2 be defined as 

dist(S1,S2) = min{dist(p,q) I p E S1, q E S2}. Then, two sets of points 

having at least the density of the thinnest cluster will be separated from each other 

only if the distance between the two sets is larger than f. It means that DB SCAN 

can not detect clusters with variable densities. 

Subsequent three chapters contain our work on extending DBSCAN so that 

it can cluster very large datasets consuming lesser execution time and detect 

clusters with variable densities. 

19 



Chapter 3 

An Improved Sampling-Based 

DBSCAN for Large Spatial 

Databases 

3.1 Introduction 

DBSCAN computes E-neighbourhood for each of the n objects in the dataset. 

The complexity of a neighbourhood query is 0 (n) without using any spatial index 

structure and using a spatial index structure such as a R *-tree [BKSS90] it is 

O(log n). Accordingly the run-time complexity of DBSCAN becomes 0(n2 ) 

or O(n log n). For very large databases the neighbourhood query becomes time 

consuming even if a spatial index is used. Execution time of the algorithm can be 

reduced using two approaches : (i) by reducing the query time; (ii) by reducing 

the number of queries. We proposed to speed up DBSCAN using the second 

approach. Zhou et al. [ZZHOO] used a query sampling method to reduce the 

number of queries performed but the algorithm is not detailed. We provide an 
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improved DB SC AN named I DB SC AN algorithm by incorporating an efficient 

sampling method that greatly reduces the number of queries without introduction 

of much error. 

3.2 The Query Sampling Procedure 

Starting with the first object in the dataset DBSCAN serially examines each 

object performing neighbourhood query whenever a previously unlabeled object 

is found. If the object happens to be a core one, all the unlabeled objects in 

its neighbourhood are labeled with a new cluster-id and copied to the seeds-list. 

Then the expand-cluster procedure goes on deleting one object at a time from the 

seeds-list, evaluates neighbourhood query for the deleted object and appends to 

the seeds-list all the unlabeled neighbours found after marking them with present 

cluster-id. When the seeds-list becomes empty a cluster is completed and search 

for next cluster begins. 

Instead of copying to the seeds-list all the unlabeled neighbours of a core 

object selectively copying a few of them may suffice. Because neighbourhood 

of a core object present in the seeds-list may be covered by neighbourhoods 

of already processed objects leaving no unlabeled objects to be copied to the 

seeds-list. Such queries can be avoided without losing accuracy in the clustering 

result. A procedure to select only the necessary seeds leaving out avoidable 

ones is needed. Certainly, some of the outer neighbours are good candidates 

to be selected as seeds while inner neighbours may be left out. We provide an 

efficient procedure for selecting only the necessary seeds so that a large number 

of queries are avoided. The procedure may occasionally eliminate a few necessary 

seeds, resulting in breaking down of a bigger cluster into smaller ones at loosely 

connected sparse regions. Otherwise the clustering results should be the same as 

produced by original DBSCAN. 
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The shape of the neighbourhood will be a hyper sphere with radius E as the 

objects considered are multi-dimensional. Consider a query object lying at the 

origin of a d-dimensional space. The coordinate axes intersect the hyper sphere 

at 2d points, which are called marked boundary objects(M BOs). The axes also 

divides the hyper sphere into 2d quadrants. Consider a hyper cube with side length 

2E completely enclosing the hyper sphere with radius E. The corner points of 

the hyper cube are also considered as M BOs. Thus, there are 2d + 2d M BOs. 

For example, consider the two-dimensional object q located at coordinate (0,0) as 

shown in Figure 3.1. We have eight distinct M BOs : A(-E, -E), B(O, -E), C(E, -E), 

D(E, 0), E(E, E), F(O, E), G(-E, E), H(-E, 0). The neighbourhood region of object p 

is divided into four quadrants. In each quadrant we can identify three M BOs. In 

lower left quadrant - H, A,and B, in lower right quadrant - B, C, and D etc. 

A B c 

Figure 3.1: Location of M BOs for 2-dimensional space 

Given the neighbours of a query object our sampling procedure will select 

at most 2d + 2d objects as seeds. Corresponding to each M BO the unlabeled 

object closest to it is selected as seed provided that the object is not closer to any 

other M BO. Thus some M BO may not contribute any seed. Furthermore within 

the neighbourhood of the current query object there will be many already labeled 

objects that can not be new seeds. Therefore we adopt an efficient procedure to 

select the seeds requiring a single pass over the previously unlabeled neighbours 

only. Let, the seed attached to each M BO be initialized to null and the distance 

of the seed to the M BO be set to a high value. Some of the null values will be 
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replaced by selected seeds using the following procedure: 

For each unlabeled object in the neighbourhood of the query object do: 

1. Locate the quadrant in which the object lies. 

2. Compute the distances of the object to each of the (d + 1) M BOs in that 

quadrant. 

3. Find the shortest distance and the corresponding M BO. 

4. Replace the seed attached to the M BO by the object if the object is closer 

to the M BO than the previous seed. 

How to find the quadrant in which an object lies and also the corresponding 

M BOs? For this the M BOs need to be indexed so that they can be accessed 

directly using their index numbers. We identify two types of M BOs for the sake 

of indexing: 

• Diagonal M BOs which are the corner points of the hyper cube as stated 

earlier . 

• Non-diagonal M BOs which are the points of intersection of the hyper 

sphere with the axes. 

Index for a diagonal M EO becomes the index for the corresponding quadrant 

also. Let, the q-th object in the dataset, (Xql, X q2,· .. , Xqd) be a query object 

which has the k-th object, (Xkl, Xk2,· .. , Xkd) as one of the neighbours. Let, W = 

{ Wi, i = 1, 2., . . . , d} represents weights such that: 

Wi = {+1 if 
-1 if 

Xqi - Xki > 0 

Xqi - Xki < 0 
(3.1) 
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When the weight vector multiplied by the neighbourhood radius E is added to the 

query object we get the diagonal M BO of the quadrant in which the neighbour is 

located. Treat wi as zero if it is negative, consider the modified weight sequence 

as a binary number and convert the binary number to decimal. It will give the 

index for this diagonal M BO as well as the index for the quadrant. The indices 

of the diagonal M BOs will be in the range [0, 2d - 1]. For three-dimensional 

objects the diagonal M BOs along with their indices are shown in Table 3.1. 

Table 3.1: Indexing and determination of diagonal M BOs 

WI W2 W3 Binary(124) Index MBO 

-1 -1 -1 000 0 (Xq! - E, Xq2 - E, Xq3 -E) 

+1 -1 -1 100 (Xql + E, Xq 2 - E, Xq3 -E) 

-1 + 1 -1 010 2 (Xqi - E, x92 + E, Xq3 -c) 

+1 + 1- 1 110 3 (x91 + E, X92 + E, Xq3 - E) 

-1- 1 + 1 001 4 (x91 - E, Xq2 .- E, x 93 +c) 

+1 -1 + 1 101 5 (Xql + E, Xq2 - E, Xq3 +c) 

-1 + 1 + 1 011 6 (Xql - E, Xq 2 + E, Xq3 + c) 

+1 + 1 + 1 111 7 (Xql + E, Xq2 + E, Xq3 +E) 

There are 2d non-diagonal M BOs. Each axis has two M BOs - one to the 

positive side and the other to the negative side of the axis. The indices for these 

M BOs are also found based on the weights vector computed in Equation 3.1. At 

a time consider the weight(+ 1 or -1) on a single dimension only and treat weights 

of remaining dimensions to be zeros. Convert the number so obtained to decimal 

by taking place value of different dimensions to be 1, 2, 3, · · · , d starting from the 

lowest dimension. These indices will be in the range [ -d, +d]. Add a bias of 

2d + d so that the indices become positive and come after the indices for diagonal 

M BOs. All the d number of M BOs in a quadrant can be located in this manner 
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as shown in Table 3.2 for 3-dimensional data. 

Table 3.2: Indexing and determination of non-diagonal M BOs 

WI Wz W3 Binary(123) Decimal Index MBO 

-1- 1- 1 -100 -1 10 (x91 - f, 0, 0) 

0-10 -2 9 (0, Xq2 - E, 0) 

00-1 -3 8 (0, 0, Xq3 - E) 

+1- 1- 1 +100 1 12 (x91 + E, 0, 0) 

0-10 -2 9 (0, Xq2 .,.... E, 0) 

00-1 -3 8 (0, 0, Xq3 - E) 

-1 + 1- 1 -100 -1 10 (x91 - E, 0, 0) 

0 + 10 2 13 (0, Xq2 + E, 0) 

00- 1 -3 8 (0, 0, Xq3 - E) 

+1 + 1- 1 +100 1 12 (x91 + E, 0, 0) 

0 + 10 2 13 (0, Xq2 + E, 0) 

00-1 -3 8 (0, 0, Xq3 - E) 

-1 -.1 + 1 -100 -1 10 (Xql - E, 0, 0) 

0-10 -2 9 (0, Xq2 - E, 0) 

00 + 1 3 14 (0, 0, Xq3 +E) 

+1-1+1 +100 1 12 (x91 + E, 0, 0) 

0-10 -2 9 (0, Xq2 - E, 0) 

00 + 1 3 14 (0, 0, Xq3 +E) 

-1 + 1 + 1 -100 -1 10 (xql - E, 0, 0) 

0 + 10 2 13 (0, Xq2 + E, 0) 

00+ 1 3 14 (0, 0, Xq3 +E) 

+1 + 1 + 1 +100 1 12 (xql + E, 0, 0) 

0 + 10 2 13 (0, Xq2 + E, 0) 

00 + 1 3 14 (0, 0, Xq3 +E) 
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3.2.1 Complexity analysis 

IDBSCAN uses one more function named JindseedsO than DBSCAN. Use 

of this function does not increase the overall complexity of DBSCAN which is 

O(n log n). The extra function used has worst time complexity O(sd), where 

s is the neighbourhood size and d is the dimensionality of the dataset which are 

expected to be small compared to the size n of the dataset. 

3.3 Experimental Results 

We have evaluated the performance of the IDBSCAN algorithm in comparison 

to that of DBSCAN. For doing this two 2-dimensional synthetic datasets were 

created containing circular, rectangular, triangular and S-shaped clusters having 

different sizes. Values of each attribute fall in the range [0, 1000]. The first dataset 

contains l3 clusters shown in Figure 3.2 by black dots separated by white spaces. 

Retaining the cluster shapes to be the same several variants of the dataset were 

created with increased number of objects (without duplicates). There are some 

random variations of densities at different regions of the datasets. The second 

dataset shown in Figure 3.6 contains 4 clusters. The proposed I DBSCAN and 

DBSCAN were implemented in C++ in aU GHz, HCL Infinity-2000 machine 

with 128 MB RAM. R*-tree indexing was also used with both ofthe algorithms. 

In Experiments 1-3 IDBSCAN as well as DBSCAN recovered the same 

set of 13 clusters present in the first dataset. 

3.3.1 Experiment 1 

The execution performances of I DBSCAN and DBSCAN were compared for 

datasets of increasing sizes. Value of E parameter were kept constant for all 

datasets while using progressively higher values for M inPts as density of the 
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Figure 3.2: Dataset with 13 clusters of various shapes and sizes 

datasets increases with increase in size. Table 3.3 presents the results. It is clear 

from the graphical presentation (Figure 3.3) of the results that I DB SCAN is 

faster than DB SCAN. As the dataset size increases the speed difference between 

DBSCAN and IDBSCAN also increases. 

3.3.2 Experiment 2 

In this experiment, with increasing dataset sizes, E values were decreased so 

that the M inPts values remained constant. Table 3.4 shows the results for two 

different MinPts values. Besides showing speed difference between DBSCAN 

and I DB SCAN the graph presented in Figure 3.4 also shows that I DB SCAN 
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Table 3.3: Run-time of I DB SCAN and DB SCAN for increasing dataset sizes 

Data size 

100000 

200000 

400000 

800000 

€ MinPts Time( sec.) I DB SCAN Time(sec.) DBSCAN 

8 7 32 62 

8 20 63 284 

8 40 125 1160 

8 75 423 5834 

Epsilon= 8 

K(O ,------------------------. 
.. 60Xl +------------7-r-----l 
~ 50).J +---------------J.'-----l 
~ 4(XXJ // r~---D-B_S_C-AN~j 
.E JCXXJ / 1---IDB SCAN 
" 20CO +-------------1-'---------l ,; ~ 
~ 1CXXJ+--------~--~-------l 

~ _____. 
o+-~--~~~-r==-=~==~~ 

100000 20COOO 4CXXJOO enxro 
Size of Dataset 

Figure 3.3: Run-time of I DBSCAN vs DB SCAN for increasing dataset sizes 

is less affected by variation in MinPts. Execution performance of DBSCAN 

deteriorates for higher values of M inPts . 

3.3.3 Experiment 3 

In this experiment the run-time behaviour of both the algorithms have been studied 

by varying MinPts in the same dataset. The results are presented in Table 3.5 

and Figure 3.5. As MinPts increases, DB SCAN becomes slower, whereas the 
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Table 3.4: Run-time of I DB SCAN and DB SCAN for constant MinPts values 

Data size 

100000 

200000 

400000 

800000 

100000 

200000 

400000 

800000 

( M'inPts Time( sec.) I DB SCAN Time(sec.) DBSCAN 

7 

5 

5 

4 

10 

8 

6 

5 

2&D 

c: 2(XI) 

§ 
1&D (/) 

.Iii 
Cl 1CXXl 
E 
t= &D 

0 

3 33 

3 78 

3 158 

3 498 

12 27 

12 65 

12 140 

12 455 

1 o:xro 2o:xxxJ 4<XIXXl a:xx:co 
Size of Dat......,l 

56 

124 

624 

1410 

73 

211 

749 

2366 

--.-DB SCAN. MinJDin ts 
:3 

--- IDBSCAN. Minpoin ts 
= 3 

~DB SCAN. MinJDin ts 
= 12 

--.- IDB SCA N. Minpoin ts 
= 12 

Figure 3.4: Run-time of I DB SCAN vs DB SCAN for constant MinPts values 

performance of the IDBSCAN improves. Even for smaller values of MinPts, 

a distinct time gap between I DBSCAN and DBSCAN can be observed. 

In the above experiments results produced by I DBSCAN and DB SCAN 

are the same. But sometimes I DB SCAN may break down a bigger cluster at 
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Table 3.5: Run-time of I DBSCAN and DB SCA N for increasing MinPts 

Data size E MinPts Time(sec.) I DBSCAN Time(sec.) DBSCAN 

400000 5 3 158 624 

400000 6 20 141 878 

400000 8 40 125 1160 

400000 10 60 119 1454 

Dataset Size= 400000 

1000 

i: 1400 
0 I <DO ¥ 1000 (I) 

c: 000 

• eoo 
~ 1-+-DBSCAN 

t==:::;~----=:::::::::==============~ --- 108 S CAN 
E 400 
I= <DO 

0 
3 40 60 

Size of Minpointll 

Figure 3.5: Run-time of IDBSC AN vs DBSCAN for increasing MinPts 

loosely connected sparse regions as shown in the following experiment. 

3.3.4 Experiment 4 

Results produced by DB SCAN and I DBSC AN on the second dataset are 

shown in Figures 3.6 and 3. 7 respectively. DB SCAN produced 4 clusters while 

I D E SC AN produced 5 clusters as it had broken down the S-shaped cluster into 

two. It can be noticed that the region where the breaking occurs is relatively 
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sparse. Such results may be desired in some applications . 
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Figure 3.6: Clustering result of DBSCAN on second dataset 

Based on the results of the experiments, it can be concluded that the proposed 

I DB SCAN speeds up DB SCAN by a constant factor and is capable ofhandling 

larger volume of data. Occasionally, a DBSCAN cluster may be broken into 

smaller clusters by I DBSCAN. 

In the next chapter we speed up DBSCAN by a large factor using parallel 

processing without any compromise on the clustering results produced. 
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Figure 3.7: Clustering result of I DBSCAN on second dataset 
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Chapter 4 

A Parallelization of Density-based 

Clustering Technique on a 

Distributed Memory Multicomputer 

4.1 Introduction 

Massive datasets measuring in gigabytes and even terabytes containing millions of 

data objects are quite common in business and scientific world today. When used 

to cluster large datasets, clustering algorithms put high demand on space and time 

requiring high performance machines to get results in a reasonable time. Very 

large datasets cannot be processed in-core, that is, in the main memory of a single 

processor machine. Disk-based algorithms are likely to be considerably slower. 

In such a situatio'n parallel clustering can be employed to exploit main memories 

of several processors. Even for the cases when datasets can be processed in-core, 

the fastest available serial computer may fail to deliver results in a reasonable 

time. Parallel and distributed computing [ZakOO] is expected to relieve current 
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clustering methods from the sequential bottleneck, providing the ability to scale 

to massive datasets and improving the response time. Such algorithms divide the 

data into partitions, which are processed in parallel. The results from the partitions 

are then merged. 

In this chapter a parallel implementation of D B SCAN algorithm is presented 

on a distributed memory multicomputer [WA03] i.e. a low cost shared-nothing 

parallel environment where each of the processors is a personal computer having 

private memory and disk. The processors are connected by a communication 

network. Data parallelization is used with static load balancing. We provide 

a good data decomposition among the processors and minimize communication 

between them. Our parallelization is analytically and empirically validated. 

4.2 Related Works 

There are several efforts directed towards scaling up clustering algorithms for 

huge datasets commonly encountered in data mining. Parallelization of k­

means algorithm [SB99, DMOO, ZSP03] received a lot of attention in the past. 

In [0Is95, JKOO] parallel agglomerative hierarchical clustering algorithms were 

reported. A parallel implementation of AutoClass is presented in [FLPTOO]. 

A parallel DBSCAN algorithm (PDBSCAN) is presented in [XJK99] using 

the shared-nothing architecture. Here, the authors used a distributed version of 

the R*-tree (dR*-tree), in which the data is spread among multiple computers 

and the indices on the data are replicated on every computer. The main program 

of P DB SC AN, i.e. the master, starts a clustering slave on each available 

computer in the network and distributes the whole data onto the slaves. Every 

slave clusters only its local data and there is some interference between computers 

while performing local clustering. Local cluster models are then merged together 

to obtain global clustering. 
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The method proposed in this paper is more efficient than the earlier method 

proposed in [XJK99]. In the proposed approach only the master communicates 

with the slaves for data transferring and collecting local clustering results back. 

No interference between computers in the parallel environment is needed reducing 

the communication overhead. 

4.3 The Proposed Algorithm 

The DBSCAN algorithm is adapted for parallel clustering using a message­

passing multicomputer. The parallel environment is created by connecting a 

number of personal computers through a network. Each computer consists of 

a processor, local memory and disk. Processors can send messages to other 

processors through the network. The volume of data to be clustered is retained in 

the secondary memory of a particular computer, which we call as the client. The 

large dataset may not be accommodated into the main memory of the client. So 

the dataset is divided into P roughly equal parts and transmitted to P different 

computers, which we call as servers or processors. The servers process the 

received data concurrently to produce local clusters, which are then sent back 

to the client for merging in order to obtain global clusters for the original dataset. 

There is no communication amongst the servers. Communication is needed only 

for data transfer in blocks between the client and the servers. The main tasks to be 

performed are: data placement, local clustering, and merging local cluster models 

to get global clusters for the whole dataset. Methods for performing each of the 

tasks are presented below. 

