

A study on Multi Objective Association Rule

Mining

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Bhabesh Nath

Registration No. 038 of 2000

School of Engineering

Department of Computer Science and Engineering

Tezpur University
July 2009

Abstract

The problem of mining association rules has attracted a lot of attention in

the research community. Several techniques for discovery of association rules

have been discussed in literature. These algorithms, motivated by Agrawal's

approach, handles the rule mining problem as a single objective problem.

However, the rule mining based on single objective have some common draw­

backs, i.e. rules may be difficult to understand due to the involvement of a

lot of conditions, some discovered rules may not be interesting to the user as

they were not actually hidden. To overcome these limitations, this disserta­

tion presents an approach for rule mining using multiple objectives so that

some interesting and useful rules can be extracted. For this - three different

objectives namely predictive accuracy, comprehensibility and interestingness

are considered. As a result, the proposed approach is found to be better than

the classical approach as some previously unknown, potentially useful and

ultimately understandable rules can be discovered.

Moreover, the single objective based classical rule mining approach can

be found to be impractical as sometimes they may produce a huge number of

rules, that in turn makes the job of decision makers tougher one in deciding

which rule to use which to discard. However the proposed approach will give

only a few valid rules, which will help the decision maker as the choice is

limited.

It was found that Pareto Based Genetic Algorithm acts as an efficient

tool in handling the multi-objective problems. Since association rule mining

is treated as a multi objective problem, the proposed approach uses Pareto

based multi objective genetic algorithm to extract the rules.

1

The dimensionality of the databases plays an important role in the data

mining tasks including association rule mining. Appropriate feature selection

or dimensionality reduction techniques can save the cost of computation dur­

ing the association rule mining over high dimensional space to a grate extent.

Hence, this dissertation presents two effective techniques as a preprocessing

task to reduce the dimensionality of the databases before applying any data

mining techniques.

Rule mining being a time consuming job, it is not appreciated to extract

the rules again and again from the whole database, every time the database

is updated. So the task of extracting the rules from an incremental database

received a lot of research attention. However, my survey reveals that most of

the existing works are basically based on the classical approach. To meet this

challenge, this dissertation also presents a technique of incremental mining

based on multi objective approach.

Keywords - Data mining, Association rule mmmg, Multi objective rule

mining, Genetic algorithms for rule mining, Pareto based rule mining,

GA based incremental mining

ii

Prof. D. K. Bhattacharyya
Head

DEPARTMENT OF
COMPUTER SCIENCE & ENGINEERING

TEZPUR UNIVERSITY
NAP AAM, TEZPUR- 784028

ASSAM : INDIA
Ph : 0371 2 - 267007-009

Ext- 5 101 , 5353
Fax : 0371 2-267005/006
Email : dkb @ tezu.emet.in

Certificate of the Research Supervisor

This is to certify that the thesis entitled "A study on Multi Objective

Association Rule Mining" submitted to the Tezpur University in the

Department of Computer Science and Engineering under the School of En­

gineering in partial fulfilment for the award of the degree of the Doctor of

Philosophy in Computer Science is a record of research work carried out

by Mr. Bhabesh Nath under my supervision and guidance.

All helps received by him from various sources have been duly acknowl-

edged.

No part of this thesis has been reproduced elsewhere for award of any

other degree.

Signature of Research Supervis r

Designation : Professor

School : Engineering

Department : Computer Science and Engineering

INDIAN STATISTICAL INSTITUTE
Telephone : (+91) (33) 2575-3110/3100 203 BARRACKPORE TRUNK ROAD

KOLKATA 700 lOB, INDIA

FAX : (+91) (33) 2578-3357
(+91) (33) 2577-3035 Residence: M-4-14 Teachers' Quarter

Jadavpur University
KOLKATA 700032

Email: ash@isical.ac.in

Dr. Ashish Ghosh, M. Tech., Ph.D.
Professor
Machine Intelligence Unit

Telephones: (+91) (33) 2414 6067

Certificate of the Joint Research Supervisor

This is to certify that the thesis entitled "A study on Multi Objective

Association Rule Mining" submitted to the Tezpur University in the

Department of Computer Science and Engineering under the School of

Engineering in partial fulfilment for the award of the degree of the Doctor of

Philosophy in Computer Science is a record of research work carried out by

Mr. Bhabesh Nath under my supervision and guidance.

All helps received by him from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for award of any other

degree.

I~ AS~-OC

(Research Supervisor)

Declaration

I, Bhabesh Nath, hereby declare that the thesis entitled 'A Study on

Multi Objective Association Rule Mining' submitted to the Department of

Computer Science and Engineering under the School of Engineering, Tezpur

University, in partial fulfilment of the requirements for the award of the

degree of Doctor of Philosophy, is based on bonafide work carried out by me.

The results embodied in this thesis have not been submitted in part or in

full, to any other University or Institute for award of any degree or diploma.

/I
1/1 .

t31J01/0
(Bhabesh Nath)

v

Acknowledgements

There are several people who have in one way or another made this thesis

possible, and to whom I wish to express my gratitude. First, I would like

to take the opportunity to offer my heartfelt gratitude to Prof. Dhruba Kr.

Bhattacharyya, Tezpur University, for his sustained and continuous guidance

during the course of this dissertation work. I am grateful to Prof. Ashish

Ghosh, lSI, Kolkata for his valuable suggestions and guidance at various

stages of this work.

My gratitude is extended to all members of the Department of Computer

Science and Engineering, Tezpur University including Ajay and Arun of the

technical staff, for their help and support. I would like to express my special

gratitude to Dr. Utpal Sharma and Dr. Shyamanta Moni Hazarika. The

innumerable discussions, regarding not only research but everything under

the sun have created a stimulating atmosphere to work in. Thanks for the

many valuable discussions during the tenure of this dissertation and for the
companionship in traveling the bumpy road towards the Ph.D. degree.

I would also like to thank my teacher-cum-friends Dr. Chandan Goswami,

Dr. Apurba Das, Dr. Tridib Ranjan Sharma and Mr. Pankaj Bora for their

encouragement and for sharing some of the additional loads on me.

I shall remain thankful to Mr. Santanu Sharma of Department of Elec­

tronics and Communication Engineering of Tezpur University, for his helps

in various stages of this dissertation work.

Last but not the least I would like to thank my wife, Rupali, for bringing

light in the moment of darkness of my life. Her love and support were one of

my main sources of strength in some crucial moments during this dissertation

work. Finally I will ask my daughter, Riniki, to forgive me for those times

from her childhood days, lowed to her.

Tezpur University

This is to certify that the thesis entitled "A study on Multi Objective

Association Rule Mining" submitted by Mr. Bhabesh Nath to Tezpur

University in the Department of Computer Science and Engineering under

the School of Engineering in partial fulfilment of the requirements for the

award of the degree of Doctor of Philosophy in Computer Science has been

examined by us on _____________ are found to be satisfactory.

The committee recommends for the award of the degree of Doctor of

Philosophy.

Signature of

Supervisor

Date

External Examiners

Contents

1 Introduction

1.1 Background

1.2 Association Rule Mining

1.3 Applications of Association Rules

1.4 Multiple Objectives of Association Rules

1.5 Motivation of the Work. .

1.6 Work Done

1.7 Organization of the Thesis

2 Association Rule Mining: The Classical Approach

2.1 Classical Algorithms for Mining Frequent Itemsets .

2.1.1 Apriori

2.1.2 SETM

2.1.3 Direct Hashing and Pruning

2.1.4 Partition Algorithm

2.1.5 Dynamic Itemset Counting

2.1.6 Pincer Search

2.1.7 FP-tree Growth

2.2 Algorithms for Generation of Rules

2.2.1 Agrawal's Algorithm

2.2.2 Srikant's Simple Algorithm

2.2.3 Srikant's Faster Algorithm

Vlll

1

1

4

6

8

9

10
10

12

13

13

15

15

17

19

21

23

25

26

27

28

2.3 A Faster Rule Generation Algorithm 31

2.3.1 Experimental Results . 33

2.3.2 Observations 35

2.4 Discussion 36

3 Multi Objective Association Rule Mining 41

3.1 Multi Objective Problems 41

3.2 Handling Multi Objective Problems. 43

3.3 Genetic Algorithms as a Tool 45

3.4 Multi Objective Genetic Algorithms. 46

3.4.1 Vector Evaluated Genetic Algorithm 46

3.4.2 Multi Objective Genetic Algorithm 47

3.4.3 Non-dominated Sorting Genetic Algorithm 48

3.5 Multiple Objectives of Association Rule Mining 49

3.5.1 Efficient MOGA for Association Rule Mining 51

3.5.2 MOGA Based Partitioning Approach 58

3.6 Discussion . 64

4 Dimensionality of Databases: Another Challenge 66

4.1 Dimensionality Reduction 67

4.2 Existing techniques 67
4.2.1 Focus 68
4.2.2 LVF 69

4.2.3 Branch and Bound 70

4.2.4 Relief 71

4.2.5 DTM .. 72

4.2.6 FFC .. 72

4.2.7 MDLM. 73
4.3 Dimensionality Reduction: New Approaches 74

4.3.1 Frequency Count Based Reduction 75
4.3.2 Rule Based Reduction 85

ix

4.4 Discussion............................. 92

5 MORM in Incremental Databases 93
5.1 Need of Incremental Mining 94

5.2 Existing Techniques . 95

5.2.1 FUP .. 97

5.2.2 FUP2 98

5.2.3 MAAP. 99

5.2.4 Borders · 100

5.2.5 Efficient Counting Using TID-lists. · 102

5.2.6 Maximal Frequent Trend Pattern · 103
5.2.7 Modified borders · 104

5.3 Proposed Method · 106
5.3.1 MORM in Incremental Databases · 107
5.3.2 Implementation and Results · 111

5.4 Discussion · 116

6 Conclusions and Future works 118

6.1 Conclusions .118

6.2 Future works · 120

x

List of Tables

2.1 Frequent Itemsets Derived: An Example .. .

2.2 Rules Derived by Agrawal's Algorithm

2.3 Rules Derived by Srikant's Simple Algorithm.

2.4 Rules Derived by Srikant's Faster Algorithm

2.5 Frequent Itemset from a Synthetic Dataset

2.6 Rules from the Synthetic Dataset

2.7 Frequent Itemset from monks-1 Dataset

2.8 Rules from monks-1 Dataset

34

35

36

37

38

38

39

39

2.9 Frequent itemset from monks-3 Dataset . 39

2.10 Rules from monks-3 Dataset 40

3.1 Multi Objective Problem: An Example. 42

3.2 Summary of results 56

3.3 Rules from kddcup.data_10_percent dataset. 57

3.4 Attributes of kddcup dataset involved in the reported rules 58

3.5 Some rules from Wisconsin Diagnostic Breast Cancer Database 61

3.6 Some rules from Wisconsin Breast Cancer Database . 62

3.7 Some rules from Wisconsin Prognostic Breast Cancer 63

4.1 Symbols used in Above Algorithms 74

4.2 Symbols used in DRUFT 77

4.3 Dimensionality Reduction on Monks-1 and Monks-3 by DRUFT 80

4.4 Comparative Results of Some Existing Algorithms and DRUFT 81

Xl

4.5 Reduction in Synthetic Datasets

4.6 Time Taken in Deriving Frequent Itemset .

4.7 Description of the Synthetic Database.

5.1 A sample database

83

85

89

95

5.2 Frequent itemsets from Table 5.1 with minimum support 50% 96

5.3 Updated sample dataset .. 96

5.4 Frequent itemsets from Table 5.3 with minimum support of 50% 97

5.5 Symbols and Notations used 107

5.6 Incremental rules from WDBC database 113

5.7 Incremental rules from WBC database . . 114

5.8 Incremental rules from WPBC database

5.9 Comparison of Static and Incremental MORM

xu

. 115

. 116

List of Figures

2.1 Apriori 14

2.2 Direct Hashing and Pruning 17

2.3 Partition Algorithm. 18

2.4 Dynamic Itemset Counting . 21

2.5 Pincer Search 23

2.6 FP-Tree Growth. 25

2.7 Generating rules: Agrawal's Algorithm 26

2.8 Generating Rules: Srikant's Simple Algorithm 27

2.9 Generating Rules: Srikant's Faster Algorithm 30
2.10 NBG: A Faster Rule Generation Algorithm . 32

3.1 GA based Multi Objective Rule Mining. 54

3.2 MOGA based partitioning algorithm 60

4.1 Focus 68
4.2 LVF 69
4.3 Branch & Bound 70
4.4 Relief 71

4.5 FFC 73
4.6 Dimensionality Reduction Using Frequency Count 77
4.7 Dimensionality Reduction for Association Rule Mining 83
4.8 Dimensionality Reduction with Multi objective GA .. 88

Xlll

5.1 FUP2 · 99

5.2 Borders (addition) · 102
5.3 ECUT · · 103
5.4 MFTP · · 104

5.5 Modified Borders · 106
5.6 MORMI · 110

XIV

List of Abbreviations/ Acronyms
AOF

DHP

DIC

DRARM

DRMOGA

DRUFT

DTM

ECUT

FFC

FP-tree

FUP

KDD

LVF

MAAP

MDLM

MFTP

MOGA

MORM

MORMI

NSGA

SETM

SGA

TID

VEGA

Aggregate Objective Function

Direct Hashing and Pruning

Dynamic Itemset Counting

Dimensionality Reduction for Association Rule Mining

Dimensionality Reduction with Multi Objective Genetic

Algorithm

Dimensionality Reduction Using Frequency Count

Decision Tree Method

Efficient Counting Using TID-list

Feature selection using Frequency Count

Frequent Pattern tree

Frequent Update

Knowledge Discovery in Databases

Filter version of Las Vegas algorithm

Maintaining Association rules with Apriori Property

Minimum Description Length Method

Maximal Frequent Trend Pattern

Multi Objective Genetic Algorithm

Multi Objective Rule Mining

Multi Objective Rule Mining in Incremental Database

N on-dominated Sorting Genetic Algorithm

Set oriented Mining

Simple Genetic Algorithm

Transaction Identifier

Vector Evaluated Genetic Algorithm

xv

Chapter 1

Introduction

1.1 Background

With the rapid growth of technologies of data storage and collections, ca­

pabilities of collecting data are also increasing rapidly. The widespread use

of bar codes for most commercial products, the computerization of many

business and government transactions, and the advances in data collection

tools have provided us with huge amounts of data. These days, millions of

databases are in use in business management, government administration,

scientific and engineering data management, and many other applications.

Because of availability of powerful but affordable database systems, these

databases are growing in an explosive rate. This rapid growth in data and

databases has generated an urgent need for new techniques and tools that

can automatically and intelligently transform the processed data into useful

information and knowledge.

The process of handling these large databases for extracting knowledge

is known as knowledge discovery in databases(KDD). KDD is the process

1

of identifying valid, novel, potentially useful and ultimately understandable

structure in data [BFM98]. There are several steps in KDD such as data

preparation, data selection, data cleaning, incorporating appropriate prior

knowledge, extraction of new information, proper interpretation of the infor­

mation extracted etc.

Due to these massive data collected by the systems of different organi­

zations, it is becoming more difficult to extract the useful information from

them. So a new challenge has arose to find efficient techniques to discover

useful and interesting patterns from such a huge amount of data. Hence this

step of KDD, commonly termed as Data Mining, has emerged as new area

to meet this challenge of database research. Recently, data mining attracted

a lot of research attentions. Data mining has been defined differently by

different researchers, such as "The efficient discovery of previously unknown

patterns in large databases" [AP95] and "The non-trivial extraction of ex­

plicit, previously unknown and potentially useful information (such as rules,

constraints and regularities) from data in databases" [CHY961. But many

researchers used these two terms, KDD and Data Mining as synonyms.

These discovered patterns help in decision making and to predict the

future behaviours. Depending on the users requirement different types of in­

formation are to be extracted from these databases leading to different data

mining tasks. Some of the commonly known tasks are - classification, clus­

tering, association rule mining, sequential pattern analysis, prediction and

data visualization [BL97, CPSOO, CHY96, FPSM91] a few of them are briefly

discussed below. All these tasks have different types of applications.

Classification: The input to the classification consists of multiple ex-

2

am pies (records), each of them having multiple attributes or features. Every

record has been tagged with a special class label. The objective of classifi­

cation is to analyze the input data, termed as training set, and to develop

an accurate description or model for each class in terms of the attributes of

the data. These descriptions are used to classify new records, termed as test

data, for which class labels are unknown.

Clustering: It is the process of grouping records of 'similar' type. The

input data for clustering is similar to that of classification, except that the

records are not tagged. Some times it is termed as unsupervised classifica­

tion also. Clustering helps in constructing meaningful partitions of a large

set of objects (records) based on a "divide and conquer" methodology which

decomposes a large scale system into smaller components to simplify design

and implementation.

Association rule mining: In a given database with a number of at­

tributes, the different sets of attributes of the database have some interrela­

tions or associations among them. The objective of association rule mining

is to discover these associations among the attributes of the database. This

extraction process is unsupervised, i.e. no prior information is required dur­

ing classification.

Time series analysis: Time series data constitutes a large portion of

data stored in computers. The capabilities to find time-series (or portions

thereof) that are "similar" to a given time-series or to be able to find groups

of similar time series has several applications. As for example, identifying

the companies with similar growth patterns, finding products with similar

selling patterns, discovering stocks with similar price movements, etc.

3

1.2 Association Rule Mining

The problem of mining for associations over a binary database, known as

Market Basket Database, was first introduced in [AIS93]. Association rule

mining can be stated as follows [CHY96]: given a database of sales trans­

actions, it is desirable to discover the important associations among items

such that the presence of some items in a transaction will imply the pres­

ence of other items in the same transaction. An example of an association

rule is: 30% of transactions that contain bread also contain butter-, 5% of all

transactions contain both of these items. The following formal definition was

proposed in [AS94] to address the problem.

Let Item={ iI, i2, ... i m } be a set of literals called items, DB be a database

of transactions where each transaction T ~ Item and has a unique identifier,

TID. Given an itemset X~Item, X is contained in T iff X~ T. An association

rule is an implication of the form Sa =} Se, where both Sa (rule antecedent)

and Se (rule consequent) are itemsets and Sa n Se = cp. A rule has con­

fidence c iff c% of the transactions containing Sa also contain Sa USe' An

itemset is frequent iff its support exceeds a certain support threshold minsup.

Given a set of transactions, where each transaction is a set of items, as­

sociations among two sets of items X and Y can be expressed as a rule of the

form of IF-THEN statement. IF <some conditions are satisfied > THEN

<predict some values of other attribute(s». The conditions associated in

the IF part is termed as Antecedent and those with the THEN part is called

the Consequent. Refer them as A and C, respectively, symbolically we can

4

represent this relation as A ::::} C. The intuitive meaning of such rule is that

transactions of the database which contain X tend to contain Y also. Asso­

ciation rule mining is the process of finding all association rules that satisfies

two user-specified constraints minimum support and minimum confidence.

The problem of discovering all association rules can be decomposed into

two sub-problems [AIS93]:

• Frequent Itemset Generation: Find all sets of items that have

transaction support above a given minimum support. These are the

frequent itemsets. Other itemsets are called infrequent itemsets .

• Rule generation: Use the frequent itemsets to generate the desired

rules, having confidence more than a user specified minimum confi­

dence.

The second phase can be done in a straight forward manner in main

memory once the frequent itemsets are found [AS94]. In [Sri96], some better

techniques have been proposed. But due to the huge search space (the power

set of the set of all items), the first phase becomes more time consuming.

That is the reason for the attention of great number of researchers paid to

this problem in recent years.

In this dissertation, we examine the problem of mining association rules.

We first present a faster algorithm to extract rules using the conventional

approach. Then some efficient algorithms are presented to extract a reduced

set of rules to help the decision makers.

5

1.3 Applications of Association Rules

The problem of mining association rules was originally motivated by

the decision support problem faced by most of the large retail organiza­

tions [SAD+93]. But now-a-days it is gaining its popularity among the de­

cision support systems of all those organizations maintaining their trans­

actional databases. Depending on the need of the organization these rules

have different applications. Some application specific works can be found in

[FL07, SL08, HLS+07].

Item Placement: To provide a better service to the customers of a

large retail store, the management of the store should be aware of the selling

patterns of different items. Knowledge about the items are sold together

is an useful information for providing a better service to the customers by

placing those items together in the store. But for a large store, retailing

thousands of different items to thousands of customers per day, it is not as

easy job to find these types of groups of items. Association rules help them

to take these types of decisions. A closely related application is catalog

placement. Mail-order companies can use association rules in determining

the items to be placed on the same page of the catalog.

Customized catalog: Rather than sending the same catalog to every­

one, direct marketing retailers can use associations to customize the catalog

based on the items a person has bought. These customized catalogs are gen­

erally much smaller, or may be mailed infrequently, reducing mailing cost.

Customized online catalogs are very much helpful to the customers doing

web-marketing, as the catalog of the products of his interest only will be

produced to him.

6

Fraud Detection: Insurance companies are interested in finding groups

of medical service providers, doctors and clinics, who forces the patients to

move between each other for unnecessary tests. Given medical claims data,

each patient can be mapped to a transaction, and each doctor/clinic visited

by the patient to an item in the transaction. Using the association rules now

the insurance company can investigate the claim records for sets of providers

who have a large number of common patients to determine, if any, fraudulent

activity actually occurred.

Medical diagnosis: The different information stored about the previ­

ous patients having a particular disease is very much useful to diagnose a new

patient. Rules extracted from these databases help the doctors to diagnose

the disease quickly. That normally becomes fruitful in case of several lethal

diseases like cancer, where early detection increases the probability of curing.

