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Abstract 

The problem of mining association rules has attracted a lot of attention in 

the research community. Several techniques for discovery of association rules 

have been discussed in literature. These algorithms, motivated by Agrawal's 

approach, handles the rule mining problem as a single objective problem. 

However, the rule mining based on single objective have some common draw­

backs, i.e. rules may be difficult to understand due to the involvement of a 

lot of conditions, some discovered rules may not be interesting to the user as 

they were not actually hidden. To overcome these limitations, this disserta­

tion presents an approach for rule mining using multiple objectives so that 

some interesting and useful rules can be extracted. For this - three different 

objectives namely predictive accuracy, comprehensibility and interestingness 

are considered. As a result, the proposed approach is found to be better than 

the classical approach as some previously unknown, potentially useful and 

ultimately understandable rules can be discovered. 

Moreover, the single objective based classical rule mining approach can 

be found to be impractical as sometimes they may produce a huge number of 

rules, that in turn makes the job of decision makers tougher one in deciding 

which rule to use which to discard. However the proposed approach will give 

only a few valid rules, which will help the decision maker as the choice is 

limited. 

It was found that Pareto Based Genetic Algorithm acts as an efficient 

tool in handling the multi-objective problems. Since association rule mining 

is treated as a multi objective problem, the proposed approach uses Pareto 

based multi objective genetic algorithm to extract the rules. 
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The dimensionality of the databases plays an important role in the data 

mining tasks including association rule mining. Appropriate feature selection 

or dimensionality reduction techniques can save the cost of computation dur­

ing the association rule mining over high dimensional space to a grate extent. 

Hence, this dissertation presents two effective techniques as a preprocessing 

task to reduce the dimensionality of the databases before applying any data 

mining techniques. 

Rule mining being a time consuming job, it is not appreciated to extract 

the rules again and again from the whole database, every time the database 

is updated. So the task of extracting the rules from an incremental database 

received a lot of research attention. However, my survey reveals that most of 

the existing works are basically based on the classical approach. To meet this 

challenge, this dissertation also presents a technique of incremental mining 

based on multi objective approach. 

Keywords - Data mining, Association rule mmmg, Multi objective rule 

mining, Genetic algorithms for rule mining, Pareto based rule mining, 

GA based incremental mining 
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Chapter 1 

Introduction 

1.1 Background 

With the rapid growth of technologies of data storage and collections, ca­

pabilities of collecting data are also increasing rapidly. The widespread use 

of bar codes for most commercial products, the computerization of many 

business and government transactions, and the advances in data collection 

tools have provided us with huge amounts of data. These days, millions of 

databases are in use in business management, government administration, 

scientific and engineering data management, and many other applications. 

Because of availability of powerful but affordable database systems, these 

databases are growing in an explosive rate. This rapid growth in data and 

databases has generated an urgent need for new techniques and tools that 

can automatically and intelligently transform the processed data into useful 

information and knowledge. 

The process of handling these large databases for extracting knowledge 

is known as knowledge discovery in databases(KDD). KDD is the process 
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of identifying valid, novel, potentially useful and ultimately understandable 

structure in data [BFM98]. There are several steps in KDD such as data 

preparation, data selection, data cleaning, incorporating appropriate prior 

knowledge, extraction of new information, proper interpretation of the infor­

mation extracted etc. 

Due to these massive data collected by the systems of different organi­

zations, it is becoming more difficult to extract the useful information from 

them. So a new challenge has arose to find efficient techniques to discover 

useful and interesting patterns from such a huge amount of data. Hence this 

step of KDD, commonly termed as Data Mining, has emerged as new area 

to meet this challenge of database research. Recently, data mining attracted 

a lot of research attentions. Data mining has been defined differently by 

different researchers, such as "The efficient discovery of previously unknown 

patterns in large databases" [AP95] and "The non-trivial extraction of ex­

plicit, previously unknown and potentially useful information (such as rules, 

constraints and regularities) from data in databases" [CHY961. But many 

researchers used these two terms, KDD and Data Mining as synonyms. 

These discovered patterns help in decision making and to predict the 

future behaviours. Depending on the users requirement different types of in­

formation are to be extracted from these databases leading to different data 

mining tasks. Some of the commonly known tasks are - classification, clus­

tering, association rule mining, sequential pattern analysis, prediction and 

data visualization [BL97, CPSOO, CHY96, FPSM91] a few of them are briefly 

discussed below. All these tasks have different types of applications. 

Classification: The input to the classification consists of multiple ex-
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am pies (records), each of them having multiple attributes or features. Every 

record has been tagged with a special class label. The objective of classifi­

cation is to analyze the input data, termed as training set, and to develop 

an accurate description or model for each class in terms of the attributes of 

the data. These descriptions are used to classify new records, termed as test 

data, for which class labels are unknown. 

Clustering: It is the process of grouping records of 'similar' type. The 

input data for clustering is similar to that of classification, except that the 

records are not tagged. Some times it is termed as unsupervised classifica­

tion also. Clustering helps in constructing meaningful partitions of a large 

set of objects (records) based on a "divide and conquer" methodology which 

decomposes a large scale system into smaller components to simplify design 

and implementation. 

Association rule mining: In a given database with a number of at­

tributes, the different sets of attributes of the database have some interrela­

tions or associations among them. The objective of association rule mining 

is to discover these associations among the attributes of the database. This 

extraction process is unsupervised, i.e. no prior information is required dur­

ing classification. 

Time series analysis: Time series data constitutes a large portion of 

data stored in computers. The capabilities to find time-series (or portions 

thereof) that are "similar" to a given time-series or to be able to find groups 

of similar time series has several applications. As for example, identifying 

the companies with similar growth patterns, finding products with similar 

selling patterns, discovering stocks with similar price movements, etc. 
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1.2 Association Rule Mining 

The problem of mining for associations over a binary database, known as 

Market Basket Database, was first introduced in [AIS93]. Association rule 

mining can be stated as follows [CHY96]: given a database of sales trans­

actions, it is desirable to discover the important associations among items 

such that the presence of some items in a transaction will imply the pres­

ence of other items in the same transaction. An example of an association 

rule is: 30% of transactions that contain bread also contain butter-, 5% of all 

transactions contain both of these items. The following formal definition was 

proposed in [AS94] to address the problem. 

Let Item={ iI, i2, ... i m } be a set of literals called items, DB be a database 

of transactions where each transaction T ~ Item and has a unique identifier, 

TID. Given an itemset X~Item, X is contained in T iff X~ T. An association 

rule is an implication of the form Sa =} Se, where both Sa (rule antecedent) 

and Se (rule consequent) are itemsets and Sa n Se = cp. A rule has con­

fidence c iff c% of the transactions containing Sa also contain Sa USe' An 

itemset is frequent iff its support exceeds a certain support threshold minsup. 

Given a set of transactions, where each transaction is a set of items, as­

sociations among two sets of items X and Y can be expressed as a rule of the 

form of IF-THEN statement. IF <some conditions are satisfied > THEN 

<predict some values of other attribute(s». The conditions associated in 

the IF part is termed as Antecedent and those with the THEN part is called 

the Consequent. Refer them as A and C, respectively, symbolically we can 
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represent this relation as A ::::} C. The intuitive meaning of such rule is that 

transactions of the database which contain X tend to contain Y also. Asso­

ciation rule mining is the process of finding all association rules that satisfies 

two user-specified constraints minimum support and minimum confidence. 

The problem of discovering all association rules can be decomposed into 

two sub-problems [AIS93]: 

• Frequent Itemset Generation: Find all sets of items that have 

transaction support above a given minimum support. These are the 

frequent itemsets. Other itemsets are called infrequent itemsets . 

• Rule generation: Use the frequent itemsets to generate the desired 

rules, having confidence more than a user specified minimum confi­

dence. 

The second phase can be done in a straight forward manner in main 

memory once the frequent itemsets are found [AS94]. In [Sri96], some better 

techniques have been proposed. But due to the huge search space (the power 

set of the set of all items), the first phase becomes more time consuming. 

That is the reason for the attention of great number of researchers paid to 

this problem in recent years. 

In this dissertation, we examine the problem of mining association rules. 

We first present a faster algorithm to extract rules using the conventional 

approach. Then some efficient algorithms are presented to extract a reduced 

set of rules to help the decision makers. 
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1.3 Applications of Association Rules 

The problem of mining association rules was originally motivated by 

the decision support problem faced by most of the large retail organiza­

tions [SAD+93]. But now-a-days it is gaining its popularity among the de­

cision support systems of all those organizations maintaining their trans­

actional databases. Depending on the need of the organization these rules 

have different applications. Some application specific works can be found in 

[FL07, SL08, HLS+07]. 

Item Placement: To provide a better service to the customers of a 

large retail store, the management of the store should be aware of the selling 

patterns of different items. Knowledge about the items are sold together 

is an useful information for providing a better service to the customers by 

placing those items together in the store. But for a large store, retailing 

thousands of different items to thousands of customers per day, it is not as 

easy job to find these types of groups of items. Association rules help them 

to take these types of decisions. A closely related application is catalog 

placement. Mail-order companies can use association rules in determining 

the items to be placed on the same page of the catalog. 

Customized catalog: Rather than sending the same catalog to every­

one, direct marketing retailers can use associations to customize the catalog 

based on the items a person has bought. These customized catalogs are gen­

erally much smaller, or may be mailed infrequently, reducing mailing cost. 

Customized online catalogs are very much helpful to the customers doing 

web-marketing, as the catalog of the products of his interest only will be 

produced to him. 
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Fraud Detection: Insurance companies are interested in finding groups 

of medical service providers, doctors and clinics, who forces the patients to 

move between each other for unnecessary tests. Given medical claims data, 

each patient can be mapped to a transaction, and each doctor/clinic visited 

by the patient to an item in the transaction. Using the association rules now 

the insurance company can investigate the claim records for sets of providers 

who have a large number of common patients to determine, if any, fraudulent 

activity actually occurred. 

Medical diagnosis: The different information stored about the previ­

ous patients having a particular disease is very much useful to diagnose a new 

patient. Rules extracted from these databases help the doctors to diagnose 

the disease quickly. That normally becomes fruitful in case of several lethal 

diseases like cancer, where early detection increases the probability of curing. 

Medical Research: The symptoms of disease of a patient, any cor­

respond to that of another patient diagnosed by the doctor. The patterns 

discovered using these data could be of use in research in order to help iden­

tify symptoms/diseases that precede certain diseases. 

Intrusion detection: For the security of the computer systems con­

nected to the internet it is very much necessary to prevent the malicious 

requests. Association rules derived from the records of the previous activi­

ties handled by the system, can help a system to detect these types of new 

malicious requests, termed as intrusion, to keep the system secure. 
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1.4 Multiple Objectives of Association Rules 

Though the classical algorithms for association rule mining are giving more 

emphasis on the first phase of the rule mining problem, i.e. on the fre­

quent itemset generation, however, for the appropriate use of these frequent 

itemsets, the second phase has to be applied. Once the frequent itemsets 

have been extracted, rules can be extracted from them by using rule gen­

eration algorithms [AIS93, Sri96]. The rule generation algorithms calculate 

the confidence of every possible candidate rules. The candidate rules hav­

ing the confidence more than a user specified threshold minimum confidence 

are declared as generated rules. Confidence is sometimes termed as predic­

tive accuracy also. It is the ratio of the support count of the whole rule to 

that of the antecedent part. For example, confidence of the rule A:::}C is 

SUP(AUC)/SUP(A), where SUP(X) is the number of records/transactions 

containing the set of items X. 

Minimum support and minimum confidence, these two parameters affect 

the performance of the rule mining algorithms significantly. The size of rule 

set generated is highly influenced by these parameters. If their values are not 

properly tuned, then the rule generation phase may not result any rule, or 

a huge number of rules may be resulted, making the analysis of rules more 

complex. 

Classical algorithms use the confidence as the only measure to evaluate 

the rules. Hence the association rule mining is handled as a single objective 

problem. But these extracted rules may not carry any interesting informa­

tion within it. If the support count of the rule is very high, then confidence 

of the rule is also generally higher. But this type of association may be ex-
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tracted without using any data mining tasks, because these associations are 

not hidden from the users. For example, say, in a databases with 100 records 

if SUP(A), SUP(A U B) and SUP(A U G) are 90, 80 and 20 respectively. 

Then the confidence of A =} B will be 8/9, that is higher than 2/9 which 

is the confidence of A =} G. From a simple observation of the databases, 

occurrence of A U B can be detected. But it is not so simple to detect the 

occurrence of AUG. Hence the rule A=} G carries more interesting informa­

tion, than A=} B. To discover these interesting rules some effort was found 

in [Yun07]. 

At the same time the rules that were generated may be very long. These 

long rules may be useful but difficult to understand [XL07]. If the rules are 

not understandable then no decision makers will use those rules. 

So there is a need of handling the problem as multi objective problem. In­

terestingness and comprehensibility can be used as two additional objectives 

of the association rule mining problem. Interestingness defines the surpris­

ingness of the rule whereas comprehensibility defines the understandability of 

the rules. If the association rule mining is handled as a multi objective prob­

lem, using interestingness, confidence and comprehensibility as the measures, 

some previously unknown, potentially useful and ultimately understandable 

rules may be extracted. 

1.5 Motivation of the Work 

The great practical benefits of mining association rules and its wide area 

of applications have led to several proposals for fast mining of association 

rules. Those proposals, although contributed towards making the process 
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more applicable in practical systems, still suffer from the problem of huge 

amount of generated rules that can be found to be confusing and most of the 

time not useful to the user. User will get the maximum benefit if a small 

set of understandable and practically useful rules are provided to him. This 

need of the users has motivated us to the work presented in this thesis. 

1.6 Work Done 

Several challenges of data mining problem were encountered at various stages 

of the work; and concentration was given to all of them. The significant 

aspects of rule mining, those were considered during the formulation of this 

work are-

• Faster generation of association rules. 

• Efficient algorithms for mining association rules using Multi Objective 

Genetic Algorithms. 

• Algorithms to reduce dimensions of databases to help the data mining 

tasks including association rule mining. 

• Efficient algorithms to extract rules from incremental databases. 

1.7 Organization of the Thesis 

Chapter 2 presents some of the classical algorithms used for frequent itemset 

generation, and rule generation. Then an efficient algorithm to generate rules 

by the conventional approach is discussed. In this chapter, it is established 

that association rule mining is not a single objective problem, but a multi­

objective problem. 
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Chapter 3 presents some efficient techniques for generation of association 

rules, using Multi Objective Genetic Algorithms. 

Chapter 4 presents the need of dimensionality reduction in data mining 

tasks, followed by some algorithms to achieve it. 

Chapter 5 presents the need of incremental mining followed by an algo­

rithm to tackle the problem of incremental association rule mining. 

Finally, Chapter 6 summarizes the dissertation and presents suggestions 

for future work. 
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Chapter 2 

Association Rule Mining: The 

Classical Approach 

Classical approach of mining association rules handles the problem as a single 

objective problem, and works in two phases. First phase being the most time 

consuming one has attracted the attention of many researchers. Though the 

second phase is also an important part of the rule mining, only a few work 

can be found in the literature [AIS93, Sri96]. 

Starting with Apriori [AIS93] a significant number of works have been 

carried out to attend the first phase of the association rule mining problem. 

A few of them are presented in the next section. Some more works can be 

found in [SB04, NLWF05, ZKCY07, CKN08, CTL09]. But the list is not 

exhaustive. 
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2.1 Classical Algorithms for Mining Frequent 

Itemsets 

Several popular algorithms have been presented in the past decade to handle 

this problem of frequent itemset generation. These algorithms can be divided 

into two broad categories depending on their way of finding frequent itemsets, 

namely bottom up (Le. agglomerative) and top down (i.e. divisive). Both 

of these approaches take the benefit from the downward closure property of 

frequent itemsets, i.e. if an itemset is frequent, then all of its subsets must 

also be frequent [AS94]. Some of the popular frequent itemset generation 

techniques are reported next. 

2.1.1 Apriori 

In Apriori [AIS93] candidate itemsets are generated and counted on-the-fly 

as the database is scanned. After reading a transaction, it determines which 

of the itemstes that were frequent in the previous passes can be found to 

be contained in this transaction. New candidate itemsets are generated by 

extending these frequent item sets with other items in the transaction. A fre­

quent itemset l is extended with only those items that are frequent and occur 

later in the lexicographic ordering of items than any of the items in 1. The 

candidates generated from a transaction are added to the set of candidate 

itemsets maintained for the pass, or the counts of the corresponding entries 

are increased if they were created by an earlier transaction. The steps of this 

algorithm are given in Figure 2.1. A faster algorithm, Apriori-TID, based 

on this approach is also found in literature [AS94]. /~ 
/ ,\",' ".--. '-
~.-
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Initialize 

k = 1, C1 =all the l-itemsets; 

read the database to count the support of C1 to determine L 1; 

Ll = {frequent l-itemsets}; 

k = 2; 

while(Lk_1 =1= ¢) 

Ck=gen_candidate.itemsets( L k - 1 ); 

prune(Ck); 

for all transactions t E T do 

increment the count of all candidates in Ck contained in t; 

Lk = {c ICE Ck & count(c) 2: 'Y} 

k = k + 1; 

return 'iii L i . 

gen_candidate~temsets(Lk): C = ¢ 

for all itemsets h E Lk do 

for all itemsets 12 E Lk do 

if (h[l] = l2[1]) & (h[2] = l2[2]) & ... & (ldk - 1] < l2[k - 1]) 

then c = h[l], h[2], ... , h[k - 1], l2[k - 1] 

C=CUc 

return(C) 

prune(C) 

for all c E C 

for all (k - I)-subsets d of c do 

if d ~ Lk - 1 

then C = C - {c} 

Figure 2.1: Apriori 
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2.1.2 SETM 

Like Apriori [AIS93], SETM [HS95] algorithm also generates candidates on­

the-fly based on transactions read from the database. It thus generates and 

counts every candidate itemset that the Apriori algorithm generates. How­

ever, it separates the candidate generation from counting. It saves a copy 

of the candidate itemset together with the transaction identifier{TID) of the 

generating transaction in a sequential structure. At the end of the pass, the 

support count of candidate itemsets is determined by sorting and aggregating 

this sequential structure. 

The problem with these two algorithms was the size of the candidate sets 

generated of which many are often found to be infrequent. However, those 

algorithms are considered to be the pioneers in handling this problem. 