4.3.1 Data placement 

Data division parallel processing with static load balancing is used here. The 

dataset is spatially divided into nearly equal partitions with some overlap between 
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two adjacent partitions and no subsequent movements of data betWeen partitions 

take place. The input dataset X consists of n d-dimensional objects with i-th 

object being represented as Xi = { xi1 , xi2 , · • · , Xid}. Values of each attribute 

Aj, j E {1, 2, · · · , d} fall in the given range [minAj, maxAjl· The dataset X 

is spatially divided into p partitions 81, 82, ... , 8 p based on the values of a 

particular dimension (say Ak). There is some overlap between adjacent partitions 

such that X = 8 1 U 82 U · · · U Sp with Sin Si+l f. 0 fori = 1, 2, · · · , P- 1 

and Sin Sj = 0 for ji- jj ~ 2, i, j E {1, 2, · · · , P}. The partially overlapped 

partitions are shown in Figure 4.1 for 2-dimensional case. An overlap of width 2t: 

occurs between two adjacent partitions. Overlapped regions are much smaller than 

the partitions. The objects falling in an overlapped region are locally clustered 

in both the adjacent partitions. Thus they provide the necessary information for 

merging together the local clustering results of the two partitions. The overlap 

width should be at least 2E, because the neighbourhood radius is E and the spatial 

width of the smallest possible cluster will be 2E. To create P partitions of the 

. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. ,, . . . . . . 
' . . . . . . . . . . . . . . . . . . . 
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Figure 4.1: Overlapped spatial partitioning of a 2-dimensional dataset 
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dataset in this manner based on a particular dimension Ak , we need to select P + 1 

constants in the value range [MinAk' MaxAkl for convenience of marking the 

boundary of the partitions. Let Ci, i = 1,2,··· , P + 1 represent constants such 

that Cl = MinAk, CP+l = MaxAk, and Ci < cHI. Now, overlapped partitions 

are created as : 

Sl = {Xj I Xj EX, Cl ::; Xjk ::; C2 + €} 

Si = {Xj I Ci - €::; Xjk::; Ci+l +€}, i = 2,3,···,P-l 

Sp = {Xj I XjinX, cp - € ::; Xjk ::; CP+l} 

Load balancing 

Partition Si is sent to server Mi, i = 1,2, ... , P for concurrent clustering. Since 

no data movement takes place after the partitions are created, care should be taken 

so that each server receives nearly equal number of data objects for processing. 

This will ensure that all the servers finish clustering job at the same time provided 

the servers have same processing speed. Ifthe processors have different processing 

speed then the input data should be distributed to the servers proportionate to 

their processing speed. We assume equal processing speed for the servers so 

that they receive nearly equal amount of data. To ensure this the value range 

of the selected dimension Ak i.e. [minAk, maxAkl is divided into m intervals 

each having a width of € by using the limits ai, i = 1,2,··· ,m + 1. Thus, 
m = r(MaxAk~MinAk)l 

al = MinAk; 

ai = ai-l + €, i = 2,3,··· , m + 1; 

Let, frequency of data objects with k-th dimension value falling in the i-th interval 

be represented by Ii so that: 

Ii = l{j I (Xj EX), ai ::; Xjk < aHdl, i = 1,2, ... , m; 

Now, the constants Ci described in the previous section are computed as Ci = at 

for some t E {I, 2,··· ,m+l} such that: 
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"£~ h :::; i.n'.:::; ,,£~+l h for i = 1,2,··· , P 

where, n' = r ~ 1 is the average number of objects in each partition. 

This will ensure that each partition gets number of objects nearly equal to n'. 

4.3.2 Local clustering 

When the client finishes sending data, the process of clustering will concurrently 

run in all the servers. First R *-tree is created for the received data and then 

DBSCAN algorithm is run. When clustering job is finished the servers will 

remain ready for sending the results of clustering back to the client. 

4.3.3 Merging of local cluster models 

The partitioning process may convert an inherently core ( i.e. core in the original 

dataset) object to non-core if the object falls near the boundary of a partition. In 

this context the following lemma is important. 

Lemma 1 if an overlap of width at least 210 between two adjacent partitions Si 

and Si+1 is used then an inherently core object p E Si n Si+1 will remain as core 

in at least one of the two partitions. 

Proof: Consider a core object p in the original dataset. After partitioning p E 

Si n Si+l such that p is placed at a distance d1 from the right boundary of Si and 

at a distance d2 from left boundary of Si+l so that d1 + d2 = 2E. It is shown 

in Figure 4.2 for 2-dimensional case. N, (p) represent the set of objects in 10-

neighbourhood of object p. If d1 < 10 then p may not remain core in Si, since 

N,(p) will not be a subset of Si' But in that case d2 > 10 because d1 + d2 = 2E and 

d1 < E. So, N,(p) will be a subset of Si+l and consequently p will remain a core 

object. Similarly p may be found to be core in Si but non-core in Si+l' 0 
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partition S, 

Figure 4.2: Overlap width of2E 

Each server Mi finds clusters in partition Si. With respect to the dataset X, 

we can think of two types of clusters. A cluster may be totally contained within a 

partition Si or a cluster may span over more than one partitions. In the later case 

we need to merge the clusters obtained in two adjacent partitions. The following 

lemma states the conditions for merger of two clusters found in the two adjacent 

partitions. 

Lemma 2 Let C1 and C2 are clusters found in two adjacent partitions Si and 

Si+l respectively. If p E C1 n C2 and p is a core object in at least one of the 

partitions then cl and c2 need to be merged. Ifp is not a core object in either of 

the partitions then p should be included either in cl or in c2 but not in both. 

Proof: Suppose x E C1 in Si andy E C2 in Si+l· Ifp is found to be a core object 

either in Ci Or in C2 Or in both, then X and y are density reachable from p since p 

is a core object and p E C1 n C2 . Sox is density connected toy and x, y should 

belong to the same cluster i.e. clusters C1 and C2 need to be merged. If p is not 

core in either of the partitions then p is a border object which can be included in 

any one of C1 or C2. 0 

The merging of clusters is done as follows. Each server Mi, i = 1, 2, · · · , P 

while clustering the partition Si prepares a list Li recording whether each object 

p E Sin Si+l is a core, non-core or noise object. The job of merging is done by the 
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client. It first collects the local clustering result from partition 8 1 along with list 

L1 from M 1 and forms the initial merged result G. It then collects clustering result 

of partition Si and list Li, i = 2, 3, · · · , P -1. The lists Li- 1 and Li are consulted 

by the client to determine the status of each object p E Si-1 n Si and merges Si 

with G based on lemma 2. The following lemma proves that the resulting clusters 

are the same as the clusters obtained by applying DB SCAN on dataset D. 

Lemma 3 If clustering results of all the partitions are merged based on lemma 2 

then the merged result is the same as the clustering result obtained by DB SCAN. 

Proof. DB SCAN clusters are maximal set of density connected objects. The 

condition of density connectivity is established by lemma 2 and the condition of 

maximality is satisfied by merging clustering results of all the partitions. D 

The ideas of connectivity and maximality are also depicted in Figure 4.3. A 

directed edge indicates the two clusters that are to be merged across partitions. 

A maximal connected sub-graph of directed edges indicate a cluster in the given 

dataset X. 

Ctm-tH labels in 5,, 

Figure 4.3: Merging oflocal clusters to form global clusters 
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4.3.4 Complexity analysis 

The complexity of DBSCAN algorithm with R*-tree is O(n log n). Each of the 

P computers runs D BSC AN in parallel with a dataset of size p+v, where v is the 

average number of objects present in an overlapped region. Therefore complexity 

of DBSCAN now becomes O((~ +v)log(~+v)). The time complexity for load 

balancing step will be O(n). For ideal cases time complexity for data placement 

step can be taken to be O(n). Global clustering step will visit each object of each 

overlapped area to determine clusters to be merged. Also it will update global 

clusters for each object of the local clusters. So complexity of global clustering 

step will be O(P.v + n). Therefore the overall complexity can be obtained as 

0(( ~ +v) log( ~ +v) + P.v +n). If P is increased with increase in n so that nj P 

remains manageable by a single processor the algorithm will remain scalable. 

4.4 Performance Evaluation 

A sequential algorithm is evaluated in terms of its execution time expressed 

as a function of its input size. On the other hand the execution time of a 

parallel algorithm depends not only on the input size but also on the parallel 

architecture and the number of processors employed. By adding more processors 

we would like to decrease the execution time or increase the volume of data 

handled. We now empirically study the desirable characteristics of our parallel 

algorithm by measuring execution time, speedup, efficiency and scaleup factors. 

The performance of the parallel DBSCAN will be measured relative to the 

sequential DB SCAN. The sequential DB SCAN is very slow for larger datasets. 

So, we have limited the dataset size to maximum of 800000 2-dimensional data 

objects in our experiments. Since the datasets are limited, we limit the number 

of processors used to maximum of 6 only. We have synthetically generated 

different datasets containing 13 arbitrarily shaped clusters, circular, semicircular, 

41 



triangular, rectangular, S-shaped etc. Datasets of sizes 100000, 200000, 300000, 

400000, 500000, 600000 and 800000 are created containing the same 13 clusters 

but density increasing gradually. The structure of the datasets was shown in 

Figure 3.2. 

Since there is no inter-processor communication except for a single processor 

communicating with each of the remaining processors, we used client-server 

computing. Programs are developed using C++ in LINUX environment. Each 

processor has the same specification Pentium III with 1.0 Ghz speed and 128 

MB RAM. The processors are connected through a 10/100 Mbit Ethernet LAN. 

To smooth out any fluctuations each measurement was repeated 5 times and the 

average was taken. 

1. Parallel Execution Time: The parallel execution time, denoted by T(P), of 

a program is the time required to run the program on a P-processor parallel 

computer. When P = 1, T(l) denotes the sequential run time of a program 

on a single processor. Figure 4.4 shows the graph of execution time versus 

number ot-processors used. It can be seen that the execution time decreases 

significantly as the num ber of processors increase. 

2. Speedup: A measure of relative performance between a mUlti-processor 

system and a single processor system is the speedup factor defined as 

S(P) = T(l)/T(P). Ideally a system with m processors should yield 

a speedup of m (linear speedup) when the sequential algorithm that 

is parallelize is of linear (O(n) complexity. However, parallelizing a 

linear algorithm, linear speedup is difficult to achieve because of the 

communication cost and speed difference of the processors. The relation 

between speedup and number of processors used is shown in Figure 4.5. 

Note that for our algorithm S(P) > 1, i.e. super-linear speedup is 

achieved. Because the sequential algorithm adapted here is of complexity 

O(n log n). This can be compared to the sub-linear speedup reported by 
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Figure 4.4: Execution time on different number of processors. 

Xu et al. [XJK99] for P DBSCAN. Our algorithm is better as it achieves 

higher speedup. 
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3. Efficiency : Speedup does not measure whether the processors in a parallel 

computer are being used efficiently. The efficiency of a program on P 

processors, E(P), is defined as the ratio of speedup achieved and the 

number of processors used to achieve it. Thus, E(P) = S( P) / P = 

T(l )/ (P.T(P)) For our parallel program E (P ) is shown in Figure 4.6. It 

is seen from the graph that if too many processors are used then efficiency 

is dropped. 
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Figure 4.6: Efficiency vs. number of processors employed 

4 . Scaleup: Another figure of merit of a parallel algorithm is scaleup which 

captures how well the parallel algorithm handles larger datasets when more 

processors are available. Scalability has been a rather imprecise term. Our 

scalability study measures execution time by keeping the problem size per 

processor fixed while increasing the number of processors. The scaleup 

characteristic for the proposed parallel DB SCAN is shown in Figure 4. 7. 

It is clear that the algorithm scales well. 

The experimental results presented here demonstrate that the proposed algorithm 
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Figure 4.7: Scaleup of parallel DBSCAN on different sets of data scaled by the 

number of processors 

is indeed a feasible approach to parallel clustering. The algorithm is found to be 

scalable both in terms of speedup and scaleup. Thus, large spatial datasets can be 

clustered efficiently. 

In the previous chapter and the present one we extended DB SCAN to cluster 

larger datasets . In the next chapter we concentrate on extending the algorithm so 

that nested clusters, i.e. clusters within a cluster, can be extracted based on density 

difference. 
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Chapter 5 

DDSC: A Density Differentiated 

Spatial Clustering Technique 

5.1 Introduction 

Although many algorithms exist for finding clusters with different sizes and 

shapes, there are a few algorithms that can detect clusters with different 

densities. Basic density based clustering techniques such as DBSCAN and 

DENCLUE [HK98] treats clusters as regions of high densities separated by 

regions of no or low densities. So they are able to suitably handle clusters of 

different sizes and shapes besides effectively separating noise ( outliers). But they 

fail to identify clusters with differing densities unless the clusters are separated by 

sparse regions. For example, in the dataset shown in Figure 5.1, DBSCAN finds 

a single cluster instead of finding the three distinct clusters that can be visualized 

based on density. 

We propose an extension of the DBSCAN algorithm to detect clusters with 

differing densities. Extracted clusters are non-overlapped spatial regions such 

that within a region the density is reasonably homogeneous. Adjacent regions are 
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Figure 5.1: Clusters with varying densities. 

separated into different clusters if there is significant change in densities. The 

clusters may be contiguous i.e. not separated by any sparse region as required 

by DBSCAN. Thus natural clusters in a dataset can be extracted. An added 

advantage is that the sensitivity of the input parameter t, which is an important 

disadvantage of DBSCAN, is reduced significantly. 

5.2 Related Works 

The DBSCAN [EKSX96] is a basic density based clustering algorithm. The 

density associated with an object is obtained by counting the number of objects 

in a region of specified radius, t, around the object. An object with density 

greater than or equal to a specified threshold, MinPts, is treated as core (dense), 

otherwise non-core (sparse). Non-core objects that do not have a core object 

within the specified radius are discarded as noise. Clusters are formed around 

core objects by finding sets of density connected objects that are maximal with 

respect to density-reachability. DBSCAN can find clusters with variable sizes 

and shapes, but there may be wide variation in local densities within a cluster 

since it uses global density parameters M inPts and t, which specify only the 

lowest possible density of any cluster. 
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To find clusters that are naturally present in a dataset different local densities 

need to be identified and separated into clusters. The OPTICS [ABKS99] 

algorithm adopts DBSCAN to achieve this goal. The proposed algorithm 

also extends DBSCAN in a different manner to achieve the same goal. 

OPTICS computes an ordering of the objects augmented by reachability 

distance, representing the intrinsic hierarchical clustering structure. This cluster 

ordering, displayed by the so called reach ability-plots, is the basis for both 

automatic and interactive cluster analysis. Valleys in this plot indicate clusters. 

The parameter ~ is crucial for identifying the valleys as ~-clusters. 

DENCLU E (DENsity CLUstEring) [HK98] takes a more formal approach 

to density based clustering by modeling the overall density of a set of objects as 

the sum of influence functions associated with each object. The resulting overall 

density function will have local peaks, i.e., local density maxima, and these local 

peaks can be used to define clusters in a straightforward way. Specifically, for each 

data object, a hill climbing procedure finds the nearest peak associated with that 

object, and the set of all data objects associated with a particular peak (called a 

local density attractor) becomes a (center-defined) cluster. However, if the density 

at a local peak is too low, then the objects in the associated clusters are classified 

as noise and discarded. Also, if a local peak can be connected to a second local 

peak by a path of data objects, and the density at each object on the path is above a 

minimum density threshold, ~, then the clusters associated with these local peaks 

are merged. Thus, clusters of any shape can be discovered. It has trouble with 

data that contains clusters of widely different densities. 

CH AM ELEON [KHK99] and SN N [ESK03] algorithms attempts to 

obtain clusters with variable sizes, shapes and densities based on k-nearest 

neighbour graphs. CHAM E LEO N finds the clusters in a dataset by using a 

two-phase algorithm. In the first phase it generates a k-nearest neighbour graph 

that contains links between a point and its k-nearest neighbours. This approach 

reduces the influence of noise and outliers and provides an automatic adjustment 
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for differences in densities. Then it uses a graph partitioning algorithm to cluster 

the data items into a large number of relatively small sub-clusters. During the 

second phase, it uses an agglomerative hierarchical clustering algorithm to find the 

genuine clusters by repeatedly combining sub-clusters. No cluster can contain less 

than a user specified number of instances. It has problems when the partitioning 

process does not produce sub-clusters. 

The SN N (Shared Nearest Neighbour) clustering algorithm uses k-nearest 

neighbour approach to density estimation. It constructs a k-nearest neighbour 

graph in which each data object corresponds to a node which is connected to 

the nodes of the k-nearest neighbours of that data object. From the k-nearest 

neighbour graph a shared nearest neighbour graph is constructed, in which edges 

exist only between data objects that have each other in their nearest neighbour 

lists. A weight is assigned to each edge based on the number and ordering of 

shared neighbours. Clusters are obtained by removing all edges from the shared 

nearest neighbour graph that have a weight below a certain threshold T. S N N can 

detect clusters of different sizes, shapes and densities. 

The clustering techniques stated above try to find clusters with variable sizes, 

shapes and densities. The proposed algorithm is an alternative to these algorithms. 

It is simpler and produces good quality results consuming less execution time. 

For example OPTICS produces an ordering of the objects by performing k­

NN queries in the first step and then it produces variable density clusters using a 

second step requiring more execution time. DEN C LU E and S N N use several 

parameters, proper tuning of the parameter values is very important for getting 

good quality results. 
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5.3 Proposed Algorithm 

The proposed algorithm partitions given dataset into a set of spatial regions 

(clusters) such that adjacent regions significantly differ in density. Lesser amount 

of local density variations exist within a cluster, but going from the present region 

to a neighbouring region greater amount of local density variation will be noticed. 

As before, given numeric dataset, X, consists of n d-dimensional objects 

represented by Xij, i = 1,2,· .. n, j = 1,2, ... ,d. Recall that the neighbourhood 

within a given radius E of an object p is represented by Nf(p) = {q E 

X I dist (p, q) :::; E}. It is spherically shaped for Euclidean distance function 

dist(p,q). The neighbourhood size of an object p i.e. INf(p) I represents the 

density around it. Let us use a list wP' p = 1,2,,··, n to store density of 

each object in the dataset X. Initially, density of each object is unknown, 

which is represented by wp = -1, p = 1,2, ... , n. When neighbourhood 

query is performed, density of p is assigned as wp = INf(p)l. Object p is 

called a core object if wp ~ MinPts. The dataset is to be partitioned into 

a set of non-overlapped clusters. Let us denote the cluster label of p by cpo 

Initially all objects are assigned the label -1 to indicate unlabeled objects, that 

iscp = -1, Vp E {1,2,··· ,n}. 

For detection of clusters separated by density variations the concepts of 

processed objects, candidate objects, unprocessed objects and homogeneous core 

objects are required. The definitions are presented below. 

• A processed object p is one, whose density is already evaluated, i.e. wp ~ 1. 

Evaluating the density of an object by performing neighbourhood query is 

called processing. \ 

• A candidate object is already included in a cluster, but its density is yet to 

be evaluated, i.e. cp ~ 0 and wp = -1. 

• An unprocessed object p has wp = -1, cp = -1, that is its density as well 
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as cluster label are not evaluated . 

• A homogeneous core object p is a core object (wp ~ MinPts) such that the 

density of any of its neighbours does not differ with respect to the density 

of the core object itself by more than a specified threshold a. That is, 'r/q E 

Nf(p), wp/wq ::; a ifwp ~ Wq or wq/wp ::; a ifwp < Wq where a > 1 is a 

constant. 

The algorithm starts a cluster with a homogeneous core object and goes on 

expanding it by including other directly density reachable homogeneous core 

objects until non-homogeneous core objects, that indicate wide variation in 

densities, are detected. An ordering is imposed upon the sequence in which the 

objects will be processed while expanding a cluster. 

5.3.1 Ordered expansion process 

A new cluster is created with a core object and its neighbours, that are inserted 

into the seeds-list. This initial cluster is expanded when each object in the seeds­

list is processed in turn. Objects are deleted from the front end of the seeds-list 

for processing while new members are entered at the back end. When an object is 

processed it may contribute some new objects which are ordered before entering 

into the seeds-list. The following are the steps for ordered-processing of an object 

p taken out from the seeds-list. 

