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Abstract

With the enormous growth in network connectivity resulting in high bandwidth
Internet services, and huge increase in the number of Internet-based applications,
network security 1s becoming increasingly important Almost all computer systems
suffer from security vulnerabilities which aie economically costly and impossible to
be solved by manufacturers alone Therefore the role of intrusion detection systems
as special purpose applications to detect anomalies and attacks in a network 1s be-
coming very important Traditional intrusion detection systems are reactive 1n the
scnse that they usc a sct of signatures to identify malicious traffic patteins, the size
of the signature sct grows as new vulnerabilitics arce discovered Anomalv detection
systems are a category of intrusion detection systems that act more proactively
They derive a model of the normal system behavior and issue alaims whenever
the behavior changes, making a stable assumption that such changes arc frequently
caused by malicious or disruptive events Anomaly detection has been a field of
intense research over the years as it poses many challenging problems Data mining
techniques have pioven to be useful in effective 1dentification of anomalous traffic

patterns

The contiibutions of this thesis pertain to the area of network tiaffic anomaly
detection using data mining techmques This thesis has three parts mmcluding back-
ground and literature review a systematic appioach to generate real-hfe netwoik
intrusion datasets, and approaches for network anomaly detection In the first
part, it presents an overview of nctworks attack a taxonomy and categories of de-
tection methods with architectures, and an cxtensive review of network anomaly
detection methods, systems and tools In the second part, 1t introduces a sys-
tematic approach to generate real-life network intiusion datasets using the TUIDS
testbed architecture such up-to-date datascts arc useful for the network sccurity
research community to test detection methods and systems In the third part,
this thesis introduces approaches for network anomaly detection It presents an
outler-based approach by introducing an outher scoie function to 1ank each can-
didate object and report traffic patterns as normal or coordinated scan as carly as
possible This thesis includes a tree-based subspace clustering technique for high

dimensional large datasets It generates reference points to estimate outlier score
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values to detect large scale network anomalies. This thesis also includes an unsu-
pervised approach for network anomaly detection in large datasets with a focus on
detection of known as well as unknown attacks without using any labelled traffic
or signatures or training. The approach includes two algorithms, viz., TreeCLUSS
and CLUSSLab. CLUSSLab is an effective cluster labelling technique to label each
cluster based on a stable cluster set obtained from TreeCLUSS using multiple ob-
jectives. It also presents an effective unsupervised feature clustering technique to
identify a dominant feature subset for each cluster, to be used for cluster labelling.
Finally, this thesis includes an extended entropy metric-based DDoS flooding attack
" detection approach to detect four classes DDoS attacks, viz., constant rate, pulsing
rate, increasing rate and subgroup attacks. It can successfully identify the DDoS
attacks by measuring the metric difference between legitimate traffic’ and attack
traffic using extended entropy metric. This approach also extends the mechanism
to use an ensemble of extended entropy metrics for increasing detection rate iﬁ near
real-time. The proposed techniques are validated using real-life datasets and have
been found to perform well in comparison to competing algorithms. All network
anomaly detection algorithms have been validated in terms of detection rate, false

positive rate, ROC, precision, recall and F-measure.

Keywords — Coordinated Scan, Qutlier Detection, Port Scan, Anomaly Detec-
tion, DoS, Score, Cluster, Attack, Reference Point, Profile, DDoS, Intrusion
Detection, Entropy Metric
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Chapter 1

Introduction

With advancements in network technologics, Internet services have been undergoing
constant growth in network traffic, accompanied by an increasing number of anoma-
lies such as Denial of Service (DoS) attacks, port scans, worms, virus exploits and
misconfigurations. These anomalics represent a large fraction of the Internct traffic
that is unwanted and prevent legitimate users from accessing network resources in
an optimal manner. Therefore, detecting and diagnosing these threats are crucial
tasks for network operators to ensure that the Internet resources remain available.
Because legitimate traffic must be able to travel cfficiently, quickly and accurately
identifying anomalies in network traffic is important, requires development of good
detection techniques. Anomalies are patterns of interest to network defenders, who
want to extract them from vast amount of network traffic data. Data mining tech-
niqucs have been popular in extracting these harmful patterns from large volumes
of data in recent years Data mining is used in many application areas, e.g., the
business world, medicinal sciences, physical sciences and engineering to make new
discoveries. Extensive studies have been performed in applying data mining tech-
niques to network traffic anomaly detection, but the methods [11-13] have limita-
tions that notably discredit them from use in real environments. In this thesis, we
explore the possibilities of applying data mining techniques in identifying network

anomalics with significant performance improvement.
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1.1 Data Mining

Data mining has gained a great deal of attention in the information industry and in
the socicty as a wholc in reeent years duc to the wide availability of huge amounts
of data and the imminent need for turning such data into useful information and

knowledge. Based on Tan et al [14,15], data mining is defined as follows

Definition 1.1.1. Data mining 1s the process of automatically discovering useful
wmformation wn large repositories Data maining techniques are deployed to scour large
databases wn order to find novel and useful patterns that maght otherunse remain

unknown

The term knowledge discovery in databases (KDD) refers to the process of con-
verting raw data into useful information or knowledge. Data mining is a step in the
KDD process, and applics a varicty algorithms for extracting patterns from data. In
addition to this, the KDD process has additional steps including data preparation,
data selection, data cleaning, incorporation of appropnate prior knowledge, and
proper interpretation of the results of mining to ensure useful knowledge 1s derived

from the data

1.1.1 Data Mining Tasks

Based on how they work, data mining tasks are classified into different classes In
general, data mining tasks are partitioned into two major categories: predictive and
descriptive. Predictive mining performs inference on the current data in order to
make future predictions Descriptive mining characterizes the general propertics of
the data and underlying relationships among them Some of the most important

data mining tasks |14, 15] are discussed below.

(a) Classification and Regression: Classification is the process of classifying a data
instance into one of several predefined categorical classes based on the training
sct containing known obscrvations. A rcgression task begins with data instances
in which the target values are known The relationships between predictors and
the target are summarized in a regression model that can be applied to different

data instances in which the target values are unknown.

2
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(b) Cluster Analysis: Cluster analysis seeks to find groups of closely related data
objects based on relationships among them. The greater the similarity within a

group and the greater the difference between groups, the better is the clustering.

(c) Association Analysis: Association analysis is the task of efficiently discovering
the most important and the most strongly associated feature patterns in data.

The discovered patterns are represented in the form of implication rules.

(d) BEwvolution Analysis: Data evolution analysis describes and models regularities

or trends in objects whose behavior changes over time.

(¢) Outlier Detection: Outlier detection refers to recognizing those observations
whose characteristics are significantly different from the rest of the data. These

observations are known as outliers.

We concentrate on three major tasks in data mining viz., clustering, classifi-
cation and outlier mining for identification of network traffic anomalies. Recently,
there has been a realization that data mining can have significant impact on net-
work security, especially network traffic analysis. Because most security systems
are developed based on the interestingness of traffic patterns, it is important to
discover interesting patterns correctly from large datasets as well as analyze them
using effective data mining techniques. Data mining can detect known as well as

unknown attacks.

1.2 Modern Networks and The Internet

A network is a group of systems that are connected to allow sharing of resources
including files, printers or storage media, and sharing of services including basic
Internet connection. There are two main aspects to setting up a network: (a) the
hardware used to connect the systems together and (b) the software installed on
the hosts to allow them to communicate [16]. A typical view of a large network

with a demilitarized zone (DMZ)! is given in Figurc 1.1.

'Demilitarized zone is a network scgment located between a sccured local network and unse-
cured external networks (Internet). DMZ usually contains servers that provide services to users
on the external network, such as web, mail, and DNS scrvers, which must be hardened systems.
Two fircwalls are typically installed to form the DMZ.

3
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Figure 1.1: A typical view of an cnterprise network with DMZ

A typical network involves several hosts connected through network devices
- and users to share data and resources with each other. A device or system that
is connected to the network is known as a host. The workstation is a general
purpose host with high end configuration for technical and scientific applications.
The sever is a‘ special host that contains more disk space and memory than are
found on clients (i.e., hosts, workstations). A sever has special software installed
that allows it provide the intended function. It provides services such as file and
print services, serving Web pages to clients, controlling remote access and security to
clients. The Internet is the world wide network of computers accessible to anyone
through protocols such as HTTP, FTP or SMTP. Day by day we have become
increasingly dependent on the Internet as users. We present statistics of the worlds
Internet users in Figure 1.2, as reported by the International Telecommunication
Union (ITU)™.

Network vulnerabilities are the inherent weaknesses in the design, configuration,
or implementation of a computer network that renders it susceptible to a security
threat. The growth of network vulnerabilities as reported in [17] is shown in Fig-
ure 1.3. Threats may arise from exploitation of design flaws in the hardware and

software of computer network systems [18]. Systems may also be incorrectly config-

‘http://www.itu.int/cn/Pages/dcfault.aspx
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Figure 1.2: The growth of world's Internet users

ured, and therefore vulnerable to attack. The vulnerabilities of this kind generally
occur from inexperience, insufficient training, or half done work. Another source
of vulnerability is poor management such as inadequate procedures and insufficient

checks of the network systems.

1.2.1 Network Anomalies and Detection

Anomalies are instances in data that do not conform the normal behavior. The
instances arc also known as objects, points, cvents, vectors, or samples. Anomalics
in network can be defined as any network events or operations that deviate from
normal network behavior. They happen due to the growing number of network
based attacks or intrusions. The recent growth of Internet threat agents! is given in
Figure 1.4. Network threats may occur due to many reasons including: (i) malicious
activities that interpret normal network services, (ii) network overload, (iii) device

malfunctioning, and (iv) compromuses in different network parameters.

Anomaly detection attempts to find patterns in network traffic data, which

'http://www.verizon.com/enterprisc/databreach
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do not conform to expected normal behavior. The importance of anomaly detec-
tion is due to the fact that anomalies in data translate to significant (and often
critical) actionable information in a wide variety of application domains {19]. For
example, an anomalous traffic pattern in a computer network could mean that a
hacked computer is sending out sensitive data to an unauthorized host. Anoma-
lies in a network may be caused by different reasons. As stated in [18], there are
two broad categories of nctwork anomalies: (a) performance related anomalies and
(b) security related anomalies. Various examples of performance related anoma-
lies are: broadcast storms, transient congestion, babbling node, paging across the
network, and file server failure. Security related network anomalies may be due to
malicious activities of the intruder(s) by intentional flooding of the network with
unnecessary traffic to hijack the bandwidth so that legitimate users are unable to
receive service(s). However, our thesis is concerned is with security related network
anomalies only. Currently, anomaly based network intrusion detection is the most
successful intrusion detection technique. It is currently a principal focus of research
and development in the field of intrusion detection. Various systems with ANIDS
(Anomaly based Network Intrusion Detection System) capabilities are becoming
available, and many new schemes are being explored. However, the subject is far
from mature and key issues remain to be solved before wide scale deployment of

ANIDS platforms becomes practicable.

Advances in networking technology have enabled us to connect distant corners
of the globe through the Internet for sharing information in the vast. However,
along with this advancement, threats from spammers, attackers and criminal enter-
prises are also growing in multiple speed [11]. Normally, an intrusion attempts to
compromise the confidentiality, integrity, or availability of a system, or to bypass
the security mechanisms of a host or a network. As a result, security experts use
intrusion detection technology to keep secure the infrastructure of large enterprises.
An intrusion detection System (IDS) is defined [20] as follows.

Definition 1.2.1. An Intrusion Detection System monators the events occurring in

a computer system or a network and analyzes them for signs of intrusions.

Intrusion detection systems are divided into two broad categories: misuse de-

tection [21] and anomaly detection [22] systems. Maisuse detection can detect only
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known attacks based on signatures they have created and stored Thus, dynamic
signature updation is important and as a result new attack definitions are frequently
released by the IDS vendors. However, misuse based systems cannot cope with the
rapidly growing number of vulnerabilitics and exploits On the other hand. anomaly
based detection systems are designed to capture any deviation from the profiles of
normal behavior. They are more suitable than misuse detection for detecting un-
known or novel attacks without any prior knowledge. But normally such systems

gencerate a large number of false alarms.

There arc four commonly used machine learning approaches for detecting in-
trusions or anomalics in nctwork traffic {12]° (i) supervised, (1) semi-supervised,
(i1i) unsupervised and (1v) hybrid. In the superuised approach [23-25], a predictive
mode! is developed based on a traning dataset that contains normal and attack
data instances Any unsecn data instance is compared against the model to de-
termine which class it belongs to In the sema-supervised approach [26-28], the
training data instances contain only the normal class. Data instances are not la-
beled for the attack class. There arc many approaches used to build the model for
the class corresponding to normal behavior. This modecl is used to identify anoma-
lies in the test data. In the unsupervised approach [7,29-31], the model does not
require any training data, and thus are potentially most widely applicable. Finally,
the hybrid approach [32-34] normally cxploits the features of all of the above to
get effective and efficient performance in detecting network anomalies on a large
scale Also, these techniques make the implicit assumption that normal instances
are far more frequent than anomalies in the test data. If this assumption 1s not true,
such techniques suffer from high falsc alarm rates. In the first two cascs, it requires
training on the instances for finding anomalies But getting a large amount of la-
belled normal and attack training instances may not be practical for a particular
scenario. Again, to generate a set of true normal instances with all the variations is
an extremely difficult task. Hence, this thesis develops some effective and excellent
network traffic anomaly detection methods to detect known as well as unknown

attacks with high detection rate and low false positive rate while compared with

competing methods.
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1.3 Open Issues in Network Anomaly Detection

Network anomaly detection has become increasingly nccessary in recent years duc
to the proliferation of Internet-based attacks The discovery of promising methods
for detecting unknown attacks have made 1t effective as well It is one of the most
important infrastructurc sccurity mechanisms for an cnterprisc network An intru-
sion 1s a set of actions aimed to compromise the computer security goals such as
confidentiality, integrity and availability of resources Anderson while introducing
the concept of intrusion detection [35] 1n 1980 defined an intrusion attempt or a
threat to be the possibility of a dcliberate unauthorized attempt to (a) access
information, (b) manipulate information, or (¢) render a system unreliable or unus-
able For example (a) Denual of Seruvice (DoS) attack attempts to starve a host of
its resources, which are needed to function correctly during processing (b) Worms
and wruses exploit other hosts through the network, and (¢) Compromises obtain

privileged access to a host by taking advantages of known vulnerabilities

Due to the voluminous nature of network traffic data 1t 1s important to an-
alyze the data using standard high dimensional data analysing techniques So,
data mining approaches are most useful and applicable in this area Most exist-
ing Network Intrusion Detection Systems (NIDSs) have been found inadequate in
detecting the growing number of novel attacks However anomaly based NIDSs
have been somewhat successful 1n detecting both known as well as unknown at-
tacks 1n normal systems or in network traffic But they generate high false alarm
rates irrespective of any network scenarios Appheations of data mining 1n improv-
ing security include intrusion detection, cyber attack detection, criminal detection,
biometric authentication, etc Several data mining techmques such as clustering,
classification, association analysis and anomaly detection have been uscful 1 dis-
covering relevant knowledge from data sources for detecting novel attacks Hence,
we concentrated on applying data mining techniques to network anomaly detection
to discover known as well as unknown attacks The following 1s a list of research

1ssucs and objcctives for our thesis as we worked towards an effective solution

e A NIDS must be tested and evaluated using real time labelled network traffic

traces with a comprehensive and extensive set of intrusion or attack data



Chapter 1. Introduction

before deploying in any real world environment. This is a significant challenge,
since availability of such datasets is low. Therefore the generation of a real-life

network intrusion dataset is something that remains to be addressed.

e Due to the lack of availability of labeled datasets for training or validation of
the models, most attack detection approaches produce high false alarm rates.

Thus, minimization of the false alarm rate is a problem that must be tackled.

e With the evolving nature of networking technology and with the constant
effort of attackers to launch newer attacks, existing IDSs are non-adaptive

and hence inadequate in handling known as well as unknown attacks.

e The voluminous size of network traffic and the constant changes in traffic
patterns as well as the presence of noise in the audit data make the task of

building profile or signature for normal network traffic a daunting task.

e Network traffic is composed of a large amount of data. If security models
generate profiles for normal as well as attack traffic, it is a challenge to update

online signature databases dynamically.

e Logic applicable to normal attack identification may not be useful in identi-

fying attacks that are rare.

e Assumptions related to statistical distribution of normal and attack traffic

may not be valid in detection of Distributed Denial of Service (DDoS) attacks.

1.4 Contributions

In this thesis, we apply data mining techniques to network traffic anomaly detection.
We also evaluate these techniques. In addition, we prepare new network intrusion
datasets by incorporating several real world attacks. The main contributions of this

thesis are as follows.

o A detailed literature survey has been carried out on applications of data min-
ing techniques to network traffic anomaly detection under six major cate-

gories. It includes detection methods, systems and popular tools found in

10
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Contributions

this domain. We have identified several common pitfalls in network anomaly

detection and compared different systems and tools.

A systematic method for network intrusion dataset preparation is introduced.
We have prepared three datasets, viz., (a) TUIDS intrusion dataset (b) Co-
ordinated scan dataset and (c) DDoS flooding attack dataset. These datasets
are used for performance evaluation of the proposed methods in addition to

the benchmark network intrusion datasets.

We present an adaptive outlier-based coordinated scan detection approach to
detect malicious scans at an early stage. It exploits linear congruential gen-
erators to select random normal samples from the whole dataset for training
purpose. We introduce an outlier score function to rank each candidate data
object with respect to the profiles and report as normal or outlier. The profiles
is built using the clusters obtained from fuzzy c-means clustering technique.

This method is evaluated using benchmark and real-life datasets.

A clustering and outlier-based approach for network anomaly detection is
proposed. To support the anomaly detection process, we introduce a tree-
based clustering algorithm to generate a set of reference points. Finally, it uses
our outlier score function to test each candidate object to identify network
anomalies using estimated score values. This approach is evaluated using

benchmark and real-life datasets.

An unsupervised approach for network anomaly detection is introduced for
high dimensional large network traffic datasets. We introduce an unsupervised
tree-based subspace clustering technique with a cluster stability measure. We
also propose a cluster labelling technique to label each cluster as anomalous or

normal. Benchmark and real-life datasets are used for performance evaluation.

Finally, we propose an extended entropy metric-based approach for detecting
all possible scenarios of DDoS flooding attacks. It estimates extended entropy
metric based on Renyi’s generalized entropy with packet intensity computa-
tion over a sampled network traffic. In addition, we combine the selective

order of extended entropy metric to improve the detection accuracy in near

11
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real-time This method 1s evaluated using benchmark and real-life datasets.
In addition, we provide a detailed review of DDoS attacks, taxonomy, detec-

tion methods and popular tools.

1.5 Outline of the Thesis

The thesis structure closcly follows the rescarch issucs 1dentified. Figure 1 5 presents
a sketch of the thesis outline, where the chapters have been grouped according to
topic and the research contributions. The remainder of this thesis is therefore

organized as follows.

7 7 i 4

( Introduction I Network DataINetwork TrafficAnomaly Detectionkonclusions]
\
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|
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Figure 1.5: Thesis structure

e Chapter 2 provides the background information needed for the research pre-
scnted 1n this thesis. The chapter covers three topics: anomalies in networks,
anomaly detection and cvaluation of such techniques, and network attacks in

the form of a taxonomy.

e Chapter 3 presents a structured overview progress so far in the field of network
anomaly detection. It includes network anomaly detection methods, systems

and tools in a taxonomy

e In Chapter /, we discuss several real-life network intrusion datasets that are
normally used for evaluation of network anomaly detection methods or sys-
tems. We present a systematic method to prepare real-life network intrusion

datasets by incorporating several attacks.

e Chapter 5 initially presents a review on port scan and their detection methods.

Then we propose an adaptive outlier-based approach for coordinated scan
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detection and also to detect malicious scans at an early stage We introduce
an outlier score function to rank each candidate data object with respect to
the profiles. The profiles are built using the clusters obtained from fuzzy c-
mecans clustering technique The cffectivencess of this approach is cvaluated
using coordinated scan dataset discussed in Chapter 4 and benchmark scan

dataset.

In Chapter 6, a clustering and outlier-based approach for network traffic
anomaly detection is presented. To support the anomaly detection process,
we introduce a tree-based clustering algorithm to generate a set of reference
points. Finally, it uses our outlicr score function to test each candidate object
to identify network anomalies using estimated score values. The proposed

technique is validated using several real-life and benchmark datasets

Chapter 7introduccs an unsupcervised approach for network anomaly detection
to detect known as well as unknown attacks without any prior knowledge.
We propose an unsupervised tree-based clustering technique with a stability
measure and a clustering labelling technique based on multiple objectives
to label each cluster followed by clustering. This method is validated using

several real-life datasets to detect known as well as unknown attacks.

Chapter 8 initially cvaluates the performance of different information entropy
metric. viz , Shannon entropy, generalized entropy, and Renyi’s entropy to de-
tect DDoS flooding attacks We propose an extended entropy metric-based ap-
proach for detecting all possible scenarios of DDoS flooding attacks at victim-
end and extended to sclective ensemble to improve the detection rate. This

approach is validated using several real-life datasets.

Finally, this thesis is concluded in Chapter 9 summarizing the work described
in detail in the previous chapters The chapter also presents future research

directions in the network anomaly detection domain.
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Chapter 2

Background

This chapter includes threc parts, viz., basics of nctwork anomalies, detection of
such anomalies and evaluation criteria for detection methods. It presents definition,
causes, sources, types of anomalies in network or host and detection approaches.
We also discuss common evaluation criteria to measure performance of network

anomaly detection methods or systems and concludes with a summary.

2.1 Anomalies in Network

Anomalies are instances in data that do not conform the normal behavior. The
instances are also known as objects, points, events, vectors, or samples. Anomalies
in network can be defined as any network cvents or operations that deviate from
normal network behavior. They may occurs due to several reasons including (i)
malicious activities that interpret normal network services, (ii) network overload,
(iii) device malfunctioning, and (iv) compromises in different network parameters.
Network anomalies are broadly categorized into two types [18] (a) performance
related anomalies and (b) security related anomalies. We discuss each of them with

sources and causes in details.

2.1.1 Performance Related Anomalies

These anomalies normally result in network or system failures or performance degra-
dation. Typical examples of performance related anomalies are: file server failures,

paging across the network, broadcast storms, babbling node, and transient con-
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gestion Performance related anomalies may occur due to vulnerabilitres involved

in a network or a system In a network based system, vulnerabilities are inher-

ent weaknesses 1n the design, implementation and management of the system, that

render the systems susceptible to a threat [36). It is not possible to list definite

sources of network based system vulnerabilities Most common sources of networlk

vulnerabilities are pointed out below.

(a)

Poor design: Lack of appropriate design in a hardware and softwarc system
may lcad to threat to the system For cxample, the sendmail flaw 1in carlier

versions of UNIX enabled hackers to gain privileged access to the system.

Incorrect implementation. Incorrect or crroneous configuration of the system
may also lead to vulnerabilities due to lack of inexperience, insufficient train-
ing, or sloppy work. For example, configuring a system that does not have
restricted-access privileges on system files, may allow these files to be altered

by unauthorized uscrs.

Poor security management: Use of inadequate management of procedures are
another sources of network vulnerabilitics. For example, lack of guarantce that
sccurity procedures arc being followed and that no single person has total con-

trol of a system.

Internet technology vulnerability: Internct technology has been and continucs
to be vulnerable There are reports of all sorts of loopholes, weaknesses, and
gaping holes in both software and hardware technologies every day by. Such

vulnerabilities have led to attacks such as CodeRed worm, Slammer worm, etc.

The nature of intruder actunty: Hacker technologies are developing faster than
the rest of the technology and are flourishing. For example, W32/ Mydoom .n@M
M!11812A23B5D92 is a new malware threat!.

The dufficulty of fixing vulnerable systems: It is often difficult to fix a vulnerable
systems within stipulated time period. There is concern about the ability of

system administrators to copc with the number of patches issued for system

Yhttp://www.mcafce.com/us/meafec-labs.aspx
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vulnerabilities. As the number of vulnerabilities rises, system and network

administrators face a more difficult situation.

(g) Social engineering: Social engineering involves a hacker’s use of psychological
tricks on legitimate users of a computer system, in order to gain information
such as username and password that one needs to enter into the system. So,
social engineering can be easily used to transform a critical security hole to a

potential threat.

Thus, there are many causes for traffic anomalies which arise when attackers
exploit network-based vulnerabilities. They are difficult to fix in real-time. Some
of vulnerabilities are: network configuration, hardware, parameter, logging and
monitoring, communication and wireless vulnerabilities. In this subsections we
have discussed performance related network anomalies, possible sources and causes
of network vulnerabilities. Security related anomalies is our prime focus in this

thesis, discussed below.

2.1.2 Security Related Anomalies

Security related anomalies occur while the network traffic does not follow normal
behavior. Network attack categories include denial of service (DoS), distributed
DoS, probe, user to root, remote to local and coordinated scan attacks. The main
causes of network attacks or intrusions are malicious entities, who hijack network
bandwidth by flooding the network with unnecessary traffic, thus starving other
legitimate users. Malicious activities in a network is of various types such as point
anomaly, contextual anomaly and collective anomaly [37], we describe each of them

below.

(a) Point Anomalies: An instance of an individual data which has been found to be
anomalous with respect to the rest of data then it is known as point anomaly.

For example, credit card fraud.

(b) Contextual Anomalies: A data instance which has been found anomalous in

a specific context is known as contextual anomaly. Context is induced by the
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structure in the dataset. Two sets of attributes are used for defining a context

(1) contextual, and (ii) behavioral attributes.

(c) Collective Anomahes: A collection of related data instances found to be anoma-
lous with respect to the entire dataset are called Collective Anomalies. A collec-
tion of events is an anomaly but the individual events are not anomalies when

they occur alone in the sequence.

We illustrate each type of anomaly in terms of fraudulent credit card transac-

tions given in Figure 2.1.

60000 ———— T T j '
55000 Polint Anomaly
{ ——Contexual Anomaly
m 50000 1 . colective Anomaly
- 1 1
g 45000 Contexual +
3 | Collec
E 40000 - / "
< ]
N O A
g 35000 ———=
= 30000 Point
s
]
2 25000
[
= 20000 -
15000
10000 1
5000 — 1
0 —— T " : | .
5 2 4 5 8 10
Weeks

Figure 2.1: Nustration of point, contextual and collective anomaly

2.2 Attacks on Networks

A network attack exploits the vulnerability of a computer or network, and attempts
to break into or compromise the sccurity of the system. .One who performs or at-
tempts an attack or intrusion into a system is an attacker or intruder. Anderson [35]
classifies attackers or intruders into two types: external and internal. Fzternal in-
truders arc unauthorized users of the system or machines they attacked, whercas
internal intruders have permission to access the system, but do not have privileges
to access the system as root or superuser. Internal intruders are further divided

into masquerade intruders and clandestine intruders. A masquerade intruder logs
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in as another user with legitimate access to sensitive data whereas a clandestine in-
truder, the most dangerous, has the power to turn off audit control for themselves.
An attack or intrusion is perpetrated by an inside or outside attacker of a system

to gain unauthorized entry and control of the security mechanism of the system.

2.3 Precursors to an Attack

The precursors to an attack are a series of events used to trigger an attack. A
network attacker exccutes a serics of steps to achicve the desired goal The order
and duration of these steps is dependent on several factors including the attacker’s
skill level, the type of vulnerability to exploit, prior knowledge, and starting location
of the attacker. An attacker generally follows the steps shown in Figure 2.2 while

launching an attack

Perforrn Reconnaissance

1
L N |

I ]
|
.Launch Attack
i
Gain Access
I
Gain Root Privileges
T
Maintain Access
L
Placement of Backdoors

Figure 2.2: Steps in performing an attack

Performing reconnaissance means that the attacker uscs certain techniques to
gather information about the strength and positioning of enemy forces using scan-
ning and enumeration of serwices. Once the vulnerabilities are identified, the at-
tacker attempts to exploit them when launching the attack. The attacker can gain
access as a user and then as root user to a system. Finally, to place backdoors on
the system for further exploits, the attacker maintains access and cleans up any

evidence left 1n the system.
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2.4 Taxonomy of Network Attacks

An attack or intrusion 1s a sequence of operations to place a backdoors for exploita-
tion 1 a network or a computer system Several network attack taxonomies are

available n hteraturc [38-41] The taxonomy of wntrusions or attacks {42,43]

computer systems that we adopt 1s summarized in Table 2 1

Table 2.1: Taxonomy of computer attacks characteristics and examples

Attack Characteristics Ezample
name
Virus (1) A self replicating program that infects the system without any knowledge | Trivial 88 D,
or permission from the user () Increases the infection rate of a network | Polyboot B,
file system 1f the system 1s accessed by another computer Tuareg
Worm (1) A self replicating program that propagates through network services on | SQL Slam-
computer systems without user intervention (n) Can highly harm network | mer, Mydoom,
by consuming network bandwidth CodeRed Nimda
Trojan (i) A malictous program that cannot replicate itself but can cause serious | Mail Bomb,
security problems in the computer system ({n) Appears as a useful program | phishing attack
but n reality 1t has a secret code that can create a backdoor to the system,
allowing 1t to do anything on the system easily, and can be called as the
hacker gets control on the system without use: permission
Demial of | (1) Attempts to block access to system or network resources (n) The loss | Buffer oveiflow,
se1vice of service 1s the mnability of a patticular netwoik ot a host service, such as | ping of death
(DoS) e-mail to function (m) It 1s implemented by either forcing the targeted | (PoD), TCP
computer(s) to reset, or consuming resources (1v) Intended users can no | SYN, smurf,
longer communicate adequately due to non-availability of service or because | teardrop
of obstructed communication media
Network (1) Any process used to maliciously attempt to compromise the secunty Packet 1njection,
Attack of the network ranging from the data hnk layer to the application layer by | SYN flood
various means such as manitpulation of network protocols (11} Illegally using
user accounts and privileges, performing actions to delete network resources
and bandwidth, performing actions that prevent legitimate authorized users
from accessing network services and resources
Physical An attempt to damage the physical components of networks or computers Cold boot, evil
Attack maid
Password Aims to gain a password within a short period of time, and is usually indi- | Dictionary
Attack cated by a series of login failures attack, sSQL
injection attack
Information | Gathers information or finds known vulnerabilities by scanning or ptobing | SYS scan, FIN
Gathering computers or networks scan, XMAS
Attack scan
User to { (1) It 15 able to exploit vulnerabilities to gamn privileges of superuser of the | Rootkit, load-
Root system while starting as a normal user on the system (u) Vulnerabilities | module petl
(U2R) nclude smffing passwords, dictionary attack, o1 social engineening
attack
Remote (1) Abihity to send packets to a remote system over a network without having | Warezschent,
to Local | any account on that system, gain access either as a user or as a root to | waresmaster,
(R2L) the system and do harmful operations (n) Performs attack against public | imap ftp.wnite,
attack services (such as HTTP and FTP) or during the connection of protected | multihop, phf,
services {such as POP and IMAP) spy
Probe (1) Scans the networks to 1dentify valid IP addresses and to collect informa- | IPsweep,
tion about host (e g what services they offer, operating system used) (n) | portsweep
Provides information to an attacker with the list of potential vulnerabilities
that can later be used to launch an attack against selected systems and
services

Network attacks are also classified as active and passive Active attacks employ
more overt actions on the network or system They can be much more devastating

to a network. But passive attacks are designed to monitor and record traffic on the
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network They are usually employed for gathering information that can be used
later in active attacks. They are very difficult to detect, because there is no overt
activity that can be monitored or detected. Examples of passive attacks are be

packet sniffing or traffic analysis.

2.5 Traffic Monitoring and Analysis

Network traffic monitoring is usually performed at the intra-domain level in every
large-scalc autonomous system (AS) because the network topology is completely
known and the AS is under the control of a single network operator, who can there-
fore manipulate his network and traffic without restrictions (44]. So, we deploy
the monitoring systcms in the intra-domain Internet to capture, analyze and de-
cide whether an instance is normal or anomalous A view of a monitoring system

deployment with DMZ! is shown in Figure 2.3.
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Figure 2.3: A typical view of monitoring system deployment with DMZ

1A demilitarized zone 1s a network segment located between a secured local network and unse-
cured external networks (Internet). A DMZ usually contams servers that provide services to users
on the cxternal network. such as Web, mail, and DNS scrvers. These servers must be hardencd
systems. Two firewalls are typically installed to form the DMZ.
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2.6 Detection of Anomalies

Network anomaly detection 1s crucial for securing a network or a host. It allows for
timely mitigation of anomalous traffic instances. Anomalies may be caused due to
many recasons as discussed above Specifically, sccurity related anomalies occur due
to malicious activity (¢ g, scanning, denial of scrvice, and probe) initiated by the
attackers or intruders at different times. It leads to failure or misconfiguration of a
network or a host A network anomaly detection system is introduced to capture,
analysis and report alarms when an anomaly is detected and update the profiles of

normal as well as attack instances.

2.6.1 Anomaly-based Network Intrusion Detection System
(ANIDS)

An ANIDS is a svstem for detecting network anomalies by monitoring network
traffic and classifying them as either normal or anomalous The classification is
based on heuristics, rather than patterns or signatures, and attempts to detect any
type of anomalies that falls out of normal system opcration. It is able to detect

known as well as unknown attacks without any prior knowledge.

2.6.2 Classification of ANIDSs

Intrusion detection has been studied for almost 20 years Intrusions can be detected
because an intruder's behavior 1s noticeably different from that of a legitimate user.
In addition, many unauthorized actions arc detectable [45] ANIDSs arc deployed
as a second line of defense along with other preventive security mechanisms, such
as user authentication and access control ANIDSs is classified into two types based
on their deployment in real time.

A host based IDS (HIDS) monitors and analyzes the internals of a computing
system rather than its external interfaces. It monitors all or parts of the dynamic
behavior and the state of a computer system [46] A HIDS might detect internal
activity such as which program accesses what resources and attempts illegitimate

access. An example 15 a word processor that has suddenly and inexplicably starts
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modifying the system password database. Similarly, a HIDS might look at the state
of a system and stored information whether it is in RAM or in the file system or in
log files or elsewhere. One can think of a HIDS as an agent that monitors whether
anything or anyonc internal or external has circumvented the sccurity policy that

the operating system tries to enforce.

A network based IDS (NIDS) deals with detecting intrusions in network traffic.
Intrusions typically occur as anomalous patterns. Some techniques model the net-
work traffic in a sequential fashion and detect anomalous sub-sequences [46]. The
primary rcason for these anomalies is attacks launched by outside attackers who
want to gain unauthorized access to the network to steal information or to disrupt

the network.

In a typical sctting, a network is conneccted to the rest of the world through the
Internet The NIDS reads all incoming packets or flows, trying to find suspicious
patterns For example, if a large number of TCP connection requests to a very large
number of different ports arc observed within a short time, one could assume that
there 1s someone committing a ‘port scan’ at some of the computer(s) in the network.
Various kinds of port scans, and their launching tools are discussed 1n detail in [5].
Port scans mostly try to detect incoming shell codes 1n the same manner that an
ordinary intrusion dectcction system does. In addition to inspecting the incoming
network traffic, a NIDS also provides valuable information about intrusion from
outgoing as well as local traffic. Some attacks might even be staged from inside of
a monitored nctwork or nctwork scgment, and thercfore, not regarded as incoming
traffic at all. The data available for intrusion detection systems can be at different
levels of granularity, e.g , packet level traces, and IPFIX records. The data is high
dimensional, typically, with a mix of categorical and continuous attributes.

Misuse-based intrusion detection normally searches for known intrusive patterns
but anomaly based intrusion detection tries to identify unusual patterns. Today, re-
scarchers mostly concentrate on anomaly based network intrusion detection because
it can detect known as well as unknown attacks.

There arc scveral rcasons that make intrusion dctection a nceessary part of
the entire defense system. First, many traditional systems and applications were

developed without security in mind. Such systems and applications were designed to
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work 1n an environment, where security was never a major 1ssue However, the same
systems and applications when deployed 1n the current network scenario become
major securtty headaches For example, a system may be perfectly secuie when 1t
1s 1solated but becomes vulnerable when 1t 1s connected to the Internet Intrusion
detection provides a way to identifv and thus allow response to attacks agamnst
these systems Second due to limitations of information security and software
enginecring practices, computer systcms and applications may have design flaws
or bugs that could be used by an intruder to attack systems or applications As
a result certain preventive mechanisms (e g firewalls) may not be as effective as
expected Intrusion detection techniques are classified into three types based on the

detection mechamsm [37,47,48] This classification scheme 1s described below

(a) Msuse-based This detection 1s based on a set of rules o1 signatures for known
attacks and can detect all known attacks basced on reference data How to write
a signature that encompasses all possible variations of the pertinent attack 1s a

challenging task

(b) Anomaly-based The principal assumption 1s that all intrusive activities are nec-
essarily anomalous Such a method builds a normal actinty profile and checks
 whether the system state varics fiom the establhished profile by a statistically
significant amount to report intrusion attempts Anomalous activities that arc
not intrusive may be flagged as intrusive These are false positives One should
select threshold levels so that the above two problems are unreasonably magni-
fied Anomaly-based intrusion dectection 1s computationally expensive because

of overhead and the need to update several system profile matrices

(¢) Hybrid This detection mechamsm reaps benefits of both misusce and anomaly
bascd detection techniques It also attempts to detect known as well as unknown

attacks

In addition to the above an anomaly detection system works in any of four
modes, viz , (1) supervised {(n) semu-supervised (11) unsupervised and (1v) hybrnd

based on the availability of labeled data
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Supervised ANIDS

A supervised ANIDS detects network anomalies using prior knowledge. It builds
a predictive modecl for both normal and anomalous classcs and compares any new
instance with the predictive model to determine which class it belongs to Thus, to
provide an appropriate solution in network anomaly detection, we need the concept
of normal behavior of the network traffic. An event or an object is detected as
anomalous if its degree of deviation with respect to the profile or behavior of the
system, specified by the normality model, is high enough. We define a supervised

system as follows.

Definition 2.6.1. Let us consider an anomaly detection system I that uses a su-
perwised approach It can be thought of as a pawr I = (M, D), where M 1s the model
of normal behawor of the system and D 1s a prozmaty measure that allows one to
compute, gwen an actinty record, the degree of dewmation that such actinties have
with regard to the model M Thus, each system has two mamn modules: (1) a mod-
eling module and (1) a detection module One trains the system for both normal
and attack classes to obtain the model M. The obtained model 1s subsequently used
by the detection module to evaluate new events or objects or traffic as normal or
anomealous or outhers. In particular, the modeling module needs to be adaptive to

cope with the dynamic scenarios.

A generic architecture for a supervised ANIDS is given in Figure 2.4. A brief

description of cach component of the above system is given below.

(a) Traffic Capturing. Traffic capturing is an important module in any NIDS. In
this module, live network traffic is captured using the Libpcap [49] library, an open
source C library offering an interface for capturing link-layer frames over a wide
range of system architectures. It provides a high-level common Application Pro-
gramming Interface to the different packet capture frameworks of various operating
systems. The resulting abstraction layer allows programmers to rapidly develop
highly portable applications

Libpcap defines a common standard format for files in which captured frames
are stored, also known as the tcpdump format, currently a de facto standard widely
used in public network traffic archives. Modern kernel-level capture frameworks on

UNIX operating systems are mostly based on BSD or Berkeley Packet Filter (BPF)
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Figure 2.4: A generic architecture of supervised ANIDS

[50,51]. BPF is a software device that taps network interfaces, copying packets
into kernel buffers and filtering out unwanted packets directly in interrupt contex.t.
Definition of packets to be filtered can be written in a simple human readable format
using Boolean operators and can be compiled into a pseudo-code and passed to the
BPF device driver by a éystenl call. The pseudo-code is interpreted by the BPF
Pseudo-Machine, a lightweight high-performance state machine speciﬁéally designed
for packet filtering. Libpcap also allows a prografnmer to write applications that
transparently support a rich set of constructs to build detailed filtering expressions
for most network pfotocols. A few Libpcap calls use these Boolean expressions,
which can read directly from the user’s command line, compile into pseudo-code
and pass to Berkeley Packet Filter. Libpcap and BPF interact to allow network
packet data to traverse several layers to finally be processed and transformed into
in capture files (i.e., tcpdump format) or to samples for statistical analysis.

The raw network traffic is captured at both packet and flow levels. Packet

level traffic can be captured using some popular tools, viz., Gulp (Lossless Gigabit

Remote Packet Capture With Linux)* and Wireshark? and then preprocessed before

'http:/ /staff. washington.edu/corey/gulp/
Zhttp:/ fwww.wireshark org/
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sending to the detection engine. In addition, flow level traffic can be captured using
some other tools, viz., NFDUMP?!, NFSEN2, and ntop. The hierarchy of network

traffic capturing components is given in Figure 2.5.
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Figure 2.5: Hierarchy of network traffic capturing components

(b) Preprocessor: In order to evaluate an IDS, an unbiased intrusion dataset in
a standard format is required. Generally, a live captured packet contains a lot of
raw data; some of them may not be relevant in the context of an IDS. Therefore,
filtration of irrelevant parameters during capture and extraction of relevant features
from the filtered data are important preprocessing functions of an IDS. In addition
to these, data type conversion, normalization and discretization are also useful

functions of this module depending on the anomaly detection mechanism used in

the IDS.

(1) Feature Eztraction: Feature extraction from raw data is an important step for
anomaly based network intrusion detection. The evaluation of any intrusion
detection algorithm on real time network data is difficult, mainly due to the
high cost of obtaining proper labeling of network connections. The extracted

features are of four types (42, 52] discussed as follows.

e Basic features: These can be derived from packet headers without in-
specting the payload. The protocol type, service, flag, source bytes, and

destination bytes are examples of some basic features.

http://nfdump.sourceforge.net/
2http://nfsen.sourccforge.net/
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(1)

(iii)

(iv)

o Content based features Domain knowledge is used to assess the pay-
load of the original TCP (Transmission Control Protocol) packets. An

example of this type of features 1s the number of failed login attempts.

o Tume-based features: These features are estimated by capturing proper-
ties that hold over a T-second temporal time window One example of
such a feature 1s the number of connections to the same host over the

T-second time interval.

e Connection-based features: These features are computed over an histori-
cal window estimated over the last N packets An example of such feature

is the number of packets flowing from source to destination.

Data Type Conversion. Both features and raw data may include numeric as
well as categorical data For example, the protocol feature takes values such as
tep, icmp (Internet Control Message Protocol), telnet and udp. Therefore, to
apply a clustering technique based on a proximity measure for either numeric
or categorical data to detect network anomalies, it may be necessary to convert

the data.

Normalization: In an intrusion dataset, all parameters or field values may not
be equally weighted In such cascs, normalization is considered uscful before

applying an anomaly detection mechanism

Discretization: The network mntrusion data contains continuous valued at-
tributes such as the number of packets the number of bytes, the duration
of each connection, etc. These attributes may need to be transformed into
binary features before applying any standard association mining algorithms.
The transformation can be performed using a variety of supervised and un-
supervised discrctization techniques. For example, using the output scores
of the anomaly detector as its ground truth, MINDS (Minnesota INtrusion
Detection System) [53] employs a supervised binning strategy to discretize
attributes. Initially, all distinct values of continuous attributes arc put into
one bin The worst bin in terms of purity is selected for partitioning until the
desired number of bins is reached. The discretization of numeric attributes

contributes to the comprehension of the final results.
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These features are designed to assess attacks, which span intervals longer than
2 seconds. It is well known that features constructed from the data content of
the connections, are more important when detecting R2L (Remote to Local) and
U2R (Uscr to Root) attack types in KDD99 intrusion datasct [52] The time based
and connection based features are more important for detection of DoS (Denial of

Service) and probing attack types [54].

(c) Anomaly Detection Engine: This is the heart of any network anomaly
detection system. It attempts to detect the occurrence of any intrusion either
onlinc or offline. In general, any network traffic data nceds preprocessing before it
is sent to the detection engine. If the attacks are known, they can be detected using
a misuse detection approach. Unknown attacks can be detected with the anomaly
based approach using an appropriate matching mechanism. The following are some

important rcquirements that a matching mechanism must satisfy.

e Matching determines whether the new instance belongs to a known class de-
fined by a high dimensional profile or not. Matching may be inexact. The
mcmbership of a test instance to a given pre-defined class represented by its
profile, depends on (i) the proximity computed between the profile and the
new test instance using a relevant subspace of features and (ii) a user-defined
proximity threshold. Thus, the sclection of an appropriate proximity measure

and an appropriate threshold arc crucial here.
e Matching must be fast

¢ Effective organization of the profiles may facilitate faster search during match-

ing.

(d) Alarm: This module is responsible for gencration of alarm ba_scd on the indi-
cation received from the Anomaly Detection Engine. In addition to indicating the
occurrence of an attack, alarms are useful for post diagnosis of the performance of
the detection system. Alarms should indicate (i) the causcs for the alarm to be
raised, (ii) the source IP/Port address and target IP/Port address associated with
the attack, and (iii) any background information to justify why it is a putative

alarm.
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2.6. Detection of Anomalies

(e} Human analyst A human analyst 1s responsible for analysis, interpretation
and for taking necessary action based on the alarm information provided by the
detection engine. The analyst also takes necessary steps to diagnose the alarm
information as a post-processing activity to support reference or profile updation

with the help of security manager.

(f) Post-processing: This 1s an important modulc in a NIDS This module pro-
cesses the generated alarms for diagnosis of actual attacks. Appropriate post pro-

cessing activities can help in reducing the false positive rate significantly.

(g) Security Manager: Stored intrusion signatures are updated by the security
manager (SM) as and when new intrusions become known. The analysis of novel
intrusions is a highly complex task. The sccurity manager has a multi-faceted role
to play such as (i) to analyzc alarm data, (ii) to recognize novel intrusion(s), and

(iil) to update the signature or profile base.

(h) Reference Data- The reference data stores information about signatures or
profiles of known intrusions or normal behavior. Reference data must be stored in
an efficient manner. Possible types of reference data used 1n the generic architecture
of a NIDS arc shown in Figurc 2.6. In the casc of ANIDS,; 1t 1s mostly profiles. The
processing elements update the profiles as new knowledge about the observed be-
havior becomes available These updates are performed in a batch oriented fashion

by resolving conflicts, if they arisc.

Types of
reference data

Profile Signature Rule

Figure 2.6: Typcs of reference data used in supervised ANIDS

Intermediate results such as partially created intrusion signatures are stored
as configuration data. The space nceded to store such information is usually quite
large. The main steps for updation of configuration data are given in Figure 2.7.
Intermediate results need to be integrated with existing knowledge to produce con-

sistent, up-to-date results.
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Intermediate  f Candidate rule Conflict Updated profiles
{ profile frules/
results identification resolving signatures

Existing profiles /
* rules/signatures

Figure 2.7: Stcps for updation of configuration data in ANIDS

There are two major 1ssues that arse in supervised anomaly detection. First,
the anomalous 1nstances arc far fewer in number compared to normal instances
in the training data. Issues that arise due to imbalanced class distributions have
been addressed in the data mining literature [55]. Second, obtaining accurate and
representative labels, especially for the anomaly class is usually challenging. A
number of proposed techniques inject artificial anomalies in a normal dataset to
obtain a labeled training dataset [56]. Other than these two issues, the supervised

anomaly detection problem 1s similar to building predictive models.

Semi-supervised ANIDS

A semi-supervised ANIDS trains using labeled instances only for the normal class
[57]. Since they do not require labels for the anomaly class, it is more readily used

compared to superviscd approaches We define a semi-supervised system as follows.

Definition 2.6.2. Let [ be a semi-superuvised anomaly based detection system. It
can be thought of as a pawr [ = (M, D), where M 1s the model of normal behavior
of the system and D s a prozvmity measure that allows one to compute, given
an actwnty record, the degree of dewiation that such actinties have wn regards to the
model M. As discussed in the context of superunised ANIDS, each system has mainly
two modules. The modeling module trains to get the normality model M and detect

new traffic as normal or anomalous.

For example, in spacecraft fault detection [58], an anomaly scenario may sig-
nify an accident, which is not easy to model. The typical approach used in such
techniques is to build a model for the class corresponding to normal behavior, and
use the model to identify anomalies in the test data. However, semi-supervised

learning uses normal data during training and the rest of the approach is the same
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2.6. Detection of Anomalies

as supervised approach

Unsupervised ANIDS

An unsuperviscd ANIDS can be used for novel intrusion detection without prior
knowledge and uses purely normal data Unsupervised network anomaly detection
works well due to two major reasons (1) non-availability of labelled or purely nor-
mal data, and (1) the expensc of manual classification of a laige volume of network
traffic  When collecting normal traffic data, 1t 1s extremely difficult to guarantee
that there 1s no anomalous instance Clustering 1s a widely used method for unsu-
pervised anomaly based intrusion detection [26,59-62] From classical data mining,
we know that clustering 1s a method of grouping of objccts based on similarity
among the objects The similarity within a cluster 1s high whereas dissimilarity
among clusters 1s high Clustering 1s a method of unsupervised study and analysis
that is peirformed on unlabeled data [63] Unsupervised anomaly detection clusters
test data into groups of similar instances which may be cither normal or anomalous

We define the unsupervised system as follows

Definition 2.6.3. Let I be an unsupernised anomaly based detection system. It can
be thought of as a pawr I = (M, D), where M = {G, A}, G represents groups of
traffic based on prozvmity measure D, and A 1s the estimated score computed from
each group The system I labels each traffic instance as normal or anomalous wr t

the estimated score, A

A generic architecture of an unsupervised ANIDS 1s given in Figure 28 This
includes almost all the modules found 1n a supervised ANIDS except the anomaly

detection engine and the labelling technique We discuss them below

(a) Unsupervised Engine This module 1s the heart of an anomaly detection
system It consists of two modules viz , detection and label Based on the approach
used, the detection module either groups similar instances or identifics exceptional
instances m nput data. The label module works after completion of the detection
module to label each instance either as normal or anomalous based on the charac-
tenistics of each mmdividual group such as size, compactness. the dominating subset

of features and outhicr score of cach instance

(b) Labeling Strategy A clustering method merely groups the data without any
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Figure 2.8: A generic architecture of unsupervised ANIDS

interpretation of the nature of the groups. To support appropriate interpretation
of the groups labelling techniques are used. Labelling of clusters is a difficult issue.

A labelling strategy typically makes the following assumptions {64].

¢ The number of normal instances vastly outnumbers the number of anomalous

instances.
e Anomalics themselves are qualitatively different from normal instances.

o Intra-similarity among the instances of an anomalous group is higher than the

same in a normal group of instances.

Unsupervised anomaly detection approaches work without any training data.
In other words, these models are trained on unlabeled or unclassified data and they
attempt to find intrusions lurking inside the data. The biggest advantage of the
anomaly detection approach is the detection of unknown intrusions without any pre-
vious knowledge. In order to label clusters, an unsupervised ANIDS models normal
behavior by using certain assumptions [64]. If these assumptions hold, intrusive in-
stances can be identified based on characteristics of the group the instances belong
to. However, these assumptions are not always true, especially in the case of DDoS
attacks. Therefore, accurate labeling of an instance is gsigniﬁcant and crucial issue

in an unsupervised ANIDS.
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Hybrid ANIDS

A hvybrid ANIDS combines both supervised and unsupervised approaches of net-
work anomaly detection. Such approaches can detect known as well as unknown
attacks. A hybrid approach attempts to identify known attacks based on a super-
vised mode] with reference to a set of training sample data using an appropriate
matching mechanism. The test instances that neither belong to normal nor any of
the known attack mstances are handled by the unsupervised model for the identifi-
cation of new normal or novel intrusions Several successful efforts have been made
by rescarchers to develop hybrid ANIDSs [65-67]. A hybrid system is defined as

follows.

Definition 2.6.4. Let | be a hybrid anomaly based detection system. It can be
thought of as a pawr I = (M, D), where M = {B,U}, B represents the superunsed
module that uses proxvmaty measure D to detect known attacks, and U 1s the un-
superuised module which uses estimated score computed from each group to detect

unknown attacks.

A generic architecture of a hybrid ANIDS is given in Figure 2.9. The mod-
ules 1n this architecture are the same as in supervised and unsupervised ANIDSs
noted above except the detection engine. This detection engine is a combination
of a supervised module and an unsupervised module As shown in the figure, the
unsupervised module 1s used for only those undetected test instances forwarded by
the supervised module. Once a novel intrusion is identified and confirmed, its ref-
crence (1.e., rule or signature) is built and mserted into the rule-basc for the future

reference of the supervised module.

The performance of an individual approach, cither supervised or unsupervised,
is not cqually good for detection of all categories of attack as well as normal in-
stances. There is the possibility of obtaining good detection accuracy for all cate-
gories in a dataset by using an appropriate combination of multiple well-performing
detection approaches. The objective of such a combination is to provide the best
performance from each participating approach for all attack classes. The selection
of a supervised or unsupervised method at a particular level for a given dataset is

a critical issue for the hybrid ANIDS.
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Figure 2.9: A generic architecture of a hybrid ANIDS

2.7 Aspects of Network Anomaly Detection

In this section, we present some important aspects of anomaly based network in-
trusion detection. The network intrusion detection problem is a classification or
clustering problem formulated with the following components [37): (i) types of in-
put data, (ii) appropriatencss of proximity measures, (iii) labelling of data, (iv)
relevant feature identification and (v) reporting of anomalies. We discuss each of

these topics in brief

2.7.1 Types of Input Data

A key aspect of any anomaly based network intrusion detection technique is the
nature of the input data used for analysis. Input is generally a collection of data
instances also referred to as objects, records, points, vectors, patterns, events, cascs,
samples, observations, entities [15]. Each data instance can be described using a set
of attributes of binary, categorical or numeric type. Each data instance may consist
of only one attribute (univariate) or multiple attributes (multivariate). In the casc
of multivariate data instances, all attributes may be of the same type or may be
a mixture of data types. The nature of attributes determines the applicability of

anomaly detection techniques.
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2.7. Aspects of Network Anomaly Detection

2.7.2 Appropriateness of Proximity Measures

Proximity (similarity or dissimilarity) measures are necessary to solve many pattern
recognition problems in classification and clustering. Distance is a quantitative
degree of how far apart two objccts arc. Distance measures that satisfy mectric
propertics [15] arc simply called metric while other non-metric distance measurcs
are occasionally called divergence The choice of a proximity measure depends on

the measurement type or representation of objects.

Generally, proximity measures are functions that take arguments as object pairs
and return numerical values that become higher as the objects become more alike.

A proximity measure is usually defined as follows

Definition 2.7.1. A prozumaty measure D 1s a functron X x X — R that has the
follounsng properties [68].

- Posutwaty: Vy € X, D(x,y) >0
- Symmetry: V;, € X, D(2,y) = D(y, z)
- Mazimality: V., € X, D(z,z) > D(z,y)

where X 15 the data space (also called the universe) and 2.y are a pawr of k-

dimensional objects.

The most common proximity measurcs for numeric [69-71), categorical [72]
and mixed type [73] data are listed in Table 2 2. For numeric data, it is assumed
that the data is represented as real vectors. The attributes take their values from
a continuous domain. In Table 2.2, we assumc that there arc two objects, z =
1,22, T3 Td, Y = Y1, Y2, Y3 - Yaq and Z“l represents the data covariance with d

number of attributes, i.e., dimensions.

For categorical data, computing similarity or proximity measures is not straight-
forward owing to the fact that there is no explicit notion of ordering among categor-
ical values. The simplest way to find similarity between two categorical attributes
1s to assign a similarity of 1 if the values arc identical and a similarity of 0 if
the values are not identical. In the Table 2.2, Di(zx,yx) represents per-attribute
similarity. The attribute weight wy for attribute k is computed as shown in the

table. Consider a categorical dataset X containing 7. objects, defined over a set
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of d categorical attributes where A, denotes the kth attribute Di{zx,yx) is the
per-attribute proximity between two values for the categorical attribute Ax. Note
that 2x, 4% € Ax. In Table 2.2, IOF denotes Inverse Occurrence Frequency and

OF dcnotes Occurrence Frequency [72]

Finally, mixed type data includes both categorical and numeric values. A com-
mon practice in clustering a mixed dataset is to transform categorical values into
numeric values and then use a numeric clustering algorithm. Another approach is
to compare the categorical values directly, in which two distinct values result in
a distance of 1 while identical values result in a distance of 0. Of course, other
measurcs for categorical data can be used as well Two well-known proximity mca-
sures, general similarity coefficient and general distance coefficient [73] for mixed
type data are shown in Table 2.2. Such methods may not take into account the sim-
ilarity information embedded in categorical valucs. Consequently, clustering may

not faithfully reveal the similarity structure in the dataset [73,74].

2.7.3 Labelling of Data

The label associated with a data instance denotes if that instance is normal or
anomalous. It should be noted that obtaining accurate labeled data of both normal
or anomalous types is often prohibitively expensive. Labeling is often done manually
by human experts and hence substantial effort is required to obtain the labeled
training dataset {37] Moreover, anomalous behavior is often dynamic in nature,

¢.g., new types of anomalics may arise, for which there is no labeled training data.

2.7.4 Relevant Feature Identification

Feature sclection plays an important role in detceting network anomalics. Fea-
ture selection methods are used in the intrusion detection domain for eliminating
unimportant or irrelevant features. Feature selection reduces computational com-
plexity, removes information redundancy, increascs the accuracy of the detection
algorithm, facilitates data understanding and improves generalization. The feature
selection process includes three major steps: (a) subset generation, (b) subset eval-

uation and (c) validation Three different approaches for subset generation are:
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Chapter 2. Background

complete, heuristic and random Evaluation functions are categorized into five [75]
distinct categories: score based, entropy or mutual information based, correlation
based, consistency based and detection accuracy based. Simulation and real world
implementation arc the two ways to validate the cvaluated subsct. A conceptual

framework of the feature selection process is shown in Figure 2.10.

Complete feature set
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Subset generation

1 Complete _] Uounsm1 l Random I
v
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\L consr:tencd r Dmcuanaccurach]
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Figure 2.10: Framework of feature selection process

Feature selection algorithms have been classified into three types: wrapper, filter
and hybrid methods (76]. While wrapper methods try to optimize some predefined
criteria with respect to the feature set as part of the sclection process, filter methods
rely on the general characteristics of the training data to select features that are
independent of each other and are highly dependent on the output. The hybrid
featurc selection method attempts to exploit the salient featurces of both wrapper

and filter methods [76]

An example of wrapper-based feature selection method is (77], where the au-
thors proposc an algorithm to build a lightweight IDS by using modificd Random
Mutation Hill Climbing (RMHC) as a search strategy to specify a candidate subset
for evaluation, and using a modified linear Support Vector Machine (SVM) based
iterative procedure as a wrapper approach to obtain an optimum feature subsct.
The authors establish the effectiveness of their method in terms of efficiency in
intrusion detection without compromising the detection rate. An example filter

model for feature selection is [78], where the authors fuse correlation based and
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minimal redundancy-maximal-relevance measures. They evaluate their method on
benchmark intrusion datasets for classification accuracy Several other methods for

feature selection are [42,79-81]

2.7.5 Reporting Anomalies

An important aspect of any anomaly detection technique is the manner in which
anomalies are reported [37]. Typically, the outputs produced by anomaly detection
techniques are of two types: (a) a score, which is a valuc that combines (1) distance
or deviation with reference to a sct of profiles or signatures, (ii) influence of the
majority in its neighborhood, and (iii) distinct dominance of the relevant subspace
(as discussed 1n Section 2.7.4) (b) a label, which 1s a value (normal or anomalous)
given to each test instance Usually the labelling of an instance depends on (i)
the size of groups generated by an unsupervised technique, (ii) the compactness of
the group(s), (iii) majority voting based on the outputs given by multiple indices
(several example indices are given in Table 2.3), or (1v) distinct dominance of the

subsct of features.