Medical Research: The symptoms of disease of a patient, any cor­

respond to that of another patient diagnosed by the doctor. The patterns

discovered using these data could be of use in research in order to help iden­

tify symptoms/diseases that precede certain diseases.

Intrusion detection: For the security of the computer systems con­

nected to the internet it is very much necessary to prevent the malicious

requests. Association rules derived from the records of the previous activi­

ties handled by the system, can help a system to detect these types of new

malicious requests, termed as intrusion, to keep the system secure.

7

1.4 Multiple Objectives of Association Rules

Though the classical algorithms for association rule mining are giving more

emphasis on the first phase of the rule mining problem, i.e. on the fre­

quent itemset generation, however, for the appropriate use of these frequent

itemsets, the second phase has to be applied. Once the frequent itemsets

have been extracted, rules can be extracted from them by using rule gen­

eration algorithms [AIS93, Sri96]. The rule generation algorithms calculate

the confidence of every possible candidate rules. The candidate rules hav­

ing the confidence more than a user specified threshold minimum confidence

are declared as generated rules. Confidence is sometimes termed as predic­

tive accuracy also. It is the ratio of the support count of the whole rule to

that of the antecedent part. For example, confidence of the rule A:::}C is

SUP(AUC)/SUP(A), where SUP(X) is the number of records/transactions

containing the set of items X.

Minimum support and minimum confidence, these two parameters affect

the performance of the rule mining algorithms significantly. The size of rule

set generated is highly influenced by these parameters. If their values are not

properly tuned, then the rule generation phase may not result any rule, or

a huge number of rules may be resulted, making the analysis of rules more

complex.

Classical algorithms use the confidence as the only measure to evaluate

the rules. Hence the association rule mining is handled as a single objective

problem. But these extracted rules may not carry any interesting informa­

tion within it. If the support count of the rule is very high, then confidence

of the rule is also generally higher. But this type of association may be ex-

8

tracted without using any data mining tasks, because these associations are

not hidden from the users. For example, say, in a databases with 100 records

if SUP(A), SUP(A U B) and SUP(A U G) are 90, 80 and 20 respectively.

Then the confidence of A =} B will be 8/9, that is higher than 2/9 which

is the confidence of A =} G. From a simple observation of the databases,

occurrence of A U B can be detected. But it is not so simple to detect the

occurrence of AUG. Hence the rule A=} G carries more interesting informa­

tion, than A=} B. To discover these interesting rules some effort was found

in [Yun07].

At the same time the rules that were generated may be very long. These

long rules may be useful but difficult to understand [XL07]. If the rules are

not understandable then no decision makers will use those rules.

So there is a need of handling the problem as multi objective problem. In­

terestingness and comprehensibility can be used as two additional objectives

of the association rule mining problem. Interestingness defines the surpris­

ingness of the rule whereas comprehensibility defines the understandability of

the rules. If the association rule mining is handled as a multi objective prob­

lem, using interestingness, confidence and comprehensibility as the measures,

some previously unknown, potentially useful and ultimately understandable

rules may be extracted.

1.5 Motivation of the Work

The great practical benefits of mining association rules and its wide area

of applications have led to several proposals for fast mining of association

rules. Those proposals, although contributed towards making the process

9

more applicable in practical systems, still suffer from the problem of huge

amount of generated rules that can be found to be confusing and most of the

time not useful to the user. User will get the maximum benefit if a small

set of understandable and practically useful rules are provided to him. This

need of the users has motivated us to the work presented in this thesis.

1.6 Work Done

Several challenges of data mining problem were encountered at various stages

of the work; and concentration was given to all of them. The significant

aspects of rule mining, those were considered during the formulation of this

work are-

• Faster generation of association rules.

• Efficient algorithms for mining association rules using Multi Objective

Genetic Algorithms.

• Algorithms to reduce dimensions of databases to help the data mining

tasks including association rule mining.

• Efficient algorithms to extract rules from incremental databases.

1.7 Organization of the Thesis

Chapter 2 presents some of the classical algorithms used for frequent itemset

generation, and rule generation. Then an efficient algorithm to generate rules

by the conventional approach is discussed. In this chapter, it is established

that association rule mining is not a single objective problem, but a multi­

objective problem.

10

Chapter 3 presents some efficient techniques for generation of association

rules, using Multi Objective Genetic Algorithms.

Chapter 4 presents the need of dimensionality reduction in data mining

tasks, followed by some algorithms to achieve it.

Chapter 5 presents the need of incremental mining followed by an algo­

rithm to tackle the problem of incremental association rule mining.

Finally, Chapter 6 summarizes the dissertation and presents suggestions

for future work.

11

Chapter 2

Association Rule Mining: The

Classical Approach

Classical approach of mining association rules handles the problem as a single

objective problem, and works in two phases. First phase being the most time

consuming one has attracted the attention of many researchers. Though the

second phase is also an important part of the rule mining, only a few work

can be found in the literature [AIS93, Sri96].

Starting with Apriori [AIS93] a significant number of works have been

carried out to attend the first phase of the association rule mining problem.

A few of them are presented in the next section. Some more works can be

found in [SB04, NLWF05, ZKCY07, CKN08, CTL09]. But the list is not

exhaustive.

12

2.1 Classical Algorithms for Mining Frequent

Itemsets

Several popular algorithms have been presented in the past decade to handle

this problem of frequent itemset generation. These algorithms can be divided

into two broad categories depending on their way of finding frequent itemsets,

namely bottom up (Le. agglomerative) and top down (i.e. divisive). Both

of these approaches take the benefit from the downward closure property of

frequent itemsets, i.e. if an itemset is frequent, then all of its subsets must

also be frequent [AS94]. Some of the popular frequent itemset generation

techniques are reported next.

2.1.1 Apriori

In Apriori [AIS93] candidate itemsets are generated and counted on-the-fly

as the database is scanned. After reading a transaction, it determines which

of the itemstes that were frequent in the previous passes can be found to

be contained in this transaction. New candidate itemsets are generated by

extending these frequent item sets with other items in the transaction. A fre­

quent itemset l is extended with only those items that are frequent and occur

later in the lexicographic ordering of items than any of the items in 1. The

candidates generated from a transaction are added to the set of candidate

itemsets maintained for the pass, or the counts of the corresponding entries

are increased if they were created by an earlier transaction. The steps of this

algorithm are given in Figure 2.1. A faster algorithm, Apriori-TID, based

on this approach is also found in literature [AS94]. /~
/ ,\",' ".--. '-
~.-

13

."'L..\.~ ..

Initialize

k = 1, C1 =all the l-itemsets;

read the database to count the support of C1 to determine L 1;

Ll = {frequent l-itemsets};

k = 2;

while(Lk_1 =1= ¢)

Ck=gen_candidate.itemsets(L k - 1);

prune(Ck);

for all transactions t E T do

increment the count of all candidates in Ck contained in t;

Lk = {c ICE Ck & count(c) 2: 'Y}

k = k + 1;

return 'iii L i .

gen_candidate~temsets(Lk): C = ¢

for all itemsets h E Lk do

for all itemsets 12 E Lk do

if (h[l] = l2[1]) & (h[2] = l2[2]) & ... & (ldk - 1] < l2[k - 1])

then c = h[l], h[2], ... , h[k - 1], l2[k - 1]

C=CUc

return(C)

prune(C)

for all c E C

for all (k - I)-subsets d of c do

if d ~ Lk - 1

then C = C - {c}

Figure 2.1: Apriori

14

2.1.2 SETM

Like Apriori [AIS93], SETM [HS95] algorithm also generates candidates on­

the-fly based on transactions read from the database. It thus generates and

counts every candidate itemset that the Apriori algorithm generates. How­

ever, it separates the candidate generation from counting. It saves a copy

of the candidate itemset together with the transaction identifier{TID) of the

generating transaction in a sequential structure. At the end of the pass, the

support count of candidate itemsets is determined by sorting and aggregating

this sequential structure.

The problem with these two algorithms was the size of the candidate sets

generated of which many are often found to be infrequent. However, those

algorithms are considered to be the pioneers in handling this problem.

2.1.3 Direct Hashing and Pruning

This algorithm, DHP [PCY95], uses the technique of hashing to filter out un­

necessary itemsets for next candidate itemset generation. When the support

of candidate k-itemset is counted by scanning the database, it accumulates

information about candidate (k + l)-itemsets in advance in such a way that

all possible (k+ l)-itemsets of each transaction after some pruning are hashed

to a hash table. Each bucket in the hash table consists of a number to rep­

resent how many itemsets have been hashed to this bucket thus far. Based

on the resulting hash table, if a bit vector is constructed, where the values

of one bit is set to one when the number in the corresponding entry of the

hash table is greater than or equal to minimum support. This bit vector can

be used to further reduce the number of possible candidate itemsets. The

algorithmic form of DHP is presented in Figure 2.2

15

1* Part 1*/

s=a minimum support;

set all the buckets of H2 to zero; 1* hash table * /

for all transactions tED do

insert and count I-item occurrences in a hash tree;

for all 2-item subsets of x of t do

H 2 [h2 (x)] + +;
Ll = {c 1 c.count ~ s, c is in a leaf node of the hash tree};

I*Part 2*/

k=2;

Dk=D;

while(1 {x I Hb[X] ~ s} I~ LARGE) begin

1* make a hash table * /

gen_candidate(Lk _ 1, H k , Ck);

set all buckets of Hk+1 to zero;

Dk+l = cP;

for all transactions t E Dk do

count...support(t, Ck , k, i) I*i ~ t* /

if (I i I> k)

makellashtab(i, H k , k, H k+1 , 0;
if (Ill> k)

Dk+l = Dk+l U {l};

Lk = {c E Ck I c.count ~ s};

k++;

End while

16

1* Part 3 * /
gen_candidate(Lk _ 1, Hk, Ck);

while(1 Ck I> 0)

Dk+l = ¢;

for all transactions t E Dk do

count..support(t, Ck, k, i);

if (I i I> k)

Dk+l = Dk+l U {i};

Lk = {c E Ck 1 c.count 2:: s};

if(1 Dk+l 1= 0)

break;

Ck+l=apriorLgen(Lk);

k++;

Figure 2.2: Direct Hashing and Pruning

2.1.4 Partition Algorithm

Partition algorithm [SON95] is based on the observation that the frequent

itemsets are normally very few in number as compared to the set of all item­

sets. The whole database is divided into some partitions in such a way that

they can be loaded to the memory. This algorithm works in two phases. In

the first phase, frequent itemsets for every partition are derived using apriori

algorithm. Since all the data of the partition can be loaded to memory it

takes less time to derive the frequent itemsets from the partition. After the

frequent itemsets are derived from all the partitions, in the second phase,

17

the frequent itemsets local to each partition are combined and their global

support is counted by reading complete database once again. This algorithm

needs maximum two passes over the whole database to derive the frequent

itemsets. The major limitation of this algorithm is that if the number of par­

titions of the database is very big, then after combining the local frequent

itemsets, a huge number of itemsets will be resulted, which will demand for

a significant amount of memory. The algorithm has been reproduced below

in Figure 2.3.

Input: Database T, minimum support 'Y

Output: Frequent itemsets LG

p=partition_database(T) ;

n = Number of partitions;

for i = 1 to n do

read_in_partition(Ti in p)

Li= generate all frequent itemsets of Ti using Apriori

for (k = 2; Li =I- 4>, i = 1,2, ... , n; k++) do

CG - un Lk
k - i-I i

for i = 1 to n do

read_in_partition(Ti in p)

for all candidates c E C G

compute S(C)ri /*support of c in all partition Ti * /
LG = {c E CGIS(C)ri ~ 'Y}

return LG

Figure 2.3: Partition Algorithm

18

2.1.5 Dynamic Itemset Counting

This algorithm, DIC [BMTU97], mainly differs from the other algorithms in

the candidate generation. In the other algorithms, next level candidates are

generated when the current pass on the database is over. In DIC, some stop

points are defined within the databases. If some candidate itemsets become

frequent before the whole database is scanned~ then using those frequent

itemsets next level candidates are generated at the stop points. Hence the

counting of the frequency of some itemsets may start from a middle position

of the database. To ensure that every itemset is counted over the whole

database, they are given some stop number. When the database is scanned

only those itemsets are considered for counting the frequency, which have not

completed a complete pass over the database. Four different disjoint lists of

itemsets are maintained here:

DC-list of candidate itemsets.

DB-list of itemsets that are frequent but not completed a pass over the

database.

BB - list of frequent itemsets which have completed a pass.

BC- list of itemstes that have completed one pass over the database and

found infrequent.

During the execution of the algorithm, the following events occur when

a stop point is reached .

• Some item sets from DC move into DB if its support count has reached

the minimum support.

• Some new candidates are added to DC which are nothing but the

superset of the itemsets newly introduced into DB.

19

• Some itemsets from DC move into SC, which have completed a pass

over the database, but still found infrequent .

• Itemsets from DB which have completed a pass are moved to SB.

The algorithm is formally described next in Figure 2.4.

S B = <P; / / set frequent itemsets

se = <p; / / set of infrequent itemsets

DB = <p;

DC ={l-itemsets with stop number O}

while DC =1= <p do

while stop point not reached

read a transaction t

for all itemsets dE (DB u DC)

increment the support count of d if it is in t

increment the current-stop-number;

for all itemset d E DC

if stop-number (d) =current-stop-number

SC = SCud

DC=DC-d

else

if count (d) 2 'Y

DB=DBud

DC=DC-d

Generate itemsets E using d

stop-number(e)=current-stop-number, 'tie E E

20

count(e)=O; 'lie E E

DC=DCUE

for all itemset d E DB

if stop-number(d) =current-stop-number

SB=SBUd;

DB=DB-d;

return SB

Figure 2.4: Dynamic Itemset Counting

2.1.6 Pincer Search

Other frequent itemset generation algorithms search for the frequent itemsets

using the bottom-up approach. The computation starts from the 1-item fre­

quent itemsets and moves upward till it reaches the largest frequent itemset.

The number of database passes is equal to the largest size of the frequent

itemset. When any of the frequent itemsets becomes longer, performance

decreases as the number of iterations increases. To overcome this difficulty

pincer search [LK98] algorithm was developed, which is based on a bidi­

rectional search. It attempts to find the frequent itemsets in a bottom-up

manner, at the same time it maintains a list of maximal frequent itemsets.

While making a database pass, it also counts the support of these candidate

maximal frequent itemsets to see if anyone of these is actually frequent. In

that event, it can be concluded that all the subsets of these maximal frequent

sets are going to be frequent and, hence, they are not verified for the sup­

port count in the next pass. This algorithm is advantageous than Apriori,

if the cardinality of the longest frequent itemset is large. The steps of this

algorithm are given in Figure 2.5.

21

Lo = ¢; k = 1; C1 = {{i} liE I}; So = ¢;

MFCS = {{1,2, ... ,n}}; MFS = ¢;

while Ck =J ¢ and Sk-I =J ¢ do

read database and find count(c) \;/c,c E Ck U MFCS;

MFS = MFS U {m I m E MFCS and count(m)2: 'Y;

Sk = {c ICE Ck and count(c) < 'Y}

if Sk =J ¢;

call MFCS-gen

call MFS-prune

generate candidates CHI from Ck ;

if any {e leE Ck and count(e) 2: 'Y} was removed in MFS-prune

call recovery over CHI;

call MFCS-prune over CHI;

k = k + 1;

return MFS

MFCS-gen

for all itemsets S E Sk

for all itemsets m E M FC S

if sCm

MFCS = MFCS - {m};

for all item e E s

if (m - {e} C p), ~p,p E MFCS

MFCS = MFCS U {m - {e}};
return MFCS

22

Recovery

for all itemsets 1 E Lk

for all itemsets m EMF S

if first k - 1 items in 1 are also in m

1* suppose l[k - 1] = m[j] * /
for i = j + 1 to J m J

CHI = CHI U {1[1], 1[2], ... , l[k], m[i]}
MFS-prune

for all itemsets 1 E Lk

if (l c p), 3p,p E MFS

Lk = Lk -1;

MFCS-prune

for all itemsets c E Ck

if (c c p), 3p,p E MFCS

Figure 2.5: Pincer Search

2.1. 7 FP-tree Growth

In the above mentioned algorithms a significant amount of time is wasted in

generating the candidate itemsets; and large amount of memory is required

to store these candidate itemsets. For example, if there are 10,000 frequent

1-itemsets for a database then there will be roughly 107 number of candi­

date 2-itemsets. To overcome this difficulty an algorithm based on Frequent

Pattern Tree, an extended prefix tree structure, was developed and named

as FP-Tree Growth algorithm [HPYOO]. The FP-Tree maintains the crucial

and quantitative information about the frequent itemsets. The tree nodes are

23

frequent items and are arranged in such a way that more frequently occur­

ing nodes will have better chances of sharing nodes than the less frequently

occurring ones. The method starts from frequent l-itemsets as an initial

prefix pattern and examines only its conditional pattern base, which consists

of the set of frequent items co-occurring with the prefix pattern. The algo­

rithm works on two phases, in the first phase, it constructs the conditional

FP-Tree with respect to the given minimum support. Construction of this

tree requires two passes over the whole database. In the second phase the

algorithm uses the FP-Tree constructed earlier and does not use the database

any more.

Since this algorithm always needs only two passes over the database, it

takes less time than the other counterparts, irrespective of the size of the

maximal frequent sets. The major limitation of the algorithm is the mem­

ory requirement to maintain the FP-Tree. Algorithm for construction of the

FP-Tree is given in Figure 2.6

create root and label as null

for every t, t E T

if t =f ¢

call insert (t, root);

link the new nodes with existing nodes with similar label

return FP-Tree

insert(t, n)

while t =f ¢ do

if n has a child with label head_t

increment link count by 1 between nand head_t

24

else

create a new child of n with label headt with link count 1

call insert(body_t, head_t)

end do

Figure 2.6: FP-Tree Growth

The algorithms discussed above are capable of finding frequent itemsets

from a given database. Though the way of searching for the frequent itemsets

are differing, they extract the same frequent itemsets subject to a fixed mini­

mum support. After generating the frequent itemsets, rules can be generated

from them. For the generation of the rules another user parameter minimum

confidence is used by the rule generation algorithms. Existing algorithms to

generate the rules from a given set of frequent itemsets are discussed in the

next section.

2.2 Algorithms for Generation of Rules

Algorithms discussed in the previous section are capable of finding the fre­

quent itemsets from a given datbase. They provide the frequent itemsets

of various sizes along with their support count. Using their support counts

rules can be extracted. Here, in this section we have presented some algo­

rithms to extract the rules from the given set of frequent itemsets. These

algorithms use the user parameter minimum confidence while extracting the

rules. Rules having the confidence value more than the specified one are

declared as generated rules.

25

2.2.1 Agrawal's Algorithm

Agrawal et.al. [AIS93] presented the first rule generation algorithm using

the frequent itemsets extracted by the fisrt phase of the rule mining process.

The algorithm was straight forward and was capable of generating only those

rules with one item in the consequent part. For a given frequent itemset

Y = I 1I2 ••• Ik , k ~ 2, generate at most k rules that uses the items from the

set Y. The antecedent of each of these rules will be a subset X of Y such

that X has k-l items, and the consequent will be the item Y-X. Generate the

rules X ::::} I j with confidence equal or greater than mincon! The confidence

of the rule is calcualated as the ratio of support(Y) and support(X),where

XUIj =Y.

The major drawback of this algorithm is that it is unable to generate all

the rules from the frequent itemsets. For a frequent itemset with size n, this

algorithm will check maximum n candidate rules, though there can be 2n - 2

number of possible rules present. Effective~y this algorithm checks only a

small portion of the candidate rules. The steps of the algorithm are listed in

Figure 2.7

1. forall frequent itemsets lk' k ~ 2 do

2. forall i ~ k do

3. c = lk[i]

4. a = lk - C

5. if (support(lk)/ support(a)) ~ minconf;

6. declare a ::::} c is a rule

7. end do

8. end do

Figure 2.7: Generating rules: Agrawal's Algorithm

26

2.2.2 Srikant's Simple Algorithm

This algorithm is a simple generalization of the previous algorithm. The size

of the consequent part of the rules generated are not limited to one item only.

To generate the rules, from a frequent itemset l, all its non-empty subsets are

found first. For every such subset a, a rule is generated of the form a=}(l- a)

if the ratio of support(0 to support(a) is at least min co nj, the user specified

minimum confidence. Since the frequent itemsets are stored in hash tables,

the support counts for the subset itemsets can be found efficiently. The

algorithm [Sri96] is reproduced in Figure 2.8.

for all frequent itemsets lk' k 2: 2 do

Call genrules(lk' lk)

procedure genrules(lk : frequent k - itemset, am : frequent m - itemset)

1. A = {(m - 1) - itemsets I am-I cam}

2. for all am-I E A do begin

3. conj=support(lk)/ support(am_I);

4. if(conk mincon/) then begin

5. output the rule am-I =} (lk - am-I), with confidence = conf

and support = support (lk)

6. if(m-1 > 1) then

7. call genrules(lk, am-I)

8. end

9. end

Figure 2.8: Generating Rules: Srikant's Simple Algorithm

This simple algorithm is capable of generating all possible rules. But due

to some redundant checking, it wastes a lot of time. For example, when

itemset ABeD is used for rule gebneration, subest ABC, then AB then A

27

will lead to checking of ABC ~ D, AB ~ CD and A ~ BCD as possible

rules. If the rule ABC ~ D have the confidence less than minconJ, then the

confidence of AB ~ CD cannot be more than minconf Since the support

count of AB cannot be smaller than that of ABC, second rule's confidence

cannot be larger than that of the first one. But the algorithm checks for the

second rule also and hence wastes some amount of time. Similarly, it also

checks for the rule A ~ BCD.

