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Abstract 

WIth the enormous growth m netwOl k connectIVIty resultmg m hIgh bandwIdth 

Internet serVIces, and huge mcrease m the number of Internet-based applIcatIOns, 

network secunty IS becommg mcreasmgly Important Almost all computer systems 

~uffer from secunty vulnelabllItles whIch me economIcally co~tly and m1po~sIble to 

be solved by manufacturers alone Therefore the role of mtrUSIOn detectIOn systems 

as specIal purpose applIcatIOns to detect anomalIes and attacks m a network IS be­

commg very Important TradItIOnal mtrusIOn detectIOn systems are reactIve m the 

sense that they use a ~et of slgnature~ to IdentIfy malIcIOu~ traffic pattelI1s, the sIze 

of the sIgnature set grows as new vulnerabIlItIes are dIscovered Anomalv detectIOn 

systems are a category of mtrU5IOn detectIOn systems that act more proactIvely 

They denve a model of the normal ~y~tem behaVIOr and Issue almms whenever 

the behavIor changes, makmg a stable assumptIon that such changes are frequently 

caused by malIcIOUS or dIsruptIve events Anomaly detectIOn has been a field of 

mtense research over the years as It poses many challengmg problems Data mmmg 

techl1lques have plOven to be useful m effectIve IdentIficatIOn of anomalou~ baffic 

patterns 

The contllbutIOns of thI~ the~Is pel tam to the mea of network baffic anomaly 

detectIOn usmg data mmmg techl1lques ThIS theSIS has three parts mcludmg back­

ground and lIterature revIew a systematIc apploach to generate real-lIfe netwolk 

mtru5IOn datasets, and approaches fOl netvvOlk anomaly detectIOn In the first 

part, It pre~ent~ an overvIew of netwOlb attack a taxonomy and categolles of de­

tectIOn methods WIth archItectures, and an extenSIve reVIew of network anomaly 

detectIOn methods, systems and tools In the second part, It mtroduces a sys­

tematIc approach to generate real-lIfe netwOl h. mtl U~IOn data~et~ U~ll1g the TUIDS 

testbed archItecture such up-to-date datasets are useful for the network secunty 

research commul1lty to test detectIOn methods and systems In the thIrd part, 

thIS theSIS mtroduces approaches for network anomaly detectIOn It presents an 

outlIer-based approach by ll1troducll1g an outhel ~COle functIOn to lank each can­

dIdate object and report traffic patterns as normal or coordmated scan as early as 

pOSSIble ThIS theSIS mcludes a tree-based subspace clustenng techl1lque for hIgh 

dImenSIonal large dataseb It generate~ refelence pomts to e~tllnate outher score 
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values to detect large scale network anomalies. This thesis also includes an unsu­

pervised approach for network anomaly detection in large datasets with a focus on 

detection of known as well as unknown attacks without using any labelled traffic 

or signatures or training. The approach includes two algorithms, viz., TreeCLUSS 

and CLUSSLab. CLUSSLab is an effective cluster labelling technique to label each 

cluster based on a stable cluster set obtained from TreeCLUSS using multiple ob­

jectives. It also presents an effective unsupervised feature clustering technique to 

identify a dominant feature subset for each cluster, to be used for cluster labelling. 

Finally, this thesis includes an extended entropy metric-based DDoS flooding. attack 

detection approach to detect four classes DDoS attacks, viz., constant rate, pulsing 

rate, increasing rate and subgroup attacks. It can successfully identify the DDoS 

attacks by measuring the metric difference bet,veen legitimate traffic' and attack 

traffic using extended entropy metric. This approach also extends the mechanism 

to use an ensemble of extended entropy metrics for increasing detection rate in near 

real-time. The proposed techniques are validated using real-life datasets and have 

been found to perform well in comparison to competing algorithms. All network 

anomaly detection algorithms have been validated in terms of detection rate, false 

positive rate, ROC, precision, recall and F -measure. 

Keywords - Coordinated Scan, Outlier Detection, Port Scan, Anomaly Detec­

tion, DoS, Score, Cluster, Attack, Reference Point, Profile, DDoS, Intrusion 

Detection, Entropy Metric 
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Chapter 1 

Introduction 

With advancements in network technologies, Internet services have been undergoing 

constant growth in network traffic, accompanied by an increasing number of anoma­

lies such as Denial of Service (DoS) attacks, port scans, worms, virus exploits and 

misconfigurations. These anomalies represent a large fraction of the Internet traffic 

that is unwanted and prevent legitimate users from accessing network resources in 

an optimal manner. Therefore, detecting and dlagnosing these threats are crucial 

tasks for network operators to ensure that the Internet resources remain available. 

Because legitimate traffic must be able to travel efficiently, quickly and accurately 

identifying anomalies in network traffic is important, requires development of good 

detection techniques. Anomalies are patterns of interest to network defenders, who 

want to extract them from vast amount of network traffic data. Data mining tech­

niques have been popular in extracting these harmful patterns from large volumes 

of data in recent years Data mining is used in many application areas, e.g., the 

business world, medicmal sciences, physlcal sciences and engineering to make new 

discoveries. Extensive studies have been performed in applying data mining tech­

niques to network traffic anomaly detection, but the methods [11-13J have limita­

tions that notably discredit them from use in real environments. In this thesis, we 

explore the possibilities of applying data mmmg techniques in identifying network 

anomalies with significant performance improvement. 

1 



Chapter 1. Introduction 

1.1 Data Mining 

Data mmmg has gamed a great deal of attentIOn m the mformation mdustry and in 

the society as a whole in recent years due to the wide availability of huge amounts 

of data and the Immment need for turning such data mto useful informatIOn and 

knowledge. Based on Tan et al [14,15]' data mming is defined as follows 

Definition 1.1.1. Data mmmg ~s the process of automat~cally d~scovermg useful 

mformatwn m large reposztones Data mznzng technzques are deployed to scour large 

databases m order to find novel and useful patterns that mzght otherwzse remam 

unknown 

The term knowledge dIscovery in databases (KDD) refers to the process of con­

verting raw data into useful information or knowledge. Data mining is a step in the 

KDD process, and applies a variety algorithms for extracting patterns from data. In 

addition to this. the KDD process has additional steps including data preparatIOn, 

data selection, data cleaning, incorporation of appropnate prior knowledge, and 

proper interpretatIOn of the results of mining to ensure useful knowledge IS denved 

from the data 

1.1.1 Data Mining Tasks 

Based on how they work, data mining tasks are classified into different classes In 

general, data mining tasks are partitioned into two major categories: predzctzve and 

descnptzve. PredictIve mming performs mference on the current data m order to 

make future predictions Descriptive mining characterizes the general properties of 

the data and underlying relationships among them Some of the most important 

data minmg tasks [14,15] are discussed below. 

(a) Classzficatwn and Regresswn: Classification is the process of classifying a data 

instance into one of several predefined categorical classes based on the trammg 

set containing known observations. A regression task begins with data instances 

in which the target values are known The relationshIps between predictors and 

the target are summarized in a regression model that can be applied to different 

data instances m which the target values are unknown. 
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(b) Cluster A nalysis: Cluster analysis seeks to find groups of closely related data 

objects based on relationships among them. The greater the'similarity within a 

group and the greater the difference between groups, the better is the clustering. 

(c) A ssociation A nalys2s: Association analysis is the task of efficiently discovering 

the most important and the most strongly associated feature patterns in data. 

The discovered patterns are represented in the form of implication rules. 

(d) Evolution Analysis: Data evolution analysis describes and models regularities 

or trends in objects whose behavior changes over time. 

(c) Outlier Detection: Outlier detection refers to recognizing those observations 

whose characteristics are significantly different from the rest of the data. These 

observations are known as outliers. 

We concentrate on three major tasks in data mining viz., clustering, classifi­

cation and outlier mining for identification of network traffic anomalies. Recently, 

there has been a realization that data mining can have significant impact on net­

work security, especially network traffic analysis. Because most security systems 

are developed based on the interestingness of traffic patterns, it is important to 

discover interesting patterns correctly from large datasets as well as analyze them 

using effective data mining techniques. Data mining can detect known as well as 

unknown attacks. 

1.2 Modern Networks and The Internet 

A network is a group of systems that are connected to allow sharing of resources 

including files, printers or storage media, and sharing of services including basic 

Internet connection. There are two main aspects to setting up a network: (a) the 

hardware used to connect the systems together and (b) the software installed on 

the hosts to allow them to communicate [16]. A typical view of a large network 

with a demilitarized zone (DMZ)l is given in Figure 1.1. 

I Demilitarized zone is a network segment located between a secured local network and unse­
cured external networks (Internet). DMZ usually contains servers that provide services to users 
on the external network, such as web, mail, and DNS servers, which must be hardened systems. 
Two fircwalls arc typically installed to form the Dl'vlZ. 
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Figure 1.1: A typical view of an enterprise network with DMZ 
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A typical network involves several hosts connected through network devices 

and users to share data and resources with each other. A device or system that 

is connected to the network is known as a host. The workstation is a general 

purpose host with high end configuration for technical and scientific applications. 

The sever is a special host that contains more disk space and memory than are 

found on clients (i.e., hosts, workstations). A sever has special software installed 

that allows it provide the intended function. It provides services such as file and 

print services, serving 'Neb pages to clients, controlling remote access and security to 

clients. The Internet is the world wide network of computers accessible to anyone 

through protocols such as HTTP, FTP or SMTP. Day by day we have become 

increasingly dependent on the Internet as users. We present statistics of the worlds 

Internet users in Figure 1.2, as reported by the International Telecommunication 

V nion (lTV) 1 . 

Network vulnerabilities are the inherent weaknesses in the design, configuration, 

or implementation of a computer network that renders it susceptible to a security 

threat. The growth of network vulrierabilities as reported in [17] is shown in Fig­

ure 1.3. Threats may arise from exploitation of design flaws in the hardware and 

software of computer network systems [18]. Systems may also be incorrectly config-

1 http://www.itu.int/en/Pagcs/dcfault.aspx 
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Figure 1.2: The growth of world·s Internet users 

ured, and therefore vulnerable to attack. The vulnerabilIties of this kind generally 

occur from inexperience, insufficient training, or half done work. Another source 

of vulnerability is poor management such as inadequate procedures and insufficient 

checks of the network systems. 

1.2.1 Network Anomalies and Detection 

AnomalIes are instances III data that do not conform the normal behavior. The 

instances are also known as objects, points, events, vectors, or samples. Anomalies 

in network can be defined as any network events or operations that deviate from 

normal network behavior. They happen due to the growing number of network 

based attacks or intrusions. The recent growth of Internet threat agents l is given in 

Figure 1.4. Network threats may occur due to many reasons including: (i) malicious 

activities that interpret normal network services, (ii) network overload, (iii) device 

malfunctioning, and (iv) compromIses in different network parameters. 

Anomaly detection attempts to find patterns in network traffic data, which 

1 http://www.verizon.com/cntcrprisc/databrcach 
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do not conform to expected normal behavior. The importance of anomaly detec­

tion is due to the fact that anomalies in data translate to significant (and often 

critical) actionable information in a wide variety of application domains [19]. For 

example, an anomalous traffic pattern in a computer network could mean that a 

hacked computer is sending out sensitive data to an unauthorized host. Anoma­

lies in a network may be caused by different reasons. As stated in [18]' there are 

two broad categories of network anomalies: (a) performance related anomalies and 

(b) security related anomalies. Various examples of performance related anoma­

lies are: broadcast storms, transient congestion, babbling node, paging across the 

network, and file server failure. Security related network anomalies may be due to 

malicious activities of the intruder(s) by intentional flooding of the network with 

unnecessary traffic to hijack the bandwidth so that legitimate users are unable to 

receive service(s). However, our thesis is concerned is with security related network 

anomalies only. Currently, anomaly based network intrusion detection is the most 

successful intrusion detection technique. It is currently a principal focus of research 

and development in the field of intrusion detection. Various systems with ANIDS 

(Anomaly based Network Intrusion Detection System) capabilities are becoming 

available, and many new schemes are being explored. However, the subject is far 

from mature and key issues remain to be solved before wide scale deployment of 

ANIDS platforms becomes practicable. 

Advances in networking technology have enabled us to connect distant corners 

of the globe through the Internet for sharing information in the vast. However, 

along with this advancement, threats from spammers, attackers and criminal enter­

prises are also growing in multiple speed [1l]. Normally, an intrusion attempts to 

compromise the confidentiality, integrity, or availability of a system, or to bypass 

the security mechanisms of a host or a network. As a result, security experts use 

intrusion detection technology to keep secure the infrastructure of large enterprises. 

An intrusion detection System (IDS) is defined [20] as follows. 

Definition 1.2.1. An Intruswn Detectwn System momtors the events occurring in 

a computer system or a network 'and analyzes them for signs of intrusions. 

Intrusion detection systems are divided into two broad categories: misuse de­

tection [21] and anomaly detection [22] systems. M~suse detection can detect only 
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known attacks based on signatures they have created and stored Thus, dynamic 

signature updation is important and as a result new attack defillltions are frequently 

released by the IDS vendors. However, misuse based systems cannot cope with the 

rapidly growmg numbcr of vulncrabditics and exploits On thc other hand. anomaly 

based detection systems are designed to capture any devIation from the profiles of 

normal behavior. They are more suitable than misuse detectIOn for detecting un­

known or novel attacks without any prior knowlcdge. But normally such systems 

generate a large number of false alarms. 

Therc arc four commonly used machine learnmg approaches for detecting in­

trusions or anomalies in network traffic [12]· (i) supervised, (II) semi-supervised, 

(iIi) unsupervised and (JV) hybrid. In the supermsed approach [23-25]' a predictive 

model is developed based on a traming dataset that contams normal and attack 

data instances Any unseen data instance is compared against the model to de­

termme which class it belongs to In the semz-supervzsed approach [26-28]' the 

trainmg data instances contam only the normal class. Data instances are not la­

beled for the attack class. There arc many approaches used to budd the model for 

the class corrcsponding to normal behavior. This model is used to identify anoma­

lies in the test data. In the unsupervzsed approach [7,29-31], the model does not 

require any traming data, and thus are potentIally most wIdely applicable. Finally, 

the hybrzd approach [32-34] normally exploits the features of all of the above to 

get effectIve and efficient performance in detectmg network anomalies on a large 

scale Also, these techniques make the implicit assumption that normal instances 

are far more frequent than anomalies in the test data. If this assumption IS not true, 

such techlllques suffer from high false alarm rates. In the first two cases, it requires 

training on the instances for finding anomalies But getting a large amount of la­

belled normal and attack training instances may not be practical for a particular 

scenario. Again, to generate a set of true normal instances with all the varIations is 

an extremely difficult task. Hence, this thesis develops some effectIve and excellent 

network traffic anomaly detection methods to detect known as well as unknown 

attacks with high detection rate and low false positIve rate while compared with 

competmg methods. 
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1.3 Open Issues in Network Anomaly Detection 

Network anomaly detectIOn has become mcreasmgly necessary m recent years due 

to the prolIferatIOn of Internet-based attacks The dIscovery of promlsmg methods 

for detectmg unknown attacks have made It effectIve as well It IS one of the most 

Important mfrastructure secunty mechanIsms for an enterpnse network An mtru­

slon IS a set of actIOns aImed to compromIse the computer secunty goals such as 

confidentlahty, mtegnty and avaIlabIlIty of resources Anderson whIle mtroducmg 

the concept of mtruslOn detectIOn [35] m 1980 defined an mtruslOn attempt or a 

threat to be the possIbIlIty of a dell berate unau thonzed attempt to ( a) access 

mformatlOn, (b) manIpulate mformatlOn, or (c) render a system unrelIable or unus­

able For example (a) Demal of Sermce (DoS) attack attempts to starve a host of 

Its resources, whIch are needed to functIOn correctly durmg processmg (b) Worms 

and mruses explOlt other hosts through the network, and (c) Compromzses obtam 

pnvlleged access to a host by takmg advantages of known vulnerabIlItIes 

Due to the volummous nature of network traffic data It IS Important to an­

alyze the data usmg standard hIgh dImensIOnal data analysmg technIques So, 

data mmmg approaches are most useful and apphcable m thIs area Most eXlst­

mg Network IntrUSIOn DetectIOn Systems (NIDSs) have been found madequate m 

detectIng the growmg number of novel attacks However anomaly based NIDSs 

have been somewhat successful m detectIng both known as well as unknown at­

tacks m normal sy~tems or m network traffic But they generate hIgh false alarm 

rates IrrespectIve of any network scenanos ApplIcatIOns of data mmIng m Improv­

mg secunty mclude mtruslOn detectIOn, cyber attack detectlOn, cnmmal detectIOn, 

blOmetnc authentIcatIOn, etc Several data mmmg technIques such as clustermg, 

clasSIficatIOn, associatlOn analYSIS and anomaly detectlOn have been useful m dIS­

covermg relevant knowledge from data sources for detectmg novel attacks Hence, 

we concentrated on applymg data mmmg techmques to network anomaly detectIOn 

to dIscover known as well as unknown attackb The followmg IS a lIbt of research 

Issues and objectIves for our thesIs as we worked towards an effectIve solutIOn 

• A NIDS must be tested and evaluated usmg real tIme labelled network traffic 

traces WIth a comprehenSIve and extensIve set of mtruslOn or attack data 
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before deploying in any real world environment. This is a significant challenge, 

since availability of such datasets is low. Therefore the generation of a real-life 

network intrusion dataset is something that remains to be addressed. 

• Due to the lack of availability of labeled datasets for training or validation of 

the models, most attack detection approaches produce high false alarm rates. 

Thus, minimization of the false alarm rate is a problem that must be tackled. 

• With the evolving nature of networking technology and with the constant 

effort of attackers to launch newer attacks, existing IDSs are non-adaptive 

and hence inadequate in handling known as well as unknown attacks. 

• The voluminous size of network traffic and the constant changes in traffic 

patterns as well as the presence of noise in the audit data make the task of 

building profile or signature for normal network traffic a daunting task. 

• Network traffic is composed of a large amount of data. If security models 

generate profiles for normal as well as attack traffic, it is a challenge to update 

online signature databases dynamically. 

• Logic applicable to normal attack identification may not be useful in identi­

fying attacks that are rare. 

• Assumptions related to statistical distribution of normal and attack traffic 

may not be valid in detection of Distributed Denial of Service (DDoS) attacks. 

1.4 Contributions 

In this thesis, we apply data mining techniques to network traffic anomaly detection. 

We also evaluate these techniques. In addition, we prepare new network intrusion 

datasets by incorporating several real world attacks. The main contributions of this 

thesis are as follows. 

• A detailed literature survey has been carried out on applications of data min­

ing techniques to network traffic anomaly detection under six major cate­

gories. It includes detection methods, systems and popular tools found in 
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this domain. We have identified several common pitfalls in network anomaly 

detection and compared different systems and' tools. 

• A systematic method for network intrusion dataset preparation is introduced. 

We have prepared three datasets, viz., (a) TUIDS intrusion dataset (b) Co­

ordinated scan dataset and (c) DDoS flooding attack dataset. These datasets 

are used for performance evaluation of the proposed methods in addition to 

the benchmark network intrusion datasets. 

• We present an adaptive outlier-based coordinated scan detection approach to 

detect malicious scans at an early stage. It exploits linear congruential gen­

erators to select random normal samples from the whole dataset for training 

purpose. We introduce an outlier score function to rank each candidate data 

object with respect to the profiles and report as normal or outlier. The profiles 

is built using the clusters obtained from fuzzy c-means clustering technique. 

This method is evaluated using benchmark and real-life datasets. 

• A clustering and outlier-based approach for network anomaly detection is 

proposed. To support the anomaly detection process, we introduce a tree­

based clustering algorithm to generate a set of reference points. Finally, it uses 

our outlier score function to test each candidate object to identify network 

anomalies using estimated score values. This approach is evaluated using 

benchmark and real-life datasets. 

• An unsupervised approach for network anomaly detection is introduced for 

high dimensional large network traffic datasets. We introduce an unsupervised 

tree-based subspace clustering technique with a cluster stability measure. We 

also propose a cluster labelling technique to label each cluster as anomalous or 

normal. Benchmark and real-life datasets are used for performance evaluation. 

• Finally, we propose an extended entropy metric-based approach for detecting 

all possible scenarios of DDoS flooding attacks. It estimates extended entropy 

metric based on Renyi's generalized entropy with packet intensity computa­

tion over a sampled network traffic. In addition, we combine the selective 

order of extended entropy metric to improve the detection accuracy in near 
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real-time This method IS evaluated using benchmark and real-life datasets. 

In addition, we provide a detaIled review of DDoS attacks, taxonomy, detec­

tIOn methods and popular tools. 

1.5 Outline of the Thesis 

The thesis structure closely follows the research issues Identified. Figure 1 5 presents 

a sketch of the thesis outline, where the chapters have been grouped according to 

tOPIC and the research contributIOns. The remainder of this thesis is therefore 

organized as follows. 

; 

I 

Introduction Network Data Network TrafficAnomaly Detection- Conclusions 

I 
I 

:88 Ch
.
3 ~ 88~8 B \ _____________ ,, _______ ~, ____________________ ,, _______ ;1 

I 
Contnbutlons 

Figure 1.5: Thesis structure 

I 

• Chapter 2 provides the background informatIOn needed for the research pre­

sented m this thesis. The chapter covers three topics: anomalies in networks, 

anomaly detection and evaluation of such techl1lques, and network attacks in 

the form of a taxonomy. 

• Chapter 3 presents a structured overvIew progress so far in the field of network 

anomaly detection. It includes network anomaly detection methods, systems 

and tools in a taxonomy 

• In Chapter 4, we discuss several real-life network intrusion datasets that are 

normally used for evaluation of network anomaly detectIOn methods or sys­

tems. We present a systematIc method to prepare real-life network mtrusion 

datasets by incorporating several attacks. 

• Chapter 5 initially presents a review on port scan and their detection methods. 

Then we propose an adaptive outlier-based approach for coordinated scan 
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detection and also to detect malicious scans at an early stage We introduce 

an outlier score function to rank each candidate data object with respect to 

the profiles. The profiles are bUIlt usmg the clusters obtained from fuzzy c­

means clustering technique The effectiveness of thIS approach is evaluated 

using coordinated scan dataset dIscussed in Chapter 4 and benchmark scan 

dataset. 

• In Chapter 6, a clustering and outlier-based approach for network traffic 

anomaly detection is presented. To support the anomaly detection process, 

we mtroduce a tree-based clustering algorithm to generate a set of reference 

points. Finally, it uses our outlier score function to test each candidate object 

to identify network anomalies using estimated score values. The proposed 

technique is validated using several real-life and benchmark datasets 

• Chapter 7introduces an unsupervised approach for network anomaly detection 

to detect known as well as unknown attacks without any prior knowledge. 

We propose an unsupervIsed tree-based clustering technique with a stability 

measure and a clustering labelling technique based on multiple objectives 

to label each cluster followed by clustering. This method is validated using 

several real-life datasets to detect known as well as unknown attacks. 

• Chapter 8 initially evaluates the performance of different information entropy 

metric. viz, Shannon entropy, generalized entropy, and Renyi's entropy to de­

tect DDoS flooding attacks We propose an extended entropy metric-based ap­

proach for detecting all pOSSIble scenanos of DDoS flooding attacks at victim­

end and extended to selective ensemble to improve the detection rate. This 

approach is validated using several real-life datasets. 

• Finally, this thesis is concluded in Chapter 9 summarizing the work described 

in detail in the previous chapters The chapter also presents future research 

directions in the network anomaly detection domain. 
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Chapter 2 

Background 

This chapter includes three parts, VIZ., basics of network anomalies, detection of 

such anomalies and evaluation criteria for detection methods. It presents definition, 

causes, sources, types of anomalies in network or host and detection approaches. 

We also discuss common evaluation criteria to measure performance of network 

anomaly detection methods or systems and concludes with a summary. 

2.1 Anomalies in N etwor k 

Anomalies are instances in data that do not conform the normal behavior. The 

instances are also known as objects, points, events, vectors, or samples. Anomalies 

in network can be defined as any network events or operations that deviate from 

normal network behavior. They may occurs due to several reasons including (i) 

malicious activities that interpret normal network services, (ii) network overload, 

(iii) device malfunctioning, and (iv) compromises in different network parameters. 

Network anomalies are broadly categorized into two types [18J (a) performance 

related anomalies and (b) security related anomalies. We discuss each of them with 

sources and causes in details. 

2.1.1 Performance Related Anomalies 

These anomalies normally result in network or system failures or performance degra­

dation. Typical examples of performance related anomalies are: file server failures, 

paging across the network, broadcast storms, babbling node, and transient con-
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gestion Performance related anomalies may occur due to v1tlnerabzhtzes involved 

in a network or a system In a network based system, vulnerabilitIes are mher­

ent weaknesses m the deSIgn, ImplementatlOn and management of the system, that 

render the systems susceptIble to a threat [36]. It is not possible to list definite 

sources of network based system vulnerabilities Most common sources of network 

vulnerabilities are pointed out below. 

(a) Poor deszgn: Lack of appropriate design in a hardware and software system 

may lead to threat to the system For example, the sendmail flaw m earher 

verSlOns of UNIX enabled hackers to gain privileged access to the system. 

(b) Incorrect zmplementatzon. Incorrect or erroneous configuration of the system 

may also lead to vulnerabilities due to lack of inexperience, insuffiCIent tram­

ing, or sloppy work. For example, configuring a system that does not have 

restricted-access priVIleges on system files, may allow these files to be altered 

by unauthonzed users. 

(c) Poor securzty management: Use of madequate management of procedures are 

another sources of network vulnerabilities. For example, lack of guarantee that 

security procedures are being followed and that no single person has total con­

trol of a system. 

(d) Internet technology vulnerabzlzty: Internet technology has been and contmues 

to be vulnerable There are reports of all sorts of loopholes, weaknesses, and 

gaping holes in both software and hardware technologies every day by. Such 

vulnerabihties have led to attacks such as CodeRed worm, Slammer worm, etc. 

(e) The nature of mtruder actzV2ty: Hacker technologies are developing faster than 

the rest of the technology and are flourishing. For example, W32/ M 7Jdoom .n@M 

M!1812A23B5D92 is a new malware threat l . 

(f) The dzfficulty of fixmg vulnerable systems: It is often difficult to fix a vulnerable 

systems within stlpulated tlme period. There is concern about the ability of 

system administrators to cope with the number of patches issued for system 

1 http://www.mcafcc.com/us/mcafec-labs.aspx 
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vulnerabilities. As the number of vulnerabilities nses, system and network 

administrators face a more difficult situation. 

(g) Social engineering: Social engineering involves a hacker's use of psychological 

tricks on legitimate users of a computer system, in order to gain information 

such as username arid password that one needs to enter into the system. So, 

social engineering can be easily used to transfonn a critical security hole to a 

potential threat. 

Thus, there are many causes for traffic anomalies which arise when attackers 

exploit network-based vulnerabilities. They are difficult to fix in real-time. Some 

of vulnerabilities are: network configuration, hardware, parameter, logging and 

monitoring, communication and wireless vulnerabilities. In this subsections we 

have discussed performance related network anomalies, possible sources and causes 

of network vulnerabilities. Security related anomalies is our prime focus in this 

thesis, discussed below. 

2.1.2 Security Related Anomalies 

Security related anomalies occur while the network traffic does not follow normal 

behavior. Network attack categories include denial of service (DoS), distributed 

DoS, probe, user to root, remote to local and coordinated scan attacks. The main 

causes of network attacks or intrusions are malicious entities, who hijack network 

bandwidth by flooding the network with unnecessary traffic, thus starving other 

legitimate users. Malicious activities in a network is of various types such as point 

anomaly, contextual anomaly and collective anomaly [37], we describe each of them 

below. 

(a) Point Anomalies: An instance of an individual data which has been found to be 

anomalous with respect to the rest of data then it is known as point anomaly. 

For example, credit card fraud. 

(b) Contextual Anomalies: A data instance which has been found anomalous in 

a specific context is known as contextual anomaly. Context is induced by the 

16 



2.2. Attacks on Networks 

structure in the dataset. Two sets of attributes are used for defining a context 

(i) contextual, and (ii) behavioral attributes. 

(c) Collectwe Anomalzes: A collection of related data instances found to'be anoma­

lous with respect to the entire dataset are called Collective Anomalies. A collec­

tion of events is an anomaly but the individual events are not anomalies when 

they occur alone in the sequence. 

We illustrate each type of anomaly in terms of fraudulent credit card transac­

tions given in Figure 2.1. 
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Figure 2.1: Illustration of point, contextual and collective anomaly 

2.2 Attacks on Networks 

A network attack exploits the vulnerability of a computer or network, and attempts 

to break into or compromise the security of the system. One who performs or at­

tempts an attack or intrusion into a system is an attacker or intruder. Anderson [35] 

classifies attackers or intruders into two type::;: external and internal. External in­

truders are unauthorized users of the system or machines they attacked, whereas 

internal intruders have permission to access the system, but do not have privileges 

to access the system as root or superuser. Internal intruders are further divided 

into masquerade mtruders and clandestme intruders. A masquerade intruder logs 
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in as another user with legitImate access to sensitive data whereas a clandestzne zn­

truder, the most dangerous, has the power to turn off audit control for themselves. 

An attack or mtruslOn is perpetrated by an inside or outsIde attacker of a system 

to gain unauthonzed entry and control of the security mechanism of the system. 

2.3 Precursors to an Attack 

The precursors to an attack are a series of events used to trigger an attack. A 

network attacker executes a series of steps to achieve the desired goal The order 

and duration of these steps is dependent on several factors including the attacker's 

skill level, the type of vulnerability to exploit, prior knowledge, and starting location 

of the attacker. An attacker generally follows the steps shown in Figure 2.2 while 

launching an attack 

Perform ReconnaIssance 

Scan Enumenition Services 

,launch Attack 

Gain Access 

Gain Root Pnvileges 

Maintain Access 

Placement of Backdoors 

Figure 2.2: Steps in performing an attack 

Perfor;rmng reconna~ssance means that the attacker uses certain techniques to 

gather information about the strength and positioning of enemy forces using scan­

nzng and enumeratIOn of serv~ces. Once the vulnerabilities are identIfied, the at­

tacker attempts to exploit them when launching the attack. The attacker can gain 

access as a user and then as root user to a system. Finally, to place backdoors on 

the system for further exploits, the attacker mazntams access and cleans up any 

evidence left 111 the system. 
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2.4 Taxonomy of Network Attacks 

An attack or mtruslOn IS a sequence of operatlOns to place a backdoors for explOlta­

tlOn m a network or a computer system Several network attack taxonomieS are 

available m hterature [38-41] The taxonomy of mtruswns or attacks [42,43] m 

computer systems that we adopt IS summanzed m Table 2 1 

Table 2.1: Taxonomy of computer attacks characten5tlcs and examples 
Attack Charactenst,cs Example 
name 
V,rus (I) A self replicating program that Infects the system wIthout any kllowledge Tnvlal 88 D, 

or permIssIon from the user (II) Increases the infectIOn rate of a network Polyboot B, 
file system If the system IS accessed by another computer Tuareg, 

Worm (I) A self rephcatmg program that propagates through network servIces On SQL Slam-
computer systems WIthout user interventIOn (II) Can hIghly harm network mer, Mydoom, 
by consummg network bandwIdth CodeRed Nlmda 

Trojan (I) A malicIOus program that cannot rephcate Itself but can cause serious Mall Bomb, 
secunty problems In the computer system (II) Appears as a useful program phlshlng attack 
but m reahty It has a secret code that can create a backdoor to the system, 
allOWing It to do anythmg on the system easIly, and can be called as the 
hacker gets control on the system WIthout usel permIssIon 

Demal of (I) Attempts to block access to system or netwOI k resources (II) The loss Buffel ovelftow, 
selVlce of servIce IS the mablilty of a paltlculal netwOlk 01 a host serVIce, slIch as ping of death 
(DoS) e-maIl to functIOn (111) It IS Implemented by eIther forcmg the targeted (PoD), TCP 

compllter(s) to reset, or consuming resources (IV) Intended users can no SYN, smurf, 
longer commUnIcate adequately due to non-avaIlabIlity of servIce or because teardrop 
of obstructed commUnIcatIOn medIa 

Network (I) Any process used to mahclOusly attempt to compromIse the secunt) Packet injectIOn, 
Attack of the network rangmg from the data hnk layer to the apphcatlOn layer by SYN flood 

vanous means such as manIpulatIOn of network protocols (Il) Illegally uSing 
user accounts and priVIleges, performmg actIons to delete network resources 
and bandWIdth, performing actIOns that prevent legItImate authonzed users 
from accessing network servIces and resources 

PhYSIcal An attempt to damage the phYSIcal components of networks or computers Cold boot, evll 
Attack maId 
Password A,ms to gain a password WIthin a short penod of tIme, and IS usually md,- DIctIOnary 
Attack cated by a senes of login faIlures attack, SQL 

injectIOn attack 
InformatIon Gathers mformatlOn or finds known vulnerablhtles by scannmg or plobmg SYS scan, FIN 
Gathellng computers or networks scan, XMAS 
Attack scan 
User to (I) It IS able to explOIt vulnerablhtles to gam pllvtleges of superuser of the Rootklt, load-
Root system while starting as a normal user On the system (II) VulnerabilItIes module ped 
(U2R) mclude SnIffing passwords, dIctIOnal"), attack, 01 SOCIal engmeel mg 
attack 
Remote (I) Ablhty to send packets to a remote system ovel a network WIthout haVing \'1arelchent, 
to Local any account on that system, gain access eIther as a user or as a root to ware.lmaster 1 

(R2L) the system and do harmful operatIOns (II) Performs attack agamst pubhc Imap ftp_wnte, 
attack servICes (such as HTTP and FTP) Or during the connectIOn of protected multIhop, phf, 

servICes (such as POP and IMAP) spy 
Probe (1) Scans the networks to IdentIfy valid IP addresses and to collect mforma- IPsweep, 

tlOn about host (e g, what servICes they offer, operatmg system used) (II) portsweep 
PrOVIdes mformatlOn to an attacker WIth the list of potentIal vulnerabIlitIes 
that can later be used to launch an attack agamst selected systems and 
serVICes 

Network attacks are also clasSIfied as actzve and passzve ActIve attacks employ 

more overt actlOns on the network or system They can be much more devastatmg 

to a network. But pasSIve attacks me deSIgned to momtor and record traffic on the 

19 



Chapter 2. Background 

network They are usually employed for gathering information that can be used 

later in active attacks. They are very difficult to detect, because there is no overt 

activity that can be monitored or detected. Examples of passIve attacks are be 

packet sniffing or traffic analysis. 

2.5 Traffic Monitoring and Analysis 

Network traffic monitoring is usually performed at the intra-domain level in every 

large-scale autonomous system (AS) because the network topology is completely 

known and the AS is under the control of a single network operator, who can there­

fore mampulate his network and traffic without restrictions [44]. So, we deploy 

the monitoring systems in the intra-domam Internet to capture, analyze and de­

cide whether an instance is normal or anomalous A view of a monitoring system 

deployment with DMZl is shown in Figure 2.3. 

I 
I 

I 
I , 

\ 
\ 
\ 

Attacker Attacker 

I 
I • , , 

DMZ 

~~,~, 
Anacker CITent client 

Figure 2.3: A typical view of mOl1ltoring system deployment with DMZ 

I , 
I 

1 A demilitarized zone IS iI. network segment located between a secured local network and unse­
cured external networks (Internet). A DMZ usually contams servers that proVide services to users 
on the external network. such as Web, mail, and DNS servers. These servers must be hardened 
systems. Two firewalls arc tYPically installed to form the DMZ. 
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2.6 Detection of Anomalies 

Network anomaly detectIOn IS crucial for securing a network or a host. It allows for 

timely mitigatIOn of anomalous traffic instances. Anomalieti may be caused due to 

many reasons as discussed above Specifically, security related anomalies occur due 

to malIcious activIty (e g , scanning, denial of service, and probe) initiated by the 

attackers or mtruders at dIfferent times. It leads to failure or misconfiguration of a 

network or a host A network anomaly detection system is mtroduced to capture, 

analysis and report alarms when an anomaly is detected and update the profiles of 

normal as well as attack instances. 

2.6.1 Anomaly-based Network Intrusion Detection System 

(ANIDS) 

An ANIDS is a system for detectmg network anomalies by momtoring network 

traffic and classifying them as either normal or anomalous The classification is 

based on heurIstIcs, rather than patterns or signatures, and attempts to detect any 

type of anomalies that falls out of normal system operation. It is able to detect 

known as well as unknown attacks without any prior knowledge. 

2.6.2 Classification of ANIDSs 

Intrusion detectIOn has been studied for almost 20 years Intrusions can be detected 

because an intruder's bchavior IS noticeably different from that of a legitimatc uscr. 

In addition, many unauthorized actions are detectable [45] ANIDSs are deployed 

as a second line of defense along with other preventive security mechanisms, such 

as user authentIcatIOn and access control ANIDSs is classified mto two types based 

on thcir deployment in real time. 

A host based IDS (HIDS) monitors and analyzes the internals of a computing 

system rather than Its external interfaces. It monitors all or parts of the dynamic 

behavior and the state of a computer system [46] A HIDS might detect internal 

activity such as which program accesses what resources and attempts illegitimate 

access. An example IS a word processor that has suddenly and inexplicably starts 
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modifying the system password database. Similarly, a HIDS might look at the state 

of a system and stored informatlOn whether it is in RAM or in the file system or in 

log files or elsewhere. One can think of a RIDS as an agent that monitors whether 

anything or anyone internal or external has circumvented the security policy that 

the operating system tries to enforce. 

A network based IDS (NIDS) deals with detecting intrusions in network traffic. 

Intrusions typically occur as anomalous patterns. Some techniques model the net­

work traffic in a sequential fashion and detect anomalous sub-sequences [46]. The 

primary reason for these anomalies is attacks launched by outside attackers who 

want to gain unauthorized access to the network to steal information or to disrupt 

the network. 

In a typical setting, a network is connected to the rest of the world through the 

Internet The NIDS reads all incoming packets or flows, trying to find suspicious 

patterns For example, if a large number of TCP connectlOn requests to a very large 

number of different ports are observed within a short time, one could assume that 

there IS someone committing a 'port scan' at some of the computer(s) in the network. 

Various kinds of port scans, and their launching tools are discussed m detail in [5J. 

Port scans mostly try to detect mcommg shell codes m the same manner that an 

ordinary intrusion detection system does. In addition to mspecting the incoming 

network traffic, a NIDS also provides valuable informatlOn about intrusion from 

outgomg as well as local traffic. Some attacks mIght even be staged from inside of 

a monitored network or network segment, and therefore, not regarded as incoming 

traffic at alL The data avaIlable for intrusion detection systems can be at different 

levels of granularity, e.g, packet level traces, and IPFIX records. The data is high 

dimensional, tYPically, with a mix of categorical and contmuous attributes, 

Misuse-based intrusion detection normally searches for known intrusive patterns 

but anomaly based intrusion detection tries to identify unusual patterns. Today, re­

searchers mostly concentrate on anomaly based network intrusion detection because 

it can detect known as well as unknown attacks. 

There arc several reasons that make intrusion detection a necessary part of 

the entire defense system. First, many traditional systems and applications were 

developed without security in mind. Such systems and applrcatlOns were designed to 
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work III an environment, where secunty was never a major Issue However, the same 

systems and applIcatIOns when deployed III the current network scenano become 

major secunty headaches FOl example, a ::,y::,tem may be perfectly ::,eCUle when It 

IS Isolated but becomes vulnerable when It IS connected to the Internet IntrusIOn 

detectIOn provIdes a way to Identlfv and thus allow response to attacks agamst 

these systems Second due to hmitatlOn::' of mformatlOn secunty and software 

engmeenng practices, computer systemt> and applIcatIOns may have desIgn flaws 

or bugs that could be used by an Illtruder to attack systems or applIcatIOns As 

a result certam preventIve mechalllsms (e g firewalls) may not be as effective as 

expected IntrUSIOn detectIOn techmque::, are clab::'Ified mto three type::, bat>ed on the 

detectIOn mechalllsm [37,47,48] ThIS claSSIficatIOn scheme IS descnbed below 

(a) Mzsuse-based ThiS detectIOn IS bat>ed on a ::,et of rules 01 SIgnatures for known 

attacks and can detect all known attacks based on reference data How to wnte 

a SIgnature that encompasses all possIble vanatlOns of the pertment attack IS a 

challengmg task 

(b) Anomaly-based The pnnclpal assumptIOn IS that all mtruslVe actIvIties are nec­

essanly anomalous Such a method bUilds a normal actzvzty profile and checks 

l whether the system btate vaneb flOm the establIshed plofile by a statIbtically 

slglllficant amount to report mtruslOn attempts Anomalous actlvItlCS that arc 

not mtrusive may be flagged as mtrusive These are false posItives One should 

select thret>hold leveb ::'0 that the above two problemb are unreat>onably magm­

fied Anomaly-based mtruslOn detectIOn IS computatIOnally expenSIve because 

of overhead and the need to update several system profile matnces 

(c) Hybrzd ThIS detectIOn mechamsm reap::, benefits of both mIsuse and anomaly 

based detectIOn techmques It also attempts to detect known as well as unknown 

attacks 

In addItIOn to the above an anomaly detectIOn system works III any of four 

modes, VIZ, (1) superVIsed (u) semI-supervIsed (lll) unsupervIsed and (IV) hybnd 

based on the avaIlabilIty of labeled data 
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Supervised ANIDS 

A supervised ANIDS detects network anomalies usmg pnor knowledge. It builds 

a predictive model for both normal and anomalous elasses and compares any new 

instance with the predictive model to determine which class it belongs to Thus, to 

provide an appropriate solution in network anomaly detection, we need the concept 

of normal behavior of the network traffic. An event or an object is detected as 

anomalous if its degree of deviation with respect to the profile or behavior of the 

system, specified by the normality model, is high enough. We define a supervised 

system as follows. 

Definition 2.6.1. Let 1£S cons~der an anomaly detectwn system I that uses a su­

pervzsed approach It can be thought of as a pazr 1= (M, D), where M zs the model 

of normal behavwr of the system and D ~s a prox~m2ty measure that allows one to 

compute, gwen an actwdy record, the degree of devwtzon that such actw~tzes have 

w~th regard to the model M Thus, each system has two mam modules: (z) a mod­

ehng module and (zz) a detectwn module One trams the system for both normal 

and attack classes to obtam the model M. The obtamed model zs subsequently used 

by the detectwn module to evaluate new events or objects or traffic as normal or 

anomalous or outlzers. In partzcular, the modelmg module needs to be adaptwe to 

cope wzth the dynamzc scenarzos. 

A generic architecture for a supervised ANIDS is given in Figure 2.4. A brief 

description of each component of the above system is given below. 

(a) Traffic Capturing. Traffic capturing is an important module in any NIDS. In 

this module, live network traffic is captured using the Libpcap [49] library, an open 

source C library offerIng an interface for capturing link-layer frames over a wide 

range of system architectures. It provides a high-level common Application Pro­

gramming Interface to the different packet capture frameworks of various operating 

systems. The resulting abstraction layer allows programmers to rapidly develop 

highly portable applicatIOns 

Libpcap defines a common standard format for files in which captured frames 

are stored, also known as the tcpdump format, currently a de facto standard widely 

used in public network traffic archives. Modern kernel-level capture frameworks on 

UNIX operatmg systems are mostly based on BSD or Berkeley Packet Filter (BPF) 
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Supervised 
Detection Engine 

Matching 
Mechanism 

Figure 2.4: A generic architecture of supervised ANIDS 

[50,51]. BPF is a software device that taps network interfaces, copying packets 

into kernel buffers and filtering out unwanted packets directly in interrupt context. 

Definition of packets to be filtered can be written in a simple human readable format 

using Boolean operators and can be compiled into a pseudo-code and passed to the 
" . 

BPF device driver by a system call. The pse1:ldo-code is interpreted by the BPF 

Pseudo-Machine, a lightweight high-performance state machine specifically designed 

for packet filtering. Libpcap also allows a programmer to write applications that 

transparently support a rich set of constructs to build detailed filtering expression? 

for most network protocols. A few Libpcap calls use these Boolean expressions, 

which can read directly from the user's command line, compile into pseudo-code 

and pass to Berkeley Packet Filter. Libpcap and BPF interact to allow network 

packet data to traverse several layers to finally be processed and transformed into 

in capture files (i.e., tcpdump format) or to samples for statistical analysis. 

The raw network traffic is captured at both packet and flow levels. Packet 

level traffic can be captured using some popular tools, viz., Gulp (Lossless Gigabit 

Remote Packet Capture With Linux)l and Wireshark2 and then preprocessed before 

I http://staff.washington.edu/corey/gulp/ 
2http://www .wireshark.org/ 
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sending to the detection engine. In addition, flow level traffic can be captured using 

some other tools, viz., NFDUMpl, NFSEN2 , and ntop. The hierarchy of network 

traffic capturing components is given in Figure 2.5. 

HW 

KERNEL SPACE USER SPACE DATAFILES 

Capturing 
Application 
(tcpdumpj 

Figure 2.5: Hierarchy of network traffic capturing components 

(b) Preprocessor: In order to evaluate an IDS, an unbiased intrusion dataset in 

a standard format is required. Generally, a live captured packet contains a lot of 

raw data; some of them may not be relevant in the context of an IDS. Therefore, 

filtration of irrelevant parameters during capture and extraction of relevant features 

from the filtered data are important preprocessing functions of an IDS. In addition 

to these, data type conversion, normalization and discretization are also useful 

functions of this module depending on the anomaly detection mechanism used in 

the IDS. 

(i) Feature Extmctwn: Feature extraction from raw data is an important step for 

anomaly based network intrusion detection. The evaluation of any intrusion 

detection algorithm on real time network data is difficult, mainly due to the 

high cost of obtaining proper labeling of network connections. The extracted 

features are of four types [42,52] discussed as follows . 

• Basic features: These can be derived from packet headers without in­

specting the payload. The protocol type, service, flag, source bytes, and 

destination bytes are examples of some basic features. 

l http://nfdump.sourccforgc.nct/ 
2http://nfsen.sourccforgc.nct/ 
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• Content based feat1tres Domain knowledge is used to assess the pay­

load of the ongmal TCP (TransmisslOn Control Protocol) packets. An 

example of thIS type of features IS the number of faIled logm attempts . 

• Tzme-based features' These features are estImated by capturing proper­

ties that hold over a T-second temporal time wmdow One example of 

such a feature IS the number of connectlOns to the same host over the 

T-second time interval. 

• Connectzon-based features: These features are computed over an histon­

cal wmdow estImated over the last N packets An example of such feature 

is the number of packets flowing from source to destination. 

(ii) Data Type Converswn. Both features and raw data may mclude numeric as 

well as categorical data For example, the protocol feature takes values such as 

tcp, icmp (Internet Control Message Protocol). telnet and udp. Therefore, to 

apply a clustering technique based on a proximity measure for either numeric 

or categoncal data to detect network anomalies, it may be necessary to convert 

the data. 

(iii) Normalzzatzon: In an intrusIOn dataset, all parameters or field values may not 

be equally weighted In such cases, normalization is considered useful before 

applying an anomaly detection mechanism 

(iv) Dzscretzzatzon: The network mtrusion data contams continuous valued at­

tributes such as the number of packets the number of bytes, the duration 

of each connectlOn. etc. These attributes may need to be transformed into 

binary features before applying any standard assocIation mining algorithms. 

The transformation can be performed using a variety of supervised and un­

supervised discretization techniques. For example, using the output scores 

of the anomaly detector as its ground truth, MINDS (Minnesota INtrusion 

Detection System) [53] employs a superVIsed binning strategy to discretize 

attributes. Initially, all distinct values of continuous attributes are put into 

one bin The worst bin in terms of purity is selected for partitioning until the 

desired number of bins is reached. The discretization of numeric attributes 

contnbutes to the comprehension of the final results. 
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These features are desIgned to assess attacks, which span intervals longer than 

2 seconds. It is well known that features constructed from the data content of 

the connectIOns, are more important when detectmg R2L (Remote to Local) and 

U2R (User to Root) attack types in KDD99 intrusion dataset [52] The time based 

and connection based features are more important for detection of DoS (Denial of 

ServIce) and probing attack types [54]. 

(c) Anomaly Detection Engine: This is the heart of any network anomaly 

detection system. It attempts to detect the occurrence of any intrusion either 

online or offline. In general, any network traffic data needs preprocessing before it 

is sent to the detection engine. If the attacks are known, they can be detected using 

a misuse detection approach. Unknown attacks can be detected with the anomaly 

based approach using an appropriate matchmg mechanism. The followmg are some 

important requirements that a matching mechanism must satisfy . 

• Matching determines whether the new instance belongs to a known class de­

fined by a high dimensional profile or not. Matching may be inexact. The 

membership of a test instance to a given pre-defined class represented by its 

profile, depends on (i) the proximity computed between the profile and the 

new test instance using a relevant subspace of features and (ii) a user-defined 

proximity threshold. Thus, the selection of an appropriate proximity measure 

and an appropriate threshold arc crucial here. 

• Matching must be fast 

.; Effective organization of the profiles may facilitate faster search during match­

ing. 

(d) Alarm: This module is responsible for generation of alarm based on the indi­

cation received from the Anomaly Detection Engine. In addition to indicating the 

occurrence of an attack, alarms are useful for post diagnosis of the performance of 

the detection system. Alarms should indicate (i) the causes for the alarm to be 

raised, (ii) the source IP jPort address and target IP jPort address assocIated with 

the attack, and (iii) any background information to justify why it is a putative 

alarm. 
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(e) Human analyst· A human analyst IS responsible for analysis, interpretation 

and for taking necessary action based on the alarm mformation provided by the 

detection engine. The analyst also takes necessary steps to dmgnose the alarm 

mformation as a post-processmg activity to support reference or profile up dation 

with the help of security manager. 

(f) Post-processing: This IS an important module in a NIDS This module pro­

cesses the generated alarms for diagnosis of actual attacks. Appropriate post pro­

cessing activities can help in reducing the false positive rate significantly. 

(g) Security Manager: Stored mtrusion signatures are updated by the security 

manager (SM) as and when new mtrusions become known. The analysis of novel 

mtrusions is a highly complex task. The security manager has a multi-faceted role 

to play such as (i) to analyze alarm data, (ii) to recogmze novel intrusion(s), and 

(iii) to update the signature or profile base. 

(h) Reference Data' The reference data stores mformation about signatures or 

profiles of known intrusions or normal behavIOr. Reference data must be stored in 

an efficient manner. Possible types of reference data used m the generic architecture 

of a NIDS arc shown in FIgure 2.6. In the case of ANIDS, It IS mostly profiles. The 

processing elements update the profiles as new knowledge about the observed be­

havior becomes available These updates are performed in a batch oriented fashion 

by resolvlllg confhcts, if they arise. 

Signature 

Figure 2.6: Types of reference data used in supervised ANIDS 

Intermediate results such as partially created mtrusion signatures are stored 

as configuratwn data. The space needed to store such information is usually quite 

large. The main steps for updation of configuration data are given in Figure 2.7. 

Intermediate results need to be integrated with existing knowledge to produce con­

Sistent, up-to-date results. 
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Intenned late 

results 

Conflict 
resolving 

11 
Existing profiles / 

. rules/signatures 

Figure 2.7: Step:,; for updation of configuration data in ANIDS 

There are two major Issues that anse in supervised anomaly detection. First, 

the anomalous 1I1stances are far fewer 111 number compared to normal instances 

111 the training data. Issues that arise due to imbalanced class distnbutions have 

been addressed in the data mining literature [55]. Second, obtaining accurate and 

representative labels, especially for the anomaly class is usually challenging. A 

number of proposed techlllques inject artificial anomalies in a normal dataset to 

obtain a labeled training dataset [56]. Other than these two issues, the supervised 

anomaly detection problem IS Similar to building predictive models. 

Semi-supervised ANIDS 

A semi-supervised ANIDS trains using labeled instances only for the normal class 

[57]. S1I1ce they do not require labels for the anomaly class, it is more readily used 

compared to supervised approaches We define a semi-supervised system as follows. 

Definition 2.6.2. Let I be a semz-supervzsed anomaly based detectwn system. It 

can be thought of as a pazr I = (M, D), where M zs the model of normal behavwr 

of the system and D zs a proxzmzty measure that allows one to compute, gwen 

an actwzty record, the degree of devwtwn that such actzvztzes have m regards to the 

model M. As dzscussed m the context of supervzsed ANIDS, each system has mamly 

two modules. The modelmg module trams to get the normahty model M and detect 

new traffic as normal or anomalous. 

For example, in spacecraft fault detectIOn [58], an anomaly scenario may sig­

nify an accident, which is not easy to model. The typical approach used in such 

techniques is to build a model for the class corresponding to normal behavior, and 

use the model to identify anomalies in the test data. However, semi-supervised 

learning uses normal data during train1l1g and the rest of the approach is the same 
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as supervIsed approach 

Unsupervised ANIDS 

An unsupervIsed ANIOS can be used for novel mtruslOn detectIOn wIthout pnor 

knowledge and uses purely normal data UnsupervIsed network anomaly detectIOn 

works well due to two major reasons (I) non-avaIlabIlIty of labelled or purely nor­

mal data, and (u) the expense of manual classlficatlOn of a large volume of network 

traffic When colleetmg normal traffic data, It IS extremely dlfficult to guarantee 

that there IS no anomalous Instance ClusterIng IS a wIdely used method for unsu­

pervIsed anomaly based IntrusIOn detectIOn [26,59-62] From classIcal data mInIng, 

we know that clusterIng IS a method of groupIng of objects based on sImllanty 

among the objects The slmIlanty WIthIn a cluster IS hIgh whereas dlsslmllanty 

among clusters IS hIgh ClusterIng IS a method of unsupervIsed study and analysIs 

that IS pelfonned on unlabeled data [63] UnsupervIsed anomaly detectIOn clusters 

test data mto groups of SImIlar Instances whICh may be eIther normal or anomalous 

We define the unsupervIsed system as follows 

Definition 2.6.3. Let I be an unsupervtsed anomaly based detectwn system. It can 

be thought of as a pazr I = (M, D), where M = {G, A}, G represents groups of 

traffic based on proxzmzty measure D, and A zs the estzmated score computed from 

each group The system I labels each traffic mstance as normal or anomalous w r t 

the estzmated score, A 

A genenc archItecture of an unsupervIsed ANIOS IS gIven m FIgure 2 8 ThIs 

Includes almost all the modules found In a supervIsed ANIOS except the anomaly 

detectIOn engme and the labellIng techl11que '''Ie dISCUSS them below 

(a) Unsupervised Engine ThIs module IS the heart of an anomaly detectIOn 

system It consIsts of two modules VIZ, detectwn and label Based on the approach 

used, the detectwn module eIther groups SImilar Instances or identIfies exceptional 

Instances In Input data. The label module works after completlOn of the detectzon 

module to label each Instance eIther as normal or anomalous based on the charac­

tenstlcs of each IndIvIdual group such as Slze, compactness. the dommatmg subset 

of features and outlier score of each mstance 

(b) Labelmg Strategy A clustenng method merely groups the data WIthout any 
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~----~~--~~----~~----~I ____________ 1 

Detection Engine 

Figure 2.8: A generic architecture of unsupervised ANIDS 

interpretation of the nature of the groups. To support appropriate interpretation 

of the groups labelling techniques are used. Labelling of clusters is a difficult issue. 

A labelling strategy typically makes the following assumptions [64]. 

• The number of normal instances vastly outnumbers the number of anomalous 

instances. 

• Anomalies themselves are qualitatively different from normal instances. 

• Intra-similarity among thE; instances of an anomalous group is higher than the 

same in a normal group of instances. 

Unsupervised anomaly detection approaches work without any training data. 

In other words, these models are trained on unlabeled or unclassified data and they 

attempt to find intrusions lurking inside the data. The biggest advantage of the 

anomaly detection approach is the detection of unknown intrusions without any pre­

vious knowledge. In order to label clusters, an unsupervised ANIDS models normal 

behavior by using certain assumptions [64]. If these assumptions hold, intrusive in­

stances can be identified based on characteristics of the group the instances belong 

to. However, these assumptions are not always true, especially in the case of DDoS 

attacks. Therefore, accurate labeling of an instance is a significant and crucial issue 

in an unsupervised ANIDS. 
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Hybrid ANIDS 

A hybrid ANIDS combmes both supervIsed and unsupervIsed approaches of net­

work anomaly detection. Such approaches can detect known as well as unknown 

attacks. A hybrid approach attempts to identify known attacks based on a super­

vised model with reference to a set of trammg sample data usmg an appropriate 

matching mechanism. The test mstances that neIther belong to normal nor any of 

the known attack mstances are handled by the unsupervised model for the identifi­

cation of new normal or novel mtru:;lOns Several successful efforts have been made 

by researchers to develop hybnd ANIDSs [65-67]. A hybrid system is defined as 

follows. 

Definition 2.6.4. Let J be a hybrzd anomaly based detectzon system. It can be 

thought of as a pazr J = (M, D), where M = {B, U}, B represents the supervzsed 

module that uses proxzmzty measure D to detect known attacks, and U zs the un­

supervzsed module whzch uses estzmated score computed from each group to detect 

unknown attacks. 

A generic architecture of a hybrid ANIDS is given in Figure 2.9. The mod­

ules m this architecture are the same as in supervIsed and unsupervised ANIDSs 

noted above except the detectIOn engine. This detection engine is a combmatlOn 

of a supervised module and an unsupervised module As shown in the figure, the 

unsupervised module IS used for only those undetected test mstances forwarded by 

the supervised module. Once a novel intrusion is identified and confirmed, its ref­

erence (I.e., rule or signature) is built and mserted into the rule-base for the future 

reference of the supervised module. 

The performance of an individual approach, either supervised or unsupervised, 

is not equally good for detection of all categories of attack as well as normal in­

stances. There is the possIbility of obtaining good detection accuracy for all cate­

gories in a dataset by usmg an appropriate combinatIOn of multlple wel1-performing 

detection approaches. The objective of such a combination is to provide the best 

performance from each participating approach for all attack classes. The selectIOn 

of a supervised or unsupervised method at a particular level for a given dataset is 

a critical issue for the hybnd ANIDS. 
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Figure 2.9: A generic architecture of a hybrid ANIDS 

2.7 Aspects of Network Anomaly Detection 

In this section, we present some important aspects of anomaly based network in­

trusion detection. The network intrusion detection problem is a classification or 

clustering problem formulated with the following components \37J: (i) types of in­

put data, (ii) appropriateness of proximity measures, (iii) labelling of data, (iv) 

relevant feature identification and (v) reporting of anomalies. We discuss each of 

these topics in brief 

2.7.1 Types of Input Data 

A key aspect of any anomaly based network intrusion detection technique is the 

nature of the input data used for analysis. Input is generally a collection of data 

instances also referred to as objects, records, points, vectors, patterns, events, cases, 

samples, observations, entities [15J. Each data instance can be described using a set 

of attributes of binary, categorIcal or numeric type. Each data instance may consist 

of only one attribute (univariate) or multiple attributes (multivariate). In the case 

of multivariate data instances, all attributes may be of the same type or may be 

a mixture of data types. The nature of attributes determines the applicability of 

anomaly detection techniques. 
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2.7.2 Appropriateness of Proximity Measures 

Proximity (similarity or dissimilarity) measures are necessary to solve many pattern 

recognition problems m classdkation and clustering. DIstance is a quantitative 

degree of how far apart two objects are. DIstance measures that satisfy metric 

properties [15] are simply called metr'tc while othcr non-metric distance measures 

are occasionally called dzvergence The choIce of a proximity measure depends on 

the measurement type or representation of objects. 

Generally, proximity measures are functions that take arguments as object pairs 

and return numerical values that become higher as the objects become more alike. 

A proximIty measure is usually defined as follows 

Definition 2.7.1. A proxzmzty measure D zs a Junctwn X x X -+ lR that has the 

Jollowzng propertzes (68]. 

- Symmetry: 'ix,y E X, D(2, y) = D(y, x) 

- Maxzmalzty: 'ix,,, E X, D(x, x) 2: D(x, y) 

where X zs the data space (also called the universe) and 2. yare a pazr oj k­

dzmenswnal objects. 

The most common proximity measures for numeric [69-71]' categorical [72] 

and mixed type [73] data are listed in Table 22. For numeric data, it is assumed 

that the data is represented as real vectors. The attribute:" take their values from 

a continuous domain. In Table 2.2, we assume that there are two objects, x = 

XI, X2, X3··· Xd, Y = Yl, Y2, Y3· .. Yd and 2:- 1 represcnts the data covariance with d 

number of attributes, i.e., dimensions. 

For categorical data, computing similarity or proximity measures is not straight­

forward owing to the fact that there is no explicit notion of ordering among categor­

ical values. The simplest way to find sImilarity between two categorical attributes 

IS to assign a similarity of 1 if the values are identical and a similarity of 0 if 

the values are not identical. In the Table 2.2, Dk(Xk, Yk) represents per-attribute 

similarity. The attribute weight Wk for attribute k is computed as shown in the 

table. Consider a categorical dataset X contaming n objects, defined over a set 
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of d categorical attributes where Ak denotes the kth attribute Dk(Xk, Yk) is the 

per-attribute proximity between two values for the categoncal attribute Ak . Note 

that Xk, Yk E A k . In Table 2.2, IOF denotes Inverse Occurrence Frequency and 

OF denotes Occurrence Frequency [72] 

Finally, mIxed type data lllcludes both categorical and numeric values. A com­

mon practice in clustering a mixed dataset is to transform categorical values into 

numeric values and then use a numeric clustering algorithm. Another approach is 

to compare the categOrIcal values directly, in which two distinct values result in 

a distance of 1 while identical values result in a distance of O. Of course, other 

measures for categorical data can be used as well Two well-known proximity mea­

sures, ge.t:!eral similarity coefficient and general distance coefficient [73] for mixed 

type data are shown in Table 2.2. Such methods may not take into account the SIm­

ilarity information embedded in categorical values. Consequently, clustering may 

not faithfully reveal the simIlarity structure in the dataset [73,74]. 

2.7.3 Labelling of Data 

The label associated with a data instance denotes if that instance is normal or 

anomalous. It should be noted that obtalllmg accurate labeled data of both normal 

or anomalous types is often prohibitively expensive. Labeling is often done manually 

by human experts and hence substantial effort is required to obtain the labeled 

training dataset [37J Moreover, anomalous behavior is often dynamic in nature, 

e.g., new types of anomalies may arise, for which there is no labeled training data. 

2.7.4 Relevant Feature Identification 

Feature selection plays an important role in detecting network anomalies. Fea­

ture selection methods are used in the intrusion detection domain for eliminating 

unimportant or irrelevant features. Feature selection reduces computational com­

plexity, removes information redundancy, increases the accuracy of the detection 

algorithm, facilitates data understanding and improves generalization. The feature 

selection process includes three major steps: (a) subset generation, (b) subset eval­

uation and (c) validation Three different approaches for subset generation are: 
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Chapter 2. Background 

complete, heunstzc and random Evaluation functions are categorized into five [75] 

distinct categories: score based, entropy or mutual information based, correlation 

based, consIstency based and detectIOn accuracy based. SImulation and real world 

ImplementatIOn arc the two ways to validate the evaluated subset. A conceptual 

framework of the feature selection process is shown in Figure 2.10. 