2.8 Evaluation Criteria

We cannot have a method or a system which is totally or absolutely sccure, without
compromise. An evaluation of a method or a system in terms of accuracy or quality
is basically a snapshot in time As time passes, new vulnerabilities may evolve, and
current cvaluation may become irrclevant However, information gathered during
an evaluation process has an important role in shaping the final detection method
or system. We discuss commonly used measures to evaluate network intrusion
detection methods and systems Figure 2.11 shows the taxonomy of evaluation

measures for network anomaly detection.

(a) Accuracy: Accuracy 1s a metric that measures how correctly an IDS works,
measuring the percentage of detection and failure as well as the number of false
alarms that the system produces [94,95]. If a system has 80% accuracy, it means
that it correctly classifies 80 instances out of 100 to their actual classes. While

there is a big diversity of attacks in intrusion detection, the main focus is that the
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Table 2.3: Cluster vahidity measures

between two objects from different clusters dma, the
largest distance within the same cluster

Reference Name of Index Formula Remark(s)
d
= t C taf 11-
Dunn [82) Dunn Index DI ;{vl:‘l::, where d,,,n, denotes the smallest distance {1) Can identify dense and we!

separated clusters (n) High
Dunn index 15 more desired for

a clustering algonthm ()
May not perform well with
noisy data

Davies et al
{83]

Davies Bouldin’s
index

DB = .’l‘.z:':l s ’"“T(H?:_.:fi) where n 1s the
number of clusters, o, 1s the average distance of all
patterns 1n cluster » to their cluster center c¢,, o, 15
the average distance of all patterns 1n cluster 3 to ther
cluster center, c,, and d(c,, ¢,) represents the proxim-
ity between the cluster centers ¢, and c,

(1) Vahdation 1s performed us-
ing cluster quantities and fea-
tures inherent to the dataset
(n) For compact clustering DB
values should be as minimum
as possitble () It 1s not de-
signed to accommodate over-
lapping clusters

Hubert and
Schultz (84]

C-index

C = 3—5—_—3—%&— where S 1s the sum of distances
maex = man

over all pairs of objects form the same cluster, n 1s

the number of those pairs, S,,,,, and Smazx are the

sum of n smallest distances and n largest distances,

respectively

It needs to be mimmized for
better clustering

Baker and
Hubert [85]

Gamma Index

G = H, where (S+) represents the number of
times that a pair of samples not clustered together have
a larger separation than a pair that were in the same
clusters, (S—) 1epresents reverse outcome

This measure s widely used for
hierarchical clustering

Rohlf [86] G+ Index G4+ = ;27%‘5—__)3 where (S—) s defined as for gamma It uses mimimum ‘alue to de-

index and n 15 the number of within cluster distances termine the number of clusters

in the data

Rousseeuw Silhouette Index SI = m—;‘ﬁ}%—)—, where a, 1s the average dissimilanty This index cannot be apphed to
87 A datasets with sub-clusters
(87] of the tth-object to all other objects 1n the same cluster, v

b, 1s the mimimum of average dissimilanty of the athe

object to all objects in other cluster,

N =¥

Goodman Goodman- CK = Vﬁ where Ne and Vg are the numbers of (1) It 15 robust in outhe:s detec-
and  Kruskal Kruskal index concordant and disconcordant quadruples, respectively tion (1) It requires high com-
88} putation complexity 1n com-

parison to C-index

Jaccard |89

Jaccard Index

JI = —u—;h where o denotes the number of pairs of
points with the same label in C and assigned to the
same cluster in A, b denotes the number of pairs with
the same label but in different clusters and c denotes
the number of pairs in the same cluster, but with dif-
ferent class labels

It uses least information than
Rand index measure

in cluster 1, o, 15 the average variation n cluster 3
dmyn = man|lh, ~ &, )

Rand {90) Rand Index I = ﬁi{gﬂ’ where d denotes the number of paus It gives equal weights to false
with a different label in C that were assigned to a dif- positives and false negatives
ferent cluster in A, rest are same with JI dunng computation

Bezdek [91) Partition coeffi- PC = ;1‘ PR E;’;l u.?], where n¢ 1s the number of (1) It finds the numbe: of over-

crent clusters N 1s the number of objects in the dataset, u,, laps between clusters, (u) It
1s the degree of membership lacks connection with dataset

Bezdek {92] Classification cC = 'BIT ZI;‘ 7=1 uaylog(u,,), same with partition It measures the fuzziness of the

entiopy coefficient cluster partitions

Xie and Bem Xie-Beni Index XB = -\.7"—, where = = =i 1s called compact- {1) It combines the properties

[93) D cmin ™ of membership degiee and the
ness of cluster 1 Since n, 1s the number of points p deg

geometric structure of dataset
(1) Smaller XB means more
compact and better separated
clusters

system be able to detect an attack correctly. From real life experience, onc can
easily conclude that the actual percentage of abnormal data is much smaller than
that of the normal [64,96,97]. Consequently, intrusions are harder to detect than
normal traffic, resulting in excessive false alarms as the biggest problem facing IDSs.

The following are some accuracy measures.

o Sensitinity and Specificity: These two measures [98] attempt to measure the
accuracy of classification for a 2-class problem. When an IDS classifics data,
its decision can be either right or wrong. It assumes true for right and false

for wrong, respectively

If S is a detector and D, 1s the set of test instances, there are four possible
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Figure 2.11: Taxonomy of evaluation measures

outcomes described using the confusion matrix given 1n Figure 2.12 When
an anomalous test instance (p) is predicted as anomalous (Y) by the detector
S, it 1s counted as true positive (TP); if it 1s predicted as normal (N), it
is counted as false negative (FN). On the other hand, if a normal (n) test
mstance is predicted as normal (N) it is known as true negative (TN), while

it is a false positive (FP) if it is predicted as anomalous (Y) [43,98,99]

The true positive rate (TPR) is the proportion of anomalous instances clas-
sified corrcetly over the total number of anomalous instances present in the
test data. TPR is also known as sensitansty The false positive rate (FPR)
is the proportion of normal instances incorrectly classified as anomalous over
the total number of normal instances contained in the test data. The true
negative rate (TNR) is also called specificity. TPR, FPR, TNR and the falsc
negative rate (FNR) can be defined for the normal class. We illustrate all

measures related to the confusion matrix in Figure 2.13.

Sensitivity is also known as the hit rate Between sensitivity and specificity,
sensitivity is set at high prioritv when the system is to be protected at all
cost, and specificity gets more priority when efficiency is of major concern

[98]. Consequently, the aim of an IDS is to produce as many TPs and TNs
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Figure 2.12: Confusion matrix and related evaluation measures
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Figure 2.13: Illustration of confusion matrix in terms of their related cvaluation mea-
sures

as possible while trying to reduce the numbers of both FPs and FNs. The
majority of evaluation criteria use these variables and the relations among

them to model the accuracy of the IDSs.

o ROC Curves: The Receiver Operating Characteristics (ROC) analysis orig-
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mates from signal processing theory Its applicability is not limited only to
intrusion detection, but extends to a large number of practical fields such as
medical diagnosis, radiology, biomformatics as well as artificial intelligence
and data muinming In intrusion detection, ROC curves arc used on the onc
hand to visualize the relation between TP and FP rates of a classifier while
tuning it and also to compare the accuracy with two or more classifiers The
ROC space [100,101] uscs an orthogonal coordinate system to visuahze clas-
sifier accuracy. Figurc 2 14 illustrates the ROC approach normally uscd for

network anomaly detection methods and systems evaluation.
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Figure 2.14: Illustration of ROC measure where A. B, C represents the accuracy in
ascending order.

e Misclassification rate. This measurc attempts to estimate the probability of
disagreement between the true and predicted cases by dividing the sum of FN
and FP by the total number of pairs observed, ie., (TP+FP+FN+TN). In
other words, misclassification rate is defined as (FN+FP)/(TP+FP+FN+TN).

e Confusion Matrz: The confusion matrix 1s a ranking method that can be
applicd to any kind of classification problem. The sizc of this matrix depends
on the number of distinct classes to be detected The aim is to compare the
actual class labels against the predicted ones as shown in Figure 2.12 The

diagonal represents correct classification. The confusion matrix for intrusion
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detection 1s defined as a 2-by-2 matrix, since there are only two classes known
as wntrusion and normal [43,97,99] Thus, the TNs and TPs that represent
the correctly predicted cases hie on the matnx diagonal while the FNs and
FPs arc on the right and left sides As a side cffect of creating the confusion
matrix, all four values are displayed in a way that the relation between them

can be easily understood

e Precision, Recall and F-measure Precision 15 a measure of how a system
identifics attacks or normals A flagging 1s accurate if the identified instance
indeed comes from a malicious user, which 1s referred to as true positive
The final quantity of interest 1s recall, a measure of how many instances are
identified correctly (see Figure 2 12) Precision and recall are often inversely
proportional to cach other and there 1s normally a tradc-off between thesc
two ratios An algorithm that produces low precision and low recall 1s most
likely defective with conceptual errors in the underlying theory The types of
attacks that are not 1dentificd can indicate which arcas of the algorithm nced
morc attention Exposing these flaws and cstablishing the causes assist future

improvement

The F-measure mixes the properties of the previous two measures as the
harmonic mean of precision and recall [43,99] If we want to usc only onc
accuracy mectric as an cvaluation criterion, F-measure 1s the most preferable
Note that when precision and recall both reach 100%, the F-measure 1s the
maximum, 1 e, 1 meanmng that the classifier has 0% false alarms and detects
100% of the attacks Thus a good classificr 1s expected to obtain F-measure

as high as possible

(b) Performance The evaluation of an IDS s performance 1s an important task
It involves many 1ssues that go beyond the IDS itself Such issues include the
hardware platform, the operating system or even the deplovment of the IDS For a
NIDS, the most important evaluation criterion for 1ts performance 1s the system s
ability to process traffic on a high speed network with mimimum packet loss while
working 1n real time In real network traffic, the packets can be of various sizes,

and the effectiveness of a NIDS depends on 1ts ability to handle packets of any size
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In addition to the processing speed, the CPU and memory usage can also serve as
measurements of NIDS performance [102]. These are usually used as indirect mea-
sures that take into account the time and space complexities of intrusion detection
algorithms Finally, the performance of any NIDS is highly dependant upon (i) its
individual configuration, (1) the network 1t 1s monitoring, and (ii1) its position in

that network.

(c) Completeness: The completeness criterion represents the space of the vulner-
abilities and attacks that can be covered by an IDS. This criterion is very hard to
assess because having omniscience of knowledge about attacks or abuses of privi-
lege is impossible. The completencss of an IDS 1s judged against a complete set of
known attacks. The ability of an IDS is considered complete, if it covers all the

known vulnerabilities and attacks

(d) Timeliness: An IDS that performs its analysis as quickly as possible enables
the human analyst or the response engine to promptly react before much damage
is donc within a specific time period This prevents the attacker from subverting
the audit source or the IDS itself The response generated by the system while
combating an attack is very important. Since the data must be processed to discover
intrusions, there is always a dclay between the actual moment of the attack and
the response of the system. This is called total delay. Thus, the total delay is
the difference between tuyac a0d tresponse- Thus smaller the total delay, the better
an IDS 1s with respect to its response. No matter if an IDS is anomaly based or
signature based, there 1s always a gap between the starting time of an attack and

its detection.

2.9 Summary

In this chapter, we introduced basics of network anomalies and anomalies that
commonly arise in networks. We explain two major categories of network anomalies,
viz., performance rclated anomalics and sccurity related anomalies. We described
different network vulnerabilities that exist with their sources. An attacker exploits
these vulnerabilities to cause network failure or degrade performance. In addition,

we discuss sources of security related anomalies, types of network attacks, steps to
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launch an attack and a taxonomy of attacks We also introduce the prime category
of network anomaly detection methods with architecture, components, pros and
cons.Finally, we present various measures that are normally used in evaluation of
nctwork anomaly detection methods and systems. These mcasurcs arc used in

evaluation of our detection methods discussed in subsequent chapters in the thesis.
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Chapter 3

Related Work

This chapter starts with an overview of nctwork anomaly detection, discusses cx-
isting methods and systems under six major categories We also include a list of
tools with their features that are used by the network defenders and IDS developer
during the exccution of different steps to analyze network traffic. It concludes with

a list of recommendations for the defenders as well as developers and a summary.

3.1 Introduction

Due to advancements in Internet technologies and the concomitant, rise in the num-
ber of network attacks, network intrusion detection has become a significant research
issuc. In spite of remarkable progress and a large body of work, there are still many
opportunitics to advance the state-of-the-art in detecting and thwarting nctwork

based attacks [47].

The term anomaly-based ntrusion detection in networks refers to the problem
of finding exceptional network traffic patterns that do not conform to the expected
normal behavior. These nonconforming patterns are often referred to as anomalies,
outliers, exceptions, aberrations, surpriscs, peculiarities or discordant obscrvations
in various application domains (37,103] Out of these, anomalies and outliers are
two of the most commonly used terms in the context of anomaly based intrusion

detection in networks.

The statistics community has been studying the problem of detection of anoma-

lies or outliers from as early as the 19th century [104]. In recent decades, machine
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learming has started to play a significant role in anomaly detection A good number
of anomaly based intrusion detection techniques in networks have been developed
by researchers Many techniques work 1n specific domains although others are more

generice

3.1.1 Prior Surveys on Network Anomaly Detection

Network anomaly detection 1s a broad research area, which already boasts a num-
ber of surveys, review articles, as well as books An extensive survey of anomaly
dctection techniques developed 1n machine learning and statistics has been provided
by [105,106] Agyemang ct al [107] present a broad review of anomaly detection
techniques for numeric as well as symbolic data An extensive overview of neural
networks and statistics based novelty detection techniques 1s found 1n {108] Patcha
and Park [11] and Snyder [109] present survevs of anomaly detection techniques

used specifically for cyber intrusion detection

A good amount of rescarch on outlier detection 1n statistics 1s found in scveral
books [110-112] as well as survey articles [113-115] Exhaustive surveys of anomaly
detection 1n several domains have been presented m [37 116] Callado et al {117]
report major techniques and problems identified in IP traffic analysis, with an em-
phasis on apphcation detection Zhang ct al [118] present a survey on anomaly
detection methods in networks A review of flow based intrusion detection 1s pre-
sented by Sperotto et al [119] who explamn the concepts of flow and classified
attacks, and provide a detailed discussion of detection techniques for scans, worms,

Botnets and DoS attacks

An cxtensive survey of DoS and DDoS attack detection techniques 1s presented
in [120] Discussion of coordinated systems design and sccunty for network 1s
found n {121,122] Wu and Banzhaf [13] present an overview of applications of
computational intelligence methods to the problem of intrusion detection They 1n-
clude various methods such as artificial neural networks fuzsy systems, cvolutionary
computation, artificial immune systems, swarm intelligence, and soft computing A
general comparison of various survey works available in the literature with our work

1s shown 1n Table 3 1
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3.1.2 Motivation and Contributions

Even though there are several surveys available 1n the literature on network anomaly
detection [11 37 116] surveys such as {11 116], discuss far fewer detection methods
than we do 1n this chapter In [37], the authors discuss anomaly detection in general
and cover the network intrusion detection domain only bricfly None of the surveys
[11,37,116] include common tools used during execution of various steps in net-
work anomaly detection They also do not discuss approaches that combine several
mdividual methods to achicve better performance In this chapter, we present a
structured and comprehensive survey on anomaly based network intrusion detec-
tion 1n terms of general overview, methods, systems, and tools with a discussion of
challenges and recommendations The major contributions of the survey presented

in this chapter are the following

(a) Like the categorization of the network anomaly detection research suggested
mn [11,37,105 107, we classify detection methods and NIDSs into a number of
categorics In addition, we also provide an analysis of many methods in terms of
their capability and performance datasets used, matching mechanism, number

of parameter, and detection mechanism

(b) Most existing surveys do not cover ensemble approaches or data fusion for

network anomaly detection but we do

3.2 Methods and Systems for Network Anomaly

Detection

The classification of network anomaly detection methods and systems that we adopt
1s shown 1n Figure 31 This scheme 1s based on the nature of algorithms used It 1s
not straightforward to come up with a classification scheme for network anomaly de-
tection methods and systems, primarily because there 1s substantial overlap among
the mcthods used in the various classes in any particular scheme we may adopt
We have decided on six distinct classes of methods and systems We call them sta
tistical, classification based, clustering and outher based, soft computing knowledge-

based and combination learners Most methods have subclasses as given in Figure
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Table 3.1: A gencric comparison of our survey with cxisting survey articles
Methods Topics covered [105] [107] [108] [11] | (113] [114] [37] | [116] [119] [120] [13] [123] | [124] [ [125] | [53] | Our survey
/NIDSs
/Tools

Statistical v
Classification-based | /
Knowledge-based
Soft computing

Clustering-bascd vV IV IV |V
Enscmble-based
Fusion-based
Hybnid
Statistical N v
Classification-based
o Soft computing v
< NIDSs Knowledge-based
Data Mining
Enscmble-based
Hybrid
Tools Capturing,
Preprocessing,
Attack launching

v v

v
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NN
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NN
<N

Methods
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(c) Most cxisting surveys avoid featurce sclection methods, which are crucial in the network anomaly detection task We present scveral
techniques to determine feature relevance in intrusion datasets and compare them

(d) In addition to discussing detection methods, we provide several NIDSs with architectures for a few, their components and functionalities,
and also present a comparnson among existing NIDSs.

(c) We summarize tools used in various steps for network traffic anomaly detection.
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3.1. Figure 3.2 shows the approximate statistics of papers published during the
period 2000 to 2012 in each category.

I Network Anomaly Detection Methods |

) a. Parametric
—'1 Statistical H_ b. Non-parametric

[—1 Classification Based a. GAbased
b. ANN based
Clusteringand ¢. Fuzzyset
| OutlierBased d. Roughset
| soft Computing

a. Ruleandexpertsystem
—I Knowledge Based |J‘
a.Ensemble based

b.Fusion based
] Combination Learners ¢. Hybrid

Figure 3.1: Classification of network anomaly detection mcthods (GA-Genetic Algo-
rithm, ANN-Artificial Neural Network) ’

Numberof paperssurveyed

B Statistical 8 Classification @ Knowledge based

8 Softcomputing 8 Clustering & Combination learners

Figure 3.2: Statistics of the surveyed papers during the year 2000 to 2012

We distinguish between network anomaly detection methods and systems in
this work, although such a distinction is difficult to make sometimes. A network
intrusion detection system (NIDS) usually integrates a network intrusion detection
method within an architecture that comprises other associated sub-systems to build
a stand-alone practical system that can perform the entire gamut of activities needed
'for intrusion detection. We present several NIDSs with their architectures and

components as we discuss various anomaly detection categories.
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3.2.1 Statistical Methods and Systems

Statistically spcaking, an anomaly 1s an obscrvation which is suspected of being
partially or wholly irrelevant because it 1s not generated by the stochastic model
assumed [126]. Normally, statistical methods fit a statistical model (usually for
normal behavior) to the given data and then apply a statistical inference test to
determine if an unscen instance belongs to this model. Instances that have a low
probability to be generated from the learnt model based on the applied test statis-
tic are declared anomalies. Both parametric and nonparametric techniques have
been applied to design statistical models for anomaly detection. While paramet-
ric techniques assume knowledge of the underlying distribution and cstimatc the
parameters from the given data [127], nonparametric techniques do not generally

assume knowledge of the underlying distribution [128].

An example of a statistical IDS 1s HIDE [125]. HIDE is an anomaly based
network intrusion detection system, that uses statistical models and neural network
classifiers to detcct intrusions HIDE is a distributed system, which consists of
severa] tiers with each tier containing several Intrusion Detection Agents (IDAs).
IDAs are IDS components that monitor the activities of a host or a network. The
probe layer (1.e., top layer as shown in Figure 3.3) collects network traffic at a host
or in a nctwork, abstracts the traffic into a_sct of statistical variables to reflect
network status, and periodically generates reports to the event preprocessor The
event preprocessor layer receives reports from both the probe and IDAs of lower
tiers, and converts the information into the format required by the statistical model.
The statistical processor maintains a reference model of typical network activitics,
compares reports from the event preprocessor with the reference models, and forms
a stimulus vector to feed into the neural network classifier. The neural network
classificr analyzes the stimulus vector from the statistical model to decide whether
the network traffic is normal. The post-processor generates reports for the agents
at higher tiers. A major of attraction of HIDE is its ability to detect UDP flooding

attacks even with attack intensity as low as 10% of background traffic.

Of the many statistical methods and NIDSs [127,129-137], only a few are de-

scribed below in brief.
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Network
Collection& Statistical
abstractionof modeling & ANN

based classifier

|

Postprocessing |—-» Nexttier

traffic information

Reportfrom —n l

previous tier IDAs
Event

preprocessor

Userinterface

Figure 3.3: Architecture of HIDE system

Bayesian networks [138] are capable of detecting anomalies in a multi-class
setting. Several variants of the basic technique have been proposed for network in-
trusion detection and for anomaly detection in text data [37]. The basic techmique
assumes independence among different attributes. Several variations of the basic
technique that capture the conditional dependencies among different attributes us-
ing more complex Bavesian networks have also been proposed. For example, the
authors of [139] introduce an event classification based intrusion detection scheme
using Bayesian networks The Bayesian decision process improves detection de-
cision to significantly reduce false alarms. Manikopoulos and Papavassiliou [129]
mtroduce a hierarchical multi-tier multi-window statistical anomaly detection sys-
tem to opcrate automatically, adaptively, and pro-actively It applics to both wired
and wireless ad-hoc networks This system uses statistical modeling and neural
network classification to detect network anomalies and faults. The system achieves
high dctection ratc along with low misclassification rate when the anomaly traffic
intensity is at 5% of the background traffic but the detection rate is lower at lower

attack intensity levels such as 1% and 2%.

Association rule mining {140], conceptually a simple mcthod based on counting
of co-occurrences of items in transactions databases, has been used for one-class
anomaly detection by generating rules from the data in an unsupervised fashion.
The most difficult and dominating part of an association rule discovery algorithm is
to find the itemsets that have strong support Mahoney and Chan [131] present an
algorithm known as LERAD that learns rules for finding rare events in time-series

data with long range dependencies and finds anomalies in network packets over
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TCP sessions. LERAD uses an Apriori-like algorithm [140] that finds conditional
rules over nominal attributes in a time series, e.g , a sequence of inbound client
packets. The antecedent of a created rule 1s a conjunction of equalities, and the
conscquent is a set of allowed valucs, ¢ g., 1f port=80 and word3=HTTP/1.0 then
word1=GET or POST. A value is allowed if it is observed in at least one training
instance satisfying the antecedent. The idea is to identify rare anomalous events:
thosc which have not occurred for a long time and which have high anomaly score.
LERAD is a two-pass algorithm. In the first pass, a candidate rule sct is gencrated
from a random sample of training data comprised of attack-free network traffic. In
the second pass, rules are trained by obtaining the set of allowed values for each

antecedent.

A payload-based anomaly detector for intrusion detection known as PAYL 1s
proposed in [132]. PAYL attempts to detect the first occurrence of a worm cither
at a network system gateway or with an internal network from a rogue device
and to prevent its propagation. It employs a language-independent n-gram based
statistical modecl of sampled data streams. In fact, PAYL uscs only a 1-gram modcl
(ic., it looks at thc distribution of valucs contained within a single byte) which
requires a linear scan of the data stream and a small 256-element histogram. In
other words, for each ASCII character in the range 0-255, it computes its mean
frequency as well as the variance and standard deviation. Since payloads (ic.,
arriving or departing contents) at different ports differ in length, PAYL computes
these statistics for each specific observed payload length for each port open in
the system. It first observes many exemplar payloads during the training phase
and computes the pavload profiles for each port for cach pavload length During
detection, each incoming payload is scanned and statistics are computed. The new
payload distribution 1s compared against the model created during training. If
there is a significant difference, PAYL concludes that the packet is anomalous and
gencerates an alert. The authors found that this simple approach works surprisingly

well.

Song ct al [133] propose a conditional anomaly detection method for computing
differences among attributes and present three different expectation-maximization

algorithms for learning the model. They assume that the data attributes are parti-
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tioned 1nto ndicator attributes and enwmronmental attributes based on the decision
taken by the user regarding which attributes indicate an anomaly The method
leatns the typical indicator attribute values and observes subsequent data points,
and labcels them as anomalous or not bascd on the degrec the indicator attribute
values differ from the usual indicator attribute values However, 1f the indicator
attribute values are not conditioned on environmental attributes values, the indica-
tor attributes arc 1gnored effectively The precision/recall of this method 1s greater

than 90 percent

Lu and Ghorbani [135] present a network signal modeling technique for anomaly
detection by combining wavelet approximation and system identification theory
They define and generate fifteen relevant traffic features as input signals to the
system and model daily tiraffic based on these featuies The output of the system 1s
the deviation of the current input signal from the normal or regular signal behavior
Residuals are passed to the IDS engine to take decisions and obtain 95% accuracy in
the daily traffic In addition, a nonparametric adaptive cumulative sum (CUSUM)

method for detecting network intrusions 1s discussed at {137]

In addition to the detection methods, there are several statistical NIDSs As
mentioned carlier, & NIDS includes one or more intrusion detection methods that arc
integrated with other required sub-systems nccessary to create a practical suitable

system We discuss a few below

N@G (Network at Guard) [141] 1s a hybrid IDS that exploits both misuse and
anomaly approaches N@G has both network and host sensors Anomaly based
mtrusion detection 15 pursued using the chi-square technique on various network
protocol parameters It has four dctection methodologics, viz  data collection,
signature based detection, network access policy violation and protocol anomaly
detection as a part of 1ts network sensor It includes audit trails, log analysis,
statistical analysis and host access policies as components of the host sensor The
systcm has a scparatc 1IDS scrver, 1¢ a management console to aggregate alerts
from the various sensors with a user interface, a middle-tier and a data management
component [t provides real time protection against malicious changes to network
scttings on clicnt computers which includes unsolicited changes to the Windows

Hosts file and Windows Messenger scrvice
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Flow-based statistical aggregation scheme {FSAS) [142] is a flow-based statisti-
cal IDS. It comprises of two modules: feature generator and flow-based detector. In
the feature generator, the event preprocessor module collects the network traffic of
a host or a nctwork The cvent handlers gencrate reports to the low management
module. The flow management module efficiently determines if a packet is part
of an existing flow or it should generate a new ﬂov'v key. By inspecting flow keys,
this module aggregates flows together, and dynamically updates per-flow account-
ing measurements The cvent time module periodically calls the feature extraction
module to convert the statistics regarding flows into the format required by the sta-
tistical model. The neural network classifier classifies the score vectors to prioritize
flows with the amount of maliciousness. The higher the maliciousness of a flow, the

higher is the possibility of the flow being an attacker

Advantages of statistical nctwork anomaly detection include the following (i)
They do not require prior knowledge of normal activities of the target system.
Instead, they have the ability to learn the expected behavior of the system from
observations. (u) Statistical methods can provide accurate notification or alarm
generation of malicious activitics occurring over long periods of time, subject to
setting of appropriate thresholding or parameter tuning (iii) They analyze the
traffic based on the theory of abrupt changes, i.e., they monitor the traffic for a
long time and rcport an alarm if any abrupt change (ic, significant deviation)

occurs

Drawbacks of the statistical model for nctwork anomaly detection include the
following. (i) They are susceptible to being trained by an attacker in such a way that
the network traffic generated during the attack is considered normal. (ii) Setting the
values of the different parameters or metrics is a difficult task, especially because
the balance between false positives and falsc negatives is an issue. Morecover, a
statistical distribution per variable is assumed, but not all behaviors can be modeled
using stochastic methods. Furthermore, most schemes rely on the assumption of
a quasi-stationary process [11], which 1s not always realistic. (iii) It takes a long
time to report an anomaly for the first time because the building of the models
requires extended time. (iv) Several hypothesis testing statistics can be applied

to detect anomalies. Choosing the best statistic is often not straightforward. In
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particular, as stated in [136] constructing hypothesis tests for complex distributions
that are required to fit high dimensional datasets is nontrivial. (v) Histogram
based technmiques are relatively simple to implement, but a key shortcoming of such
techniques for multivariate data is that they are not able to capturc interactions

among the attributes

A comparison of a few statistical network anomaly detection methods is given

in Table 3.2

Table 3.2: Comparison of statistical network anomaly detection methods

Author (s) Year of | No of | w z y Data Dataset z Detection
publs- param- types used method
cation eters

Eskin [127] 2000 2 [e] N P Numeric | DARPA9S | C, Probabihity

Model

Manikopoulos 2002 3 D N P Numeric | Real-life Cs, Cy Neural

and Papavassiiou Network

[129]

Mahoney and | 2003 2 C N P - DARPAY9 | C; LERAD

Chan [131] algorithm

Chan et al [130] 2003 2 C N P Numeric | DARPAY9S | C, Learning

Rules

Wang and Stolfo | 2004 3 C N P Numeric | DARPA99 | C; Payload

(132] based

algorithm

Song et al [133] 2007 3 C N P Numeric | KDDcup99| Synthetic | Gaussian

mtrusive Mixture
pattern Model

Chhabra et al 2008 2 D N P Numeric | Real time | Ce FDR

[134] method

Lu and Ghorbam | 2009 3 C N P,F | Numeric | DARPA9S | C, Wavelet

{135]) Analysis

Wattenberg et al 2011 4 C N P Numeric | Real-time Co GLRT

{136] Model

Yu [137] 2012 1 C N P Numeric | Real-ume | C; Adaptive

CUSUM

w-indicates centralized (C) or distributed (D) or others (O)

x-the nature of detection as real time (R) or non-real time (N)

y-characterizes packet-based (P) or flow-based (F) or hybnd (H) or others (O)

z-represents the hist of attacks handled Cj-all attacks, Cz-demal of service Ca-probe, Cy~user to root,

Cs-remote to local and Cg-anomalous

3.2.2 Classification-based Methods and Sysi:ems

Classification is the problem of identifying which of a set of categories a new ob-
servation belongs to, on the basis of a training set of data containing observations
whose category membership is known. Assuming wc have two classes whose in-
stances are shown as + and —, and each object can be defined in terms of two
attributes or features x; and x5, linear classification tries to find a line between the

classes as shown in Figure 3.4(a). The classification boundary may be non-linear
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as in Figure 3.4(b). In intrusion detection, the data is high dimensional, not just

two. The attributes are usually mixed, numeric and categorial as discussed earlier.
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Figure 3.4: Linear and nonlincar classification in 2-D

Thus, classification techniques are basced on establishing an explicit or implicit
model that enables categorization of network traffic patterns into several classes
[143-148]. A singular characteristic of these techniques is that they need labeled
data to train the behavioral model, a procedure that places high demands on re-
sources [149]. In many cases, the applicability of machine learning principles such as
classification coincides with that of statistical techniques, although the former tech-
nique is focused on building a model that improves its performance on the basis of
previous results [116]. Several classification based techniques (e.g., k-ncarest neigh-
bor, support vector machines, and decision trees) have been applied to anomaly
detection in network traffic data.

An example of classification based IDS is Automated Data Analysis and Mining
(ADAM) [124] that provides a testbed for detecting anomalous instances. An archi-
tecture diagram of ADAM is shown in Figure 3.5. ADAM cxploits a combination
of classification techniques and association rule mining to discover attacks in a tcp-
dump audit trail. First, ADAM builds a repository of “normal” frequent itemsets
from attack-free periods. Second, ADAM runs a sliding-window based on-line algo-
rithm that finds frequent itemscts in the connections and compares them with those
stored in. the normal itemset repository, discarding those that are deemed normal.
ADAM uses a classifier which has been trained to classify suspicious connections as
either a known type of attack or an unknown type or a false alarm.

A few classification-based network anomaly detection methods and NIDSs are

described below in brief.
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Figure 3.5: Architecture of ADAM system

Abbes et al [150] introduce an approach that uses decision trees with protocol
analysis for effective intrusion detection. They construct an adaptive decision tree
for cach application layer protocol. Detection of anomalics classifics data records
into two classes benign and anomalics. The anomalics include a large varicty of
types such as DoS, scans, and Botnets. Thus, multi-class classifiers are a natu-
ral choice, but like any classifier they require expensive hand-labeled datasets and
are also not able to identify unknown attacks. Wagner et al. [151] usc one-class
classifiers that can detect new anomalies, i.e., data points that do not belong to
the learned class. In particular, they use a one-class SVM classifier proposed by
Schélkopf et al. [152]. In such a classifier, the training data is presumed to belong
to only onc class, and the lcarning goal during training is to determinc a function
which is positive when applied to points on the circumscribed boundary around
the training points and negative outside. This is also called semsi-supervised clas-
sification. Such an SVM classifier can be used to identify outliers and anomalics.
The authors develop a special kernel function that projects data points to a higher
dimension before classification. Their kernel function takes into consideration prop-
erties of NetFlow data and enables determination of similarity between two windows

of IP flow records. They obtain 92% accuracy on average for all attacks classes.

Classification-based anomaly detection methods can usually give better results
than unsupervised mcthods (c.g, clustering-based) becausc of the usc of labeled
training examples In traditional classification, new information can be incorporated
by retraining with the entire dataset. However, this is time-consuming. Incremen-

tal classification algonthms [153] make such training more efficiently. Although
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classification-based methods are popular, they cannot detect or predict unknown

attack or event until relevant training information is fed for retraining

For a comparison of several classification-based network anomaly detection

methods, see Table 3 3.

Table 3.3: Comparison of classification-based network anomaly detection methods

Author (s) Year of | No of | w z y Data Dataset z Detection

publi- param- types used method

cation eters
Tong et al | 2005 4 o N P Numeric DARPA99, C KPCC model
[143) TCPSTAT
Gaddam et | 2007 3 C N P Numeric NAD, DED, | C; k-means+IDJ3
al (144] MSD
Khan et al 2007 3 C N P Numeric DARPAY8 Ci DGSOT +
(154] SVM
Das et al | 2008 3 [0) N P Categorical] KDDcup99 Cy APD Algo-
[145) rithm
Lu and Tong | 2009 2 O N P Numeric DARPA99 Ci CUSUM-EM
[146]
Qadeer et al 2010 - C R P - Real time Ca Packet analysis
(147) tool
Wagner et | 2011 2 C R F Numeric Flow Traces | Ca Kernel
al [151] OCSVM
Muda et al 2011 2 [e) N [e] Numeric KDDcup99 Cy KNMNB  algo-
[155] rithm
Kang et al 2012 2 [e} N P Numeric DARPA9S [&) Differentiated
[148] SVvDD
w-indicates centrahzed (C) or distributed (D) or others (O)
x-the nature of detection as real time (R) or non-real time (N)
y-characterizes packet-based (P) or flow-based (F) or hybrid (H) or others (O)
z-represents the hist of attacks handled Cj-all attacks, Cp-demal of service, C3-probe, Cy-user to root,

and Cs-remote to local

Several authors have used a combination of classifiers and clustering for net-
work intrusion detection leveraging the advantages of the two methods For exam-
ple, Gaddam et al. [144] present a method to detect anomalous activities based
on a combined approach that uscs the k-means clustering algorithm and the ID3
algorithm for decision tree learning [156]. In addition to descriptive features, each
data instance includes a label saying whether the instance is normal or anomalous.
The first stage of the algorithm partitions the training data into k clusters usin;g
Euclidean distance similarity. Obviously, the clustering algorithm docs not consider
the labels on instances The second stage of the algorithm builds a decision tree
on the instances in a cluster. It does so for each cluster so that k separate decision
trees are built. The purposc of building decision trees is to overcome two problems
that k-means faces: a) forced assignment: if the value of k is lower than the number

of natural groups, dissimilar instances are forced into the same cluster, and b) class

domanance, which arises when a cluster contains a large number of instances from
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one class, and fewer numbers of instances from other classes The hypothesis 1s
that a decision tree trained on each cluster learns the sub groupings (if any) present
within each cluster by partitioning the instances over the feature space To obtain
a final decision on classification of a test mnstance, the decisions of the k-means and
ID3 algorithms are combined using two rules (a) the nearest-neighbor rule and
(b) the nearest-consensus rule The authors claim that the detection accuracy of
the k~-mcans+ID3 method 1s very high with an cxtremely low false positive rate on

network anomaly data

Suppoit vector machines (SVMs) arc very successful maximum margin lincar
classifiers [157]) However, SVMs take a long time for tramning when the dataset
1s very large Khan et al [154] reduce the training time for SVMs when clas-
sifying large intrusion datasets by using a hieraichical clustering method called
Dynamically Growing Sclf-Organizing Trec (DGSOT) intertwined with the SVMs
DGSOT, which 1s based on artificial neural networks 1s used to find the boundary
points between two classes The boundarv points are the most qualified points to
train SVMs An SVM computes the maximal maigins scparating the two classcs of
data points Only points closest to the margins, called support vectors affect the
computation of these margins Other powmnts can be discarded without affecting the
final results Khan et al approximate support vectors by using DGSOT They use
clustering 1n parallel with the training of SVMs, without waiting till the end of the
building of the tree to start traiming the SVM The authors find that their approach
significantly improves training time for the SVMs without sacrificing generalization

accuracy, 1n the context of network anomaly detection

In addition to the several detection methods viz noted above, we also discuss
a classification based IDS known as dependable network intrusion detection system
(DNIDS) [158] This IDS 1s developed based on the Combined Strangeness and
Isolation measure of the k-Nearest Neighbor (CSI-KNN) algorithm DNIDS can
effectively detect network intrusion while providing continued service under attack
The 1ntrusion detcction algorithm analyzes charactenistics of network data by em-
ploying two mcasurcs strangeness and i1solation These measures arc used by a
correlation unit to raise intrusion alert along with the confidence information For

faster mformation, DNIDS exploits multiple CSF-KNN classifiers 1in parallel It

61



Chapter 3. Related Work

also includes a intrusion tolerant mechanism to monitor the hosts and the classi-
fiers running on them, so that failure of any component can be handled carefully.
Sensors capture network packets from a network segment and transform them into
conncction-based vectors The Detector is a collection of CSI-KNN classifiers that
analyze the vectors supplied by the sensors The Manager, Alert Agents, and Main-
tenance Agents are designed for intrusion tolerance and are installed on a secure
administrative server called Station The Manager executes the tasks of gencrating

mobile agents and dispatching them for task execution

Some advantages of classification based anomaly detection methods are the fol-
lowing (i) These techniques arc flexible for training and testing They arc capable
of updating their execution strategies with the incorporation of new information.
Hence, adaptability is possible. (1) They have a high detection rate for known

attacks subject to appropriate threshold sctting.

Though such methods are popular they have the disadvantages including the
following. (i) The techniques arc highly dependent on the assumptions made by
the classifiers (ii) They consume more resources than other techniques. (iii) They
cannot detect or predict unknown attack or event until relevant training information

is fed.

3.2.3 Clustering and Outlier-based Methods and Systems

Clustering 1s the task of assigning a set of objects into groups called clusters so that
the objects in the same cluster arc more similar in some sensc to each other than to
those in other clusters. Clustering is used in explorative data mining. For example,
if we have a set of unlabeled objects in two dimensions, we may be able to cluster
them into 5 clusters by drawing circles or ellipses around them, as in Figure 3.6(a).
Outliers arc those points in a dataset that arc highly unlikely to occur given a
model of the data, as in Figure 3 6(b) Examples of outliers in a simple dataset are
seen in [159]. Clustering and outlier finding are examples of unsupervised machine

learning.

Clustering can be performed in network anomaly detection in an offline environ-

ment. Such an approach adds additional depth to the administrators’ defenses, and
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Figure 3.6: Clustering and outliers in 2-D, where C,s are clusters in {a) and O,s are
outliers in (b)

allows them to more accurately detcrmine threats against their network through
the use of multiple methods on data from multiple sources. Hence, the extensive
amount of activities that may be needed to detect intrusion near real time in an

online NIDS may be obviated, achicving efficiency [160].

For example, Minnesota INtrusion Detection System (MINDS) (53] 1s a data
mining bascd system for detecting network intrusions. The architecture of MINDS
is given in Figure 3.7 It accepts NetFlow data collected through flow tools as input.
Flow tools only capture packet header information and build one-way sessions of
flows. The analyst uses MINDS to analyze these data files in batch mode. The
rcason for running the systecm in batch mode 1s not duc to the time it takes to
analyze these files, but because it is convenient for the analyst to do so Before
data is fed into the anomaly detection module, a data filtering step is executed to

remove network traffic in which the analyst is not interested.

The first step of MINDS 1s to extract important features that are used. Then,
it summarizes the features based on time windows. After the feature construction
step, the known attack detection module is used to detect network conncctions -
that correspond to attacks for which signatures are available, and to remove them
from further analysis. Next, an outlier technique is activated to assign an anomaly
scorc to each nctwork connection. A human analyst then looks at only the most
anomalous connections to determine if they are actual attacks or represent other
interesting behavior. The association pattern analysis module of this system is

dedicated to summarize the network connections as per the assigned anomaly rank.
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The analyst provides feedback after analyzing the summaries created and decides
whether these summaries are helpful in creating new rules that may be used in

known attack detection

Feature
4 Extraction
Labelinfo
[ Capture &Storage1 l Detection Mechanism
4
Hnown Attacks Anomaly
l ’ {
Filtering | 7/ Score
J ! Detected Score Association
’ known atiack Pattern Anatysis
| MINDS | - T
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Figure 3.7: Architecturc of MINDS system

Clustering techmques arc frequently used in anomaly detection These include
single-link clustering algorithms k-means (squared error clustering), and hierarchi-

cal clustering algorithms to mention a few [31,63,161-164]

Sequeira and Zak: [165] present an anomaly based intrusion detection system
known as ADMIT that detects intruders by creating user profiles It keeps track of
the sequence of commands a uscr uses as he/she uses a computer A user profile
1s represented by clustering the sequences of the user’s commands The data col-
lection and processing are thus host based The system clusters a user s command
sequence using longest common subsequence (LCS) as the sumilanty metnc It uses
a dynamic clustering algorithm that creates an 1mmitial set of clusters and then refines
them by splitting and merging as necessary When a new user types a sequence of
commands, 1t compares the sequence to profiles of users it already has If 1t 1s a
long scquence, 1t 1s broken up to a number of smaller scquences A scquence that
1s not similar to a normal uscr’s profile 1s considered anomalous One anomalous
sequence 1s tolerated as noise, but a sequence of anomalous sequences typed by
one single user causes the user to be marked as masquerader or a concept dnft
The system can also usc incremental clustering to detect masqueraders Zhang ct
al [163] report a distributed mtrusion detection algorithm that clusters the data
twice The first clustering chooses candidate anomalies at Agent IDSs, which are

placed 1n a distributed manner 1n a network and a second clustering computation
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attempts to identify true attacks at the central IDS. The first clustering algorithm
is essentially the same as the one proposed by [166]. At each agent IDS, small
clusters are assumed to contain anomalies and all small clusters are merged to form
a single candidate cluster containing all anomalics The candidate anomalics from
various Agent IDSs are sent to the central IDS, which clusters again using a simple
single-link hierarchical clustering algorithm. It chooses the smallest k clusters as
containing true anomalics. They obtain 90% attacks detection rate on test intrusion

data.

Worms are oftcn intelligent enough to hide their activitics and cvade detection
by IDSs. Zhuang et al. [167] proposc a method called PAIDS (Proximity-Assisted
IDS) to identify the new worms as they begin to spread. PAIDS works differently
from other IDSs and has been designed to work collaboratively with existing IDSs
such as an anomaly based IDS for enhanced performance. The goal of the designers
of PAIDS is to identify new and intelligent fast-propagating worms and thwart their
spread, particularly as the worm is just beginning to spread. Neither signature-
based nor anomaly based tcchniques can achicve such capabilitics. Zhuang ct al.’s
approach is bascd mainly on the obscrvation that during the starting phase of a
new worm, the infected hosts are clustered in terms of geography, IP addresses and

maybe, even DNSs used.

Some advantages of using clustering are the following. (i) For a partitioning
approach, if £ can be provided accurately, the task is easy. (ii) Incremental cluster-
ing (in supcrvised mode) techniques arc effective for fast response gencration. (iii)
It is advantageous in case of large datasets to group into similar number of classes
for detecting network anomalies, because it reduces the computational complexity
during intrusion detection. (iv) It provides a stable performance in comparison to

classifiers or statistical methods.

Drawbacks of clustering based methods include the following. (i) Most tech-
niques have been proposcd to handle continuous attributes only. (ii) In clustering
based intrusion detection techniques, an assumption is that the larger clusters are
normal and smaller clusters are attack or intrusion [64]. Without this assumption,
it is difficult to evaluate the technique. (iii) Usc of an inappropriate proximity mea-

sure affects the detection rate negatively (iv) Dynamic updation of profiles is time
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consuming.

Several outlier based network anomaly identification techniques are avaiiable in
[115). When we use outlier based algorithms,_the assumption is that anomalies are
uncommon events in a network. Intrusion datasets usually contain mixed, numeric
and categorial attributes. Many early outlier detection algorithmé worked with
continuous attributes only; they ignored categorial attributes or modeled them in

manners that caused considerable loss of information.

To overcome this problem, Otey et al. [168] develop a distance measure for data
containing a mix of categorical and continuous attributes and use it for o.utlier based
anomaly detection. They define an anomaly score which can be used to identify
outliers in the mixed attribute space by considering dependencies among attributes
of different types. Their anomaly score function is based on a global model of
the data that can be easily constructed by combining local models built indepen-
dently at each node. They develop an efficient one-pass approximation algorithm
for anomaly detection that works efficiently in distributed detection environments
with very little loss of detection accuracy. Each node computes its own outliers and
the inter-node communication needed to compute global outliers is not significant.
In addition, the authors show that their approach works well in dynamic network
traffic situations where data, in addition to being streaming, also changes in nature
as time progresses leading to concept drift.

Some advantages of outlier-based anomaly detection are the following. (i) It is
eaéy to detect outliers when the datasets are smaller in size. (ii) Bursty and isolated
attacks can be identified efficiently using this method.

Drawbacks of outlier-based anomaly detection include the following. (i) Most
techniques use both clustering and outlier detection. In such cases the compiexity
may be high in comparison to other techniques. (ii) The techniques are highly
parameter dependent.

A comparison of a few clustering and outlier-based network anomaly detection

methods is given in Table 3.4.
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Table 3.4: Comparison of clustering and outlicr-based network anomaly detection meth-

ods

Author (s) Year of | No of | w z y Data types Dataset z Detection
publz- param- used method
cation eters

Sequeira 2002 4 C R P Numeric, Real hfe Synthetic ADMIT

and Zaki Categorical intrusions

[165)

Zhang et | 2005 2 D N P Numeric KDDcup99 | C, Cluster-

al [163] based DIDS

Leung and | 2005 3 C N P Numeric KDDcup99 | C; fpMAFIA al-

Leckie {164] gorithm

Otey et al 2006 5 C N P Mixed KDDcup99 | C; FDOD algo-

{168] 1ithm

Jiang et al 2006 3 [¢] N P Mixed KDDcup99 | C) CBUID algo-

[7} nthm

Chen and | 2008 - [6] N - - - Cs AAWP

Chen [169] model

Zhang et | 2009 2 o] N P Mixed KDDcup99 | C KD algo-

al [63] rithm

Zhuang et | 2010 2 R [¢] P - Real time Ce PAIDS

al [167] model

Casas et al 2012 2 N C F Numeric KDDcup99 | C; UNIDS

[31) Real time method

w-indicates centralized (C) or distributed (D) or others (O)

x-the nature of detection as real time (R} or non-real time (N)

y-characterizes packet-based (P) or flow-based (F) or hybrid (H) or others (O)

z-represents the list of attacks handled C;-all attacks Ca-denial of service Cj-probe, Cy-user to root,

Cs-remote to local and Cg-worms

3.2.4 Soft Computing-based Methods and Systems

Soft computing techniques are suitable for network anomaly detection because often
one cannot find exact solutions. Soft computing is usually thought of as encompass-
ing methods such as genctic algorithms, artificial ncural networks, fuzzy scts, and
rough sets. We describe several soft computing methods and systems for network

anomaly detection below.

Genetic Algorithm Approaches

Genctic algorithms arc population-based adaptive heuristic search techniques based
on cvolutionary ideas. The approach begins with conversion of a problem into a
framework that uses a chromosome like data structure. Balajinath and Raghavan
[170] present a genetic intrusion detector (GBID) based on learning of individual
user bchavior User bchavior is described as 3-tuple <matching index, entropy
index, newness index> and is learnt using a genetic algorithm. This behavior

profile is used to detect intrusion based on past behavior. Khan [171] uses genetic

algorithms to develop rules for network intrusion detection. A chromosome in an
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mmdividual contains genes corresponding to attributes such as the service, flags,
logged in or not, and super-user attempts Khan concludes that attacks that are

common can be detected more accurately compared to uncommon attributes

Artificial Neural Networks Approaches

Artificial neural networks (ANN) are motivated by the recognition that the human
brain computes in an entirelv different wav from the conventional digital computer
[172] The brain organizes 1ts constituents, known as neurons, so as to perform cer-
tain computations (e g, pattern recognition, perception, and motor control) many
times faster than the fastest digital computer To achicve good performance, real
ncural networks employ massive interconnections of ncurons Ncural networks ac-
quire knowledge of the environment through a process of learning, which systemat-
1cally changes the interconnection strengths o1 synaptic weights of the network to

attain a desired design objective

An example of ANN-based IDS 1s RT-UNNID [173] This system 15 capable of
intelhigent real time intrusion detection using unsupervised neural networks (UNN)
The architecture of RT-UNNID 1s given in Figure 38 The first module captures
and preprocesses the real time network traffic data for the protocols TCP, UDP
and ICMP It also extracts the numeric features and converts them into binary or
normahzed form The converted data 1s sent to the UNN based detection engine that
uses adaptive resonance theory (ART) and self-orgamzing map (SOM) [174, 175]
neural networks Finally, the output of the detection engine 1s sent to the responder
for rccording 1n the user’s system log file and to gencrate alarm when detecting
attacks RT-UNNID can work 1n rcal time to dctect known and unknown attacks

1n network traffic with high detection rate

Cannady’s approach [176] autonomously lcarns new attacks rapidly using modi-
fied reinforcement learning His approach uses feedback for signature update when a
new attack 1s encountered and achieves satisfactory results An improved approach
to detect network anomalies using a hierarchy of ncural networks s introduced 1n
[177] The neural networks are trained using data that spans the entire normal
space and are able to recognize unknown attacks effectively Liu et al [178] re-

port a real time solution to detect known and new attacks in network traffic using
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Figure 3.8: Architecture of RT-UNNID system

unsupervised neural nets. It uses a hierarchical intrusion detection model using
principal components analysis (PCA) neural networks to overcome the shortcom-
ings of single-level structures. However, Sun et al. [179] present a wavelet ncural
network (WNN) based intrusion detection method. It reduces the number of the
wavelet basic functions by analyzing the sparseness property of sample data to op-
timize the wavelet network to a large extent. The learning algorithm trains the

network using gradient descent.
In addition to the detection methods, we discuss a few IDSs below.

Network self-organizing maps (NSOM) [180] is a network IDS developed using
self-organizing maps (SOM). It detects anomalies by quantifying the usual or ac-
ceptable behavior and flags irrcgular behavior as potentially intrusive. To classify
real time traffic, it uses a structured SOM. It continuocusly collects network data
from a network port, preprocesses that data and selects the features necessary for
classification. Then it starts the classification process a chunk of packets at a time
and then sends the resulting classification to a graphical tool that portrays the ac-
tivities that are taking place on the network port dynamically as it receives more
packets. The hypothesis is that routine traffic that represents normal behavior
would be clustered around onc or more cluster centers and any irregular traffic rep-
resenting abnormal and possibly suspicious behavior would be clustered in addition
to the normal traffic clustering. The system is capable of classifying regular vs.

irregular and possibly intrusive network traffic for a given host.

POSEIDON (PAYL Over SOM for Intrusion DetectiON) [181] is a two-tier

network intrusion detection system. The first tier consists of a self-organizing map
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(SOM), and is used exclusively to classify payload data. The second tier consists of
a light modification of the PAYL system [132]. Tests using the DARPA99 dataset
show a higher detection rate and lower number of false positives than PAYL and

PHAD [182)

Fuzzy Set Theoretic Approaches

Fuzzy network intrusion detection systems exploit fuzzy rules to determine the
likelihood of specific or general network attacks [183,184]. A fuzzy input set can be

defined for traffic in a specific network.

Tajbakhsh et al. [185] describe a novel method for building classifiers using fuzzy
association rules and usc it for network intrusion detection. The fuzzy association
rule sets are used to describe different classes’ normal and anomalous. Such fuzzy
association rules are class association rules where the consequents are specified
classes. Whether a training instance belongs to a specific class i1s determined by
using matching metrics proposed by the authors. The fuzzy association rules are
induced using normal training samples. A test sample is classified as normal if the
compatibility of the rule set generated is above a certain threshold; those with lower
compatibility arc considered anomalous. The authors also proposc a new method

to speed up the rule induction algorithm by reducing items from extracted rules.

Mabu ct al. report a novel fuzzy class-association-rule mining method based on
genctic network programming (GNP) for detecting network intrusions [186]. GNP
is an evolutionary optimization technique, which uses directed graph structures
instead of strings in standard genetic algorithms leading to enhanced representation
ability with compact descriptions derived from possible node reusability in a graph.
Xian et al. [187] present a novel unsupervised fuzzy clustering method based on
clonal selection for anomaly detection. The method is able to obtain global optimal

clusters more quickly than competing algorithms with greater accuracy.

In addition to the fuzzy set theoretic detection methods, we discuss two IDSs,

viz., NFIDS and FIRE below.

NFIDS [188] is a neuro-fuzzy anomaly-based network intrusion detection sys-

tem. It comprises three tiers. Tier-I contains several Intrusion Detection Agents
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(IDAs) IDAs are IDS components that monitor the activities of a host or a network
and report the abnormal behavior to Tier-I1. Tier-11 agents detect the network sta-
tus of a LAN based on the network traffic that they observe as well as the reports
from the Tier-I agents within the LAN. Tier-III combincs higher-lcvel reports, cor-
relates data, and sends alarms to the user interface There are four main types of
agents in this system: TCPAgent, which monitors TCP connections between hosts
and on the network, UDPAgent, which looks for unusual traffic involving UDP data,
ICMPAgent, which monitors ICMP traffic and PortAgent, which looks for unusual

services in the network

Fuzzy intrusion recognition enginc (FIRE) [183] 1s an anomaly-bascd intrusion
detection system that uses fuzzy logic to assess whether malicious activity is taking
place on a network. The system combines simple network traffic metrics with fuzzy
rules to determine the likelihood of specific or genceral network attacks. Once the
metrics are available, they are evaluated using a fuzzy set theoretic approach. The
system takes on fuzzy network traffic profiles as inputs to its rule set and report

maliciousness.

Rough Set Approaches

A rough set is an approximation of a crisp set (1.e., a regular set) in terms of a pair
of sets that are its lower and upper approximations In the standard and original
version of rough set theory [189], the two approximations are crisp sets, but in other A
variations the approximating sets may be fuzzy sets. The mathematical framework
of rough sct theory cnables modeling of relationships with a minimum number of

rules.

Rough scts have two useful features {190]: (1) cnabling lcarning with small
size training datasets (ii) and overall simplicity. They can be applied to anomaly
detection by modeling normal behavior in network traffic. For example, in [191], the
authors present a fuzzy rough C-means clustering technique for network intrusion
detection by integrating fuzzy sct thecory and rough sct theory to achicve high
detection rate. Chen et al present a two-step classifier for network intrusion
detection [192]. Initially, it uses rough set theory for feature reduction and then a

support vector machine classifier for final classification. They obtain 89% accuracy
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on network anomaly data.

Advantages of soft computing based anomaly detection methods include the
following. (i) Such learning systems detect or categorize persistent features without
any feedback from the environment. (ii) Due to the adaptive nature of ANNs, it 1s
possible to train and test instances incrementally using certain algorithms. Multi-
level neural network based techniques arc more efficient than single level neural
networks. (iii) Unsupervised learning using competitive neural networks is effective
in data clustering, feature extraction and similarity detection. (iv) Rough sets are
uscful in resolving inconsistency in the datasct and to gencrate a minimal, non-

redundant and consistent rule set

Somc disadvantages of soft computing mcthods are the following. (i) Over-
fitting may happen during ncural network training (1) If a credible amount of
normal traffic data is not available, the tramning of the techniques becomes very
difficult. (1ii) Most methods have scalability problems. (iv) Rough set based rule
generation suffers from proof of completencss. (v) In fuzzy association rule based
techniques, reduced, relevant rule subset identification and dynamic rule updation

at runtime is a difficult task.

Table 3.5 gives a comparison of several soft computing-based anomaly detection

methods.

3.2.5 Knowledge-based Methods and Systems

In knowledge-based methods, network or host cvents arc checked against predefined
rules or patterns of attack The goal is to represent the known attacks in a gen-
eralized fashion so that handling of actual occurrences become easier. Examples
of knowledge-based methods are expert systems, rule based, ontology based, logic

based and statce-transition analysis [195-198]

These techmques search for instances of known attacks. by attempting to match
traffic patterns with pre-determined attack representations. The scarch begins like
other intrusion detection techniques, with a complete lack of knowledge. Subsequent
matching of activities against a known attack helps acquire knowledge and enter

into a region with higher confidence. Finally, it can be shown that an event or
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Table 3.5: Comparison of soft computing-based nctwork anomaly detection methods

Author (s) Year of | No of | w z y Data Dataset z Detection
publr- param- types used method
calion eters

Cannady [176] | 2000 2 ¢} N P Numeric Real-hfe C, CMAC-based
model

Balajinath and | 2001 3 [6] N [e] Categoricall User com- | Cy4 Behavior

Raghavan {170] mand Model

Lee and Hen- | 2001 3 C N P - Simulated C3 TNNID model

buch (177] data

Xian et al 2005 3 ¢} N P Numeric KDDcup99 | C) Fuzzy K-

[187] means

Ammmi et al [ 2006 2 C R P Categoricall KDDcup99, [ C, RT-UNNID

[173) Real-hife system

Chimphlee et | 2006 3 C N P Numeric KDDcup99 | Cy Fuzzy Rough

al (191] C-means

Lw et al [178] | 2007 2 C N P Numeric KDDcup99 | Ci HPCANN
Model

Adetunmb1 et | 2008 2 C N P Numeric KDDcup99 | Cy LEM2 and K-

al {193 NN

Chen et al 2009 3 C N P Numeric DARPA98 C» RST-SVM

{192] techmque

Mabu et al | 2011 3 C N P Numeric KDDcup99 | C; Fuzzy-ARM

[186] based on GNP

Viscont1  and | 2011 2 o N P Numeric Real-hfe Ca Interval type-2

Tahayon {194] fuzzy set

Geramiraz et | 2012 2 [¢) N P Numeric KDDcup99 | C, Fuzzy rule

al {184] based model

w-1ndicates centralized (C) or distibuted (D) or others (O)

x-the nature of detection as real time (R} or non-real time (N)

y-characterizes packet-based (P) or flow-based (F) or hybrid (H) or others {O)

z-represents the hist of attacks handled Cj-all attacks, Cy-denial of service C;-probe, Cy-user to root

and Cs-remote to local

activity has rcached maximum anomaly scorc.