2.2.3 Srikant's Faster Algorithm

By eliminating these unnecessary checking of rules a faster algorithm was

proposed in [Sri96]. If a c a, then the support of a cannot be smaller than

that of a. Therfore, the confidence of a ~ (1 - a) cannot be more than the

confidence of a ~ (1 - a). These facts can be rewritten as rule a ~ (1 - a)

to hold, all the rules of the form a ~ (1 - a) must also hold, Va, a E a. For

example, the rule AB ~ CD may hold, iff both the rules ABC ~ D and

ABD ~ C holds.

The above property states that for a given frequent itemset, if a rule with

consequent c holds then the rules with consequents that are subsets of c will

also hold. This property of rules is similar to the downward closure property

of frequent itemsets, "subsets of a frequent item set are also frequent:'.

For example, assuming that ACDE ~ Band ABCE ~ D are the only

one item consequent rules derived, having the minimum confidence, from

the itemset A BCDE. If the algorithm in Figure 2.8 is used, the recursive

call genrules(ABCDE, ACDE) will test whether the two-item consequent

rules ACD ~ BE, ADE ~ BC, CDE ~ AB and ACE ~ BD will

28

hold or not. But first one of these rules cannot hold, because E C BE,

and the rule ABC D :::} E does not have the minimum confidence. For

the same reason second and third rule also cannot hold. But the call, gen­

rules(ABCDE,ABCE) of the algorithm presented in Section 2.2.2 will test

if all these four rules hold or not and will find that first 3 rules do not hold.

The only two item consequent rule that can possibly hold is ACE:::} BD,

where Band D are the consequents in the valid one-item consequent rules.

This is the only rule that will be tested by the algorithm given in Figure 2.9.

From a frequent itemset I, rules with one item in the consequent are

generated first. Then the possible consequents with two items are generated

using the apriori candidate generation function. If some rules are found here,

it will generate the three item consequents, in the same manner.

1. forall frequent k-itemsets lk' k ~2 do begin

2. HI ={ consequents of rules derived from lk with one item in the con-

sequent};

3. Call ap-genrules(lk, HI);

4. end

procedure ap-genrules(lk: frequent k-itemset, Hm: set of m-item consequent)

1. if(k>m+l) then begin

2. Hm+1 =result of calling apriori candidate generation function with

Hm

3. forall hm+l E Hm+l do begin

4. conf support(lk)/support(lk - hm +I);

5. if(conJ ~ minconf) then

6. output the rule (lk - hm+l) :::} hm+1 with confidence conJ

and support(lk)

29

7. else

8. delete hm+l from Hm+l;

9. end

10. call ap-genrules(hk , Hm+l);

11. end

Figure 2.9: Generating Rules: Srikant's Faster Algorithm

Although, the algorithm in Figure 2.9 is considered to be the best rule

generation algorithm, it also can be found to be disadvantageous due to the

following difficulties. The candidate consequent to be generated for the rule

discovery require a significant amount of memory. Also, a considerable time

is wasted by generating the same consequent several times for different an­

tecedents. For example, if X c Y, while generating the rules using X, all

the candidate consequents will be generated. The same operation will be

repeated for the set Y also, although many of them have already been gen­

erated in the earlier stage since Y is a super set of X.

So to overcome this difficulty, an effective algorithm to generate the rules

was developed. This algorithm also avoids unnecessary checking of the rules

and at the same time it saves some time by eliminating redundant genera­

tion of the same subsets. Since the algorithm in Figure 2.9 uses a recursive

function to generate the rules, memory requirement of it is more for a longer

frequent itemset. The next section presents a new algorithm to generate the

rules that is efficient from both time and memory requirement point of view.

30

2.3 A Faster Rule Generation Algorithm

This algorithm is capable of generating all possible rules subject to the user

specified minimum confidence. During the rule generation process, it avoids

the unnecessary checking of some candidate rules, based on similar concepts

used in the algorithm in Figure 2.9, which results in significant reduction

of the time required to generate the rules. All the rules that can be found

out by the third algorithm discussed above will be generated by this new

algorithm also. It will use the frequent itmesets that are already stored to

the memory and will not generate the subsets of a given frequent itemset.

Hence, the memory requirement for this algorithm is far less than the other

one. The steps of the proposed algorithm are listed in Figure 2.10.

Input: L={lk Ilk is the set of frequent k-itemsets, sorted on support count

in descending order, 1 ::::; k ::::; maxsize};

minconj = the minimum confidence specified by the user.

Output: the strong association rules discovered with their support and con­

fidence.

1. foralllk, lk E L, 1 ::::; k ::::; maxsize - 1 do begin

2. reqsup=support(lk)* minconj

3. found=O

4. foralllm, lm E L, (k + 1) ::::; m ::::; maxsize do begin

5. if(support(lm) 2:: reqsup) then begin

6. if(lk elm) then begin

7. found=found+ 1

8. conj=support (lm)/support (lk)

9. generate the rule lk =} (lm -lk), with confidence=conj

and support=support(lm)

31

10. end if

11. else

12. if(found<2)

13. continue step 1 with next k

14. else

15. found=O;

16. endif

17. endif

18. end do

19. end do

Figure 2.10: NBG: A Faster Rule Generation Algorithm

This algorithm is capable of discovering all possible rules from the given

set of frequent itemsets subject to a user specified minimum confidence. It

discovers all rules with a fixed antecedent and with different consequents.

For that it checks only those frequent itemsets which can fulfill the mini­

mum confidence. At the same time, the algorithm will go to the next level

of frequent itemset with the same antecedent if in the current level at least

two itemsets fulfil the minimum confidence. This eliminates a number of

unnecessary checks for the rule.

The algorithm is generating the rules with a fixed antecedent first, start­

ing with single item antecedent. When all the rules with that antecedent are

generated then it will go to the next antecedent. For the same antecedent

it checks for the rules with equal size consequent, starting with one item

consequent, then go to the next level. For, a given antecedent if all rules in

level k, where k is the number of items in the consequent, have confidence less

32

than the threshold, i.e. no rules are generated, then the confidence of any

rule in level k+ 1 also cannot be more than threshold. So checking for rules

from this level onward can be avoided without missing any rules. If in level

k, one rule fulfilled the threshold, then also in (k+ 1lh level there will be no

rule. Because an itemset in the (k+1)th level is generated by combining two

of the kth level itemsets. Now the maximum possible confidence of the rule

in the (k + l)th level will be minimum confidence of the two itemsets from

which this is constructed. Since the confidence of only one of them is larger

than the threshold, others must be less then the threshold. So the confidence

of the rule in level k+ 1 will be less than the threshold. So, it is needless to

check for the rules in the next level without missing any valid rule. It can

then be concluded that the algorithm is complete.

2.3.1 Experimental Results

All the above mentioned algorithms were tested with some synthetic data­

bases as well as standard databases. An Intel Core2duo 2.5 GHz processor

based computer with 3 GB RAM was used for this purpose. To compare

the performances of these algorithms, frequent itemsets derived from a test

dataset using Apriori algorithm are presented in Table 2.1. Based on these

frequent itemsets, the rules extracted by the algorithms presented in Figure

2.7, 2.8 and 2.9 are reported in Tables 2.2, 2.3 and 2.4 respectively.

Based on these experimental results it can be easily observed that the

algorithm in Figure 2.9 gives the best performance among them. So, this al­

gorithm was considered as the counterpart while evaluating the performance

of the proposed algorithm.

33

Table 2.1: Frequent Itemsets Derived: An Example

Itemset Size Itemset Support Count

1 1 2

1 2 6

1 3 6

1 4 4

1 5 8

1 6 5

1 7 7

1 8 4

1 9 2

2 5, 6 3

2 5, 7 5

2 6, 7 3

3 5, 6, 7 1

From these experimental results it can be observed that algorithms in

Figure 2.8 and Figure 2.9 produces the same rules, may be in different order.

But the algorithm in Figure 2.7 missed some of the rules that are derived by

the other two. Again the algorithm in Figure 2.9 executes faster than the

algorithm in Figure 2.8. The new algorithm, NBG, also produces the same

rules, takes less time even than Figure 2.9.

To compare the performance of NBG some other synthetic datasets were

considered. Initially, using the Apriori algorithm frequent itemsets were dis­

covered from the database. Table 2.5 contains the frequent itemsets derived

34

Table 2.2: Rules Derived by Agrawal's Algorithm

Rule Support Confidence

5=?6 3 0.375000

5=?7 5 0.625000

6=?7 3 0.600000

5,6=?7 1 0.333333

from a synthetic dataset having 10000 records and 20 attributes in it. While

deriving them, a minimum support of 20% was considered.

The frequent itemsets summarized in Table 2.5 are used to discover the

rules. Table 2.6 contains the results of different execution of the algorithms

with different values of confidence. The timing information provided in Table

2.6 are average of 15 runs of the program.

Similar comparison of above two algorithms was done using two standard

datasets namely Monks-1 and Monks-3. Summary of the frequent itemsets

with minimum support 10% derived from them were listed in Tables 2.7 and

2.9. Tables 2.8 and 2.10 contains the summary of the rule extraction process

with different values of minimum confidence.

2.3.2 Observations

Based on our experimental study, following observations can be made:

• Same numbers of rules are generated by both the algorithms even if

35

Table 2.3: Rules Derived by Srikant's Simple Algorithm

Rule Support Confidence

6:=:}5 3 0.600000

5:=:}6 3 0.375000

7:=:}5 5 0.714286

5:=:}7 5 0.625000

7:=:}6 3 0.428571

6:=:}7 3 0.600000

6, 7 =* 5 1 0.333333

5, 7 =* 6 1 0.200000

5, 6 =* 7 1 0.333333

6 =* 5, 7 1 0.200000

the orders of generation are different. It is evident from columns 2 &

4 of Tables 2.6, 2.8 and 2.10.

• Time taken by the proposed algorithm is significantly less than the

other. It is evident from columns 3 & 5 of Tables 2.6, 2.8 and 2.10.

• The time saved by the NBG is more significant with the increasing size

of the maximal frequent set and the total number of frequent itemsets.

2.4 Discussion

In this chapter, some of the algorithms used in the first phase of association

rule mining in the classical approach, i.e. frequent itemsets mining, were pre­

sented. These algorithms have their own advantages and limitations. They

36

Table 2.4: Rules Derived by Srikant's Faster Algorithm
Rule Support Confidence

6=}5 3 0.600000

5=}6 3 0.375000

7=}5 5 0.714286

5=}7 5 0.625000

7=}6 3 0.428571

6=}7 3 0.600000

6, 7 =} 5 1 0.333333

6 =} 5, 7 1 0.200000

5, 7 =} 6 1 0.200000

5, 6 ==> 7 1 0.333333

can derive the frequent itemsets from any given market basket dataset. Af­

ter finding those frequent itemsets, rules are generated. This chapter also

discussed three existing algorithms used for the generation of rules. Among

these three, the third one can be found to be the best, because it does not

miss any possible rule, and also works in a faster way.

This chapter finally presents an effective algorithm (NBG) which has

been established to be capable of extracting the rules even faster than the

previously known best algorithm.

All these algorithms to handle association rule mining problem, presented

in this chapter, considers the problem as a single objective problem. The con­

fidence of the rules was the main objective of the problem that is optimized.

37

Table 2.5: Frequent Itemset from a Synthetic Dataset

Itemset Size Number of Itemsets

1 18

2 133

3 216

4 43

Table 2.6: Rules from the Synthetic Dataset

NBG Srikant 's Faster Algorithm

Min Conf. Rules Time(ns) Rules Time(ns)

20% 2250 89,666,000 2250 1,263,772,000

30% 1822 25,691,000 1822 97,006,000

40% 1379 21,022,000 1379 47,039,000

50% 951 17,669,000 951 36,186,000

60% 580 12,605,000 580 25,487,000

But the association rule mining can be treated as a multi-objective problem.

In the next chapter we discuss about some other objectives of the association

rules that should also be optimized along with confidence. The chapter will

also discuss about some techniques to handle the multi-objective problems.

38

Table 2.7: Frequent Itemset from monks-1 Dataset

Itemset Size Number of Itemsets

1 17

2 94

3 20

Table 2 8· Rules from monks-1 Dataset ..
NBG Srikant's Faster Algorithm

Min Conf. Rules Time(ns) Rules Time(ns)

20% 252 7,989,000 252 8,474,000

30% 180 7,307,000 180 7,616,000

40% 99 6,453,000 99 6,674,000

50% 55 6,016,000 55 6,242,000

60% 13 5,498,000 13 5,830,000

Table 2.9: Frequent itemset from monks-3 Dataset
Itemset Size Number of Itemsets

1 17

2 93

3 19

39

Table 2 10· Rules from monks-3 Dataset
NBG Srikant's Faster Algorithm

Min Conf. Rules Time(ns) Rules Time(ns)

20% 241 7,912,000 241 8,285,000

30% 172 7,280,000 172 7,433,000

40% 90 6,391,000 90 6,569,000

50% 52 6,025,000 52 6,251,000

60% 11 5,506,000 11 5,734,000

40

Chapter 3

Multi Objective Association

Rule Mining

Among most of the real life problems of optimization only one measure or

objective is needed to be optimized. For handling them, some straight for­

ward algorithms can be used to get the optimal solution. But the situation

becomes more complicated when the problem have more than one measures

to evaluate and optimize all these measures simultaneously. Due to the de­

mands in different fields of real life applications, multi objective optimization

has got a lot of attention.

3.1 Multi Objective Problems

Multi objective optimization problems can be found in various fields: prod­

uct and process design, finance, aircraft design, the oil and gas industry,

automobile design, or wherever optimal decisions need to be taken in the

presence of trade-offs between two conflicting objectives. Maximizing profit

41

and minimizing the cost of a product; maximizing performance and minimiz­

ing fuel consumption of a vehicle; and minimizing weight while maximizing

the strength of a particular component are examples of multi-objective opti­

mization problems. In these types of problems it is practically impossible to

find the best solution, but some optimal solutions can be found.

The example in Table 3.1 will clarify the situation. Let us consider the

problem of traffic controlling system in a city. One objective of it is to reduce

the number of accidents, and the other objective is to reduce the cost incurred

to implement the system.

Table 3.1: Multi Objective Problem: An Example

Investment per year (Lakh Rs.) 0 10 20 30 40 50

Number of accidents per year 1000 700 500 350 250 175

For this problem, some of the probable solutions are tabulated in Table

3.1. Each column of the table represents a solution of the problem. But

none of them can be called as the best. The problem mentioned here is a

minimization problem, where we have to minimize both the cost and number

of accidents. But, if cost is reduced number of accidents will increase. Any

solution of the problem, if it is better than another, in one objective, than

it is worse in the other objective. For example, the last solution seems to be

the best from the number of accidents point of view. But this is the worst

one from cost point of view. So, none of the solutions here is the best. But

every solution works as an optimal solution of the problem and the decision

makers can choose any of them depending on the situation.

42

3.2 Handling Multi Objective Problems

Perhaps the most intuitive approach to solve the multi objective problem is

constructing a single aggregate objective function. The basic idea is to com­

bine all the objective functions into a single functional form, called the AOF

[JT02]. There are also different variations in defining the AOF. Simple linear

aggregation of the objectives also can be used in some problems. Another

well-known combination is the weighted linear sum of the objectives. Here, in

this approach some scalar weights for each objective to be optimized are spec­

ified, and then they are combined into a single function that can be solved by

any single-objective optimizer. Clearly, the solution obtained will depend on

the values (more precisely, the relative values) of the weights specified. For

example, if we are trying to maximize the strength of a machine component

and minimize the production cost, and if we specify a higher weight for the

cost objective compared to the strength, our solution will be one that favors

lower cost over higher strength. Thus, it may be noticed that the weighted

sum method is essentially subjective, in that a decision manager needs to

supply the weights [Fla76]. Depending on the weights supplied for the dif­

ferent objectives we will get a different solution. Hence the selection of the

suitable weights for different objectives again becomes a crucial problem.

Goal programming is a branch of multi objective optimization. It can be

thought of as an extension or generalization of linear programming to handle

multiple, conflicting objective measures. Each of these measures is given a

goal or target value to be achieved. Unwanted deviations from this set of

target values are then minimized in an achievement function. This was first

introduced in [CCF55], although the actual name first appeared in [CC61].

The first engineering application of goal programming was the design and

43

placement of the antennas employed on the second stage of the Saturn V.

This was used to launch the Apollo space capsule that landed the first men

on the moon.

The initial goal programming formulations ordered the unwanted devia­

tions into a number of priority levels, with the minimization of a deviation

in a higher priority level being infinitely more important than any deviations

in lower priority levels. This is known as lexicographic goal programming

[Ign76]. Lexicographic goal programming should be used when there exists

a clear priority ordering amongst the goals to be achieved. A major strength

of goal programming is its simplicity and ease of use. This accounts for the

large number of goal programming applications in many and diverse fields.

Goal programming can hence handle relatively large number of variables,

constraints and objectives. A debated weakness is the ability of goal pro­

gramming to produce solutions that are not Pareto efficient.

Since we cannot define the clear priority ordering of the different objec­

tives of the association rule mining, lexicographic goal programming will not

help us here.

It is better to find out the solutions for these type of problems depending

on non-dominance criterion [Coe99, FF95, ZDTOO]. At the time of taking a

decision, the solution that seems to fit better depending on the circumstances

can be chosen from the set of these candidate solutions. A solution, say a, is

said to be dominated by another solution, say b, if and only if the solution

b is better or equal with respect to all the corresponding objectives of the

solution a, and b is strictly better in at least one objective. Here the solution

b is called a non-dominated solution. So it will be helpful for the decision-

44

maker, if we can find a set of such non-dominated solutions. This approach

of solving the multi objective problem was suggested by French economist

Vilfredo Pareto [Par96]. After his name this technique of optimization was

termed as Pareto optimization technique.

3.3 Genetic Algorithms as a Tool

When we are looking for a solution for a problem, it is better to check the

complete solution space for the best solution. But in some problems the ex­

haustive search is practically infeasible, if the search space is too big. When

the search space is linear in nature, some kind of filtering can be done to elim­

inate some subspace of the total search space. But when the search space is

multi-dimensional, those types of filtering also do not help too much.

To attend this type of complicated problems, based on natural evolution,

Genetic Algorithms were suggest by John Henry Holland [HoI75]. Basically,

genetic algorithms are implemented as a computer simulation in which a

population of abstract representations, called chromosomes, of candidate so­

lutions, called individuals to an optimization problem evolves toward better

solutions. Solutions are represented in binary as strings of Os and Is. The

evolution usually starts from a population of randomly generated individuals,

called initial population and moves in generations. In each generation, the

fitness of every individual in the population is evaluated, multiple individuals

are randomly selected from the current population, based on their fitness. To

form a new population, those chromosomes are combined pairwise, which are

selected randomly. These new chromosomes are then randomly mutated and

is used in the next iteration of the algorithm. Commonly, the algorithm ter-

45

minates when either a maximum number of generations have been produced,

or a satisfactory fitness level has been reached for the population.

3.4 Multi Objective Genetic Algorithms

Several works have been found in the literature to establish it that the genetic

algorithms can be used as an efficient tool to handle the multi-objective

problem [Sha85, FF93, SD93, Coe96, DebOl, CLV07]. A few of them are

discussed here in this section.

3.4.1 Vector Evaluated Genetic Algorithm

David shaffer [Sha85] extended Grefenstette's GENESIS program [xxl71xx]

to include multiple objective functions. Shaffer's approach was to use an

extension of the Simple Genetic Algorithm(SGA) that he called the Vector

Evaluated Genetic Algorithm (VEGA), and that differed of the first only in

the way in which selection was performed. This operator was modified so that

at each generation a number of sub-population was generated by performing

proportional selection according to each objective function in turn. Thus,

for a problem with k objectives, k sub-populations of size N/k each are

generated, assuming a total population size of N. These sub-populations are

shuffled together to obtain a new population of size N, on which crossover and

mutation operators are applied in the usual way. The solutions generated

by this approach are non-inferior in local sense, as their non-inferiority is

limited to the current population, and while a locally dominated are globally

dominated also. Another problem, termed as "speciation", may also arise in

this approach (i.e., evolution of "species" within the population which excel

on different aspects of performance). This problem may arise because this

46

technique selects individuals who excel in one dimension of performance,

without looking at other dimensions. The potential danger in doing that

is that there may be some individuals with "middling" performance in all

objectives, which could be very useful, but that will not survive under this

selection scheme, since they are not in the extreme for any objective(i.e., they

do not produce best value for any objective function, but only moderately

good values for all of them). To deal with this problem some heuristics

was suggested. For example, to use a heuristic selection preference approach

for non-dominated individuals in each generation, to protect the "middling"

individuals. Also, crossbreeding among the "species" could be encouraged

by adding some mate selection heuristics instead of using the random mate

selection of traditional Genetic Algorithms.

3.4.2 Multi Objective Genetic Algorithm

Based on ranking of the individuals, Fonseca and Fleming [FF93] have pro­

posed this scheme. The rank assigned to an individual of the current popu­

lation is determined by the number of individuals by which it is dominated.

For example, if an individual x of generation 9 are dominated by p9 individ­

uals, then Rank(x, g) = 1 +p9. Hence, all the non-dominated individuals are

ranked as 1. Then the individuals are assigned some fitness based on their

ranks. Proper care must be taken so that the chromosomes with same ranks

gets equal fitness.

As Goldberg [Gol89] and Deb [SD94] point out, this type of blocked fit­

ness assignment is likely to produce a large selection pressure that might

produce premature convergence. To avoid that Fonseca and Fleming used a

niche-formation [FF95] method to distribute the population over the Pareto­

optimal region. This maintains diversity in the objective function values, but

47

may not maintain diversity in the parameter set, which is an important issue

for a decision maker. Furthermore, this approach may not be able to find

multiple solutions in problems where different Pareto-optimal points corre­

sponds to the same objective function value.