Complete feature set 

l 
Subset generation 

I Complete II H.uristlC II Random I 

+ 
Subset evaluation 

~ I EntropyorMI II Correlation I 
I ConsfStency II Detection accuracy I 

+ 
Validation 

II Scmulabon II Real world mplementabon I 
+ 

Selected feature set 

Figure 2.10: Framework of feature selection process 

Feature selection algorithms have been classified into three types: wrapper, filter 

and hybrzd methods [76]. While wrapper methods try to optimize some predefined 

criteria with respect to the feature set as part of the selection process, filter methods 

rely on the general characteristics of the trainmg data to select features that are 

independent of each other and are highly dependent on the output. The hybrid 

feature selection method attempts to exploit the salient features of both wrapper 

and filter methods [76] 

An example of wrapper-based feature selection method is [77], where the au­

thors propose an algorithm to build a lightweight IDS by using modified Random 

Mutation Hill Climbing (RMHC) as a search strategy to specify a candidate subset 

for evaluation, and using a modified linear Support Vector Machine (SVM) based 

iterative procedure as a wrapper approach to obtain an optimum feature subset. 

The authors establish the effectiveness of their method in terms of efficiency in 

intrusion detection without compromising the detection rate. An example filter 

model for feature selection is [78], where the authors fuse correlation based and 
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minimal redundancy-maximal-relevance measures. They evaluate their method on 

benchmark intrusion datasets for classification accuracy Several other methods for 

feature selectIOn are [42,79-81] 

2.7.5 Reporting Anomalies 

An important aspect of any anomaly detectlOn technique is the manner in which 

anomalies are reported [37]. Typically, the outputs produced by anomaly detection 

techmques are of two types: (a) a score, whIch is a value that combines (1) distance 

or deviation with reference to a set of profiles or signatures, (ii) influence of the 

majority in its neighborhood, and (iii) distinct dominance of the relevant subspace 

(as discussed m SectIOn 2.7.4) (b) a label, which IS a value (normal or anomalous) 

given to each test instance Usually the labelling of an instance depends on (i) 

the size of groups generated by an unsupervised technique, (ii) the compactness of 

the group(s), (iii) majonty voting based on the outputs given by multiple indices 

(several example mdices are gIven in Table 2.3), or (IV) distmct dominance of the 

subset of features. 

2.8 Evaluation Criteria 

We cannot have a method or a system which is totally or absolutely secure, without 

compromise. An evaluatIOn of a method or a system in terms of accuracy or quality 

is basically a snapshot in tIme As time passes, new vulnerabilities may evolve, and 

current evaluation may become irrelevant However, information gathered during 

an evaluation process has an important role in shaping the final detection method 

or system. vVe discuss commonly used measures to evaluate network intrusion 

detection methods and systems FIgure 2.11 shows the taxonomy of evaluation 

measures for network anomaly detection. 

(a) Accuracy: Accuracy IS a metric that measures. how correctly an IDS works, 

measuring the percentage of detection and failure as well as the number of false 

alarms that the system produces [94,95]. If a system has 80% accuracy, it means 

that it correctly classifies 80 instances out of 100 to their actual classes. While 

there is a big diversity of attacks in intrusion detection, the main focus is that the 
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Table 2.3: Cluster vahdity measures 
Reference Name of Index Fonnula Hemark(s) 

Dunn 182) Dunn Index 01 ;;;; j!!:::, where d TIl1n denote~ the ISmallebt distance (I) Can Identify dense and well-

between two objects from different clubten. drtl.n...r the separated clusters (II) High 

largest distance Within the same cluster Dunn Index I~ more deblred for 
a clustering algorithm (III) 
May not per-form well With 
nOlby data 

DaVIes et al Oa\ leI:> Bouldin's DB = ~ 2:;1=1 FFJ mn:r(d(~,,:;» where n IS the (I) Validation IS performed us--

183) Index number of clusters, 15 the average distance of all 
mg duster quantities and £ea-

u. lures Inherent to the dataset 
patterns In cluster 1 to their cluster eeolel c" <TJ IS (II) For compact clustering DB 
the average distance of all patterns In cluster J to their 

values should be as minimum 
c1u~ter center, c], and d(c •• c) repre~ents the proxim-

a.:, posblble (Ill) It IS not da-
Ity between the cluster centers c. and cJ Signed to accommodate over-

lapplOjZ, clusters 

Hubert and C-Index C Tnln where S IS the ~um of dlstanc~ It needs to be mlnlmlz.ed for 
STr.a:!: SmJ.7l 

Schultz 184) over all paIrs of objects form the same cluster, n IS better clustering 

the number of those pairs. 8 TTliTl and STn(lX are the 
~um of n smalle~t distances and n largest dlstanc~, 
re~pectlvely 

Baker and Gamma Inde'C C - , where (5+) representl) the number of This measure II) Widely used for 
~+ + s 

Hubert 185) times that a pair of samples not clustered together have hierarchical clubtenng 

a larger separation than a pair that were In the same 
clustels, (5-) Jepresents reverse outcome 

Rohlf 186) G+ Index G+ = ,~ where (8-) IS defined as fat gamma IL uses mlnlmum "alue to de-n. Tl-
term me the number or clusters Index and n IS the number of wlthm ciu::.ter dIstances 
In the data 

Rousseeuw Silhouette Index SI 'I7lcx'{a':Jb.}, where a. IS the average dlsslmtlanty ThiS mdex cannot be applied to 
187) 

of the Ith-obJect to all other objects In the same cluster, 
datasets With sub-clusters 

b 1 IS the minImum of average dlssJmllanty of the Ith_ 
object to all objects In other cluster, 

Goodman Goodman- GK = ~~+N: whele Nc and Vd are the numbers of (I) It IS robust In outllels detec-
and Kruskal Kru::.kal Index ccmcordant. and dlsconcordant quadruples, respectively lton (11) It. requIres hlJl.h com-
188) putatlon compleXity In com-

pallson to C-mdex 
Jaccard [891 Jaccard Inde"C: J / u+t}=c_ where a denotes the number of pairs of It uses least information than 

POlOtS With the same label In C and a.::.~lgned to the Rand IOde'C measure 

~ame c1ustel 10 A., 'J denotes the number of pairs WIth 
the ::.ame label but to different dustel sand c denotes 
the number of pairs In the same cluster, but With dIf-
ferent class labels 

Rand 190) Rand Index HI = ~, where d denotes the number of palls It gives equal \-\-elghts to false 

\\ Ith a different label In C that \-\-ere aSSigned to a dlf- posItives and false negatives 

ferent cluster In A., rest are same With JI dUllOg computatIon 

Bezdek 191) Partition coeffi- PC - t El=1 2:;1';1 u:J ' where Tl. c IS the number of (I) It finds the numbel of over-
elent ciu!tters N IS the number of objects 10 the dataset, "'1] laps between dusters, (II) It 

IS the degree of membership lacks connection WIth dataset 

B .. dek 192) ClaSSification CC - N L:~=l E;=l u.,log(u1]), same With partItion It measures the fuz.zlness of the 
entloPY coeffiCient cluster pat tltlons 

Xle and Bena XIe-BeOi Index XB - n where 11" - .::.>. IS called <:ompact- (I) It combmes the properties 
193) ~' ". of membership degl ee and the ne::.s of cluster 1. Smce n1. IS the number of pOints 

In cluster 1., <T, IS the average vanatlon 10 cluster ... geometric structure of dataset 

rlmtn = mIn").,. - J..]" (II) Smaller X 1:1 means more 
compact and better separated 
clusters 

system be able to detect an attack correctly. From real life experience, one can 

easily conclude that the actual percentage of abnormal data is much smaller than 

that of the normal [64,96,97]. Consequently, intrusions are harder to detect than 

normal traffic, resulting in excessive false alarms as the biggest problem facing IDSs. 

The following are some accuracy measures . 

• Sensztzvzty and Speczjiczty: These two measures [98] attempt to measure the 

accuracy of classification for a 2-class problem. When an IDS classifies data, 

its decision can be either right or wrong. It assumes true for right and false 

for wrong, respectively 

If S is a detector and D t IS the set of test instances, there are four possible 
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Data 

Correctness 

ROC Curve 

P-R and F-measure 

Confusion Matnx 

Isclasslficatlon 

ensltlvlty and Specificity 

TImeliness 

>­u 
c: 

;-~,-~~--~----~~~----~~ 

Completeness Interoperabillty Unk.nown attack. ~ 

Figure 2.11: Taxonomy of evaluation measures 

outcomes described using the confusIOn matnx gIven m FIgure 2.12 When 

an anomalous test instance (p) is predicted as anomalous (Y) by the detector 

S, it 1S counted as true positive (TP); if it IS predIcted as normal (N), it 

is counted as false negative (FN). On the other hand, if a normal (n) test 

mstance is predicted as normal (N) it is known as true negative (TN), while 

it is a false positive (FP) if it is predicted as anomalous (Y) [43,98,99] 

The true positIve rate (TPR) is the proportion of anomalous instances clas­

sified correctly over the total number of anomalous instances present in the 

test data. TPR is also known as sensdw'Lty The false positive rate (FPR) 

is the proportion of normal instances incorrectly classified as anomalous over 

the total number of normal mstances contained m the test data. The true 

negative rate (TNR) is also called speczjiczty. TPR, FPR, TNR and the false 

negative rate (FNR) can be defined for the normal class. We illustrate all 

measures related to the confusion matrix in Figure 2.13. 

Sensitivity is also known as the htt rate Between sensitivity and specificity, 

sensitivity is set at high priority when the system is to be protected at all 

cost, and specificity gets more priority when efficiency is of major concern 

[98]. Consequently: the aim of an IDS is to produce as many TPs and TNs 
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Figure 2.12: Confusion matrix and related evaluation measures 
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Figure 2.13: Illustration of confusion matrix in terms of their related evaluation mea­
sures 

as possible while trying to reduce the numbers of both FPs and FNs. The 

majority of evaluation criteria use these variables and the relations among 

thcm to model the accuracy of the IDSs . 

• ROC Curves: The Receiver Operatmg CharacteristIcs (ROC) analysis orig-
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mates from sIgnal processing theory Its applicabIlity is not limIted only to 

intrusIOn detection, but extends to a large number of practIcal fields such as 

medical diagnosIs, radIOlogy, bWl11formatlcs as well as artJflcial mtelllgence 

and data mmmg In mtruslOn detectIOn, ROC curves are used on the one 

hand to visualJze the relation between TP and FP rates of a classifier whIle 

tunmg it and also to compare the accuracy with two or more classlfiel~ The 

ROC space [100,101] uses an orthogonal coordinate system to vIsualIze clas­

sifier accuracy. Figure 2 14 illustrates the ROC approach normally used for 

network anomaly detectIOn methods and systems evaluation. 

Perfect accuracy 
TNR 

<E---
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06 

0.4 

0.2 
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b/ 
~o " 
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~,' 

be ,.-
~/ 

~'Ii " 
'il',.'" 

..- Non-properdetection 
method 

1 
FPR 

Always predicts 
positive 

Figure 2.14: Illustration of ROC measure where A. B, C represents the accuracy in 
ascending order . 

• Mzsclasszjicatzon rate. ThIs measure attempts to estimate the probability of 

disagreement between the true and predicted cases by dividing the sum of FN 

and FP by the total number of pairs observed, i.e., (TP+FP+FN+TN). In 

other words, misclassification rate is defined as (FN + FP) / (TP + FP + FN + TN) . 

• Confuswn Mat'f"tx: The confusIOn matnx IS a ranking method that can be 

applied to any kind of clasSIfication problem. The size of this matrix depends 

on the number of distinct classes to be detected The aim is to compare the 

actual class labels against the predicted ones as shown in Figure 2.12 The 

dIagonal represents correct claSSificatIOn. The confusion matnx for intrUSIOn 
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detectIOn IS defined as a 2-by-2 matnx, smce there are only two classes known 

as mtruswn and normal [43,97, 99J Thus, the TNs and TPs that represent 

the correctly predicted cases he on the matnx diagonal while the FNs and 

FPs are on the nght and left Sides As a Side effect of creatmg the confusIOn 

matnx, all four values are displayed m a way that the relatlOn between them 

can be easily understood 

• Preczszon, Recall and F-measure PreCl::'lOn I::' a mea::,ure of how a system 

Identifies attacks or normals A flaggmg IS accurate If the Identified mstance 

mdeed comes from a mahclOus user, which IS referred to as true positive 

The final quantity of mterest IS recall, a measure of how many mstances are 

Identified correctly (see FIgure 2 12) PreCIsIOn and recall are often mversely 

proportIOnal to each other and there IS normally a trade-off between these 

two ratios An algonthm that produces low precIsion and low recall IS most 

hkely defective with conceptual errors m the underlymg theory The types of 

attacks that are not Identified can mdlCate which areas of the algonthm need 

more attentIOn Exposmg these flaws and establIshmg the causes asSISt future 

Improvement 

The F -measure mixes the properties of the prevIOus two measures as the 

harmomc mean of preClSlOn and recall [43,99J If we want to use only one 

accuracy metnc as an evaluatIOn cntenon, F -measure IS the most preferable 

Note that when preCISIOn and recall both reach 100%, the F-measure IS the 

maXimum, Ie, 1 meamng that the clat,::'lfiel hat, 0% fabe alarm::, and detects 

100% of the attacks Thus a good clasSifier IS expected to obtam F-measure 

as high as pOSSIble 

(b) Performance The evaluatlOn of an IDS s performance IS an Important task 

It mvolves many Issues that go beyond the IDS Itself Such Issues mclude the 

hardware platform, the operatmg system or even the deployment of the IDS For a 

NIDS, the most Important evaluatIOn cntenon for ItS performance IS the system s 

abIhty to process traffic on a high speed network with mmlmum packet loss while 

workmg m real time In real network traffic, the packets can be of vanous Sizes, 

and the effectiveness of a NIDS depends on ItS ablhty to handle packets of any ::'Ize 
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In addition to the processing speed, the CPU and memory usage can also serve as 

measurements of NIDS performance [102]. These are usually used as indirect mea­

sures that take into account the time and ~pace compleXities of intrusion detection 

algorithms Finally, the performance of any NIDS is highly dependant upon (i) its 

individual configuration, (11) the network It IS monitoring, and (iii) its position in 

that network. 

(c) Completeness: The completeness criterion represents the space of the vulner­

abilities and attacks that can be covered by an IDS. This criterion is very hard to 

assess because having omniscience of knowledge about attacks or abuses of privi­

lege is impossible. The completeness of an IDS IS Judged against a complete set of 

known attacks. The ability of an IDS is considered complete, if it covers all the 

known vulnerabilities and attacks 

(d) Timeliness: An IDS that performs ItS analysis as quickly as possible enables 

the human analyst or the response engme to promptly react before much damage 

is done Within a specific time period ThiS prevents the attacker from subverting 

the audit source or the IDS itself The response generated by the system while 

combating an attack is very important. Since the data must be processed to discover 

intrusions, there is always a delay between the actual moment of the attack and 

the response of the system. This is called total delay. Thus, the total delay is 

the difference between tattack and tresponse' Thus smaller the total delay, the better 

an IDS IS With respect to ItS response. No matter If an IDS is anomaly based or 

signature based, there IS always a gap betwcen the starting time of an attack and 

its detection. 

2.9 Summary 

In this chapter, we introduced basics of network anomalies and anomalies that 

commonly arise in networks. We explain two major categories of network anomalies, 

viz., performance related anomalies and securIty related anomalies. We described 

different network vulnerabilities that eXist with their sources. An attacker exploits 

these vulnerabilities to cause network failure or degrade performance. In addition, 

we discuss sources of security related anomalIes, types of network attacks, steps to 
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launch an attack and a taxonomy of attacks We also introduce the prime category 

of network anomaly detection methods with architecture, components, pros and 

cons. Finally, we present various measures that are normally used In evaluation of 

network anomaly detection methods and systems. These measures are used in 

evaluation of our detection methods discussed in subsequent chapters in the thesis. 
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Chapter 3 

Related Work 

This chapter starts with an overview of network anomaly detection, discusses ex­

isting methods and systems under six major categories We also include a list of 

tools with their features that are used by the network defenders and IDS developer 

during the executlOn of different steps to analyze network traffic. It concludes with 

a list of recommendations for the defenders as well as developers and a summary. 

3.1 Introduction 

Due to advancements in Internet technologies and the concomitant rise in the num­

ber of network attacks, network intrusion detection has become a significant research 

issue. In spIte of remarkable progress and a large body of work, there are still many 

opportunities to advance the state-of-the-art in detecting and thwarting network 

based attacks [47]. 

The term anomaly-based mtruswn detectwn m networks refers to the problem 

of finding exceptional network traffic patterns that do not conform to the expected 

normal behavlOr. These nonconforming patterns are often referred to as anomalies, 

outliers, exceptions, aberrations, surprises, peculiarities or discordant observations 

in various application domains [37,103J Out of these, anomalies and outliers are 

two of the most commonly used terms in the context of anomaly based intrusion 

detection in networks. 

The statistics community has been studying the problem of detection of anoma­

lies or outlIers from as early as the 19th century [104J. In recent decades, machine 
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learnmg has started to playa slgmficant role m anomaly detectlOn A good number 

of anomaly based mtrusIOn detectIOn techmques m networks have been developed 

by researchen, Many techmques work m speCIfic doma111s although others are more 

generIC 

3.1.1 Prior Surveys on Network Anomaly Detection 

Network anomaly detectlOn IS a broad research area, whIch already boasts a num­

ber of surveys, revIew artIcles, as well as books An extensIve survey of anomaly 

detectIOn techmques developed m machme learnmg and ~tatlstlcs has been prOVIded 

by [105,106] Agyemang et al [107] present a broad revIew of anomaly detectlOn 

techmques for numenc as well as symbolIc data An extensIve overvIew of neural 

networks and ~tatlstlc~ b~ed novelty detectlOn techl11que~ I~ found III [108] Patcha 

and Park [11] and Snyder [109] present survevs of anomaly detectlOn techl11ques 

used speCIfically for cyber llltruslOn detectlOn 

A good amount of research on outher detectIOn III statIstIcs IS found III several 

books [110-112J as well as survey artIcles [113-115J ExhaustIve surveys of anomaly 

detectlon III several domallls have been presented III [37 116] Callado et al [117J 

report major techmques and problems IdentIfied m IP traffic analYSIS, WIth an em­

phasIS on apphcatlOn detectlon Zhang et al [118J present a survey on anomaly 

detectlOn methods 111 networks A revIew of flow based llltruslOn detectIOn IS pre­

sented by Sperotto et al [119J who explalll the concepts of flow and clasSIfied 

attacks, and prOVIde a detaIled dlscus~IOn of detectlOn techl11ques for scans, worms, 

Botnets and DoS attacks 

An extensIve survey of DoS and ODoS attack detectIOn techmques IS presented 

III [120J DISCUSSIon of coordlllatcd systems dcslgn and secunty for network IS 

found m [121, 122J WU and Banzhaf [13J present an overVIew of applIcatlons of 

computatlOnal mtelhgence methods to the problem of llltru~lOn detectIOn They m­

clude vanous methods such as artIfiCIal neural networks fuuy systems, evolutlOnary 

computatlOn, artIficIal Immune systems, swarm llltelhgenee, and soft computlllg A 

general companson of vanous survey works avaIlable III the lIterature WIth our work 

IS shown III Table 3 1 
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3.1.2 Motivation and Contributions 

Even though there are several surveys avaIlable III the lIterature on network anomaly 

detectIOn [1l 37 1l6] surveys such as [1l 1l6]' dISCUSS far fewer detectIOn methods 

than we do III thI~ chapter In [37], the authors dISCUSS anomaly detectIOn III general 

and cover the network IlltrusIOn detectIOn domaIll only bnefly None of the surveys 

[1l, 37,116] Illclude common tools used dunng executlOn of vanous steps III net­

work anomaly detectlOn They also do not dISCUSS approaches that combIlle several 

Illdividual methods to achICve better performance In thIS chapter, we present a 

structured and comprehensIve survey on anomaly based network IlltrusIOn detec­

tion III terms of general overVIew, methods, systems, and tools wIth a dIScussIon of 

challenges and recommendatIOn~ The major contnbutlOns of the ~urvey pre~ented 

III thIS chapter are the folloWIng 

(a) LIke the categonzatIOn of the network anomaly detectIOn research suggested 

III [11,37,105 107]' we classIfy detectlOn methods and NIDSs IlltO a number of 

categones In addItIOn, we also prOVIde an analysIs of many methods III terms of 

theIr capablhty and performance datasets used, matchIllg mechamsm, number 

of parameter, and detectIon mecham~m 

(b) Most eXlstIllg ~urvey~ do not cover ensemble approache~ or data fU~IOn for 

network anomaly detectIOn but we do 

3.2 Methods and Systems for Network Anomaly 

Detection 

The classlficatlOn of network anomaly detectlOn methods and systems that we adopt 

IS shown III FIgure 3 1 ThIS scheme IS based on the nature of algonthms used It IS 

not straIghtforward to come up wIth a classIficatIOn scheme for network anomaly de­

tectIOn method~ and system~, pnmanly becau~e there IS sub~tantlal overlap among 

the methods used In the vanous classes In any partIcular scheme we may adopt 

We have decIded on SIX diStIllct classes of methods and systems We call them sta 

tzstzcal, classzjicatwn based, clusterzng and outher based, soft computzng knowledge­

based and combznatwn learners Most methods have subclasses a~ gIven III FIgure 
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Table 3.1: A generic comparIson of our survey with existing survey articles 
Methods Topzcs covered [105] [107] [108] [11] [113] [114] [37] [116] [119] [120] [13 [123] [124] [125] [53] Our survey 
INIDSs 
IToois 

Statistical J J J J J J J J J J J J J 
Cla.:,sification-ba.:,ed J J J J J J J J J J J 

Knowledge-based J J J J J J J 
Soft computmg J J J 

Clustering-ba.:,ed .£ J J J v' J J J 
Methods 

Ensemblc-bRbed J 
FuslOn-based J 

Hybnd v' 
Statistical J J J 

Classlfication-bRbed v' 
Soft computmg J J 

NIDS5 Knowledge-based J J J 
Data Mming J J J J 

Ensemblc-bRbed J 
Hybrid J 

Tools Capturing, J 
Preprocessing, 

Attack launching 

(c) Most existing surveys avoid feature selection methods, which are crUCial in the network anomaly detection task We present several 
techniques to determine feature relevance in intrusion datasets and compare them 

(d) In addition to discussing detection methods, we provide several NIDSs with architectures for a few, their components and functlOnalItles, 
and also present a companson among existll1g NIDSs. 

(e) We summarize tools used in various steps for network traffic anomaly detection. 



3.2. Methods and Systems for Network Anomaly Detection 

3.1. Figure 3.2 shows the approximate statistics of papers published during the 

period 2000 to 2012 in each category. 

Network Anomaly Detection Methods' 

Statistical 

Classification Based 

Clustering and 
OutiierBased 

Soft Computing 

Knowledge Based 

Combination Learners 

a. Parametric 
b. Non-parametric 

a. GAbased 
b. ANN based 
c. Fuzzyset 
d. Roughset 

a. Ruleandexpensystem 

a. Ensemble based 
b. Fusion based 
c. Hybrid 

Figure 3.1: Classification of network anomaly detection methods (GA-Genetic Algo­
rithm, ANN-Artificial Neural Network) 

Number of papers sUn'eyed 

II Sta tistical II Classification 1:1 Knowledge based 

II Soft computing II Clustering 1:1 Combination learners 

3% 

Figure 3.2: Statistics of the surveyed papers during the year 2000 to 2012 

We distinguish between network anomaly detection methods and systems in 

this work, although such a distinction is difficult to make sometimes. A network 

intrusion detection system (NIDS) usually integrates a network intrusion detection 

method within an architecture that comprises other associated sub-systems to build 

a stand-alone practical system that can perform the entire gamut of activities needed 

for intrusion detection. We present several NIDSs with their architectures and 

components as we discuss various anomaly detection categories. 
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3.2.1 Statistical Methods and Systems 

StatIstically speaking, an anomaly IS an observation which is suspectcd of being 

partially or wholly irrelevant because it IS not generated by the stochastic model 

assumed [126]. Normally, statistIcal methods fit a statistIcal model (usually for 

normal behavIOr) to the given data and then apply a statistical inference test to 

determine if an unseen instance belongs to this model. Instances that have a low 

probability to be generated from the learnt model based on the applied test statis­

tic are declared anomalies. Both parametric and nonparametric techniques have 

been applied to design statistical models for anomaly detection. While paramet­

ric techlllques assumc knowledgc of the underlying distribution and cstimate the 

parameters from the gIven data [127], nonparametnc techlllques do not generally 

assume knowledge of the underlymg distribution [128]. 

An example of a statistical IDS IS HIDE [125]. HIDE is an anomaly based 

network mtrusion detectIOn system, that uses statistical models and neural network 

classifiers to detect intrusions HIDE is a distributed system, which consIsts of 

several tiers with each tier containing several Intrusion Detection Agents (IDAs). 

IDAs are IDS components that monitor the activities of a host or a network. The 

probe layer (I.e., top layer as shown in Figure 3.3) collects network traffic at a host 

or in a network, abstracts the traffic into a. set of statistical variables to reflect 

network status, and periodically generates reports to the event preprocessor The 

event preprocessor layer receives reports from both the probe and IDAs of lower 

tiers, and converts the mformation mto the format required by the statistical model. 

The statistical processor maintains a reference model of typical network activities, 

compares reports from the event preprocessor with the reference models, and forms 

a stimulus vector to feed mto the neural network claSSifier. The neural network 

classifier analyzes the stimulus vector from the statistical model to decide whether 

the network traffic is normal. The post-processor generates reports for the agents 

at higher tiers. A major of attraction of HIDE is its ability to detect UDP flooding 

attacks even with attack intensity as low as 10% of background traffic. 

Of the many statistical methods and NIDSs [127,129-137]' only a few are de­

scribed below in brief. 
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Figure 3.3: Architecture of HIDE system 

Bayesian networks [138] are capable of detecting anomalies in a multi-class 

setting. Several variants of the basic technique have been proposed for network in­

trusion detection and for anomaly detection in text data [37]. The basic techmque 

assumes independence among different attributes. Several variations of the basic 

technique that capture the condItional dependencies among different attributes us­

Ing more complex Bayesian networks have also been proposed. For example, the 

authors of [139] introduce an event classification based intrusion detection scheme 

using Bayesian networks The Bayesian decision process improves detection de­

cision to significantly reduce false alarms. Manikopoulos and Papavassiliou [129] 

Introduce a hierarchIcal multI-tier multi-window statistical anomaly detectIon sys­

tem to operate automatically, adaptivc1y, and pro-actively It applies to both wired 

and wireless ad-hoc networks This system uses statIstical modeling and neural 

network classification to detect network anomalies and faults. The system achieves 

high detectIOn rate along with low misclassification rate when the anomaly traffic 

intensity is at 5% of the background traffic but the detection rate is lower at lower 

attack intensity levels such as 1% and 2%. 

Association rule mining [140]' conceptually a simple method based on counting 

of co-occurrences of items in transactions databases, has been used for one-class 

anomaly detection by generating rules from the data in an unsupervised fashion. 

The most difficult and dominating part of an association rule discovery algorithm is 

to find the itemsets that have strong support Mahoney and Chan [131] present an 

algorithm known as LERAD that learns rules for finding rare events in time-series 

data with long range dependencies and finds anomalies in network packets over 
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TCP sessions. LERAD uses an Apnori-like algorithm [140] that finds conditional 

rules over nominal attributes in a time series, e.g, a sequence of inbound client 

packets. The antecedent of a created rule IS a conjUnctIOn of equalities, and the 

consequent is a set of allowed values, e g., ~f port=80 and word3=HTTP/l.0 then 

wordl=GET or POST. A value is allowed if it is observed m at least one training 

instance satisfying the antecedent. The idea is to identify rare anomalous events: 

those which have not occurred for a long tIme and which have high anomaly score. 

LERAD is a two-pass algorithm. In the first pass, a candidate rule set is generated 

from a random sample of training data comprised of attack-free network traffic. In 

the second pass, rules are trained by obtaming the set of allowed values for each 

antecedent. 

A payload-based anomaly detector for mtruslOn detection known as PAYL IS 

proposed in [132]. PAYL attempts to detect the first occurrence of a worm either 

at a network system gateway or with an internal network from a rogue device 

and to prevent Its propagation. It employs a language-independent n-gram based 

statistIcal model of sampled data streams. In fact, PAYL uses only a I-gram model 

(i e., it looks at the distribution of values contained withm a single byte) which 

requires a linear scan of the data stream and a small 256-element histogram. In 

other words, for each ASCII character m the range 0-255, it computes its mean 

frequency as well as the variance and standard deViation. Since payloads (i e., 

arriving or departing contents) at different ports differ in length, PAYL computes 

these statistics for each specific observed payload length for each port open in 

the system. It first observes many exemplar payloads dunng the training phase 

and computes the payload profiles for each port for each payload length During 

detection, each incoming payload is scanned and statistics are computed. The new 

payload distribution IS compared against the model created during training. If 

there is a significant difference, PAYL concludes that the packet is anomalous and 

generates an alert. The authors found that this simple approach works surprisingly 

well. 

Song et al [133] propose a conditional anomaly detection method for computing 

differences among attributes and present three dIfferent expectation-maximization 

algorithms for learning the model. They assume that the data attributes are parti-
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tIoned mto md2cator attrIbutes and env2ronmental attrIbutes based on the decIsion 

taken by the user regardmg which attrIbutes mdlcate an anomaly The method 

leams the tYPICal mdlcator attrIbute value::. and observes subsequent data pomts, 

and labels them as anomalous or not based on the degree the mdlcator attrIbute 

values differ from the usual mdlcator attrIbute values However, If the mdlcator 

attrIbute values are not conditIOned on environmental attrIbutes values, the mdlca­

tor attrIbutes are Ignored effectIvely The precIsIOn/recall of thIS method IS greater 

than 90 percent 

Lu and GhorbanI [135] present a netwOlk SIgnal modelIng technIque for anomaly 

detectIOn by combmmg wavelet apprOXImatIOn and system IdentificatIOn theory 

They define and generate fifteen relevant traffic features as mput SIgnals to the 

sy::.tem and model dally tlaffic based on these featUIes The output of the system IS 

the deViatIOn of the current mput SIgnal from the normal or regular SIgnal behaVIOr 

Residuals are passed to the IDS engme to take deCISIOns and obtam 95% accuracy m 

the daIly traffic In addItion, a nonparametrIc adaptIve cumulative sum (CUSUM) 

method for detectmg network mtruslOns IS dIscussed at [137] 

In addItIOn to the detectIOn methods, there are several statIstical NIDSs As 

mentIOned earlIer, a NIDS mcludes one or more mtruslOn detectIOn methods that are 

mtegrated WIth other requIred sub-systems necessary to create a practIcal SUItable 

system We dISCUSS a few below 

N@G (Network at Guard) [141] IS a hybrId IDS that explOIts both mIsuse and 

anomaly approaches N@G has both network and host sensors Anomaly based 

mtruslOn detectIOn I::' pursued u::.mg the chI-::.quare technIque on varIOUS network 

protocol parameters It has four detectIOn methodologIes, VIZ data collectIOn, 

SIgnature based detectIOn, network access polIcy VIOlatIOn and protocol anomaly 

detectIOn as a part of ItS network sensor It mcludes audIt traIls, log analYSIS, 

statIstical analysI::' and host access polIcle::. a::, components of the host sensor The 

system has a separate IDS server, I e a management console to aggregate alerts 

from the varIOUS sensors WIth a user mterface, a mIddle-tIer and a data management 

component It prOVIdes real time protectIOn agamst malIcIOUS changes to network 

settmgs on clIent computers which mcludes unsolICIted changes to the Wmdows 

Hosts file and Wmdows Messenger serVIce 
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Flow-based statistical aggregation scheme (FSAS) [142J is a flow-based statIstI­

cal IDS. It compnses of two modules: feature generator and flow-based detector. In 

the feature generator, the event preprocessor module collects the network traffic of 

a host or a network The event handlers generate reports to the flow management 

module. The flow management module efficiently determines if a packet is part 

of an existing flow or it should generate a new flow key. By mspectmg flow keys, 

this module aggregates flows together, and dynamically updates per-flow account­

ing measurements The event time module periodically calls the feature extractIOn 

module to convert the statistics regarding flows into the format required by the sta­

tistical model. The neural network classifier classifies the score vectors to priontize 

flows with the amount of maliciousness. The higher the maliciousness of a flow, the 

higher is the possibIlIty of the flow being an attacker 

Advantages of statIstIcal network anomaly detection include the followll1g (i) 

They do not reqUlre prior knowledge of normal activities of the target system. 

Instead, they have the abIlity to learn the expected behavior of the system from 

observatIOns. (11) StatistIcal methods can provide accurate notIficatIOn or alarm 

generation of malicious activitlCs occurring over long periods of time, subject to 

setting of appropnate thresholding or parameter tuning (iii) They analyze the 

traffic based on the theory of abrupt changes, i.e., they monitor the traffic for a 

long time and report an alarm if any abrupt change (i e , significant deviation) 

occurs 

Drawbacks of the statistical model for network anomaly detection mclude the 

following. (i) They are susceptible to being trained by an attacker in such a way that 

the network traffic generated during the attack is considered normal. (ii) Setting the 

values of the dIfferent parameters or metncs is a dIfficult task, especially because 

the balance between false positives and false negatives is an issue. Moreover, a 

statistical distribution per variable is assumed, but not all behaviors can be modeled 

using stochastic methods. Furthermore, most schemes rely on the assumption of 

a quasi-stationary process [11], which IS not always realistic. (iii) It takes a long 

time to report an anomaly for the first time because the building of the models 

requires extended time. (iv) Several hypotheSIS testing statistics can be applied 

to detect anomalies. Choosmg the best statIstic is often not straightforward. In 
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partIcular: as stated in [136] constructing hypothesis tests for complex distributions 

that are required to fit high dimensional datasets is nontrivial. (v) Histogram 

based techmques are relatIvely simple to Implement, but a key shortcoming of such 

techniques for multivariate data is that they are not able to capture interactions 

among the attributes 

A comparison of a few statIstical network anomaly detection methods is given 

in Table 3.2 

Table 3.2: Comparison of statistical network anomaly detectIOn methods 

Author (5) Year of No of w x y Data Dataset z Deteetlon 
publ.- pamm- types used method 
catlon eter5 

Eskm [127J 2000 2 0 N P Numenc DARPA99 C. Probablhty 
Model 

Mamkopoulos 2002 ! D N P Numenc Real-hfe C2 , Cs Neural 
and Papavasslhou Network 
[129J 
Mahoney and 200! 2 C N P - DARPA99 C I LERAD 
Chan [131J algOrithm 
Chan et al [130J 2003 2 C N P Numenc DARPA99 CI Lerunmg 

Rules 
Wang and Stolfo 2004 3 C N P Numenc DARPA99 GI Payload 
[132j based 

algOrithm 
Song et al [133j 2007 3 C N P Numenc KDDcup99 SynthetiC Gaussian 

mtruslve M,xture 
pattern Model 

Chhabra et al 2008 2 D N P Numenc Real time Co FDR 
[134) method 
Lu and Chorbam 2009 3 C N P,F Numenc DARPA99 C I Wavelet 
[135) AnalyslS 
Wattenberg et al 2011 4 C N P NumeriC Real-time C2 GLRT 
[136) Model 
Yu [IJ7J 2012 1 C N P NumeriC Real-time C2 Adaptive 

CUSUM 
\V-mdlcates centrahzed (C) Or distributed (D) or others (0) 
x-the nature of detectiOn as real time (R) or non-real time (N) 
y-charactenzes packet-based (P) or flow-based (F) or hybnd (H) or others (0) 
z-represents the hst of attacks handled CI-all attacks, C2-demal of service C3-probe, C.-user to root, 

Cs-remote to local and C6-anomalous 

3.2.2 Classification-based Methods and Systems 

Classification is the problem of identifying which of a set of categories a new ob­

servatIOn belongs to, on the basis of a trainmg set of data contaming observations 

whose category membership is known. Assuming we have two classes whose in­

stances are shown as + and -, and each object can be defined in terms of two 

attributes or features Xl and X2: linear classification tries to find a line between the 

classes as shown m Figure 3.4(a). The classification boundary may be non-linear 
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as in Figure 3.4(b). In intrusion detection, the data is high dimensional, not just 

two. The attributes are usually mixed, numeric and categorial as discussed earlier. 

X2 
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Figure 3.4: Linear and nonlinear classification in 2-D 

Thus, classification techniques are based on establishing an explicit or implicit 

model that enables categorization of network traffic patterns into several classes 

[143-148J. A singular characteristic of these techniques is that they need labeled 

data to train the behavioral model, a procedure that places high demands on re­

sources [149]. In many cases, the applicability of machine learning principles such as 

classification coincides with that of statistical techniques, although the former tech­

nique is focused on building a model that improves its performance on the basis of 

previous results [116]. Several classification based techniques (e.g., k-nearest neigh­

bor, support vector machines, and decision trees) have been applied to anomaly 

detection in network traffic data. 

An example of classification based IDS is Automated Data Analysis and Mining 

(ADAM) [124] that provides a testbed for detecting anomalous instances. An archi­

tecture diagram of ADAM is shown in Figure 3.5. ADAM exploits a combination 

of classification techniques and association rule mining to discover attacks in a tep­

dump audit traiL First, ADAM builds a repository of "normal" frequent itemsets 

from attack-free periods. Second, ADAM runs a sliding-window based on-line algo­

rithm that finds frequent itemsets in the connections and compares them with those 

stored in the normal item set repository, discarding those that are deemed normaL 

ADAM uses a classifier which has been trained to classify suspicious connections as 

either a known type of attack or an unknown type or a false alarm. 

A few classification-based network anomaly detection methods and NIDSs are 

described below in brief. 
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Figure 3.5: Architecture of ADAM system 

Abbes et al [150] introduce an approach that uses decision trees with protocol 

analysis for effective intrusIOn detection. They construct an adaptive decision tree 

for each applicatIOn layer protocol. Detection of anomalies classifies data records 

into two classes benign and anomalies. The anomalies include a large variety of 

types such as DoS, scans, and Botnets. Thus, multi-class classifiers are a natu­

ral chOlce, but lIke any classifier they require expensive hand-labeled datasets and 

are also not able to identify unknown attacks. Wagner et al. [151] use one-class 

classzjiers that can detect new anomalies, i.e., data points that do not belong to 

the learned class. In particular, they use a one-class SVM classifier proposed by 

Sch6lkopf et al. [152]. In such a classifier, the training data is presumed to belong 

to only one class, and the learning goal during training is to determine a function 

which is positive when applied to points on the circumscribed boundary around 

the training points and negative outside. This is also called semz-supervzsed clas­

szjicatwn. Such an SVM classifier can be used to identify outliers and anomalies. 

The authors develop a special kernel function that projects data points to a higher 

dimension before classification. Their kernel function takes into consideration prop­

erties of NetFlow data and enables determmation of Similarity between two windows 

of IP flow records. They obtain 92% accuracy on average for all attacks classes. 

Classification-based anomaly detectIOn methods can usually give better results 

than unsupervised methods (e.g, clustering-based) because of the use of labeled 

training examples In traditional classification, new information can be incorporated 

by retraining with the entire dataset, However, this is time-consuming, Incremen­

tal classification algonthms [153] make such training more efficiently. Although 

59 



Chapter 3. Related Work 

classificatIOn-based methods are popular, they cannot detect or predict unknown 

attack or event until relevant training information is fed for retrallllllg 

For a comparison of several classification-based network anomaly detection 

methods, see Table 3 3. 

Table 3.3: Comparison of classification-based network anomaly detection methods 
Author (s) Year of No of w x y Data Dataset z Detect,on 

publl- pamm- types used method 
cahon eters 

Tong et al 2005 4 0 N P NumerIc DARPAl)9, C1 KPCC model 
[l4'l) TCPSTAT 
Gaddam et 2007 i C N P NumerIc NAD, DED, C1 k-means+IDJ 
al (144] MSD 
Khan et al 2007 J C N P NumerIc DARPA98 C1 DGSOT + 
[154) SVM 
Das et al 2008 3 0 N P Categollcal KDDcup99 Cl APD Alga-
[145) rIthm 
Lu and Tong 2009 2 0 N P NumerIc DARPA99 C1 CUSUI\1-EM 
[146) 
Qadeer et al 2010 - C R P - Real time C2 Packet analysIs 
[147) tool 
Wagner et 2011 2 C R F NumerIC Flow Traces C2 Kernel 
al [151) OCSVM 
Muda et al 2011 2 0 N 0 NumerIC KDDcup99 Cl KMNB alga-
[155) rIthm 
Kang et al 2012 2 0 N P NumerIC DARPA98 Cl Differentiated 
(148) SVDD 
",-mdlcates centrahzed (C) or distrIbuted (D) or others (0) 
x-the nature of detection as real time (R) or non-real time (N) 
y-charactenzes packet-based (P) or flow-based (F) or hybrId (H) or others (0) 
z-represpnts the hst of attacks handled Cl-all attacks, C2-dental of serVice, C3-probe, C4-user to root, 

and Cs-remote to local 

Several authors have used a combination of classifiers and clustering for net­

work intrusion detection leveraging the advantages of the two methods For exam­

ple, Gaddam et al. [144] present a method to detect anomalous activities based 

on a combined approach that uses the k-means clustering algOrithm and the ID3 

algorithm for deciSIOn tree learning [156]. In addition to descriptive features, each 

data instance includes a label saying whether the instance is normal or anomalous. 

The first stage of the algorithm partitions the training data into k clusters using 

Euclidean distance similarity. Obviously, the clustering algorithm docs not consider 

the labels on instances The second stage of the algorithm bUllds a deCision tree 

on the instances in a cluster. It does so for each cluster so that k separate decision 

trees are built. The purpose of building decision trees is to overcome two problems 

that k-means faces: a) forced ass2gnment: if the value of k is lower than the number 

of natural groups, dissimilar instances are forced into the same cluster, and b) class 

dommance, which arises when a cluster contains a large number of instances from 
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one class, and fewer numbers of mstances from other classes The hypothesIs IS 

that a decIsIon tree tramed on each cluster learns the sub groupmgs (If any) present 

wlthm each cluster by partltlOmng the mstances ovel the feature space To obtam 

a final deCISIon on classdicatlOn of a test mstance, the declslOns of the k-means and 

ID3 algonthms are combmed usmg two rules (a) the nearest-neIghbor rule and 

(b) the nearest-consensus rule The authors claim that the detectlOn accuracy of 

the k-means+ ID3 method IS very high With an extremely low false posItive rate on 

network anomaly data 

SUPPOlt vector machmes (SVMs) are very succes~ful maxImum margm lmear 

classifiers [157] However, SVMs take a long time for trammg when the dataset 

IS very large Khan et al [154] reduce the trammg tIme for SVMs when clas­

slfymg large mtruslOn datasets by usmg a hleralchlcal clu~tenng method called 

DynamIcally Growmg Self-Orgamzmg Tree (DGSOT) mtertwmed WIth the SVMs 

DGSOT, whIch IS based on artifiCIal neural networks IS used to find the boundary 

pomts between two classes The boundarv pomts are the most qualified pomts to 

tram SVM~ An SVM computes the maximal malgm~ ~eparatmg the two classes of 

data pomts Only pomts closest to the margms, called support vectors affect the 

computatlOn of these margms Other pomts can be dIscarded WIthout affectmg the 

final results Khan et al approxImate ~upport vector~ by usmg DGSOT They use 

clustermg m parallel With the trammg of SVMs, Without waltmg till the end of the 

bUlldmg of the tree to start trammg the SVM The authors find that theIr approach 

slgmficantly Improves trammg tIme for the SVMs WIthout sacnficmg generalizatIOn 

accuracy, m the context of network anomaly detectlOn 

In addItIOn to the several detectIOn methods VIZ noted above, we also dISCUSS 

a cl&SIficatlOn b&ed IDS known as dependable network mtruslOn detectIOn system 

(DNIDS) [158] ThIS IDS IS developed based on the Combmed Strangeness and 

Isolation measure of the k-Nearest NeIghbor (CSI-KNN) algOrIthm DNIDS can 

effectIvely detect network mtrusIOn whJle provldmg contmued serVIce under attack 

The mtruslOn detectlOn algonthm analyzes charactenstlcs of network data by em­

ploymg two measures strangeness and IsolatIOn These measures are used by a 

correlatIOn umt to raIse mtruslOn alert along WIth the confidence mformatlOn For 

faster mformatlOn, DNIDS exploIts multIple CSF-KNN clas~lfiers m parallel It 
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also includes a intrusIOn tolerant mechanism to monitor the hosts and the classI­

fiers running on them, so that fallure of any component can be handled carefully. 

Sensors capture network packets from a network segment and transform them into 

connection-based vectors Thc Detector is a collection of CSI-KNN classifiers that 

analyze the vectors supplied by the sensors The Manager, Alert Agents, and Main­

tenance Agents are designed for intrusion tolerance and are installed on a secure 

administrative server called StatIOn The Manager executes the tasks of generating 

mobile agents and dIspatching them for task execution 

Some advantages of classlilcatlOn based anomaly detection methods are the fol­

lowlllg (i) These techniques are fleXIble for training and testing They are capable 

of updating their execution strategies with the incorporation of new information, 

Hence, adaptability is pOSSIble. (11) They have a hIgh detection rate for known 

attacks subject to appropriate threshold setting. 

Though such methods are popular they have the dIsadvantages including the 

following. (i) The techlllques are hIghly dependent on the assumptions made by 

the classifiers (ii) They consume more resources than other techniques. (iii) They 

cannot detect or predict unknown attack or event until relevant training information 

is fed. 

3.2.3 Clustering and Outlier-based Methods and Systems 

Clustering IS the task of assignlllg a set of objects into groups called clusters so that 

the objects in the same clustel are more similar in some sense to each other than to 

those in other clusters. Clustering is used in explorative data mining. For example, 

if we have a set of unlabeled objects in two dimensions, we may be able to cluster 

them into 5 cluster::, by drawing circles or elhpses around them, as in FIgure 3.6(a). 

Outliers are those points in a dataset that are highly unlikely to occur given a 

model of the data, as in Figure 3 6(b) Examples of outliers in a simple dataset are 

seen in [159J. Clustering and outlier finding are examples of unsupervised machine 

learning. 

Clustering can be performed in network anomaly detection in an offline environ­

ment. Such an approach adds addItIOnal depth to the admilllstrators' defenses, and 
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Figure 3.6: Clustering and outliers in 2-D, where C,s are clusters in (a) and O,s are 
outliers in (b) 

allows them to more accurately determine threats against their network through 

the use of multiple methods on data from multiple sources. Hence, the extensive 

amount of activIties that may be needed to detect intrusion near real time in an 

online NIDS may be obvIated, achieving efficiency [160]. 

For example, Minnesota INtruslOn Detection System (MINDS) [53] IS a data 

mining based system for detecting network intrusions. The architecture of MINDS 

is given in Figure 3.7 It accepts NetFlow data collected through flow tools as input. 

Flow tools only capture packet header information and build one-way sessions of 

flows. The analyst uses MINDS to analyze these data files in batch mode. The 

reason for running the system in batch mode IS not due to the time it takes to 

analyze these files, but because it is convenient for the analyst to do so Before 

data is fed into the anomaly detection module, a data filtering step is executed to 

remove network traffic in which the analyst is not interested. 

The first step of MINDS IS to extract important features that are used. Then, 

it summarizes the features based on time windows. After the feature construction 

step, the known attack detection module is used to detect network connections 

that correspond to attacks for which signatures are available, and to remove them 

from further analysis. Next, an outlier technique is activated to assign an anomaly 

score to each network connection. A human analyst then looks at only the most 

anomalous connections to determine if they are actual attacks or represent other 

interesting behavior. The association pattern analysis module of this system is 

dedicated to summanze the network connections as per the assigned anomaly rank. 
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The analyst provides feedback after analyzmg the summanes created and decides 

whether these summanes are helpful m creatmg new rules that may be used m 

known attack detectIOn 

r----"----...,/ 

Analyst 

Figure 3.7: ArchItecture of MINDS system 

Clustenng techmques are frequently used m anomaly detectIOn These mclude 

sIngle-hnk clusterIng algonthms "-means (squared error clustenng), and hierarchi­

cal clusterIng algonthms to mention a few [31,63, 161-164J 

Sequeira and ZakI [165J present an anomaly based mtruslOn detectIOn system 

known as ADMIT that detects Intruders by creatmg user profiles It keeps track of 

the sequence of commands a user uses as he/she uses a computer A user profile 

IS represented by clusterIng the sequences of the user's commands The data col­

lectIOn and proceSSIng are thus host based The system clusters a user s command 

sequence USIng longest common subsequence (LCS) as the ~Imllanty metnc It uses 

a dynamiC clustermg algonthm that creates an Imtlal set of clusters and then refines 

them by sphttmg and mergIng as necessary When a new user types a sequence of 

commands, It compares the sequence to profiles of users It already has If It IS a 

long sequence, It IS broken up to a number of smaller sequences A sequence that 

IS not simIlar to a normal user's profile IS consIdered anomalous One anomalous 

sequence IS tolerated as nOIse, but a sequence of anomalous sequences typed by 

one sIngle user causes the user to be marked as masquerader or a concept dnft 

The system can also use mcremental clustenng to detect masqueraders Zhang et 

al [163J report a distrIbuted mtruslOn detectIOn algOrIthm that clusters the data 

tWIce The first clusterIng chooses candidate anomalIes at Agent IDSs, which are 

placed In a dIstnbuted manner m a network and a second clusterIng computatIOn 
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attempts to identify true attacks at the central IDS. The first clustering algorithm 

is essentIally the same as the one proposed by [166]. At each agent IDS, small 

clusters are assumed to contaIn anomalIes and all small clusters are merged to form 

a single candidate cluster contaIning all anomalies The candidate anomalies from 

various Agent IDSs are sent to the central IDS, which clusters again using a simple 

single-link hierarchical clustering algorithm. It chooses the smallest k clusters as 

containing true anomalies. They obtain 90% attacks detection rate on test intrusion 

data. 

Worms are often intelligent enough to hide their activities and evade detection 

by IDSs. Zhuang et al. [167] propose a method called PAIDS (Proximity-Assisted 

IDS) to identify the new worms as they begin to spread. PAIDS works differently 

from other IDSs and has been designed to work collaboratively with existing IDSs 

such as an anomaly based IDS for enhanced performance. The goal of the designers 

of PAIDS is to identify new and intelligent fast-propagating worms and thwart their 

spread, particularly as the worm is just beginning to spread. Neither signature­

based nor anomaly based techmques can achieve such capabilities. Zhuang et al. 's 

approach is based mainly on the observation that during the starting phase of a 

new worm, the infected hosts are clustered in terms of geography, IP addresses and 

maybe, even DNSs used. 

Some advantages of using clustering are the following. (i) For a partitioning 

approach, if k can be provIded accurately, the task is easy. (ii) Incremental cluster­

ing (in supervised mode) techniques arc effective for fast response generation. (iii) 

It is advantageous in case of large datasets to group into similar number of classes 

for detecting network anomalies, because it reduces the computational complexity 

during intrusion detectlOn. (iv) It prOVIdes a stable performance in comparison to 

classifiers or statistical methods. 

Drawbacks of clustering based methods Include the following. (i) Most tech­

niques have been proposed to handle continuous attributes only. (ii) In clustering 

based intrusion detection techniques, an assumption is that the larger clusters are 

normal and smaller clusters are attack or intrusion [64]. Without this assumption, 

it is difficult to evaluate the technique. (iii) Usc of an inappropriate proximity mea­

sure affects the detection rate negatively (iv) Dynamic updation of profiles is time 
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consuming. 

Several outlier based network anomaly identification techniques are available in 

[l15]. When we use outlier based algorithms, the assumption is that anomalies are 

uncommon events in a network. Intrusion datasets usually contain mixed, numeric 

and categorial attributes. Many early outlier detection algorithms worked with 

continuous attributes. only; they ignored categorial attributes or modeled them in 

manners that caused considerable loss of information. 

To overcome this problem, Otey et al. [168] develop a distance measure for data' 

containing a mix of categorical and continuous attributes and use it for outlier based 

anomaly detection. They define an anomaly score which can be used to identify 

outliers in the ~ixed attribute space by considering dependencies among attributes 

of different types. Their anomaly score function is based on a global model of 

the data that can be easily constructed by combining local models built indepen­

dently at each node. They develop an efficient one-pass approximation algorithm 

for anomaly detection that works efficiently in distributed detection environments 

with very little loss of detection accuracy. Each node computes its own outliers and 

the inter-node communication needed to compute global outliers is not significant. 

In addition, the authors show that their approach works well in dynamic network 

traffic situations where data, in addition to being streaming, also changes in nature 

as time progresses leading to concept drift. 

Some advantages of outlier-based anomaly detection are the following. (i) It is 

easy to detect outliers when the datasets are smaller in size. (ii) Bursty and isolated 

attacks can be identified efficiently using this method. 

Drawbacks of outlier-based anomaly detection include the following. (i) Most 

techniques use both clustering and outlier detection. In such cases the complexity 

may be high in comparison to other techniques. (ii) The techniques are highly 

parameter dependent. 

A comparison of a few clustering and outlier-based network anomaly detection 

methods is given in Table 3.4. 
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Table 3.4: Companson of clustering and outlier-based network anomaly detection meth­
ods 

Author (s) Year of No of w x y Data types Dataset z Detectlon 
pubh- param- used method 
catlOn eters 

Seqllelra 2002 4 C R P Numeric, Real life Synthetic ADMIT 
and Zakl Categorical mtruslons 
[165J 
Zhang et 2005 2 D N P Numeric KDDcup99 CI Cluster-
al [lolJ based DIDS 
Leung and 2005 l C N P Numeric KDDcup99 CI fpMAFIA al-
Leckie [164] gOrlthm 
Otey et al 2000 5 C N P MIXed KDDcup99 CI FDOD algo-
[168] Iithm 
.lIang et al 2000 3 C N P MIXed KDDcup99 CI CBUID algo-
[7J rlthm 
Chen and 2008 - 0 N - - - G3 AAWP 
Chen [169] model 
Zhang et 2009 2 0 N P MIXed KDDcup99 CI KD algo-
al [63] rlthm 
Zhuang et 2010 2 R C P - Real time Co PAlOS 
al [167J model 
Casas et al 2012 2 N C F Numeric KDDcup99 CI UNIDS 
[31] Real time method 
w-mdlcates centralized (C) or distributed (D) or others (0) 
x-the nature of detectIon as real tIme (R) or non-real tIme (N) 
y-characterlzes packet-based (P) or flow-based (F) or hybrid (H) or others (0) 
z-represents the list of attacks handled CI-all attacks C2-demal of servIce CJ-probe, C4 -user to root, 

C5-remote to local and C6-worms 

3.2.4 Soft Computing-based Methods and Systems 

Soft computing techniques are suitable for network anomaly detection because often 

one cannot find exact solutions. Soft computing is usually thought of as encompass­

ing methods such as genetic algorithms, artificial neural networks, fuzzy sets, and 

rough sets. We describe several soft computing methods and systems for network 

anomaly detection below. 

Genetic Algorithm Approaches 

Genetic algorithms are population-based adaptive heuristic search techniques based 

on evolutionary ideas. The approach begins with conversion of a problem into a 

framework that uses a chromosome like data structure. Balajinath and Raghavan 

[170] present a genetic intrusion detector (GElD) based on learnmg of individual 

user behaVIOr User behavior is described as 3-tuple <matching index, entropy 

index, newness index> and is learnt using a genetic algorithm. This behavior 

profile is used to detect intrusion based on past behavior. Khan [171] uses genetic 

algorithms to develop rules for network intrusion detection. A chromosome in an 
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mdlvldual contams genes correspondmg to attnbutes such as the serVIce, flags, 

logged m or not, and super-user attempts Khan concludes that attacks that are 

common can be detected more accurately compared to uncommon attnbutes 

Artificial Neural Networks Approaches 

Artdiclal neural networh.~ (ANN) are motivated by the recogmhon that the human 

bram computes m an entlrelv dIfferent wav from the conventIOnal dIgItal computer 

[172] The bram orgamzes Its constItuents, known as neurons, so as to perform cer­

tam computatIOns (e g , pattern recogmtlOn, perceptIOn, and motor control) many 

times fastel than the fastest dIgItal computer To achlCve good performance, real 

neural networks employ masSIve mterconnectlOns of neurons Neural networks ac­

qUIre knowledge of the enVIronment through a process of learnmg, whIch systemat­

Ically changes the mterconnectIOn ~trengths 01 :,ynaptlc weIghts of the network to 

attam a desIred deSIgn ObjectIve 

An example of ANN-based IDS I~ RT-UNNID [173] ThI:' :,y:,tem 1:' capable of 

mtcllIgent real time mtrusIOn detectIOn usmg unsupervIsed neural networks (UNN) 

The archItecture of RT-UNNID IS gIven m FIgure 38 The first module captures 

and preprocesses the real hme network traffic data for the protocols TCP, UDP 

and ICMP It also extracts the numenc features and converts them mto bmary or 

normalIzed form The converted data IS sent to the UNN based detectIOn engme that 

uses adaptIve resonance theory (ART) and self-orgamzmg map (SOM) [174,175] 

neural networks Fmally, the output of the detectIOn engme IS sent to the responder 

for recordmg m the user's ~ystcm log file and to generate alarm when detectmg 

attacks RT-UNNID can work m real time to detect known and unknown attacks 

m network traffic WIth hIgh detectIOn rate 

Cannady'S approach [176] autonomously learns new attacks rapIdly usmg modI­

fied remforcement learnmg HIS approach uses feedback for SIgnature update when a 

new attack 1:' encountered and achIeve:, ~atI:,factory result:, An Improved approach 

to detect network anomahes usmg a hlCrarchy of neural networks IS mtroduccd m 

[177] The neural networks are tramed usmg data that spans the entIre normal 

space and are able to recogmze unknown attacks effectIvely Lm et al [178] re­

port a real tIme solutIOn to detect known and new attacks m network traffic usmg 
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Figure 3.8: Architecture of RT-UNNID system 

unsupervised neural nets. It uses a hierarchical intrusion detection model using 

principal components analysis (PCA) neural networks to overcome the shortcom­

ings of single-level structures. However, Sun et al. [179] present a wavelet neural 

network (WNN) based intrusion detection method. It reduces the number of the 

wavelet basic functions by analyzing the sparseness property of sample data to op­

timize the wavelet network to a large extent. The learning algorithm trains the 

network using gradient descent. 

In addition to the detection methods, we discuss a few IDSs below. 

Network self-organizing maps (NSOM) [180] is a network IDS developed using 

self-organizing maps (SOM). It detects anomalies by quantifying the usual or ac­

ceptable behavior and flags irregular behavior as potentially intrusive. To classify 

real time traffic, it uses a structured SOM. It continuously collects network data 

from a network port, preprocesses that data and selects the features necessary for 

classification. Then it starts the classification process a chunk of packets at a time 

and then sends the resulting classification to a graphical tool that portrays the ac­

tivities that are taking place on the network port dynamically as it receives more 

packets. The hypothesis is that routine traffic that represents normal behavior 

would be clustered around one or more cluster centers and any irregular traffic rep­

resenting abnormal and possibly suspicious behavior would be clustered in addition 

to the normal traffic clustering. The system is capable of classifying regular vs. 

irregular and possibly intrusive network traffic for a given host. 

POSEIDON (PAYL Over SOM for Intrusion DetectiON) [181] is a two-tier 

network intrusion detection system. The first tier consists of a self-organizing map 
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(SOM); and is used exclusively to classify payload data. The second tier consists of 

a light modification of the PAYL system [132]. Tests using the DARPA99 dataset 

show a hIgher detection rate and lower number of false positives than PAYL and 

PHAD [182] 

Fuzzy Set Theoretic Approaches 

Fuzzy network intrusion detection systems exploit fuzzy rules to determine the 

likelihood of specific or general network attacks [183,184]. A fuzzy input set can be 

defined for traffic in a specific network. 

Tajbakhsh et al. [185] describe a novel method for buIlding clru:;slfiers using fuzzy 

association rules and usc it for network intrusion detection. The fuzzy association 

rule sets are used to describe different classes' normal and anomalous. Such fuzzy 

association rules are class assoczatwn rules where the consequents are specified 

classes. Whether a training instance belongs to a specific class IS determined by 

using matching metrics proposed by the authors. The fuzzy association rules arc 

induced using normal training samples. A test sample is classified as normal if the 

compatibility of the rule set generated is above a certain threshold; those with lower 

compatibility arc considered anomalous. The authors also propose a new method 

to speed up the rule induction algorithm by reducing items from extracted rules. 

Mabu et al. report a novel fuzzy class-association-rulc mining method based on 

genetic network programming (GNP) for detecting network intrusions [186]. GNP 

is an evolutionary optimization technique, which uses directed graph structures 

instead of strings in standard genetic algorithms leading to enhanced representation 

ability with compact descriptions derived from possible node reusability in a graph. 

XIan et al. [187] present a novel unsupervised fuzzy clustering method based on 

clonal selection for anomaly detection. The method is able to obtain global optimal 

clusters more quickly than competing algorithms with greater accuracy. 

In addition to the fuzzy set theoretic detection methods, we discuss two IDSs, 

viz., NFIDS and FIRE below. 

NFIDS [188] is a neura-fuzzy anomaly-based network intrusion detection sys­

tem. It comprIses three tiers. Tier-I contains several Intrusion Detection Agents 
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(IDAs) IDAs are IDS components that monitor the activities of a host or a network 

and report the abnormal behavior to Tier-II. Tier-II agents detect the network sta­

tus of a LAN based on the network traffic that they observe as well as the reports 

from the Tier-I agents within the LAN. Tier-III combines hIgher-level reports, cor­

relates data, and sends alarms to the user interface There are four main types of 

agents in this system: TCPAgent, which mOllltors TCP connections between hosts 

and on the network, UDPAgent, which looks for unusual traffic involving UDP data, 

ICMPAgent, which monitors ICMP traffic and PortAgent, whIch looks for unusual 

services in the network 

Fuzzy intrusion recognition engine (FIRE) [183] IS an anomaly-based intrusion 

detection system that uses fuzzy logic to assess whether malicious actIvity is taking 

place on a network. The system combines simple network traffic metrics with fuzzy 

rules to determine the likelihood of specific or general network attacks. Once the 

metncs are available, they are evaluated using a fuzzy set theoretic approach. The 

system takes on fuzzy network traffie profiles as mputs to its rule set and report 

maliciousness. 

Rough Set Approaches 

A rough set is an approximation of a crisp set (I.e., a regular set) m terms of a pair 

of sets that are its lower and upper approximations In the standard and original 

versIOn of rough set theory [189], the two approximations are crisp sets, but in other 

variations the approximating sets may be fuzzy sets. The mathematical framework 

of rough set theory enables modeling of relationships with a minimum number of 

rules. 