1. If p is a core object perform steps 2-5; 

2. Find the list Lp of unlabeled objects in Nf (p) : Lp = {q I q E Nf (p), cq = 

-I}; 

3. Arrange the objects in Lp in ascending order of their distance to p to obtain 

the sorted list L~ = {ql, q2, q3, ... , qt} with size t = 1 Lp 1, qo = P such that: 

L~ = {qi I qi E Lp, i = 1,2,··· , t, dist(qi-l,P) ::; dist(qi,P)}; 
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4. Append L~ to seeds-list; 

5. Mark all unlabeled and noise objects in Nf(p) with present cluster-id: 

Vq{ q E Nf(p), cq S O} : cq = cluster-id; 

Steps 2-3 impose an ordering on the seeds for entering into the seeds-list. 

Steps 4-5 cause expansion of the cluster. The ordered expansion process of 

a cluster iteratively deletes an object from the seeds-list and performs ordered 

processing (steps 1-5) for each deleted object until the list becomes empty, when 

detection of a cluster completes. 

This ordered expansion process has some important properties as presented in 

the lemmas to follow. In DBSCAN, unlabeled neighbours are inserted into the 

seeds-list in the order in which they are obtained. So already processed objects 

and candidate objects (waiting in the seeds-list to be processed) are intermixed in 

the same spatial region. In the discussions to follow we consider 2-dimensional 

objects for simplicity in graphical presentation, although the ideas are applicable 

to higher dimensions as well. 

Lemma 4 During ordered expansion process, already processed objects form a 

spatial region which is contiguous and non-overlapped with the region formed by 

candidate objects. 

Proof: When a cluster is first created by processing a core object 0, all its 

neighbours inside the circle of radius E become candidates to be processed next. 

Presently, there is only a single object 0 in the region of already processed objects, 

which is surrounded by the region formed by candidate objects. The region of 

already processed objects grows as candidates become processed and contribute 

some new candidates. Consider that the next object to be processed currently is p. 

Let, q be the object which has contributed p to the seeds-list i.e. p E Ne(q) and q 

is already processed. Let, s = dist(p, q). Draw a circle with radius s centered 
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at q. All objects inside the circle will be already processed objects, because 

according to the ordered expansion process, each object r inside the circle will be 

processed before p, which is lying on the circle, since dist(r, q) < dist(p, q). This 

contiguous region of already processed objects grows by one object after including 

the currently processed object p. So, the region will still remain contiguous after 

inclusion of the object p. 0 

At least one processed object is present in the neighbourhood of currently 

processed object. There is a maximum limit for the number of processed objects 

that may be present in the neighbourhood of currently processed object. 

Lemma 5 For uniformly distributed objects at most 50% neighbours in the 

neighbourhood of the currently processed object are already processed. 

Proof: Consider that 0 is the first core object detected for expanding a cluster. 

Ordered expansion procedure processes the objects one by one starting from the 

nearest neighbour of 0; initial few objects have less than 50.% already processed 

objects in their neighbourhoods at the time of processing them. Let the currently 

processed object p, lying on the circle Cl with radius E centered at 0 as shown 

in Figure 5.2, be the farthest object in the neighbourhood of object o. The 

neighbourhood of p is shown by circle C2. The area of intersection of the two 

circles (Nf ( 0) n Nf(p)) contains already processed objects. Using the formula for 

circular segmentl, the area of intersection [Wei] of the two circles is calculated 

to be 39% of the area of circle C2. Assuming uniform distribution of objects 

and m = INf(p)l, this region will contain 0.39m objects. Here, p is selected , 
such that the present region of already processed objects is small enough to be 

included inside the circle of radius Eo But as the cluster grows the region of already 

processed objects grows in size. Then the already processed objects and candidate 

objects in the neighbourhood of the currently processed object can be separated 

I A(R, d) = R2cos-1(dj R) - dJ(R2 - d2 ), R is the radius, d is distance of the segment from 

the center 
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Figure 5.2: Already processed objects within the neighbourhood of currently 

processed object p. 

with an arc of a circle of larger radius. When the cluster becomes bigger this 

boundary can be a straight line, in which case 50% of the neighbourhood of the 

currently processed object will be already processed. 0 

Proposed algorithm does not require that objects are uniformly distributed. 

It detects clusters that are reasonably homogeneous i.e. some amount of density 

variation is allowed within a cluster. Significant variation of density will cause 

separate clusters to be identified. Lemmas 4 & 5 provide us an approach for 

detecting density variations while a cluster is being expanded. The density of 

each of the already processed object is known as its density value was stored 

at the time of processing it. So, we can ensure that the density of the current 

object processed should not differ much with those of already processed objects 

in its neighbourhood, otherwise this current object should not be expanded i.e. 

previously unclustered objects found in its neighbourhood should not be added to 

the seeds-list. Below we formalize this homogeneity test. 
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5.3.2 Homogeneity test 

Let, p be the current object being processed and Lp be the list of already processed 

objects (wp ~ I, \:fp E Lp) present in the neighbourhood of p. The current 

object p is homogeneous to the region of already processed objects if the following 

conditions hold for each q E Lp : 

(5.1) 

Wq .f - > a2 2 Wq < Wp 
Wp 

(5.2) 

In the Inequalities 5.1 and 5.2 aI, a2 E (0,1] are two constants indicating allowed 

density difference limits within the neighbourhood of an object. The values of a1 

and a2 can be determined based upon an input parameter a as described below. 

Let us consider two contiguous uniformly distributed regions R1 and R2 as 

shown in Figure 5.3, such that R2 is a times denser than Rb with a > 1. The 

minimum density difference required for separating clusters is indicated by a. 

If the density difference is less than a, the two regions will be merged into a 

single cluster. Assume that the current object to be processed, p is located at 

the boundary of the two regions. Consider two objects q E R1 and r E R2 

such that dist(p, q) = dist(p, r) = E and p, q, r are in a straight line. Let, 

Wq = IN,(q)1 = m. Then, Wr = IN,(r)1 = am, and wp = INf(p)1 = (1 + a)~. 
Density of any object between q andp will be higher than m but less than (l+a)~. 

Similarly, density of each object between p and r will be higher than (1 + a) ~ 

but less than am. So, the objects between q and r form a transition (bordering) 

region containing objects with different densities. When a transition region is 

encountered cluster expansion in that direction may get stopped. A transition 

region may be encountered while going from a lower density region to a higher 

density one or from a higher density region to a lower density one. So, two 

different density factors 0::1 and 0::2 are needed to avoid order dependency. Values 
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Figure 5.3: Density variation pattern produced by two adjacent regions with 

different densities. 

of the two factors can be computed based on the object p. While expanding a 

cluster, if a lower density region is entered, the density difference limit between 

the density of the current object with any of the already processed objects in its 

neighbourhood, a 1 is computed as : 

wp ( 1 + a)~ 1 + a 
al = -= = --

Wr am 2a 
(5.3) 

Similarly, entering a higher density region, the density difference limit a2 is 

computed as : 

2 

1+a 
(5.4) 

The two factors a 1 and a 2 determines the allowed variation in local density within 

a cluster so that the density of the cluster can be called relatively homogeneous. 

Above, we have stated about the maximum density difference allowed for a 

single object to be called homogeneous to the region of already processed objects. 

To stop growth of a cluster in any spatial direction a non-homogeneous region of 

width at least E should be encountered in that direction. The following lemma 

establishes the idea. 
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Lemma 6 The growth of a cluster in any spatial direction is stopped if a non­

homogeneous region of width at least E is encountered in that direction. 

Proof: Referring back to Figure 5.3, object p is the current object being processed. 

Object p becomes non-homogeneous, if in the neighbourhood of p there is at least 

one already processed object that crosses the allowed density variation limit. Let, 

the region Nf.(q) n Nf(p) contain processed objects and wq/wp :s a2, causing 

object p to become non-homogeneous. Then p will not be expanded but growth of 

the present cluster can not be stopped by p alone. Since, there are some candidates 

for expanding the cluster lying after p and those candidates were contributed by 

the objects present between q and p when they were processed. These candidate 

objects form a region of width at most E, that is spread up to just before object 

T. To stop growth of the cluster in the direction of q to T, none of these objects 

should expand when processed. That is, each of these objects should become non­

homogeneous because of presence of some predecessors, lying between q and p, 

that have density difference greater than allowed limit. This will really be the case 

if the region between p and T (region R2 ) is denser than the region between q and 

p (region Rt} by a factor greater than a. 0 

From lemma 6 it becomes clear that a cluster extends beyond its expected 

boundary as some non-homogeneous objects (border objects) are also included 

in the cluster. It is because we are performing homogeneity test only on one 

part of the neighbourhood. We cannot test the remaining part simultaneously 

because density information of these objects will be obtained only when they are 

processed. Another problem is that the region of already processed objects falling 

in the neighbourhood of currently processed object may contain very few objects 

that may lead to the single linkage effect. To alleviate these two problems we 

impose the following requirements on the currently processed object. We call it 

cardinality test. 
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5.3.3 Cardinality test 

The number of already processed objects present in the neighbourhood of currently 

processed object should be within a certain minimum and maximum limits. The 

maximum limit is taken to be 50% of the neighbourhood size based on lemma 5. 

The volume of intersection of two d-dimensional hyper spheres with radius E 

situated at a distance of E apart gives the minimum limit for d-dimensional data 

objects. The situation is shown for 2-dimensional data in Figure 5.2. The area of 

intersection for two circles is approximately 39% of the area of a circle. For 

two spheres the volume of intersection is approximately 31% [Wei]. As the 

dimension increases this volume decreases. We take the minimum limit to be 

1!d %, where dis the dimension of the data objects. Consider currently processed 

object p in Figure 5.3. Proceeding from q top i.e. going from lower to higher 

density, minimum possible number of already processed objects contained in the 

neighbourhood of p are 1~d· Similarly, proceeding from r top i.e. going from 

higher to lower density, maximum possible number of alre~dy processed objects 

contained in the neighbourhood of p is a:;. So, the two limits expressed as a 

fraction to the density of the currently processed object are 

m 

{3 l+d 
min = (1 + o:)~ 

arn. 

{3 2 
max = (1 + o:)~ 

2 

(1 + d)(1 + o:) 

0: 

1+o: 

5.3.4 Special treatment for the first core object 

(5.5) 

(5.6) 

The homogeneity test and cardinality test are not applicable to the starting core 

object of the cluster, as no objects of the cluster are processed before it. However, 

it must be ensured that the first object does not lie at the boundary of two widely 

differing density regions. In fact, it must not lie within a distance of E/2 from 

the boundary. Otherwise the two differing density regions will be merged into a 
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single cluster. Because, a non-homogeneous region of width at least E will not be 

encountered in that case to stop the growth of the cluster across the boundary as 

required by lemma 6. 

To avoid this problem we reject the outer neighbours of the first core object 

and enter into the seeds-list only those neighbours that lie within a radius of t:/2 

from the object. Cardinality test is also not applied while these few seeds are 

expanded. 

5.4 The Algorithm 

The steps in DDSC clustering algorithm are listed below. 

Algorithm DDSC 

Inputs: X, n, d, E, MinPts, a; 

Outputs: Cluster label for each of then object in X; 

Steps: 

01. Set cluster-id=O; 

02. FORp=l TOn DO 

03. {Set wp=-1; 

04. Set cp=-1; 

05. } 

06. Compute: 

ct: 1 = (1 + a)/(2 * n); 

a2 = 2/(1 +a) ; 

f3min = 2/((1 +d)* (1 +a)); 

!3max = a/(1 +a) ; 
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07. For p=1 TO n DO 

08. {IF (cp == -1) THEN 

09. {Find Nt(p); 

10. Set wp = INt(p)l; 

11. IF (wp < MinPts) THEN 

12. Set cp=O; II noise object 

13. ELSE 

14. {Set cluster-id=cluster-id+1; 

15. Set cp=cluster-id; 

16. Find R = {q I q E Nt(p) , dist(p, q) <= E/2, cq = -I}; 

17. Append list R to seeds-list; 

18. Set m = IRI; 
19. FOR i=1 TO m 

20. {Delete an object q from seeds-list; 

21. Set Wq = IN.(q)1 

22. Perform ordered-processing for object q; 

23. } IIEND FOR 

24. WHILE (seeds-list is NOT EMPTY) DO 

25. {Delete an object q from the seeds-list; 

26. Set Wq = IN,(q)l; 

27. IF (wp >= MinPts) THEN 

28. IF (homogeneity-test(q, cd, a2) succeeds) THEN 

29. IF (cardinality-test(q, {Jmin, {Jmax) succeeds) THEN 

30. perform ordered-processing for q; 

31. END IF; 

32. END IF; 

33. END IF; 

33. } II END WHILE 

34. } II END IF 
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35. } II END IF 

36. } II END FOR 

37. END DDSC; 

5.4.1 Complexity analysis 

The most time consuming part of the algorithm is the neighbourhood queries. The 

neighbourhood size is expected to be small compared to the size of the dataset. So, 

the different tests performed on the neighbourhood will not consume much time. 

While expanding a cluster the list of newly contributed seeds by each object of the 

cluster need to be sorted. For all objects only a small fraction of the neighbours 

become new seeds, whereas some objects contribute no new seeds at all. Sorting 

the lists will not consume much time as the size of the list to be sorted is small. 

The time required for a neighbourhood query is 0 (log n) by using a spatial access 

method such as R *-tree. Neighbourhood query is performed for each of the n 

objects in the dataset. So the run time complexity is O(n log n). 

5.5 Experimental Results 

In this section we evaluate the performance of the DDSC and compare the result 

with CHAM E LEO Nand S N N algorithms. We implemented the algorithm 

in C++. Experiments were conducted on a 1.66 GHz HCL laptop with 512 MB 

RAM running LINUX operating system. 

Synthetic datasets are used in the experiments. The CHAM E LEO N 

datasets - t4.Sk.dat, t7.10k.dat, tS.Sk.dat and t5.Sk.dat, used in [KHK99] are 

downloaded from [gla]. We have created two dataset - Datasetl shown in 

Figure 5. J and Dataset2 shown in Figure 5.4. Datasetl contains 24000 objects 

arranged in three nested circular regions, the middle region being twice as much 
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Figure 5.4: Dataset2 

denser than the neighbouring ones. Dataset2 contains 8100 objects. Four 

triangular regions and a rectangular region are generated such that a region is 

at least two times denser than the neighbouring regions. These can be visualized 

in the upper part of the figure. Local density variations are present within each 

region. Two regions are produced using Gaussian density generator. 

The clustering results for Datasetl and Dataset2 are shown in Figures 5.5 

and 5.6. Different colours are used to indicate the clusters. It can be seen from 

the figures that the circular, triangular and rectangular clusters are extracted based 

on differences in densities although they are not separated by sparse regions. The 

three nested clusters with different densities in Datasetl are properly extracted. 

Bigger portions of the Gaussian clusters in Dataset2 are also detected, which 

means that inside a cluster the local densities may gradually change within limits, 

bigger changes prevent the expansion of the clusters. 

Figures 5.7-. 5.10 show clustering result of our algorithm on 

CH AM ELEON datasets : t4.Sk.dat, t7.l0k.dat, tS.Sk.dat and t5.Sk.dat 

respectively. Clusters with different sizes, shapes and densities are 

_ extracted and noises are discarded. Similar results were reported for 

CHAM E LEO N [KHK99] and S N N [ESK03] algorithms. 
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Figure 5.5: Result on Dataset! 
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Figure 5.6: Result on Dataset2 
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Figure 5.7: Result on t4.8k .dat 
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Figure 5.8: Result on t7.10k.dat 

Figure 5.9: Result on t8.8k.dat 

Figure 5.10: Result on t5.8k .dat 
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5.5.1 Discussion on Parameters 

We have performed several experiments on the datasets to study the effects on 

changing values of the parameters a, 10 and MinPts. It is observed that, the 

proposed algorithm is less sensitive to the input parameters 10 and M inPts. For 

example, DBSCAN produces the clustering result shown in Figure 5.8 for the 

dataset t7.10k.dat with 10 values in the range [5.7, 6.1] and Minpts=4 only. 

It shows that accuracy of result of DBSCAN depends on proper selection of 

parameter values within a narrow range of possibility. But proposed algorithm 

produces this result for 10 in the range [13.0,17.0] and MinPts in the range [4, 

29]. For increased values of MinPts, some very small clusters may be treated 

as noise. For example the result for t7.10k.dat with MinPts=29 and 10=17 is 

shown in Figure 5.11. Here the smaller clusters found in Figure 5.8 are not 

present. If value of a is increased significantly allowing more density variations, 

adjacent clusters may be merged together. On the other hand significant decrease 

in a value, increases the number of clusters as bigger clusters are broken down. 

Smaller change in a values does not cause noticeable change in the detected 

clustering structure. Thus DDSC algorithm offers a wide range for choosing the 

parameter values, increasing the scope of getting correct result even if parameter 

values are not selected very carefully. 

We have repeated the above mentioned experiments several times, each time 

the objects of the dataset are shuffled randomly. The results produced the same 

set of clusters except changes in cluster memberships of a few bordering objects. 

All these results show that our algorithm can find clusters with variable sizes, 

shapes, and densities. Noises are also properly separated. 
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Figure 5.11: Result on t7.10k.dat with increased MinPts 
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Part III 

Clustering Categorical Data 

We have developed a scalable, subspace based algorithm for clustering high­

dimensional categorical data. The algorithm is presented in Chapter 6. 



Chapter 6 

CatSub: Clustering Categorical 

Data Based on Subspace 

6.1 Introduction 

Many algorithms [And02] have been developed for clustering numeric data, based 

on the use of similarity measures that exploit inherent geometrical structures of 

numeric data. Comparatively lesser number of studies have focused on clustering 

categorical data, where the domains of the individual attributes are discrete 

valued and not naturally ordered and therefore distance functions are not naturally 

defined. Moreover, categorical datasets are generally high dimensional. Most of 

the common clustering algorithms fail to perform efficiently and accurately for 

high dimensional data, because such dataset do not exhibit clusters over the full 

set of dimensions. Many of the dimensions are often irrelevant or correlated and 

different clusters may have different subsets of relevant dimensions. Subspace 

clustering algorithms [PHL04] find a subset of relevant dimensions for each 

cluster. Subspaces of different clusters are almost always allowed to be 

overlapping. Some algorithms allow the clusters to be overlapping, while others 

68 



find a set of disjoint clusters that cover the entire dataset. Some algorithms also 

detect outliers, which are the objects that do not belong to any of the clusters. 

This chapter presents our algorithm named Cat Sub (Clustering Categorical 

Data Based on Subspace) to efficiently cluster large, high dimensional datasets 

containing categorical attributes. We define a similarity measure and a searching 

strategy to find relevant subspaces and corresponding clusters. Outliers, if any, 

are detected along with the set of disjoint clusters. The proposed algorithm scales 

well to larger datasets as it requires only a single scan of the dataset which need 

not be stored in main memory. 

6.2 Related Works 

Huang [Hua98] proposed the k-modes algorithm to tackle the problem of 

clustering large categorical datasets in data mining. The k-modes algorithm 

extends the k-means algorithm by using a simple matching dissimilarity measure 

for categorical objects, modes instead of means for clusters, and a frequency based 

method to update modes in the clustering process to minimize the clustering cost 

function. However, due to non-uniqueness of the modes the clustering results 

depend strongly on the selection of modes during the clustering process. 

C ACTU S [GGR99] computes summary information from the dataset and 

use them to discover a set of candidate clusters which are then validated to 

determine the actual set of clusters. The algorithm uses two scans over the dataset 

and can find clusters in subsets of attributes. The disadvantage of this algorithm 

is the fast increase in running time when the number of dimensions grow. 