2.1.3 Direct Hashing and Pruning 

This algorithm, DHP [PCY95], uses the technique of hashing to filter out un­

necessary itemsets for next candidate itemset generation. When the support 

of candidate k-itemset is counted by scanning the database, it accumulates 

information about candidate (k + l)-itemsets in advance in such a way that 

all possible (k+ l)-itemsets of each transaction after some pruning are hashed 

to a hash table. Each bucket in the hash table consists of a number to rep­

resent how many itemsets have been hashed to this bucket thus far. Based 

on the resulting hash table, if a bit vector is constructed, where the values 

of one bit is set to one when the number in the corresponding entry of the 

hash table is greater than or equal to minimum support. This bit vector can 

be used to further reduce the number of possible candidate itemsets. The 

algorithmic form of DHP is presented in Figure 2.2 
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1* Part 1*/ 

s=a minimum support; 

set all the buckets of H2 to zero; 1* hash table * / 

for all transactions tED do 

insert and count I-item occurrences in a hash tree; 

for all 2-item subsets of x of t do 

H 2 [h2 (x)] + +; 
Ll = {c 1 c.count ~ s, c is in a leaf node of the hash tree}; 

I*Part 2*/ 

k=2; 

Dk=D; 

while(1 {x I Hb[X] ~ s} I~ LARGE) begin 

1* make a hash table * / 

gen_candidate(Lk _ 1, H k , Ck ); 

set all buckets of Hk+1 to zero; 

Dk+l = cP; 

for all transactions t E Dk do 

count...support(t, Ck , k, i) I*i ~ t* / 

if (I i I> k) 

makellashtab(i, H k , k, H k+1 , 0; 
if (Ill> k) 

Dk+l = Dk+l U {l}; 

Lk = {c E Ck I c.count ~ s}; 

k++; 

End while 
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1* Part 3 * / 
gen_candidate(Lk _ 1, Hk, Ck); 

while(1 Ck I> 0) 

Dk+l = ¢; 

for all transactions t E Dk do 

count..support(t, Ck, k, i); 

if (I i I> k) 

Dk+l = Dk+l U {i}; 

Lk = {c E Ck 1 c.count 2:: s}; 

if(1 Dk+l 1= 0) 

break; 

Ck+l=apriorLgen(Lk ); 

k++; 

Figure 2.2: Direct Hashing and Pruning 

2.1.4 Partition Algorithm 

Partition algorithm [SON95] is based on the observation that the frequent 

itemsets are normally very few in number as compared to the set of all item­

sets. The whole database is divided into some partitions in such a way that 

they can be loaded to the memory. This algorithm works in two phases. In 

the first phase, frequent itemsets for every partition are derived using apriori 

algorithm. Since all the data of the partition can be loaded to memory it 

takes less time to derive the frequent itemsets from the partition. After the 

frequent itemsets are derived from all the partitions, in the second phase, 
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the frequent itemsets local to each partition are combined and their global 

support is counted by reading complete database once again. This algorithm 

needs maximum two passes over the whole database to derive the frequent 

itemsets. The major limitation of this algorithm is that if the number of par­

titions of the database is very big, then after combining the local frequent 

itemsets, a huge number of itemsets will be resulted, which will demand for 

a significant amount of memory. The algorithm has been reproduced below 

in Figure 2.3. 

Input: Database T, minimum support 'Y 

Output: Frequent itemsets LG 

p=partition_database(T) ; 

n = Number of partitions; 

for i = 1 to n do 

read_in_partition(Ti in p) 

Li= generate all frequent itemsets of Ti using Apriori 

for (k = 2; Li =I- 4>, i = 1,2, ... , n; k++) do 

CG - un Lk 
k - i-I i 

for i = 1 to n do 

read_in_partition(Ti in p) 

for all candidates c E C G 

compute S(C)ri /*support of c in all partition Ti * / 
LG = {c E CGIS(C)ri ~ 'Y} 

return LG 

Figure 2.3: Partition Algorithm 
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2.1.5 Dynamic Itemset Counting 

This algorithm, DIC [BMTU97], mainly differs from the other algorithms in 

the candidate generation. In the other algorithms, next level candidates are 

generated when the current pass on the database is over. In DIC, some stop 

points are defined within the databases. If some candidate itemsets become 

frequent before the whole database is scanned~ then using those frequent 

itemsets next level candidates are generated at the stop points. Hence the 

counting of the frequency of some itemsets may start from a middle position 

of the database. To ensure that every itemset is counted over the whole 

database, they are given some stop number. When the database is scanned 

only those itemsets are considered for counting the frequency, which have not 

completed a complete pass over the database. Four different disjoint lists of 

itemsets are maintained here: 

DC-list of candidate itemsets. 

DB-list of itemsets that are frequent but not completed a pass over the 

database. 

BB - list of frequent itemsets which have completed a pass. 

BC- list of itemstes that have completed one pass over the database and 

found infrequent. 

During the execution of the algorithm, the following events occur when 

a stop point is reached . 

• Some item sets from DC move into DB if its support count has reached 

the minimum support. 

• Some new candidates are added to DC which are nothing but the 

superset of the itemsets newly introduced into DB. 
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• Some itemsets from DC move into SC, which have completed a pass 

over the database, but still found infrequent . 

• Itemsets from DB which have completed a pass are moved to SB. 

The algorithm is formally described next in Figure 2.4. 

S B = <P; / / set frequent itemsets 

se = <p; / / set of infrequent itemsets 

DB = <p; 

DC ={l-itemsets with stop number O} 

while DC =1= <p do 

while stop point not reached 

read a transaction t 

for all itemsets dE (DB u DC) 

increment the support count of d if it is in t 

increment the current-stop-number; 

for all itemset d E DC 

if stop-number ( d) =current-stop-number 

SC = SCud 

DC=DC-d 

else 

if count (d) 2 'Y 

DB=DBud 

DC=DC-d 

Generate itemsets E using d 

stop-number(e)=current-stop-number, 'tie E E 
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count(e)=O; 'lie E E 

DC=DCUE 

for all itemset d E DB 

if stop-number( d) =current-stop-number 

SB=SBUd; 

DB=DB-d; 

return SB 

Figure 2.4: Dynamic Itemset Counting 

2.1.6 Pincer Search 

Other frequent itemset generation algorithms search for the frequent itemsets 

using the bottom-up approach. The computation starts from the 1-item fre­

quent itemsets and moves upward till it reaches the largest frequent itemset. 

The number of database passes is equal to the largest size of the frequent 

itemset. When any of the frequent itemsets becomes longer, performance 

decreases as the number of iterations increases. To overcome this difficulty 

pincer search [LK98] algorithm was developed, which is based on a bidi­

rectional search. It attempts to find the frequent itemsets in a bottom-up 

manner, at the same time it maintains a list of maximal frequent itemsets. 

While making a database pass, it also counts the support of these candidate 

maximal frequent itemsets to see if anyone of these is actually frequent. In 

that event, it can be concluded that all the subsets of these maximal frequent 

sets are going to be frequent and, hence, they are not verified for the sup­

port count in the next pass. This algorithm is advantageous than Apriori, 

if the cardinality of the longest frequent itemset is large. The steps of this 

algorithm are given in Figure 2.5. 
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Lo = ¢; k = 1; C1 = {{i} liE I}; So = ¢; 

MFCS = {{1,2, ... ,n}}; MFS = ¢; 

while Ck =J ¢ and Sk-I =J ¢ do 

read database and find count(c) \;/c,c E Ck U MFCS; 

MFS = MFS U {m I m E MFCS and count(m)2: 'Y; 

Sk = {c ICE Ck and count(c) < 'Y} 

if Sk =J ¢; 

call MFCS-gen 

call MFS-prune 

generate candidates CHI from Ck ; 

if any {e leE Ck and count(e) 2: 'Y} was removed in MFS-prune 

call recovery over CHI; 

call MFCS-prune over CHI; 

k = k + 1; 

return MFS 

MFCS-gen 

for all itemsets S E Sk 

for all itemsets m E M FC S 

if sCm 

MFCS = MFCS - {m}; 

for all item e E s 

if (m - {e} C p), ~p,p E MFCS 

MFCS = MFCS U {m - {e}}; 
return MFCS 
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Recovery 

for all itemsets 1 E Lk 

for all itemsets m EMF S 

if first k - 1 items in 1 are also in m 

1* suppose l[k - 1] = m[j] * / 
for i = j + 1 to J m J 

CHI = CHI U {1[1], 1[2], ... , l[k], m[i]} 
MFS-prune 

for all itemsets 1 E Lk 

if (l c p), 3p,p E MFS 

Lk = Lk -1; 

MFCS-prune 

for all itemsets c E Ck 

if (c c p), 3p,p E MFCS 

Figure 2.5: Pincer Search 

2.1. 7 FP-tree Growth 

In the above mentioned algorithms a significant amount of time is wasted in 

generating the candidate itemsets; and large amount of memory is required 

to store these candidate itemsets. For example, if there are 10,000 frequent 

1-itemsets for a database then there will be roughly 107 number of candi­

date 2-itemsets. To overcome this difficulty an algorithm based on Frequent 

Pattern Tree, an extended prefix tree structure, was developed and named 

as FP-Tree Growth algorithm [HPYOO]. The FP-Tree maintains the crucial 

and quantitative information about the frequent itemsets. The tree nodes are 
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frequent items and are arranged in such a way that more frequently occur­

ing nodes will have better chances of sharing nodes than the less frequently 

occurring ones. The method starts from frequent l-itemsets as an initial 

prefix pattern and examines only its conditional pattern base, which consists 

of the set of frequent items co-occurring with the prefix pattern. The algo­

rithm works on two phases, in the first phase, it constructs the conditional 

FP-Tree with respect to the given minimum support. Construction of this 

tree requires two passes over the whole database. In the second phase the 

algorithm uses the FP-Tree constructed earlier and does not use the database 

any more. 

Since this algorithm always needs only two passes over the database, it 

takes less time than the other counterparts, irrespective of the size of the 

maximal frequent sets. The major limitation of the algorithm is the mem­

ory requirement to maintain the FP-Tree. Algorithm for construction of the 

FP-Tree is given in Figure 2.6 

create root and label as null 

for every t, t E T 

if t =f ¢ 

call insert ( t, root); 

link the new nodes with existing nodes with similar label 

return FP-Tree 

insert(t, n) 

while t =f ¢ do 

if n has a child with label head_t 

increment link count by 1 between nand head_t 
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else 

create a new child of n with label headt with link count 1 

call insert(body_t, head_t) 

end do 

Figure 2.6: FP-Tree Growth 

The algorithms discussed above are capable of finding frequent itemsets 

from a given database. Though the way of searching for the frequent itemsets 

are differing, they extract the same frequent itemsets subject to a fixed mini­

mum support. After generating the frequent itemsets, rules can be generated 

from them. For the generation of the rules another user parameter minimum 

confidence is used by the rule generation algorithms. Existing algorithms to 

generate the rules from a given set of frequent itemsets are discussed in the 

next section. 

2.2 Algorithms for Generation of Rules 

Algorithms discussed in the previous section are capable of finding the fre­

quent itemsets from a given datbase. They provide the frequent itemsets 

of various sizes along with their support count. Using their support counts 

rules can be extracted. Here, in this section we have presented some algo­

rithms to extract the rules from the given set of frequent itemsets. These 

algorithms use the user parameter minimum confidence while extracting the 

rules. Rules having the confidence value more than the specified one are 

declared as generated rules. 
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2.2.1 Agrawal's Algorithm 

Agrawal et.al. [AIS93] presented the first rule generation algorithm using 

the frequent itemsets extracted by the fisrt phase of the rule mining process. 

The algorithm was straight forward and was capable of generating only those 

rules with one item in the consequent part. For a given frequent itemset 

Y = I 1I2 ••• Ik , k ~ 2, generate at most k rules that uses the items from the 

set Y. The antecedent of each of these rules will be a subset X of Y such 

that X has k-l items, and the consequent will be the item Y-X. Generate the 

rules X ::::} I j with confidence equal or greater than mincon! The confidence 

of the rule is calcualated as the ratio of support(Y) and support(X),where 

XUIj =Y. 

The major drawback of this algorithm is that it is unable to generate all 

the rules from the frequent itemsets. For a frequent itemset with size n, this 

algorithm will check maximum n candidate rules, though there can be 2n - 2 

number of possible rules present. Effective~y this algorithm checks only a 

small portion of the candidate rules. The steps of the algorithm are listed in 

Figure 2.7 

1. forall frequent itemsets lk' k ~ 2 do 

2. forall i ~ k do 

3. c = lk[i] 

4. a = lk - C 

5. if (support(lk)/ support(a)) ~ minconf; 

6. declare a ::::} c is a rule 

7. end do 

8. end do 

Figure 2.7: Generating rules: Agrawal's Algorithm 
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2.2.2 Srikant's Simple Algorithm 

This algorithm is a simple generalization of the previous algorithm. The size 

of the consequent part of the rules generated are not limited to one item only. 

To generate the rules, from a frequent itemset l, all its non-empty subsets are 

found first. For every such subset a, a rule is generated of the form a=}( l- a) 

if the ratio of support(0 to support(a) is at least min co nj, the user specified 

minimum confidence. Since the frequent itemsets are stored in hash tables, 

the support counts for the subset itemsets can be found efficiently. The 

algorithm [Sri96] is reproduced in Figure 2.8. 

for all frequent itemsets lk' k 2: 2 do 

Call genrules(lk' lk) 

procedure genrules(lk : frequent k - itemset, am : frequent m - itemset) 

1. A = {(m - 1) - itemsets I am-I cam} 

2. for all am-I E A do begin 

3. conj=support(lk)/ support(am_I); 

4. if( conk mincon/) then begin 

5. output the rule am-I =} (lk - am-I), with confidence = conf 

and support = support (lk) 

6. if(m-1 > 1) then 

7. call genrules(lk, am-I) 

8. end 

9. end 

Figure 2.8: Generating Rules: Srikant's Simple Algorithm 

This simple algorithm is capable of generating all possible rules. But due 

to some redundant checking, it wastes a lot of time. For example, when 

itemset ABeD is used for rule gebneration, subest ABC, then AB then A 
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will lead to checking of ABC ~ D, AB ~ CD and A ~ BCD as possible 

rules. If the rule ABC ~ D have the confidence less than minconJ, then the 

confidence of AB ~ CD cannot be more than minconf Since the support 

count of AB cannot be smaller than that of ABC, second rule's confidence 

cannot be larger than that of the first one. But the algorithm checks for the 

second rule also and hence wastes some amount of time. Similarly, it also 

checks for the rule A ~ BCD. 

2.2.3 Srikant's Faster Algorithm 

By eliminating these unnecessary checking of rules a faster algorithm was 

proposed in [Sri96]. If a c a, then the support of a cannot be smaller than 

that of a. Therfore, the confidence of a ~ (1 - a) cannot be more than the 

confidence of a ~ (1 - a). These facts can be rewritten as rule a ~ (1 - a) 

to hold, all the rules of the form a ~ (1 - a) must also hold, Va, a E a. For 

example, the rule AB ~ CD may hold, iff both the rules ABC ~ D and 

ABD ~ C holds. 

The above property states that for a given frequent itemset, if a rule with 

consequent c holds then the rules with consequents that are subsets of c will 

also hold. This property of rules is similar to the downward closure property 

of frequent itemsets, "subsets of a frequent item set are also frequent:'. 

For example, assuming that ACDE ~ Band ABCE ~ D are the only 

one item consequent rules derived, having the minimum confidence, from 

the itemset A BCDE. If the algorithm in Figure 2.8 is used, the recursive 

call genrules(ABCDE, ACDE) will test whether the two-item consequent 

rules ACD ~ BE, ADE ~ BC, CDE ~ AB and ACE ~ BD will 
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hold or not. But first one of these rules cannot hold, because E C BE, 

and the rule ABC D :::} E does not have the minimum confidence. For 

the same reason second and third rule also cannot hold. But the call, gen­

rules(ABCDE,ABCE) of the algorithm presented in Section 2.2.2 will test 

if all these four rules hold or not and will find that first 3 rules do not hold. 

The only two item consequent rule that can possibly hold is ACE:::} BD, 

where Band D are the consequents in the valid one-item consequent rules. 

This is the only rule that will be tested by the algorithm given in Figure 2.9. 

From a frequent itemset I, rules with one item in the consequent are 

generated first. Then the possible consequents with two items are generated 

using the apriori candidate generation function. If some rules are found here, 

it will generate the three item consequents, in the same manner. 

1. forall frequent k-itemsets lk' k ~2 do begin 

2. HI ={ consequents of rules derived from lk with one item in the con-

sequent}; 

3. Call ap-genrules(lk, HI); 

4. end 

procedure ap-genrules(lk: frequent k-itemset, Hm: set of m-item consequent) 

1. if(k>m+l) then begin 

2. Hm+1 =result of calling apriori candidate generation function with 

Hm 

3. forall hm+l E Hm+l do begin 

4. conf support(lk)/support(lk - hm +I ); 

5. if(conJ ~ minconf) then 

6. output the rule (lk - hm+l ) :::} hm+1 with confidence conJ 

and support(lk) 
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7. else 

8. delete hm+l from Hm+l; 

9. end 

10. call ap-genrules(hk , Hm+l); 

11. end 

Figure 2.9: Generating Rules: Srikant's Faster Algorithm 

Although, the algorithm in Figure 2.9 is considered to be the best rule 

generation algorithm, it also can be found to be disadvantageous due to the 

following difficulties. The candidate consequent to be generated for the rule 

discovery require a significant amount of memory. Also, a considerable time 

is wasted by generating the same consequent several times for different an­

tecedents. For example, if X c Y, while generating the rules using X, all 

the candidate consequents will be generated. The same operation will be 

repeated for the set Y also, although many of them have already been gen­

erated in the earlier stage since Y is a super set of X. 

So to overcome this difficulty, an effective algorithm to generate the rules 

was developed. This algorithm also avoids unnecessary checking of the rules 

and at the same time it saves some time by eliminating redundant genera­

tion of the same subsets. Since the algorithm in Figure 2.9 uses a recursive 

function to generate the rules, memory requirement of it is more for a longer 

frequent itemset. The next section presents a new algorithm to generate the 

rules that is efficient from both time and memory requirement point of view. 

30 



2.3 A Faster Rule Generation Algorithm 

This algorithm is capable of generating all possible rules subject to the user 

specified minimum confidence. During the rule generation process, it avoids 

the unnecessary checking of some candidate rules, based on similar concepts 

used in the algorithm in Figure 2.9, which results in significant reduction 

of the time required to generate the rules. All the rules that can be found 

out by the third algorithm discussed above will be generated by this new 

algorithm also. It will use the frequent itmesets that are already stored to 

the memory and will not generate the subsets of a given frequent itemset. 

Hence, the memory requirement for this algorithm is far less than the other 

one. The steps of the proposed algorithm are listed in Figure 2.10. 