An example knowledge-based system 1s state transition analysis tool (STAT)
[199]. Its architccture is given in Figure 3.9 It models traffic data as a scrics of
state changes that lead from secure state to a target compromised state STAT is
composed of three main components: knowledge base, inference engine and deci-
sion engine. The audit data preprocessor reformats the raw audit data to send as
input to the inference engine. The inference engine monitors the state transitions
extracted from the preprocessed audit data and then compares these states with
the states available within the knowledge base. The decision engine monitors the
improvement of the inference engine for matching accuracy of the state transitions.
It also specifies the action(s) to be taken based on resulis of the inference engine and
the decision table. Finally, the decision results are sent to the SSO (Site Security
Officer) interface for action. It can detect cooperative attackers and attacks across

user sessions well.

A few prominent knowledge-based network anomaly detection methods and
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Auditdata preprocessor Inference Engine
> Rule Fact
Decision base base
Decision Engine
Table Factbase Factbase
ntalizer updater
Decision Engine SSOInterface Knowledgebase

Figure 3.9: Architecture of STAT system

NIDSs are given below

Rule-based and Expert System-based Approaches

The expert system approach 1s one of the most widely used knowledge-based meth-
ods {200 201} An expert system, in the traditional sense, ts a rule-based system,
with or without an associated knowledge base An expert svstem has a 1ule engine
that matches rules against the current state of the system, and depending on the

results of matching, fires one or more rules

Snort [161] 1s a quintessentially popular rule-based IDS This open-source IDS
matches each packet i1t observes against a set of rules The antecedent of a Snort
rule 1s a boolean formula composed of predicates that look for speafic values of
ficlds present in IP headers transport headers and in the payload Thus, Snort
rules 1dentify attack packets based on IP addresses, TCP or UDP port numbers,
ICMP codes or types, and contents of strings in the packet payload Snort’s rules
arc arranged nto priority classes based on potential impact of alerts that match
the rules Snort’s rules have evolved over 1ts history of 15 years Each Snort rule
has associated documentation with the potential for false positives and negatives,
together with coirective actions to be taken when the rule raises an alert Snoit
rules arc simple and casily understandable Users can contribute rules when they
observe new types of anomalous or malicious traffic Currently, Snort has over

20, 000 rules, inclusive of those submitted by users

An mtrusion detection system like Snort can run on a general purpose computer
and can try to inspect all packets that go through the network However, monitoring

packets comprehensively 1n a large network 1s obviously an expensive task since 1t
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requires fast inspection on a large number of network interfaces. Many hundreds of

rules may have to be matched concurrently, making scaling almost impossible.

To scale to large networks that collect flow statistics ubiquitously, Duffield et al.
[202] use the machine learning algorithm called Adaboost [203] to translate packet
level signatures to work with flow level statistics. The algorithm is used to correlate
the packet and flow information In particular, the authors associate packet level
network alarms with a feature vector they create from flow records on the same
traffic. They create a set of rules using flow information with features similar to
those used 1in Snort rules. They also add numerical features such as the number of
packets of a specific kind flowing within a certain time period. Dufficld et al. train
Adaboost on concurrent flow and packet traces. They evaluate the system using
real time network traffic data with more than a billion flows over 29 days, and show

that their performance is comparable to Snort’s with NetFlow data.

Prayote and Compton [204] present an approach to anomaly detection that
attempts to address the brittlencss problem in which an expert system makes a
decision that human common sense would recognize as impossible. They use a
technique called prudence [205], in which for every rule, the upper and lower bounds
of each numerical variable in the data scen by the rule are recorded, as well as a
list of values scen for cnumerated variables The expert system raiscs a warning
when a new value or a value outside the range is seen in a data instance. They
1mprove the approach by using a simple probabilistic technique to decide if a value
is an outliecr. When working with network anomaly data, the authors partition
the problem space into smaller subspaces of homogeneous traffic, each of which
is represented with a separate model 1n terms of rules The authors find that
this approach works reasonably well for new subspaces when little data has been
observed They claim 0% falsc negative rate in addition to very low false positive
rate. Scheirer and Chuah [206] report a syntax-based scheme that uses variable-
length partition with multiple break marks to detect many polymorphic worms.
The prototype is the first NIDS that provides scmantics-awarc capability, and can
capture polymorphic shell codes with additional stack sequences and mathematical

operations.

The main advantages of knowledge-based anomaly detection methods include
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the following. (i) These techniques are robust and flexible. (ii) These techniques
have high detection rate, if a substantial knowledge base can be acquired properly

about attacks as well as normal instances.

Some disadvantages of knowledge-based methods are the following. (i) The
development of high-quality knowledge is often difficult and time-consuming. (1)
Due to non-availability of biased normal and attack data, such a mcthod may
generate a large number of false alarms (iii) Such a method may not be able to
detect rare or unknown attacks. (iv) Dynamic updation of rule or knowledge-base
is a costly affair.

A comparison of knowledge-based anomaly detection methods 1s given in Ta-

ble 3.6.

Table 3.6: Comparison of knowledge bascd network anomaly detection methods

Author (s) Year of | No of | w z y Data Dataset 2 Detection
publi- param- types used method
cation eters
Noel et al [195) 2002 - [¢} N O - - - Attack  Gult
Model
Sekar et al [196] 2002 3 0] N P Numeric | DARPA9S | () Specification
Based Model
Tapladot et al 2003 3 C N P Numenic | Real-hfe C? Markov Chain
[207} Model
Hung and L | 2008 - [6) N P Numeric | KDDcup99 | C) Ontology based
[208]
Shabtar et al | 2010 2 ¢} N [e] - Real-Iife [ Incremental
[209] KBTA

w-indicates centralized (C) or distributed (D) or others (O)

x-the nature of detection as real time (R) or non-real time (N)

y-characterizes packet-based (P) or flow-based (F) or hybrid (H) or others (O)

z-represents the list of attacks handled C}-all attacks, C,-demial of service, C;-probe Cj-user to root,
and Cs-remote to local

3.2.6 Methods and Systems based on Combination Learn-

ers
In this section, we present a few methods and systems which use combinations of
multiple techniques, usually classifiers.
Ensemble-based Methods and Systems

The idea behind the ensemble methodology is to weigh several individual classi-
fiers, and combine them to obtain an overall classifier that outperforms every one

of them [210-214]. These techniques weigh the individual opinions, and combine
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them to reach a final decision. Ensemble-based methods are categorized based on
the approaches used. Three main approaches to develop ensembles are (i) bagging,
(ii) boosting, and (iii) stack generalization. Bagging (Bootstrap Aggregating) in-
creases classification accuracy by creating an improved composite classifier into a
single prediction by combining the outputs of learnt classifiers. Boosting builds
an ensemble incrementally by training mis-classified instances obtained from the
previous model. Stack generalization achieves the high generalization accuracy by

using output probabilitics for cvery class label from the base-level classifiers.

Octopus-1IDS [215] is an cxample of ensemble IDS. The architecture of this
system is shown in Figure 3.10. It is devcloped using two types of neural networks
(Kohonen and Support Vector Machines). The \system is composed of two layers:
classifier and anomaly detection. The classifier is responsible for capturing and
preprocessing of network traffic data. It classifies the data into four main categories:
DoS, probe, U2R and R2L. A specific class of attack is identified in the anomaly
detection layer. The authors claim that the IDS works effectively in small scale

networks.

Network traffic

Capture &
preprocess

Classification

Classifter
layer

; P4 A i A y

H noma
!l DoS I I U2R ] | R2L ] lProbe I' detection layer
H i

e e - B R U P SR

Attack

Normali

Figure 3.10: Architecture of Octopus-IIDS system

Chebrolu et al. [216] present an ensemble approach by combining two classifiers,
Bayesian networks (BN) and Classification and Regression Trees (CART) [138,217].
A hybrid architecture for combining different feature selection algorithms for real
world intrusion detection is also incorporated for getting better results. Perdisci et
al. [218] construct a high speed payload anomaly IDS using an ensemble of one-class

SVM classificrs intended to be accurate and hard to cvade.

Folino et al. [219] introduce a distributed data mining algorithm to improve
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detection accuracy when classifying malicious or unauthorized network activity us-
ing genetic programming (GP) extended with the ensemble paradigm. Their data
15 distributed across multiple autonomous sites and the learner component acquires
useful knowledge from data in a cooperative way and uses nctwork profiles to predict
abnormal behavior with better accuracy Nguyen et al [220] build an individual
classifier using both the input feature space and an additional subset of features
given by k-means clustering. The ensemble combination is calculated based on the
classification ability of classifiers on different local data segments given by k-mcans

clustering.
Beyond the above methods, some ecnsemble based IDSs are given below.

The paradigm of Multiple Classifier System (MCS) has also been used to build
misuse detection IDSs. Classifiers trained on different feature subscts arc combined
to achieve better classification accuracy than the indiyldual classifiers. In such a
NIDS, network traffic is serially processed by each classifier. At each stage, a clas-
sificr may cither decide for one attack class or send the pattern to another stage,
which is trained on more difficult cases Reported results show that an MCS im-
proves the performance of IDSs based on statistical pattern recognition techniques.
For cxample, CAMNEP [221] is a fast prototypc agent-based NIDS dcsigned for
high-spced networks. It integrates several anomaly detection techniques, and op-
erates on a collective trust model within a group of collaborative detection agents.
The anomalies are used as input for trust modeling Aggregation is performed by
extended trust models of gencralized situated identitics, represented by a sct of
observable features. The system 1s able to perform real time surveillance of gigabit
networks.

McPAD (Multiple Classifier Payload-based Anomaly Detector) [222] is an ef-
fective payload-based anomaly detection system that consists of an ensemble of
one-class classifiers. It is very accurate in detecting network attacks that bear some
form of shell-code in the malicious payload This dctector performs well even in
the case of polymorphic attacks. Furthermore, the authors tested their IDS with
advanced polymorphic blending attacks and showed that even in the presence of

such sophisticated attacks, it is able to obtain a low false positive rate.

An ensemble method is advantageous because it obtains higher accuracy than
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the individual techniques. The major advantages are the following. (i) Even if the
individual classifiers are weak, the ensemble methods perform well by combining
multiple classifiers. (i1) Ensemble methods can scale for large datasets. (iii) En-
semble classificrs need a sct of controlling paramcters that are comprehensive and
can be easily tuned. (iv) Among existing approaches, Adaboost and Stack gener-
alization are very effective because they can exploit the diversity in predictions by
multiple base level classifiers.

Some disadvantages of ensemble based methods include the following. (i) Se-
lecting a subset of consistent performing and unbiascd classificrs from a pool of
classifiers is difficult. (ii) The greedy approach for sclecting sample datasets is slow

for large datasets. (iil) It is difficult to obtain real time performance.

A comparison of ensemble based network anomaly detection methods is given

in Table 3.7.

Table 3.7: Comparison of ensemble-based network anomaly detection methods

Author Year of | Combination| w z y Data Dataset 2 Detection
(s) puble- strategy types used method
cation

Chebrolu 2005 Weighted [e] N P Numeric{ KDDcup99 | C; Class spe-

et al voting cific ensemble

[216] model

Perdisc 2006 Majority [6) N Pay| - Operational| Synthetic| One-class clas-

et al voting points intru- sifier model

[218} sions

Borp 2007 Majornity (6] N P Numeric| DARPA9S | C, Heterogeneous

[211] voting classifiers
model

Perdisci 2009 Min and | O R Pay | - DARPAYS | C; McPAD model

et al Max proba-

[222] bility

Folino et | 2010 Weighted [¢] N P Numeric| KDDcup99 | C; GEdIDS model

al [219] majority

voting

Noto et | 2010 Information [¢] N - Numeric | UCI None FRaC model

al [214] theoretic

Nguyen 2011 Majonty [¢] N P Numeric| KDDcup99 | C; Cluster based

et al voting ensemble

[220]

Khreich 2012 Learn and | O N pay | Numeric| UNM Cy EoHMMs

et al [25] combine based

w-indicates centralized (C) or distributed (D) o1 others (O)

x-the nature of detection as real time (R) or non-real time (N)

y-characterizes packet-based (P) or flow-based (F) or payload-based (pay) or hybrid (H) or others (O)

2-represents the hist of attacks handled Ci-all attacks Ca-denial of service. C;-probe, Cy-user to root,

and Cs-remote to local
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Fusion-based Methods and System

With an cvolving nced of automated deciston making 1t 1s important to improve
classification accuracy compared to the stand-alone general decision based tech-
niques even though such a system may have several disparate data sources So, a
suitable combination of these 1s known as fusion approach Several fuston-based
techniques have been applied to network anomaly detection [223-227] A classi-
fication of such techniques 1s as follows (1) data level, (1) feature level, and ()
decision level Some methods only address the issue of operating in a space of
high dimensionality with features divided into semantic groups Othears attempt
to combine classificrs trained on different features divided based on hierarchical

abstraction levels or the type of information contained

Giacinto ct al [223] provide a pattern recognition approach to network mtrusion
detection employing a fusion of multiple classifiers Five different decision fusion
methods are assessed by experiments and their perfoimances compared Shifflet
[224] discusscs a platform that cnables a multitude of techmques to work together
towards creating a more realistic fusion model of the state of a network, able to
detect malicious activity effectively A heterogenous data level fusion for network
anomaly detection 1s added by Chatzigiannakis et al [228] They use the Demster-
Shafer Theory of Evidence and Principal Components Analysis for developing the

technique

dLEARNIN [225] 1s an cnsemble of classifiers that combines information from
multiple sources It 1s explicitly tuned to minimize the cost of errors dLEARNIN 1s
shown to achieve state-of-the-art performance, better than competing algonithms
The cost minimization strategy dCMS attempts to minimize the cost to a sigmfi-
cant level Gong ct al [229] contribute a ncural network based data fusion method
for intrusion data analysis and pruning to filter information from multiple sensors
to get high detection accuracy However, HMMPayl [230] 1s an example of fusion
bascd IDS, where the payload 1s represented as a sequence of bytes, and the anal-
ysis 1s performed using Hidden Markov Models (HMM) The algorithm extracts
features and uses HMM to guarantee the same expressive power as that of n-gram

analysis, while overcoming 1ts computational complexity HMMPayl follows the

30



3.2. Methods and Systems for Network Anomaly Detection

Multiple Classifiers System paradigm to provide better classification accuracy, to
increase the difficulty of evading the IDS, and to mitigate the weaknesses due to a

non-optimal choice of HMM parameters

Some advantages of fusion methods are the following (i) Data fusion is effective
in ncreasing timeliness of attack identification and in reducing false alarm rates.
(i1) Decision level fusion with appropriate training data usually yiclds high detection
rate

Some drawbacks are the following. (i) The computational cost is high for rig-
orous training on the samples. (ii) Feature level fusion is a time consuming task.
Also, the biases among the base classifiers affect the fusion process. (iii) Building
hypothescs for different classifiers is a difficult task.

A comparison of fusion-based network anomaly detection methods is given in

Table 3.8

Table 3.8: Comparison of fusion-based network anomaly detection methods

Author (s) Year of | Fusion w T v Data Dataset z Detection
publr- level types used method
cation

Glacinto et al 2003 Decision | O N P Numeric| KDDcup99| C) MCS Model

[223]

Shifflet [224] 2005 Data O | N[O |- - None [ HSPT algo-

rithm

Chatzigiannakis 2007 Data C N P - NTUA Cs D-S algorithm

et al [228] GRNET

Pankh and Chen | 2008 Data C N P Numeric{ KDDcup98| Cy dLEARNIN

[225] system

Gong et al [229] | 2010 Data C | N | P | Numenic| KDDcup99| Ci IDEA model

Arw et al [230] 2011 Decision| C | R | Pay| - DARPAS9S, | C, HMMPayl

real-hfe model

Yan and Shao | 2012 Decision| O N F Numeric| Real time Ch,Cy | EWMA model

[227)

w-ndicates centralized (C) or distributed (D) or others (O)

x-the nature of detection as real time (R) or non-real time (N)

y-characterizes packet-based (P) or flow-based (F) or payload-based (pay) or hybrid (H) or others (O)

z-represents the st of attacks handled Cj-all attacks, Cz-denial of service Cj;-probe, Cy-user to root.

and Cs-remote to local

Hybrid Methods and System

Most current network intrusion detection systems employ either misuse detection or
anomaly dectection However, misuse detection cannot detect unknown intrusions,
and anomaly detection usually has high false positive rate [231]. To overcome the
limitations of the techniques, hybrid methods are developed by exploiting features

from several network anomaly detection approaches [32-34]. Hybridization of sev-
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eral methods increases performance of 1DSs

For example, RT-MOVICAB-IDS, a hybrid intelhigent IDS 1s introduced 1n [232]
It combimes ANN and CBR (case based reasoning) within a Multi-Agent System
(MAS) to detect intrusion in dynamic computer networks The dynamic real time
multi-agent architecture allows the addition of piediction agents (both reactive
and deliberative) In particular, two of the deliberative agents deployed mn the
system incorporate temporal-bounded CBR This upgraded CBR 1s based on an
anytime approximation, which allows the adaptation of this paradigm to real time

requircments

A hybrid approach to provide host secuiity that prevents binary code injection
attacks known as the FLIPS (Feedback Learning IPS) model 1s proposed by [233].
It incorporates three major components an anomaly based classifier, a signature
based filtering scheme, and a supervision framework that employs Instruction Set
Randomization (ISR) Capturing the mjected code allows FLIPS to construct sig-
natures for zcro-day cxploits Peddabachigari ct al  [234] present a hybrid approach
that combines Decision trees (DT) and SVMs as a hierarchical hybrid intelligent
system model (DTSVM) for intrusion detection It maximizes detection accuracy

and minimizes computational complexity

Zhang et al [235] propose a systematic framework that applies a data mining
algonthm called random forests in building a misuse, anomaly, and hybuid-network
based IDS The hybrid detection system improves detection performance by com-
bining the advantages of both misuse and anomaly detection Tong et al [236]
discuss a hybrid RBF/Elman neural network model that can be employed for both
anomaly detection and misuse detection It can detect temporally dispersed and
collaborative attacks effectively because of its memory of past events A itelligent
hybrid IDS model based on neural networks 1s introduced by [237] The model
1s flexible, extended to meet different network environments, improves detection
performance and accuracy Sclhim et al [238] report a hybrid intcllhigent IDS to
improve the detection rate for known and unknown attacks It consists of multiple
levels hybrid neural networks and decision trees The technique 1s evaluated using

NSL-KDD datasct and results werc promising

Advantages of hybrid methods include the following (1) Such a method exploits
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major features from both signature and anomaly based network anomaly detection.
(ii) Such methods can handle both known and unknown attacks.

Drawbacks of hybrid methods include the following (i) Lack of appropriate
hybridization may lead to high computational cost (ii) Dynamic updation of rule
or profile or signature still remains difficult.

Table 3.9 presents a comparison of a few hybrid network anomaly detection
methods.

Table 3.9: Comparison of hybrid network anomaly detection methods

Author (s) Year of | No of | w z y Data Dataset z Detection method
publ- param- types used
cation eters

Locasto et al 2005 2 C R P - Real-hife Cs FLIPS model

[233)

Zhang and | 2006 2 C N P Numeric | KDDcup99 C Random forest

Zulkermne [32] based hybnd
algorithm

Peddabachigar1 | 2007 2 C N P Numeric | KDDcup99 | Ci DT-SVM  hybnd

et al [234] model

Zhang et al 2008 2 [¢] N P Numeric | KDDcup99 | C; RFIDS model

[235]

Aydin et al 2009 3 C N P - DARPAS8 Cy Hybnd  signature

[33) IDEVAL based IDS model

Tong et al 2009 1 C N P Numeric | DARPA- Ci Hybnd

[236) BSM RBF/Elman NN

Yu [237] 2010 1 C N - - - - Hybnd NIDS

Arumugam et | 2010 - C N P Numeric | KDDcup99 | C) Muiti-stage hybrid

al [231] IDS

Selm et al | 2011 - C N P Numeric | KDDcup99 | Ci Hybrid multi-level

[238] IDS model

Panda et al [ 2012 2 C N P Numeric [ NSL-KDD Ci1 DTFF and FFNN

[34] KDDcup99

w-indicates centralized (C) or distributed (D) or others (O)

x-the nature of detection as real time (R) or non-real time (N)

y-characterizes packet based (P) or flow based (F) or hybrid (H) or others (O)

z-represents the st of attacks handled Cy-all attacks Ca-demial of service Ci-probe, Cy-user to root,

and Cs-remote to local

3.2.7 Discussion

After a long and claborate discussion of many intrusion detection methods and
anomaly based network intrusion detection systems under several categories, we

make a few observations.

(i) Each class of anomaly based network intrusion detection methods and systems
has unique strengths and weaknesses. The suitability of an anomaly detection
technique depends on the nature of the problem attempted to address. Hence,

providing a single integrated solution to every anomaly detection problem may
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(1)

not be feasible

Various methods face various challenges when complex datascts arc used The
nearest neighbor and clustering techniques suffer when the number of dimen-
sions 1s high because the distance measures in high dimensions are not able to

differentiate well between normal and anomalous nstances

Spectral techniques explicitly address the high dimensionality problem by
mapping data to a lower dimensional projection But their performance 1s
highly dependent on the assumption that normal instances and anomalies
are distinguishable 1in the projected space A classtfication technique often
performs better 1n such a scenano However, 1t requires labeled training data
for both normal and attack classes The improper distribution of these training

data often makes the task of learning more challenging

Semi-supervised nearest neighbor and clustering techniques that only use
noimal labels can often be moie effective than classification-based techniques
In situations where 1dentafying a good distance measure 1s difficult, classifica-
tion or statistical techniques may be a better choice However, the success
of the statistical techmques 1s largely influenced by the applicability of the

statistical assumptions 1n the specific real life scenaiios

For real-time intrusion detection, the complexity of the anomaly detection
process plays a vital role In casc of classification clustering and statistical
methods although training 1s cxpensive, they are still acceptable because
testing 1s fast and training 1s offline In contrast, techniques such as nearest
neighbor and spectral techniques which do not have a training phase, have an

expensive testing phase which can be a hmitation 1n a real setting

Anomaly detection techniques typically assume that anomalies 1n data are rare
when compared to normal instances Generally, such assumptions arc vahid
but not always Often unsupervised techniques suffer from large false alarm
rates when anomalies are in bulk amounts Techniques operating in super-

vised or semi-supervised modes [239] can be applied to detect bulk anomalies
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We also perform a comparison of the anomaly based network intrusion detection
systems that we have discussed throughout this chapter based on parameters such
as mode of detection (host based, network based or both), detection approach (mis-
usc, anomaly or both), naturc of detection (online or offline), nature of processing
(centralized or distributed), data gathering mechanism (centralized or distributed)

and approach of analysis. A comparison chart is given in Table 3.10.

Table 3.10: Comparison of NIDSs

Name of IDS Year of pub- | a b c d e Approach

lication
STAT [199] 1995 H M | R C C Knowledge-based
FIRE {183] 2000 N A N C C Fuzzy Logic
ADAM [124] 2001 N A R C C Classification
HIDE [125] 2001 N A R C D Statistical
NSOM {180] 2002 N A R C C Neural network
NFIDS [188] 20013 N A N C C Neuro Fuzzy Logic
N@G [141] 2003 Hy | B R C C Statistical
MINDS [53] 2004 N A R C C Clustering and Outlher-based
FSAS [142] 2006 N A R C C Statistical
POSEIDON [181] 2006 N A R C [¢} SOM & Modified PAYL
RT-UNNID [173] 2006 N A R C C Neural Network
DNIDS [158] 2007 N A R C C CSI-KNN-based
CAMNEP [221] 2008 N A R C C Agent-based Trust and Reputation
McPAD [222] 2009 N A N C C Multiple classifier
Octopus-11DS [215] 2010 N A N C C Neural network & SVM
HMMPayl [230] 2011 N A R C C HMM model
RT-MOVICAB-IDS 2011 N A R C C Hybrid IDS
{232}
a-represents the types of detection such as host-based (H) or network-based (N) or hybnd (H)
b-indicates the class of detection mechanmism as misuse (M) or anomaly (A) or both (B)
c-denotes the nature of detection as real time (R) or non-real time (N)
d-characterizes the nature of processing as centralized (C) or distributed (D)
e-indicates the data gathering mechanism as centralized (C) or distributed (D)

3.3 Tools Used for Network Traffic Analysis

Capturing and preprocessing high speed network traffic is essential prior to detection
of network anomalies. Different tools are used for capturing and analysis of network
traffic data. We list a few commonly used tools and their features in Table 3 11.
These are commonly used by both the network defender and the attacker at different
time points.
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Table 3.11: Tools used in different steps in network traffic anomaly detection and their

description
Tool Purpose Characteristics Source
Name
Wire- | Packet (1) Free and open-source packet analyzer (n) Can be used | http //www wiresh
shark capture for network troubleshooting, analysis software and commu-~ | ark org/
nications protocol development, and education () Uses
cross-platform GTK+ widget toolkit to implement 1its user
interface and uses pcap to capture pachets (1v) Similar
to tcpdump, but has a graphical front-end, plus some inte-
grated sorting and filtering options (v) Works in mirrored
ports to capture network traffic to analyze for any tamper-
ing
Gulp Lossless (1) It allows much mgher packet capture rate by dropping | http //staff washing
gigabit far fewer packets (1) It has ability to read directly from | ton edu/corey/gulp
remote the network, but 1s able to pipe output from legacy applica-
packet tions before writing to disk () If the data 1ate incieases,
capturing Gulp realigns 1ts writes to even block boundaries for opti-
mum wnting efficiency (1v) When 1t receives an interrupt,
it stops filling 1ts nng buffer but does not exit until 1t has
fimished writing whatever 1emains in the ring buffer
tcptrace TCP- (1) Can take input files produced by several popular packet- | http //jarok cs ohs
based capture programs, including tcpdump snoop etherpeek, HP | ou edu/software/
feature Net Metrix, Wireshark, and WinDump (u) Produces sev- | tcptrace/
extraction eral types of output contamning information on each connec-
tion seen such as elapsed time, bytes and segments sent and
received, retransmissions, round trnp times window adver-
tisements and throughput (i) Can also produce a number
of graphs with packet statistics for further analysis
nfdump netflow (1) Can collect and process netflow data on the command | http //nfdump
data line (n) It 1s hmited only by the disk space available for all | sourceforge net/
collection the netflow data {11) Can be optimized 1n speed for efficient
filtering The filter rules look like the syntax of tcpdump
nfsen netflow (1) nfsen 1s a graphical Web-based front end for the nfdump | http //nfsen
data col- | netflow tool (1) It allows display of netflow data as flows, | sourceforge net/
lection packets and bytes using RRD (Round Robin Database) (i)
and wvisu- | Can process the netflow data within a specified time span
ahzation (1v) Can create history as well as continuous profiles (v)
Can set alerts based on various conditions
nmap Scanning (1) Network Mapper (nmap) 1s a free and open source utihity | http //nmap org/
port. for network exploration or security auditing (n) Uses raw IP
packets 1n novel ways to determine which hosts are available
on the network which services (apphcation name and ver-
sion) those hosts offer, what operating systems are running,
type of firewall o1 packet filter used, and many other charac-
teristics () It 1s easy flexible, powerful well documented
tool for discovering hosts in large network
rnmap Coordinated (1) Remote Nmap (rnmap) contains both client and server | http //rnmap
scanning programs (n) Various clients can connect to one centralized | sourceforge net/
rnmap server and do their port scanning (in) Server per-
forms user authentication and uses excellent nmap scanner
to do actual scanning

Continued on nezxt page
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Table 3.11 ~ Continued from previous page

Tool Purpose Characteristics Source
Name
Targa Attack (i) Targa is a free and powerful attack generation tool. (u) It | http.//www10.org/
simulation integrates bonk, jolt, land, nestea. netear, syndrop. teardrop, | cdrom/papers/409/
and winnuke into one multi-platform DoS attack
3.4 Observations and Summary

The following are some observations that one needs to be mindful of when developing

a network anomaly detection method or a system.

Most existing IDSs for the wired environment work in three ways: flow-level
traffic or packet-level feature data analysis, protocol analysis or payload in-
spection. Each of these categories has its own advantages and limitations.
So, a hybridization of these (e.g., protocol level analysis followed by flow level
traffic analysis) may give a better performance in terms of known (with high

detection rate) as well as unknown attack detection.

An IDS, to be capable of identifying both known as well as unknown attacks,
should exploit both supervised (rule-based or signature-based) as well as un-
supervised (clustering or outlier-based) methods at multiple levels for real

time performance with low false alarm rates.

The IDS developer should choose the basic components, method(s), tech-
niques or rule/signature/profile bases to overcome four important limitations:
subjective effectiveness, limited scalability, scenario dependent efficiency and

restricted security.

The performance of a better IDS needs to be established both qualitatively

and quantitatively.

A better anomaly classification or identification method enables us to tune it
(the corresponding normal profiles, thresholds, etc) depending on the network

scenario.
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We have examined the state-of-the-art in modern anomaly-based network in-
tr_usion detection. The discussion emphasized on two well known criteria to detect
anomalous traffic in NIDSs' detection strategy and evaluation. We also presepted
many detection methods, systems and tools under several catcgories. Finally, we
outlined some recommendations to the future researchers and practitioners who
may attempt to develop new detection methods and systems for current network

scenarios.
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Chapter 4

A Systematic Approach to
Generate Real-Life Intrusion

Datasets

This chapter 1s organized in three major sections, viz., Introduction, Existing
Datasets, and Dataset Generation. We establish the importance of an intrusion
datasct in the development and validation process of a detcction mechanism, iden-
tify a sct of requirements for cffective dataset gencration, and discuss scveral attack
scenarios. We also describe the motivation and our contribution in Section 4.1. In
Section 4.2, we di.scuss various types of datasets and their characteristics. In the
last scction of this chapter, we discuss a systematic approach for gencration of an

unbiased, full feature network intrusion dataset. We also establish the effectiveness

of the generated dataset by comparing with several existing datasets.

4.1 Introduction

In network intrusion detection, particularly when using anomaly-based detection,
it is difficult to accurately evaluate, compare, and deploy a system that is expected
to detect novel attacks due to scarcity of adequate datasets. Before deploying in
any real world environment, an anomaly-based nctwork intrusion detection system
(ANIDS) must be tested and evaluated using real labelled network traffic traces with
a comprehensive set of intrusions or attacks. This is a significant challenge, since not

many such datasets are available. Therefore the detection methods and systems are
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evaluated only with a few publicly available datasets that lack comprehensiveness
and completeness. For example, Cooperative Association for Internet Data Analysis
(CAIDA) Distributed Demal of Service (DDoS) 2007, Lawrence Berkeley National
Laboratory (LBNL), and ICSI datascts arc heavily anonymized without payload
information, decreasing research utility. Researchers also frequently use a single

NetFlow based intrusion dataset found at [240] with himited number of attacks.

4.1.1 Importance of Datasets

In network traffic anomaly detection, it is always important to test and evaluate
detection methods and systems using datasets as network scenarios evolve. We

cnumecrate the following reasons to justify the importance of a datasct.

o Repeatability of expervments: Researchers should be able to repeat experi-
ments with the datasct and get similar results, when using the same approach.
This is important because the proposed method should cope with the evolving

nature of attacks and network scenarios.

o Valdation of new approaches: New methods and algonthms are being con-
tinuously developed to detect network anomalies It 1s necessary that every

new approach be validated.

e Comparison of different approaches: State-of-the-art network anomaly detec-
tion methods must not only be validated, but also show improvements over
older methods in performance in a quantifiable manner For example, the
DARPA 1998 dataset [95] is commonly used for performance evaluation of

anomaly detection systems [241].

e Parameters tuning. To properly obtain the model to classify the normal from
malicious traffic, it is necessary to tune model parameters. Network anomaly
dectection assumes the normality model to identify malicious traffic For ex-
ample, Cemerlic et al. [242] and Thomas et al. [243] use the attack-free part
of the DARPA 1999 dataset for training to estimate parameter values.

e Dimenswonality or the number of features: An optimal set of features or at-

tributes should be considered to represent normal as well as all possible attack
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imstances.

4.1.2 Requirements

Although good datasets are necessary for validating and evaluating IDSs, generating

such datasets is a time consuming task. A dataset generation approach should meet

the following requirements.

Real world: A datasct should be generated by monitoring the daily situation

in a realistic way, such as the daily network traffic of an organization.

Completeness in labelling: The labelling of traffic as benign or malicious must
be backed by proper evidence for each instance. The aim these days should
be to provide labelled datasets at both packet and flow levels for each piece

of benign and malicious traffic.

Correctness in labelling: Given a dataset, labelling of each traffic instance
must be correct. This means that our knowledge of security events represented

by the data has to be certain.

Sufficient trace size: The generated dataset should be unbiased in terms of

size in both benign and malicious traffic instances.

Concrete feature extraction: Extraction of an optimal set of concrete features
when generating a dataset is important because such features play an impor-

tant role during validating a detection mechanisms.

Dwerse attack scenarios: With the increasing frequency, size, variety, and
complexity of attacks, intrusion threats have become more complex including
the selection of targeted services and applications. When contemplating at-
tack scenarios for dataset generation, it is important to tilt toward a diverse

set of multi-stage attacks that are recent.

Ratio between normal and attack traffic: Most existing datasets have been

created based on the following assumptions.

— Anomalous traffic is statistically different from normal traffic {244].
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— The majonity of network traffic instances 1s normal (64]

Unlike most traditional intrusion datascts, DDoS attacks do not follow these
assumptions because they change network traffic rate dynamicallv and employ

multi-stage attacks

4.1.3 Motivation and Contributions

By considering the aforementioned requirements, we proposc a systematic approach
for generating real-life network intrusion dataset at both packet and flow levels
in order to analyze, test, and evaluate network intrusion detection methods and
systems with a clear focus on anomaly based detectors The following are the

major contributions of this chapter

e We present a list of guidelines for real-life intrusion dataset generation
o We discuss systematic generation of both normal and attack traffic

e We cxtract features from the captured network traffic such as basic content-
based time-based, and connection-based features using a distributed feature

extraction framework

e Wec gencrate three categories of 1eal-hfe ntrusion datascts, viz, (1) TUIDS
intrusion dataset, (1) TUIDS coordinated scan dataset, and (in) TUIDS DDoS
dataset These datasets are available for the research community to download

for free

4.2 Existing Datasets

As discussed earher, datasets play an important role in the testing and validation
of nctwork anomaly detection methods or systems A good quality datasct not
only allows us to 1dentify the ability of 2 method or a system to detect anomalous
behavior, but also allows us to gave potential effectiveness when deployed in real
operating cnvironments Scveral datascts arc publicly available for testing and

cvaluation of network anomaly detection methods and systems A taxonomy of
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network intrusion datasets is shown in Figure 4.1. We briefly discuss each of them

below.
Datasets
Synthetic Benchmark Real-life

"1 KDDcup99

NSL-KDD u UNIBS

~1 DARPA 2000

ISCX -UNB

DEFCON [
—J 1| cama

LBNL Endpoint

Figure 4.1: A taxonomy of network intrusion datasets

4.2.1 Synthetic Datasets

Synthetic datascts are gencrated to mecet specific needs or certain conditions or tests
that real data satisfy. Such datasets are useful when designing any prototype system
for theoretical analysis so that the design can be refined. As stated previpusly,
a synthetic dataset can be used to test and create many different types of test
scenarios. This cnables designers to build realistic behavior profiles for normal users
and attackers based on the dataset to test a proposed system. This provides initial
validation of a specific method or a system; if the results prove to be satisfactory,

the devclopers then continue to evaluate a method or a system in a specific domain.

4.2.2 Benchmark Datasets

We discuss seven publicly available benchmark datasets generated using simulated

environments in large networks, executing different attack scenarios.

KDDcup99 Dataset

Since 1999, the KDDcup99 dataset [52] has been the most widely used dataset
for cvaluation of nctwork based anomaly detcction methods and systems. This

datasct was preparcd by Stolfo ct al. [245] and is built upon the data captured
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in the DARPA98 IDS evaluation program. The KDD training dataset consists
of approximately 4,900,000 single connection vectors, each of which contains 41
featurcs and is labeled as cither normal or attack of a specific attack type. The
test dataset contains about 300,000 samples with a total 24 training attack types,
with an additional 14 attack types in the test dataset only {43]. The representeé
attacks are mainly four tvpes: demial of service, remote-to-local, user-to-root, and

surveillance or probing.

o Demal of Service (DoS): An attacker attempts to prevent valid users from
using a service provided by a system. Examples include SYN flood, smurf

and teardrop attacks.

e Remote to Local (r2l): Attackers try to gain entrance to a victim machine

without having an account on it An example is the password guessing attack.

e User to Root (u2r) Attackers have access to a local victim machine and
attempt to gain privilege of a supcruser. Examples include buffer overflow

attacks.

e Probe: Attackers attempt to acquirc information about the target host. Some

examples of probe attacks arc port-scans, and ping-sweep attacks.

Background traffic was simulated and the attacks were all known. The training
sct, consisting of seven weeks of labeled data, 1s available to the developers of
intrusion detection systems The testing set also consists of simulated background
traffic and known attacks, including some attacks that are not present in the training
set. The distribution of normal and attack traffic for this dataset is reported in Table
4.1. We also identify the services associated with cach category of attacks (246,247]

and summarize them in Table 4.2

NSL-KDD Dataset

Analysis of the KDD dataset showed that there were two important issues with
the datasct. which highly affect the performance of evaluated systems resulting in

poor evaluation of anomaly detection methods [248]. To address these issucs, a new
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Table 4.1: Distribution of normal and attack traffic instances in KDDCup99 dataset

DoS Probe ulr r2l
Dataset Total Attacks Total Attacks Total Attacks Total Attacks Noimal
instances instances mmstances instances
10% KDD 391458 smuif, nep- | 4107 satan, 1p- | 52 buffer.oveiflow, 1126 warezclient, 97277
tune, sweep, rootkit, guess_passwd,
Corrected KDD | 229853 back, 4107 portsweep, 52 loadmodule, perl 1126 warezmaster, map, | 97277
teardrop, nmap ftp_-write,
pod, land
Whole KDD 229853 4107 52 1126 multihop phf, spy 97277
Table 4.2: List of attacks and corresponding services in KDDcup99 dataset
DoS Probe u2r r2l
Dataset | Attack name Service(s) Attack name | Service(s)| Attack name Service(s) Attack name Service(s)
apache2 http 1psweep icmp eject Any user session dictionary telnet, rlogin, pop imap, ftp
back http mscan many ffbconfig Any user session ftp-write ftp
land N/A nmap many fdfoimat Any user session guest telnet, rlogin
KDDS9 | mailbomb smtp samnt many loadmodule Any usel session imap imap
YN flood Any TCP satan many perl Any user session named dns
ping of death icmp ps Any user session named dns
process table Any TCP Xterm Any user session sendmaul smtp
smur{ icmp - - xlock X
syslogd syslog XSnoop X
teardrop N/A - -
udpstorm echo/chargen - -

K%

syaseje(q Sunsixyg
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dataset known as NSL-KDD [249], consisting of selected records of the complete
KDD datasct was introduced. This datasct is publicly available for rescarchers!

and has the following advantages over the original KDD datasct.

¢ [t does not include redundant records in the training sct, so classifiers will not

be biased towards more frequent records.

e There are no duplicate records in the test set. Therefore, the performance of
learners is not biased by the methods which have better detection rates on

frequent records.

e The number of selected records from each difficulty level is inversely propor-
tional to the percentage of records in the original KDD datasct. As a result,
the classification rates of various machinc learning methods vary in a wider
range, which makes it more efficient to have an accurate evaluation of various

learning techniques.

e The number of records in the training and testing sects is rcasonable, which
makes 1t affordable to run experiments on the complete set without the need to
randomly select a small portion. Consequently, evaluation results of different

rescarch groups arc consistent and comparable

The NSL-KDD dataset consists of two parts: (i) KDDTrain™ and (ii) KDDTest™.
The distribution of attack and normal instances in the NSL-KDD dataset is shown

in Table 4.3.

Table 4.3: Distribution of normal and attack traffic instances in NSL-KDD datasct

Dataset DoS ulr ral Probe Normal Total
KDDTraint 45927 52 995 11656 67343 125973
KDDTest* 7458 67 2887 2422 9710 22544

Thttpr//www.sex.ca/NSL-KDD/
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DARPA 2000 Dataset

A DARPA! cvaluation project [250] targeted the detection of complex attacks that
contain multiple steps. Two attack scenarios were simulated in the DARPA 2000
evaluation contest, namely Lincoln Laboratory scenario DDoS (LLDOS) 1.0 and
LLDOS 2.0. To achieve variations, these two attack scenarios were carried out
over several network and audit scenarios. These sessions were grouped into four
attack phases: (a) probing, (b) breaking into the system by exploiting vulnerabil-
ity, (c) installing DDoS software for the compromused system, and (d) launching
DDoS attack against another target. LLDOS 2 0 is different from LLDOS 1.0 in
that attacks are more stealthy and thus harder to detect. Since this dataset con-
tains multistage attack scenarios, 1t is also commonly used for evaluation of alert

corrclation techniques.

DEFCON Dataset

The DEFCON? dataset is another commonly used dataset for evaluation of IDSs
(251]. It contains network traffic captured during a hacker competition called Cap-
ture The Flag (CTF), in which competing tecams arc divided into two groups: at-
tackers and defenders. The traffic produced during CTF is very different from real
world network traffic since it contains only intrusive traffic without any normal
background traffic. Due to this limitation, DEFCON datasct has been found useful

only in cvaluating alert corrclation techniques

CAIDA Dataset

CAIDA?® collects many different types of data and makes them available to the
research community. CAIDA datasets [252] arc very specific to particular events
or attacks. Most of its longer traces are anonymized backbone traces without their
payload. The CAIDA DDoS 2007 attack dataset contains one hour of anonymized
traffic traces from DDoS attacks on August 4, 2007, which attcmpted to consume a

large amount of network resources when connecting to Internet servers. The traffic

Thttp://www.ll.mit.cdu/mission/communications/ist/corpora/ideval /data/index.html
2http-//cctf.shmoo.com/data/
*http.//www.caida org/home/
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traces contain only attack traffic to the victim and responses from the victim with

5 minutes split form. All traffic traces are in pcap (tcpdump) format. The creators
\

removed non-attack traffic as much as possible when creating the CAIDA DDoS

2007 dataset.

LBNL Dataset

LBNL's internal enterprise traffic traces are full header network traces [253] without
payload. This dataset suffers from heavy anonymization to the extent that scanning
traffic was extracted and separately anonymized to remove any information which
could identify individual IPs. The background and attack traffic in the LBNL

dataset are described below.

o LBNL background traffic: This dataset can be obtained from the Lawrence
Berkcley National Laboratory (LBNL) in the US. Traffic in this dataset is com-
prised of packet level incoming, outgoing, and internally routed traffic streams
at the LBNL edge routers. Traffic was anonymized -using the tcpmkpub tool
[254]. The main applications observed in the internal and external traffic are
Web, email, and name services. Other applications like Windo“;s services,
network file services, and backup were used by internal hosts. The details of
each service and information on each packet and other relevant description
are given in [255]. The background network traffic statistics of LBNL dataset

are given in Table 4.4.

e LBNL attack traffic: This dataset identifies attack traffic by isolating scans
in aggregafe traffic traces. Scans are identified by flagging those hosts which
unsuccessfully probe more than 20 hosts, out of which 16 hosts are probed
in ascending or descending IP order [254]. Malicious traffic mostly consists
of failed incoming TCP SYN requests, i.e., TCP port scans targeted towards
LBNL hosts. However, there are also some outgoing TCP scans in the dataset.
Most UDP traffic observed in the data (incoming and outgoing) is comprised
of successful connections, i.e., host replies for the received UDP flows. Clearly,
the attack rate is significantly lower than the background traffic ratc. Details

of the attack traffic in this dataset are shown in Table 4.4. Complexity and
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Table 4.4: Background and attack traffic information for the LBNL datasets

Date Duration | LBNL Remote Background traffic | Attack trof-
(mans) hosts hosts rate (packet/sec) fic rate
(packet/sec)
10/04 /2004 10 min 4767 4.342 8 47 041
12/15/2004 60 min 5,761 10,478 3.5 0 061
12/16/2004 60 min 5,210 7,138 243 83 72

privacy were two main reservations of the participants of the endpoint data
collection study. To address these reservations, the dataset creators devel-
oped a custom multi-thrcaded MS Windows tool using the Winpcap API
[256] for data collection. To reduce packet logging complexity at the end-
points, they only logged very elementary session-level information (bidirec-
tional communication between two IP addresses on different ports) for the
TCP and UDP packets To cnsure uscr privacy, an anonymization policy was

used to anonymize all traffic instances.

Endpoint Dataset

The background and attack traffic for the endpoint datasets arc explained below.

o Endpownt background traffic: In the endpoint context, we see in Table 4.5
that homec computers generate significantly higher traffic volumes than of-
fice and university computers because' (z) they are generally shared between
multiple users, and (#) they run peer-to-peer and multimedia applications.
The large traffic volumes of home computers arc also evident from their
high mecan number of scssions per second To generate attack traffic, the
developers infected Virtual Machines (VMs) on the endpoints with different
malware, viz., Zotob.G, Forbot-FU, Sdbot-AFR, Dloader-NY, So-Big. E@mm,
MyDoom.A@mm, Blaster, Rbot-AQJ, and RBOT.CCC. Dctails of the mal-
ware can be found in [257]. Characteristics of the attack traffic in this dataset
are given in Table 4.6. These malwares have diverse scanning rates and attack

ports or applications.

o Endpownt attack traffic: The attack traffic logged at the endpoints is mostly
compriscd of outgoing port scans. Note that this is the opposite of the LBNL
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Table 4.5: Background traffic information for four endpoints with high and low rates

Endpownt ID Endpownt type Duration Total ses- | Mean session  rate
{months) sions {/sec)

3 Home 3 3.73,009 1.92

4 home 2 4 44 345 528

6 University 9 60,979 0.19

10 University 13 152,048 021

Table 4.6: Endpoint attack traffic for two high and two low-ratc worms

Malware Release Date Avg Scan rate (/sec) Port (s) Used
Dloader-NY Jul 2005 46.84 sps TCP 1,35,139
Forbot-FU Sept 2005 32 53 sps TCP 445
Rbot-AQJ Oct 2005 0 68 sps TCP 1,39.769
MyDoom-A Jan 2006 0.14 sps TCP 3127-3198

datasct, in which most attack traffic is inbound. Moreover, the attack traffic
rates at the endpoints are gencerally much higher than the background traffic
rates of the LBNL datasets This diversity in attack direction and rates pro-
vides a sound basis for performance comparison among scan detectors. For
each malware, attack traffic of 15 minute duration was inserted in the back-
ground traffic for each endpoint at a random time instance. This operation
was repeated to insert 100 non-overlapping attacks of each worm inside each

cndpoint’s background traffic

4.2.3 Real-life Datasets

We discuss three real-hfe datasets created by collecting network traffic on several
consecutive days during a week or a month. The details include both normal as
well as attack traffic in appropriatc proportions in the authors’ respective campus

networks (i.e., testbed).

UNIBS Dataset

The UNIBS packet traces [258] were collected on the edge router of the campus
network of the University of Brescia in Italy, on three consecutive working days.
The datasct includes traffic captured or collected and stored using 20 workstations,

cach running the GT (Ground Truth) clicnt dacmon. The datasct creators collected
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the traffic by running tcpdump on the faculty router, which was a dual Xeon Linux
box that connccted the local network to the Internet through a dedicated 100Mb/s
uplink. They capturcd and stored the traces on a dedicated disk of a workstation

connected to the router through a dedicated ATA controller.

ISCX-UNB Dataset

Real packet traces [259] were analyzed to create profiles for agents that generate
real traffic for HTTP, SMTP, SSH, IMAP, POP3 and FTP protocols. Various

multistage attack scenarios were explored to generate malicious traffic.

KU Dataset

The Kyoto University dataset! is a collection of network traffic data obtained from
honeypots. The raw datasct obtaincd from the honeypot system consisted of 24
statistical features, out of which 14 significant features were extracted [260]. The
dataset developers extracted 10 additional features that could be used to investi-
gate network events inside the university more effectively. However, they used 14

conventional features only during training and testing.

4.2.4 Discussion

The datasets described above are valuable assets for the intrusion detection com-
munity. Howcver, the benchmark datascts suffer from the fact that they are not
good representatives of real world traffic. For example, the DARPA dataset has
been questioned about the realism of the background traffic [261,262] because it is
synthetically generated. In addition to the difficulty of simulating real-lifc network
traffic, there arc additional challenges in IDS cvaluation [263]. Thesc include dif-
ficulties in collecting attack scripts and victim software, differing requirements for
testing signature based vs. anomaly based IDSs, and host-based vs. network based

IDSs.

thttp:/ /www.takakura com/kyoto.data
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4.3 Real-Life Datasets Generation

As noted above, the generation of an unbiased real-life int1usion dataset incorporat-
ing a large number of real world attacks 1s important to evaluate network anomaly
detection methods and systems In this chapter, we desciibe the generation of three
rcal-hfe network mtrusion datasets! including (a) a TUIDS (Tezpur University In-
trusion Detection System) intrusion dataset, (b) a TUIDS coordinated scan dataset,
and (c) a TUIDS DDoS dataset at both packet and flow levels 264] The resulting

details and supporting infrastructure is discussed 1n the following subscctions

4.3.1 Testbed Network Architecture

The TUIDS testbed network consists of 250 hosts 15 L2 switches 8 L3 switches,
3 wireless controllers, and 4 routers that compose 5 different networks inside the
Tezpur University campus The architectuie of the TUIDS testbed 1s given
Figurc 42 The hosts arc divided 1nto scveral VLANs cach VLAN bclonging to
an L3 switch or an L2 switch inside the network All servers are installed inside
a DMZ to provide an additional layer of protection in the security system of an

organization

4.3.2 Network Traffic Generation

To gencrate real-hife normal and attack traffic we configured scveral hosts, work-
stations and servers in the TUIDS testbed network The network consists of 6
interconnected Ubuntu 10 10 workstations On each workstation, we have installed
several severs including a network file server (Samba) a mauil sever (Dovecot), a tel-
net server, an FTP server a Web server, and an SQL sever with PHP compatibility
We also nstalled and configured 4 Windows Servers 2003 to exploit a diverse set of
known vulnerabilities against the testbed environment Servers and their services
runmng 1n our testbed arc summarnzed 1n Table 4 7

The normal network traffic 1s generated based on the day-to-day activities of
users and cspecially gencrated traffic from configured servers It 1s important to

generate different types of normal traffic So, we capture traffic from students,

Thttp //agnigarh tezu ernet 1n/~dkb/resource html
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Figure 4.2: Testbed network architecture
Table 4.7: Servers and their services running on the testbed network
Server Operating system Services Provider
Main Server Ubuntu 10.10 Web, eMail Apache 2.4.3,
Dovecot 2.1.14
Network File Server Ubuntu 10.10 Samba, Samba 4.0.2
Telnet Server Ubuntu 10.10 Telnet telnet-0.17-
36bulidl
FTP Server Ubuntu 10.10 ftp vsFTPd 2.3.0
Windows Server Windows Server 2003 Web I1IS v7.5
MySQL Server Ubuntu 10.10 database MySQL 5.5.30

faculty members, system administrators; and office staff on different days within the

University. The attack traffic is generated by launching attacks within the testbed

network in three different subsets, viz., a TUIDS intrusion dataset, a coordinated

scan dataset, and a DDoS dataset. The attacks launched in the generation of these

real-life datasets are summarized in Table 4.8.

As seen in the table above, 22 distinct attack types (1-22 in Table 4.8) were used

to generate the attack traffic for the TUIDS intrusion dataset; six attacks (17-22 in

Table 4.8) were used to generate the attack traffic for the coordinated scan dataset

and finally six attacks (23-28 in Table 4.8) were used to generate the attack traffic
for a DDoS dataset with combination of TCP, UDP, and ICMP protocols.
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Table 4.8: List of real-life attacks and their generation tools

Attack name Generatzon Lool Attack name Generation tool
1 bonk targa2 c 15 hnux-icmp hnux-icmp ¢

2 jolt targa2 ¢ 16 syn-flood synflood ¢

3 land targa2 c 17 window-scan nmap/rnmap

4 sathyousen targa2 ¢ 18 syn-scan nmap,/rnmap

5 teardrop targa2 c 19 xmasstree-scan nmap/1nmap

6 newtcar targa2 ¢ 20 fin-scan nmap/rnmap
71234 targa2 ¢ 21 null-scan nmap/rnmap

8 winnuke targa2 c 22 udp-scan nmap,/rnmap

9 oshare targa2 ¢ 23 syn-flood(DDoS) LOIC

10 nestea targa2 c 24 rst-flood(DDoS) Trinity v3

11 syndrop targa2 ¢ 25 udp-flood(DDoS) LOIC

12 smurf smurf4 ¢ 26 ping-flood(DDoS) DDoS ping v2 0
13 opentear opentear ¢ 27 fraggle udp-flood(DDoS) Trinoo

14 fraggle fraggle ¢ 28 smurf 1cmp-flood(DDoS) TFN2K

4.3.3 Attack Scenarios

The attack scenarios start with information gathering techniques collecting target
network IP ranges, identities of name servers, mail servers, and user e-mail accounts,
etc This 1s achieved by querying the DNS for resource records using network
administrative tools like nslookup, and dig We consider six attack scenarios when

collecting rcal-lifc network traffic for dataset gencration

Scenario 1: Denial of Service using targa

This attack scenario 1s designed towards performing attacks on a target using the
targa! tool until 1t 1s successful Targa 1s a very powerful tool to quickly damage
a particular network belonging to an oiganization We ran targa by specifying
different paramcter values such as IP ranges, attacks to run, and number of times

to repeat the attack

Scenario 2: Probing using nmap

In this scenario, we attempt to acquire information about the target host and then

launch the attack by exploiting the vulnerabihties found using the nmap? tool

http //packetstormsecurity com/
2http //nmap org/
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Examples of attacks that can be launched by this method are syn—scém and ping-

sweep.

Scenario 3: Coordinated scan using rnmap

This scenario starts with a goal to perform coordinated port scans to single and
multiple targets. Tasks are distributed among multiple hosts for individual actions
which may be synchronized. We use the rnmap! tool to launch coordinated scans

in our testbed network during the collection of traffic. -

Scenario 4: User to root using brute force ssh

These attacks are very common against networks as they tend to break into accounts
with weak username and password combinations. This attack has been designed
with the goal of acquiring an SSH account by running a dictionary brute force attack
against our central server. We use the brutessh? tool and a customized dictionary
list. The dictionary consists of over 6100 alphanumeric entries of varying length.
We executed the attack for 60 minutes, during which superuser credentials were
returned from the server. This ID and password combination was used to download

other users’ credentials immediately.

Scenario 5: Distributed Denial of Service using agent-handler network

This scenario mainly attempts to exploit an agent handler network to launch the
DDoS attack in the TUIDS testbed network. The agent-handler network consists of
clients, handlers, and agents. The handlers are software paékages that are used by
the attacker to communicate indirectly with the agents. The agent software exists
in compromised systems that will eventually carry out the attack on the victim
system. The attacker may communicate with any number of handlers, thus making
sure that the agents are up and running. We use Trinity v3, TFN2K, Trinoo, and
'DDoS ping 2.0 to launch the attacks in our testbed.

Thttp://rnmap.sourceforge.net/
Zhttp:/ /www.securitytube-tools.net/
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Scenario 6: Distributed Denial of Service using IRC botnet

Botnets are an emerging threat to all orgamzations because they can compromise
a nctwork and steal important information and distributc malware. Botnets com-
bine individual malicious behaviors into a single platform by simplifying the actions
needed to be performed by users to initiate sophisticated attacks against comput-
ers or nctworks around the world. These behaviors include coordinated scanning,
distributed demial of service (DDoS) activitics. direct attacks, indirect attacks, and

other deceitful activities taking place across the Internet.

The main goal of this scenario 1s to perform distributed attacks using infected
hosts on the testbed. Internet relay chat (IRC) bot network allow users to create
public, private and secret channels. For this, we use a LOIC!, an IRC-based DDoS
attack gencration tool. The IRC systems have scveral other significant advantages
for launching DDoS attacks. Among the three important benefits are (i) they afford
a high degree of anonymity, (ii) they are difficult to detect, and (iii) they provide
a strong, guaranteed delivery system. Furthermore, the attacker no longer needs
to maintain a list of agents, since he can simply log on to the IRC server and see
a list of all available agents The IRC channels receive communications from the
agent software regarding the status of the agents (i.e., up or down) and participate

m notifying the attackers regarding the status of the agents.

4.3.4 Capturing Traffic

The key tasks in network traffic monitoring are lossless packet capturing and precise
time stamping. Therefore, software or hardware is required with a guarantee that
all traffic is captured and stored. With the goal of prepanng both packet and flow
level datascts, we capture both packet and NetFlow traffic from different locations
in the TUIDS testbed. The capturing period started at 08:00-05am on Monday
February 21, 2011 and continuously ran for an exact duration of seven days, ending
at 08:00:05am on Sunday February 27th. Attacks were executed during this period
for the TUIDS Intrusion and the Coordinated Scan datascts. DDoS traffic was

also collected for the same amount of time but during October, 2012 with several

Yhttp //sourceforge.net/projects/loic/
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variations of real-life DDoS attacks. Figure 4.3 illustrates the protocol composition
and the average throughput scen during the last hour of data capture for the TUIDS

intrusion dataset in our lab
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Figure 4.3: (a) Composition of protocols and (b) Average throughput during last hour
of data capture for the TUIDS intrusion datasct scen in our lab’s traffic

We usc a tool known as Lossless Gigabit Remote Packet Capture with Linux
(Gulp!) for capturing packet level traffic in a mirror port as shown in the TUIDS
testbed architecture. Gulp reads packets directly from the network card and writes .
to the disk at a high rate of packet capture without dropping packets. For low rate
packets, Gulp flushes the ring buffer if it has not written anything in the last second.
Gulp writes into even block boundaries for excellent writing performance when the
data rate increases. It stops filling the ring buffer after receiving an interrupt but

it would write into the disk whatever remains in the ring buffer.