Guha et al. [RGS99] introduced ROCK, an adaptation of an agglomerative 

hierarchical clustering algorithm, which heuristically optimizes a criterion 

function defined in terms of the number of links between tuples. Informally, the 

number of links between two tuples is the number of common neighbours they 
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have in the dataset. Starting with each tuple in its own cluster, they repeatedly 

merge the two closest clusters till the required number of clusters remain. Since 

the complexity of the algorithm is cubic in the number of tuples in the dataset, 

they cluster a sample randomly drawn from the dataset, and then partition the 

entire dataset based on the clusters from the sample. 

ST I RR [GKR88] is a categorical clustering method, investigated in terms 

of certain types of non-linear dynamical systems, for assigning and propagating 

weights on the categorical values in a table. ST I RR highly depends on the choice 

of its combining operator, and it produces clusters that might require a heavy post­

processing stage. 

Squeezer is a scalable categorical clustering algorithm introduced 

in [HXD02]. The algorithm reads each tuple t in sequence, either assigns t to an 

existing cluster (initially none), or creates t as a new cluster, which is determined 

by the similarities between t and a cluster. Number of clusters created by the 

algorithm may grow faster making the algorithm slower. 

Barbara et a1. introduced COOLCAT [BCL02], a categorical clustering 

algorithm based on the idea of entropy reduction within the generated clusters. It 

first bootstraps itself using a sample of maximally dissimilar pairs from the dataset 

to create initial clusters. The remaining objects are then added incrementally. 

The authors propose to remove the wrong fitting points at defined times during 

the execution and re-clustering them. In [LM004] a Monte-Carlo procedure to 

find optimal partitions by minimizing an entropy-based criterion is presented for 

categorical data. 

The algorithm, CLICK [PZ04] is able to detect subspace clusters in 

categorical datasets. It finds clusters based on search method for k-partite 

maximal cliques. 

LI M EO [ATMS04] is a scalable hierarchical categorical clustering 

algorithm that builds on the information bottleneck(IB) framework for quantifying 
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the relevant information preserved when clustering. The IB framework is used to 

define a distance measure for categorical attributes and tuples. LIMBO handles 

large datasets by producing a memory bounded summary model for the data. 

The MU LIC [AAW04] algorithm offers major improvements over 

traditional k-modes algorithm, so that the results are more accurate. A 

preprocessing of the objects in the dataset is performed, that imposes an ordering 

of the objects. Each cluster consists oflayers formed gradually through iterations, 

by reducing the similarity criterion for inserting objects in layers of a cluster at 

different iterations. 

A technique, SU BC AD (SUBspace Clustering for high Dimensional 

Categorical Data) is presented in [GW04]. An objective function is used to 

determine the subspace associated with each cluster. A biclustering framework 

is proposed in [PRBOS] to compute a bi-partition from collections of local 

patterns which capture locally strong associations between objects and properties. 

A Subspace Clustering Algorithm, PARTCAT [GWY06] proposes a neural 

network architecture for clustering high dimensional categorical data. 

6.3 Problem Formulation 

The dataset to be clustered, X = {Xl, X 2 , ..• , Xn} contains n objects, each 

described by d categorical attributes All A2 , ••• , Ad having finite and discrete 

valued domains D1 , D2 , ... , Dd respectively. For each i (1 ::; i ::; n) and for 

each j (1 ::; j ::; d) let, Xij be the j-th component of object Xi and Xij take on 

one of the possible values defined in domain Dj of attribute A j . Each object is 

represented as 

(6.1) 

Let, the i-th and k-th objects be such that 0/j E {I, 2, ... ,d} Xij = Xkj) i.e. 

the two objects have a common value in each of the attributes. We call an attribute 
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having a common value over a set of objects to be a matching attribute. Ideally, 

all attributes in a cluster should be matching attributes. In real life situations, all 

the attributes may not be equally important for determining cluster membership 

of an object. Thus in a cluster only a subset of attributes may be matching 

attributes. Minimum number of such matching attributes (M inAtt) needed to 

form a cluster can be specified. A cluster should also contain at least MinObj 

number of objects. Two clusters may have the same set of matching attributes with 

differing matching values. It means that the matching value should be indicated 

along with a matching attribute. Let, a set of matching attribute and value pairs be 

represented by the set: 

M A V = {(j , v) I j ~ {I, 2, ... , d}, v E D j } (6.2) 

The set M AV together with the set of objects T ~ {I, 2, ... , n} represent a 

cluster C, which is the set: 

C = {T, MAV} (6.3) 

There is no overlap between the objects of any two clusters, but the subspaces 

consisting of matching attributes may overlap. If Cl.T and C2 .T denote the set 

of objects in any two of the set of clusters the dataset is partitioned into then 

Cl.T n C2 .T = <P. 

Example: Consider a small dataset shown in Table 6.1 with seven objects 

defined over five attributes A, B, C, D and E. The domains for the attributes 

are respectively, Dl = {aI, a2, a3}, D2 = {bI, b2}, D3 = {el, c2, c3, c4}, 

D4 = {dI, d2, d3} and D5 = {eI, e2}. Clusters Cl and C2 can be identified in 

the dataset with parameters MinAtt = 2 and MinObj = 3: 

C1 = {T = {I, 2, 4},MAV = {(2,b2), (3,c4), (5,e2)}} 

C2 = {T = {3, 5, 7}, M AV = {(I, a3), (2, bI), (3, c2)}} 

Let us consider a new object (8-th in the dataset) with the values 

(aI, b2, c3, dI, e2). This object can be inserted into cluster Cl so that after 
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Table 6.1: A sample dataset 

Serial no. A1 A2 A3 A4 A5 

a3 b2 c4 dl e2 

2 a2 b2 c4 d3 e2 

3 a3 bl c2 dl el 

4 a2 b2 c4 dl e2 

5 a3 bl c2 d3 el 

6 al b2 cl d2 e2 

7 a3 bl c2 d2 el 

insertion of the object the cluster becomes, 

C1 = {T = {1, 2, 4, 8}, M AV = {(2, b2), (5, e2)}} 

Notice that after inserting the new object the number of matching attributes for C1 

get reduced to 2 which is still not less than MinAtt. If MinAtt > 2, the object 

can not be inserted in cluster C1. 

6.4 Proposed Algorithm 

The proposed algorithm CatSub finds a set of disjoint clusters and outliers that 

cover the given dataset. A single-pass incremental algorithm is developed without 

the need of storing the data objects in main memory. Clusters are determined 

by the subspaces of matching attributes. It is expected that the clusters found 

should be of bigger sizes having more objects as well as attributes. Finding such 

clusters in noisy high dimensional data is a difficult job. A strategy is provided 

here to find the subspaces and the corresponding clusters in an optimal way. The 

strategy is based on defining a similarity measure sim( C, C') of a cluster C' with 

another cluster C so that C' can be merged with C if found similar. For measuring 
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similarity between a cluster C and an object t a cluster C' is created with t such 

that: 

C' = {T = {t}, M AV = {(I, Xtl), (2, Xt2), ... , (d, Xtd)}} (6.4) 

In general, the cluster C' will be a temporary cluster which has not collected the 

required number of objects to be recognized as a permanent cluster, while the 

cluster C is an existing cluster. Therefore, the function sim( C, C') need not be 

symmetrical. The subspace based similarity function is given below. 

sim(C, C') = { 0 
m - MinAtt + (2.o+IC.;.}Avl-m) 

ifIC.MAVI- m ~ 8 

otherwise 

(6.5) 

where, m = IC.MAV n C'.MAVI is the cardinality of the set of matching 

attributes that remains if C' is merged with C. The expression (IC.M AVI - m) 

in Equation 6.5 computes the reduction in number of matching attributes after the 

merger. This reduction should be less than a specified threshold, 0, otherwise the 

similarity value returned should be set to zero. The lesser is the reduction, the 

higher will be the value of the fractional part of the similarity measure indicating 

more similarity. 

A simple incremental clustering algorithm reads each object t in sequence, 

inserts t in an existing cluster based upon the similarity between t and the clusters 

or a new cluster is created with t if it is not similar enough to be inserted in any 

one of the existing clusters. This procedure may create a large number of smaller 

clusters making the algorithm slower. The problem becomes more prominent in 

datasets containing outliers. So, outliers handling procedures are needed. 

6.4.1 Outlier handling 

Besides a set of valid clusters the algorithm also creates an extra Outliers cluster 

containing outlier objects. Initially a cluster is created with a singe object in it. 
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As similar objects are inserted the number of object', in the cluster may cross 

the minimum number of objects (MinObj) limit, otherwise it will be merged 

with Outliers cluster. In order to prevent outliers from occupying space and 

consuming search time, we create three different lists of clusters - C andidateList, 

Cluster List and ExtraList. Elements of each list are clusters as defined 

by Equation 6.3. Creating the three different lists also helps in finding larger 

subspaces by gradual reduction of the similarity threshold. Unlike Cluster List 

that can grow to any size, CandidateList and ExtraList are of fixed size as 

specified by the parameter M axSize. At the beginning of clustering all the lists 

are empty. The similarity threshold 6 defined in Equation 6.5 takes on three 

different values - 61, 62 and 63 for inserting an object in a cluster present in 

Cluster List, CandidateList and ExtraList respectively. The three thresholds 

take low, medium and high values in the range [1, d), where d is the number of 

attributes. An object read from hard disk is first tried for insertion in a cluster 

present in Cluster List with similarity threshold 61 allowing for a small or no 

decrease in the number of matching attributes. If the object" could not be inserted 

in Cluster List, then Candidate List is tried with threshold 62, which assumes a 

value less than say 30% of d with a minimum value of 1. Failure in inserting again 

will invite ExtraList for trial with a very loose threshold value 63 allowing for 

much higher decrease in the number of matching attributes. Maximum possible 

value is 63=d - MinAtt. If the object could not be inserted in a cluster in 

ExtraList also, a new cluster is created with the object and it is inserted in 

CandidateList. When Candidate List becomes full, a cluster in it is transferred 

to ExtraList to make room for the new cluster. If ExtraList also becomes 

full with transferred clusters a cluster is removed from it and merged with the 

Outliers cluster. Whenever an object gets inserted in a cluster, present in either 

CandidateList or ExtraList, the number of objects in the cluster should be 

examined. If it collects M inObj objects the cluster is transferred to Cluster List, 

which is the list of valid clusters. 
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After all the objects in the dataset are processed, detected clusters are found in 

the Cluster List. At this time, CandidateList and ExtraList may contain some 

clusters with number of objects less than MinObj. Now, an attempt is made to 

merge each of those clusters with the best fit cluster in Cluster List using the 

loose threshold 53. If the merging is not possible, the clusters are merged with the 

Outliers cluster. 

The proposed algorithm is presented below. 

Algorithm CatSub 

Inputs: X, n, d, MinAtt, MinObj, MaxSize, 51, 82, 83; 

Outputs: The list of valid clusters found in Cluster List and Outliers cluster; 

Steps: 

01. Initialize Cluster List, CandidateList and ExtraList to NULL; 

02. FOR i=l ton DO 

03. {x=X.getNextObject(); 

04. index=ClusterList.findBestCluster(x, MinAtt, 51); 

05. IF (index!= NULL) THEN 

06. ClusterList[index].merge(i, x); 

07. ELSE 

08. {index=CandidateList.findBestCluster(x, MinAtt, 82); 

09. IF (index !=NULL) THEN 

10. { CandidateList[index].merge(i; x); 

11. IF (sizeof(CandidateList[index].T) == MinObj) THEN 

12. Transfer cluster CandidateList[index] to Cluster List; 

13. } 

14. ELSE 

15. {index=ExtraList.findBestCluster(x, MinAtt, 53); 

16. IF (index!= NULL) THEN 
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17. {ExtraList[index].merge(i, x); 

18. IF(sizeof(ExtraList[index].T) == MinObj) THEN 

19. Transfer cluster ExtraList[index) to Cluster List; 

20. } 

21. ELSE 

22. {C==createClusterStructure( i, x); 

23. Insert cluster C in CandidateList; 

24. IF (sizeof(CandidateList) == MaxSize) THEN 

25. {Transfer the oldest cluster in CandidateList to ExtraList; 

26. IF (sizeof(ExtraList) == MaxSize) THEN 

27. Merge the oldest cluster from ExtraList with Outliers; 

28. } Ilend IF 

29. } Ilend IF 

30. } Ilend IF 

31. } Ilend IF 

32. } Ilend FOR 

33. FOR each cluster C in CandidateList DO 

34. {index=Cluster List.findBestCluster( C, 83); 

35. IF (index !== NULL) THEN 

36. ClusterList[index].merge(C); 

37. ELSE Outliers.merge(C); 

38. } Ilend FOR 

39. FOR each cluster C in ExtraList DO 

40. {index=ClusterList.jindBestCluster(C, 83); 

41. IF (index !== NULL) THEN 

42. ClusterList[index].merge(C); 

43. ELSE Outliers.merge(C); 

44. } Ilend FOR 

45. END CatSub. 
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An object read from the dataset is inserted in an existing cluster returning 

the maximum sim value defined in Equation 6.5. The searching is done by 

the function findBestClusterO and the procedure mergeO inserts the object 

in the best cluster found. If an object cannot be inserted in anyone of the 

existing clusters in Cluster List and after loosening the similarity threshold in 

Candidate List and ExtraList, a new cluster structure is created as defined in 

Equation 6.3 and it is inserted in CandidateList. When CandidateList becomes 

full due to its fixed size, the oldest cluster in it is transferred to ExtraList to make 

room for the new cluster. Instead of searching for the oldest cluster a pointer can 

be maintained to point to the clusters in a round robin manner and the cluster 

pointed to by it can be transferred. ExtraList is also dealt with in a similar 

manner. 

6.4.2 Complexity analysis 

The algorithm requires only one pass through the dataset to produce a set of 

clusters. Number of comparisons required for each object is proportional to the 

number of clusters(c) already existing in Cluster List, since at most M axSize 

(a constant) comparisons are needed for each of CandidateList and ExtraList 

which are small in size. Therefore, the maximum time complexity becomes, 

O(nc), where n is the total number of objects in the dataset. It is expected 

that large datasets also possess large clusters causing c to be smaller. For each 

cluster the (Attribute, value) pairs are stored in main memory. Size of the 

(Attribute, value) pairs depends upon the number of attributes (d). Therefore, 

space complexity is O(cd). 
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6.5 Experimental Validation 

Experimental evaluation of our algorithm is performed with some of the 

commonly used real-life datasets available in the VCI Machine Learning 

Repository [BM98]. The selected datasets have labeled objects i.e. they are 

already classified into some c1asses(c1usters). We attempt to recover those clusters 

for measuring the accuracy of the algorithm. The results are compared with 

results reported by other algorithms such as k-modes [Hua98], ROCK [RGS99], 

SU BC AD [GW04] etc. for the same datasets. We implemented the algorithm 

in C++. As our algorithm produces a set of disjoint clusters, the clusters can be 

considered to be defined over the full set of attributes. So, we have not reported 

the subspaces which has caused the discovery of the clusters. Experiments were 

conducted on a 1.66 GHZ HCL laptop with 512 MB RAM running LINUX 

operating system. 

6.5.1 Accuracy calculation of clustering results 

A commonly used measure for evaluating the quality of a clustering result is the 

clustering accuracy(r). It is defined in [Hua98] as follows: 

1 k 

r = - 2:ai 
n i=l 

(6.6) 

where ai is the number of data objects occurring in both cluster i and its 

corresponding class, and k is the number of clusters obtained in a dataset with 

n objects. The clustering error e is defined as: e = 1 - r. 

6.5.2 Data sets 

The datasets used are described below: 
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• The Soybean (small) disease dataset has 47 instances, each being 

described by 35 attributes, all categorical. Each instance is labeled as one of 

four diseases: D 1, D2, D3 and D4. Except for D4, which has 17 instances, 

all other diseases have 10 instances each. 

• The zoo dataset. The database contains 101 animals, each of which has 15 

Boolean attributes and one categorical attribute besides animal name and 

type. The animals are divided into seven classes. 

• The Congressional votes dataset. This dataset contains the United 

States Congressional Voting Records for 1984. Each record contains a 

Congressman's votes on 16 issues( e.g. education spending, crime etc.}. 

All the attributes are Boolean("yes" or "no") with a few of votes containing 

missing values. We treated missing values as another domain value for the 

attribute. A classification field with the labels "Democrat" or "Republican" 

is provided for each record. There are 435 records, 168 Republican(R) and 

267 Democrat(D) instances. 

• Wisconsin breast cancer dataset. The Wisconsin breast cancer dataset 

has 699 records, each of which is described by 10 categorical attributes. 

There are 16 records that have missing values. Records are labeled with 

two classes - 458 Benign and 241 Malignant. 

• Mushroom dataset. It contains 8124 tuples, each representing a mushroom 

characterized by 22 attributes, such as color, shape, odor etc. Mushroom are 

classified as either poisonous (3916 tuples) or edible (4208 tuples). There 

are 2480 missing values. 

• KDD CUP 1999 Corrected Network Intrusion Data. The dataset 

contains 311029 data records, each representing a connection between two 

network hosts according to some well defined network protocol and is 

described by 41 attributes (38 continuous or discrete numerical attributes 
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and 3 categorical attributes) such as duration of connection, number of 

bytes transferred, number of failed login attempts etc. Each record was 

labeled as either normal or one specific kind of attack. There are 37 different 

attacks present in the dataset. We have converted the numeric attributes to 

categorical attributes by discretization (for example, taking logarithm to the 

base 2 of all numeric values). 

The datasets used are summarized in Table 6.2 

Table 6.2: Datasets used in the experiments. 

Datasets Objects Attributes Classes 

Soybean small 47 35 4 

Zoo 101 16 7 

Congressional Votes 435 16 2 

Wisconsin breast cancer 699 10 2 

Mushroom 8124 22 2 

KDD CUP Corrected 311029 41 38 

6.5.3 Result on soybean dataset 

The CatSub algorithm clustered the soybean small disease dataset into four 

clusters C1. C2, C3 and C4 . The dataset also contains four original classes 

Dl, D2, D3 and D4. The misclassification matrix of the result obtained is 

shown in Table 6.3. Parameter values used corresponding to the result are: 

Min0bj=4, MinAtt=20, o1=1, o2=8, o3=10. The algorithm is able to cluster 

the dataset with an accuracy of 0.99. Accuracies reported by k-modes [Hua98] 

and SU EGAD [GW04] for the same dataset are also shown in Table 6.4. 
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Table 6.3: Clustering result on soybean dataset. 

Clusters D1 D2 D3 D4 

c1 10 0 0 0 

c2 0 10 0 0 

c3 0 0 10 1 

c4 0 0 0 16 

Table 6.4: Accuracy on soybean dataset. 

Algorithm Accuracy 

CatSub 0.99 

k-rnodes 0.95 

SUBCAD 0.93 

6.5.4 Result on zoo dataset 

The zoo dataset is already classified into 7 classes. The misclassification matrix 

of the clustering result (parameter values used are: Min0bj=4, MinAtt=9, 

0"1=1, 0"2=1, 0"3=1) obtained by applying our algorithm on the dataset is 

shown in Table 6.5. Column headings label the existing classes in the dataset 

and row headings label clusters obtained. The accuracy achieved is r = 
36+ 20+ 5i

0
\ 3+0+8+B = 0.89. Li et al. [LM004) also reported clustering result for 

zoo dataset. It is reproduced in Table 6.6 for comparison. Accuracy obtained by 

the algorithm is 0. 79. 
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Table 6.5: The misclassification matrix of clustering result on zoo dataset. 

Clusters 1 2 3 4 5 6 7 

c1 36 0 0 0 0 0 0 

c2 0 20 0 0 0 0 0 

c3 0 0 5 0 4 0 0 

c4 2 0 0 13 0 0 0 

c5 3 0 0 0 ·o 0 0 

c6 0 0 0 0 0 8 2 

c1 0 0 0 0 0 0 8 

Table 6.6: The misclassification matrix on zoo dataset reported by Li et al. 