Input: L={lk Ilk is the set of frequent k-itemsets, sorted on support count 

in descending order, 1 ::::; k ::::; maxsize}; 

minconj = the minimum confidence specified by the user. 

Output: the strong association rules discovered with their support and con­

fidence. 

1. foralllk, lk E L, 1 ::::; k ::::; maxsize - 1 do begin 

2. reqsup=support(lk)* minconj 

3. found=O 

4. foralllm, lm E L, (k + 1) ::::; m ::::; maxsize do begin 

5. if(support(lm) 2:: reqsup) then begin 

6. if(lk elm) then begin 

7. found=found+ 1 

8. conj=support (lm)/support (lk) 

9. generate the rule lk =} (lm -lk), with confidence=conj 

and support=support(lm) 
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10. end if 

11. else 

12. if(found<2) 

13. continue step 1 with next k 

14. else 

15. found=O; 

16. endif 

17. endif 

18. end do 

19. end do 

Figure 2.10: NBG: A Faster Rule Generation Algorithm 

This algorithm is capable of discovering all possible rules from the given 

set of frequent itemsets subject to a user specified minimum confidence. It 

discovers all rules with a fixed antecedent and with different consequents. 

For that it checks only those frequent itemsets which can fulfill the mini­

mum confidence. At the same time, the algorithm will go to the next level 

of frequent itemset with the same antecedent if in the current level at least 

two itemsets fulfil the minimum confidence. This eliminates a number of 

unnecessary checks for the rule. 

The algorithm is generating the rules with a fixed antecedent first, start­

ing with single item antecedent. When all the rules with that antecedent are 

generated then it will go to the next antecedent. For the same antecedent 

it checks for the rules with equal size consequent, starting with one item 

consequent, then go to the next level. For, a given antecedent if all rules in 

level k, where k is the number of items in the consequent, have confidence less 
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than the threshold, i.e. no rules are generated, then the confidence of any 

rule in level k+ 1 also cannot be more than threshold. So checking for rules 

from this level onward can be avoided without missing any rules. If in level 

k, one rule fulfilled the threshold, then also in (k+ 1lh level there will be no 

rule. Because an itemset in the (k+1)th level is generated by combining two 

of the kth level itemsets. Now the maximum possible confidence of the rule 

in the (k + l)th level will be minimum confidence of the two itemsets from 

which this is constructed. Since the confidence of only one of them is larger 

than the threshold, others must be less then the threshold. So the confidence 

of the rule in level k+ 1 will be less than the threshold. So, it is needless to 

check for the rules in the next level without missing any valid rule. It can 

then be concluded that the algorithm is complete. 

2.3.1 Experimental Results 

All the above mentioned algorithms were tested with some synthetic data­

bases as well as standard databases. An Intel Core2duo 2.5 GHz processor 

based computer with 3 GB RAM was used for this purpose. To compare 

the performances of these algorithms, frequent itemsets derived from a test 

dataset using Apriori algorithm are presented in Table 2.1. Based on these 

frequent itemsets, the rules extracted by the algorithms presented in Figure 

2.7, 2.8 and 2.9 are reported in Tables 2.2, 2.3 and 2.4 respectively. 

Based on these experimental results it can be easily observed that the 

algorithm in Figure 2.9 gives the best performance among them. So, this al­

gorithm was considered as the counterpart while evaluating the performance 

of the proposed algorithm. 
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Table 2.1: Frequent Itemsets Derived: An Example 

Itemset Size Itemset Support Count 

1 1 2 

1 2 6 

1 3 6 

1 4 4 

1 5 8 

1 6 5 

1 7 7 

1 8 4 

1 9 2 

2 5, 6 3 

2 5, 7 5 

2 6, 7 3 

3 5, 6, 7 1 

From these experimental results it can be observed that algorithms in 

Figure 2.8 and Figure 2.9 produces the same rules, may be in different order. 

But the algorithm in Figure 2.7 missed some of the rules that are derived by 

the other two. Again the algorithm in Figure 2.9 executes faster than the 

algorithm in Figure 2.8. The new algorithm, NBG, also produces the same 

rules, takes less time even than Figure 2.9. 

To compare the performance of NBG some other synthetic datasets were 

considered. Initially, using the Apriori algorithm frequent itemsets were dis­

covered from the database. Table 2.5 contains the frequent itemsets derived 
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Table 2.2: Rules Derived by Agrawal's Algorithm 

Rule Support Confidence 

5=?6 3 0.375000 

5=?7 5 0.625000 

6=?7 3 0.600000 

5,6=?7 1 0.333333 

from a synthetic dataset having 10000 records and 20 attributes in it. While 

deriving them, a minimum support of 20% was considered. 

The frequent itemsets summarized in Table 2.5 are used to discover the 

rules. Table 2.6 contains the results of different execution of the algorithms 

with different values of confidence. The timing information provided in Table 

2.6 are average of 15 runs of the program. 

Similar comparison of above two algorithms was done using two standard 

datasets namely Monks-1 and Monks-3. Summary of the frequent itemsets 

with minimum support 10% derived from them were listed in Tables 2.7 and 

2.9. Tables 2.8 and 2.10 contains the summary of the rule extraction process 

with different values of minimum confidence. 

2.3.2 Observations 

Based on our experimental study, following observations can be made: 

• Same numbers of rules are generated by both the algorithms even if 
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Table 2.3: Rules Derived by Srikant's Simple Algorithm 

Rule Support Confidence 

6:=:}5 3 0.600000 

5:=:}6 3 0.375000 

7:=:}5 5 0.714286 

5:=:}7 5 0.625000 

7:=:}6 3 0.428571 

6:=:}7 3 0.600000 

6, 7 =* 5 1 0.333333 

5, 7 =* 6 1 0.200000 

5, 6 =* 7 1 0.333333 

6 =* 5, 7 1 0.200000 

the orders of generation are different. It is evident from columns 2 & 

4 of Tables 2.6, 2.8 and 2.10. 

• Time taken by the proposed algorithm is significantly less than the 

other. It is evident from columns 3 & 5 of Tables 2.6, 2.8 and 2.10. 

• The time saved by the NBG is more significant with the increasing size 

of the maximal frequent set and the total number of frequent itemsets. 

2.4 Discussion 

In this chapter, some of the algorithms used in the first phase of association 

rule mining in the classical approach, i.e. frequent itemsets mining, were pre­

sented. These algorithms have their own advantages and limitations. They 
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Table 2.4: Rules Derived by Srikant's Faster Algorithm 
Rule Support Confidence 

6=}5 3 0.600000 

5=}6 3 0.375000 

7=}5 5 0.714286 

5=}7 5 0.625000 

7=}6 3 0.428571 

6=}7 3 0.600000 

6, 7 =} 5 1 0.333333 

6 =} 5, 7 1 0.200000 

5, 7 =} 6 1 0.200000 

5, 6 ==> 7 1 0.333333 

can derive the frequent itemsets from any given market basket dataset. Af­

ter finding those frequent itemsets, rules are generated. This chapter also 

discussed three existing algorithms used for the generation of rules. Among 

these three, the third one can be found to be the best, because it does not 

miss any possible rule, and also works in a faster way. 

This chapter finally presents an effective algorithm (NBG) which has 

been established to be capable of extracting the rules even faster than the 

previously known best algorithm. 

All these algorithms to handle association rule mining problem, presented 

in this chapter, considers the problem as a single objective problem. The con­

fidence of the rules was the main objective of the problem that is optimized. 
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Table 2.5: Frequent Itemset from a Synthetic Dataset 

Itemset Size Number of Itemsets 

1 18 

2 133 

3 216 

4 43 

Table 2.6: Rules from the Synthetic Dataset 

NBG Srikant 's Faster Algorithm 

Min Conf. Rules Time(ns) Rules Time(ns) 

20% 2250 89,666,000 2250 1,263,772,000 

30% 1822 25,691,000 1822 97,006,000 

40% 1379 21,022,000 1379 47,039,000 

50% 951 17,669,000 951 36,186,000 

60% 580 12,605,000 580 25,487,000 

But the association rule mining can be treated as a multi-objective problem. 

In the next chapter we discuss about some other objectives of the association 

rules that should also be optimized along with confidence. The chapter will 

also discuss about some techniques to handle the multi-objective problems. 
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Table 2.7: Frequent Itemset from monks-1 Dataset 

Itemset Size Number of Itemsets 

1 17 

2 94 

3 20 

Table 2 8· Rules from monks-1 Dataset .. 
NBG Srikant's Faster Algorithm 

Min Conf. Rules Time(ns) Rules Time(ns) 

20% 252 7,989,000 252 8,474,000 

30% 180 7,307,000 180 7,616,000 

40% 99 6,453,000 99 6,674,000 

50% 55 6,016,000 55 6,242,000 

60% 13 5,498,000 13 5,830,000 

Table 2.9: Frequent itemset from monks-3 Dataset 
Itemset Size Number of Itemsets 

1 17 

2 93 

3 19 
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Table 2 10· Rules from monks-3 Dataset 
NBG Srikant's Faster Algorithm 

Min Conf. Rules Time(ns) Rules Time(ns) 

20% 241 7,912,000 241 8,285,000 

30% 172 7,280,000 172 7,433,000 

40% 90 6,391,000 90 6,569,000 

50% 52 6,025,000 52 6,251,000 

60% 11 5,506,000 11 5,734,000 

40 



Chapter 3 

Multi Objective Association 

Rule Mining 

Among most of the real life problems of optimization only one measure or 

objective is needed to be optimized. For handling them, some straight for­

ward algorithms can be used to get the optimal solution. But the situation 

becomes more complicated when the problem have more than one measures 

to evaluate and optimize all these measures simultaneously. Due to the de­

mands in different fields of real life applications, multi objective optimization 

has got a lot of attention. 

3.1 Multi Objective Problems 

Multi objective optimization problems can be found in various fields: prod­

uct and process design, finance, aircraft design, the oil and gas industry, 

automobile design, or wherever optimal decisions need to be taken in the 

presence of trade-offs between two conflicting objectives. Maximizing profit 
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and minimizing the cost of a product; maximizing performance and minimiz­

ing fuel consumption of a vehicle; and minimizing weight while maximizing 

the strength of a particular component are examples of multi-objective opti­

mization problems. In these types of problems it is practically impossible to 

find the best solution, but some optimal solutions can be found. 

The example in Table 3.1 will clarify the situation. Let us consider the 

problem of traffic controlling system in a city. One objective of it is to reduce 

the number of accidents, and the other objective is to reduce the cost incurred 

to implement the system. 

Table 3.1: Multi Objective Problem: An Example 

Investment per year (Lakh Rs.) 0 10 20 30 40 50 

Number of accidents per year 1000 700 500 350 250 175 

For this problem, some of the probable solutions are tabulated in Table 

3.1. Each column of the table represents a solution of the problem. But 

none of them can be called as the best. The problem mentioned here is a 

minimization problem, where we have to minimize both the cost and number 

of accidents. But, if cost is reduced number of accidents will increase. Any 

solution of the problem, if it is better than another, in one objective, than 

it is worse in the other objective. For example, the last solution seems to be 

the best from the number of accidents point of view. But this is the worst 

one from cost point of view. So, none of the solutions here is the best. But 

every solution works as an optimal solution of the problem and the decision 

makers can choose any of them depending on the situation. 
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3.2 Handling Multi Objective Problems 

Perhaps the most intuitive approach to solve the multi objective problem is 

constructing a single aggregate objective function. The basic idea is to com­

bine all the objective functions into a single functional form, called the AOF 

[JT02]. There are also different variations in defining the AOF. Simple linear 

aggregation of the objectives also can be used in some problems. Another 

well-known combination is the weighted linear sum of the objectives. Here, in 

this approach some scalar weights for each objective to be optimized are spec­

ified, and then they are combined into a single function that can be solved by 

any single-objective optimizer. Clearly, the solution obtained will depend on 

the values (more precisely, the relative values) of the weights specified. For 

example, if we are trying to maximize the strength of a machine component 

and minimize the production cost, and if we specify a higher weight for the 

cost objective compared to the strength, our solution will be one that favors 

lower cost over higher strength. Thus, it may be noticed that the weighted 

sum method is essentially subjective, in that a decision manager needs to 

supply the weights [Fla76]. Depending on the weights supplied for the dif­

ferent objectives we will get a different solution. Hence the selection of the 

suitable weights for different objectives again becomes a crucial problem. 

Goal programming is a branch of multi objective optimization. It can be 

thought of as an extension or generalization of linear programming to handle 

multiple, conflicting objective measures. Each of these measures is given a 

goal or target value to be achieved. Unwanted deviations from this set of 

target values are then minimized in an achievement function. This was first 

introduced in [CCF55], although the actual name first appeared in [CC61]. 

The first engineering application of goal programming was the design and 
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placement of the antennas employed on the second stage of the Saturn V. 

This was used to launch the Apollo space capsule that landed the first men 

on the moon. 

The initial goal programming formulations ordered the unwanted devia­

tions into a number of priority levels, with the minimization of a deviation 

in a higher priority level being infinitely more important than any deviations 

in lower priority levels. This is known as lexicographic goal programming 

[Ign76]. Lexicographic goal programming should be used when there exists 

a clear priority ordering amongst the goals to be achieved. A major strength 

of goal programming is its simplicity and ease of use. This accounts for the 

large number of goal programming applications in many and diverse fields. 

Goal programming can hence handle relatively large number of variables, 

constraints and objectives. A debated weakness is the ability of goal pro­

gramming to produce solutions that are not Pareto efficient. 

Since we cannot define the clear priority ordering of the different objec­

tives of the association rule mining, lexicographic goal programming will not 

help us here. 

It is better to find out the solutions for these type of problems depending 

on non-dominance criterion [Coe99, FF95, ZDTOO]. At the time of taking a 

decision, the solution that seems to fit better depending on the circumstances 

can be chosen from the set of these candidate solutions. A solution, say a, is 

said to be dominated by another solution, say b, if and only if the solution 

b is better or equal with respect to all the corresponding objectives of the 

solution a, and b is strictly better in at least one objective. Here the solution 

b is called a non-dominated solution. So it will be helpful for the decision-
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maker, if we can find a set of such non-dominated solutions. This approach 

of solving the multi objective problem was suggested by French economist 

Vilfredo Pareto [Par96]. After his name this technique of optimization was 

termed as Pareto optimization technique. 

3.3 Genetic Algorithms as a Tool 

When we are looking for a solution for a problem, it is better to check the 

complete solution space for the best solution. But in some problems the ex­

haustive search is practically infeasible, if the search space is too big. When 

the search space is linear in nature, some kind of filtering can be done to elim­

inate some subspace of the total search space. But when the search space is 

multi-dimensional, those types of filtering also do not help too much. 

To attend this type of complicated problems, based on natural evolution, 

Genetic Algorithms were suggest by John Henry Holland [HoI75]. Basically, 

genetic algorithms are implemented as a computer simulation in which a 

population of abstract representations, called chromosomes, of candidate so­

lutions, called individuals to an optimization problem evolves toward better 

solutions. Solutions are represented in binary as strings of Os and Is. The 

evolution usually starts from a population of randomly generated individuals, 

called initial population and moves in generations. In each generation, the 

fitness of every individual in the population is evaluated, multiple individuals 

are randomly selected from the current population, based on their fitness. To 

form a new population, those chromosomes are combined pairwise, which are 

selected randomly. These new chromosomes are then randomly mutated and 

is used in the next iteration of the algorithm. Commonly, the algorithm ter-
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minates when either a maximum number of generations have been produced, 

or a satisfactory fitness level has been reached for the population. 

3.4 Multi Objective Genetic Algorithms 

Several works have been found in the literature to establish it that the genetic 

algorithms can be used as an efficient tool to handle the multi-objective 

problem [Sha85, FF93, SD93, Coe96, DebOl, CLV07]. A few of them are 

discussed here in this section. 

3.4.1 Vector Evaluated Genetic Algorithm 

David shaffer [Sha85] extended Grefenstette's GENESIS program [xxl71xx] 

to include multiple objective functions. Shaffer's approach was to use an 

extension of the Simple Genetic Algorithm(SGA) that he called the Vector 

Evaluated Genetic Algorithm (VEGA), and that differed of the first only in 

the way in which selection was performed. This operator was modified so that 

at each generation a number of sub-population was generated by performing 

proportional selection according to each objective function in turn. Thus, 

for a problem with k objectives, k sub-populations of size N/k each are 

generated, assuming a total population size of N. These sub-populations are 

shuffled together to obtain a new population of size N, on which crossover and 

mutation operators are applied in the usual way. The solutions generated 

by this approach are non-inferior in local sense, as their non-inferiority is 

limited to the current population, and while a locally dominated are globally 

dominated also. Another problem, termed as "speciation", may also arise in 

this approach (i.e., evolution of "species" within the population which excel 

on different aspects of performance). This problem may arise because this 
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technique selects individuals who excel in one dimension of performance, 

without looking at other dimensions. The potential danger in doing that 

is that there may be some individuals with "middling" performance in all 

objectives, which could be very useful, but that will not survive under this 

selection scheme, since they are not in the extreme for any objective(i.e., they 

do not produce best value for any objective function, but only moderately 

good values for all of them). To deal with this problem some heuristics 

was suggested. For example, to use a heuristic selection preference approach 

for non-dominated individuals in each generation, to protect the "middling" 

individuals. Also, crossbreeding among the "species" could be encouraged 

by adding some mate selection heuristics instead of using the random mate 

selection of traditional Genetic Algorithms. 

3.4.2 Multi Objective Genetic Algorithm 

Based on ranking of the individuals, Fonseca and Fleming [FF93] have pro­

posed this scheme. The rank assigned to an individual of the current popu­

lation is determined by the number of individuals by which it is dominated. 

For example, if an individual x of generation 9 are dominated by p9 individ­

uals, then Rank(x, g) = 1 +p9. Hence, all the non-dominated individuals are 

ranked as 1. Then the individuals are assigned some fitness based on their 

ranks. Proper care must be taken so that the chromosomes with same ranks 

gets equal fitness. 

As Goldberg [Gol89] and Deb [SD94] point out, this type of blocked fit­

ness assignment is likely to produce a large selection pressure that might 

produce premature convergence. To avoid that Fonseca and Fleming used a 

niche-formation [FF95] method to distribute the population over the Pareto­

optimal region. This maintains diversity in the objective function values, but 
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may not maintain diversity in the parameter set, which is an important issue 

for a decision maker. Furthermore, this approach may not be able to find 

multiple solutions in problems where different Pareto-optimal points corre­

sponds to the same objective function value. 