In this approach, it is possible to evolve only a certain region of the

trade off surface, by combining Pareto dominance with partial preference

information in the form of a goal vector.

3.4.3 N on-dominated Sorting Genetic Algorithm

This algorithm, NSGA [SD93], is based on several layers of classification of

the individuals. Before the selection is performed, the population is ranked on

the basis of non-domination. All non-dominated individuals are classified into

one category and assigned some dummy fitness. To maintain the diversity

of the population, these classified individuals are shared with their dummy

fitness values. Then this group of classified individuals is ignored and another

layer of non-dominated individuals is considered. The process continues until

all individuals in the population are classified.

A stochastic remainder proportionate selection was used for this ap­

proach. Since individuals in the first front have the maximum fitness value,

they always get more copies than the rest of the population. This allows

to search for non-dominated regions, and results in quick convergence of

the population towards such regions. The efficiency of NSG A lies in the

way multiple objectives are reduced to dummy fitness function using a non­

dominated sorting procedure. With this approach, any number of objectives

can be solved and both maximization and minimization problems can be

handled.

48

3.5 Multiple Objectives of Association Rule

Mining

Association rule mining is a multi objective problem. Confidence or predic­

tive accuracy, comprehensibility and interestingness of the rules can be used

as the objectives of the rule mining problem.

Confidence

This measure is commonly taken as the objective to be optimized by the

classical approach of rule mining. This is defined as the ratio of the support

of the rule to the support of the antecedent part of the rule. For exam­

ple, if A =?- C is a rule and SUprA) and SUP (A U C) are the support of

the antecedent and the rule respectively, then the confidence of the rule,

con! = SUP (A U C)jSUP(A). It defines the probability of finding C in a

record of the database when it contains A. Hence this measure is sometimes

termed as predictive accuracy also.

Comprehensibility

This measure of evaluating the rules defines how much understandable the

rule is. Since the association rules are represented as IF -THEN statements,

some conditions are involved there. It is easier to understand the statement,

if the number of conditions involved are less. If the rules are extracted by

the classical approach, sometimes a large number of conditions are involved

there. So it becomes very difficult to understand the rule. As a result the

rule will not be used by the decision makers.

Though it is very difficult to quantify the understandability or compre-

49

hensibility, a careful study of an association rule will infer that, if the number

of conditions involved in the antecedent part is less, the rule is easy to un­

derstand, in otherwords more comprehensible. To reflect this behaviour, an

expression was derived as comp=N- (number of conditions in the antecedent

part) [FLFGOO). This expression serves well for the classification rule genera­

tion [Fre01) where the number of attributes in the consequent part is always

one. Since, in the association rules, the consequent part may contain more

than one attribute, this expression is not suitable for the association rule

mining. So the need for a new expression to quantify the comprehensibility

of association rule was felt, where the number of attributes involved in both

the parts of the rule has some effects. Several expressions were designed

during this dissertation work to quantify the comprehensibility, and finally

the following expression was found to be better among them[GN04). The

expression for comprehensibility of an association rule-

Comprehensibility = log(l+ 1 C 1)/log(l+ 1 Au C I)·

Here, 1 C 1 and 1 A u Clare the number of attributes involved in the conse­

quent part and the total rule, respectively.

Interestingness

Since association rule mining is a part of data mining process that extracts

some hidden information, it should extract only those rules that have com­

paratively less occurrences in the entire database. Such a surprising rule

may be more interesting to the users; which again is difficult to quantify. For

classification rules it can be defined by information gain theoretic measures

[Fre02). This way of measuring interestingness for the association rules will

become computationally inefficient. For finding interestingness, the database

is to be divided based on each attribute present in the consequent part. Since

50

a number of attributes can appear in the consequent part and they are not

predefined, this approach is not feasible for association rule mining. So a

new expression was defined[GN04] which uses only the support count of the

antecedent and the consequent parts of the rules, and is defined as

Interestingness = [SUP(A U C)/ SUP(A)] x [SUP(A U C)/ SUP(C)]

x[1 - (SUP(A U C)/ I D I)].

where I D I is the total number of records in the database.

This expression contains three parts. The first part, [SU P(AUC)/ SU P(A)],

gives the probability of generating the rules depending on the antecedent

part, the second part, [SUP(A U C)/SUP(C)], gives the probability of gen­

erating the rule depending on the consequent part, and (SUP(A U C)/IDI)
gives the probability of generating the rule depending on the whole database.

So, the complement of this probability will be the probability of not generat­

ing the rule. Thus, a rule having a very high support count will be measured

as less interesting.

3.5.1 Efficient MOGA for Association Rule Mining

This section presents a Pareto based genetic algorithm to extract the associa­

tion rules. To work with the genetic algorithm it is necessary to represent the

candidate solutions as chromosomes, for which a suitable encoding/decoding

scheme is required. For the association rule mining problem the candidate

solutions are nothing but the possible rules. To encode rules two approaches

can be adopted. In the Pittsburgh approach [GS93] each chromosome rep­

resents a set of rules. The length of the chromosome limits the number of

rules generated. This approach is more suitable for classification rule min­

ing; as we do not have to decode the consequent part. The other approach

51

is called the Michigan approach [NFL99]where each chromosome represents

a separate rule. In the original Michigan approach we have to encode the

antecedent and consequent parts separately; and thus this is an inefficient

representation from the point of space utilization. As it is not known a pri­

ori, which attributes will appear in which part, space should be reserved for

every attribute in both the parts, antecedent and consequent. Again the

same attribute cannot appear in both the parts. As a result, at least half

of the reserved space within the chromosome will never be utilized. So we

followed a new approach that is better than this, from the point of storage

requirement. With each attribute two extra tag bits are associated. If these

two bits are 00 then the attribute, next to these two bits, appears in the

antecedent part and if it is 11 then the attribute appears in the consequent

part. And the other two combinations, 01 and 10 will indicate the absence

of the attribute in either of these parts. For example, the representation of

the rule AC =} BF from a database with attributes ABCDEF, will become

OOA lIB OOC OlD 10E llF. In this way we can handle variable length

rules with more storage efficiency, with an overhead of only 2k bits, where k

is the number of attributes in the database.

The next step in the chromosome representation is to find a suitable

scheme for encoding/decoding the attribute values of the rules to/from bi­

nary chromosomes. In the above representation of the rules the positions of

attributes are fixed. Hence, the attribute names are not needed to be encoded

in the chromosome. Values of different attributes are to be encoded in the

chromosome only. For encoding a categorical or nominal valued attribute,

the market basket encoding scheme is used. But this scheme is not suitable

for numeric valued attributes. For a continuous or real valued attribute their

binary representation is used as the encoded value. The range of values of

that attribute and the desired accuracy level controls the number of bits re-

52

qui red to encode the attribute's value. Decoding can be performed as­

Value = min + (max -min) {{ (2i - 1 xith bit value))/(2n - 1)),

where 1 :S i :S nand n is the number of bits used for encoding; min and max

are minimum and maximum values of the attribute.

Using these encoding schemes values of different attributes can be en­

coded into the chromosomes. Since in the association rules an attribute may

be involved with different relational operators [Oli93], it is better to encode

them also within the rule itself. For example, in one rule a numeric attribute

A may be involved as A 2:: valuel, but in another rule it may be involved as

A :S value2. Similarly, a categorical attribute may be involved with either

equal to (=) or not equal to (#). To handle this situation another bit is used

to indicate the operators involved with the attribute. Equality (=) and not

equality (#) are not considered with the numerical attribute. In this way

the whole rule can be represented as a binary string, and this binary string

will represent one chromosome or a possible rule.

After getting the chromosomes, various genetic operators such as crossover,

mutation, selection are performed on it. Presence of large number of at­

tributes in the records result in long chromosomes, which demands for multi­

point crossover needed to bring more diversity within the cromosomes.

There are some difficulties to use the standard multi-objective GAs for

association rule mining problem. In case of rule mining problem, a set of

better rules extracted from the database needs to be stored. If the standard

genetic operations are used, then the final population may not contain some

better rules generated at some intermediate generations. Hence it is better to

keep those better rules of the intermediate generations. For this task, a sep-

53

arate population can be used [ES91]. In this population no genetic operation

is performed. It will simply contain only the non-dominated chromosomes of

the previous generations. At the end of first generation, it will contain the

non-dominated chromosomes of the first generation. After the next gener­

ation, it will contain those chromosomes, which are non-dominated among

the current population as well as among the non-dominated solutions till the

previous generation.

Steps of the algorithm to extract the rules are enumerated in Figure 3.1.

Input: Database D, number of generations G

Output: A set of nondominated rules

1. Load S, SeD

2. Generate population P of N chromosomes randomly.

3. Decode(Pi), Vi,Pi E P

4. find SUP(A), SUP (C) and SUP(R) by scanning S

5. Calculate the confidence, comprehensibility and interestingness values.

6. Rank(Pi), Vi,Pi E P based on non-dominance property

7. fitness(Pi)=! P ! -Rank(Pi), Vi,Pi E P

8. Vi,Pi E P, if Rank(Pi)=l then Maintain~lite(pi)

9. Based on fitness(Pi) select cromosomes for next generation

10. Perform multi-point crossover, then mutation to get new population O.

11. Replace population P by 0

12. If number of generations < G, then go to Step 3.

13. Decode and return Elite Chromosomes.

Figure 3.1: GA based Multi Objective Rule Mining

54

Implementation and Results

Many experiments were carried out to set the various parameters of the

algorithm. A computer with Intel Core2Duo 2.5 GHz processor and 3 GB

RAM was used perform those experiments. During those experiments, the

parameters affecting the genetic algorithm was tuned for different values.

From these results it was observed that for all most all datasets the optimal

results are derived, if the crossover and mutation probability are tuned nearer

to 0.8 and 0.002 respectively. The results presented in this dissertation, are

based on these values of the said parameters. Similarly, the population size

was fixed at 40. To keep the diversity within the population multi-point

crossover was performed, where the number of crossover point varies with

chromosome length. Based on various experiments, one crossover point per

100 bit of chromosome was found to be most effective.

The algorithm was tested over several synthetic and standard datasets.

The synthetic datasets were generated based on probabilistic measures. Every

dataset differs from others in number of attributes, number of records .and

ranges of attribute values. Satisfactory results were obtained from those

experiments. Some results from a dataset, kddcup. data_l O_percent, publicly

available at VCI Machine Learning Repository (ftp:/ /ftp.ics.uci.edu/pub/

machine-Iearning-databases/) are given in Table 3.2. The dataset contains

total 41 attributes in it, out them 34 attributes are numeric remaining at­

tributes are symbolic. The dataset is conventionally used for classification

problem. Only the numeric valued attributes were considered during rule

extraction.

55

Table 3.2: Summary of results

Sample size Number of generations Number of rules generated

1000 100 24

200 31

300 31

1000 100 35

200 40

300 40

1000 100 27

200 36

300 37

2000 100 35

200 40

300 40

2000 100 35

200 40

300 40

A few rules from this datasets with a sample size of 2000 are given in

given in Table 3.3. For better understanding of the rules, the complete name

of the attributes involved in these rules are given in Table 3.4.

Discussion

From the rule sets generated for different samples and for different number

of generations it can be observed that after 200 generations it ceases to gen-

56

Table 3.3: Rules from kddcup.data_10_percent dataset

hot :::; 0.0 & count ~ 309.82 --+ DstJwsLcount ~ 111.98

hot ~ 0.0 & count ~ 1.18 & --+ srv _diffJwst_rate < 0.0 -
DstJwst_rerror_rate :::; 0.01 DstJwsLcount :::; 41.06

DsLhost...srv _diffll.ost...rate ~ 0.12 --+ srv _diffll.ost...rate > 0.0 -

& Dstll.osLcount < 8.05 & Dstllost...srv _count ~ 18.63

Dstllost...srv...serror_rate:::; 0.0

serror _rate ~ 1.36 & dst_bytes :::; --+ Dstll.ost_count < 6.67 -

82.48 & num_file_creations :::; 0.01 Dstllost...srv ...serror_rate :::; 0.0

erate more rules; in other words after that number of generations the GA

converges. From the results given above it can be seen that only for the

third sample, it gives an extra rule at the cost of 100 additional generations.

Moreover, only a very few number of attributes (4 to 5 attributes on both

the antecedent and consequent parts) got involved in the rules, which means

that all the attributes are not equally important; and the rules are simple to

understand (i.e. comprehensible).

This section presented an effective approach to discover the association

rules based on the multi objective genetic algorithm. But that algorithm

has a difficulty in it. To save the time by doing multiple disk accesses, it has

loaded a sample of the database to the memory. Since the algorithm works on

the memory resident data it works faster. But the rules that were discovered

by the algorithm may not reflect the whole database and is widely affected

by the sampling technique used to select the sample. Hence, it demands for

57

&

&

&

Table 3.4: Attributes of kddcup dataset involved in the reported rules

No. Name Description

6 dst_bytes Number of data bytes from destination to source

10 hot Number of "hot" indicators

17 numJile_creations Number of file creation operations

23 count Number of connections to the same host as the-

current connection in the past two seconds

25 serror _rate Percentage of connections that have "SYN" errors

31 srv _difLhost_rate Percentage of connections to different hosts

32 Dst__hosLcount Number of connections to host

33 Dst__host..srv _count Number of services requested of host

37 Dst__host..srv _cliff Percentage of connections with same service but

_host _rate to different Host

39 Dst__host..srv ..serror Percentage of connections to the same service that

_rate have "SYN" errors

40 Dst__host_rerror _rate Percentage of connections that have "REJ" errors

an algorithm which can handle dataset efficiently at minimum computational

cost. Next section presents a horizontal partitioning approach to address this

issue.

3.5.2 MOGA Based Partitioning Approach

In this approach the whole database is used during the rule extraction process.

To minimize the disk access time,the whole database was divided into some

horizontal partitions, where the size of the partitions were selected in such

58

a way that it could be accommodated within the memory. Then the rules

from the first partition were extracted. Since memory resident data are used,

the rule extraction process becomes faster. After storing these rules, next

partition was used to extract the rules from it. And this process continues

till all the partitions are used. Finally, the rules from all the partitions are

combined, and the redundant rules are eliminated. Then the whole database

is read once more from the disk to evaluate the rules.

However, chromosome representation, encoding/decoding scheme and all

other genetic operators used in the previous algorithm were strong enough

to handle the problem. So they were used in this partitioning approach also.

The steps of the algorithm are given in Figure 3.2.

Input: Database D, number of generations G

Output: A set of non-dominated rules

1. Create n partitions Si of D such that U~=l Si = D

2. i = 1

3. Load the partition Pi to memory

4. Generate population P of N chromosomes randomly

5. gen = 0

6. Decode(pj), Vj,Pj E P

7. Find SUP(A), SUP (C) and SUP(R) from Si

8. Calculate confidence, comprehensibility and interestingness

9. Rank(Pj), Vj'Pj E P

10. Fitness (Pj) = I P I -Rank(pj), Vj,Pj E P

11. Vj'Pj E P, if Rank(pj)=1 then Maintain~lite(pj)

12. Based on Fitness(pj) select chromosomes for next generation

59

13. Perform multi-point crossover, then mutation to get new population 0

14. Replace population P by 0

15. gen = gen + 1

16. if gen < G then go to Step 6

17. pi=p

18. i = i + 1

19. if i :s; n go to Step 3

20. Q = Uf=l pi

21. Find SUP(A), SUP (C) and SUP(R) by scanning D, Vqj E Q
22. Calculate confidence, comprehensibility and interestingness, Vqj E Q

23. return Q

Figure 3.2: MOGA based partitioning algorithm

Implementation and Results

The above mentioned algorithm was implemented and tested over various

synthetic as well as standard databases in the same environment as the ear­

lier one given in the previous section. From the results of various databases

it was observed that this algorithm can extract the rules from a database

that were extracted by the previous one also. But their measures are not the

same, as in the first algorithm objectives were evaluated on a sample of the

database. Here some of the results from some standard public databases are

presented. Crossover probability of 0.8, mutation probability of 0.01, popu­

lation size of 40 was used during the extraction of the rules. 12 bits were used

to encode each attribute. The databases presented below were downloaded

from VCI Machine learning repository (ftp://ftp.ics.uci.edu/pub/machine­

learning-databases /).

60

A. Wisconsin Diagnostic Breast Cancer Database

This dataset contains 569 instances and 32 attributes. First and second

attributes are sample code number and class label respectively. All other

30 attributes are real valued attributes. Out of these 569 instances, 357

are benign and 212 are of malignant types. Some rules extracted from this

database by the algorithm are presented in Table 3.5.

Table 3.5: Some rules from Wisconsin Diagnostic Breast Cancer Database
Mean perimeter::; 183.023 & ::::} Mean texture::;30.579 &

Worst area::;3924.124 Standard error perimeter::;15.730

& Worst compactness::;0.944 &

Worst symmetry2:0.338

Mean radius;:::7.029 & Standard ::::} Mean area2:249.27 & Standard

error perimeter::;10.94 & Worst error smoothness::;0.016

symmetry2:361.012

Mean radius::;12.895 & Standard ::::} Mean concave points ::; 0.1152

error radius::;0.8346 & Worst & Standard error perimeter ::;

area::;901.53 6.217 & Standard error fractal

dimension;:::O.OOl

When these rules were observed we found that in 84 instances the first

rule is satisfied and out of these 84 instances 66 (78.57%) are of malignant

type. Similarly, second rule is satisfied by 56 instances out of which 52

(92.86%) instances are Malignant. And out of 248 instances that satisfy the

fourth rule 236 (95.16%) instance are of benign type. This is an interesting

observation, as these rules may be used for classification also.

61

B. Wisconsin Breast Cancer Database

This dataset contains 699 instances and 11 attributes. First and last are

sample code number and class attribute respectively. All other attributes

are real valued attributes. Out of these 699 instances, 458 are Benign type

and 241 are of Malignant type. Some of the rules extracted from it are

presented in Table 3.6.

Table 3 6· Some rules from Wisconsin Breast Cancer Database ..
Uniformity of Cell Shape :::; 8.248 ::::} Marginal Adhesion "2: 2. 708 & Mi-

toses :::; 5. 730

Single Epithelial Cell Size:::; 9.888 ::::} Marginal Adhesion "2: 4.571 & Mi-

toses :::; 5.207

Bland Chromatin :::; 8.842 ::::} Clump Thickness 2 0.972 & Nor-

mal Nucleoli "2: 4.774 & Mitoses

:::; 5.642

When these rules were observed, it was found that in 168 instances the

first rule is satisfied and out of these 168 instances 122 (72.62%) are of ma­

lignant type. Similarly second rule is satisfied by 119 instances out of which

109 (91.6%) instances are Malignant. And out of 63 instances that satisfy

the third rule 52 (82.54%) instance are of benign type.

C. Wisconsin Prognostic Breast Cancer Database

This dataset was also taken from the UCI machine learning data repository.

This dataset contains 198 instances and 34 attributes. First and second are

sample code number and class attribute respectively. All other 32 attributes

are real valued attribute, values lying in different ranges. Out of these 198

62

instances, 151 are non-recurring and 47 are recurring type. When the rule

extraction algorithm was applied on it, some interesting rules were discovered.

A few of them are presented in Table 3. 7.

Table 3. 7: Some rules from Wisconsin Prognostic Breast Cancer

Standard error texture ~ 3.275 ::} Mean fractal dimension 2 0.093

& Standard error smoothness ~

0.026

Standard error symmetry~ 0.056 ::}

& Worst perimeter ~ 214.958

Time~ 112.585 & Mean perime- ::}

ter ~ 181.616 & Standard error

texture ~ 3.275 & Standard er-

ror smoothness ~ 0.025 & Mean

fractal dimension ~ 0.082

& Standard error compactness

~ 0.092 & Worst smoothness 2

0.108 & Worst compactness 2

0.246 & Worst fractal dimension

2 0.068 & & 36 & 107

Mean area 2 547.904 & Standard

error texture ~ 3.486 & Worst

smoothness > 0.152 & Worst

fractal dimension 2 0.069 & & 12

& 33

Standard error compactness <
0.094 & Worst compactness 2

0.264 & Worst fractal dimension

2 0.080 & 25 & 80

When these rules were observed we found that in 143 instances the first

rule is satisfied and out of these 143 instances, 107 (74.83%) are of non­

recurring type. Similarly second rule is satisfied by 45 instances out of which

33 (73.33%) instances are non-recurring. And out of 105 instances that sat­

isfy the third rule, 80 (76.19%) instances are of non-recurring type.

63

From these results it can be observed that the algorithm presented in

this section is capable of extracting some interesting and understandable

rules from the databases. Since the algorithm works on memory resident

data, it executes quickly. The databases is read from the disk two times

only. So the disk access time is less.

3.6 Discussion

Two algorithms are presented in this chapter, based on multi objective ge­

netic algorithms which have been found capable to extract meaningful rules

from large datasets. Both the algorithms were designed considering the as­

sociation rule mining problem as a multi objective problem. Expressions

to quantify comprehensibility and interestingness are also presented here.

These expressions were used to measure the objectives of the association rule

mining problem. From the experimental results it can be observed that the

algorithms were capable of discovering some interesting, understandable and

valid rules.

While discovering the rules from those databases it was also observed that

some of the attributes were never or very rarely used in the derived rules. If

those attributes can be eliminated before the rule mining process, the cost

of rule extraction process could be saved significantly. This necessitates an

appropriate dimensionality reduction technique and the next chapter intro­

duces this issue and also describes some effective dimensionality reduction

techniques.

Though it was assumed that the datasets used for rule extraction are

static in nature, it may not be always true. Time to time some new records

64

are added to the datasets. Due to which some new rules may become valid.