In the last few years, NetFlow has become the most popular approach for IP
network monitoring, since it helps cope with the scalability issues introduced by
increasing network spceds. Now major vendors offer flow-enabled devices. An

example is a Cisco router with NetFlow. A NetFlow is a stream of packets that

Yhitp://staff.washington.edu/corey/gulp/
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arrives on a source interface with the key values shown in Figure 44 A key 1s an
identified value for a field within the packet Cisco routers have NetFlow featuics
that can be cnabled to generate NetFlow records The principle of NetFlow is as
follows When the router receives a packet, its NetFlow module scans the source
IP address, the destination IP address, the source port number, the destination
port number the protocol type, the type of service (ToS) bit in IP header, and the
iput or output interface number on the router of the IP packet, to judge whether
1t belongs to a.NetFlow record that already exists in the cache If so, it updates the
NetFlow record, otherwise, a new NetFlow record 1s generated in the cache The
expired NetFlow records in the cache are exported periodically to a destination IP

address using a UDP port

IP Header TCP Header
4bit 8 bit &-bit 32.bit - Source Port Destlnatlon Port
Verslon | Header | Type of Total Length r Sequence Number
Length | Service Acknowledgement Number
Identification Flags Offset Offset |U[A|P|R[S{F Window
Timeto Live | Protocol Check Reserved
Source Address UDP Header
Destination Address r— 0 Source Port Destination Port
Options and Padding R Length Checksum
Flow Record
Source Address
Destination Address
Source Port Destination Port
Protocol [ T0S Other Aggregated Values

Common Parameters

Figure 4.4: Common NetFlow parameters

For capturing NetFlow traffic, we need a NetFlow collector that can listen to a
specific UDP port to collect traffic The NetFlow collector captures exported traffic
from multiple routers and periodically stores 1t in summarized or aggregated format
into a round robin databasc (RRD) The following tools arc used to capturc and

visualize the NetFlow traffic

(a) NFDUMP This tool capturcs and displays NetFlow traffic  All versions of
nfdump support NetFlow v5 v7, and v9 nfcapd is a NetFlow capture daemon that
reads the NetFlow data fiom the routers and stores the data into files periodically
It automatically rotates files every n minutes (by default 1t 15 5 minutes) We

nced onc nfcapd process for cach NetFlow strcam  Nfdump reads the NetFlow
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data from the files stored by nfcapd The syntax 1s similar to that of tcpdump
Nfdump displays NctFlow data and can create top N statistics for flows based on
the parameters sclected The main goal 1s to analyzc NetFlow data from the past as
well as to track interesting traffic patterns continuously from high speed networks
The amount of time from the past 1s imited only by the disk space available for all

NctFlow data

Nfdump has four fixed output formats raw hne long and extended In ad-
dition the user may specify any desired output format by customizing 1t The
default format 1s hine, unless specified The raw format displays each record in

multiple lines, and prints any available information 1n the traffic record

(b) NFSEN nfsen 1s a graphical Web based front end tool for visualization of
NetFlow traffic nfsen facilitates the visualization of several traffic statistics, e g ,
flow-wise statistics for various features, navigation through the NetFlow traffic
processes within a time span, and continuous profiles It can also add own plugins

to process NetFlow traffic in a customized manner at a regular time interval

Normal traffic 1s captured by restricting 1t to the internal networks, where 80%
of the hosts are connected to the router, including wireless networks We assume
that normal traffic follows the normal probability distribution Attack traffic 1s
captured as we launch various attacks in the testbed for a weck For DDoS attacks
we used packet-craft! to gencrate customized packets Figurc 4 5 and Figurc 4 6
show the number of flows per second and also the protocol-wise distribution of fows

during the capturing period, respectively

4.3.5 Feature Extraction

We use wireshark and Java routines for filtering unwanted packets (such as packets
with routing protocols, and packets with application layer protocols) as well as
irrelevant information from the captured packets Finally, we retrieve all relevant
information from each packet using Java routines and storc 1t in comma-scparated
form 1n a text file The details of parameters i1dentified for packet level data are

shown 1n Table 4 9

'hitp //www packet-craft net/
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Figure 4.5: Number of flows per second in TUIDS intrusion datasets during the capture
period
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Figure 4.6: Protocol-wise distribution of flow per second in TUIDS intrusion dataset
during the capture period

We developed several C routines and used them for filtering NetFlow data
and for extracting features from the capturcd data. A dctailed list of parameters

identificd for flow level data is given in Table 4.10.
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Table 4.9: Parameters identified for packet level data

Sl. No. Parameter name Description
1 Time Time since occurrence of first frame
2 Frame-no Frame number
3 Frame-len Length of a frame
4 Capture-len Capture length
5 TTL Time to live
6 Protocol Protocols (such as, TCP, UDP, ICMP etc.)
7 Src-ip Source IP address
8 Dst-ip Destination IP address
9 Src-port Source port
10 Dst-port Destination port
11 Len Data length
12 Seq-no Sequence number
13 Header-len Header length
14 CWR Congestion window record
15 ECN Explicit congestion notification
16 URG Urgent TCP flag
17 ACK Acknowledgement flag
18 PSH Push flag
19 RST "Resct flag
20 SYN TCP syn flag
21 FIN TCP fin flag
22 Win Size Window Size
23 MSS Maximum segment size
Table 4.10: Parameters identified for flow level data
Sl. No. Parameter name Description
1 flow-start Starting of flow
2 Duration Total life time of a flow
3 Proto Protocol, i.c., TCP, UDP, ICMP, ctc.
3 Src-ip Source IP address
4 Src-port, Source port
5 Dest-1p Destination IP address
6 Dest-port Destination port
7 Flags TCP flags
8 ToS Type of Service
9 Packets Packets per flow
10 Bytes Bytes per flow
11 Pps Packet per sccond
12 Bps Bit per second
13 Bpp Byte per packet

We capture, preprocess, and extract various features in both packet and flow
level network traffic. We introduce a framework for fast distributed featurc extrac-
tion from raw network traffic, correlation computation and data labelling, as shown
in Figure 4.7. We extract four types of features: basic, content-based, time-based
and connection-based, from the raw network traffic. We use T' = 5 seconds as

the time window for extraction of both time based and connection based traffic

111




Chapter 4. A Systematic Approach to Generate Real-Life Intrusion

Datasets

features. Sy and S, are servers used for preprocessing, attack labelling, and profile

gencration. W5 and W.S, arc high-end workstations used for basic feature extrac-

tion and merging packet and NectFlow traffic Ny, Ny, - -- Ng arc independent nodes

used for protocol specific feature extraction. The lists of extracted features at both

packet and flow levels for the intrusion datasets are presented in Table 4.11 and

Table 4 12, respectively. The list of features available in the KDDcup99 intrusion

dataset is also shown in Table 4.13.
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Figure 4.7: Fast distributed feature extraction. correlation. and labelling framework

Table 4.11: List of packet level features in TUIDS Intrusion Dataset,
Label/feature name Type | Description
Basic features
1 Duration C Length (number of seconds) of the connection
2 Protocol-type D Type of protocol, e g, tcp, udp, etc
3 Src-1p C Source host IP address
4 Dest-1p C Destination IP address
5 Src-port C Source host port number
6 Dest-port C Destination host port number
7 Service D Network service at the destination e g, http, telnet etc
8 num-bytes-src-dst C The number of data bytes flowing from source to destination
9 num-bytes-dst-src C The number of data bytes flowing from destination to source
10 Fr-no C Frame number
11 Fr-len C Frame length
12 Cap-len C Captured frame length
13 Head-len C Header length of the packet
14 Frag-off D Fragment offset ‘1 for the second packet overwrite everything, ‘0’ other-
wise

Continued on next page
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Table 4 11 - Continued from previous page

Label/feature name Type | Description

15 TTL C Time to hive ‘0 discards the packet

16 Seq-no C Sequence number of the packet

17 CWR D Congestion window record

18 ECN D Explicit congestion notification

19 URG D Urgent TCP flag

20 ACK D Acknowledgement flag value

21 PSH D Push TCP flag

22 RST D Reset TCP flag

23 SYN D Syn TCP flag

24 FIN D Fin TCP flag

25 Land D 1 1f connection 1s from/to the same host/port 0 otherwise

Content-based features

26 Mss-src-dest-requested | C Maximum segment size from source to destination requested

27 Mss-dest-src-requested | C Maximum segment size from destination to source requested

28 Ttt-len-src-dst C Time to hve length from source to destination

29 Ttt-len-dst-src C Time to hive length from destination to source

30 Conn-status C Status of the connection (e g, ‘1’ for complete, 0’ for reset)

Time-based features

31 count-fr-dest C Number of frames received by unique destinations in the last T seconds
from the same source

32 count-fr-src C Number of frames received flom unique sources 1in the last T seconds fiom
the same destination

33 count-serv-src C Number of frames from the source to the same destination port in the last
T seconds

34 count-serv-dest C Number of frames from destination to the same source port n the last T
seconds

35 num-pushed-src-dst C The number of pushed packets flowing from source to destination

36 num-pushed-dst-src C The number of pushed packets fllowing from destination to source

37 num-SYN-FIN-src-dst C The number of SYN/FIN packets flowing from source to destination

38 num-SYN-FIN-dst-src C The number of SYN/FIN packets flowing from destination to source

39 num-FIN-src-dst C The number of FIN packets flowing from source to destination

40 num-FIN-dst-src C The number of FIN packets flowing fiom destination to source

Connection-based features

41 count-dest-conn C Number of fiames to unique destinations in the last N packets from the
same source

42 count-src-conn C Number of fiames from unique sources in the last N packets to the same
destination

43 count-serv-srcconn C Number of frames from the source to the same destination port in the last
N packets

44 count-serv-destconn C Number of frames from the destination to the same source port in the last
N packets

45 num-packets-src-dst C The number of packets flowing from source to destination

46 num-packets-dst-src C The number of packets flowing from destination to source

47 num-acks-src-dst C The number of acknowledgement packets flowing from source to destina-
tion

48 num-acks-dst-src C The number of acknowledgement packets flowing from destination to
source

49 num-retransmit-src- | C The number of retransmitted packets flowing from source to destination

dst

50 num-retransmit-dst- { C The number of retransmitted packets flowing from destination to source

src

C-Continuous, D-Discrete
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Table 4.12: List of flow level features in TUIDS Intrusion ‘Dataset

Label/feature name Type | Description

Basic features

1 Duration C Length (number of seconds) of the flow

2 Protocol-type D Type of protocol, eg TCP, UDP, ICMP

3 Src-1p C Source host IP address

4 Dest-1p C Destination IP address

5 Src-port C Source host port number

6 Dest-port C Destination host port number

7 ToS D Type of service

8 URG D TCP urgent flag

9 ACK D TCP acknowledgement flag

10 PSH D TCP push flag

11 RST D TCP reset flag

12 SYN D TCP SYN flag

13 FIN D TCP FIN flag

14 Src-bytes C Number of data bytes transfered from source to destination

15 Dest-bytes C Number of data bytes tiansfered fiom destination to source

16 Land D 1 1f connection 1s fiom/to the same host/port, 0 otherwise

Time-based features

17 count-dest C Number of flows to unique destination IPs 1n the last T seconds fiom the
same source

18 count-src C Number of flows from unique source IPs in the last T seconds to the same
destination

19 count-serv-src C Number of flows from the source to the same destination port in the last T
seconds

20 count-serv-dest C Number of flows from the destination to the same source port in the last T
seconds

Connection-based _features

21 count-dest-conn C Number of flows to unique destination IPs in the last N flows from the same
source .

22 count-sre-conn C Number of flows from unique source IPs in the last N flows to the same
destination

24 count-serv-srcconn C Number of flows from the source IP to the same destination port in the last
N flows

25 count-serv-destconn C Number of flows to the destination IP to the same source port in the last
N flows

C-Continuous, D-Discrete

4.3.6 Data Processing and Labelling

As mentioned in the previous section, both packet and flow level traffic features
arc extracted scparately within a time interval when features are extracted. So, it
1s important to correlate each feature (i.e., basic, content-based, time-based, and
connection-based) to a time interval. Once correlation is performed for both packet
and flow level traffic, labelling of each feature data as normal or anomalous 1s
important. The labelling process cnriches the feature data with information such
as (i) the type and structure of malicious or anomalous data, and (ii) dependencies
among different isolated malicious activities. The correlation and labelling of each
feature traffic as normal or anomalous is made using Algorithm 1. However, both
normal and anomalous traffics arc collected scparately in scveral sessions within a

week. We remove normal traffic from anomalous traces as much as possible.

The overall traffic composition with protocol distribution in the gencrated datascts
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Table 4.13: List of features in the KDDcup99 intrusion dataset

Label/feature name

b
kel
o

Description

Basic features
Duration
Protocol-type
Service

Flag

Src-bytes
Dst-bytes

Land
Wrong-fragment
Urgen
Content-based features
10 Hot

000N O AWN -

11 Num-failed-logins
12 Logged-in
13 Num-compromised

14 Root-shell

15 Su-attempted

16 Num-i100t

17 Num-file-creations
18 Num-shells

19 Num-access-files
20 Num-outbound-cmds
21 Is-host-login

22 Is-guest-login
Time-based features
23 Count

24 Srv-count

25 Serror-rate

26 Srv-serror-rate
27 Rerror-rate

28 Srv-rerror-rate
29 Same-srv-rate
30 Daff-srv-rate

31 Srv-diff-host-rate

32 Dst-host-count

33 Dst-host-srv-count
34 Dst-host-same-srv-
rate

35 Dst-host-diff-srv-rate
36 Dst-host-same-src-
port-rate

37 Dst-host-srv-diff-host-
rate

38 Dst-host-serror-rate
39 Dst-host-srv-serror-
rate

40 Dst-host-rerror-rate
41 Dst-host-srv-rerror-
rate

Connection-based featuies

aaQ o0 O o oo oo 0O Q guaoaooobo aoa o aatoouooon

Length (number of seconds) of the connection

Type of protocol, e g , tcp, udp, etc

Network service at the destination, e g, http, telnet, etc
Normal or error status of the connection

Number of data bytes from source to destination

Number of data bytes from destination to source

1 1f connection 1s from/to the same host/port, 0 otherwise
Number of “wrong” fragments

Number of urgent packets

Number of “hot” indicators (hot number of directory accesses, create and
execute program)

Number of failed login attempts

1 1f successfully logged-in, 0 otherwise

Number of “compromised’ conditions (compromised condition number of
file/path not found ertors and jumping commands)

1 1f root-shell 1s obtained, 0 otherwise

1 1f “su root” command attempted, 0 otherwise

Number of “root” accesses

Number of file creation operations

Number of shell prompts

Number of operations on access control files

Number of outbound commands 1n an ftp session

1 if login belongs to the “hot” list 0 otherwise

11f the login 1s a “guest” login, 0 otherwise

Number of connections to the same host as the current connection 1n the
past 2 seconds

Number of connections to the same service as the current connection 1n
the past 2 seconds (same-host connections)

% of connections that have “SYN” errors (same-host connections)

% of connections that have “SYN” errors (same-service connections)

% of connections that have “REJ” errors (same-host connections)

% of connections that have “REJ” errors (same-service connections)

% of connections to the same service (same-host connections)

% of connections to different services (same-host connections)

% of connections to different hosts (same-service connections)

Count of destination hosts
Srv.count for destination host

Same_srv_rate for destination host

Diff srv.rate for destination host
Same_src_port_rate for destination host

Diff_host_rate for destination host

Serror_rate for destination host
Srv_serror_rate for destination host

Rerror_rate for destination host
Srv_rerror._rate for destination host

C-Continuous, D-Discrete

1s summarized 1n Table 4 14 The traffic includes the TUIDS intrusion datasct, the
TUIDS coordinated scan dataset and the TUIDS DDoS dataset. The final labelled

feature datasets for each category with the distribution of normal and attack in-

formation arc summarized in Table 4.15. All datascts arc prepared at both packet

and flow levels and arc presented 1n terms of training and testing in Table 4 15.
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Algorithm 1 . FC and labelling (F)

Input: cxtracted feature sct, F = {a;, 8 .61}
Output: correlated and labelled feature data, X
1 nitialize X
2. call FeatureExtraction(), F < {on, f1,7,01}, > the procedure
FeatureExtraction() extracts the features separately for all cases

3 for i1+ 1to|N|do > N s the total traffic instances

4 for 1 « 1 to |F| do > F is the total traffic features

5 if (unique(src.ap A dst 1p)) then

6 store X[ZJ] — O1(y), ﬂl(”)

7 end if

8 if ((T == 5s) A (LnP == 100)) then o T is the timc window, LnP is
the last n packets

9 Store X[13] ¢ Y105), 019)

10 end if

11. end for

12. X[13] & {normal, attack} > label each traffic fcaturc instance based on the
duration of the collected traffic

13 end for

Table 4.14: TUIDS dataset traffic composition

Protocol Size (MB) (%)
(a) Total traffic composition

1P 66784 29 99 99
ARP 3 96 0 005
IPv6 000 000
IPX 0 00 0 00
STP 000 000
Other 000 000
(b) TCP/UDP/ICMP traffic composition

TCP 49049 29 73 44
UDP 14940 53 22 37
ICMP 2798 43 419
ICMPv6 000 000
Other 000 000

4.3.7 Comparison with Other Public Datasets

Several real network traffic traces are readily available to the research community
as reported in Section 2. Although these traffic traces are invaluable to the research
community most if not all, fail to satisfy one or more requirements described in
Section 1. This thesis is mostly distinguished by the fact that the issué of data
generation is approached from what other datasets have been unable to provide for
the network security community. It attempts to resolve the issues seen in other
datascts by presenting a systematic approach to generate real-life network intrusion

datascts. Table 4.16 summarizes a comparison between the prior datasets and the

116



4.3. Real-Life Datasets Generation

Table 4.15: Distribution of normal and attack connection instances in real-life packet
and flow level TUIDS datasets

Dataset type
Connection type Training dataset Testing dataset
(a) TUIDS intrusion dataset
Packet level
Normal 71785 58 87% 47895 55 52%
DoS 42592 34 93% 30613 35 49%
Probe 7550 619% 7757 8 99%
Total 121927 - 86265 -
Flow level
Normal 23120 43 75% 16770 41 17%
DoS 21441 40 57% 14475 35 54%
Probe 8282 15 67% 9480 23 28%
Total 52843 - 40725 -
(b) TUIDS coordinated scan dataset
Packet level
Normal 65285 90 14% 41095 84 95%
Probe 7140 9 86% 7283 15 05%
Total 72425 - 48378 -
Flow level
Normal 20180 73 44% 15853 65 52%
Probe 7297 26 56% 8357 34 52%
Total 27477 - 24210 -
(c) TUIDS DDoS dataset
Packet level
Normal 46513 68 62% 44328 60 50%
Flooding attacks 21273 31 38% 28936 39 49%
Total 67786 - 73264 -
Flow level
Normal 27411 57 67% 28841 61 38%
Flooding attacks 20117 42 33% 18150 38 62%
Total 47528 - 46991 -

dataset generated through the application of our systematic approach to fulfill the

principal objectives outlined for qualifving datasets

Table 4.16: Comparison of existing datasets and their characteristics

Dataset u v w No ofwn- | No of at- | z y z Some ref-
stances tributes erences
Synthetic No No Yes | user de- | uset depen- | Not any user de- | [5 159]
pendent dent known pendent
KDDcup99 Yes No Yes 805050 41 BCTW P 1 63 155,
163,168]

NSL-KDD Yes [ No Yes | 148517 41 BCTW [ P C 248
DARPA 2000 | Yes No No Huge Not known Raw Raw | C; 259
DEFCON No No No Huge Not known Raw P Ca 259
CAIDA Yes | Yes | No Huge Not known Raw P C1 259
LBNL Yes Yes No Huge Not known Raw P Cq 265
ISCX-UNB Yes | Yes [ Yes | Huge Not known Raw P A 259
KU Yes | Yes | No Huge 24 BTW P C1 29|
TUIDS Yes | Yes | Yes | Huge 50 24 BCTW | PF C, 5 159]
u-realistic network configuration
v-indicates realistic traffic
w-describes the label information
x-types of features extracted as basic features (B) content based features (C), time based features(T)

and window based features(W)
y-explains the types of data as packet based (P) or flow based (F) or hybrid (H) or others (O)
z-represents the attack category as Ch-all attacks, Ca-demial of service, C3-probe, Cy-user to root,

Cs-remote to local, and A-application layer attacks

Most datascts are unlabclled as labelling 1s laborious and requires a comprechen-
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sive search to tag anomalous traffic. Although an IDS helps by reducing the work,
there is no guarantee that all anomalous activity 1s labelled This has been a major
issue with all datascts and onc of the reasons behind the post-insertion of attack
trafic in the DARPA 1999 dataset, so that anomalous traffic can be labelled in a
deterministic manner. Having seen the inconsistencies produced by traffic merging,
this chapter has adopted a different approach to provide the same level of determin-
istic behavior with respect to anomalous traffic by conducting anomalous activity
within the capturing period using available network resources. Through the use of

logging, all ill-intended activity can be effectively labeled.

The extent and scope of network traffic capture become relevant in situations
where the information contained 1n the traces may breach the privacy of individuals
or organizations. In order to prevent privacy issues, almost all publicly available
datasets remove any identifying information such as payload, protocol, destination,
and flags. In addition, the data is anonymized where necessary header information

is cropped or flows are just summarized.

In addition to anomalous traffic, traces must contain background traffic. Most
capturcd datascts have little control over the anomalous activitics included in the
traces. However, a major concern with cvaluating anomaly based dctection ap-
proaches is the requirement that anomalous traffic must be present on a certain
scale. Anomalous traffic also tends to become outdated with the introduction of
more sophisticated attacks So, we have gencrated more up-to-date datascts that
reflect the current trends and are tailored to evaluate certain characteristics of de-

tection mechanisms which are unique to themselves.

4.4 Observations and Summary

Several questions may be raised with respect to what constitutes a perfect dataset
when dealing with the datasct gencration task. These include qualities of normal,
anomalous, or realistic traffic included in the dataset. We provide a path and a
template to generate a dataset that simultaneously exhibits the appropriate levels
of normality, anomalousness, and recalism while avoiding the various weak points of

currcently available datasects, pointed out earlier. Quantitative measurcments can
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be obtained only when specific methods are applied to the dataset.

The following are the major observations and requirements when generating an

unbiased real-life dataset for intrusion detection.

e The dataset should not cxhibit any uninteﬁdcd property in both normal and

anomalous traffic.

The dataset should be labeled properly.

The dataset should cover all possible current network scenarios.

The dataset should be entirely non-anonymized.

In most benchmark datasets, the two basic assumptions described in Section

1 are valid but this bias should be avoided as much as possible.

Several datascts lack traffic features, although it is important to extract traffic

features with their relevancy for a particular attack.

Despite the enormous efforts needed to create unbiased datasets, there will al-
ways be deficiencies in any one particular dataset. Therefore, it is very important
to generate dynamic datasets which not only reflect the traffic compositions and
intrusions types of the time, but are also modifiable, extensible, and reproducible.
Therefore, new datasets must be generated from time to time for the purpose of
analysis, testing, and cvaluation of network intrusion detection methods and sys-

tems from multiple perspectives.

In this chapter, we have discussed a systcmatic approach to gencrate real-life
network intrusion datasets using both packet and flow level traffic information.
Three different categories of datasets have been generated using the TUIDS testbed.
They are (i) TUIDS Intrusion Dataset, (ii) TUIDS Coordinated Scan Dataset, and
(iii) TUIDS DDoS Datasct. We incorporatc maximum number of possible attacks
and scenarios during the generation of the datasets in our testbed network. These
datasets are used to evaluate the performance of methods developed for intrusion

detection reported in subsequent chapters.
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Chapter 5

Outlier-based Approach for.

Coordinated Port Scan Detection

This chapter presents an overview of port scans, significance of port scans, and
the possibilities for detecting them at firewall level. We also discuss several port
scan detection methods with a general comparison We introduce an outlier based
approach to detect coordinated scans as early as possible. We also proposed an
outlier score function to test cach candidate object to identify coordinated port
scan using score values The method reports each candidate object as normal or
coordinated port scan w.r.t. a threshold. This work is evaluated using a real-life

coordinated scan datable prepared by us and publicly available probe datascts.

5.1 Introduction

During the last scveral decades, network defenders and rescarchers have developed
approaches to detect malicious scans as well as coordinated port scans to keep
enterprise networks secure. This is because cyber threats are becoming more so-
phisticated and more numerous, leading to more substantial damages to systems
within short periods of time [266,267]. Two types of correlations are used in a co-
ordinated scan attack, viz., action correlation and task correlation [268,269]. How
actions performed by one user affects another user is obtained during action correla-
tion. For example, a particular action performed by onc user may facilitate another

uscr who performs the actual attack. In the other type of corrclation, tasks divided
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among multiple users are discovered. Here we focus mainly on task correlation.

Network administrators or defenders are interested in detecting coordinated

scan attacks for a system in an enterprise network due to the following reasons.
e To detect coordinated scan attacks just like the detcction of other attacks,
¢ To foil greater interest by the attacker who wants to remain undetected.
¢ To obviate the potential seriousness of the actual attacks.

A coordinated port scan is a part of a coordinated attack. Here, tasks are dis-
tributed among multiple hosts for individual actions which may be synchronized.
A port scan is an information gathering method used by an opponent to gain infor-
mation about responding computers and open ports on a target network host. An
opponent initiates the exploration of multiple hosts to scan a portion of the target
nctwork, with multiple sources focused on the portion of the target network which
they want to compromise after getting relevant information from the target host.
Intrusion Detection Systems (IDSs) are normally configured to recognize and re-
port single source port scan activity. So, they cannot usually detect multiple source

scans that collaborate with several hosts during scanning

5.1.1 Motivation and Contributions

Early detection of port scans, particularly stealthy or coordinated port scans, is
important to cnable action against potential intruders. The attackers or intruders
are technically sophisticated cnough to remain undctected while gathering infor-
mation but the network defenders are usually out in the open Single source scan
detection is comparatively easy to detect because detection usually works better
when a single source communicates with a single or multiple destinations. But the
detection of a coordinated port scan is difficult due to the lack of relevant feature
information at both packet and flow levels. Therefore, we develop an adaptive out-
lier based detection mechanism for coordinated port scans known as AOCD. This

chapter makes the following kev contributions.

e We prescnt a survey of existing work on port scan attack detection significantly

expanding the discussion in scveral dircctions. This also includes overview of
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port scans and types of such scans, firewall level detection possibility, detection

mcthods, cvaluation and deployment.

e We formalize the problem of coordinated scan detection as a data mining
problem and present an approach to transform network traffic data into a
form where a classifier can be directly used. Specifically, we select random
samples from the dataset and identify a sct of features relevant for cluster

detection for early detection of coordinated port scans.

e We introduce an outlier score function to test each candidate object to identify
coordinated port scan using the estimated score valucs. The method reports
each candidate object as normal or coordinated port scan with respect to a

threshold.

e We present extensive experiments using real-world network traffic data The
results show that our approach, which we call AOCD has substantially better
performance than other state-of-the-art approaches in terms of accuracy and

falsc positive rate.

5.2 Port Scans and Related Concepts

We present here some preliminary discussions on port scans, types and coordinated

port scans.

5.2.1 Port Scans and Types

There arc scveral forms of reconnaissance activity, which often precedes an attack.
When an adversary uses an effective mechanism to remotely probe a network, it is
known as port scanning. System administrators and other network defenders also
use this mechanism to detect port scans as precursors to serious attacks [5]. A port
scan can be defined as sending packets to a particular IP or port to get a response
from an active host in the network indicating the services it offers. A port scan is
useful to an attacker who wants to gain substantial information about the target
host. Thus, it is of considerable interest to attackers to determine whether or not

the defenders of a network scan ports regularly Attackers hide their identity during
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port scanning whereas network defenders do not. Vivo et al. [270] describe a port
scan as being composed of hostile Internet scarches for open “doors” or “ports”,
through which intruders gain access to computers Generally, there are several hosts
available on a network and they run many services that commonly use TCP or
UDP ports for communication with each other These techniques consist of sending
a message to a port and listening for an answer The received response indicates
port status and can be helpful in determining a host’s operating system and other
information relevant to launching a future attack A vulnerability scan is similar,
except that a positive response from the target results in further communication
to detcrmine whether the target is vulncrable to a particular exploit Most attacks
are preceded by some form of scanning activity. particularly vulnerability scanning
[271].

A computer contains 65536 standardly defined ports [272]. They can be classi-
fied into three large ranges: (a) well known ports (0 — 1023), (b) registered ports
(1024 — 49151) and (c) dynamic and/or private ports (49152 — 65535). Normally,
a port scan helps the attacker in finding those ports that arc available to launch
attacks, but it does not directly harm the system Essentially, a port scan sends
a packet with a message to the target host one at a time and hstens for an an-
swer. The responsc indicates whether the port 1s being used. This is a probe for
weaknesses to launch future attacks TCP and UDP ports are usually used for
port scanning but only TCP port scanning returns good feedback to the attacker
because it 1s a connection-oriented protocol. UDP port scanning may not readily
give relevant information to the attacker because it is a connectionless protocol
In addition a UDP port may be easily blocked by network defenders or network
administrators. The following are the various types of port scans [5] which are used

to probe weaknesses from a nctworked host (shown in Figure 5.1).

e Stealth scan. Auditing tools cannot deteet this type of scanning because of
complicated design architectures. Such a scan sends TCP packets to the
destination host with stealth flags Some of the flags are SYN, FIN and
NULL.

e SOCKS port probe: It allows sharing of Internet connections on multiple hosts.
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Figure 5.1: Types of port scans

Attackers scan these ports because a large percentage of users misconfigure
SOCKS ports, potentially permitting arbitrarily chosen sources and destina-
tions to communicate It also allows the attackers to access other Internet

hosts while hiding their true locations.

e Bounce scan: An FTP bounce scan attack takes advantage of a vulnerability
of the FTP protocol itself. Email servers and HTTP Proxies are the common

applications that allow bounce scans.

e TCP scan: This type of scanning is used by a smart attacker because it ncver
establishes a connection permanently. The attacker can launch an attack
immediately if a remote port accepts the connection request. Normally, this
type of connection request cannot be logged by a server’s logging system
duc to its smart connection attempt. Some TCP scans arc TCP Connect(),
reverse identification, Internet protocol (IP) header dump scan, SYN, FIN,
ACK, XMAS, NULL and TCP fragment.

o UDP scan: A UDP scan attempts to discover open ports related to the UDP
protocol. However, UDP is a connectionless protocol and, thus, it is not often

used by attackers since it can be easily blocked.

The list of port scan types discussed above along with firewall detection pos-
sibilities during the scanning process are given in Table 5.1. We can see from the

table that most of scans arc not dectected at firewall level.

5.2.2 Coordinated Port Scan

A coordinated port scan is composed of multiple scans from multiple sources where

there is a single instigator behind the set of sources. The task of distributed infor-
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Table 5.1: Port scan types and their firewall level detection possibilities

Port scanning tech- | Protocol| TCP flag Target reply | Target reply | Firewall level de-
nique (open port) (closed port) tection possibility
TCP Connect() TCP SYN ACK RST Yes
Reverse Ident TCP No No No No
SYN Scan TCP SYN ACK RST Yes
IP Header Dump Scan | TCP No No No No
SYNJACK Scan TCP SYN|ACK RST RST Yes
FIN Scan TCP FIN No RST No
ACK Scan TCP ACK No RST No
NULL Scan TCP No No RST No
XMAS Scan TCP All flags No RST No
TCP Fragment TCP No No No No
UDP Scan UDP No No Port Unieachable No
FTP Bounce Scan FTP Atbitrary No No No
Flag Set
Ping Scan ICMP No Echo Reply No Yes
List Scan TCP No No No No
Protocol Scan P No - - No
TCP window scan TCP ACK RST RST No

mation gathering is accomplished using either a many-to-one or a many-to-many
modecl [273,274] The attacker uses multiple hosts to exccute information-gathering
techniques in two ways' rate-limited, and random or non-linear. In a rate-limited
information-gathering technique, the number of packets sent by a host to scan is
limited [5,275,276]. This is based on the Berkeley Software Distribution (FreeBSD)
implementation of UNIX where scparate rate limits arc maintained for open ports
as well as closed ports. For example, TCP RST is rate limited. “ICMP port
unreachable” 1s also rate hmited. On the other hand, a random or non-linear gath-
ering technique refers to randomization of the destination IP-port pairs among the
sources, as well as randomization of the time delay for each probe packet. A coordi-
nated attack has a more generic form of a distributed scan than the ones described
by Staniford-Chen et al. [277]. It is defined as multi-step exploitation using parallel
scssions with the objective of obscuring the unified nature of the attack, allowing
the attackers to proceed more quickly. We present the TUIDS testbed architecture
(see Figure 5.9) for the generation of coordinated port scans with configuration

details.

5.3 Related Research

Based on how scanning 1s performed, port scan techniques can be classified into

two broad categorics: single-source port scans and distribuled port scans Each of
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these categories is illustrated in Figure 5.2. Therefore, we classify various port scan
detection approaches available in the literaturc into two different categories: single-.
source and distributed approaches. Single-source port scan is performed following
either a one-to-one or a one-to-many model for gathering information about a target
computer or network. On the other hand, distributed information gathering [273] is
performed using a many-to-one or many-to-many model for gathering information
about a target computer or network. A hierarchy of the scan detection approaches

is reported in Figure 5.3.

(a) Single Source port scan (b) Distributed port scan (c) Distributed port scan
(One-to-many) (many-to-one) (many-to-many)

Figure 5.2: Single-source and Distributed port scans
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Figure 5.3: Hierarchy of port scan attack detection approaches

5.3.1 Single Source Port Scans and Approaches for Detec-

tion

The goal of port scanning from the perspective of an attacker is to gather ideas
regarding where to probe for weaknesses. One can scan the network in a one-to-
many fashion. As discussed in [278], a scan or any network attack can be detected by

using a network intrusion detection system (NIDS). In the literature, a port scanner
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is defined as consisting of “specialized programs used to determine what TCP ports

of a host have processes listening on them for possible connections” [270].

Staniford et al. [279] further define scan footprint as the set of ports or IP
combinations that the attacker is interested in characterizing. According to them,
port scans can be of four typcs (as shown in Figure 5.4) vertical, horizontal, strobe
and block. A wvertical scan consists of a port scan of some or all ports on a single

computer. The other three types of scans are used over multiple IP addresses. A

Scan Type Port Computer

Vertical HSomc or Jﬂ'_‘l Single j
IlonzonlulH Single H Muluple lﬂ
Sirobe H Mulupk:ﬁ Mutuple lPTl
Block HAII pcmﬁ Muluple IP< ]

Figure 5.4: Singlc-source scan types with its ports detail

Single-source

horizontal scan is a scan of a single port across multiple IP addresses. If the port
scan is of multiple ports across multiple IP addresses, it is called a strobe scan. A
block scan is a port scan against all ports on multiple IP addresses. Yegneswaran
et al. [280] quantified vertical and horizontal scans, defining a vertical scan as
consisting of six or morc ports on a single computer, and a horizontal scan as

consisting of five or more IP addresses within a subnet.

Detection approaches for single-source port scans have been part of intrusion
detection systems since 1990, from the release of Network Security Monitor (NSM)
[281]. We divide these detection approaches into five categories. algorithmac, thresh-
old based, soft computing, rule based, and wsual Each of these can be further
categorized based on the type of network data processed, methodology used for de-
tection and evaluation criteria. For example, some approaches exploit packet level
information whereas some others use flow level information. These details provide
not only the connection information, but also allow one to analyze the packet pay-
load. This allows signatures of known attacks to be used on the data to determine
whether or not the packet payload contains an attack. Flow level information is pro-
vided by Cisco NetFlow [282] and Argus [283] in the form of summarized connection

information.
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Algorithmic Approaches

These approaches use methods such as hypothesis testing and probabilistic models,
to detect port scan attacks based on analysis of network activity. Some of the most

well known approaches are discussed below.

Leckie and Kotagiri [284] present an algorithm based on a probabilistic model.
For each IP address in the monitored network, the algorithm generates a probability
P(d|s) that represents how likely it is that a source will contact that particular
destination IP, where d 1s the destination IP and s is the source, based on how
commonly that destination IP is contacted by other sources, P(d). Similarly, it also
computes a probability for each port that represents how likely a source will contact
a particular destination port, P(p|s) where p is the destination port A limitation
of this approach is that P(d) is based on the prior distribution of sources that have
accessed that IP address. This implies that if the probabulities for this approach
arc gencrated based on a sample of network data, and if the monitored network
is scanned, the resulting distributions may include scans as well as normal traffic.
Another limitation of this approach is that it assumes that an attacker accesses the
destinations at random; this may not be always true. Kim et al. [285] aim to detect
network port scans using anomaly detection. First, the method performs statistical
tests to analyze traffic rates. Then, it makes use of two dynamic chi-square tests
to detect anomalous packets. It models network traffic as a marked point process
and introduces a general port scan model The authors present simulation results
to detect 10 malicious vertical scans with true positive rate greater than 90% and
false positive rate smaller than 15% for both the static and dynamic tests using the

port scan model and statistical tests.

Ertoz et al. [286] develop a system called MINDS (Minnesota INtrusion De-
tection System) that can analyze network traffic and can also detect port scan
attacks. It rcads NetFlow data and gencrates data characteristics, including flow
level information, e g., source IP, source port, number of bytes, etc. It then derives
information such as the number of connections from a single source, the number of
connections to a single destination, the number of conncctions from a single source

to the samc port, and the number of conncctions from a single destination to the
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same source port. These four features are counted over a time window and over a
connection window. An anomaly scorc [37] is cstimated based on the flow data and
derived data for each network traffic record A report ordercd by anomaly score is

generated The authors also claim that it can detect both fast and slow scanning.

Gates ct al. [287] analyze Cisco NctFlow data for port scan attacks. The method
extracts the events (bursts of network activities surrounded by quiescent periods)
for each source and the flows in each event are then sorted according to destination
IP and destination port. It attempts to calculate six characteristics for cach cvent
based on statistical analysis of port scans It estimates a probability using logistic
regression with these six characteristics as input variables to predict whether the
events contain a scan or not. The main drawback of the method is that it is non-
rcal time. Udhayan ct al. [288] rcport a heuristic approach for detecting port scan
attacks. One possible solution to curb a zombie army or a malicious botnet attack is
by detecting and blocking or dropping reconnaissance scans, i.e., port scans. They
derive a set of heuristics to detect these scans, some quite crafty. It is written
into the firewall and is triggered immediately after a port scan is detected, to drop
packets with the IP address of the source of port scan for a pre-determined period.
This detection approach is more user friendly than other approaches like SNORT
(161]

Gyorgy et al. [289] propose a model known as off-the-shelf classifier based on
data mining. Initially, it transforms network tracc data into a featurc datasct with
label information. Then, it selects Ripper, a fast rule based classifier, which is
capable of learning rules from multi-model datasets, with results that are easy to
interpret. The authors successfully demonstrate that data mining models can en-
capsulate cxpert knowledge to create an adaptive algorithm that can substantially
outperform the state-of-the-art for heuristic based scan detection in both precision
and recall. This technique is also capable of detecting the scanners at an early
stage. Treurniet [290] introduces a new scan detection technique that improves the
understanding of Internet traffic The author creates a session model using the be-
havior of packet-level data between host pairs i1dentified and activities. In a dataset
collected over 24 hours 78% of the instances were identified as reconnaissance ac-

tivitics, out of which 80% were slower scans Thus, the method demonstrates its
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understanding of Internet traffic by classifying known activities, reporting visible

threats to the network through scan detection.

Threshold-based Approaches

These approaches examine events of interest X across a Y-sized time window to
detect port scan attacks above certain thresholds [291]. The most commonly used
parameter for detecting scans is the number of unique IP addresses contacted by a
host  Scveral intrusion detection systems have becen developed in the past couple of
years in the public domain that use the threshold-based approach to detect anomaly.

The approach requires the packet level information.

Heberlein et al. [281] present a system known as Network Security Monitor
(NSM), which is designed using the algorithmic approach and is considered to have
pionecred the implementation of threshold based scan detection [269]. This tool has
three parts: data capturing, data analysis and support. The data analysis is the
core part of the NSM. It collects data in different forms such as statistical, session,
full content and alert. Statistical data represent the aggregation of network traffics,
protocol breakdown and distribution. Session data represent the connection pairs,
and conversation between two hosts. Full content data represent the log of every
single bit of network traffic. Alert data represent the data collected by an IDS. It
reccognizes a source as anomalous and potentially malicious 1if it is found to contact
morc than 15 other IP addresses during an unspecified period of time It also
identifies a source as anomalous if it tries to contact an IP address that does not
contain a responding computer on the monitored network. With this last heuristic,
it assumes that an external sourcec would contact an intcrnal IP address only for a
reason backed by knowledge of the existence of a service at an internal IP address
such as an FTP server or a mail server. NSM is neither a security event management
system nor an intrusion prevention system. Roesch [161] presents a signature-based
intrusion dectection system known as SNORT. It uscs a pre-processor that extracts
port scans, based on either invalid flag combination (for example, NULL scans,
Xmas scans, and SYN-FIN scans) or on exceeding a threshold. SNORT uses a pre-
processor, called portscan that watches connections to determine whether a scan

is occurring By dcfault, SNORT is configured to generate an alarm only if it has
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detected SYN packets sent to at least five different IP addresses within 60 seconds
or 20 different ports within 60 scconds, although this can be adjusted manually. By
having such a high threshold, the number of falsc positives is reduced. However, a

careful scan at a rate lower than the threshold can easily go undetected.

Paxson [292] introduces a detection system known as Bro that attempts to
detect scans based on a thresholding approach Network scans are detected when
a single source contacts multiple destinations (> some threshold). It also detects
vertical scans when a single source contacts too many different ports. It assumecs
that the external site has initiated the conversation in both cases However, a
major limitation of this method is the increased number of false positives. Bro
uses payload as well as packet level information Jung et al. [269] describe an
approach called Threshold Random Walk (TRW) based on sequential hypothesis
testing It detects port scans using an Oracle database that contains the assigned
IP addresses and ports inside a network after performing an analysis of return
trafic. When a connection request 1s reccived, the source IP 1s entered into a list,
along with each destination to which this source has attempted a connection. If the
current connection is to a destination which is already in the list, the connection
is ignored. If it is to a new destination, it 1s added to the list, and a measure that
dctermines whether the conncction is scanning or not is computed and updated
based on the status of the connection. The entire source is flagged as either scanning
or not scanning depending on whether the measure has exceeded the maximum
threshold or has dropped below the mimimum threshold, respectively. It has been
observed that benign activity rarcly results in connections to hosts or scrvices that
are not available, whereas scanning activity often makes such connections, with the
probability of connecting to a legitimate service dependent on the density of the

target network.

Romig [293] develops a flow analysis tool called flow-dscan. This tool examines
flows for floods and port scans. Floods arc identified by an excessive number of
packets per flow. Port scans are identified by a source IP address contacting more
than a certain threshold number of destination IP addresses or destination ports
(only ports less than 1024 are examined) on a single IP address. To minimize the

falsc alarm rate, this approach makes usc of a suppress list consisting of [P addresses.
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Zhang and Fang {294] propose a new port scan detection approach known as Time-
based Flow sizc Distribution Sequential hypothesis testing (TFDS) for high-speed
transit nctworks where only umidirectional flow information 1s available TFDS
uses the main ideas of sequential hypothesis testing to detect scanners that exhibit
abnormal access patterns in terms of flow size distnbution (FSD) entropy This
work makes a comparison with the state-of-the-art backbone port scan detection
method TAPS [295] in terms of efficiency and effectiveness using real backbone

packet trace, and finds that TFDS performs much better than TAPS

Gadge and Patil [296] propose a method to 1dentify possible port scans and try
to gather additional information about the scanner or attacker, such as probable
location and operating system The scan detection system collects all the informa-
tion and storcs 1t to gencrate reports in terms bar graphs Analysis of stored data
can be done in terms of time and day by which type of scan was performed from
which IP the scan was performed different ports, etc Based on the analysis of
the vanous paramecters uscd, 1t can recogmze and report the type of attack or scan
performed during a time window This method can detect scans coming from most

common scanners such as Angry IP nmap and MegaPing

Soft Computing Approaches

Soft computing includes important methods that provide flexible information pro-
cessing for handling real-life ambiguous situations [297] Methods 1n soft computing
exploit tolerance for imprecision and uncertainty, use approximate rcasoming and
partial truth in order to achieve traceability, provide robustness and low-cost solu-
tions to problems Some soft computing approaches for scan detection are discussed

next

Chen and Cheng [298] present a novel and fast port scan detection method based
on Partheno-Genetic Algorithms (PGA) The method can efficiently discover ports
that arc open most often  During genetic evolution ports with more open times sur-
vive to the next generation with higher probabilities This approach demonstrates
that PGA-based port scan 1s efficient for average as well as worst cases Sequential
port scans are better i best cases only Liu et al {299] discuss a method known as

Naive Bayes Kernel Estimator (NBKE), which 1s used to identify flooding attacks
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and port scans from normal traffic. The method represents all known attacks in
terms of traffic features. The method takes hand-identified traffic instances as train-
ing cxamples for the NBKE. This method achieves high accuracy in the detection
of flooding attacks and port scan attacks. The authors show that the Kernel-based
Estimator can provide improved accuracy of 96.8% over the simple Naive Bayes

cstimator

Shafig et al. [300] report a comparative study of three classification schemes
for automated port scan detection. These includes a simple fuzzy inference system
(FIS) that uses classical inductive learning, a neural network that uses the back
propagation algorithm and an adaptive neuro fuzzy inference system (ANFIS) that
also employs the back propagation algorithm. They use two information theoretic
features, namely entropy and KL-divergence of port usage, to model network traffic
behavior for normal user applications The authors carry out an unbiased evaluation
of these schemes using an endpoint based traffic dataset. This work shows that
ANFIS, though morc complex, successfully combines the benefits of the classical

FIS and Neural Network to achicve excellent classification accuracy

Rule-based Approaches

Gencrally, a rule-based IDS analyzcs traffic data passing through it and differenti-
ates intrusive traffic behaviors from the normal. A rule-based IDS uses rules stored
1 1ts knowledge base to detect and take actions when anomaly occurs in the traffic
or when there are unauthorized activitics. A rule-based IDS must gencrate rules
based on network activity for detecting anomaly. Some rule-based approaches are

described below.

Mahoney and Chan [182] introduce a system known as Packet Header Anomaly
Detection (PHAD) that learns the normal range of values for all 33 fields in the
Ethernet, IP, TCP, UDP, and ICMP headers. A score is assigned to each packet
header ficld in the testing phase and the ficlds® scorcs arc summed to obtain a
packet’s aggregate anomaly score. The authors evaluate PHAD using the packet
header fields: source IP, destination IP, source port, destination port, protocol type,
and TCP flags. Normal intcrvals for the six ficlds arc lecarned from 5 days of training

data. In the test data, ficld valucs not falling in the learned intervals are flagged
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as suspect. The top n packet score values are labeled anomalous. The value of n
is varied over a range to obtain ROC curves. Another rclevant work is proposed
by Oke and Loukas [301]. The authors proposec a Denial of Service (DoS) detee-
tion approach which uses multiple Bayesian classifiers and random neural networks
(RNN). Their method is based on measuring various instantaneous and statistical
variables describing the incoming network traffic, acquiring a likelihood estimation
and fusing the information gathered from the individual input features using likeli-
hood averaging and different architectures of RNNs Kim and Lee [302] suggest an
abnormal traffic control framework (ATCF) to detect slow port scan attacks using
fuzzy rules. ATCF acts as an intrusion prevention system disallowing suspicious
network traffic It manages traffic with a two step policy: (1) decreasing network
bandwidth and then (u) discarding traffic. The authors show that the abnormal
traffic control framework can cffectively detect slow port scan attacks using fuzzy

rules and a stepwise policy

In addition to these two, several other rule-based IDSs have been discussed in
the literaturc that arc not included herc duc to being non-relevant to port scan

attack detection.

Visual Approaches

Some approaches present data to the user in a visual manner so that he or she can
recognize scans by the patterns it generates. Such approaches detect and investigate
port scans using packet level information and flow level information. Some visual

approaches are presented here.

Muelder ct al. (303, 304] present PortVis, a tool designed for scan detection.
It uses summarized network traffic for each protocol and each port for a user-
specified time period. The summaries include the number of unique source ad-
dresses, the number of unique destination addresses, and the number of unique
source-destination address pairs A scrics of visualization techniques and drill-
downs are used to determine whether the monitored traffic contains horizontal or
vertical scans. It is unclear how well this algorithm scales to larger networks. It
is because this approach requires a manual analysis of the visualizations, rather

than an automated recognition of scans Musa and Parish [305] describe prototype
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software that enables visualization alerts effectively in real-time. The prototype
software incorporates various projections of the alert data in 3-dimensional cfisplays.
Filtering, drill-down, and playback of alerts at variable speeds are incorporated to
strengthen analysis The developers integrate a false alert classifier using a decision
tree algorithm to classify alerts into false and true alerts. The authors also work on

the analysis of both portsweep and ntin foscan attacks.

Lee et al [306] present an extended version of the NVisionCC system [307],
which is a clustering tool basced on an cxtensible visualization framework It exploits
the nature of large-scale commodity clusters to improve illegal service detection
mechanisms. The cluster properties are only visible when one ceases to look at
the cluster as a collection of disparate nodes. The tool can help make insightful
obscrvations by correlating open network ports observed on cluster nodes with other
emergent properties such as the number and nature of active processes and the
contents of important system files. This approach can greatly restrict the actions
that an attacker can carry out undetected. ScanViewer [308] is a visual interactive
network scan detection system designed to represent traffic activitics that reside in
network flows and their patterns. ScanViewer combines characteristics of network
scans with novel visual structures, and utilizes a set of visual concepts to map
the collected datagram to the graphs that emphasize their patterns Additionally,
it provides Localport, a tool that captures large-scale port information It has
been experimentally shown that ScanViewer not only can detect network scans,
port scans, distributed port scans, but also can detect hidden scans. Finally, a
graph thcoretic model for port scan detection by visualizing graph features for cach

network connection is reported by [309].

Discussion

A large number of techniques for detection of port scans have been reported in
this scction under five distinet categories of approaches. However, 1t is not always
easy to unambiguously classify a technique into any one of these approaches since
often it uses elements from multiple classes. These approaches use features such as
source IP and port, destination IP and port. protocol, start time and cnd time of

the session, and the number of bytes, and packets transferred. Table 5.2 provides
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a summary of the scan detection approaches that are available for detecting the
single-source port scan attacks. Table 52 also shows the performances of those

dctection techniques wherever available and the datascts used for their evaluation.

Table 5.2: Comparing single-source port scan detection approaches

Performance

Detection Author (s) Nature of Detec- | Packet(P) [ False Posi- [ Detection
Approach tion (Real/Non- | / Flow(F) | tive (%) Rate (%)
real time) level

Staniford-Chen et al [277]
Porras and Valdes[310]
Kato et al [311]

Leckie and Kotagin[284]
Ertoz et al [286]

Kim et al [285]

Gyorgy et al [289]

Gates et al [287]
Udhayan et al [288]
Treurniet [290]

003 [284)

Algonthmic

93 82 [289]

Heberlemn et al [281]
Paxson|292
Roesch[161
Threshold Romig[293]
Jung et al [269]

Gadge and Patil[296
Zhang and Fang[294

096 [269]

Streilen et al {312]
Liu et al [299]

Soft Computing | Shafiq et al [300]
Chen and Cheng[298
Chen and Cheng(298

01 312 100 [312]

Mahoney and Chan|182]
Kim and Lee[302]

Rule-based

iy

Muelder et al [303]
Abdullah et al [313]
Lee et al [306]

Musa and Panish{305]
Jiawan et al [308]
Cheng et al [309]

Visual 0 4 [306) 95 5 [306]

Zl'Zy ™| 2| D o| 2| 2|2 2 22| B = 2| 2| ® w2 | | 2] o) R | 2w
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5.3.2 Distributed Port Scans and Approaches for Detection

Distributed information gathering is performed using either a many-to-one or a
many-to-many model (273]. Here, the attacker uses multiple hosts to execute infor-
mation gathering techniques in two ways: rate-limited and random or non-linear.
In a rate-limited information gathering technique, the number of packets sent by a
host to scan is limited [276]; this is based on the FrecBSD implementation of Unix
where separate rate limits are maintained for open ports as well as closed ports.
For example: TCP RST is rate limited, ICMP port unreachable is rate limited,
and so on. On the other hand, a random or non-linear gathering technique refers

to randomization of the destination IP-port pairs amongst the sources, as well as
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randomization of the time delay for each probe packet.

A coordinated attack has a more generic form of a distributed scan described
by Staniford-Chen et al. [277]. It is defined as multi-step exploitation using parallel
sessions with the objective of obscuring the unified naturc of the attack or allowing
the attackers to procecd more quickly Green ct al [314] define a coordinated attack
as “multiple IP addresses working together towards a common goal”. They also add
that a coordinated attack can be viewed as multiple attackers working together
to exccute a distributed scan on many internal addresses or services. Staniford ct
al [279] later define a distributed scan as one that is launched from a number of
different real IP addresses, so that the scanner can investigate different parts of
the footprint from different places. An attacker can scan the Internet using a few
dozen to a few thousand zombies. A zombie is a compromised host, whose owner
is unaware that the computer is being exploited (a remote attacker has accessed
and set up to forward transmissions (spams or viruses) to other computers on the
network) by the external party. Yegneswaran ct al. [280] define coordinated scans as
being scans from multiple sources aimed at a particular port of destinations within a
one hour window. These scans usually come from more aggressive or active sources
that comprise several collaborative peers working in tandem. Finally, Robertson
et al. [315] group sourcc addresses together as forming a potentially distributed
port scan if they are sufficiently close, where the scanner simply obtains multipie
IP addresses from his Internet service provider (ISP). It should be noted that all of
these definitions imply some level of co-ordination among the single sources used in

the scan

The main goal of these approaches 1s to detect coordinated attacks. These types
of attacks attempt to compromisc a single host from multiple systems. There are
various methods for detecting these attacks Like the single-source scan detection
approaches, the approaches also can be categorized into four classes based on the

featurcs used by the methods: algorithmic, clustering, soft computing, and visual.

Algorithmic Approaches

Only a few algorithmic approaches that operate in a distributed mode can be found

in the literaturc. We describe here two popular techniques which perform satisfac-
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torily over multiple datasets

Gates [291] describes a model of potential adversaries based on the information
they wish to obtain, where each adversary is mapped to a particular scan footprint
pattern The adversary modecl forms the basis of an approach to detect forms of
coordinated scans, employing an algorithm that is inspired by hecuristics for the
set covering problem. The model also provides a framework for comparing various
types of adversaries different coordinated scan detection approaches might identify.
The author cvaluates the model to analyze the detector performance over a set of
different datasets Both the detection and false positive rates gathered from the

experiments are modeled using regression equations.

Whyte [316] describes the design, implementation and evaluation of fully func-
tional prototypes to detect internal and external scanning activity at an enterprise
network. These techniques offer the possibility of identifying local scanning systems
within an enterprise network after the obscervation of only a few scanning attempts
with a low false positive and negative rates To detect external scanning activity di-
rected at a network, it makes use of the concept of exposure maps that are identified
by passively characterizing the connectivity behavior of internal hosts in a network
as they respond to both legitimate connection attempts and scanning attempts The
exposure maps technique enables: (1) active response options to be safely focused
exclusively on those systems that directly threaten the network, (2) the ability to
rapidly characterize and group hosts in a nctwork into different exposure profiles
based on the services they offer, and (3) the ability to perform a reconnaissance
activity assessment (RAA) that determines what specific information was returned
to an adversary as a result of a directed scanning campaign. Finally, the author
experimented with real-life scan activity as well as offline datascts. Singh and Chun
[317]) implement a TCP based port scanner in the OMNeT++ simulator. The au-
thors describe two modules: simple and compound. Both modules are implemented
using C++. They claim that their approach can detect TCP connect(), TCP SYN
(half-open), TCP FIN (stealth), Xmas, NULL, ACK, Window and Reset (RST)

scans at the router level.
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Clustering Approaches

Clustering is the process for partitioning data into groups of similar objects. It is an
unsupervised learning process There are many approaches available for detecting
network scans based on the similarity of the data, compactness of the cluster, and

so on. Somec approaches arc discussed below.

Robertson et al. [315] define distributed port scan as a set of port scans that
originate from source IP addresses that are located close together. In other words,
they assumc that a scanner is likely to use several IP addresses on the same subnet.
This implies that if a particular IP address scans a network, IP addresses near
this IP address, rather than those far away, are more likely to have also scanned
the nctwork Yegneswaran et al. [280] can detect coordinated port scans where a
distributed port scan 1s defined as a set of scans from multiple sources (i.e., five
or more) aimed at a particular port at the destinations within a 1-hour window.
On the basis of this definition, the authors find that a large proportion of daily
scans arc coordinated in nature, with coordinated scans being roughly as common
as vertical and horizontal scans. The system looks to see if different sources start
and stop scanning either at the same time, or in very similar temporal patterns.
There is little locality 1n the IP space for these coordinated scanning sources. The

authors do not discuss characteristics of the target hosts.

Staniford ct al. [279] present an approach that begins with an analysis of the
stealthy port scan detection problem using an intrusion correlation engine. The
authors maintain records of event likelihood to estimate the anomalousness of a
given packet. For effective detection performance, they use simulated annealing to
cluster anomalous packets together into port scans based on heuristics developed
from real scans. Packets that score high on anomalousness are kept around longer.
They claim that the system is capable of detecting all scans detected by all other
current techmques, plus many stcalthy scans, with a managcable proportion of false

positives.
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Soft Computing Approaches

In addition to the approaches discussed so far, there are several distributed scan
detection approaches that use soft computing techniques. Next we discuss a few of

these.

Curtis et al. [318] describe an intrusion response architecture based on intel-
ligent agents to detect distributed port scans. The authors use a master analysis
agent to find a confidence measure based on observed false positive rates. The
master analysis agent can combine various alerts using a two-level fuzzy rule set
to determine whether a current attack is a continuation of a previous attack, or
a new attack. The agent considers characteristics of the attack such as the time
between the incident reports, IP addresses, the user name, and the program name.
The details of the fuzzy logic employed are not provided in this article, nor are the
results of any experiments indicating how well this algorithm performs. Zhang et al.
[319] present a distributed multi-layer cooperative model for scan attack detection
composed of feature-based detection, scenario-based detection and statistics-based
detection. A scan attack always happens at the network layer and the transport
layer. The authors categorize scan techniques into three: port scan, bug scan, and
detecting scan. The authors claim that the modecl not only detects common scan
attacks or their variants, but can also detect some slow scan attacks, camouflage

attacks and DoS attacks that use the TCP/IP protocol.