In this approach, it is possible to evolve only a certain region of the 

trade off surface, by combining Pareto dominance with partial preference 

information in the form of a goal vector. 

3.4.3 N on-dominated Sorting Genetic Algorithm 

This algorithm, NSGA [SD93], is based on several layers of classification of 

the individuals. Before the selection is performed, the population is ranked on 

the basis of non-domination. All non-dominated individuals are classified into 

one category and assigned some dummy fitness. To maintain the diversity 

of the population, these classified individuals are shared with their dummy 

fitness values. Then this group of classified individuals is ignored and another 

layer of non-dominated individuals is considered. The process continues until 

all individuals in the population are classified. 

A stochastic remainder proportionate selection was used for this ap­

proach. Since individuals in the first front have the maximum fitness value, 

they always get more copies than the rest of the population. This allows 

to search for non-dominated regions, and results in quick convergence of 

the population towards such regions. The efficiency of NSG A lies in the 

way multiple objectives are reduced to dummy fitness function using a non­

dominated sorting procedure. With this approach, any number of objectives 

can be solved and both maximization and minimization problems can be 

handled. 
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3.5 Multiple Objectives of Association Rule 

Mining 

Association rule mining is a multi objective problem. Confidence or predic­

tive accuracy, comprehensibility and interestingness of the rules can be used 

as the objectives of the rule mining problem. 

Confidence 

This measure is commonly taken as the objective to be optimized by the 

classical approach of rule mining. This is defined as the ratio of the support 

of the rule to the support of the antecedent part of the rule. For exam­

ple, if A =?- C is a rule and SUprA) and SUP (A U C) are the support of 

the antecedent and the rule respectively, then the confidence of the rule, 

con! = SUP (A U C)jSUP(A). It defines the probability of finding C in a 

record of the database when it contains A. Hence this measure is sometimes 

termed as predictive accuracy also. 

Comprehensibility 

This measure of evaluating the rules defines how much understandable the 

rule is. Since the association rules are represented as IF -THEN statements, 

some conditions are involved there. It is easier to understand the statement, 

if the number of conditions involved are less. If the rules are extracted by 

the classical approach, sometimes a large number of conditions are involved 

there. So it becomes very difficult to understand the rule. As a result the 

rule will not be used by the decision makers. 

Though it is very difficult to quantify the understandability or compre-
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hensibility, a careful study of an association rule will infer that, if the number 

of conditions involved in the antecedent part is less, the rule is easy to un­

derstand, in otherwords more comprehensible. To reflect this behaviour, an 

expression was derived as comp=N- (number of conditions in the antecedent 

part) [FLFGOO). This expression serves well for the classification rule genera­

tion [Fre01) where the number of attributes in the consequent part is always 

one. Since, in the association rules, the consequent part may contain more 

than one attribute, this expression is not suitable for the association rule 

mining. So the need for a new expression to quantify the comprehensibility 

of association rule was felt, where the number of attributes involved in both 

the parts of the rule has some effects. Several expressions were designed 

during this dissertation work to quantify the comprehensibility, and finally 

the following expression was found to be better among them[GN04). The 

expression for comprehensibility of an association rule-

Comprehensibility = log(l+ 1 C 1)/log(l+ 1 Au C I)· 

Here, 1 C 1 and 1 A u Clare the number of attributes involved in the conse­

quent part and the total rule, respectively. 

Interestingness 

Since association rule mining is a part of data mining process that extracts 

some hidden information, it should extract only those rules that have com­

paratively less occurrences in the entire database. Such a surprising rule 

may be more interesting to the users; which again is difficult to quantify. For 

classification rules it can be defined by information gain theoretic measures 

[Fre02). This way of measuring interestingness for the association rules will 

become computationally inefficient. For finding interestingness, the database 

is to be divided based on each attribute present in the consequent part. Since 
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a number of attributes can appear in the consequent part and they are not 

predefined, this approach is not feasible for association rule mining. So a 

new expression was defined[GN04] which uses only the support count of the 

antecedent and the consequent parts of the rules, and is defined as 

Interestingness = [SUP(A U C)/ SUP(A)] x [SUP(A U C)/ SUP( C)] 

x[1 - (SUP(A U C)/ I D I)]. 

where I D I is the total number of records in the database. 

This expression contains three parts. The first part, [SU P(AUC)/ SU P(A)], 

gives the probability of generating the rules depending on the antecedent 

part, the second part, [SUP(A U C)/SUP(C)], gives the probability of gen­

erating the rule depending on the consequent part, and (SUP(A U C)/IDI) 
gives the probability of generating the rule depending on the whole database. 

So, the complement of this probability will be the probability of not generat­

ing the rule. Thus, a rule having a very high support count will be measured 

as less interesting. 

3.5.1 Efficient MOGA for Association Rule Mining 

This section presents a Pareto based genetic algorithm to extract the associa­

tion rules. To work with the genetic algorithm it is necessary to represent the 

candidate solutions as chromosomes, for which a suitable encoding/decoding 

scheme is required. For the association rule mining problem the candidate 

solutions are nothing but the possible rules. To encode rules two approaches 

can be adopted. In the Pittsburgh approach [GS93] each chromosome rep­

resents a set of rules. The length of the chromosome limits the number of 

rules generated. This approach is more suitable for classification rule min­

ing; as we do not have to decode the consequent part. The other approach 
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is called the Michigan approach [NFL99]where each chromosome represents 

a separate rule. In the original Michigan approach we have to encode the 

antecedent and consequent parts separately; and thus this is an inefficient 

representation from the point of space utilization. As it is not known a pri­

ori, which attributes will appear in which part, space should be reserved for 

every attribute in both the parts, antecedent and consequent. Again the 

same attribute cannot appear in both the parts. As a result, at least half 

of the reserved space within the chromosome will never be utilized. So we 

followed a new approach that is better than this, from the point of storage 

requirement. With each attribute two extra tag bits are associated. If these 

two bits are 00 then the attribute, next to these two bits, appears in the 

antecedent part and if it is 11 then the attribute appears in the consequent 

part. And the other two combinations, 01 and 10 will indicate the absence 

of the attribute in either of these parts. For example, the representation of 

the rule AC =} BF from a database with attributes ABCDEF, will become 

OOA lIB OOC OlD 10E llF. In this way we can handle variable length 

rules with more storage efficiency, with an overhead of only 2k bits, where k 

is the number of attributes in the database. 

The next step in the chromosome representation is to find a suitable 

scheme for encoding/decoding the attribute values of the rules to/from bi­

nary chromosomes. In the above representation of the rules the positions of 

attributes are fixed. Hence, the attribute names are not needed to be encoded 

in the chromosome. Values of different attributes are to be encoded in the 

chromosome only. For encoding a categorical or nominal valued attribute, 

the market basket encoding scheme is used. But this scheme is not suitable 

for numeric valued attributes. For a continuous or real valued attribute their 

binary representation is used as the encoded value. The range of values of 

that attribute and the desired accuracy level controls the number of bits re-
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qui red to encode the attribute's value. Decoding can be performed as­

Value = min + (max -min) {{ (2i - 1 xith bit value))/(2n - 1)), 

where 1 :S i :S nand n is the number of bits used for encoding; min and max 

are minimum and maximum values of the attribute. 

Using these encoding schemes values of different attributes can be en­

coded into the chromosomes. Since in the association rules an attribute may 

be involved with different relational operators [Oli93], it is better to encode 

them also within the rule itself. For example, in one rule a numeric attribute 

A may be involved as A 2:: valuel, but in another rule it may be involved as 

A :S value2. Similarly, a categorical attribute may be involved with either 

equal to (=) or not equal to (#). To handle this situation another bit is used 

to indicate the operators involved with the attribute. Equality (=) and not 

equality (#) are not considered with the numerical attribute. In this way 

the whole rule can be represented as a binary string, and this binary string 

will represent one chromosome or a possible rule. 

After getting the chromosomes, various genetic operators such as crossover, 

mutation, selection are performed on it. Presence of large number of at­

tributes in the records result in long chromosomes, which demands for multi­

point crossover needed to bring more diversity within the cromosomes. 

There are some difficulties to use the standard multi-objective GAs for 

association rule mining problem. In case of rule mining problem, a set of 

better rules extracted from the database needs to be stored. If the standard 

genetic operations are used, then the final population may not contain some 

better rules generated at some intermediate generations. Hence it is better to 

keep those better rules of the intermediate generations. For this task, a sep-
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arate population can be used [ES91]. In this population no genetic operation 

is performed. It will simply contain only the non-dominated chromosomes of 

the previous generations. At the end of first generation, it will contain the 

non-dominated chromosomes of the first generation. After the next gener­

ation, it will contain those chromosomes, which are non-dominated among 

the current population as well as among the non-dominated solutions till the 

previous generation. 

Steps of the algorithm to extract the rules are enumerated in Figure 3.1. 

Input: Database D, number of generations G 

Output: A set of nondominated rules 

1. Load S, SeD 

2. Generate population P of N chromosomes randomly. 

3. Decode(Pi), Vi,Pi E P 

4. find SUP(A), SUP (C) and SUP(R) by scanning S 

5. Calculate the confidence, comprehensibility and interestingness values. 

6. Rank(Pi), Vi,Pi E P based on non-dominance property 

7. fitness(Pi)=! P ! -Rank(Pi), Vi,Pi E P 

8. Vi,Pi E P, if Rank(Pi)=l then Maintain~lite(pi) 

9. Based on fitness(Pi) select cromosomes for next generation 

10. Perform multi-point crossover, then mutation to get new population O. 

11. Replace population P by 0 

12. If number of generations < G, then go to Step 3. 

13. Decode and return Elite Chromosomes. 

Figure 3.1: GA based Multi Objective Rule Mining 
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Implementation and Results 

Many experiments were carried out to set the various parameters of the 

algorithm. A computer with Intel Core2Duo 2.5 GHz processor and 3 GB 

RAM was used perform those experiments. During those experiments, the 

parameters affecting the genetic algorithm was tuned for different values. 

From these results it was observed that for all most all datasets the optimal 

results are derived, if the crossover and mutation probability are tuned nearer 

to 0.8 and 0.002 respectively. The results presented in this dissertation, are 

based on these values of the said parameters. Similarly, the population size 

was fixed at 40. To keep the diversity within the population multi-point 

crossover was performed, where the number of crossover point varies with 

chromosome length. Based on various experiments, one crossover point per 

100 bit of chromosome was found to be most effective. 

The algorithm was tested over several synthetic and standard datasets. 

The synthetic datasets were generated based on probabilistic measures. Every 

dataset differs from others in number of attributes, number of records .and 

ranges of attribute values. Satisfactory results were obtained from those 

experiments. Some results from a dataset, kddcup. data_l O_percent, publicly 

available at VCI Machine Learning Repository (ftp:/ /ftp.ics.uci.edu/pub/ 

machine-Iearning-databases/) are given in Table 3.2. The dataset contains 

total 41 attributes in it, out them 34 attributes are numeric remaining at­

tributes are symbolic. The dataset is conventionally used for classification 

problem. Only the numeric valued attributes were considered during rule 

extraction. 
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Table 3.2: Summary of results 

Sample size Number of generations Number of rules generated 

1000 100 24 

200 31 

300 31 

1000 100 35 

200 40 

300 40 

1000 100 27 

200 36 

300 37 

2000 100 35 

200 40 

300 40 

2000 100 35 

200 40 

300 40 

A few rules from this datasets with a sample size of 2000 are given in 

given in Table 3.3. For better understanding of the rules, the complete name 

of the attributes involved in these rules are given in Table 3.4. 

Discussion 

From the rule sets generated for different samples and for different number 

of generations it can be observed that after 200 generations it ceases to gen-
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Table 3.3: Rules from kddcup.data_10_percent dataset 

hot :::; 0.0 & count ~ 309.82 --+ DstJwsLcount ~ 111.98 

hot ~ 0.0 & count ~ 1.18 & --+ srv _diffJwst_rate < 0.0 -
DstJwst_rerror_rate :::; 0.01 DstJwsLcount :::; 41.06 

DsLhost...srv _diffll.ost...rate ~ 0.12 --+ srv _diffll.ost...rate > 0.0 -

& Dstll.osLcount < 8.05 & Dstllost...srv _count ~ 18.63 

Dstllost...srv...serror_rate:::; 0.0 

serror _rate ~ 1.36 & dst_bytes :::; --+ Dstll.ost_count < 6.67 -

82.48 & num_file_creations :::; 0.01 Dstllost...srv ...serror_rate :::; 0.0 

erate more rules; in other words after that number of generations the GA 

converges. From the results given above it can be seen that only for the 

third sample, it gives an extra rule at the cost of 100 additional generations. 

Moreover, only a very few number of attributes ( 4 to 5 attributes on both 

the antecedent and consequent parts) got involved in the rules, which means 

that all the attributes are not equally important; and the rules are simple to 

understand (i.e. comprehensible). 

This section presented an effective approach to discover the association 

rules based on the multi objective genetic algorithm. But that algorithm 

has a difficulty in it. To save the time by doing multiple disk accesses, it has 

loaded a sample of the database to the memory. Since the algorithm works on 

the memory resident data it works faster. But the rules that were discovered 

by the algorithm may not reflect the whole database and is widely affected 

by the sampling technique used to select the sample. Hence, it demands for 
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Table 3.4: Attributes of kddcup dataset involved in the reported rules 

No. Name Description 

6 dst_bytes Number of data bytes from destination to source 

10 hot Number of "hot" indicators 

17 numJile_creations Number of file creation operations 

23 count Number of connections to the same host as the-

current connection in the past two seconds 

25 serror _rate Percentage of connections that have "SYN" errors 

31 srv _difLhost_rate Percentage of connections to different hosts 

32 Dst__hosLcount Number of connections to host 

33 Dst__host..srv _count Number of services requested of host 

37 Dst__host..srv _cliff Percentage of connections with same service but 

_host _rate to different Host 

39 Dst__host..srv ..serror Percentage of connections to the same service that 

_rate have "SYN" errors 

40 Dst__host_rerror _rate Percentage of connections that have "REJ" errors 

an algorithm which can handle dataset efficiently at minimum computational 

cost. Next section presents a horizontal partitioning approach to address this 

issue. 

3.5.2 MOGA Based Partitioning Approach 

In this approach the whole database is used during the rule extraction process. 

To minimize the disk access time,the whole database was divided into some 

horizontal partitions, where the size of the partitions were selected in such 

58 



a way that it could be accommodated within the memory. Then the rules 

from the first partition were extracted. Since memory resident data are used, 

the rule extraction process becomes faster. After storing these rules, next 

partition was used to extract the rules from it. And this process continues 

till all the partitions are used. Finally, the rules from all the partitions are 

combined, and the redundant rules are eliminated. Then the whole database 

is read once more from the disk to evaluate the rules. 

However, chromosome representation, encoding/decoding scheme and all 

other genetic operators used in the previous algorithm were strong enough 

to handle the problem. So they were used in this partitioning approach also. 

The steps of the algorithm are given in Figure 3.2. 

Input: Database D, number of generations G 

Output: A set of non-dominated rules 

1. Create n partitions Si of D such that U~=l Si = D 

2. i = 1 

3. Load the partition Pi to memory 

4. Generate population P of N chromosomes randomly 

5. gen = 0 

6. Decode(pj), Vj,Pj E P 

7. Find SUP(A), SUP (C) and SUP(R) from Si 

8. Calculate confidence, comprehensibility and interestingness 

9. Rank(Pj ), Vj'Pj E P 

10. Fitness (Pj) = I P I -Rank(pj), Vj,Pj E P 

11. Vj'Pj E P, if Rank(pj)=1 then Maintain~lite(pj) 

12. Based on Fitness(pj) select chromosomes for next generation 
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13. Perform multi-point crossover, then mutation to get new population 0 

14. Replace population P by 0 

15. gen = gen + 1 

16. if gen < G then go to Step 6 

17. pi=p 

18. i = i + 1 

19. if i :s; n go to Step 3 

20. Q = Uf=l pi 

21. Find SUP(A), SUP (C) and SUP(R) by scanning D, Vqj E Q 
22. Calculate confidence, comprehensibility and interestingness, Vqj E Q 

23. return Q 

Figure 3.2: MOGA based partitioning algorithm 

Implementation and Results 

The above mentioned algorithm was implemented and tested over various 

synthetic as well as standard databases in the same environment as the ear­

lier one given in the previous section. From the results of various databases 

it was observed that this algorithm can extract the rules from a database 

that were extracted by the previous one also. But their measures are not the 

same, as in the first algorithm objectives were evaluated on a sample of the 

database. Here some of the results from some standard public databases are 

presented. Crossover probability of 0.8, mutation probability of 0.01, popu­

lation size of 40 was used during the extraction of the rules. 12 bits were used 

to encode each attribute. The databases presented below were downloaded 

from VCI Machine learning repository (ftp://ftp.ics.uci.edu/pub/machine­

learning-databases /). 
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A. Wisconsin Diagnostic Breast Cancer Database 

This dataset contains 569 instances and 32 attributes. First and second 

attributes are sample code number and class label respectively. All other 

30 attributes are real valued attributes. Out of these 569 instances, 357 

are benign and 212 are of malignant types. Some rules extracted from this 

database by the algorithm are presented in Table 3.5. 

Table 3.5: Some rules from Wisconsin Diagnostic Breast Cancer Database 
Mean perimeter::; 183.023 & ::::} Mean texture::;30.579 & 

Worst area::;3924.124 Standard error perimeter::;15.730 

& Worst compactness::;0.944 & 

Worst symmetry2:0.338 

Mean radius;:::7.029 & Standard ::::} Mean area2:249.27 & Standard 

error perimeter::;10.94 & Worst error smoothness::;0.016 

symmetry2:361.012 

Mean radius::;12.895 & Standard ::::} Mean concave points ::; 0.1152 

error radius::;0.8346 & Worst & Standard error perimeter ::; 

area::;901.53 6.217 & Standard error fractal 

dimension;:::O.OOl 

When these rules were observed we found that in 84 instances the first 

rule is satisfied and out of these 84 instances 66 (78.57%) are of malignant 

type. Similarly, second rule is satisfied by 56 instances out of which 52 

(92.86%) instances are Malignant. And out of 248 instances that satisfy the 

fourth rule 236 (95.16%) instance are of benign type. This is an interesting 

observation, as these rules may be used for classification also. 
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B. Wisconsin Breast Cancer Database 

This dataset contains 699 instances and 11 attributes. First and last are 

sample code number and class attribute respectively. All other attributes 

are real valued attributes. Out of these 699 instances, 458 are Benign type 

and 241 are of Malignant type. Some of the rules extracted from it are 

presented in Table 3.6. 