Rough sets have two useful features [190]: (I) enabling learning .with small 

size training datasets (ii) and overall simplicity. They can be applied to anomaly 

detection by modeling normal behavior in network traffic. For example, in [191]' the 

authors present a fuzzy rough C-means clustenng technique for network intrusion 

detection by integrating fuzzy set theory and rough set theory to achieve high 

detection rate. Chen et al present a two-step classifier for network intrusion 

detection [192]. InitIally, it uses rough set theory for feature reduction and then a 

support vector machme classifier for final classification. They obtain 89% accuracy 
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on network anomaly data. 

Advantages of soft computmg based anomaly detection methods include the 

following. (i) Such learning systems detect or categorize persistent features without 

any feedback from the environment. (ii) Due to the adaptive nature of ANNs, it IS 

possible to tram and test mstances mcrementally using certam algorithms. MultI­

level neural network based techniques are more efficient than single level neural 

networks: (iii) UnsupervIsed learning usmg competitive neural networks is effective 

in data clustering, feature extraction and SImilarity detection. (iv) Rough sets are 

useful in resolvmg inconSistency in the dataset and to generate a minimal, non­

redundant and consistent rule set 

Some disadvantages of soft computing methods are the following. (i) Over­

fitting may happen dunng neural network traming (Ii) If a credible amount of 

normal traffic data is not available, the trammg of the techniques becomes very 

difficult. (Iii) Most methods have scalability problems. (iv) Rough set based rule 

generation suffers from proof of completeness. (v) In fuzzy associatIOn rule based 

techniques, reduced, relevant rule subset identification and dynamic rule updation 

at runtime is a difficult task. 

Table 3.5 gives a comparison of several soft computing-based anomaly detection 

methods. 

3.2.5 Knowledge-based Methods and Systems 

In knowledge-based methods, network or host events are checked against predefined 

rules or patterns of attack The goal is to represent the known attacks in a gen­

eralized fashion so that handlmg of actual occurrences become easier. Examples 

of knowledge-based methods are expert systems, rule based, ontology based, logic 

based and state-transition analysis [195-198] 

These techmques search for mstances of known attacks. by attempting to match 

traffic patterns With pre-deterinined attack representations. The search begins like 

other intrusion detection techniques, With a complete lack of knowledge. Subsequent 

matching of activities against a known attack helps acqUire knowledge and enter 

into a region with higher confidence. Finally, it can be shown that an event or 
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Table 3.5: Comparison of soft computing-based network anomaly detectIOn methods 

Author (s) Year of No of w x y Data Dataset z Detect10n 
publt- param- types used method 
cattOn eters 

Cannady [176J 2000 2 0 N P Numenc Real-hfe C2 CMAC-based 
model 

BalaJmath and 2001 3 0 N 0 Categoncal User com- C4 BehaVIOr 
Raghavan [170J mand Model 
Lee and Hem- 2001 3 C N P - Simulated C2 TNNID model 
buch [177J data 
Xlan et al 2005 3 C N P Numenc KDDcup99 C1 Fuzzy K-
[187J means 
Amml et al 2006 2 C R P Categoncal KDDcup99, C1 RT-UNNID 
[17.3J Real-hfe system 
Chlmphlee et 2006 .3 C N P Numenc KDDcup99 Cl Fuzzy Rough 
al (191J C-means 
LlUetai [178J 2007 2 C N P Numenc KDDcup99 Cl HPCANN 

Model 
Adetunmbl et 2008 2 C N P Numenc KDDcup99 Cl LEM2 and K-
al [19lJ NN 
Chen et al 2009 l C N P Numenc DARPA98 C2 RST-SVM 
(192J techmque 
Mabu et al 2011 $ C N P Numenc KDDcup99 Cl Fuzzy-ARM 
[186J based on GNP 
Visconti and 2011 2 0 N P NumellC Real-hfe C2 Interval type-2 
Tahayon [194J fuzzy set 
Geramlraz et 2012 2 0 N P Numellc KDDcup99 Cl Fuzzy rule 
al [184J based model 
w-mdlcates centralized (C) 01 dlstllbuted (D) or others (0) 
x-the nature of detectIOn as real time (R) or non-real time (N) 
y-charactenzes packet-based (P) or flow-based (F) or hybrid (H) or others (0) 
z-represents the list of attacks handled Cl-all attacks, C2-demal of servIce C I-probe, C4-user to root 

and Cs-remote to local 

activity has reached maximum anomaly score. 

An example knowledge-based system IS state transitIOn analysis tool (STAT) 

[199]. Its architecture is given in Figure 3.9 It models traffic data as a series of 

state changes that lead from secure state to a target compromised state STAT is 

composed of three main components: knowledge base, inference engIne and deci­

sion engine. The audit data preprocessor reformats the raw audit data to send as 

input to the inference engine. The inference engIne monitors the state transitions 

extracted from the preprocessed audit data and then compares these states with 

the states available within the knowledge base. The decision engine monitors the 

improvement of the inference engine for matching accuracy of the state transitions. 

It also specifies the action(s) to be taken based on results of the inference engine and 

the decision table. Finally, the decision results are sent to the SSO (Site Security 

Officer) interface for action. It can detect cooperative attackers and attacks across 

user sessions well. 

A few promInent knowledge-based network anomaly detection methods and 
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Audltdata preprocessor 

Decision Engine SSO Interface Knowledge base 

Figure 3.9: Architecture of STAT system 

NIDSs are given below 

Rule-based and Expert System-based Approaches 

The expert system approach is one of the most Widely used knowledge-based meth­

ods [200 20l] An expert system, m the traditional sense, i~ a rule-ba~ed sy~tem, 

wIth or wIthout an assocIated knowledge base An expert svstem has a I ule engme 

that matches rules agamst the current state of the system, and dependmg on the 

results of matchmg, fires one or more rules 

Snort [161] is a qumtessentIally popular rule-based IDS ThiS open-source IDS 

matches each packet it observes agamst a set of rules The antecedent of a Snort 

rule is a boolean formula composed of predicates that look for speCific value::. of 

fields present m IP headers transport headers and m the payload Thus, Snort 

rules identIfy attack packets based on IP addresses, TCP or UDP port numbers, 

ICMP codes or types, and contents of stnngs m the packet payload Snort's rules 

are arranged mto pnonty classes based on potential impact of alert~ that match 

the rules Snort's rules have evolved over itS history of 15 years Each Snort rule 

has associated documentatIOn With the potential for false POSitives and negatives, 

together With cOlrectlVe actIOns to be taken when the rule ralse~ an alert SnOl t 

rules are Simple and easily understandable Users can contnbute rules when they 

observe new types of anomalous or mahclOus traffic Currently, Snort has over 

20,000 rules, mclusive of those submitted by users 

An mtrusion detectIOn system hke Snort ean run on a general purpose computer 

and can try to mspect all packets that go through the network However, momtonng 

packets comprehensively m a large network I::' obVIOusly an expenSive task smce it 
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requires fast inspection on a large number of network interfaces. Many hundreds of 

rules may have to be matched concurrently, making scaling almost impossible. 

To scale to large networks that collect flow statistics ubiquitously, Duffield et al. 

[202J use the machine learning algonthm called Adaboost [203J to translate packet 

level signatures to work with flow level statistics. The algorithm is used to correlate 

the packet and flow information In particular, the authors associatc packet level 

network alarms with a feature vector they create from flow records on the same 

traffic. They create a set of rules using flow mformation with features similar to 

those used m Snort rules. They also add numerical features such as the number of 

packets of a specific kind flowing within a certain time period. Duffield et al. train 

Adaboost on concurrent flow and packet traces. They evaluate the system using 

real time network traffic data with more than a billion flows over 29 days, and show 

that their performance is comparable to Snort's with NetFlow data. 

Prayote and Compton [204] present an approach to anomaly detection that 

attempts to address the brittleness problem m which an expert system makes a 

decision that human common sense would recognize as impossible. They use a 

technique called prudence [205], in which for every rule, the upper and lower bounds 

of each numerical variable in the data seen by the rule are recorded, as well as a 

list of values seen for enumerated variables The expert system raises a warning 

when a new value or a value outside the range is seen in a data instance. They 

Improve the approach by usmg a Simple probabilistic technique to decide if a value 

is an outlier. When working with network anomaly data, the authors partition 

the problem space into smaller subspaces of homogeneous traffic, each of which 

is represented with a separate model m terms of rules The authors find that 

this approach works reasonably well for new subspaces when little data has been 

observed They claim 0% false negative rate in addition to very low false positive 

rate. Scheirer and Chuah [206J report a syntax-based scheme that uses variable­

length partition with multiple break marks to detect many polymorphic worms. 

The prototype is the first NIDS that provides semantics-aware capability, and can 

capture polymorphic shell codes with additional stack sequences and mathematical 

operations. 

The main advantages of knowledge-based anomaly detection methods include 
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the followmg. (i) These technIques are robust and flexible. (ii) These techniques 

have high detectIOn rate, if a substantial knowledge base can be acquired properly 

about attacks as well as normal instances. 

Some disadvantages of knowledge-based methods are the following. (i) The 

development of high-quaMy knowledge is often difficult and time-consummg. (Ii) 

Due to non-availability of biased normal and attack data, such a method may 

generate a large number of false alarms (iii) Such a method may not be able to 

detect rare or unknown attacks. (iv) Dynamic updation of rule or knowledge-base 

is a costly affair. 

A companson of knowledge-based anomaly detection methods IS given in Ta-

ble 3.6. 

Table 3.6: Comparison of kno~ledge based network anomaly detection methods 
Author (s) Year of No of w x y Data Dataset z Deteet,on 

pubh- param- types used method 
catlOn eters 

Noel et al \195J 2002 - 0 N 0 - - - Attack GUIlt 
Model 

Sekar et al \196J 2002 3 0 N P Numenc OARPA99 C) SpecdkatlOn 
Based Model 

TapladOl et al 2003 3 C N P Numenc Real-hfe G2 IVlarkov Cham 
\207J Model 
Hung and LlU 2008 - 0 N P Numenc KOOcup99 C1 Ontology based 
\208J 
Shabtal et al 2010 2 0 N 0 - Real-hfe C2 Incremental 
\209J KBTA 
w-mdlcates centrahzed (C) or d,stributed (0) or others (0) 
x-the nature of detectIOn as real tIme (R) or non-real tIme (N) 
y-charactenzes packet-based (P) or flow-based (F) or hybnd (H) or others (0) 
z-represents the hst of attacks handled C)-all attacks, C 2-demal of serVIce, Cl-probe C4-user to root, 

and C5-remote to local 

3.2.6 Methods and Systems based on Combination Learn-

ers 

In this section, we present a few methods and systems which use combinations of 

multiple techniques, usually classifiers. 

Ensemble-based Methods and Systems 

The idea behind the ensemble methodology is to weigh several individual classi­

fiers, and combine them to obtain an overall classifier that outperforms everyone 

of them [210-214]. These techlllques weigh the individual opinions, and combine 
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them to reach a final decision. Ensemble-based methods are categorized based on 

the approaches used. Three main approaches to develop ensembles are (i) baggmg, 

(ii) boosting, and (iii) stack generaliza~ion. Baggmg (Bootstrap Aggregating) in­

creases classification accuracy by creating an improved composite classifier into a 

single prediction by combining the outputs of learnt classifiers. Boostmg builds 

an ensemble incrementally by training mis-classified instances obtained from the 

previous model. Stack generalzzatwn achieves the high generalization accuracy by 

using output probabilities for every class label from the base-level classifiers. 

Octopus-IIDS 1215] is an example of ensemble IDS. The architecture of this 

system is shown in Figure 3.10. It is developed using two types of neural networks 

(Kohonen and Support Vector Machines). The system is composed of two layers: 

classifier and anomaly detection. The classifier is responsible for capturing and 

preprocessing of network traffic data. It classifies the data into four main categories: 

DoS, probe, U2R and R2L. A specific class of attack is identified in the anomaly 

detection layer. The authors claim that the IDS works effectively in small scale 

networks. 

Network tramc 

Classification 
layer 

Anomaly 
detection layer 

"'-+---"'-1---"--1--.... Attack 
Nonnal..--_-"-__ --"-__ --''--_--'" 

Figure 3.10: Architecture of Octopus-IIDS system 

Chebrolu et al. [216] present an ensemble approach by combining two classifiers, 

Bayesian networks (BN) and Classification and Regression Trees (CART) [138,217]. 

A hybrid architecture for combining different feature selection algorithms for real 

world intrusion detection is also incorporated for getting better results. Perdisci et 

al. [218] construct a high speed payload anomaly IDS using an ensemble of one-class 

SVM classifiers intended to be accurate and hard to evade. 

Folino et al. [219] introduce a distributed data mining algorithm to improve 
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detection accuracy when classIfying malicIOus or unauthorized network activity us­

mg genetic programming (GP) extended WIth the ensemble paradigm. Their data 

IS distributed across multIple autonomous sItes and the learner component acqUIres 

useful knowledge from data in a cooperative way and uses network profiles to predict 

abnormal behavior with better accuracy Nguyen et al [220] build an individual 

classifier using both the input feature space and an additional subset of features 

given by k-means clustermg. The ensemble combination is calculated based on the 

classification abihty of classifiers on different local data seg~ents given by k-means 

clustering. 

Beyond the above methods, some ensemble based IDSs are given below. 

The paradigm of Multiple Classifier System (MCS) has also been used to build 

misuse detection IDSs. Classifiers trained on different feature subsets are combined 

to achieve better classification accuracy than the indi;'ldual classifiers. In such a 

NIDS, network traffic is senally processed by each clasSIfier. At each stage, a clas­

sIfier may either decide for one attack class or send the pattern to another stage, 

which is trained on more difficult cases Reported results show that an MCS im­

proves the performance of IDSs based on statIstical pattern recognition techniques. 

For example, CAMNEP [221] is a fast prototype agent-based NIDS deSIgned for 

high-speed networks. It mtegrates several anomaly detection techniques, and op­

erates on a collective trust model within a group of collaborative detection agents. 

The anomalies are used as input for trust modelmg Aggregation is performed by 

extended trust models of generalized situated identities, represented by a set of 

observable features. The system IS able to perform real time surveillance of gigabit 

networks. 

McPAD (Multiple ClassIfier Payload-based Anomaly Detector) [222] is an ef­

fectIve payload-based anomaly detection system that consists of an ensemble of 

one-class classifiers. It is very accurate m detectmg network attacks that bear some 

form of shell-code in the malicious payload This detector performs well even in 

the case of polymorphic attacks. Furthermore, the authors tested their IDS with 

advanced polymorphic blending attacks and :,howed that even in the presence of 

such sophisticated attacks, it is able to obtain a low false positive rate. 

An ensemble method is advantageous because it obtams higher accuracy than 
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the individual techniques. The major advantages are the following. (i) Even If the 

Individual classifiers are weak, the ensemble methods perform well by combining 

multIple classIfiers. (il) Ensemble methods can 5cale for large datasets. (iii) En­

semble classifiers need a set of controlling parameters that are comprehensive and 

can be easily tuned. (iv) Among existing approaches, Adaboost and Stack gener­

alizatIOn are very effective because they can exploit the diversIty in predictions by 

multiple base level classifiers. 

Some disadvantages of ensemble based methods Include the following. (i) Se­

lecting a subset of consistent performing and unbiased classifiers from a pool of 

clasSIfiers is difficult. (ii) The greedy approach for selecting sample datasets is slow 

for large datasets. (iii) It is difficult to obtain real time performance. 

A comparison of ensemble based network anomaly detection methods is given 

In Table 3.7. 

Table 3.7: Comparison of ensemble-based network anomaly detection methods 

Author Year of Combmalton w x y Data Dataset z Deteetton 
(s) pubh- stmtegy types used method 

calton 
Chehrolu 2005 WeIghted 0 N P Numenc KOOcup99 C1 Class spe-
et al votmg clfic ensemble 
[216J model 
Perdlscl 2006 Majonty 0 N Pay - OperatIonal SynthetIC One-class clas-
et al votmg pomts mtru- slfier model 
[218J SlOns 

Borjl 2007 Majonty 0 N P Numenc OARPA98 C 1 Heterogeneous 
[211J \'otmg classIfiers 

model 
Perdlscl 2009 Mm and 0 R Pay - OARPAYIl C 1 McPAO model 
et al Max proba-
[222J blhty 
Fohno et 2010 WeIghted 0 N P Numenc KOOcup<J<J C 1 GEdIDS model 
al [219J majonty 

\otmg 
Noto et 2010 InformatIOn 0 N - Numenc UCl None FRaC model 
al [214J theoretic 
Nguyen 2011 Majonty 0 N P Numenc KOOcup99 C 1 Cluster based 
et al votmg ensemble 
[220) 
Khrelch 2012 Learn and 0 N pay NumerIC UNM C4 EoHMMs 
et al [25) combme based 
w-mdlcates centrahzed (C) or dIstrIbuted (0) 01 othelS (0) 
x-the nature of detectIOn as real tIme (R) or non-real tIme (N) 
y-charactenzes packet-based (P) or flow-based (F) or payload-based (pay) or hybnd (H) or others (0) 
z-represents the hst of attacks handled Cl-all attacks C2-defllal of servIce. C I-probe, C4-user to root, 

and Cs-remote to local 
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F'usion-based Methods and System 

WIth an evolvmg need of automated decIsIOn makmg It IS Important to Improve 

classIficatIOn accuracy compared to the stand-alone general deCISIOn based teeh­

mques even though such a system may have several dIsparate data sources So, a 

sUItable eombmatIOn of the~e I~ known as fU~IOn applOaeh Several fusIOn-based 

teehmques have been applIed to network anomaly detectIOn [223-227] A classI­

ficatIOn of such techmques IS as follows (1) data level, (ll) feature level, and (lll) 

deCISIOn level Some methods only address the Issue of operatmg m a space of 

hIgh dImenSIOnalIty WIth features dIVIded mto semantIC gIOUpS Othels attempt 

to combme clasSIfiers tramed on dIfferent features dIVIded based on hlCrarchIcal 

abstractIOn levels or the type of mformatIOn con tamed 

Giaemto et al [223] provIde a pattern recogmtIon approach to network mtruSIOn 

detection employmg a fUSIon of multIple clasSIfiers FIVe dIfferent decIsIon fUSIOn 

methods are asse~sed by eApenmenb and theIr perfOlmance::, compared ShIfflet 

[224] dIscusses a platform that enables a multItude of techmques to work together 

towards creatmg a more realIstIC fUSIOn model of the state of a network, able to 

detect malIcIOUS actIvIty effectIvely A heterogenous data level fusIOn for network 

anomaly detectIOn IS added by Chatzigiannakis et al [228] They use the Demster­

Shafer Theory of EVIdence and PrmCIpal Components AnalYSIS for developmg the 

techmque 

dLEARNIN [225] IS an ensemble of clasSIfiers that combmes mformatIOn from 

multiple sources It IS explICItly tuned to mmlmIze the cost of errors dLEARNIN IS 

shown to achIeve state-of-the-art performance, better than competmg algollthms 

The cost mmImIzatIOn strategy dCMS attempts to mmImIze the cost to a sIgmfi­

cant level Gong et al [229J contnbute a neural network based data fUSIOn method 

for mtrusIOn data analYSIS and prunmg to filter mformatIOn from multIple sensors 

to get hIgh detectIOn accuracy However, HMMPayl [230J IS an example of fUSIOn 

based IDS, where the payload IS represented as a sequence of bytes, and the anal­

YSIS IS performed usmg HIdden Markov Models (HMM) The algonthm extracts 

features and uses HMM to guarantee the same expreSSIve power as that of n-gram 

analYSIS, whIle overcommg ItS computatIOnal eompleXlty HMMPayl follows the 
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Multiple Classifiers System paradigm to provide better classIfication accuracy, to 

increase the dIfficulty of evading the IDS, and to mitigate the weaknesses due to a 

non-optimal choice of HMM parameters 

Some advantages of fusion methods are the following (i) Data fusIOn is effective 

m mcreMmg timeliness of attack IdentificatIOn and in reducing false alarm rates. 

(ii) Decision level fusion with appropriate training data usually yields high detection 

rate 

Some drawbacks are the following. (i) The computational cost is high for rig­

orous trainmg on the samples. Oi) Feature level fusion is a time consuming task. 

Also, the bIases among the base classifiers affect the fusion process. (iii) Building 

hypotheses for different classifiers is a difficult task. 

A comparison of fusion-based network anomaly detection methods is given in 

Table 3.8 

Table 3.8: Comparison of fusion-based network anomaly detection methods 
Author (5) Year of Fuston w x y Data Dataset z DeteettOn 

pubZ,- level types used method 
catIon 

G,acInto et al 2003 DecISIon 0 N P NUmellc KDDcup99 Cl MeS Model 
[223J 
ShIfflet [224J 2005 Data 0 N 0 - - None HSPT algo-

nthm 
ehatzlglannakls 2007 Data e N P - NTUA C2 D-S algonthm 
et al [228J GRNET 
Pankh and Chen 2008 Data C N P Numenc KDDcup99 Cl dLEARNIN 
[225J system 
Gong et al [229J 2010 Data C N P NumeriC KDDcup99 CI IDEA model 
Arm et al [230J 2011 DecISIon C R Pay - DARPA98, CI HMMPayl 

real-lIfe model 
Van and Shao 2012 DeCISIon 0 N F NumeriC Real tIme C2,C I EWMA model 
[227J 
w-Ind,cates centralIzed (e) or dlstnbuted (D) or others (0) 
x-the nature of detectIon as real tIme (R) or non-real tIme (N) 
y-charactenzes packet-based (P) or flow-based (F) or payload-based (pay) or hybnd (H) or others (0) 
z-represents the lIst of attacks handled CI-all attacks, C2-demal of servIce CJ-probe, C4-user to root. 

and Cs-remote to local 

Hybrid Methods and System 

Most current network intrusion detection systems employ eIther mIsuse detection or 

anomaly detection However, misuse detection cannot detect unknown intrusions, 

and anomaly detection usually has high false positive rate [231]. To overcome the 

limitations of the techniques, hybrid methods are developed by exploiting features 

from several network anomaly detection approaches [32-34]. Hybridization of sev-
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eral methods mcreases performance of IDSs 

For example, RT-MOVICAB-IDS, a hybnd lI1telhgent IDS IS ll1troduced 1I1 [232] 

It combmes ANN and CBR (case based reasonmg) wlthm a MultI-Agent System 

(MAS) to detect mtruslOn m dynamIc computer networks The dynamIc real tIme 

multI-agent archItecture allows the addItIOn of pledlctlOn agents (both reactIve 

and dehberatlve) In partIcular, two of the delIberatIve agents deployed m the 

system mcorporate temporal-bounded CBR ThIs upgraded CBR IS based on an 

anytIme apprmomatlOn, whIch allows the adaptatIOn of thIS paradIgm to real tIme 

reqUIrements 

A hybrId approach to prOVIde host secuuty that prevents bmary code mjectlOn 

attacks known as the FLIPS (Feedback LearnlI1g IPS) modclls proposed by [233]. 

It lI1corporates three major components an anomaly based classIfier, a SIgnature 

based filterIng scheme, and a supenlSlon framework that employs InstructIon Set 

RandomIzatIOn (ISR) Capturll1g the lI1jected code allows FLIPS to construct sIg­

natures for zero-day explOIts Peddabachlgan et al [234] present a hybnd approach 

that combmes DeciSIOn trees (DT) and SVMs as a hIerarchIcal hybrId ll1telhgent 

system model (DTSVM) for mtruslOn detectIOn It ma."Xlmlzes detectIOn accuracy 

and mmImIzes computatIOnal compleXIty 

Zhang et al [235] propose a systematIc framework that appbes a data mmmg 

algollthm called random forests m bUIldmg a mIsuse, anomaly, and hyblld-netwOlk 

based IDS The hybrId detectIOn system Improves detectIOn performance by com­

bmmg the advantages of both mIsuse and anomaly detectIOn Tong et al [236] 

dISCUSS a hybnd RBF JElman neural network model that can be employed for both 

anomaly detectIOn and mIsuse detectIOn It can detect temporally dIspersed and 

collaboratIve attacks effectIvely because of ItS memory of past events A ll1telbgent 

hybrId IDS model based on neural networks IS mtroduced by [237] The model 

IS fleXIble, extended to meet dIfferent netwolk envIronments, Improves detectIOn 

performance and accuracy Sehm et al [238] report a hybnd mtclhgent IDS to 

Improve the detectIOn rate for known and unknown attacks It consists of multIple 

levels hybnd neural networks and deCISIon trees The techlllque IS evaluated using 

NSL-KDD dataset and results were promlsmg 

Advantages of hybrId methods ll1clude the followmg (I) Such a method explOits 
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major features from both signature and anomaly based network anomaly detection. 

(ii) Such methods can handle both known and unknown attacks. 

Drawbacks of hybrid methods include the following (i) Lack of appropriate 

hybridization may lead to high computatlOnal cost (ii) Dynamic updation of rule 

or profile or signature still remams difficult. 

Table 3.9 presents a comparison of a few hybrid network anomaly detection 

methods. 

Table 3.9: Comparison of hybrid network anomaly detection methods 

Author (5) Year of No of w x y Data Dataset z Detect,on method 
pubh- param- types used 
cahon eters 

Locasto et al 2005 2 C R P - Real-life C2 FLIPS model 
[233] 
Zhang and 2006 2 C N P NumeriC KDDcup99 C, Random forest 
Zulkernme [32] based hybrid 

algOrIthm 
Peddabachlgarl 2007 2 C N P NumeriC KDDcup99 C, DT-SVM hybrId 
et al [234] model 
Zhang et al 2008 2 C N P NumeriC KDDcup99 C 1 RFIDS model 
[235] 
Aydm et al 2009 3 C N P - DARPA98 C 1 HybrId signature 
[33] IDEVAL based IDS model 
Tong et al 2009 1 C N P NumerIC DARPA- Cl HybrId 
[236] BSM RBF JElman NN 
Yu [237J 2010 1 C N - - - - HybrId NIDS 
Arumugam et 2010 - C N P NumeriC KDDcup99 C, Multi-stage hybrid 
al [231] IDS 
Sehm et al 2011 - C N P NumerIC KDDcup99 C, HybrId multi-level 
[238] IDS model 
Panda et al 2012 2 C N P NumeriC NSL-KDD C, DTFF and FFNN 
[.l4] KDDcup99 
w-mdlcates centrahzed (C) or distributed (D) or others (0) 
x-the nature of detection as real time (R) or non-real time (N) 
y-characterIzes packet based (P) or flow based (F) or hybrid (H) or others (0) 
z-represents the list of attacks handled C,-all attacks C 2-demal of selVlce C3-probe, C4-usel to root, 

and Cs-remote to local 

3.2.7 Discussion 

After a long and elaborate discussion of many intrusion detection methods and 

anomaly based network intruSlOn detection systems under several categories, we 

make a few observations. 

(i) Each class of anomaly based network intrusion detection methods and systems 

has unique strengths and weaknesses. The suitability of an anomaly detection 

technique depends on the nature of the problem attempted to address. Hence, 

provldmg a single integrated solution to every anomaly detection problem may 
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not be feasible 

(11) Vanous methods face vanous challenges when complex datasets are used The 

nearest neighbor and clustenng techmques suffer when the number of dimen­

sIOns IS high because the distance measures m high dimensIOns are not able to 

differentiate well between normal and anomalous lllstances 

Spectral techmques expliCitly address the high dimensIOnality problem by 

mappmg data to a lower dimensIOnal projectIOn But their performance IS 

highly dependent on the assumptIOn that normal mstances and anomalies 

are dlt:.tlllgUlt:.hable m the projected space A cl8.bt:.ificatlOn techmque often 

performs bettcr ll1 such a scenano However, It reqUIres labeled tramll1g data 

for both normal and attack classes The Improper dlstnbutlOn of these tralllmg 

data often makes the task of learnlllg more challenglllg 

SemI-superVised nearest neighbor and clusterll1g techmques that only use 

nOlmallabels can often be mOle effective than classIfication-based techmquet:. 

In SituatIOns where Identlfymg a good distance measure IS dIfficult, classIfica­

tIOn or statIstical techlllques may be a better chOice However, the success 

of the statistIcal techlllques IS largely lllfiuenced by the applIcability of the 

t:.tatlstlCal assumptIOns m the specific real life scenallOt:. 

(lll) For real-time mtruslOn detectIOn, the complexity of the anomaly detectIOn 

plOcest:. plays a vital role In case of clast:.lficatlOn clusterll1g and statistical 

methods although tralllmg IS expenSive, they are still acceptable because 

testll1g IS fast and tramll1g IS offime In contrast, techlllques such as nearest 

neIghbor and :,pectral techmquet:. whIch do not have a tramlllg ph8.be, have an 

expenSIve testlllg phase which can be a limitatIOn m a real settmg 

(IV) Anomaly detectIOn techlllques tYPically ast:.ume that anomaliet:. m data are rare 

when compared to normal mstances Generally, such assumptIOns are valid 

but not always Often unsupervised techlllques suffer from large false alarm 

rates when anomalIes are ll1 bulk amounts Techmques operatmg III super­

vised or semi-supervised modes [239J can be applIed to detect bulk anomalIet:. 
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We also perform a comparison of the anomaly based network intrusion detection 

systems that we have discussed throughout thiS chapter based on parameters such 

as mode of detectlOn (host based, network based or both), detection approach (mis­

use, anomaly or both), nature of detection (onlme or offline), nature of processing 

(centralized or distributed), data gathering mechamsm (centralized or distributed) 

and approach of analysis. A companson chart is given in Table 3.10. 

Table 3.10: Comparison of NIDSs 

Name of IDS Year of pub- a b C d e Approach 
hcatlon 

STAT [199J 1995 H M R C C Knowledge-based 
FIRE [18:3J 2000 N A N C C Fuzzy LogIC 
ADAM [124J 2001 N A R C C ClassIficatIon 
HIDE [125} 2001 N A R C D StatIstIcal 
NSOM [18oJ 2002 N A R C C Neural network 
NFIDS [188J 2001 N A N C C Neuro Fuzzy LogIC 
N@G [141J 2003 Hy B R C C StatIstical 
MINDS [53J 2004 N A R C C Clustellng and Outlier-based 
FSAS [142} 2006 N A R C C StatIstIcal 
POSEIDON [181J 2006 N A R C C SOM & ModIfied PAYL 
RT-UNNID [173J 2006 N A R C C Neural Network 
DNIDS [158} 2007 N A R C C CSI-KNN-based 
CAMNEP [221) 2008 N A R C C Agent-based 'frust and ReputatIOn 
McPAD [222J 2009 N A N C C MultIple classIfier 
Octopus-lIDS [2151 2010 N A N C C Neural network & SVM 
HMMPayl [23OJ 20ll N A R C C HMM model 
RT-l\'lOVICAB-IDS 20ll N A R C C Hybrid IDS 
[232) 
a-represents the types of detectIon such as host-based (H) or network-based (N) or hybrid (H) 
b-mdlcates the class of detectIon mechanIsm as mIsuse (M) or anomaly (A) or both (B) 
c-denotes the nature of detectIOn as real tIme (R) or non-real tIme (N) 
d-characterlzes the nature of processmg as centralized (C) or dIStributed (D) 
e-mdlcates the data gathermg mechamsm as centralized (C) Or dIstributed (D) 

3.3 Tools Used for Network Traffic Analysis 

Capturing and preprocessing high speed network traffic is essential prior to detection 
of network anomalIes. Different tools are used for capturing and analysis of network 
traffic data. We list a few commonly used tools and their features in Table 3 11. 
These are commonly used by both the network defender and the attacker at different 
time points. 
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Table 3.11: Tools used III dIfferent steps III network traffic anomaly detectlOn and theIr 
descnption 

Tool 

Name 

Gulp 

tcptrace 

nfdump 

nfsen 

nmap 

rnmap 

Purpose 

Packet 

capture 

Loss less 

gIgabIt 

remote 

packet 

captunng 

TCP­

based 

feature 

extractlon 

netAow 

data 

collectIon 

netAow 

Chamctenst,es 

(I) Free and open-source packet analyzer (II) Can be used 

for netwO! k troubleshootmg, analYSIS software and commu­

nIcatIons protocol development, and educatIon (III) Uses 

cross-platform GTK+ WIdget toolkIt to Implement ItS user 

mterface and uses pcap to capture packets (IV) SImIlar 

to tcpdump, but has a graphIcal front-end, plus some Inte­

grated sortIng and filterIng optIOns (v) Works m mIrrored 

ports to capture network traffic to analyze for any tamper­

mg 

Source 

http Ilwww wlresh 

ark orgl 

(I) It allows much hIgher packet capture rate by droPPIng http Iistaff washIng 

far fewer packets (II) It has ablhty to read dIrectly from ton edu/corey Igulpf 

the network, but IS able to pIpe output from legacy apphca-

tIOns before wntIng to dIsk (III) If the data late InCleases, 

Gulp reahgns Its wntes to even block boundarIes for OptI-

mum wntIng effiCIency (IV) When It receIves an Interrupt, 

It stops fillIng Its nng buffer but does not eXIt untIl It has 

finIshed wntIng whatever lemaInS m the rmg buffer 

(I) Can take Input files produced by several popular packet- http I IJarok cs ohl 

capture programs, mcludmg tcpdump snoop ethel peek, HP ou edu/softwarel 

Net Metnx, "v'lreshark, and WmDump (II) Produces sev- tcptracel 

eral types of output contaInIng mformatlOn on each connec-

tIOn seen such as elapsed tIme, bytes and segments sent and 

receIved, retransmIssIons, round tnp tImes wmdow adver-

tIsements and throughput (III) Can also produce a number 

of graphs WIth packet statIstICS for further analYSIS 

(I) Can collect and process netAow data on the command http Ilnfdump 

hne (II) It IS hmlted only by the dIsk space avaIlable for all sourceforge netl 

the netflow data (III) Can be optImIzed m speed fO! effiCIent 

filtermg The filter rules look hke the syntax of tcpdump 

(I) nfsen IS a glaphlcal Web-based front end fO! the nfdump http Ilnfsen 

data col- netflow tool (II) It allows dIsplay of netflow data as flows, sourceforge netl 

lectlOn packets and bytes usmg RRD (Round Robm Database) (III) 

and VISU- Can process the netAow data wlthm a specIfied tIme span 

ahzatIOn 

Scannmg 

port 

(IV) Can create hIstory as well as contInUOUS profiles (v) 

Can set alerts based on varIOUS condItIOns 

(I) Network Mapper (nmap) IS a free and open source utlhty http Ilnmap orgl 

for network exploratIOn or securIty audltmg (II) Uses raw IP 

packets In novel ways to determIne whIch hosts are avaIlable 

on the network whIch servICes (apphcatIOn name and vel-

sIOn) those hosts offer, what operatmg systems are runnIng, 

type of firewall 01 packet filter used, and many other charac-

tenstlcs (III) It IS easy fleXIble, powerful well documented 

tool fO! dISCOVerIng hosts In large network 

CoordInated (I) Remote Nmap (rnmap) contaInS both chent and server http Ilrnmap 

scannIng programs (II) Vanous chents can connect to one centrahzed sourceforge netl 

rnmap server and do theIr port scannIng (III) Server per-

forms user authentIcatIOn and uses excellent nmap scanner 

to do actual scannIng 

Contmued on next page 
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Table 3 11 - Contmued from pre1Jto'IJS page 

Tool Purpose Charoctensilcs SouTee 

Name 

Targa Attack (i) Targa is a free and powerful attack generatIon tool. (n) It http.//wwwIO.org/ 

sImulatIOn mtegrates bonk, jolt, land, nestea. netear, syndrop. teardrop, cdrom/papers/409/ 

and wmnuke mto one multI-platform DoS attack 

3.4 Observations and Summary 

The following are some observations that one needs to be mindful of when developing 

a network anomaly detection method or a system. 

• Most existing IDSs for the wired environment work in three ways: flow-level 

traffic or packet-level feature data analysis, protocol analysis or payload in­

spection. Each of these categories has its own advantages and limitations. 

So, a hybridization of these (e.g., protocol level analysis followed by flow level 

traffic analysis) may give a better performance in terms of known (with high 

detection rate) as well as unknown attack detection. 

• An IDS, to be capable of identifying both known as well as unknown attacks, 

should exploit both supervised (rule-based or signature-based) as well as un­

supervised (clustering or outlier-based) methods at multiple levels for real 

time performance with low false alarm rates. 

• The IDS developer should choose the basic components, method(s), tech­

niques or rule/signature/profile bases to overcome four important limitations: 

subjective effectiveness, limited scalability, scenario dependent efficiency and 

restricted security. 

• The performance of a better IDS needs to be established both qualitatively 

and quantitatively. 

• A better anomaly classification or identification method enables us to tune it 

(the corresponding normal profiles, thresholds, etc) depending on the network 

scenario. 
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We have examined the state-of-the-art in modern anomaly-based network in­

trusion detection. The discussion emphasized on two well known criteria to detect 

anomalous traffic in NIDSs· detection strategy and evaluation. We also presented 

many detection methods, systems and tools under several categories. Finally, we 

outlined some recommendatIOns to the future researchers and practitioners who 

may attempt to develop new detection methods and systems for current network 

scenarios. 
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Chapter 4 

A Systematic Approach to 

Generate Real-Life Intrusion 

Datasets 

This chapter IS organized in three major sections, viz., Introduction, Existing 

Datasets, and Dataset Generation. We establish the importance of an intrusion 

dataset in the development and validation process of a detection mechanism, iden­

tify a set of requirements for effective dataset generation, and discuss several attack 

scenarios. We also describe the motivation and our contribution in Section 4.1. In 

Section 4.2, we discuss various types of datasets and their charactenstics. In the . 
last section of this chapter, we discuss a systematic approach for generation of an 

unbiased, full feature network intrusion dataset. We also establish the effectiveness 

of the generated dataset by comparing with several existing datasets. 

4.1 Introduction 

In network intrusion detection, particularly when using anomaly-based detection, 

it is difficult to accurately evaluate, compare, and deploy a system that is expected 

to detect novel attacks due to scarcity of adequate datasets. Before deploying in 

any real world environment, an anomaly-based network intrusion detection system 

(ANIDS) must be tested and evaluated using real labelled network traffic traces with 

a comprehensive set of intrusions or attacks. This is a significant challenge, since not 

many such datasets are available. Therefore the detecti~m methods and systems are 
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evaluated only with a few publicly available datasets that lack comprehensiveness 

and completeness. For example, Cooperative Association for Internet Data Analysis 

(CAIDA) Distributed Delllal of ServIce (DDoS) 2007, Lawrence Berkeley National 

Laboratory (LBNL), and ICSI datasets are heavIly anonymlzed without payload 

mformation, decreasing research utility. Researchers also frequently use a single 

NetFlow based intrusion dataset found at [240] wIth hmlted number of attacks. 

4.1.1 Importance of Datasets 

In network traffic anomaly detection, it is always important to test and evaluate 

detectlOn methods and systems usmg datasets as network scenarios evolve. We 

enumerate the following reasons to justify the importance of a dataset. 

• Repeatabzlzty of experzments: Researchers should be able to repeat experi­

ments with the dataset and get similar results, when using the same approach. 

This is important because the proposed method should cope wIth the evolving 

nature of attacks and network scenarios. 

• Valzdatwn of new approaches: New methods and algonthms are being con­

tmuously developed to detect network anomalIes It IS necessary that every 

new approach be validated. 

• Comparzson of dzjJerent approaches: State-of-the-art network anomaly detec­

tIOn methods must not only be validated, but also show improvements over 

older methods in performance in a quantifiable manner For example, the 

DARPA 1998 dataset [95] is commonly used for performance evaluation of 

anomaly detectlOn systems [241]. 

• Parameters tunmg. To properly obtain the model to classify the normal frop1 

malicious traffic, it is necessary to tune model parameters. Network anomaly 

detection assumes the normality model to identify malicious traffic For ex­

ample, Cemerlic et al. [242] and Thomas et al. [243] use the attack-free part 

of the DARPA 1999 dataset for traming to estImate parameter values. 

• Dzmenswnalzty or the number of features: An optimal set of features or at­

tributes should be considered to represent normal as well as all pOSSIble attack 
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instances. 

4.1.2 Requirements 

Although good datasets are necessary for validating and evaluating IDSs, generating 

such datasets is a time consuming task. A dataset generation approach should meet 

the following requirements. 

• Real world: A dataset should be generated by monitoring the daily situation 

in a realistic way, such as the daily network traffic of an organization. 

• Completeness in labelling: The labelling of traffic as benign or malicious must 

be backed by proper evidence for each instance. The aim these days should 

be to provide labelled datasets at both packet and flow levels for each piece 

of benign and malicious traffic. 

• Correctness in labelling: Given a dataset, labelling of each traffic instance 

must be correct. This means that our knowledge of security events represented 

by the data has to be certain. 

• Sufficzent trace size: The generated dataset should be unbiased in terms of 

size in both benign and malicious traffic instances. 

• Concrete feature extraction: Extraction of an optimal set of concrete features 

when generating a dataset is important because such features play an impor­

tant role during validating a detection mechanisms. 

• Dzverse attack scenarws: With the increasing frequency, size, variety, and 

complexity of attacks, intrusion threats have become more complex including 

the selection of targeted services and applications. When contemplating at­

tack scenarios for dataset generation, it is important to tilt toward a diverse 

set of multi-stage attacks that are recent. 

• Ratw between normal and attack traffic: Most existing datasets have been 

created based on the following assumptions. 

Anomalous traffic is statistically different from normal traffic [244]. 
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- The majorIty of network traffic m5tances IS normal [64] 

Unlikc most traditIOnal mtruslOn datasets, DDoS attacks do not follow these 

assumptIOns becausc they change network traffic rate dynamlcallv and employ 

multi-stage attacks 

4.1.3 Motivation and Contributions 

By consldermg the afOlcmentlOned reqUlrements, we propose a systematic approach 

for generatmg real-lIfe network mtruslon dataset at both packet and flow levels 

m order to analyze, test, and evaluate network mtruslOn detectIOn methods and 

systems with a clear focus on anomaly based detectors The followlllg ale the 

major contrIbutIOns of this chapter 

• We present a hst of gUldehnes for real-hfe mtrusIOn dataset generatIOn 

• We dIscuss systematic generatIOn of both normal and attack traffic 

• We extract features from the captured network traffic such as bas2c content­

based t2me-based, and connectwn-based features usmg a dlstrIbuted feature 

extractlOn framework 

• We generate three categorIes of leal-hfe mtruSlOn datasets, VIZ, (I) TUIDS 

IlltruslOn dataset, (u) TUIDS coordmated scan dataset, and (Ill) TUIDS DDoS 

dataset These datasets are avaIlable for the research commul1lty to download 

for free 

4.2 Existing Datasets 

As dIscussed earher, datasets play an Important role m the testmg and valIdatIOn 

of network anomaly detectIOn methods or systems A good quahty dataset not 

only allows us to Identify the abilIty of a method or a system to detect anomalous 

behavIOr, but also allows us to gave potentIal effectiveness when deployed III real 

operatmg enVlfonments Several datasets are pubhcly aVailable for testmg and 

evaluatlOn of network anomaly detectIOn methods and systems A taxonomy of 
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network mtruslOn datasets is shown in Figure 4.1. We bnefty discuss each of them 

below. 

Synthetic 

KDDcup99 
NSL-KDD UNms 

DARPA 2000 

DEFCON ISCX -U1'""B 

CAIDA 

LBl'L Endpoint 

Figure 4.1: A taxonomy of network mtrusion datasets 

4.2.1 Synthetic Datasets 

Synthetic datasets are generated to meet specific needs or certain conditions or tests 

that real data satisfy. Such datasets are useful when designing any prototype system 

for theoretical analysis so that the design can be refined. As stated previpusly, 

a synthetic dataset can be used to test and create many dIfferent types of test 

scenarios. This enables designers to build realistic behavior profiles for normal users 

and attackers based on the dataset to test a proposed system. This provides initial 

valIdation of a specific method or a system; if the results prove to be satisfactory, 

the developers then continue to evaluate a method or a system in a specific domain. 

4.2.2 Benchmark Datasets 

We discuss seven publicly available benchmark datasets generated using simulated 

environments in large networks, executing dIfferent attack scenarios. 

KDDcup99 Dataset 

Since 1999, the KDDcup99 dataset [52] has been the most widely used dataset 

for evaluation of network based anomaly detection methods and systems. This 

dataset was prepared by Stolfo et al. [245] and is built upon the data captured 
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in the DARPA98 IDS evaluation program. The KDD training dataset consists 

of approxImately 4,900, 000 single connectIOn vectors, each of which contains 41 

features and is labeled as either normal or attack of a specific attack type. The 

test dataset contains about 300, 000 samples with a total 24 training attack types, 
, 

with an additIOnal 14 attack types III the test dataset only [43]. The represented 

attacks are mainly four types· demal of service, remote-to-local, user-to-root, and 

surveillance or probing. 

• Demal of Servzce (DoS): An attacker attempts to prevent valid users from 

using a service provided by a system. Examples inelude SYN flood, smurf 

and teardrop attacks. 

• Remote to Local (r2l): Attackers try to gain entrance to a victim machine 

without having an account on it An example is the password guessing attack. 

• User to Root (u2r)- Attackers have access to a local victim machine and 

attempt to gain pnvilege of a superuser. Examples include buffer ovcrflow 

attacks. 

• Probe: Attackers attempt to acquire information about the target host. Some 

examples of probe attacks arc port-scans, and ping-sweep attacks. 

Background traffic was simulated and the attacks were all known. The training 

set, consisting of seven weeks of labeled data, IS available to the developers of 

intrusion detection systems The testing set also consists of simulated background 

traffic and known attacks, including some attacks that are not present in the training 

set. The distribution of normal and attack traffic for this dataset is reported in Table 

4.1. We also identify the services associated with each category of attacks [246,247] 

and summarize them in Table 4.2 

NSL-KDD Dataset 

Analysis of the KDD dataset showed that there were two important issues with 

the dataset. which hIghly affect the performance of evaluated systems resulting in 

poor evaluation of anomaly detection methods [248]. To address these issues, a new . 
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Table 4.1: DlstnbutlOn of normal and attack traffic Illstances III KDDCup99 dataset 

DoS Probe u2r r21 
Dataset Total Attacks Total Attacks Total Attacks Total Attacks NOlmal 

mstances Instances Instances mstances 
10% KDD 391458 smUlf, nep- 4107 satan) Ip- 52 buffer _ovel flow, 1126 WaJ e'.lchent , 97277 

tune, sweep, rootklt, guess_passwd, 
Corrected KDD 229853 back, 4107 portsweep, 52 loadmodule, perl 1126 warezmaster I Imap, 97277 

teardrop, nmap ftp_wnte, 
pod, land 

Whole KDD 229853 4107 52 1126 multI hop phf, spy 97277 

Table 4.2: List of attacks and corre&pondmg serVlce& m KDDcup99 dataset 
DoS Probe u2r r21 

Dataset Attack name :servIce,s) Attack name :ServIce,s Attack name ServIce,s) Attack name ServIce,s) 
apache2 http Ipsweep Icmp eject Any usel sessIon dIctIOnary telnet, rIOglO, pop Imap, ftp 
back http mscan many ffbconfig Any user sesSIOn ftp-wnte ftp 
land N(A nmap many fdfOlmat Any usel sesSIOn guest telnet, rlogm 

KDD99 madbomb smtp samt many loadmodule Any usel sesSIon Imap Imap 
SYN flood Any TCP satan many ped Any usel sessIOn named dns 
pmg of death Icmp ps Any usel sessIOn named dns 
process table Any TCP Xterm Any user sessIon sendmad smtp 
smurf Icmp - - xlock X 
syslogd syslog xsnoop X 
teardrop N/A - -
udpstorm echo / chargen - -
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dataset known as NSL-KDD [249], consisting of selected records of the complete 

KDD dataset was introduced. ThIs dataset is publicly aVailable for researchers1 

and has the following advantages over the original KDD dataset. 

• It does not mclude redundant records in the trammg set, so classifiers will not 

be biased towards more frequent records. 

• There are no duplicate records m the test set. Therefore, the performance of 

learners is not biased by the methods which have better detection rates on 

frequent records. 

• The number of selected records from each difficulty level is inversely propor­

tional to the percentage of records in the original KDD dataset. As a result, 

the classification rates of various machine learnmg methods vary in a wider 

range, which makes it more efficient to have an accurate evaluation of various 

learning techniques. 

• The number of records in the training and testing sets is reasonable, which 

makes It affordable to run experiments on the complete set without the need to 

randomly select a small portion. Consequently: evaluatIOn results of different 

research groups are consistent and comparable 

The NSL-KDD dataset consIsts of two parts: (i) KDDTrain+ and (ii) KDDTest+. 

The distribution of attack and normal instances in the NSL-KDD dataset is shown 

m Table 4.3. 

Table 4.3: Distribution of normal and attack traffic ll1stances in NSL-KDD dataset 

Dataset 

KDDTrain+ 

KDDTest+ 

DoS 

45927 

7458 

u2r 

52 

67 

1 http'/ /www.lscx.ca/NSL-KDD / 

r2l 

995 

2887 

96 

Probe 

11656 

2422 

Normal 

67343 

9710 

Total 

125973 

22544 
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DARPA 2000 Dataset 

A DARPA 1 evaluation project [250J targeted the detectIOn of complex attacks that 

contain multiple steps. Two attack scenarios were sImulated in the DARPA 2000 

evaluation contest, namely Lmcoln Laboratory scenario DDoS (LLDOS) 1.0 and 

LLDOS 2.0. To achieve variations, these two attack scenarios were carried out 

over several network and audit scenarios. These sessions were grouped into four 

attack phases: (a) probing, (b) breaking mto the system by exploiting vulnerabil­

Ity, (c) installing DDoS software for the compromIsed system, and (d) launching 

DDoS attack against another target. LLDOS 20 is different from LLDOS l.0 in 

that attacks are more stealthy and thus harder to detect. Since this dataset con­

tains multistage attack scenarios, It is also commonly used for evaluation of alert 

corrcIation techniques. 

DEFCON Dataset 

The DEFCON2 dataset is another commonly used dataset for evaluation of InSs 

[251 J. It contains network traffic captured during a hacker competItion called Cap­

ture The Flag (CTF), in which competing teams are divided into two groups: at­

tackers and defenders. The traffic produced during CTF is very different from real 

world network traffic since it contains only mtrusive traffic without any normal 

background traffic. Due to this limitation, DEFCON dataset has been found useful 

only in evaluatmg alert correlatIOn techniques 

CAIDA Dataset 

CAIDA J collects many different types of data and makes them avaIlable to the 

research community. CAIDA datasets [252J arc very specific to particular events 

or attacks. Most of its longer traces are anonymized backbone traces without their 

payload. The CAIDA DDoS 2007 attack dataset contains one hour of anonymized 

traffic traces from DDoS attacks on August 4, 2007, which attempted to consume a 

large amount of network resources when connecting to Internet servers. The traffic 

1 http://www.ll.mit.cdu/misslOn/ communications/ 1St/ corpora/idcval/ data/mdcx.html 
2http·//cctf.shmoo.com/data/ 
3http.j/WWw.cfuda org/home/ 
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traces contain only attack traffic to the victim and responses from the victim with 

5 minutes split form. All traffic traces are in pcap (tcpdump) format. The creators 
\ 

removed non-attack traffic as much as possible when creating the CAIDA DDoS 

2007 dataset. 

LBNL Dataset 

LBNL's internal enterprise traffic traces are full header network traces [253] without 

payload. This dataset suffers from heavy anonymization to the extent that scanning 

traffic was extracted and separately anonymized to remove any information which 

could identify individual IPs. The background and attack traffic in the LBNL 

dataset are described below . 

• LBNL background traffic: This dataset can be obtained from the Lawrence 

Berkeley National Laboratory (LBNL) in the US. Traffic in this dataset is com­

prised of packet level incoming, outgoing, and internally routed traffic streams 

at the LBNL edge routers. Traffic was anonymized ·using the tcpmkpub tool 

[254]. The main applications observed in the internal and external traffic are 

Web, email, and name services. Other applications like Windows services, 

network file services, and backup were used by internal hosts. The details of 

each service and information on each packet and other relevant description 

are given in [255]. The background network traffic statistics of LBNL dataset 

are given in Table 4.4 . 

• LBNL attack traffic: This dataset identifies attack traffic by isolating scans 

in aggregate traffic, traces. Scans are identified by flagging those hosts which 

unsuccessfully probe more than 20 hosts, out of which 16 hosts are probed 

in ascending or descending IP order [254]. Malicious traffic mostly consists 

of failed incoming TCP SYN requests, i.e., TCP port scans targeted towards 

LBNL hosts. However, there are also some outgoing TCP scans in the dataset. 

Most UDP traffic observed in the data (incoming and outgoing) is comprised 

of successful connections, i.e., host replies for the received UDP flows. Clearly, 

the attack rate is significantly lower than the background traffic rate. Details 

of the attack traffic in this dataset are shown in Table 4.4. Complexity and 
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Table 4.4: Background and attack traffic information for the LBNL datasets 

Date Duratwn LBNL Remote Background traffic Attack trat-
(mms) hosts hosts rate (packet/sec) fic rate 

(packet/sec) 
10/04/2004 10 mm 4767 4.342 847 041 
12/15/2004 60 min 5,761 10,478 3.5 0061 
12/16/2004 60 min 5,210 7,138 24383 72 

privacy were two main reservations of the participants of the endpoint data 

collection study. To address these reservatlOns, the dataset creators devel­

oped a custom multi-threaded MS Windows tool using the Wmpcap API 

[256] for data collection. To reduce packet logging complexity at the end­

points, they only logged very elementary sesslOn-level information (bidirec­

tlOnal communication between two IP addresses on dIfferent ports) for the 

TCP and UDP packets To ensure user privacy, an anonymization policy was 

used to anonymize all traffic instances. 

Endpoint Dataset 

The background and attack traffic for the endpoint datasets are explained below. 

• Endpomt background traffic: In the endpomt context, we see in Table 4.5 

that home computers generate significantly higher traffic volumes than of­

fice and university computers because' (2) they are generally shared between 

multiple users, and (n) they run peer-to-peer and multimedia applications. 

The large traffic volumes of home computers are also evident from their 

high mean number of sessions per second To generate attack traffic, the 

developers infected Virtual Machines (VMs) on the endpoints with different 

malware, viz., Zotob.G, Forbot-FU, Sdbot-AFR, Dloader-NY, So-Big.E@mm, 

MyDoom.A@mm, Blaster, Rbot-AQJ, and RBOT.CCC. Details of the mal­

ware can be found in [257]. Characteristics of the attack traffic in this dataset 

are given in Table 4.6. These malwares have diverse scanning rates and attack 

ports or applIcations. 

• Endpomt attack traffic: The attack traffic logged at the endpoints is mostly 

comprised of outgoing port scans. Note that this is the opposite of the LBNL 
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Table 4.5: Background traffic mformation for four endpoints with high and low rates 

Endpomt ID Endpomt t'l/pe Duratwn Total ses- Mean sesswn rate 
(months) swns (/see) 

3 Home 3 3.73,009 l.92 
4 home 2 444,345 528 
6 UlliverSlty 9 60,979 0.19 
10 Ulliversity 13 152,048 021 

Table 4.6: Endpoint attack traffic for two high and two low-rate worms 

Malware Release Date Avg Sean rate (/see) Port (s) Used 
Dloader-NY Jul2005 46.84 sps TCP 1,35,139 
Forbot-FU Sept 2005 3253 sps TCP 445 
Rbot-AQJ Oct 2005 068 sps TCP 1,39.769 
MyDoom-A Jan 2006 0.14 sps TCP 3127-3198 

dataset, in whIch most attack traffic is inbound. Moreover, the attack traffic 

rates at the endpoints are generally much higher than the background traffic 

rates of the LBNL datasets This diversity in attack direction and rates pro­

vides a sound baSIS for performance companson among scan detectors. For 

each malware, attack traffic of 15 minute duration was inserted in the back­

ground traffic for each endpoint at a random tIme instance. This operation 

was repeated to insert 100 non-overlappmg attacks of each worm inside each 

endpoint's background traffic 

4.2.3 Real-life Datasets 

We discuss three real-lIfe datasets created by collecting network traffic on several 

consecutive days during a week or a month. The detmls include both normal as 

well as attack traffic in appropriate proportions in the authors' respective campus 

networks (i.e., testbed). 

UNIBS Dataset 

The UNIBS packet traces [258] were collected on the edge router of the campus 

network of the University of Brescia in Italy, on three consecutive working days. 

The dataset includes traffic captured or collected and stored using 20 workstations, 

each running the GT (Ground Truth) client daemon. The dataset creators collected 
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the traffic by running tcpdump on the faculty router, which was a dual Xeon Linux 

box that connected the local network to the Internet through a dedicated 100Mb/s 

uplink. They captured and stored the traces on a dedicated disk of a workstation 

connected to the router through a dedicated ATA controller. 

ISCX-UNB Dataset 

Real packet traces [259] were analyzed to create profiles for agents that generate 

real traffic for HTTP, SMTP, SSH, IMAP, POP3 and FTP protocols. Various 

multistage attack scenarIOS were explored to generate malicious traffic. 

KU Dataset 

The Kyoto University dataset l is a collection of network traffic data obtained from 

honeypots. The raw dataset obtained from the honeypot system consIsted of 24 

statistical features, out of which 14 significant features were extracted [260]. The 

dataset developers extracted 10 additional features that could be used to investi­

gate network events inslde the university more effectively. However, they used 14 

conventional features only during training and testing. 

4.2.4 Discussion 

The datasets described above are valuable assets for the intrusion detectlOn com­

munity. However, the benchmark datasets suffer from the fact that they arc not 

good representatives of real world traffic. For example, the DARPA dataset has 

been questioned about the realism of the background traffic [261, 262J because it is 

synthetically generated. In addition to the difficulty of simulating real-life network 

traffic, there arc additional challenges in IDS evaluation [263]. These include dif­

ficulties in collecting attack scripts and victim software, differing requirements for 

testing signature based vs. anomaly based IDSs, and host-based vs. network based 

IDSs. 

1 http) /www.takakura com/kyoto_data 
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4.3 Real-Life Datasets Generation 

As noted above, the generatIOn of an unbIased real-lIfe mtI USIon dataset mcorporat­

mg a large number of real world attacks IS important to e\ aluate network anomaly 

dctectlOn mcthods and systcms In this chaptCI, wc de~cl1be the generatIOn of three 

real-lIfe network mtruslOn datasets1 mcludmg (a) a TUIDS (Tezpur Ul11verslty In­

trusIon DetectIon System) mtruslOn dataset, (b) a TUIDS coordmated scan dataset, 

and (c) a TUIDS DDoS dataset at both packet and flow levels [264] The resultmg 

details and supportmg mfrastructure is discussed m the followmg subsectIOns 

4.3.1 Testbed Network Architecture 

The TUIDS testbed network consIsts of 250 hosts 15 L2 sWItches 8 L3 sWitches, 

3 wIreless controllers, and 4 routers that compose 5 dIfferent networks mSIde the 

Tezpur Ul11Velsity campus The architectUle of the TUIDS te~tbed IS gIven m 

FigurC 42 The hosts arc dIvided mto several VLANs each VLAN bclongmg to 

an L3 sWItch or an L2 SWitch mSlde the network All servers are mstalled mSlde 

a DMZ to provIde an additIOnal layer of protectIOn m the securIty system of an 

orgal11za tron 

4.3.2 Network Traffic Generation 

To generate real-lIfe normal and attack traffic we configured several hosts, work­

statIons and servers m the TUIDS testbed network The network conSIsts of 6 

mterconnected Ubuntu 10 10 workstatIOns On each workstatIOn, we have mstalled 

several ~evers mcludmg a network file server (Samba) a mall sever (Dovecot), a tel­

net server, an FTP scrver a Web server, and an SQL sever WIth PHP compatIbIlity 

We also mstalled and configured 4 Wmdows Servers 2003 to explOit a diverse set of 

known vulnerabIlIties agamst the testbed environment Servers and theIr serVIces 

runnmg m our testbed arc summanzed m Table 4 7 

The normal network traffic IS generated ba~ed on the day-to-day actIvItIes of 

uscrs and especIally generated traffic from configured servers It IS Important to 

generate dIfferent types of normal traffic So, we capture traffic from students, 

lhttp / /agmgarh tezu ernet lll/~dkb/resource html 
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Figure 4.2: Testbed network arch.itecture 

Table 4.7: Servers and their services running on the testbed network 
Server Operating system Services Provider 

I , , 

Main Server Ubuntu 10.10 Web, eMail Apache 2.4.3, 
Dovecot 2.1.14 

Network File Server Ubuntu 10.10 Samba Samba 4.0.2 

Telnet Server 

FTP Server 

Windows Server 

MySQL Server 

Ubuntu 10.10 

Ubuntu 10.10 

Windows Server 2003 

Ubuntu 10.10 

Telnet 

ftp 

Web 

database 

tclnet-0.17 -
36bulid1 

vsFTPd 2.3.0 

lIS v7:5 

MySQL 5.5.30 

faculty members, system administrators; and office staff on different days within the 

University. The attack traffic is generated by launching attacks within the testbed 

network in three different subsets, viz:, a TUrDS intrusion dataset, a coordinated 

scan dataset, and a DDoS dataset. The attacks launched in the generation of these 

real-life datasets are summarized in Table 4.8. 

As seen in the table above, 22 distinct attack types (1-22 in Table 4.8) were used 

to generate the attack traffic for the TUrDS intrusion dataset; six attacks (17-22 in 

Table 4.8) were used to generate the attack traffic for the coordinated scan dataset 

and finally six attacks (23-28 in Table 4.8) were used to generate the attack traffic 

for a DDoS da.taset with combination of TCP, UDP, and ICMP protocols. 
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Table 4.8: List of real-life attacks and their generatIOn tools 
Attack name Genemtzon tool Attack name Genemtzon tool 
1 bonk targa2 c 15lmux-lGmp lmux-Icmp c 

2 Jolt targa2 c 16 syn-fiood synfiood c 

3 land targa2 c 17 wlI1dow-sc.an nmap/rnmap 

4 salhyousen targa2 c 18 syn-scan nmap/rnmap 

5 teardrop targa2 c 19 xmasstree-scan nmap / lIunap 

6 newtcar targa2 c 20 fin-scan nmap/rnmap 

71234 targa2 c 21 null-scan nmap/rnmap 

8 wmnuke targa2 c 22 udp-::.can nmap/rnmap 

90sharc targa2 c 23 syn-fiood(DDoS) LOIC 

10 nestea targa2 c 24 rst-fiood(DDoS) Tnmty v3 

11 syndrop targa2 c. 25 udp-fiood(DDoS) LOIC 

12 smurf smurf4 c 26 pll1g-fiood(DDoS) DDoS pmg v2 0 

130pentear opentear c 27 fraggle udp-fiood(DDoS) Tnnoo 

14 fragglc fraggle c 28 smurf lcmp-fiood(DDoS) TFN2K 

4.3.3 Attack Scenarios 

The attack scenanos start with InformatIOn gathenng technIques collectIng target 

network IP ranges, Identities of name servers, mall servers, and user e-mail accounts, 

etc This IS achieved by queryIng the DNS for resource records USIng network 

adminIstrative tools lIke nslookup, and dig We considel SIX attack scenanos when 

collectIng real-hfe network traffic for dataset generation 

Scenario 1: Denial of Service using targa 

This attack scenano IS deSigned towards performIng attacks on a target USIng the 

targal tool until It IS successful Targa IS a very powerful tool to qUIckly damage 

a particular network belongIng to an OlganIZatlon We ran targa by specifyIng 

dIfferent parameter values such as IP ranges, attacks to run, and number of times 

to repeat the attack 

Scenario 2: Probing using nmap 

In this scenarIO, we attempt to acqUIre InformatIOn about the target host and then 

launch the attack by explOitIng the vulnerablhtles found USIng the nmap2 tool 

I http / /packetstormsecunty com/ 
2http / /nmap org/ 
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Examples of attacks that can be launched by this method are syn-scan and ping-

sweep. 