Clusters 2 3 4 5 6 7 

c1 32 0 0 0 2 2 

c2 0 20 0 0 0 0 0 

c3 9 0 1 0 0 0 0 

c4 0 0 0 13 0 0 0 

c5 0 0 0 0 0 0 0 

c6 0 0 0 0 0 6 0 

c1 0 0 4 0 2 0 8 

6.5.5 Result on congressional voting dataset 

We treated missing values in the congressional voting dataset as separate 

categories in the domains of the attributes and clustered the full dataset with 435 

records. Our algorithm detected the clusters shown in Table 6. 7 (parameter values: 

Min0bj=4, MinAtt=1, 81=1, 82=1, 53=1). Note that the third cluster is formed 
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with outliers. Accuracy obtained, excluding the outliers, is r = 15~7g24 = 0.91. 

Some algorithms like ROCK [RGS99] clustered 372 records of the dataset after 

eliminating records with missing values. Clustering result reported for ROCK is 

reproduced in Table 6.8. Accuracy of the result obtained is 0.93. 

Table 6.7: Clustering result on Congressional Voting dataset. 

Cluster Republican Democrat 

c1 156 37 

c2 2 224 

c3 10 6 

Table 6.8: Clustering result of ROCK on Congressional Voting dataset. 

Cluster Republican Democrat 

144 

5 

22 

201 

6.5.6 Result on Wisconsin breast cancer dataset 

Clustering result obtained for the breast cancer dataset is presented in Table 6.9. 

Parameter values used are: Min0bj==4, MinAtt==2, 81==1, £52==1, £53==1. The 

third cluster consists of outliers. Note that most of the records in this cluster 

belong to the Malignant class. The objects in Malignant class differ widely from 

one another, therefore the algorithm collected them into the Outliers cluster. In 

contrast the objects from the Benign class are separated into "the first two clusters 

of somewhat similar objects. Considering the third cluster as a valid one the 
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accuracy of the result obtained is 0.91. Gan and Wu [GW04] applied SU BC AD 

to cluster 683 records of the dataset after eliminating 16 records with missing 

values. They obtained an accuracy of0.87 with the result shown in Table 6.10. 

Table 6.9: Clustering result on breast cancer dataset. 

Cluster Benign 

359 

57 

42 

Malignant 

7 

12 

222 

Table 6.10: Clustering result on breast cancer dataset reported by SUB CAD. 

Cluster Benign 

4 

440 

6.5. 7 Result on mushroom dataset 

Malignant 

158 

81 

Our algorithm extracted 20 clusters (parameter values used: M in0bj=8, 

MinAtt=8, 61=1, 62=5, 63=8) from the Mushroom dataset. The result is shown 

in Table 6.11. All of the clusters are pure. The ROCK algorithm had reported 

21 clusters shown in Table 6.12. ROCK had found one impure cluster with 32 

edible and 72 poisonous mushrooms. 
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Table 6.11: Clustering result on Mushroom dataset. 

Clusters 1 2 3 4 5 6 7 8 9 10 

Edible 192 0 288 0 32 16 0 0 0 192 

Poisonous 0 1728 0 36 0 0 8 288 1296 0 

Clusters 11 12 13 14 15 16 17 18 19 20 

Edible 0 48 48 0 1728 0 0 768 0 896 

Poisonous 72 0 0 32 0 192 8 0 256 0 

Table 6.12: Clustering result by ROCK on Mushroom dataset. 

Clusters 1 2 3 4 5 6 7 8 9 10 11 

Edible 96 0 704 96 768 0 1728 0 0 0 48 

Poisonous 0 256 0 0 0 192 0 32 1296 8 0 

Clusters 12 13 14 15 16 17 18 19 20 21 

Edible 48 0 192 32 0 288 0 192 16 0 

Poisonous 0 288 0 72 1728 0 8 0 0 36 

6.5.8 Scalability test 

Execution time needed for each of the experiments are shown in Table 6.13. To 

ascertain the nature of scalability, execution times needed by CatSub algorithm 

to cluster first 50000, 100000, 150000, 200000, 250000, and 300000 records of 

the KDD CUP Corrected dataset are evaluated and plotted in Figure 6.1. The 

graph shows that the execution time tend to increase almost linearly. Most of 

the clusters obtained in each case were pure clusters containing either attack or 

normal records. We also computed the accuracy in retrieving attack or normal 

records and found that the accuracy is more than 0.94 in each case. 
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Table 6.13: Execution time for the datasets. 

Datasets Objects Attributes Classes Accuracy Time(s) 

Soybean small 47 35 4 1.00 0.00 

Zoo 101 16 7 0.90 0.00 

Congressional Votes 435 16 2 0.89 0.0 

Wisconsin breast cancer 699 10 2 0.92 0.01 

Mushroom 8124 22 2 0.99 0.22 
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Figure 6.1: Scalability of CatSub to the no. of records when clustering KDD CUP 

Corrected dataset. 

6.5.9 Discussion on parameters 

Although five parameters are used in the algorithm they are not difficult to 

determine. The parameter MinObj specifies the minimum number of objects 

for recognizing a cluster. Using a small value such as 4 or 8 is recommended 

if no domain knowledge is available to fix the value of the parameter. M inAtt 

specifies the minimum number of attributes over which all the objects in a cluster 
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should agree. It can have a value as small as 1. Most frequently the parameter 81 

should be set to 1. A value of zero can also be used to obtain tight clusters with 

larger number of matching attributes. The parameter 82 as well as 83 should have 

a minimum value of 1. Bigger values can be used if the dataset contains large 

number of attributes. In that case 82 should be less than 30% and delta3 should 

be less than 50% of total number of attributes. For low dimensional data the value 

for each of 01, 82 and 53 can be set to 1. 

Incremental algorithms generally become order dependent. The order 

dependency of our algorithm becomes minor due to use of the three parameters 

81, 82 and 83. The experiments mentioned above were repeated several times, 

each time the records are shuffled randomly. The results obtained did not differ 

much, which means that order dependency of the algorithm is minor. 

All the results presented suggest that the proposed algorithm can produce 

good quality results for small or large categorical datasets. 
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Part IV 

Clustering Mixed-type Data 

There are not many algorithms available for clustering datasets containing 

mixture of numeric and categorical attributes. In Chapter 7 we present an efficient 

new algorithm developed by us for clustering large high dimensional mixed-type 

datasets. The algorithm works based on entropy calculations of clusters using 

different methods for numeric and categorical attributes. 



Chapter 7 

SMIC: A Subspace Preferenced 

Mixed Type Data Clustering 

Technique 

7.1 Introduction 

Very often, real world databases contain both numeric and categorical attributes, 

requiring specialized algorithms to cluster such data. Some strategies [And73] for 

dealing with such problems are: 

1. Partitioning of attributes: Two parallel but separate analyzes can be 

performed, one based on numeric attributes and the other based on 

categorical attributes. Relative weighing of the attribute types and the 

joint or interactive effects between attributes would be of importance. A 

systematic and meaningful method of integrating such separate analysis is 

required. 
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2. Conversion of attributes: Attributes can be converted from one type to 

another. The choice of how to homogenize the set of attributes should be 

influenced strongly by which attribute type is the most numerous. 

3. Disagreement indices: It is necessary to equalize the attributes in some 

appropriate sense. The attributes can be equalized by attribute-by-attribute 

disagreement between data objects. When two data objects have identical 

responses on an attribute there is zero difference or disagreement between 

them. Within a finite dataset there is a maximum level of observed 

disagreement on any attribute. If the maximum disagreement is scored 

as one, then all disagreement on an attribute may be represented by a 

disagreement index ranging from zero to one. Disagreement on attributes 

of every type may be expressed in this manner. 

Using the third approach we present an efficient algorithm for clustering 

large high dimensional datasets containing mixture of categorical and numeric 

attributes. Disagreement between data objects for each attribute is measured 

by entropy computation. The algorithm can be used for clustering categorical 

datasets as well. Although the algorithm can be used for clustering datasets with 

numeric attributes alone it is not recommended, since nature of a numeric dataset 

is very much different than nature of a categorical or mixed-type dataset and our 

algorithm is specifically designed for mixed-type datasets. Important features of 

the algorithm are : 

• It provides a solution for the mixed-type attribute clustering problem. 

• It produces good quality results efficiently. 

• Use of subspace based similarity measure makes the algorithm suitable for 

clustering high dimensional datasets. 
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• The algorithm is scalable as it uses an incremental algorithm to group 

similar objects together using only a single pass over the dataset. Then 

clusters are merged hierarchically to produce desired number of clusters. 

• Outliers can be handled efficiently. 

7.2 Related Works 

The proposed algorithm can cluster datasets with mixture of categorical and 

numeric attributes as well as datasets with categorical attributes alone. The 

number of works available on mixed-type data is small. Some of them are 

mentioned below. Related works on some categorical clustering algorithms were 

presented in chapter 6. 

Huang [Hua98] extended the k-means algorithm to the k-modes algorithm to 

tackle the problem of clustering large categorical datasets in data mining. Further, 

Huang also combined the k-modes algorithm with the· k-means algorithm 

resulting in the so-called k-prototypes algorithm for clustering objects described 

by mixed numeric and categorical attributes. However, k-prototypes also produce 

locally optimal results like k-means. 

A clustering algorithm for mixed-type data was proposed by Le [LH03]. 

The algorithm chooses k number of largest sets from non-expandable strongly 

connected sets, which had been built by using breadth first search algorithm. The 

remaining objects are assigned to some clusters by testing the minimum distance 

of the object with all clusters. Problem with this algorithm is that it may produce 

less than k number of clusters initially. Also, some clusters are reprocessed. 

In [YTRC05], cluster ensemble approach based on divide-and-conquer 

technique is presented for clustering mixed type datasets. First, the original mixed 

dataset is divided into two sub-datasets : the pure categorical dataset and pure 

numeric dataset. Next, existing well established clustering algorithms designed 
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for different types of datasets are employed to produce corresponding clusters. 

Last, the clustering results on the categorical and numeric datasets are combined 

as a categorical dataset, on which the categorical data clustering algorithm is used 

to get the final clusters. 

An algorithm for clustering mixed type data is presented in [HXd]. It uses a 

CF*-tree to pre-cluster datasets. Then the dense regions stored in the leaf nodes 

are treated as single points and k-prototype algorithm is used to cluster such 

points. 

7.3 Problem Formulation 

For each individual attribute of the dataset, entropy is calculated and normalized 

to the range [0, 1]. Different methods are used for calculating entropy for numeric 

and categorical attributes. Computing a dissimilarity measure of individual 

attributes based on- normalized entropy values causes homogenization of the 

attributes. Then a subspace-based similarity measure is defined for an individual 

cluster. To achieve scalability in clustering large high dimensional datasets, an 

incremental method of clustering is to be used avoiding storage of the data objects 

in the main memory. Therefore, a cluster summary measure is defined based upon 

which the similarity of the cluster obtained by merging an object or another cluster 

to an existing cluster can be computed easily. A cluster structure is the ultimate 

data structure to be stored in the main memory. 

The given set ofn objects X = {Xl, X 2 , ... , Xn} is described by d attributes 

AI, A2 , ••• , Ad that may be either numeric or categorical. For each i (1 ::; i ::; n) 

and for each j (1 ::; j ::; d), Xij represent the j-th component of object Xi and 

Xij take on one of the possible values defined in domain D j of attribute Aj . An 

attribute Aj is categorical if its domain D j is discrete valued, ordered or unordered 

while Aj is numeric if its domain is continuous valued and ordered. An object Xi 
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will be represented by its object-id i and an attribute Aj will be represented by its 

attribute-id j so that a set of objects T ~ {I, 2, 3, ... , n} together with a set of 

attributes represent a subspace based cluster C. Each attribute Aj of a cluster C 

can be treated as a random variable taking a number of possible values defined in 

its domain D j. So, entropy of each attribute and hence entropy of a cluster can be 

computed. The dataset will be partitioned into a set of disjoint clusters and a set 

of outliers. 

7.3.1 Entropy 

Suppose that a probabilistic experiment involves the observation of a discrete 

random variable Y. Let, Dy = {Yl, Y2, ... , YT} is the set ofT possible values 

that Y can take on and probability ofY = Yi is Pyp 1 ~ i ~ T so that 

(7.1) 

It is assumed that all Py; are strictly greater than zero. Then entropy, Hy of the 

random variable Y, is to be interpreted as the average uncertainty associated with 

the events (Y = Yi). It is defined in [Ash90] as: 

T 

Hy = - LPy;lo92(Py,). (7.2) 
i=l 

Hy is a bounded variable. Its lower value is 0 and upper value is l092(T). The 

joint entropy ofm independent random variables Y1, Y2 , ..• , Ym is obtained as 

(7.3) 

7.3.2 Entropy of a categorical attribute 

Let the domain of a categorical attribute A j , 1 ~ j ~ d be represented as : 

(7.4) 
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where, Vjk denotes the k-th category and dj is the total number of categories in Dj 

i.e. dj = IDjl. Let, tjk( C) denote the frequency of occurrence of attribute value 

Vjk, 1 ::; k ::; dj in a given cluster C consisting of set of objects T, so that 

(7.5) 

Frequency of occurrence tjk divided by total number of objects in the cluster gives 

the probability Pjk of category Vjk, that is 

(C) 
_ tjk(C) 

pjk ---
nc 

(7.6) 

where nc = ITI denotes the total number of objects in cluster C. So, entropy of 

attribute Aj for the cluster C, denoted by H j (C) is computed as 

dj 

Hj(C) = - LPjk(C)l092(Pjk(C)). (7.7) 
k==l 

It is assumed here that 0 = l092(0). The maximum value that Hj(C) can attain 

is l092 (dj ). This value is achieved when all dj categories of the attribute Aj are 

present in the cluster with equal frequencies. This entropy is to be minimized for 

better clusters. 

7.3.3 Entropy for a numerical attribute 

A numeric attribute takes continuous values. Therefore, method of calculating 

entropy is somewhat different than for categorical attributes. Given a cluster C 

with nc objects, a numeric attribute Aj can be thought of as a random variable 

with nc possible values. Hence, entropy can be computed with nc probabilities 

as shown below. We assume that the dataset is preprocessed such that values 

taken by all numeric attributes are positive (nonzero) real numbers. Zero values, 

if present, can be replaced by a very small positive quantity less than all valid 

95 



values in the dataset. Let, 

sumj(C) = I: Xkj 

kET 

(7.8) 

represent the sum of the j-th attribute values of the set of objects (T) in the cluster. 

Probability of each value Xkj, k E T taken by j-th attribute becomes su::i(C) ' and 

hence entropy H j (C) is computed as : 

(7.9) 

The maximum value that Hj (C) can take is lOg2 (nc ). This value is attained when 

all of the nc values of the numeric attribute are the same. Which means that 

entropy is more when the data values are uniform and less when data values are 

more random. So, for better clusters entropy for numeric attributes need to be 

maximized. This is opposite to the entropy for categorical attributes where the 

entropy is to be minimized. 

7.3.4 Dissimilarity measure of a cluster 

Attributes are homogenized by computing dissimilarity measures for individual 

attributes based on normalized entropy values. Let, G j (C) indicates dissimilarity 

of j-th attribute in the cluster C. It is computed as, 

if Aj is categorical 

if Aj is numeric 
(7.10) 

The entropy computed for an attribute is divided by maximum possible entropy so 

that entropy of each attribute is normalized in the range [0,1]. Higher entropy of a 

categorical attribute indicates that the objects are more dissimilar, whereas higher 

entropy for numeric attributes indicate similar objects. So, to obtain a dissimilarity 

measure entropy of numeric attributes are subtracted from one. 
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Dissimilarity measure for a cluster C, G( C) is obtained by summing the 

dissimilarity measures for each attribute. That is 

d 

G(C) = L Gj(C). (7.11) 
j=l 

Dissimilarity measures need to be minimized for better clustering. 

7.3.5 Subspace based similarity measure 

We define the similarity measure, S( C) of a cluster to be the count of attributes 

for which the dissimilarity measures are nearly equal to zero : 

S(C) = I{ j I Gj(C) ~ E, j E {I, 2, ... , d}}1 (7.12) 

where, E is a very small quantity (for example 0.0001 ). 

7.3.6 Summary measures 

A cluster summary measure, 

F(C) = {Fl(C), F2 (C), (7.13) 

consists of attribute summary measures, Fj (C) for each of the d attributes. 

Summary measure of a new. cluster, obtained by merging two existing clusters, 

can be computed easily from the summary measures of the existing clusters. 

Summary measure for a categorical attribute 

Let, Fj (C) represents the summary measure of a categorical attribute Aj for a 

given cluster C. The attribute value frequencies defined in Equation 7.5 provide 

the required summary measure. That is, 

(7.14) 
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Summary measure Fj(Cp U Cq) for the merger of two clusters Cp and Cq is : 

Fj(CpUCq) = {tjl(Cp)+tj1 (Cq), tj2(Cp)+tj2(Cq), ... , tjdj(Cp)+tjdj(Cq)} 

(7.15) 

Summary measure for a numeric attribute 

Summary measure for a numeric attribute Aj in cluster C contains only two entries 

which are nothing but the sum and entropy of the attribute values defined by 

Equations 7.8 and 7.9 respectively. 

Fj(C) = {sumj(C), Hj(C)}. (7.16) 

Given the summary measures for two clusters Cp and Cq , summary measure 

Fj ( Cp U Cq ) is calculated as shown below. 

(7.17) 

h Z sumj(Op) d Z sumj(Oq) Th 
were, 1 = . (0 uO ) an 2 = . (0 uO ). us, sum] p q sum] p q 

(7.19) 

7.3.7 Cluster structure 

During the clustering process the cluster summary measure need to be maintained 

along with the list of objects, T ~ {I, 2, ... , n}. Total number of objects in 

the cluster (no) and similarity measure (8) can also be stored for computational 

efficiency. So creation of a new cluster C means the creation of the following 

structure: 

C= {no, 8, T, F} (7.20) 
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where S and F are given by Equations 7.12 and 7.13 respectively. 

Example: A sample dataset shown in Table 7.1 consisting of 8 records defined 

over five categorical and two numeric attributes. Domains of the categorical 

attributes are: D1 = {b, a}, D4 = {u, y, l, t}, D 5 = {g, p, gg}, D6 = {t, !} 

and D 7 = {g, p, s}. Domains of numeric attributes are positive real numbers. 

Consider a cluster consisting of three records (nc = 3) and T = {1, 4, 6}. The 

Table 7.1: A sample dataset. 

A1 A2 A a A4 A5 A6 A1 
b 19.40 0.75 u g t s 

b 21.17 0.25 y p f g 

b 17.50 22.00 1 gg t p 

b 19.17 0.01 y p s 

b 21.25 1.50 u g f g 

a 18.78 0.38 gg s 
b 33.67 1.25 u g f g 

b 26.75 4.50 y p f g 

cluster structure for this cluster is shown in Table 7.2. Summary measures F1, 

F4, F5, F6 and F7 for categorical attributes consists of two, four, three, two and 

three entries respectively as their domain sizes contain corresponding number of 

elements. The entries represent frequency of occurrence for each category in the 

domain. For example, the first entry(3) in F1 indicates that the first category(b) of 

domain D 1 occurs three times, while the second entry(O) indicates no occurrence 

for the second category( a) of the domain. F2 is a summary measure for numeric 

attribute. Its first entry stores the sum of the attribute values, 57.35 = 19.40 + 
19.17 + 18.78 and the second entry, 0.99992 represents the corresponding entropy 

measures for the attribute. Dissimilarity measures for the attributes are computed 
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to be G1 = 0.9182, Gz = 0.00002, G3 = 0.3781, G4 = 0.4591, G5 = 1.0, 

G6 = 0.0 and G7 = 0.0. Out of these values G 2 , G6 and G7 are less than 0.0001. 