Visual Approaches

These approaches arc used for visualizing network traffic to detect whether the flow
of network packet is an attack or normal behavior. One such commonly found
approach is proposed by Conti and Abdullah [320]. The approach (discussed in
the context of single-source port scan earlier) attempts to detect distributed scans
against a background of normal traffic based on visualization. Duc to lack of details,
it is difficult to understand how a distributed scan would use this tool. Also, it is
not clear how much traffic can be viewed at one time without obscuring features
of interest. Stockinger ct al. [321] present a conditional histogram based detection

mechanism for distributed port scans. This method is evaluated using 2.5 billion
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Table 5.3: Comparing distributed port scan detection approaches

Performance

Detection Author (s) Real (R)/ Non- | Packet (P)/ | False Positive | Detection
Approach real time (N) Flow {F) level | Rate (%) Rate (%)

Carne [291] N P
Algorithmic Whyte [316] R P

Singh and Chun [317] N P

Streilein et al [312] R A 01 [312] 100 [312

Staniford et al [279] [279]
Clustering Seth et al [315] N A 4 [315)

Vinod et al [280] N A

Curtis et al [313 N A 80 (318
Soft Computing |71l [3134 N T/F 18]

Cont1 and Kulsoom [320] | R P
Visual tockinger et al [321] N P

Baldon et al [323] N P

network connections with an interactive time interval. Finally, a collaborative ar-
chitecture to detect coordinated port scans is introduced at [322]. The method aims
to identify coordinated attacks with low false alarm rate and accurate separation of
group of attackers even thev are overlap The method is tested using real network

traffic traces.

Discussion

Most distributed port scan detection approaches analyze packet level information.
They can detect port scan attacks using IP addresses (source IP, destination IP),
conncction information, and port ficlds (source ports, destination ports) in the IP
header. A general comparison of the distributed scan detection approaches discussed
in this section is given in Table 5.3. We see in column 4 of the table that most of
these approaches arc non-rcal time and their performance is evaluated in terms of

the false positive rate and the detection rate.

5.4 Problem Statement

Coordinated or distributed port scans originate at multiple sources and focus on
a single machine or multiple target machines. It is of special interest to large
organizations with high level network situational awareness or military operations

to detect coordinated port scans. The following are key problems.

e Coordinated scans compromise the victim machine carlier than single source
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port scans.

e Coordinated port scans arc distributed 1n nature So, a single attacker or
intruder coordinates a group of attackers in order to obtain vulnerability in-
formation on a set of target networks. This event also consumes the network

bandwidth and resources slowly.

To overcome thesc problecms, we develop an adaptive outlier based coordinated
port scan detection approach. Coordinated scans can be detected in tv;ro different
ways, viz., (1) using direct network traffic fields (e.g., source IP, destmation IP,
protocol, ctc.), and (ii) using rclevant extracted traffic features (c.g., duration,
source bytes, destination bytes, etc.). We follow the second approach to detect
coordinated scans. Let X be the captured, preprocessed current network traffic
feature dataset, where 1,29, --%, are the training samples, randomly selected
from datasct X that contain only normal instances We apply the fuzzy c-means
algorithm to cluster each sample individually into k clusters. Each cluster uses a
range based profile for detection. Let ©y, 24, --x; be the test instances to classify
as attack or normal w.r.t. a threshold dy. The profile basc is updated if any new
distinct instances appear for testing. Thus, our method called AOCD adaptively

updates its profile base for the new distinct instances.

5.5 AOCD: The Proposed Approach

We describe the required concepts first and then the AOCD (Adaptive Outlier-
based Coordinated scan Detection) algorithm to detect coordinated port scans.

The framework for AOCD 1s given in Figure 5.5.

5.5.1 Outliers and Anomaly Detection

An outlicr is an abnormal or infrequent cvent or object that varics significantly from
the normal event or object in terms of a distance measure A network administrator
needs to define an abnormal event based on normal statistics [323]. Outlier detection
discovers cxceptional events from small or large datasets [324]. Examples of outliers

in a two dimcnsional dataset arc illustrated in Figure 5.6
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Figure 5.5: A framework for AOCD: FCM is the fuzzy C-mcans clustering algorithm
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Figure 5.6: Outliers in two dimensional dataset: N;, N2, and N3 are the three normal
regions. Points that are sufficiently far away from the normal region (e.g., points Oy, Os,
O3 and points in Oy regions) are outliers.

Outlier Score and Its Importance

A large number of outlier detection techniques have been proposed in the literature
but only a few of them have been applied to anomaly detection [65,325]. An
outlier score is a summarized valuc based on distance, density or other statistical

measures. A reference based outlier score is presented by Pei and Zaiane [3] for
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detecting outliers in large datasets. The authors estimate outlier score based on
distance and a degree of ncarest neighbor density. The authors define the outlier

score as
DP(z,t)

ROS(z)=1- ez P~
( ) 1§1§nDP(x" t)

(5.1)

where DF(z,t) is lg’gRD(x, t,pr), and p, is the closest reference point to P, i.e.,
P = {p1,p2,p3, ' pr}, R is the number of reference points. D (x,t) is the degree
of neighborhood density of the candidate data point x with respect to the set of
reference points P, n is the total number of data points, and ¢ is a refercnce based
nearest neighbor. The D(z,t,p) is the relative degree of density for z in the one

dimensional data space ¥ and defined as

1

D(z,t,p) =
%Z;zl |dest(z,, p) — dist(z, p)|

(5.2)

where dist(z,,p) is the distance between z, and the reference point p within ¢
nearest neighbor, dist(z,p) is the distance of z from the reference point p. The
candidate data points are ranked according to their relative degrces of density com-
puted with respect to a set of reference points. Outliers are those with high scores.
This technique can discover multiple outliers in larger datasets. However, three
main limitations of a technique that depends on an outlier score like ROS [3] are

the following.

e The score does not always vary with the change of candidate data points.

e Summarizing the data points in terms of scores may not be effective for some

attacks.
o It does not work with high dimensional datasets.

To overcome these drawbacks of the outlier score ROS, we have developed an

enhanced outlier score function called ROS’ presented later in Subsection 5.5.3.

5.5.2 Feature Extraction Using PCA

Principal Components Analysis (PCA) is often used to reduce the number of dimen-

sions in data for cost-sensitive analysis [326]. Let z1, 22, z3, - - T4 and y1, y2, Y3, - - * Yd
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be two d dimensional observations. PCA is concerned with explaining the variance-
covariance structure of a set of variables through a few new variables which are
functions of the original variables. Principal components are particular linear com-
binations of the d random variables 1, ©2, 3, - - - T4 with three important properties:
(i) The principal components are uncorrelated, (ii) The first principal component
has the highest variance, the second principal component has the second highest
variance, and so on, and (iii) The total variation in all the principal components
combined is equal to the total variation in the original variables z1, ©q, 3, - - - %4.
They are easily obtained from an eigen analysis of the covariance matrix or the

correlation matrix of z1, s, x3, - - - Z4.

Let dataset z be denoted as {1, Z, 3 - - 2, } with n objects, where each z; can
be a numeric or categorical attribute represented by a d-dimensional vector, i.e.,
T ={Z41,T02,Tiz"  Tod}

Let A be an nxd covariance matrix of n observations in d dimensional space, i.e.,
each d random variables 1, T2, 73, - - - T4. If (M1, 1), (Mo, €2), (A3, e3), -+, (Ag, e4) are
the d eigenvalue-eigenvector pairs of A, and A\; > Xy > A3, -, Ay = 0, then the ith

sample principal component of an observation vector, 2 = (21, Z2, 23, - Za)' is

/ ! / / 7
Y = €z = [e;121, €p22, €323, , €324l (5.3)
where 7’ represents the transpose of the matrix, e; = (e, €, €i3,* - , €:a) is the ith
eigenvector and z = (21, 20,23, -, z4) is the vector of standardized observations

defined as z; = ﬂ\/"s—_z—& where 7Tz and s are the sample mean and sample variance of
the variable x. The features, I’ are selected based on the eigenvectors with highest
eigenvalues in d dimensional space. Therefore, our approach works on reduced

feature spaces given by PCAF, which is based on PCA.

5.5.3 The Proposed Approach

AOCD aims to detect anomalous patterns, i.e., coordinated port scans using an
adaptive outlier based approach with reference to profiles. Initially, we select ran-
dom samples, 1, z9, - - - T using a linear congruential generator from the dataset x

for training purpose. It is a maximum length pseudo random sequence generator
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[327] and can be defined as z, = (ax,-1 + b) mod m, where x,, is the n** number of
the sequence, z,-1 is the previous number of the sequence. a, b, and m are secrets;
a is the multiplier, b is the increment, and m is the period length when m is prime,
the maximum period length is (m — 1).

We cluster each sample into & classes by using the Fuzzy C-means [328] cluster-
ing technique. We obtain the following clusters from all samples: C;;, C1a, Ci3,- - - Ci,
Cs1,Ch,Ca3,- - - Coy, -+ Cq,Cs,Cas,- -+ Cg. The method compares a range-based
profile for each cluster and matches each profile with others to remove redundancy.
These profiles are used as reference during score computation. Finally, the method
computes score for each candidate object and reports as normal or outlier (i.e.,
attack) w.r.t. a threshold, é;. We present the Fuzzy C-means clustering technique
for cluster formation in Algorithm 2. In Algorithm 2, r is the weighting expo-
nent also known as fuzzifier that influences the performance of clustering. During

experimentation, we set r = 4.5 for better clustering results.

Algorithm 2 FCM (z,k, 7,1}, ¢)

Input: z; is the i** data instance and Ui, represents the whole data matrix, k is
the number of clusters, r is a real number greater than 1, {; is the number of
iterations, ¢ is the termination criteria between 0 and 1.

Output: Generate cluster, Cy,Cy, Cy, -+ Ch.

1: Initialize U = [uy,], U ©,
N
2: Compute the center vectors k1) = [k;] with U): k; = %—}}—&ﬁ

P
1=1 ‘ll.”

[) L+1). , _ 1 v
3: Update U U+, = = wrt. F'.
The (521)”
4: if [[UM* — Uh| < ¢ then
5: Stop.
6: else
7 Return to Step 2.
8: end if

Let S; be the number of classes to which each of k' nearest neighbor data objects
belongs. k' plays an important role in score computation. Let z; be a test data
object in X; and dist(z;, R) be the distance between the data object z; and the
reference points R, where t = 1,2,3,---n, dist is a proximity measure used, and
X represents the whole candidate dataset. The proposed approach works well with
any commonly used proximity measure. The outlier score for a data object z; we

define is given in Equation (5.4).
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, mas g, (1 ~ (D dest(wn, R.)) X (S, 120 dist(a, R))
ROS'(z;) = = % P (5.4)
PR 1<e<k! dust(ze, R.)
S, . . .
Here, 125 is the maximum probability that a data object belongs to a par-

ticular class, the remaining part is the summarized value of distance measure within
k' nearest neighbors over the relevant feature subset. R, represents the reference
points within &’ nearest ncighbor. The candidate data objects are ranked based on
the outlier score values. Objects with scores higher than a user defined threshold
&9 are considered as anomalous or outliers. &, is determined by a heuristic method.
To test effectiveness, we consider seven different cases (illustrated in Figure 5.7 [5])

and the proposed algorithm is capable of identifying all thesc seven cascs.

rd

Figure 5.7: Illustration of seven different cascs: N; and N, arc two normal clusters; Oy

is the distinct outlier; Oo, the distinct inlier; Os, the equidistance outlier; Oy, the border

inlier; Os, a chain of outliers; Og is another sct of outlier objects with higher compactness
_among the objects; and Oy is an outlier case of “stay together”.

A heuristic estimation of k&’ values for our own flow level dataset for a range of
values of accuracy is given in Figure 5.8. We now present a few definitions before

we present our algorithm.

Definition 1. Pattern Similarity: Two data objects z; and x5 are defined

'
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Figure 5.8: k' values vs accuracy in our own flow level dataset.

as similar iff (a) dist(zy,z2) < &, and (b) dist(z1,z2) = 0, if 71 = 5.
Definition 2. Profile: A profile of a cluster C, is a range value, p(z,1, .2 -

x,.4) of dataset z, where cach z,,, is the range of the 7% column of the respective

cluster C,.

Definition 3. Outliers: Two data objects, O, and O, arc defined as outliers
w.r.t a cluster C, iff (a) ROS'(O,, u,) > 62 where u, is the profile of C,, and (b) for
any other data object O, in C,, dist(0,, O,) > 0,.

Clustering is initiated based on a random selection of k centroids. We assign
each z, , object to a particular cluster based on the cluster membership value w.r.t. a
proximity measure, i.e., dist(z,y). We use Euclidean distance as proximity measure.

dist is defined as

0 f x=y
dist(z,y) =

VT —n)2+ (@ —12)2+ - + (Tn — ya)?  otherunse.
(5.5)
5.5.4 AOCD: The Algorithm

The AOCD algorithm is based on the NADO [5] approach. AOCD differs from
NADO technique in the following key points

e We usc the Principal Componcents Analysis (PCA) [326] feature reduction
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technique to identify the relevant feature set. These feature sets are used

during cluster formation (Algorithm 2).

e AOCD uses a variant of the Fluzzy C-means clustering algorithm to form

clusters.
e We test AOCD using real-life coordinated datasets.

e AOCD adaptively updates the profiles for new test instances.

AOCD works as follows. {Cjy,Ci2,C1s, - - - Cik, Co1, Coa, Cag, -+ - Cog, - -+ Csy, Cia,
Cs3,---Cg} is the set of clusters with cardinality sk.®The method generates the
profiles, 1, tso, ths3, - - - sk for the clusters Cyy, Cso, Cis, - - - Csk, respectively, ob-
tained from the dataset . Then it detects coordinated scans based on the outlier
score ROS’ from the testing datasets. The major steps of AOCD are given in
Algorithm 3.

Algorithm 3 AOCD (z, 6,)

Input: z is the dataset, d, is the threshold
Output: O,,’s are the anomalous objects
1: Select random sample, z, 22, - - - , Zs from the dataset x using o”.
2: Find clusters Cyq, Cysa, Csa, - - - Cs for each sample z, based on a variant of
Fuzzy C-means clustering (Algorithm 2) technique w.r.t. relevant feature set
F.
3: Compute range based profile 11 for each of the sk clusters w.r.t. F.
4: Calculate outlier score ROS’ for each candidate data object, X; , w.r.t. F° " and
Hsk -
5: Rank the candidate data objects according to their score values.
6: Sort the data objects based on score values and report the anomalies or outliers,
0;,’s w.r.t. the threshold d;.
7. if new test instances found then
8: Update range based profiles, f.
9: Return to Step 4.
10: end if

5.5.5 Complexity Analysis

AOCD has works in two basic modules: clustering and score computation. The
clustering module takes O(kI) time to gencrate k clusters within / iterations. On

the other hand, the score computation module takes O(nklogk) time to estimate
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the score value of each candidate data objects, where k is the number of reference

points. Hence, the total time complexity of AOCD is O(kI + nklogk).

5.6 Experimental Results

The main goal of the experiments is to apply AOCD to coordinated scan detection
as well as to evaluate its capability in detecting outliers or anomalies or scans and
compare it to the current best performing algorithms. To achieve this goal, we
have implemented \our algorithm and tested it with various real world datasets and
datasets prepared by us on our TUIDS testbed at both packet and flow levels. It has
been used during attack gencration in our TUIDS testbed for labeled coordinated
dataset preparation. The network laboratory layout where we capture network
traffic for coordinated port scans data is shown in Figure 5.9. The network has 32
subnets including a wireless network, 4 routers, 3 wireless controllers, 8 L3 switches,
15 L2 s’witches and 300 hosts. The DHCP server is set up inside the main network
for wireless network. During attack generation, we use 10 attackers per 32 subnets

including one wireless subnet to launch the attacks.

Packet capture, NetFlow capture,
monitonng, IDS  monttoring, IDS
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Figure 5.9: Coordinated port scan TUIDS testbed setup with layered '10 attackers /32
subnet including one wireless subnet

AOCD is implemented on an HP zw6600 workstation, Intel Xcon Processor
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(3.00 GHz) with 4GB RAM. Java 1.6.0 is used for the implementation on Ubuntu
10.10 (Linux) platform. Java is used to facilitate the visualization and reusability

of code for further experimentation.

5.6.1 Datasets Used

To evaluate the performance of AOCD, we use several real-life datasets for experi-
mentation. We use three datasets: our own datasets that are packet and flow based
and KDDcup99 probe [52] dataset. The characteristics of our own packet and flow
level coordinated port scan datasets are presented in Table 5.4. The characteristics

of the KDDcup99 probe datasets used in this experiments are given in Table 5.5.

Table 5.4: Distribution of normal and attack connection instances in TUIDS real-life
packet and flow level intrusion datasets

Dataset type
Connection type Training dataset Testing dataset
Packet level
Normal 71785 100% 47895 75.78%
Probe 15307 24.22%
Total 71785 - 63202 -
Flow level
Normal 23120 100% 16770 48.56%
Probe 17762 51.44%
Total 23120 - 34532 -

Table 5.5: Distribution of normal and attack connection instances in KDDcup99 probe
datasets

Datasct type
Connection type Trawmang dataset Testing dataset
(10% corrected) (Corrected)
Normal. 97278  100% 60593 87.98%
Probe. 8273 12.01%
Total. 97278 - 68866 -

5.6.2 Results and Discussion

We use our feature datasets for experiments at both packet and flow levels. The
datasets are generated in our network security laboratory as discussed earlier in
chapter 4. At both packet and flow levels, we extract basic features, content based

features, time based features and window based features discussed in Chapter 4. We
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convert all categorical attributes into numeric form and then compute the log,(a, ;)
of the largest values to normalize data objects, where z depends on the attribute

values and a,, represents the largest attribute values.

We have generated sixteen types of attacks (sce Table 5.1) for coordinated scans.
However, in this experiment we consider only four types of scans (viz., TCP SYN,
window, XMAS, and NULL) in coordinated mode during testing with both packet
and flow level datasets. The PCAF module selects the relevance feature subsets for
both packet and flow level datasets (scc in Table 5.6). PCAF reduces the datasct in
dimension based on feature relevance Hence, the feature IDs are seen in sequence
in Table 5.6. This reduced dataset is used by the cluster formation and coordinated
scan detection modules. AOCD 1s evaluated 1n terms of accuracy and false positive
rate (FPR). The evaluation metrics arc described in Chapter 4. We report the

detection accuracy and false positive rate as follows.

TP+TN

» Accuracy = wprpNyFPTEN

e False Positive Rate (FPR) = WT}W

Details of performance of AOCD for the real-life TUIDS packet and flow level
coordinated scan datasets are given in Table 5.7 and shown in Figure 5.10. Our
results are better than the results in Singh and Chun [317]. They had obtained
greater than 90% accuracy using their method The performance of the AOCD
algorithm is excellent in case of probe class for both packet and flow dataset We
see in Table 5.7 that the average accuracy for SYN, window, XMAS and NULL
classes in packet level is 99.02% and in flow level it is 98.50%. In addition, we
tested AOCD on four coordinated scan datasets, but the Singh and Chun [317]
method was tested only on TCP SYN scan.

Table 5.6: TUIDS packet and flow level intrusion datascts - selected feature set

Method # Features | Selected features

Packet level

PCAF 19 1.2.3.4.5.6.7,8,9,10, 11, 12, 13, 14. 15, 16. 17, 18.'19

Flow level

PCAF 24 1.2.3.4.5.6.7,8,9,10, 11, 12, 13, 14, 15, 16. 17. 18. 19. 20. 21.
22. 23, 24
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Table 5.7: The performance of AOCD on the packet and flow level TUIDS intrusion
datasets

Type of traffic Correctly detected Mass detected Accuracy (%)
Packet level e
Normal. 47257 638 98.61
Probe. 15158 149 99.02
Overall. 62415 787 98.75
Flow level
Normal. 16358 412 98.16
Probe. 14496 266 98.50
Overall. 30854 678 97.85
99.2
99 1
98.8 =
98.6
2 984 f
S s82
< 98 | Accuracy
97.8 +=
97.6 +
97.4 1 —i—— S
ORESS
Lrﬁnallaci:to]l::elovla”“—"-r‘omal Flpo'::)aielov_ez",
Types of Traffic

Figure 5.10: The performance of AOCD on the packet and flow level TUIDS intrusion
datasets. The performance of flow level dataset is a bit lower than packet level dataset
due to non-availability of packet specific information. But it is faster.

In another sct of experiments, we use thc KDDcup99 probe [52] datasct. Like
the TUIDS datascts, we convert all categorical attributes to numeric and normalize
them. We use KDDcup99 10% corrected normal dataset for training and KDDcup99
corrected and 10% corrected probe datasets for testing during performance analysis.
The testing dataset contains six attacks, i.e., portsweep, ipsweep, satan, nmap,
mscan and saint. The feature set selected by the PCAF module for normal and
probe classes is given in Table 5.8. Here, we see a continuous sequence of feature
IDs in Table 5.8 because of PCAF reduces the feature dimension. Performance
details of these datasets are given in Table 5.9. Figure 5.11 shows the comparison
of AOCD using the intrusion dataset with other similar algorithms, where the false
positive rate is multiplied by 100 to highlight the efficiency of our approach in the
graph. In our experiment, better results are obtained in KDDcup99 probe dataset

with § values in the range of (0.8 - 1.35) for normal records and (0.4 - 1.15) for
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attack records.
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Figure 5.11: Comparison of the AOCD with other techniques using the KDDcup99
AOCD performs better than other two recent competing algorithms,
HCSVM [4] and NADO [5] in terms of accuracy and falsc positive rates.

probe dataset.

Table 5.8:

KDDcup99 dataset - selected features set

Method # Features | Selected features

Normal class

PCAF 18 1,2,3,4,5,6,7,8,9.10, 11, 12, 13, 14, 15. 16, 17, 18

FFSA [81] 6 5,3,1,4,34,6

MMIFS [81] |6 5,23,3,6,35,1

LCFS (81] 15 12, 34, 33, 3, 23, 27. 29, 40, 39, 28, 2, 41, 26, 35, 10

Probe class

PCAF 25 1,2,3,4,5,6,7,8,9,10, 11. 12, 13, 14, 15. 16, 17, 18,
‘ 19. 20, 21, 22, 23, 24, 25

FFSA [81] 24 40, 5, 41, 11, 2, 22, 9, 27, 37. 28, 14, 19, 31, 18, 1, 17, 16.

13, 25, 39, 26, 6, 30. 32

Table 5.9: The performance of AOCD using the KDDcup99 probe datasct

Type of traffic

Correctly detected

Miss detected

Accuracy (%)

Normal.
Probe.
Overall.

60189
8114
68303

404
159
563

99.38
98.08

99.18

5.7 Summary

This chapter has cxamined the statc-of-the-art of modern port scan techniques

and approachcs to detect them. The discussion follows well-known issucs in scan
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detection: detection strategies, data sources and data visualization. Experiments
demonstrate that for different types of port scan attacks, different anomaly detee-
tion schemes may be successful Rescarch prototypes combining data mining and
threshold based analysis for scan detection have shown great promise. Such detec-

tion approaches tend to have lower false positive rates, scalability, and robustness.

In this chapter, we introduce an adaptive outlier based approach for coordi-
nated port scan detection [5] is introduced. Unlike previous approaches which have
been based on clustering and manual analysis, AOCD uscs random sample sclection
using a linear congruential generator for distinct profile generation. In addition to
this, we introduce an outlier score function to test each candidate object to identify
coordinated port scan using score values This method classifies each candidate
object as normal or coordinated port scan w.r t. a threshold. AOCD is capable of
detecting coordinated scans that have a stealthy and horizontal or strobe footprint
across a contiguous network address space We have tested this algorithm using
several real-life datascts, viz., TUIDS datascts and KDDcup99 probe datascts. Co-
ordinated scans are performed in an 1solated cnvironment, combining the nctwork
traffic traces with those collected from live networks. We extract various features
from network packet as well as flow traffic data by developing our own modules for
feature extraction. This approach achicves high detection accuracy and low false
positive rates on various real-life datasets compared to existing coordinated scan

detection approaches.
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Chapter 6

Clustering and Outlier-based
Approach for Network Anomaly

Detection

This chapter starts by motivating the development of an clustering and outlier-
based network anomaly detection method to detect anomalies with a high detection
and few false alarm rate. To support outlier identification process, we introduce a
tree-based clustering algorithm to generate a set of reference points. We use our
outlier score function to rank each candidate object with respect to the reference
points. Our technique sclects relevant features from high dimensional datascts
for use during cluster formation as well as during calculation of outher scores for
network anomaly identification. It reports the results as normal or anomalous
with respect to an user defined threshold. We evaluate our approach in terms of
detection rate, false positive rate, precision, recall, and F-measure using scveral
high dimensional synthetic and real world datasets and find the performance to be

}
effective in comparison to competing algorithms.

6.1 Introduction

There is growing need for efficient algorithms to detect exceptional patterns or
trends and anomalies in network traffic data. The task of outlier discovery has five
subtasks: (i) dependency detection, (ii) class identification, (iii) class validation,

(iv) frequency detection, and (v) outlier or exception detection [329]. The first four
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subtasks consist of finding patterns in large datasets and validating the patterns
Technmiques for association rules classification, and data clustering arc used in the
first four subtasks The fifth subtask of outlicr detection focuses on a very small
percentage of data objects, which are often i1gnored or discarded as noise Outlier
detection techmiques focus on discovering infrequent pattern(s) in the data. as op-
poscd to many traditional data mining techniques such as association analysis or

frequent 1temset mining that attempt to find patterns that occur frequently

Outlicrs may represent aberrant data that mav affect systems adversely such as
by producing incorrect results, incorrect models, and biased’ estimation of parame-
ters Outlier detection enables one to identify them prior to modeling and analysis
[330] There are many significant applications of outher detection For example,
n the case of credit card usage momtoring or mobile phone monitoring a sudden
change 1n usage pattern may indicate fraudulent usage such as stolen cards or stolen
phone airtime Outlier detection can also help to discover critical entities For ex-
ample, military surveillance, the presence of an unusual region in a satellite image
i an enemy area could indicate cnemy troop movement Most outher detection
algonthms make the assumption that normal instances are far more frequent than
outliers or anomalies Generally network intrusion detection techmiques are of two
types signature based and anomaly based Signature based detection aims to detect
intrusions or attacks from known intrusive patterns On the other hand, anomaly
based detection looks for attacks based on deviations from established profiles or
signatures of normal activities Events or records that exceed certain threshold
scorcs arc reported as anomalics or attacks Signaturc bascd intrusion detection
cannot detect new or unknown attacks On the other hand, anomaly based detec-
tion techniques detect unknown attacks based on the assumption that the attack
data deviate from normal data bchavior However a drawback of anomaly based
systcms 1s high false alarm rates Mimimization of the percentage of false alarms
1s the main challenge in anomaly based network intrusion detection. An outher
detection technique 1s effective in reducing the false positive rate with a desirable

and correct detection rate

157



Chapter 6. Clustering and Outlier-based Approach for Network Anomaly
Detection

6.1.1 Motivation and Contributions

There are many outlier detection techniques [1,105,111, 329, 331, 332] in the lit-
crature, developed based on distance, density or combination of both, as well as
soft computing and statistical mcasurcs Only some techniques have been applied
to network anomaly detection and their detection rate is poor. In addition, even
if a general outlier detection technique is tuned for network intrusion detection,
it cannot perform well in high dimensional large datasets, because the classes are
embedded inside subspaces. In case of score based outlier detection techniques, the
score values do not vary w r.t. changes in the candidate objects during testing. So,
1t becomes very difficult to assign a label as normal or outliers. To address all these
issues, we develop an cfficient outlier based technique to analyze high dimensional
and large amount of network traffic data for anomaly detection. Our technique
has several features such as following (i) It is flexible enough to use any proximity
mcasure during clustering and outlicr scorc computation. (ii) It uses a subsct of
features to reduce the computation overhead (iii) our outlier score function can
identify the network anomalies or outliers with low false alarm rate in addition to
excellent identification of general outhers. (iv) The proposed technique can dis-
tinguish closely spaced objccts during testing in terms of their score values. (v)
It performs well for all types attacks when applied to network intrusion datasets.

Specifically, the technical contributions of this chapter include the following.

e Challenges 1n clustering high dimensional large network traffic data include
handling of mixed typc data and arranging the data in computationally cf-
ficient structures for analysis. For example, protocol is categorial and byte
count is numeric. Another key issue is how to represent a distance function

that incorporates subspaces to find meaningful clusters.

We propose TreeCLUS, an cffective tree-based clustering algorithm based on
relevant subspaces computation, to form compact and overlapped clusters. It
uses an information gain based technique [42] for finding a relevant subset of

featurcs in order to identify the respective classes accurately.

e We usc our outlier score function and use it extensively to detect anomalies

or outliers cfficiently in recal-life intrusion datascts. It cxploits TrecCLUS
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algorithm for generating reference points for each cluster. We apply this
function in network traffic anomaly detection and find excellent results using

several real-life network traffic datascts

o We cvaluate our technique using several high dimensional datascts. These
include (a) synthetic dataset, (b) several UCI ML repository datasets, (c)
real-life TUIDS ntrusion datasets at both packet and flow levels, (d) real-life
TUIDS coordinated scan dataset at both packet and flow levels, (e) KDD-
cup99 intrusion datasets, and (f) NSL-KDD intrusion datasets. The perfor-
mance of the proposed technique is excellent in comparison with the existing

techniques.

6.2 Prior Research

Although many anomaly detection techniques have been developed and evaluated
[333,334] during thc last scveral years, reducing the false alarm rate is still a chal-
lenging task. Several supervised anomaly detection techniques are available. These
include ADAM (Audit Data Analysis and Mining) [335], neural networks [336], and
SVMs|4] but their detection rates do not meet requirements of real-time application.
A trianglc area ncarest ncighbors (TANN) based intrusion detection technique is
proposed by [8]. They combine supervised and unsupervised learning techniques to
detect attacks Another unsupervised technique known as CBUID is proposed by
[7). There arc many outlicr detection techniques and there is also substantial dis-
cussion of applications to network anomaly dctection in the literaturc. We broadly
classify outlier detection techniques into four types: (a) statistical, (b) distance

based, (c) density-based and (d) soft computing based.

6.2.1 Statistical Techniques

There are a large number of techniques in the literature [105,111] for statistics based
outlier detection. In statistical techniques, data instances are modeled based on an
assumption of the stochastic distribution and instances are determined as outlicrs

depending on how well they fit the model. However, most researchers point out that
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a key drawback of these types of algorithms is the use of univariate distributions

for many rcal applications without knowing the underlying distribution at all

Wang et al. [337] propose an outlier detection technique for probabilistic data
strcams. They present a dynamic programming algorithm bascd pruning technique
to dectect outliers cfficiently The authors experimentally cstablish that the tech-
nique is efficient and scalable to detect outliers on large probabilistic data streams.
Barbara et al. [338] used a pseudo-Bayes estimator to enhance detection of novel
attacks. The main advantage of the pseudo-Bayes estimator 1s that no knowledge
about new attacks is needed since the estimated prior and posterior probabilities
of new attacks are derived from normal and known attack instances. A statistical
signal processing technique based on abrupt change detection 1s proposed in [18] to
deteet anomalies in network traffic. It provides an outlier detection algorithm for

detecting anomalous patterns.

The advantages of statistical techniques include the following. (i) If the models
are appropriately defined, high precision can be attained for outlier detection, (ii)
They are scalable in terms of both dimensionality and the number of instances. iii)
Statistical techniques can operate in an unsupervised sctting without any nced for

labeled' training datascts.

The disadvantages of statistical techniques arc the following (i) Appropriate
thresholding for deviation detection irrespective of the application domain is a diffi-
cult task. (ii) They may not work efficiently in case of skewed distributions of high

dimensional data due to lack of sensitivity.

6.2.2 Distance-based Techniques

A distance-based outlier detection technique is presented by Knorr et al. [339]. They
define a point to be a distance outlier if at least a user-defined fraction of the points
in the dataset arc farther away than some uscr-defined minimum distance from
that point. In their experiments, they primarily focus on datasets containing only
continuous attributes. Distance-based methods also apply clustering techniques to
the whole datasct to obtain a specified number of clusters. Points that do not

cluster well are labeled as outliers.
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Angiulll et al [340] report a technique for detecting the top outhers in an
unlabeled dataset and produce a subsct of 1t known as the outhier detection solving
set This solving sect 1s used to predict the outlicrness of new unseen objects The
solving set includes a sufficient number of points that permit the detection of the
top outliers by considering only a subset of all pairwise distances in the dataset
Ertoz ct al [53] develop another intrusion detection svstem known as MINDS
using unsupervised anomaly detection techniques and supervised pattern analysis
techniques to detect attacks from real network trafic ADAM [335] 1s a well known
on-line network based IDS It can detect known as well as unknown attacks It
builds the profile of normal behavior from attack-free training data and represents
the profile as a set of association rules It detects suspicious connections according

to the profile

Szeto and Hung [331] propose two algorithms (1) Randomization with faster
cutoff update and (1) Randomization with space utilization after pruning to re-
duce the running time of ORCA The techmiques arce tested with large and high
dimensional real datasets They claim that their techniques arc as fast as 1 4-2 3
times ORCA and also claim that the techniques are parameter insensitive Jiang et
al [341] propose a hybrid technique that combines boundary-based and distance-
based methods They define outliers 1n terms of rough sct theory and develop an
outher detection algorithm The authors obtain satisfactory result with two real

life datasets

The advantages of distance based techniques are (1) They are easy for practical
implementation, (n) They obtain better results in case of umformly dense datasets,
and (m) They are scalable to larger datasets

The disadvantages of distance based techniques are (1) Obtaining independent
distance thresholds for specific apphications 1s difficult, and (1) The selection of an

appropriate proximity measure 1s a problem n outher detection techniques

6.2.3 Density-based Techniques

Density-based techniques arce capable of handling outher detection 1n large volume

data [1] In onc such technique a local outher factor (LOF) 1s computed for each
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point The LOF of a point is based on the ratio of the local density of the area
around the point and the local densitics of its neighbors. The size of the necigh-
borhood of a point is determined by the area containing a user-supplied paramcter

called minimum number of points (Af1n Pts).

Koufakou and Georgiopoulos [342] describe a fast, distributed outlicr detection
strategy intended for datasets containing mixed attributes. The method takes into
account the sparseness of the dataset. It is highly scalable with the number of
points and the number of attributes in the datasct. A density-based technique
takes into account the distribution of the input space. Outliers can be identified by
considering the lower density regions in the neighborhood of each data instance. An
instance that lies in a neighborhood with low density is declared an outher while

an instance that lics in a dense neighborhood is declared to be normal.

Density-based outlier detection techniques have also been used to detect anomaly
behavior One such technique presented in [54] uscs decision trees to develop a
prediction model over normal data to detect anomaly. It exploits data mining tech-
niques to discover consistent and useful patterns of system features that describe
program and uscr bechavior. It can recognize anomalies and known intrusions satis-
factorily. A novel local distribution based outlier detection technique is proposed by
Zhang et al. [343]. They report two algorithms LDBOD and LDBOD+ with three
measures, viz., local-average-distance, local-density, and local-asymmetry-degree.

Their algorithms seem to be better than LOF when used with intrusion datascts.

The advantages of density based techmiques are: (i) They can be used to model
the real world situation more realistically, and (ii) They arc scalable in terms of
dimensionality and number of instances.

The disadvantages of density based techniques arc: (i) Outlicr detection is
highly sensitive to input parameters and it is difficult to estimate these parameters
properly for all application domains, and (ii) Most techniques are insensitive to a

dataset with variable density, i.e.. non-uniform density dataset.
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6.2.4 Soft Computing Techniques

Soft computing techniques are being widely used by the IDS community due to
their generalization capabilities that help in detecting known and unknown intru-
sions or attacks that have no previously described patterns. Researchers have used
rule-based techniques for intrusion detection earlier, but had difficulty in detecting
new attacks or attacks that had no previously described patterns [336] Therefore,
the idea of using rough sets may be promising. The basic idea behind rough sets
is the following: For a subset z of the universe and any cquivalence rclationship
on the umverse, the difference between the upper and lower approximations of z
constitutes the boundary region of the rough set, whose elements cannot be char-
acterized with certainty as belonging to z or not, using the available information.
The information about objects from the boundary region is, therefore, inconsistent
or ambiguous Based on available information, if an object in z always les in the
boundary region with respect to every equivalence relation, we may consider this
object as not behaving normally according to the given knowledge at hand. Such
objects arc called outhers [115]. An outlier in 2 is an clement that cannot be char-
acterized with certainty as always belonging to z or not, using the given knowledge.

Rough uncertainty is formulated in terms of rough sets [344].

Fuzzy and rough sets represent different facets of uncertainty Fuzziness deals
with vagueness among overlapping sets. Rough sets deal with non-overlapping
concepts; they assert that each element may have different membership values for
the same class [344]. Thus, roughness appears due to indiscernibility in the input
pattern set, and fuzziness is generated due to the vagueness present in the output
class and the clusters. To model this type of situation fuzzy-rough sets are used. Xue
et al. [332] introduce a semi-supervised outlicr detection method using fuzzy-rough
C-means clustering. The authors present an objective function, which minimizes
the sum of squared errors in clustering, the deviation from known labeled examples

as well as the number of outliers.

The advantages of soft computing based techniques are: (i) Such techniques are
very effective and practical for classification, and (ii) They allow onc to incorporate

domain information cffectively.
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The disadvantages of soft computing based techniques are: (i) Non-parametric
techniques arc difficult to apply in outher detection and (ii) The computational

complexity 1s very high as the number of instances riscs.

6.2.5 Discussion

Outlier detection has largely focused on univariate data, and data with a known
distribution. Thesc two main limitations have restricted the ability to apply outlier
detection methods to large real world databases which typically have many different

fields. We make the following observations.

¢ Most outlier detection techniques arc statistical and their detection rates are

very low.

¢ Most existing algorithms perform poorly in high dimensional spaces because
classes of objects often exist 1n specific subspaces of the original feature space.

In such situations, subspace clustering is expected to perform better.

e As the dataset size increases, the performance of existing techniques often

degrades.

e Most existing techniques are for numeric datasets only and only a few algo-

rithms arc capable of detecting anomalics from mixed type data.

e The existing outlicr detection techniques arc often unsuitable for real time

use.

A comparison of scveral existing outlier detection techniques is given in Table 6.1.
Note that in comparing these works, we consider scven different classes of outliers
the methods can detect as shown in Figure 6.1. These seven classes were introduced

i [345] by us and they are defined formally in Subsection 6.5.4.

6.3 Problem Formulation

The problem is to analyze any application domain over an optimal and rclevant

feature space in order to identify all possible nonconforming patterns (if exist)
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Figure 6.1: Tllustration of seven different cases: N; and Ny are two normal clusters. Oy .
is the distinct outlier, O3, the distinct inlier, O3, the equidistance outlier, O4. the border
inlier, Os, a chain of outliers, Og 1s another set of outlier objects with higher compactness
among the objects and Oz is an outlier case of “stay together”.

—

Table 6.1: A generic comparison of cxisting outlier detection techniques

Method Year u/M Data Type Outhier Case(s) | Techmque
handled
DB Outhers [329) 2000 U numeric Cl C2,C4 C5 distance based
LOF [1] 2000 U numeric Ci1 C2 C4 density based
ODP & OPP [340] 2006 M numeric Cl C2 C4 C5 distance based
Rough Set [344] 2009 U - Cl C2 C4 soft computing
LDBOD (343] 2008 M numeric Cl C2 C5 density based
LSOF [346] 2009 M numeric Cl C2 C4 density based
ODMAD [342] 2010 M mixed Cl1 C2 C3,C4 density based
FRSSOD ([332] 2010 Al numeric Cl C2 C4 C5 soft computing
DIODE {347] 2010 M numeric Cl C2 C3 C4 distance based
RC & RS [33]] 2010 M numeric Cl C2 C4 distance based
DPA & PBA [337] 2010 U numeric Cl C2 C4 statistics based
NADO [345] 2011 M numeric C6 distance based
BD Outlers {341] 2011 M numeric Cl C2 C3 C5 distance based
U/M Univanate (U)/Multivariate (M)
Outher case(s) C1 - distinct outher, C2 - equidistance outher, C3 - chain outhers C4 - group outhers,
C5 - stay together C6 - all outhier cases are discussed in Section 6 2

among the real-life instances with reference to a given normal behavior It assumes
an instance z, to be an outlicr or nonconforming iff (a) z, € C, and |C,| <« |C/],
where C, represents the 1 group or set of outlier instances and C} represents the
1P group or set of normal nstances, |C,| represents the cardinality of the group C,
and similarly, |CN| represents the cardinality of the group CV, and (b) the outlicr

scorc of z, > 7, where 7 1s a uscer-defined threshold
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6.4 Theoretical Foundations

An outlier or anomaly is an abnormal or infrequent event or point that varies from
the normal cvent or point. These patterns are often known as anomalics, outliers,
exceptions, surprises, or peculiarities in different application domains Anomalies
and outliers are two terms used most commonly in the context of anomaly detection,
somctimes interchangeably. The importance of anomaly detection is duc to the
fact that anomalics in data translate to significant, and often critical, actionable
information in a wide variety of application domains. For example, an anomalous
traffic pattern in a computer network could mean that a hacked computer is sending
out scnsitive data to an unauthorized destination. A network administrator nceds
to define an abnormal event based on normal network statistics when he/she wants

to detect network anomalies.

Outliers may occur due to several reasons including malicious activity. Unlike
noise in data, outliers are interesting to the analyst due to their domain specific
importance. In outlier based network anomaly detection, outliers arc assumed to
be anomalous instances. Outlier detection is an important technique in detecting
exceptional events from small or large datasets In many data analysis tasks, outlier
detection is one of the techniques used for initial analysis of the data. Even though
outlicrs may be crrors or noiscs, thcy may still carry important information in
particular domains. For example, consider network traffic analysis. The importance
of outlier detection is due to the following: (i) An outlier may indicate bad data
but it may still be important to detect. (ii) An outlier may make data inconsistent,

but again it is important to detect such cases.

When using outlier detection methods, it 18 necessary to compute an outlier
score for cach object to determine its degrce of outlierness. An outlier score is
a summarized value based on the distance, density or other statistical measures.
There are different approaches for computing this outlier score.

Given a dataset, it is possible to compute outliers directly by computing the
outlierness score for each point in the dataset. We can then identify points whose
outlicrness 1s above a certain user-provided threshold as outliers. However, finding

outlicrs directly on a datasct has drawbacks For cxample, if a datasct has a large
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number of features, it 1s not efficient to perform outlier score computation using all
the featurcs of the data items. Not only that, the outlicrs found may not be the best
if all features arc used becausce of useless featurcs or intcractions among features.
Thus, the usual approach 1s to obtain a subset of features that are relevant to the
problem at hand. When one computes outlier scores directly, the entire dataset
is considered one class or group. Outlicr finding becomes more cfficient and also
produces better results, if instead of considering the entire dataset as one class, we
cluster the dataset first. Some of the clusters are likely to be bigger than others in
terms of the number of items in them. For each cluster, big or small, we compute
what is called its rcference profile. 'We compute outlicrs with respect to these
reference profiles Those data points whose outlier scores are above a certain user-
given threshold are identified as real outliers or anomalous data points. To keep
our discussion rigorous, we introduce some dcfinitions and lemmas to explain our

approach Let us first start by characterizing our datasct.

Definition 6.4.1. Dataset: A dataset X 1s a set of n objects, v.e., {x1, To, T3 - Ty},
where each object x, 1s represented by a d-dimensional vector, t.e., {21,212, T3

T.q}, where x,, can be a numeric or categorical attribute.

Before any processing, we compute an optimal subsct of features, as discussed
later in the chapter. We denote the dataset described by the reduced set of features
X as well. As indicated earlier, clustering is a step in our approach. To cluster the
dataset X, we necd to usc a distance measure, which is used to compute similarity
between a pair of data objects. Our method works with any distance measure dust.

We use a threshold o’ for computation of similarity.

Definition 6.4.2. Object Similarity: Two data objects x, and zo are defined as
stmalar off (a) dist(zy, z2) € o and (b) dist(z1,22) = 0, of 1 = z5.

The notion of object similarity is necessary to cluster the dataset X.

Definition 6.4.3. Cluster: A cluster C, s a subset of a dataset X, where for any
par of z,’s, say (z,,x,) € C, dist (2,,2,) L .

Once the datasct has been clustered, we create a cluster profile for cach of our

clusters. Thesc profiles arc also called reference profiles.
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Definition 6.4.4. Profile: The profile of a cluster C, 1s a mean representation of

Wb cluster, b, p2,- -, u™ over an optumal subset of features unth cardinality m.

Before we proceed to discover outliers in a dataset, it behooves us to characterize
an outlier and the types of outliers we are interested in, so that our approach is as
comprchensive as possible. We arc focussed on scven different types of outlicrs [345]
shown in Figure 6 1 for the evaluation of our method for outlier detection. Outliers
are computed by computing an outlier score for each of the objects under question.
To overcome the drawbacks of cxisting outlier score function such as ROS [3], we
use our enhanced outlier score function called ROS’ presented later in Subsection

6.5 4.

6.5 The Proposed Technique

The proposed technique aims to detect anomalous patterns from real life network
traffic data with high dctection rate It works by identifying reference points and
by ranking based on outlier scores of candidate objects. The proposed technique
has four parts including: feature selection, clustering, profile generation and outlier
detection. Figure 6.2 shows the framework for out outlier based technique to net-
work anomaly detection We describe cach part of the algorithm in detail in the

subsections that follow

6.5.1 Feature Selection

Feature sclection is an essential component of classification based knowledge discov-
ery. Feature selection is a multi-step process that aims to identify an optimal subset
of features say, F' C T, i.e., the set of all features for a dataset X, which gives best
possible accuracy on X. Identification and use of relevant features for the input
data leads to rcduction in storage requirement, reduction of computational cost,
simplification of the problem, and increase in accuracy. There are two main models
for feature selection: filter methods and wrapper methods [42, 76,81, 348, 349). iThe
filter methods are usually less expensive than wrapper methods and arc also able

to scale up to large datascts We use an information gain based method [42] for the
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Figure 6.2: A framework for outlier-based network anomaly detection. The framework
takes featurc datasct X as input. It initially sclects relevant and optimal feature subset
by IGFS. TreeCLUS uses these feature subset during cluster formation, Cy,Cy, -+, C.
Once cluster formation is over. it gencrates mean-based profiles, uy, u2,- - , ux from cach
cluster. Finally. ROS’ computes the outlier score for cach test object. z. and report as
normal or anomalous based on a uscr defined threshold, 7.

identification of rclevant featurcs prior to clustering, profile generation and outlier

detection

We have cxperimented with several feature selection methods and give a perfor-
mance comparison of the methods available with Weka!, viz., correlation based fea-
ture selection (CFS), principal components analysis based feature selection (PCAFS)
and information gain based feature selection (IGFS) using the KDDcup99 intrusion
datasct in Figurc 6.3 As scen from the figure, As scen from the figure, although
a sharp variation exist in terms of detection rate for different classes of attacks
as well as normal, the IGFS (shown with solid line) is always performs better in-
cluding normal class 1dentification 1n comparison to CFS and PCAFS. Also, IGFS
1dentifies minimum relevant feature subset for all classes, viz , normal (10-features),
DoS (12-features), probe (14-features), R2L (13-features), and U2R (15-features)
than CFS and PCAFS. Hence, we select the information gain based method [42]
for relevant and optimal feature selection Supposc S is a set of traiming samples
with corresponding class labels. Let there be m classes. The training sct contains
s, samples of class I and s 1s the total number of samples in the training set. The

amount of information contained in the training set 1s quantified using the following

Thttp //www cs waikato.ac nz/ml/weka/
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formula [42]
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Figure 6.3: A comparative performance analysis of correlation based PCA based and
IGFS based relevant feature selection techniques using KDDcup99 intrusion dataset

m

I(s1 sq, Sm) = — Z %logQ(%) (61)

=1
Let F={f fo fa} be the set of features in the samples in the training set
Thus, the training set 1s described in terms of d features Not every feature appears
In cvery sample in the tramning st Let S, be the subsct of tramning samples that
contain featurc f, In addition, let S, contain s,, samples of class @ Then, the

entropy of the feature FF 1s defined [42] as

v

815, + 89, + + Sm
E(F) =) = Ll - 2 x I(s1;,5;  »Smy) (62)

J=1

Information gain can be calculated as

Gan(F) = I(s; s, Sm) — E(F) (6 3)

The algorithm takes the labelled datasct X and threshold, € as input It re-

turns the sclected fcaturcs, F’ The major steps of this technique are given in
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Algorithm 12.

Algorithm 4 : IGFS (X, ¢)

Input: X is the labelled dataset and € 1s the threshold
Output: F’ is the selected feature sct
1- initialization. .F < sct of all features, C « sct of all classcs
2 for each feature f, € F do
3. compute I(f,.C) > f, is the i** feature, and C is the class label
4 compute entropy of feature f,, E(F), where F = {fi, fo,--- fa} o E(F) 1s
the entropy of all features
end for
6. calculate information gain, G(F) and the subset of features maximizes, G(IF)
with respect to the threshold ¢
7 selected feature set F’

o

6.5.2 The Clustering Technique

After we have expressed our input data in terms of the selected relevant feature
subset using Algorithm 12, we apply TreeCLUS, a tree based clustering technique
to hicrarchically arrange the dataset, X into k clusters, viz., Cy,Cy, Cs, - - - Ci. The
clusters formed are used to generate profiles prior to outlier detection in high dimen-
sional network traffic datasets for anomaly detection. TreeCLUS mainly depends
on two paramcters o and ' which are thresholds used for initial node formation
It expands a node in depth-wise by reducing the subset of features based on the

decreasing order of information gain value at feature space to get a specific class.

TreeCLUS generates a tree by creating nodes in a depth-first manner with all
the objects as the root The root is at level 0 and is connected to all the nodes
in level 1. Each node 1n level 1 is created based on a maximal relevant subspace
with an arbitrary unclassified object, z,, w.r.t a threshold o for proximity measure
and the neighborhood of z, wr.t. a threshold 3’ to form a cluster. If no object is
found to satisfy the neighborhood condition 8’ and proximity measure o' with z,
in reduced space, the process restarts with another unclassified objeet. The process
continues till no more object can be found to assign in a node The major steps of

the subspace based TreeCLUS clustering technique are given in Algorithm 5, 6.

For example, let X’ be a sample datasct shown in Table 6.2. Oy, 04, - - - O arc
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Algorithm 5 Partl TreeCLUS (X, &/, 6)

Input: X, datasct, o’ threshold for node formation, 6, height of the tree
Output: generate clusters, Cy Cy, C; Cy

1
2
3
4

O 00N>

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28

29
30
31
32
33
34
35

mitialization nodead + 0 > nodead 1s mcreased by 1 for new node
function BUILDTREE(X, node.1d) > function to build tree
for 1 < 1toa do
if (2, classified ! = 1 and check ami_feat(IGFS(z,)) == truc and dist < o
and nb < (') then b checkani_feat() 1s the function to check features sct, nb 1s
the neighborhood condition
CreateNode(r, no, pad, temp, nodecoun, nodead, 1} > function to
create new node
while (ng - (1-1)) > 6 do o> check relevant features subsct
4+
for 2+ 1to X do
if 7, classified ' = 1 then if object 15 classified then labelled

p.id = check_parent(z, no, l)> function to check parent 1d
if (pad > -1 and checkan_feat(IGFS(z,)) == true) then
CreatcNode(z, no, p-id, temp, nodepun, noded, 1)
end if
end if
end for
end while
1=1 > mitially node level 1s 1
end if
end for
end function
function CREATENODE(no, p.id, temp, node.une 1d, 1) © function to create
node
nodc.id = new node()
node_id temp = temp
node_id nodel .opums = N0decopunt > number of nodes 1n a level
node_id p_-node = pad
nodec.id 1d = 1d,
nodc.d level = 1 > set level |
ExpandNode(no, 1d noded temp, nodecount, 1) > expand node n
depth-wise for a particular node
temp = NULL
nodecoyns = 0
node_d++
end function
function EXPANDNODE(no, 1d, temp, nodecunt, 1) > function to expand node
if 7, classified == 1 then
return
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Algorithm 6 Part 2 TrecCLUS (X o/, 0)

36 else

37 Tno Classified = 1

38 Tno Dodead = 1d

39 for 1 < 1 to r do

40 if (1, classified ' = 1) then

41 minRankp = find_mmRank(IGFS(z,)) © sclect next subset of
relevant features

42 if (np - minRankgp) > 0 then © check maximum height of the
tree

43 for 7 + munRankp to ng do > continue for getting specific
class

44 ExpandNode(z, no, id, temp  tempeouns, 1) > expand node
i depth-wise

45 end for

46 end if

47 end if

48 end for

49 end if

50 end function

the objects f1 fo fio are the features and CL 1s the class label We find the
relevant feature set from X' by using Algorithm 12 shown i Table 6 3 R 1s the
root contaning the total number of objects A tree (sce Figure 6 4) 1s obtained
from the sample dataset X' by using the TreeCLUS algorithm From Table 6 3 and
Figure 6 4, we can see that in level 1 1t creates three nodes with classes C; C, and
C;, and 1n level 2 1t creates exght nodes with classes Ciq, Cia, Ca1, Cog, Caz Ci,
Csy and C33 wrt the sclected relevant feature subset Duc to the smailler datasct,
the vanance in the rank values are low If the rank value 1s the same, we choose
the first set of features for obtaining finer clusters otherwise, we choose higher rank

valucs

The proposed clustering algorithm, TreeCLUS, differs from earher work [345]

m clustering and 15 also more suitable for our purposc

e Unlike some of the well-known partitioning-based clustering algonithms, like k-
means [350] and 1ts variants PAM, CLARA CLARANS, the proposed TreeCLUS
doesn’t require the number of clusters as input a priort However, like some
cflective hicrarchical clustering algorithms, it accepts the height of the tree as

input parameter for termination of cluster expansion
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Table 6.2: Sample dataset, X’

Object ID | f1 f2 fa fa fs fs fr fs fo fio CL

O1 923 | 071 243 | 060 | 104 2 80 306 | 028 | 229 564 1

o) 2253 | 651 664 | 496 | 7279 | 260 | 1163 [ 080 | 900 3697 | 8

O3 1637 | 576 116 1188 { 95 550 110 | 049 | 687 2045 | 5

04 1037 {195 | 950 | 080 110 185 | 249 064 318 9 80 2

Os 1467 | 485 192 1194 | 96 410 [ 179 | 012 |[473 1080 | 4

Os 920 {078 | 214 | o020 103 265 {296 |02 | 228 438 1

O 1237 | 084 136 1160 | 95 398 157 | 098 142 1095 | 3

Og 916 | 136 | 967 | 060 110 180 | 224 | 060 | 381 968 2

Oy 1617 | 586 | 153 1187 | 93 589 175 | 045 | 673 2095 |5

O1o 1881 | 631 | 440 | 4 70 215 | 809 057 | 783 2770 | 6

O11 1464 | 482 | 102 1180 | 94 402 141 013 | 462 1075 | 4

019 2051 | 624 | 525 | 450 | 7023 | 2 958 | 060 | 825 3245 | 7

O13 1233 [ o7 128 1189 | 96 305 109 | 093 141 1027 | 3

Oq4 2060 [ 646 | 520 | 450 {71 242 | 966 | 063 | 894 3210 {7

O1s 1870 | 655 | 536 | 450 | 7324 [ 270 | 820 |o057 | 784 2710 | 6

Ois 2225 | 672 | 654 | 489 | 6938 | 247 | 1053 | 080 | 985 3689 | 8
Table 6.3: Relevant feature set and attribute rank values

Class | Object ID Relevant feature set Feature rank value

Ci 01,04 06,08 fs.fe:.f2 f3.f0.fr0.f7 [8 1,1,1,1,1,1,11

Cn 04,06 fs.f6,.f2 f3,f9.f10,f7 1,1,1,1,1,1,1

Ci2 | 04,08 Js.fe.f2 f3.f9.f10 1,1,1,1,1,1

Co 03,05 07,09,011,013 N, f2 fe, fo, f&, f1o 1 585,1 585,1 585,1 585 1 585,0 918

Cy | 03, 09 f1, f2 fo, fo, fs 1585,1 585,1 585,1 585 1 585

Cy2 | Os, Ony N1, f2 fe, fo 1 585,1 585,1 585,1 585

Cyy | O7, 013 N, f2 fe, f8 1 585,1 585,1 585,1 585

Cs 02,010,012,014,015 O16 | f7, fi fr0, f8, fo, fa, f3 | 1584,1 584,1 584,1 584 1 584,0 917,0 917

Can 02, O1s f1, fr fro, fs, fo, fa 1 584,1 584,1 584,1 584 1 584,0 917

Cs: | O10, O15 f1, fi fio, f8, fo 1584,1 584,1 584,1 584 1 584

Ci3 Oi2, O14 fr. f1 fio, f8s fa 1584,1 584,1 584,1 584 0917

Figure 6.4: Tree generated from X' C represents class and a node contains the object
IDs wr.t a class

e Unlike most density-based clustering algorithms [351], TreeCLUS is scalable

both 1n terms of number of instances as well as dimensions

e Like those few subspace clustering algorithms [31], the proposed TrecCLUS
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also works on subspaces to handle high dimensional numeric data

o It can also identify overlapped clusters in addition to disjoint clusters like

[352] which 15 helpful in the 1dentification of network traffic anomalies

e For empirical evaluation of our TreeCLUS with the other traditional cluster-
g algonthms, all the algorithms are executed over full feature space The
agglomerative hicrarchical clustering algorithm [353] 1s implemented using av-
erage linkage distance measure while fuzzy c-means [354] 1s implemented using
common parameter setting, 1e , m = 2 as fuzziness coefficient | = 69 as num-
ber of 1terations and € = 0 01 as stopping criteria However, 1n case of [345]
we implemented this algorithm using maximum corrclation-based nitial cen-
troid selection technique [345], where we set k = 25 as the number of clusters,
| = 44 as the number of iterations A comparison of these algorithms with
TrecCLUS 1s shown 1n Figure 6 5 It can be obsaived from the figure that
TreeCLUS works better than its other competing algorithms
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Figure 6.5: A pcrformance comparison of TrecCLUS with similar clustering techmques
using KDDcup99 intrusion dataset
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6.5.3 Profile Generation

Once cluster formation 1s over, we calculate the reference pomnts, Ry for each clus-
ter (1c, C; Cy,Cs Cr) We compute the mean of each feature valuc over the
reduced feature space that corresponds to a cluster C, (where 1 = 1,2 3,--- k)
to compose the profile for C, If ;¢ 1s the +** mean of the profile corresponds to
the cluster C; then for an optimal feature space of cardinahty m for cluster C;,
the profile representation will be {u}, u? uf, -+, 47} The major steps m profile

generation are given 1n Algorithm 7

Algorithm 7 ProfileGEN (C;)

Input: C; is the clusters generated by TreeCLUS from dataset X
Output: generate profiles i1, jia, th3,  jik
sclect relevant feature set, F’ fiom the datasct « by using IGFS()

2 call TreeCLUS(), k + |C|, where C 1s the set of clusters > k 1s the total
number of clusters

3 fori« ltokdo > for each k£ number of clusters

4 for y « 1to C, do > for each cluster C,

5 compute p,,(F') = Zf;ﬁ(fj\%), where F' = fy fo," - fo > j 15 the

attributes of cach object within a class C,
6 end for
build mean based profiles u, > for each cluster C,, profiles, u,
8 end for

6.5.4 Outlier Detection

The technique assumes a normality model [64] and considers larger clusters as nor-
mal and smaller clusters as outhers We assume that larger clusters Cy, Cy, Cy, - - - Cpp,
say, are normal and smaller clusters (may include singleton clusters) arc outhers or
anomalies Let S, be the number of classes to which each of k' nearest neighbor
data objects belongs k' plays an important role in score computation Therefore,
the selection of &’ values for different datasets is discussed separately in Subsection
662 Lct z. be a data object 1n X, and dist(z., R,) be the distance between the
data object z. and the reference points R,, where ¢ = 1 2,3,---n, dist 1s a prox-
1mity measure used, and X, represents the whole candidate dataset. The technique
works well with any commonly used proximity mcasurc The outlier score for a

data objcct z. we define 1s given 1n Equation(6 4)
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& kl
k! PR 1;{;' dist(z. R,)

mar g 1- 70 dist(ze R)) x (S5, 70, dist(ze, R,)
ROS'(z,) = 1St <( ISrek )< (T .85 ) (6 4)

12t~ 15 the maximum probability that a data object belongs to a particular

Here
class, the remaining part is the summarized value of the distance measure with &’
nearest neighbors over the relevant feature subset The candidate data objects are
ranked bascd on outlicr scorc values Objects with scores higher than a user defined

threshold 7 are considered anomalous or outliers

Definition 6.5.1. Outlier Score - An outlier score ROS’ unth respect to a reference
pownt 1s defined as a summarized value that combines distance and mazimum class
occurrence with respect to k' nearest newghbors of each candidate data object (See

formula wn Equation(6 4))

Having defined an acceptable outlier score, we first define inhiers or normal
instances, and then outliers of different kinds For a visual interpretation of these

definitions, the reader should refer to Figure 6 1

Definition 6.5.2. Distinct Inlierness - An object O, 15 defined as a distinct inler

if 1t conforms to normal objects, 1 e, ROS'(O, C,) < 7 for all1

Definition 6.5.3. Border Inlierness - An object O, 1s defined as border object in a
class C,, of ROS'(0,,C,) < T

Definition 6.5.4. Outher - An object O, s defined as an outher wrt any nor-
mal class C, and the corresponding profile R, +ff (1) ROS'(0,,C,) > 7, and ()
dist(O,, R,) > o, where o 15 a prozvmaty based threshold, and dist w5 prozmmaty

measure

Definition 6.5.5. Distinct Outherness - An object O, 15 defined as a distinct outher
off ot dewates exceptionally from the normal objects, @ e , from the generic class C,
In other words, ROS'(O,,C,) > 7 for all1

Definition 6.5.6. Equidistance Outlierness - An object O, 1s defined as equidistance
outher from classes C, and C,, +f dist(O, C,) = dist(O,,C;) but ROS'(0,,C,) > 1

Definition 6.5.7. Chain Outlicrness - A set of objects, O, O,11,Oura - 15 defined
as a chawn of outhers if ROS' (0,,,C,) > 7, wherel =0,1,2,- -,z
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To ensure that our approach for finding outliers works correctly, we prove two

lemmas bclow.