Table 3 6· Some rules from Wisconsin Breast Cancer Database .. 
Uniformity of Cell Shape :::; 8.248 ::::} Marginal Adhesion "2: 2. 708 & Mi-

toses :::; 5. 730 

Single Epithelial Cell Size:::; 9.888 ::::} Marginal Adhesion "2: 4.571 & Mi-

toses :::; 5.207 

Bland Chromatin :::; 8.842 ::::} Clump Thickness 2 0.972 & Nor-

mal Nucleoli "2: 4.774 & Mitoses 

:::; 5.642 

When these rules were observed, it was found that in 168 instances the 

first rule is satisfied and out of these 168 instances 122 (72.62%) are of ma­

lignant type. Similarly second rule is satisfied by 119 instances out of which 

109 (91.6%) instances are Malignant. And out of 63 instances that satisfy 

the third rule 52 (82.54%) instance are of benign type. 

C. Wisconsin Prognostic Breast Cancer Database 

This dataset was also taken from the UCI machine learning data repository. 

This dataset contains 198 instances and 34 attributes. First and second are 

sample code number and class attribute respectively. All other 32 attributes 

are real valued attribute, values lying in different ranges. Out of these 198 

62 



instances, 151 are non-recurring and 47 are recurring type. When the rule 

extraction algorithm was applied on it, some interesting rules were discovered. 

A few of them are presented in Table 3. 7. 

Table 3. 7: Some rules from Wisconsin Prognostic Breast Cancer 

Standard error texture ~ 3.275 ::} Mean fractal dimension 2 0.093 

& Standard error smoothness ~ 

0.026 

Standard error symmetry~ 0.056 ::} 

& Worst perimeter ~ 214.958 

Time~ 112.585 & Mean perime- ::} 

ter ~ 181.616 & Standard error 

texture ~ 3.275 & Standard er-

ror smoothness ~ 0.025 & Mean 

fractal dimension ~ 0.082 

& Standard error compactness 

~ 0.092 & Worst smoothness 2 

0.108 & Worst compactness 2 

0.246 & Worst fractal dimension 

2 0.068 & & 36 & 107 

Mean area 2 547.904 & Standard 

error texture ~ 3.486 & Worst 

smoothness > 0.152 & Worst 

fractal dimension 2 0.069 & & 12 

& 33 

Standard error compactness < 
0.094 & Worst compactness 2 

0.264 & Worst fractal dimension 

2 0.080 & 25 & 80 

When these rules were observed we found that in 143 instances the first 

rule is satisfied and out of these 143 instances, 107 (74.83%) are of non­

recurring type. Similarly second rule is satisfied by 45 instances out of which 

33 (73.33%) instances are non-recurring. And out of 105 instances that sat­

isfy the third rule, 80 (76.19%) instances are of non-recurring type. 
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From these results it can be observed that the algorithm presented in 

this section is capable of extracting some interesting and understandable 

rules from the databases. Since the algorithm works on memory resident 

data, it executes quickly. The databases is read from the disk two times 

only. So the disk access time is less. 

3.6 Discussion 

Two algorithms are presented in this chapter, based on multi objective ge­

netic algorithms which have been found capable to extract meaningful rules 

from large datasets. Both the algorithms were designed considering the as­

sociation rule mining problem as a multi objective problem. Expressions 

to quantify comprehensibility and interestingness are also presented here. 

These expressions were used to measure the objectives of the association rule 

mining problem. From the experimental results it can be observed that the 

algorithms were capable of discovering some interesting, understandable and 

valid rules. 

While discovering the rules from those databases it was also observed that 

some of the attributes were never or very rarely used in the derived rules. If 

those attributes can be eliminated before the rule mining process, the cost 

of rule extraction process could be saved significantly. This necessitates an 

appropriate dimensionality reduction technique and the next chapter intro­

duces this issue and also describes some effective dimensionality reduction 

techniques. 

Though it was assumed that the datasets used for rule extraction are 

static in nature, it may not be always true. Time to time some new records 

64 



are added to the datasets. Due to which some new rules may become valid. 

Since the rule extraction is a time consuming job, it is not appreciated to 

extract the rules over an incremental database by repeated scanning of the 

whole database every time it is updated. Extraction of meaningful rules over 

incremental database is considered to be another challenging job. In a later 

chapter this issue of rule mining is addressed. 
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Chapter 4 

Dimensionality of Databases: 

Another Challenge 

In the previous chapter, while extracting rules from the databases, it was 

observed that some of the attributes were never used in any of the rules 

generated. In other words, presence or absence of those attributes in the 

database have no effect on the result of the rule mining task. The possible 

reason for it is that, these attributes are irrelevant. Almost every dataset 

contains some irrelevant attributes. Presence of these irrelevant attributes 

increase the storage requirement of the database, but practically carries no 

useful information. Thus, reduction in the dimensionality of these databases 

by discarding those redundant or irrelevant attributes will help saving the 

cost of computation to a great extent. 
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4.1 Dimensionality Reduction 

Selecting the relevant attributes or discarding the irrelevant attributes from a 

database is a challenging job. Based on our study and experimental analysis 

it has been found that an irrelevant attribute does not affect the target con­

cept in any way, and a redundant feature does add anything new to the target 

concept [KP94]. In many applications, the size of the dataset is so huge that 

learning might not work well before removing the unwanted attributes. Re­

ducing the number of irrelevant or redundant attributes drastically reduces 

the execution time of a learning algorithm [KS95, KS96]. 

In reality, relevant attributes are unknown apriori. Therefore, set of can­

didate attributes are introduced to represent the domain in a better way. 

But, for a database with n attributes, there will be 2n -1 possible candidate 

sets available. Hence, selecting the best among them is a time consuming job. 

This process of eliminating the irrelevant attributes or selecting the relevant 

features is commonly known as dimensionality reduction or feature selection. 

Dimensionality reduction attempts to remove irrelevant features accord­

ing to two basic criteria: (i) the accuracy does not significantly decrease and 

(ii) the resulting concept, given only the values for the selected attributes, is 

as close as possible to the original concept, given all the attributes. 

4.2 Existing techniques 

A good number of algorithms were proposed for dimensionality reduction/feature 

selection over the years [Doa92, FC07, SDZ07, KCN08, GE08, HCX08, RFJT08]. 
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Some of the prominent feature selection algorithms commonly used for re­

ducing the dimensionality of the databases are reproduced for the sake of 

understanding and for comparison in this section. The notations/symbols 

used in describing those algorithms are reported in Table 4.1. 

4.2.1 Focus 

Using consistency measure to evaluate the subsets, Focus [AD92] generates 

all possible feature subsets. It implements the Min-Features bias that prefers 

consistent hypothesis definable over as few features as possible. The algo­

rithm is given below. 

Focus(D, S) /* D and S are the database and the set of features respec­

tively. * / 
1. T = S 

2. For i=O to N /*N is number of features * / 
3. For each subset L of size i 

4. If no inconsistency in the training set D then 

5. T = L 

6. Return T 

Figure 4.1: Focus 

The algorithm works well with noise-free data. Presence of noisy data 

within the dataset affects the performance of the algorithm. 
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4.2.2 LVF 

Using consistency measure to evaluate the subsets, LVF [L896] generates 

the candidate subsets randomly. It randomly searches the subset space and 

calculates an inconsistency count for the subset. An inconsistency threshold 

is assumed and any subset with inconsistency measure greater than that 

value is rejected. The algorithm is reproduced in Figure 4.2. 

LVF(D, S, Max Tri es, a) 

1. T = 8 

2. For i=l to MaxTries 

3. Randomly choose a subset of features, Sj 

4. if card ( Sj) ::; card(T) 

5. if inConCal(Sj , D) ::; a 

6. T = Sj 

7. Output Sj 

8. else 

9. append Sj to T 

10. output Sj as 'another solution' 

11. endfor 

12. return T 

Figure 4.2: LVF 

This algorithm works well for datasets with smaller number of attributes. 

Since all feature subsets are not considered best subset may not be found, 

specially when the number of attributes is high. If M axTries has been given 

a larger value many possible feature subsets will be produced as output, 

selection of the required subset becomes another problem for the user. 
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4.2.3 Branch and Bound 

This algorithm was proposed by Narendra and Fukonaga in 1977 [NF77]. 

The important requirement of the algorithm is that the evaluation function 

be monotonic. The algorithm needs input of required number of features 

(M) and it attempts to find out the best subset. The algorithm is given in 

Figure 4.3. 

B&B(D, S, M) 

1. if card(S) =I- M then 

/*subset generation* / 

2. j=O 

3. for all features f E S begin 

4. Sj = S - f /*remove one feature at a time * / 

5. if (Sj is legitimate) then 

6. if isbetter(Sj , T) then 

7. T = Sj 

/*recursion * / 

8. B&B(Sj ,M) 

9. endfor 

10. j + + 
11. endif 

12. return T 

Figure 4.3: Branch & Bound 

The algorithm always produces the best feature subset as the output. 

And useful for datasets with large number of attributes also. But the major 

difficulty of the algorithm is it's exponential time complexity. 

70 



4.2.4 Relief 

This algorithm [KR92] selects the relevant features by using statistical meth­

ods. It is basically a feature weight based algorithm designed on instance 

based learning algorithm [DL97]. It first chooses a sample of instances (where 

the number of instances i.e. N osample is a user input) at random from the 

set of training instances and for each instance in it, finds the NearHit and 

NearMiss instances based on Euclidian distance measure. NearHit of an in­

stance is defined as the instance having minimum Euclidean distance among 

all instances of the same class as that of the instance. NearMiss of an in­

stance is defined as the instance having minimum Euclidean distance among 

all instances of different class. The algorithm finds the weights of the features 

from a sample of instances and chooses the features with weight greater than 

a threshold. The algorithm is given in Figure 4.4. 

Relief(D, S, NoSample, Threshold) 

1.T=¢ 

2. Initialize all weights, Wj to zero 

3. For i = 1 to NoSample 

4. Randomly choose an instance xED 

5. Find its nearHit and nearMiss 

6. For j = 1 to N /* N is the number of features* / 

7. Wj = Wj - diff(xj, near Hitj? + diff(xj, near Missj? 

8. For j =1 to N 

9. If Wj 2: Threshold 

10. Append feature fJ to T 

11. Return T 

Figure 4.4: Relief 
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Relief works for noisy and correlated features. This algorithm is efficient 

as only the subset having the number of features smaller than that of the 

current best subset are checked for inconsistency. Also it is easy to imple­

ment and is guaranteed to find the optimal subset. 

However, it cannot work with redundant features and hence generates 

non-optimal features if the database contains redundant features. It works 

only with binary classes. Another problem is how to choose of the proper 

value of NoSample. 

4.2.5 DTM 

Decision Tree Method [Car93] uses feature selection in an application on 

Natural Language Processing. To select the features, it runs C4.5 [Qui93] 

over a training set and all those features that appear in the pruned decision 

tree are selected. In other words, the union of the subsets of the features, 

appearing in the path to any leaf node in the pruned tree is the selected 

subset. 

4.2.6 FFC 

Based on the coherence properties of an attribute to the target concept, FFC 

[DB04] tries to select the relevant itemsets. For selecting them it uses the co­

herence frequency count and non coherence frequency count of the attributes. 

The steps of the algorithm are given in Figure 4.5. 

The algorithm works well for binary class datasets. 
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FFC(D, 'Y, /3, n) 

1. F=all the features 

2. do while(1 F I> n) 

3. S=c/J, L1= {f 1 support(f)2: 'Y} , L~={f 1 support(f)2: 'Y} 

4. S=S u {xC 1 x E L1 U L1'} / / where 0 is dass label/ / 

5. for all instances i E D do begin 

6. Si=subset(S, i) 

7. for all S E Si do 

8. s.count++ 

9. F1 = F 

10. F = {f 1 s = fO , s E Si and s.count2: 'Y} 

11. 'Y='Y+/3 
12. if 1 F 1 = n then return F 

13. else return F1 

Figure 4.5: FFC 

4.2.7 MDLM 

Minimum Description Length Method [SDN90] tries to eliminate all irrele­

vant and redundant features. This method is based on the concept that if 

the features in a subset X can be expressed as a fixed non-dass-dependent 

function F of the features in another subset Y, then once the values in the 

features in the subset X are known, the features in the subset Yare useless. 

Minimum Description Length Criterion (MDLC) is used for this purpose. 

The algorithm exhaustively searches for all possible subsets and returns 

the subset satisfying MDLC. Hence, the algorithm takes significant amount 
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Table 4.1: Symbols used in Above Algorithms 

D - The Database -

s - Original set of Features -

M - Number of features to be selected -

Card( X) - Function to find the cardinality of the set X -

isbetter(X; Y) - A function to check if the set X is better than the set Y -

NoSample - the sample size -

ThresHold - lower limit of a feature's weight to become relevant -

N - number of features -

g,, - Minimum support -

W· - weight of j-th feature J -

Maxtries - number of iterations -

InConCal - function to calculate inconsistency -

l - upper level of inconsistency -

diff() - to find difference of same feature in two different records -

£1 - Features frequent occurrence -

L' - Features whose non occurrence is frequent 1 -

{3 - Increment to min-support -

F,Fl - Set of selected attributes -

of time. Moreover, the method can find all useful features for Gaussian cases 

only. 

4.3 Dimensionality Reduction: New Approaches 

The algorithms presented in the previous section are commonly used in data 

mining for dimensionality reduction. All of them have their own advantages 
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and limitations. But there is no universally acceptable algorithm for di­

mensionality reduction, that works on all kinds of databases. Most of the 

classical association rule mining algorithms work on Market Basket data­

bases. The actual transaction databases is first converted to the market 

basket form. There are different techniques for discretization of real valued 

attributes. Most commonly used technique is the use of sub-ranges. Using 

the sub-ranges of all the attributes, the market basket database is created. 

From this database the classical rule mining algorithms extract the rules. 

But this database also contains the irrelevant attributes. To save the com­

putational cost during rule extraction, irrelevant attributes of the database 

can be discarded by using an appropriate dimensionality reduction technique. 

After a careful study of this situation, it was observed that it is more 

beneficial to reduce the dimensionality before the data is encoded in market 

basket form. Following two subsections are dedicated in describing three dif­

ferent techniques to handle this problem; two of them are based on frequency 

count and the other is rule based. 

4.3.1 Frequency Count Based Reduction 

In classical rule mining algorithms, generation of the rules are controlled by 

two user given parameters, namely minimum support and minimum confi­

dence. The attributes whose support is less than the minimum support are 

not relevant, and are not used in any later stage of rule mining. Hence, if 

those attributes are eliminated during the conversion to market basket data­

base, then the cost of rule mining process reduces significantly. To meet this 

requirement, the algorithm reported next was designed. 
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The algorithm DRUFT (Dimensionality Reduction Using Frequency 

counT) is meant for reducing the dimensionality of market basket dataset 

based on frequency count. When the dataset is converted to market bas­

ket, all the sub-ranges of all attributes have to be considered. But some 

sub-ranges of the attributes may be found irrelevant. If these sub-ranges are 

discarded then the dimensionality will be reduced. Unlike the above men­

tioned algorithms, DRUFT is capable of finding the relevant sub-ranges of 

the attributes, resulting in a market basket dataset with a few number of 

attributes in it. 

The algorithm takes the dataset D and maximum number of needed sub­

range MaxAtt, as input. Table 4.2 describes the symbols used in DRUFT. It 

reads the dataset only once and finds the frequency count of every sub-range 

of all attributes. Using these frequency counts it eliminates irrelevant sub­

ranges, till the desired number of attributes remain not-eliminated. Finally 

it produces the not-eliminated sub-ranges as output. Number of such sub­

ranges is equal to or less than MaxAtt. The algorithm is given Figure 4.6. 

Algorithm DRUFT 

Input:The dataset D, maximum numbers of sub-ranges needed MaxAtt. 

Output: Set of selected sub-ranges, 81 

1. s=¢ 
2. for all attributes Ai E A 

3. for all subranges Pi,j E Ai 

4. 8 = 8u Pi,j 

5. for all 8 E 8 

6. find the frequency count, 8U Ps 

7. minfreq= 1 

8. 81 = ¢ 
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9. for all s E S 

10. if (s E Ai )and (SUPs* I Ai I) 2 (minfreq *max(! A I)) 

11. S1 = S1 us 
12. if I S1 1::; MaxAtt go to Step 16 

13. minfreq= minfreq+ 1 

14. S = S1 

15. goto Step 8 

16. return S1 

Figure 4.6: Dimensionality Reduction Using Frequency Count 

Table 4.2: Symbols used in DRUFT 

A - Attributes of original dataset -

I Ai I - Number or sub-ranges of ith Attribute -
p. - lh sub-range of ith attribute t,J -

max(! A I) - Maximum of I Ai I -

s - Set of sub-ranges of A -

S1 - Set of selected sub-ranges -

SUPs - Frequency of sub-ranges -

minfreq - Current value of support count to declare -

frequent 

MaxAtt - Maximum no of sub-ranges to be selected -

as 

The algorithm works on the original continuous valued database where 

the number of attributes are generally small, hence requiring less amount 

of memory for its execution. For every attribute some sub-ranges are con­

sidered. These sub-ranges become attributes in the market basket dataset. 

But the above method will restrict some of these ranges from becoming an 
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attribute of the market basket dataset. For every sub-range of all the at­

tributes, the frequency of them within the dataset is calculated by reading 

the dataset once. Afterwards, only those frequency counts are used to reduce 

the dimensionality of the market basket dataset to the user desired level. The 

user has to provide his desired number of attributes as input to the algorithm. 

After calculating the frequency count, those sub-ranges are eliminated; whose 

frequency count is less than a factor of minimum frequency, minfreq. This 

factor is different for the sub-ranges of different attributes. If the dataset 

has been reduced to the desired level, it produces the sub-ranges that are 

found out to be relevant. Otherwise, it eliminates some more sub-ranges by 

incrementing the minimum frequency count, minfreq, This process continues 

till the number of relevant sub-ranges do not become less than or equal to 

the user desired number of attributes. 

For example, let a dataset contain three attributes X, Y and Z. Values 

of the attributes lie in the ranges {0,1O}, {10,20} and {-1O,1O} respectively. 

When the dataset is converted to market basket with 10 sub-ranges of all at­

tributes then the market basket dataset will contain 30 attributes in it. But 

the values of the attributes may not be evenly distributed. For that reason 

some of the sub-ranges will become irrelevant because of their low frequency. 

Say, the dataset contains 100 instances and the values of the first attribute 

are distributed over the sub-ranges like 4,11,17,27,20,10, 6, 3, 0, 2. Simi­

larly, second and third attributes are distributed as 1,1,4,5,11,20,26,23,6,3 

and 2,1,0,2,10,18,33,16,15,3 respectively. If the rules are extracted with a 

minimum support of 15% then only 10 sub-ranges will be used out of 30. 