Scenario 3: Coordinated scan using rnmap 

This scenario starts with a goal to perform coordinated port scans to single and 

multiple targets. Tasks are distributed among multiple hosts for individual actions 

which may be synchronized. We use the rnmapl tool to launch coordinated scans 

in our testbed network during the collection of traffic. 

Scenario 4: User to root using brute force ssh 

These attacks are very common against networks as they tend to break into accounts 

with weak username and password combinations. This attack has been designed 

with the goal of acquiring an SSB account by running a dictionary brute force attack 

against our central server. We use the brutessh2 tool and a customized dictionary 

list. The dictionary consists of over 6100 alphanumeric entries of varying length. 

We executed the attack for 60 minutes, during which superuser credentials were 

returned from the server. This ID and password combination was used to download 

other users' credentials immediately. 

Scenario 5: Distributed Denial of Service using agent-handler network 

This scenario mainly attempts to exploit an agent handler network to launch the 

DDoS attack in the TUIDS testbed network. The agent-handler network consists of 

clients, handlers, and agents. The handlers are software packages that are used by 

the attacker to communicate indirectly with the agents. The agent software exists 

in compromised systems that will eventually carry out the attack on the victim 

system. The attacker may communicate with any number of handlers, thus making 

sure that the agents are up and running. We use Trinity v3, TFN2K, Trinoo, and 

DDoS ping 2.0 to launch the attacks in our testbed. 

1 http://rnmap.sourceforge.net/ 
2http://www.securitytube-tools.net/ 

105 



Chapter 4. A Systematic Approach to Generate Real-Life Intrusion 
Datasets 

Scenario 6: Distributed Denial of Service using IRe botnet 

Botnets are an emergmg threat to all orgalllzatlOns because they can comprOllllse 

a network and steal important information and distribute malware. Botnets com­

bine Individual malIcious behavlOrs Into a single platform by simplifyIng the actions 

needed to be performed by users to initiate sophisticated attacks against comput­

ers or networks around the world. These behaviors Inelude coordInated scanning, 

distributed demal of service (DDoS) activitICS. direct attacks, Indirect attacks, and 

other deceitful activities takIng place across the Internet. 

The main goal of this scenario IS to perform distributed attacks using infected 

hosts on the testbed. Internet relay chat (IRC) bot network allow users to create 

publIc, pnvate and secret channels. For this, we use a LOIC l , an IRC-based DDoS 

attack generation tool. The IRC systems have several other significant advantages 

for launching DDoS attacks. Among the three important benefits are (i) they afford 

a high degree of anonymity, (ii) they are difficult to detect, and (iii) they provide 

a strong, guaranteed delivery system. Furthermore, the attacker no longer needs 

to maintain a list of agents, since he can simply log on to the IRC server and see 

a list of all available agents The IRC channels receive communications from the 

agent software regarding the status of the agents (i.e., up or down) and participate 

m notifymg the attackers regarding the status of the agents. 

4.3.4 Capturing Traffic 

The key tasks in network traffic monitoring are losslcss packet capturing and precise 

time stamping. Therefore, software or hardware is required With a guarantee that 

all traffic is captured and stored. With the goal of prepanng both packet and flow 

level datasets, we capture both packet and NetFlow traffic from different locations 

in the TUIDS testbed. The capturing period started at OS'00'05am on Monday 

February 21, 2011 and continuously ran for an exact duration of seven days, ending 

at 08:00:05am on Sunday February 27th. Attacks were executed dunng this period 

for the TUIDS Intrusion and the Coordinated Scan datasets. DDoS traffic was 

also collected for the same amount of time but during October, 2012 with several 

1 http / /sourceforge.net/projects/ioic/ 
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variations of real-life DDoS attacks, Figure 4,3 illustrates the protocol composition 

and the average throughput seen during the last hour of data capture for the TUrDS 

intrusion dataset in our lab 
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Figure 4.3: (a) Composition of protocols and (b) Average throughput during last hour 
of data capture for the TUIDS intrusion dataset seen in our lab's traffic . 

We use a tool known as Losslcss Gigabit Remote Packet Capture with Linux 

(GulpI) for capturing packet level traffic in a mirror port as shown in thc TUIDS 

testbed architecture. Gulp reads packets directly from the network card and writes 

to the dIsk at a high rate of packet capture without dropping packets. For low rate 

packets, Gulp flushes thc ring buffer if it has not written anything in the last second. 

Gulp writes into even block boundaries for excellent writing performance when the 

data rate increases. It stops filling the ring buffer after receiving an interrupt but 

it would write into the disk whatever remains in the ring buffer. 

.In the last few years, NetFlow has become the most popular approach for IP 

network monitoring, since it helps cope with the scalability issues introduced by 

increasing network speeds, Now major vendors offer flow-enabled devices. An 

example is a Cisco router with NetFlow. A Net Flow is a stream of packets that 

lhttp://staff.wru;hington,edu/corey/gulp/ 
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arnves on a source mterface wlth the key values shown III Flgure 4 4 A key lS an 

ldentlfied value for a field Wlthm the packet ClSCO routelt:> have NetFlow featUlcs 

that can be enabled to generate NetFlow records The pnnclple of NetFlow lS as 

follows vVhen the router reCelves a packet, ltS NetFlow module scans the source 

IP addret:>t:>, the det:>tll1atlOn IP address, the t:>ource port number, the det:>tll1atlOn 

port number the plOtocol type, the type of serVlce (ToS) blt III IP header, and the 

ll1put or output lllterface number on the router of the IP packet, to Judge whether 

It belongs to a. NetFlow record that already eXlsts m the cache If so, It updates the 

NetFlow record, otherwlt:>e, a new NetFlow record It:> generated ll1 the cache The 

explred NetFlow records III the cache are exported penodlcally to a destlllatlOn IP 

address USll1g a UDP port 

IP Header TCP Header 

4-1>11 8 bll 6-blt 32-blt SourcePon I Destination pon 

Version Header Type of Total Length Sequence Number 
Length Service Acknowledgement Number 

Iden~ncatlon Flags I Offset I R~S:~d lulAlp IRiS I Fj 
Window 

TIme to Live I Protocol Checksum I 
I Source Address I UDP Header 

I Destination Address I HOi Source Pon I Destination Pon 

I Options and Padding I 32 I Length I Checksum 

FlowRecord 

Source Addres9 

Destination Address 

Source Pan I Destination Pan 

Protocol I TOS I Other Aggregated Values 

Common Parameters 

Figure 4.4: Common NetFlow parameters 

For captunng NetFlow traffic, we need a NetFlow collector that can listen to a 

speclfic UDP port to collect traffic The NetFlow collector captures exported traffic 

from multlple routert:> and penodlcally t:>tore~ It ll1 ~ummanzed or aggregated format 

llltO a round robll1 database (RRD) The followll1g tools are used to capture and 

vlsualize the NetFlow traffic 

(a) NFDUMP Thls tool captures and dlsplays NetFlow traffic All versIOns of 

nfdump support NetFlow v5 v7, and v9 nfcapd lS a NetFlow capture daemon that 

reads the NetFlow data flOm the routers and stores the data llltO files penodlcally 

It automatically rotates files every n mll1utes (by default It IS 5 mll1utes) We 

need one nfcapd process for each NetFlow stream Nfdump reads the NetFlow 
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data from the files stored by nfcapd The syntax IS sImilar to that of tcpdump 

Nfdump displays NetFlow data and can create top N statIstiCS for flows based on 

the parameters selected The mam goal IS to analyt:e NetFlow data from the past as 

well as to track mterestmg traffic patterns contmuouslv from high speed networks 

The amount of time from the past IS hmlted only by the dI::,k space available for all 

NetFlow data 

Nfdump has four fixed output format~ raw lme long and extended In ad­

dItIOn the user may specify any desired output format by customIzmg It The 

default format IS hne, unless specIfied The raw format displays each record m 

multiple hnes, and pnnts any avaIlable mformatlOn m the traffic record 

(b) NFSEN nfsen IS a graphIcal Web based front end tool for vIsualizatIOn of 

NetFlow traffic nfsen facIhtates the vlsuahzatlOn of several traffic statistics, e g , 

flOW-Wise statistICS for vanous features, navigatIOn through the NetFlow traffic 

processes wlthm a tIme span, and contmuous profiles It can also add own plugms 

to process NetFlow traffic m a customized manner at a regular time mterval 

Normal traffic IS captured by restnctmg It to thc mtcrnal nctworks, wherc 80% 

of the hosts are connected to the router, mcludIllg Wireless networks We assume 

that normal traffic follows the normal probablhty dlstnbutlOn Attack traffic IS 

captUled as we launch vanous attacks m thc testbed fOJ a week For DDoS attacks 

we used packet-craft l to generate customIzed packets Figure 45 and Figure 46 

show the number of flows per second and also the protocol-wise dIstnbutlOn of flows 

dunng the captunng penod, re~pectively 

4.3.5 Feature Extraction 

We use wireshark and Java routmes for filtenng unwanted packets (such as packets 

With routmg protocols, and packets WIth apphcatlOn layer protocols) as well as 

Irrelevant mformatlOn from the captured packets Fmally, we retneve all relevant 

mformatlOn from each packet usmg Java routmes and store It m comma-separated 

form III a text file The detaIls of parameters IdentIfied for packet level data are 

shown m Table 4 9 

1 http / /www packet-craft net/ 
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Figure 4.6: Protocol-wise distribution of flow per second in TUIDS intrusion dataset 
during the capture period 

We developed several C routines and used them for filtering NetFlow data 

and for extracting features from the captured data. A detailed list of parameters 

identified for flow level data is given in Table 4.10. 
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Table 4.9: Parameters identified for packet level data 

Sl. No. Pammeter name Descrtptwn 
1 Time Time since occurrence of first frame 
2 Frame-no Frame number 
3 Frame-len Length of a frame 
4 Capture-len Capture length 
5 TTL Time to live 
6 Protocol Protocols (such as, TCP, UDP, ICMP etc.) 
7 Src-ip Source IP address 
8 Dst-ip Destination IP address 
9 Src-port Source port 
10 Dst-port DestinatIOn port 
11 Len Data length 
12 Seq-no Sequence number 
13 Header-len Header length 
14 CWR Congestion window record 
15 ECN Explicit congestion notification 
16 URG Urgent TCP flag 
17 ACK Acknowledgement flag 
18 PSH Push flag 
19 RST 'Reset flag 
20 SYN TCP syn flag 
21 FIN TCP fin flag 
22 Win Size Window Size 
23 MSS Maxl111Um segment size 

Table 4.10: Parameters identified for flow level data 

Sl. No. Pammeter name Descrtptzon 
1 flow-start Starting of flow 
2 Duration Total life time of a flow 
3 Proto Protocol, Le" TCP, UDP, ICMP, etc. 
3 Src-ip Source IP address 
4 Src-port Source port 
5 Dest-lp DestinatIOn IP address 
6 Dest-port De5tination port 
7 Flags TCP flags 
8 ToS Type of Service 
9 Packets Packets per flow 
10 Bytes Bytes per flow 
11 Pps Packet per second 
12 Bps Bit per second 
13 Bpp Byte per packet 

We capture, preprocess, and extract various features in both packet and flow 

level network traffic. We introduce a framework for fast distributed feature extrac-

tion from raw network traffic, correlation computation and data labelling, as shown 

in Figure 4.7. We extract four types of features: basic, content-based, time-based 

and connection-based, from the raw network traffic. We use T = 5 seconds as 

the time window for extraction of both time based and connection based traffic 
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features. SI and S2 are servers used for preprocessing, attack labellmg, and profile 

generatIOn. W SI and W S2 are high-end workstations used for basic feature extrac­

tion and merging packet and NetFlow traffic Nl , N2 , ... N6 are mdependent nodes 

used for protocol specific feature extraction. The hsts of extracted features at both 

packet and flow levels for the mtruslOn datasets are presented m Table 4.11 and 

Table 4 12, respectively. The list of features available in the KDDcup99 intrusion 

dataset is also shown in Table 4.13. 
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Figure 4.7: Fast distributed feature extraction. correlation. and labelling framework 

Table 4.11: List of pa.cket level fea.tures in TUIDS Intrusion Dataset 

Label/feature name Type DeSCrtptlon 

BasiC features 

1 Duration C Length (number of seconds) of the connectIOn 

2 Protocol-type D Type of protocol, e g , tcp, udp, etc 

3 Src-Ip C Source host IP address 

4 Dest-Ip C Destmatlon IP address 

5 Src-port C Source host port number 

{) Dest-port C DestmatlOn host port number 

7 Service D Network service at the destmatlOn e g , http, telnet etc 

8 num-bytes-src-dst C The number of data bytes flowmg from source to destmatlOn 

9 num-bytes-dst-src C The number of data bytes flowmg from destmatlOn to source 

10 Fr-no C Frame number 

11 Fr-Ien C Frame length 

12 Cap-len C Captured frame length 

13 Head-len C Header lengt h of the packet 

14 Frag-off D Fragment offset '1 for the second packet overWrite everythmg, '0' other-

WIse 

Contmued on next page 
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Label/feature name 

15 TTL 

16 Seq-no 

17 CWR 

18 ECN 

19 URG 

20 ACK 

21 PSH 

22 RST 

23 SYN 

24 FIN 

25 Land 

Content-based features 

26 Mss-src-dest-requested 

27 Mss-dest-src-requested 

28 Ttt-Ien-src-dst 

29 Ttt-len-dst-src 

30 Conn-status 

Time-based features 

31 count-fr-dest 

32 count- fr-src 

33 count-serv-src 

34 count-serv-dest 

15 num-pushed-src-dst 

36 num-pushed-dst-src 

17 num-SYN-FIN-src-dst 

38 num-SYN-FIN-dst-src 

39 num-FIN-src-dst 

40 num-FIN-dst-src 

Connection-based features 

41 count-dest-conn 

42 count-src-conn 

43 count-serv-srcconn 

44 count-serv-destconn 

45 num-packets-src-dst 

46 num-packets-dst-src 

47 num-acks-src-dst 

48 num-acks-dst-src 

49 

dst 

50 

src 

num-retransmlt-src-

num-retransmlt-dst-

C-Contlnuous, D-Dlscrete 

Table 4 11 - Contmued from preVIOUS page 

Type DescTlptwn 

C Time to hve '0 discards the packet 

C Sequence numbel of the packet 

D CongestIOn window record 

D Exphclt congestion nottficatlOn 

D Urgent TCP flag 

D Acknowledgement flag value 

D Push TCP flag 

D Reset TCP flag 

D Syn TCP flag 

D Fin TCP flag 

D 1 If connectIOn IS from/to the same host/port o otherwise 

C ~laxlmum segment size from source to destinatIOn requested 

C Maximum segment size from destinatIOn to source requested 

C Time to hve length from source to destinatIOn 

C Time to hve length from destinatIOn to source 

C Status of the connection (e g , '1' for complete, 0' for reset) 

C 

C 

C 

C 

N umber of frames received by Unique destinations In the last T seconds 

from the same source 

Number of frames lecelved flOm umque sources In the last T seconds flOm 

the same destinatIOn 

N umber of frames from the source to the same destinatIOn port m the last 

T seconds 

Number of frames from destinatIOn to the same source port m the last T 

seconds 

C The number of pushed packets flowmg from source to destinatIOn 

C The number of pushed packets flOWing from destination to source 

C The number of SYN/FIN packets flOWing from source to destinatIOn 

C The number of SYN /FIN packets flOWing from destinatIOn to source 

C The number of FIN packets flOWing from source to destinatIOn 

C The number of FIN packets flOWing flOm destinatIOn to SOurce 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

Number of flames to umque destinations In the last N packets from the 

same source 

Number of flames from unique sources In the last N packets to the same 

destinatIOn 

N umber of frames from the source to the same destinatIOn port m the last 

N packets 

N umber of frames from the destmatlon to the same source port m the last 

N packets 

The number of packets flowmg from SOurce to destinatIOn 

The number of packets flOWing from destination to source 

The number of acknowledgement packets flOWing from source to destina­

tIOn 

The number of acknowledgement packets flOWing from destinatIOn to 

source 

The number of retransmitted packets flOWing from source to destination 

The number of retransmitted packets flOWing from destinatIOn to source 
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Table 4.12: List of flow level features in TUIDS Intrusion-Dataset 

Label/feature name Twe Descnptlon 
Basic features 
1 DuratIOn C Length (number of seconds) of the flow 
2 Protocol-type D Type of protocol, e g TCP, UDP, ICMP 
3 Src-Ip C Source host IP address 
4 Dest-Ip C Destination IP address 
5 Sre-port C Source host port number 
6 Dest-port C Destination host port number 
7 ToS D Type of service 
8 URG D TCP urgent flag 
9 ACK D TCP acknowledgement flag 
10 PSH D TCP push flag 
11 RST D TCP reset flag 
12 SYN D TCP SYN flag 
1.3 FIN D TCP FIN flag 
14 Src-bytes C N umber of data bytes tt ansfered from source to destination 
15 Dest-bytes C N umber of data bytes tl ansfered flom destination to source 
16 Land D 1 If connection IS flOm/tO the same host/pOlt, Oothelwlse 
Time-based features 
17 count-dest C Number of flows to Ul1lque destination IPs In the last T seconds ftom the 

same source 
18 count-src C Number of flows from Ul1lque source IPs In the last T seconds to the same 

destination 
19 count-serv-src C N umber of flows from the source to the same destinatIOn port In the last T 

seconds 
20 count-serv-dest C Number of flows from the destinatIOn to the same source port In the last T 

seconds 
ConnectIOn-based features 
21 count-dest-conn C Number of flows to Ul1lque destination IPs In the last N flows from the same 

source 
22 count-src-conn C Number of flows from umque source IPs In the last N flows to the same 

destinatIOn 
24 count-serv-srcconn C N umber of flows from the source IP to the same destinatIOn port In the last 

N flows 
25 count-serv-destconn C Number of flows to the destinatIOn IP to the same source port In the last 

N flows 
C-ContInuous, D-Dlscrete 

4.3.6 Data Processing and Labelling 

As mentIOned m the previous sectIOn, both packet and flow level traffic features 

are extracted separately withm a time interval when features are extracted. So, it 

IS important to correlate each feature (i.e., basic, content-based, tIme-based, and 

connection-based) to a time interval. Once correlation is performed for both packet 

and flow level traffic, labellmg of each feature data as normal or anomalous 15 

important. The labelling process enriches the feature data with information such 

as (i) the type and structure of malicious or anomalous data, and (ii) dependencies 

among different isolated malicious activities. The correlation and labelling of each 

feature traffic as normal or anomalous is made using Algonthm 1. However, both 

normal and anomalous traffics are collected separately in several sessions within a 

week. We remove normal traffic from anomalous traces as much as possible. 

The overall traffic composition with protocol distnbution in the generated datascts 
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Table 4.13: List of features m the KDDcup99 intrusion dataset 

Label/featUle name Type Description 
BasIC features 
1 Duration C Length (number of seconds) of the connectIOn 
2 Protocol-type D Type of protocol, e g , tcp, udp, etc 
3 Service D Network service at the destmatlOn, e g , http, telnet, etc 
4 Flag D Normal Or error status of the connectIOn 
5 Src-bytes C Number of data bytes from source to destmatlOn 
6 Dst-bytes C Number of data bytes from destmation to source 
7 Land D 1 If connectIOn IS from/to the same host/port, 0 otherwISe 
8 Wrong-fragment C Number of "wrong" fragments 
9 Urgen C Number of urgent packets 
Content-based features 
10 Hot C Number of "hot" mdlcators (hot number of dlTectory accesses, create and 

execute program) 
11 Num-falled-logms C Number of failed logm attempts 
12 Logged-m D 1 If successfully logged-m, 0 otherwise 
IJ Num-compromlsed C Number of "compromised' conditions (compromised conditIOn number of 

file/path not found enors and Jumpmg commands) 
14 Root-shell D 1 If root-shell IS obtamed, 0 otherwise 
15 Su-attempted D 1 If "su root" command attempted, 0 otherwise 
16 Num-lOot C Number of ('rootH accesses 
17 Num-file-creatlOns C Number of file creation operations 
18 Num-shells C Number of shell prompts 
19 Num-access-files C N umber of operations on access control files 
20 Num-outbound-cmds C Number of outbound commands m an ftp sesSIOn 
21 Is-host-logm D 1 If logm belongs to the "hot" list 0 otherwise 
22 Is-guest-logm D 1 If the logm IS a "guest" logm, 0 otherwISe 
Time-based features 
23 Count C N umber of connectIOns to the same host as the current connection m the 

past 2 seconds 
24 Srv-count C Number of connectIOns to the same service as the current connection m 

the past 2 seconds (same-host connections) 
25 Serror-rate C % of connectIOns that have "SYN" errors (same-host connectIOns) 
26 Srv-serror-rate C % of connectIOns that have "SYN" errors (same-service connectIOns) 
27 Rerror-rate C % of connectIOns that have "REJ" errors (same-host connectIOns) 
28 Srv-rerror-rate C % of connectIOns that have "REJ" errors (same-service connections) 
29 Same-sTy-rate C % of connectIOns to the same service (same-host connections) 
30 Dlff-srv-rate C % of connectIOns to different serVICes (same-host connections) 
31 Srv-dlff-host-rate C % of connections to different hosts (same-service connections) 
Connection-based featUles 
32 Dst-host-count C Count of destmatlon hosts 
33 Dst-host-srv-count C Srv _count for destmatlOn host 
34 Dst-host-same-srv- C Same..srv Jate for destmatlOn host 
rate 
35 Dst-host-dlff-srv-rate C Dlff..srvJate for destmatlOn host 
36 Dst-host-same-src- C Same..src_portJate for destmatlOn host 
port-rate 
37 Dst-host-srv-dlff-host- C DlffJlOstJate for destmatlOn host 
rate 
J8 Dst-host-serror-rate C Serror Jate for destmatlOn host 
J9 Dst-host-srv-serror- C Srv ..serror Jate for destmatlOn host 
rate 
40 Dst-host-rerror-rate C Rerror Jate for destmatlon bost 
41 Dst-host-srv -rerror- C Srv Jerror Jate for destmatlOn host 
rate 
C-Contmuous, D-Dlscrete 

IS summarized m Table 4 14 The traffic includes the TUrDS intrusion dataset, the 

TUrDS coordmated scan dataset and the TUrDS DDoS dataset. The final labelled 

feature datasets for each category with the distribution of normal and attack in­

formation are summanzed in Table 4.15. All datasets are prepared at both packet 

and flow levels and are presented m terms of training and testing in Table 4 15. 
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Algorithm 1 . Fe and labelling (IF) 

Input: extracted feature set, IF = {0:1,,81 'Yl. (h} 
Output: correlated and labelled feature data, X 

1 mitialize X 
2. call FeatuTeE7:tmctwnO, F f- {01,;31,/'1,t5d, I> the procedure 

FeatureExtractlOnO extracts the features separately for all cases 
3 for 2 f- 1 to INI do I> N IS the total traffic instances 
4 for 2 f- 1 to IlFl do I> IF is the total traffic features 
5' if (umqne(8Tc.2p 1\ d.st zp)) then 
6 store X[?.]] f- 0I(tJ)' ,81('J) 

7 end if 
8 if ((11' == 58) 1\ (LnP == 100)) then I> 11' is the time wmdow, DnP is 

the last n packets 
9 Store X[zJ] f- /'1 (tJ) , b1('J) 

10' end if 
11. end for 
12. X ['t] ] f- {nor-mal, attack} I> label eaeh traffic feature mstancc based on the 

duration of the collected traffic 
13 end for 

Table 4.14: TUIDS dataset traffic composition 

ProtocoL S,ze (MB) (%) 
(a) Total traffic composItIOn 
IP 6678429 9999 
ARP 196 0005 
IP,6 000 000 
IPX 000 000 
STP 000 000 
Other 000 000 
(b) TCP/UDP/ICMP traffic composItIon 
TCP 4904929 7"l44 
UDP 1494053 2237 
ICMP 279843 419 
ICMPv6 000 000 
Other 000 000 

4.3.7 Cqrnparison with Other Public Datasets 

Several real network traffic traces are readily available to the research community 

as reported in Section 2. Although these traffic traces are mvaluable to the research 

community most if not all, fail to satisfy one or more reqUlrements described in 

Section 1. This thesis is mostly distinguished by the fact that the issue of data 

generation is approached from what other datasets have been unable to provide for 

the network security community. It attempts to resolve the issues seen in other 

datasets by presenting a systematic approach to generate real-life network intrusion 

datasets. Table 4.16 summarizes a comparison between the prior datasets and the 
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Table 4.15: DlstnbutlOn of normal and attack connection mstances m real-hfe packet 
and flow level TUIDS datasets 

Dataset type 
Connection type 'Trammg dataset Testmg dataset 

(a) TUIDS mtrus.on dataset 
Packet level 
Normal 71785 5887% 47895 5552% 
DoS 42592 ~4 9~% 1061l 1549% 
Probe 7550 619% 7757 899% 
Total 121927 - 86265 -
Flow level 
Normal 2.3120 4.3 75% 16770 4117% 
DoS 21441 4057% 14475 .3554% 
Probe 8282 1567% 9480 2328% 
Total 52843 - 40725 -
(b) TUIDS coordmated scan dataset 
Packet level 
Normal 65285 9014% 41095 8495% 
Probe 7140 986% 7283 1505% 
Total 72425 - 48378 -
Flow level 
Normal 20180 7344% 15853 6552% 
Probe 7297 2656% 8357 3452% 
Total 27477 - 24210 . 

(c) TUIDS DDoS dataset 
Packet level 
Normal 465U 6862% 44128 6050% 
Floodmg attacks 21273 n 18% 28916 1949% 
Total 67786 - 71264 -
Flow level 
Normal 27411 5767% 28841 61 18% 
Floodmg attacks 20117 42 JJ% 18150 1862% 
Total 47528 - 46991 -

dataset generated through the applIcatIOn of our systematic approach to fulfill the 

prmclpal objectives outlmed for qualIfymg datasets 

Table 4.16: Companson of eXlstmg datasets and their charactenstlcs 

Dataset u v w No o/m· No 0/ at· x y z Some ref-
stances t"butes erences 

Synthetic No No Yes user de- usel depen- Not any usel de- [5 159J 
pendent dent known pendent 

KDDcup99 Yes No Yes 805050 41 BCTW P CI (63 155, 
163, 168J 

NSL-KDD Yes No Yes 148517 41 BCTW P C I [248J 
DARPA 2000 Yes No No Huge Not known Raw Raw C2 [259J 
DEFCON No No No Huge Not known Raw P C2 [259J 
CAIDA Yes Yes No Huge Not known Raw P CI [259J 
LBNL Yes Yes No Huge Not known Raw P C2 [265J 
ISCX-UNB Yes Yes Yes Huge Not known Raw P A [259J 
KU Yes Yes No Huge 24 BTW P C I [29J 
TUIDS Yes Yes Yes Huge 5024 BCTW PF C I [5 1591 
u-realIstlc network configuratIOn 
v-mdlcates realistiC traffic 
w-descTlbes the label mformatIOn 
x-types of features extracted as basiC features (B) content based features (C), time based features(T) 

and wmdow based features(W} 
y-explams the types of data as packet based (P) or flow based (F) or hybTld (H) or others (O) 
z-reprcsents the attack category as CI-all attacks, C2-demal of serVice, C3-probe, C4 -user to root, 

Cs-remote to local, and A-application layer attacks 

Most datascts are unlabelled as labellmg IS labonous and requires a comprehen-
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sive search to tag anomalous traffic. Although an IDS helps by reducmg the work, 

there is no guarantee that all anomalous activIty IS labelled This has been a major 

issue with all datasets and one of the reasons behind the post-insertion of attack 

traffic in the DARPA 1999 dataset, so that anomalous traffic can be labelled in a 

deterministIc manner. Havmg seen the mconsistencies produced by traffic merging, 

thIS chapter has adopted a different approach to provide the same level of determin­

istic behavior with respect to anomalous traffic by conducting anomalous actIvity 

within the captunng period usmg available network resources. Through the use of 

logging, all ill-intended actiVIty can be effectively labeled. 

The extent and scope of network traffic capture become relevant in situations 

where the informatIOn contamed III the traces may breach the privacy of individuals 

or organizations. In order to prevent privacy issues, almost all publicly available 

datasets remove any identifying mformatIOn such as payload, protocol, destination, 

and flags. In addition, the data is anonymized where necessary header information 

is cropped or flows are just summarized. 

In addition to anomalous traffic, traces must contain background traffic. Most 

captured datasets have little control over the anomalous activities included in the 

traces. However, a major concern with evaluating anomaly based detection ap­

proaches is the requirement that anomalous traffic must be present on a certain 

scale. Anomalous traffic also tends to become outdated with the introductIOn of 

more sophisticated attacks So, we have generated more up-to-date datasets that 

reflect the current trends and are tailored to evaluate certain characteristics of de-

tection mechanisms which are umque to themselves. 

4.4 Observations and Summary 

Several questions may be raised with respect to what constitutes a perfect dataset 

when dealing with the dataset generation task. These include qualities of normal, 

anomalous, or realistIC traffic included in the dataset. We provide a path and a 

template to generate a dataset that simultaneously exhibits the appropriate levels 

of normality, anomalousness, and realism while aVOIding the various weak points of 

currently available datasets, pOIllted out earlier. Quantitative measurements can 
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be obtained only when specific methods are applied to the dataset. 

The following are the major observations and requirements when generating an 

unbiased real-life dataset for mtrusion detection. 

• The dataset should not exhibit any unintended property in both normal and 

anomalous traffic. 

• The dataset should be labeled properly. 

• The dataset should cover all possible current network scenarios. 

• The dataset should be entirely non-anonymized. 

• In most benchmark datasets, the two basic assumptions described in Section 

1 are valid but this bias should be avoided as much as pOSSIble. 

• Several datasets lack traffic features, although it is Important to extract traffic 

features with their relevancy for a particular attack. 

Despite the enormous efforts needed to create unbiased datasets, there will al­

ways be deficiencies in anyone particular dataset. Therefore, it is very important 

to generate dynamic datasets which not only reflect the traffic compositions and 

intrusions types of the time, but are also modifiable, extensible, and reproducible. 

Therefore, new datasets must be generated from time to time for the purpose of 

analysis, testing, and evaluation of network intrusion detection methods and sys­

tems from multiple perspectives. 

In this chapter, we have discussed a systematic approach to generate real-life 

network intrusion datasets using both packet and flow level traffic information. 

Three different categories of datasets have been generated using the TUIDS testbed. 

They are (i) TUIDS Intrusion Dataset, (ii) TUIDS Coordinated Scan Dataset, and 

(iii) TUIDS DDoS Dataset. We incorporate maximum number of possible attacks 

and scenarios during the generation of the datasets in our testbed network. These 

datasets are used to evaluate the performance of methods developed for intrusion 

detection reported in subsequent chapters. 
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Chapter 5 

Outlier-based Approach for, 

Coordinated Port Scan Detection 

This chapter presents an overview of port scans, significance of port scans, and 

the possibilities for detecting them at firewall level. We also discuss several port 

scan detection methods with a general comparison We introduce an outlier based 

approach to detect coordinated scans as early as pOSSible. We also proposed an 

outlier score function to test each candidate object to identify coordinated port 

scan using score values The method reports each candidate object as normal or 

coordmated port scan w.r.t. a threshold. This work is evaluated using a real-life 

coordinated scan datable prepared by us and publicly available probe datasets. 

5.1 Introduction 

During the last several decades, network defenders and researchers have developed 

approaches to detect malicious scans as well as coordinated port scans to keep 

enterprise networks secure. This is because cyber threats are becoming more so­

phisticated and more numerous, leading to more substantial damages to systems 

within short periods of time [266,267]. Two types of correlations are used in a co­

ordinated scan attack, viz., actwn correlatwn and task correlatwn [268,269]. How 

actions performed by one user affects another user is obtained during action correla­

tion. For example, a particular action performed by one user may facilitate another 

user who performs the actual attack. In the other type of correlation, tasks divided 
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among multiple users are discovered. Here we focus mainly on task correlation. 

Network administrators or defenders are interested in detecting coordinated 

scan attacks for a system in an enterprise network due to the following reasons. 

• To detect coordmated scan attacks just like the detection of other attacks, 

• To foil greater interest by the attacker who wants to remain undetected. 

• To obviate the potential seriousness of the actual attacks. 

A coordinated port scan is a part of a coordinated attack. Here, tasks are dis­

tributed among multiple hosts for individual actions which may be synchronized. 

A port scan is an information gathering method used by an opponent to gain infor­

mation about responding computers and open ports on a target network host. An 

opponent initiates the exploration of multiple hosts to scan a portion of the target 

network, with multiple sources focused on the portion of the target network which 

they want to compromise after getting relevant information from the target host. 

Intrusion Detection Systems (IDSs) are normally configured to recognize and re­

port single source port scan activity. So, they cannot usually detect multiple source 

scans that collaborate with several hosts during scanning 

5.1.1 Motivation and Contributions 

Early detection of port scans, particularly stealthy or coordinated port scans, is 

important to enable action against potential intruders. The attackers or intruders 

are technically sophisticated enough to remain undetected while gathering infor­

mation but the network defenders are usually out in the open Single source scan 

detection is comparatively easy to detect because detection usually works better 

when a single source communicates with a single or multiple destinations. But the 

detection of a coordinated port scan is difficult due to the lack of relevant feature 

information at both packet and flow levels. Therefore, we develop an adaptive out­

lier based detection mechanism for coordinated port scans known as AOCD. This 

chapter makes the following key contributions. 

• We present a survey of existing work on port scan attack detection significantly 

expanding the discussion in several directions. This also includes overview of 
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port scans and types of such scans, firewall level detection possibility, detection 

methods, evaluatlOn and deployment. 

• We formalize the problem of coordinated scan detection as a data mining 

problem and present an approach to transform network traffic data into a 

form where a classifier can be directly used. SpecIfically, we select random 

samples from the dataset and identify a set of features relevant for cluster 

detection for early detection of coordinated port scans. 

• We introduce an outlier score function to test each candidate object to identify 

coordinated port scan using the estimated score values. The method reports 

each candidate object as normal or coordinated port scan with respect to a 

threshold. 

• We present extensive experiments using real-world network traffic data The 

results show that our approach, which we call AOeD has substantially better 

performance than other state-of-the-art approaches in terms of accuracy and 

false positive rate. 

5.2 Port Scans and Related Concepts 

We present here some preliminary discussions on port scans, types and coordinated 

port scans. 

5.2.1 Port Scans and Types 

There arc several forms of reconnaissance activity, which often precedes an attack. 

When an adversary uses an effective mechanism to remotely probe a network, it is 

known as port scannmg. System administrators and other network defenders also 

use thIS mechanism to detect port scans as precursors to senous attacks [5]. A port 

scan can be defined as sending packets to a particular IP or port to get a response 

from an active host in the network llldicating the serVices it offers. A port scan is 

useful to an attacker who wants to gain substantial lllformation about the target 

host. Thus, it is of considerable interest to attackers to determine whether or not 

the defenders of a network scan ports regularly Attackers hide their identity during 
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port scanning whereas network defenders do not. VIVO et al. [270] describe a port 

scan as bemg composed of hostile Internet ~earches for open "doors·' or "ports", 

through which intruders gain access to computers Generally, there are several hosts 

available on a network and they run many services that commonly use TCP or 

UDP ports for commumcation WIth each other These techmques conSIst of sending 

a message to a port and listening for an answer The received response indicates 

port status and can be helpful in determining a host's operating system and other 

information relevant to launching a future attack A vulnerability scan is similar, 

except that a positive response from the target results III further communication 

to determine whether the target is vulnerable to a particular exploit Most attacks 

are preceded by some form of scanning activity. particularly vulnerability scanning 

[271], 

A computer contams 65536 standardly defined ports [272]. They can be classi­

fied into three large ranges: (a) well known ports (0 - 1023), (b) registered ports 

(1024 - 49151) and (c) dynamic and/or private ports (49152 - 65535). Normally, 

a port scan helps the attacker in finding those ports that an? available to launch 

attacks, but it does not directly harm the system Essentially, a port scan sends 

a packet with a message to the target host one at a time and listens for an an­

swer. The response indicates whether the port IS being used. This is a probe for 

weaknesses to launch future attacks TCP and UDP ports are usually used for 

port scanmng but only TCP port scannIllg returns good feedback to the attacker 

because it IS a connection-oriented protocol. UDP port scanning may not readily 

give relevant information to the attacker because It is a connectionlcss protocol 

In addition, a UDP port may be easily blocked by network defenders or network 

administrators. The following are the various types of port scans [5] which are used 

to probe weaknesses from a networked host (shown in Figure 5.1) . 

• Stealth scan. Auditing tools cannot detect this type of scanning because of 

complicated design architectures. Sueh a scan sends TCP packets to the 

destination host with stealth flags Some of the flags are SYN, FIN and 

NULL. 

• SOCKS port probe: It allows sharing of Internet connectIOns on multiple hosts. 

123 



Chapter 5. Outlier-based Approach for Coordinated Port Scan Detection 

00 SYN I ACK scan 

Figure 5.1: Types of port scans 

Attackers scan these ports because a large percentage of users misconfigure 

SOCKS ports, potentIally permitting arbitrarily chosen sources and destina­

tions to communicate It also allows the attackers to access other Internet 

hosts while hiding their true locations. 

• Bounce scan: An FTP bounce scan attack takes advantage of a vulnerability 

of the FTP protocol Itself. Email servers and HTTP Proxies are the common 

applications that allow bounce scans. 

• TCP scan: This type of scanning is used by a smart attacker because it never 

establishes a connection permanently. The attacker can launch an attack 

immediately if a remote port accepts the connection request. Normally, this 

type of connection request cannot be logged by a server's logging system 

due to its smart connection attempt. Some TCP scans are TCP ConncctO, 

reverse identification, Internet protocol (IP) header dump scan, SYN, FIN, 

ACK, XMAS, NULL and TCP fragment. 

• UDP scan: A UDP scan attempts to discover open ports related to the UDP 

protocol. However, UDP is a connection less protocol and, thus, it is not often 

used by attackers since it can be easily blocked. 

The list of port scan types discussed above along with firewall detection pos­

sibilities during the scanning process are given in Table 5.1. We can see from the 

table that most of scans arc not detected at firewall level. 

5.2.2 Coordinated Port Scan 

A coordinated port scan is composed of multiple scans from multiple sources where 

there is a single instigator behind the set of sources. The task of distributed infor-
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Table 5.1: Port scan types and their firewall level detection possibilities 

Port scannIng teeh- Protocol TCP flag Target reply Target reply FIrewall level de-
mque (open port) (closed port) teet IOn posslblhty 
TCP Connect() TCP SYN ACK RST Yes 
Reverse Ident TCP No No No No 
SYN Scan TCP SYN ACK RST Yes 
IP Header Dump Scan TCP No No No No 
SYN/ACK Scan TCP SYN/ACK RST RST Yes 
FIN Scan TCP FIN No RST No 
ACK Scan TCP ACK No RST No 
NULL Scan TCP No No RST No 
XMAS Scan TCP All flags No RST No 
TCP Fragment TCP No No No No 
UDP Scan UDP No No POlt Umeachable No 
FTP Bounce Scan FTP Albltrary No No No 

Flag Set 
Pmg Scan ICMP No Echo Reply No Yes 
LIst Scan TCP No No No No 
Protocol Scan IP No - - No 
TCP wmdow scan TCP ACK RST RST No 

mation gathermg is accomplIshed usmg either a many-to-one or a many-to-many 

model [273,274] The attacker uses multiple hosts to execute mformation-gathering 

techniques in two ways' rate-limIted, and random or non-linear. In a rate-limited 

information-gathering technique, the number of packets sent by a host to scan is 

lImited [5,275,276]. This is based on the Berkeley Software Distribution (FreeBSD) 

implementation of UNIX where separate rate limits are maintained for open ports 

as well as closed ports. For example, TCP RST is rate limited. "ICMP port 

unreachable" IS also rate 1ll11lted. On the other hand, a random or non-Imear gath­

ering techmque refers to randomization of the destination IP-port paIrS among the 

sources, as well as randomization of the time delay for each probe packet. A coordi­

nated attack has a more generic form of a distributed scan than the ones described 

by Staniford-Chen et al. [277]. It is defined as multi-step explOItatIOn usmg parallel 

sessions with the objective of obscuring the unified nature of the attack, allowing 

the attackers to proceed more quickly. We present the TUrDS testbed architecture 

(see Figure 5.9) for the generation of coordinated port scans with configuration 

details. 

5.3 Related Research 

Based on how scanning IS performed, port scan techniques can be classified into 

two broad categories' s7,ngle-source port scans and d?'stnbuted port scans Each of 
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these categories is illustrated in Figure 5.2. Therefore, we classify various port scan 

detection approaches available in the literature into two different categories: single-. 

SOUTce and distributed approaches. Single-source port scan is performed following 

either a one-to-one or a one-to-many model for gathering information about a target 

computer or network. On the other hand, distributed information gathering [273] is 

performed using a many-to-one or many-to-many model for gathering information 

about a target computer or network. A hierarchy of the scan detection approaches 

is reported in Figure 5.3. 

(a) Single Source port scan 
(One-to-many) 

·M 

~ 
(b) Distributed port scan 

(many.fo-one) 
(c) Distributed port scan 

(many.fo-many) 

Figure 5.2: Single-source and Distributed port scans 

Port Scan Attack 
Detection Approaches 

Packet-level 

Figure 5.3: Hierarchy of port scan attack detection approaches 

5.3.1 Single Source Port Scans and Approaches for Detec­

tion 

The goal of port scanning from the perspective of an attacker is to gather ideas 

regarding where to probe for weaknesses. One can scan the network in a one-to­

many fashion. As discussed in [278], a scan or any network attack can be detected by 

using a network ~ntrusion detection system (NIDS). In the literature, a port scanner 
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is defined as consi~tmg of "speczalzzed programs used to determzne what TCP ports 

of a host have processes izstenzng on them for posszble connectzons" [270]. 

Staniford et al. [279] further define scan footprint as the set of ports or IP 

combinations that the attacker 1S mterested in charactenzing. According to them, 

port scans can be of four types (as shown in Figure 5.4)' vertzcal, horzzontal, strobe 

and block. A vertz cal scan consists of a port scan of some or all ports on a smgle 

computer. The other three types of scans are used over multiple IP addresses. A 

Figure 5.4: Single-source scan types with its ports detail 

horzzontal scan is a scan of a single port across multiple IP addresses. If the port 

scan is of multiple ports across multiple IP addresses, it is called a strobe scan. A 

block scan is a port scan against all ports on multiple IP addresses. Yegneswaran 

et al. [280] quantified vertical and horizontal scans, defining a vertical scan as 

consisting of six or more ports on a single computer, and a horizontal scan as 

consisting of five or more IP addresses within a subnet. 

Detection approaches for single-source port scans have been part of intrusion 

detection systems since 1990, from the release of Network Security Monitor (NSM) 

[281 J. We div1de these detectlOn approaches into five categories. algorzthmzc, thresh­

old based, soft computzng, rule based, and vzsual Each of these can be further 

categorized based on the type of network data processed, methodology used for de­

tection and evaluation criteria. For example, some approaches exploit packet level 

information whereas some others use flow level information. These details provide 

not only the connectlOn information, but also allow one to analyze the packet pay­

load. This allows signatures of known attacks to be used on the data to determine 

whether or not the packet payload contains an attack. Flow level information is pro­

vided by Cisco NetFlow [282] and Argus [283J in the form of summarized connection 

information. 
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Algorithmic Approaches 

These approaches use methods such as hypothesis testing and probabilistic models, 

to detect port scan attacks based on analysis of network activity. Some of the most 

well known approaches are discussed below. 

Leckie and Kotagiri [284] present an algorithm based on a probabilistic model. 

For each IP address 10 the monitored network, the algonthm generates a probability 

P( dis) that represents how likely it is that a source Will contact that particular 

destination IP, where d IS the destination IP and .') is the source, based on how 

commonly that destination IP is contacted by other sources, P( d). Similarly, it also 

computes a probability for each port that represents how likely a source will contact 

a particular destination port, P(pls) where p is the dest1OatlOn port A limitation 

of thiS approach is that P( d) is based on the pnor distribution of sources that have 

accessed that IP address. This lmplies that if the probabilities for thiS approach 

are generated based on a sample of network data, and if the monitored network 

is scanned, the resulting distributions may include scans as well as normal traffic. 

Another limitation of this approach is that it assumes that an attacker accesses the 

destinations at random; this may not be always true. Kim et al. [285] aim to detect 

network port scans using anomaly detection. First, the I?ethod performs statistical 

tests to analyze traffic rates. Then, it makes use of two dynamic chz-square tests 

to detect anomalous packets. It models network traffic as a marked point process 

and introduces a general port scan model The authors present simulation results 

to detect 10 malicious vertical scans with true positive rate greater than 90% and 

false positive rate smaller than 15% for both the static and dynamic tests using the 

port scan model and statistical tests. 

Ertoz et al. [286] develop a system called MINDS (Minnesota INtrusion De­

tection System) that can analyze network traffic and ean also detect port scan 

attacks. It reads NetFlow data and generates data characteristics, including flow 

level information, e g., source IP, source port, number of bytes, etc. It then derives 

information such as the number of connections from a s10gle source, the number of 

connections to a single destination, the number of connections from a single source 

to the same port, and the number of connections from a single destmation to the 
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same source port. These four features are counted over a time window and over a 

connection window. An anomaly score [37] is estimated based on the flow data and 

derived data for each network traffic record A report ordered by anomaly score is 

generated The authors also claim that it can detect both fast and slow scanning. 

Gates et al. [287] analyze Cisco NetFlow data for port scan attacks. The method 

extracts the events (bursts of network activities surrounded by quiescent periods) 

for each source and the flows in each event are then sorted accordmg to destination 

IP and destination port. It attempts to calculate six characteristics for each event 

based on statistical analysis of port scans It estimates a probability using logistic 

regression with these six characteristics as input variables to predict whether the 

events contain a scan or not. The mam drawback of the method is that it is non­

real time. Udhayan et al. [288] report a heuristic approach for detecting port scan 

attacks. One possible solution to curb a zombie army or a malicious botnet attack is 

by detecting and blocking or droppmg reconnaissance scans, i.e., port scans. They 

derive a set of heuristics to detect these scans, some quite crafty. It is written 

into the firewall and is triggered immediately after a port scan is detected, to drop 

packets with the IP address of the source of port scan for a pre-determined period. 

ThiS detection approach is more user friendly than other approaches like SNORT 

[161] 

Gyorgy et al. [289] propo!:>e a model known as off-the-shelf classifier based on 

data mining. Initially, it transforms network trace data mto a feature dataset with 

label information. Then, it selects Ripper, a fast rule based classifier, which is 

capable of learning rules from multi-model datasets, with results that are easy to 

interpret. The authors successfully demonstrate that data mining models can en­

capsulate expert knowledge to create an adaptive algorithm that can substantially 

outperform the state-of-the-art for heunstic based scan detection in both precision 

and recall. This technique is also capable of detecting the scanners at an early 

stage. Treurniet [290] introduces a new scan detection technique that improves the 

understanding of Internet traffic The author creates a session model using the be­

havior of packet-level data between host pairs Identified and activities. In a dataset 

collected over 24 hours 78% of the lllstances were identified as reconnaissance ac­

tivities, out of which 80% were slower scans Thus, the method demonstrates its 
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understanding of Internet traffic by classifying known activitIes, reporting visible 

threats to the network through scan detection. 

Threshold-based Approaches 

These approaches examine events of interest X across a Y -sIzed time window to 

detect port scan attacks above certain thresholds [291]. The most commonly used 

parameter for detecting scans is the number of unique IP addresses contacted by a 

host Several mtrusion detection systems have been developed m the past couple of 

years in the public domain that use the threshold-based approach to detect anomaly. 

The approach requires the packet level information. 

Heberlein et al. [281] present a system known as Network SecurIty Monitor 

(NSM), which is designed usmg the algorithmic approach and is consIdered to have 

pioneered the implementation of threshold based scan detectIOn [269]. ThIs tool has 

three parts: data capturing, data analysis and support. The data analysis is the 

core part of the NSM. It collects data in different forms such as statistical, session, 

full content and alert. StatistIcal data represent the aggregation of network traffics, 

protocol breakdown and distribution. Session data represent the connection pairs, 

and conversation between two hosts. Full content data represent the log of every 

single bit of network traffic. Alert data represent the data collected by an IDS. It 

recoglllzes a source as anomalous and potentially malicIOUS If it is found to contact 

more than 15 other IP addresses during an unspecified period of time It also 

Identifies a source as anomalous if it tries to contact an IP address that does not 

contain a responding computer on the monitored network. WIth this last heuristic, 

it assumes that an external source would contact an internal IP address only for a 

reason backed by knowledge of the existence of a service at an internal IP address 

such as an FTP server or a mail server. NSM is neither a security event management 

system nor an intrusion prevention system. Roesch [161] presents a signature-based 

intrusion detection system known as SNORT. It uses a pre-processor that extracts 

port scans, based on either invalid flag combination (for example, NULL scans, 

Xmas scans, and SYN-FIN scans) or on exceeding a threshold. SNORT uses a pre­

processor, called POTts can that watches connections to determine whether a scan 

is occurring By default, SNORT is configured to generate an alarm only if it has 
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detected SYN packets sent to at least five different IP addresses within 60 seconds 

or 20 different ports wIthin 60 seconds, although thIS can be adjusted manually. By 

having such a high threshold, the number of false positIves is reduced. However, a 

careful scan at a rate lower than the threshold can easlly go undetected. 

Paxson [292] introduces a detection system known as Bra that attempts to ' 

detect scans based on a thresholding approach Network scans are detected when 

a smgle source contacts multiple destmations (> some threshold). It also detects 

vertical scans when a single source contacts too many different ports. It assumes 

that the external site has mitiated the conversation in both cases However, a 

major limitation of this method is the increased number of false positives. Bro 

uses payload as well as packet level informatIOn Jung et al. [269] describe an 

approach called Threshold Random Walk (TRW) based on sequential hypothesis 
, 

testing It detects port scans using an Oracle database that contains the assigned 

IP addresses and ports inside a network after performing an analysis of return 

traffic. When a con~ection request is received, the souree IP IS entered into a list, 

along with eaeh destination to which this source has attempted a connection. If the 

current connection is to a destination which is already in the list, the connection 

is ignored. If it is to a new destination, it IS added to the hst, and a measure that 

determines whether the connection is scanning or not is computed and updated 

based on the status of the connectIOn. The entire source is flagged as either scanning 

or not scanning depending on whether the measure has exceeded the maximum 

threshold or has dropped below the mmlmum threshold, respectively. It has been 

observed that benign activity rarely results in connections to hosts or services that 

are not available, whereas scanning actiVIty often makes such connections, with the 

probability of connecting to a legitimate service dependent on the density of the 

target network. 

Romig [293] develops a flow analysis tool called f lo'W-d8can. This tool examines 

flows for floods and port scans. Floods are identified by an excessive number of 

packets per flow. Port scans are identified by a source IP address contacting more 

than a certain threshold number of destination IP addresses or destination ports 

(only ports less than 1024 are examined) on a single IP address. To minimize the 

false alarm rate, this approach makes use of a suppress hst consisting of IP addresses. 
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Zhang and Fang [294] propose a new port scan detectIOn approach known as TIme­

based Flow size DlstnbutIOn SequentIal hypothesIs testmg (TFDS) for high-speed 

transit networks where only umdlrectIOnal flow mformatIOn IS avaJlable TFDS 

uses the mam Ideas of sequential hypothesIs testmg to detect scanners that exhibit 

abnormal acce::,::, patterns m terms of flow size dlstnbutlOn (FSD) entropy This 

work makes a companson with the state-of-the-art backbonc port scan detectIOn 

method TAPS [295] m terms of effiCiency and effectiveness usmg real backbone 

packet trace, and finds that TFDS performs much better than TAPS 

Cadge and PatIl [296] propose a method to Identify pOSSible port scans and try 

to gather additIOnal mformatlOn about the scanner or attacker, such as probable 

locatIOn and operatmg ::,ystem The scan detectIOn system collect::, all the ll1forma­

tlOn and stores It to generate reports m terms bar graphs AnalYSIS of stored data 

can be done m terms of time and day by which type of scan was performed from 

which IP the ::,can was performed different ports, etc Based on the analYSIS of 

the vanous parameters used, It can recogmze and report the type of attack or scan 

performed durmg a time wmdow ThiS method can detect scans comll1g from most 

common scanners such as Angry IP nmap and MegaPmg 

Soft Computing Approaches 

Soft computmg ll1cludes Important methods that prOVide fleXible mformatIOn pro­

cessmg for handhng real-hfe ambiguous SituatIOns [297] Methods m ::,oft computmg 

explOit tolerance for ImpreCISIOn and uncertamty, use approximate rcasonmg and 

partial truth m order to achieve traceabilIty, prOVide robustness and low-cost solu­

tIOns to problems Some soft computmg approaches for scan detectIOn are discussed 

next 

Chen and Cheng [298] present a novel and fast port scan detectIOn method based 

on Partheno-CenetIc Algonthms (PCA) The method can effiCiently dIscover ports 

that arc open most often Dunng genetic evolutIOn ports With more opcn tlmcs sur­

VIve to the next generatIOn WIth hIgher probabIlitIes ThIS approach demonstrates 

that PCA-based port scan IS effiCIent for average as well as worst cases SequentIal 

port scans are better m best cases only Lm et al [299] diSCUSS a method known as 

NaIve Bayes Kernel Estimator (NBKE), which IS uscd to Identify fioodmg attacks 
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and port scans from normal traffic. The method represents all known attacks in 

terms of traffic features. The method takes hand-identified traffie instances as train­

mg examples for the NBKE. This method achieves high accuracy in the detection 

of flooding attacks and port scan attacks. The authors show that the Kernel-based 

Estimator can provide improved accuracy of 96.8% over the simple Naive Bayes 

estimator 

Shafiq et al. [300] report a comparative study of three classification schemes 

for automated port scan detection. These includes a simple fuzzy inference system 

(FIS) that uses classical inductive learning, a neural network that uses the back 

propagation algorithm and an adaptive neuro fuzzy inference system (ANFIS) that 

also employs the back propagation algorithm. They use two mformation theoretic 

features, namely entropy and KL-divergence of port usage, to model network traffic 

behavior for normal user applications The authors carry out an unbiased evaluation 

of these schemes usmg an endpoint based traffic dataset. This work shows that 

ANFIS, though more complex, successfully combmes the benefits of the classical 

FIS and Neural Network to achieve excellent classification accuracy 

Rule-based Approaches 

Generally, a rule-based IDS analyzes traffic data passing through It and differenti­

ates intrusive traffic behaviors from the normal. A rule-based IDS uses rules stored 

m Its knowledge base to detect and take actions when anomaly occurs in the traffic 

or when there are unauthorized activities. A rule-based IDS must generate rules 

based on network activity for detecting anomaly. Some rule-based approaches are 

described below. 

Mahoney and Chan [182] introduce a system known as Packet Header Anomaly 

Detection (PHAD) that learns the normal range of values for all 33 fields in the 

Ethernet, IP, TCP, UDP, and ICMP headers. A score is assigned to each packet 

header field in the testing phase and the fields' scores arc summed to obtain a 

packet's aggregate anomaly score. The authors evaluate PHAD using the packet 

header fields: source IP, destmatzon IP, source port, destmatzon port, protocol type, 

and TCP flags. Normal intervals for the SIX fields arc learned from 5 days of training 

data. In the test data, field values not falling in the learned intervals are flagged 
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as suspect. The top n packet score values are labeled anomalous. The value of n 

is varied over a range to obtain ROC curves. Another relevant work is proposed 

by Oke and Loukas [301]. The authors propose a Denial of Service (DoS) detec­

tion approach which uses multiple Bayesian elassifiers and random neural networks 

(RNN). Their method is based on measunng various Instantaneous and statIstical 

variables describing the incoming network traffic, acquiring a likelihood estimation 

and fusing the information gathered from the individual input features using likeli­

hood averaging and different architectures of RNNs Kim and Lee [302] suggest an 

abnormal traffic control framework (ATCF) to detect slow port scan attacks using 

fuzzy rules. ATCF acts as an intrusion prevention system disallowing suspicious 

network traffic It manages traffic with a two step policy: (z) decreasing network 

bandwidth and then (zz) discarding traffic. The authors show that the abnormal 

traffic control framework can effectively detect slow port scan attacks using fuzzy 

rules and a stepwise policy 

In addition to these two, several other rule-based IDSs have been discussed in 

the literature that are not ineluded here due to being non-relevant to port scan 

attack detection. 

Visual Approaches 

Some approaches present data to the user In a visual manner so that he or she can 

recogmze scans by the patterns it generates. Such approaches detect and investIgate 

port scans using packet level information and flow level information. Some visual 

approaches are presented here. 

Muelder et al. [303,304] present PortVis, 'a tool designed for scan detection. 

It uses summarized network traffic for each protocol and each port for a user­

specified time period. The summaries include the number of unique source ad­

dresses, the number of unique destinatIOn addresses, and the number of unique 

source-destination address pairs A series of visualization techniques and drill­

downs are used to determine whether the monitored traffic contains horizontal or 

vertical scans. It is unelear how well thIS algorithm scales to larger networks. It 

is because this approach requires a manual analysis of the visualizations, rather 

than an automated recognition of scans Musa and Parish [305] describe prototype 
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software that enables visualization alerts effectively in real-time. The prototype 

software incorporates various projections of the alert data m 3-dimensional displays. 

Filtering, drill-down, and playback of alerts at variable speeds arc incorporated to 

strengthen analysis The developers integrate a false alert classifier using a decision 

tree algorithm to classIfy alerts mto false and true alerts. The authors also work on 

the analysis of both portsweep and ntmj'oscan attacks. 

Lee et al [306] present an extended version of the NVisionCC system [307], 

which is a clustering tool based on an/ extensible visualization framework It exploits 

the nature of large-scale commodity clusters to improve illegal service detection 

mechanisms. The cluster properties are only visible when one ceases to look at 

the cluster as a collectIOn of dIsparate nodes. The tool can help make insightful 

observations by correlating open network ports observed on cluster nodes with other 

emergent propertIes such as the number and nature of active processes and the 

contents of Important system files. This approach can greatly restnct the actions 

that an attacker can carry out undetected. Scan Viewer [308] is a visual interactive 

network scan detectIOn system designed to represent traffic activities that reside in 

network flows and their patterns. Scan Viewer combines characteristics of network 

scans with novel vIsual structures, and utilizes a set of visual concepts to map 

the collected datagram to the graphs that emphasize their patterns Additionally, 

it provides Localport, a tool that captures large-scale port information It has 

been expenmentally shown that Scan Viewer not only can detect network scans, 

port scans, dlstnbuted port scans, but also can detect hidden scans. Fmally, a 

graph theoretic model for port scan detection by visualizmg graph features for each 

network connection is reported by [309]. 

Discussion 

A large number of techmques for detection of port scans have been reported in 

this sectIOn under five distinct categories of approaches. However, It is not always 

easy to unambiguously classify a technique into anyone of these approaches since 

often it uses elements from multiple classes. These approaches use features such as 

source IP and port, destination IP and port. protocol, start time and end time of 

the session, and the number of bytes, and packets transferred. Table 5.2 provides 
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a summary of the scan detection approaches that are available for detecting the 

single-source port scan attacks. Table 5 2 also shows the performances of those 

detectIOn techniques wherever available and the datasets used for their evaluation. 

Table 5.2: Comparing single-source port scan detectlOn approaches 

Performance 
Detection Author (s) Nature of Detec- Packet(P) False POSI- UetectlOn 
Approach tlOn (Real/Non- / Flow(F) tIVe(%) Rate (%) 

real time) level 
Stamford-Chen et al [277] R P 
Porras and Valdes I nOJ N F 
Kato et alllllJ R P 
Leckie and Kotagm1284J R P o OJ [284] 

Algonthmlc 
Ertoz et al 286J R F 
Kim et al 1285J R P 
Gyorgy et al 1289J N P 9382 [289] 
Gates et al 1287J R F 
Udhayan et al 1288J R P 
Treurmet 1290J R P 
Heberlem et a1J281] N P 
Paxsonl292J R P 
Roeschl161 R P 

Threshold Romlgl293 R F 
Jung et al 269J N P 096 [269] 
Gadge and Patl1i296J N P 
Zhang and Fangl294J R F 
Strellem et al (J 12] R P 01 IJI2] 100 iJ12] 
LlU et al 1299L N P 

Soft Computmg Shafiq et al l.lOOJ N P 
Chen and Chengl298J N P 
Chen and Chengl298J N P 

Rule-based 
Mahoney and Chan[182J N P 
Kim and Lee["J02J N P,F 
Muelder et al [J03J R F 
Abdullah et allll3l R F 

Visual Lee et al 1306J N P 04 [306) 955 [306) 
Musa and Panshl305J R F 
Jlawan et al 1308J N F 
Cheng et al 1309J N P 

5.3.2 Distributed Port Scans and Approaches for Detection 

Distributed information gathering is performed using either a many-to-one or a 

many-to-many model [2731. Here, the attacker uses multiple hosts to execute infor­

mation gathering techniques in two ways: rate-lzmzted and random or non-lznear. 

In a rate-lzmzted information gathering technique, the number of packets sent by a 

host to scan is limited [276]; this is based on the FreeBSD implementation of Unix 

where separate rate limits are maintained for open ports as well as closed ports. 

For example: TCP RST is rate limited, ICMP port unreachable is rate limited, 

and so on. On the other hand, a random or non-lznear gathering techlllque refers 

to randomization of the destinatIOn IP-port pairs amongst the sources, as well as 
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randomizatlOn of the time delay for each probe packet. 