So, similarity measure for the cluster S = 3. 

Table 7.2: Summary measure 

tobj s T F1 Fz F3 F4 F5 FB F1 

3 3 1 3 57.35 1.14 2 1 3 0 

4 0 0.99992 0.6219 0 1 0 0 

6 1 1 3 

0 0 

7.4 Proposed Algorithm 

The proposed algorithm can cluster large, high dimensional datasets consisting of 

a mixture of categorical and numeric attributes. For each attribute, the attribute 

type (AttType) and domain size (Asize) should be provided as input. Attribute 

type provides the information for selecting the appropriate method for computing 

entropy for an attribute. Memory space is reserved for storing a summary measure 

based on the domain size. Summary measure of a numeric attribute has only two 

entries. Therefore domain size entered for all numeric attributes should be 2. Two 

phases of clustering are used. In the first phase, an incremental algorithm places 

objects, read sequentially from the hard disk, into existing clusters (initially none) 

based upon subspace similarity. Then, a hierarchical algorithm in the second 

phase reduces number of clusters by hierarchically merging them until required 

number of clusters are produced. Outliers handling is done in both the phases. The 

same incremental algorithm presented in CatSub (refer Chapter 6) for clustering 

categorical data is also used here with new similarity measure, summary measure 
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and cluster structure. 

7.4.1 Incremental clustering 

The purpose of this step is to form initial clusters with objects which are highly 

similar over a subset of attributes. Subspace based similarity measure of a cluster, 

S, introduced in Equation 7.12 provides the number of attributes which have 

dissimilarity measure nearly equal to zero. A cluster should contain at least 

M inAtt number of such attributes, i.e. S 2 M inAtt for any cluster, where 

MinAtt is an input parameter. To achieve scalability each data object read 

sequentially from the hard disk is inserted on the fly in an existing cluster or a 

new cluster is created with the object. Inserting a new object in an existing cluster 

may decrease its S value, but this decrease should be less than a given threshold, 

S, otherwise the object should not be inserted in the cluster. Minimum possible 

value for S is zero and maximum possible value is total number of attributes(d) 

minus MinAtt. To determine the cluster, C, where an object x can be inserted, 

we define the following similarity function: 

{ 
S(C') 

sim(C,x) = 0 
if S(C) - S(C') ~ Sand S(C') 2 MinAtt 

otherwise 
(7.21) 

where, C' indicates the cluster obtained if object x is merged with C. The 

object will be inserted in the cluster returning the maximum nonzero sim value. 

A sequential search procedure is· used to find the best cluster.. Search space 

increases if outlier objects are allowed to create small clusters. To handle outliers 

three different lists of clusters - Cluster List, CandidateList and ExtraList 

are used. Initially all the lists are empty. If an object is not inserted in any 

of the clusters present in any of the three lists a new cluster is created with the 

object and the cluster is placed in the CandidateList. Maximum possible size 

for CandidateList and ExtraList are fixed at maxSize. When the Candidate 
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list becomes full, the oldest cluster in it is transferred to ExtraList to make room 

for the new cluster. If the ExtraList also becomes full with transferred clusters, 

the oldest cluster in it is removed and merged with Outliers cluster. Whenever an 

object gets inserted in a cluster, included in either CandidateList or ExtraList, 

the number of objects present in the cluster should be examined. If it collects 

MinObj ( say, 4) objects then the cluster is transferred to Cluster List, which 

is the list of valid clusters. Cluster List can grow to any size. The threshold 5 

defined in Equation 7.21 takes three different forms - 01, <52 and <53 for inserting 

an object in a cluster present in Cluster List, CandidateList and ExtraList 

respectively. The three thresholds take low, medium and high values in the range 

[0, d], where d is the number of attributes. An object read from the hard disk 

is first tried for insertion in a cluster in Cluster List with a very low value of 

threshold 51. If it is not inserted, then CandidateList is tried with threshold 52 

assigned a medium value (say, less than 30% of d with minimum value of 1). If 

not inserted again, ExtraList is tried with a very loose threshold <53 allowing for 

much higher decrease in S value. Maximum possible value is <53=d - M inAtt. 

If the object could not be inserted in a cluster in ExtraList also, a new cluster 

structure is created and inserted in CandidateList. 

7.4.2 Hierarchical clustering 

The first step may produce a large number of clusters. One may expect a 

reduced number of clusters or the number of clusters required (reqd) may be 

specified. Therefore, a bottom up hierarchical clustering technique is used to 

iteratively reduce number of clusters by merging the two least dissimilar clusters at 

a time until required number of clusters remain or maximum allowed dissimilarity 

measure (Gmax) of a cluster is crossed. Dissimilarity between a pair of clusters 

is measured using G (C), presented in Equation ( 7.11) as shown below. 

(7.22) 
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Final set of clusters are obtained when the hierarchical algorithm gets terminated. 

At this point an attempt is made for merging each of the sub clusters that remain 

in CandidateList and ExtraList with any one ofthe final clusters if maximum 

allowed dissimilarity threshold(Gmax) permits the merger, otherwise they are 

merged with Outliers cluster. 

The algorithm is presented below. 

Algorithm SMIC 

Inputs: X, n, d, MinAtt, MinObj, MaxSize, 81, 82, 83, {AttTypei, i = 

1, 2, · · · , d}, {Asizei, i = 1, 2, · · · , d}; 

Outputs: The list of valid clusters found in Cluster List and Outliers cluster; 

Steps: 

01. Set MaxSize=lOO, Gmax=0.5*d; 

02. Initialize Cluster List, CandidateList and ExtraList to NULL; 

03. FOR i=1 ton DO 

04. {x = X.getNextObject(); 

05. ClusterList.findBestCluster(x, MinAtt, 81, index, maxSim); 

06. IF (index!= NULL) THEN 

07. ClusterList[index].merge(x, i, maxSim); 

08. ELSE 

09. { CandidateList.jindBestCluster(x, MinAtt, 82, index, maxSim); 

10. IF (index !=NULL) THEN 

11. {CandidateList[index].merge(x, i, maxSim); 

12. IF (CandidateList[index].nC === MinObj) THEN 

13. Transfer cluster CandidateList[index] to Cluster List; 

14. } 

15. ELSE 
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16. {ExtraList.findBestCluster(x, MinAtt, 63, index, maxSim); 

17. IF (index != NULL) THEN 

18. {ExtraList[index].merge(x, i, maxSim); 

19. IF (ExtraList[index].nC == MinObj) THEN 

20. Transfer cluster ExtraList[index] to Cluster List; 

2l. } 

22. ELSE 

23. {C = createClusterStructure(x, i); 

24. Insert cluster C in CandidateList; 

25. IF (sizeof(CandidateList) == MaxSize) THEN 

26. {transfer the oldest cluster in Candidate List to ExtraList; 

27. IF (sizeof(ExtraList) == MaxSize) THEN 

28. Delete the oldest cluster in ExtraList and merge it to 

Outliers; 

29. } 

30. } 

3l. } 

32. } 

33. } Ilend FOR 

II Hierarchical Clustering 

34. NoOfClusters = sizeof(ClusterList); 

35. WHILE (NoOfClusters > reqd)DO 

36. {ClusterList.findMergePair(index1, index2, minDissimilarity); 

37. IF (minDissimilarity >= Gmax) BREAK; 

38. Cluster List[index1].merge( Cluster List[index2]); 

39. NoOfClusters = NoOfClusters -1; 

40. } 
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41. FOR each cluster C in Candidate List DO 

42. {Cluster List.findMinDissimilar( C, index, minDissimilarity); 

43. IF (minDissimilarity <= Gmax ) THEN 

44. Cluster List[index].merge( C); 

45. ELSE Outliers.merge(C); 

46. } 

47. FOR each cluster C in ExtraList DO 

48. { Cluster List. f indM inDissimilar( C, index, minDissimilarity); 

49. IF (MinDissimilarity <= Gmax) THEN 

50. Cluster List[index].merge(C); 

51. ELSE Outliers.merge(C); 

52. } 

53. FOR each cluster C present in Cluster List DO 

54. OUTPUT C.T; 

55. END SMIC. 

Details of the functions used can be derived from the description presented in 

Section 7.3. The function findBestCluster(;r;, MinAtt, 0, inde;r;, maxSim) 

returns the index of the best cluster where an object x should be inserted. 

It also returns- maxSim, the similarity value computed using Equation 7.21 

when the object gets inserted in the best cluster. The computation is based 

upon first computing subspace based similarity measure S as described in 

Equation 7.12. Actual insertion of the object into the cluster is done by the 

function merge(x, i, maxSim) which takes as input the object x, its serial 

number i and the computed maxSim so that the cluster summary measure can 

be updated. 
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7.4.3 Complexity analysis 

The algorithm requires only one pass through the dataset to produce a set of 

initial clusters. Number of comparisons required for each object depends upon 

the number of initial clusters (c) created. It is expected that large datasets also 

possess large clusters causing c to be smaller, as outliers are removed during 

clustering. Efficient implementation of the hierarchical clustering phase, as 

suggested in [And73], makes its complexity to be O(c2
). Therefore, the overall 

complexity becomes, O(nc + c2), where n is the total number of objects in the 

dataset. For each cluster the cluster structure is to be stored in main memory. 

Size of the cluster structure depends upon the number of attributes (d). Therefore, 

space complexity is O(cd). 

7.5 Experimental Validation 

We perform experimental evaluation of the S M I C algorithm using some datasets 

available in the UCI Machine Learning Repository [BM98]. The selected datasets 

have labeled objects i.e. they are already classified into some classes(clusters). 

Accuracy of our algorithm is calculated with respect to those known clusters. 

Besides mixed-type datasets categorical datasets are also used for evaluating the 

algorithm. Experiments are conducted by implementing the algorithm in C++ on 

a l.66 GHz HCL laptop with 512 MB RAM running LINUX operating system. 

7.5.1 Accuracy calculation of clustering result 

We use the clustering accuracy measure, r to evaluate the quality of the clustering 

algorithm. The clustering accuracy(exactness) measure is defined in [Hua98] as 
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follows: 

1 k 

T = - Lai 
n i=l 

(7.23) 

where ai is the number of data objects occurring in both cluster i and its 

corresponding class, k is the number of clusters and n is the number of objects in 

the dataset. Further, the clustering error e is defined as: e = 1 - T. 

7.5.2 Data sets 

The real life datasets used to evaluate performance of our algorithm on clustering 

datasets with mixed categorical and numeric attributes are described below. The 

categorical datasets used in Chapter 6 for testing CatSub algorithm are also 

used here to test the performance of the algorithm on clustering datasets with 

categorical attributes alone. Accuracy obtained by CatSub for each dataset is also 

reported along with accuracies obtained by SM IC so that the two algorithms can 

be compared. 

• The credit approval dataset contains mixed data. It has 690 instances 

each described by six numeric and nine categorical attributes. The instances 

are classified into two classes, approved(A) labeled as + and rejected(R) 

labeled as -.There are 37 instances having missing values on seven 

attributes. The dataset contains 307 approved instances and 383 rejected 

instances. We have removed 24 instances having missing values in numeric 

attributes as we have not used any method to deal with missing values in 

numeric attributes . 

• KDD CUP 1999 Corrected Network Intrusion Data. The 

dataset [UoC99] contains 311 029 data records, each representing a 

connection between two network hosts according to some well defined 
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network protocol and is described by 41 attributes ( 38 continuous or 

discrete numerical attributes and 3 categorical attributes ) such as duration 

of connection, number of bytes transferred, number of failed login attempts 

etc. Each record was labeled as either normal or one specific kind of 

attack. There are 3 7 different attacks present in the dataset. Total number 

of normal records is 60593, rest are attacks. 

7.5.3 Result on credit approval dataset 

The credit approval dataset contains both categorical and numeric attributes. 

Clustering result and accuracy obtained for this dataset are shown in Tables 7.3 

and 7. 4. The result is obtained with parameter values: M in0bj=4, M inAtt = 4, 

81=1, 82=4, 83=5, reqd=2. Accuracies reported by two other algorithms k­

sets [LH03] and k-prototypes [Hua98] are also included for comparison. 

Table 7.3: Clustering result on Credit approval dataset. 

Cluster Approved Rejected 

c1 211 92 

22 275 

Table 7.4: Accuracy on credit approval dataset. 

Algorithm Accuracy 

SMIC 0.83 

k-sets 0.83 

k-proto~pes 0.81 
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7.5.4 Result on KDD CUP Corrected dataset 

The algorithm is used to extract 40 clusters using the parameter values: 

MinObj=20, MinAtt=35, 81=1, 82=2, 83=5, reqd=39). The result is shown 

in Table 7.5. Our aim is to extract pure clusters that contain either attack records 

or normal records. It can be seen from the table that most of the clusters are pure 

clusters. Some attack records in the dataset are so similar to normal records that 

it is very hard to separate them. The 40-th cluster consists of outliers. We have 

set M inAtt value to be 35 which means that objects in a cluster are similar over 

as many as 35 attributes out of 41 attributes. As most of the normal records are 

not similar over so many attributes they are separated into the Outliers cluster. 

Some attack records also remains merged with the outliers cluster. To separate 

them the outliers cluster may be clustered again with a lower M inAtt value. The 

clustering accuracy becomes r=0.94. 

7.5.5 Result on soybean dataset 

We used the 8M IC algorithm to find four clusters in the soybean small disease 

dataset. The result obtained is shown in Table 7.6, where CiS are the cluster names 

produced by our algorithm, and Dl, D2, D3, and D4 are the names of the original 

classes. There is one to one correspondence between the disease classes and the 

clusters obtained, which means that the S M I C algorithm is able to cluster the 

dataset with 100% accuracy. Accuracies reported by some other algorithms, k­

sets [LH03] and k-modes [Hua98] and SUB CAD [GW04] for the same dataset 

are also shown in Table 7.7. Parameter values used to run the program are: 

MinObj=4, MinAtt=18, 61=1, 62=5, 63=10, reqd=4. 
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7.5.6 Result on zoo dataset 

The misclassification matrix of the clustering result obtained with MinObj=3, 

MinAtt=10, 51=1, 52=3, 53=4, reqd=7 is shown in Table 7.B. The column 

headings label the existing clusters in the dataset. A row-heading, Ci indicates a 

cluster obtained by our algorithm with row sum giving the total number of objects 

present in the cluster. The accuracy achieved is r = 37+20+0tO\3+4+8+9 = 0.90. 

Accuracy figure obtained by Cat Sub was 0.89. Li et al. [LM004] reported an 

accuracy of 0.82 for their method. 

7.5;7 Result on congressional voting dataset 

We have used reqd=2 in order to extract the two known clusters in the 

congressional voting dataset. The result obtained by clustering all the 435 

records of the dataset is presented in Table 7.9. Other parameter values used are: 

MinObj=3, MinAtt=3, 51=1,52=5,53=8. The third cluster consists of outliers. 

Accuracy obtained is r = 15~!;18 = 0.88. 

7.5.8 Result on Wisconsin breast cancer dataset 

Result obtained for the breast cancer dataset is presented 10 Table 7.10. 

Corresponding parameter values used are: MinObj=8, MinAtt=4, 61=1,52=2, 

83=2, reqd=2. Similar to the result obtained for CatSub (refer Chapter 6) the 

third cluster consist of outliers. We have considered it as a valid cluster because 

it signifies that the objects in Malignant class differ widely from one another, 

which separates them from the Benign class with somewhat similar objects. The 

dataset is clustered with an accuracy of 0.92 which is better than reported by other 

algorithms as shown in Table 7.11. 
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7.5.9 Result on mushroom dataset 

The dataset is clustered in order to obtain minimum number of clusters such that 

all clusters are pure. The result (parameter values used: MinObj=8, MinAtt=14, 

81:;: 1, 82=4, 83=8, reqd= 19) with 19 clusters is shown in Table 7.12 that includes 

one impure cluster containing 32 edible and 72 poisonous mushrooms. The 

ROCK algorithm had reported 21 clusters shown in Table 7.13 with the same 

impure cluster. All pure clusters are produced by 8M IC algorithm with 27 

clusters (the result is not shown here). 

7.5.10 Scalability test 

Execution times of 8M I C for each of the datasets used in the experiments are 

shown in Table. 7.14. To ascertain the nature of scalability, execution times needed 

to extract 20 cluster in first 50000, 100000, 150000, 200000, 250000, 300000 

and 311029 records of the KDD CUP Corrected dataset are evaluated and plotted 

in Figure 7.1. The graph shows that the execution time tend to increase almost 

linearly. The scalability of 8M I C can be compared with that of C at8ub presented 

in Figure 6.1. It is seen that C at8ub is faster than 8M I C. It is due to the fact that 

8M IC performs more computation in order to calculate the similarity measure 

and also it includes a hierarchical clustering phase. 

7.5.11 Order dependency and parameter sensitivity 

Incremental algorithms generally become order dependent. To test the order 

dependency of the algorithm we have repeated the above mentioned experiments 

several times, each time the records are shuffled randomly. Small difference in the 

results are noticed. It indicates minor order dependency for the algorithm. 

The main input parameters are M inAtt and 82. M inAtt has a wide range 

of input values. For example, M inAtt has the possible range [2, 22] for the 
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Figure 7.1: Scalability of S M I C to the no. of records. 

Mushroom dataset with 22 attributes. The same clustering result reported in 

Table 7.12 is obtained for any value of MinAtt in the range [2,16], with the 

other parameter 82 set to 4. Acceptable results are obtained for 82 in the range [2, 

6]. It was observed in all the experiments that 82 should be provided with a value 

which is less than 30% of the dimensionality of the dataset, minimum possible 

value being 1. In general value of 01 should be set to 1. 83 should be greater than 

or equal to 82. A value greater than 2 can be used for MinObj, typical values are 

4, 8. Larger values can be used if small clusters are not acceptable. 

It is clear from the results presented that the proposed algorithm can produce 

good quality results for small or large datasets with categorical or mixed type 

attributes. 
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Table 7.5: Clustering result on KDD CUP Corrected dataset. 

Cluster-no Normal Attack Cluster-no Normal Attack 

11625 9571 21 8851 0 

2 4 28910 22 0 249 

3 36 131178 23 0 3812 

4 0 1451 24 0 119 

5 0 61 25 0 259 

6 0 239 26 0 143 

7 0 359 27 0 124 

8 2 281 28 0 37957 

9 0 20 29 0 44 

10 2 5279 30 0 337 

11 53 107 31 614 0 

12 457 0 32 0 525 

13 0 22 33 0 180 

14 0 2403 34 0 84 

15 0 138 35 1888 0 

16 3369 0 36 0 92 

17 0 22 37 413 0 

18 155 0 38 0 195 

19 0 70 39 0 21 

20 0 16164 40 33124 10020 
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Table 7.6: Clustering result on soybean dataset. 

Clusters Dl D2 D3 D4 

c1 10 0 0 0 

c2 0 10 0 0 

c3 0 0 10 0 

c4 0 10 0 17 

Table 7.7: Accuracy on soybean dataset. 

Algorithm Accuracy 

SMIC 1.00 

k-sets 1.00 

CatSub 0.96 

k-modes 0.95 

SUB CAD 0.93 

Table 7.8: The misclassification matrix of result on zoo dataset. 

Clusters 1 2 3 4 5 6 7 

c1 37 0 0 0 0 0 0 

c2 0 20 1 0 0 0 0 

c3 4 0 0 0 0 0 0 

c4 0 0 3 13 0 0 0 

c5 0 0 1 0 4 0 0 

c6 0 0 0 0 0 8 1 

c1 0 0 0 0 0 0 9 
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Table 7.9: Clustering result on Congressional Voting dataset. 

Cluster Republican Democrat 

c1 155 43 

c1 9 218 

c2 4 6 

Table 7.10: Clustering result on breast cancer dataset. 

Cluster Benign Malignant 

c1 409 2 

c2 0 10 

c3 49 229 

Table 7.11: Accuracy on breast cancer dataset. 