The other sub-ranges will not contribute anything to the rule mining process 

but will simply occupy the memory and increase the data transfer time from 

the disk. 
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If the above mentioned algorithm is applied on the original dataset it 

will select three sub-ranges of the first and the second attribute and four 

sub-ranges of the third attribute. If the market basket dataset is constructed 

only for these sub-ranges then the dataset size will be reduced to one third 

of the original one. Hence the rule mining algorithm will need less memory 

and less data transfer from the disk, in turn will speed up the execution of 

the rule extraction process. 

Implementation and Results 

The algorithm was implemented in an environment described in the previ­

ous chapter. And was tested over various synthetic and standard databases. 

Here some of the results from M onks-1 and M onks-3 training databases down­

loaded from VCI machine learning repository are given. There are 124 and 

122 instances in Monks-1 and Monks-3 respectively. Both of them have 8 at­

tributes; first one is the class number and the last one is the sample number. 

Remaining six attributes are numeric values spanning over different ranges. 

The minimum and maximum values ofthese attributes are A1 (1,3), A2(1,3), 

A3{1,2), A4(1,3),A5(1,4) and A6(1,2). If these databases are converted to 

market basket then there will be a total 17 attributes. 

The above mentioned algorithm can reduce the dimensionality of the 

databases to the required level. Table 4.3 gives details of the reduction. 

From the results in Table 4.4 it can be observed that it selects the sub-ranges 

of the attributes those were declared as relevant by the existing algorithms 

also. Only part 2 of attribute 6, denoted in Table 4.3 as A6-2, is coming 

in addition. Reason for not selecting A6 by other algorithms is that it is a 

redundant attribute. 
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Table 4.3: Dimensionality Reduction on Monks-1 and Monks-3 by DRUFT 

Monks-3 Monks-1 

Desired no Reduced Minimum Reduced Minimum 

attributes to support to support 

10 8 31 10 31 

9 8 31 6 32 

8 8 31 6 32 

7 4 32 6 32 

6 4 32 6 32 

5 4 32 4 33 

From the results in Table 4.3 it can be observed that the algorithm re­

duces the dimension of the database always to the required level. Since the 

selected sub-ranges only have a higher frequency over the database, only 

those will be finally used by the classical rule mining algorithms. From Ta­

ble 4.4 it can be observed that the algorithm is selecting only sub-ranges of 

those attributes that were declared as relevant by other techniques. 

From these results it can be observed that the algorithm presented above 

can be of better use to reduce the dimensionality of database specially for 

those data mining tasks like association rule mining where frequency of the 

attributes has a great role to play. 

However, a limitation of the algorithm is that if the user does not have 
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Table 4.4: Comparative Results of Some Existing Algorithms and DRUFT 

Method Monks-3 Monks-1 

Selected attributes MBs Selected attributes MBs 

dimension dimension 

Relief A2,A5 al- 9 or 10 or Al,A2,A5 10 

ways & one or both 12 

of A3,A4 

B&B Al,A3,A4 8 NA -

DTM A2,A5 7 NA -
LVF A2,A4,A5 10 NA -

MDLM A2,A3,A5 9 NA -

FFC Al,A2,A4,A5 13 Al,A2,A5 10 

DRUFT re- Al-l,A3-l,A4-3, 4 Al-l,A2-3,A5-4, 4 

duced to 4 A5-l A6-2 

DRUFT re- - - Al-l, A2-3, A3-l, 6 

duced to 6 A4-3, A5-4, A6-2 

DRUFT re- Al-l, A2-2, A3-l, 8 - -
duced to 8 A4-3, A5-l, A5-2, 

A5-4, A6-2 

sufficient knowledge about the dataset, some rules may be lost during the 

rule extraction process. If the dataset contains, say, n single item frequent 

iternsets, and say, the dataset is already reduced to m, where m < n, then 

some rules will be lost during the extraction process due to the reduction. 

To overcome this difficulty, another algorithm was developed to help the 

classical association rule mining technique. 
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This algorithm Dimensionality Reduction for Association Rule Mining 

(DRARM) is also meant for reducing the dimensionality of market basket 

dataset based on Frequency count. Instead of using the desired number of 

attributes as an input parameter, it uses minimum support as the user para­

meter. 

The basic idea behind this algorithm is the downward closer property of 

frequent itemsets. Only the frequent itemsets are used for constructing next 

level candidate itemsets. So, the infrequent single itemsets are never used 

in any stage of the rule extraction process. The algorithm DRARM hence 

eliminates those sub-ranges of the attributes that will result in an infrequent 

item in the target market basket dataset. Since these infrequent items are 

eliminated before the rule extraction process, they will not occupy the mem­

ory unnecessarily. 

The steps of the algorithm are enumerated in Figure 4.7. 

Algorithm DRARM 

Input:The dataset D, minimum support "(. 

Output: Set of selected sub-ranges, 81 

1. 8 = ¢ 

2. for all attributes Ai E A 

3. for all subranges Pi,j E Ai 

4. 8 = 8 U Pi,j 

5. for all 8 E 8 

6. find the frequency count, 8U Ps 

7. T =1 D 11* total number of records in D * / 
8. 81 = ¢ 
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9. for all 8 E S 

10. if (SUPs~ T * Min8up) 

11. S1 = S1 u 8 

12. return S1 

Figure 4. 7: Dimensionality Reduction for Association Rule Mining 

The algorithm was tested over Monks-1 and Monks-3 datasets mentioned 

above, as well as some synthetic datasets. Table 4.5 depicts the summary 

of the reduction by DRARM over some synthetic datasets. These datasets 

were generated randomly, and different in number of records, number of at­

tributes and attribute value ranges. First dataset contains 20000 records and 

25 attributes, the second dataset contains 10000 records and 20 attributes 

and the third one contains 20000 records and 10 attributes. When the first 

dataset, named as T20_C25, was converted to market basket with 4 equal 

sub-ranges of all attributes then the resultant market basket dataset con­

tained 100 attributes in it. Similarly, dataset T10_C20 and T20_C10 resulted 

in two other market basket datasets with 5 equal sub-ranges of the attributes. 

Table 4.5: Reduction in Synthetic Datasets 

Dataset Sub-ranges MB's dimension Support Reduced to 

T20_C25 4 100 20% 69 

40% 22 

T10_C20 5 100 20% 69 

40% 21 

T20_C10 5 50 20% 35 

40% 15 
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Using the apriori [AIS93] algorithm frequent itemsets were derived from 

market basket datasets resulted from the above mentioned datasets. For the 

same original dataset, different market basket datasets were considered that 

were resulted as the result of reduction with different support. When these 

results were analyzed, following observations were made. 

• With the same support, same itemsets were derived from the original 

as well as reduced datasets, provided reduction was done with the same 

or smaller support. 

• With the same support, original datasets took significantly more time 

than that of the reduced datasets. Some results are reported in Table 

4.6. 

• For higher support, during frequent itemset finding than the reduction, 

no information is lost due to reduction, and it executes faster. 

• For smaller support, during frequent itemset finding than the reduction, 

some information are lost. Hence care should be taken while providing 

the minimum support during reduction. 

The algorithm was implemented on a computer with Intel Core2Duo 2.5 

GHz processor, 3 GB RAM. The timing information presented in Table 4.6 

are average of 15 runs of the program on each dataset. 

From the Table 4.6, it can be clearly observed that there is a significant 

reduction of time with DRARM while compared with the original dataset. 

Though it was tested only for the Apriori algorithm it is valid for other algo­

rithms also, only amount of time saved may differ for those algorithms that 

needs less number of scanning of the dataset during the frequent itemset 

generation. However, to avoid information loss during reduction, care should 

be taken while providing the user parameter minimum support. 
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Table 4.6: Time Taken in Deriving Frequent Itemset 

Dataset MB's Size of Dataset Minimum Time Taken 

T20_C25 Dimension Support 

Original 100 4,020,000 Bytes 20% 57282 ms 

40% 46578 ms 

Reduced with 69 2, 780,000 Bytes 20% 37469 ms 

20% support 40% 18641 ms 

Reduced with 22 900,000 Bytes 20% 10516 ms 

40% support 40% 5313 ms 

Next section shall discuss another dimensionality reduction technique 

which seems to support the Multi-objective Association Rule Mining as well 

as classical approach. 

4.3.2 Rule Based Reduction 

In the previous section two dimensionality reduction techniques useful for the 

rule mining using classical approach were presented, which reduce the dimen­

sion of databases to a required level. If only the higher frequency attributes 

are selected for the final rule mining stage, then some of the interesting rules 

may be lost. It is obvious that an interesting rule has a lower frequency, 

so, above two techniques for the dimensionality reduction are not suitable 

for multi-objective association rule mining. The need of dimensionality re­

duction suitable for multi-objective association rule mining has motivated us 

towards the development of this rule based algorithm presented next. 
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Even for a dataset with a very few number of continuous valued attributes 

a market basket dataset will be achieved with a huge number of features in 

it, depending on the ranges of values of different attributes in the origi­

nal dataset. For example if the dataset contains the attribute 1 (minimum 

value 1, maximum value 100), attribute2 (minimum value 51, maximum 

value 150), attribute3 (minimum value 0, maximum value 1), and attribute4 

(minimum value 1, maximum value 1000). And if 10 sub-ranges are to be 

considered for every attribute during conversion to market basket dataset, 

then the instance (9, 139, 0.27, 705) is converted to the following bit string, 

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 hav­

ing 40 attributes in it. But, if the following relevant ranges (1 ~ Attl < 
20), (101 ~ Att2 < 150), (0.1 ~ Att3 < 0.4) and (401 ~ Att4 < 800) 

are considered then the same instance of the original dataset look like-

1,0,0,0,0,1,0,0,1,0,0,0,0,1 having only 14 attributes in it. 

The algorithm works on the original continuous valued dataset where the 

number of attributes is very small, hence requiring less amount of memory. 

It selects the relevant ranges of feature values from continuous data and is 

based on Multi-objective Genetic Algorithm that uses frequency count, and 

compactness as two measures of evaluation. Frequency count is total number 

of instances of the dataset that satisfies attribute value ranges under consid­

eration. And compactness of the attribute value range is defined as the ratio 

of summation of considered range of all attributes to the summation of range 

of all attributes in the actual dataset. 

It is assumed here, that each instance of the database is of the form 

< i1, h,·, in >, where ii is the value of ith attribute. One example of such 

an instance may be (5, 700, 61, ... ,), where 5, 700, 61, .... represents the 

86 



attribute value of the first, second and third attribute respectively. Output 

of the algorithm are the relevant ranges of the attributes. These ranges can 

be used to construct a market basket dataset with reduced dimensionality, if 

classical rule mining approach is used. Otherwise these ranges of the differ­

ent attributes can be used by the multi objective rule mining algorithm that 

works on continuous valued attributes. 

The candidate range of each attribute is encoded within a chromosome 

of the genetic algorithm. The lower and upper limit of the value of each 

attribute is represented separately in a binary form with m number of bits. 

So the complete chromosome will be the concatenation of n such pair of bit 

strings, where n is the number of attributes in the database. While decod­

ing the values floating point decoding method described in the Chapter 3. 

The genetic algorithm will execute for a given number of generations, Max­

Gen. Output of the algorithm will be some combinations of different relevant 

ranges of attribute values. The steps of the algorithm is next in Figure 4.8. 

Algorithm DRMOGA 

Input: Continuous valued dataset D, maximum number of generations M axGen 

Output: Combinations of useful attribute value sub-ranges 

1. Generate population P of N chromosomes randomly. 

2. i = o. 
3. Do while( i < MaxGen) 

4. Decode(pj), Vj,Pj E P. 

5. Vj,Pj E P find SUP(Pj) and compactness(pj). 

6. Rank(Pj ), Vj,Pj E P. 
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7. Based on Rank(pj) select chromosomes for next generation. 

8. Perform multi-point crossover, then mutation to get new population O. 

9. Replace population P by O. 

10. i = i + 1. 

11. End do. 

12. return P. 

Figure 4.8: Dimensionality Reduction with Multi objective GA 

This algorithm uses the concept of frequency count and compactness of 

continuous range of values of the attributes. From the experiments it has 

been found that the proposed algorithm reduces the dimension of the target 

market basket dataset considerably, if the dimension of the market basket 

dataset without reduction is very high. The reduction is less if original mar­

ket basket dataset's dimension is already very small. It will happen, if the 

dataset's attribute value range is very small and/or a very few sub-ranges 

have to be considered while converting to market basket dataset. For exam­

ple, for an attribute ranging over 1 to 20 and the relevant values within 7 and 

15, in both the market basket dataset before reduction and after reduction, 

there will be 2 features corresponding to this attribute if two sub-ranges are 

considered while converting. Since the algorithm is producing a number of 

such combinations, before using these ranges for converting the dataset to 

market basket such ranges can be combined to get a better result. Though 

it imposes a little burden on the decision maker, it will provide some control 

in constructing the final market basket database. 
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Implementation and Results 

The algorithm was implemented in the same environment as the other 

one. Crossover and mutation probability was taken as 0.9 and 0.002 respec­

tively, Population size was taken as 40 and 10 bits were used to encode every 

value within the chromosome. The algorithm was tested over several syn­

thetic databases as well as standard databases like Monks-1 and Monks-3. 

Since in Monks databases ranges of attribute values are small, results from 

those databases are not included here. Results from a synthetic database 

are reported here. Table 4. 7 contains a description of the synthetic database 

used. 

Table 4.7: Description of the Synthetic Database 

Attribute name Minimum value Maximum value 

Attributel 1 100 

Attribute2 51 150 

Attribute3 0 1 

Attribute4 1 1000 

To conduct the experiments, 1000 records was generated for the data­

base. While generating these records it was ensured that 90 % instances sat­

isfy the conditions (1 S: Attl S: 25), (90 S: Att2 S: 145), (0.1 S: Att3 S: 0.3) 

and ( 400 S: Att4 ~ 900) other instances are random so they may or may 

not be present within that range. The database finally had 902 records that 

satisfied the above conditions. 

Then the algorithm under discussion was used on this database to find 

the relevant sub-ranges. (1 ~ Attl ~ 20), (101 ~ Att2 ~ 150), (0.1 ~ 

Att3 S: 0.4) and ( 401 S: Att4 ~ 800) were some of those sub-ranges found 

by the algorithm and was found to be very near to the range used during 
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construction of the database. Total 907 records were there within this range. 

After analyzing the database, it was found that 9 records that satisfied the 

original conditions, were not satisfying the new condition but 14 more records 

satisfy the new conditions which did not satisfy the original conditions. The 

exclusion was due to the following reasons - 5 records were eliminated since 

the Attribute1's values were more than 20 but less than 25, 1 record was 

eliminated since the Attribute2's value was less than 101 but more than 90, 

2 more such records were there but they were already eliminated by the first 

attribute. 3 records were eliminated since the Attribute4's values more than 

800 but less than 900, 4 more such records were there but 3 of them were 

already eliminated by the first attribute and 1 by the second attribute. The 

inclusion was due to the following reasons - 6 records were included since the 

Attribute2's values were less than 150 but more than 145. Other 8 records 

were included since the Attribute3's values were less than 0.4 but more than 

0.3, 3 such records were also there but they were already included by At­

tribute2. 

From this analysis it can be observed that the algorithm is able to find 

out the relevant ranges of values of the attributes. If the above mentioned 

database is to be converted to market basket using 10 equal sub-ranges of all 

the four attributes, then the converted dataset will have 40 attributes. But, 

after discarding the irrelevant ranges, there will be only 14 attributes in it. 

Similarly, if 100 equal sub-ranges of all the four attributes have to be con­

sidered while encoding, then the converted dataset will have 400 attributes, 

but after discarding the irrelevant sub-ranges it will restrict to only 150 at­

tributes. 
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With 10 equal sub-ranges of every attribute, when the previous algorithm 

was used on this database and tried to reduce the dimensionality to 14, it got 

reduced to 13 attribute. And all these were lying within the ranges selected 

by the current algorithm. 

The previous algorithm was applied on the database with 100 equal sub­

ranges of each attribute, when it was reduced with a support of 10% , it gets 

reduced to 151. When this reduction was analyzed, an interesting observa­

tion was made. Though this algorithm gives one more sub-range, other 150 

sub-ranges are not exactly the same. When the sub-ranges were analyzed 

it was found that 146 were common. Four sub-ranges that were given by 

the current algorithm are not produced by the previous one, but five new 

sub-ranges were declared to be relevant. This is because of the reason that 

the values of the attributes are not evenly distributed in the whole range, 

as the majority of the sub-ranges were declared to be relevant by both the 

algorithms. Similar observation was made on the results from other datasets 

considered during this dissertation. 

The difficulty of the previous algorithm is that the decision maker has 

less control during the reduction process. Sometimes he may be interested in 

some sub-ranges of attribute value that are not too frequent. But the current 

algorithm will give him some freedom to select the sub-ranges of his interest, 

as multiple sub ranges will be produced by the algorithm, as the sub-range 

considered below. 

Another sub-range given by the algorithm was (7:S Att1 :S 16), (114 :S 

Att2 :S 132), (0.2 :S Att3 :S 0.35) and (567 :S Att4 :S 714) with the frequency 

count 638. Though the frequency count for this subset range is smaller than 
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the earlier one, this subset range is more compact. It indicates that the 

dimensionality of the target dataset has a further scope of reduction. For ex­

ample, if this range is used then the dimension of the converted dataset will 

be 11 and 58 only, when 10 and 100 sub-ranges are considered respectively 

during conversion, making the dataset more compact. 

4.4 Discussion 

In this chapter influence of dimensionality of databases on the data mining 

tasks was discussed, and a few existing algorithms for dimensionality reduc­

tion were presented. But none of them is universally acceptable. So, to help 

the association rule mining, three algorithms for reducing the dimensional­

ity of databases were presented in this chapter. From the experiments it has 

been found that though the first one can reduce the dimensionality of dataset 

to the desired level, user should have some knowledge about the dataset un­

der consideration. But the other two algorithms are capable of reducing the 

dimension of the databases and suitable for association rule mining. 
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Chapter 5 

MORM in Incremental 

Databases 

Databases used for extraction of association rules, are assumed to be static 

in nature, however, it may not be always true. Time to time these databases 

are updated in terms of deletion of existing records, insertion of new records 

or modification of existing records. Though all these types of updations 

are allowed in a transaction database, however, all of them may not occur 

in a data warehouse. Modification in the existing records or deletion of an 

existing record is normally not recommended here. However, new records 

are added to it time to time. In other words, the databases used by data 

mining tasks, may be incremental in nature. Extraction of association rules 

in a cost effective manner from such incremental databases is considered to 

be a challenging problem. 
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5.1 Need of Incremental Mining 

Due to the insertion of new records into a dataset, some new rules may come 

into existence. And at the same time some of the existng rules may become 

invalid. Insertion of these new records will change the support of the rules 

although the support count for some rules may not be changed. 