Since the rule extraction is a time consuming job, it is not appreciated to

extract the rules over an incremental database by repeated scanning of the

whole database every time it is updated. Extraction of meaningful rules over

incremental database is considered to be another challenging job. In a later

chapter this issue of rule mining is addressed.

65

Chapter 4

Dimensionality of Databases:

Another Challenge

In the previous chapter, while extracting rules from the databases, it was

observed that some of the attributes were never used in any of the rules

generated. In other words, presence or absence of those attributes in the

database have no effect on the result of the rule mining task. The possible

reason for it is that, these attributes are irrelevant. Almost every dataset

contains some irrelevant attributes. Presence of these irrelevant attributes

increase the storage requirement of the database, but practically carries no

useful information. Thus, reduction in the dimensionality of these databases

by discarding those redundant or irrelevant attributes will help saving the

cost of computation to a great extent.

66

4.1 Dimensionality Reduction

Selecting the relevant attributes or discarding the irrelevant attributes from a

database is a challenging job. Based on our study and experimental analysis

it has been found that an irrelevant attribute does not affect the target con­

cept in any way, and a redundant feature does add anything new to the target

concept [KP94]. In many applications, the size of the dataset is so huge that

learning might not work well before removing the unwanted attributes. Re­

ducing the number of irrelevant or redundant attributes drastically reduces

the execution time of a learning algorithm [KS95, KS96].

In reality, relevant attributes are unknown apriori. Therefore, set of can­

didate attributes are introduced to represent the domain in a better way.

But, for a database with n attributes, there will be 2n -1 possible candidate

sets available. Hence, selecting the best among them is a time consuming job.

This process of eliminating the irrelevant attributes or selecting the relevant

features is commonly known as dimensionality reduction or feature selection.

Dimensionality reduction attempts to remove irrelevant features accord­

ing to two basic criteria: (i) the accuracy does not significantly decrease and

(ii) the resulting concept, given only the values for the selected attributes, is

as close as possible to the original concept, given all the attributes.

4.2 Existing techniques

A good number of algorithms were proposed for dimensionality reduction/feature

selection over the years [Doa92, FC07, SDZ07, KCN08, GE08, HCX08, RFJT08].

67

Some of the prominent feature selection algorithms commonly used for re­

ducing the dimensionality of the databases are reproduced for the sake of

understanding and for comparison in this section. The notations/symbols

used in describing those algorithms are reported in Table 4.1.

4.2.1 Focus

Using consistency measure to evaluate the subsets, Focus [AD92] generates

all possible feature subsets. It implements the Min-Features bias that prefers

consistent hypothesis definable over as few features as possible. The algo­

rithm is given below.

Focus(D, S) /* D and S are the database and the set of features respec­

tively. * /
1. T = S

2. For i=O to N /*N is number of features * /
3. For each subset L of size i

4. If no inconsistency in the training set D then

5. T = L

6. Return T

Figure 4.1: Focus

The algorithm works well with noise-free data. Presence of noisy data

within the dataset affects the performance of the algorithm.

68

4.2.2 LVF

Using consistency measure to evaluate the subsets, LVF [L896] generates

the candidate subsets randomly. It randomly searches the subset space and

calculates an inconsistency count for the subset. An inconsistency threshold

is assumed and any subset with inconsistency measure greater than that

value is rejected. The algorithm is reproduced in Figure 4.2.

LVF(D, S, Max Tri es, a)

1. T = 8

2. For i=l to MaxTries

3. Randomly choose a subset of features, Sj

4. if card (Sj) ::; card(T)

5. if inConCal(Sj , D) ::; a

6. T = Sj

7. Output Sj

8. else

9. append Sj to T

10. output Sj as 'another solution'

11. endfor

12. return T

Figure 4.2: LVF

This algorithm works well for datasets with smaller number of attributes.

Since all feature subsets are not considered best subset may not be found,

specially when the number of attributes is high. If M axTries has been given

a larger value many possible feature subsets will be produced as output,

selection of the required subset becomes another problem for the user.

69

4.2.3 Branch and Bound

This algorithm was proposed by Narendra and Fukonaga in 1977 [NF77].

The important requirement of the algorithm is that the evaluation function

be monotonic. The algorithm needs input of required number of features

(M) and it attempts to find out the best subset. The algorithm is given in

Figure 4.3.

B&B(D, S, M)

1. if card(S) =I- M then

/*subset generation* /

2. j=O

3. for all features f E S begin

4. Sj = S - f /*remove one feature at a time * /

5. if (Sj is legitimate) then

6. if isbetter(Sj , T) then

7. T = Sj

/*recursion * /

8. B&B(Sj ,M)

9. endfor

10. j + +
11. endif

12. return T

Figure 4.3: Branch & Bound

The algorithm always produces the best feature subset as the output.

And useful for datasets with large number of attributes also. But the major

difficulty of the algorithm is it's exponential time complexity.

70

4.2.4 Relief

This algorithm [KR92] selects the relevant features by using statistical meth­

ods. It is basically a feature weight based algorithm designed on instance

based learning algorithm [DL97]. It first chooses a sample of instances (where

the number of instances i.e. N osample is a user input) at random from the

set of training instances and for each instance in it, finds the NearHit and

NearMiss instances based on Euclidian distance measure. NearHit of an in­

stance is defined as the instance having minimum Euclidean distance among

all instances of the same class as that of the instance. NearMiss of an in­

stance is defined as the instance having minimum Euclidean distance among

all instances of different class. The algorithm finds the weights of the features

from a sample of instances and chooses the features with weight greater than

a threshold. The algorithm is given in Figure 4.4.

Relief(D, S, NoSample, Threshold)

1.T=¢

2. Initialize all weights, Wj to zero

3. For i = 1 to NoSample

4. Randomly choose an instance xED

5. Find its nearHit and nearMiss

6. For j = 1 to N /* N is the number of features* /

7. Wj = Wj - diff(xj, near Hitj? + diff(xj, near Missj?

8. For j =1 to N

9. If Wj 2: Threshold

10. Append feature fJ to T

11. Return T

Figure 4.4: Relief

71

Relief works for noisy and correlated features. This algorithm is efficient

as only the subset having the number of features smaller than that of the

current best subset are checked for inconsistency. Also it is easy to imple­

ment and is guaranteed to find the optimal subset.

However, it cannot work with redundant features and hence generates

non-optimal features if the database contains redundant features. It works

only with binary classes. Another problem is how to choose of the proper

value of NoSample.

4.2.5 DTM

Decision Tree Method [Car93] uses feature selection in an application on

Natural Language Processing. To select the features, it runs C4.5 [Qui93]

over a training set and all those features that appear in the pruned decision

tree are selected. In other words, the union of the subsets of the features,

appearing in the path to any leaf node in the pruned tree is the selected

subset.

4.2.6 FFC

Based on the coherence properties of an attribute to the target concept, FFC

[DB04] tries to select the relevant itemsets. For selecting them it uses the co­

herence frequency count and non coherence frequency count of the attributes.

The steps of the algorithm are given in Figure 4.5.

The algorithm works well for binary class datasets.

72

FFC(D, 'Y, /3, n)

1. F=all the features

2. do while(1 F I> n)

3. S=c/J, L1= {f 1 support(f)2: 'Y} , L~={f 1 support(f)2: 'Y}

4. S=S u {xC 1 x E L1 U L1'} / / where 0 is dass label/ /

5. for all instances i E D do begin

6. Si=subset(S, i)

7. for all S E Si do

8. s.count++

9. F1 = F

10. F = {f 1 s = fO , s E Si and s.count2: 'Y}

11. 'Y='Y+/3
12. if 1 F 1 = n then return F

13. else return F1

Figure 4.5: FFC

4.2.7 MDLM

Minimum Description Length Method [SDN90] tries to eliminate all irrele­

vant and redundant features. This method is based on the concept that if

the features in a subset X can be expressed as a fixed non-dass-dependent

function F of the features in another subset Y, then once the values in the

features in the subset X are known, the features in the subset Yare useless.

Minimum Description Length Criterion (MDLC) is used for this purpose.

The algorithm exhaustively searches for all possible subsets and returns

the subset satisfying MDLC. Hence, the algorithm takes significant amount

73

Table 4.1: Symbols used in Above Algorithms

D - The Database -

s - Original set of Features -

M - Number of features to be selected -

Card(X) - Function to find the cardinality of the set X -

isbetter(X; Y) - A function to check if the set X is better than the set Y -

NoSample - the sample size -

ThresHold - lower limit of a feature's weight to become relevant -

N - number of features -

g,, - Minimum support -

W· - weight of j-th feature J -

Maxtries - number of iterations -

InConCal - function to calculate inconsistency -

l - upper level of inconsistency -

diff() - to find difference of same feature in two different records -

£1 - Features frequent occurrence -

L' - Features whose non occurrence is frequent 1 -

{3 - Increment to min-support -

F,Fl - Set of selected attributes -

of time. Moreover, the method can find all useful features for Gaussian cases

only.

4.3 Dimensionality Reduction: New Approaches

The algorithms presented in the previous section are commonly used in data

mining for dimensionality reduction. All of them have their own advantages

74

and limitations. But there is no universally acceptable algorithm for di­

mensionality reduction, that works on all kinds of databases. Most of the

classical association rule mining algorithms work on Market Basket data­

bases. The actual transaction databases is first converted to the market

basket form. There are different techniques for discretization of real valued

attributes. Most commonly used technique is the use of sub-ranges. Using

the sub-ranges of all the attributes, the market basket database is created.

From this database the classical rule mining algorithms extract the rules.

But this database also contains the irrelevant attributes. To save the com­

putational cost during rule extraction, irrelevant attributes of the database

can be discarded by using an appropriate dimensionality reduction technique.

After a careful study of this situation, it was observed that it is more

beneficial to reduce the dimensionality before the data is encoded in market

basket form. Following two subsections are dedicated in describing three dif­

ferent techniques to handle this problem; two of them are based on frequency

count and the other is rule based.

4.3.1 Frequency Count Based Reduction

In classical rule mining algorithms, generation of the rules are controlled by

two user given parameters, namely minimum support and minimum confi­

dence. The attributes whose support is less than the minimum support are

not relevant, and are not used in any later stage of rule mining. Hence, if

those attributes are eliminated during the conversion to market basket data­

base, then the cost of rule mining process reduces significantly. To meet this

requirement, the algorithm reported next was designed.

75

The algorithm DRUFT (Dimensionality Reduction Using Frequency

counT) is meant for reducing the dimensionality of market basket dataset

based on frequency count. When the dataset is converted to market bas­

ket, all the sub-ranges of all attributes have to be considered. But some

sub-ranges of the attributes may be found irrelevant. If these sub-ranges are

discarded then the dimensionality will be reduced. Unlike the above men­

tioned algorithms, DRUFT is capable of finding the relevant sub-ranges of

the attributes, resulting in a market basket dataset with a few number of

attributes in it.

The algorithm takes the dataset D and maximum number of needed sub­

range MaxAtt, as input. Table 4.2 describes the symbols used in DRUFT. It

reads the dataset only once and finds the frequency count of every sub-range

of all attributes. Using these frequency counts it eliminates irrelevant sub­

ranges, till the desired number of attributes remain not-eliminated. Finally

it produces the not-eliminated sub-ranges as output. Number of such sub­

ranges is equal to or less than MaxAtt. The algorithm is given Figure 4.6.

Algorithm DRUFT

Input:The dataset D, maximum numbers of sub-ranges needed MaxAtt.

Output: Set of selected sub-ranges, 81

1. s=¢
2. for all attributes Ai E A

3. for all subranges Pi,j E Ai

4. 8 = 8u Pi,j

5. for all 8 E 8

6. find the frequency count, 8U Ps

7. minfreq= 1

8. 81 = ¢

76

9. for all s E S

10. if (s E Ai)and (SUPs* I Ai I) 2 (minfreq *max(! A I))

11. S1 = S1 us
12. if I S1 1::; MaxAtt go to Step 16

13. minfreq= minfreq+ 1

14. S = S1

15. goto Step 8

16. return S1

Figure 4.6: Dimensionality Reduction Using Frequency Count

Table 4.2: Symbols used in DRUFT

A - Attributes of original dataset -

I Ai I - Number or sub-ranges of ith Attribute -
p. - lh sub-range of ith attribute t,J -

max(! A I) - Maximum of I Ai I -

s - Set of sub-ranges of A -

S1 - Set of selected sub-ranges -

SUPs - Frequency of sub-ranges -

minfreq - Current value of support count to declare -

frequent

MaxAtt - Maximum no of sub-ranges to be selected -

as

The algorithm works on the original continuous valued database where

the number of attributes are generally small, hence requiring less amount

of memory for its execution. For every attribute some sub-ranges are con­

sidered. These sub-ranges become attributes in the market basket dataset.

But the above method will restrict some of these ranges from becoming an

77

attribute of the market basket dataset. For every sub-range of all the at­

tributes, the frequency of them within the dataset is calculated by reading

the dataset once. Afterwards, only those frequency counts are used to reduce

the dimensionality of the market basket dataset to the user desired level. The

user has to provide his desired number of attributes as input to the algorithm.

After calculating the frequency count, those sub-ranges are eliminated; whose

frequency count is less than a factor of minimum frequency, minfreq. This

factor is different for the sub-ranges of different attributes. If the dataset

has been reduced to the desired level, it produces the sub-ranges that are

found out to be relevant. Otherwise, it eliminates some more sub-ranges by

incrementing the minimum frequency count, minfreq, This process continues

till the number of relevant sub-ranges do not become less than or equal to

the user desired number of attributes.

For example, let a dataset contain three attributes X, Y and Z. Values

of the attributes lie in the ranges {0,1O}, {10,20} and {-1O,1O} respectively.

When the dataset is converted to market basket with 10 sub-ranges of all at­

tributes then the market basket dataset will contain 30 attributes in it. But

the values of the attributes may not be evenly distributed. For that reason

some of the sub-ranges will become irrelevant because of their low frequency.

Say, the dataset contains 100 instances and the values of the first attribute

are distributed over the sub-ranges like 4,11,17,27,20,10, 6, 3, 0, 2. Simi­

larly, second and third attributes are distributed as 1,1,4,5,11,20,26,23,6,3

and 2,1,0,2,10,18,33,16,15,3 respectively. If the rules are extracted with a

minimum support of 15% then only 10 sub-ranges will be used out of 30.

The other sub-ranges will not contribute anything to the rule mining process

but will simply occupy the memory and increase the data transfer time from

the disk.

78

If the above mentioned algorithm is applied on the original dataset it

will select three sub-ranges of the first and the second attribute and four

sub-ranges of the third attribute. If the market basket dataset is constructed

only for these sub-ranges then the dataset size will be reduced to one third

of the original one. Hence the rule mining algorithm will need less memory

and less data transfer from the disk, in turn will speed up the execution of

the rule extraction process.

Implementation and Results

The algorithm was implemented in an environment described in the previ­

ous chapter. And was tested over various synthetic and standard databases.

Here some of the results from M onks-1 and M onks-3 training databases down­

loaded from VCI machine learning repository are given. There are 124 and

122 instances in Monks-1 and Monks-3 respectively. Both of them have 8 at­

tributes; first one is the class number and the last one is the sample number.

Remaining six attributes are numeric values spanning over different ranges.

The minimum and maximum values ofthese attributes are A1 (1,3), A2(1,3),

A3{1,2), A4(1,3),A5(1,4) and A6(1,2). If these databases are converted to

market basket then there will be a total 17 attributes.

The above mentioned algorithm can reduce the dimensionality of the

databases to the required level. Table 4.3 gives details of the reduction.

From the results in Table 4.4 it can be observed that it selects the sub-ranges

of the attributes those were declared as relevant by the existing algorithms

also. Only part 2 of attribute 6, denoted in Table 4.3 as A6-2, is coming

in addition. Reason for not selecting A6 by other algorithms is that it is a

redundant attribute.

79

Table 4.3: Dimensionality Reduction on Monks-1 and Monks-3 by DRUFT

Monks-3 Monks-1

Desired no Reduced Minimum Reduced Minimum

attributes to support to support

10 8 31 10 31

9 8 31 6 32

8 8 31 6 32

7 4 32 6 32

6 4 32 6 32

5 4 32 4 33

From the results in Table 4.3 it can be observed that the algorithm re­

duces the dimension of the database always to the required level. Since the

selected sub-ranges only have a higher frequency over the database, only

those will be finally used by the classical rule mining algorithms. From Ta­

ble 4.4 it can be observed that the algorithm is selecting only sub-ranges of

those attributes that were declared as relevant by other techniques.

From these results it can be observed that the algorithm presented above

can be of better use to reduce the dimensionality of database specially for

those data mining tasks like association rule mining where frequency of the

attributes has a great role to play.

However, a limitation of the algorithm is that if the user does not have

80

Table 4.4: Comparative Results of Some Existing Algorithms and DRUFT

Method Monks-3 Monks-1

Selected attributes MBs Selected attributes MBs

dimension dimension

Relief A2,A5 al- 9 or 10 or Al,A2,A5 10

ways & one or both 12

of A3,A4

B&B Al,A3,A4 8 NA -

DTM A2,A5 7 NA -
LVF A2,A4,A5 10 NA -

MDLM A2,A3,A5 9 NA -

FFC Al,A2,A4,A5 13 Al,A2,A5 10

DRUFT re- Al-l,A3-l,A4-3, 4 Al-l,A2-3,A5-4, 4

duced to 4 A5-l A6-2

DRUFT re- - - Al-l, A2-3, A3-l, 6

duced to 6 A4-3, A5-4, A6-2

DRUFT re- Al-l, A2-2, A3-l, 8 - -
duced to 8 A4-3, A5-l, A5-2,

A5-4, A6-2

sufficient knowledge about the dataset, some rules may be lost during the

rule extraction process. If the dataset contains, say, n single item frequent

iternsets, and say, the dataset is already reduced to m, where m < n, then

some rules will be lost during the extraction process due to the reduction.

To overcome this difficulty, another algorithm was developed to help the

classical association rule mining technique.

81

This algorithm Dimensionality Reduction for Association Rule Mining

(DRARM) is also meant for reducing the dimensionality of market basket

dataset based on Frequency count. Instead of using the desired number of

attributes as an input parameter, it uses minimum support as the user para­

meter.

The basic idea behind this algorithm is the downward closer property of

frequent itemsets. Only the frequent itemsets are used for constructing next

level candidate itemsets. So, the infrequent single itemsets are never used

in any stage of the rule extraction process. The algorithm DRARM hence

eliminates those sub-ranges of the attributes that will result in an infrequent

item in the target market basket dataset. Since these infrequent items are

eliminated before the rule extraction process, they will not occupy the mem­

ory unnecessarily.

The steps of the algorithm are enumerated in Figure 4.7.

Algorithm DRARM

Input:The dataset D, minimum support "(.

Output: Set of selected sub-ranges, 81

1. 8 = ¢

2. for all attributes Ai E A

3. for all subranges Pi,j E Ai

4. 8 = 8 U Pi,j

5. for all 8 E 8

6. find the frequency count, 8U Ps

7. T =1 D 11* total number of records in D * /
8. 81 = ¢

82

9. for all 8 E S

10. if (SUPs~ T * Min8up)

11. S1 = S1 u 8

12. return S1

Figure 4. 7: Dimensionality Reduction for Association Rule Mining

The algorithm was tested over Monks-1 and Monks-3 datasets mentioned

above, as well as some synthetic datasets. Table 4.5 depicts the summary

of the reduction by DRARM over some synthetic datasets. These datasets

were generated randomly, and different in number of records, number of at­

tributes and attribute value ranges. First dataset contains 20000 records and

25 attributes, the second dataset contains 10000 records and 20 attributes

and the third one contains 20000 records and 10 attributes. When the first

dataset, named as T20_C25, was converted to market basket with 4 equal

sub-ranges of all attributes then the resultant market basket dataset con­

tained 100 attributes in it. Similarly, dataset T10_C20 and T20_C10 resulted

in two other market basket datasets with 5 equal sub-ranges of the attributes.

Table 4.5: Reduction in Synthetic Datasets

Dataset Sub-ranges MB's dimension Support Reduced to

T20_C25 4 100 20% 69

40% 22

T10_C20 5 100 20% 69

40% 21

T20_C10 5 50 20% 35

40% 15

83

Using the apriori [AIS93] algorithm frequent itemsets were derived from

market basket datasets resulted from the above mentioned datasets. For the

same original dataset, different market basket datasets were considered that

were resulted as the result of reduction with different support. When these

results were analyzed, following observations were made.

• With the same support, same itemsets were derived from the original

as well as reduced datasets, provided reduction was done with the same

or smaller support.

• With the same support, original datasets took significantly more time

than that of the reduced datasets. Some results are reported in Table

4.6.

• For higher support, during frequent itemset finding than the reduction,

no information is lost due to reduction, and it executes faster.

• For smaller support, during frequent itemset finding than the reduction,

some information are lost. Hence care should be taken while providing

the minimum support during reduction.

The algorithm was implemented on a computer with Intel Core2Duo 2.5

GHz processor, 3 GB RAM. The timing information presented in Table 4.6

are average of 15 runs of the program on each dataset.

From the Table 4.6, it can be clearly observed that there is a significant

reduction of time with DRARM while compared with the original dataset.

Though it was tested only for the Apriori algorithm it is valid for other algo­

rithms also, only amount of time saved may differ for those algorithms that

needs less number of scanning of the dataset during the frequent itemset

generation. However, to avoid information loss during reduction, care should

be taken while providing the user parameter minimum support.