Algorithm Accuracy 

SMIC 0.92 

CatSub 0.91 

SUBCAD 0.87 
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Table 7.12: Clustering result on Mushroom dataset. 

Clusters 2 3 4 5 6 7 8 9 10 

Edible 192 0 288 0 32 1744 0 0 192 48 

Poisonous 0 1722 0 36 72 0 1304 288 0 0 

Clusters 11 12 13 14 15 16 17 18 19 

Edible 48 0 0 0 765 518 96 186 99 

Poisonous 0 32 198 264 0 0 0 0 0 

Table 7.13: Clustering result by ROCK on Mushroom dataset. 

Clusters 1 2 3 4 5 6 7 8 9 10 11 

Edible 96 0 704 96 768 0 1728 0 0 0 48 

Poiionous 0 256 0 0 0 192 0 32 1296 8 0 

Clusters 12 13 14 15 16 17 18 19 20 21 

Edible 48 0 192 32 0 288 0 192 16 0 

Poisonous 0 288 0 72 1728 0 8 0 0 36 

Table 7.14: Execution time for the datasets. 

Datasets Objects Attributes Classes Accuracy Time(s) 

Soybean small 47 35 4 1.00 0.01 

Zoo 101 16 7 0.90 0.02 

Congressional Votes 435 16 2 0.89 0.2 

Credit approval 690 15 2 0.86 0.18 

Wisconsin breast cancer 699 10 2 0.92 0.27 

Mushroom 8124 22 2 0.99 4 

KDD CUP Corrected 311029 41 2 0.93 575 
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Part V 

Application Development 

Our techniques for solving two real life problems are the content of this part. 

Chapter 8 contains biclustering of gene expression data. A technique for network 

intrusion detection is presented in Chapter 9. 



Chapter 8 

Biclustering Gene Expression Data 

U sing ANode Addition Algorithm 

8.1 Introduction 

DNA microarray technology has made it possible to simultaneously monitor the 

expression level of thousands of genes during important biological processes and 

across collection of related samples. The samples may come from different tissues, 

organs, or individuals. The samples may also correspond to different time points 

or different environmental conditions. This kind of data, are arranged in a data 

matrix, where each row represents a gene and each column a condition. Each 

element ofthis matrix is a real number, which represents the expression level of a 

gene under a specific condition. 

It is not easy to interpret the meaning of huge amount of gene expression data. 

A first step towards addressing this challenge is the use of clustering techniques, 

which are essential for extracting correlated patterns and natural classes present 

in the data. Gene expression data clustering can be performed in two ways -

(1) grouping of genes according to their expression under multiple conditions; 
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(2) grouping of conditions based on the expression of a number of genes. 

However, many activation patterns are common to a group of genes only under 

specific experimental conditions. It is therefore desirable to develop a distinct 

type of clustering algorithm, known as biclustering, that performs simultaneous 

grouping of genes and conditions. Biclustering was first described in the literature 

by Hartigan [Har72]. Cheng and Church [CCOO], were the first to introduce 

biclustering in gene expression data analysis. They introduced the concept of 

mean squared residue score to capture the coherence of a subset of genes under 

a subset of conditions. The goal of biclustering is to find biggest volume ( the 

size of the bicluster in terms of number of entries) biclusters with lowest mean 

squared residues. Moreover, the row variance should be large enough to eliminate 

the trivial biclusters where the subset of genes do not have any fluctuation or have 

very little fluctuations. It has been proved that the problem of finding biclusters 

satisfying these criteria is NP-hard in general. 

A set of heuristic algorithms using the concept of node deletion/addition were 

designed by Cheng and Church [CCOO] to either find one· bicluster or a set of 

biclusters. The main drawback of their method is that discovered biclusters need 

to be masked with random values so that successive runs discover new biclusters. 

There exists substantial risks that these random numbers will interfere with the 

future discovery of biclusters, especially those cases that have overlap with 

discovered ones. Yang et al. [YWWY03] further developed the ideas of Cheng and 

Church by dealing with missing values in the bicluster. They introduced the FLOC 

algorithm to find several biclusters simultaneously. Many other biclustering 

algorithms [L002, KBCG03, ZTOT04] are proposed in the literature to perform 

gene expression data analysis. A survey of biclustering algorithms for biological 

data can be found in [M004]. 

We provide an efficient node addition algorithm to find a set of biclusters 

without the need of masking discovered biclusters. Use of incremental method 

of computing score makes the algorithm faster. Initialized with a gene and a 
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subset of conditions, a bicluster is extended by adding more genes and conditions 

until its score approaches delta or no more additions are possible. The method 

provides facility to study individual genes, besides generating a large number of 

biclusters with different initializations. Biclusters with lower or higher scores 

within a specified limit can be generated by parameter setting, thus increasing the 

scope for detecting interesting biclusters. If some smaller biclusters are found to 

be interesting they can be extended again and studied further. 

8.2 Problem Formulation 

The gene expression matrix with N rows and M columns is represented as: 

A= {aij•i=1,2, ... ,N,j=1,2, ... ,M} 

{Xi, i = 1, 2, ... , N} = {Yj, j = 1, 2, ... , M} 

Each entry aij in this matrix corresponds to the logarithm of the relative abundance 

of mRN A of gene Xi under a specific condition }j. The i-th gene and the j-th 

condition are given by Xi = {ail, ai2, ... , aiM} and }j = { a1j, a2j, ... , aNj}. 

The i-th gene Xi can be denoted by its label i only. Let, I ~ {1, 2, ... , N} is a 

subset of genes and J ~ {1, 2, ... , M} be a subset of conditions. We use Au 

or simply (I, J) to denote the sub matrix of A that contains only the elements aij 

belonging to set of rows I and set of columns J. For example, consider a sample 

expression matrix shown in Equation 8.1. For subset ofrows I = {1, 3, 5} and 

subset of columns J = {2, 4, 5, 7} the submatrix A1 J is shown in Equation 8.2. 

36 70 87 40 55 24 50 54 

52 14 56 19 22 57 89 99 

A= 84 80 76 50 65 71 60 30 (8.1) 

64 98 35 46 25 33 32 91 

27 70 93 30 45 66 40 40 
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AIJ = { ~~ :~ :: :~ } 

70 30 45 40 

(8.2) 

Such a submatrix AI 1 is called a bicluster. Given a gene expression data set, the 

problem is to extract biclusters that exhibit some form of homogeneity. The values 

of each row of the bicluster shown in Equation 8.2 are plotted using line graphs in 

Figure 8.1. It can be seen from the figure that values of the first and the second row 

rise and fall with complete coherence. All the rows are not completely coherent. 

Still it can be said that the bicluster is homogeneous to some extent. To measure 

this homogeneity we use MeanS quareResidue, which was originally used by 

Cheng and Church [CCOO]. The following notations concerning a bicluster AIJ 

are used here : 

60 
~ 
" ~ 

50 

40 

1strow-
2nd row ----•----
3rd row ·····•···· 

3QL--------+~------~------~ 

1 2 3 4 
Columns 

Figure 8.1: Coherence patterns in submatrix AI 1 

aiJ is the mean of the i-th row, 

aij is the mean of the j-th column, 

aiJ = IIIiJI LiEI,jEJ aij = 1}1 LiE! aiJ = 1j1 LjEJ aJj, is the mean of the 

sub matrix, 

X/ = { aij, j E J} is a row vector defined over set of columns J, 

C M 1 = { a1j, j E J} is the vector of column means, 
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RM I = {aiJ, i E I} is the vector of row means. 

Let t(X/) represents transformed row X( obtained by subtracting the row 

mean from the value of each element of the row, so that 

t(X() = {aij - ail, j E J} 

The coherence score between two rows xl and xt is defined as : 

J J 1 J J 2 C(Xi , X k ) = m(t(Xi ) - t(Xk )) 

I ~I L:(aij - aiJ - akj + akJ )2. 
jEJ 

(8.3) 

(8.4) 

A score of zero indicates complete coherence. Higher scores indicate more 

incoherence. For a bic1uster AIJ consider a fixed row that mayor may not belong 

to the bic1uster. Coherence score of each row of the bic1uster is the coherence 

score between the row and the fixed row. Let this fixed row be the column means 

vector, CMJ. The mean squared residue score for the i-th row Xi, denoted by 

H (i) is nothing but the coherence score between Xi and the column means vector 

CM J , so that: 

H(i) = C(X(, CMJ) = I~I (t(X/) - t(CMJ))2 

1 '" 2 -IJI 6(aij - aiJ - alj + aIJ) 
jEJ 

1 '" 2 1 2 m f;/Ti j ) = m(~) (8.5) 

where, Tij = aij - aiJ - alj + au, i E I, j E J is the residue of each element 

of the i-th row and R; = {Tij, j E J} is the row vector of residues. Note that 

Ri = t(xf) - t(CMJ). It can be shown easily that, 

L Tij = 0 and L rij = 0 (8.6) 
iEI jEJ 
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The mean squared residue score (or simply, score) H(1, J) ofa bicluster (1, J) is 

computed by taking the average of mean squared residue score of all rows of the 

bicluster. 

H(I, J) 
1 

TiT ~H(i) 

= III~JI. L (aij - aiJ - alj + aIJ)2 
1EI,)EJ 

(8.7) 

A bicluster (I, J) with mean squared residue score H(I, J) < 6 for some 6 > a 
is called a o-bicluster. The row variance of a bicluster (I, J) is defined as 

1 ~ 2 
V(I, J) = IIIIJI . ~ (aij - aiJ) 

1EI,)EJ 

(8.8) 

. Let H'(I, J) be the mean squared residue score ofbic1uster (I, J) computed 

with respect to a row vector ZJ -1= CMJ, that mayor may not belong to the 

bicluster. 

Lemma 7 H'(I, J) > H(I, J). 

Proof: Let, R~ = {r~j' j E J} be the row vector of residues corresponding to 

i-th row computed with respect to ZJ -1= CMJ and Ri = {rij, j E J} be the 

corresponding residue vector computed with respect to CMJ = {alj, j E J}. 

Let, W = {Wi, j E J} be a row vector such that: 

We have, 

So, 

R~ -Ri t(X/) - t(ZJ) - t(X/) + t(CMJ) 

t(CMJ) - t(ZJ) 

W 
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Hence, 

R~ = R; + W with {rL = rij + Wj, j E J} 

Now, 

.1 '" '" 2 2 IIIIJI ~ ~((rij) + 2rijWj + (Wj) ) 
tEl JEJ 

III~JI L L(rij)2 + III~JI I:?= 2rijWj + III~JI ?= Z)Wj)2 
tEl JEJ tEl JEJ tEl JEJ 

= H(I, J) + III21JI L rij I: Wj + I~I L(Wj)2 
iEI jEJ jEJ 

H(I, J) + 1~IZ)Wj)2 [since L rij = 0] 
jEJ jEJ 

H(I, J) + a positive quantity 

=> H'(I, J) > H(I, J) 

o 

8.2.1 Incremental computation of score 

Calculation of the mean squared residue score or simply the score of a bicluster, 

H(I, J) requires O(nm) effort, where n = III and m = PI. After adding a row 
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or a column to a bic1uster its new score can be computed from scratch requiring 

O(nm) effort again. But storing the present score, row means and column means, 

the new score can be computed easily by spending only O(m) or O(n) effort 

depending upon whether a new row or a new column is added. The procedure is 

described below. 

Consider a bicluster AIJ = (1, J) with mean squared residue score 

H(I, J), n = /I/, m = 11/. Let after adding a new row Xk(k rJ. 1), the new set 

of rows becomes I' = 1 U k. New column means vector CM,J = {a/lj, j E J} 

is computed from C Mas: 

Bic1uster mean for (I', J) is given by 

Score for the k-th row is computed as 

1 
H(k) = - I)akj - akJ - a/lj + a/IJ) 

m jEJ 

The new score of the bic1uster is computed by summing the score contributed by 

the new row akj, j E J, and the new score contributed by the old matrix (1, J), 

and then dividing the sum by (n + l)m. That is 

H(1', J) = mH(k) + mnH'(1, J) 
(n + l)m 

where, 

New score after adding a column can be computed in an analogous way. 
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8.3 Proposed Algorithm 

Given the expression matrix A and a threshold 8, a node addition algorithm is 

provided here to extract biclusters (<5-clusters) with mean squared residue score 

less than 8. It finds one bicluster at a time starting with an initial bicluster 

which is extended by adding more rows and columns. Different initialization will 

create possibly different biclusters. An incremental method of computing score is 

used. This requires the row means (RMJ), column means (CMI) and the score 

(H(I, J)) to be stored. In the algorithm presented below, it is assumed that these 

parameters along with the given expression matrix, aij, i E {I, 2, ... , N}, ] E 

{I, 2, ... , M}, the size of the bicluster (I, J) in terms of number ofrows (n) and 

columns (m) are global values. 

8.3.1 Initializing the cluster 

The initial bicluster (I, J) may be as small as a single row containing a subset of 

columns or it may be a large bicluster with the possibility of further extension. 

If not given as input, the initial biclusters may be created by randomly selecting 

a row t E {I, 2, ... , N}, and a subset of columns J, such that I = {t}, J ~ 

{I, 2, ... , ,M}, score = 0, CMJ = {atj,] E J}, RMI = {aiJ}. 

8.3.2 Extending the cluster 

An initial bicluster (I, J) with iIi = n, iJi = m and score « <5 is given. More 

rows and columns can be added to the cluster allowing the score to increase up 

to 8. First, row extension is performed keeping the set of columns fixed. Then 

column extension is tried, keeping set of rows fixed. Repetition of the two steps 

are needed to extract a bicluster. 

126 



8.3.3 Row extension 

A simple procedure for adding rows is to visit each row of the data matrix A, 

include it in the bicluster if the row is not included already and the score after 

inclusion still remains less than 8. This simple procedure may greedily insert 

some less coherent rows which greatly increase the score, thus preventing later 

inclusion of more rows. As a result biclusters with lesser volume will be obtained. 

To avoid this problem we can make one scan over A, compute new score for every 

possible insertion of a row that is not already included in the cluster and insert that 

particular row which causes the least increase in the score of the bicluster. This 

procedure will be very costly, since it inserts a single row in a complete scan over 

the data matrix. We adopt an intermediate procedure that adds several rows in a 

single scan so that fewer scans are needed to get a bicluster. A row passes through 

two screenings before being inserted in a cluster. 

8.3.4 First screening 

The column means of the initial bicluster before extension is stored in the 

row vector C M J. Coherence score of each row i with respect to C M J, i.e. 

C(X/, CMJ ) is computed. Ifthe C(X/, CMJ ) value is greater than a threshold 

e the row is not considered for addition. The value of e is computed from the 

value of 8 as e = a8, where a > 0 is another constant. Lower value of a leads 

to detection of more coherent biclusters with lower score, while higher value of 

a finds biclusters with higher score. 

127 



8.3.5 Second screening 

In the second screening the amount of increase in score is considered. A row is 

added only if increase in score satisfies the following condition : 

newscore - score :S <5 - newscore 

:::?- newscore :S (score+ o)/2 (8.10) 

Here, score and newscore respectively represent the present score and the new 

score obtained after including the row in the bicluster. The row extension procedure 

is given below. 

Procedure extendRow(B, o) 

Inputs: Data matrix, A= aij, i = l..N, j = l..M, bicluster (I, J) with score= 

H(I, J), column means CMJ = {a1j, j E J}, row means RM1 = {aiJ, i E I}. 

Outputs: New bicluster (I', J) with I' 2 I. 

Steps: 

1. for each row i E {l..N}, i ~ I repeat steps 2-10; 

2. ifC(Xf, CMJ) 2: B skip row i; 

3. I' = I U { i}; 

4. incrementally compute, newscore = H(I', J); 

5. if(newscore >(score+ 8)/2) skip steps 6-10; 

6. CMJ = {(n *ali+ aij)/(n + 1), j E J}; 

7. RM1 = RM1 U {aiJ}; 

8. I= I'; 

9. n = n + 1; 

10. score = new score; 

11. return; 
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8.3.6 Column extension 

A random subset of columns is used in the initial bicluster. So , J Jj may be as big 

as M. If JJJ < M column extension need to be performed. Column extension 

should not increase the score in greater amounts as number of columns is less 

compared to number of rows. Otherwise lesser scope will remain for adding more 

rows. A threshold J' ~ 8 is used for column extension. The procedure is given 

below. 

Procedure extendColumn(8') 

Inputs : Data matrix, A = aij, i = 1 .. N, j = 1 .. M, bicluster (I, J) with score = 

H(I, J),columnmeansCMJ = {a1j, j E J},rowmeansRM1 = {aiJ, i E I}. 

Outputs: New bicluster (I, J') with J' 2 J. 

Steps: 

1. for each column j E {l..M}, j tJ. J repe-at steps 2-9; 

2. J' = J u {j}; 

3. incrementally compute, newscore = H(I, J'); 

4. if (newscore > (score+ 8')/2) skip steps 5-9; 

5. RM1 = {(m * aiJ + aij)j(m + 1), i E I}; 
6. CMJ = CMJ U {a1j}; 

7. J = J'; 

8. m = m+ 1; 

9. score= newscore; 

10. return; 

To extract a bicluster a few calls to the extendRow() and extendColumn() 

procedures should be made after initializing it. First extendRow() procedure is 

called. If no extension is resulted a new initialization should be tried. A single 
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call to extendRow() procedure will detect a bicluster whose score may be far 

less than J. It is extended further by performing a column extension. Then 

repeated calls to extendRow() procedure can be made till there is no addition 

of rows. Practical execution shows that number of new rows added during later 

calls goes on diminishing and after a few calls row extension stops completely. 

Leaving a little scope for further expansion we may use only a single call to 

extendRow() procedure at this place. It need to be ensured that the cluster can not 

be extended without allowing the score to increase. So, calls to extendColumn() 

and extendRow() procedures should be made once again with J set to present 

score. According to lemma 7, these last calls will add columns or rows ( if any ) 

that will not increase the present score but will possibly decrease it. The complete 

procedure for extracting T('.5:. N) number of biclusters is given below. In the 

algorithm, the step 8 can be repeated until no addition of rows is possible. In that 

case biclusters with score nearly equal to J will be obtained. 

Procedure findBiclusters() 

Inputs : Data matrix, A = aij, i = l..N, j = l..M, score limit 8, constant a, 

constant T. 

Outputs: A set ofT biclusters with scores '.5:. 8. 

Steps: 

1. repeat steps 2-12 for T times; 

2. randomly select J ~ {1, 2, ... , M}, randomly select i E {1, 2, ... , N}, set 

I= {i}, score= 0, CMJ = {ai1, j E J}, RM1 = {aiJ, i E I}; 

3. e = m5; 

4. extendRow(e, 8); 

5. if no extension is achieved go to step 2; 

6. 8' = (score+ 8)/2; 

7. extendColumn(o'); 
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8. extendRows( (), 8); 

9. 8' = score; 

10 extendColumn(8'); 

11. extendRows(B, 8'); 

12. print the bicluster (I, J); 

13. return; 

8.4 Experimental Results 

The biclustering algorithm is tested on two gene expression datasets downloaded 

from http://arep.med.harvard.edulbiclustering. The first dataset is the yeast data 

containing 2884 genes and 17 conditions. Integer valued elements range between 

o and 600 with 34 missing values. There are 4026 genes and 96 conditions 

in the second dataset, human lymphoma data. This matrix of integers range 

between -750 and 650, with 47639 missing values. We replaced missing values 

with uniformly distributed random numbers within the data range. These are the 

datasets used by Cheng and Church [CCOO] to test their biclustering algorithm. 

We use the same 8 values (300 for yeast dataset and 1200 for lymphoma dataset) 

as used by Cheng and Church so that the results become comparable. 