For example, say X and Yare two distinct itemsets of a dataset having 

1000 records with the support count 210 and 190 respectively. Subject to 

the minimum support of 20%, X is a frequent itemset but Y is not. Now, 

another 100 records, where 5 and 40 records contain X and Y respectively, 

are added to the dataset. In the updated dataset, the support of the itemset 

X falls below the threshold but the support of Y goes above the threshold. 

In other words X becomes infrequent but Y becomes frequent in the updated 

dataset. Due to these changes of frequent itemsets, some earlier derived rules 

will be dropped and some new rules may found to be relevant. Since the rule 

extraction is a time consuming job, it is not appreciated to extract the rules 

over an incremental database by repeated scanning of the whole database 

every time it is updated. Hence, the extraction of meaningful rules over 

incremental database is considered to be another challenging job. 

To meet the challenges of incremental mining, several works based on 

the classical approach of association rule mining were carried out over the 

decade. Most of these techniques try to extract the new rules, (if there any), 

by repeated scans over the newly inserted records, however, with minimum 

scan over the old database. The size of the incremental part is normally very 

small as compared to that of the old part. Hence, more number of scanning 

of the old part leads to wastage of time. For clarity, some of the existing 

relevant techniques are reproduced in the next section. 
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5.2 Existing Techniques 

Most of the existing techniques for incremental mining work in two phases, 

i.e. frequent itemset generation and rule generation. These algorithms give 

more importance to the frequent itemset generation phase. While doing this 

they use the information that were extracted from the old database so that 

less number of scanning of the old database is required. To explain the 

working of most of these algorithms, the sample database given in Table 5.1 

is used. 

Table 5.1: A sample database 

TJD A B c D E F 

100 1 1 1 1 0 1 

200 1 1 1 1 1 0 

300 0 1 1 1 0 0 

400 1 0 0 1 1 0 

500 1 0 1 1 0 0 

600 1 1 1 0 1 0 

The frequent itemsets based on the market basket data of Table 5.1 were 

then derived using Apriori [AIS93] algorithm with a minimum support of 

50%. Table 5.2 reports these frequent itemsets. The algorithms discussed in 

this section use these frequent itemsets while deriving the frequent itemsets 

over the incremented data. 

Now, to describe the incremental association mining problem, with ref­

erence to the database reported in Table 5.1 is updated in the following 

manner: transaction with ID 400 is deleted and a new transaction with ID 
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Table 5.2: Frequent itemsets from Table 5.1 with minimum support 50% 

Size Number Itemsets 

1 5 A,B,C,D,E 

2 7 AB,AC,AD,AE,BC,BD,CD 

3 3 ABC,ACD,BCD 

700 is added. The resultant database is reported in Table 5.3. 

Table 5.3: Updated sample dataset 
T_ID A B c D E F 

100 1 1 1 1 0 1 

200 1 1 1 1 1 0 

300 0 1 1 1 0 0 

400 - - - - - -

500 1 0 1 1 0 0 

600 1 1 1 0 1 0 

700 0 1 0 1 1 0 

The frequent itemsets derived from this updated database using Apriori 

algorithm with a minimum support 50% are reported in Table 5.4. 

It can be observed that the frequent sets listed in Table 5.4 are not 

exactly the same with those reported in Table 5.2. In Table 5.4, there is a new 

frequent itemset of size 2, BE, with support count 3, and the itemset AE that 

was frequent earlier, listed in Table 5.2, has become infrequent. Apriori and 
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Table 5.4: Frequent itemsets from Table 5.3 with minimum support of 50% 

Size Number Itemsets 

1 5 A,B,C,D,E 

2 7 AB,AC,AD,BC,BD,BE,CD 

3 3 ABC,ACD,BCD 

its other counter parts are able to extract these frequent itemsets, but for that 

those algorithms will simply consider the updated dataset as a new dataset 

and everything is started from the scratch ignoring the earlier computed 

result. Since extraction of the frequent itemsets is a time consuming task, 

the algorithm should be capable to exploit the pre-computed results during 

generation of the frequent itemsets for the updated databases. It will save 

the computation time to a great extent. The following algorithms attempt 

to address this issue. 

5.2.1 FUP 

The algorithm FUP [CHNW96] first scans the incremental part of the dataset 

and detects (i) the looser single itemsets, i.e. the itemsets that become 

infrequent due to the inclusion of the incremented part and (ii} it finds the 

candidate frequent itemsets. Then the whole database (i.e. the old and new 

together) is scanned to find their support in the complete database. Next, 

it performs similar operations iteratively for k-itemsets. This algorithm gets 

some benefit during the candidate frequent itemset generation, that saves 

some time than the apriori algorithm. But the algorithm needs multiple 

number of scanning of the whole database. It needs k number of scanning of 

the whole database if the largest maximal frequent set's size is k. 
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5.2.2 FUP2 

FUP2 [CLK97j works on a dynamic dataset where new records may be in­

serted and some of the existing records may be deleted. It extracts the rules 

from the final dataset by considering both the deleted parts and the newly 

added part. Applying this algorithm on the updated database D' given in 

Table 5.3, with a minimum support of 50% will proceed as follows. In the 

first step, candidate set C~ is formed that will be the same as Cl in the old 

database. That is, C~=Cl={A,B,C,D,E,F}. Then comparing C~ and Ll (as 

computed for old dataset D) will lead to breaking of C~ into two parts: first 

part, Pl={A,B,C,D,E}, that is common to both C~ and Ll and the second 

part Ql ={F} that is the difference of C~ and Pl' Then the support of each 

itemset in PI and QI are computed. After that frequent itemsets in PI that 

are still frequent in the new dataset are obtained and included in L~. Then 

it is checked whether any itemset of Ql, that were earlier infrequent has be­

come frequent or not. If yes, add them to L~. Finally, L~ ={ A,B,C,D,E} is 

obtained. Then C~={ AB, AC, AD, AE, BC, BD, BE, CD, CE, DE} is gener­

ated by Apriori_gen function using L~. The generated candidate set is again 

broken to P2={AB, AC, AD, AE, BC, BD, CD} and Q2={BE,CE,DE}. After 

computing the support of the itemsets in P2 and Q2, it computes L~={ AB, 

AC, AD, BC, BE, CD}. Similarly, based on L~, C~={ABC, ABD, ACD, 

BCD, BCE, BDE} is computed and broken to P3={ABC, ACD, BCD} and 

Q3={ABD, BCD, BCE, BDE}. Then L~={ABC, ACD, BCD} is computed 

as earlier. Since C~ has been found empty, the algorithm stops there. The 

algorithm is reproduced in Figure 5.1. 

1. Obtain a candidate set Ck of itemsets. Halt if Ck = ¢>. 

2. Calculate b:k for each X E Ck' 

3. Partition Ck into Pk and Qk. 
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4. For each X E Pk , remove it if (Jx + b1 <I D' I xs%. 

5. For each X E Qk, remove it if b1 :::; (If:,. + I - If:,. - l) x s%. 

6. If If:,. - 1:::;1f:,. + I, let Rk = 4;. Otherwise calculate bx for each X E Qk 

and if b1 - bi 2: (If:,. + I - If:,. - I) x s%, move it to Rk and assign bx 
to 8x. 

7. Scan f:,. - to find out 8x for each X E Pk U Qk. 

8. Delete from Pk those candidates X where (Jx + b1 - 8x <I D' I xs%. 

9. Delete from Qk those candidates with b1 -8x :::; (If:,. + I - If:,. - I) x s%. 

10. Scan f:,. + to find 81 for each X E Pk U Qk U Rk. 

11. For each candidate X E Pk , calculate (J~. 

12. For each candidate X E Qk, delete X if 81- 8x :::; (If:,. + I - I f:,. + I 
) x s%. 

13. For each candidate X E Rk,delete X if 61 :::; (If:,. + I - If:,. + I) x s%. 

14. Scan D- and get the count of each X E Qk U Rk. Then, add this count 

to 61 to get (J~. 

15. Add to L~ those candidates X from PkUQkURk where (J~ 2:1 D' I xs%. 

16. Halt if ILk 1< k+l. 

Figure 5.1: FUP2 

5.2.3 MAAP 

The algorithm, MAAP [ES02] first finds out the old frequent itemsets that 

will remain frequent in the updated dataset also. Downward closure property 

of frequent itemsets makes this job little bit simpler. Then it checks for the 

possible new frequent itemset, and if found, new candidates are generated. 

For the above mentioned example, it starts with L3={ ABC, ACD, BCD} and 

maintains the lists L;, L~ and L~. Support of all itemsets in L3 are computed 
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and found that ABC is frequent, so all the subset of it must be frequent and 

hence added to the list of corresponding size. Since ACD and BCD are also 

frequent, subsets of them are also treated in the similar way and L;={ABC, 

ACD, BCD}, L~={AB, AC, BC, AD, CD, BD} and L~={A,B,C,D} are 

resulted. These are some of the itemsets that were frequent earlier and 

remained frequent after the updation. In the next step, itemsets in Li - L~ are 

tested, whether they are frequent or not. In the above example, Ll - L~ ={E} 

and L2 - L~={AE}. Since E is frequent, it is added to Ll but AE is not 

because it is no longer frequent. In the next step, the algorithm checks for 

the itemsets which were infrequent earlier and computes 8 i = Ci - L i . For 

example,81 = CI -L l ={F} and 82 = C2 -L2={BE,CE,DE}. After scanning 

the dataset only BE was found to be frequent and included in L~ resulting 

in L~={ AB, AC, AD, BC, BD, BE, CD}. Since some of these itemsets 

were infrequent in old database, next level higher additional candidates will 

be generated. Here, additional C~=L~ x {BE}={BCE, BDE} and resulted in 

C~={ABC, ABD, ACD, BCD, BCE, BDE}. Since none of the elements of 

additional C~ is frequent, final L;={ABC, ACD, BCD}. The final frequent 

itemsets are L={A, B, C, D, E, AB, AC, AD, BC, BD, BE, CD, ABC, ACD, 

BCD}. 

5.2.4 Borders 

Borders algorithm [AFLM99] finds the frequent itemsets from the dynamic 

database using the frequent itemsets already discovered from the old dataset. 

Here the concept of aborder set is used. An infrequent itemset is termed as 

border set, if all the non empty proper subsets of it are frequent. Due to the 

insertion of new records to the dataset, some of the border sets may become 

frequent, and is termed as promoted border set. For that, the border sets 
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of the old dataset also have to be maintained along with the frequent sets 

derived. Based on the promoted border set, some new candidate itemsets 

are generated and checked for frequent set. For the above example B1 ={F} 

and B2={BE, CE, DE} and B3={ ABD, ABE, ACE, ADE} are the border 

sets. On the updated dataset only BE becomes promoted border set. Then 

the candidates due to the promoted border set are generated. Database 

is scanned to get the support of the iemsets and the frequent itemsets are 

found. The candidates are generated if there is at least one promoted border 

set. This algorithm may require more than one passes of the old dataset 

depending on the frequent sets discovered due to the incremented part. 

The steps of the Borders algorithm that works on an incremental data­

base are presented in Figure 5.2 

Input: R N, Ro , a, Borders and FrequentSets of Ro and their count 

Output: Borders and FrequentSets of Ro URN and their count 

1. Scan new relation RN and find count c(X, R N), for all X E Borders U 

FrequentS ets. 

2. For all X E Borders U FrequentSets do 
3. c(X, Ro , R N) = c(X, Ro) + c(X, R N) 

4. s(X, Ro , R N) = c(X, Ro URN )/(no + nN) 
5. end do 
6. PromotedBorders = {X E Borders 1 s(X,Ro URN) ::::: a} 
7. FrequentSets = {X E FrequentSets 1 s(X, RoURN) ::::: a }UPromotedBorder s 
8. Borders = {X 1 \:Ix E X,X - {x} E FrequentSets} 

9. m=max{i I PromotedBorders(i) =I- ¢} 
10. Lo = ¢ 
11. i=1 

12. While (Li =I- ¢ or i :::; m) do 
13. C i +1 = {X = S1 U S2 1 (i) 1 X 1= i + 1. 
14. (ii):3x E X, X - {x} E PromotedBorders(i) U Li , 

15. (iii)\:Ix E X,X - {x} E FrequentSets(i) U L i } 
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16. Scan RNURo and obtain c(X, RNURo) for all candidates, X E Ci+1 

17. Li+1 = {X I X E Ci+1 and c(X, RN U Ro)/(no + nN) ~ a} 
18. FrequentSets = FrequentSets U Li+1 

19. Borders = Borders U (Ci+1 - Li+I) 

20. i = i + 1 
21. end do 

Figure 5.2: Borders (addition) 

5.2.5 Efficient Counting Using TID-lists 

To improve the support counting algorithm during the update phase, this 

algorithm ECUT [GGROO] exploits systematic data evolution and the fact 

that only a very small number of new candidate itemsets need to be counted. 

The intuition behind this support counting algorithm is similar to that of an 

index in that it retrieves only the relevant portion of the dataset to count 

the support of an itemset X. The relevant information consists of the set of 

TID-lists of items in X. ECUT uses TID-lists B(iI), ... , B(ik ) of all items in an 

itemset X = {iI, ... i k } to count the support of X. The cardinality of the result 

of the intersection of these TID-lists equals (j(X). Since TID-lists consists 

of transaction identifiers sorted in increasing order, the intersection can be 

performed easily; the procedure is exactly the same as the merge phase of 

merge sort. 

ECUT (database increment RN, Ro, History Log) 

1. SCAN db to create its TIDList of RN . 

2. Generate Ldb and NBd(LRN). 

3. Update counts of item sets in LRo and in N Bd(LRo) and specify winners 

as all itemsets that were in NBd(LRo) and now are in NBd(LD '). 

4. While winners set is not empty. 
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5. Generate candidates set and empty the winners set. 

6. Use the History Log and RN to update count of candidates and specify 

new winners. 

7. End while 

Figure 5.3: ECUT 

5.2.6 Maximal Frequent Trend Pattern 

This algorithm, MFTP [GAMH06], first compute LRN, N Bd(LRN), LD' and 

NBd(LD'). All itemsets that were in NBd(LRo) and became large are added 

to a winners set. This winners set is used with LD' to generate the candidates 

set. This candidates set is filtered against NBd(LRo), based on the theory 

proved in [GGROO] that a winner itemset should have at least one subset 

that belongs to NBd(LRo). After filtering, new winners and new candidates 

are generated and so on till no more winners could be generated. For each 

itemset in LD' and NBd(LD'), the MFTP algorithm (Figure 5.4) constructs 

and smoothes the time series, and then transforms it into a trend pattern, 

which is mined for maximal-frequent-trend-pattern. The maximal frequent 

trend pattern that matches the current pattern is then used to predict the 

forthcoming trend, and hence, the forthcoming support range. To match two 

patterns of length 1, a match-factor is used. That is if (match - jactor)% of 

the first 1 - 1 indicators matches, then the two patterns matches, and the lth 

indicator is the predicted trend. 
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MFTP (itemset A, RN , Ro, HistoryLog) 

1. From History Log, construct the times series of A: TS(A). 

2. Calculate the triangular moving average of TS(A) : MA(A). 

3. Calculate the trend indicators of MA(A) : TR(A). 

4. Find maximal-frequent-pattern in T R(A) that matches the current pat­

tern. 

5. Based on the maximal matched frequent-pattern, predict next support 

range of A. 

Figure 5.4: MFTP 

5.2.7 Modified borders 

This modified version of the borders algorithm, named as modified borders 

[DB05], aims to minimize the generation of unnecessary candidate sets. In 

order to do so, it uses an additional user parameter, apart from the minimum 

support. Correctness and completeness of the frequent itemsets largely de­

pends on these parameters. With proper tuning of these parameters, modified 

borders can perform better than the Borders algorithm. When this additional 

parameter's value is closer to the support, the algorithm converges to the bor­

ders algorithm. Depending on this parameter, the border sets are divided 

into four different sets B' , B", Bill and B"". The probability of becoming 

promoted border set is highest for the elements of B' and lowest for B"". The 

algorithm is reproduced in Figure 5.5. 

Input: Tnew , Told, a, /3, Lold, B~ld' B:ld 

Output: Lwhole, B~hole' B~hole 
Scan Tnew and increment the support count of X E (Lold U B~ld U B:ld) 

B' = {X I X E B~ld and S(Xhwhole 2: a}i 
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B" = {X I X E B~ld and S(X)rwhole ~ Q}; 

Lwhole = B' u B" u {X I X E Lold and S(X)rwhole ~ Q}; 

Bill = {X I X E B~ld;VX E X,X - {x} E Lwhole; (S(X)rwhole ~ f3 and 

S(X)Twhole < Q)}; 

B"" = {X I X E B~ld ULoid; Vx E X, X - {X} E Lwhole; (S(X)rwhole ~ f3 and 

S(X)rwhole < Q)}; 

B' = Bill U B""" whole , 
B~hole = {X I Vx E X,X - {x} E Lwhole and S(X) < f3}; 
If B" # ¢ then m = max {i I B"(i) # ¢} 

Candidate - generation: 

Lo = ¢; Bo = ¢; k =2; 

while(Lk _ 1 # ¢ or B k - 1 # ¢ or k ~ (m - 1)) do 

Ck =¢ 

L = B"(k - 1) U Lk- 1 U B"'(k - 1) U Bk- 1 

M = Lk- 1 U Lwhole(k - 1) U B~hole(k - 1) 

For all itemsets in II E L do begin 

For all itemsets in l2 E M do begin 

If lr[i] = l2[i] (1 ~ i ~ k - 2) and lr[k - 1] < l2[k - 1] then 

C = {lr[l], lr[2], """' lr[k - 2], lr[k - 1], l2[k - I}} 

Ck = CkUC 

End for 

End for 

Prune Ck: All the subsets of Ck of size (k - 1) must be present in M; 

Scan Twhole and obtain support S(X) for all X E Ck 
Lk = {X I X E Ck and S(X) ~ Q} 

Lwhole = Lwhole U Lk 

Bk = {X I X E (Ck-Lk);Vx E X,X-{x} E Lwhole;S(X) > f3 and 
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S(X) < 0: 

B~hole = B~hole U Bk 

B~hole = B~hole U {X I X E (Ck - L k ); \Ix E X, X - {X} E Lwhole; S(X) < ,8} 

k = k + 1; 

End do 

Figure 5.5: Modified Borders 

Apart from the above mentioned algorithms several other works can 

be found in the literature [ATA99, LMDR04, KZY+05, LSNP07, HCK07, 

HLW08, TLJ08, SXG08, OLC08]. All these algorithms have their own strengths 

and weaknesses, and is capable of handling the incremental rule mining prob­

lem. However, from a careful study it was observed that most of these tech­

niques suffer from the following disadvantages: 

• A two phase association mining often can be found to be time and 

resource consuming in case of larger incremental databases. 