Lemma 6.5.8. [f O, and O, are two outher objects with distinct newghborhoods,
then unth reference to a gwen class C,, ROS'(0,) # ROS'(0,)

Proof Assume that O, and O, are two outlier objects with reference to a given class
C, and ROS'(0,,C,) = ROS'(0,,C,). As per Definition 6 5 4, O, and O, arc out-
liers w.r.t class C,, 1ff ROS'(O,,C,) or ROS'(O,,C,) > 7 As per Definition 6.5.1,

mazx

ISI .
ROS' 1s estimated based on the Equation(6.4), where 22— plays an important

K
mazx

role. The value of ls—i,"—s— for a candidate object will vary with different neighbor-
hoods. Hence, ROS’(0,) # ROS'(0,) w.r.t. class C,. O

Lemma 6.5.9. A given outlier object O, cannot belong to any of the normal clusters
le., O, ¢ C,, where1=1,2,--- ,m.

Proof. Assumc that O, is an outlicr object and O, € C, where C, is a normal cluster.
As per Defimtion 6.5.2, if O, € C,, O, must satisfy the inlier condition w.r.t. 7 for

class C,. However, since O, is an outlier, it contradicts and hence O, ¢ C,. O

The first lemma says that two outlier objects 1 two distinct neighborhoods
will have different ROS’ scores with respect to a given cluster The sccond lemma
ensures that our approach is able to unequivocally separate outliers from normal

points.

We estimate the outlier score for each candidate data points wr.t the user
defined threshold 7 for detecting the anomalies or outhers for all cases discussed
above. The ranking of the outliers is based on the score; the outlicr with the highest
score gets the highest rank and vice versa. But in case of compact outlierness, we
calculate the average dissimilarity within the cluster as well as compute the total
number of points within a cluster. However, the score is calculated by selecting the
rclevant feature sct, i.c., {f1, fo, -+, f,} to reduce the computational cost. Based
on these values, we can detect anomalies or outliers. The proposed technique suc-
cessfully handles all the defined cases over several real and synthetic datasets. It
detects attacks based on the outlicr scorc ROS’ from the candidate data objects.

The major steps of attack or outlier detection are given in Algorithm 8.
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Algorithm 8 : AttackDETECT (X, 7)

Input: X, is the candidate objects and 7 is the score threshold
Output: O, as anomalies

1. for 1+ 1 to X, do >c=1,2,3,---n are the candidate objects

2. compute Score[t] « ROS'(X.. 1., F') v score is a single dimensional array
to store each score valucs

3 sort (Scorel1]) > sort the scorc values in ascending order

4: end for

5. Report the anomalies or outliers, O,’s w r.t. the threshold 7

6.5.5 Empirically Comparing ROS’ and ROS

Using the ROS’ we can estimate the outlier score for each candidate object w.r.t the
refercnce points to identify the nonconforming patterns Reference points arc com-
puted based the clusters, C;, C,, C3. - - - , Cy, obtained from TreeCLUS. It generates
clusters using subset of relevant features obtained from IGFS algorithm. During
score computation, the ROS’ function computes same class occurrences with respect
to k' ncarcst ncighbors. In addition, it cstimatcs a summary of distance measures

between candidate objects and reference points over a subset of relevant features.

mar
iﬁ—‘-j,"— is introduced to ecnhance possible sensitivity in score

A multiplicr factor
values of closely spaced objects The ROS and ROS’ score values with spacing
between them w.r.t. the sample dataset described in Table 6.2 are illustrated in
Table 6.4. As scen in the table, the score values of objects O3 and Oy do not
vary w.r.t. the change of candidate object in case of ROS. Hence, we claim that
our ROS’ improves the sensitivity between any two candidate objects w.r.t. the
reference points to 1dentify outliers or anomalies effectively ROS’ has the following

major advantagces.

It is sensitive to closely spaced objects in terms of score values.

It works in subspace and high dimensional large datascts.

It significantly improves the detection rate especially for Probe, U2R and R2L

attacks (see Table 6.18), which are similar to normal traffic.

Spacing between ROS and the ROS’ score values is high cnough to allow onc

to effectively identify anomalies from network traffic.
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Table 6.4: ROS and ROS' score values with spacing

Obyect ID ROS | ROS | Spacing || ROS | ROS | Spacing
K k=4 k=5

0, 016 71105 6 5005 0 6026 5 9056 5 303
O, 06674 0 8456 01782 07215 0 6822 00393
[0} 02171 2 4231 2 206 02312 2 2196 19884
Oy 0621 33158 2 6948 0 6546 22234 1 5688
Os 01154 28112 2 6958 01794 1 8838 17044
Og 061 64715 5 8615 06103 55317 49214
0, 0 2465 4 8093 4 5628 02601 31938 2 9337
Os 06084 34627 2 8543 0638 2 3394 17014
Oq 02167 21123 1 8956 02309 2 0299 17990
Ol 00201 1 8459 1 8258 00334 09801 09467
O 01154 2 7054 259 0198 17574 1 5594
012 0 2602 04042 0144 02618 03144 00526
O3 01603 51807 50204 01824 4 3574 4175
014 0 2541 0 4551 0201 02533 03374 0 0841
O, 0 0 0588 2 3396 2 2808 00522 14851 14329
Os6 0 6008 2 0588 1 458 06611 17287 10676

The proposed technique can use other proximitv measures during cluster for-
mation and score computation A general comparison of Euclidean, Pearson Corre-
lation Coefficient (PCC), Manhattan and cosine distances with aibitrarily selected
five objects for score computation with the synthetic zoo, TUIDS KDDcup99, and
NSL-KDD datasets 1s given 1n Table 6 5 As seen in the table, the score value 1s
not affected very much when the proxamity measure 1s changed Hence, we say that

the score computation function 1s flexible to use any proximity measure

6.5.6 Complexity Analysis

Finding reference pomnts and estimating scores estimation play important roles in
the cffectiveness and cfficiency of our technique The cluster formation algorithm,
TreeCLUS generates near balanced tree and takes average O(nlogk) time, where
each data object 1s processed once Here, n 1s the number of data objects and
k 1s the number of clusters Calculating the reference point and outlier score for
each candidate data object takes O(Nklogk) time, where N 1s the number of can-
didate data objects, N > n, and k 1s the number of reference points So, the total
time complexity of the proposed techmque 1s O(nlogh) + O(Nhlogk) A general
comparison of the proposed technique with the other similar algorithms 1s given n

Table 6 6
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Table 6.5: Comparison of different proximity measures for outlier score computation It
1s useful for 1dentification of the appropriate proximity measure

Scores for five distinct objccts
Dataset Euclidean PCC Manhattan Cosine
02361 02302 0 2487 02210
47192 4 7040 47654 4 6825
Synthetic 03281 0 3250 03375 03163
3 5676 35574 36086 30755
4 9650 49615 4 9783 4 7501
00186 00179 00178 00192
21074 21069 21170 21082
Zoo 02810 0 2906 02933 02817
0 3206 03169 0 3209 03285
1 1066 12048 13245 1 2850
01134 01204 01312 01322
02122 02251 02189 02137
TUIDS 29231 29340 29201 29103
21503 21712 21820 2 1289
39120 38843 38450 3 8930
04520 04534 04125 04510
2 3511 2 3430 2 3411 2 3440
KDDcup99 07719 07720 07617 0 7660
09452 09341 09464 09518
3 9005 49615 4 9783 4 7501
01029 01234 (01098 01067
25172 2 5140 2 5540 24921
NSL-KDD 06221 0 6289 06212 06194
4 0026 40112 40141 4 0236
0 3900 0 3890 03951 0 3922

Table 6.6: Comparison of the complexity of proposed technique with competitors

Algorithms Number of parameters Complezity (approzimate)
LOF [1] (k MwnPts M) O(nlogn)

ORCA [2) (k n, D) O(n?)

ROS [3] (n,k, R) O(Rnlogn)

Proposed Techmque (n 1) Ofnlogk) + O(Nklogk)

6.6 Performance Evaluation

The proposed technique was implemented and 1ts performance evaluated using the
following environment It was first tested on several real world datasets from the
UCI machine learning repository The technique was later tested with both packet
and flow level network intrusion datasets generated 1in our TUIDS testbed [355],
discussed 1n chapter 4 of this thesis Finally, we tested on benchmaik network
intrusion datascts The proposed techmique was implemented on an HP w6600

workstation with Intel Xcon Processor (3 00Ghs) and 4GB RAM Javal 6 0 was
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used for the implementation in Ubuntu 10 10 (Linux) platform Java was used to

facihitate the visualization of detection results casily

6.6.1 Datasets

To evaluate the performance of the proposed technique, we use a synthetic dataset

and several real life datasets

Synthetic and UCI ML Repository Datasets

The first dataset we use 1s a synthetic 2-dimensional dataset that we have generated
ourselves It 1s generated to reflect the several outlier cases illustrated earlier in
Figure 6 1 The characteristics of this dataset are given in row 1 of Table 6 7
In this sct of cxperiments we use twentv additional datasets zoo, shuttle, breast
cancer, prma vehicle, diabetes, led7, lymphography, glass, heart, hepatitis horse,
wonosphere, wris sonar, waveform wine lung cancer, poker hand and abalone [356]
The charactenistics of these datascts arc also given in Table 6 7

Table 6.7: Characteristics of synthetic and various real hife datasets

Seral Dataset Dwmensions No of instances No of classes | No  of Out
No hers
1 Synthetic 2 1000 5 40
2 Zoo 18 101 7 17
3 Shuttle 9 14500 3 13
4 Breast cancer 10 699 2 39
5 Pima 8 768 2 15
6 Vehicle 18 846 4 42
7 Diabetes 8 768 2 43
8 Led7 7 3200 9 248
9 Lymphography 18 148 4 6
10 Glass 10 214 6 9
11 Heart 13 270 2 26
12 Hepatitis 20 155 3 32
13 Horse 28 368 2 23
14 Ionosphere 34 351 3 59
15 Ins 4 150 4 27
16 Sonar 60 208 2 90
17 Waveform 21 5000 3 87
18 Wine 13 178 3 45
19 Lung Cancer 57 32 3 9
20 Poker Hand 10 25010 10 16
21 Abalone 8 4177 29 24

Real-life TUIDS Packet and Flow Level Intrusion Datasets

We usc recal-life packet and flow level feature datascts generated by us using our

TUIDS testbed for evaluating the performance of the proposed techmique n the
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current network scenario. The TUIDS testbed layout, testbed architecture, feature
extraction framework, list of extracted featurces in both packet and flow level have
been discussed in Chapter 4. The list of attacks and their characteristics arc given

in Table 6 8 The characteristics of both packet and flow levels datasets are given

in Table 6.9.

Table 6.8: Training and test data attack types with their tools

Serial Attack name Attack generation tool Trawn dataset Test dataset
No

1 Bonk targa2 c v v
2 Tolt targa2 ¢ v v
3 Land targa? c v v
4 Sathyousen targa2 c v v
5 TearDiop targa2 c v v
6 Newtear targa2 c v v
7 1234 targa2 ¢ v v
8 Winnuke targa2 c ' v
9 Oshare targa2 c v v
10 Nestea targa2 c - 's
11 SynDrop targa2 c v v
12 TcpWindowScan Nmap v v
13 SynScan Nmap v v
14 XmassTree-Scan Nmap - v
15 Smurf smurfd ¢ - v
16 OpenTear opentear ¢ - v
17 LinuxICMP linux-icmp ¢ - v
18 Fraggle fraggle ¢ - v

Table 6.9: Distribution of normal and attack connection instances in real-life packet and

flow level TUIDS intrusion datasets

Connection type

Dataset type

Traimang dataset

Testing dataset

Packet level
Normal
DoS

Probe

Total

Flow level
Normal
DoS

Piobe

Total

71785 58 87%
42592 34 93%
7550 6 19%
121927 -
23120 43 75%
21441 40 57%
8282 1567%
52843 -

47895
30613
7757

862065

16770
14475
9480

40725

55 52%
45 49%
899%

4117%
35 54%
23 28%

Real-life TUIDS Coordinated Scan Datasets

This datasct is built from scveral scans [5] launched in a coordinated way using
the rnmap? tool on the TUIDS testbed We use the same framework for extracting
various features to prepare the coordinated scan datasets at both packet and flow

levels. The lList of scans and their characteristics at both packet and flow levels are

2http //rnmap.sourceforge.net/
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given in Table 6.10. The distribution of normal and attack data for this dataset at

both packet and flow levels is given in Table 6.11.

Table 6.10: Port scan types and firewall level detection possibilities

Port scanning tech- | Protocol] TCP flag Target reply | Target reply | Firewall level de-
nique (open port) (closed port) tection possibility
TCP Connect() TCP SYN ACK RST Yes

Reverse Ident TCP No No No No

SYN Scan TCP SYN ACK RST Yes

IP Header Dump Scan | TCP No No No No

SYNJACK Scan TCP SYNJACK RST RST Yes

FIN Scan TCP FIN No RST No

ACK Scan TCP ACK No RST No

NULL Scan TCP No No RST No

XMAS Scan TCP All flags No RST No

TCP Fragment TCP No No No No

UDP Scan uDP No No Port Unieachable No

FTP Bounce Scan FTP Arbitrary Flag | No No No

Set

Ping Scan ICMP No Echo Reply No Yes

List Scan TCP No No No No

Protocol Scan IP No - - No

TCP window scan TCP ACK RST RST No

Table 6.11: Distribution of normal and attack connection instances at real-life packet
and flow levels for TUIDS coordinated scan datasets

Dataset type
Connection type Trawning dataset Testing dataset
Packet level
Normal 65285 90 14% 41095 84 95%
Probe 7140 9 86% 7283 15 05%
Total 72425 - 48378 -
Flow level
Normal 20180 73 44% 15853 65 52%
Probe 7297 26 56% 8357 34 52%
Total 27477 - 24210 -

KDDcup99 and NSL-KDD Intrusion Datasets

In another set of experiments, we use the well-known KDDcup99 [356] intrusion
dataset and an cnhanced version of the KDDcup99 datasct known as the NSL-
KDD? intrusion dataset. The training data contains about five million network
connection records. A connection record is a sequence of TCP packets with well
defined starting and ending times. Each connection record is unique in the dataset
with 41 continuous and nominal fcaturcs plus one class label. In this work, nominal
features such as protocol (e.g., tcp, udp, 1cmp), service type (e.g., http, fip, telnet)

and TCP status flags (e.g., sf, rey) are converted into numeric features. We convert

3http.//www.iscx.ca/NSL-KDD/
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categorical attribute values to numeric attribute values by replacing categorical
values by numeric values. For cxample, in the protocol attribute, the value TCP is

changed to 1, UDP is changed to 2 and ICMP is changed to 3

Featurcs can be categorized mnto four types: basic features, content-based fea-
turcs, time-based fcaturcs and connection-based fcaturcs The categories of the
features, labels of the features and their corresponding description are explained in

Chapter 4. ’

The KDDcup99 10% corrected dataset contains 24 attack types categorized into
four different groups: DoS (Demal of Service), Probe, R2L (Remote to Local), and
U2R (uscr to Root) attacks The KDDcup99 corrected datasct contains 37 attack
types DoS attacks consume computing or memory resources to prevent legitimate
behavior of users. Probe is a type of attack where an attacker scans a network
to gather information about the target host. In R2L type of attacks, the attacker
docs not have an account on the victim machine, hence sends a packets to it over
a network to illegally gain access as a local user. Finally, in case of U2R attacks,
the attacker has local access to the system and is able to exploit vulnerabilities to

gain root permissions. The characteristics of KDDcup99 and NSL-KDD intrusion

datascts are given in Table 6.12

Table 6.12: Distribution of normal and attack connection instances in both KDDcup99
and NSL-KDD intrusion datasets

Dataset type

Connection type Trawning dataset Testing dataset
KDDcup99 dataset

10% conrected Coriected
Normal 97278 19 69% 60593 19 48%
DoS 391458 79 24% 229853 73 90%
Probe 4107 083% 4166 134%
R2L 1126 0 22% 16189 5 20%
U2R 52 001% 228 007%
Total 494021 - 311029 -
NSL-KDD dataset
Normal 67343 53 46% 9711 43 07%
DoS 45927 36 46% 7460 33 09%
Probe 11656 925% 2421 10 74%
R2L 995 079% 2753 12 21%
U2R 52 0 04% 199 0 88%
Total 125973 - 22544 -
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6.6.2 Experimental Results

The objective of our approach is to accurately classify network traffic data as normal
or attack. We measure the accuracy of our approach using precision, recall, F-

measure, detection rate and accuracy, described in Chapter 2.

We compare our technique with LOF (1], ORCA [2], ROS [3] and OutRank(b)
(357] using benchmark large high dimensional datasets. However, OutRank(b) is
tested using synthetic and UCI ML repository datasets only. OutRank(b) is a
stochastic graph bascd outlier detcction technique. For OutRank(b), we sct the
value of the outherness threshold T to the range 0.68 to 0 89 for the UCI datasets
to achieve better results. The rest of the techniques work as follows. LOF is
a well known density based outliers detection technique We set & = 10 as the
distance neighborhood We also set the minimum number of neighboring points
MmPts = 30 for LOF as suggested in (1] to achieve maximum accuracy. ORCA
[2] is a benchmark distance based outlier detection method, which claims to cut
down the complexity from O(n?) to near lincar time. The paramecters k£ and N are
the number of k nearest neighbors and the number of anomalies needed to report,
respectively. We use the reasonable values of k = 5 and N = %, unless otherwise
specified although default values arc £ = 5 and N = 30. ROS 1s a reference based
outlicr detection technique [3] for large datasets. We sct the reference based nearest
neighbors using k£ = 4 and setting the number of reference points to 18, which is
equal to the number of classes in the dataset as recommended in [3] to achieve high

accuracy.

Synthetic and UCI ML Repository Datasets

To start, we evaluate the proposed technique using a two dimensional synthetic
dataset, comprising of 1000 data objects, out of which 4% are outliers. Results of
the proposed technique both in terms of detection rate (DR) and false positive rate
(FPR) for this dataset are given in the last column of the first row in Table 6.13.
Following this, we downloaded cxccutable versions of LOF* and ORCAS? [2]. Results
of LOF and ORCA are also given for this datasct in columns 4 and 5, respectively.

“http //sites google com/site/rafalba/
*http //www.stephenbay.net/orca/
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The proposed technique was also evaluated on several other real life benchmark
datascts In this woik we report our results for zoo, shuttle breast cancer, pvma,
vehicle, diabetes, led7 lymphography, glass, heart, hepatitis, horse ionosphere, iris,
sonar, waveform, wine, lung cancer poker hand abalone datasets and compare them
with the three other algorithms The performance of our technique 1s consistently

better than that of the other three algonthms

Table 6.13: Experimental results with Synthetic and UCI ML Repository datasets

Datasets T Effectiveness | LOF [1] ORCA (2] OutRank(b) Proposed
[357] Techmque
Synthetic 039 DR 0 7500 0 8500 0 8850 1 0000
FPR 0 0229 00166 0 0211 0 0000
Z00 058 DR 08235 08823 1 0000 09411
FPR 01904 01309 0 0000 00238
Shuttle 047 DR 0 8461 07692 0 8629 09230
FPR 00310 00241 0 0208 00103
Breast Cancer 061 DR 0 8643 08109 0 9085 09321
FPR 00367 00265 00183 00249
Pima 082 DR 09333 09041 1 0000 1 0000
FPR (0020 Q0211 0 0000 0 0000
Vehicle 098 DR 0 3095 02919 0 6428 07768
FPR 00685 00711 00354 00231
Diabetes 19 DR 05813 05925 0 8139 0 8691
FPR 00385 00358 00171 00198
Led? 053 DR 02217 07310 09799 09819
FPR 01555 0 0299 00040 00038
Lymphography 044 DR 0 7500 07720 1 0000 1 0000
FPR 00074 0 0062 0 0000 0 0000
Glass 077 DR 088134 0 8388 0 8956 09826
FPR 00260 00327 00227 00049
Heart 13 DR 09108 0 8969 0 8762 09928
FPR 00035 0 0107 0 0249 00011
Hepatitis 077 DR 0 8702 0 8621 09183 09899
FPR 00247 00299 00178 00010
Horse 059 DR 09112 0 8822 09326 09705
FPR 00199 0 0205 00118 00019
Ionosphere 081 DR 08108 0 7988 0 8329 09523
FPR 00277 00312 0 0265 00108
s 043 DR 08911 08633 09013 09900
FPR 00211 0 0290 00203 00001
Sonar 066 DR 0 8800 0 8477 0 8551 0 9666
FPR 0 0201 00390 0 0294 00110
Waveform 079 DR 038613 0 8387 09112 09209
FPR 00260 0 0305 0184 00150
Wine 089 DR 09233 09122 09416 1 000
FPR 0 0166 00179 00119 0 0000
Lung Cancer 038 DR 09310 08934 09717 1 000
FPR 00110 00211 0 0108 0 0000
Poker Hand 040 DR 09620 09278 09199 09911
FPR 00111 00190 0 0196 0 0005
Abalone 057 DR 0 8902 0 8691 0 8751 09890
FPR 00244 0 0380 0 0289 0 0050

Real-life TUIDS Packet and Flow level Intrusion Datasets

We also present results with real-hife packet and flow level network intrusion datasets

for our techmque We convert all categorical attributes into numeric form and then
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compute the log,(a, ;) of the larger values for normalization. The value of z depends
on the attribute valucs and «, , 1cpresents the largest attribute values. We use 50%
of the datasct for training purposc with normal and DoS attacks, and the remaining
50% of the dataset for testing purpose during performance analysis, as given in Table
6.9. We evaluate in terms of Precision, Recall and F-measure. We provide confusion
matrices for LOF [1], ORCA [2], ROS [3] and our technique using both packet and
flow levels TUIDS intrusion datasets in Table 6.14. Currently, we analyze only
two types of attacks, DoS and probe. The detection rate for both packet and flow
level intrusion datasets is better for DoS and probe attack instances than normal
instances duc to the lack of purc normal instances collected from our testbed. It
is still a challenge to obtain pure normal instances from an enterprise networks.
It is important to note this because a collection of a large number of pure normal

instances is vital in real-lifc nctwork anomaly dctection.

Real-life TUIDS Packet and Flow level Coordinated Scan Datasets

We have generated sixteen types of attacks (see Table 6.10) for coordinated scans.
However, in this set of experiments, we consider only four types of scans (i.c., TCP
SYN, window, XMAS, and NULL) in the coordinated mode during testing with
both packet and flow level datasets. With these datasets, we convert all categorical
attributes into numeric form and compute log,(a, ;) to normalize the objects values
like beforc We also usc 50% of the datasct for training and rest for testing is
this dataset. The confusion matrices of LOF [1], ORCA [2] and ROS [3] with our
technique using coordinated scan datasets at both packet and flow levels are given

in Table 6.15.

KDDcup99 and NSL-KDD Intrusion Datasets

We discuss experimental results for both KDDcup99 and NSL-KDD intrusion datasets
with the proposed technique. With these datasets, we convert all categorical at-
tributes into numeric form and compute log.(a,,) to normalize the objects val-
ues like before. We use the KDDcup99 10% corrected dataset for training and
KDDcup99 corrccted dataset for testing. For additional experiments, we usc the

KDDTrain+ datasct for the training and KDDTest+ for the testing, both from
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Table 6.14: The Confusion matrix for LOF [1] ORCA [2], ROS (3] and our proposed
technique using packet and flow level TUIDS intrusion datasets

Evaluation measures Confusion matrix

Connection Precision Recall F measure Value Normal DoS Probe Total
type

LOF [1]
Packet level
Normal 0 8837% 09096% 0 8965% Normal 43569 3527 799 47895
DoS 0 8910% 0 8942% 0 8926% DoS 3196 27375 42 30613
Probe 0 6419% 0 6523% 06471% Piobe 2603 94 5060 7757
Average 0 8055% 08187% 08104% Total 49368 30996 5901 86265
Flow level
Normal 0 9056% 09127% 09091% Normal 15307 1378 85 16770
DoS 0 8624% 0 8866% 0 8743% DoS 1573 12834 68 14475
Probe 06612% 0 6749% 0 6679% Probe 2931 151 6398 9480
Average 0 8097% 08247% 08171% Total 19811 14383 6551 40725

ORCA [2]

Packet level
Normal 0 8610% 08713% 0 8661% Normal 41732 5214 949 47895
DoS 0 9007% 09128% 0 9067% DoS 2605 27945 63 30613
Probe 0 8703% 0 8847% 0 8774% Probe 796 98 6863 7757
Average 08773% 0 8896% 0 8834% Total 45133 33257 7875 86265
Flow level
Normal 0 8832% 0 8927% 0 8879% Normal 14971 1674 125 16770
DoS 09087% 09297% 0 9190% DoS 978 13458 39 14475
Probe 0 8516% 0 8659% 0 8587% Probe 1217 54 8209 9480
Average 0 8812% 0 8961% 0 8885% Total 17166 15186 8373 40725

ROS 3]
Packet level
Normal 09218% 0 9453% 09334% Normal 45275 1726 894 47895
DoS 09538% 0 9629% 09583% DoS 1131 29479 3 30613
Probe 08702% 0 8733% 08717% Piobe 961 22 6774 777
Average 09153% 09272% 09211% Total 47367 31227 7671 86265
Flow level
Normal 09471% 09521% 0 9565% Normal 15968 785 17 16770
DoS 0 9690% 09735% 09713% DoS 382 14066 27 14475
Probe 0 8814% 0 8926% 0 8869% Probe 994 24 8462 9480
Average 09325% 09394% 09382% Total 17344 14875 8506 40725

Proposed Techmique

Packet level
Normal 0 9607% 0 9854% 09728% Normal 47195 633 67 47895
DoS 09977% 09964% 09971% DoS 110 30503 O 30613
Probe 09627% 09796% 09711% Probe 143 15 7599 7757
Average 09737% 09871% 0 9803% Total 47448 31151 7666 86265
Flow level
Normal 0 9745% 0 9868% 0 9806% Normal 16549 214 7 16770
DoS 0 9%44% 0 9969% 0 9906% DoS 41 14431 3 14475
Probe 0 9790% 0 9806% 09798% Probe 176 8 9296 9480
Average 09793% 0 98R1% 09837% Total 16766 14653 9306 40725

the NSL-KDD datasets We use the feature selection algorithm to select the best
feature subsets for outlier based network anomaly detection The selected feature
subsets for the KDDcup99 intrusion datasets are given in Table 6 16 The selected
feature subsct for the NSL-KDD datascts 1s also given in Table 6 17 In cach table,
a row represents a selected subset of features and gives the labels of these important
features It 1s clear that after applying the feature selection algorithm, the size of
the feature subsct used for cach class 1s greatly reduced Hence, the computation

time taken by the proposed technique s substantially less than when full feature
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Table 6.15: The Confusion matrix for LOF [1] ORCA [2], ROS [3] and our proposed
techmique using packet and flow level TUIDS coordinated scan datasets

Evaluation measures Confusion matrix
Connection type Precision Recall F-measure Value Normal Probe Total
LOF [1]
Packet level
Normal 0 8803% 0 8911% 0 8857% Normal 36620 4475 41095
Probe 0 8030% 08137% 0 8083% Probe 1357 5926 7283
Average 08512% 0 8524% 0 8470% Total 37977 10401 48378
Flow level
Normal 08773% 0 8829% 0 8801% Normal 13997 1856 15853
Probe 0 8094% 0 8213% 08153% Probe 1493 6864 8357
Average 0 8434% 08521% 0 8477% Total 15490 8720 24210
ORCA 2]
Packet level
Narmal 09043% 09198% 09119% Normal 37798 3207 41095
Probe 0 8802% 0 8830% 0 8816% Probe 852 6431 7283
Average 0 8922% 09014% 0 8967% Total 38650 9728 48378
Flow level
Normal 09197% 09377% 0 9286% Normal 14865 988 15853
Probe 0 8801% 0 8939% 0 8869% Probe 886 7471 8357
Average 0 8999% 09158% 09078% Total 15751 8459 24210
ROS [3]
Packet level
Normal 09126% 0 9265% 09195% Normal 38078 3017 41095
Probe 09013% 09161% 0 8096% Probe 611 6672 7283
Arerage 0 9069% 09213% 0 8645% Total 38689 9689 48378
Flow level
Normal 09015% 09145% 09079% Normal 14498 1355 15853
Probe 08671% 0 8877% 08773% Probe 9138 7419 8357
Average 0 8843% 09011% 0 8926% Total 15436 8774 24210
Proposed Technique
Packet level
Normal 0 9629% 0 9807% 09717% Normal 40301 794 41095
Probe 09674% 09781% 09727% Probe 159 7124 7283
Average 0 9652% 09794% 09722% Total 40460 7918 48378
Flow level
Normal 09708% 0 9839% 09773% Normal 15598 255 15853
Probe 09710% 09788% 09748% Probe 177 8180 8357
Average 0 9709% 09813% 09761% Total 15775 8435 24210

sets are used We provide confusion matrices for LOF [1], ORCA [2] and ROS [3]
and our technique with both the KDDcup99 and the NSL-KDD intrusion datasets
in Table 6 18

We also consider all attacks in the case of the KDDcup99 corrected dataset for
cvaluating the proposed technique It has a total of 37 attack classes and the normal

class We give a confusion matrix of the results in Table 6 19 with comparison of

results with competing algorithms (1.e , CART [6], CN2 [6] and C4 5 [6])

Parameters Selection

The determination of suitable values for parameters plays an important role 1n
any outlier or network anomaly detection method In our approach, £ 1s used

as a threshold for finding an optimal subsct of rclevant features for a particular
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Table 6.16:

Selected relevant features for all classes in the KDDcup99 intrusion dataset

Method #Features Selected features

Normal class

IGFS 10 Sic-bytes Service Count Dst-bytes, Dst-host-same-src-port-rate, Srv-count
Logged-in, Protocol-type Dst-host-diff-srv-rate, Dst-host-same-srv-rate

FFSA {81] 6 Src-bytes Service, Duration Flag, Dst-host-same-srv-rate, Dst-bytes

MMIFS [81] Src-bytes Count, Service, Dst-bytes, Dst-host-diff-srv-rate Duration

LCFS {81] 15 Logged-in, Dst-host-same-srv-rate, Dst-host-srv-count, Service, Count, Rerror-
rate Same-srv-rate, Dst-host-rerror-rate, Dst-host-srv-serror-rate, Srv-rerror-rate
Protocol-type, Dst-host-srv-rerror-rate, Srv-serror-rate, Dst-host-diff-srv-rate, Hot

DoS class

IGFS 12 Src-bytes Count, Service, Dst-host-same-src-port-rate, Dst-host-diff-srv-rate, Srv-
count, Dst-host-srv-count, Dst-host-same-srv-rate, Dst-host-serror-rate, Protocol-
type, Dst-host-srv-serror-rate, Serror-rate

FFSA (81] 3 Src-bytes Dst-host-serror-rate, Service

MMIFS (81} | 8 Src-bytes Count, Dst-bytes, Protocol-type, Srv-count, Dst-host-srv-rerror-rate,
Dst-host-same-s1c-port-rate, Service

LCFS [81] 36 Dst-host-count, Rerror-rate, Count Dst-host-serror-rate, Dst-host-rerror-rate
Siv-count Num-compromised, Protocol-type, Dst-host-rerroi-rate, Is-guest-login,
Diff-srv-rate Senor-rate, Siv-rerror-rate, Dst-host-diff-srv-rate, Srv-serror-iate,
Dst-host-srv-diff-host-rate Logged-in, Dst-host-same-src-port-1ate, Dst-host-srv-
serror-rate Duration, Hot Root-shell, Num-failed-logins, Num-file-ci1eations, Dst-
host-srv-count, Num-1oot, Num-access-files, Num-shells, Urgen, Sic-bytes, Dst-
host-same-srv-rate Srv-diff-host-rate, Dst-bytes, Service, Same-srv-rate

Probe class

IGFS 14 Service, Src-bytes, Rerror-rate, Count, Dst-host-srv-diff-host-rate, Flag, Dst-host-
rerror-rate, Dst-host-same-src-port-rate, Dst-host-count, Dst-host-same-srv-rate
Dst-host-diff-srv-rate, Dst-host-srv-count, Same-srv-rate, Dst-bytes

FFSA {81] 24 Dst-host-rerror-rate, Src-bytes, Dst-host-srv-rerror-rate, Num-failed-logins
Protocol-type, Is-guest-login, Urgen, Rerror-rate, Dst-host-srv-diff-host-rate, Srv-
rerror-rate, Root-shell, Num-access-files, Srv-diff-host-rate, Num-shells Duration,
Num-file-creations, Num-root, Num-compromised, Serror-rate, Dst-host-srv-
serror-rate Srv-serror-rate, Dst-bytes, Diff-srv-rate, Dst-host-count

MMIFS (81] [ 13 Dst-host-rerror-rate, Src-bytes, Dst-host-srv-count, Count, Srv-rerror-rate, Service,
Dst-host-srv-rerror-rate, Num-compromised, Rerror-rate, Dst-host-count, Logged-
i, Srv-count Srv-rerror-rate

LCFS [81] 7 Rerror-rate, Logged-in, Dst-host-rerror-rate Dst-host-srv-rerror-rate, Dst-host-
same-srv-rate, Srv-rerror-rate Dst-host-diff-srv-rate

R2L class

IGFS 13 Service, Sic bytes, Dst-bytes, Dst-host-srv-count Count, Dst-host-same-src-port-
rate Dst-host-siv-diff-host-rate Siv-count, Dst-host-count Flag, Dst-host-srv-
serror-rate Dst-host-diff-st1v-1ate, Dst-host-sertor-rate

FFSA [81] 10 Service, Dst-bytes Flag Num-failed-logins, Urgen, Dst-host-stv-count, Dst-host-
srv-diff-host-rate, Dst-host-sertor-rate Is-guest-login, Serror-rate

MMIFS [81] | 15 Service, Num-compromised Is-guest-login Count, Hot, Src-bytes, Dst-host-
diff-srv-rate, Srv-count, Dst-bytes Dst-host-srv-count, Dst-host-srv-diff-host-rate,
Dst-host-count, Duration, Dst-host-srv-diffi-host-rate, Dst-host-srv-serror-rate Is-
guest-login, Dst-host-serror-rate, Hot Service

LCFS (81} 4 Is-guest-login, Dst-host-serror-rate, Hot, Service

U2R class

IGFS 15 Service, Dst-host-srv-count Duration, Src-bytes, Num-file-creations, Root-shell,
Hot, Dst-host-count, Num-compromised Dst-host-same-src-port-rate, Srv-count,
Dst-host-diff-srv-rate, Dst-host-same-srv-rate, Dst-host-srv-diff-host-rate, Count

FFSA [81} 27 Src-bytes Duration, Num-access-files, Num-shells, Dst-host-srv-serror-rate
Protocol-type, Is-guest-login, Urgen, Same-srv-rate Land Wrong-fragment, Su-
attempted, Diff-srv-rate, Num-root, Num-outbound-cmds, Is-host-login, Dst-bytes,
Service, Srv-serror-rate Srv-diff-host-rate, Dst-host-srv-count, Root-shell, Flag,
Num-file-creations, Dst-host-count Logged-n, Serror-rate

MMIFS [81] | 10 Src-bytes Duration, Service Siv-count, Count, Protocol-type Dst-host-srv-count,
Dst-bytes Dst-host-count, Flag, Root-shell Is-host-login

LCFS [81] 3 Root-shell, Num-file-creations, Num-compromised

class 1n a dataset.

The optimality of a feature subset is decided based on the

classification accuracy obtained using a datasct For our sample datasct, we obscrve

cxperimentally that for € > 0917 the best possible accuracy 1s obtained However.
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Detection

Table 6.17: Selected

relevant features for all classes in the NSL-KDD intrusion dataset

Selected features

Method #Features
Normal 11

DoS 9

Probe 13

R2L 10

U2R 16

Src-bytes Service, Dst-bytes Flag Diff-srv-rate, Same-srv-rate, Dst-host-srv-
count, Dst-host-same-srv-rate, Dst-host-diff-srv-rate, Dst-host-serror-rate, Logged-
m

Src-bytes Count Dst-bytes, Srv-count Dst-host-same-src-port-rate, Dst-host-
same-stv-rate, Dst-host-srv-serror-rate, Protocol-type, Serror-rate

Sic-bytes Count, Dst-host-rerroi-rate, Flag Num-failed-logins, Is-guest-login, Dst-
host-same-src-port-rate, Dst-host-diff-siv-rate Dst-host-srv-count, Same-srv-rate.
Dst-bytes Diff-srv-rate, Dst-host-serror-rate

Service, Dst-bytes Src-bytes, Dst-host-stv-count, Dst-host-srv-diff-host-rate Srv-
count, Flag, Is-guest-login, Dst-host-srv-serror-rate, Dst-host-diff-srv-rate
Src-bytes Duration, Service, Dst-host-srv-count, Root-shell, Urgen, Same-srv-rate,
Land Wrong-fragment, Dst-host-same-src-port-rate, Srv-count, Num-root, Num-
outbound-cmds, Is-host-login, Dst-host-srv-diff-host-rate Count

for other datasets 1t differs. In TreeCLUS, the value of the parameter o 1s selected

using a hcuristic approach. o < 10.5 initially for the sample dataset, but it is

different for other datasets [’ is the number of data objects needed to satisfy the

neighborhood condition over a subset of features to form a node (i.e, 8/ = 2 in

casc of our sample datasct). Its value is the same for all datasets. Finally, in the

outlier detection algorithm, k' and 7 are two important parameters. If k" and 7

are not properly selected, it may affect the accuracy of the detection method. We

select both these parameter values using a heuristic approach. We find &’ values

for different datascts

solution for &' values

heuristically as shown in Figure 6.6. We find the best possible

ranging from 22 to 47.

k" value identification
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Figure 6.6: k' valucs vs. accuracy for the identification of k' values. &, 1s the minimum

range of k' valucs and k

/

mazr

1s the maximum range of k' values. It is uscful for sclecting

k' valucs during score computation.
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Table 6.18: The Confusion matrices for LOF [1], ORCA (2], ROS [3] and our proposed
technique using KDDcup99 and NSL-KDD intrusion datasets

Evaluation measures

Confusion matrix

‘Connection type Precision Recall F measure Value NormalRZ2L DoS  Probe UZR Total
LOF [1]
KDDcup99 dataset
Noimal 08902% 09096% 0 8998% Normal 55119 5294 163 15 2 60593
R2L 07164% 0 7283% 07223% R2L 4165 11791 14 216 3 16189
DoS 08733% 0 8929% 0 8829% DoS 22412 17 205258 2164 2 229853
Probe 08399% 08550% 08474% Probe 493 20 91 3562 0 4166
U2R 06092% 06140% 06115% U2R 75 10 2 1 146 228
Average 07858% 0 7999% 0 7928% Total 82264 17132 205528 5958 147 311029
NSL-KDD dataset
Normal 09186% 09314% 0 9249% Normal 9045 480 124 56 6 9711
R2L 06897% 0 7043% 06969% R2L 770 1939 0 43 1 2753
DoS 08611% 08752% 0 8681% DoS 792 37 6529 94 8 7460
Probe 08549% 08612% 0 8580% Probe 139 7 287 2085 3 2421
U2R 06107% 06231% 06168% U2R 64 8 3 0 124 199
Average 07870% 07990% 0 7929% Total 10710 2471 6943 2278 142 22544
ORCA [2]
KDDcup99 dataset
Normal 09272% 09389% 0 9330% Normal 56896 3125 486 81 5 6059 3
R2L 07219% 07406% 0 7311% R2L 4105 11991 14 79 1 16189
DoS 09106% 09198% 09152% DoS 18177 0O 209799 1877 0 229853
Probe 08530% 0 8826% 0 8675% Piobe 341 19 129 3677 O 4166
U2R 06197% 06315% 06255% U2R 73 7 4 0 144 228
Average 08017% 08162% 08225% Total 79592 15142 210431 5714 150 311029
NSL-KDD dataset
Normal 09187% 09293% 09239% Normal 9024 507 117 58 5 9711
R2L 07412% 07526% 0 8153% R2L 617 2072 9 55 0 2753
DoS 08951% 09089% 09019% DoS 476 5 6781 198 0 7460
Probe 08603% 0 8823% 08712% Probe 79 7 198 2136 1 2421
U2R 05930% 06080% 0 6004% U2R 69 8 1 0 121 199
Average 038189% 0 8328% 08413% Total 10692 2423 7038 2250 141 22544
ROS [3]
KDDcup99 dataset
Normal 09233% 09416% 09165% Normal 57058 3110 366 53 5 60594
R2L 06876% 06992% 06934% R2L 4813 11320 9 47 0 16189
DoS 09004% 09011% 0 9007% DoS 22722 5 207123 3 0 229853
Probe 08824% 08951% 0 8887% Piobe 339 13 83 3729 2 4160
U2R 05928% 0 6008% 0 5967% U2R 78 11 2 Q 137 228
Average 07973% 08076% 0 7992% Total 85011 14459 207583 3832 144 311029
NSL-KDD dataset
Noimal 09406% 0 9562% 0 9483% Noimal 9286 380 41 2 2 9711
R2L 07236% 07304% 0 7269% R2L 686 2011 6 49 1 2753
DoS 09128% 09214% 09170% DoS 567 17 6874 O 2 7460
Probe 08872% 09083% 0 8938% Probe 97 7 113 2199 5 2421
U2R 06471% 06583% 06527% U2R 56 8 .4 0 131 199
Average 08222% 08349% 08277% Total 10065 2752 7360 2226 141 22544
Proposed Technique
KDDcup99 dataset
Normal 09863% 0 9983% 0 9769% Normal 60489 36 13 4 1 60593
R2L 08776% 0 8996% 0 8885% R2L 1596 145634 9 21 [¢] 16189
DoS 09988% 09999% 0 9994% DoS 17 0 229833 3 0 229853
Probe 09670% 09807% 0 9687% Probe 59 4 17 4086 0 4166
U2R 07342% 07632% 07215% U2R 41 7 5 1 174 228
Average 09128% 09283% 09110% Total 62202 14660 229877 4115 175 311029
NSL-KDD dataset
Normal 09801% 09902% 0 9851% Normal 9616 78 13 3 1 9711
R2L 08790% 0 8892% 0 8841% R2L 292 2448 2 11 0 2753
DoS 09896% 09988% 0 9942% DoS 9 0 7451 O 0 7460
Probe 09690% 09798% 0 9744% Probe 22 1 26 2372 0 2421
U2R 07254% 07788% 0 7512% U2R 33 8 3 0 155 199
Average 09086% 09274% 09178% Total 9972 2535 7495 2386 156 22544

We have analyzed the cffcct of the threshold 7 using synthetic as well as real
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Table 6.19: Comparison between CART CN2 C45 and Proposed Technique while
considering all attacks over KDDcup99 intrusion dataset

Algonthm CART [6] CN2 [6] C4 5 [6] Proposed Technique
Connection 1 Recall 1 Recall 1- Recall Precision Recall
type Precision Precision Precision

normal 0 0540% 09430% 01442% 09822% 00507% 09436% 09563% 09938%
snmpgetattack 0 3862% 06360% 0 0000% 00026% 0 3828% 00026% 00186% 04235%
named 1 0000% 00000% 1 0000% 0 0000% 0 5000% 02353% 06149% 0 7259%
xlock 1 0000% 00000% 1 0000% 00000% 1 0000% 00000% 10000% O 7102%
smurf 0 0000% 1 0000% 00011% 1 0000% 0 0000% 1 0000% 10000% 1 0000%
1psweep 00199% 09641% 00752% 09248% 0 0000% 09902% 09902% 09967%
multihop 1 0000% 0 0000% 1 0000% 00000% 0 0000% 00556% 08392% 06209%
XSnoop 1 0000% 00000% 1 0000% 0 0000% 1 0000% 00000% 07610% O07619%
sendmaitl 1 0000% 0 0000% 1 0000% 00000% 1 0000% 00000% 10000% 06622%
guess_passwd 0 0566% 09968% 0 0270% 09725% 00242% 09863% 09981% 09996%
saint 0 0000% 01236% 02209% 08003% 02382% 08302% 0 3899% 09415%
buffer_overflow 1 0000% 0 0000% 1 0000% 00000% 04118% 04545% 10000% 0 9605%
portsweep 01111% 08362% 01376% 07260% 01604% 09463% 08835% 09819%
pod 0 0000% 08391% 0 0000% 08391% 04082% 10000% 10000% 09425%
apache2 1 0000% 0 0000% 0 0399% 08476% 01841% 09937% 10000% 0 9962%
phf 1 0000% 0 0000% 1 0000% 0 0000% 1 0000% 00000% 10000% 1 0000%
udpstorm 1 0000% 0 0000% 1 0000% 00000% 1 0000% 0 0000% 10000% 1 0000%
walezmaster 00137% 09863% 0 1428% 08546% 00293% 09944% 09972% 09714%
perl 1 0000% 00000% 1 0000% 00000% 1 0000% 00000% 1 0000% 1 0000%
satan 02917% 09724% 01113% 08898% 0 0628% 08598% 09177% 06328%
xterm 1 0000% 0 0000% 1 0000% 0 0000% O 0000% 02308% 10000% 0 7812%
mscan 0 0404% 09706% 0 0268% 08965% 0 0389% 08927% 10000% 09983%
processtable 0 0250% 09750% 0 1086% 08762% 0 0000% 09789% 10000% 1 0000%
ps 1 0000% 0 0000% 1 0000% 0 0000% 1 0000% 00000% 10000% 0 8290%
nmap 1 0000% 0 0000% 0O 0000% 1 0000% 0 3197% 09881% 10000% 1 0000%
rootkit 1 0000% 0 0000% 1 0000% 00000% 0 0000% 00769% 08241% 0 3940%
neptune 0 0016% 09990% 00011% 09994% 00011% 09978% 10000% 1 0000%
loadmodule 1 0000% 00000% 1 0000% 00000% 0 0000% 05000% 10000% 1 0000%
mmap 1 0000% 0 0000% 1 0000% 00000% 1 0000% 00000% 10000% 1 0000%
back 04583% 1 0000% 0 1164% 07951% 00132% 09545% 1 0000% 1 0000%
httptunnel 0 5088% 07025% 01744% 08987% 0 3553% 08038% 10000% 09701%
worm 1 0000% 0 0000% 1 0000% 0 0000% 1 0000% 00000% 00000% O 0000%
mailbomb 0 0000% 09516% 00161% 09998% 0 0062% 09982% 09996% 0 9989%
ftp-write 1 0000% 0 0000% 1 0000% 00000% 1 0000% 0 0000% 10000% 1 0000%
teardrop 1 0000% 00000% 1 0000% 00000% 1 0000% 00000% 10000% 04167%
land 1 0000% 00000% 1 0000% 00000% 1 0000% 00000% 10000% 1 0000%
sqlattack 1 0000% 0 0000% 1 0000% 00000% 1 0000% 00000% 10000% O 5000%
snmpguess 0 0004% 09909% 0 3812% 03603% 00144% 09983% 10000% 0 9599%
Average 0 6044% 0 3918% 0 5518% 0 4123% 0 4264% 0 4924% 0 8997% 0 8466%

life datasets (1e zo0, shuttle, and breast cancer) The performance of the proposed
technique 1n terms of detection rate largely depends on the sclection of the value
of 7, as seen 1in Figure 6 7 The value of 7 1s dependent on the dataset used for
evaluation This is because each dataset 1s different from others in terms of attribute
values and dimensions So, the threshold differs from dataset to dataset for the best
rcsults However, a most probable range of 7 valucs for these datascts 1s shown with
vertically drawn dashed lines in the Figure 6 7 In our experiments, better results
are obtained with 7 values in the range of (0 30 - 0 54) for the synthetic dataset
(0 26 - 0 69) for the zoo datasct, (0 38 - 0 57) for the shuttle datasct and (0 29 - 0 68)

for the breast cancer datasct This cstimation s helpful in choosing the threshold
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value 7 for experiments
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Figure 6.7: Dctection rate for different threshold values It 1s useful for the identification

of threshold 7 range valucs, where 1t performs well

The performance of the proposed technique for an intrusion dataset in terms of
precision again largely depends on the selection of 7 value as seen 1n Figure 6 8
The probable range of 7 values for each class of attack as well as normal data
objects for good results are shown with vertical dashed lines in Figure 6 8 In our

cxperiment we found that good results are obtained for 7 values 1n the range of

(09 - 2 3) for normal records and (04 - 1 15) for attack records
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Figure 6.8: Precision for different threshold values It 1s helpful to 1dentify the threshold

T range values, whete 1t performs best
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Discussion

We provide the confusion matrices for LOF, ORCA. ROS, CART, CN2 and C4.5
using several real life network intrusion datasets A performance comparison of the
proposed techmque with LOF, ORCA and ROS using (a) TUIDS packet level, (b)
TUIDS flow level, (¢) TUIDS coordinated scan packet and flow level, (d) KDDcup99
and (e) NSL-KDD intrusion datasets is given in Figure 6 10. As seen from the figure,
the performance significantly increases for mostly all datasets. We also provide a
comparison of the proposed technique using the KDDcup99 intrusion dataset with
C4.5, ID3, CN2, CBUID, TANN and HC-SVM in Table 6.20 and Figurc 6.9. As
seen in the table, the detection rate of normal and U2R instances using our approach
is significantly higher those obtained with competing algorithms. DoS and probe
attack dctection rates arc not significantly higher but arc better. For R2L attacks,
an average detection rate is obtained and 1t 1s still better than those obtained by
the competing algorithms. Normal, DoS and R2L attack instances are identified

with higher detection rate when it was analyzed as individual attack instances.

Table 6.20: Comparison of the proposcd technique with other techniques over KDD-
cup99 intrusion datasct

Connection C451(6)] ID3[6)] CN2{6) CBUID TANN HC-SVM  Proposed
type (7] (8] (4] Technique
Normal 94 42% 8748% 8708% - 97 01% 99 29% 99 83%
R2L 81 53% 96 23% 8451% 867% 80 53% 28 81% 89 96%
DoS 9997% 9986% 99 93% 99 15% 90 94% 99 53% 99 99%
Probe 94 82% 9554% 9585% 8027% 94 89% 97 55% 98 07%
U2R 67 11% 5482% 67 54% 60 78% 60 00% 19 73% 76 32%
Average 8757% 8678% 8698% - 84 67% 68 92% 92 83%

Finally, we present a comparison of the execution time of the proposed technique
with the time required by LOF, ORCA and ROS using the KDDcup99 intrusion
dataset, in Figure 6.11 The preprocessing time has been excluded in all methods.
As seen from the figure, time required by LOF and ORCA increases as the dataset
size increases. But ROS and our proposed technique take almost the same time
after excluding tramning time. The proposed technique takes less time than the

LOF and thc ORCA
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Figure 6.9: A comparison of the proposed technique with C4.5 [6], ID3 [6], CN2 [6],
CBUID (7], TANN (8] and HC-SVM [4] using KDDcup99 intrusion dataset

6.7 Summary

In this chapter, an efficient outlier detection technique based on [3] with an ap-
plication to network anomaly detection is presented. We also present a tree-based
subspace clustering algorithm for high dimensional datasets. The clustering al-
gorithm generates the tree in a depth first manner before applying our network
anomaly detection algorithm. The main attraction of our technique is its ability
to successfully detect all outlier cases. It can also use any proximity measure for
score computation. It is important to choose the threshold correctly during net-
work anomaly identification. A heuristic technique is presented for the identifica-
tion of the threshold. The proposed technique was evaluated with various datasets,
viz., (a) synthetic, (b) UCI ML repository datasets, (c) real-life TUIDS intrusion
datasets (packet and flow levels), (d) real-life TUIDS coordinated scan datasets
(packet and flow levels), and (¢) KDDcup99 and NSL-KDD datasets. We compare
the performance of our proposed technique with that of other well known outlier
detection methods, viz., LOF, ORCA, ROS and also compare it with C4.5, ID3,
CN2, CBUID, TANN and HC-SVM, and achieve better performance in almost all
the datasets in identifying network anomalies. Hence, we claim that the proposed

technique is better than competing algorithms for the intended purpose of network
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Figure 6.10: A pcrformance comparison of the proposed technigue with other techmiques
using (a) TUIDS packet level (b) TUIDS flow level, (c) TUIDS coordinated scan packet

and flow level (d) KDDcup99 and (e) NSL-KDD intrusion datascts

anomaly detcction The proposed technique 1s able to identify anomalics within a

5 second time window There arc some published methods which can perform such
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Figure 6.11: An cxccution time comparison of the proposed technique with LOF [1],

ORCA [2] and ROS (3] algorithms based on randomly selected network intrusion dataset
size

identification in 2 second time windows, but their detection rate is worse than ours.
However, the proposed technique has two himitations. (a) It is dependent on proper
tuning of 7 w r.t a datasct; we have presented a heuristic method for the selection

of 7 value. (b) It does not work directly on categorical and mixed types data
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Chapter 7

Unsupervised Approach for

Network Anomaly Detection

This chapter presents an unsuperviscd trce-bascd subspace clustering technique
(TreeCLUSS) for finding clusters in network intrusion data and for detecting known
as well as unknown attacks without using any labelled traffic or signatures or train-
ing To establish its effectiveness in finding the appropriate number of clusters,
we perform a cluster stability analysis. We also introduce an cffective cluster la-
belling technique (CLUSSLab) to label each cluster based on the stable cluster set
obtained from TreeCLUSS. CLUSSLab is a multi-objective technique that employs
an enscmble approach for labelling cach stable cluster gencrated by TreecCLUSS to
achieve a high detection rate. We also introduce an effective unsupervised feature
clustering technique to identify a dominating feature subset from each cluster. We
evaluate the performance of both TreeCLUSS and CLUSSLab using several real
world intrusion datascts to identify known as well as unknown attacks and found

that results are excellent.

7.1 Introduction

Advances in networking technology have enabled us to connect distant corners of
the globe through the Internet for sharing vast amounts of information. However,
along with this advancement, the threat from spammers, attackers and criminal

enterprises is also growing at multiple speed [11]  As a result, security experts
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use intrusion detection technology to keep secure large enterprise infrastructures
Intrusion dctection systems (IDSs) arc divided into two broad categories misuse
detection [21] and anomaly detection [22] systems Misuse detection can detect only
known attacks based on available signatures Thus, dynamic signature updation
1s important and therefore, new attack definitions are frequently released by IDS
vendors However, misusc bascd systems cannot incorporate or even most all of
the rapidly growing number of vulnerabilities and exploits On the other hand,
anomaly based detection svstems are designed to capture any deviation from profiles
of normal behavior. They are more suitable than misuse detection systems for
dctecting unknown or novel attacks without any prior knowledge However, they

normally generate a large number of false alarms.

There arc three commonly used approaches for detecting intrusions {12,358] (a)
supervised (i.e., both normal and attack instances are used for training), (b) semi-
supervised (1.e., only normal instances are used for training) and (c) unsupervised
(i.c., without using any prior knowledge). The first two cascs require training on the
instances for finding anomalics But getting a large amount of labelled normal and
attack training instances may not be feasible for a particular scenario. In addition,
generating a set of true normal instances with all the variations is an extremely
difficult task Hence, unsupervised network anomaly detection, which docs not
require any prior knowledge of network traffic instances, is more suitable in this

situation.

7.1.1 Motivation and Contributions

To overcome obstacles faced by supervised and semi-supervised network anomaly
detection methods, unsupervised network anomaly detection methods aim to detect
known as well as unknown intrusions without using any prior knowledge of exist-
ing network traffic instances. Clustering is an established unsupervised network
anomaly detection technique that can be used to identify unknown attacks. How-
ever, a common limitation of some clustering approaches is that they require the
number of clusters a priori, which often can be difficult to provide. In such cases,
stability analysis of the cluster results can be of great help. Validity of the cluster

results in terms of rcal hife and benchmark datascts is important to establish the
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effectiveness of the results. In high dimensional data, many features are irrelevant
to form a spccific set of clusters when a full space clustering technique is applied.
Thesce arc the reasons why we develop an unsupervised method for identification of

known and unknown attacks with minimum false alarms.

We aim to provide an unsupervised solution for identifying nctwork attacks with

high detection rate. The main contributions of this chapter are stated below.

e We introduce a tree based clustering technique (TreeCLUSS) to identify net-
work anomalies in high dimensional datasets The following are some of the

advantages of the proposed TreeCLUSS algorithm.

The number of clusters is not required as input parameters

It is free from the use of a specific proximity measure.