A coordmated attack has a more generIC form of a distributed scan described 

by Staniford-Chen et aL [277]. It is defined as multi-step explOltation using parallel 

sessions with the objective of obscuring the unified nature of the attack or allowing 

the attackers to proceed more quickly Green et al [314] define a coordmated attack 

as "multzple IP addresses workmg together towards a common goal". They also add 

that a coordinated attack can be Viewed as multiple attackers working together 

to execute a distributed scan on many internal addresses or services. Staniford et 

al [279] later define a distributed scan as one that is launched from a number of 

different real IP addresses, so that the scanner can investigate different parts of 

the footprint from different places. An attacker can scan the Internet using a few 

dozen to a few thousand zombies. A zombie is a compromised host, whose owner 

is unaware that the computer is being exploited (a remote attacker has accessed 

and set up to forward transmissIOns (spams or viruses) to other computers on the 

network) by the external party. Yegneswaran et aL [280] define coordmated scans as 

being scans from multiple sources aimed at a particular port of destinations within a 

one hour window. These scans usually come from more aggressive or active sources 

that comprise several collaborative peers working in tandem. Fmally, Robertson 

et aL [315] group source addresses together as forming a potentially distributed 

port scan if they are sufficiently close, where the scanner simply obtains multiple 

IP addresses from his Internet service provider (ISP). It should be noted that all of 

these definition~ imply some level of co-ordination among the smgle sources used m 

the scan 

The mam goal of these approaches IS to detect coordinated attacks. These types 

of attacks attempt to compromise a single host from multiple systems. There are 

various methods for detecting these attacks Like the single-source scan detection 

approaches, the approaches also can be categorized into four classes based on the 

features used by the methods: algorithmic, clustering, soft computing, and visuaL 

Algorithmic Approaches 

Only a few algorithmic approaches that operate in a distributed mode can be found 

m the literature. We describe here two popular techlllques which perform satlsfac-

137 



Chapter 5. Outlier-based Approach for Coordinated Port Scan Detection 

torily over multiple datasets 

Gates [291] describes a model of potential adversaries based on the information 

they wish to obtain, where each adversary is mapped to a particular scan footprint 

pattern The adversary model forms the basis of an approach to detect forms of 

coordinated scans, employmg an algorithm that is inspired by heuristics for the 

set covering problem. The model also provides a framework for comparing various 

types of adversanes dIfferent coordinated scan detectIOn approaches might identify. 

The author evaluates the model to analyze the detector performance over a set of 

different datasets Both the detection and false positive rates gathered from the 

experiments are modeled usmg regressIOn equatIOns. 

Whyte [316] describes the design, implementation and evaluation of fully func­

tional prototypes to detect mternal and external scanning activity at an enterpnse 

network. These techniques offer the possIbIlity of identIfying local scanning systems 

within an enterprise network after the observation of only a few scanning attempts 

with a low false positive and negative rates To detect external scanning activity di­

rected at a network, it makes use of the concept of exposure maps that are identified 

by passively charactenzmg the connectivity behavior of internal hosts in a network 

as they respond to both legitimate connection attempts and scanning attempts The 

exposure maps technique enables: (1) active response options to be safely focused 

exclusively on those systems that dIrectly threaten the network, (2) the ability to 

rapidly characterize and group hosts in a network into different exposure profiles 

based on the services they offer, and (3) the ability to perform a reconnaissance 

activity assessment (RAA) that determines what specific information was returned 

to an adversary as a result of a directed scanning campaign. Finally, the author 

experimented with real-life scan activity as well as offline datasets. Singh and Chun 

[317] implement a TCP based port scanner in the OMNeT++ simulator. The au­

thors describe two modules: simple and compound. Both modules are implemented 

using C++. They claim that their approach can detect TCP connectO, TCP SYN 

(half-open), TCP FIN (stealth), Xmas, NULL, ACK, Window and Reset (RST) 

scans at the router level. 
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Clustering Approaches 

Clustenng is the proeess for partitioning data into groups of similar objects. It is an 

unsupervised learning process There are many approaches available for detecting 

network scans based on the similarity of the data, compactness of the cluster, and 

so on. Some approaches are discussed below. 

Robertson et al. [315] define distributed port scan as a set of port scans that 

onginate from source IP addresses that are located close together. In other words, 

they assume that a scanner is likc!y to use several IP addresses on the same subnet. 

This imphes that if a particular IP address scans a network, IP addresses near 

thIS IP address, rather than those far away, are more hkely to have also scanned 

the network Yegneswaran et al. [280] can detect coordinated port scans where a 

distributed port scan IS defined as a set of scans from multiple sources (i.e., five 

or more) aimed at a particular port at the destinations within a I-hour window. 

On the basIS of this defimtion, the authors find that a large proportlOn of daily 

scans are coordmated in nature, with coordinated scans being roughly as common 

as vertical and horizontal scans. The system looks to see If different sources start 

and stop scannmg eIther at the same time, or m very SImilar temporal patterns. 

There is little locality m the IP spaee for these coordinated scannmg sources. The 

authors do not discuss characteristics of the target hosts. 

Staniford et al. [279] present an approach that begins with an analysis of the 

stealthy port scan detection problem using an intrusion correlation engine. The 

authors maintain records of event likelihood to estimate the anomalousness of a 

gIven packet. For effective detection performance, they use simulated annealmg to 

cluster anomalous packets together into port scans based on heuristics devc!oped 

from real seans. Packets that score high on anomalousness are kept around longer. 

They claim that the system is capable of detecting all scans detected by all other 

current techmques, plus many stealthy scans, with a manageable proportion of false 

positives. 
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Soft Computing Approaches 

In addition to the approaches discussed so far, there are several distributed scan 

detectlOn approaches that use soft computing techniques. Next we discuss a few of 

these. 

Curtis et al. [318] describe an intrusion response architecture based on intel­

ligent agents to detect distributed port scans. The authors use a master analysis 

agent to find a confidence measure based on observed false positive rates. The 

master analysis agent can combine various alerts using a two-level fuzzy rule set 

to determine whether a current attack is a continuation of a prevlOUS attack, or 

a new attack. The agent considers characteristics of the attack such as the time 

between the incident reports, IP addresses, the user name, and the program name. 

The details of the fuzzy logic employed are not provided in this article, nor are the 

results of any experIments indicating how well this algorIthm performs. Zhang et al. 

[319] present a dIstributed multi-layer cooperative model for scan attack detection 

composed of feature-based detection, scenario-based detection and statistics-based 

detectlOn. A scan attack always happens at the network layer and the transport 

layer. The authors categorize scan techniques into three: port scan, bug scan, and 

detecting scan. The authors claim that the model not only detects common scan 

attacks or their variants, but can also detect some slow scan attacks, camouflage 

attacks and DoS attacks that use the TCP lIP protocol. 

Visual Approaches 

These approaches are used for visualizing network traffic to detect whether the flow 

of network packet is an attack or normal behavior. One such commonly found 

approach is proposed by Conti and Abdullah [320]. The approach (discussed in 

the context of single-source port scan earlier) attempts to detect dIstrIbuted scans 

against a background of normal traffic based on visualization. Due to lack of details, 

it is difficult to understand how a distributed scan would use this tool. Also, it is 

not clear how much traffic can be viewed at one time without obscuring features 

of interest. Stockinger et al. [321] present a conditional histogram based detection 

mechanism for distributed port scans. ThIs method is evaluated usmg 2.5 billion 
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Table 5.3: Comparing distributed port scan detection approaches 

Performance 
DetectIOn Author (s) Real (R)/ Non- Packet (P)/ False PosItIve DetectIOn 
Approach real tIme (N) Flow (F) level Rate (%) Rate (%) 

Carne [291J N P 
Algonthmlc Whyte 1316) R P 

Smgh and Chun (317) N P 
Strellem et al [312J R A o 1 [312J 100.,l312J 
Stanlford et al 1279) [279J 

Clustermg Seth et al \315) N A 4 [315J 
Vmod et al 1280) N A 

Soft Computmg CurtIS et al [318J N A 80 [318J 
Zhang et al [319) N P/F 
ContI and Kulsoom [J20) R P 

VIsual Stockmger et al IJ21) N P 
BaidonJ et al 1122) N P 

network connections with an interactIve time mterval. Finally, a collaborative ar­

chitecture to detect coordinated port scans is introduced at [322]. The method aims 

to identify coordinated attacks with low false alarm rate and accurate separation of 

group of attackers even they are overlap The method is tested using real network 

traffic traces. 

Discussion 

Most distributed port scan detection approaches analyze packet level information. 

They can detect port scan attacks using IP addresses (source IP, destination IP), 

connection mformation, and port fields (source ports, destination ports) in the IP 

header. A general comparison of the dIstrIbuted scan detection approaches discussed 

in this section is given in Table 5.3. We see m column 4 of the table that most of 

these approaches arc non-real time and their performance is evaluated in terms of 

the false positive rate and the detection rate. 

5.4 Problem Statement 

Coordinated or distributed port scans originate at multiple sources and focus on 

a single machine or multiple target machines. It is of special interest to large 

organizations with high level network situational awareness or military operations 

to detect coordinated port scans. The following are key problems . 

• Coordinated scans compromise the victIm machine earlier than single source 
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port ::;cans . 

• Coordinated port scans are distributcd m nature So, a smgle attacker or 

intruder coordinates a group of attackers in order to obtain vulnerability in­

formatIOn on a set of target networks. This event also consumes the network 

bandwIdth and resources slowly. 

To overcome these problems, we develop an adaptive outlier based coordinated 

port scan detection approach. Coordinated scans can be detected in two different 

ways, VIZ., (1) using direct network traffic fields (e.g., source IP, destmation IP, 

protocol, etc.), and (ii) using relevant extracted traffic features (e.g., duration, 

source bytes, destinatIOn bytes, etc.). We follow the second approach to detect 

coordinated scans. Let X be the captured, preprocessed current network traffic 

feature dataset, where :1,1, :1,2, ... Xs are the training samples, randomly selected 

from dataset X that contain only normal instances We apply the fuzzy c-means 

algorithm to cluster each sample individually into k clusters. Each cluster uses a 

range based profile for detection. Let Tl, :1,2, ... :Ct be the test instances to classify 

as attack or normal w.r.t. a threshold 02. The profile base is updated if any new 

distinct instances appear for testing. Thus, our method called AOCD adaptively 

updates its profile base for the new distinct instances. 

5.5 AOeD: The Proposed Approach 

We describe the required concepts first and then the AOCD (Adaptive Outlier­

based Coordinated scan Detection) algorithm to detect coordinated port scans. 

The framework for AOCD IS given in Figure 5.5. 

5.5.1 Outliers and Anomaly Detection 

An outlier is an abnormal or infrequent event or object that varies significantly from 

the normal event or object in terms of a distance measure A network administrator 

needs to define an abnormal event based on normal statistics [323]. Outlier detection 

discovers exceptional events from small or large datasets [324]. Examples of outliers 

in a two dimensional dataset arc illustrated in Figure 5.6 
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Figure 5.5: A framework for AOCD: FCM is the fuzzy C-means clustering algorithm 
for sample clustermg and pI is the PCA based feature selection technique for each sample 
as well as testing instances. 
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Figure 5.6: Outliers in two dimensional dataset: N I • N2. and N3 are the three normal 
regions. Points that are sufficiently far away from the normal region (e.g .• points 0 1• 02. 
0 3 and points in 0 4 regions) are outliers. 

Outlier Score and Its Importance 

A large number of outlier detection techniques have been proposed in the literature 

but only a few of them have been applied to anomaly detection [65,325]. An 

outlier score is a summarized value based on distance, density or other statistical 

measures. A reference based outlier score is presented by Pei and Zaiane [3] for 
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detecting outliers in large datasets. The authors estimate outlier score based on 

distance and a degree of nearest neighbor density. The authors define the outlier 

score as 

(5.1) 

where DP(x, t) is l~~'~RD(x, t,Pr), and Pr is the closest reference point to P, i.e., 

P = {PI, P2, P3, ... P R}, IR is the number of reference points. D P (x, t) is the degree 

of neighborhood density of the candidate data point x with respect to the set of 

reference points P, n is the total number of data points, and t is a reference based 

nearest neighbor. The D(x, t, p) is the relative degree of density for x in the one 

dimensional data space '(;P and defined as 

1 
D(x, t, p) = ':"""1 ----;t---------

t 2:)=1 Idtst(x),p) - dtst(x,p)1 
(5.2) 

where dtst(x),p) is the distance between x) and the reference point p within tth 

nearest neighbor, dtst(x,p) is the distance of x from the reference point p. The 

candidate data points are ranked according to their relative degrees of density com­

puted with respect to a set of reference points. Outliers are those with high scores. 

This technique can discover multiple outliers in larger datasets. However, three 

main limitations of a technique that depends on an outlier score like ROS [3] are 

the following. 

• The score does not always vary with the change of candidate data points. 

• Summarizing the data points in terms of scores may not be effective for some 

attacks. 

• It does not work with high dimensional datasets. 

To overcome these drawbacks of the outlier score ROS, we have developed an 

enhanced outlier score function called ROS' presented later in Subsection 5.5.3. 

5.5.2 Feature Extraction Using peA 

Principal Components Analysis (PCA) is often used to reduce the number of dimen­

sions in data for cost-sensitive analysis [326]. Let Xl, X2, X3, .•• Xd and Y1, Y2, Y3, ... Yd 
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be two d dimensional observations. PCA is concerned with explaining the variance­

covariance structure of a set of variables through a few new variables which are 

functions of the original variables. Principal components are particular linear com­

binations of the d random variables Xl, X2, X3, ... Xd with three important properties: 

(i) The principal components are uncorrelated, (ii) The first principal component 

has the highest variance, the second principal component has the second highest 

variance, and so on, and (iii) The total variation in all the principal components 

combined is equal to the total variation in the original variables Xl, X2, X3, ... Xd. 

They are easily obtained from an eigen analysis of the covariance matrix or the 

correlation matrix of Xl, X2, X3,'" Xd· 

Let dataset x be denoted as {Xl, X2, Xa .•. xn} with n objects, where each Xi can 

be a numeric or categorical attribute represented by a d-dimensional vector, i.e., 

Let A be an nx d covariance matrix of n observations in d dimensional space, i.e., 

each d random variables Xl, X2, X3,'" .1:d· If (AI, el), (A2' e2), (A3, e3)," . ,(Ad, ed) are 

the d eigenvalue-eigenvector pairs of A, and Al 2:: A2 2:: A:l, ... ,Ad 2:: 0, then the ith 

sample principal component of an observation vector, x = (Xl, X2, X3, ... Xd)' is 

(5.3) 

where ',' represents the transpose of the matrix, ei = (eil, e,2, ei:l,' .. ,e,d) is the ith 

eigenvector and Z = (Zl' Z2, Z3,'" , Zd)' is the vector of standardized observations 

defined as Zk = Xk;;k where Xk and Sk are the sample mean and sample variance of 
vSk 

the variable Xk. The features, P' are selected based on the eigenvectors with highest 

eigenvalues in d dimensional space. Therefore, our approach works on reduced 

feature spaces given by PCAF, which is based on PCA. 

5.5.3 The Proposed Approach 

AOCD aims to detect anomalous patterns, i.e., coordinated port scans using an 

adaptive outlier based approach with reference to profiles. Initially, we select ran­

dom samples, Xl, X2,'" Xs using a linear congruential generator from the dataset X 

for training purpose. It is a maximum length pseudo random sequence generator 
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[327] and can be defined as Xn = (a.'L'n-I + b) mod rn, where .'L'n is the nth number of 

the sequence, Xn-I is the previous number of the sequence. a, b, and m are secrets; 

a is the multiplier, b is the increment, and rn is the period length when rn is prime, 

the maximum period length is (m - 1). 

We cluster each sample into k classes by using the Fuzzy C-means [328] cluster­

ing technique. We obtain the following clusters from all samples: Cll , CI2 , CI3 ,'" Clk, 

C2l , C22 , C2:l ,' .. C2k , ... Csl , Cs2 , Cs:l ,'" Csk' The method compares a range-based 

profile for each cluster and matches each profile with others to remove redundancy. 

These profiles are used as reference during score computation. Finally, the method 

computes score for each candidate object and reports as normal or outlier (i.e., 

attack) w.r.t. a threshold, 02' We present the Fuzzy C-means clustering technique 

for cluster formation in Algorithm 2. In Algorithm 2, r is the weighting expo­

nent also known as fuzzifier that influences the performance of clustering. During 

experimentation, we set r = 4.5 for better clustering results. 

Algorithm 2 FCM (x, k, T, tI , cf» 

Input: Xi is the ith data instance and 'Ui) represents the whole data matrix, k is 
the number of clusters, r is a real number greater than 1, it is the number of 
iterations, cf> is the termination criteria between 0 and 1. 

Output: Generate cluster, CI , C2 , C3 ,'" Ck. 
1: Initialize U = [11.,)]' U(O). 

2: Compute the center vectors k(IJ) = [kj ] with U(ll): 

4: if IIUL! +1 - Ult II < cf> then 
5: Stop, 
6: else 
7: Return to Step 2. 
8: end if 

Let Si be the number of classes to which each of k' nearest neighbor data objects 

belongs, k' plays an important role in score computation. Let Xt be a test data 

object in Xt and dist(Xt, R) be the distance between the data object Xt and the 

reference points R, where t = 1,2,3"" n, dist is a proximity measure used, and 

Xt represents the whole candidate dataset. The proposed approach works well with 

any commonly used proximity measure. The outlier score for a data object Xt we 

define is given in Equation (5.4), 
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(5.4) 

Here, l;;:~~kl S, is the maximum probability that a data object belongs to a par­

ticular class, the remaining part is the summarized value of distance measure within 

k' nearest neighbors over the relevant feature subset. R, represents the reference 

points within k' nearest neighbor. The candidate data objects are ranked based on 

the outlier score values. Objects with scores higher than a user defined threshold 

62 are considered as anomalous or outliers. 62 is determined by a heuristic method. 

To test effectiveness, we consider seven different cases (illustrated in Figure 5.7 [5]) 

and the proposed algorithm is capable of identifying all these seven cases . 

•••••• 0 7 
++ •••• •••• ++++ 
++ 
0 6 

, ' , ' , 05 

Figure 5.7: Illustration of seven different cases: N1 and N2 arc two normal clusters; 0 1 

is the distinct outlier; 02, the distinct inlier; 03, the equidistance outlier; 0 4 , the border 
inlier; Os, a chain of outliers; 0 6 is another set of outlier objects with higher compactness 
among the objects; and 0 7 is an outlier case of "stay together". 

A heuristic estimation of k' values for our own flow level dataset for a range of 

values of accuracy is given in Figure 5.8. We now present a few definitions before 

we present our algorithm. 

Definition 1. Pattern Similarity: Two data objects Xl and X2 are defined 
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Selection of k' values 
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Figure 5.8: k' values vs accuracy in our own flow level dataset. 

Definition 2. Profile: A profile of a cluster C t is a range value, f../,(:J;/1-,l, ;C/1-,2 ... 

X/1-,d) of dataset x, where each x/1-,J is the range of the /h column of the respective 

cluster Ct. 

Definition 3. Outliers: Two data objects, 0, and OJ arc defined as outliers 

w.r.t a cluster C t iff (a) ROS'(Ot,J.lt) :::: 152 where J.lt is the profile of Ct, and (b) for 

any other data object OJ in C" d1,,st(0,, OJ) > 62, 

Clustering is initiated based on a random selection of k centroids. We assign 

each ''Ct,J object to a particular cluster based on the cluster membership value w.r.t. a 

proximity measure, i.e., d,tst(x, y). We use Euclidean distance as proximity measure. 

dzst is defined as 

dzst(x, y) = {o 
)'7"( X-l---Y-l-'-;) 2;-+---;-( X-2---Y-2-'-;)2;-+-. . -. -+--;(~Xn---y"""n )=2 

zf x = y 

otherwtse. 

(5.5) 

5.5.4 AOeD: The Algorithm 

The AOCD algorithm is based on the NADO [5] approach. AOCD differs from 

N ADO technique in the following key points 

• We usc the Principal' Components Analysis (PCA) [326] feature reduction 
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technique to identify the relevant feature set. These feature sets are used 

during cluster formation (Algorithm 2). 

• AOCD uses a variant of the Fuzzy C-means clustering algorithm to form 

clusters. 

• We test AOCD using real-life coordinated datasets. 

• AOCD adaptively updates the profiles for new test instances. 

AOCD works as follows. {Cll , C12 : C13 ,'" C1k, C21: C22 , C23 ,'" C2k, .,. Cs1 : Cs2 : 

Cs3 : ... Csd is the set of clusters with cardinality sk. 'The method generates the 

profiles: /.LsI: /.Ls2, /.Ls3,··· /.Lsk for the clusters Cs1 , Cs2 , Cs3 :'" Csk, respectively, ob­

tained from the dataset x. Then it detects coordinated scans based on the outlier 

score ROS' from the testing datasets. The major steps of AOCD are given in 

Algorithm 3. 

Algorithm 3 AOCD (x, (h) 

Input: x is the dataset, 62 is the threshold 
Output: 0 •. ) 's are the anomalous objects 

1: Select random sample, Xl, X2, .. , ,X s from the dat~et x using a". 
2: Find clusters Cs1 : Cs2 , Cs3 ,'" Csk for each sample Xs based on a variant of 

Fuzzy C-means clustering (Algorithm 2) technique w.r.t. relevant feature set 
F'. 

3: Compute range based profile I"sk for each of the sk clusters w.r.t. F'. 
4: Calculate outlier score ROS' for each candidate data object, X t w.r.t. F' and ',J 

/.Lsk· 
5: Rank the candidate data objects according to their score values. 
6: Sort the data objects based on score values and report the anomalies or outliers, 

Oi,/S w.r.t. the threshold 62. 
7: if new test instances found then 
8: Update range based profiles, /.Lsk· 
9: Return to Step 4. 

10: end if 

5.5.5 Complexity Analysis 

AoeD has works in two basic modules: clustering and score computation. The 

clustering module takes O(kI) time to generate k clusters within I iterations. On 

the other hand, the score computation module takes O(nklogk) time to estimate 
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the score value of each candidate data objects, where k is the number of reference 

points. Hence, the total time complexity of AOCD is O(kJ + nklogk). 

5.6 Experimental Results 

The main goal of the experiments is to apply AOCD to coordinated scan detection 

as well as to evaluate its capability in detecting outliers or anomalies or scans and 

compare it to the current best performing algorithms. To achieve this goal, we 

have implemented our algorithm and tested it with various real world datasets and 

datasets prepared by us on our TUIDS testbed at both packet and flow levels. It has 

been used during attack generation in our TUIDS testbed for labeled coordinated 

dataset preparation. The network laboratory layout where we capture network 

traffic for coordinated port scans data is shown in Figure 5.9. The network has 32 

subnets including a wireless network, 4 routers, 3 wireless controllers, 8 L3 switches, 

15 L2 switches and 300 hosts. The DHCP server is set up inside the main network 

for wireless network. During attack generation, we use 10 attackers per 32 subnets 

including one wireless subnet to launch the attacks. 

I 
I 

I 
I , 

Packet capture, Not Flow capture, 
monitonng, IDS monttonng, IDS 

1 D~ 
1 

\ ~~~ 
Attacker C7e"rtt 'Cifertt 

Attacker Attacker 

Figure 5.9: Coordinated port scan TUIDS testbed setup with layered '10 attackers /32 
subnet including one wireless subnet 

AOCD IS implemented on an HP xw6600 workstation, Intel Xeon Processor 
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(3.00 GHz) with 4GB RAM. Java 1.6.0 is used for the implementation on Ubuntu 

10.10 (Linux) platform. Java is used to facilitate the visualization and reusability 

of code for further experimentation. 

5.6.1 Datasets Used 

To evaluate the performance of AOCD, we use several real-life datasets for experi­

mentation. We use three datasets: our own datasets that are packet and flow based 

and KDDcup99 probe [52] dataset. The characteristics of our own packet and flow 

level coordinated port scan datasets are presented in Table 5.4. The characteristics 

of the KDDcup99 probe datasets used in this experiments are given in Table 5.5. 

Table 5.4: Distribution of normal and attack connection instances in TUIDS real-life 
packet and flow level intrusion datasets 

Dataset type 
Connectwn type Traznzng dataset Testmg dataset 
Packet level 
Normal 71785 100% 47895 75.78% 
Probe 15307 24.22% 
Total 71785 63202 
Flow level 
Normal 23120 100% 16770 48.56% 
Probe 17762 51.44% 
Total 23120 34532 

Table 5.5: Distribution of normal and attack connection instances in KDDcup99 probe 
datasets 

Connectwn type 

Normal. 
Probe. 
Total. 

Dataset type 
Trammg dataset Testmg dataset 
(10% corrected) (Corrected) 
97278 100% 60593 87.98% 

8273 12.01% 
97278 68866 

5.6.2 Results and Discussion 

We use our feature datasets for experiments at both packet and flow levels. The 

datasets are generated in our network security laboratory as discussed earlier in 

chapter 4. At both packet and flow levels, we extract basic features, content based 

features, time based features and window based features discussed in Chapter 4. We 
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convert all categorical attributes into numeric form and then compute the logAo,t,J) 

of the largest values to normalize data objects, where z depends on the attribute 

values and at,] represents the largest attribute values. 

We have generated SIxteen types of attacks (see Table 5.1) for coordinated scans. 

However, in this experiment we consider only four types of scans (viz., TCP SYN, 

window, XMAS, and NULL) in coordinated mode during testing with both packet 

and flow level datasets. The PCAF module selects the relevance feature subsets for 

both packet and flow level datasets (see 10 Table 5.6). PCAF reduces the dataset in 

dimension based on feature relevance Hence, the feature IDs are seen in sequence 

in Table 5.6. This reduced dataset is used by the cluster formation and coordinated 

scan detection modules. AOCD IS evaluated 10 terms of accuracy and false positive 

rate (FPR). The evaluation metrics are described in Chapter 4. We report the 

detection accuracy and false positive rate as follows. 

A - TP+TN 
• ccuracy - TP+TN+FP+FN 

• False Pos2twe Rate (F P R) = F::rN 

Details of performance of AOCD for the real-life TUIDS packet and flow level 

coordinated scan datasets are given in Table 5.7 and shown in Figure 5.10. Our 

results are better than the results 10 Singh and Chun [317]. They had obtained 

greater than 90% accuracy using their method The performance of the AOCD 

algorithm is excellent in case of probe class for both packet and flow dataset We 

see in Table 5.7 that the average accuracy for SYN, window, XMAS and NULL 

classes in packet levcl is 99.02% and in flow level it is 98.50%. In addition, we 

tested AOCD on four eoordinated scan datasets, but the Singh and Chun [317] 

method was tested only on TCP SYN scan. 

Table 5.6: TUIDS packet and flow level intrusion datasets - selected feature set 

Method # Features Selected features 
Packet level 
PCAF 19 1. 2. 3. 4. 5. 6. 7, 8, 9, 10, 11, 12, 13, 14. 15, 16. 17, 18. '19 
Flow level 
PCAF 24 1. 2. 3.4. 5. 6. 7,8, 9, 10, 11, 12, 13, 14, 15, 16. 17. 18. 19. 20. 21. 

22. 23, 24 
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Table 5.7: The performance of AOeD on the packet and flow level TUIDS intrusion 
datasets 

Type of traffic Correctly detected M~ss detected Accuracy (%) 
Packet level 
Normal. 47257 638 98.61 
Probe. 15158 149 99.02 
Overall. 62415 787 98.75 
Flow level 
Normal. 16358 412 98.16 
Probe. 14496 266 98.50 
Overall. 30854 678 97.85 

99.2 '::-. -====_=_.= .. =._.=_=_=.=. = .. =_.=.=. =. = .. =.= .. =_.= .. :::.=_ . 
- - ----------- -- --- -- - - - ---- --- --

99 - -- ---------------- ------- --
-------- ------------

98.8 - - --~ - -

98.6 

~ 98.4 
E 
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I Normal Probe OveraliliNonnal Probe Overall l 
Packet level Flow love I 

Types of Traffic 

Figure 5.10: The performance of AOeD on the packet and flow level TUIDS intrusion 
datasets. The performance of flow level dataset is a bit lower than packet level dataset 
due to non-availability of packet specific information. But it is faster. 

In another set of experiments, we use the KDDcup99 probe [52] dataset. Like 

the TUIDS datasets, we convert all categorical attributes to numeric and normalize 

them. We use KDDcup99 10% corrected normal dataset for training and KDDcup99 

corrected and 10% corrected probe datasets for testing during performance analysis. 

The testing dataset contains six attacks, i.e., portsweep, ipsweep, satan, nmap, 

mscan and saint. The feature set selected by the PCAF module for normal and 

probe classes is given in Table 5.8. Here, we see a continuous sequence of feature 

IDs in Table 5.8 because of PCAF reduces the feature dimension. Performance 

details of these datasets are given in Table 5.9. Figure 5.ll shows the comparison 

of AOCD using the intrusion dataset with other similar algorithms, where the false 

positive rate is multiplied by 100 to highlight the efficiency of our approach in the 

graph. In our experiment, better results are obtained in KDDcup99 probe dataset 

with 8 values in the range of (0.8 - 1.35) for normal records and (0.4 - 1.15) for 
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attack records. 
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Figure 5.ll: Comparison of the AOCD with other techniques using the KDDcup99 
probe dataset. AOCD performs better than other two recent competing algorithms, 
HCSVM [4] and NADO [5] in terms of accuracy and false positive rates. 

Table 5.8: KDDcup99 dataset - selected features set 

Method # Features Selected features 
Normal class 
PCAF 18 1,2,3,4,5,6,7,8,9.10,11,12,13,14,15.16,17,18 
FFSA [81] 6 5, 3, 1, 4, 34, 6 
MMIFS [81J 6 5, 23, 3, 6, 35, 1 
LCFS [81J 15 12, 34, 33, 3, 23, 27. 29, 40, 39, 28, 2, 41, 26, 35, 10 
Probe class 
PCAF 25 1,2, 3, 4, 5, 6, 7,8,9, 10, 11. 12, 13, 14, 15. 16, 17, 18, 

19. 20, 21, 22, 23, 24, 25 
FFSA [81] 24 40,5,41, 11,2,22,9,27,37.28,14,19,31,18, 1, 17, 16. 

13, 25, 39, 26, 6, 30. 32 

Table 5.9: The performance of AOCD using the KDDcup99 probe dataset 

Type of traffic Correctly detected Miss detected Accuracy (%) 
Normal. 60189 404 99.38 
Probe. 8114 159 98.08 
Overall. 68303 563 99.18 

5.7 Summary 

This chapter has examined the state-of-the-art of modern port scan techniques 

and approaches to detect them. The discussion follows well-known issues in scan 
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detectlOn: detection strategies, data sources and data visualization. Experiments 

demonstrate that for dIfferent types of port scan attacks, different anomaly detec­

tion schemes may be successful Research prototypes combining data mining and 

threshold based analysis for scan detection have shown great promise. Such detec­

tion approaches tend to have lower false posItive rates, scalability, and robustness. 

In this chapter, we introduce an adaptive outlier based approach for coordi­

nated port scan detectlOn [5] is mtroduced. Unlike previous approaches which have 

been based on clustering and manual analysis, AOCD uses random sample selection 

using a linear congruential generator for distinct profile generation. In addition to 

thIS, we introduce an outlier score function to test each candidate object to identify 

coordmated port scan using score values This method classifies each candidate 

object as normal or coordinated port scan w.r t. a threshold. AOCD is capable of 

detecting coordinated scans that have a stealthy and horizontal or strobe footprint 

across a contiguous network address space 'Ne have tested this algorithm using 

several real-life datasets, viz., TUIDS datasets and KDDcup99 probe datasets. Co­

ordinated scans are performed in an Isolated environment, combining the network 

traffic traces with those collected from live networks. We extract various features 

from network packet as well as flow traffic data by developing our own modules for 

feature extraction. This approach achieves hIgh detection accuracy and low false 

positive rates on various real-life datasets compared to existing coordinated scan 

detection approaches. 
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Chapter 6 

Clustering and Outlier-based 

Approach for Network Anomaly 

Detection 

This chapter starts by motivating the development of an clustering and outlier­

based network anomaly detection method to detect anomalies with a high detection 

and few false alarm rate. To support outlier identification process, we mtroduce a 

tree-based clustering algorithm to generate a set of reference points. We use our 

outlier score function to rank each candidate object with respect to the reference 

points. Our technique selects relevant features from high dimensional datasets 

for use during cluster formation as well as during calculation of outlier scores for 

network anomaly Identification. It reports the results as normal or anomalous 

with respect to an user defined threshold. We evaluate our approach III terms of 

detection rate, false positive rate, precision, recall, and F-measure using several 

high dimensional synthetic and real world datasets and find the performance to be 
) 

effective in comparIson to competing algorithms. 

6 .1 Introduction 

There is growing need for efficient algorithms to detect exceptional patterns or 

trends and anomalies in network traffic data. The task of outlier discovery has five 

subtasks: (i) dependency detection, (ii) class identification, (iii) class validation, 

(iv) frequency detection, and (v) outlier or exception detection [329]. The first four 
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subtasks consIst of findmg patterns m large datasets and valrdatmg the patterns 

Techmques for assocIatIOn rules classIficatIOn, and data clustenng arc used m the 

first four subtasks The fifth subtask of outlrer detectIOn focuses on a very small 

percentage of data objects, whIch are often Ignored or dIscarded as nOIse Outlrer 

detectIon techmques focus on dI::,covermg mfrequent pattern(s) m the data. as op­

posed to many tradItIonal data mmmg teehmques such as assocIatIOn analYSIS or 

frequent Itemset mmmg that attempt to find patterns that occur frequently 

Outhers may represent aberrant data that may affect systems adversely such as 

by producmg meorrect results, mcorreet models, and bIased' estrmatIOn of parame­

ters Outlrer detectIon enables one to IdentIfy them pnor to modelrng and analysIs 

[330] There are many sIgmficant apphcatlOns of outlrel detectIOn For example, 

m the case of credIt card usage momtormg or mobIle phone momtonng a sudden 

change m usage pattern may mdicate fraudulent usage such as stolen cards or stolen 

phone aIrtIme Outher detectIon can also help to dIscover cntlcal entltres For ex­

ample, mlhtary surveIllance, the presence of an unusual regIon m a satclhte Image 

m an enemy area could mdlcate enemy troop movement Most outher detectIon 

algonthms make the assumptIOn that normal mstances are far more frequent than 

outhers or anomalIes Generally network mtruslon detectIon techmques are of two 

types stgnature based and anomaly based Szgnature based detectIOn alms to detect 

mtrusIOns or attacks from known mtruslve patterns On the other hand, anomaly 

based detectIon looks for attacks based on devIatIons from estabhshed profiles or 

sIgnatures of normal actrvltles Events or records that exceed eertam threshold 

scores arc reported as anomahes or attacks SIgnature based mtruSIOn detectIOn 

cannot detect new or unknown attacks On the other hand, anomaly based detec­

tIOn techmques detect unknown attacks ba::,ed on the assumptIOn that the attack 

data devIate from normal data behavIOr However a drawback of anomaly based 

systems IS hIgh false alarm ratcs MmlmlzatIOn of the percentage of false alarms 

IS the mam challenge m anomaly based network mtrusIOn detectIOn. An outlIer 

detectIOn techmque IS effectIve m reducmg the false posltrve rate wIth a deSIrable 

and correct detectIOn rate 
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6.1.1 Motivation and Contributions 

There are many outlier detectIOn techniques [1,105, lll, 329, 331,332] in the lit­

erature, developed based on distance, densIty or combination of both, as well as 

soft computing and statistical measures Only some techniques have been applied 

to network anomaly detection and theIr detection rate is poor. In addition, even 

if a general outlier detectIOn techmque is tuned for network intrusion detection, 

it cannot perform well in high dimensional large datasets, because the classes are 

embedded inside subspaces. In case of score based outlier detection techniques, the 

score values do not vary w r.t. changes in the candidate objects during testing. So, 

It becomes very difficult to assign a label as normal or outliers. To address all these 

issues, we develop an efficient outlier based technique to analyze high dimensional ' 

and large amount of network traffic data for anomaly detection. Our technique 

has several features such as following (i) It is flexible enough to use any proximity 

measure during clustering and outlicr score computation. (ii) It uses a subset of 

features to reduce the computatIOn overhead (iii) our outlier score function can 

Identify the network anomalies or outliers with low false alarm rate in addition to 

excellent identification of general outliers. (iv) The proposed technique can dis­

tinguish closely spaced objects durmg testing in terms of their score values. (v) 

It performs well for all types attacks when applied to network intrusion datasets. 

Specifically, the technical contnbutions of this chapter include the following . 

• Challenges m clustenng high dImenSIOnal large network traffic data mclude 

handling of mixed type data and arranging the data in computationally ef­

ficient structures for analysis. For example, protocol is categorial and byte 

count is numeric. Another key issue is how to represent a distance function 

that incorporates subspaces to find meaningful clusters. 

We propose TreeCLUS, an effectIve tree-based clustering algorithm based on 

relevant subspaces computation, to form compact and overlapped clusters. It 

uses an information gain based technique [42] for finding a relevant subset of 

features in order to Identify the respective classes accurately. 

• We usc our outlier score function and use it extenSIvely to detect anomalies 

or outliers efficiently in real-life intrusion datasets. It exploits TreeCLUS 
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algorithm for generating reference pomts for each cluster. We apply this 

function in network traffic anomaly detection and find excellent results using 

several real-life network traffic datasets 

• We evaluate our technique using several high dimensional datasets. These 

include (a) synthetic dataset, (b) several UCI ML repository datasets, (c) 

real-life TUrDS mtrusion datasets at both packet and flow levels, (d) real-life 

TUrDS coord mated scan dataset at both pa_cket and flow levels, (e) KDD­

cup99 intrusion datasets, and (f) NSL-KDD intrusion datasets. The perfor­

mance of the proposed technique is excellent in comparison with the existing 

techniques. 

6.2 Prior Research 

Although many anomaly detection techniques have been developed and evaluated 

[333,334] during the last several years, reducing the false alarm rate is still a chal­

lenging task. Several supervised anomaly detection techniques are available. These 

include ADAM (Audit Data Analysis and Mining) [335]' neural networks [336], and 

SVMs[4] but their detectIOn rates do not meet requirements of real-time application. 

A triangle area nearest neighbors (TANN) based intrusion detection technique is 

proposed by [8]. They combine supervised and unsupervised learning techniques to 

detect attacks Another unsupervised technique known as CBUID is proposed by 

[7]. There are many outlier detection techniques and there is also substantial dis­

cussion of applications to network anomaly detection in the literature. We broadly 

classify outlier detection techniques into four types: (a) statistical, (b) distance 

based, (c) density-based and (d) soft computing based. 

6.2.1 Statistical Techniques 

There are a large number of techniques in the literature [105,111] for statistics based 

outlier detection. In statistical techniques, data instances are modeled based on an 

assumption of the stochastic distribution and instances are determined as outliers 

depending on how well they fit the model. However, most researchers pomt out that 
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a key drawback of these types of algorithms is the use of univariate distributions 

for many real applications without knowing the underlying dIstnbution at all 

Wang et al. [337] propose an outlier detection technique for probabilistic data 

streams. They present a dynamic programming algorithm based pruning technique 

to detect outliers efficiently The authors experimentally establish that the tech­

nique is efficient and scalable ,to detect outliers on large probabIlistic data streams. 

Barbara et al. [338] used a pseudo-Bayes estimator to enhance detection of novel 

attacks. The mam advantage of the pseudo-Bayes estimator IS that no knowledge 

about new attacks is needed since the estimated prior and posterior probabilities 

of new attacks are denved from normal and known attack instances. A statistical 

sIgnal processmg technique based on abrupt change detectIon IS proposed in [18] to 

detect anomalies m network traffic. It provides an outlier detection algorithm for 

detecting anomalous patterns. 

The advantages of statistical techniques include the following. (i) If the models 

are appropriately defined, high precision can be attained for outlier detection, (ii) 

They are scalable in terms of both dimensionality and the number of instances. iii) 

Statistical techniques can operate in an unsupervised setting without any need for 

labeled' training datasets. 

The disadvantages of statistical techniques are the following (i) Appropriate 

thresholding for devi:ation detection irrespective of the application domain is a diffi­

cult task. (ii) They may not work efficiently in case of skewed distributions of high 

dimensional data due to lack of sensitivity. 

6.2.2 Distance-based Techniques 

A distance-based outlier detection technique is presented by Knorr et al. [339J. They 

define a point to be a distance outlier if at least a user-defined fractIOn of the points 

in the dataset are farther away than some user-defined minimum distance from 

that point. In their experiments, they primarily focus on datasets containing only 

continuous attributes. Distance-based methods also apply clustering techniques to 

the whole dataset to obtam a specified number of clusters. Points that do not 

cluster well are labeled as outliers. 
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AnglUlh et al [340] report a techmque for detectmg the top outhers m an 

unlabeled dataset and produce a subset of It known as the outlIer detectIOn solvmg 

set ThIs solvmg set IS used to predIct the outherness of new unseen objects The 

solvmg set mcludes a suffiCIent number of pomts that permIt the detectIOn of the 

top outlIers by con~ldenng only a ~ub~et of all paIrWI~e dIstances m the data~et 

Ertoz et al [53] develop another mtruslOn detectIOn system known as MINDS 

usmg unsupervIsed anomaly detectIOn techmques and supervIsed pattern analysIs 

techmques to detect attacks from real network traffic ADAM [335] IS a well known 

on-lIne network based IDS It can detect known ~ well as unknown attacks It 

bUIlds the profile of normal behaVIOr from attack-free trammg data and represents 

the profile as a set of asSOCIatIOn rules It detects SUSpICIOUS connectIOns accordmg 

to the profile 

Szeto and Hung [331] propose two algOrIthms (I) RandomIzatIOn WIth faster 

cutoff update and (II) RandomIzatIOn WIth space utIlIzatIOn after prunmg to re­

duce the runnmg tIme of ORCA The techmques arc tested WIth large and hIgh 

dImenSIOnal real datasets They claIm that thCIr techmques arc as fast as 1 4-2 3 

tImes ORCA and also claIm that the techmques are parameter msensItIve JIang et 

al [341] propose a hybrId techmque that combmes boundary-b~ed and dlstance­

based methods They define outlIers m terms of rough set theory and develop an 

outlIer detectIOn algOrIthm The authors obtam satIsfactory result WIth two real 

lIfe datasets 

The advantages of dIstance based techmques are (I) They are easy for practIcal 

ImplementatIOn, (II) They obtam better results m case of umformly dense datasets, 

and (Ill) They are scalable to larger datasets 

The dIsadvantages of dIstance based techmques are (1) ObtaInmg mdependent 

dIstance thresholds for speCIfic applIcatIOns IS dIfficult, and (II) The selectIOn of an 

approprIate prmomIty measure IS a problem m outlIer detectIOn techmques 

6.2.3 Density-based Techniques 

DenSIty-based techmques are capable of handlIng outlIer detectIOn m large volume 

data [1] In one such techmque a local outher factor (LOF) IS computed for each 
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point The LO F of a point is based on the ratio of the local density of the area 

around the point and the local densities of its neighbors. The size of the neigh­

borhood of a point is determined by the area containing a user-supplied parameter 

called minimum number of points (MmPt'3). 

Koufakou and Georgiopoulos [342] describe a fast, distributed outlier detection 

strategy intended for datasets containing mixed attributes. The method takes into 

account the sparseness of the dataset. It is highly scalable with the number of 

points and the number of attnbutes in the dataset. A density-based technique 

takes mto account the distribution of the input space. Outliers can be identified by 

considering the lower density regions in the neighborhood of each data instance. An 

mstance that lies in a neighborhood with low density is declared an outher while 

an instance that lies in a dense neighborhood is declared to be normal. 

Density-based outlier detection techniques have also been used to detect anomaly 

behavior One ~uch technique presented m [54] uses decision trees to develop a 

prediction model over normal data to detect anomaly. It exploits data mining tech­

niques to discover consistent and useful patterns of system features that describe 

program and user behavior. It can recogmze anomalies and known intrusions satis­

factorily. A novel local distribution based outlier detection technique is proposed by 

Zhang et al. [343]. They report two algorithms LDBOD and LDBOD+ with three 

measures, VIZ., local-average-distance, local-density, and local-asymmfttry-degree. 

Their algorithms seem to be better than LOF when used with intrusion datasets. 

The advantages of denSity based techmques are: (i) They can be used to model 

the real world situation more reahstically, and (ii) They are scalable in terms of 

dimensionality and number of instances. 

The disadvantages of density based techniques are: (i) Outlier detection is 

highly sensitive to input parameters and it is difficult to estimate these parameters 

properly for all application domains, and (ii) Most techniques are insensitive to a 

dataset with variable density, i.e .. non-uniform density dataset. 
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6.2.4 Soft Computing Techniques 

Soft computing techniques are bemg widely used by the IDS community due to 

their generalization capabilities that help in detecting known and unknown intru­

SIons or attacks that have no previously descnbed patterns. Researchers have used 

rule-based techniques for intrusion detection earlier, but had difficulty in detecting 

new attacks or attacks that had no previously described patterns [336] Therefore, 

the idea of using rough sets may be promising. The basic idea behmd rough sets 

is the following: For a subset z of the universe and any eqUlvalenee relationship 

on the Ulllverse, the difference between the upper and lower approximations of z 

constitutes the boundary region of the rough set, whose elements cannot be char­

acterized with certainty as belonging to z or not, using the avaIlable mformation. 

The information about objects from the boundary region is, therefore, inconsistent 

or ambiguous Based on available information, if an objeet in z always lIes in the 

boundary region with respect to every equivalence relation, we may consider this 

object as not behaving normally according to the given knowledge at hand. Such 

objects are called outl~ers [115]. An outlier in z is an element that cannot be char­

acterIzed with certamty as always belonging to z or not, using the given knowledge. 

Rough uncertainty is formulated in terms of rough sets [344]. 

Fuzzy and rough sets represent dIfferent facets of uncertainty Fuzzmess deals 

WIth vagueness among overlappmg sets. Rough sets deal With non-overlapping 

concepts; they assert that each element may have different membership values for 

the same class [344]. Thus, roughness appears due to indiscernibility in the input 

pattern set, and fuzziness is generated due to the vagueness present in the output 

class and the clusters. To model thIS type of situation fuzzy-rough sets are used. Xue 

et al. [332] introduce a semi-supervised outlier deteetion method using fuzzy-rough 

C-means clustering. The authors present an objective function, whIch minimizes 

the sum of squared errors in clustering, the deviation from known labeled examples 

as well as the number of outliers. 

The advantages of soft computing based techniques are: (i) Such techniques are 

very effectIve and practical for classification, and (ii) They allow one to ineorporate 

domain information effectively. 
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The disadvantages of soft computing based techniques are: (i) Non-parametric 

techniques are difficult to apply in outher detection and (ii) The computational 

complexity IS very high as the number of instances rises. 

6.2.5 Discussion 

Outlier detection has largely focused on univarIate data, and data with a known 

distribution. These two main limitations have restricted the ability to apply outlier 

detection methods to large real world databases which typically have many different 

fields. We make the following observations. 

• Most outlier deteetion techniques are statistical and their detection rates are 

very low. 

• Most existing algorithms perform poorly III high dimensional spaces because 

classes of objects often eXlst III specific subspaces of the original feature space. 

In such ~ituations, subspace clustering is expected to perform better. 

• As the dataset size increases, the performance of existing techniques often 

degrades. 

• Most existing techmques are for numerIC datasets only and only a few algo­

rithms are capable of detecting anomalies from mixed type data. 

• The existlllg outlier detection techniques are often unsuitable for real time 

use. 

A comparison of several existing outlier detection techniques is given in Table 6.1. 

Note that in comparing these works, we consider seven different classes of outliers 

the methods can detect as shown in Figure 6.1. These seven classes were introduced 

In [345] by us and they are defined formally In SubsectIOn 6.5.4. 

6.3 Problem Formulation 

The problem is to analyze any application domain over an optimal and relevant 

feature space in order to identify all possible nonconforming patterns (if exist) 
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Figure 6.1: Illustration of seven different cases: N1 and N2 are two normal clusters. 0 1 ' 

is the dIstinct outlier, 02, the distmct mlIer, 03, the equidistance outlier, 0 4 . the border 
inlier, Os, a cham of outhers, 0 6 IS another set of outlier objects with higher compactness 
among the objects and 0 7 is an outlIer case of <'stay together". 

Table 6.1: A generic comparison of existing outlier detection techniques 

Method Year U/M Data Type Outlter Case(s) Techmque 
handled 

DB Outhers [329) 2000 U numellC Cl C2,C4 CS dIstance based 
LOF [1) 2000 U numeriC C1 C2 C4 denSIty based 
ODP & OPP [340) 2006 M numeriC Cl C2 C4 CS dIstance based 
Rough Set [344) 2009 U - Cl C2 C4 soft computmg 
LDBOD [343) 2008 M numenc Cl C2 CS denSIty based 
LSOF [346) 2009 M numenc Cl C2 C4 densIty based 
ODMAD [342) 2010 M mIxed C1 C2 C3,C4 denSIty based 
FRSSOD [332) 2010 U numenc Cl C2 C4 C5 soft computmg 
DIODE [347) 2010 1'1'1 numenc Cl C2 C3 C4 dIstance based 
RC & RS [331J 2010 1VI numeriC Cl C2 C4 dIstance based 
DPA & PBA [337) 2010 U numenc Cl C2 C4 statIstIcs based 
NADO [34SJ 2011 M numeriC C6 dIstance based 
BD Outhers [341) 2011 M numerIC C1 C2 C3 C5 dIstance based 
U/M UnIvarIate (U)/Mu1tlvarIate (M) 
OutlIer case(s) C1 - dlstmct outher, C2 - equldlstance outlIer, C3 - cham outhers C4 - group outhers, 
C5 - stay together C6 - all outlIer cases are dIScussed m SectIon 6 2 

among the real-lIfe mstances wIth reference to a given normal behavIOr It assumes 

an instance x, to be an outlier or nonconforming iff (a) x, E e, and le,1 « le,Nl, 
where e, represents the zth group or set of outlier instances and e,N represents the 

zth group or set of normal mstances, le,1 represents the cardinalIty of the group e, 
and similarly, le,N I represents the cardmalIty of the group e,N, and (b) the outlier 

score of x, > T, where T IS a user-defined threshold 
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6.4 Theoretical Foundations 

An outlier or anomaly is an abnormal or infrequent event or point that varies from 

the normal event or point. These patterns are often known as anomalies, outliers, 

exceptions, surpnses, or peculiarities in different application domains Anomalies 

and out hers are two terms used most commonly in the context of anomaly detection, 

sometimes interchangeably. The importance of anomaly detection is due to the 

fact that anomalies in data translate to significant, and often critical, actionable 

information in a wide variety of application domains. For example, an anomalous 

traffic pattern in a computer network could mean that a hacked computer is sending 

out sensitive data to an unauthorized destination. A network administrator needs 

to define an abnormal event based on normal network statistics when he/she wants 

to detect network anomalies. 

Outliers may occur due to several reasons including malicious activity. Unlike 

noise in data, outliers are interesting to the analyst due to their domain specific 

Importance. In outlier based network anomaly detection, outliers are assumed to 

be anomalous instances. Outlier detection is an important technique in detecting 

exceptional events from small or large datasets In many data analysis tasks, outlier 

detection is one of the techniques used for initial analysis of the data. Even though 

outliers may be errors or nOIses, they may still carry important mformation in 

particular domains. For example, consider network traffic analysis. The importance 

of outlier detection is due to the following: (i) An outlier may indicate bad data 

but it may shll be Important to detect. (ii) An outlier may make data inconsistent, 

but again it is important to detect such cases. 

When usmg outlier detection methods, it IS necessary to compute an outlier 

score for each object to determine its degree of outlierness. An outlier score is 

a summarized value based on the distance, density or other statistical measures. 

There are different approaches for computing this outlier score. 

Given a dataset, it is possible to compute outliers directly by computing the 

outlierness score for each point in the dataset. We can then Identify pomts whose 

outlierness IS above a certain user-provided threshold as outliers. However, finding 

outliers directly on a dataset has drawbacks For example, if a dataset has a large 
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number of features, it IS not efficient to perform outlier score computation using all 

the features of the data items. Not only that, the outliers found may not be the best 

if all features arc used because of useless features or mtcractions among features. 

Thus, the usual approach IS to obtain a subset of features that are relevant to the 

problem at hand. When one computes out her scores directly, the entire dataset 

is considered one class or group. Outlicr finding becomes more efficient and also 

produces better results, if instead of considering the entire dataset as one class, we 

cluster the dataset first. Some of the clusters are likely to be bigger than' others in 

terms of the number of items in them. For each cluster, big or small, we compute 

what is called its rcfercnce profile. We compute outliers WIth respect to these 

reference profiles Those data points whose outlier scores are above a certain user­

given threshold are identified as real outliers or anomalous data points. To keep 

our discussion rigorous, we introduce some definitions and lemmas to explain our 

approach Let us first start by characterizmg our dataset. 

Definition 6.4.1. Dataset: A dataset X zs a set ofn objects, z.e., {.TI, .1:2, .T·l··· .Tn }, 

where each object x, zs represented by a d- dzmenszonal vector, z. e., {X"l, X,,2, X,,3 ... 

X"d}, where x,) can be a numerzc or categorzcal attrzbute. 

Before any processing, we compute an optimal subset of features, as discussed 

later in the chapter. We denote the dataset described by the reduced set of features 

X as well. As indicated earlier, clustering is a step in our approach. To cluster the 

dataset X, we need to usc a distance measure, which is used to compute similarity 

between a pair of data objects. Our method works with any distance measure dzst. 

We use a threshold d for computation of similanty. 

Definition 6.4.2. Object Similarity: Two data objects Xl and X2 are defined as 

szmzlar zjj (a) dzst(XI, X2) « cr.' and (b) dzst(XI, X2) = 0, zJ Xl = X2. 

The notion of object similarity is necessary to cluster the dataset X. 

Definition 6.4.3. Cluster: A cluster C, zs a subset oj a dataset X, where for any 

pazr oJ X, 's, say (X"x)) E C, dist (1,,,1,))« d. 

Once the dataset has been clustered, we create a cluster profile for each of our 

clusters. These profiles are also called reference profiles. 
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Definition 6.4.4. Profile: The profile of a cluster Ct ZS a mean representatwn of 

,tth cluster, J1.;, J1.;, . " , J1.':' over an optzmal subset of features wzth cardmalzty m,. 

Before we proceed to discover outlIers in a dataset, it behooves us to characterize 

an outlier and the types of outlIers we are mterested in, so that our approach is as 

comprehensive as possible. We are focussed on seven different types of outliers [345] 

shown in Figure 6 1 for the evaluation of our method for outlier detectlOn, Outliers 

are computed by computing an outlier score for each of the objects under question. 

To overcome the drawbacks of existing outlier score function such as ROS [3], we 

use our enhanced outlier score function called ROS' presented later in Subsection 

6.5 4. 

6.5 The Proposed Technique 

The proposed technique aims to detect anomalous patterns from real life network 

traffic data with high detection rate It works by identifying reference points and 

by ranking based on outlier scores of candidate objects. The proposed technique 

has four parts including: feature selection, clustering, profile generation and outlier 

detectlOn. Figure 6.2 shows the framework for out outlier based technique to net­

work anomaly detection We describe each part of the algorithm in detail in the 

subsections that follow 

6.5.1 Feature Selection 

Feature selection is an essential component of classification based knowledge discov­

ery. Feature selection is a multi-step process that aims to identify an optimal subset 

of features say, F' ~ IF, i.e., the set of all features for a dataset X, which gives best 

possible accuracy on X. IdentIfication and use of relevant features for the input 

data leads to reduction in storage requirement, reduction of computational cost, 

simplification orthe problem, and increase in accuracy. There are two main models 
I 

for feature selection: filter methods and wrapper methods [42,76,81,348,349]. The 

filter methods are usually less expensive than wrapper methods and are also able 

to scale up to large datasets We use an mformation gam based method [42] for the 
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Figure 6.2: A framework for outlier-based network anomaly detection. The framework 
takes feature dataset X as input. It mitlally selects relevant and optimal feature subset 
by IGFS. TreeCLUS uses these feature subset durmg cluster formatIOn, G1, G2,'" , Gk . 

Once cluster formatIOn is over. it generates mean-based profiles, /-L1, /-L2:'" , /-Lk from each 
cluster. Fmally. ROS' computes the outher score for each test object. Xc and report as 
normal or anomalou5 based on a user defined threshold, T. 

identificatIOn of relevant features pnor to clustenng, profile generation and outlier 

detectIOn 

We have expenmented with several feature selection methods and give a perfor­

mance comparison of the methods available with Weka1 , viz., correlatIOn based fea­

ture selectIOn (CFS), principal components analysIs based feature selection (PCAFS) 

and mformatlOn gam based feature selectIOn (IGFS) usmg the KDDcup99 mtruslOn 

dataset in Figure 6.3 As seen from the figure, As seen from the figure, although 

a sharp variatIOn exist in terms of detectIOn rate for different classes of attacks 

as well as normal, the IGFS (shown with solid hne) is always performs better m­

cludmg normal class IdentIficatlOn m comparison to CFS and PCAFS. Also, IGFS 

Identifies minimum relevant feature subset for all classes, viz, normal (IO-features), 

DoS (12-features), probe (14-features), R2L (13-features), and U2R (IS-features) 

than CFS and PCAFS. Hence, we select the information gain based method [42] 

for relevant and optimal feature selection Suppose S is a set of trammg samples 

wIth corresponding class labels. Let there be m classes. The training set contains 

8. samples of class I and 8 IS the total number of samples in the trainmg set. The 

amount of mformatlOn contamed lll'the trammg set IS quantIfied using the followmg 

Ihttp / /www cs waikato.ac nz/ml/weka/ 
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formula [42] 
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Figure 6.3: A comparative performance analysIs of correlatIOn based peA based and 
IGFS based relevant feature selectIOn techmques usmg KDDcup99 mtruslOn dataset 

(6 1) 

Let IF = {Jl 12 fd} be the set of features m the samples m the trammg set 

Thus, the trammg set IS descnbed m terms of d features Not every feature appears 

m every sample m the trammg bet Let SJ be the bubset of trammg samples that 

contam feature fJ In addition, let SJ contam StJ samples of class t Then, the 

entropy of the feature IF IS defined [42] as 

(62) 

InformatIOn gam can be calculated as 

(63) 

The algonthm takes the labelled dataset X and threshold, ( as mput It re­

turns the selected features, F' The major steps of this technrque are given m 
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Algorithm 12. 

Algorithm 4 : IGFS (X,O 
Input: X is the labelled dataset and ~ IS the threshold 
Output: F' is the selected feature set 

l' initialization.,1F f- set of all features, C f- set of all classes 
2' for each feature it E IF do 
3. compute JUt. q [> it is the ith feature, and C is the class label 
4: compute entropy of feature it, E(IF), where IF = {il, i2,'" id} [> E(IF) IS 

the entropy of all features 
s· end for 
6. calculate information gain, G(IF) and the subset of features maximizes, G(IF) 

with respect to the threshold ~ 
7 selected feature set F' 

6.5.2 The Clustering Technique 

After we have expressed our input data m terms of the selected relevant feature 

subset using Algorithm 12, we apply TreeCLUS, a tree based clustering techmque 

to hierarchically arrange the dataset, X into k clusters, viz., Gl , G2 , G3 ,'" Gk . The 

clusters formed are used to generate profiles prior to outlier detection in high dimen­

sional network traffic datasets for anomaly detection. TreeCLUS mainly depends 

on two parameters c/ and f3', which are thresholds used for initial node formation 

It expands a node in depth-wIse by reducing the subset of features based on the 

decreasing order of information gam value at feature space to get a specific class. 

TreeCLUS generates a tree by creatmg nodes in a depth-first manner with all 

the objects as the root The root is at level 0 and is connected to all the nodes 

in level 1. Each node m level 1 is created based on a maximal relevant subspace 

with an arbitrary unclassified object, X t ) W.Lt a threshold cl for proximity measure 

and the neighborhood of X t W Lt. a threshold f3' to form a cluster. If no object is 

found to satisfy the neighborhood condItion f3' and proximity measure c/ with :v, 

in reduced space, the process restarts with another unclassified object. The process 

continues till no more object can be found to assIgn in a node The major steps of 

the subspace based TreeCLUS clustering technique are gIven in Algorithm 5, 6. 