• Due to conversion of the real-life data into market-basket domain, in­

formation loss occurs. 

• Single objective function (i.e. based on only frequency of occurrence) 

based rule generation often can be found to be non-interesting. 

5.3 Proposed Method 

To address the issues mentioned in the previous section, a single phase in­

cremental association mining technique has been reported here, which can 

extract the reduced set of interesting rules over the real-life dataset without 

transforming it into market basket domain. The new technique can be found 

to be significant in view of the following points: 
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Table 5.5: Symbols and Notations used 

D,Ro - Dataset -

D' - Updated Dataset -
t:,.- - set of deleted records -

t:,.+,RN - set of newly added records -

ax, S(x) - support of x -

NBd(Lx),Bx - Border sets from dataset x -

a - Minimum support -
o+ - Support of x in 6. + -X 

• During extraction of the rules, it evaluates the rules based on not only 

the support count, but also on the other measures like comprehensibil­

ity and interestingness. 

• It does not require to transform the dataset into market basket domain. 

• It avoids the frequent itemset generation phase, rather it generates the 

rules directly. 

5.3.1 MORM in Incremental Databases 

This algorithm extracts the association rules from a continuous valued dataset, 

using genetic algorithm. It is free from the difficulties mentioned in the pre­

vious section. During extraction of the rules, generally predictive accuracy 

or confidence of a rule is used to evaluate the rules. And for this, the support 

of different sets of items are needed. The above mentioned algorithms con­

centrate on the efficient extraction of the itemsets that meets the minimum 

threshold requirements. However, the proposed approach evaluates the rules 

based on three different measures, namely confidence, comprehensibility and 
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interestingness. To evaluate these measures, the expressions used in Chapter 

3 are used. 

The algorithm is capable of generating the rules directly without deriving 

the frequent itemsets. During the extraction of the rules, it needs to scan 

the old dataset only once. The algorithm is based on multi-objective genetic 

algorithm and here, every candidate rule is represented as a chromosome. Us­

ing the floating point encoding scheme, the values of attributes are encoded 

within the chromosome. Attribute names are not needed to encode, as po­

sitions of the values within the chromosome are sufficient to get attribute 

names. Two additional bits are needed for every attribute to represent the 

involvement of the attribute within the rule. If these two bits are 00, then 

the attribute next to these two bits appear in the antecedent part and if it 

is 11 then the attribute appear in the consequent part. And if these two bits 

contain either 01 or 10, then the attribute is not involved in either part of the 

rule. Another bit is used to represent the relational operator involved with 

the attribute. A continuous valued attribute may be involved with either :::; 

or 2: operator and a categorical valued attribute may be involved with either 

= or =1= operator. If this bit is 0, then the attribute is involved with :::; or = 
depending on its type. Some predefined number of bits are used to encode 

the attribute values. If the database contains n attributes in it, and m bits 

used to encode every attribute, then finally chromosome length will become 

(nx (m+3)). For example, the rule (A :::; 20&F 2: 2S) ::::} (B 2: 15&E :::; 30) 

from a database having attributes ABCDEF, will be encoded in the binary 

string 000101001110111110- - - - -01- - - - -1101111000111100 if 5 bits 

are used to encode every attribute. Since the attributes C and D are not 

involved in the rule, value of them will not play any role in representing the 

rule, so the bit position reserved for these two attributes may contain 0 or 1 

and are marked with a hyphen(-) in the given bit string. 
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Rules are extracted from the static part, i.e. the old database, using the 

MORM technique discussed in Chapter 3. These rules are stored and can be 

used by the decision support system until the database is updated. Due to 

the addition of the new records to the database, some new rules may come 

into existence. To extract these rules, if it is there, the algorithm given in 

Figure 5.6 can be used. 

Algorithm MORMI 

Input: Database D, incremental part D', old rules Ro , number of genera­

tions G. 

Output: A set of non-dominated rules, Rc , from the complete database. 

1. Load D' to memory. 

2. Generate population P of N chromosomes randomly. 

3. gen = O. 

4. Decode(Pi), 'tii,Pi E P. 

5. Find SUP(A), SUP(C) and SUP(R) from D', ('tiR,R E P and R = 

A => C). 

6. Calculate confidence, comprehensibility and interestingness . 

7. Rank(Pi), 'tii,pi E P. 

8. Fitness (Pi) = I P I ~Rank(pi)' 'tii,Pi E P. 

9. 'tii,Pi E P, if Rank(Pi)=l then Maintain-Elite(pi). 

10. Based on Fitness(Pi) select chromosomes for next generation. 

11. Perform multi-point crossover, then mutation to get new population O. 

12. Replace population P by O. 

13. if gen + + < G then go to Step 4. 
14. Find SUP(A), SUP(C) and SUP(R) by scanning DUD', (VR, REP 

or R E Ro). 
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15. Rc=P u Ro· 
16. Calculate confidence, comprehensibility and interestingness, V R, R E 

Rc 
17. return Q 

Figure 5.6: MORMI 

The rules generated by the algorithm were finally evaluated by scanning 

the whole dataset. The algorithm requires at the most one pass of the whole 

dataset while generating rules. The different objectives of the rules reflect 

their existence within the whole dataset. 

Following lemma is a result of our previous discussion which establishes 

the efficiency of the algorithm. 

Lemma!: For generating the rules that are valid for the whole dataset, 

MORMI requires at the most one pass of the whole dataset. 

The above algorithm can be found to be advantageous in view of the 

following points. 

• The algorithm does not require the data in market basket form, it can 

work on the original continuous valued dataset. 

• No separate frequent itemset generation phase is needed; it can produce 

the rules directly. 

• User parameters like minimum support and minimum confidence are 

not required here and hence they cannot affect the execution time of 

rule generation process. 

• Needs only one scanning of the whole dataset to produce the correct 

rules. 

• A reduced ruleset will be generated and is controlled by the population 

size of the genetic algorithm. 
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5.3.2 Implementation and Results 

The algorithm was implemented on a computer with Core2Duo 2.5G Hz 

processor and 3 GB RAM. During the execution of the algorithm for min­

ing the rules crossover probability of 0.8 and mutation probability of 0.002 

were used. 5-point crossover operator was used with the population size 40. 

12 bits were used to encode each attribute. The algorithm was tested with 

several synthetic as well as standard databases. A few of the extracted rules 

from some standard datasets available at UCI Machine Learning Repository 

are discussed below. 

A. Wisconsin Diagnostic Breast Cancer Database (WDBC) 

This dataset contains 569 instances and 32 attributes. First and second are 

sample code number and class attribute respectively. All other 30 attributes 

are real valued attributes. Out of these 569 instances, 357 are benign and 

212 are of malignant types. 

Out of these first 500 instances were treated as the old dataset where 305 

and 195 instances were benign and malignant respectively. The remaining 

69 instances were considered as the incremental part where 52 instances are 

benign and 17 are malignant. The rules discovered from this incremental 

dataset when compared with the rules of the static part, it was observed 

that 7 new rules are coming up. And then for the other rules also when 

compared peer to peer, it is found that the values involved in the rules are 

differing slightly. Due to which the objectives of the generated rules have 

been changed. This is due to the reason that the database size in terms of 

records, and frequency count of the rules have an affect on the objective mea­

sures. Some rules from this dataset is given in Table 5.6. When these rules 
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were observed, it was found that in 84 instances the first rule is satisfied and 

out of 84 instances 66 (78.57%) are of malignant type. Similarly, second rule 

is satisfied by 56 instances out of which 52 (92.86%) instances are Malignant; 

and out of 248 instances that satisfy the fourth rule, 236 (95.16%) instances 

are of benign type. 

When this set of rules were compared with the set of rules discovered by 

the algorithm presented in Section 3.5.2, it was found that both the sets are 

identical. From this fact it is established that this incremental approach of 

rule mining is capable of extracting the rules from the database if the whole 

database is used for extraction also. Similar observation was made for the 

next two databases also. 

A significant amount of time was saved by MORMI to extract these rules 

from the updated database. The time taken to derive the rules from the sta­

tic part and the complete dataset by multi objective approach along with 

time taken to derive the rules by the incremental approach are reported in 

Table 5.9. 

B. Wisconsin Breast Cancer Database (WBC) 

This dataset contains 699 instances and 11 attributes. First and last are 

sample code number and class attribute respectively. All other attributes 

are real valued attributes. Out of these 699 instances, 458 are benign type 

and 241 are of malignant type. 

The first 600 instances are considered as the static dataset and the re­

maining 99 as the incremental part. 380 and 220 instances of the static 

part are benign and malignant type respectively, whereas 78 benign and 21 
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Table 5.6: Incremental rules from WDBC database 

Mean perimeter < 183.023 & => Mean texture ~ 30.579 & Stan-

Worst area~ 3924.124 dard error perimeter ~ 15.730 & 

Worst compactness ~ 0.944 & 

Worst symmetry~ 0.338 

Mean radius~ 7.029 & Standard => Mean area ~ 249.27 & Standard 

error perimeter ~ 10.94 & Worst error smoothness ~ 0.016 

symmetry ~ 361.012 

Mean radius ~ 12.895 & Stan- => Mean concave points ~ 0.1152 & 

dard error radius < 0.8346 & Standard error perimeter ~ 6.217 

Worst area ~ 901.53 & Standard error fractal dimen-

sion ~ 0.001 

malignant instances are there in the incremental part. No additional rules 

were extracted due to the incremental part for this database. Reason for not 

finding new rules may be due to the reason that this database contains less 

number of attributes, that resulted in a smaller search space for the solutions. 

But the measures of some of the rules from the static part were changed due 

to the same reason explained in the discussion of the previous database. But 

here also the final rules match with those rules extracted by the algorithm 

described in Section 3.5.2. 

Some rules from this dataset are given in Table 5.7. When these rules 

were observed we have found that in 168 instances the first rule is satisfied 

and out of these 168 instances 122 (72.62%) are of malignant type. Similarly 

113 



second rule is satisfied by 119 instances out of which 109 (91.6%) instances are 

malignant. And out of 63 instances that satisfy the third rule, 52 (82.54%) 

instances are of benign type. 

Similar to the previous dataset, considerable amount of time was saved 

for this dataset also, when the algorithm MORMI was used to derive the 

rules. Table 5.9 presents the time required to extract the rules from the static 

part and complete dataset by the multi objective rule mining approach and 

the time required by MORMI. 

Table 5.7: Incremental rules from WBC database 

Uniformity of Cell Shape ::; 8.248 :::} Marginal Adhesion ~ 2. 708 & Mi-

toses ::; 5. 730 

Single Epithelial Cell Size::; 9.888 :::} Marginal Adhesion~ 4.571 & Mi-

toses ::; 5.207 

Bland Chromatin ::; 8.842 :::} Clump Thickness ~ 0.972 & Nor-

mal Nucleoli ~ 4.774 & Mitoses 

::; 5.642 

C. Wisconsin Prognostic Breast Cancer (WPBC) 

The dataset contains 198 instances and 34 attributes. First and second are 

sample code number and class attribute, respectively. All other 32 attributes 

are real valued attributes. Out of these 198 instances, 151 non-recurring, 47 

recurring type. 
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Table 5.8: Incremental rules from WPBC database 

Standard error texture S 3.275 =? 

& Standard error smoothness ~ 

0.026 

Standard error symmetry~ 0.056 =? 

& Worst perimeter ~ 214.958 

Time ~ 112.585 & Mean perime- =? 

ter ~ 181.616 & Standard error 

texture ~ 3.275 & Standard error 

smoothness ~ 0.025 Mean fractal 

dimension ~ 0.082 

Mean fractal dimension ~ 0.093 

& Standard error compactness 

~ 0.092 & Worst smoothness ~ 

0.108 & Worst compactness ~ 

0.246 & Worst fractal dimension 

~ 0.068 

Mean area~ 547.904 & Standard 

error texture ~ 3.486 & Worst 

smoothness > 0.152 & Worst 

fractal dimension ~ 0.069 

Standard error compactness ~ 

0.094 & Worst compactness ~ 

0.264 & Worst fractal dimension 

~ 0.080 

Out of the 150 instances, which contains 112 non-recurring and 38 re­

curring type, are considered as static part. Remaining 48 instances were 

considered as incremental part that contains 39 non-recurring and 9 recur­

ring instances. After the extraction of the rules from the incremental part, 

6 rules were newly found. Table 5.8 presents some rules derived from this 

dataset. When these rules were observed we have found that in 143 instances 

the first rule is satisfied and out of these 143 instances 107 (74.83%) are of 

non-recurring type. Similarly second rule is satisfied by 45 instances out of 

which 33 (73.33%) instances are non-recurring. And out of 105 instances 
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that satisfy the third rule, 80 (76.19%) instances are of non-recurring type. 

Due to the same reason described in the previous databases, objective mea­

sures of the rules from the static part and the complete database are differing 

slightly. But finally for this database also same rules were extracted if the 

algorithm in Section 3.5.2 is used over the complete database. 

Table 5.9 reports the timing information to derive the rules from this 

dataset also. It can be observed that, a significant amount of time is saved 

to derive the rules when MORMI is used. 

Table 5.9: Comparison of Static and Incremental MORM 

Dataset MORM on MORM on MORMI (ns) Time saved 

Static part(ns) Complete(ns) (ns) 

WDBC 8,923,647,500 10,708,377,000 1 ,806,146,254 8,902,230,746 

WBC 7,235,610,857 8,441,546,000 1,222,818,235 7,218,727,765 

WPBC 3,230,902,500 4,307,870,000 1,085,583,240 3,222,286, 760 

All timing information in this table are average of 15 runs of the program. 

5.4 Discussion 

From the above discussion it was observed that this algorithm can extract 

the association rules from an incremental dataset with a single pass of the 

whole database. It uses the new incremental part of the dataset several times 

to discover the association rules. Similar experiments were carried out over 

several synthetic databases and the results were satisfactory. These syn­

thetic databases had different number of records as well as different number 

of attributes. From those experiments it was observed that, if the dataset 

116 



contains a large number of attributes then probability of finding new rules 

becomes higher. The size of the incremental part also has some influence 

over the generated rules. Some new rules also may come into existence for 

a database with larger increments with smaller number of attributes. The 

objective measures confidence and interestingness of the rules, that have the 

influence of frequency within the dataset, differs due to the increment of the 

dataset. However an interesting observation made over these experiments 

was that same rules were extracted by the algorithm described in Section 

3.5.2, when applied on the complete database. 
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Chapter 6 

Conclusions and Future works 

6.1 Conclusions 

In this dissertation a study of different issues of association rule mining is 

presented. After a careful study of the different association rule mining algo­

rithms it was found that all of them treat the problem as a single objective 

one, where finally the confidence of the rules are maximized. All of those 

algorithms are based on the approach pioneered by Agrawal et. al. [AIS93]. 

Generation of the rules are done in two phases namely frequent itemset gener­

ation and rule generation. First phase being the most crucial one, the existing 

algorithms have given more importance on it. A very few algorithms were 

found that attended the second phase. In the chapter 2, an efficient algo­

rithm to attend the rule generation phase was presented. From the various 

experiments it has been found that the new algorithm works faster than all 

the other existing algorithms. 

Though the association rule mining was handled as single objective prob-
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lem by the existing algorithms, from the study of the association rules it was 

found that it should be treated as a multi-objective problem. Considering 

comprehensibility and interestingness as two other objectives along with con­

fidence, association rule mining problem can be handled as multi-objective 

problem. After testing several expressions finally, two expressions to quan­

tify comprehensibility and interestingness were formulated. In Chapter 3, 

two algorithms based on Pareto genetic algorithm are presented to extract 

the association rules from the database. In literature, Pareto genetic al­

gorithm was found to be a better technique to handle the multi-objective 

problem. Out of the two algorithms presented in the Chapter 3, second one 

has been found to be more efficient. 

During the study of the association rule mining algorithms, it was ob­

served that the performance of the algorithms are affected by the dimen­

sionality of the database. But almost all databases contain some irrelevant 

attributes (dimensions) in it. Several works have been found in the litera­

ture to attend this issue of data mining, commonly known as dimensionality 

reduction. Need of a dimensionality reduction technique suitable for the as­

sociation rule mining technique has lead to the work presented in Chapter 

4. Here two efficient algorithms for dimensionality reduction, having their 

own strengths are presented. Depending on the decision maker's need any 

of the algorithms can be used to reduce the size of the database in terms of 

attributes. 

Mining association rules over an incremental database is yet another chal­

lenging problem of data mining. Several works based on the approach due to 

Agrawal et.al., can be found in the literature. Incremental rule mining being 

an allied area of association rule mining, a need of an algorithm to extract 
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the rules considering the multiple objectives was felt. This need has lead us 

to the development of the multi-objective incremental rule mining algorithm 

presented in the Chapter 5. From the various experiments it has been found 

that the proposed algorithm is efficient to extract the association rules using 

multiple objectives. 

From the study and various experiments carried out during this disser­

tation work it is found that the association rule mining problem should be 

handled as a multi-objective problem rather than single objective one. To 

attend different issues related to the multi-objective association rule mining 

some efficient techniques are developed and presented here. 

6.2 Future works 

In this dissertation the association rule mining is treated as a multi-objective 

problem. And several techniques to attend different issues of association rule 

mining are presented here. Still there are some works left unattended and 

some works may need more tuning . 

• Comprehensibilty of the association rule is used as a measure of the 

rules. But it is difficult to quantify a subjective measure like com pre­

hensibilty. After considering a number of expressions, it was found that 

the expression used in this dissertation gives a better representation of 

the comprehensibilty of association rules. It is not ensured that this is 

the best expression to quantify it. So this expression needs some more 

attention. 
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• Similarly expression used for the other subjective measure, i.e. inter­

estingness also needs some attention. 

• Most of all, the algorithms presented here are tested over some contin­

uous(numeric) valued databases only. But, by nature, association rule 

mining is not restricted to continuous(numeric) valued databases. So 

the testing of the algorithms over categorical(nominal) valued database 

as well as mixed valued database is left to be done. 
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