It requires a minimum number of input paramecters and the results are

not heavily dependent on them

It is able to identify both known as well as unknown attacks

e We present a cluster stability analysis to obtain a stable set of results gener-
ated by TreeCLUSS. It uses majority voting based decision for cluster stability

to get a stable sct of clusters.

e We introduce a cluster labelling technique (CLUSSLab) for labelling the clus-
ters generated by TrecCLUSS as normal or attack. It uses a majority voting
based decision fusion technique of the results of various cluster indices, cluster

sizes and dominating features sets.

e Finally, we develop an effective unsupervised feature clustering technique to
identify a dominating featurc subset for cach stable cluster that is used for
cluster labelling. It is important to identify a relevant feature set for a par-
ticular set of clusters to match with a previously identified feature set during

cluster labelling.
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7.2 Prior Research

The problem of unsupervised detection of network attacks and intrusions has been
studied for many ycars with the goal of identifying unknown attacks in high speed
network traffic data Most network based intrusion detection systems (NIDSs) are
misuse or signature based For example, SNORT (359] and BRO (360] are two well-
known open source misuse based NIDS. To overcome the inability of such systems
to detect unknown attacks, novel anomaly based NIDSs have been introduced in the
past decade A detailed study can be found in [119,123] Here, we briefly discuss

some recent unsupervised network anomaly detection methods.

7.2.1 Clustering-based Network Anomaly Detection

Clustering 1s an important technique used in unsupervised network intrusion de-
tection. A majority of unsupervised network anomaly detection techniques are
based on clustering and outlier detection [5,64,164] Leung and Leckie report a
grid based clustering algorithm to achieve reduced computational complexity [164].
An unsupervised intrusion detection method by computing cluster radius threshold
(CBUID) is proposed by [7]. The authors claim that CBUID works in linear time
with respect to the size of datasets and the number of featurcs. Song ct al. report
an unsupcervised auto-tuned clustering approach that optimizes parameters and de-
tects changes based on unsupervised anomaly detection for identifying unknown
attacks [29]. Noto et al. present a new semi-supervised anomaly detection method
(FRaC) [30] that builds an cnsemble of featurc models based on normal instances,
and then identifies instances that disagree with these models as anomalous. Casas
et al. present a novel unsupervised outlier detection approach based on combining
subspace clustering and multiple evidence accumulation to detect several kinds of
intrusions [31]. They evaluate the method using KDDcup99 and two other real-life

datasets.

7.2.2 Cluster Stability Analysis

Several cluster stability analysis techniques have been proposed in the literature

[361-364]. We analyzc cluster stability for identifying the actual number of clusters
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generated by our clustering algorithm using stability calculation. Lange et al. in-
troduce a cluster stability measure to validate clustering results [361] It determines
the number of clusters by minimizing the classification risk of their measurc. An
experimental analysis of cluster stability measures for the identification of the num-
ber of clusters is discussed by [362]. Ben-David et al. provide a formal definition of
cluster stability with specific propertics [363]. They conclude that stability can be
determined based on the behavior of the objective function. If the objective func-
tion is a unique global optimizer, the algorithm is stable. Das and Sil also present a

cluster validation method for stable cluster generation using stability analysis [364].

7.2.3 Cluster Labelling

Cluster labelling 1s a challenging issue in unsupervised network anomaly detection.
Most common cluster validity measurcs arc summarized in [365-367]. Validity mea-
sures are usually based on internal and external propertics of clustering results.
Normally, internal validity measures obtain the compactness, connectedness and
separation of the cluster partitions. External validity measures assess agreement
between a new clustering solution and the reference clusters of interest [365] Jun
[367] presents an ensemble method for cluster analysis It uses a simple voting
mechanism for making decision from the results obtained by using several cluster
validity measures Labelling of a cluster 1s must 1n case of cluster based unsuper-
vised network anomaly detection Our proposed cluster labelling technique works

based on the cluster size. compactness and the dominating feature set

7.2.4 Discussion

We provide a gencric comparison of some published works on nctwork anomaly
detection [7,29-31, 64,164, 368] in Table 7.1. Based on a review of existing tech-
niques for clustering based anomaly detection, cluster stability analysis and cluster

labelling, we obscrve the following.

e Although many clustering based network intrusion detection techniques have
been reported in the literature [7, 64, 164, 368], only a few have full features

of an unsupervised intrusion detection system (7]. Many methods use only

204



7.3. Problem Statement

clustering techniques for network anomaly detection without having cluster
labelling stratcgies Hence there 1s still 10om to develop a full featured unsu-

pervised network anomaly detection technique

o Existing stability analysis techniques have been mostly applied to analyze non-
intrusion data But nctwork traffic data 1s high dimensional and voluminous
Thus there 1s scope for further enhancement in the network anomaly detection

domain

¢ Only a very few labelling techniques are available in the hiterature [365-367]
An appropriate use of indices can help in developing an effective labelling
technique, which can support unsupervised anomaly detection to a great ex-

tent

Table 7.1: Comparison of unsupervised network anomaly detection methods

Author(s) Method Offine / | Packet Data Type | Unknown | Detection | Full /
Online /Flow attack criteria Reduced
level handled space
Portnoy et al Clustering- offline packet numeric yes cluster Full
[64], 2001 based size
distance
Leung and | Clustering- offline packet numeric no distance, Full
Leckie {164), | based boundary
2005 value
Jiang et al Clustering- offline packet categorical | yes distance Full
(7] 2006 based
Bhuyan et al Outlier- offline packet numeric yes distance Full
[368], 2011 based
Song et al Clustering- offline packet numeric yes distance Full
[29], 2011 based
Casas et al Clustering- offline flow numeric yes distance Reduced
[31), 2012 based
UNIDS
Noto et al Model- offiine other numeric no distance Full
[30], 2012 based

Duc to these reasons, we sce an opportunity to develop an integrated unsuper-

vised network anomaly detection method

7.3 Problem Statement

Our work analyzes large amounts of network traffic data over an optimal and rel-
cvant featurc space without any prior knowledge to identify anomalous or non-

conforming test instance(s) with mimmum falsc alarm  The problem 1s defined as
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follows. Let X be a collection of network traffic data with n data objects, where
cach objcct has F featurcs The problem is to analyze X over an optimal and rele-
vant featurc subspace F’, where 1 < F' < IF to identify groups of similar instances,

C,, where each C, 1s labeled either as normal or anomalous.

The proposed method works in two phases (a) TreeCLUSS creates k clusters,
ie., Cy,Cy, - Cy from dataset X using a subset of relevant features, ', where each
C, 1s evaluated in terms of stability by using the function StableCLUSS, and (b)
CLUSSLab labcls cach cluster, C, based on the two assumptions: (i) The majority
of network connections are normal, and (ii) Intra-similarity among the attack traffic
instances is high. CLUSSLab exploits cluster size, compactness, dominating feature

subset and outlier scores to label each cluster.

7.4 Unsupervised Network Anomaly Detection :
The Framework

The main aim of this work is to detect network anomalies using an unsupervised
approach with a minimum amount of false alarms. It can detect network anoma-
lies without relying on existing signatures, training or labeled data. The proposed
approach runs in two conseccutive phases for analyzing nctwork traffic in contigu-
ous time slots of fixed length Figure 7.1 provides a conceptual framework of the

proposed unsupervised network anomaly detection method.

In the first phase, we introduce a tree based subspace clustering technique
(TreeCLUSS) for generating clusters in high dimensional large datasets. It is well
known that nctwork intrusion datasct is high dimensional and large. We apply
our technique over a subset of features TreeCLUSS uses the MMIFS technique
[81] for finding a highly relevant feature set. It uses a subset of features during
cluster formation while not using any class labels. We analyze the stability of the
cluster results obtained Cluster stability analysis for real life data is not a trivial
task. It is performed using an ensemble of several index measures, viz., Dunn index
[82], C-index (C) [84], Davies Bouldin index (DB) [83], Silhouette index (S) [87]
and Xic-Beni index (XB) [93]. We choosc a stable sct of clusters when a certain

number of clusters produces better result after multiple exccution of this module.
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Figure 7.1: High level description of the unsupervised network anomaly detection
method

In the second phase, we apply a cluster labelling technique (CLUSSLab) to label
the stable clusters using a multi-objective approach. CLUSSLab takes into account
the following features: cluster size, compactness obtained from the ensemble of five
index measures, dominating feature subset (DFS) obtained for each cluster based
on unsupervised feature clustering technique discussed in Section 7.4.3, and outlier
score (OS) obtained based on the RODD technique [159]. Finally, we label each

cluster as normal or anomalous based on the described measures.
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7.4.1 TreeCLUSS: The Clustering Technique

TreeCLUSS 1s a tree based subspace clustering technique for high dimensional data
It 1s cspecially tuned for unsupervised network anomaly detection It usecs the
MMIFS technique [81] to identafy a subsct of relevant features TreeCLUSS depends
on two parameters viz , mnitial node formation threshold (o) and a step down ratio
(€) to extend the mitial node depth-wise Both parameters are computed using a
heurnistic approach We now present notations, dcfinitions and a lemma which help

i the description of the TreeCLUSS algorithm

Definition 7.4.1. Data Stream - A data stream X 1s denoted as {1, T2, T3+ Tn}
with n objects, where , 15 the 1" object described with a d-dimensional feature set,

te, 7'1:{111;712»315 71d}

Definition 7.4.2. Newghbor of an object - An object T, 15 a newghbor of ©, over
a subset of relevant features F', wrt a threshold oo, 1ff ssmg(x, z,) < a2, where

sum 18 a distance measure

Definition 7.4.3. Connected objects - If object v, 1s a nesghbor of object x, and

z, 18 a neighbor of xzx wrt «y, then x,,z,,x, are connected

Definition 7.4.4. Node - A node N, wn the I** level of a tree 1s a non-empty subset
of objects ', where for any object x, € N,, there must be another object z, € ',
whach 1s a newghbor of r,, and v, 1s esther (a) itself an wmtiator object or (b) 1s

within the neighborhood of another wmutiator object &, € N,

Definition 7.4.5. Degree of a node - The degree of a node N, wrt ap s
defined as the number of objects in N, that are within a,-newghborhood of any object
z, € N,

Definition 7.4.6. Lf; 2 cluster - It 1s a set of connected objects C, at level 1
wrt a, where for any two objects x,,x, € C, the newghbor condition (Defintion

74 2) 1s true with reference to F!

Definition 7.4.7. Lf’;ﬁz cluster - It 15 a set of connected objects C, at level 2
wrt [, where for any two objects r,, 1, € C, the neighbor condition (Definition
742) 1s true with reference to F| and B, < (%2 +¢) Also, L P Lf: o2

Definition 7.4.8. Outlier - An object 7, € X 15 an outher 1f T, 18 not connected
with any other object x, € X, where 2, € Lf; 2 In other words, x, s an outher 1f

there 15 no t, € X, so that x, and x, are newghbors (as per Definition 7 4 2)
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Lemma 7.4.9. Two objects &, and 7, belonging to two different nodes are not

simalar

Proof Let 7, € N, r; € N, and 7, 1s a neighbor of r; According to Definition
7 4 2 and Definstion 7 4 4, 2, and 2, should belong to same node Therefore we

come to a contradiction and hence the proof O

We present our TreeCLUSS algorithm for network anomaly detection in Algo-
rithms 9 and 10 TrecCLUSS starts by creating a tree structure in a depth-first
manner with an empty root node The root 1s at level 0 and is connected to all the
nodes in level 1 The nodes 1n level 1 are created based on a maximal subset of
relevant features by computing proximity within a neighborhood wrt an mitial
cluster formation threshold s The tree 1s extended depth-first by forming lower
level nodes w rt (52 +z) where € 1s a controlling parameter of the step down factor
te, % oy and ¢ are computed using a heuristic approach A proximity measure
stm 1s used m TrecCLUSS during cluster formation  Although sum 1s free from

the restriction of using a specific proximity measure, we used Buchidean distance to

construct the tree from X

The algonthm is 1llustrated using an example Let X be a dataset of d dimen-
sions with details given in Table 72 Let X = {7,753, 716} andF = {f1, fo fi0}
The extracted relevant featuire set 1s given in Table 73 The class specific relevant
features arc 1dentified from X wrt a threshold v, We achieved best results when
vy > 1 for class C}, o > 0918 for class Cy and v, > 0917 for class C; as shown 1n
Table 73 An example tree obtained from X 1s shown 1n Figure 7 2 with reference

to the reduced featuie space as given 1n Table 7 3

7.4.2 Cluster Stability Analysis

We analyze the stabihity of clusters obtained from TreeCLUSS and several other
clustering algorithms, viz  k-means, fuzsy c-means, and hicrarchical clustering A
general stability comparison among these clustering algorithms w r t detection rate
using the TUIDS datasets 15 given 1 Figure 73 The TUIDS datasets were built
by us using our own testbed with different types of attacks (more details are given

in 751) We proposc an cnsemble based cluster stability analysis technmique basced
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Algorithm 9 Part 1 TreeCLUSS (X, a2 B2)

Input: X, the datasct o9, threshold for L, cluster formation f,, threshold for Lo

cluster formation

Output: set of clusters C;,C,, C;,  Cy,

1
2
3
4

w

© o N o

10
11

12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28

29
30
31
32
33
34
35
36

mitialization nodead « 0 > node.d 15 1ncreased by 1 for new node

function BUILDTREE(X, node_1d) > function to build tice
for1+ 1toXdo

if (7, classified ! = 1 and checkanifeat(MMIFS(z,)) == true) and

stm(z, T,) < ap then
CreateNode(r, no, pad, temp, nodecun, nodead, 1) o function to
create new node

while (F' - (1-1)) > 6 do > check relevant features subsct
4+
for 1+ 1to X do
if 7, classified ! = 1 thent if object 1s classified then labelled
as 1
pad = check_parent(z, no, 1)
if (pad > -1 and checkan_feat(MMIFS(z,)) == truc)
then > function to check parent 1d
CreateNode(r, no, puad, temp, nodecyyn;, nodead, 1)
end if
end if
end for
end while
=1
end if
end for
end function

function CREATENODE(no, p.id, temp, nodecun; 1d, 1) © function to create
node

node.id = new node()

node_id temp = temp

node_id nodel pun: = nodecount > number of nodes mn a level

nodec_id p-node = pad

node_d 1d = 1d,

node._id level = 1

ExpandNode(no, 1d, node.id temp, nodecoun: 1) > expand node 1n
depth-wise for a particular node

temp = NULL

nOdecount =0

node_id++
end function
function EXPANDNODE(no, 1d temp, nodecoun:, 1) > function to expand node

if X, classified == 1 then

return
else
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Algorithm 10 Part 2 TrecCLUSS (X, ay 57)

37
38
39
40
41

42

43

44

45
46
47
43
49
50
51
52
53

54

55
56
57
58
59
60

61
62
63
64
65
66
67

Xno Classified = 1
Xno node_ld = 1d
for 1+ 1toXdo
if (7, classified ! = 1) then
minRankp = find_.minRank(MMIFS(«,)) > sclect next subsct of
rclevant featurcs
if (F' - munRankp) > 0 then © check maximum height of the
tree
min Ranh g4+ until get a specific cluster otherwise stop ©
continue for getting specific class
ExpandNode(z, no, 1d, temp, tempeyun, 1) > expand node 1n
depth-wise
end if
end if
end for
end if
end function
function STABLECLUSS(C}) > function to analyze cluster stability
for 2 — 1to k do
for y < 1to5do
VI.[)] = compute(/., )> compute vahdity index and store values mnto
an array
if (VI]7] > oy 0r VI.|j] < 02) then > check threshold for each
vahdity index

VIl =1
else
Vi) =0
end if
end for

if (C, = Mat(VI[1])) then b check for maximum valdity index value
for cluster stability
stable cluster C,
Return Maxz(V1.[1])
else
go to step 2
end if
end for
end function

on Dunn index [82] C-index (C) [84] Davics Bouldin index (DB) [83], Silhouettc
index (S) [87] and Xie-Ben: index (XB) [93] (shown in Figure 71) We choose

several well known cluster vahdity measures for stabihty analysis We analyze each

cluster based on distance to 1cduce computational overhead All our measures are

distance based We bricfly discuss cach measure along with the values expected for
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Table 7.2: Sample dataset X and CL 1n the last column 1s the class label

Obyect (D N f2 I3 fa fs fe f7 I8 fo JSio CL
Oy 923 071 243 060 104 2 80 306 028 229 564 1
O, 2253 651 664 4 96 72 79 260 1163 0 80 900 36 97 8
O3 16 37 576 116 11 88 95 550 110 049 6 87 2045 5
[on 10 37 195 950 0 80 110 185 249 064 318 9 80 2
Os 14 67 4 85 192 1194 86 410 179 012 473 10 80 4
Og 920 078 214 020 103 265 296 026 228 4 38 1
O7 1237 | 084 136 1160 | 95 398 157 098 142 1095 | 3
O3 916 136 967 060 110 180 224 060 381 968 2
(0 16 17 5 86 153 11 87 93 5 89 175 045 673 2095 5
O1o 18 81 6 31 4 40 4 70 215 809 057 783 2770 | 6
On 14 64 4 82 102 11 80 94 402 141 013 4 62 1075 4
Oj9 2051 6 24 525 4 50 70 23 2 958 0 60 825 3245 7
O3 12 33 071 128 11 89 96 305 109 093 141 10 27 3
O\4 20 60 6 46 520 4 50 71 242 9 66 063 894 3210 7
Oy 1870 655 536 4 50 7324 270 820 057 7 84 27 10 6
Ois 22 25 672 6 54 4 89 69 38 247 10 53 0380 9 85 36 89 8

Table 7.3: Rclevant feature sct, » and attribute rank values

Class Object ID Relevant feature set Feature rank value

Cy 01,04 06,08 fs.Je.02,f3 fa.fr0.f7.f8 1,1,1,1,1,1,1,1

Cu 01,0 fs.Jo.d2.15 fo,fr0.f7 1,1,1,1,1,11

Ch2 04,08 fs.ferf2,f3 fo,fr0 1,1,1,1,11

Cy 03,05 07,04,011,014 N, f2, fe, fo. s Jio 15851 585,1 585,1 585, 1 5850 918
Ca O3, Oy f1. f2, fo, fo. fa 15851 585,1 585,1 585,1 585

Chaa Os, 011 N, fa, fe, fo 1 5851 585,1 585,1 585

Cay O7, O3 f1, f2, fe, fa 1585 1 585,1 585,1 585

Cy 02,010,012 014 015 O16 | f7 f1, fr0, fs fo fa, f5 | 15841584,1584,1584,1584,0917 0917
Ci 0;, Oi6 Jes f1, fio, f8 fo fa 1584 1 584,1 584,1 584,1 584,0 917
C3i, O10, O15 fao f1, fro, fs fo 1584 1 584,1 584,1 584,1 584

Css O12, O14 f7, 1, fio, fs fa 1584 1584,1 584,1 584, 0917

Figure 7.2: Tree obtained from X, given in Table 7 2

good clusters 1n Table 7 4

We pass each cluster C, to a function StableCLUSS to measure stabihity It

computes all the indices for cach of the clusters Cy, Cs

,Cr  If 1t judges that

the result 1s good for an index, 1t stores a 1, otherwise assigns 0 It computes 1 or
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Figure 7.3: Comparison of stability analysis with various algorithms using TUIDS packet
level intrusion datasect

0 for each of the indices as given below. o, and o, are threshold parameters.
1, 2 00 or I, £ 0y

0, otherwise

Finally, we take the maximum number of occurrences of 1 to decide if a cluster
is stable or not. If a cluster C, is not stable, it sends control back to TreeCLUSS
to regenerate another set with a different number of clusters. We choose the best

sct of stable clusters after we exccute the module multiple times.

7.4.3 CLUSSLab : The Cluster Labelling Technique

CLUSSLab is a multi-objective cluster labelling technique for labelling the clusters
gencrated by TreeCLUSS. It decides the label of the instances of a cluster based
on a combination of the following measures: (a) cluster size, (b) compactness, (c)
dominating feature subset and (d) outlier score of each instance. Each measure is

described next.

(a) Cluster size: It is the number of instances in a cluster.

(b) Compactness: To find the compactness of a cluster C;, obtained from TreeCLUSS,
we usc the five very well known indices as given in Table 7.4 and discussed

carlier in Section 7.2.2.
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Table 7.4: Cluster stability measures : definition. features and criteria for better cluster

Stability Definition Features

measures

Dunn %:t: where d,,.., denotes the smallest dis- | () Computed for finding

index tance between two objects from different | compact and well separated

(Dunn) clusters and dy,q is the largest distance be- | clusters. (b) Larger val-

[82] tween two elements within the same clus- | ues of Dunn indicate better
ter. clustering i.e., the range is

(0, 00).

C-index S—fgﬂgm, where S is the sum of distances | (a) Used to find cluster qual-

(C) [84] over al] pairs of objects from the same clus- | ity when the clusters are
ter, n.1s the number of such pairs, S,,,, and | similar sizes. (b) Smaller
Smar are the sum of n smallest distances | values of C indicate better
and n largest distances, respectively. clusters, i.e.,, the range is

(0,1).

Davies %Z:;lﬂ?éj max(%), where n is the | (a) Lower value of DB in-

Bouldin number of clusters' o, 1s the average dis- | dicates better clusters, i.c.,

index tance of all patterns in cluster 2 to their | the range is (0,00). (b) It

(DB) [83] | cluster center. ¢; o, 1s the average dis- | has low computational cost
tance of all patterns in cluster j to their | and can find better clusters
cluster center. ¢): and d(c,,¢c;) represents | of spherical shape.
the proximity between the cluster centers
¢, and ¢,.

Silhouette mabz_;:b, . where a, is the average dissim- | (a) Computed for a cluster

index  (S) | ilarity of +'* object to all other objects in | to identify tightly scparated

(87] the same cluster: b, is the minimum of av- | groups. (b) Better if the in-
erage dissimilarity of the 1t* object to all | dex value is near 1, 1.e., the
objects in other clusters. range is (—1.1).

Xie Beni Wﬁ, where 7 = %: is called compact- | Smaller values of XB are

index ness of cluster 2. Since n, is the number of | expected for compact and

(XB) [93] | points in cluster 1. o is the average varia- | well-separated clusters, i.e..
tion in cluster 1; dm,n = munl|lk, — k. the range is (0,1).

(¢} Domunating feature subset Thc subset of fcaturcs which mostly influences
the formation of the clusters is referred to as a dominating feature subset.
We identify the dominating features using an adaptive unsupervised feature
clustering technique (URCFT) based on Renyi’s entropy [369]. Renyi's en-
tropy performs non-parametric estimation by avoiding the problems of the
traditional entropy metric. Renyi’s entropy with probability density function

(pdf) f: for a stochastic variable z and Renyi’s constant X 1s given by

1
1-A

Hg(z) = ln/f;\dx,/\ > 0,0 #1 (7.1)
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Renyi’s quadratic entropy is defined by [370] when A = 2 as follows, assuming

a Gaussian pdf:

Hr(z) = —ln/ffd:t;

=1 1=1
1 N
= ~ln—lv§ ZG(?: z,,20°) (7.2)
1=1 j3=1

where G is the Gaussian kernel, ¢ is the smoothing parameter (we found
better results when ¢ = 0.9 to 0.12), z, and =z, are the '* and 3 features of

N data objects. We also note that

1 (z, — z,)?
Glz, —1;,20%) = ————— S S R P 73
(7, = 2;,20%) (27)% 2026‘“)( 40? ) (73)

where d is the dimension of variable z. Assume that we obtain k feature
clusters, i.c., C = {C},Cy,---C}. A feature object z is assigned to a cluster

C, iff,

(H(C, +z) — H(C))) < (H(Cx + 2) — H(Cy)) , k #1 (7.4)

where H{C}) denotes the entropy of cluster Cy. This method is referred to
as differential entropy clustering [371]. We compute H(Cy) and H(C,, C,) for

within and between cluster entropy as follows.

N Ng

H(C} ~—ln——ZZG’ L — Ty, 20°) (7.5)

1—-1]1

H(C,,C,) S EZG p — Lg,20°) (7.6)

J p=1 ¢=1

The main goal of our technique is to identify a dominating feature set with

the least redundancy and the most relevancy. Initially, we assume that cach
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Figure 7.4: Identification of normal ranges using outlicr scorc ranking over intrusion
datatsct

cluster contains two feature subsets (i) the selected or relevant subset and (ii)
the non-selected or irrelevant subset. The selected cluster is the dominating
features set and the non-selected cluster is the irrelevant feature set. The
method starts with a single feature object, C; and assigns another object to
it by computing Renyi’s entropy (using Equations 7.4, 7.5 and 7.6) w.rt. a
threshold ), otherwise it creates a new cluster, C,,; known as the non-selected
cluster. It adaptively assigns each candidate feature object to C, or C,,, w.r.t.
threshold 7; and the threshold for intra-cluster entropy 7. The threshold

values of 7; and 7, are also chosen based on a heuristic approach.

Outlier score: Here, we exploit our own outlier identification algorithm, RODD
[159] to compute the score of each instance with reference to the normal pro-
files. A graph is plotted based on sorted outlier ranking against those instances
as shown in Figure 7.4 and from the graph, a cutoff is decided to distinguish
the normal from anomalous instances. We see in the graph that for any two-
class combination such as (normal, DoS), (normal, probe), (normal,U2R), or
(normal, R2L) with various proportions, it is still possible to distinguish the

normal from the rest.
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Based on the cluster size, compactness, dominating features identified using
URcFT and interval of outher scorc 1ank values, we label cach cluster as anomalous
or normal wrt the thresholds We found best result for labelling cach cluster as
anomalous with matching probability, P/ < 063 wrt the above measures The
CLUSSLab algorithm 1s given as Algorithm 11 It 15 a multi-objective technique
to label cach cluster as noimal or anomalous UReFT 1s the unsupervised Renyt’s
entropy based feature clustering technique to identify the relevant features set for

each cluster It matches the existing class specific feature set while labelling

Algorithm 11 CLUSSLab(Cy, &, &, &3, &)

Input: Cj represents the cluster obtained from TreeCLUSS ¢&; 1s number of in-
stances 1n a cluster & 1s the cluster compactness score €3 1s the matching
probability of features of a cluster with respect to a specific class and &, 1s the
outher score value of each instance of a cluster

Output: Label clusters C; Cs, Cs Ci as normal or anomalous

1 fori1+< 1tok do

2 S[) = |Cy| > S stores the cardinality of each cluster

3 M[1) = call StableCLUSS(C,) > M stores the cluster compactness score

4 end for

5 function UREFT(C}) > function to unsupervised feature clustering technique

6 for 1+ 1to k do

7 for ) < 1to S, do

8 if (H(Cy)) <m && (H(Cs Cps)) < 1o then & check within
cluster and between cluster entropy

9 Cilzl « f.,2=1,2, d

10 else

11 Cuslz) « f., z=1,2, d

12 end if

13 end for

14 end for

15 end function

16 for i1+ 1to k do

17 if St <& && M) <& && C, > & then > check cardinality of a
cluster, compactness score, and outlier score

18 if P'(|Cslz]|,|MMIFS[z]|) < &; then > check matching probability
wrt aspecific class

19 anomalous + C,

20 else

21 normal « C,

22 end if

23 end if

24 end for
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7.4.4 Complexity Analysis

As discussed. the proposed method 1s works in two phases. The first phase 1s
subspace clustering technique, i.e., the TreeCLUSS. We assume that k clusters
arc obtained from n data objects. During cluster formation, TreeCLUSS takes
O(nlogk) time and for stability analysis, it takes O(klogk) time. Hence, the total
computational complexity of TreeCLUSS is O(nlogk).

The second phase is multi-objective cluster labelling technique, i.e., the CLUS-
SLab. It is again comprised of four sub-modules viz., cluster size, compactness,
dominating feature subset (DFS) and outlier score (OS) To compute, compactness,
dominating fecaturc subsct and outlier score, it takes O(nlogn), O(n), and O(kn)

time, respectively. Hence, the total time complexity of CLUSSLab is O(nlogn + kn)

The time complexity for cach stage of our unsupervised network anomaly detece-
tion method is linear w.r.t. the size of dataset, the number of features, the number
of clusters and the labelling of each clusters. Hence, it is effective in detecting

known as well as unknown attacks with the least amount of false alarms.

7.5 Experimental Analysis

In this section, we present experimental analysis and results of the unsupervised
network anomaly detection method using several real world datasets from the UCI
machine learning repository and datascts prepared in the TUIDS testbed at both
packet and flow levels [264]. The datasets used in this work to evaluate the proposed

method and experimental results are discussed below.

7.5.1 Datasets Used

We use two sets of datasets, viz., (a) Non-intrusion datasets taken from UCI ML
rcpository for initial evaluation and cstablishment of the proposed algorithms, (b)

intrusion datascts.
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Non-intrusion Datasets

We usc ten non-intrusion datascts (356]. Zoo, Glass, Abalone, Shuttle, Wine, Lym-
phography, Heart, Pima, Vehicle and Poker Hand to initially validate clusters gen-
erated by TreeCLUSS. Table 7 5 describes the details of the non-intrusion datasets

and their characteristics.

Table 7.5: Characteristics of real-life non-intrusion datasets

Non-intrusion Datasets Dimension No of instances No of classes
Datasets (NID)

NID1 Zoo 18 101 7
NID2 Glass 10 214 6
NID3 Abalone 8 4177 29
NID4 Shuttle 9 14500 3
NID5 Wine 13 178 3
NID6 Lymphography 18 148 4
NID7 Heart 13 270 2
NID8 Pima 8 768 2
NID9 Vehicle 18 846 4
NID10 Poker Hand 10 25010 10

Intrusion Datasets

We use five different real life intrusion datasets. such as (a) TUIDS coordinated scan
datascts, (b) TUIDS datascts, (c) TUIDS DDoS datascts, (d) NSL-KDD datasct
and (e) KDDcup99 datasets. We capture, preprocess, and extract features in both
packet and flow level network traffic and generate TUIDS benchmark datasets. A
dctailed discussion of TUIDS datascts gencration is given in Chapter 4 Next we

discuss each dataset in brief.

(a) TUIDS real-time Coordinated scan dataset: We launched attacks in a coor-
dinated mode using the rnmap?! tool to gencrate the traffic including normal
traffic. We captured the traffic in both packet and flow levels to prepare the

dataset. Characteristics of this dataset are given in Table 7.6.

(b) TUIDS real-life intrusion dataset: This dataset is prepared by launching 20
diffcrent attacks with normal traffic connections It contains 15 DoS attacks

and 5 probe attacks Characteristics of this datasets are given in Table 7.6.

Thttp //rnmap.sourceforge.net/
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()

(d)

TUIDS real-life DDoS dataset 1t 1s prepared using the same TUIDS testbed
with threc different flooding attacks launched in amphfication mode while
capturing the traffic at flow level only Characteristics of this dataset arc
given 1n Table 76 A brief description of DDoS attacks we launched 1s given

below

— In smurf attack, the attacker sends packets to a nctwork amplifier (a sys-
tem supporting broadcast addressing) with the return address spoofed
to the victim’s IP address It uses ICMP ECHO packets and as a result
the oniginal packet spoofs tens or even hundreds of times to the victim

host

—~ The Fraggle attack 1s stmilar to a smurf attack in that the attacker sends
packets to a network amplhfier but uses UDP ECHO packets instead of
ICMP ECHO packets The UDP ECHO packets are sent to the port
that supports character gencration (chargen, port 19 1in Unix systems),
with the return address spoofed to the victim’s echo service (echo, port

7 1n Unix systems) creating an nfinite loop

— The SYN flooding attack exploits the TCP s three-way handshake mech-
anism and its himitation 1 maintaining half-open connections So 1t

drops more packets while sending from source to destination

NSL-KDD wtrusion datasets NSL-KDD? 1s an enhanced version of the KDD-
cup99 datasets These arc well-known datascts for mtrusion detection system

evaluation The dataset 1s described 1n Table 7 6

KDDcup99 intrusion datasets This 1s the most well-known and the most pop-
ular intrusion dataset used for evaluation of any intrusion detection system
It contains training data processed mmto about five million network conncection
records A connection record 1s a sequence of TCP packets with well-defined
starting and ending times Each connection record s umque 1n the dataset
with 41 continuous and nominal fecaturcs plus onc class label The features
avallable in the KDDcup99 datasct arc reported mn Chapter 4 A detailed

description of the dataset 1s also given 1n Table 7 6

thttp //www 1scx ca/NSL-KDD/
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Table 7.6: Distribution of Normal and Attack connection instances in real-life TUIDS
Coordiated scan {packet and flow) TUIDS (packet and flow) TUIDS DDoS flow level,
NSL-KDD packet level and KDDcup99 packet level intrusion datasets

Intrusion Datasets (ID) Connection type Dimensions | No of instances No of classes
ID1 TUIDS coordinated scan

packet level

Normal 106380 1

Probe 50 14423 6

Total 120804 7
D2 TUIDS coordinated scan

flow level

Normal 36033 1

Probe 25 15654 6

Total 51687 7
1D3 TUIDS packet level

Normal 47895 1

DoS 50 30613 15

Probe 7757 5

Total 86265 21
1D4 TUIDS flow level

Normal 16770 1

DoS 25 14475 15

Probe 9480 5

Total 40725 21
D5 TUIDS DDoS flow level

Normal 25 43252 1

Flooding attacks 22707

Total 65959 4
ID6 NSL-KDD packet level

Normal 9711 1

DoS 7460 11

Probe 41 2421 6

R2L 2753 12

U2R 199 8

Total 22544 8
D7 KDDcup99 corrected

packet level

Normal 60593 1

DoS 229853 12

Probe 41 4166 6

R2L 16189 12

U2R 228 6

Total 311029 37

7.5.2 Results and Discussions

In this section we report the performance of the proposed method using real-life
and benchmark datasets The method does not use any class information when
it processcs a datasct for anomaly detectton We measure the accuracy of the

algorithms using the following metrics

¢ Dectection rate = Truc Positive/(Truc Positive + Falsc Negative)

o False positive rate = Falsc Positive/(False Positive + True Negative)
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Non-intrusion Datasets

The method was initially tested using non-intrusion datasets We label cach cluster
obtamed by TreeCLUSS using our CLUSSLab cluster labelling technique. We com-
pare performance in terms of detection rate (DR) and false positive rate (FPR).

Dectailed results are given in Table 7 7.

Table 7.7: Expcrimental results on non-intrusion datasets

Dataset No. of clus- | Correctly | Mis- Detection False positive
ters detected detected ratc (%) rate (%)
NID1 8 95 6 94.06 0.0594
NID2 9 206 8 96.26 0.0373
NID3 22 4002 175 95.81 0.0418
NID4 3 14296 204 98.59 0.0141
NID5 3 174 4 97.75 0.0121
NID6 5 135 13 91.22 0.0471
NID7 2 266 4 98.51 0.0522
NID8 2 761 7 99.08 0.0125
NID9 5 809 36 95.62 0.0613
NID10 12 24867 143 99.42 0.0018

Intrusion Datasets

In these cxperiments, we test our method for network anomaly detection using
TUIDS, NSL-KDD and KDDcup99 network intrusion datasets discussed above. It
converts all categorical attributes into numeric form and then computes /ogy(7.;)
to normalize larger attribute valucs, where z,, is a large attributc valuc and b
depends on the attribute values Nominal features such as protocol (e.g., tcp, udp,
wemp), service type (e.g., http, ftp, telnet) and TCP status flags (e.g., sf, rey) are
converted into numeric features. We replace categorical values by numeric values.
For example, in the protocol attribute, the value TCP is changed to 1, UDP is
changed to 2 and ICMP is changed to 3

We initially apply TreeCLUSS on a subset of relevant features cxtracted using
the MMIFS algorithm [81] for all intrusion datasets to generate a stable number of
clusters and label each cluster using CLUSSLab as normal or anomalous. Experi-
ments uscd the following datascts. (a) TUIDS real-time Coordinated scan datasets,

(b) TUIDS real-time intrusion datascts, (c) TUIDS rcal-time DDoS datascts, (d)
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NSL-KDD intrusion datasets, and (e) KDDcup99 intrusion datasets Then, we ap-
ply MMIFS algorithm to find the class specific relevant subspaces for all datascts
These class specific feature subscts arc used during cluster formation A lst of
relevant features for all datasets with their ranks in descending order are given n

Table 78 Finally, experimental results of all datasets are given 1n Table 7 9

Table 7.8: Featurc ranks for all classes i mtrusion datascts Scc Table 7 6 for ID

numbers
Datasets #Features | Selected features
D1 pachet level
Notmal 10 833709,14,28,45,1,48 2
Probe 15 45 8 34,33,49,7,14 50,44,41,39,20 2 22,30
D2 flow level
Normal 11 14 7 18,15,19,2,22 21,25,1,4
Probe 14 7,14 11,9,25,21,24 18,15,2,6,1,12,13
D3 packet level
Normal 9 8,337 9,14,28,45,1,48 2
DoS 10 8,33 7 40,38,9,2,41,49 2
Probe 13 45 8 34,33,49,7,50 44,41,39,20,2,30
D flow level
Normal 11 147 18,15,19,16 2 22,21,25,1
DoS 10 14 18,7,24,25,2,12 16,19,22
Probe 13 7,14 11,9,16,25,21 24,18,15,2,6,1
D5 flow level
Normal 9 §33709,14,28,45,1,48
Flooding attacks 12 89 31 14,33,43,49 47,7,42,1,11
ID6 packet level
Normal 7 53236,35,1,29
DoS 10 5,23 6 24,2,24,36,41 4 25
Probe 15 40523,33,4,28,3,41 35,29,27,32,6 12 24
U2R 10 51 333,24,23,14,6,32 21
R2L 14 3,6 513,22,23,10,35 37,24,4,1,39,38
D7 packet level
Normal 3 5. 23,3 6 35,1
DoS 8 5,23 6 2,24, 41, 36, 3
Probe 13 40 5, 33,23, 28,3 41 35,27 32,12,24 28
U2R 10 5,1,3,24, 23, 2, 33, 6,32, 4 14, 21
R2L 15 3 13,22, 23, 10,5 35, 24, 6, 33, 37, 32, 1, 37 39, 22, 38 10, 3
Discussions

We achieve better results than competing algorithms for network anomaly detection
1in terms of detection rate and false positive rate A comparison of our mcthod with
several competing algorithms viz , C4 5 [372], ID3 [156], CN2 [373], CBUID (7],
TANN (8], HC-SVM [4] using TUIDS datasets and KDDcup99 datasets is given 1n
Figure 7 5 and Figurc 7 6, respectively It can be casily scen from the figures that
our mcthod outperforms the competing algorithms [4,6-8] in the terms of detection

rate and false positive rate, especially 1n case of probe, U2R and R2L attacks

TrecCLUSS depends on two main paramcters, «p and > but uscrs necd to
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Table 7.9: Results on intrusion datasets using proposed method

Typc of No. of clusters Correctly Mis- Detection Falsc positive
traffic detected  detected  rate (%) rate (%)
ID! packet level

Normal. 7 105121 1259 98.81 0.0164
Probe. 7 14292 131 99.09 0.0017
Overall. 14 119413 1390 98.95 0.0091
ID2 Aow level

Normal. 5 35668 365 98.99 0.0153
Probe. 7 15519 135 99.13 0.0015
Overall. 12 51187 500 99.06 0.0084
ID3 packet level

Normal. 5 47109 786 98.35 0.0164
DoS. 16 29997 616 97.99 0.0166
Probe. 5 7637 120 98.45 0.0014
Ovecrall. 26 84743 1522 98.26 0.0114
IDj flow level

Normal. 3 16486 284 98.30 0.0169
DoS. 16 14381 101 99.35 0.0167
Probe. 4 9225 255 97.31 0.0149
Overall. 23 40092 640 98.32 0.0161
ID5 Sflow level

Normal. 2 43104 148 99.65 0.0034
Flooding 4 22272 435 98.08 0.0195
attacks.

Overall. 6 65376 583 99.11 0.0089
D6 packet level

Normal. 3 9573 138 98.57 0.0147
DoS. 12 7391 69 99.08 0.0052
Probe. 6 2356 65 97.32 0.0182
R2L. 11 2367 386 85.97 0.1493
U2R. 7 131 68 65.83 0.2050
Overall. 39 21818 726 89.35 0.0784
D7 packet level

Normal. 5 59901 692 98.85 0.0113
DoS. 14 229796 57 99.97 0.0016
Probe. 5 4018 148 96.45 0.0160
R2L. 13 14007 2182 86.52 0.1335
U2R. 5 151 77 66.23 0.1973
Overall. 42 307873 3156 98.98 0.0102

provide oo value only. f; can be derived from «,. Each is chosen using a heuristic
approach for cach dataset. Hence, our method is less dependent on input parameters

comparcd to competing algorithms [4, 68, 31].
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Figure 7.5: Comparison of our mecthod with competing algorithms using TUIDS intru-
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Figure 7.7: Chi-square test statistics for seven different ntrusion datasets with signifi-
cance level a = 0.05 (min = 4.86, max = 333.28)

7.5.3 Statistical Significance Test

In addition to the cvaluation based on real-hfec intrusion data, we also compute
statistical significance of our results using two well known statistical measures: chi-
square test and t-test. The chi-square test is used to compute how significantly the
observed valucs arc different from the expected values of the distribution for a given
sample [374]. We reject the null hypothesis if the chi-square value is greater than
the tabulated value w.r.t. the degree of freedom and level of significance. We tested
over seven network intrusion datasets mentioned above and obtained significance

level & = 0.05 in all datascts as shown Figure 7.7.

The t-test is used to find the difference between two means in relation to the
variation in the data If the computed t-value exceeds the tabulated value, we say
that it is highly significant, so that we can reject the null hypothesis. We tested over
seven intrusion datasets and obtained t-values as shown in Figure 7.8. Thus, for
both statistical significance tests, we achieved higher sigmificance level for differences

between normal and anomalous samples.
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Figure 7.8: t-test statistics for seven different intrusion datasets with significance level
a = 0.05; N-P,D.F R, U represents the normal, probe, DoS, flooding attacks, R2L and
U2R respectively.

7.6 Summary

This chapter presents an unsupervised tree-based subspace clustering technique for
network anomaly detection in high dimensional datasets. It generates the approx-
imate number of clusters without having any prior knowledge of the domain. We
analyze cluster stability for each cluster using an ensemble of multiple cluster in-
dices. We also introduce a multi-objective cluster labelling technique to label each
stable cluster as normal or anomalous. The major attractions of our proposed
method are: (i) TreeCLUSS does not require the number of clusters apriori, (i) It
is free from the restriction of using a specific proximity measure, (iii) CLUSSLab
is a multi-objective cluster labelling technique including an effective unsupervised
feature clustering technique for identifying a dominant feature subset for each clus-
ter, and (iv) TreeCLUSS exhibits a high detection rate and a low false positive rate,
especially in case of probe, U2R, and R2L attacks. Thus, we are able to establish
the proposed method to be superior compared to competing network anomaly de-
tection techniques. We also demonstrate that the results produced by our method

are statistically significant.
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Chapter 8

Extended Entropy Metric-based
Approach for DDoS Flooding
Attack Detection

In the previous chapters, we have introduced three clustering and outlier-based
schemes for network anomaly detection and discussed their effectiveness considering
several synthetic and real-life datasets. This chapter focuses on DDoS attacks and
starts with a description of basics of DDoS attacks, significance of such attacks and
detection methods with a general comparison under each category. A distributed
denial of service (DDoS) attack [120,375] is a large-scale, coordinated attack on the
availability of services of a vietim system or network resources, launched indirectly
through many compromised computers on the Internet. These attacks normally
consume a huge fraction of the resources of a scrver, making it impossible for le-
gitimate users to access the server. Such attacks also consume excessive network
bandwidth by compromising network traffic. These attacks generate a huge surge
in traffic with focus on a victim through the intermediary of compromised hosts
within a short time interval. A very important requirement of a DDoS attack de-
tection scheme is cost effectiveness and scalability. The scheme should be scalable
enough to handle large amount of traffic instantly with high detection accuracy.
However, the schemes introduced in the previous chapters are not adequate for this
purpose In this chapter, we introduce an effective extended entropy metric-based
DDoS flooding attack detection scheme to detect four classes of DDoS attacks, viz ,

constant rate, pulsing rate, increasing rate and subgroup attacks. The scheme aims
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to 1dentify DDoS flooding attacks by measuring the metric difference between legit-
imate traffic and attack traffic It exploits a generalized entiopy metric with packet
intensity computation over the sampled network traffic with respect to ttme We
also extend the mechanism 1nto use an ensemble of extended entropy metrics for
increasing detection rate in near real-time The proposed scheme 15 evaluated using
scveral rcal world DDoS datascts and has been found to outperform the competing

methods when detecting classes of DDoS flooding attacks

8.1 Introduction

Due to the increasing use of modern networks and Internet technologies 1in users’
scveral dav-to-day tasks, the network vulnerabilitics are also growing exponentially
i view of design weaknesses of networks With the recent exponential growth
in Internet attacks, 1t has become crucially important to detect network traffic
anomalics including intelhigent attacks to keep securc enterprise networks Programs
that cnable launching of denial of service attacks have been around for many years
Old single source attacks are now countered easily by many defense mechanisms
and the source(s) of such attacks can be easily rebuffed or shut down with improved
tracking capabilitics Howecver, with the astounding growth of the Internct during
the last decade an increasingly large number of vulnerable systems are now available
to attackers Attackers can now employ a large number of these vulnerable hosts
to launch an attack mstead of using a single seitver, an approach which was never

very cffective and detected casilv

The first well-documented DDoS attack appears to have occuired in August
1999, when a DDoS tool called Trinoo was deploved 1n at lcast 227 systems, to
flood a single University of Minnesota computer, which was knocked down for more
than two days! The first large-scale DDoS attack took place on February 2000!
On February 7, Yahoo! was the victim of a DDoS attack during which 1ts Internet
portal was inaccessible for three hours On February 8, Amazon Buycom, CNN
and eBay were all it by DDoS attacks that caused them to either stop functioning

completely or slowed them down significantly’

Thttp //www garykessler net/library /ddos html
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DDoS attack networks follow two types of architectures the Agent-Handler
architccture and the Internet Relay Chat (IRC)-based architecture as discussed
by {10 376] The Agent-Handler architecture for DDoS attacks 1s comprised of
chients, handlers, and agents (see Figure 8 1) The attacker communicates with
the rest of the DDoS attack system at the client systems The handlers are often
softwarc packages located throughout the Internct that are used by the client to
communicate with the agents Instances of the agent software are placed in the
compromised systems that finally carry out the attack The owners and users of the
agent systems are generally unaware of the situation In the IRC-based DDoS attack
architecture, an IRC communication channcl is used to connect the client(s) to the
agents (see Figure 8 2) IRC ports can be used for sending commands to the agents
This makes DDoS command packets more untraceable Moreover, 1t 15 easter for
an attacker to hide his presence i an IRC channel as such channels tend to have
large volumes of traffic A recent attacking tool by anonymous based on the IRC
protocol 1s LOIC (Low Orbit Ion Cannon) [377] It includes three primary methods
of attacks for TCP UDP, HTTP and 1s found in two versions binary and web-
based It allows clients to connect remotely via the IRC protocol and to be a part of
a system of compromised hosts The bigger the size of compromised hosts the more
powerful the attack 1s In addition to these two architectures, the agent handler
architecture 1s also commonly found 1n use in the hterature [10,376] Along with
the evolution of new DDoS attack tools many DDoS defense mechanisms have also
been proposed These approaches are of three types depending on their locality of
deployment source-end, victim-end and intermediate network [378] Detecting any
DDoS attack at the victim end 1s easy, but often not uscful after legitimate chents
have been denied access Source-end detection 1s a very challenging task Detection
approaches used include statistical soft-computing, clustering, knowledge-based

and classifiers

DDoS attacks are distributed, cooperative large scale attacks originate and
spread 1n both wired and wireless networks {10,379] 1n parallel ways Hence both
industry and academia are mostly interested in defending from DDoS attacks and
protecting access by legitimate users The detection of DDoS attacks 1s not an easy

task due to the use of forged source addresses and concealment of the attack sources
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Figure 8.1: Agent-handler network of DDoS attack

Clients

Figure 8.2: IRC-bascd network of DDoS attack

using several techniques In addition, it 1s difficult to distinguish attack traffic from
normal traffic considering just their traffic rates. An information theory-based net-
work bchavior mimicking DDoS attacks detection method is introduced in [380].
It can discriminate mimicked flooding attacks from legitimate access traffic effec-
tively. Several research efforts on DDoS detection [381-383], mitigation [384~386]
and filtering [387,388] have been conducted separately. However, the efforts on both
detection and IP traccback arc limited especially if real-time mitigation 1s descried.
There are two types of DDoS attack based on the flow of traffic rate, viz , (a) high-
rate DDoS attack traffic, which is exceptional and (b) low-rate DDoS attack, which
is similar to normal traffic [389]. Low-ratc DDoS attack is difficult to detect and

mitigate within a short time interval
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8.1.1 Motivation and Contributions

Network or host-based attack detection methods are of two types: signature-based
and anomaly-based. A signature-based mcthod builds profiles using known charac-
teristics of both attack and normal traffics, and then matches the incoming traffic
with it to report any alarm. In contrast, the anomaly based method models the
normal behavior and compares it with incoming traffic for any deviation. Several in-
formation theory based metrics have been proposed to overcome the problems faced
by both misuse and anomaly detection methods [379,390]. Information theory can
associate an uncertainty measure with a random variable. Entropy 1s the commonly
used property because 1ts value depends on the amount of material or information.
Shannon and Renyi cntropics [391] share the property that the joint entropy of a
pair of independent random variables equals the sum of individual entropies Shan-
non's entropy and Kullabck Leibler Divergence have both been regarded as effective
mcthods to detect abnormal traffic based on IP address distribution statistics or
packet size distribution statistics [392]. For any DDoS defense system, the main
criteria to achieve are (a) early stage detection, (b) high accuracy and (c) low false
alarm rate. Researchers have failed to achieve all these goals simultaneously. The

following major contributions have been made in this chapter

e We present a survey of DDoS attacks, a taxonomy, detcection methods and
tools. In our taxonomy, there are seven distinct possibilities in which an in-
truder can attempt to launch DDoS attacks. We include a detailed discussion
of various DDoS defense mechanisms and methods under the broad categories
of statistical, knowledge-based, soft computing, data mining, and machine

learning.

e We propose an cffective DDoS flooding attack detection scheme using an ex-
tended entropy metric that adapts the generalized entropy with packet inten-
sity in a sampled traffic within a time interval. We attempt to detect four
classes of DDoS flooding attacks [392], viz., constant rate, pulsing rate, in-
crcasing ratc and subgroup attacks obtained bascd on attack rate dynamics

(see Figure 8.3).
e We also extend our scheme to use an enscmble to incrcasc detection rate in
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near real-time. The proposed scheme demonstrates the effective increase of

detection rate while detecting major classes of DDoS flooding attacks.

¢ We present extensive experimental results using real-world DDoS datasets.
These include (i) the MIT Lincoln Laboratory dataset, (i1) the CAIDA DDoS
2007 dataset and (iii) the TUIDS DDoS dataset as discussed in Chapter 4. The
performance of the proposed scheme 1s superior in comparison to competing

methods.

Traffic rate
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r

(] to Time 0 toty toty Time
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Figure 8.3: Classes of DDoS flooding attacks based on the attack rate dynamics: (a)
constant rate, (b) pulsing rate, (c) increasing rate and (d) subgroup attack

8.2 DDoS Attack and Related Concepts

As stated in [10,393], a DDoS attack can be defined as an attack which uscs a large
number of compromised computers to launch a coordinated DoS attack against a
single machine or multiple victim machines. Using client/server technology, the
perpetrator 15 able to multiply the effectiveness of the DoS attack significantly by
harnessing the resources of multiple unwitting accomplice computers, which serve
as attack platforms. Approximate attack statistics for DDoS [394] up to the year
2013 are shown in Figure 8.4. A DDoS attacker is considered more intelligent than
a DoS attacker. It is distinguished from other attacks by its ability to deploy its

weapons in a “distributed” way over the Internet and to aggregate these forces to

233



Chapter 8. Extended Entropy Metric-based Approach for DDoS Flooding
Attack Detection .

create lethal traffic. Rather than breaking the victim’s defense system for fun or to
show prowess, a DDoS attack usually aims to causc damage on a victim cither for

personal reasons and material gain although some attacks may be to gain popularity.

30

B =Percentage of DDoS attack types 1n 2013
2583

5| iR

ol P 1B

1632 oo

I lllm 163 43 g5 g3 032 032
0o - .. -_- e |

TCPSYN HTTP uop IcMp uop DNS  TCPACK SSLGET HTTP 1P PUSH SYN TCPFIN  SSL
GEY frapment POST  RESET PUSH PUSH  POST

Figure 8.4: DDoS attacks statistics up to the year 2013 [source: {9]}

DDoS attacks mainly take advantage of the architecture of the Internet and
this is what makes them powerful. While designing the Internet, the prime concern
was to provide for functionality, not security. As a result, many security issues have

been raised, which are exploited by attackers. Some of the issucs are given below.

o Internet security 1s highly interdependent. No matter how secure a victim’s
system may be, whether or not this system will be a DDoS victim depends

on the rest of the global Internet [395,396].

e Internet resources are limited. Every Internet host has limited resources that

sooncr or later can be exhausted by a sufficiently large number of users.

e Many against a few: If the resources of the attackers are greater than the

resources of the victims, the success of the attack is almost definite.

e Intclligence and resources arc not collocated. Most intelligence needed for
service guarantees is located at end hosts. At the same time high band-
width pathways needed for large throughput are situated in the ntermediate
nctwork. Such abundant resources present in unwitting parts of the network

arc cxploited by the attacker to launch a successful flooding attack.
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e The handlers or the masters, which are compromised hosts with special pro-

grams running on them, arc capable of controlling multiple agents

e The attack dacmon agents or zombic hosts arc compromised hosts that arc
running a special program each and are responsible for generating a stream of
packets towards the intended victim These machines are commonly external
to the victim’s own network to disable cfficient response from the victim, and
external to the network of the attacker to forswear hability if the attack 1s

traced back

8.2.1 DDoS Strategy

A Distributed Denial of Service (DDoS) attack i1s composed of several elements as

shown 1n Figures 8 5 and 8 6

Figure 8.5: Dwrect DDoS attack Secnd contiol traffic dircctly to the zombics to attack
the victim host

Figure 8.6: Indirect DDoS attack Scnd contiol traffic indirectly to the zombics to
compromise the target host Reflectors are non-compromised systems that cxclusively
send replics to a request
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There are four basic steps in launching a DDoS attack. These are shown in

Figurc 8.7.

(a)

Selection of agents

1

Compromise

1

Communication

|

Attack

Figure 8.7: Steps to perform a DDoS attack

Selection of agents The attacker chooses the agents that will perform the
attack. Based on the nature of vulnerabilities present, some machines are com-
promised to use as agents. Attackers victimize these machines, which have
abundant rcsources, so that a powerful attack strcam can be gencrated. In
early years, the attackers attempted to acquire control of these machines man-
ually. However, with the development of advanced security attack tool(s), it

has become casier to identify these machines automatically and instantly.

Compromase. The attacker exploits security holes and vulnerabilities of the
agent machines and plants the attack code. Not only that, the attacker also
takes nccessary steps to protect the planted code from identification and de-
activation. As per the direct DDoS attack strategy, shown in Figure 8.5, the
compromised nodes, i.e , zombies between the attacker and victim are recruited
unwitting accomplice hosts from a large number of unprotected hosts connected
through the Internet in high bandwidth On the other hand, the DDoS attack
strategy shown in Figure 8.6 is more complex due to inclusion of intermediate
layer(s) between the zombies and victim(s). It further complicates the traceback
mostly due to (i) complexity in untangling the traceback information (partial)
with reference to multiple sources, and/or (ii) having to connect a large number
of routers or servers. Self-propagating tools such as the Ramen worm [397] and
Code Red [398] automate this phase Unless a sophisticated defense mechanism

is uscd, it is usually difficult for the users and owners of the agent systems to
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realize that they have become a part of a DDoS attack system Another im-
portant fcaturc of such an agent system is that the agent programs arc very
cost cffective both in terms of memory and bandwidth Hcenee they affect the

performance of the system minimally.

Communication The attacker communicates with any number of handlers to
ident:fy which agents are up and running, when to schedule attacks or when to
upgrade agents. Such communications among the attackers and handlers can
be via various protocols such as ICMP, TCP or UDP. Bascd on configuration of
the attack network, agents can communicate with a single handler or multiple

handlers.

Attack The attacker initiates the attack. The victim, thc duration of the
attack as well as special features of the attack such as the type, length TTL,
and port numbers can be adjusted. The attackers use available bandwidth and
send huge number of packets to the target host or network to overwhelm the

resources immediately

8.2.2 DDoS Attack Taxonomy

A taxonomy of DDoS attacks based on {392] is given in Figure 8.8. We scc 1n the

taxonomy that intruders attempt to launch DDoS attacks based on exploitation of

various means (shown 1n the left column) and their resultant effects can be observed

at various levels

8.2.3 Architecture of DDoS Attack Defense Mechanisms

Based on the locality of deployment, DDoS defense schemes can be divided into

three classes [378]: victim-end, source-end and intermediate network defense mech-

anisms. All of these mechanisms have their own advantages and disadvantages. We

discuss them onc by one.
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Figure 8.8: A taxonomy of DDoS attacks [10]

Victim-end Defense Mechanism

In the victim-end defense mechamism  detection and response arc gencrally done
in the routers of victim networks, 1 e , networks providing critical Internet services
These mechanisms can closely observe the victim network traffic, model its behavior
and detect anomaliecs Dectecting DDoS attacks in victim routers 1s relatively casy
because of the high rate of resource consumption It 1s also the most practically
applicable type of defense mechanism that can classify the attack traffic from legit-
imate traffic But the main problems with this mechamsm are (1) During DDoS
attacks, victim resources, ¢ g nctwork bandwidth, often get overwhelmed and can-
not stop the flow beyond victim routers and (n) It can detect the attack only after
1t reaches the victim and detecting an attack when legitimate clients have already
been denied 1s not uscful A generic architecture of such mechanisms 1s shown in

Figurc 89
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Figure 8.9: Generic architecture for victim-end DDoS defense mechanism

Source-end Defense Mechanism

Dectecting and stopping a DDoS attack at the source is made in the source-end
defense mechanism. This mechanism detects malicious packets and prevents the
possibility of flooding but not at the victim side. It is best to filter or rate limit
malicious traffic with minimum damage within the legitimate traffic Morcover,
a source-end based defense mechanism gains knowledge from a small amount of
traffic and consumes minimum resources (i.e., processing power and buffer). The
main difficultics of this mechanism are: (1) It cannot obscrve suspicious traffic at the
victim-cnd because it has no interaction with the victim node, (1) Sources arc widely
distributed and a single source behaves almost similarly as in normal traffic, and (iii)
Identification of deployment points are at the source-end. A generic architecture of

source-cnd defense mechanisms is shown in Figure 8.10.