The proposed algorithm can detect biclusters with lower or higher score within 

the given limit of 8 by using different values for the parameter 0:. Lower values 

of 0: are used to detect small biclusters with lower scores while larger values of 

0: cause detection of bigger biclusters whose scores approach the given limit of 

c5. This is demonstrated with the three biclusters shown in Table 8.1 extracted 

from yeast dataset using three different values of 0:. Those three biclusters having 

increasingly bigger sizes are plotted in Figure 8.2- 8.4 in order to visualize the 

coherence of the genes. The serial numbers of genes present in the first bicluster 
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are- (216, 217, 616, 1022, 1623, 1795,2375, 2538), which are also present in 

the second bicluster -(216, 217,526,616, 1022, 1184, 1476, 1623, 1795,2086, 

2278, 2375, 2538) and the third bicluster- (58, 59, 105, 216, 217, 424, 448, 453, 

457,526,616,862,972,1022,1184,1286,1320,1417,1475,1476,1590,1623, 

1725, 1795, 1981,2086,2087,2278,2375,2467, 2538) along with other genes. 

These biclusters include more genes than bicluster no. 66 (score=164.06, genes : 

217 616 1476 1623 1795 2086) reported by Cheng and Church in [CCOO]. All 

these biclusters contains the full set of 17 conditions. It means that our method 

can detect bigger volume biclusters than Cheng and Church method. 

1.0 

1.2 

2.0 

Table 8.1: Sample biclusters in yeast dataset 

300 

300 

300 

score 

144.15 

198.93 

295.03 

no. ofgenes 

8 

13 

31 

no. of conditions 

17 

17 

17 

Sample biclusters extracted from the human lymphoma dataset are shown in 

Table 8.2 and are plotted in Figures 8.5- 8. 7. All the 96 conditions are present in 

each of the three biclusters, genes present in the biclusters are respectively: (143, 

144, 145), (124, 126, 143, 144, 145, 195, 2371) and (124, 126, 131, 136, 143, 

144, 145, 158, 170, 172, 195,205, ... ). 

We have extracted 100 hi clusters from each of the yeast and lymphoma 

datasets by random row initialization. The results are presented in Table 8.3 and 

8.4. Results of Cheng and Church(CC) method are also included for comparison. 

Again average volume of biclusters extracted by our algorithm are found to be 

bigger. 

All the biclusters extracted from the datasets may not be biologically 
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Table 8.2: Sample biclusters in human dataset 
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conditions 

Figure 8.2: First bicluster in Table 8.1 

interesting. We have not analyzed the biological significance of the biclusters. 

Instead of generating just 100 biclusters, our algorithm can generate a large 

number of biclusters. A set of biclusters with smaller residues and smaller 

volumes may be extracted for significance analysis. For example we got 208 

biclusters with average score less than 100 from the yeast dataset. Each bicluster 

contains at least one gene not contained in other clusters. Table 8.5 gives 

a summary of the biclusters. If some of them are found to be biologically 

interesting, they can be extended again and studied further. We may also filter 

out small biclusters with higher scores for study. 
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Figure 8.3: Second bicluster in Table 8.1 
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Figure 8.4: Third bicluster in Table 8.1 
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Figure 8.5: First bicluster in Table 8.2 
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Figure 8.6: Second bicluster in Table 8.2 
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Figure 8.7: Third bicluster in Table 8.2 

Table 8.3: Performance of proposed algorithm on yeast data set 

Algo AYg. score AYg. genes AYg. conds. AYg. Vol. row coY. Cell coY. 

cc 
Our 

204.3 

199.0 

166.8 

195.3 

12.1 

11.9 

1577.0 

1773.2 

0.91 

0.96 

0.81 

0.79 

Table 8.4: Performance of proposed algorithm on lymphoma data set 

Algo AYg. score AYg. genes AYg. conds. AYg. Yol. row coY. Cell coY. 

cc 
Our 

850.1 

831.9 

269.2 

374.3 

24.5 

25.2 
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4596.0 

5615.0 

0.92 

0.93 

0.37 

0.44 



Table 8.5: Summary ofbiclusters with score less than 100 from yeast data set 

Avg. score Avg. genes Avg. cond. Avg. Vol. Row cov. Cell cov. 

74.6 39.9 11.9 354.7 0.73 0.49 
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Chapter 9 

A Clustering Based Technique For 

Network Intrusion Detection 

9.1 Introduction 

Security of the information stored on computers connected to publicly accessible 

networks has become critical issue due to different types of intrusion attacks. 

Intrusion detection allows organizations to protect their systems from the threats 

that come with increasing network connectivity and reliance on information 

systems. According to [BMO I] intrusion detection is the process of monitoring 

the events occurring in a computer system or network and analyzing them for signs 

of intrusions, defined as attempts to compromise the confidentiality, integrity, 

availability, or to bypass the security mechanisms of a computer or network. 

Intrusions are caused by attackers accessing the systems from the Internet, 

authorized users of the systems who attempt to gain additional privileges for 

which they are not authorized, and authorized users who misuse the privileges 

given to them. Intrusion Detection Systems (IDSs) are software or hardware 

products that automate this monitoring and analysis process. 
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Based upon information source intrusion detection systems are classified into 

network-based and host-based. Network-based IDSs analyze network packets, 

captured from network backbones or LAN segments, to find attackers. Host-based 

IDSs operate on information such as operating system audit trails, and system logs 

collected from within an individual computer system. 

Different approaches are used in intrusion detection such as machine learning, 

pattern matching, neural networks, data mining, etc. Some approaches detect 

attacks in progress in real time while others provide after-the-fact information 

about the attacks providing help to reduce the possibilities of future attacks of the 

same type. In general there are two types of approaches for network intrusion 

detection: misuse detection and anomaly detection. Misuse detection searches 

for specific pattern (attack signature) in the data. Previously known attacks 

are effectively detected without generating large number of false alarms. Such 

methods can not detect new types of attacks because their signatures are not 

known. Anomaly detection builds models for normal behaviour and automatically 

detects significant deviations from it. Supervised or unsupervised learning can be 

used. In a supervised approach, the model is developed based on training data 

that are known to be normal. Unsupervised approaches work without any training 

data. The main advantage of anomaly detection is that it can detect previously 

unknown attacks, since no knowledge of attacks is needed to train the normality 

model. But, it may fail to detect some known attacks if the behaviour of them are 

not significantly different from what is considered to be normal. Moreover, the 

false alarm rate tends to be higher. 

In recent years considerable attention has been given to data mining 

approaches for intrusion detection. Anomaly detection often tries to cluster 

test dataset into groups of similar instances - either attacks or normal data. 

Intrusion detection problem is then reduced to the problem oflabeling the clusters 

as intrusive or normal traffic. For labeling, unsupervised anomaly detection 

algorithms model normal behaviour by using the following two assumptions - i) 
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the number of normal instances vastly outnumber the number of anomalies and ii) 

anomalies themselves are qualitatively different than the normal instances. If the 

assumptions hold attacks can be detected based on cluster sizes. Larger clusters 

correspond to normal data, and smaller clusters correspond to attacks. But this 

simple method is likely to produce lower detection rate as the assumptions are 

not always true. For example in denial of service attacks a large number of very 

similar instances are generated that may form larger clusters. On the others hand 

some less frequently used protocols such as jtp may generate few records that 

may be wrongly classified as an attack cluster. Some attacks such as R2L and 

U2R are qualitatively very similar to normal instances which means that such 

attacks may remain mixed with normal records creating impure clusters. Again, 

test data instances to be clustered contain a large number of features. All features 

are not equally important for distinguishing betWeen different normal and attack 

instances. Therefore subspace based algorithm should produce better clustering 

result in this case. 

We address these issues in the proposed unsupervised anomaly detection 

technique that uses the C atSub algorithm presented in Chapter 6 to cluster the test 

dataset based on subspaces over which data records are highly similar. Anomalies 

are then detected on the basis of subspace sizes and also on cluster cardinality. 

9.2 Related Works 

Clustering is a widely used technique in anomaly detection. Some algorithms use 

training datasets and others work in unsupervised manner. Portnoy et al. [PESO 1] 

presented an unsupervised anomaly detection algorithm which train on unlabeled 

data in order to detect new intrusions. The training dataset is clustered using a 

modified incremental k-mearis algorithm. The algorithm starts with an empty set 

of clusters, and generates the clusters with a single pass through the dataset. For 
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each data instance in the dataset, it computes the distance between it and each of 

the centroids of the clusters in the cluster set so far. The cluster with the shortest 

distance is selected, and if that distance is less than some constant W (cluster 

width) then the instance is assigned to that cluster. Otherwise a new cluster is 

created with the instance as its center. This algorithm does not use any outlier 

handling method and consequently a large number of very small clusters may be 

created causing increase in execution time of the algorithm. After clustering, each 

cluster is labeled as normal or intrusive based on the number of instances in the 

cluster. Some percentage ofthe clusters containing the largest number of instances 

were labeled as normal and the rest of the clusters were labeled as anomalous. The 

labeled clusters were then used to detect intrusions in test datasets. A test instance 

is given the cluster label of the cluster which is closest to the instance. 

Yu Guan et al. [GGB03] presented the Y -means algorithm which is an 

improved k-means algorithm. The algorithm handles outliers by splitting and 

merging clusters that automatically adjust the number of clusters k. No training 

data is used. Clusters are labeled according to their population, that is, if the 

population ratio of one cluster is above a given threshold, all the instances in the 

cluster will be classified as normal; otherwise they are labeled intrusive. 

Most anomaly detection algorithms require a set of purely normal data to train 

the model, and they implicitly assume that anomalies are outliers i.e. patterns not 

observed before. Lazarevic et al. [LEK+03] focus on several outlier detection 

schemes in order to see how efficiently these schemes may deal with the problem 

of anomaly detection. 

ADWICE (Anomaly Detection With fast Incremental Clustering) [BNT04] 

uses the first phase of the existing BIRCH clustering framework to implement fast, 

scalable and adaptive anomaly detection. It uses training data assumed to consist 

only of normal data to construct the CF tree. After being trained, it is used to 

detect anomalies in unknown data. When a new data point arrives detection starts 

with a top down search from the root to find the closest cluster feature. When 
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search is done, the distance from the centroid of the cluster to the new data point 

is computed. The new data point is considered normal if the distance is lower than 

a limit otherwise it is an anomaly. The number of alarms is then further reduced 

by application of an aggregation technique. 

In [LL05] Leung et al. proposed a density based and grid based clustering 

algorithm, named as fpM AF I A, that uses adaptive grid algorithm adopted from 

pM AF I A and F P-tree growth method for frequent item set mining. They aim 

to discover clusters from large volume of high dimensional input data. Any point 

that falls inside the clusters are labeled as normal. The small percentage of points 

that do not belong to any clusters are labeled as abnormal. 

S. Petrovic et al. [PAOC06] used the k-means algorithm for clustering 

and proposed a cluster labeling strategy based on a combination of clustering 

evaluation techniques. The Davis Bouldin clustering evaluation index and the 

comparison of centroid diameters of the clusters are combined in order to respond 

adequately to the properties of attack vectors. Compactness of the corresponding 

clusters and separation between them distinguish between normal from abnormal 

behaviour in the analyzed network. 

9.3 Methodology 

Our algorithm works based on two principles. First, the clustering algorithm 

should be such that it is able to distinguish minor differences between normal 

and attack instances so that as far as possible pure clusters are formed with only 

one kind of instances - either attack or normal. Secondly, besides cluster sizes 

some other criteria need to be used for labeling clusters. 
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9.3.1 Clustering 

The dataset to be clustered is high dimensional containing many attributes. For 

example KDD CUP 1999 dataset contains 41 numeric and categorical attributes. 

All attributes are not equally important for distinguishing between different 

normal and attack records. Therefore we use a subspace based algorithm for 

clustering the dataset. Certainly the mixed-type data clustering algorithm, S M I C, 

proposed in Chapter 7 would have been a better choice. But, we want to utilize 

another strategy - conversion of attributes (refer Chapter 7) for dealing with 

mixed-type data. Continuous attributes can be easily converted to categorical 

type by discretization (taking logarithm to the base 2). Therefore, the clustering 

algorithm used here is our categorical clustering algorithm, CatSub presented in 

Chapter 6. The assumptions used for detecting anomalies are: 

1. Some attacks are similar over very large subspaces, other attacks are similar 

over smaller subspaces or have lower occurrences. 

2. Normal records are similar over medium sized subspaces. 

9.3.2 Detection 

Detection is done in two phases. In the first phase clustering is performed by 

tuning the MinAtt parameter of the CatSub algorithm so that clusters produced 

are of larger subspaces only. The clusters so. produced are labeled as attacks 

based upon our first assumption. As normal records are not similar over very 

large subspaces they will be separated by the clustering algorithm into a group of 

outliers. Attacks that form smaller or medium subspaces also become outliers. 

In the second phase the cluster containing outliers is clustered again. This 

time the parameter indicating minimum subspace size (MinAtt) is set to a low 

value. Outliers, if found, are labeled as attacks. The clusters with cardinalities 
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below a specified threshold are also labeled as attacks. Remaining clusters contain 

normal records. 

9.4 Experimental Results 

In this section we perform performance evaluation of the proposed anomaly 

detection algorithm. The experiments were done in a 1.66 GHz HCL laptop with 

512 MB RAM. C++ programs were used in LlNUX environment. 

9.4.1 Dataset description 

We tested the algorithm on the Corrected dataset available in KDD Cup 1999 

intrusion detection benchmark datasets [UoC99] containing a wide variety of 

intrusions simulated in a military network environment. The dataset contains 

311029 data records, each represents a connection between two network hosts 

according to some well defined network protocol and is described by 41 attributes 

( 38 continuous or discrete numeric attributes and 3 categorical attributes) such 

as duration of connection, number of bytes transferred, number of failed login 

attempts, etc. Each record is labeled as either normal or one specific kind of 

attack. There are 37 different attacks present in the dataset. The attacks fall in 

one of the four categories: User to Root (U2R), Remote to local (R2L), Denial 

of Service (DOS) and PROBE. 

• Denial of Service(DOS) : Attackers try to prevent legitimate users from 

using a service. For example, SYN flood, smurf, teardrop etc. 

• Remote to Local (R2L) : Attackers do not have an account on the victim 

machine, hence try to gain access. For example, guessing password. 

• User to Root (U2R) : Attackers have local access to the victim machine and 
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try to gain super user privilege. For example, buffer overflow attacks. 

• PROBE : Attacker tries to gain information about the target host. For 

example, Port-scan, ping-sweep etc. 

Number of samples of each category of attack in Corrected KDD dataset is shown 

in Table 9.1. It can be noticed that number of DOS attacks far more exceeds the 

Table 9.1: Attacks distribution in Corrected KDD dataset 

DOS U2R R2L PROBE Normal Total 

229853 70 16347 4166 60593 311029 

normal instances which is not expected in practice. It is because the goal of the 

KDD datasets was to produce good training sets for learning methods that use 

labeled data. The labels are not used during the clustering process, but are used 

for evaluating the detection performance of the algorithm. 

9.4.2 Performance measures 

We report the detection rate (DR) and the false positive rate(F P R) for 

evaluating the performance of the proposed anomaly detection algorithm. The 

detection rate is defined as the number of intrusion instances successfully 

detected divided by the total number of intrusion instances present in the 

dataset. The false positive rate is defined as the number of normal 

instances incorrectly labeled as intrusion divided by the total number of normal 

instances. A good method should provide high detection rate together with 

low false positive rate. The trade-off between the detection rate and 

false positive rate is reported by using Receiver Operating Characteristic( ROC) 

curves. An intrusion detection system can operate at any point on the ROC 
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curve. To prepare the ROC curve different values of detection rates and 

false positive rates are obtained by varying one parameter (M inObj) in the 

clustering algorithm. 

Performance of the first phase of the algorithm is shown in Table 9.2. 

Detection rate of the individual attack classes are also shown in Table 9.3. It can be 

seen that the first phase has difficulty in detecting U2R and PROBE attacks but 

it detects DOS attacks with higher accuracy. Performance of the algorithm as a 

whole (including both first and second phases) is shown in Table 9.4. Performance 

of the algorithm in detecting individual attack categories is shown in Table 9.5. 

The detection rate becomes higher as the second phase is able to detect some 

attacks that could not be detected in the first phase. Figure 9.1 shows the 

ROC curve for the algorithm. It can be seen that detection rate remains higher 

than 90%. The area under the ROC curve is more than many other anomaly 

detection methods reported in the literature, which indicates that our method is 

very promising. 

Table 9.2: Performance offirst phase. 

MinObj False positive rate Detection rate 

4 0.0 0.662 

40 0.042 0.723 

100 0.128 0.844 

600 0.159 0.909 

1000 0.315 0.966 
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Table 9.3: Detection rate of individual attack classes after the first phase 

MinObj U2R R2L DOS PROBE 

4 0 0.8999 0.9771 0.6306 

40 0 0.6847 0.9353 0.3802 

100 0 0.5053 0.8799 0.2259 

600 0 0.1982 0.7742 0.0007 

1000 0 0.0000 0.7214 0.0007 

Table 9.4: Performance ofthe algorithm. 

MinObj False positive rate Detection rate 

4 0.015 0.917 

40 0.057 0.936 

100 0.143 0.961 

600 0.174 0.975 

1000 0.360 0.982 

Table 9.5: Detection rate of individual attack classes after the second phase 

MinObj U2R R2L DOS PROBE 

4 0.5000 0.9279 0.9862 0.9606 

40 0.6714 0.7545 0.9931 0.8502 

100 0.6000 0.5980 0.9898 0.7991 

600 0.6143 0.2909 0.9845 0.7736 

1000 0.6142 0.0927 0.9786 0.7736 
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Chapter 10 

Conclusion 

We have attempted to develop clustering algorithms possessing certain 

requirements that a good clustering algorithm should possess. Our main concern is 

developing faster algorithms so that larger datasets can be clustered as demanded 

by present day data mining applications. To achieve this we have proposed a 

sampling procedure, a parallel processing technique, and incremental clustering 

algorithms. Finding clusters with widely varying sizes, shapes and densities is 

another concern. A solution is provided for this problem. Categorical datasets 

are generally high dimensional. Clustering high dimensional datasets containing 

a large number of records is a harder problem, since cluster may be determined 

by subsets of attributes. A subspace-based technique is proposed for clustering 

large high dimensional categorical datasets. The problem becomes compounded 

when the dataset contains a mixture of categorical and numeric attributes. The 

categorical data clustering algorithm is extended for clustering datasets with 

mixed categorical and numeric attributes, which is one of our major contributions. 

Gene expression data analysis is one of the active fields of research where 

clustering techniques "need to be applied. It requires a specialized type of 

algorithm known as biclustering. We have proposed an efficient algorithm for 
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biclustering gene expression data. Network intrusion detection is another area 

where clustering techniques can be applied. A network intrusion detection 

technique is also proposed based on one of our clustering algorithms. 

Altogether we have developed seven algorithms, which are validated by 

experimental results. 

10.1 Directions for future works 

• The query sampling procedure applied in IDBSCAN can be used to 

sample the dataset first followed by applying DBSCAN to the reduced 

dataset. 

• The DDSC algorithm for detecting clusters with widely varying densities 

can be extended so that it detects subspace clusters in high dimensional 

spatial data. Parallel implementation of the algorithm can be considered. 

• The Cat Sub algorithm can be made more efficient by employing a tree data 

structure instead of linear lists of clusters. 

• using a density-based approach for mixed-type data clustering technique 

may be more beneficial. 

• The gene expression data clustering technique can be modified to detect 

several biclusters at a time. Node deletion can also be considered along with 

node addition. Biological significance analysis of the extracted clusters will 

be an important task. 

• The assumptions made In the network intrusion detection algorithm 

produced promising results for KDD CUP Corrected dataset. To validate 

the assumptions more extensive study may be performed with other sources 

of data including data collected from real networks. 
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