For example, let X' be a sample dataset shown in Table 6.2. 0 1 , O2 ,' .. 0 16 are 
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Algorithm 5 Partl TreeCLUS (X, ai, 8) 

Input: X, dataset, QI threshold for node formatIOn, 0, height of the tree 
Output: generate clusters, C1 C2 , C3 Ck 

1 mltialIzatlOn nodeJd f- 0 I> nodeJd IS mcreased by 1 for new node 
2 function BUILDTREE(X, node_zd) [> functIOn to bUIld tree 
3 for t ~ 1 to :1 do 
4 if (-1.., cla~slfied I = 1 and checkJndeat(IGFS(x.,)) == true and dtst S a l 

and nb S {J/} then [> checLmdeatO IS the functlOn to chcck features set, nb IS 
the neighborhood condrtlOn 

5 CreateNode( T, no, PJd, temp, nodecount nodeJd, 1) [> functlOn to 
create new node 

6 while (nF' - (1- 1)) ~ e do (> check relevant features subset 
7 1++ 
8 for 2 f- 1 to X do 
9 if T, classIfied I = 1 then [> If object IS clasSified then labelled 

asl 
10 

11 

12 

13 

14 

15 

16 

17 

18 

p_rd = check_parent(:1, no, 1) (> functlOn to check parent ld 
if (p_rd > -1 and checkJndcat(IGFS(x,)) == true) then 

CreateNode(x, no, p_Id, temp, nodecount, nodeJd, 1) 
end if 

end if 
end for 

end while 
1 = 1 [> InItially nodc lcvcl IS 1 

end if 
19 end for 
20 end function 
21 function CREATENoDE(no, PJd, temp, nodecount rd, 1) [> functlOn to create 

nodc 
22 nodC_ld = ncw nodcO 
23 nodeJd temp = temp 
24 node_rd nodel count = nodecol1nt [> number of nodes m a level 
25 node_ld PJIode = PJd 
26 nodc_ld Id = Id, 
27 nodc_ld level = 1 (> sct level l 
28 ExpandNode(no, Id nodeJd temp, node count , 1) [> expand node m 

depth-WIse for a partIcular node 
29 temp = NULL 
30 nodecount = 0 
31 node_ld++ 
32 end function 
33 function EXPANDNoDE(no, Id, temp, nodecount> 1) t> functIOn to expand node 
34 if T no classIfled == 1 then 
35 return 
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Algorithm 6 Part 2 TreeCLUS (X a',O) 

36 else 
37 xno classIfied = 1 
38 T no node-Id = Id 
39 for L f- 1 to T do 
40 if (.L. classIfied 1= 1) then 
41 mmRankF' = findJllmRank(IGFS(x.)) [> select next subset of 

relevant features 
42 if (n F' - mznRonkF') ~ 0 then [> check maximum heIght of the 

tree 
43 for] f- mmRankF' to nF' do (> contmue for gettmg specIfic 

class 
44 ExpandNode(x. no, Id, temp tempcount, 1) t> expand node 

m depth-WIse 
45 end for 
46 end if 
47 end if 
48 end for 
49 end if 
50 end function 

flO are the features and C L IS the class label We find the 

relevant feature ::.et from X' by u::.mg Algonthm 12 ::.hown m Table 63 R IS the 

root contammg the total number of objects A tree (see FIgure 64) IS obtamed 

from the sample dataset X' by usmg the TreeCLUS algonthm From Table 63 and 

FIgure 6 4, we can see that m level lIt creates three nodes wIth classes C t C2 and 

C 3, and m level 2 It create::. eIght node::. wIth cl&se::. Cll , CI2 , C2l , C22 , C2J Cn , 

C32 and C33 W r t the selected relevant feature subset Due to the smaller dataset, 

the vanance m the rank values are low If the rank value IS the same, we choose 

the first set of features for obtammg finer clusters otherwIse, we choose hIgher rank 

values 

The proposed clustermg algonthm, TreeCLUS, dIffers from earlIer work [345J 

m clustenng and IS also more SUItable for our purpose 

• UnlIke some of the well-known partitIOnmg-based clustermg algOrIthms, lIke k­

means [350] and ItS varIants PAM, CLARA CLARANS, the proposed TreeCLUS 

doesn't reqUIre the number of clusters as mput a pnon However, lIke some 

effectIve hIerarchIcal clusterIng algonthms, It accepts the heIght of the tree as 

mput parameter for termmatlOn of cluster expanSIOn 
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Table 602: Sample dataset, X' 

Object ID /I 12 h 14 15 16 h Is 19 /10 CL 
01 923 071 243 060 104 280 306 028 229 564 1 
02 2253 651 664 496 7279 260 11 6l 080 gOO 3697 8 
0 3 16 37 576 1 16 11 88 95 550 110 049 687 2045 5 
0 4 10 37 195 950 080 110 185 249 064 1I1l <) 80 2 
05 1467 485 192 11 94 96 410 179 012 473 10 80 4 
0 6 920 078 214 020 lOJ 265 296 026 228 4 38 1 
07 1237 084 136 11 60 95 398 157 098 142 10 95 3 
Os 916 136 967 060 110 180 224 060 381 968 2 
09 1617 586 153 11 87 93 589 175 045 673 2095 5 
010 1881 631 440 4 70 215 809 057 783 2770 6 
Oll 1464 482 102 II 80 94 402 141 013 462 1075 4 
012 2051 624 525 450 7023 2 958 060 825 3245 7 
OIJ 1233 071 128 II 89 96 305 109 093 141 1027 3 
014 2060 646 520 450 71 242 966 063 894 3210 7 
0 15 1870 655 536 450 7324 270 820 057 784 2710 6 
0 16 2225 672 654 489 6938 247 1053 080 985 3689 8 

Table 603: Relevant feature set and attnbute rank values 

Class Object ID Relevant leature set Feature rank value 
C I 0 1,o406,oS 15,16,12 hI9,JIO,h Is 1,1,1,1,1,1,1,1 
Cll 0 1,06 15,16,12 hI9,JIO,h 1,1,1,1,1,1,1 
C I 2 04,oS 15,16,12 h19,J1O 1,1,1,1,1,1 
C2 03,05 0 7,09,011,013 /1,12 16,19, Is, /10 1585,1585,1 585,1 585 1 585,0918 
C21 OJ, 09 /1,12 16,19, Is 1585,1585,1585,15851585 
C22 0<;,01l /1,12 16,fg 1585,1585,1 585,1 585 
C2J 07, Oil !J, 12 16, Is 1 585,1 585,1 585,1 585 
Cl 02,010,012 ,014 ,01<; 016 h./I /10, Is, fg, 14, h 1 584,1 584,1 584,1 584 1 584,0917,0917 
C ll 02,016 h,/I /10, Is, fg, 14 1 584,1 584,1 584,1 584 1 584,0917 
Cll 0 10 ,015 h,/I /10, is, 19 1 584,1 584,1 584,1 584 1 584 
CII 0 12 ,014 h./I /10,18,14 1 584,1 584,1 584,1 584 0917 

Figure 6.4: Tree generated from X' C represents class and a node contams the object 
IDs w rot a class 

• Unlike most denSIty-based clustermg algonthms [351]' TreeCLUS is scalable 

both III terms of number of mstances as well as dlmensIOns 

• LIke those few subspace clustenng algonthms [31], the proposed TreeCLUS 
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also works on subspaces to handle high dlmen&lonal numenc data 

• It can also Identlf}T overlapped clusters m addltlOn to dlsJomt clusters lIke 

[352] which 1& helpful m the IdentdlcatlOn of network traffic anomalIes 

• For empmcal evaluatlOn of our TreeCLUS with the other tradltlOnal cluster­

mg algonthm&, all the algonthm& are executed over full feature space The 

agglomerative hlCrarchlCal clustermg algonthm [353] IS Implemented usmg av­

erage lmkage distance measure whIle fuzzy c-means [354] IS Implemented usmg 

common parameter settmg, Ie, m = 2 as fuzzmess coefficient 1 = 69 as num­

ber of IteratIOns and c = 001 as stoppmg cntena However, m ca&e of [345] 

we Implemented thiS algonthm usmg maximum correlatIOn-based InItial cen­

trOId selectIOn technIque [345], where we set k = 25 as the number of clusters, 

1 = 44 as the number of IteratIOns A companson of these algonthms with 

TreeCL US IS shown m Figure 6 5 It can be obsel\Ted from the figure that 

TreeCLUS works better than ItS other competmg algonthms 
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Figure 6.5: A performance companson of TreeCLUS wIth SImIlar clustcrmg tcchmqucs 
usmg KDDcup99 mtruslOn dataset 
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6.5.3 Profile Generation 

Once cluster formatIOn IS over, we calculate the reference pomts, RI.. for each clus-

Ck ) We computc the mean of each feature value over the 

reduced feature space that corresponds to a cluster C1 (where z = 1,2 3,··· , k) 

to compose the profile for C, If ILl IS the 7th mean of the profile corresponds to 

the cluster CI then for an optimal feature ~pace of cardmahty m for cluster C I , 

the profile representatIOn will be {J.L~, J.Li J.Lt, .. , J.Ll} The major steps m profile 

generatIOn are given m Algonthm 7 

Algorithm 7 ProfileGEN (Cd 

Input: C k IS the clusters generated by TreeCLUS from dataset X 
Output: generate profiles fl'l, 112, 1),1, P'k 

1 select relevant feature set, F' flom the dataset x by usmg IGFSO 
2 call TreeCLUSO, k +-ICI, where C IS the set of clusters I> k IS the total 

number of clusters 
3 for z +- 1 to k do I> for each k number of clusters 
4 for ] +- 1 to C1 do I> for each cluster C1 

5 compute J.Lt](F') = L~\ (k:'), where F' = it 12,' . fd' I> J IS the 

6 

attnbutes of each object wlthm a class Ct 

end for 
7 bUIld mean based profiles J.Ll 
8 end for 

6.5.4 Outlier Detection 

I> for each cluster Ct, profiles, J.Lt 

The techmque assumes a normahty model [64] and considers larger clusters as nor­

mal and smaller clusters as outhers We assume that larger clusters C I , C2 , C l ,'" em, 
say, are normal and smaller clusters (may mclude smgleton clusters) are out hers or 

anomahes Let St be the number of classes to which each of k' nearest neighbor 

data objects belongs k' plays an Important role m score computatIOn Therefore, 

the selectIOn of k' values for different datasets IS discussed separately m SubsectIOn 

6 6 2 Let Xc be a data obJect m Xc and dzst(xc , R.) be the distance between the 

data object Xc and the reference pomts R., where c = 1 2,3,··· n, dzst IS a prox­

Imity measure used, and Xc represents the whole candidate dataset. The technique 

works well With any commonly used prmumlty measure The outher score for a 

data object Xc we define IS given m EquatlOn(6 4) 
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1 ~(:t" S, ( (1 - l,z:;k' d~st(xc R,») x (L~~l l,z:;k' d~st(xc, R,») ) 
ROS'(x ) = ,... x - - - -

c k' ,\,k' maT ( ) 
L...,=! 1 <::Y:ok' d~st Xc R, 

(64) 

max S 
Here 1<1~~' 1 IS the maximum probablhty that a data object belongs to a particular 

class, the remammg part IS the summanzed value of the distance measure with k' 

nearest neighbors over the relevant feature subset The candidate data objects are 

ranked based on outlier score values Objects With scores higher than a user defined 

threshold 7 are considered anomalous or outliers 

Definition 6.5.1. Outlier Score - An outlzer score ROS' wzth respect to a 1-ejerence 

pomt zs defined as a summanzed value that combmes dzstance and maxzmum class 

occurrence wzih respect to k' nearest nezghbors of each candzdate data object (See 

formula m Equatwn(6 4)) 

Havmg defined an acceptable outher score, we first define mliers or normal 

mstances, and then outliers of different kmds For a visual mterpretatlOn of these 

defimtlOns, the reader should refer to Figure 6 1 

Definition 6.5.2. Dlstmct Inherness - An object 0, zs defined as a dzstmct mlzer 

zf zt conforms to normal objects, z e , ROS'(O, C,) « 7 for all z 

Definition 6.5.3. Border Inherness - An object 0, zs defined as border object m a 

class C" zf ROS'(O" C,) < 7 

Definition 6.5.4. Outher - An object 0, zs defined as an outlzer w r t any nor­

mal class C, and the correspondmg profile R, zJf (z) ROS'(O" C,) ~ 7, and (zz) 

dzst( 0" R,) > c/, where cl zs a proxzmzty based threshold, and dzst zs proxzmzty 

measure 

Definition 6.5.5. Dlstmct Outherness - An object 0, zs defined as a dzstmct outlzer 

zJf zt devzates exceptwnally from the normal objects, z e , from the genenc class C, 

In other words, ROS'(O" C,) » 7 for all z 

Definition 6.5.6. EqUidlstance Outherness - An object 0, zs defined as equzdzstance 

outlzer from classes C, and CJ , zf d,st(O, C,) = dlst(O" CJ ) but ROS'(O" C,) > 7 

Definition 6.5.7. Cham Outherness - A set of objects, 0, 0,+1,0,+2· zs defined 

as a cham of 01dizers zf ROS' (0,+1, C,) ~ 7, where l = 0,1,2,· ., z 
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To ensure that our approach for finding outliers works correctly, we prove two 

lemmas below. 

Lemma 6.5.B. If 0, and OJ are two outlzer objects wzth dzstmct nezghborhoods, 

then wzth reference to a gwen class C" ROS'(O,) i- ROS'(OJ) 

Proof Assume that 0, and OJ are two outlier objects with reference to a gIven class 

C, and ROS'(O" C,) = ROS'(OJ' C,). As per Defmztwn 6 5 4,0, and OJ are out­

liers W.r.t class C,' Iff ROS'(O" C,) or ROS'(OJ' C,) 2': T As per Defmitwn 6.5.1, 
max s 

ROS' IS estImated based on the Equation(6.4), where l<'~~' , plays an important 

role. The value of l:;:~~k'S, for a candidate object wIll vary with different neighbor­

hoods. Hence, ROS'(O,) i- ROS'(O)) w.r.t. class C,. 0 

Lemma 6.5.9. A given outlier object 0, cannot belong to any of the normal clusters 

I.e., 0, ~ Ct> where 'l = 1,2, ... ,m" 

Proof. Assume that 0, is an outlier object and 0, E C, where C, is a normal cluster. 

As per Defzmtwn 6.5.2, if 0, E e" 0, must satisfy the inlier condition W.r.t. T for 

class C,. However, since 0, is an outlier, it contradicts and hence 0, ~ e" 0 

The first lemma says that two outlier objects III two distmct neighborhoods 

will have different ROS' scores with respect to a gIven cluster The second lemma 

ensures that our approach is able to unequivocally separate outliers from normal 

pomts. 

We estImate the outlier score for each candidate data points w r.t the user 

defined threshold T for detecting the anomalIes or outlIers for all cases discussed 

above. The ranking of the outliers is based on the score; the outlier with the highest 
, 

score gets the highest rank and vice versa. But in case of compact outlierness, we 

calculate the average dissimilarity within the cluster as well as compute the total 

number of pomts WIthin a cluster. However, the score is calculated by selecting the 

relevant feature set, i.e., {fI, 12,··· ,ft} to reduce the computational cost. Based 

on these values, we can detect anomalies or outliers. The proposed technique suc­

cessfully handles all the defined cases over several real and synthetic datasets. It 

detects attacks based on the outlier score ROS' from the candidate data objects. 

The major steps of attack or outlier detection are given in Algorithm 8. 
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Algorithm 8 : AttackDETECT (Xc, T) 

Input: Xc is the candidate objects and T is the score threshold 
Output: Ot as anomalies 

1. for ~ +- 1 to Xc do I> C = 1,2,3, ... n are the candidate objects 
2. compute Score[1] +- ROS'(Xc./I,,, F') I> score is a slllgie dlll1ensIOnai array 

to store each score values 
3 sort (Score[z]) I> sort the score values in ascending order 
4: end for 
5. Report the anomalies or outlIers, O/s w r.t. the threshold T 

6.5.5 Empirically Comparing ROS' and ROS 

Using the ROS' we can estimate the outher score for each candidate object w.r.t the 

reference points to identify the nonconformlllg patterns Reference points are com­

puted based the clusters, GI , G2 , G3 . '" ,Gk obtained from TreeCLUS. It generates 

clusters using subset of relevant features obtained from IGFS algorithm. During 

score computatIOn, the ROS' functIOn computes same class occurrences With respect 

to k' nearest neighbors. In addition, it estimates a summary of distance measures 

between candidate objects and reference points over a subset of relevant features. 
maT S 

A multiplier factor l<l~;' • is llltroduced to enhance possible sensitivity in score 

values of closely spaced objects The ROS and ROS' score values with spacing 

between them w.r.t. the sample dataset descnbed in Table 6.2 are illustrated in 

Table 6.4. As seen in the table, the score values of objects 0 3 and 0 9 do not 

vary W.r.t. the change of candidate object in case of ROS. Hence, we claim that 

our ROS' improves the sensitivity between any two candidate objects w.r.t. the 

reference points to Identify outliers or anomalies effectively ROS' has the following 

major advantages. 

• It is sensitive to closely spaced objects in terms of score values. 

• It works in subspace and high dimensional large datasets. 

• It significantly improves the detection rate especially for Probe, U2R and R2L 

attacks (see Table 6.18), which are similar to normal traffic. 

• Spacing between ROS and the ROS' score values is high enough to allow one 

to effectively identify anomalies from network traffic. 
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Table 6.4: ROS and ROS' score values with spacmg 

Object ID ROS ROS' Spacmg ROS ROS' Spacmg 
k' k' = 4 k' = 5 
0 1 016 71105 65005 06026 59056 5303 
O2 06674 08456 01782 07215 06822 00393 
0 3 02171 24231 2206 02312 22196 19884 
0 4 0621 33158 26948 06546 22234 15688 
Os 01154 28112 26958 01794 18838 1 7044 
0 6 061 64715 58615 06103 55317 49214 
0 7 02465 48093 45628 02601 31938 29337 
0 8 06084 34627 28543 0638 23394 1 7014 
Oq 02167 21123 18956 02309 20299 1 7990 
OlD 00201 18459 18258 00334 09801 09467 
011 01154 27054 259 0198 1 7574 15594 
0 12 02602 04042 0144 02618 03144 00526 
0 13 01603 51807 50204 01824 43574 4175 
0 14 02541 04551 0201 02533 03374 00841 

01~ 000588 23396 22808 00522 14851 14329 
0 16 06008 20588 1458 06611 17287 10676 

The proposed technIque can use other proxlmltv measures durmg cluster for­

mation and score computatIOn A general companson of Euchdean, Pearson Corre­

lation Coefficient (PCC), Manhattan and cosme distances with mbltranly selected 

five objects for score computatIOn with the synthetic zoo, TUIDS KDDcup99, and 

NSL-KDD datasets IS given m Table 65 As seen m the table, the score value IS 

not affected very much when the proXImity measure IS changed Hence, we say that 

the :::.core computatIOn functIOn IS fleXIble to use any proXImity mea:::.ure 

6.5.6 Complexity Analysis 

Fmdmg reference pomts and estlmatmg scores estimatIOn play Important roles m 

the effectiveness and efficlCncy of our technIque The cluster formatIOn algonthm, 

TreeCLUS generates near balanced tree and takes average O(nlogk) time, where 

each data object IS processed once Here, n IS the number of data objects and 

k IS the number of clu:::.ter:::. Calculatmg the reference pomt and outher :::.core for 

each candidate data object takes O(Nklogk) time, where N IS the number of can­

didate data objects, N > n, and k IS the number of reference pomts So, the total 

time complexity of the proposed technIque IS O(nlogq + O(NUogk) A general 

comparIson of the proposed technIque with the other similar algOrIthms IS given m 

Table 6 6 
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Table 6.5: Companson of different proximity measures fOl outlter score computatIOn It 
IS useful fOl IdentificatIOn of the appropnate proximity measllle 

Scores for five dlstlllCt objects 
Dataset Euclzdean PCC Manhattan Cosme 

02361 02302 02487 02210 
47192 47040 47654 46825 

Synthetic 03281 03250 03375 03163 
35676 35574 36086 30755 
49650 49615 49783 47501 
00186 00179 00178 00192 
21074 21069 21170 21082 

Zoo 02810 02906 02933 02817 
03206 03169 03209 03285 
11066 12048 13245 12850 
01134 01204 01312 01322 
02122 02251 02189 02137 

TUIDS 29231 29340 29201 29103 
21503 21712 21820 21289 
39120 38843 38450 38930 
04520 04534 04125 04510 
23511 23430 23411 23440 

KDDcup99 07719 07720 07617 07660 
09452 09341 09464 09518 
39005 49615 49783 47501 
01029 01234 01098 01067 
25172 25140 25540 24921 

NSL-KDD 06221 06289 06212 06194 
40026 40112 40141 40236 
03900 03890 03951 03922 

Table 6.6: Companson of the compleXity of proposed techlllque with competltors 

Algortthms Number of parameters Complexzt'lj (approxzmate) 

LOF [lJ (k MmPts M) o (nlogn) 
ORCA [2J (k 11" D) 0(11,2) 
ROS [3J (11" k, R) O(Rnlogn) 
Proposed Techl1lque (11, T) O(nlogk) + O(Nklogk) 

6.6 Performance Evaluation 

The proposed techlllque was Implemented and ItS performance evaluated USIng the 

folloWIng enVIronment It was first tested on ::.everal real world datasets from the 

UCI machIne learlllng repOSItory The techlllque was later tested with both packet 

and flow level network IntrusIOn datasets generated In our TUIDS testbed [355], 

dIscussed In chapter 4 of thIS thesIs FInally, we tested on benchmatk network 

Intrusion datasets The proposed techlllque was Implemented on an HP xw6600 

workstation with Intel Xeon Processor (300GhL:) and 4GB RAM laval 60 was 
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used for the ImplementatlOn m Ubuntu 10 10 (Lmux) platform Java was used to 

faclhtate the vlsuahzatlOn of detectlOn lesults ea~rly 

6.6.1 Datasets 

To evaluate the performance of the proposed teehmque, we use a synthetrc dataset 

and several real hfe datasets 

Synthetic and VCI ML Repository Datasets 

The first dataset we use IS a synthetIc 2-dlmenslonal dataset that we have generated 

ourselves It IS generated to reflect the several out her cases Illustrated earher m 

FIgure 6 1 The charactenstrcs of thIS dataset are gIven m row 1 of Table 67 

In thIS set of expenments we use twentv addItIonal datasets zoo, shuttle, breast 

cancer, pzma vehzcle, dzabetes, led'l, lymphography, glass, heart, hepatztzs horse, 

wnosphere, zrzs sonar, waveform wme lung cancer, poker hand and abalone [356] 

The eharaetenstres of these datasets are also gIven m Table 6 7 

Table 6.7: Charactenstics of synthetic and vanous real hfe datasets 

Senal Dataset D,menstOns No of Instances No of classes No of Out 
No hers 
1 Synthetic 2 1000 5 40 
2 Zoo 18 101 7 17 
l Shuttle 9 14500 l II 
4 Breast cancer 10 699 2 19 
5 Pima 8 768 2 15 
6 Vehicle 18 846 4 42 
7 Diabetes 8 768 2 43 
8 Led7 7 l200 9 248 
9 Lymphography 18 148 4 6 
10 Glass 10 214 6 9 
11 Heart 13 270 2 26 
12 HepatitIS 20 155 3 32 
13 Horse 28 368 2 23 
14 Ionosphere 34 351 3 59 
15 Ins 4 150 4 27 
16 Sonar 60 208 2 90 
17 Waveform 21 5000 3 87 
18 Wme 13 178 3 45 
19 Lung Cancer 57 32 3 9 
20 Poker Hand 10 25010 10 16 
21 Abalone 8 4177 29 24 

Real-life TVIDS Packet and Flow Level Intrusion Datasets 

We use real-hfe packet and flow level feature datasets generated by us usmg our 

TUIDS testbed for evaluatmg the performance of the proposed techmque m the 
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current network scenano. The TUIDS testbed layout, testbed architecture, feature 

extraction framework, list of extracted features in both packet and flow lcvel have 

been discussed III Chapter 4. The list of attacks and their characteristics are given 

in Table 6 8 The characteristics of both packet and flow levels datasets are gIven 

in Table 6.9. 

Table 6.8: Training and test data attack types with their tools 

Senal Attack name Attack generatwn tool Tram dataset Test dataset 
No 
1 Bonk targa2 c ./ ./ 
2 Jolt targa2 c ./ ./ 
1 Land targa2 c ./ ./ 
4 Salhyousen targa2 c ./ ,f 

5 TearDlOp truga2 c ./ ,f 

6 Newtear truga2 c ./ ,f 

7 1234 truga2 c ./ ,f 

8 Wmnuke truga2 c ./ ,f 

9 ash are targa2 c ./ ,f 

10 Nestea targa2 c - ,f 

11 SynDrop targa2 c ./ ,f 

12 Tcp W mdowScan Nmap ./ ,f 

13 SynScan Nmap ./ ,f 

14 XmassTree-Scan Nmap - ,f 

15 Smurf smurf4 c - ./ 
16 OpenTear opentear c - ./ 
17 LmuxICMP hnux-lcmp c - ./ 
18 Fraggle fraggle c - ,f 

Table 6.9: Distribution of normal and attack connection instances in real-life packet and 
flow level TUIDS intruSIOn datru;ets 

Dataset type 
Connectlon type Trammg dataset Testmg dataset 
Packet level 
Normal 71785 5887% 47895 5552% 
DoS 42592 1491% lObI I '1549% 
Probe 7550 b 19% 7757 899% 
Total 121927 - 86205 -
Flow level 
Nomlal 23120 4375% 16770 4117% 
DoS 21441 4057% 14475 3554% 
PlObe 8282 1567% 9480 2328% 
Total 52843 - 40725 -

Real-life TUIDS Coordinated Scan Datasets 

This dataset is built from several scans [5] launched in a coordinated way using 

the rnmap2 tool on the TUIDS testbed We use the same framework for extracting 

various features to prepare the coordinated scan datasets at both packet and flow 

levels. The lIst of scans and their charactenstics at both packet and flow levels are 

2http / /rnmap.50urceforge.net/ 
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given in Table 6.10. The distributlOn of normal and attack data for thIS dataset at 

both packet and flow levels is given in Table 6.11. 

Table 6.10: Port scan types and firewall level detection possibilities 
, 

Port scannmg tech- Protoco TCP flag Target reply Target reply Firewall level de-
mque (open port) (closed port) tectlon possibility 
TCP Connect() TCP SYN ACK RST Yes 
Reverse Ident TCP No No No No 
SYN Scan TCP SYN ACK RST Yes 
IP Header Dump Scan TCP No No No No 
SYNIACK Scan TCP SYNIACI< RST RST Yes 
FIN Scan TCP FIN No RST No 
ACK Scan TCP ACK No RST No 
NULL Scan TCP No No RST No 
XMAS Scan TCP All flags No RST No 
TCP Fragment TCP No No No No 
UDP Scan UDP No No Port Umeachable No 
FTP Bounce Scan FTP Arbitrary Flag No No No 

Set 
Pmg Scan ICMP No Echo Reply No Yes 
List Scan TCP No No No No 
Protocol Scan IP No - - No 
TCP wmdow scan TCP ACK RST RST No 

Table 6.11: Distribution of normal and attack connection instances at real-life packet 
and flow levels for TUIDS coordinated scan datasets 

Dataset type 
Connect,on type Trammg dataset Testmg dataset 
Packet level 
Normal 65285 9014% 41095 8495% 
Probe 7140 986% 7283 1505% 
Total 72425 - 48378 -
Flow level 
Normal 20180 7344% 15853 6552% 
Probe 7297 2656% 8.157 3452% 
Total 27477 - 24210 -

KDDcup99 and NSL-KDD Intrusion Datasets 

In another set of experiments, we use the well-known KDDcup99 [356] intrusion 

dataset and an enhanced version of the KDDcup99 dataset known as the NSL­

KDD3 intrusion dataset. The training data contains about five million network 

connection records. A connection record is a sequence of TCP packets with well 

defined starting and ending tImes. Each connection record is unique in the dataset 

with 41 continuous and nominal features plus one class label. In this work, nominal 

features such as protocol (e.g., tcp, udp, zcmp), service type (e.g., http, jtp, telnet) 

and TCP status flags (e.g., sf, reJ) are converted into numeric features. We convert 

3http.//www.iscx.ca/NSL-KDD/ 
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categorical attnbute values to numenc attribute values by replacing categorical 

values by numeric values. For example, m the protocol attribute, the value TCP is 

changed to 1, UDP is changed to 2 and ICMP is changed to 3 

Features can be categorIzed lIlto four types: bas~c featUles, content-based fea­

tures, t~me-based features and connectwn-based features The categories of the 

features, labels of the features and their corresponding description are explained in 

Chapter 4. 

The KDDcup99 10% corrected dataset contains 24 attack types categorized into 

four different groups: DoS (Demal of SerVice), Probe, R2L (Remote to Local), and 

U2R (user to Root) attacks The KDDcup99 corrected dataset contains 37 attack 

types DoS attacks consume computing or memory resources to prevent legitimate 

behavior of users. Probe is a type of attack where an attacker scans a network 

to gather information about the target host. In R2L type of attacks, the attacker 

docs not have an account on the victim machine, hence sends a packets to it over 

a network to illegally gam access as a local user. Finally, in case of U2R attacks, 

the attacker has local access to the system and is able to exploit vulnerabilities to 

gain root permissions. The characteristics of KDDcup99 and NSL-KDD intrusion 

datasets are given in Table 6.12 

Table 6.12: Distribution of normal and attack connection instances in both KDDcup99 
and NSL-KDD intruslOn datasets 

Dataset type 
Connechon type Tmmmg dataset Testmg dataset 
KDDcup99 dataset 

10% COllected Conected 
Normal 97278 1969% 60593 1948% 
DoS 391458 7924% 229853 7390% 
Probe 4107 083% 4166 134% 
R2L 1126 022% 16189 520% 
U2R 52 001% 228 007% 
Total 494021 - 311029 -
NSL-KDD dataset 
Normal 67343 5346% 9711 4307% 
DoS 45927 J646% 7460 3309% 
Probe 11656 925% 2421 1074% 
R2L 995 079% 275J 1221% 
U2R 52 004% 1'l'l 088% 
Total 125'l7l - 22544 -
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6.6.2 Experimental Results 

The objective of our approach is to accurately classify network traffic data as normal 

or attack. We measure the accuracy of our approach usmg precision, recall, F­

measure, detection rate and accuracy, described in Chapter 2. 

We compare our technique with LOF [1], ORCA [2], ROS [3] and OutRank(b) 

[357] using benchmark large high dimensional datasets. However, OutRank(b) is 

tested usmg synthetic and VCI ML reposItory datasets only. OutRank(b) is a 

stochastic graph based outlier detection technique. For OutRank(b), we set the 

value of the outherness threshold T to the range 0.68 to 089 for the UCI datasets 

to achieve better results. The rest of the techniques work as follows. LOF is 

a well known densIty based outliers detection technique We set Iv = 10 as the 

distance neighborhood We also set the minimum number of neighboring points 

MmPts = 30 for LOF as suggested in [1] to achieve maximum accuracy. ORCA 

[2] is a benchmark distance based outlier detection method, which claims to cut 

down the complexity from O(n2
) to near linear time. The parameters k and N are 

the number of k nearest neighbors and the number of anomalies needed to report, 

respectively. We use the reasonable values of k = 5 and N = ~, unless otherwise 

specIfied although default values are k = 5 and N = 30. ROS IS a reference based 

outlier detection technique [3] for large datasets. We set the reference based nearest 

neighbors using k = 4 and setting the number of reference points to 18, which is 

equal to the number of classes in the dataset as recommended in [3] to achieve high 

accuracy. 

Synthetic and UCI ML Repository Datasets 

To start, we evaluate the proposed technique using a two dimensional synthetzc 

dataset, comprising of 1000 data objects, out of which 4% are outliers. Results of 

the proposed technique both in terms of detection rate (DR) and false positive rate 

(FPR) for this dataset are given in the last column of the first row in Table 6.13. 

Following thIs, we downloaded executable versions of LOp4 and ORCA 5 [2]. Results 

of LOF and ORCA are also given for this dataset in columns 4 and 5, respectIvely. 

4http Ilsltes google com/site/rafalbal 
5http Ilwww.stephenbay.net/orca/ 
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The proposed techlllque was also evaluated on 5everal other real lIfe benchmark 

datasets In this wOlk we report our re::,ults for zoo, shuttle breast cancer, pzma, 

vehzcle, dwbetes, led7 lymphography, glass, heart, hepatztzs, horse zonosphere, zrzs, 

sonar, waveform, wme, lung cancer poker hand abalone datasets and compare them 

with the three other algorIthm::, The performance of OUI techlllque I::' con::'lstently 

better than that of the other three algorIthms 

Table 6.13: Expenmental results with Synthetic and UCI ML Repository datasets 

Datasets r EjJect.veness £OF [1) ORCA [2) OutRank(b) Proposed I [357) Techmque 

Synthetic 
039 DR 07500 08500 08850 10000 

FPR 00229 00166 00211 00000 

Zoo 
058 DR 08235 08823 10000 09411 

FPR 01904 01309 00000 00238 

Shuttle 
047 DR 08461 07692 08629 09230 

FPR 00310 00241 00208 00103 

Breast Cancer 
061 DR 08643 08109 09085 09321 

FPR 00367 00265 00183 00249 

Pima 
082 DR 09333 09041 10000 10000 

FPR 00020 00211 00000 00000 

Vehicle 
098 DR 03095 02919 06428 07768 

FPR 00685 00711 00354 00231 

Diabetes 
19 DR 05813 05925 08139 08691 

FPR 00385 o 0~58 00171 00198 

Led7 
053 DR 02217 07310 09799 09819 

FPR 01555 00299 00040 00038 

Lymphography 
044 DR 07500 07720 10000 10000 

FPR 00074 00062 00000 00000 

Glass 
077 DR 08811 08188 08956 09826 

FPR 00260 00127 00227 00049 

Heart 
1 I DR 0'H08 08%9 o 87b2 09928 

FPR o 00~5 00107 00249 00011 

Hepatitis 
077 DR 08702 08621 o 918 ~ 09899 

FPR 00247 00299 00178 00010 

Horse 
059 DR 09112 08822 09326 09705 

FPR 00199 00205 00118 00019 

Ionosphere 
081 DR 08108 07988 08329 09523 

FPR 00277 00312 00265 00108 

IllS 
043 DR 08911 08633 09013 09900 

FPR 00211 00290 00203 00001 

Sonar 
066 DR 08800 08477 08551 09666 

FPR 00201 00390 00294 00110 

\Vaveform 
079 DR 08613 08387 09112 09209 

FPR 00260 00305 0184 00150 

\Vme 
089 DR 09233 09122 09416 1000 

FPR 00166 00179 00119 00000 

Lung Cancer 
038 DR 09310 08934 09717 1000 

FPR 00110 00211 00108 00000 

Poker Hand 
040 DR 09620 09278 09199 09911 

FPR 00111 00190 00196 00005 

Abalone 
057 DR 08902 08691 08751 09890 

FPR 00243 00380 00289 00050 

Real-life TUIDS Packet and Flow level Intrusion Datasets 

We abo pre::,ent results With real-lIfe packet and flow level netwOlk mtruslOn datasets 

for our techlllque We convert all categorIcal attrIbutes mto numerIC form and then 
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compute the loqz(a t ) of the larger values for normalization. The value of z depends 

on the attribute values and at,) lepresents the largest attribute values. We use 50% 

of the dataset for training purpose with normal and DoS attacks, and the remaining 

50% of the dataset for testing purpose dunng performance analysis, as given in Table 

6.9. We evaluate in terms of PrecIsion, Recall and F-measure. We provide confusion 

matrices for LOF [1], ORCA [2], ROS [3] and our technique using both packet and 

flow levels TUIDS intrusion datasets in Table 6.14. Currently, we analyze only 

two types of attacks, DoS and probe. The detection rate for both packet and flow 

level Intrusion datasets is better for DoS and probe attack Instances than normal 

instances due to the lack of pure normal instances collected from our testbed. It 

is still a challenge to obtain pure normal instances from an enterprise networks. 

It is important to note thIS because a collection of a large number of pure normal 

instances is vital in real-life network anomaly detection. 

Real-life TUIDS Packet and Flow level Coordinated Scan Datasets 

We have generated sixteen types of attacks (see Table 6.10) for coordinated scans. 

However, in this set of experiments, we consider only four types of scans (i.e., TCP 

SYN, window, XMAS, and NULL) in the coordinated mode during testing with 

both packet and flow level datasets. With these datasets, we convert all categorical 

attributes into numenc form and compute l09,(a,,)) to normalize the objects values 

like before We also use 50% of the dataset for training and rest for testing is 

this dataset. The confusion matrices of LOF [1]. ORCA [2] and ROS [3] with our 

technique using coordInated scan datasets at both packet and flow levels are given 

in Table 6.15. 

KDDcup99 and NSL-KDD Intrusion Datasets 

We dISCUSS experimental results for both KDDcup99 and NSL-KDD intrusion datasets 

with the proposed technique. With these datasets, we convert all categorical at­

tributes into numeric form and compute l09z(a,,)) to normalize the objects val­

ues like before. We use the KDDcup99 10% corrected dataset for training and 

KDDcup99 corrected dataset for testing. For additional experiments, we use the 

KDDTrain+ dataset for the training and KDDTest+ for the testing, both from 

188 



6.6. Performance Evaluation 

Table 6.14: The ConfuslOn matnx for LOF [lJ ORCA [2], ROS [3J and our proposed 
techl11que USll1g packet and flow level TUIDS ll1truslOn datasets 

EvaluatIOn measures ConfUSIOn matn" 
Connect,on Precls,on Recall F measure Value Normal DoS Probe Total 
type 

LOF [I] 
Packet level 
Normal o 8817% 0<)096% 08965% Normal 4156<) !S27 7<)<) 478% 
DoS 08910% 08942% 08926% DoS E96 27175 42 3061.3 
Probe 06419% 06523% o b471% PlObe 2603 94 50bO 7757 
Average 08055% 08187% 08104% Total 49368 30996 5901 86265 
Flow level 
Normal 09056% 09127% 09091% Normal 15307 1378 85 16770 
DoS 08624% 08866% 08743% DoS 1573 12834 68 14475 
Probe 06612% 06749% 06679% Probe 2931 151 6398 9480 
Average 08097% 08247% 08171% Total 19811 14363 6551 40725 

ORCA [2L 
Packet level 
Normal 08610% 08713% 08661% Normal 41732 5211 949 47895 
DoS 09007% 09128% 09067% DoS 2605 27945 63 30613 
Probe 08703% 08847% 08774% Probe 796 98 6863 7757 
Average 08773% 08896% 08834% Total 45133 31257 7875 86265 
Flow level 
Normal 088032% 08927% 08879% Normal 14971 Ib74 125 16770 
DoS 09087% 09297% 09190% DoS 978 Io34b8 19 14475 
Probe 08510% 0865<)% 08587% Probe 1217 54 H204 <)480 
Average 08812% 08961 % 08885% Total 171b6 15186 R 17! 40725 

ROS [I] 
Packet level 
Normal 09218% 09451'70 o 9H4% Normal 45275 1726 894 47895 
DoS 09518% 09629% 09583'70 DoS llE 29479 I 03061.3 
Probe 08702% 08731% 08717% PlObe 961 22 6774 77b7 
Average 09151% 09272% o 9211 % Total 47367 31227 7671 86265 
Flow level 
Normal 09471% 09521% 09565% Normal 15968 785 17 16770 
DoS 09690% 09735% 09713% DoS 382 14066 27 14475 
Probe 08814% 08926% 08869% Probe 994 24 8462 9480 
Average 09325% 09394% 09382% Total 17344 14875 8506 40725 

Proposed Technique 
Packet level 
Normal 09607% 09854% 09728% Normal 47195 631 67 47895 
DoS 09977% 09964% 09971% DoS 110 10501 0 30613 
Probe 09627% 09796% o 9711% Probe 143 15 7599 i/57 
Average 097037% 09871% 098003% Total 47448 .31151 7666 8b265 
Flow level 
Normal 09745% 09868% 09806% Normal 16549 214 7 1b770 
DoS 0<)'344% 0996<)% 09906% DoS 41 144H I 14475 
Probe 09790% 09806% 097<)8% Probe 17b 8 q2<J6 9480 
Average 09791% 0<)881% o <)B17% Total 16766 1465! <)106 40725 

the NSL-KDD datasets We use the feature selectIOn algonthm to select the best 

feature subsets for outlIer based network anomaly detectIOn The selected feature 

sub::.ets for the KDDcup99 mtrU::'IOn dataset::. are gIven m Table 6 16 The ::.elected 

feature subset for the NSL-KDD datascts IS also gIven m Table 6 17 In each tablc, 

a row represents a selected subset of features and gIves the labels of these Important 

features It IS clear that after applymg the feature selectIOn algonthm, the SIze of 

the fcaturc sub::.ct us cd for cach class 1::' grcatly 1cduccd Hcncc, the computatIOn 

time taken by the proposed techmque IS substantIally less than when full feature 
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Table 6.15: The ConfuSIOn matrlX for LOF [1] ORCA [2], ROS [3] and our proposed 
techlllque USlllg packet and flow level TUIDS coordlllated scan datasets 

EvaluatIOn measures ConfusIon matnx 
ConnectIon type PrecIsIon Recall F-measure Value Normal Probe Total 

LOF [I] 
Packet level 
Normal o 880!% 08911% 08857% Normal 16620 4475 41095 
Probe 08010% 08117% 08081% Probe 1157 5926 7281 
A\erage 08512% 08524% 08470% Total 17977 10401 48J78 
Flow level 
Normal 08773% 08829% 08801% NOImal 13997 1856 15853 
Probe 08094% 08213% 08153% Probe 1493 6864 8357 
Average 08434% 08521 % 08477% Total 15490 8720 24210 

ORCA [2J 
Packet level 
Normal 09043% 09198% 09119% Normal 37798 3297 41095 
Probe 08802% 08830% 08816% Probe 852 6431 7283 
Average 08922% 09014% 08967% Total 38650 9728 48178 
Flow level 
Normal 09197% 09377% 09286% Normal 14865 988 15853 
Probe 08801% 08939% 08869% Probe 886 7471 8357 
A\erage 08999% 09158% 09078% Total 15751 8459 24210 

ROS [Jl 
Packet level 
Normal 09126% 09265% 09195% Normal J8078 J017 41095 
Probe o 90IJ% 09161% 08096% Probe 611 6672 728J 
A\erage 09069% 09211% 08645% Total 18689 9689 48178 
Flow level 
Normal 09015% 09145% 09079% Normal 14498 !l55 15851 
Probe 08671% 08877% 08771% Probe 918 7419 8157 
Average o 884J% 09011% 08926% Total 15416 8774 24210 

PIOposed Techmque 
Packet level 
Normal 09629% 09807% 09717% Normal 40301 794 41095 
Probe 09674% 09781% 09727% Probe 159 7124 7283 
Average 09652% 09794% 09722% Total 40460 7918 48378 
Flow level 
Norm"l 09708% 09839% 09773% Norm"l 15598 255 15853 
Probe 09710% 09788% 09748% Probe 177 8180 8357 
Average 09709% 09813% 09761% Total 15775 8435 24210 

sets are used We provIde confuSIOn matnces for LOF [1], ORCA [2] and ROS [3] 

and our techmque WIth both the KDDcup99 and the NSL-KDD llltrusIOn datasets 

III Table 6 18 

We also consIder all attacks III the case of the KDDcup99 corrected dataset for 

evaluatlllg the proposed techmque It has a total of 37 attack classes and the normal 

class We gIve a confusIOn matrix of the results m Table 6 19 WIth companson of 

results WIth competmg algonthms (I.e, CART [6], CN2 [6] and C4 5 [6]) 

Parameters Selection 

The determmatlOn of SUItable values for parameters plays an Important role m 

any outlIer or network anomaly detectIOn method In our approach, ~ IS used 

as a threshold for findlllg an optImal subset of relevant features for a partIcular 
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Table 6.16: Selected relevant features for all classes m the KDDcup99 mtruslOn dataset 

Method 
Normal class 
IeFS 

FFSA [81J 
MMIFS [81J 
LCFS [81J 

DoS class 
IeFS 

FFSA [81J 
MMIFS [81J 

LCFS [81J 

Probe class 
IeFS 

FFSA [81J 

MMIFS [81J 

LCFS [81) 

R2L class 
IeFS 

FFSA [81J 

MMIFS [81J 

LCFS [81J 
U2R class 
IeFS 

FFSA [81J 

MMIFS [81J 

LCFS [81J 

#Features 

10 

6 
6 
15 

12 

I 
8 

16 

14 

24 

IJ 

7 

II 

10 

15 

4 

15 

27 

10 

3 

Selected featUl es 

SIc-bytes ServIce Count Dst-bytes, Dst-host-same-src-port-rate, Srv-count 
Logged-m, Protocol-type Dst-host-dlff-srv-rate, Dst-host-same-srv-rate 
Src-bytes ServIce, DuratIon Flag, Dst-host-same-srv-rate, Dst-bytes 
Src-bytes Count, ServIce, Dst-bytes, Dst-host-dlff-srv-rate DuratIOn 
Logged-m, Dst-host-same-srv-rate, Dst-host-srv-count, ServIce, Count, Rerror­
rate Same-srv-rate, Dst-host-rerror-rate, Dst-host-srv-serror-rate, Srv-rerror-rate 
Protocol-type, Dst-host-srv-rerror-rate, Srv-serror-rate, Dst-host-dlff-srv-rate, Hot 

Src-bytes Count, ServIce, Dst-host-same-src-port-rate, Dst-host-dlff-srv-rate, Srv­
count, Dst-host-srv-count, Dst-host-same-srv-rate, Dst-host-serror-rate, Protocol­
type, Dst-host-srv-serror-rate, Serror-rate 
Src-bytes Dst-host-serror-rate, ServIce 
Src-bytes Count, Dst-bytes, Protocol-type, Srv-count, Dst-host-srv-rerror-rate, 
Dst-host-same-sl c-port-rate, SerVIce 
Dst-host-count, ReI ror-rate, Count Dst-host-serror-rate, Dst-host-rerror-rate 
Slv-count Num-compromlsed, Protocol-type, Dst-host-rerrOI-rate, Is-guest-Iogm, 
DIff-srv-rate Sel lor-rate, SI V-I error-rate, Dst-host-dIff-srv-rate, Srv-serror-I ate, 
Dst-host-srv-dIff-host-rate Logged-m, Dst-host-same-src-port-I ate, Dst-host -sr\<­
serror-rate DuratIon, Hot Root-shell, Num-falled-Iogms, Num-file-cleatIOns, Dst­
host-srv-count, Num-Ioot, Num-access-files, Num-shells, Urgen, SIc-bytes, Dst­
host-same-srv-rate Srv-dIff-host-rate, Dst-bytes, ServIce, Same-srv-rate 

SerVIce, Src-bytes, Rerror-rate, Count, Dst-host-srv-dlff-host-rate, Flag, Dst-host­
rerror-rate, Dst-host-same-src-port-rate, Dst-host-count, Dst-host-same-srv-rate 
Dst-host-dIff-srv-rate, Dst-host-srv-count, Same-srv-rate, Dst-bytes 
Dst-host-rerror-rate, Src-bytes, Dst-host-srv-rerror-rate, Num-falled-iogms 
Protocol-type, Is-guest-Iogm, Urgen, Rerror-rate, Dst-host-srv-dlff-host-rate, Srv­
rerror-rate, Root-shell, Num-access-files, SrV-dIff-host-rate, Num-shells DuratIon, 
Num-file-creatlons, Num-root, Num-compromlsed, Serror-rate, Dst-host-srv­
serror-rate Srv-serror-rate, Dst-bytes, DIff-srv-rate, Dst-host-count 
Dst-host-rerror-rate, Src-bytes, Dst-host-srv-count, Count, Srv-rerror-rate, ServIce, 
Dst-host-srv-rerror-rate, Num-compromlsed, Rerror-rate, Dst-host-count, Logged­
In, STY-Count Srv-rerror-rate 
Rerror-rate, Logged-m, Dst-host-rerror-rate Dst-host-srv-rerror-rate, Dst-host­
same-srv-rate, Srv-rerrOI -rate Dst-host-dlff-srv-rate 

SerVIce, SIC bytes, Dst-bytes, Dst-host-srv-count Count, Dst-host-same-src-port­
rate Dst-host-sl V-dIff-host-rate SI v-count, Dst-host-count Flag, Dst-host-srv­
serror-rate Dst-host-dlff-sl V-I ate, Dst-host-sen ol-rate 
ServIce, Dst-bytes Flag Num-falled-iogms, Urgen, Dst-host-slv-count, Dst-host­
srv-dIff-host-rate, Dst-host-seIIor-rate Is-guest-Iogm, Serror-rate 
ServIce, Num-compromlsed Is-guest-Iogm Count, Hot, Src-bytes, Dst-host­
dIff-srv-rate, Srv-count, Dst-bytes Dst-host-srv-count, Dst-host-srv-dlff-host-rate, 
Dst-host-count, DuratIon, Dst-host-srv-dlff-host-rate, Dst-host-srv-serror-rate Is­
guest-Iogm, Dst-host-serror-rate, Hot ServIce 
Is-guest-Iogm, Dst-host-serror-rate, Hot, ServIce 

SerVIce, Dst-host-srv-count DuratIOn, Src-bytes, Num-file-creatIOns, Root-shell, 
Hot, Dst-host-count, Num-cOmpromISed Dst-host-same-src-port-rate, Srv-count, 
Dst-host-dlff-srv-rate, Dst-host-same-srv-rate, Dst-host-srv-dlff-host-rate, Count 
Src-bytes DuratIon, Num-access-files, Num-shells, Dst-host-srv-serror-rate 
Protocol-type, Is-guest-Iogm, Urgen, Same-srv-rate Land Wrong-fragment, Su­
attempted, DIff-srv-rate, Num-root, Num-outbound-cmds, Is-host-Iogm, Dst-bytes, 
ServIce, Srv-serror-rate Srv-dIff-host-rate, Dst-host-srv-count, Root-shell, Flag, 
Num-file-creatIOns, Dst-host-count Logged-m, Serror-rate 
Src-bytes DUlatIon, ServIce Slv-count, Count, Protocol-type Dst-host-srv-count, 
Dst-bytes Dst-host-count, Flag, Root-shell Is-host-Iogm 
Root-shell, Num-file-creatlons, Num-compromlsed 

class m a dataset. The optImalIty of a feature subset IS decIded based on the 

classIfication accuracy obtamed usmg a dataset For our sample dataset, we observe 

experimentally that for ~ 2: 0917 the best possible accuracy IS obtamed However. 
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Table 6.17: Selected relevant features for all classes in the NSL-KDD intrusion dataset 

Method #Features Selected features 
Normal 11 Src-bytes ServIce, Dst-bytes Flag DIIl-srv-rate, Same-srv-rate, Dst-host-srv-

count, Dst-host-same-srv-rate, Dst-host-dlff-srv-rate, Dst-host-serror-rate, Logged-
m 

DoS q Src-bytes Count Dst-bytes, Srv-count Dst-host-same-src-port-rate, Dst-host-
same-51 v-rate, Dst-host-srv-serror-rate, Protocol-type, Serror-rate 

Probe 15 SIc-bytes Count, Dst-host-rerrol-rate, Flag Num-falled-logms, Is-guest-logm, Dst-
host-same-src-port-rate, Dst-host-dlff-sl v-rate Dst-host-srv-count, Same-srv-rate. 
Dst-bytes DIff-srv-rate, Dst-host-serror-rate 

R2L 10 ServIce, Dst-bytes Src-bytes, Dst-host-sl v-count, Dst-host-srv-dIff-host-rate Srv-
count, Flag, Is-guest-logm, Dst-host-srv-serror-rate, Dst-host-dlff-srv-rate 

U2R 16 Src-bytes DuratIon, ServIce, Dst-host-srv-count, Root-shell, Urgen, Same-srv-rate, 
Land \"'rong-fragment, Dst-host-same-src-port-rate, Srv-count, Num-root, Num-
outbound-cmds, Is-host-logIn, Dst-host-srv-dlff-host-rate Count 

for other datasets It differs. In TreeCLUS, the value of the parameter ellS selected 

using a heuristic approach. a'::; 10.5 initially for the sample dataset, but it is 

different for other datasets (3' is the number of data objects needed to satisfy the 

neighborhood conditIOn over a subset of features to form a node (i.e., (3' = 2 in 

case of our sample dataset). Its value is the same for all datasets. Finally, in the 

outlier detection algorithm, k' and T are two important parameters. If k' and T 

are not properly selected, it may affect the accuracy of the detection method. We 

select both these parameter values using a heuristic approach. We find k' values 

for different datasets heuristically as shown in Figure 6.6. We find the best possible 

solution for k' values ranging from 22 to 47. 

k' yalue identification 

1::0 

100 

.". 80 
~ 
""' 

-- S~"lIthttic 

-UCIZoo 

'" 60 C 
~ 
'" <! 40 

-- TUrnS packet lenl 

....•... TUrnS Oow In el 

- - .. - - n.n:DS coordinated 

::0 -- KDDcup99 

•. I\"SL-KDD 

0 

0 10 20 30 40 50 60 

Figure 6.6: k' values vs. accuracy for the identification of k' values. k~ln IS the mimmum 
range of k' values and k~ax IS the maximum range of k' values. It is useful for selecting 
k' values during score computation. 
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Table 6.18: The ConfusIOn matnces for LOF [1], ORCA [2], ROS [3] and our proposed 
techmque usmg KDDcup99 and NSL-KDD mtruslOn datasets 

EvaluatIOn measures ConfusIon matrIx 
C;onnectlOn type Prec.s,on Recall F measure Value NormalR2L DDS Probe U2R Total 

LOF 11] 
KDDcuplJ9 dataset 
NOImal 08902% o 9096% 0 8998% Normal 55119 5294 163 15 2 60593 
R2L 07164% o 7283% 0 7223% R2L 4165 11791 14 216 3 16189 
DoS 08733% o 8929% 0 8829% DoS 22412 17 205258 2164 2 229853 
Probe 08399% 08550% 08474% Probe 493 20 91 3562 0 4166 
V2R 06092% 06140% 06115% V2R 75 10 2 1 140 228 
Average 07858% o 7999% 0 7928% Total 82264 17132 205528 5958 147 311029 
NSL-KDD dataset 
Normal 09186% 09314% 09249% Normal 9045 480 124 56 6 9711 
R2L 06897% o 7043% 0 6969% R2L 770 19.39 0 43 1 2753 
DoS 08611% 08752% 08681% DoS 792 37 6529 94 8 7460 
Probe 08549% 08612% 08580% Probe 39 7 287 2085 3 2421 
U2R 06107% 062.31% 06168% U2R 64 8 .3 0 124 199 
Average 07870% o 7990% 0 7929% Total 10710 2471 694.3 2278 142 22544 

ORCA [2] 
KDDcup99 dataset 
Normal 09272% o 9.389% 0 9 HO% Normal 56896 3125 486 81 5 6059~ 

R2L 07219% 07406% 07311% R2L 4105 11991 1.3 79 1 16189 
DoS 09106% 09198% 09152% DoS 18177 0 209799 1877 0 22985.3 
Probe 08530% o 8826% 0 8675% P,obe 341 19 129 3677 0 4166 
U2R 06197% 06315% 06255% U2R 73 7 4 0 144 228 
Avelage 08017% 08162% 08225% Total 79592 15142 210431 5714 150 311029 
NSL-KDD dataset 
Normal 09187% o 9293% 0 9239% Normal 9024 507 117 58 5 9711 
R2L 07412% o 7526% 08153% R2L 617 2072 9 55 0 2753 
DoS 08951% 09089% 09019% DoS 476 5 6781 198 0 7460 
Probe 08603% 08823% 08712% Probe 79 7 198 2136 1 2421 
U2R 05930% o 6080% 0 6004% U2R 69 8 1 0 121 199 
Average 08189% 08328% 08413% Total 10692 2423 7038 2250 141 22544 

ROS [3J 
KDDcup99 dataset 
Normal 092H% 09416% 09165% Normal 57059 H10 166 51 5 60591 
R2L 06876% 06992% 06934% R2L 4811 11120 9 47 0 16189 
DoS 09004% o 9011 % 0 Y007% DoS 22722 5 20712! 3 0 229851 
Probe 08824% 08951% 08887% PlObe 3.39 11 83 .3729 2 4166 
U2R 05928'70 06008% 0 5967% U2R 78 11 2 0 1.37 228 
Avelage 07973% o 8076% 0 7992% Total 85011 14459 207583 3832 144 311029 
NSL-KDD dataset 
NOImal 09406% o 9562% 0 9483% NOImal 9286 380 41 2 2 9711 
R2L 07236% o 7304% 0 7269% R2L 686 2011 6 49 1 2753 
DoS 09128% 09214% 09170% DoS 567 17 6874 0 2 7460 
Probe 08872% 09083% 08938% Probe 97 7 113 2199 5 2421 
U2R 06471% o 6583% 0 6527% U2R 56 8 .4 0 131 199 
Average 08222% o 8349% 0 8277% Total 10065 2752 7360 2226 141 22544 

Proposed TechnIque 
KDDcup99 dataset 
Normal 0986.3% o 998.1% 0 9769% Normal 60489 8& 1.1 4 1 6059.1 
R2L 08776% o 89%% 0 8885% R2L 15% 1456! 9 21 0 16189 
DoS 09988% 09999% 09994% DoS 17 0 2298!! ! 0 229853 
Probe 09670% o 9807% 0 %87% Probe 59 4 17 4086 0 4166 
U2R 07142% 07612% 07215% U2R 41 7 5 1 174 228 
Average 09128% o 928.3% 0 9110% Total 62202 14660 229877 4115 175 311029 
NSL-KDD dataset 
Normal 09801% o 9902% 0 9851 % Normal 9616 78 11 3 1 9711 
R2L 08790% o 8892% 0 8841 % R2L 292 2448 2 11 0 2753 
DoS 09896% o 9988% 0 9942% DoS 9 0 7451 0 0 7460 
Probe 09690% 09798% 09744% Probe 22 1 26 2372 0 2421 
U2R 07254% 07788% 07512% U2R 33 8 3 0 155 199 
Average 09086% 09274% 09178% Total 9972 2535 7495 2386 156 22544 

We have analyzed the effect of the threshold T usmg synthetic as well as real 
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Table 6.19: ComparIson between CART CN2 C45 and Proposed Techmque while 
consIderIng all attacks over KDDcup99 mtruslOn dataset 

Algonthm CART [61 CN2 [6J C45 [6J Proposed Technique 
ConnectIOn 1 Recall 1 Recall 1- Recall PrecIsIon Recall 
type PrecIsIon PrecIsIOn PrecIsIOn 
normal 00540% 09410% 01442% 09822% 00507% 09436% 09563% 09938% 
snmpgetattack 03862% 06160% 00000% 00026% 03828% 00026% 00186% 04235% 
named 10000% 00000% 10000% 00000% 05000% 02353% 06149% 07259% 
xlock 10000% 00000% 10000% 00000% 10000% 00000% 10000% 07102% 
smurf 00000% 10000% 00011% 10000% 00000% 10000% 10000% 10000% 
Ipsweep 00199% 09641 % 00752% 09248% 00000% 09902% 09902% 09967% 
multlhop 10000% 00000% 10000% 00000% 00000% 00556% 08392% 06209% 
xsnoop 10000% 00000% 10000% 00000% 10000% 00000% 07610% 07619% 
send mall 10000% 00000% 10000% 00000% 10000% 00000% 10000% 06622% 
guess_passwd 00566% 09968% 00270% 09725% 00242% o 986J% 09981% 09996% 
samt 00000% U 1216% 02209% 08003% 02182% 08302% o l8<)9% 0<)415% 
buffer _overflow 10000% 00000% 10000% 00000% 04118% 04545% 10000% 0<)605% 
portsweep 01111% 08162% 01176% 07260% 01604% 0<)463% 08835% 0<)819% 
pod 00000% 08391 % 00000% 08J91% 04082% 10000% 10000% 09425% 
apache2 10000% 00000% 00399% 08476% 01841% 09937% 10000% 09962% 
phf 10000% 00000% 10000% 00000% 10000% 00000% 10000% 10000% 
udpstOlm 10000% 00000% 10000% 00000% 10000% 00000% 10000% 10000% 
\Val ezmastel 00137% 09861% 01428% 08546% 00293% 09944% 09972% 09714% 
perl 10000% 00000% 10000% 00000% 10000% 00000% 10000% 10000% 
satan 02917% 09724% 01113% 08898% 00628% 08598% 09177% 06328% 
xterm 10000% 00000% 10000% 00000% 00000% 02308% 10000% 07812% 
mscan 00404% 09706% 00268% 08965% 00389% 08927% 10000% 09983% 
processtable 00250% 09750% 01086% 08762% 00000% 09789% 10000% 10000% 
ps 10000% 00000% 10000% 00000% 10000% 00000% 10000% 08290% 
nmap 10000% 00000% 00000% 10000% 03197% 09881% 10000% 10000% 
rootk,t 10000% 00000% 10000% 00000% 00000% 00769% 08241% 03940% 
neptune 00016% 09990% 00011% 09994% 00011% 09978% 10000% 10000% 
loadmodule 10000% 00000% 10000% 00000% 00000% 05000% 10000% 10000% 
Imap 10000% 00000% 10000% 00000% 10000% 00000% 10000% 10000% 
back 04583% 10000% 01164% 07951% 00132% 09545% 10000% 10000% 
httptunnel 05088% 07025% 01744% 08987% 03553% 08018% 10000% 09701% 
worm 10000% 00000% 10000% 00000% 10000% 00000% 00000% 00000% 
mallbomb 00000% 09516% 00161% 09998% 00062% 09982% 09996% 09989% 
ftp_wnte 10000% 00000% 10000% 00000% 10000% 00000% 10000% 10000% 
terudrop 10000% 00000% 10000% 00000% 10000% 00000% 10000% 04167% 
land 10000% 00000% 10000% 00000% 10000% 00000% 10000% 10000% 
sqlattack 10000% 00000% 10000% 00000% 10000% 00000% 10000% 05000% 
snmpguess 00004% 09909% 03812% 03603% 00144% 09983% 10000% 09599% 
Average 06044% 03918% 0 5518% 04123% 04264% 04924% 08997% 08466% 

life datasets (1 e zoo, shuttle, and breast cancer) The performance of the propobed 

techmque In terms of detectIOn rate largely depends on the selectIOn of the value 

of T, as seen In FIgure 6 7 The value of T IS dependent on the dataset used for 

evaluatIOn ThIS IS because each dataset IS dIfferent from others In terms of attrIbute 

values and dlmenblonb So, the threbhold dIffers from dataset to dataset for the best 

results However, a most probable range of T values for these datasets IS shown wIth 

vertIcally drawn dashed lInes In the Figure 6 7 In our experIments, better results 

are obtaIned with T values In the range of (0 30 - 0 54) for the synthetzc dataset 

(026 - 0 69) for the zoo dataset, (038 - 057) for the shuttle dataset and (0 29 - 068) 

for the breast cancer dataset ThIS estImatIOn IS helpful In chOOSIng the threshold 
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value T for expenments 
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Figure 6.7: DetectlOn rate for ddferent threshold values It IS useful for the IdentdicatlOn 
of threshold T range values, where It performs well 

The performance of the proposed techmque for an mtruSlOn dataset m terms of 

preCISIOn agam largely depends on the selectIOn of T value as seen m Figure 68 

The probable range of T values for each class of attack as well as normal data 

objects for good re~ults are shown With vertical da~hed hne~ m Figure 6 8 In our 

expenment we found that good results are obtamed for T values m the range of 

(09- 23) for normal records and (04 - 1 15) for attack records 
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Figure 6.8: PrecISion for different thre5hold values It IS helpful to Identify the threshold 
T range value5, whele It performs best 
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Discussion 

We provide the confusion matrices for LOF, ORCA. ROS, CART, CN2 and C4.S 

using several real life network intrusion datasets A performance comparison of the 

proposed techmque with LOF, ORCA and ROS usmg (a) TUrDS packet level, (b) 

TUIDS flow level, (c) TUIDS coordinated scan packet and flow level, (d) KDDcup99 

and (e) NSL-KDD intrusion datasets is given in Figure 6 10. As seen from the figure, 

the performance significantly increases for mostly all datasets. We also provide a 

comparison of the proposed techmque usmg the KDDcup99 intrusion dataset with 

C4.S, ID3, CN2, CBUID, TANN and HC-SVM in Table 6.20 and Figure 6.9. As 

seen in the table, the detection rate of normal and U2R instances using our approach 

is significantly higher those obtamed with competmg algorithms. DoS and probe 

attack detection rates are not significantly higher but are better. For R2L attacks, 

an average detectlOn rate is obtained and It IS still better than those obtained by 

the competing algorithms. Normal, DoS and R2L attack instances are identified 

with higher detection rate when it was analyzed as mdividual attack instances. 

Table 6.20: Comparison of the proposed techmque with other techniques over KDD­
cup99 intrusion dataset 

ConnectIon C45 [6] ID3 [6] CN2 [6] CBUID TANN HC-SVM Proposed 
type [7] (8) [4] Technique 
Normal 9442% 8748% 8708% - 9701% 9929% 9983% 
R.2L 8153% 9623% 8451% 86,% 8053% 2881% 8996% 
DoS 999,% 9986% 9993% 9915% 9094% 9953% 9999% 
Probe 9482% 9554% 9585% 8027% 9489% 9755% 9807% 
U2R 6711% 5482% 6754% 0078% 6000% 197J% 76 J2% 
Average 8757% 8678% 8698% - 8467% 6892% 928"1% 

Finally, we present a comparison of the execution time of the proposed technique 

with the time required by LOF, ORCA and ROS using the KDDcup99 intrusion 

dataset, in Figure 6.11 The preprocessing time has been excluded in all methods. 