84

Table 4.6: Time Taken in Deriving Frequent Itemset

Dataset MB's Size of Dataset Minimum Time Taken

T20_C25 Dimension Support

Original 100 4,020,000 Bytes 20% 57282 ms

40% 46578 ms

Reduced with 69 2, 780,000 Bytes 20% 37469 ms

20% support 40% 18641 ms

Reduced with 22 900,000 Bytes 20% 10516 ms

40% support 40% 5313 ms

Next section shall discuss another dimensionality reduction technique

which seems to support the Multi-objective Association Rule Mining as well

as classical approach.

4.3.2 Rule Based Reduction

In the previous section two dimensionality reduction techniques useful for the

rule mining using classical approach were presented, which reduce the dimen­

sion of databases to a required level. If only the higher frequency attributes

are selected for the final rule mining stage, then some of the interesting rules

may be lost. It is obvious that an interesting rule has a lower frequency,

so, above two techniques for the dimensionality reduction are not suitable

for multi-objective association rule mining. The need of dimensionality re­

duction suitable for multi-objective association rule mining has motivated us

towards the development of this rule based algorithm presented next.

85

Even for a dataset with a very few number of continuous valued attributes

a market basket dataset will be achieved with a huge number of features in

it, depending on the ranges of values of different attributes in the origi­

nal dataset. For example if the dataset contains the attribute 1 (minimum

value 1, maximum value 100), attribute2 (minimum value 51, maximum

value 150), attribute3 (minimum value 0, maximum value 1), and attribute4

(minimum value 1, maximum value 1000). And if 10 sub-ranges are to be

considered for every attribute during conversion to market basket dataset,

then the instance (9, 139, 0.27, 705) is converted to the following bit string,

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 hav­

ing 40 attributes in it. But, if the following relevant ranges (1 ~ Attl <
20), (101 ~ Att2 < 150), (0.1 ~ Att3 < 0.4) and (401 ~ Att4 < 800)

are considered then the same instance of the original dataset look like-

1,0,0,0,0,1,0,0,1,0,0,0,0,1 having only 14 attributes in it.

The algorithm works on the original continuous valued dataset where the

number of attributes is very small, hence requiring less amount of memory.

It selects the relevant ranges of feature values from continuous data and is

based on Multi-objective Genetic Algorithm that uses frequency count, and

compactness as two measures of evaluation. Frequency count is total number

of instances of the dataset that satisfies attribute value ranges under consid­

eration. And compactness of the attribute value range is defined as the ratio

of summation of considered range of all attributes to the summation of range

of all attributes in the actual dataset.

It is assumed here, that each instance of the database is of the form

< i1, h,·, in >, where ii is the value of ith attribute. One example of such

an instance may be (5, 700, 61, ... ,), where 5, 700, 61, represents the

86

attribute value of the first, second and third attribute respectively. Output

of the algorithm are the relevant ranges of the attributes. These ranges can

be used to construct a market basket dataset with reduced dimensionality, if

classical rule mining approach is used. Otherwise these ranges of the differ­

ent attributes can be used by the multi objective rule mining algorithm that

works on continuous valued attributes.

The candidate range of each attribute is encoded within a chromosome

of the genetic algorithm. The lower and upper limit of the value of each

attribute is represented separately in a binary form with m number of bits.

So the complete chromosome will be the concatenation of n such pair of bit

strings, where n is the number of attributes in the database. While decod­

ing the values floating point decoding method described in the Chapter 3.

The genetic algorithm will execute for a given number of generations, Max­

Gen. Output of the algorithm will be some combinations of different relevant

ranges of attribute values. The steps of the algorithm is next in Figure 4.8.

Algorithm DRMOGA

Input: Continuous valued dataset D, maximum number of generations M axGen

Output: Combinations of useful attribute value sub-ranges

1. Generate population P of N chromosomes randomly.

2. i = o.
3. Do while(i < MaxGen)

4. Decode(pj), Vj,Pj E P.

5. Vj,Pj E P find SUP(Pj) and compactness(pj).

6. Rank(Pj), Vj,Pj E P.

87

7. Based on Rank(pj) select chromosomes for next generation.

8. Perform multi-point crossover, then mutation to get new population O.

9. Replace population P by O.

10. i = i + 1.

11. End do.

12. return P.

Figure 4.8: Dimensionality Reduction with Multi objective GA

This algorithm uses the concept of frequency count and compactness of

continuous range of values of the attributes. From the experiments it has

been found that the proposed algorithm reduces the dimension of the target

market basket dataset considerably, if the dimension of the market basket

dataset without reduction is very high. The reduction is less if original mar­

ket basket dataset's dimension is already very small. It will happen, if the

dataset's attribute value range is very small and/or a very few sub-ranges

have to be considered while converting to market basket dataset. For exam­

ple, for an attribute ranging over 1 to 20 and the relevant values within 7 and

15, in both the market basket dataset before reduction and after reduction,

there will be 2 features corresponding to this attribute if two sub-ranges are

considered while converting. Since the algorithm is producing a number of

such combinations, before using these ranges for converting the dataset to

market basket such ranges can be combined to get a better result. Though

it imposes a little burden on the decision maker, it will provide some control

in constructing the final market basket database.

88

Implementation and Results

The algorithm was implemented in the same environment as the other

one. Crossover and mutation probability was taken as 0.9 and 0.002 respec­

tively, Population size was taken as 40 and 10 bits were used to encode every

value within the chromosome. The algorithm was tested over several syn­

thetic databases as well as standard databases like Monks-1 and Monks-3.

Since in Monks databases ranges of attribute values are small, results from

those databases are not included here. Results from a synthetic database

are reported here. Table 4. 7 contains a description of the synthetic database

used.

Table 4.7: Description of the Synthetic Database

Attribute name Minimum value Maximum value

Attributel 1 100

Attribute2 51 150

Attribute3 0 1

Attribute4 1 1000

To conduct the experiments, 1000 records was generated for the data­

base. While generating these records it was ensured that 90 % instances sat­

isfy the conditions (1 S: Attl S: 25), (90 S: Att2 S: 145), (0.1 S: Att3 S: 0.3)

and (400 S: Att4 ~ 900) other instances are random so they may or may

not be present within that range. The database finally had 902 records that

satisfied the above conditions.

Then the algorithm under discussion was used on this database to find

the relevant sub-ranges. (1 ~ Attl ~ 20), (101 ~ Att2 ~ 150), (0.1 ~

Att3 S: 0.4) and (401 S: Att4 ~ 800) were some of those sub-ranges found

by the algorithm and was found to be very near to the range used during

89

construction of the database. Total 907 records were there within this range.

After analyzing the database, it was found that 9 records that satisfied the

original conditions, were not satisfying the new condition but 14 more records

satisfy the new conditions which did not satisfy the original conditions. The

exclusion was due to the following reasons - 5 records were eliminated since

the Attribute1's values were more than 20 but less than 25, 1 record was

eliminated since the Attribute2's value was less than 101 but more than 90,

2 more such records were there but they were already eliminated by the first

attribute. 3 records were eliminated since the Attribute4's values more than

800 but less than 900, 4 more such records were there but 3 of them were

already eliminated by the first attribute and 1 by the second attribute. The

inclusion was due to the following reasons - 6 records were included since the

Attribute2's values were less than 150 but more than 145. Other 8 records

were included since the Attribute3's values were less than 0.4 but more than

0.3, 3 such records were also there but they were already included by At­

tribute2.

From this analysis it can be observed that the algorithm is able to find

out the relevant ranges of values of the attributes. If the above mentioned

database is to be converted to market basket using 10 equal sub-ranges of all

the four attributes, then the converted dataset will have 40 attributes. But,

after discarding the irrelevant ranges, there will be only 14 attributes in it.

Similarly, if 100 equal sub-ranges of all the four attributes have to be con­

sidered while encoding, then the converted dataset will have 400 attributes,

but after discarding the irrelevant sub-ranges it will restrict to only 150 at­

tributes.

90

With 10 equal sub-ranges of every attribute, when the previous algorithm

was used on this database and tried to reduce the dimensionality to 14, it got

reduced to 13 attribute. And all these were lying within the ranges selected

by the current algorithm.

The previous algorithm was applied on the database with 100 equal sub­

ranges of each attribute, when it was reduced with a support of 10% , it gets

reduced to 151. When this reduction was analyzed, an interesting observa­

tion was made. Though this algorithm gives one more sub-range, other 150

sub-ranges are not exactly the same. When the sub-ranges were analyzed

it was found that 146 were common. Four sub-ranges that were given by

the current algorithm are not produced by the previous one, but five new

sub-ranges were declared to be relevant. This is because of the reason that

the values of the attributes are not evenly distributed in the whole range,

as the majority of the sub-ranges were declared to be relevant by both the

algorithms. Similar observation was made on the results from other datasets

considered during this dissertation.

The difficulty of the previous algorithm is that the decision maker has

less control during the reduction process. Sometimes he may be interested in

some sub-ranges of attribute value that are not too frequent. But the current

algorithm will give him some freedom to select the sub-ranges of his interest,

as multiple sub ranges will be produced by the algorithm, as the sub-range

considered below.

Another sub-range given by the algorithm was (7:S Att1 :S 16), (114 :S

Att2 :S 132), (0.2 :S Att3 :S 0.35) and (567 :S Att4 :S 714) with the frequency

count 638. Though the frequency count for this subset range is smaller than

91

the earlier one, this subset range is more compact. It indicates that the

dimensionality of the target dataset has a further scope of reduction. For ex­

ample, if this range is used then the dimension of the converted dataset will

be 11 and 58 only, when 10 and 100 sub-ranges are considered respectively

during conversion, making the dataset more compact.

4.4 Discussion

In this chapter influence of dimensionality of databases on the data mining

tasks was discussed, and a few existing algorithms for dimensionality reduc­

tion were presented. But none of them is universally acceptable. So, to help

the association rule mining, three algorithms for reducing the dimensional­

ity of databases were presented in this chapter. From the experiments it has

been found that though the first one can reduce the dimensionality of dataset

to the desired level, user should have some knowledge about the dataset un­

der consideration. But the other two algorithms are capable of reducing the

dimension of the databases and suitable for association rule mining.

92

Chapter 5

MORM in Incremental

Databases

Databases used for extraction of association rules, are assumed to be static

in nature, however, it may not be always true. Time to time these databases

are updated in terms of deletion of existing records, insertion of new records

or modification of existing records. Though all these types of updations

are allowed in a transaction database, however, all of them may not occur

in a data warehouse. Modification in the existing records or deletion of an

existing record is normally not recommended here. However, new records

are added to it time to time. In other words, the databases used by data

mining tasks, may be incremental in nature. Extraction of association rules

in a cost effective manner from such incremental databases is considered to

be a challenging problem.

93

5.1 Need of Incremental Mining

Due to the insertion of new records into a dataset, some new rules may come

into existence. And at the same time some of the existng rules may become

invalid. Insertion of these new records will change the support of the rules

although the support count for some rules may not be changed.

For example, say X and Yare two distinct itemsets of a dataset having

1000 records with the support count 210 and 190 respectively. Subject to

the minimum support of 20%, X is a frequent itemset but Y is not. Now,

another 100 records, where 5 and 40 records contain X and Y respectively,

are added to the dataset. In the updated dataset, the support of the itemset

X falls below the threshold but the support of Y goes above the threshold.

In other words X becomes infrequent but Y becomes frequent in the updated

dataset. Due to these changes of frequent itemsets, some earlier derived rules

will be dropped and some new rules may found to be relevant. Since the rule

extraction is a time consuming job, it is not appreciated to extract the rules

over an incremental database by repeated scanning of the whole database

every time it is updated. Hence, the extraction of meaningful rules over

incremental database is considered to be another challenging job.

To meet the challenges of incremental mining, several works based on

the classical approach of association rule mining were carried out over the

decade. Most of these techniques try to extract the new rules, (if there any),

by repeated scans over the newly inserted records, however, with minimum

scan over the old database. The size of the incremental part is normally very

small as compared to that of the old part. Hence, more number of scanning

of the old part leads to wastage of time. For clarity, some of the existing

relevant techniques are reproduced in the next section.

94

5.2 Existing Techniques

Most of the existing techniques for incremental mining work in two phases,

i.e. frequent itemset generation and rule generation. These algorithms give

more importance to the frequent itemset generation phase. While doing this

they use the information that were extracted from the old database so that

less number of scanning of the old database is required. To explain the

working of most of these algorithms, the sample database given in Table 5.1

is used.

Table 5.1: A sample database

TJD A B c D E F

100 1 1 1 1 0 1

200 1 1 1 1 1 0

300 0 1 1 1 0 0

400 1 0 0 1 1 0

500 1 0 1 1 0 0

600 1 1 1 0 1 0

The frequent itemsets based on the market basket data of Table 5.1 were

then derived using Apriori [AIS93] algorithm with a minimum support of

50%. Table 5.2 reports these frequent itemsets. The algorithms discussed in

this section use these frequent itemsets while deriving the frequent itemsets

over the incremented data.

Now, to describe the incremental association mining problem, with ref­

erence to the database reported in Table 5.1 is updated in the following

manner: transaction with ID 400 is deleted and a new transaction with ID

95

Table 5.2: Frequent itemsets from Table 5.1 with minimum support 50%

Size Number Itemsets

1 5 A,B,C,D,E

2 7 AB,AC,AD,AE,BC,BD,CD

3 3 ABC,ACD,BCD

700 is added. The resultant database is reported in Table 5.3.

Table 5.3: Updated sample dataset
T_ID A B c D E F

100 1 1 1 1 0 1

200 1 1 1 1 1 0

300 0 1 1 1 0 0

400 - - - - - -

500 1 0 1 1 0 0

600 1 1 1 0 1 0

700 0 1 0 1 1 0

The frequent itemsets derived from this updated database using Apriori

algorithm with a minimum support 50% are reported in Table 5.4.

It can be observed that the frequent sets listed in Table 5.4 are not

exactly the same with those reported in Table 5.2. In Table 5.4, there is a new

frequent itemset of size 2, BE, with support count 3, and the itemset AE that

was frequent earlier, listed in Table 5.2, has become infrequent. Apriori and

96

Table 5.4: Frequent itemsets from Table 5.3 with minimum support of 50%

Size Number Itemsets

1 5 A,B,C,D,E

2 7 AB,AC,AD,BC,BD,BE,CD

3 3 ABC,ACD,BCD

its other counter parts are able to extract these frequent itemsets, but for that

those algorithms will simply consider the updated dataset as a new dataset

and everything is started from the scratch ignoring the earlier computed

result. Since extraction of the frequent itemsets is a time consuming task,

the algorithm should be capable to exploit the pre-computed results during

generation of the frequent itemsets for the updated databases. It will save

the computation time to a great extent. The following algorithms attempt

to address this issue.

5.2.1 FUP

The algorithm FUP [CHNW96] first scans the incremental part of the dataset

and detects (i) the looser single itemsets, i.e. the itemsets that become

infrequent due to the inclusion of the incremented part and (ii} it finds the

candidate frequent itemsets. Then the whole database (i.e. the old and new

together) is scanned to find their support in the complete database. Next,

it performs similar operations iteratively for k-itemsets. This algorithm gets

some benefit during the candidate frequent itemset generation, that saves

some time than the apriori algorithm. But the algorithm needs multiple

number of scanning of the whole database. It needs k number of scanning of

the whole database if the largest maximal frequent set's size is k.

97

5.2.2 FUP2

FUP2 [CLK97j works on a dynamic dataset where new records may be in­

serted and some of the existing records may be deleted. It extracts the rules

from the final dataset by considering both the deleted parts and the newly

added part. Applying this algorithm on the updated database D' given in

Table 5.3, with a minimum support of 50% will proceed as follows. In the

first step, candidate set C~ is formed that will be the same as Cl in the old

database. That is, C~=Cl={A,B,C,D,E,F}. Then comparing C~ and Ll (as

computed for old dataset D) will lead to breaking of C~ into two parts: first

part, Pl={A,B,C,D,E}, that is common to both C~ and Ll and the second

part Ql ={F} that is the difference of C~ and Pl' Then the support of each

itemset in PI and QI are computed. After that frequent itemsets in PI that

are still frequent in the new dataset are obtained and included in L~. Then

it is checked whether any itemset of Ql, that were earlier infrequent has be­

come frequent or not. If yes, add them to L~. Finally, L~ ={ A,B,C,D,E} is

obtained. Then C~={ AB, AC, AD, AE, BC, BD, BE, CD, CE, DE} is gener­

ated by Apriori_gen function using L~. The generated candidate set is again

broken to P2={AB, AC, AD, AE, BC, BD, CD} and Q2={BE,CE,DE}. After

computing the support of the itemsets in P2 and Q2, it computes L~={ AB,

AC, AD, BC, BE, CD}. Similarly, based on L~, C~={ABC, ABD, ACD,

BCD, BCE, BDE} is computed and broken to P3={ABC, ACD, BCD} and

Q3={ABD, BCD, BCE, BDE}. Then L~={ABC, ACD, BCD} is computed

as earlier. Since C~ has been found empty, the algorithm stops there. The

algorithm is reproduced in Figure 5.1.

1. Obtain a candidate set Ck of itemsets. Halt if Ck = ¢>.

2. Calculate b:k for each X E Ck'

3. Partition Ck into Pk and Qk.

98

4. For each X E Pk , remove it if (Jx + b1 <I D' I xs%.

5. For each X E Qk, remove it if b1 :::; (If:,. + I - If:,. - l) x s%.

6. If If:,. - 1:::;1f:,. + I, let Rk = 4;. Otherwise calculate bx for each X E Qk

and if b1 - bi 2: (If:,. + I - If:,. - I) x s%, move it to Rk and assign bx
to 8x.

7. Scan f:,. - to find out 8x for each X E Pk U Qk.

8. Delete from Pk those candidates X where (Jx + b1 - 8x <I D' I xs%.

9. Delete from Qk those candidates with b1 -8x :::; (If:,. + I - If:,. - I) x s%.

10. Scan f:,. + to find 81 for each X E Pk U Qk U Rk.

11. For each candidate X E Pk , calculate (J~.

12. For each candidate X E Qk, delete X if 81- 8x :::; (If:,. + I - I f:,. + I
) x s%.

13. For each candidate X E Rk,delete X if 61 :::; (If:,. + I - If:,. + I) x s%.

14. Scan D- and get the count of each X E Qk U Rk. Then, add this count

to 61 to get (J~.

15. Add to L~ those candidates X from PkUQkURk where (J~ 2:1 D' I xs%.

16. Halt if ILk 1< k+l.

Figure 5.1: FUP2

5.2.3 MAAP

The algorithm, MAAP [ES02] first finds out the old frequent itemsets that

will remain frequent in the updated dataset also. Downward closure property

of frequent itemsets makes this job little bit simpler. Then it checks for the

possible new frequent itemset, and if found, new candidates are generated.

For the above mentioned example, it starts with L3={ ABC, ACD, BCD} and

maintains the lists L;, L~ and L~. Support of all itemsets in L3 are computed

99

and found that ABC is frequent, so all the subset of it must be frequent and

hence added to the list of corresponding size. Since ACD and BCD are also

frequent, subsets of them are also treated in the similar way and L;={ABC,

ACD, BCD}, L~={AB, AC, BC, AD, CD, BD} and L~={A,B,C,D} are

resulted. These are some of the itemsets that were frequent earlier and

remained frequent after the updation. In the next step, itemsets in Li - L~ are

tested, whether they are frequent or not. In the above example, Ll - L~ ={E}

and L2 - L~={AE}. Since E is frequent, it is added to Ll but AE is not

because it is no longer frequent. In the next step, the algorithm checks for

the itemsets which were infrequent earlier and computes 8 i = Ci - L i . For

example,81 = CI -L l ={F} and 82 = C2 -L2={BE,CE,DE}. After scanning

the dataset only BE was found to be frequent and included in L~ resulting

in L~={ AB, AC, AD, BC, BD, BE, CD}. Since some of these itemsets

were infrequent in old database, next level higher additional candidates will

be generated. Here, additional C~=L~ x {BE}={BCE, BDE} and resulted in

C~={ABC, ABD, ACD, BCD, BCE, BDE}. Since none of the elements of

additional C~ is frequent, final L;={ABC, ACD, BCD}. The final frequent

itemsets are L={A, B, C, D, E, AB, AC, AD, BC, BD, BE, CD, ABC, ACD,

BCD}.

5.2.4 Borders

Borders algorithm [AFLM99] finds the frequent itemsets from the dynamic

database using the frequent itemsets already discovered from the old dataset.

Here the concept of aborder set is used. An infrequent itemset is termed as

border set, if all the non empty proper subsets of it are frequent. Due to the

insertion of new records to the dataset, some of the border sets may become

frequent, and is termed as promoted border set. For that, the border sets

100

of the old dataset also have to be maintained along with the frequent sets

derived. Based on the promoted border set, some new candidate itemsets

are generated and checked for frequent set. For the above example B1 ={F}

and B2={BE, CE, DE} and B3={ ABD, ABE, ACE, ADE} are the border

sets. On the updated dataset only BE becomes promoted border set. Then

the candidates due to the promoted border set are generated. Database

is scanned to get the support of the iemsets and the frequent itemsets are

found. The candidates are generated if there is at least one promoted border

set. This algorithm may require more than one passes of the old dataset

depending on the frequent sets discovered due to the incremented part.

The steps of the Borders algorithm that works on an incremental data­

base are presented in Figure 5.2

Input: R N, Ro , a, Borders and FrequentSets of Ro and their count

Output: Borders and FrequentSets of Ro URN and their count

1. Scan new relation RN and find count c(X, R N), for all X E Borders U

FrequentS ets.