Intermediate Network Defense Mechanism

The intermediate network defense scheme balances the tradc-offs between detec-
tion accuracy and attack bandwidth consumption, the main issues in source-end
and victim-end detection mechanisms. It can be deployed in any network router
connccted to an ISP. Such a scheme is gencrally collaborative in nature and the

routers share their obscrvations with other routers Detection of attack sources is
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Figure 8.10: Generic architecture for source-end-based DDoS defense mechanism

easy in this approach due to collaborative operation. Routers can form an overlay
mesh to sharc their obscrvations [399). The main difficulty with this mechanism
is the location of deployment. The unavailability of this mechanism in only a few
routers may cause failure to the detection effort and the full practical implemen-
tation of this mechanism is extremely difficult because it will require reconfiguring
all the routers on the Internct Figure 8 11 shows a gencric architecturce of the

intermediate network defense mechanism

To address the above deficiencies 1t would be bencficial to construct victim-
end based defense mechanisms that can perform detection and IP traceback of
DDoS attacks with a low false positive rate, performed within a short time interval.
A comparison of DDoS defense mechanisms at different deployment locations is
given in Table 8.1. From the table, it can be observed that victim-end system is

advantageous in view of the following points.

Table 8.1: Feasibility of DDoS defense at deployment location

Deployment Characteristics Rate limiting/ Fil- | Defense vulnerabil- | Deployment difs- |
tering 1ty/ Robustness culty

Source-end Very difficult Easy Low Highly difficult

Victim-end Easy Difficult High Very easy

Intermediate Dafficult Dafficult Medium Difficult

network

¢ It can closely obscrve the victim system or host to analyze the network traffic
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Figure 8.11: Gencric architecture for intermediate network-based DDoS defense mech-
anism

in near real-time.

e Easy to deployment.

e Cheaper to detect DDoS attacks than other mechanisms.

8.3 Prior Research

In this section, we present a summary of existing literature on DDoS attack detec-
tion methods. These methods are based on the three architectures introduced earlier
namely, victim-end, source-end and intermediate network. We discuss these schemes
without presenting how they can be deployed in real networks. Recent trends show
that soft computing approaches we being widely used heavily for DDoS attack detec-
tion. Ensembles of classifiers have also performed satisfactorily with high detection
rates. We classify mecthods for DDoS attack detection into four major classes as

shown in Figurc 8.12
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Figure 8.12: Classification of DDoS attack detection methods

8.3.1 Statistical Methods

Statistical propertics of normal and attack patterns can be exploited to detect
DDoS attacks. Generally a statistical model for normal traffic is fitted and then a
statistical inference test is applied to determine if a new instance belongs to this
model. Instances that do not conform to the learnt model, based on the applied
test statistics, arc classificd as anomalics. Chen ct al. [400] develop a distributed
change point (DCP) detection architecture using change aggregation trees (CATs).
The non-parametric CUSUM approach was adapted to describe the distribution
of pre-change or post-change network traffic  When a DDoS flooding attack is
being launched, the cumulative deviation is noticeably higher than random fiuc-
tuations. The CAT mechanism is designed to work at the router level to detect
abrupt changes in traffic flows. The domain server uses the traffic change patterns
detected at attack-transit routers to construct the CATSs, which represent the at-
tack flow patterns A very well-known DDoS defense scheme called D-WARD is
presented in [401]. D-WARD identifies an attack based on continuous monitoring
of bidirectional traffic lows between the network and the rest of the Internet and
by periodic deviation analysis with the normal flow patterns. D-WARD not only

offers a good detection rate but also reduces DDoS attack traffic significantly.

Saifullah [402} proposcs a defense mechanism based on a distributed algorithm
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that performs weight-fair throttling at upstream routers. The throttling is weight-
fair because the traffic destined for the scrver 1s controlled (increased or decrcased)
by leaky buckets at the routers based on the number of users connected, direcctly
or through other routers, to each router In the beginning of the algorithm, the
survival capacity is underestimated by the routers so as to protect the server from
any sudden initial attack The rate is updated (increased or decreased), based on
the server’s feedback sent to its child routers and eventually propagated downward
to all routers, in the subsequent rounds of the algorithm with a view to converging
the total server load to the tolerable capacity range. Feinstein and Dan [403] present
methods to identify DDoS attacks using entropy computation and frequency-sorted
distribution of relevant packet attributes They show DDoS attacks as anomalies
and demonstrates their performance on real network traffic traces obtained from a

variety of network scenarios.

Akella et al. [404] explore key challenges in helping an ISP network detect
attacks on itsclf or attacks on cxternal sites which usc the ISP network. They
propose a detection mechanism where cach router detects traffic anomalics using
profiles of normal traffic constructed using stream sampling algorithms. Initial re-
sults show that it is possible to (a) profile normal traffic reasonably accurately,
(b) identify anomalics with low false positive and false ncgative rates (locally, at
the router) and (c) still be cost effective in terms of memory consumption and per
packet computation. In addition, ISP routers exchange information with one an-
other to increase confidence in their detection decisions A router gathers responses
from all other routers regarding suspicions and based on these responses decides
whether a traffic aggregate is an attack or 1s normal. The mitial results show that
individual router profiles capture key characteristics of the traffic effectively and
identify anomalies with low false positive and false ncgative rates Peng ct al. [405]
describe a novel approach to detect bandwidth attacks by monitoring the arrival
rate of new source IP addresses. The detection scheme is based on an advanced
non-parametric change detection scheme, CUSUM. Cheng et al. [406] propose the
IP Flow Feature Valuc (FFV) algorithm bascd on the essential features of DDoS
attacks such as abrupt traffic change, flow dissymmetry, distributed source IP ad-

dresses and concentrated target IP addresses. Using a linear prediction technique,
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a simple and efficient ARMA prediction model is established for both normal and
attack nctwork flows Udhayan and Hamsapriya [407] present a Statistical Scgrega-
tion Method (SSM), which samples the flow in consccutive intervals and compares
the samples against the attack state condition and sorts them with the mean as
the parameter. Then correlation analysis is performed to segregate attack flows
from legitimate flows The authors compare SSM against various other mcthods
and identify a blend of segregation methods for alleviating false detections A brief

summary of these methods is given in Table 8.2

Table 8.2: Statistical DDoS attack detection methods

Reference Objective Deployment | Mode of | Tranable| Remarks

working
Mirkoviac Attack pre- | Source side | Centralized | Yes Detects DDoS attacks at the source
et al [401] | vention end autonomously and stops attacks

from the source network using statis-
tical traffic modeling

Akella et | Attack Source and | Distributed | No Detects traffic anomalies 1n router us-
al [404] detection victim side ing stream sampling algorithms based
on profiles constiucted from normal
traffic
Peng et al Detecting Victim side | Centralized | Yes Uses sequential nonpaiametiic change
[405] bandwidth point detection method to impiove the
attacks accuracy
Chen et al Attack de- | Between Distiibuted | No Automatically performs traceback dui-
[400] tection and | source and ing the detection of suspicious traffic
traceback destination flows
network
Saifullah Attack pre- | Between Distributed | No Protects Internet server from DDoS
[402] vention source and attacks using distnibuted weight-fair
destination throttling at the upstream routers
network
Cheng et | Attack Victim side | Centralized | Yes Exploits four flow features burst 1n
al [406] detection the traffic volume, asymmetry of the

flow distributed source IP addresses
and concentrated destination IP ad-
dress while detecting DDoS attacks

Udhayan mimimize Victim side | Centrahzed | Yes Uses a statistical segregation method
and Ham- | false alarm for detecting DDoS attacks based on
sapriya sampling of flow 1n consecutive time 1n-
[407] terval

8.3.2 Soft Computing Methods

Learning paradigms, such as neural networks. radial basis functions and genetic
algorithms arc increasingly used in DDoS attack detection because of their abil-
ity to classify intelligently and automatically. Soft computing is a general term
for describing a set of optimization and processing techniques that are tolerant of
imprecision and uncertainty Jalili ¢t al. [408] introducc a DDoS attack detection

system called SPUNNID based on a statistical pre-processor and unsupervised ar-
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tificial neural nets They use statistical pre-processing to extract features from the
traffic and an unsupervised ncural net to analyze and classify tiaffic patterns as

cither a DDoS attack or normal

Kanimazad and Faraahi [409] proposc an anomaly-based DDoS detection method
based on featurcs of attack packets, analyzing them using Radial Basis Function
(RBF) neural networks The method can be applied to edge routers of victum net-
works Vectors with seven features are used to activate an RBF neural network at
cach timc window The RBF neural network 1s applicd to classify data to normal
and attack categories If the incoming traffic 1s recogmized as attack traffic, the
source [P addresses of the attack packets are sent to the Filtering Module and the
Attack Alarm Module for further actions Otherwise, if the traffic 1s normal, 1t
1s sent to the destination RBF ncural network training can be performed as an
off-line process but 1t 1s used in real time to detect attacks faster Nguyven and Choi
(410] develop a method for proactive detection of DDoS attacks by classifying the
network status They bicak a DDoS attack into phases and sclect featuics based on
an mvestigation of rcal DDoS attacks Finally, they apply the k-nearcst neighbor
(KNN) method to classify the network status in each phase of the DDoS attack A
method presented 1n [383] detects DDoS attacks based on a fuzzy estimator using
mean packct inter-arnval tumes It detects the suspected host and traces the IP

address to drop packets within 3 second detection windows

Latcly, ensembles of classifiers have been used for DDoS attack detection The
use of an ensemble reduces the bias of existing individual classifiers An ensemble of
classifiers has been used by [411] for this purpose where a Resilient Back Propagation
(RBP) neural network 1s chosen as the base classifier The main focus of this work
1s to mmprove the performance of the base classifier The proposed classification
algorithm, RBPBoost combines the output of the ensemble of classifiers and the
Neyman Pearson cost mimimization strategy [412] for final classification decision
Tablc 8 3 presents a brief summary of the soft computing methods presented 1n this

section
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Table 8.3: Soft computing-based DDoS attack detection methods

Reference Objective Deployment | Mode of | Tramable| Remarks
working
Jahh et al Attack de- | Victim side | Centralized | Yes Uses statistical preprocessor and un-
[408] tection supervised neural network class:fier for
DDoS attack detection
Nguyen and | Attack de- | Intermediate| Centrahzed | Yes Detects only known attacks using k-
Chor [410] tection network nearest neighbor based techmque
Karimazad Attack de- | Victim side | Centralized | Yes Uses Radial Basis Function (RBF) neu-
and Faraahi | tection ral networks and gets low false alarm
{409} rate
Kumar and | Attack de- | Victim side | Centrahzed | Yes RBPBoost combines an ensemble of
Selvakumar tection classifier outputs and Neyman Pearson
[411) cost minumization strategy for final clas-
sification decision during DDoS attack
detection and gets high detection rate

8.3.3 Knowledge-based Methods

In knowledge-based approaches, network cvents arc checked against predefined rules
or patterns of attack. In these approaches, general representations of known attacks
are formulated to identify actual occurrences of attacks. Examples of knowledge-
based approaches include expert systems, signaturc analysis, sclf organizing maps,
and state transition analysis Gil and Poletto [413] introduce a heuristic along with
a data structure called MULTOPS (MUlti-Level Tree for Online Packet Statistics)
that monitors certain traffic characteristics which can be used by network devices
such as routers to detect and climinate DDoS attacks MULTOPS is a tree of
nodes that contains packet rate statistics for subnet prefixes at different aggregation
levels. Expansion and contraction of the tree occurs within a pre-specified memory
sizc. A nctwork device using MULTOPS detects ongoing bandwidth attacks by
the presence of a significant and disproportional difference between packet rates
going to and coming from the victim or the attacker. Depending on their setup and
their location on the network, MULTOPS-equipped routers or network monitors
may fail to detect a bandwidth attack that randomizes IP source addresscs on
malicious packets. MULTOPS fails to detect attacks that deploy a large number of
proportional flows to cripple a victim.

Thomas et al. [414] present an approach to DDoS defense called NetBouncer
and claim it to be a practical approach with high performance. Their approach
relies on distinguishing legitimate and illegitimate uses and ensuring that resources

arc madc available only for legitimate use NetBouncer allows traffic to flow with
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reference to a long hist of proven legitimate chients. If packets are received from a
client (source) not on the legitimate hist, a NetBouncer device proceeds to administer
a varicty of legitimacy tests to challenge the client to prove its legitimacy. If a client
can pass these tests, it 1s added to the legitimate list and subsequent packets from

the client are accepted until a certain legitimacy window expires.

Wang et al. [415] present a formal and methodical way to model DDoS attacks
using Augmented Attack Trees (AAT) and discuss an AAT-based attack detection
algorithm This modcl explicitly captures the subtle incidents triggered by a DDoS
attack and the corresponding state transitions considering network traffic trans-
mission on the primary victim server. Two major contributions of this work are
(1) an AAT-based DDoS model (ADDoSAT), developed to assess potential threats
from malicious packets on the primary victim server and to facilitate the detection
of such attacks and (2) an AAT-based bottom-up detection algorithm proposed to
detect all kinds of attacks based on AAT modelling. Compared to the conventional
attack tree modclling method, AAT is morc advanced because it provides additional
information, cspecially about the state transition process. As a result, it overcomes
the shortcomings of CAT modelling There is currently no established AAT-based
bottom-up procedure for detecting network intrusions. Limwiwatkul and Rung-
sawang [416] discover DDoS attack signaturcs by analyzing TCP/IP packet hcaders
against well-defined rules and conditions and distinguishing the difference between
normal and abnormal traffic. The authors mainly focus on ICMP, TCP and UDP

flooding attacks.

Zhang and Parashar [32] propose a distributed approach to defend against DDoS
attacks by coordinating across the Internet. Unlike traditional IDS, 1t detects and
stops DDoS attacks within the intermediate network. In the proposed approach,
DDoS defence systems are deployed in the network to detect DDoS attacks indepen-
dently. A gossip based communication mechanism is used to exchange information
about nctwork attacks between these independent detection nodes to aggregate in-
formation about the overall network attacks. Using the aggregated information,
individual defence nodes obtain approximate information about global network at-
tacks and can stop them more effectively and accurately. For faster and reliable

disscmination of attack information, the nctwork grows as a peer-to-peer overlay
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network on top of the Internet. Previously proposed approaches rely on monitoring
the volume of traffic that is reccived by the victim. Most such approaches are inca-
pable of differentiating a DDoS attack from a flash crowd. Lu ct al [382] describe
a perimeter-based anti-DDoS system, in which the traffic 1s analvzed only at the
edge routers of an Internet Service Provider (ISP) network. The ant1-DDoS system
consists of two major components: (1) temporal-correlation based featurc extrac-
tion and (2) spatial-correlation based detection. The scheme can accurately detect
DDoS attacks and identify attack packets without modifying existing IP forwarding
mechanisms at the routers. A brief summary of these knowledge based methods is
given in Tablc 8 4

Table 8.4: Knowledge based DDoS attack detection methods

Reference Objective Deployment | Mode of | Tranable| Remarks
working
Gil and Po- | Attack Between Centralized | No Each network devices maintains a data
letto [413] prevention | source and structure known as MULTOPS Fails
destination to detect attacks that deploy a large
network number of DDoS attack flows using a

large number of agents, IP spoofing at-
tacks

Thomas et | Attack de- | Victim side | Centralized | No NetBouncer differentiates DDoS traf-

al [414] tection fic from flash crowd using inhne packet
processing based on network pirocessor
technology

Limwiwatkul | Attack de- | Victim side | Distributed | Yes Uses a TCP packet header to construct

and Rung- | tection attack signature model for DDoS at-

sawang [416] tack detection

Zhang and | Proactive Intermediate| Distributed | Yes A gossip based scheme uses to get

Parashar network global information about DDoS at-

[32) tacks by information sharing

Lu et al Attack de- | Edge Distributed | Yes Exploits spatial and temporal correla-

(382] tection router tion of DDoS attack traffic records for
detecting anomalous packets

Wang et al Attack de- | Victim side | Centrahzed [ No Uses an Augmented Attack Tree model

[415] tection for the detection of DDoS attacks and
also can detect other attacks

8.3.4 Data Mining and Machine Learning Methods

An effective defense system to protect network servers, network routers and client
hosts from becoming handlers, zombies and victims of DDoS flooding attacks is
presented in [417] The NetShicld system can protect any IP-based public network
on the Internet. It uses preventive and deterrent controls to remove system vul-
nerabilities on target machines. Adaptation techniques are used to launch protocol
anomaly detection and provide corrective intrusion responses. The NetShicld sys-

tem cnforces dynamic sccurity policies. NetShicld is especially tailored to protect
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network resources against DDoS flooding attacks Lee et al [418] propose a method
for proactive detection of DDoS attacks by exploiting an architccture consisting of
a sclection of handlers and agents that communicate, compromise and attack The
method performs cluster analysis. The authors experiment with the DARPA 2000
Intrusion Detection Scenario Specific Dataset to evaluate the method. The results
show that cach phase of the attack scenario 1s partitioned well and can detect pre-
cursors of a DDoS attack as well as the attack 1tself. Sekar et al [419] investigate
the design space for in-network DDoS attack detection and propose a triggered,
multi-stage approach that addresses both scalability and accuracy. Their contri-
bution is the design and implementation of LADS (Large-scale Automated DDoS
detection System) The system makes effective use of the data (such as NetFlow

and SNMP feeds from routers) readily available to an ISP.

A two-stage automated system is proposed 1n [420] to detect DoS attacks in
network traffic. It combines the traditional change point detection approach with
a novel onc based on continuous wavelet transforms [421]. The authors test the
system using a set of publicly available attack-free traffic traces superimposed with
anomaly profiles. Li and Lee [422] present a systematic wavelet based method for
DDoS attack detection. They use energy distribution based on wavelet analysis to
detect DDoS attack traffic. Encrgy distribution over time has limited variation if
the traffic keeps its behavior over time. The method presented in [423] can identify
flooding attacks in real time and also can assess the intensity of the attackers based
on fuzzy reasoning. The process consists of two stages (1) statistical analysis of the
nctwork traffic time serics using discrete wavelet transform and Schwarz information
criterion (SIC) to find the change point of the Hurst parameters resulting from a
DDoS flood attack, and then (ii) identification and assessment of the intensity of
the DDoS attack adaptively based on an intclligent fuzzy rcasoning mechanism.
Test results by ns2! based simulation with various network traffic characteristics
and attack intensities demonstrate that the method can detect DDoS flood attacks
on time, effectively and intelligently Zhang et al. [388] present a CPR (Congestion
Participation Ratc) based approach to detect low-rate DDoS (LDDoS) attacks using
flow level network traffic. A flow with a higher CPR value leads to LDDoS and
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consequent dropping of the packets. The authors evaluate the mechanism using
ns2 simulation, testbed cxperiments and Internct traffic trace and claim that the

method can detect LDDoS flows cffectively

In (424), a mathematical model is presented to provide gross evaluation of the
benefits of DDoS defence based on dropping of attack traffic. Simulation results and
testbed experiments are used to validate the model. In the same work, the authors
also consider an autonomic defence mechanism based on CPN (Cognitive Packet
Network) protocol and cstablish it to be capable of tracing back flows coming into a
node automatically Yuan and Kevin [425] present a DDoS flooding attack detection
scheme by monitoring network-wide macroscopic effects. They work with several
attack modes including constant rate, increasing rate, pulsing rate and subgroup
attacks. Lee and Xiang [177] describe scveral information theoretic measures for
anomaly detection. These are entropy, conditional entropy, information gain and
information cost, tested on several datasets. A summarized presentation of these

methods in this category is given in Table 8.5.

A low-rate DDoS attack has significant ability to conceal its traffic because of
its similarity with normal traffic. Xiang ct al. [379] proposc two new information
metrics: (i) gencralized entropy metric and (ii) information distance metric, to de-
tect low-rate DDoS attacks. They identify the attack by measuring the distance
between legitimate traffic and attack traffic. The generalized entropy metric is
morc cffective than the traditional Shannon metric [426). In addition, the informa-
tion distance metric outperforms the popular Kullback-Leibler divergence approach.
Francois et al. [427] present a method called FireCol based on information theory
for early detection of flooding DDoS attacks. FireCol 1s comprised of an intrusion
prevention system (IPS) located at the Internet Service Provider (ISP) level. The
IPSs form wvirtual protection rings around the hosts to defend and collaborate by
exchanging selected traffic information. An entropy variation based detection and
IP traccback scheme for DDoS attacks is proposed at [399]. The system obsecrves
and stores short-term information on flow entropy variations at routers. Once the
detection algorithm detects a DDoS attack, it initiates the pushback tracing pro-
cedure to find the actual location of attacks.: Wer et al. [428] propose a Rank
Corrclation-based Detection (RCD) algorithm for detecting distributed reflection
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DoS attacks. Preliminary simulations show that RCD can differentiate reflection

flows from legitimate ones cffectively.

Table 8.5: Data mining and machine learning-based DDoS attack detection methods

Reference Objective Deployment| Mode of | Tramnable| Remarks
working
Hwang et | Attack pre- | Victim- Centralized | Yes Protects network servers, routers and
al (417 vention end chents from DDoS attacks using pro-
tocol anomaly detection technique
L1 and Lee | Attack detec- | Victim- Centralized | No An energy distribution based wavelet
[422] tion end analysis technique for the detection of
DDoS traffic
Sekar et al Attack detec- | Source- Distnibuted | Yes A triggered multi-stage approach for
[419) tion end both scalabihity and accuracy for DDoS
attack detection
Gelenbe Attack de- [ Victim- Centrahzed | Yes Detects attack by tracing back flows
and Loukas | fense using | end automatically
[424] packet drop-
ping
Lee et al Attack detec- | Source- Centralized | Yes Detects DDoS attack proactively based
[418] tion end on cluster analysis with agent handler
architecture
Damott1 et | Detection of [ Victim- Centralized | Yes Detects attacks correctly using combi-
al [420] DoS attack end nation of traditional change point de-
tection and continuous wavelet trans-
formation
Xia et al Detects flood | Victim- Centralized | Yes A method to detect DDoS flooding at-
[423) attack and 1ts | end .| tack using fuzzy logic
mntensity
Xiang et al Detects low | Victim- Centralized | No Detects low-rate DDoS flooding at-
[379) rate flooding | end tacks using new information metrics ef-
attacks fectively
Francois et | DDoS flood- { Source- Distributed | No A complete DDoS flooding attack de-
al [427) ing attack de- | end " tection technique Also support incre-
tection mental deployment in real network

8.3.5 Discussion

Exact comparison of DDoS attack detection schemes 1s not feasible because some
works do not specify their results clearly whereas others evaluate their schemes us-
ing diffcrent datascts or in different testing conditions. A comparison (as shown in
Table 8.6) establishes that most works do not consider all the issues that are perti-
nent. For example, the Distributed Change Point detection method [400] performs
well for TCP SYN attacks, but its performance degrades for UDP attacks with large
packet sizes D-WARD [401] fails to deteet pulsing attacks, especially when the in-
active period is large In case of NetBouncer [414], the legitimacy tests may not
be exhaustive and certain 1illegitimate clients may also pass the test. In addition,
Netbouncer is overwhelmed by flash crowds. Moreover, the delay introduced by the

test affects new legitimate clients. Detection using RBF Neural Networks and sta-

251




Chapter 8. Extended Entropy Metric-based Approach for DDoS Flooding
Attack Detection

tistical features [409] performs well for known attacks, but no dynamic modification

can be performed casily for unknown attacks. The following arc some obscrvations.

e It is important to understand the features of DDoS attacks, but it is critical

to find effective features to detect an attack.

e Most existing schemes are focused on detecting DDoS attacks with high de-
teetion accuracy or low false alarms, but often these methods have been found

fail to perform in real-time or near real-time.

e Some schemes are composed of several small modules [403] Due to the lack

of timely coordination among them, the total cot increases considerably.

e Even though several information theoretic measures are available [177], it
is a difficult task to build an adaptive modcl to detect DDoS attacks by

dynamically adjusting different parameters.

e The basic entropy-based measure produces a high false alarm rate due to low

spacing between attack traffic sample and normal traffic sample.

e Only a few ensemble-based methods to detect DDoS attacks have been re-
ported in the litcraturce [429] The reported methods suffer from high falsc

alarm rate

8.4 Problem Statement

We define the problem of DDoS attack detection as follows The problem is to detect
DDoS flooding attacks using a minimum and relevant subset of packet features by
computing difference of information theoretic distance between real-life attack traffic
and legitimate traffic within and relative sample periods. We assume a sample
S, to be anomalous if (a) S, € S and |E(S,) — E(S,)| > w1, where F is the
information distance metric, S, and S, are samples within a sampling period S,
wy 15 the user defined threshold for maximum allowable local entropy variation and
(b) |E(S,) — E(S,)| < ws, where S, and S, are the relative samples, wq is a user

defined threshold for minimum allowable global entropy variation.
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Table 8.6: A general comparison of DDoS attack detection methods

Scheme Approach Architecture/ Method w X y z DR with FAR with
dataset used dataset used
DCD approach statistical DCP / Change aggrega- R Yes | Yes| No 98%  (flooding < 1% (flooding
(400] tion tree attacks) attacks)
Weighted fair statistical Weight Fair Throttlhing R Yes | Yes | No - -
model [402]
SPUNNID  model statistical SPUNNID system / un- R Yes | Yes | Yes| 94 9% (fAooding 5% (flooding at-
[408] supervised newal net- attacks) tacks)
work
D-WARD  system knowledge Self regulating ieverse R No Yes | No (flooding at- 05% (flooding
[401]) based feedback system / rate tacks) attacks)
hmited
MULTOPS system knowledge Multi-level tree based N Yes | Yes | No (IP spoofing at- -
[413] based method tacks)
NetBouncer model knowledge Packet filtering method R Yes | Yes | No (real-time data) -
[414] based
RBF neural net soft com- RBF system / Radial R No No No 98 2% (UCLA 001% (UCLA
model [409] puting basis function data) data)
Attack tree model knowledge AATBD system /[ Tree R No No No (flooding at- -
[415] based based tacks)
Signature discovery knowledge Tiaffic statistics based R No No No (flooding at- -
approach [416] based method tacks)
Profile based ap- statistical Stieam sampling based R No No No (IP spoofing at- 2% (1P spoofing
proach [404] method tacks) attacks)
Cooperative model knowledge RL-DDoS  system / R No No No (Emulab simu- 7%-127% (Emu-
[32] based Gossip-based scheme lation) lab simulation)
Sequential non- knowledge Nonparametric CPD R yes | yes | No 90%-100% (Au- -
parametric change based method cland traces)
point method [405}
Perimeter based knowledge Spatial correlation R Yes No No 93 0% (1P 0 05% (1P
anti-DDoS  system based based method spoofing at- spoofing at-
[382] tacks) tacks)
K-NN classifier ap- statistical Nearest neighbor-based R No No No 91 88% 811% (DARPA
proach {410] method (DARPA 2000 2000 DDoS
DDoS data) data)
Change point de- Soft com- Fuzzy logic based R No No No (ns2 simula- -
tect by fuzzy logic puting method tion)
[423)
Linear prediction statistical Linear prediction based R Yes | No | No [ 961% (DDoS 0 8% (DDoS
model [40b] method flow data, flow data,
LLDoS 20 2) LLDoS 2 02)
SSM method [407] statistical Statistical segregation R No | No | No (CAIDA data) 12% (CAIDA
based method data)
Ensemble of neural soft  com- RBPBoost system / En- N Yes | Yes | Yes | 99 4% (DARPA 37% (DARPA
net model {411} puting semble of neural net 2000 DDeoS 2000 DDoS
based classifiers data) data)
Autonomic mathe- Machine CPN based method R Yes [ No No {ns2 symula- -
matical model [424] learning tion)
w-indicates real-time or non real-time
x-represents the scalability
y-possibility of unknown attack detection
z-possibility of dynamic signature updation
DR-Detection Rate and FAR-False Alarm Rate

8.5 System Modeling for DDoS Attack Detection

In this section, we attempt to model a system for detecting DDoS flooding attacks

using an extended entropy metric We make the following assumptions.
e Routers have full control on 1n-and-out traffic flow.

e We collect packet and flow level traffic at the victim-end after various types

of flooding attacks are launched.

e We sample network traffic in 5 minute intervals and during processing we

further sample them in 10 seconds time intervals.

The proposed scheme is illustrated in Figurce 8.13. This scheme 1s composed of

mainly two parts, viz., DDoS attack detcction using an cxtended entropy metric
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[430] and an ensemble of extended entropy metrics. Extended entropy metric is

defined below.

Definition 8.5.1. Extended Entropy (EE) s defined as the sum of all entropies of

parts of a system withain a tume nterval.
T
EE(z) =)  EEM, (8.1)
=1

where T 1s the time wnterval and EEM is the extended entropy metric of each part

of a system.

In the detection scheme, we initially sample the network traffic into ¢t number of
intervals from a total time period T. For cach time interval, we compute the discrete
probability distribution, packet intensity and individual entropies as discussed next.
We compute both the local entropy metric difference between legitimate traffic and
anomalous traffic, and the global entropy metric difference between legitimate traffic
and anomalous traffic, if found greater than the local variation threshold w; and less
than the global variation threshold wy, then it marks the sample as attack otherwise
normal. All attack samples can be used for the IP traceback purpose. We extend
our scheme to use an ensemble of extended entropy metrics to improve the detection

accuracy in necar real-time.

Drop packets
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Compute retevant
packetfeatures
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Alarm generation
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Change point
detection
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----- : ™
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Figure 8.13: Concept of the proposed scheme
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8.5.1 DDoS Attack Detection Scheme

In information theory, entropy is a mecasurc of uncertaintv in a random variable
that forms the basis for distance and divergence measurements between probability
densities. Larger values of entropy are expected when the information variable is
morc random. In contrast, the cntropy value is cxpected to be small when the
amount of uncertainty in the information variable 1s small {390] To quantify the
randomness of a system, Renyi [431] introduced an entropy metric of order « as :;L
mathematical generalization of Shannon entropy [426]. Let us consider a discrete
probability distribution, P = p1,p2,p3, - Pn, i€, D>, 0o = 1, p, > 0. Then the

Renyi’s entropy of order « is defined as

Ho(z) =

1 n
l « 8.2
1_0092<;P1> (8.2)
where « > 0, o # 1. p, > 0; if the values of p,’s are same, then the maximum
entropy value is achicved, which is known as Hartley entropy {426
Ho(z) = logan (83)

When o — 1, H, converges to Shannon entropy [426].

Hy(z) = — Zplloggp, (8.4)
1=1

If o = 2, 1t 1s known as collision entropy or Renyr’s quadratic entropy [431].

Hay(z) = —logs _ p? (85)
1=1

Finally, when a — 00, Hy,(z) reaches the minimum information entropy value.
Hence, we say that the generalization of information entropy is a non-increasing
function of order a, 1e., Hq, (z) > Ha,(z), for ay < a, a > 0. We define the

probability and packet intensity computation as

Ly

p(z.) = _Zn——

1%

(8.6)

1=
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™
fi==— (8.7)
Z;\;l L

where 7 = 1,2,3,--- N, N represents the full time interval T, 7 is the number of

packets and n represents a smaller time interval ¢ within T The Renyi’s information

entropy metric of order o can be rewritten as

EEM,(z) = ]_Vt(11><__f;_)1092 (Z pi’) (8.8)

where ¢, is the time and f, is the packet intensity for the 1** sample. We call this
metric as the extended entropy metric (EEM) Based on this information entropy
metric analysis, we consider different probability distributions for legitimate net-
work traffic and attack traffic when detecting DDoS attacks. The flowchart of the

proposcd attack detection scheme 1s given in Figure 8.14

To support the proposed scheme, we introduce some definitions and lemmas

below

Definition 8.5.2. DDoS flooding attack traffic - Gwen a traffic sample S
collected during a time wnterval T, a DDoS flooding attack traffic 1s a sub-sample,
A = {0y.a2,a;---as} such that the difference of extended entropy metric between

anomalous traffic and normal troffic 2s at least the minymum allowable threshold w; .

Definition 8.5.3. Extended Entropy Metric (EEM) - The extended entropy
metric 15 stmply the sum of entropy values of order o, used to rank each traffic
sample withan a time interval T for DDoS attack detection. The EEM metric value
of attack traffic 1s hagher than the EEM metric value of normal traffic within a time

interval T.

Definition 8.5.4. Locally anomalous traffic - A DDoS flooding attack traffic
sample is defined as locally anomalous +ff EEM (s, — s,) > wy withan time interval

T, where s, and s, are anomalous and normal traffic respectiely, and wy 15 a user
defined threshold.

Definition 8.5.5. Globally anomalous traffic - A DDoS flooding attack traffic
sample 15 defined as globally anomalous 1ff EEM (s, — s,) < wy across two consecu-

twe time wnterval t, and t,, within a total time interval T, and wy 15 a user defined
threshold.
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Figure 8.14: Flowchart of the proposed DDoS attack detection system

Lemma 8.5.6. The mazimum varation wn DDoS flooding attack traffic sample
A, A = {a1,a2.a3---as} n terms of EEM metric value 15 always less than the

mazmum varation for normal traffc.

Proof. Let S,, and S,, be two samples of DDoS flooding attack traffic, and Sy, and
S,, be two samples of normal traffic. Based on [399] and according to Definution
8.5.2 and 8.5.3, the EEM metric value of attack traffic is higher than normal traffic,
ie., EEMy > EEM,,, where EEM, = EEM(S,) — EEM(S,,) and EEMy, =
EEM(S,,)— EEM(S,,) However, the flooding attack traffic is generated by using
a program in other word, it is program controlled So. the variation among the
traffic is ultimately limited within a bound. On the other hand, normal traffic
variation has no such bound or control, and hence can be extended to great extent.
So, the maximum variation of attack traffic mn terms of EEM metric valuc is always

less than the maximum vanation for normal traffic. (]
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Lemma 8.5.7. For a DDoS flooding attack traffic sample A, A = {a1,a2,03- - as}

the EEM metric value is always larger than the Shannon entropy value.

Proof. The proof of the above lemma is trivial from the representations of Shannon
entropy and extended entropy metric given in Equation(8.4) and Equation(8.8)
respectively. It is evident from the multiplying factor used in Equation(8.8). O

The DDoS Attack Detection Algorithm

The proposed information entropy metric-based DDoS flooding attack detection
scheme attempts to detect four categories of DDoS flooding attacks as shown in
Figure 8.3. In information theory, the value of Shannon entropy in a Gaussian
distribution is higher than that of a Poisson distribution. The Renyi’s generalized
entropy value is lower than the Shannon entropy value when o > 1. In contrast, the
Renyi’s generalized entropy value is higher than Shannon entropy when 0 < o < 1.
But in case of the extended entropy metric, the EEM metric value is mostly greater
than the Shannon entropy metric value. Hence, we can achieve better detection
accuracy and lower false positive rate in the detection of all classes of DDoS flooding

attacks. The steps of the proposed scheme are given in Algorithm 12.

The proposed scheme needs limited parameter estimation when detecting DDoS
flooding attacks. A collaborative detection threshold that is nceded can be esti-
mated based on the spacing between legitimate traffic and anomalous traffic within

the sampling period T for all classes of attacks.

Selective Ensemble of Extended Entropy Metric

An ensemble of extended entropy metrics is introduced mainly to improve the accu-
racy of the detection scheme. We combine weighted values of the extended entropy
metric w.r.t the spacing between samples. We found good spacing between legiti-
mate traffic and anomalous traffic when the order > 1. We dcfine the ensemble

of extended entropy metrics (EEEM) as follows.

Definition 8.5.8. EEEM metric - The ensemble of extended entropy metric is
defined as a metric to rank each traffic sample wnth a weighted sum of entropy values

m a time interval T based on thewr entropy values of order o > 1.
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Algorithm 12 The DDoS flooding attack detection algorithm

Input: network traffic X with respect to time window T and thresholds wy, and w,
Output: alarm information (attack or normal)

1:

2:

3:

6:

initialization: probability p(z,), packet intensity, f,, and sample period, T =0,
where1=1,2,3,---n, T = {t1,ta,t3, -+ ,tn}, IV is the full time interval.
sample the network traffic X received from upstream router R based on sampling
period T

compute probability distribution p, and packet intensity f, using Equation(8.6)
and (8.7), respectively based on traffic features (i.e., sIP, dIP, packet size, etc.)
for each sample within T sampling period of 5** sample.

compute extended entropy metric H,(z) using Equation(8.8) for each sample
within sampling period T

S, = zy: EEM.(s) (8.9)
k=0
S, = s EEM,(s,) (8.10)
1=0
E, = |EEM,(s,) — EEM,(s,)| (8.11)
E,, = |EEM,(s,) — EEM,(s,)] (8.12)

. check against local variation threshold E, > w; and global variation threshold

E.y < wy, if so then generate alarm; otherwise, router forward the packet to the
downstream routers.
go to step 2.

EEEM(X) = i Y %/— x EEM,(X) (8.13)

1=1 3=1

«

where W is the weight and EEM,(X) is the extended metric value. The weight W

1s defined as

Sy f EEM(z) >0
W, =
1  otherwise

where ¢ is the threshold for selection of the weight value iff & > 1. We use w3 as the

threshold for attack detection in selective ensemble of extended entropy metrics.

259



Chapter 8. Extended Entropy Metric-based Approach for DDoS Flooding
Attack Detection

8.5.2 Complexity Analysis

The detection scheme takes O(Tn) time during detection, where T' 1s the time
mterval and n 1s the number of instances within a sample The time complexity
for the detection scheme 1s hnear wrt the size of the dataset and the number of
features Hence, our scheme 1s computationally efficient n detecting DDoS flooding

attacks with low falsc alarm rate and time

8.6 Performance Evaluation

Performance evaluation 1s important for any DDoS attack defense system Perfor-
mance evaluation 1s highly dependent on (1) the approach, (1) deployment status
and (1) whether 1t 15 possible to dynamically update profiles When designing a
DDoS attack defense scheme, these 1ssues should be taken into consideration There
are many tools available to launch DDoS attacks in the literature [{384,432] The
architectures arc almost always the same Some arc made by attackers by shghtly

modifying others Table 8 7 presents some of the tools with brief descriptions

In our experiments, three different datasets viz , MIT Lincoln Laboratory [446],
CAIDA DDoS 2007 [252] and TUIDS DDoS' datasets are used to detect four classes
of DDoS flooding attacks as discussed above The TUIDS DDoS datasets 1s pre-
pared using our testbed described in Chapter 4 The architectuie of the TUIDS
testbed with demilitanzed zone (DMZ) 1s shown agam 1n Figure 8 15 The testbed
1s composed of 5 different networks inside the Tezpur University campus The hosts
are divided into several VLANSs, each VLAN belonging to an L3 switch or an L2
switch mnside the network The attackers are placed in both wired and wireless

networks with reflectors but the target 1s placed mside the mternal network

8.6.1 Datasets

The MIT Lincoln Laboratory tepdump data 1s used as real-time normal network
traffic the data does not contain any attacks (see Figure 8 16 for a depiction of the

normal traffic scenario from the MIT Laboratory) The CAIDA DDoS 2007 dataset

"http //agmgarh tezu ernet 1n/~dkb/resource html
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Table 8.7: DDoS tools and desctiption

Name and | Description Piotocol Attack
Ref
Trinoo (1) Widely used by attackers as well as research commumty (1) A | UDP UDP flood
[433,434] bandwidth depletion attack tool, used to launch coordinated UDP
flood attacks against one or many IP addresses (1) Fixed size UDP
packets are sent to the victim machine’s random ports (1v) Does not
spoof source addresses (v) Implements UDP Flood attacks against
the target victim
Tribe (1) Able to wage both bandwidth depletion and resource depletion | UDP, TCP SYN
Flood attacks (n) Uses a command line interface to commumcate be- { ICMP | flood, ICMP
Network tween the attacker and the control master program (n)} Offers no | TCP flood, smurf
(TFN) encryption between agents and handlers or between handlers and the
[435] attacker (i) Allows TCP SYN and ICMP flood as well as smurf
attacks
TFN2K (1) Developed using the TFN DDoS attack tool (1) Adds encrypted | TCP, smurf, SYN
[436] messaging among all of the attack components (437 (1) Commu- | UDP, flood, UDP
nications between real attacker and control master program ate en- | ICMP | flood, ICMP
crypted using a key-based CAST-256 algorithm [438] (iv) Conducts flood
covert exercises to hide itself fiom intrusion detection systems (v)
Can forge packets that appear to come from neighboring machines
(v1) Provides other options such as TARGA and MIX attack [439]
Stacheldraht| (1) Based on early versions of TFN, 1t ehiminates some weak points | TCP, TCP SYN
[440] by combining features of Trinoo (1) Performs updates on the agents | UDP, flood, UDP
automatically (m) Provides a secure telnet connection via symmet- | ICMP flood, ICMP
ric key encryption among the attackers and handlers (1v) Commu- echo request
nicates through TCP and ICMP packets flood
mstream (1) Uses spoofed TCP packets with the ACK flag set to attack the | TCP, TCP ACK
(441] target (1) A stmple pont-to-point TCP ACK flooding tool to over- | UDP flood
whelm the tables used by fast routing routines in switches (1) Com-
munications are not encrypted, and performed through TCP/UDP
packets, zombie 15 connected via telnet by master (iv) Target
gets hit by ACK packets and sends TCP RST to non-existent [P
addresses (v) Routers return ‘ICMP unreachable causing more
bandwidth starvation (vi) Possesses very limited control features
and can spoof by randomizing all 12 bits of the source [P address
Shaft [442] | (1) A successor of Trinoo (u) Uses UDP communication between | TCP, TCP/UDP/
handlers and agents (in) Shaft provides UDP/ICMP/TCP flooding { UDP, ICMP flood
attack options 1t randomizes source IP address and source port in | ICMP
packets (1v) The size of packets remains fixed during the attack
(v) Able to switch the handler’s IP address and poit in 1eal tyime
during the attack {(vn) Able to switch contiol maste:r servers and
ports n real time, hence making detection by intiusion detection
tools difficult
Trmty v3 | (1) Vanous TCP floods are used by randomizing all 32 bits of the | TCP, TCP fiag-
{443] source IP address TCP fragment floods, TCP estabhshed floods, | UDP ment  floods
TCP RST packet floods and TCP random flag packet floods {(n) TCP RST
Generates TCP flood packets with random control flags set to pro- packet floods
vide a wider set of TCP based attacks TCP random
flag packet
floods, TCP
estabhished
floods
Knight () A very lightweight yet powerful IRC based attack tool (n) | TCP, UDP, TCP
{444) Provides SYN attacks, UDP Flood attacks, and an urgent pomter | UDP flood, SYN and
flooder {445] (1) Designed to run on Windows operating systems PUSH+ACH
and has features such as an automatic updater via http or fip, flood
a checksum generator and more {(1v) Uses Trojan horse program
called Back Onfice for installation in the target host
LOIC [377) | (1) A powerful anonymous attacking tool via IRC (n) Operates in | TCP, UDP, TCP
three methods of attack TCP UDP and HTTP () Exists in two | UDP, HTTP flood
veisions binary version and web-based version HTTP

uses real-time DDoS attack data with four classes of attack scenarios, viz , constant
rate, mncreasing rate, pulsing ratc and subgioup attack (sce Figures 8 17, 8 18, 8 19

8 20 for classcs of DDoS attack scenarios) The CAIDA datasct contains 5 minutes
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Figure 8.15: TUIDS testbed network architecture with DMZ

(i.e., 300 seconds) of anonymized traffic from a DDoS attack on August 4, 2007.
This trace includes only attack traffic to the victim and responses from the victim;
nonattack attack traffic has been removed as much as possible. Finally, the TUIDS
DDoS dataset also contains different classes of attacks scenarios like CAIDA. The
TUIDS DDoS dataset contains six different attacks for generation and analysis of
near real-time DDoS attack detection. The list of attacks and generation tools
used by the TUIDS DDoS dataset is given in Table 8.8. We have chosen six most
powerful flooding attacks and launch them in the testbed. As the most attackers
use three different types of protocols (i.e., TCP, UDP, and ICMP) during sending
their malicious traffic to the target host or network. Hence, we use TCP, UDP
and ICMP protocol-based flooding attack during testing our proposed method in
near real-time in our testbed. These attacks are generated using openly available

standard DDoS attack generation tools.

Table 8.8: List of real-life attacks and their generation tools

Attack name

Generation tool

1.syn-flood
2.rst-flood
3.udp-flood
4.ping-flood
5.fraggle udp-flood
6.smurf icmp-flood

LOIC

Trinity v3
LOIC

DDoS ping v2.0
Trinoo

TFN2K
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Figure 8.17: DDoS attack scenarios from CAIDA: constant rate attack. X-axis denotes
intervals (seconds) and Y-axis denotes packets/tick (unit).
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Figure 8.18: DDoS attack scenarios from CAIDA: pulsing rate attack. X-axis denotes
intervals (seconds) and Y-axis denotes packets/tick (unit).

8.6.2 Experimental Results

To evaluate the performance of the proposed method, we initially sample the net-
work traffic into 10 second windows for each dataset. We identify the static IP

263



Chapter 8. Extended Entropy Metric-based Approach for DDoS Flooding
Attack Detection

Z.-.;w-s:cob« hmr" Swvie | Line Te : = Yiw a3 ume .
S m——— O
<l

Figure 8.19: DDoS attack scenarios from CAIDA: increcasing ratc attack. X-axis denotes
intervals (seconds) and Y-axis denotes packets/tick (unit).
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Figure 8.20: DDoS attack scenarios from CAIDA- subgroup attack. X-axis denotes
intervals (seconds) and Y-axis denotes packets/tick (unit).

packets and compute discrete probability distribution for each sample. The prob-
ability of IP packet distribution in three scenarios: (a) attack traffic, (b) normal
traffic, and (c) mixed traffic (contains both normal and attack traffic) are shown in
Figures 8.21, 8.22, 8.23, respectively.

We compute entropy using the extended entropy metric for each probability
distribution and average them for each sample. To test our proposed scheme, we
compute the extended entropy metric of different orders using o and compare with
Shannon entropy within a sampled period of legitimatc traffic and anomalous traffic.
Figure 8 24 presents the value of Shannon entropy and the extended entropy metric
for different orders . We consider order @ = 0 to 15 and vary the spacing between
legitimate traffic and attack traffic. It demonstrates that the proposed scheme

outperforms the use of Shannon entropy, espcecially in detecting DDoS flooding
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Figure 8.21: Probability distribution of IP addresses in normal traffic
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Figure 8.22: Probability distribution of IP addresses in attack traffic

attacks because it can obtain significant spacing between legitimate traffic and
attack traffic. It also shows that the extcnded entropy metric values gradually
increase along with the order o w.r.t. the traffic rate, which is almost linear. To
test our scheme globally, we test for each attack class discussed above. The results
are given in Figures 8.25, 8.26, 8.27, 8.28 for CAIDA datasct and Figurcs 8.29 and
8.30 for the TUIDS datasets. The proposed scheme performs very well in detecting
DDoS flooding attacks including DDoS attacks generated in our testbed.

We further compute the detection rate and false positive ratc based on the
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Figure 8.23: Probability distribution of IP addresses in mixed traffic (contains both
normal and attack traffic)
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Figure 8.24: EEM mctric values for normal and attack traffic with spacing in between

samples within a time interval. The results of our extended entropy metric and
ensemble of EEM in comparison to Shannon entropy is given in Figure 8.31. Our
detection scheme can effectively detect DDoS attacks with the least amount of false
alarms and performs well in comparison to several competing algorithms [379, 399,

410,428, 447].
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Size of Split Window Analysis

The size of monitoring window is decided based on the time taken for analysis of
traffic Throughout our experiment, we set the optimal split window size as t = 10
seconds, i.e., sub-sample window size The total time T = 300 seconds is taken
for each sample traffic during analysis. Due to huge amount of traffic, we took

minimum split window sizc for analysis and can detect DDoS attacks cffectively in

less time.
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Figure 8.28: CAIDA dataset: spacing between legitimate and anomalous traffic in
subgroup attack traffic

Selection of Minimum Features

Normally, there are several traffic features considered during network attack detec-
tion and requires more time to detect attacks. Therefore, we used three optimal
parameters such as source IP, destination IP and protocol to improve detection rate
significantly. These parameters is selected from the raw network traffic in enterprize

network.
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Figure 8.29: TUIDS dataset: spacing between legitimate and anomalous traffic in packet
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Figure 8.30: TUIDS dataset: spacing between legitimate and anomalous traffic in flow
level traffic

Threshold (w;,w;,w3) Analysis

In order to estimate the threshold values, we consider heuristic approach for each
threshold value identification In our experiment, we used three thresholds for
different levels such as w;, wy and ws, where w; 1s the threshold for local variations,
wo is the threshold for global variations and w; is the threshold for the selective
enscmble of extended entropy metrics for DDoS detection We obtain better results

while wq >= 0.0280, wy <= 15.6818 and w; >= 3 4301 in CAIDA DDoS dataset.
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But 1n casc of TUIDS DDoS datasct w; >= 001935 wy <= 11 2538 and w3 >=
27184

Information Entropy Analysis

In information cntropy analysis we have computed information entropy of order
a=0,12, 15 during our experiment However, we obtain maximum extended
entropy metric value 1n order & = 2 and mumimum 1n order &« = 1, 1e, Shannon
entropy So the difference between normal and attack traffic gets higher than that
the difference 1n Shannon entropy Also the global difference of EEM value between

two consecutive sub-sample 1s higher than that the difference in Shannon entropy

Peak Analysis

In peak analysis, we basically consider the maximum difference of extended entropy
metric value for the different attacks including (a) constant rate, (b) pulsing rate,
(c) mcreasing ratc and (d) subgroup attack in both CAIDA and TUIDS DDoS
datasets We obtain the peak value in case of CAIDA datasets (a) constant rate,
peak value = 6 26, (b) pulsing rate, peak value = 5 74, (c) increasing rate, peak
value = 12 72 and (d) subgroup attacks, pcak valuc = 90 01 (scc Figures 8 25, 8 26,
827 and 828) In TUIDS dataset, we obtain the peak value m (a) packet level,
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peak value = 12.48 and (b) flow level, peak value = 12 51 (see Figures 8 29 and
8.30). '

8.6.3 Discussion

To detect DDoS flooding attacks, it 1s useful to detect with a minimum number of IP
traffic features Many detection schemes usc the distribution of cither IP addresses
or IP packet sizes. The IP address-based method uses IP addresses and computes
the information entropy metric by computing the probability of each unique IP
addresses within a certain time interval. A bigger entropy valuc represents higher
randomness 1n the IP addresses Based on the distribution of IP addresses, it
estimates the change in information entropy metric difference between legitimate
traffic and anomalous traffic. We analyze our scheme using several real-life DDoS

attack datascts Our scheme has the following distinguishing features.

e The scheme can deteet anomalous traffic containing DDoS flooding attacks

with low false alarm ratc and low time complexaty.

e The detection scheme uses a minimum number of IP traffic features during

attack detection, which makes it morc cost-cffective

e The detection scheme is dependent on a minimum number of parameters.

8.7 Summary

In the beginning of this chapter, we presented an overview of DDoS attacks, a tax-
onomy, detection methods and tools. Then, we proposed an effective information
entropy metric known as the extended entropy metric that can detect DDoS at-
tacks with several attack scenarios. The experimental results demonstrate that the
proposed scheme works cffectively and stably in detecting DDoS attack traffic. It
magnifies the spacing between the legitimate traffic and attack traffic significantly,
which makes it easier to detect DDoS attacks. It also reduces the false alarm rate
significantly when detecting DDoS attacks. In addition, we extended our work to

usc an cnscmble of extended cntropy metrics for increasing detection rate in near
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real-time. The use of the ensemble of extended metrics also produces better results
during detection of DDoS attacks. We also show that our proposed extended en-
tropy metric-based DDoS attack detection scheme performs well in comparison to

traditional detection schemes.
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Chapter 9

Conclusions and Future Directions

This chapter summarizes the thesis with discussion of (a) the findings and the
contributions to the state-of-the-art in the disciplines covered by this work, and
(b) futurc work, thosc dircctions that our rescarch will undertake addressing open

issues that deserve further attention.

9.1 Summary of Research Contributions

With the explosive growth of the Internet during last two decades, Internet-based
attacks on large scale enterprise networks have grown rapidly. It is important to
keep sccure enterprise networks from these threats The main motivation of the
research conducted during this thesis is to monitor and analyze network traffic for

anomaly detection.

This thesis has mainly focused on applying data mining techniques in network
traffic monitoring and analysis to address the problem of efficient anomaly detection
and has cvaluated their performance using real world benchmark network intrusion
datascts. Summarized, the most important contributions of this thesis arc the

following.

e In Chapter 2, we present the anomalies in networks, taxonomy of network
based attacks, anomaly detection, and evaluation criteria. This chapter also
discusses definitions, causes, sources, types of anomalies in networks or hosts
and dctection approaches for anomaly detection with gencric architecture for

cach of them.
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e A structured and comprehensive review on network traffic anomaly detection,
methods, systems and tools has been reported in Chapter 3. It includes de-
tection methods and systems under six different categories, viz , statistical,
classification, clustering and outlier-based, soft computing, knowledge-based,
and combination learners. We also list common and relevant tools used by
both attackers and nctwork defenders during live network traffic capture, vi-

sualization and analysis

e In Chapter 4, we present a systematic approach towards generation of bench-
mark network intrusion datasets Three separate datasets are prepared using
the TUIDS testbed architecture. They are (1) TUIDS intrusion dataset, (ii)
TUIDS coordinated scan datasct, and (iii) TUIDS DDoS datasct Out of scv-
eral real world attacks, we have chosen and incorporated 28 attacks in prepar-
ing our datasets. We have been able to provide a path and a template that
ultimately leads to generate a dataset that reflects the appropriate amounts of
normality, anomalousness as well as rcalism  Our datascts demonstrate several
features including that (i) they are built by incorporation of latest network
scenarios with real network traffic, (ii) We extraction maximum amounts of
packet and flow level features during gencration of final datascts, and (iii)
They arc large in size to support cffective validation of the performance of

detection method.

e In Chapter 5 we initially examine the state-of-the-art of modern port scans
and detection methods. Next we introduce an adaptive outlier-based method
for coordinated scan detection In contrast to cxploring features for clus-
tering and visualization, AOCD uses random sample selection using a linear
congruential generator for distinct profile generation. We also propose an
outlier score function to test each candidate object to 1dentify coordinated
port scans using score values The method reports cach candidate object as
normal or coordinated port scan with respect to a user defined threshold It
is capable of detecting coordinated scans that have a stealthy and horizontal
or strobe footprint across a contiguous network address space. We test this

method using scveral real world datascts including the TUIDS coordinated
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scan dataset and KDDcup99 probe dataset. Due to non availability of similar
datascts from other sources, we usec the KDDcup99 probe datasct to evalu-
ate the method. Coordinated scans are performed in an 1solated environment,
combining network traffic traces with those collected from live networks. This
method achieves high detection accuracy and low false positive rate on var-
ious real life datascts in comparison to existing coordinated scan detection

methods.

In Chapter 6, we introduce an effective outlicr detection technique to iden-
tify anomalies in high dimensional network traffic datasets. It introduces
a tree-based subspace clustering technique to cluster large high dimensional
datascts The clustering technique arranges the data in depth-first manner
before applying our algorithm for network anomaly detection It also uses the
outlier score function to rank each candidate data object based on scores. The
key features of this technique are (i) It 1s able to successfully detect all outlier
cascs that we consider and (ii) It can usc any proximity measurc for the com-
putation of anomaly score. But choosing the threshold value is a difficult task
during network traffic anomaly detection. We choose this threshold based on
a heuristic approach. The performance of the proposed technique is assessed
using scveral datasets, viz, (i) synthetic, (1) UCI ML repository datascts,
(i) TUIDS intrusion dataset, (iv) TUIDS coordinated scan dataset, and (v)
KDDcup99 and NSL-KDD datasets. Our technique performs well compared

to similar algorithms.

Chapter 7 presents a trec-based subspace clustering technique for unsuper-
vised network anomaly detection in high dimensional large datasets. It gener-
ates the approximate number of clusters without having any prior knowledge
of the domain. We analyzed cluster stability for each cluster by using an en-
semble of cluster indices. We also introduce a multi-objective cluster labelling
technique to label each stable cluster as normal or anomalous The major
attractions of this method are' (i) TreeCLUSS does not require the number
of clusters apriori, (ii) It is free from the restriction of using a specific proxim-

ity mecasure, (iii) CLUSSLab is a multi-objcctive cluster labelling technique
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Chapter 9. Conclusions and Future Directions

containing an effective unsupervised feature clustering technique to identify a
dominant feature subset for cach cluster, and (iv) TrecCLUSS exhibits a high
detection rate and a low false positive rate, especially in casc of probe, U2R,
and R2L attacks Thus, we are able to establish the proposed method to be
superior compared to competing network anomaly detection techniques. We
also demonstrate that the results produced by our method are statistically

significant.

e Finally, in Chapter 8, we discuss an overview of DDoS attacks, generic archi-
tectures, detection schemes and tools. We use information entropy metrics
for DDoS flooding attack detection. We propose an extended entropy metric-
based victim-end scheme for detecting classcs of DDoS flooding attacks by
measuring the difference of the metric between legitimate traffic and attack
traffic. The method exploits a generalized entropy metric with packet inten-
sity computation over sampled traffic within a time interval. We also extend
the mechanism to an cnsemble of extended entropy metrics for increasing
detection rate in near real-time. The proposed scheme is evaluated using sev-
eral real world DDoS datasets and 1t outperforms competing schemes when
detecting classes of DDoS flooding attacks, viz , constant rate, increcasing rate,

pulsing rate and subgroup attack.

9.2 Future Work

Despite being well-investigated fields, the topics covered in this thesis are far from
being dead-ends. This final section 15 devoted to discuss possible continuations for

the rescarch carricd out in this thesis, some being part of our ongoing work.

e Even though several network intrusion datasets are available for the research
community, they lack comprchensivencss and completencss, and arc not avail-
able in the public domain Therefore, we provide a template toward generation
and preparation of benchmark network intrusion datasets. It is possible to
further extend the work by incorporating both low rate and high rate attacks

for all categorics of datascts
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9.2.

Future Work

Coordinated scan represent a community effort to reduce network bandwidth
when attempting to quickly ga;ﬁ the vulncrability information, helpful to
attackers We introduce an adaptive outlicr-based technique to deteet coordi-
nated scans. But its observations of scan activities are limited to the network
layer. So, 1t needs to be extended further to detect address resolution protocol

(ARP) bascd coordinated scanning, low-rate coordinated scans, and high rate

coordinated scans within stipulated time periods.

An outher-based network anomaly detection technique can play an important
rolc in identifying types of attacks We develop a distance-based outher de-
tection technique and apply it to anomaly detection. There 1s ample scope
still to develop a parameter free hybrid outlier detection technique for mixed
type data to cfficiently detect a larger number of attacks that combine both

distance and density features.

If a method can detect network traffic anomalies without using any domain
knowlcdge, it is known as an unsupervised method. Such mcthods always
generate large amounts of false alarms because they do not use appropriately
labeled data for training We introduce a completely unsupervised network
anomaly detection method. Developing a real-time unsupervised network

anomaly detection method for mixed-type data remains a challenging task.

Though we develop an information metric-based scheme to detect DDoS flood-
ing attacks, there are several open challenges to achicve real-time performance.
Hence we are planning to apply our outhier-based technique to detect DDoS
flooding attacks and also aim to extend our scheme with an effective IP trace-
back mechanism. Finally, we note that the development of low-rate DDoS
attack detection with an appropriate IP traceback technique is another open

problem
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