As seen from the figure, time required by LOF and ORCA increases as the dataset 

size increases. But ROS and our proposed techmque take almost the same time 

after excluding traming time. The proposed technique takes less time than the 

LOF and the ORCA 
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Figure 6.9: A comparison of the proposed technique with C4.5 [6], ID3 [6], CN2 [6], 
CBUID [7], TANN [8J and HC-SVM [4J using KDDcup99 intrusion dataset 

6.7 Summary 

In this chapter, an efficient outlier detection technique based on [3J with an ap­

plication to network anomaly detection is presented. We also prescnt a tree-based 

subspace clustering algorithm for high dimensional datasets. The clustering al­

gorithm generates the tree in a depth first manner before applying our network 

anomaly detection algorithm. The main attraction of our technique is its ability 

to successfully detect all outlier cases. It can also use any proximity measure for 

score computation. It is important to choose the threshold correctly during net­

work anomaly identification. A heuristic technique is presented for the identifica­

tion of the threshold. The proposed technique was evaluated with various datasets, 

viz., (a) synthetic, (b) UCI ML repository datasets, (c) real-life TUIDS intrusion 

datasets (packet and flow levels), (d) real-life TUIDS coordinated scan datasets 

(packet and flow levels), and (e) KDDcup99 and NSL-KDD datasets. We compare 

the performance of our proposed technique with that of other well known outlier 

detection methods, viz., LOF, ORCA, ROS and also compare it with C4.S, ID3, 

CN2, CBUID, TANN and HC-SVM, and achieve better performance in almost all 

the datasets in identifying network anomalies. Hence, we claim that the proposed 

technique is better than competing algorithms for the intended purpose of network 
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anomaly detectlOn The proposed techmque IS able to IdentIfy anomalIes wlthm a 

5 second tIme wmdow There are some pubhshed methods whleh can perform such 
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Figure 6.11: An execution time comparison of the proposed technique with LOF [1], 
ORCA [2] and ROS [3] algorithms based on randomly selected network intrusion dataset 
size 

identificatIOn in 2 second time windows, but their detection rate is worse than ours. 

However, the proposed techmque has two hmitatlOns. (a) It is dependent on proper 

tuning of T w r.t a dataset; we have presented a heuristic method for the sclectlOn 

of T value. (b) It does not work directly on categorical and mixed types data 

199 



Chapter 7 

Unsupervised Approach for 

Network Anomaly Detection 

This chapter presents an unsupervised tree-based subspace clustering technique 

(TreeCLUSS) for finding clusters in network intruslOn data and for detecting known 

as well as unknown attacks without using any labelled traffic or signatures or train­

Ing To establish its effectiveness In finding the appropriate number of clusters, 

we perform a cluster stability analysis. We also introduce an effective cluster la­

belling technique (CLUSSLab) to label each cluster based on the stable cluster set 

obtaIned from TreeCLUSS. CLUSSLab is a multi-objective technIque that employs 

an ensemble approach for labelling each stable cluster generated by TreeCLUSS to 

achieve a high detection rate. We also introduce an effective unsupervised feature 

clustering technique to identify a dominating feature subset from each cluster. We 

evaluate the performance of both TreeCLUSS and CLUSSLab using several real 

world intrusion datasets to identify known as well as unknown attacks and found 

that results are excellent. 

7 .1 Introduction 

Advances in networking technology have enabled us to connect distant corners of 

the globe through the Internet for sharing vast amounts of information. However, 

along wIth this advancement, the threat from spammers, attackers and criminal 

enterprises is also growing at multIple speed [11] As a result, security experts 
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use intrusion detectIOn technology to keep secure large enterprise lllfrastructures 

Intrusion detectIOn systems (lDSs) arc divided lllto two broad categones' misuse 

detection [21] and anomaly detection [22] systems r"I!suse detection can detect only 

known attacks based on avaIlable signatures Thus, dynamic signature updation 

IS important and therefore, new attack definitions are frequently released by IDS 

vendors However, mIsuse based systems cannot incorporate or even most all of 

the rapidly growing number of vulnerabilities and explOIts On the other hand, 

anomaly based detectIOn systems are designed to capture any deviation from profiles 

of normal behavior. They are more SUItable than misuse detection systems for 

detecting unknown or novel attacks without any prior knowledge However, they 

normally generate a large number of false alarms. 

There arc three commonly used approaches for detecting intrusions [12,358] (a) 

supervised (i.e., both normal and attack instances are used for training), (b) semi­

supervised (Le., only normal instances are used for training) and (c) unsupervised 

(i.e., without using any prior knowledge). The first two cases require training on the 

instances for finding anomahes But getting a large amount of labelled normal and 

attack training instances may not be feasible for a particular scenario. In addition, 

generating a set of true normal instances with all the variations is an extremely 

difficult task Hence, unsupervIsed network anomaly detection, whIch docs not 

require any prior knowledge of network traffic instances, is more suitable in thIS 

situation. 

7.1.1 Motivation and Contributions 

To overcome obstacles faced by supervised and semi-supervised network anomaly 

detection methods, unsupervIsed network anomaly detection methods aim to detect 

known as well as unknown intrusions without using any prior knowledge of exist­

ing network traffic lllstances. Clustering is an established unsupervIsed network 

anomaly detection techmque that can be used to identify unknown attacks. How­

ever, a common limitation of some clustering approaches is that they require the 

number of clusters a priori, which often can be difficult to provide. In such cases, 

stability analysis of the cluster results can be of great hclp. Validity of the cluster 

results in terms of real hfe and benchmark datasets is important to establish the 
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effectiveness of the results. In high dimensional data, many features are irrelevant 

to form a speeific set of clusters when a full space clustering technique is applied. 

These are the reasons why we develop an unsupervised method for identification of 

known and unknown attacks with minimum false alarms. 

We aim to provide an unsupervised solution for identifying network attacks with 

high detection rate. The main contributions of this chapter are stated below. 

• We introduce a tree based clustering technique (TrceCLUSS) to Identify net­

work anomalies in high dimensional datasets The followmg are some of the 

advantages of the proposed TreeCLUSS algorithm. 

The number of clusters is not required as input parameters 

It is free from the use of a specific proximity measure. 

It requires a minimum number of input parameters and the results are 

not heavily dependent on them 

It is able to identify both known as well as unknown attacks 

• \lVe present a cluster stability analysis to obtain a stable set of results gener­

ated by TreeCLUSS. It uses majority voting based decision for cluster stability 

to get a stable set of clusters. 

• We introduce a cluster labelling technique (CLUSSLab) for labelling the clus­

ters generated by TreeCLUSS as normal or attack. It uses a majority voting 

based decision fusion technique of the results of various cluster indices, cluster 

sizes and dominating features sets. 

• Finally, we develop an effective unsupervised feature clusterIng technique to 

identify a dominating feature subset for each stable cluster that is used for 

cluster labelling. It is important to identify a relevant feature set for a par­

ticular set of clusters to match with a previously identified feature set during 

cluster labelling. 
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7.2 Prior Research 

The problem of unsupervised detectlOn of network attacks and intrusions has been 

studied for many years with the goal of ident!fymg unknown attacks in high speed 

network traffic data Most network based mtrusion detection systems (NIDSs) are 

misuse or signature based For example, SNORT [359] and BRO [360] are two well­

known open source misuse based NIDS. To overcome the mabIlity of sueh systems 

to detect unknown attacks, novel anomaly based NIDSs have been introduced in the 

past decade A detailed study can be found m [119,123] Here, we briefly discuss 

some recent unsupervised network anomaly detection methods. 

7.2.1 Clustering-based Network Anomaly Detection 

Clustering IS an important technique used in unsupervIsed network intrusion de­

tection. A majority of unsupervised network anomaly detection techniques are 

based on clustering and outlier detectlOn [5,64, 164] Leung and Leckie report a 

grid based clustenng algorithm to achieve reduced computational complexity [164]. 

An unsupervised intrusion detection method by computing cluster radius threshold 

(CBUID) is proposed by [7]. The authors claim that CBUID works in linear time 

WIth respect to the SIze of datascts and the number of features. Song et al. report 

an unsupervised auto-tuned clustermg approach that optimizes parameters and de­

tects changes based on unsupervised anomaly detection for identifying unknown 

attacks [29]. Noto et al. present a new semi-supervised anomaly detection method 

(FRaC) [30] that builds an ensemble of feature models based on normal instances, 

and then identifies instances that disagree with these models as anomalous. Casas 

et al. present a novel unsupervised outlier detection approach based on combining 

subspace clustering and multiple evidence accumulatIOn to detect several kinds of 

intrusions [31]. They evaluate the method using KDDcup99 and two other real-life 

datasets. 

7.2.2 Cluster Stability Analysis 

Several cluster stability analysis techniques have been proposed in the literature 

[361-3641. We analyze cluster stability for identifymg the actual number of clusters 
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generated by our clustering algorithm using stability calculation. Lange et al. in­

troduce a cluster stability measure to validate clustering results [361] It determines 

the number of clusters by minimizing the classification risk of their measure. An 

experimental analysis of cluster stability measures for the identificatIOn of the num­

ber of clusters is dIscussed by [362]. Ben-David et al. provide a formal definition of 

cluster stability with specific properties [363]. They conclude that stability can be 

determined based on the behavior of the objective function. If the objective func­

tion is a unique global optimizer, the algorithm IS stable. Das and Sil also present a 

cluster validation method for stable cluster generatIOn using stabIlity analysis [364J. 

7.2.3 Cluster Labelling 

Cluster labelling IS a challenging issue in unsupervised network anomaly detection. 

Most common cluster vahdity measures are summarized in [365-367]. Validity mea­

sures are usually based on internal and external properties of clustering results. 

Normally, internal validity measures obtain the compactness, connectedness and 

separatIOn of the cluster partitions. External validity measures assess agreement 

between a new clustering solution and the reference clusters of interest [365] Jun 

[367] presents an ensemble method for cluster analysis It uses a simple voting 

mechanism for making decision from the results obtained by using several cluster 

validity measures Labelling of a cluster IS must ill case of cluster based unsuper­

vised network anomaly detection Our proposed cluster labelling techmque works 

based on the cluster size. compactness and the dominating feature set 

7.2.4 Discussion 

We provide a generic comparison of some published works on network anomaly 

detection [7,29-31,64,164,368] in Table 7.1. Based on a review of existing tech­

niques for clustering based anomaly detection, cluster stability analysIs and cluster 

labelling, we observe the following . 

• Although many clustering based network intrusion detection techniques have 

been reported in the literature [7,64,164,368]' only a few have full features 

of an unsupervised intrusion detection system [7]. Many methods use only 
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clusterIng techlllques for network anomaly detectIOn wIthout havmg cluster 

labellmg strategIes Hence there IS stIll 100m to develop a full featured unsu­

pervIsed network anomaly detectIOn techlllque 

• EXlstmg stabllIt} analysIs techlllques have been mo~tly applIed to analyze non­

IlltruslOn data But network traffic data IS hIgh dImensIOnal and volummous 

Thus there IS scope for further enhancement m the network anomaly detectIOn 

domam 

• Only a very few labellmg techlllques are avaIlable III the lIterature [365-367] 

An approprIate use of llldlces can help m developlllg an effectIve labelllllg 

techlllque, whIch can support unsupervIsed anomaly detectIOn to a great ex­

tent 

Table 7.1: ComparIson of unsupervIsed network anomaly detectIOn method~ 

Author(s) Method Offlme J Packet Data Type Unknown Detect,on Full J 
Onhne JFlow attack cntena Reduced 

level handled space 
Portnoy et al Clustermg- offlme packet numenc yes cluster Full 
[64], 2001 based Size 

d,stance 
Leung and Clustermg- offlme packet numerIC no dIstance, Full 
LeckIe [164), based boundary 
2005 value 
],ang et al Clustermg- offlme packet categorical yes dIstance Full 
(7) 2006 based 
Bhuyan et al Outher- offlme packet numeriC yes dIstance Full 
[~68), 2011 based 
Song et al Clustermg- offlme packet nunlenc yes dIstance Full 
[29]' 2011 based 
Casas et al Clustermg- offlme flow numenc yes dIstance Reduced 
[H), 2012 based 

UN IDS 
Noto et al 1Ilodel- offlme other numerIC no dIstance Full 
pO]' 2012 based 

Due to these reasons, we sec an opportulllty to develop an mtegrated unsuper­

vIsed network anomaly detectIOn method 

7.3 Problem Statement 

Our work analyzes large amounts of network traffic data over an optImal and rel­

evant feature space Without any pnor knowledge to Identify anomalous or non­

conformmg test lllstance(s) With mlllimum false alarm The problem IS defined as 
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follows. Let X be a collection of network traffic data with n data objects, where 

each object has IF features The problem is to analyze X over an optimal and rele­

vant feature subspace F', where 1 :S F' :S IF to identify groups of similar instances, 

Gll where each Gl IS labeled either as normal or anomalous. 

The proposed method works in two phases (a) TreeCLUSS creates k clusters, 

i.e., G1 , G2 , ... Gk from dataset X using a subset of relevant features, F ' , where each 

G, IS evaluated in terms of stability by using the function StableCLUSS, and (b) 

CLUSSLab labels each cluster, G, based on the two assumptions: (i) The majority 

of network connections are normal, and (Ii) Intra-sImilarity among the attack traffic 

instances is hIgh. CLUSSLab exploits cluster size, compactness, dominating feature 

subset and out her scores to label each cluster. 

7.4 Unsupervised Network Anomaly Detection 

The Framework 

The main aim of this work is to detect network anomalies using an unsupervised 

approach with a minimum amount of false alarms. It can detect network anoma­

lies without relying on existmg sIgnatures, traimng or labeled data. The proposed 

approach runs in two consecutive phases for analyzing network traffic in contigu­

ous time slots of fixed length Figure 7.1 provides a conceptual framework of the 

proposed unsupervised network anomaly detectlOn method. 

In the first phase, we introduce a tree based subspace clustering techmque 

(TreeCLUSS) for generatmg clusters in high dimensional large datasets. It is well 

known that network intrusion dataset is high dimensional and large. We apply 

our technique over a subset of features TreeCLUSS uses the MMIFS technique 

[SIJ for finding a highly relevant feature set. It uses a subset of features during 

cluster formation whIle not usmg any class labels. We analyze the stabihty of the 

cluster results obtained Cluster stability analysis for real life data is not a trivial 

task. It is performed using an ensemble of several index measures, viz., Dunn index 

[S2], C-index (C) [84], Davies Bouldin index (DB) [S3], Silhouette index (S) [87J 

and Xie-Beni index (XB) [93J. We choose a stable set of clusters when a certain 

number of clusters produces better result after multiple execution of this module. 
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Figure 7.1: High level description of the unsupervised network anomaly detection 
method 

In the second phase, we apply a cluster labelling technique (CL USSLab) to label 

the stable clusters using a multi-objective approach. CLUSSLab takes into account 

the following features: cluster size, compactness obtained from the ensemble of five 

index measures, dominating feature subset (DFS) obtained for each cluster based 

on unsupervised feature clustering technique discussed in Section 7.4.3, and outlier 

score (OS) obtained based on the RODD technique [159]. Finally, we label each 

cluster as normal or anomalous based on the described measures. 
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7.4.1 TreeCL USS: The Clustering Technique 

TreeCLUSS IS a tree based subspace clustenng technIque for hIgh dImensIOnal data 

It IS especIally tuned for unsupervIsed network anomaly detectIOn It uses the 

MMIFS technIque [81] to IdentIfy a subset of relevant features TreeCLUSS depends 

on two parameters VIZ) mitial node formatIOn threshold (0'2) and a step down ratIO 

(c) to extend the mitial node depth-wIse Both parameters are computed usmg a 

heunstlc approach We now present notatIOns) definItIOns and a lemma whIch help 

m the descnptlOn of the TreeCLUSS algonthm 

Definition 7.4.1. Data Stream - A data stream X zs denoted as {Xl) X2) X3" Xn} 

wzth TI objects, where '1;, zs the 1th object descrzbed wzth a d-dzmenszonal feature set, 

z e , 1" = {( tl) '[ ,2, :I tl '[ td} 

Definition 7.4.2. Ne'tghbor of an object - An object '1;, zs a nezghbor of'1;J over 

a subset of relevant features pi, W r t a threshold Ct2, zJJ stm ,(..G, xJ) ::; Ct2, where 

szm 2S a d2stance measure 

Definition 7.4.3. Connected obJects - If object L, zs a nezghbor of object xJ and 

xJ 2S a ne2ghbor of Xk w r t Ct2, then X" XJ) Xk are connected 

Definition 7.4.4. Node - A node N, m the lth level of a tree zs a non-empty subset 

of objects x', where for any object x, E Nt> there must be another object xJ E x', 

whzch 2S a nezghbor of T" and T, zs e2ther (a) ztself an zmtzator object or (b) zs 

wzthm the nezghborhood of another mztzator object .LJ E N, 

Definition 7.4.5. Degree of a node - The degree of a node NJ w r t 0'2 zs 

defined as the number of objects m NJ that are wzthm Ct2-nezghborhood of any object 

xJ E NJ 

pi (>2 
Definition 7.4.6. L l " cluster - It zs a set of connected objects C, at level 1 

w r t C\'2, where for any two objects x" xJ E C, the nezghbor condztzon (DefillltlOn 

7 4 2) zs true wzth reference to F: 

Definition 7.4.7. L[: /32 cluster - It zs a set of connected objects CJ at level 2 

w r t (32, where for any two objects T" TJ E CJ the nezghbor condztzon (DefillltIOn 
P' /3 P' 742) zs true wzth reference to F: and f32::; (T + c) Also, L2, 2 ~ L I " (>2 

Definition 7.4.8. Outlier - An object '[, E X zs an outlzer zf T, zs not connected 

wzth any other object xJ E X, where xJ ELi: (>2 In other words, .L, zs an outlzer zf 

there zs no '1;J E X, so that x, and xJ are nezghbors (as per Defillltion 742) 
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Lemma 7.4.9. Two objects J,. and '1 J belongmg to two dzfferent nodes are not 

szmziar 

Proof Let 'J.:. E N. T J E NJ and '[,. IS a neighbor of T J Accordmg to Defimtwn 

74 2 and Defimtwn 7 4 4, :L t and :LJ should belong to same node TherefOle we 

come to a contradiction and hence the proof o 

We present our TreeCLUSS algonthm for network anomaly detectIOn m Alga­

nthms 9 and 10 TreeCLUSS starts by creatmg a tree structure m a depth-first 

manner with an empty root node The root IS at level 0 and IS connected to all the 

nodes m level 1 The nodes m level 1 are created based on a maxlmal subset of 

relevant features by computmg proXImity wlthm a neighborhood w r t an IllltJaI 

cluster formatIOn threshold Q2 The tree IS extended depth-first by formmg lower 

level nodes w r t (02? + c) where c IS a controllmg parameter of the step down factor 

Ie, T (\'2 and c are computed usmg a heunstlc approach A proximity measure 

stm IS used m TreeCLUSS durmg clustcl formation Although SLm IS free from 

the restnctlOn of usmg a specific proximity measure, we used Euclidean distance to 

construct the tree from X 

The algonthm IS Illustrated usmg an example Let X be a dataset of d dlmen-

sIOns with detaJls gIven m Table 72 Let X. = {Tl' '[,2, 

The extracted relevant featUle !:>et IS given m Table 7 3 The clas!:> specific relevant 

features are Identified from X w r t a threshold /2 We achieved best results when 

/2 2 1 for class Cl, /2 2 0918 for class C2 and /2 2 0917 for class C3 as shown m 

Table 73 An example tree obtamed from X. IS shown III Figure 72 with reference 

to the reduced featUle space as given m Table 73 

7.4.2 Cluster Stability Analysis 

We analyze the stabilIty of clusters obtamed from TreeCLUSS and several other 

clustenng algOrIthms, VIZ k-means, fuzty c-means, and hlCrarchlcal clustermg A 

general stabilIty eomparIson among these clustenng algonthms w r t detectIOn rate 

usmg the TUIDS datasets IS given m Figure 7 3 The TUIDS datasets were bUllt 

by us usmg our own testbed with different types of attacks (more details are given 

m 75 1) We propose an ensemble based cluster stabilIty analysIs techl1lque based 
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Algorithm 9 Part 1 TreeCLUSS (X, Q2 (32) 

Input: X, the dataset Q2, threshold for L1 cluster formatIOn /321 threshold for L2 
cluster formatlOn 

Output: set of clusters GI, Gz, GJ , G" 
1 ImtlahzatlOn nodeJd f- 0 I> node_ld It> mcreru,ed by 1 for new node 
2 function BUlLDTREE(X, node_td) I> functIOn to bUild tIee 
3 for t f- 1 to X do 
4 if Cr, classified I = 1 and checkJnLfeat(M1VIIFS(x,)) == true) and 

5 

81m ('X, 'XJ ) ~ Qz then 
CreateNode( I, no, PJd, temp, norlecount nodeJd, 1) 

create new node 
I> functlOn to 

6 while (F' - (1 - 1)) 2: e do 
1++ 

I> check relevant features subset 
7 

8 for Z f- 1 to X do 
9 if T, classified I = 1 then I> If object IS classIfied then labelled 

ru,1 
PJd = check_parent(x, no, 1) 10 

11 

12 

13 

then 
if (PJd > -1 and checLmdeat(MMIFS(x,)) == true) 

I> functIOn to check parent Id 
CreateNode( T, no, PJd, temp, l1odecounb nodeJd, 1) 

end if 
14 end if 
15 end for 
16 end while 
17 1 = 1 
18 end if 
19 end for 
20 end function 
21 function CREATENoDE(no, p_Id, temp, nodecount Id, 1) I> functlOn to create 

node 
22 node_ld = new nodeO 
23 nodeJd temp = temp 
24 

25 
26 
27 

28 

nodeJd nodelcount = nodecount 
node_ld PJlode = PJd 
node_ld Id = Id, 

I> number of nodes m a level 

29 

nodeJd level = I 
ExpandNode(no, Id, nodeJd temp, l1orlecount 1) 

depth-Wise for a particular node 
temp = NULL 

30 nodecount == 0 
31 nodeJd++ 
32 end function 

I> expand node In 

33 function EXPANDNoDE(no, Id temp, nodecount, 1) I> function to expand node 
34 if Xno clasSified == 1 then 
35 return 
36 else 
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Algorithm 10 Part 2 TrecCLUSS (X, Q2 (32) 

37 Xno classified = 1 
38 Xno node_ld = Id 
39 for z +- 1 to X do 
40 if (1 t clasbified I = 1) then 
41 rnmRankF' = find-111Il1Rank(MMIFS(x,)) [> select next subset of 

relevant features 
42 if (F' - rnmRankpr) 2: 0 then [> check maximum height of the 

tree 
43 mm Ran" F' ++ untIl get a specIfic cluster otherwise stop [> 

contmue for gettmg bpecific class 
44 ExpandNode(x, no, Id, temp, tempcount, 1) [> expand node Il1 

depth-WIse 
45 

46 
end if 

end if 
47 end for 
48 end if 
49 end function 
50 function STABLECLUSS(C,J 
51 for 1 +- 1 to k do 
52 for J +- 1 to 5 do 

[> functIOn to analyze cluster stabIhty 

53 VIe[)] = compute(Ic,)[> compute vahdlty Il1dex and :,tore values mto 
an array 

54 if (V fe[J] 2: 111 or V fe[]] ~ (12) then 
valIdIty Il1dex 

55 VfelJ] = 1 
56 

57 

58 

else 
Vfe[]] =0 

end if 
59 end for 

[> check threshold for each 

60 if (C, = Mar(V fe[1])) then [> check for maXimum valIdIty Il1dex value 
for cluster stabIlIty 

61 stable cluster C, 
62 Return Max(Vfe[z]) 
63 else 
64 go to step 2 
65 end if 
66 end for 
67 end function 

on Dunn Il1dex [82] C-ll1dex (C) [84] Davies Bouldll1 Il1dex (DB) [83], SIlhouette 

Il1dex (S) [87] and Xle-Belll mdex (XB) [93] (shown m Figure 7 1) We choose 

several well known clustel vahdity measures for stabIhty analYSIS We analyze each 

cluster based on dIstance to leduce computatIOnal overhead All OUI measures are 

dIstance based We brIefly dIscuss each measure along WIth the values expected for 
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Table 7.2: Sil.mple datMet X and CL m the last column IS the elMS label 

ObJect lD h h h 14 15 16 h 18 fg 110 CL 
01 9 2\ 071 24\ 060 104 280 \ 06 028 229 '\64 1 
02 225\ 651 664 4% 7279 260 11 61 080 900 \697 8 
0 3 16 17 576 1 16 11 88 95 550 1 10 049 {) 87 2045 5 
04 10 17 195 950 080 no 185 249 064 ll8 g 80 2 
Os 1467 485 1 92 11 94 96 410 179 012 4 7~ 10 80 4 
06 920 078 214 020 101 265 296 026 228 438 1 
07 1237 084 136 1160 95 398 157 098 142 10 95 3 
08 916 1 36 967 060 110 180 224 060 381 968 2 
09 1617 586 153 11 87 93 589 175 045 673 2095 5 
010 1881 631 440 4 70 215 809 057 783 2770 6 
Oll 1464 482 102 1180 94 402 141 013 462 1075 4 
012 2051 624 525 450 7023 2 958 060 825 3245 7 

°1, 1233 071 128 11 89 96 305 109 093 141 1027 3 
0 14 2060 646 520 450 71 242 966 063 894 3210 7 
0 15 1870 655 536 450 7324 270 820 057 784 2710 6 
0 16 2225 672 654 489 6938 247 1053 o SO 985 36 S9 S 

Table 7.3: Relevant feature set, F' and attrIbute rank values 

Class ObJect JD Relevant leature set Feature ranI.. value 
Cl 01,04 0 6,08 IS.!6,hh 19'/1O,h'/8 1,1,1,1,1,1,1,1 
ell OI,Ob IS.!b,hl.3 fg'/lO,h 1,1,1,1,1,1,1 
C12 04,0. IS.!6,h,/! fg'/IO 1,1,1,1,1,1 
C2 0.,05 0 7 ,09,011,01, 11,12,/6, fg, I. 110 1585 1 585,1 585,1 585, 15850918 
C21 0.,09 h, h 16, fg, 18 1 585 1 585,1 585,1 585,1 585 
Cn 0,.,,011 h,h/s,/9 15851 585,1 585,1 585 
C2. 07,01' II, h 16, Is 1 585 1 585,1 585,1 585 
C, 02,010,012014 015016 17 h, ho, Is /9 /4, !J 15841584,1 584,1 584,1 584,0917 0 917 
CII Ol,016 17,11, ho, I" fg /4 1 584 1 584,1 584,1 584,1 584,0917 
CJ1 010,015 h. h, ho, Is fg 1584 1584,1 584,1 584,1 584 
CJJ 012,014 17, h, ho, /s /4 15841584,1584,1584,0917 

Cll~ \..~\' Cl~ 

1,6 4,8 

Figure 7.2: Tree obtamed from X, given m Table 72 

good clusters m Table 7 4 

We pass each cluster C, to a functlOn StableCLUSS to measure stabIlIty It 

computes all the mdices for each of the clusters C\, C2 , Ck If It Judges that 

the result IS good for an mdex, It stores a I, otherWise asSIgns 0 It computes 1 or 
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Figure 7.3: Comparison of stability analysis with various algorithms using TUmS packet 
level intrusion dataset 

o for each of the indices as given below. 0"1 and 0"2 are threshold parameters. 

{

I, I,"2 0"1 or I, :S 0"2 

~= 
0, otherwise 

Finally, we take the maximum number of occurrences of 1 to decide if a cluster 

is stable or not. If a cluster C, is not stable, it sends control back to TreeCLUSS 

to regenerate another set with a different number of clusters. We choose the best 

set of stable clusters after we execute the module multiple times. 

7.4.3 CLUSSLab: The Cluster Labelling Technique 

CLUSSLab is a multi-objective cluster labelling technique for labelling the clusters 

generated by TreeCLUSS. It decides the label of the instances of a cluster based 

on a combination of the following measures: (a) cluster size, (b) compactness, (c) 

dominating feature subset and (d) outlier score of each instance. Each measure is 

described next. 

(a) Cluster size: It is the number of instances in a cluster. 

(b) Compactness: To find the compactness of a cluster C" obtained from TreeCLUSS, 

we use the five very well known indices as given in Table 7.4 and discussed 

earlier in Section 7.2.2. 
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Table 7.4: Cluster stability measures: definition. features and criteria for better cluster 

Stabzlzty De/imtwn Features 
measures 

Dunn .£mm where d,mn denotes the smallest dis- (a) Computed for finding drrtax 

index tance between two objects from different compact and well separated 
(Dunn) clusters and ~ax is the largest distance be- clusters. (b) Larger val-
[82] tween two elements within the same clus- ues of Dunn indicate better 

ter. clustering i.e., the range is 
(0,00). 

C-index ~. ~IZUZ1 , where S is the sum of distances (a) Used to find cluster qual-
SmnX-S.,nLfl 

(C) [84] over all pairs of objects from the same clus- ity when the clusters are 
ter, n IS the number of such pairs, Smm and similar sizes. (b) Smaller 
SmaT are the sum of n smallest distances values of C indicate better 
and n largest distances, respectively. clusters, i.e., the range is 

(0,1). 
Davies 1 l:n ( (7) +(7) ) where n is the (a) Lower value of DB tn-;;: .=I,.i) max d(c, c)) , 
Bouldin number of clusters' a. IS the average dis- dicates better clusters, i.e., 
index tance of all patterns in cluster z to their the range is (0,00). (b) It 
(DB) [83] cluster center. c,; a) IS the average dis- has low computational cost 

tance of all patterns in cluster J to their and can find better clusters 
cluster center. c): and d(c"cJ ) represents of spherical shape. 
the proxumty between the cluster centers 
c. and c). 

Silhouette b,{ a, b }. where a. is the average dissim- (a) Computed for a cluster 
(S) 

max all t 

index ilarity of ~th object to all other objects in to identify tightly separated 
[87) the same cluster: b. is the minimum of av- groups. (b) Better If the in-

erage dissimilarity of the zth object to all dex value is ncar 1, \.e., the 

objects in other clusters. range is (-l. 1). 

Xie Beni N:' ' where 1T = ~. is called compact- Smaller values of X B are nun n t 

index ness of cluster 2. Since n. is the number of expected for compact and 
(XB) [93] points in cluster 2. a is the average varia- well-separated clusters, \.e .. 

tion in cluster 2; dmm = mmllk, - k) /I. the range is (0, 1). 

(c) Dommatmg feature subset The subset of features which mostly influences 

the formation of the clusters is referred to as a dominating feature subset. 

We identify the dominating features using an adaptive unsupervised feature 

clustering technique (UReFT) based on Renyi's entropy [369]. Renyi's en­

tropy performs non-parametric estimation by avoiding the problems of the 

traditional entropy metric. Renyi's entropy with probability density function 

(pdf) fx for a stochastiC variable x and Renyi's constant A IS given by 

(7.1 ) 
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Renyi's quadratic entropy is defined by [370J when A = 2 as follows, assuming 

a Gaussian pdf: 

(7.2) 

where G is the Gaussian kernel, (7 is the smoothing parameter (we found 

better results when (7 = 0.9 to 0.12), Xl and x) are the zth and ;lh features of 

N data objects. We also note that 

G( _ . 2 2) _ 1 (_ (·7: t - .7:))2) 
Xl x)' (7 - d ~exp 2 

(21f) 2 V 2(72 4(7 
(73) 

where d is the dimension of variable .7:. Assume that we obtain k feature 

clusters, i.e., C = {CIl C2 )··· Cd. A feature object X is assigned to a cluster 

Cl iff, 

(H(Ct + :r;) - H(Cl )) < (H(Ck + :r;) - H(Ck )) , k i- 'I, (7.4) 

where H(Ck ) denotes the entropy of cluster Ck . This method is referred to 

as differential entropy clustering [371]. We compute H(Cd and I-J(C" C)) for 

within and between cluster entropy as follows. 

(7.5) 

(7.6) 

The main goal of our technique is to identify a dominating feature set with 

the least redundancy and the most relevancy. Initially, we assume that each 
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Figure 7.4: Identification of normal ranges using outlier score ranking over intrusion 
datatset 

cluster contains two feature subsets (i) the selected or relevant subset and (ii) 

the non-selected or irrelevant subset. The selected cluster is the dominating 

features set and the non-selected cluster is the irrelevant feature set. The 

method starts with a single feature object, Cs and assigns another object to 

it by computing Renyi's entropy (using Equations 7.4, 7.5 and 7.6) w.r.t. a 

threshold 171, otherwise it creates a new cluster, Cns known as the non-selected 

cluster. It adaptively assigns each candidate feature object to Cs or Cns w.r.t. 

threshold 171 and the threshold for intra-cluster entropy 172. The threshold 

values of 171 and 172 are also chosen based on a heuristic approach. 

(d) Outlier score: Here, we exploit our own outlier identification algorithm, RODD 

[159] to compute the score of each instance with reference to the normal pro­

files. A graph is plotted based on sorted outlier ranking against those instances 

as shown in Figure 7.4 and from the graph, a cutoff is decided to distinguish 

the normal from anomalous instances. We see in the graph that for any two­

class combination such as (normal, DoS), (normal, probe), (normal,U2R), or 

(normal, R2L) with various proportions, it is still possible to distinguish the 

normal from the rest. 
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Based on the cluster SIze, compactness, dommatmg features IdentIfied usmg 

UReFT and mterval of outlIer :,core lank values, we label each clustel as anomalous 

or normal w r t the thresholds We found best result for labclhng each cluster as 

anomalous wIth matchmg probabIlIty, p' :::; 0 63 W r t the above measures The 

CLUSSLab algOrIthm I:' gIven a:, AlgOrIthm 11 It 1:' a multI-obJectIve techlllque 

to label each cluster as nOlmal or anomalous UReFT IS the unsupervIsed RenYI's 

entropy based feature clustermg techlllque to IdentIfy the relevant features set for 

each cluster It matches the eXIstmg class speCIfic feature set whIle labellmg 

Algorithm 11 CLUSSLab(C",6 6, 6, ~4) 
Input: Ck represents the cluster obtamed from TreeCLUSS ~1 IS number of m­

stances m a cluster 6 IS the cluster compactness score 6 IS the matchmg 
probabilIty of features of a cluster With respect to a speCIfic class and ~4 IS the 
out her score value of each m:,tance of a clu:,ter 

Output: Label clustcrs C1 C2 , C3 Ck as normal or anomalous 
1 for'/, t- 1 to k do 

S[z] = IC,I 2 

3 M[I] = call StableCLUSS( C,) 
4 end for 

!> S stores the cardmahty of each cluster 
!> M stores the cluster compactness score 

5 function UREFT( Cd !> functIOn to unsupervIsed featurc clusterIng techlllque 
6 for z t- 1 to k do 
7 for J t- 1 to S, do 
8 if (H(Cs)) :::; 1]1 && (H(Cs Cns)) :::; 1]2 then r> check withm 

cluster and between cluster entropy 
9 Cs[z] t- f z, z = 1,2, d 

10 else 
11 Cns[z] t- fz, Z = 1,2, d 
12 end if 
13 end for 
14 end for 
15 end function 
16 for z t- 1 to k do 
17 if S[z] :::; 6 && 1I1[z] < 6 && C, 2 ~4 then !> check cardmahty of a 

cluster, compactness score, and outlIer score 
18 if P'(ICs[z]l, 1M M I FS[zJl) :::; ~l then !> check matchmg probabIlity 

w r t a speCIfic elas:, 
19 anomalous t- C, 
20 else 
21 normal t- C, 
22 end if 
23 end If 
24 end for 
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7.4.4 Complexity Analysis 

As discussed. the proposed method IS works in two phases. The first phase IS 

subspace clustering technique, i.e., the TreeCLUSS. We assume that k clusters 

are obtained from n data objects. During cluster formation, TreeCLUSS takes 

O(nlogk) time and for stability analysis, it takes O(klogk) time. Hence, the total 

computational complexity of TreeCLUSS is O(nlogk). 

The second phase is multi-objective cluster labelhng technique, i.e., the CLUS­

SLab. It is again comprised of four sub-modules viz., cluster size, compactness, 

dommating feature subset (DFS) and outlier score (OS) To compute, compactness, 

dominating feature subset and outlier score, it takes O(nlogn), O(n), and O(kn) 

time, respectively. Hence, the total time complexity of CLUSSLab is O(nlogn + kn) 

The time complexity for each stage of our unsupervised network anomaly detec­

tion method is linear w.r.t. the size of dataset, the number of features, the number 

of clusters and the labelling of each clusters. Hence, it is effective in detecting 

known as well as unknown attacks with the least amount of false alarms. 

7.5 Experimental Analysis 

In this section, we present experimental analysis and results of the unsupervised 

network anomaly detection method usmg several real world datasets from the UCI 

machine learning repository and datasets prepared in the TUIDS testbed at both 

packet and flow levels [264]. The datasets used in this work to evaluate the proposed 

method and experimental results are discussed below. 

7.5.1 Datasets Used 

We use two sets of datasets, viz., (a) Non-intrusion datasets taken from UCI ML 

repository for initial evaluation and estabhshment of the proposed algorithms, (b) 

intrusion datasets. 
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Non-intrusion Datasets 

We use ten non-intrusion datasets [356]. Zoo, Glass, Abalone, Shuttle, Wine, Lym­

phography, Heart, Pima, Vehicle and Poker Hand to initially validate clusters gen­

erated by TreeCLUSS. Table 7 5 describes the detaIls of the non-intrusion datasets 

and their characteristics. 

Table 7.5: Characteristics of real-life non-intrusion datasets 

Non-mtruslon Datasets DimenSion No of mstances No of classes 
Datasets (NID) 
NID1 Zoo 18 101 7 
NID2 Glass 10 214 6 
NID3 Abalone 8 4177 29 
NID4 Shuttle 9 14500 3 
NID5 Wme 13 178 3 
NID6 Lymphography 18 148 4 
NID7 Heart 13 270 2 
NID8 Pima 8 768 2 
NID9 VehIcle 18 846 4 
NIDlO Poker Hand 10 25010 10 

Intrusion Datasets 

We use five different real life mtrusion datasets. such as ( a) TUIDS coordinated scan 

datasets, (b) TUrDS datasets, (c) TUIDS DDoS datasets, (d) NSL-KDD dataset 

and (e) KDDcup99 datasets. We capture, preprocess, and extract features in both 

packet and flow level network traffic and generate TUrDS benchmark datasets. A 

detailed discussion of TurDS datasets generatIOn is gIven in Chapter 4 Ncxt we 

discuss each dataset in brief. 

(a) TUJDS real-tzme Coordmated scan dataset: We launched attacks in a coor­

dinated mode using the mmapl tool to generate the traffic including normal 

traffic. We captured the traffic in both packet and flow levels to prepare the 

dataset. Characteristics of this dataset are gIven m Table 7.6. 

(b) TUIDS real-hJe mtruszon dataset: This dataset is prepared by launching 20 

different attacks with normal traffic connections It contains 15 DoS attacks 

and 5 probe attacks Characteristics of this datasets are given in Table 7.6. 

1 http j jrnmap.sourceforge.netj 
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(c) TUlDS real-IzJe DDoS dataset It IS prepared usmg the same TUIDS testbed 

with three different floodmg attacks launched m amphficatlOn mode whIle 

captunng the traffic at flow level only CharacteflstJcs of thIS dataset are 

given m Table 76 A bflef descflptlOn of DDoS attacks we launched IS gIven 

below 

- In smurJ attack, the attacker sends packets to a network amplIfier (a sys­

tem supportmg broadcast addressmg) wIth the return address spoofed 

to the vIctIm's IP address It uses ICMP ECHO packets and as a result 

the ongmal packet spoofs tens or even hundreds of times to the vIctIm 

host 

- The Fraggle attack IS simIlar to a smurf attack m that the attacker sends 

packets to a network amplIfier but uses UDP ECHO packets mstead of 

ICMP ECHO packets The UDP ECHO packets are sent to the port 

that supports character generatIOn (chargen, port 19 m UnIx systems), 

With the return address spoofed to the victim's echo serVIce (echo, port 

7 III Umx systems) creatmg an lllfimte loop 

- The SYN Jloodzng attack exploIts the TCP s three-way handshake mech­

amsm and ItS hmltatlOn m mamtammg half-open connectIOns So It 

drops more packets whIle sendmg from source to destmatIOn 

(d) NSL-KDD zntruszon datasets NSL-KDDII::' an enhanced velSIOn of the KDD­

cup99 datasets These are well-known datasets for mtrusIOn detectIOn system 

evaluatIOn The dataset IS descnbed m Table 7 6 

(e) KDDcup99 zntruszon datasets ThIs IS the most well-known and the most pop­

ular mtruslOn dataset used for evaluatlOn of any mtruslOn detectIOn system 

It contams trammg data processed mto about five mIllIon network connectIOn 

records A eonnectlOn record IS a sequence of TCP packets with well-defined 

startmg and endmg times Each connectIOn record IS umque m the dataset 

with 41 contmuous and nommal features plus one class label Thc features 

available m the KDDcup99 dataset are reported m Chapter 4 A detaIled 

descnptIOn of the dataset IS also given m Table 7 6 

Ihttp j jwww ISCX cajNSL-KDDj 
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Table 7.6: DIstrIbutIOn of Normal and Attack connectIOn lllstances ll1 real-hfe TUrDS 
Coordll1ated scan (packet and flow) TUIDS (packet and flow) TUIDS DDoS flow level, 
NSL-KDD packet level and KDDcup99 packet level ll1trusion datasets 

IntrusIOn Datasets (ID) ConnectIOn type D,menSIOns No of Instances No of classes 
IDI TV/DS coordmated scan 

packet level 
Normal 106 l80 1 
Probe 50 1442 l 6 
Total I2080J 7 

!D2 TV/OS coordmated scan 
flow level 
Normal 360B 1 
Probe 25 15654 6 
Total 51687 7 

103 TV/D5 packet level 
Normal 47895 1 
DoS 50 30613 15 
Probe 7757 5 
Total 86265 21 

1D4 TV/DS flow level 
Normal 16770 1 
DoS 25 14475 15 
Probe 9480 5 
Total 40725 21 

1D5 TVJDS DDoS flow level 
Normal 25 43252 1 
Flooding attacks 22707 J 
Total 65959 4 

1D6 NSL-KDD packet le1lel 
Normal 9711 1 
DoS 7460 11 
Probe 41 2421 6 
R2L 2751 12 
U2R 1'l'l 8 
Total 22544 ~8 

107 KDDcup99 corrected 
packet level 
Normal 60593 1 
DoS 229853 12 
Probe 41 4166 6 
R2L 16189 12 
U2R 228 6 
Total 311029 37 

7.5.2 Results and Discussions 

In thIS sectlOn we report the performance of the proposed method usmg real-lIfe 

and benchmark datasets The method does not use any class mformatlOn when 

it plOccsses a dataset for anomaly detectIOn We measure the accuracy of the 

algonthms usmg the followmg metncs 

• DetectIOn rate = True PositIve!(True POSItIve + False Negative) 

• False pOSItIve rate = False PosItlVe/(False POSItIve + TIlle NegatlVe) 
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Non-intrusion Datasets 

The method was initially tested usmg non-mtrusion datasets We label each cluster 

obtamed by TreeCLUSS usmg our CLUSSLab cluster labelling technique. We com­

pare performance in terms of detection rate (DR) and false positive rate (FPR). 

Detailed results are given in Table 77. 

Table 7.7: Experimental results on non-intrusion datasets 

Dataset No. of clus- Correctly 1'1 IS- Detection False positive 
ters detected detected rate (%) rate (%) 

NIDI 8 95 6 94.06 0.0594 
NID2 9 206 8 96.26 0.0373 
NID3 22 4002 175 95.81 0.0418 
NID4 3 14296 204 98.59 0.0141 
NID5 3 174 4 97.75 0.0121 
NID6 5 135 13 91.22 0.0471 
NID7 2 266 4 98.51 0.0522 
NID8 2 761 7 99.08 0.0125 
NID9 5 809 36 95.62 0.0613 
NID10 12 24867 143 99.42 0.0018 

Intrusion Datasets 

In these experiments, we test our method for network anomaly detection using 

TUIDS, NSL-KDD and KDDcup99 network intrusion datasets discussed above. It 

converts all categorical attnbutes mto numeric form and then computes IOCJb(x.J ) 

to normalize larger attnbute values, where Xl] is a large attribute value and b 

depends on the attribute values Nominal features such as protocol (e.g., tcp, udp, 

zcmp) , service type (e.g., http, jtp, telnet) and TCP status flags (e.g., sf, reJ) are 

converted into numeric features. We replace categorical values by numeric values. 

For example, in the protocol attribute, the value TCP is changed to 1, UDP is 

changed to 2 and ICMP is changed to 3 

We initially apply TreeCLUSS on a subset of relevant features extracted using 

the MMIFS algorithm [81] for all intrusion datasets to generate a stable number of 

clusters and label each cluster using CLUSSLab as normal or anomalous. Experi­

ments used the following datasets. (a) TUIDS real-tIme Coordinated scan datasets, 

(b) TUIDS real-time intrusion datasets, (c) TUmS real-time DDoS datasets, (d) 
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NSL-KDD mtruslOn datasets, and (e) KDDcup99 mtruslOn datasets Then, we ap­

ply MMIFS algorIthm to find the class specific relevant subspaces fOl all datasets 

These class specific feature subsets are used dUrIng cluster formation A lIst of 

relevant features for all datasets with their ranks m descendmg order are given m 

Table 7 8 Fmally, experImental results of all datasets are given m Table 7 9 

Table 7.8: Feature ranb for all cJasses 111 1I1truslOn datasets See Table 76 for ID 
numbers 

Datasets #Features Selected features 
IDJ pacl .. et level 
NOlmal 10 8 II 79,14,28,45,1,482 
Probe 15 45834,33,49,7,1450,44,41,39,20222,30 
ID2 flow level 
Normal 11 14718,15,19,2,2221,25,1,4 
Probe 14 7,1411,9,25,21,2418,15,2,6,1,12,13 
IDS packet level 
Normal 9 8,3379,14,28,45,1,482 
DoS 10 8,33740,38,9,2,41,492 
Probe 13 45834,33,49,7,5044,41,39,20,2,30 
ID4 flow level 
Normal 11 147 18,15,19,16222,21,25,1 
DoS 10 14 18,7,24,25,2,12 16,19,22 
Probe 13 7,14 11,9,16,25,2124,18,15,2,6,1 
ID5 flow level 
Normal 9 83379,14,28,45,1,48 
Floodmg attacks 12 89 .!l 14,J~,4J,49 47,7,42,1,11 
ID6 packet level 
Normal 7 5 l 2 ~ 6,J5,1,29 
DoS 10 5,23 6 24,2,24,.36,41 J 25 
Probe 15 40521, 11,4,28, ~,41 15,29,27,12,6 1224 
U2R 10 51 l 1I,24,2l,14,6, 1221 
R2L 14 l,6 5 Il,22,21,10, l5 ~7,24,4,1, 19, l8 
ID7 packet level 
Normal 6 5,2~, ~ 6 ~5, 1 
DoS 8 5,21 6 2,24,41, l6, ~ 

Probe 11 40 5, 33, 21, 28, 3 41 35,27 12, 12,24 28 
U2R 10 5, 1, 3, 24, 23, 2, 33, 6, 32, 4 14, 21 
R2L 15 J 13, 22, 23, 10, 5 35, 24, 6, 33, 37, 32, 1, 37 39, 22, 38 10,3 

Discussions 

We achIeve better result~ than competmg algonthms for network anomaly detectIOn 

m terms of detectIOn rate and false positIve rate A comparIson of our method wIth 

several eompetmg algonthms VIZ, C45 [372], ID3 [156]' CN2 [373]' CBUID [7], 

TANN [8], HC-SVM [4] usmg TUIDS datasets and KDDcup99 datasets is gIven m 

Figure 7 5 and FIgure 7 6, respectIvely It can be easIly seen from the figures that 

our method outperforms the competmg algOrIthms [4,6-8] m the terms of detectIOn 

rate and false posItIve rate, especially m case of probe, U2R and R2L attacks 

TreeCLUSS depends on two mam parameters, Q2 and /32 but users need to 
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Table 7.9: Results on intrusion datasets using proposed method 

Type of No. of clusters Correctly Mis- DetectIOn False positive 
traffic detected detected rate (%) rate (%) 

IDI packet level 
Normal. 7 105121 1259 98.81 0.0164 
Probe. 7 14292 131 99.09 0.0017 
Overall. 14 119413 1390 98.95 0.0091 
ID2 flow level 
Normal. 5 35668 365 98.99 0.0153 
Probe. 7 15519 135 99.13 0.0015 
Overall. 12 51187 500 99.06 0.0084 
IDS packet level 
Normal. 5 47109 786 98.35 0.0164 
DoS. 16 29997 616 97.99 0.0166 
Probe. 5 7637 120 98.45 0.0014 
Overall. 26 84743 1522 98.26 0.0114 

ID4 flow level 
Normal. 3 16486 284 98.30 0.0169 
DoS. 16 14381 101 99.35 0.0167 
Probe. 4 9225 255 97.31 0.0149 
Overall. 23 40092 640 98.32 0.0161 
IDS flow level 
Normal. 2 43104 148 99.65 0.0034 
Flooding 4 22272 435 98.08 0.0195 
attacks. 
Overall. 6 65376 583 99.11 0.0089 
ID6 packet level 
Normal. 3 9573 138 98.57 0.0147 
DoS. 12 7391 69 99.08 0.0052 
Probe. 6 2356 65 97.32 0.0182 
R2L. 11 2367 386 85.97 0.1493 
U2R. 7 131 68 65.83 0.2050 
Overall. 39 21818 726 89.35 0.0784 
ID7 packet level 
Normal. 5 59901 692 98.85 0.0113 
DoS. 14 229796 57 99.97 0.0016 
Probe. 5 4018 148 96.45 0.0160 
R2L. 13 14007 2182 86.52 0.1335 
U2R. 5 151 77 66.23 0.1973 
Overall. 42 307873 3156 98.98 0.0102 

provide (}2 value only. {32 can be derived from G'2. Each is chosen using a heuristic 

approach for each dataset. Hence, our method is less dependent on input parameters 

compared to competing algorithms [4,6-8, 31J. 
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Figure 7.5: Comparison of our method with competing algorithms using TUIDS intru­
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Figure 7.7: Chi-square test statistics for seven different llltrusion datasets with signifi­
cance level a = 0.05 (min = 4.86, max = 333.28) 

7.5.3 Statistical Significance Test 

In addition to the evaluation based on real-life intrusion data, we also compute 

statistical significance of our results using two well known statistical measures: chi­

square test and t-test. The chl-square test is used to compute how significantly the 

observed values are different from the expected values of the distributlOn for a given 

sample [374J. We reject the null hypothesis if the chI-square value is greater than 

the tabulated value W.r.t. the degree of freedom and level of significance. We tested 

over seven network intrusion datasets mentlOned above and obtamed slgnifieance 

level a = 0.05 in all datasets as shown Figure 7.7. 

The t-test is used to find the difference between two means in relation to the 

variation in the data If the computed t-value exceeds the tabulated value, we say 

that it is highly significant, so that we can reject the null hypothesis. We tested over 

seven intrusion datasets and obtained t-values as shown in Figure 7.8. Thus, for 

both statistical significance tests, we achlCved higher signIficance level for differences 

between normal and anomalous samples. 
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Figure 7.8: t-test statistics for seven different intrusion datasets with significance level 
Q = 0.05; N-P,D,F,R,U represents the normal, probe, DoS, flooding attacks, R2L and 
U2R respectively. 

7.6 Summary 

This chapter presents an unsupervised tree-based subspace clustering technique for 

network anomaly detection in high dimensional datasets. It generates the approx­

imate number of clusters without having any prior knowledge of the domain. We 

analyze cluster stability for each cluster using an ensemble of multiple cluster in­

dices. We also introduce a multi-objective cluster labelling technique to label each 

stable cluster as normal or anomalous. The major attractions of our proposed 

method are: (i) TreeCLUSS does not require the number of clusters apriori, (ii) It 

is free from the restriction of using a specific proximity measure, (iii) CLUSSLab 

is a multi-objective cluster labelling technique including an effective unsupervised 

feature clustering technique for identifying a dominant feature subset for each clus­

ter, and (iv) TreeCLUSS exhibits a high detection rate and a low false positive rate, 

especially in case of probe, U2R, and R2L attacks. Thus, we are able to establish 

the proposed method to be superior compared to competing network anomaly de­

tection techniques. We also demonstrate t.hat the results produced by our method 

are statistically significant. 
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Chapter 8 

Extended Entropy Metric-based 

Approach for DDoS Flooding 

Attack Detection 

In the previous chapters, we have introduced three clustering and outlier-based 

schemes for network anomaly detection and discussed theIr effectiveness considenng 

several synthetic and real-life datasets. This chapter focuses on DDoS attacks and 

starts with a description of basics of DDoS attacks, significance of such attacks and 

detection methods wIth a general companson under each category. A distributed 

denial of service (DDoS) attack [120,375J is a large-scale, coordinated attack on the 

availability of servIces of a victim system or network resources, launched indirectly 

through many compromised computers on the Internet. These attacks normally 

consume a huge fractIon of the resources of a server, making it impossIble for le­

gitimate users to access the server. Such attacks also consume excessive network 

bandwidth by compromising network traffic. These attacks generate a huge surge 

in traffic with focus on a vIctIm through the intermediary of compromised hosts 

within a short time interval. A very important requirement of a DDoS attack de­

tection scheme is cost effectiveness and scalability. The scheme should be scalable 

enough to handle large amount of traffic instantly with high detection accuracy. 

However, the schemes introduced in the previous chapters are not adequate for thIs 

purpose In this chapter, we introduce an effective extended entropy metric-based 

DDoS floodmg attack detection scheme to detect four classes of DDoS attacks, viz, 

constant rate, pulsing rate, increasing rate and subgroup attacks. The scheme aims 
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to Identify DDoS ftOOdlllg attacks by measurlllg the metnc dlffelence between legit­

Imate traffic and attack traffic It explOits a genelalIzed entlopy metnc With packet 

llltensity computatIOn over the sampled network traffic With respect to time V\Te 

also extend the mechanIsm llltO use an ensemble of extended entropy metrlcs for 

lllcreaslllg detectIOn rate III near real-time The propo::,ed ::,cheme I::' evaluated USlllg 

several real world DDoS datasets and has been found to outperform the competlllg 

methods when detectlllg classes of DDoS ftoOdlllg attacks 

8.1 Introduction 

Due to the lllcreaslllg use of modern networks and Internet technologle::, III users' 

several dav-to-day tasks, the network vulnerabilities are also growlllg exponentially 

III view of deSign weaknesses of networks With the recent exponential growth 

III Internet attacks, It has become crUCially Important to detect network traffic 

anomalIes lllcludlllg llltelhgent attacks to keep SCCUle entelprlSe networks Programs 

that enable launchlllg of denIal of service attacks have been around for many years 

Old slllgie source attacks are now countered easIly by many defense mechanIsms 

and the source(s) of such attacks can be eaSily rebuffed or shut down With Improved 

tracklllg capabilIties However, With the astoundlllg growth of the Internet durlllg 

the last decade an lllcreaslllgly large number of vulnerable systems are now available 

to attackers Attackers can now employ a large number of these vulnerable hosts 

to launch an attack lllstead of U::'lllg a slllgie sel ver, an approach which was never 

very effective and detected easJlv 

The first well-documented DDoS attack appears to have occUlred III August 

1999, when a DDoS tool called Trllloo was deployed III at least 227 systems, to 

flood a slllgie UnIVerSIty of Mlllnesota computer, which was knocked down for more 

than two daysl The first large-scale DDoS attack took place on February 20001 

On February 7, Yahoo' was the VIctim of a DDoS attack dUring which ItS Internet 

portal was lllaccessible for three hours On February 8, Amazon Buy com, CNN 

and eBay were all hit by DDoS attacks that caused them to either stop functIOnIng 

completely or ::,lowed them down SignIficantly! 

1 http / /www garykes:;ler net/library jdclos html 
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DDoS attack networks follow two types of architectures the Agent-Handler 

architecture and the Internet Relay Chat (IRC)-based architecture as discussed 

by [10 376] The Agent-Handler architecture for DDoS attacks IS compnsed of 

chents, handlers, and agents (see Figure 81) The attacker commUnicates with 

the rest of the DDoS attack ~y~tem at the chent systems The handler~ are often 

software packages located throughout the Internet that are used by the clIent to 

commUnicate With the agents Instances of the agent software are placed m the 

compromised systems that finally carry out the attack The owners and users of the 

agent systems are generally unaware of the situatIOn In the IRC-based DDoS attach. 

architecture, an IRC commUnicatIOn channel IS used to connect the clIent(s) to the 

agents (see Figure 82) IRC ports can be used for sendmg commands to the agents 

ThIS makes DDoS command packets more untraceable Moreover, It IS eaSIer for 

an attacker to hIde hIS presence m an IRC channel as such channels tend to have 

large volumes of traffic A recent attackmg tool by anonymous based on the IRC 

protocol IS LOIC (Low OrbIt Ion Cannon) [377] It mcludes three pnmary methods 

of attacks for TCP UDP, HTTP and IS found m two verSIOns bmary and web­

based It allows clIents to connect remotely VIa the IRC protocol and to be a part of 

a system of compromIsed hosts The bIgger the SIze of compromised hosts the more 

powerful the attack IS In addItIOn to these two architectures, the agent handler 

archItecture IS also commonly found muse m the lIteiature [10,376] Along With 

the evolutIOn of new DDoS attack tools many DDoS defense mechanisms have also 

been proposed These approaches are of three types dependmg on theIr localIty of 

deployment ~ource-end, VIctim-end and mtermedJate network [378] Detectmg any 

DDoS attack at the VIctIm end IS easy, but often not useful after legltlmate clients 

have been denied access Source-end detection IS a very ehallengmg task Detection 

approaches used 1l1clude statistical soft-comput1l1g, cluster1l1g, knowledge-based 

and clasSifiers 

DDoS attacks are dlstnbuted, cooperatlve large scale attacks ong1l1ate and 

spread 111 both Wired and Wireless networks [10,379] 111 parallel ways Hence both 

1l1dustry and academia are mostly mterested m defendmg from DDoS attacks and 

protect1l1g access by legitimate users The detectIOn of DDoS attacks IS not an easy 

task due to the use of forged source addresses and concealment of the attack sources 
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Figure 8.1: Agent-handler network of DDoS attack 

Figure 8.2: IRe-based network of DDoS attack 

using several techniques In addition, it IS difficult to distinglllsh attack traffic from 

normal traffic consldenng Just their traffic rate::.. An lllformatlOn theory-based net­

work behavIOr mimicking DDoS attacks detection method is introduced in [380]. 

It can discriminate mimicked flooding attacks from legitimate access traffic effec­

tively. Several research efforts on DDoS detection [381-383]' mitigation [384-386J 

and filtenng [387,388] have been conducted separately. However, the efforts on both 

detection and IP traceback are limited especially if real-time mitigation IS descried. 

There are two types of DDoS attack based on the flow of traffic rate, viz, (a) high­

rate DDoS attack traffic, which is exceptional and (b) low-rate DDoS attack, which 

is similar to normal traffic [389]. Low-rate DDoS attack is difficult to detect and 

mitigate within a short time interval 
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8.1.1 Motivation and Contributions 

Network or host-based attack detection methods are of two types: signature-based 

and anomaly-based. A signature-based method builds profilcs using known charac­

teristics of both attack and normal traffics, and then matches the incoming traffic 

with it to report any alarm. In contrast, the anomaly based method models the 

normal behavIOr and compares it with incoming traffic for any deviation. Several in­

formation theory based metrics have been proposed to overcome the problems faced 

by both misuse and anomaly detection methods [379,390]. Information theory can 

associate an uncertamty measure with a random variable. Entropy IS the commonly 

used property because ItS value depends on the amount of matenal or mformation. 

Shannon and Renyi entropies [391] share the property that the joint entropy of a 

pair of mdependent random variables equals the sum of mdividual entropies Shan­

non's entropy and Kullabck Leibler Divergence have both been regarded as effective 

methods to detect abnormal traffic based on IP address distribution statistics or 

packet size distribution statistics [392]. For any DDoS defense system, the main 

criteria to achieve are (a) early stage detection, (b) high accuracy and (c) low false 

alarm rate. Researchers have failed to achieve all these goals sm1Ultaneously. The 

following major contnbutions have been made in this chapter 

• We present a survey of DDoS attacks, a taxonomy, detection methods and 

tools. In our taxonomy, there are seven distinct pOSSibilities in which an in­

truder can attempt to launch DDoS attacks. We mclude a detailed discussion 

of vanous DDoS defense mechamsms and methods under the broad categories 

of statistical, knowledge-based, soft computing, data mining, and machine 

learning. 

• We propose an effective DDoS flooding attack detection scheme using an ex­

tended entropy metric that adapts the generalized entropy with packet inten­

sity in a sampled traffic within a time interval. We attempt to detect four 

classes of DDoS flooding attacks [392], viz., constant rate, pulsing rate, in­

creasing rate and subgroup attacks obtained based on attack rate dynamics 

(see Figure 8.3). 

• We also extend our scheme to use an ensemble to increase detection rate in 
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near real-time. The proposed scheme demonstrates the effective mcrease of 

detectlOn rate while detectmg major classes of DDoS fioodmg attacks . 

• We present extensive expenmental results usmg real-world DDoS datasets. 

These include (i) the MIT Lincoln Laboratory dataset, (il) the CAIDA DDoS 

2007 dataset and (iii) the TUIDS DDoS dataset as discussed in Chapter 4. The 

performance of the proposed scheme IS superior in comparison to competing 

methods . 
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Figure 8.3: Classes of DDoS flooding attacks based on the attack rate dyna.mics: (a) 
constant rate, (b) pulsing rate, (c) mcreasmg rate and (d) subgroup attack 

8.2 DDoS Attack and Related Concepts 

As stated in [10,393]' a DDoS attack can be defined as an attack which uses a large 

number of compromised computers to launch a coordinated DoS attack against a 

single machine or multiple victim machines. Using client/server technology, the 

perpetrator IS able to multiply the effectiveness of the DoS attack significantly by 

harnessing the resources of multiple unwitting accomplice computers, which serve 

as attack platforms. Approximate attack statistics for DDoS [394] up to the year 

2013 are shown in Figure 8.4. A DDoS attacker IS considered more intelligent than 

a DoS attacker. It is distinguished from other attacks by its ability to deploy its 

weapons in a "distributed" way over the Internet and to aggregate these forces to 
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create lethal traffic. Rather than breaking the victim's defense system for fun or to 

show prowess, a DDoS attack usually aims to cause damage on a victim either for 

personal rcasons and material gain although some attacks may be to gain popularity. 