2. For all X E Borders U FrequentSets do
3. c(X, Ro , R N) = c(X, Ro) + c(X, R N)

4. s(X, Ro , R N) = c(X, Ro URN)/(no + nN)
5. end do
6. PromotedBorders = {X E Borders 1 s(X,Ro URN) ::::: a}
7. FrequentSets = {X E FrequentSets 1 s(X, RoURN) ::::: a }UPromotedBorder s
8. Borders = {X 1 \:Ix E X,X - {x} E FrequentSets}

9. m=max{i I PromotedBorders(i) =I- ¢}
10. Lo = ¢
11. i=1

12. While (Li =I- ¢ or i :::; m) do
13. C i +1 = {X = S1 U S2 1 (i) 1 X 1= i + 1.
14. (ii):3x E X, X - {x} E PromotedBorders(i) U Li ,

15. (iii)\:Ix E X,X - {x} E FrequentSets(i) U L i }

101

16. Scan RNURo and obtain c(X, RNURo) for all candidates, X E Ci+1

17. Li+1 = {X I X E Ci+1 and c(X, RN U Ro)/(no + nN) ~ a}
18. FrequentSets = FrequentSets U Li+1

19. Borders = Borders U (Ci+1 - Li+I)

20. i = i + 1
21. end do

Figure 5.2: Borders (addition)

5.2.5 Efficient Counting Using TID-lists

To improve the support counting algorithm during the update phase, this

algorithm ECUT [GGROO] exploits systematic data evolution and the fact

that only a very small number of new candidate itemsets need to be counted.

The intuition behind this support counting algorithm is similar to that of an

index in that it retrieves only the relevant portion of the dataset to count

the support of an itemset X. The relevant information consists of the set of

TID-lists of items in X. ECUT uses TID-lists B(iI), ... , B(ik) of all items in an

itemset X = {iI, ... i k } to count the support of X. The cardinality of the result

of the intersection of these TID-lists equals (j(X). Since TID-lists consists

of transaction identifiers sorted in increasing order, the intersection can be

performed easily; the procedure is exactly the same as the merge phase of

merge sort.

ECUT (database increment RN, Ro, History Log)

1. SCAN db to create its TIDList of RN .

2. Generate Ldb and NBd(LRN).

3. Update counts of item sets in LRo and in N Bd(LRo) and specify winners

as all itemsets that were in NBd(LRo) and now are in NBd(LD ').

4. While winners set is not empty.

102

5. Generate candidates set and empty the winners set.

6. Use the History Log and RN to update count of candidates and specify

new winners.

7. End while

Figure 5.3: ECUT

5.2.6 Maximal Frequent Trend Pattern

This algorithm, MFTP [GAMH06], first compute LRN, N Bd(LRN), LD' and

NBd(LD'). All itemsets that were in NBd(LRo) and became large are added

to a winners set. This winners set is used with LD' to generate the candidates

set. This candidates set is filtered against NBd(LRo), based on the theory

proved in [GGROO] that a winner itemset should have at least one subset

that belongs to NBd(LRo). After filtering, new winners and new candidates

are generated and so on till no more winners could be generated. For each

itemset in LD' and NBd(LD'), the MFTP algorithm (Figure 5.4) constructs

and smoothes the time series, and then transforms it into a trend pattern,

which is mined for maximal-frequent-trend-pattern. The maximal frequent

trend pattern that matches the current pattern is then used to predict the

forthcoming trend, and hence, the forthcoming support range. To match two

patterns of length 1, a match-factor is used. That is if (match - jactor)% of

the first 1 - 1 indicators matches, then the two patterns matches, and the lth

indicator is the predicted trend.

103

MFTP (itemset A, RN , Ro, HistoryLog)

1. From History Log, construct the times series of A: TS(A).

2. Calculate the triangular moving average of TS(A) : MA(A).

3. Calculate the trend indicators of MA(A) : TR(A).

4. Find maximal-frequent-pattern in T R(A) that matches the current pat­

tern.

5. Based on the maximal matched frequent-pattern, predict next support

range of A.

Figure 5.4: MFTP

5.2.7 Modified borders

This modified version of the borders algorithm, named as modified borders

[DB05], aims to minimize the generation of unnecessary candidate sets. In

order to do so, it uses an additional user parameter, apart from the minimum

support. Correctness and completeness of the frequent itemsets largely de­

pends on these parameters. With proper tuning of these parameters, modified

borders can perform better than the Borders algorithm. When this additional

parameter's value is closer to the support, the algorithm converges to the bor­

ders algorithm. Depending on this parameter, the border sets are divided

into four different sets B' , B", Bill and B"". The probability of becoming

promoted border set is highest for the elements of B' and lowest for B"". The

algorithm is reproduced in Figure 5.5.

Input: Tnew , Told, a, /3, Lold, B~ld' B:ld

Output: Lwhole, B~hole' B~hole
Scan Tnew and increment the support count of X E (Lold U B~ld U B:ld)

B' = {X I X E B~ld and S(Xhwhole 2: a}i

104

B" = {X I X E B~ld and S(X)rwhole ~ Q};

Lwhole = B' u B" u {X I X E Lold and S(X)rwhole ~ Q};

Bill = {X I X E B~ld;VX E X,X - {x} E Lwhole; (S(X)rwhole ~ f3 and

S(X)Twhole < Q)};

B"" = {X I X E B~ld ULoid; Vx E X, X - {X} E Lwhole; (S(X)rwhole ~ f3 and

S(X)rwhole < Q)};

B' = Bill U B""" whole ,
B~hole = {X I Vx E X,X - {x} E Lwhole and S(X) < f3};
If B" # ¢ then m = max {i I B"(i) # ¢}

Candidate - generation:

Lo = ¢; Bo = ¢; k =2;

while(Lk _ 1 # ¢ or B k - 1 # ¢ or k ~ (m - 1)) do

Ck =¢

L = B"(k - 1) U Lk- 1 U B"'(k - 1) U Bk- 1

M = Lk- 1 U Lwhole(k - 1) U B~hole(k - 1)

For all itemsets in II E L do begin

For all itemsets in l2 E M do begin

If lr[i] = l2[i] (1 ~ i ~ k - 2) and lr[k - 1] < l2[k - 1] then

C = {lr[l], lr[2], """' lr[k - 2], lr[k - 1], l2[k - I}}

Ck = CkUC

End for

End for

Prune Ck: All the subsets of Ck of size (k - 1) must be present in M;

Scan Twhole and obtain support S(X) for all X E Ck
Lk = {X I X E Ck and S(X) ~ Q}

Lwhole = Lwhole U Lk

Bk = {X I X E (Ck-Lk);Vx E X,X-{x} E Lwhole;S(X) > f3 and

105

S(X) < 0:

B~hole = B~hole U Bk

B~hole = B~hole U {X I X E (Ck - L k); \Ix E X, X - {X} E Lwhole; S(X) < ,8}

k = k + 1;

End do

Figure 5.5: Modified Borders

Apart from the above mentioned algorithms several other works can

be found in the literature [ATA99, LMDR04, KZY+05, LSNP07, HCK07,

HLW08, TLJ08, SXG08, OLC08]. All these algorithms have their own strengths

and weaknesses, and is capable of handling the incremental rule mining prob­

lem. However, from a careful study it was observed that most of these tech­

niques suffer from the following disadvantages:

• A two phase association mining often can be found to be time and

resource consuming in case of larger incremental databases.

• Due to conversion of the real-life data into market-basket domain, in­

formation loss occurs.

• Single objective function (i.e. based on only frequency of occurrence)

based rule generation often can be found to be non-interesting.

5.3 Proposed Method

To address the issues mentioned in the previous section, a single phase in­

cremental association mining technique has been reported here, which can

extract the reduced set of interesting rules over the real-life dataset without

transforming it into market basket domain. The new technique can be found

to be significant in view of the following points:

106

Table 5.5: Symbols and Notations used

D,Ro - Dataset -

D' - Updated Dataset -
t:,.- - set of deleted records -

t:,.+,RN - set of newly added records -

ax, S(x) - support of x -

NBd(Lx),Bx - Border sets from dataset x -

a - Minimum support -
o+ - Support of x in 6. + -X

• During extraction of the rules, it evaluates the rules based on not only

the support count, but also on the other measures like comprehensibil­

ity and interestingness.

• It does not require to transform the dataset into market basket domain.

• It avoids the frequent itemset generation phase, rather it generates the

rules directly.

5.3.1 MORM in Incremental Databases

This algorithm extracts the association rules from a continuous valued dataset,

using genetic algorithm. It is free from the difficulties mentioned in the pre­

vious section. During extraction of the rules, generally predictive accuracy

or confidence of a rule is used to evaluate the rules. And for this, the support

of different sets of items are needed. The above mentioned algorithms con­

centrate on the efficient extraction of the itemsets that meets the minimum

threshold requirements. However, the proposed approach evaluates the rules

based on three different measures, namely confidence, comprehensibility and

107

interestingness. To evaluate these measures, the expressions used in Chapter

3 are used.

The algorithm is capable of generating the rules directly without deriving

the frequent itemsets. During the extraction of the rules, it needs to scan

the old dataset only once. The algorithm is based on multi-objective genetic

algorithm and here, every candidate rule is represented as a chromosome. Us­

ing the floating point encoding scheme, the values of attributes are encoded

within the chromosome. Attribute names are not needed to encode, as po­

sitions of the values within the chromosome are sufficient to get attribute

names. Two additional bits are needed for every attribute to represent the

involvement of the attribute within the rule. If these two bits are 00, then

the attribute next to these two bits appear in the antecedent part and if it

is 11 then the attribute appear in the consequent part. And if these two bits

contain either 01 or 10, then the attribute is not involved in either part of the

rule. Another bit is used to represent the relational operator involved with

the attribute. A continuous valued attribute may be involved with either :::;

or 2: operator and a categorical valued attribute may be involved with either

= or =1= operator. If this bit is 0, then the attribute is involved with :::; or =
depending on its type. Some predefined number of bits are used to encode

the attribute values. If the database contains n attributes in it, and m bits

used to encode every attribute, then finally chromosome length will become

(nx (m+3)). For example, the rule (A :::; 20&F 2: 2S) ::::} (B 2: 15&E :::; 30)

from a database having attributes ABCDEF, will be encoded in the binary

string 000101001110111110- - - - -01- - - - -1101111000111100 if 5 bits

are used to encode every attribute. Since the attributes C and D are not

involved in the rule, value of them will not play any role in representing the

rule, so the bit position reserved for these two attributes may contain 0 or 1

and are marked with a hyphen(-) in the given bit string.

lOS

Rules are extracted from the static part, i.e. the old database, using the

MORM technique discussed in Chapter 3. These rules are stored and can be

used by the decision support system until the database is updated. Due to

the addition of the new records to the database, some new rules may come

into existence. To extract these rules, if it is there, the algorithm given in

Figure 5.6 can be used.

Algorithm MORMI

Input: Database D, incremental part D', old rules Ro , number of genera­

tions G.

Output: A set of non-dominated rules, Rc , from the complete database.

1. Load D' to memory.

2. Generate population P of N chromosomes randomly.

3. gen = O.

4. Decode(Pi), 'tii,Pi E P.

5. Find SUP(A), SUP(C) and SUP(R) from D', ('tiR,R E P and R =

A => C).

6. Calculate confidence, comprehensibility and interestingness .

7. Rank(Pi), 'tii,pi E P.

8. Fitness (Pi) = I P I ~Rank(pi)' 'tii,Pi E P.

9. 'tii,Pi E P, if Rank(Pi)=l then Maintain-Elite(pi).

10. Based on Fitness(Pi) select chromosomes for next generation.

11. Perform multi-point crossover, then mutation to get new population O.

12. Replace population P by O.

13. if gen + + < G then go to Step 4.
14. Find SUP(A), SUP(C) and SUP(R) by scanning DUD', (VR, REP

or R E Ro).

109

15. Rc=P u Ro·
16. Calculate confidence, comprehensibility and interestingness, V R, R E

Rc
17. return Q

Figure 5.6: MORMI

The rules generated by the algorithm were finally evaluated by scanning

the whole dataset. The algorithm requires at the most one pass of the whole

dataset while generating rules. The different objectives of the rules reflect

their existence within the whole dataset.

Following lemma is a result of our previous discussion which establishes

the efficiency of the algorithm.

Lemma!: For generating the rules that are valid for the whole dataset,

MORMI requires at the most one pass of the whole dataset.

The above algorithm can be found to be advantageous in view of the

following points.

• The algorithm does not require the data in market basket form, it can

work on the original continuous valued dataset.

• No separate frequent itemset generation phase is needed; it can produce

the rules directly.

• User parameters like minimum support and minimum confidence are

not required here and hence they cannot affect the execution time of

rule generation process.

• Needs only one scanning of the whole dataset to produce the correct

rules.

• A reduced ruleset will be generated and is controlled by the population

size of the genetic algorithm.

110

5.3.2 Implementation and Results

The algorithm was implemented on a computer with Core2Duo 2.5G Hz

processor and 3 GB RAM. During the execution of the algorithm for min­

ing the rules crossover probability of 0.8 and mutation probability of 0.002

were used. 5-point crossover operator was used with the population size 40.

12 bits were used to encode each attribute. The algorithm was tested with

several synthetic as well as standard databases. A few of the extracted rules

from some standard datasets available at UCI Machine Learning Repository

are discussed below.

A. Wisconsin Diagnostic Breast Cancer Database (WDBC)

This dataset contains 569 instances and 32 attributes. First and second are

sample code number and class attribute respectively. All other 30 attributes

are real valued attributes. Out of these 569 instances, 357 are benign and

212 are of malignant types.

Out of these first 500 instances were treated as the old dataset where 305

and 195 instances were benign and malignant respectively. The remaining

69 instances were considered as the incremental part where 52 instances are

benign and 17 are malignant. The rules discovered from this incremental

dataset when compared with the rules of the static part, it was observed

that 7 new rules are coming up. And then for the other rules also when

compared peer to peer, it is found that the values involved in the rules are

differing slightly. Due to which the objectives of the generated rules have

been changed. This is due to the reason that the database size in terms of

records, and frequency count of the rules have an affect on the objective mea­

sures. Some rules from this dataset is given in Table 5.6. When these rules

111

were observed, it was found that in 84 instances the first rule is satisfied and

out of 84 instances 66 (78.57%) are of malignant type. Similarly, second rule

is satisfied by 56 instances out of which 52 (92.86%) instances are Malignant;

and out of 248 instances that satisfy the fourth rule, 236 (95.16%) instances

are of benign type.

When this set of rules were compared with the set of rules discovered by

the algorithm presented in Section 3.5.2, it was found that both the sets are

identical. From this fact it is established that this incremental approach of

rule mining is capable of extracting the rules from the database if the whole

database is used for extraction also. Similar observation was made for the

next two databases also.

A significant amount of time was saved by MORMI to extract these rules

from the updated database. The time taken to derive the rules from the sta­

tic part and the complete dataset by multi objective approach along with

time taken to derive the rules by the incremental approach are reported in

Table 5.9.

B. Wisconsin Breast Cancer Database (WBC)

This dataset contains 699 instances and 11 attributes. First and last are

sample code number and class attribute respectively. All other attributes

are real valued attributes. Out of these 699 instances, 458 are benign type

and 241 are of malignant type.

The first 600 instances are considered as the static dataset and the re­

maining 99 as the incremental part. 380 and 220 instances of the static

part are benign and malignant type respectively, whereas 78 benign and 21

112

Table 5.6: Incremental rules from WDBC database

Mean perimeter < 183.023 & => Mean texture ~ 30.579 & Stan-

Worst area~ 3924.124 dard error perimeter ~ 15.730 &

Worst compactness ~ 0.944 &

Worst symmetry~ 0.338

Mean radius~ 7.029 & Standard => Mean area ~ 249.27 & Standard

error perimeter ~ 10.94 & Worst error smoothness ~ 0.016

symmetry ~ 361.012

Mean radius ~ 12.895 & Stan- => Mean concave points ~ 0.1152 &

dard error radius < 0.8346 & Standard error perimeter ~ 6.217

Worst area ~ 901.53 & Standard error fractal dimen-

sion ~ 0.001

malignant instances are there in the incremental part. No additional rules

were extracted due to the incremental part for this database. Reason for not

finding new rules may be due to the reason that this database contains less

number of attributes, that resulted in a smaller search space for the solutions.

But the measures of some of the rules from the static part were changed due

to the same reason explained in the discussion of the previous database. But

here also the final rules match with those rules extracted by the algorithm

described in Section 3.5.2.

Some rules from this dataset are given in Table 5.7. When these rules

were observed we have found that in 168 instances the first rule is satisfied

and out of these 168 instances 122 (72.62%) are of malignant type. Similarly

113

second rule is satisfied by 119 instances out of which 109 (91.6%) instances are

malignant. And out of 63 instances that satisfy the third rule, 52 (82.54%)

instances are of benign type.

Similar to the previous dataset, considerable amount of time was saved

for this dataset also, when the algorithm MORMI was used to derive the

rules. Table 5.9 presents the time required to extract the rules from the static

part and complete dataset by the multi objective rule mining approach and

the time required by MORMI.

Table 5.7: Incremental rules from WBC database

Uniformity of Cell Shape ::; 8.248 :::} Marginal Adhesion ~ 2. 708 & Mi-

toses ::; 5. 730

Single Epithelial Cell Size::; 9.888 :::} Marginal Adhesion~ 4.571 & Mi-

toses ::; 5.207

Bland Chromatin ::; 8.842 :::} Clump Thickness ~ 0.972 & Nor-

mal Nucleoli ~ 4.774 & Mitoses

::; 5.642

C. Wisconsin Prognostic Breast Cancer (WPBC)

The dataset contains 198 instances and 34 attributes. First and second are

sample code number and class attribute, respectively. All other 32 attributes

are real valued attributes. Out of these 198 instances, 151 non-recurring, 47

recurring type.

114

Table 5.8: Incremental rules from WPBC database

Standard error texture S 3.275 =?

& Standard error smoothness ~

0.026

Standard error symmetry~ 0.056 =?

& Worst perimeter ~ 214.958

Time ~ 112.585 & Mean perime- =?

ter ~ 181.616 & Standard error

texture ~ 3.275 & Standard error

smoothness ~ 0.025 Mean fractal

dimension ~ 0.082

Mean fractal dimension ~ 0.093

& Standard error compactness

~ 0.092 & Worst smoothness ~

0.108 & Worst compactness ~

0.246 & Worst fractal dimension

~ 0.068

Mean area~ 547.904 & Standard

error texture ~ 3.486 & Worst

smoothness > 0.152 & Worst

fractal dimension ~ 0.069

Standard error compactness ~

0.094 & Worst compactness ~

0.264 & Worst fractal dimension

~ 0.080

Out of the 150 instances, which contains 112 non-recurring and 38 re­

curring type, are considered as static part. Remaining 48 instances were

considered as incremental part that contains 39 non-recurring and 9 recur­

ring instances. After the extraction of the rules from the incremental part,

6 rules were newly found. Table 5.8 presents some rules derived from this

dataset. When these rules were observed we have found that in 143 instances

the first rule is satisfied and out of these 143 instances 107 (74.83%) are of

non-recurring type. Similarly second rule is satisfied by 45 instances out of

which 33 (73.33%) instances are non-recurring. And out of 105 instances

115

that satisfy the third rule, 80 (76.19%) instances are of non-recurring type.

Due to the same reason described in the previous databases, objective mea­

sures of the rules from the static part and the complete database are differing

slightly. But finally for this database also same rules were extracted if the

algorithm in Section 3.5.2 is used over the complete database.

Table 5.9 reports the timing information to derive the rules from this

dataset also. It can be observed that, a significant amount of time is saved

to derive the rules when MORMI is used.

Table 5.9: Comparison of Static and Incremental MORM

Dataset MORM on MORM on MORMI (ns) Time saved

Static part(ns) Complete(ns) (ns)

WDBC 8,923,647,500 10,708,377,000 1 ,806,146,254 8,902,230,746

WBC 7,235,610,857 8,441,546,000 1,222,818,235 7,218,727,765

WPBC 3,230,902,500 4,307,870,000 1,085,583,240 3,222,286, 760

All timing information in this table are average of 15 runs of the program.

5.4 Discussion

From the above discussion it was observed that this algorithm can extract

the association rules from an incremental dataset with a single pass of the

whole database. It uses the new incremental part of the dataset several times

to discover the association rules. Similar experiments were carried out over

several synthetic databases and the results were satisfactory. These syn­

thetic databases had different number of records as well as different number

of attributes. From those experiments it was observed that, if the dataset

116

contains a large number of attributes then probability of finding new rules

becomes higher. The size of the incremental part also has some influence

over the generated rules. Some new rules also may come into existence for

a database with larger increments with smaller number of attributes. The

objective measures confidence and interestingness of the rules, that have the

influence of frequency within the dataset, differs due to the increment of the

dataset. However an interesting observation made over these experiments

was that same rules were extracted by the algorithm described in Section

3.5.2, when applied on the complete database.

117

Chapter 6

Conclusions and Future works

6.1 Conclusions

In this dissertation a study of different issues of association rule mining is

presented. After a careful study of the different association rule mining algo­

rithms it was found that all of them treat the problem as a single objective

one, where finally the confidence of the rules are maximized. All of those

algorithms are based on the approach pioneered by Agrawal et. al. [AIS93].

Generation of the rules are done in two phases namely frequent itemset gener­

ation and rule generation. First phase being the most crucial one, the existing

algorithms have given more importance on it. A very few algorithms were

found that attended the second phase. In the chapter 2, an efficient algo­

rithm to attend the rule generation phase was presented. From the various

experiments it has been found that the new algorithm works faster than all

the other existing algorithms.

Though the association rule mining was handled as single objective prob-

118

lem by the existing algorithms, from the study of the association rules it was

found that it should be treated as a multi-objective problem. Considering

comprehensibility and interestingness as two other objectives along with con­

fidence, association rule mining problem can be handled as multi-objective

problem. After testing several expressions finally, two expressions to quan­

tify comprehensibility and interestingness were formulated. In Chapter 3,

two algorithms based on Pareto genetic algorithm are presented to extract

the association rules from the database. In literature, Pareto genetic al­

gorithm was found to be a better technique to handle the multi-objective

problem. Out of the two algorithms presented in the Chapter 3, second one

has been found to be more efficient.

During the study of the association rule mining algorithms, it was ob­

served that the performance of the algorithms are affected by the dimen­

sionality of the database. But almost all databases contain some irrelevant

attributes (dimensions) in it. Several works have been found in the litera­

ture to attend this issue of data mining, commonly known as dimensionality

reduction. Need of a dimensionality reduction technique suitable for the as­

sociation rule mining technique has lead to the work presented in Chapter

4. Here two efficient algorithms for dimensionality reduction, having their

own strengths are presented. Depending on the decision maker's need any

of the algorithms can be used to reduce the size of the database in terms of

attributes.

Mining association rules over an incremental database is yet another chal­

lenging problem of data mining. Several works based on the approach due to

Agrawal et.al., can be found in the literature. Incremental rule mining being

an allied area of association rule mining, a need of an algorithm to extract

119

the rules considering the multiple objectives was felt. This need has lead us

to the development of the multi-objective incremental rule mining algorithm

presented in the Chapter 5. From the various experiments it has been found

that the proposed algorithm is efficient to extract the association rules using

multiple objectives.

From the study and various experiments carried out during this disser­

tation work it is found that the association rule mining problem should be

handled as a multi-objective problem rather than single objective one. To

attend different issues related to the multi-objective association rule mining

some efficient techniques are developed and presented here.

6.2 Future works

In this dissertation the association rule mining is treated as a multi-objective

problem. And several techniques to attend different issues of association rule

mining are presented here. Still there are some works left unattended and

some works may need more tuning .

• Comprehensibilty of the association rule is used as a measure of the

rules. But it is difficult to quantify a subjective measure like com pre­

hensibilty. After considering a number of expressions, it was found that

the expression used in this dissertation gives a better representation of

the comprehensibilty of association rules. It is not ensured that this is

the best expression to quantify it. So this expression needs some more

attention.

120

• Similarly expression used for the other subjective measure, i.e. inter­

estingness also needs some attention.

• Most of all, the algorithms presented here are tested over some contin­

uous(numeric) valued databases only. But, by nature, association rule

mining is not restricted to continuous(numeric) valued databases. So

the testing of the algorithms over categorical(nominal) valued database

as well as mixed valued database is left to be done.

121

Bibliography

[AD92] H. Almuallim and T. G. Dietterich. Learning with many ir­

relevant features. In Proceedings of Ninth National Conference

On Artificial Intelligence, pages 547-552, Cambridge, Massa­

chusetts, 1992. MIT press.

[AFLM99] Y. Aumann, R. Feldman, O. Lipshtat, and H. Manilla. Borders

: An efficient algorithm for association generation in dynamic

databases. Journal of Intelligent Information System, 12(1):61-

73, April 1999.

[AIS93]

[AP95]

[AS94]

R. Agrawal, T. Imeilinski, and A. Swami. Mining association

rules between sets of items in large databases. In Proceeding

of ACM SIGMOD Conference on Management of data, pages

207-216, Washington D.C., May 1993.

R. Agrawal and G. Psaila. Active data mining. In proceedings of

the 1st international Conference on KDDM, pages 3-8, Montreal,

August 1995.

R. Agrawal and R. Srikant. Fast algorithms for mining associa­

tion rules. In Pmc. of the 20th Int'l Conference on Very Large

Databases, pages 487-499, Santiago, Chile, Sept. 1994.

122

[ATA99] N. F. Ayan, A. U. Tansel, and M.E. Arkun. An efficient algo­

rithm to update large itemsets with early pruning. Knowledge

Discovery and Data Mining, pages 287-291, 1999.

[BFM98] P. Bradely, U. Fayyad, and O. Mangasarian. Data mining:

[BL97]

Overview and optimization opportunities. research report MST­

TR-98-04, Microsoft, january 1998.

M. J. Berry and G. Linoff. Data mining techniques for marketing,

sales and customer support. John Wiley and Sons, 1997.

[BMTU97] S. Brin, R. Motwani, D. Tsur, and J. Ullman. Dynamic item­

set counting and implication rules for market basket data. In

Proceedings ACM SIGMOD International Conference on Man­

agement of Data, pages 255-264, Tucson, Arizona, USA, 1997.

[Car93]

[CC61]

[CCF55]

C. Cardie. Using decision trees to improve case based learning.

In Proceedings of Tenth International Conference on Machine

Learning, pages 25-32, Amherst, MA, 1993. Morgan Kaufmann.

A. Charnes and W.W. Cooper. Management models and indus­

trial applications of linear programming. Wiley, New York, 1961.

A. Charnes, W.W. Cooper, and R Ferguson. Optimal estimation

of executive compensation by linear programming. Management

Science, 1(138-151), 1955.

[CHNW96] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong. Maintenance

of discovered association rules in large databases: An incremen­

tal updating technique. In Proc. of 12th International Conference

on Data Engineering, pages 106-114, New Orleans, Louisiana.,

1996.

123

[CHY96] M. S. Chen, J. Han, and P. S. Yu. Data mining an overview from

a database perspective. IEEE Transactions on Knowledge and

Data Engineering, 8(6):866-883, 1996.

[CKN08] J. Cheng, Y. Ke, and W. Ng. A survey on algorithms for mining

frequent itemsets over data streams. Knowledge and Information

Systems, 16(1):1-27, July 2008.

[CLK97]

[CLV07]

[Coe96]

[Coe99]

[CPSOO]

D. W. Cheung, S. D. Lee, and B. Kao. A general incremental

technique for maintaining discovered association rules. In Pro­

ceedings of the 5th International Conference on Database System

for Advanced Applications, pages 185-194, Melbourn, Australia.,

1997.

C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen.

Evolutionary Algorithms for Solving Multi-Objective Problems.

Springer, 2007.

Carlos Artemio Coello Coello. An Empirical Study of Evolution­

ary Techniques for Multiobjective Optimization in Engineering

Design. PhD thesis, Department of Computer Science, Tulane

University, New Orleans, Louisiana, April 1996.

C. A. C. Coello. A comprehensive survey of evolutionary-based

multi-objective optimization technique. Knowledge and Infor­

mation Systems, 1:269-308, 1999.

K. J. Cios, W. Pedrycz, and R. W. Swiniarski. Data miming

methods for knowledge discovery. Kluwer Academic Publishers,

2000.

124

[CTL09]

[DB04]

[DB05]

[Deb01]

[DL97]

[Doa92]

[ES91]

[ES02]

C-J. Chu, S. V. Tseng, and T. Liang. Efficient mining of tem­

poral emerging itemsets from data streams. Expert .Byst. Appl.,

36(1):885-893, 2009.

A. Das and D. K. Bhattacharyya. Feature selection using fre­

quency count. In proceedings of 12th international conference

on Advanced Computing and Communications (A D COM2004) ,

pages 620-624, Ahmedabad, India, December 2004.

A. Das and D. K. Bhattacharyya. Rule mining for dynamic

databases. AJIS, 13(1):19-39, 2005.

K. Deb. Multi-objective optimization using evolutionary algo­

rithms. Wiley, 2001.

M. Dash and H. Liu. Feature selection for classification. Intelli­

gent Data Analysis, 1:131-156, 1997.

J. Doak. An evaluation of feature selection methods and their

applicaton to computer security. Technical report, University of

California, Department of Computer Science, 1992.

L. J. Eshelman and J. D. Schaffer. Preventing premature conver­

gence in genetic algorithms by preventing incest. In Proceedings

of the 4th. Int. Con/. on GA, pages 115-122. Morgan Kaufmann,

1991.

C. I. Ezeife and Y. Suo Mining incremental association rules

with generalized FP Tree. In Proceedings of 15th Conference of

the Canadian Society for Computational Studies of Intelligence

on Advances in Artificial Intelligence, pages 147-160. Calgary,

Canada, May 2002.

125

[FC07]

[FF93]

[FF95]

[FL07]

[Fla76]

T-H. Fan and K-F. Cheng. Tests and variables selection on re­

gression analysis for massive datasets. Data f3 Knowledge Engi­

neering, 63(3):811-819, December 2007.

C. M. Fonseca and P. L. Fleming. Genetic algorithms for multi­

objective optimization formulation, discussion and generaliza­

tion. In S. Forrest, editor, Proc. of 5th International Conference

on Genetic Algorithm, pages 416-423, San Mateo, CA, 1993.

Morgan Kaufmann.

C. M. Fonseca and P. J. Fleming. An overview of evolutionary

algorithms in multi-objective optimization. Evolutionary Com­

putation, 3(1):1-16, 1995.

T-C. Fu and C-L. Lui. Agent-oriented network intrusion detec­

tion system using data mining approaches. International Jour­

nal of Agent-Oriented Software Engineering, 1(2):158-174, July

2007.

R.B. Flavell. A new goal programming formulation. The Inter­

national Journal of Management Science, Omega, 4(6):731-732,

1976.

[FLFGOO] M. V. Fidelis, H. S. Lopes, A. A. Freitas, and Ponta Grossa.

Discovering comprehensible classification rules with a genetic al­

gorithm. In Froc. of Congress on Evolutionary Computation,

pages 805-810, 2000.

[FPSM91] W. Frawley, G. Piatasky-Saprio, and C. Matheus. Knowledge

discovery in data bases: an overview. AAAljMIT Press, 1991.

126

[FreOl]

[Fre02]

A. A. Freitas. Understanding the crucial role of attribute inter­

action in data mining. Artificial Intelligence Review, 16(3):177-

199, November 2001.

A. A. Freitas. Data mining and knowledge discovery with evolu­

tionary algorithms. Springer-Verlag, 2002.

[GAMH06] S. Guirguis, K. M. Ahmed, N. M. E. Makky, and A. M. Hafez.

[GE08]

Mining the future: Predicting itemsets support of association

rules mining. In Proceedings of Sixth IEEE International Confer­

ence on Data Mining - Workshops (ICDMW'06), pages 474-478,

2006.

S. Gunal and R. Edizkan. Subspace based feature selection

for pattern recognition. Information Sciences: an International

Journal, 178(19):3716-3726, October 2008.

[GGROO] V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON:mining and

monitoring evolving data. In IEEE Transactions on Knowledge

and Data Engineering, pages 439-448, 2000.

[GN04]

[Go189]

[GS93]

A. Ghosh and B. Nath. Multi-objective rule mining using ge­

netic algorithm. Information Sciences, Elsevier, 163(1-3):123-

133,2004.

David E Goldberg. Genetic Algorithms in Search, Optimization

and Machine Learning. Kluwer Academic Publishers, Boston,

MA,1989.

D. P. Greene and S. F. Smith. Competition-based induction of

decision models from examples. Machine Learning, 13(2-3):229-

257, Nov jDec 1993.

127

[HCK07] J-P. Huang, S-J. Chen, and H-C. Kuo. An efficient incremental

mining algorithm-qsd. Intelligent Data Analysis, 11(3):265-278,

August 2007.

[HCX08] J-J. Huang, Y-Z. Cai, and X-M. Xu. A parameterless feature

ranking algorithm based on MI. Neurocomputing, 71(9):1656-

1668, March 2008.

[HLS+07] Z. Huang, J. Li, H. Su, G. S. Watts, and H. Chen. Large­

scale regulatory network analysis from microarray data: modified

bayesian network learning and association rule mining. Decision

Support Systems, 43(4):1207-1225, August 2007.

[HLW08] T-P. Hong, C-W. Lin, and Y-L. Wu. Incrementally fast updated

frequent pattern trees. Expert Systems with Applications: An

International Journal, 34 (4) :2424-2435, May 2008.

[Hol75] John H Holland. Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor, 1975.

[HPYOO] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without

candiadate generation. In Proc. 2000 ACM-SIGMOD Int. Con­

ference on Management of data, pages 1-12, Dallas, Texas, USA,

May 2000.

[HS95]

[Jgn76]

M. Houtsma and A. Swami. Set-oriented mining of association

rules in relational databases. In Proceedings of the Eleventh

International Conference on Data Engineering, pages 25-33,

March 1995.

J.P. Jgnizio. Goal programming and extensions. Lexington Books,

Lexington, 1976.

128

[JT02] D.F. Jones and M Tamiz. Goal programming in the period 1990-

2000. in Multiple Criteria Optimization: State of the art anno­

tated bibliographic surveys, M. Ehrgott and X. Gandibleux(eds).

Kluwer, 2002.

[KCN08] Y. Ke, J. Cheng, and W. Ng. Correlated pattern mining in

quantitative databases. A CM Transactions on Database Systems

(TODS) , 33(3):1-45, August 2008.

[KP94]

[KR92]

[KS95]

[KS96]

R. R. Kohavi and K. Peger. Irrelevant features and subset se­

lection problem. In Proceedings of the Eleventh International

Conference on Machine Learning, pages 121-129, 1994.

K. Kira and L. A. Rendell. The feature selection problem: Tra­

ditional methods and a new algorithm. In Proceedings of Tenth

National Conference on Artificial Intelligence, pages 129-134.

MIT Press" 1992.

R. Kohavi and D. Sommerfield. Feature subset selection using

the wrapper method: Over fitting and dynamic search space

topology. In Proceedings of First International Conference on

Knowledge Discovery and Data Mining, pages 192-197. Morgan

Kaufman, 1995.

D. Koller and M. Sahami. Towards optimal feature selection. In

Proceedings of 13th International Conference on Machine Learn­

ing, pages 284-292, 1996.

[KZY+05] B. Kao, M. Zhang, C-L. Yip, D. W. Cheung, and Usama Fayyad.

Efficient algorithms for mining and incremental update of maxi­

mal frequent sequences. Data Mining and Knowledge Discovery,

10(2):87-116, March 2005.

129

[LK98] D.1. Lin and Z. M. Kedem. Pincer-search: an efficient algorithm

for discovering the maximal frequent set. In Proceedings of 6th

European Conference on Extending Database Technology, pages

105-119, March 1998.

[LMDR04] J. Li, T. Manoukian, G. Dong, and K. Ramamohanarao. In­

cremental maintenance on the border of the ~pace of emerging

patterns. Data Mining and Knowledge Discovery, 9(1):89-116,

July 2004.

[LS96] H. Liu and R. Setiono. A probabilistic approach to feature selec­

tion -a filter solution. In Proceedings of International Conference

on Machine Learning, pages 319-327, 1996.

[LSNP07] P-A. Laur, J-E. Symphor, R. Nock, and P. Poncelet. Statisti­

cal supports for mining sequential patterns and improving the

incremental update process on data streams. Intelligent Data

Analysis, 11(1):29-47, January 2007.

[NF77]

[NFL99]

P. M. Narendra and K. Fukunaga. A branch and bound algo­

rithm for feature selection. IEEE Transaction on Computers,

C-26(9):917-922, September 1977.

E. Noda, A. A. Freitas, and H. S. Lopes. Discovering interesting

prediction rules with a genetic algorithm. In Proceedings of the

Congress on Evolutionary Computation, pages 1322-1329, 1999.

[NLWF05] S-C. Ngan, T. Lam, R. C-W. Wong, and A. W-C Fu. Mining n­

most interesting itemsets without support threshold by the cofi­

tree. International Journal of Business Intelligence and Data

Mining, 1(1):88-106, July 2005.

130

[OLC08] J-C. Ou, C-H. Lee, and M-S. Chen. Efficient algorithms for

incremental web log mining with dynamic thresholds. The In­

ternational Journal on Very Large Data Bases, 17(4):827-845,

July 2008.

[Oli93]

[Par96]

J. R. Oliver. Discovering individual decision rules: an applica­

tion of genetic algorithms. In Fifth International Conference on

Genetic Algorithms, pages 216-222, Urbana-Champaign, 1993.

V. Pareto. Cours d'Economie Politique., volume I and II. F.

Rouge, Lausanne:, 1896.

[PCY95] J .S. Park, M. S. Chen, and P.S. Yu. An effective hash based

algorithm for mining association rules. In Proceedings of ACM

SIGMOD, pages 175-186, May 1995.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufman, San Mateo, California, 1993.

[RFJT08] M. X. Ribeiro, M. R. P. Ferreira, C. Traina. Jr., and A. J. M.

Traina. Data pre-processing: a new algorithm for feature selec­

tion and data discretization. In Proceedings of the 5th interna­

tional conference on Soft computing as trans disciplinary science

and technology, pages 252-257, Paris, France, October 2008.

[SAD+93] M. Stomebraker, R. Agrawal, U. Dayal, E.J. Neuhold, and

A. Reuter. The dbms research at crossroads. In Proc. of the

VDLB Conference, pages 688-692, Dublin, August 1993.

[SB04] K. Srikumar and B. Bhasker. Efficiently mining maximal fre­

quent sets in dense databases for discovering association rules.

Intelligent Data Analysis, 8(2):171-182, April 2004.

131

[SD93]

[SD94]

[SDN90]

[SDZ07]

[Sha85]

[SL08]

[SON95]

N. Srinivas and K. Deb. Multiobjective optimization using non­

dominated sorting in genetic algorithms. Technical report, De­

partment of Mechanical Engineering, Indian Institute of Tech­

nology, Kanpur, India, 1993.

N. Srinivas and K. Deb. Multiobjective optimization using non­

dominated sorting in genetic algorithms. Evolutionary Compu­

tation, 2(3):221-248, 1994.

J. Shieinvald, B. Dom, and W. Niblack. A modelling approach

to feature selection. In Proceedings of Tenth International Con­

ference on Pattern Recognition, pages 535-539, June 1990.

A. Salappa, M. Doumpos, and C. Zopounidis. Feature selection

algorithms in classification problems: an experimental evalua­

tion. Optimization Methods and Software, 22(1):199-212, Febru­

ary 2007.

J. D. Shaffer. Multiple objective optimization with vector eval­

uated genetic algorithm. In First International Conference on

Genetic Algorithm, pages 93-100, 1985.

S. J. Shin and W. S. Lee. On-line generation association

rules over data streams. Information and Software Technology,

50(6):569-578, May 2008.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algo­

rithm for mining association rules in large databases. In Proceed­

ings of the 21st conf. on Very Large Databases" pages 432-443,

Zurich, Switzerland, September 1995.

132

[Sri96]

[SXG08]

[TLJ08]

[XL07]

[Yun07]

[ZDTOO]

R. Srikant. Fast algorithms for mining association rules and se­

quential patterns. Phd thesis, University of Wisconsin, Madison,

1996.

G. Shaw, Y. Xu, and S. Geva. Deriving non-redundant approxi­

mate association rules from hierarchical datasets. In Proceeding

of the 17th A CM conference on Information and knowledge man­

agement, pages 26-30, Napa Valley, California, USA, October

2008.

M-C. Tseng, W-Y. Lin, and R. Jeng. Incremental maintenance of

generalized association rules under taxonomy evolution. Journal

of Information Science, 34(2):174-195, April 2008.

Y. Xu and Y. Li. Generating concise association rules,. In Pro­

ceedings of the sixteenth ACM conference on Conference on in­

formation and knowledge management, pages 6-10, Lisbon, Por­

tugal, November 2007.

Unil Yun. Efficient mining of weighted interesting patterns with

a strong weight and/or support affinity. Information Sciences:

an International Journal, 177(17):3477-3499, September 2007.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multi-objective

evolutionary algorithms: empirical results. Evolutionary Com­

putation, 8 (3): 173-195, June 2000.

[ZKCY07] M. Zhang, B. Kao, D. W. Cheung, and K. Y. Yip. Mining peri­

odic patterns with gap requirement from sequences. A CM Trans­

actions on Knowledge Discovery from Data (TKDD), 1(2):7-13,

August 2007.

133

List of publications

• A. Ghosh, B. Nath, Multi-objective rule mining using genetic al­

gorithms, Information Sciences, vol 163, No 1-3, pp 123-133, Elsevier

Inc. 2004.

• B. Nath, D.K. Bhattacharyya, A. Ghosh, Faster Generation of As­

sociation Rules, IJITKM, vol 1, No 2, pp 267-279, Serials Publica­

tions, India, July-December 2008.

• B N ath and D K Bhattacharyya, Partition Based Association Rule

Mining in Cancer Databases Using Multi-objective Genetic

Algorithms in the Proc. of BIOT'2005, Colorado, 2005. PP 85-90.

• B Nath, D K Bhattacharyya and A Ghosh, Partition Based Associ­

ation Rule Mining Using Multi-objective Genetic Algorithm,

in the Proc of ADCOM'2005, December, 2005.

• B Nath, D K Bhattacharyya and A Ghosh, Mining for Association

Rules using Multi-objective Genetic Algorithms: A partition

Based Approach, in the Proc. of NCTAC, 2007, Tezpur, pp. 119-124.

• B Nath, D K Bhattacharyya and A Ghosh, Dimentionality Reduc­

tion using Multi-objective Genetic Algorithm in the Proc. of

NCTAC, 2007, Tezpur, pp. 155-161.

• B Nath, D K Bhattacharyya and A Ghosh, Frequency count based

filter for Dimensionality Reduction, in the Proc. of ADCOM07

(IEEE), pp 377-381, 2007, Guwahati, India.

134

• S. Das, B. Nath, Dimesionality Reduction using Association

Rule Mining, in the Proc. of IClIS 2008, pp 1-6, December 8-10,

2008, Kharagpur, India.

• B Nath, D K Bhattacharyya and A Ghosh, Discovering Associa­

tion Rules from Incremental Datasets, IJDMMM, Inderscience

pu blishers, (Communicated).

• B Nath, D K Bhattacharyya and A Ghosh, Dimensionality Reduc­

tion for Association Rule Mining, IJKDB, IGI Global, (Commu­

nicated)

135