30 ---------------------------------------------------------, 

2583 
.Percentage 010005 attack types on 2013 

063 0.32 0.32 

Tep SYN HTTP UDP ICrAP UDP DNS TCP ACK SSl GET HTTP TCP PUSH SYN TCP FIN SSl 
GET traumerrt POST RESET PUSH PUSH POST 

Figure 8.4: DDoS attacks statistics up to the year 2013 [source: [9]] 

DDoS attacks mainly take advantage of the architecture of the Internet and 

this is what makes them powerful. While designing the Internet, the prime concern 

was to provide for functionality, not security. As a result, many security issues have 

been raised, which are exploited by attackers. Some of the issues arc given below. 

• Internet secunty tS highly interdependent. No matter how secure a victtm's 

systcm may be, whether or not this system will be a DDoS victim depends 

on the rest of the global Internet [395,396]. 

• Internet resources are limited. Every Internet host has limited resources that 

sooner or later can be exhausted by a sufficiently large number of users. 

• Many against a few: If the resources of the attackers are greater than the 

resources of the victims, the success of the attack is almost definite. 

• Intelligence and resources are not collocated. Most intelligence needed for 

service guarantees is located at end hosts. At the same time high band­

width pathways needed for large throughput are situated in the mtermediate 

network. Such abundant resources present in unwitting parts of the network 

arc exploited by the attacker to launch a successful flooding attack. 
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• The handlers or the masters, whIch are compromIsed hosts wIth specIal pro­

glams runnmg on them, are capable of controllIng multIple agents 

• The attack daemon agents or zombIe hosts are compromIsed hosts that are 

runnmg a specIal program each and are responsIble for generatmg a stream of 

packets towards the mtended vIctIm These machme::. are commonly external 

to the vIctIm's own network to dIsable efficIent response from the vIctIm, and 

external to the network of the attacker to forswear lIabIlIty If the attack IS 

traced back 

8.2.1 DDoS Strategy 

A DIstrIbuted DenIal of ServIce (DDoS) attack IS composed of several elements as 

shown m FIgures 8 5 and 8 6 

~::::~ 
.. -_ ..... --_ .......... -,' .......................... _- ............ ... 

----~~ -~~--

Figure 8.5: D~rect DDoS attack Send contlOl traffic directly to the zomblC5 to attack 
the VlctllTI host 

Figure 8.6: Jnd~rect DDoS attack Send contlOl traffic mdlrectly to the zomblCs to 
COmprOiTIISe the target host Reflectors are non-c.ompromlsed sY5tems that exclusively 
send replies to a request 
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There are four basic steps in launching a DDoS attack. These are shown m 

Figure 8.7. 

Figure 8.7: Steps to perform a DDoS attack 

(a) Selectwn of agents The attacker chooses the agents that will perform the 

attack. Based on the nature of vulnerabilities present, some machmes are com­

promised to use as agents. Attackers victimize these machines, which have 

abundant resources, so that a powerful attack stream can be generated. In 

early years, the attackers attempted to acquire control of these machines man­

ually. However, with the development of advanced security attack tool(s), it 

has become easier to identIfy these machines automatIcally and instantly. 

(b) Compromzse. The attacker exploits secunty holes and vulnerabilities of the 

agent machines and plants the attack code. Not only that, the attacker also 

takes necessary steps to protect the planted code from identification and de­

activation. As per the dIrect DDoS attack strategy, shown in Figure 8.5, the 

compromIsed nodes, i.e, zombIes between the attacker and victim are recruited 

unwitting accomplice hosts from a large number of unprotected hosts connected 

through the Internet in high bandwidth On the other hand, the DDoS attack 

strategy shown in Figure 8.6 is more complex due to inclusion of intermediate 

layer(s) between the zombies and victim(s). It further comphcates the traceback 

mostly due to (i) complexity in untangling the traceback information (partial) 

with reference to multiple sources, and/or (ii) having to connect a large number 

of routers or servers. Self-propagatmg tools such as the Ramen worm [397] and 

Code Red [398] automate this phase Unless a sophisticated defense mechanism 

is used, it is usually difficult for the users and owners of the agent systems to 
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realize that they have become a part of a DDoS attack :,ystem Another im­

portant feature of such an agent system is that the agent programs are very 

cost effective both in terms of memory and bandwidth Hence they affeet the 

performance of the system minimally. 

(c) Commumcatzon The attacker communicates with any number of handlers to 

identify which agents are up and runnmg, when to schedule attacks or when to 

upgrade agents. Such commuTIlcations among the attackers and handlers can 

be via variOUS protocols such as ICMP, TCP or UDP. Based on configuration of 

the attack network, agents can communicate with a smgle handler or multiple 

handlers. 

(d) Attack The attacker initiates the attack. The victim, the duration of the 

attack as well as special features of the attack such as the type, length TTL, 

and port numbers can be adjusted. The attackers use available bandwidth and 

send huge number of packets to the target host or network to overwhelm the 

resources immediately 

8.2.2 DDoS Attack Taxonomy 

A taxonomy of DDoS attacks based on [392] is given in FIgure 8.8. We sec m the 

taxonomy that mtruders attempt to launch DDoS attacks based on exploitatIOn of 

various means (shown m the left column) and their resultant effects can be observed 

at various levels 

8.2.3 Architecture of DDoS Attack Defense Mechanisms 

Based on the locality of deployment, DDoS defense schemes can be divided into 

three classes [378]: vIctim-end, source-end and intermedIate network defense mech­

anisms. All of these mechamsms have their own advantages and disadvantages. We 

discuss them one by one. 
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Figure 8.8: A taxonomy of DDoS attacks [10] 

Victim-end Defense Mechanism 

In the vIctIm-end defense mechamsm detectIOn and response are generally done 

m the routers of vIctIm networks, Ie, networks provldmg cntlcal Internet servIces 

These mechamsms can clo~ely observe the vlctml network traffic, model ItS behaVIOr 

and detect anomahes Detectmg DDoS attacks m vIctIm routers IS relatIvely easy 

because of the hIgh rate of resource consumptIOn It IS also the most practIcally 

applIcable type of defense mechamsm that can clasSIfy the attack traffic from legIt­

Imate traffic But the mam ploblems wIth thIS mechamsm are (I) Dunng DDoS 

attacks, vIctIm resources, e g network bandwIdth, often get overwhelmed and can­

not stop the flow beyond vIctIm routers and (11) It can detect the attack only after 

It reaches the vIctIm and detectmg an attack when legItImate chents have already 

been demed IS not useful A genenc architecture of such mechamsms IS shown 111 

FIgure 89 
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Figure 8.9: Generic architecture for victim-end DDoS defense mechanism 

Source-end Defense Mechanism 

Detecting and stopping a DDoS attack at the source is made in the source-end 

defense mechanism. This mechanism detects malicious packets and prevents the 

possIbilIty of floodmg but not at the vIctIm side. It is best to filter or rate limit 

malicious traffic with minimum damage within the legitimate traffic Moreover, 

a source-end based defense mechanism gains knowledge from a small amount of 

traffic and consumes minimum resources (i.e., processing power and buffer). The 

main difficultlCs of this mechamsm are: (1) It cannot observe SUSpICIOUS traffic at the 

victIm-end because it has no interaction with the victim node, (Ii) Sources are widely 

distributed and a single source behaves almost similarly as in normal traffic, and (iii) 

Identification of deployment points are at the source-end. A generic architecture of 

source-end defense mechanisms is shown in Figure 8.lD. 

Intermediate Network Defense Mechanism 

The intermediate network defense scheme balances the trade-offs between detec-

tion accuracy and attack bandwidth consumption, the main issues in source-end 

and victim-end detection mechanisms. It can be deployed in any network router 

connected to an ISP. Such a scheme is generally collaborative in nature and the 

routers share theIr observations with other routers Detection of attack sources is 
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Figure 8.10: Generic architecture for source-end-based DDoS defense mechanism 

easy in this approach due to collaborative operatlOn. Routers can form an overlay 

mesh to share their observations [399]. The main difficulty with this mechanism 

is the location of deployment. The unavailability of this mechanism in only a few 

routers may cause failure to the detection effort and the full practical implemen­

tation of this mechanism is extremely difficult because it will require reconfiguring 

all the routers on the Internet Figure 8 11 shows a generic architecture of the 

intermediate network defense mechamsm 

To address the above deficienclCs It would be benefiCial to construct victim-

end based defense mechanisms that can perform detectlOn and IP traceback of 

DDoS attacks with a low false positive rate, performed within a short time mterval. 

A comparison of DDoS defense mechamsms at different deployment locations is 

given in Table 8.1. From the table, it can be observed that victim-end system is 

advantageous in view of the following points. 

Table 8.1: Feasibility of DDoS defense at deployment location 

Deployment Charactenstlcs Rate hmltmg/ FII- Defense vulnerabll- Deployment dlffi-
tenng Ity / Robustness culty 

Source-end Very dIfficult Easy Low HIghly dIfficult 
VIctIm-end Easy DIfficult HIgh Very easy 
IntermedIate DIfficult DIfficult MedIUm DIfficult 
network 

• It can closely observe the victim system or host to analyze the network traffic 
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Figure 8.11: Genenc. architecture for intermediate network-based DDoS defense mech­
anism 

in near real-time. 

• Easy to deployment . 

• Cheaper to detect DDoS attacks than other mechamsms. 

8.3 Prior Research 

In this section, we present a summary of existing literature on DDoS attack detec­

tion methods. These methods are based on the three architectures introduced earlier 

namely, victim-end, source-end and intermediate network. We discuss these schemes 

without presenting how they can be deployed in real networks. Recent trends show 

that soft computing approaches we being widely used heavily for DDoS attack detec­

tion. Ensembles of classifiers have also performed satisfactorily with high detectIOn 

rates. We classify methods for DDoS attack detection into four major classes as 

shown in Figure 8.12 
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Figure 8.12: Classification of DDoS attack detection methods 

8.3.1 Statistical Methods 

Statistical properties of normal and attack patterns can be exploited to detect 

DDoS attacks. Generally a statistical model for normal traffic is fitted and then a 

statistical mference test is applied to determine if a new instance belongs to this 

model. Instances that do not conform to the learnt model, based on the applied 

test statistics, are classified as anomalies. Chen et al. [400] develop a distributed 

change point (DCP) detection architecture using change aggregatIOn trees (CATs). 

The non-parametric CUSUM approach was adapted to de::,cribe the distribution 

of pre-change or post-change network traffic When a DDoS flooding attack is 

being launched, the cumulative deviation is noticeably higher than random fluc­

tuatIOns. The CAT mechanism is designed to work at the router level to detect 

abrupt changes m traffic flows. The domain server uses the traffic change patterns 

detected at attack-transit routers to construct the CATs, which represent the at­

tack flow patterns A very well-known DDoS defense scheme called D-WARD is 

presented in [401]. D-WARD identifies an attack based on continuous monitoring 

of bidirectional traffic flows between the network and the rest of the Internet and 

by periodic deviation analysis with the normal flow patterns. D-WARD not only 

offers a good detection rate but also reduces DDoS attack traffic significantly. 

Saifullah [402] proposes a defense mechanism based on a distributed algorithm 
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that performs weight-fair throttling at upstream routers. The throttling is weight­

fair because the traffic destined for the server IS controlled (increased or decreased) 

by leaky buckets at the routers based on the number of users connected, directly 

or through other routers, to each router In the beglllning of the algonthm, the 

survival capacity is underestImated by the routers so as to protect the server from 

any suddcn initial attack The rate is updated (increased or decreased), based on 

the server's feedback sent to its child routers and eventually propagated downward 

to all routers, in the subsequent rounds of the algonthm with a view to converging 

the total server load to the tolerable capacIty range. Felllstein and Dan [403] present 

methods to identify DDoS attacks using entropy computation and frequency-sorted 

distribution of relevant packet attributes They show DDoS attacks as anomalIes 

and demonstrates their performance on real network traffic traces obtained from a 

variety of network scenarios. 

Akella et al. [404] explore key challenges in helping an ISP network detect 

attacks on itself or attacks on external sitcs which use the ISP network. They 

propose a detection mechanism where each router detects traffic anomalies using 

profiles of normal traffic constructed USlllg stream sampling algorithms. Initial re­

sults show that it is possible to (a) profile normal traffic reasonably accurately, 

(b) identify anomalies with low false positive and false negatIve rates (locally, at 

the router) and (c) still be cost effective in terms of memory consumption and per 

packet computatIOn. In additIOn, ISP routers exchange information with one an­

other to increase confidence in theIr detectIOn decIsions A router gathers responses 

from all other routers regardlllg suspicions and based on these responses decIdes 

whether a traffic aggregate is an attack or IS normal. The mitial results show that 

individual router profiles capture key characteristics of the traffic effectively and 

identify anomalies with low false positive and false negative rates Peng et al. [405] 

describe a novel approach to detect bandwidth attacks by monitoring the arrival 

rate of new source IP addresses. The detection scheme is based on an advanced 

non-parametric change detection scheme, CUSUM. Cheng et al. [406] propose the 

IP Flow Feature Value (FFV) algorithm based on the essential features of DDoS 

attacks such as abrupt traffic change, flow dissymmetry, distnbuted source IP ad­

dresses and concentrated target IP addresses. Using a linear prediction technique, 
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a simple and efficient ARMA prediction model is established for both normal and 

attack network flows Udhayan and Hamsapriya [407] present a Statistical Segrega­

tion Method (SSM), which samples the flow in consecutive intervals and compares 

the samples against the attack state condition and sorts them with the mean as 

the parameter. Then correlation analysIs is performed to segregate attack flows 

from legitimate flows The authors compare SSM against various other methods 

and identify a blend of segregation methods for alleviating false detections A brief 

summary of these methods is given in Table 8.2 

Table 8.2: Statistical DDoS attack detection methods 

Reference ObjectIve Deployment IVlode of Tramable Remarks 
workmg 

Mlfkovlac Attack pre- SOllfce SIde CentralIzed Yes Detects 0 DoS attacks at the source 
et al 1401] vent IOn end autonomously and stops attacks 

from the source network usmg statIs-
tIcal traffic modelIng 

Akella et Attack Source and Dlstnbuted No Detects traffic anomalIes m router us-
al 1404] detectIon vIctIm SIde mg stream samplmg algorIthms based 

on profiles constlUcted from normal 
traffic 

Peng et al Detectmg VIctIm SIde CentralIzed Yes Uses sequentIal non pat ametllc change 
1405] bandWIdth pomt detectIOn method to ImplOve the 

attacks accuracy 
Chen et al Attack de- Between Dlstllbuted No AutomatIcally performs traceback dUl-
1400] tectlOn and source and mg the detectIon of SUSpICIOUS traffic 

traceback destmatlon flows 
network 

SaIfullah Attack pre- Between Dlstnbuted No Protects Internet server from DDoS 
1402] ventlOn source and attacks usmg dlstnbuted weIght-faIr 

destmatlon throttlmg at the upstream routers 
network 

Cheng et Attack VIctIm SIde CentralIzed Yes ExplOIts four flow features burst m 
al 1406] detectIOn the traffic volume, asymmetry of the 

flow dlStnbuted source IP addresses 
and concentrated destmatlon IP ad-
dress whIle detectmg DDoS attacks 

Udhayan mInImIze VIctIm SIde CentralIzed Yes Uses a statIstIcal segregatIOn method 
and Ham- false alarm for detectmg DDoS attacks based on 
sapnya samplIng of flow m consecutIve tIme m-

I407J terval 

8.3.2 Soft Computing Methods 

Learning paradigms, such as neural networks. radial basis functions and genetic 

algorithms are increasmgly used in DDoS attack detection because of their abil­

ity to classify intelligently and automatically. Soft computing is a general term 

for describing a set of optimization and processing techniques that are tolerant of 

imprecision and uncertamty Jalili et al. [408] introduce a DDoS attack detectIOn 

system called SPUNNID based on a statistical pre-processor and unsupervised ar-
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tIfiClal neUlal nets They use statIstIcal pre-processmg to extract features from the 

tlaffic and an unsupervIsed neural net to analyze and classIfy traffic patterns as 

eIther a DDoS attack or normal 

Kallmazad and Faraahl [409] propose an anomaly-based DDoS detectlOn method 

based on features of attack packets, analyzmg them usmg RadIal BasIs FunctlOn 

(RBF) neural networks The method can be apphed to edge routers of VIctim net­

work::, Vectors WIth seven featuret> are ut>ed to actIvate an RBF neural network at 

each time wmdow The RBF neural network IS applIed to clasSIfy data to normal 

and attack categones If the meommg traffic IS recoglllzed as attack traffic, the 

source IP addresses of the attack packets are sent to the Flltenng Module and the 

Attack Alarm Module for further actlOns OtherwIse, If the traffic It> normal, It 

IS sent to the destmatlOn RBF neural network tramlllg can be performed as an 

off-lme process but It IS used III real tIme to detect attacks faster Nguyen and ChOl 

[410] develop a method for proactive detectlOn of DDoS attacks by classlf'Ylllg the 

network status They bleak a DDoS attack mto phases and select featUles based on 

an mvestlgatlOn of real DDoS attacks Fmally, they apply the k-nearest nClghbor 

(KNN) method to classIfy the network status m each phase of the DDoS attack A 

method pret>ented m [383] detects DDoS attacks based on a fuzzy estImator usmg 

mean packet mter-arnval tImes It detects the suspected host and traces the IP 

address to drop packets wlthm 3 second detectlOn wmdows 

Lately, ensembles of classIfiers have been used for DO oS attack detectlOn The 

use of an ensemble reduces the bIas of eXlstmg mdlvldual classIfiers An ensemble of 

classIfiers has been used by [411] for thIS purpose where a ReSIlIent Back PropagatlOn 

(RBP) neural network IS chosen as the base classIfier The mam focus of thIS work 

IS to Improve the performance of the base classIfier The proposed classlficatlOn 

algonthm, RBPBoost combmes the output of the ensemble of classIfiers and the 

Neyman Pearson cost mmlmlzatlOn strategy [412] for final classlfieatlOn deClslOn 

Table 8 3 presents a bncf summary of the soft eomputmg methods presented m thIS 

sectlOn 
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Table 8.3: Soft computing-based DDoS attack detection methods 

Reference ObjectIve Deployment Mode of namable Remarks 
workmg 

Jahh et al Attack de- VIctIm sIde Centrahzed Yes Uses statIstIcal preprocessor and un-
[408] tectlOn supervIsed neural network classIfier for 

DDoS attack detectIon 
Nguyen and Attack de- IntermedIate Centrahzed Yes Detects only known attacks usmg k-
ChO! [410] tectlOn network nearest neIghbor based techmque 
Kanmazad Attack de- VIctIm sIde Centrahzed Yes Uses RadIal BasIS FunctIon (RBF) neu-
and Faraahl tectlOn ral networks and gets low false alarm 
[409] rate 
Kumar and Attack de- VIctIm sIde Centrahzed Yes RBPBoost combmes an ensemble of 
Selvakumar tectlOn classIfier outputs and Neyman Pearson 
[411] cost mmlmlzatlOn strategy for final clas-

sIficatIOn deCISIon durmg DDoS attack 
detectIon and gets hIgh detectIOn rate 

8.3.3 Knowledge-based Methods 

In knowledge-based approaches, network events are checked against predefined rules 

or patterns of attack. In these approaches, general representations of known attacks 

are formulated to identify actual occurrences of attacks. Examples of knowledge­

based approaches include expert systems, signature analysis, self organizing maps, 

and state transition analysis Gil and Poletto [413] introduce a heuristic along with 

a data structure called MULTOPS (MUlti-Level Tree for Online Packet Statistics) 

that monitors certain traffic charactenstlCs whIch can be used by network devices 

such as routers to detect and eliminate DDoS attacks MULTOPS is a tree of 

nodes that contains packet rate statistics for subnet prefixes at different aggregation 

levels. Expansion and contractIOn of the tree occurs wlthm a pre-specIfied memory 

sIze. A network device using MULTOPS detects ongoing bandwidth attacks by 

the presence of a significant and disproportIOnal difference between packet rates 

going to and coming from the victim or the attacker. Depending on their setup and 

their location on the network, MULTOPS-equipped routers or network monitors 

may fail to detect a bandwidth attack that randomizes IP source addresses on 

malicious packets. MULTOPS fails to detect attacks that deploy a large number of 

proportional flows to cripple a victim. 

Thomas et al. [414] present an approach to DDoS defense called NetBouncer 

and claim it to be a practical approach with high performance. Their approach 

rehes on distinguishing legitimate and illegitimate uses and ensuring that resources 

are made available only for legitimate use NetBouncer allows traffic to flow with 
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reference to a long hst of proven legitimate chents. If packets are received from a 

client (source) not on the legItimate lIst, a NetBouncer device proceeds to administer 

a variety of legitimacy tests to challenge the client to prove its legitimacy. If a client 

can pass these tests, it IS added to the legitimate list and subsequent packets from 

the client are accepted untIl a certain legItImacy window expires. 

Wang et al. [415] present a formal and methodical way to model DDoS attacks 

using Augmented Attack Trees (AAT) and discuss an AAT-based attack detection 

algorithm This model expliCItly captures the subtle inCIdents triggered by a DDoS 

attack and the correspondmg state transItions considering network traffic trans­

mission on the primary VIctIm server. Two major contributions of thIS work are 

(1) an AAT-based DDoS model (ADDoSAT), developed to assess potential threats 

from malicious packets on the primary victim server and to facilitate the detection 

of such attacks and (2) an AAT-based bottom-up detection algonthm proposed to 

detect all kinds of attacks based on AAT modelling. Compared to the conventIOnal 

attack tree modelling method, AAT is more advanced because it provides additIOnal 

information, especially about thc state transition process. As a result, it overcomes 

the shortcomings of CAT modellmg There is currently no established AAT-based 

bottom-up procedure for detectmg network intrusions. Limwiwatkul and Rung­

sawang [416] discover DDoS attack signatures by analyzing TCP lIP packet headers 

against well-defined rules and conditIOns and distinguishing the difference between 

normal and abnormal traffic. The authors mainly focus on ICMP, TCP and UDP 

ftoodmg attacks. 

Zhang and Parashar [32] propose a dlstnbuted approach to defend against DDoS 

attacks by coordinating across the Internet. Unlike traditional IDS, It detects and 

stops DDoS attacks withm the intermediate network. In the proposed approach, 

DDoS defence systems are deployed m the network to detect DDoS attacks mdepen­

dently. A gossip based communication mechanism is used to exchange information 

about network attacks between these mdependent detectIOn nodes to aggregate in­

formation about the overall network attacks. Using the aggregated information, 

individual defence nodes obtam approximate information about global network at­

tacks and can stop them more effectively and accurately. For faster and reliable 

dissemination of attack informatIOn, the network grows as a peer-to-peer overlay 
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network on top of the Internet. Previously proposed approaches rely on monitoring 

the volume of traffic that is received by the vIctim. Most such approaches are inca­

pable of differentIating a DDoS attack from a flash crowd. Lu ct al [382] describe 

a perImeter-based anti-DDoS system, III which the traffic IS analyzed only at the 

edge routers of an Internet ServIce Provider (ISP) network. The antl-DDoS system 

consists of two major components: (1) temporal-correlation based feature extrac­

tion and (2) spatial-correlatIOn based detection. The scheme can accurately detect 

DDoS attacks and identify attack packets without modifying existing IP forwarding 

mechalllsms at the routers. A brief summary of these knowledge based methods is 

given in Table 8 4 

Table 8.4: Knowledge based DDoS attack detection methods 

Reference ObJectl'e Deployment Mode of Trainable Remarks 
working 

ell and Po- Attack Between Centralized No Each network devIces maintains a data 
letto [411J prevention source and structure known as MULTOPS Falls 

destinatIOn to detect attacks that deploy a large 
network number of DDoS attack flows uSing a 

large number of agents, IP spoofing at-
tacks 

Thomas et Attack de- Victim Side Centrahzed No NetBouncer dlffel entlates DDoS traf-
al [414J tectlOn fic from flash crowd using Inlme packet 

pi ocessmg based on network pi OCesSOI 
technology 

Llmwlwatkul Attack de- Victim Side Distributed Yes Uses a TCP packet header to construct 
and Rung- tectlOn attack signature model for DDoS at-
sawang [416J tack detection 
Zhang and Proactive Intermediate Distributed Yes A gossip based scheme uses to get 
Parashar network global informatIOn about DDoS at-
[32J tacks by mformatlOn sharing 
Lu et al Attack de- Edge Distributed Yes Exploits spatial and temporal correIa-
[382J tectlOn router tlOn of DDoS attack traffic records for 

detectmg anomalous packets 
Wang et al Attack de- Victim Side Centralized No Uses an Augmented Attack Tree model 
[415J tectlOn for the detection of DDoS attacks and 

also can detect other attacks 

8.3.4 Data Mining and Machine Learning Methods 

An effective defense system to protect network servers, network routers and client 

hosts from becoming handlers, zombies and victIms of DDoS flooding attacks is 

presented in [417] The NetShicld system can protect any IP-based public network 

on the Internet. It uses preventive and deterrent controls to remove system vul­

nerabilitIes on target machines. Adaptation techniques are used to launch protocol 

anomaly detection and provide corrective intrusion responses. The NetShicld sys­

tem enforces dynamic security policies. NetShicld is especially tailored to protect 
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network resources agamst DDoS flooding attacks Lee et al [418] propose a method 

for proactIve detection of DDoS attacks by exploitmg an archItecture consisting of 

a selection of handlers and agents that commul11cate, compromIse and attack The 

method performs cluster analysis. The authors experiment with the DARPA 2000 

IntrusIOn DetectIOn Scenario Specific Dataset to evaluate the method. The results 

show that each phase of the attack scenario IS partItioned well and can detect pre­

cursors of a DDoS attack as well as the attack Itself. Sekar et al [419] investigate 

the design space for in-network DDoS attack detectIOn and propose a triggered, 

multi-stage approach that addresses both scalablhty and accuracy. Their contrI­

bution is the desIgn and implementation of LADS (Large-scale Automated DDoS 

detection System) The system makes effective use of the data (such as NetFlow 

and SNMP feeds from routers) readily available to an ISP. 

A two-stage automated system is proposed m [420] to detect DoS attacks in 

network traffic. It combines the tradItional change point detection approach with 

a novel one based on continuous wavelet transforms [421]. The authors test the 

system using a set of publicly avaIlable attack-free traffic traces superimposed with 

anomaly profiles. Li and Lee [422] present a systematic wavelet based method for 

DDoS attack detectIOn. They use energy dIstrIbution based on wavelet analysIs to 

detect DDoS attack traffic. Energy dIstrIbutIOn over tIme has limited variation if 

the traffic keeps its behavior over time. The method presented in [423] can identify 

flooding attacks in real time and also can assess the intensity of the attackers based 

on fuzzy reasoning. The process consIsts of two stages (I) statIstical analysis of the 

network traffic time series usmg discrete wavelet transform and Schwarz information 

criterion (SIC) to find the change point of the Hurst parameters resulting from a 

DDoS flood attack, and then (ii) identificatIOn and assessment of the intensity of 

the DDoS attack adaptively based on an intelligent fuzzy reasoning mechanism. 

Test results by ns21 based simulation wIth varIOUS network traffic characteristics 

and attack intensities demonstrate that the method can detect DO oS flood attacks 

on tIme, effectIvely and mtelligently Zhang et al. [388] present a CPR (Congestion 

ParticIpation Rate) based approach to detect low-rate DDoS (LDDoS) attacks using 

flow level network traffic. A flow with a higher CPR value leads to LDDoS and 

1 http'! /v.,rww isLedu/nsnam/ns/ 
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consequent dropping of the packets. The authors evaluate the mechanism using 

ns2 simulation, testbed experiments and Internet traffic trace and claim that the 

method can detect LDDoS flows effectively 

In [424], a mathematIcal model is presented to provide gross evaluation of the 

benefits of DDoS defence based on dropping of attack traffic. Simulation results and 

testbed experiments are used to validate the model. In the same work, the authors 

also consider an autonomIc defence mechanism based on CPN (Cognitive Packet 

Network) protocol and establIsh it to be capable of tracing back flows coming into a 

node automatIcally Yuan and Kevin [425] present a DDoS flooding attack detection 

scheme by monitoring network-wIde macroscopic effects. They work with several 

attack modes includIng constant rate, Increasing rate, pulsing rate and subgroup 

attacks. Lee and Xiang [177] describe several information theoretic measures for 

anomaly detection. These are entropy, conditional entropy, information gain and 

information cost, tested on several datasets. A summarized presentation of these 

methods in this category is gIven in Table 8.5. 

A low-rate DDoS attack has sigmficant ability to conceal its traffic because of 

its similarity with normal traffic. Xiang et al. [379] propose two new information 

metrics: (i) generalized entropy metric and (ii) information distance metric, to de­

tect low-rate DDoS attacks. They identify the attack by measuring the distance 

between legitimate traffic and attack traffic. The generalIzed entropy metnc is 

more effective than the traditional Shannon metric [426]. In addition, the informa­

tion distance metric outperforms the popular Kullback-Leibler divergence approach. 

Francois et al. [427J present a method called FzreCol based on information theory 

for early detectIOn of floodIng DDoS attacks. FireColls comprised of an intrusion 

prevention system (IPS) located at the Internet Service Provider (ISP) level. The 

IPSs form VIrtual protection rings around the hosts to defend and collaborate by 

exchanging selected traffic information. An entropy variation based detection and 

IP traceback scheme for DDoS attacks is proposed at [399]. The system observes 

and stores short-term information on flow entropy variatIOns at routers. Once the 

detection algorithm detects a DDoS attack, it initiates the pushback tracing pro­

cedure to find the actual locatIOn of attacks., WeI et al. [428J propose a Rank 

Correlation-based Detection (RCD) algorithm for detecting distributed reflection 

250 



8.3. Prior Research 

DoS attacks. Preliminary simulations show that RCD can differentiate reflection 

flows from legltm1ate ones effectively. 

Table 8.5: Data mining and machine learning-based DDoS attack detectIOn methods 

Reference ObjectIve Deployment Mode of Trainable Remarks 
working 

Hwang et Attack pre- Vlctlm- Centralized Yes Protects network servers, routers and 
al [417) ventlOn end clients from DDoS attacks uSing pro-

tocol anomaly detectIon technique 
LI and Lee Attack detec- Vlctlm- Centralized No An energy dIstributIon based wavelet 
[422) tlOn end analYSIS technique for the detectIon of 

DDoS traffic 
Sekar et al Attack detec- Source- DIstributed Yes A triggered multI-stage approach for 
[419) tlOn end both scalablhty and accuracy for DDoS 

attack detectIOn 
Gelenbe Attack de- Vlctlm- Centrahzed Yes Detects attack by tracing back flows 
and Loukas fense uSing end automatIcally 
[424) packet drop-

ping 
Lee et al Attack detec- SOUlCe- Centralized Yes Detects DDoS attack proactIvely based 
[418) tlOn end on cluster analYSIS WIth agent handler 

archItecture 
Dalnottl et DetectIOn of Vlctlm- Centrahzed Yes Detects attacks correctly uSing combl-
al [420) DoS attack end natIOn of tradItIonal change pOint de-

tectIOn and continuous wavelet trans-
formatIOn 

Xla et al Detects flood Vlctlm- Centralized Yes A method to detect DDoS flooding at-
[423) attack and ItS end tack uSing fuzzy logIc 

intensIty 
Xlang et al Detects low Vlctlm- Centralized No Detects low-rate DDoS flooding at-
[379) rate flooding end tacks uSing new mformatlOn metrlcs ef-

attacks fectlvely 
FrancOIs et DDoS flood- Source- DIstributed No A complete DDoS floodmg attack de-
al [427) Ing attack de- end tectlOn technique Also support Incre-

tectlon mental deployment In real network 

8.3.5 Discussion 

Exact comparison of DDoS attack detection schemes IS not feasible because some 

works do not specify their results clearly whereas others evaluate their schemes us­

ing different datasets or in different testing conditions. A comparIson (as shown in 

Table 8.6) establishes that most works do not consider all the issues that are perti­

nent. For example, the Distributed Change Point detectIOn method [400] performs 

well for TCP SYN attacks, but its performance degrades for UDP attacks with large 

packet sizes D-WARD [401J fails to detect pulsing attacks, especially when the in­

active period is large In case of NetBouncer [414], the legitimacy tests may not 

be exhaustive and certam Illegitimate clients may also pass the test. In addition, 

Netbouncer is overwhelmed by flash crowds. Moreover, the delay introduced by the 

test affects new legitimate clients. Detection using RBF Neural Networks and sta-
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tistical features [409] performs well for known attacks, but no dynamic modification 

can be performed easily for unknown attacks. The following are some observations. 

• It is important to understand the features of DDoS attacks, but it is critical 

to find effectIve features to detect an attack. 

• Most existing schemes are focused on detectmg DDoS attacks with high de­

tection accuracy or low false alarms, but often these methods have been found 

fail to perform in real-time or near real-time. 

• Some schemes are composed of several small modules [403] Due to the lack 

of timely coordmation among them, the total cot increases considerably. 

• Even though several information theoretic measures are available [177], it 

is a difficult task to build an adaptive model to detect DDoS attaeks by 

dynamically adjusting different parameters. 

• The basic entropy-based measure produces a high false alarm rate due to low 

spacing between attack traffic sample and normal traffic sample. 

• Only a few ensemble-based methods to detect DDoS attacks have been re­

ported in the literature [429] The reported methods suffer from high false 

alarm rate 

8.4 Problem Statement 

We define the problem of DDoS attack detection as follows The problem is to detect 

DDoS flooding attacks using a minimum and relevant subset of packet features by 

computing difference of information theoretic distance between real-life attack traffic 

and legitimate traffic within and relative sample periods. We assume a sample 

5, to be anomalous if (a) 5, E 5 and IE(5,) - E(5))1 2: WI, where E is the 

information distance metric, 5, and 5) are samples within a sampling period 5, 

WI IS the user defined threshold for maximum allowable local entropy variation and 

(b) IE(5p ) - E(5q )1 ::; W2, where 5p and 5q are the relatIve samples, W2 is a user 

defined threshold for minimum allowable global entropy variation. 
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Table 8.6: A general compa.rison of DDoS atta.ck detection methods 

Scheme Approach Archltecturel r..lethod w x y z DR with FAR with 
data,!)et u.::.ed data.::.et used 

DCD approach statistical DCP / Change aggrega- R Ye. Yes No 98'7.. (Hoodoog < l '70 (flooding 
14001 tlOn tree attack::.) attacks) 
\\ elghted fall'" st.atlstlcal Weight. FaiT Throttling R Ye. Yes No -
model1402J 
SPUNNID model statistical SPUNNID .::.y:,lem. / un- R Yes Yes Yes 94 9')'. l Aood oog r;Y<l, (flooding at-
14081 ::.upervised neU! al nel- attack.::.) tacks} 

work 
D-WARD system knowledge Self regulaung le\er.::.e R No Yes No (flooding at- 05';'. (fioodlOg 
140iJ based feedback sy.::.lem / late tack.::.) attacks) 

limited 
MULTOPS system knowledge MulLI-le\el tree babed N Yes Yes No (IP .::opoofing aL- -
1413J based method tacks) 
NetBouncer model knowledge Packet filtenng method R Yo> Ye. No (real-time data) -
14141 based 
RBF neural net 50ft com- RBF system / Radial R No No No 982';', (UCLA 001'7, (UCLA 
model 14091 putlng baSIS function data) data) 
Attack tree model knowledge AATBD system / Tlee R No No No (ftoodlllg at-
1415J based based tacks) 
Signature discover) knowledge Tlaffic statistiCs based It No No No (floodmg: .t-
approach 14161 based method tacks) 
Profile based ap- statistical Shearn sampling based R No No No (IP spoofing .t- 2'70 (IP spoofing 
plo.ch 1404J method tacks) attacks) 
Coopelatlve model knowledge RL-DDoS system / R No No No (Emulab slmu- 7'10-12'70 . (Emu-
132J based GossIp-based scheme latton) lab Simulation) 
Sequential non- knowledge Nonparametrlc CPD R ye. ye. No 90'10-1007. (,Au- -
parametnc change based method eland trace::.) 
POlOt method [405] 
Pen meter ba::.ed knowledge Spatial correlation R Ye. No No 9J 0'70 (IP o ()5'70 (IP 
antl-DDoS ::.ystem based based method spoofing .t- ::.poofing at-
iJ82J tacks) tacks) 
K-NN classifier ap- statl::.tlcal Neare::.t nelghbor-ba::.ed R No No No 91 88')'. ~n~);;' lD'b~~ proach 14101 method (DARPA 2000 

DDoS data) data) 
Change pomt de- Soft com- Fuzzy logiC ba::.ed R No No No (n.2 ::'Imula- -
tect by fuzzy logiC putlng method tlOn) 
14211 
Linear prediction statistIcal Linear prediction ba!:led R Yes No No 901')'. lDDoS 11 8 " lDDoS 
model 14noJ method How data, How data, 

LLDoS 202) LLDoS 202) 
SS~I method 14071 statistical $tatl::.tlcal ::.egregatlon R No No No (CAIDA data) 127, (CAIDA 

based method data) 
Ensemble ~I neural soft com- RBPBoosl system.' En- N Yes Yes Yes ;~o~· lD'b~~ ~n~ lD'b~~ net model [411} puling semble of neural net 

based classifiers data) data) 
Aulonomlc mathe- Machme CPN based method R Ye. No No (ns2 slffiula- -
matlcal model (4241 learOlng lion) 
w-Indlcales real-lime or non real-time 
x-represents the scalability 
Y-POSSlblhty of unknown attack detectIOn 
z-posslblht) of dynamiC signature updallon 
DR-Detection Rate and FAR-False Alarm Rate 

8.5 System Modeling for DDoS Attack Detection 

In this section, we attempt to model a system for detecting DDoS flooding attacks 

using an extended entropy metnc We make the following assumptions. 

• Routers have full control on In-and-out traffic flow. 

• We collect packet and flow level traffic at the victim-end after various types 

of flooding attacks are launched. 

• We sample network traffic in 5 mInute intervals and during processing we 

further sample them in 10 seconds tIme Intervals. 

The proposed scheme is Illustrated In Figure 8.13. This scheme IS composed of 

mainly two parts, viz., DDoS attack detection using an extended entropy metric 
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[430J and an ensemble of extended entropy metrics. Extended entropy metric is 

defined below. 

Definition 8.5.1. Extended Entropy (EE) zs defined as the sum of all entropzes of 

parts of a system wzthm a tzme mterval. 

T 

EE(x) = LEEMt (8.1) 
t==1 

where T zs the tzme mterval and EEM is the extended entropy metric of each part 

of a system. 

In the detection scheme, we initially sample the network traffic into t number of 

intervals from a total time period 'TI'. For each time interval, we compute the discrete 

probability distribution, packet intensity and individual entropies as discussed next. 

We compute both the local entropy metric difference between legitimate traffic and 

anomalous traffic, and the global entropy metric difference between legitimate traffic 

and anomalous traffic, if found greater than the local variation threshold WI and less 

than the global variation threshold W2, then it marks the sample as attack otherwise 

normal. All attack samples can be used for the IP traceback purpose. We extend 

our scheme to use an ensemble of extended entropy metrics to improve the detection 

accuracy in ncar real-time. 

... Compute PO, I 

-----------; 

Drop packets 

Compulo 
EEM(P,.p"."l 

Figure 8.13: Concept of the proposed scheme 
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B.S.1 DDoS Attack Detection Scheme 

In information theory, entropy is a measure of uncertamtv in a random variable 

that forms the basis for distance and divergence measurements between probability 

densities. Larger values of entropy are expected when the mformation variable is 

more random. In contrast, the entropy value is expected to be small when the 

amount of uncertainty in the information variable IS small [390J To quantify the 
, 

randomness of a system, Renyi [4311 introduced an entropy metric of order Cl' as a 

mathematical generahzatlOn of Shannon entropy [426J. Let us consider a discrete 

probability distribution, 1P = Pl,P2,P3,··· Pn, ie, L~=1 P. = 1, p, 2 o. Then the 

Renyi's entropy of order a is defined as 

(8.2) 

where a 2 0, a :I 1. p, 2 0; If the values of p,'s are same, then the maximum 

entropy value is achieved, which is known as Hartley entropy [426] 

(83) 

When 0'-+ 1, Hcx converges to Shannon entropy [426]. 

11 

Hl(X) = - LP,l092P, (8.4) 
,=1 

If a = 2, It IS known as collzszon entropy or Renyz's quadratzc entropy [431]. 

" 
H2(X) = -l092 LP; (85) 

,=1 

Finally, when a -+ 00, Hoo(x) reaches the minimum mformation entropy value. 

Hence, we say that the generalization of information entropy is a non-increasing 

function of order a, I e., Hcxl (x) 2 Hcx2 (x), for 0'1 < 0'2, a > o. We define the 

probability and packet intensity computation as 

() 
x, 

p x, = '\"'" 
6,=1 x, 
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. 1l't it = -=N--
L J=11l'J 

(B.7) 

where J = 1,2,3,··· N, N represents the full time mterval ']f, 1l' is the number of 

packets and n represents a smaller time interval t within ']f The Renyi's information 

entropy metric of order a can be rewritten as 

) tt X It (~ 0) 
EEMo(x = N(1- a)1092 ~Pt (B.B) 

where tt is the time and i~ is the packet intensity for the ~th samplc. We call this 

metric as the extended entropy metnc (EEM) Based on this information entropy 

metric analysis, we consider different probability distributions for legitimate net­

work traffic and attack traffic when detecting DDoS attacks. The flowchart of the 

proposed attack detection scheme IS given in Figure B.14 

To support the proposed scheme, we mtroduce some definitions and lemmas 

below 

Definition 8.5.2. DDoS flooding attack traffic - Gwen a traffic sample S 

collected dunng a tzme znterval T, a DDoS jloodzng attack traffic zs a sub-sample, 

A = {al' a2, a 1 ..• as} such that the dzJference of extended entropy metnc between 

anomalous traffic and normal traffic zs at least the mznzmum allowable threshold WI . 

Definition 8.5.3. Extended Entropy Metric (EEM) - The extended entropy 

metnc zs szmply the sum of entropy values of order a, used to rank each traffic 

sample withzn a tzme interval T for DDoS attack detectwn. The EEM metnc value 

of attack traffic zs hzgher than the EEM metnc value of normal traffic wzthzn a tzme 

znterval T. 

Definition 8.5.4. Locally anomalous traffic - A DDoS jloodzng attack traffic 

sample is defined as locally anomalous zJf EEM(St - 8)} 2: WI wzthzn tzme znterval 

T, where 8 t and 8 J are anomalous and normal traffic respectzvely, and WI zs a user 

defined threshold. 

Definition 8.5.5. Globally anomalous traffic - A DDoS jloodzng attack traffic 

sample zs defined as globally anomalous zJf EEM(St - 5J ) :::; W2 across two consecu­

twe tzme znterval tt and tt+l wzthzn a total tzme znterval T, and W2 zs a user defined 

threshold. 
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Generate alarm 
and discard 

packets 

No 

Forward packets 
to the down 

stream router 

Figure 8.14: Flowchart of the proposed DDoS attack detection system 

Lemma 8.5.6. The maxzmum var'tatwn m DDoS fioodmg attack traffic sample 

A, A = {ai, a2. a3'" as} m terms of EEM metr'tc value zs always less than the 

maxtmum vartatwn for normal traffic. 

Proof. Let Sat and Sa] be two samples of DDoS flooding attack traffic, and Sm and 

Sn] be two samples of normal traffic. Based on [399J and according to DeJmztwn 

8.5.2 and 8.5.3, the EEM metric value of attack traffic is higher than normal traffic, 

i.e., EEMat » EEMnt, where EEMat = EEM(Sat) - EEM(SaJ) and EEMnt = 

EEM(Sm) - EEM(SnJ) However, thc flooding attack traffic is generated by using 

a program in other word, it is program controlled So. the variation among the 

traffic is ultimately limited within a bound. On the other hand, normal traffic 

vanation has no such bound or control, and hence can be extended to great extent. 

So, the maximum variation of attack traffic 111 terms of EEM metric value is always 

less than the maximum varIation for normal traffic. o 
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Lemma 8.5.7. For a DDoS fioodmg attack traffic sample A, A = {a1' a2, a3 ... as} 

the EEM metrzc value is always larger than the Shannon entropy value. 

Proof. The proof of the above lemma is trivial from the representations of Shannon 

entropy and extended entropy metric given in Equation(8.4) and Equation(8.8) 

respectively. It is evident from the multiplying factor used in Equation(8.8). 0 

The DDoS Attack Detectiol? Algorithm 

The proposed information entropy metric-based DDoS flooding attack detection 

scheme attempts to detect four categories of DDoS flooding attacks as shown in 

Figure 8.3. In information theory, the value of Shannon entropy in a Gaussian 

distribution is higher than that of a Poisson distribution. The Renyi's generalized 

entropy value is lower than the Shannon entropy value when Q > 1. In contrast, the 

Renyi's generalized entropy value is higher than Shannon entropy when a ~ Q ~ 1. 

But in case of the extended entropy metric, the EEM metric value is mostly greater 

than the Shannon entropy metric value. Hence, we can achieve better detection 

accuracy and lower false positive rate in the detection of all classes of DDoS flooding 

attacks. The steps of the proposed scheme are given in Algorithm 12. 

The proposed scheme needs limited parameter estimation when detecting DDoS 

flooding attacks. A collahorative detection threshold that is needed can be esti­

mated based on the spa.cing between legitimate traffic and anomalous traffic within 

the sampling period T for all classes of attacks. 

Selective Ensemble of Extended Entropy Metric 

An ensemble of extended entropy metrics is introduced mainly to improve the accu­

racy of the detection scheme. We combine weighted values of the extended entropy 

metric W.r.t the spacing between samples. We found good spacing between legiti­

mate traffic and anomalous traffic when the order Q > 1. We define the ensemble 

of extended entropy metrics (EEEM) as follows. 

Definition 8.5.8. EEEM metric - The ensemble of extended entropy metrzc is 

defined as a metric to rank each traffic sample 7mth a 71Ie~ghted sum. of entropy va.lues 

m a time interval T based on thezr entropy values of order 0' > 1. 
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Algorithm 12 The DDoS flooding attack detection algorithm 

Input: network traffic X with respect to time window 'IT' and thresholds WI, and W2 

Output: alarm information (attack or normal) 
1: initialization: probability p(xt ), packet intensity, it, and sample period, T = 0, 

where", = 1,2,3,'" n, T = {tl' t2, t3,'" ,tN}, N is the full time interval. 
2: sample the network traffic X received from upstream router R based on sampling 

period 'IT' 
3: compute probability distribution Pt and packet intensity ft using Equation(8.6) 

and (8.7), respectively based on traffic features (i.e., sIP, dIP, packet size, etc.) 
for each sample within 'IT' sampling period of ith sample. 

4: compute extended entropy metric RAx) using Equation(8.S) for each sample 
within sampling period 'IT' 

y 

St = L EEMo(Stk) 
k=O 

z 

SJ = L EEMo(SJl) 
1=0 

Etl = IEEMo(St) - EEMo(sJ)1 

Etg = /EEMa(sp) - EEMa(sq)/ 

(S.9) 

(S.10) 

(S.ll ) 

(8.12) 

5: check against local variation threshold Etl 2:: WI and global variation threshold 
Etg ::; W2, if so then generate alarm; otherwise, router forward the packet to the 
downstream routers. 

6: go to step 2. 

EEEM(X) = ft ~t x EEMJ(X) 
t=l J=l 

(8.13) 

where W is the weight and EEMJ (X) is the extended metric value. The weight W 

is defineo as 

{

Sk if EEM(x) 2:: a 
Wt = 

1 otherwise 

where a is the threshold for selection of the weight value iff ex > 1. We use W3 as the 

threshold for attack detection in selective ensemble of extended entropy metrics. 
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8.5.2 Complexity Analysis 

The detectlOn ::.cheme takes O(Tn) tIme dunng detectlOn, where T {S the time 

mterval and n IS the number of mstances wlthm a sample The time complexltv 

for the detectIOn scheme IS 1m ear w r t the size of the dataset and the number of 

features Hence, our scheme IS computatlOnally efficIent m detectmg DDoS ftoodmg 

attacks with low false alarm rate and time 

8.6 Performance Evaluation 

Performance evaluatlOn IS Important for any DDoS attack defense system Perfor­

mance evaluatlOn IS highly dependent on (1) the approach, (11) deployment status 

and (111) whether It IS posSible to dynamIcally update profiles When deslgnmg a 

DDoS attack defense scheme, these Issues should be taken mto consideratlOn There 

are many tools avarlable to launch DDoS attack::. m the hterature [384, 432J The 

archItectures are almost always the same Some are made by attackers by shghtly 

modIfymg others Table 8 7 presents some of the tools wIth bnef descnptlOns 

In our expenments, three dIfferent datasets VIZ, MIT Lmcoln Laboratory [446], 

CAIDA DDoS 2007 [252] and TUIDS DDoSl datasets are used to detect four classes 

of DDoS ftoodmg attacks as dIscussed above The TUrDS DDoS datasets IS pre­

pared usmg OUl te::.tbed de::.cnbed m Chapter 4 The architectUle of the TUIDS 

testbed wIth demIhtanzed zone (DMZ) IS shown agam III FIgure 8 15 The testbed 

IS composed of 5 different networks mSIde the Tezpur Umversity campus The hosts 

are dIVided mto several VLANs, each VLAN belongmg to an L3 sWitch or an L2 

sWItch IllsIde the network The attackers are placed III both wlfed and wlfeless 

networks wIth reflectors but the target IS placed InsIde the mternal network 

8.6.1 Datasets 

The MIT Lmcoln Laboratory tepdump data IS used as real-tIme normal network 

traffic the data does not contaIll any attacks (see FIgure 8 16 for a depIctIOn of the 

normal traffic scenano from the MIT Laboratory) The CAIDA DDoS 2007 dataset 

Ihttp / /agmgltrh tezu emet !U/~dkb/resource html 
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Table 8.7: DDoS tools and deScllptlOn 

Name and OescnptlOn PIOtOCO Attack 
Ref 
Tnnoo (I) \Vldely used by attackers as well as research community (II) A UOP UOP flood 
1433,434J bandWidth depletion attack tool, used to launch coordinated UOP 

flood attacks against one or many IP addresses (III) Fixed size UOP 
packets are sent to the victim machine's random ports (IV) Ooes not 
spoof source addresses (v) Implements UOP Flood attacks against 
the target victim 

Tnbe (I) Able to wage both bandWidth depletIOn and resource depletion UOP, TCP SYN 
Flood attacks (II) Uses a command line Interface to communicate be- ICMP flood, ICMP 
Network tween the attacker and the control master program (II) Offers no TCP flood, smurf 
(TFN) encryptIOn between agents and handlers or between handlers and the 
[4J5] attacker (III) Allows TCP SYN and ICMP flood as well as smurf 

attacks 
TFN2I< (I) Developed uSing the TFN OOoS attack tool (II) Adds encrypted TCP, smurf1 SYN 
141b] messaging among all of the attack components (417] (III) Commu- UOP, flood, UOP 

flIcatlOns between real attacker and control master program al e en- ICMP flood, ICMP 
crypted uSing a key-based CAST-25b algonthm 14j8] (IV) Conducts flood 
covel t exerCISes to hide Itself flOm intrusIOn detection systems (v) 
Can forge packets that appeal to come from neighboring machmes 
(VI) PrOVides other options such as TARGA and MIX attack {419l 

Stacheldl aht (I) Based on early versIOns of TFN, It eliminates some weak pOints TCP, TCP SYN 
{440l by combining features of TrInOO (II) Performs updates on the agents UOP, flood, UOP 

automatically (III) PrOVides a secure telnet connection via symmet- ICMP flood, ICMP 
flC key encryptIOn among the attackers and handlers (IV) Commu- echo request 
flIcates through TCP and ICMP packets flood 

mstream (1) Uses spoofed TCP packets With the ACI< flag set to attack the TCP, TCP ACI< 
{441l target (II) A sunple pomt-to-pomt TCP ACK flooding tool to over- UOP flood 

whelm the tables used by fast routm!l, routmes m SWitches (III) Com-
mUnicatIOns are not encrypted, and performed through TCP IUOP 
packets, zombie IS connected via tel net by master (IV) Target 
gets hit by ACK packets and sends TCP RST to non-existent IP 
addresses (v) Routers return' ICMP unreachable causmg more 
bandWidth starvatIOn (VI) Possesses very hmlted control features 
and can spoof by randomlzmg all 12 bits of the source IP address 

Shaft [442] (1) A successor of Trmoo (II) Uses UOP commumcatlon between TCP, TCP/UOP/ 
handlers and agents (m) Shaft prOVides UOP /ICMP /TCP floodmg UOP, IC~!P flood 
attack optIOns It randomiZes Source IP address and source port m ICMP 
packets (IV) The Size of packets remains fixed durmg the attack 
(v) Able to SWItch the handlel's IP address and POlt In leal time 
durmg the att&:k (\ II) Able to SWItch contlOl mastel servers and 
ports m real time, hence makmg detectIon by mtl US10n detection 
tools difficult 

Tnmty v3 (I) Vanous TCP floods ale used by randoml~mg all 32 bIts of the TCP, TCP flag-
1443] source IP address TCP fragment floods, TCP estabhshed floods, UOP ment floods 

Tep RST packet floods and TCP random flag packet floods (II) Tep RST 
Generates TCP flood packets WIth random control flags set to pro- packet floods 
VIde a WIder set of TCP based attacks Tep random 

flag packet 
floods, Tep 
estabhshed 
floods 

Kmght (I) A very hghtwelght yet powerful IRe based attack tool (II) TCP, UOP, Tep 

1444J PrOVIdes SYN attacks, UOP Flood attacks, and an urgent pomter UOP flood, SYN and 
flooder 1445J (Ill) Oeslgned to run on \l\Tmdows operatmg systems PUSH+ACH 
and has features such as an automatIc updater vIa http or ftp, flood 
a checksum generator and more (IV) Uses TrOjan horse program 
called Back Orifice for msta1latlOn m the target host 

LOIC [mJ (I) A powerful anonymous attackmg tool VIa IRe (Il) Operates m Tep, UOP, Tep 
three methods of attack TCP UOP and HTTP (Ill) EXIsts 10 two UOP, HTTP flood 
velslOns bmary VerSIOn and web-based VelSlon HTTP 

uses real-tIme DDoS attack data WIth four classes of attack scenarIOS, VIZ, constant 

rate, mcreasmg rate, pulsmg rate and sUbglOUp attack (see FIgures 8 17, 8 18, 8 19 

820 for classes of DDoS attack scenanos) The CAIDA dataset contams 5 mmutes 
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Figure 8.15: TUmS testbed network architecture with DMZ 

(i.e., 300 seconds) of anonymized traffic from a DDoS attack on August 4, 2007. 

This trace includes only attack traffic to the victim and responses from the victim; 

nonattack attack traffic has been removed as much as possible. Finally, the TUIDS 

DDoS dataset also contains different classes of attacks scenarios like CAIDA. The 

TUIDS DDoS dataset contains six different attacks for generation and analysis of 

near real-time DDoS attack detection. The list of attacks and generation tools 

used by the TUIDS DDoS dataset is given in Table 8.8. We have chosen six most 

powerful flooding attacks and launch them in the testbed. As the most attackers 

use three different types of protocols (i.e., TCP, UDP, and ICMP) during sending 

their malicious traffic to the target host or network. Hence, we use TCP, UDP 

and ICMP protocol-based flooding attack during testing our proposed method in 

near real-time in our testbed. These attacks are generated using openly available 

standard DDoS attack generation tools. 

Table 8.8: List of real-life attacks and their generation tools 

Attack name Generation tool 
l.syn-flood LOIC 
2.rst-ftood Trinity v3 
3.udp-ftood LOIC 
4.ping-flood DDoS ping v2.0 
5.fraggle udp-flood Trinoo 
6.smurf icmp-flood TFN2K 
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•••• ':'l -- _7. • • 

Figure 8.16: Normal (attack free) traffic scenario from lVIIT Lincoln Laboratory data. 
X-axis denotes intervals (seconds) and Y-axis denotes packets/tick (unit). 

,y~'\r;;::::, ' I ' I ' I 

Figure 8.17: DDoS attack scenarios from CAIDA: constant rate attack. X-axis denotes 
intervals (seconds) and Y-axis denotes packets/tick (unit). 

Figure 8.18: DDoS a.ttack scenarios from CAIDA: pulsing rate attack. X-axis denotes 
intervals (seconds) and Y-axis denotes packets/tick (unit). 

8.6.2 Experimental Results 

To evaluate the performance of the proposed method, we initially sample the net­

work traffic into 10 second windows for each dataset. We identify the static IP 
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Figure 8.19: DDoS attack scenarios from CAIDA: increasing rate attack. X-axis denotes 
intervals (seconds) and Y-axis denotes packets/tick (unit). 

Figure 8.20: DDoS attack scenarios from CAIDA- subgroup attack. X-axis denotes 
intervals (seconds) and Y-axis denotes packets/tick (unit). 

packets and compute discrete probabIlity distribution for each sample. The prob­

ability of IP packet distribution in three scenarios: (a) attack traffic, (b) normal 

traffic, and (c) mixed traffic (contains both normal and attack traffic) are shown in 

Figures 8.21, 8.22, 8.23, respectively. 

We compute entropy using the extended entropy metric for each probability 

distribution and average them for each sample. To test our proposed scheme, we 

compute the extended entropy metric of different orders using cx and compare with 

Shannon entrap}, within a sampled period of legitimate traffic and anomalous traffic. 

Figure 8 24 presents the value of Shannon entropy and the extended entropy metric 

for different orders cx. We consider order 0' = 0 to 15 and vary the spacing between 

legitimate traffic and attack traffic. It demonstrates that the proposed scheme 

outperforms the use of Shannon entropy, especially in detecting DDoS flooding 

264 



8.6. Performance Evaluation 

07 

20 40 60 80 100 120 140 160 

Samples 

Figure 8.21: Probability distribution of IP addresses in normal traffic 
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Figure 8.22: Probability distribution of IP addresses in attack traffic 

attacks because it can obtain sIgnificant spacing between legitimate traffic and 

attack traffic. It also shows that the extended entropy metric values gradually 

increase along with the order Q w.r.t. the traffic rate, which is almost linear. To 

test our scheme globally, we test for each attack class discussed above. The results 

are given in Figures 8.25, 8.26, 8.27, 8.28 for CAIDA dataset and Figures 8.29 and 

8.30 for the TUIDS datasets. The proposed scheme performs very well in detectmg 

DDoS flooding attacks mcluding DDoS attacks generated in our testbed. 

We further compute the detection rate and false positive rate based on the 
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Figure 8.23: Probability distribution of IP addresses in mixed traffic (contains both 
normal and attack traffic) 
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Figure 8.24: EEM metric values for normal and attack traffic with spacing in between 

samples within a time interval. The results of our extended entropy metric and 

ensemble of EEM in comparison to Shannon entropy is given in Figure 8.31. Our 

detection scheme can effectively detect DDoS attacks with the least amount of false 

alarms and performs well in comparison to several competing algorithms [379,399, 

410,428,447]. 
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Figure 8.25: CAIDA dataset: spacing between legitimate and anomalous traffic in 
constant rate traffic 
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Figure 8.26: CAIDA dataset: spacing between legitimate and anomalous traffic in 
pulsing rate traffic 

Size of Split Window Analysis 

The size of monitoring window is decided based on the time taken for analysis of 

traffic Throughout our experiment, we set the optimal split window size as t = 10 

seconds, i.e., sub-sample window size The total time T = 300 seconds is taken 

for each sample traffic during analysis. Due to huge amount of traffic, we took 

minimum split window sizc for analysis and can dctect DDoS attacks effectively in 

less timc. 
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Figure 8.27: CAIDA dataset: spacing between legitimate and anomalous traffic in 
increasing rate traffic 
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Figure 8.28: CAIDA dataset: spacing between legitimate and anomalous traffic 111 

subgroup attack traffic 

Selection of Minimum Features 

Normally, there are several traffic features considered during network attack detec­

tion and requires more time to detect attacks. Therefore, we used three optimal 

parameters such as source IP, destination IP and protocol to improve detection rate 

significantly. These parameters is selected from the raw network traffic in enterprize 

network. 
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Figure 8.29: TUIDS dataset: spacing between legitimate and anomalous traffic in packet 
level traffic 
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Figure 8.30: TUIDS dataset: spacing between legltnnate and anomalous traffic in flow 
level traffic 

Threshold (WI, W2, W3) Analysis 

In order to estimate the threshold values, we cons1der heuristic approach for each 

threshold value identification In our experiment, we used three thresholds for 

different levels such as WI, W2 and W3, where WI 1S the threshold for local variations, 

W2 is the threshold for global variations and Wj is the threshold for the selective 

ensemble of extended entropy metries for DDoS detection We obtain better results 

while WI >= 0.0280, W2 <= 15.6818 and W3 >= 34301 in CAIDA DDoS dataset. 
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Figure 8.31: ROC of extended entropy metnc and selective ensemble 111 companson to 
Shannon entrop) 

But m case of TUIDS DDoS dataset WI >= 001935 W2 <= 11 2538 and W3 >= 

27184 

Information Entropy Analysis 

In mformatlOn entropy analYSIS we have computed mformatlOn entropy of order 

a = 0,1 2, 15 dunng our expenment However, we obtam maximum extended 

entropy metnc value m order a = 2 and m111lmum m order a = 1, Ie, Shannon 

entropy So the difference between normal and attack traffic gets higher than that 

the difference 111 Shannon entropy Also the global difference of EEM value between 

two consecutive sub-sample IS higher than that the difference m Shannon entropy 

Peak Analysis 

In peak analYSIS, we basically consider the maximum difference of extended entropy 

metnc value for the different attacks mcludmg (a) constant rate, (b) pulsmg rate, 

(c) mcreasmg rate and (d) subgroup attack m both CAIDA and TUIDS DDoS 

datasets We obtam the peak value 111 case of CAIDA datasets (a) constant rate, 

peak value = 626, (b) pulsmg rate, peak value = 574, (c) mcreasmg rate, peak 

value = 1272 and (d) subgroup attacks, peak value = 9001 (see Figures 8 25,826, 

827 and 828) In TUIDS dataset, we obtam the peak value m (a) packet level, 
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peak value = 12.48 and (b) flow level, peak value = 1251 (see Figures 829 and 

8.30). 

8.6.3 Discussion 

To detect DDoS flooding attacks, it IS useful to detect with a milllmum number of IP 

traffic features Many detection schemes use the distribution of either IP addresses 

or IP packet sizes. The IP address-based method uses IP addresses and computes 

the information entropy metric by computing the probability of each unique IP 

addresses within a certain time interval. A bigger entropy value represents higher 

randomness m the IP addresses Based on the distribution of IP addresses, it 

estimates the change in information entropy metric difference between legitimate 

traffic and anomalous traffic. Vie analyze our scheme usmg several real-life DDoS 

attack datasets Our scheme has the following distinguishing features. 

• The scheme can detect anomalous traffic contammg DDoS flooding attacks 

with low false alarm rate and low time compleXity. 

• The detection scheme uses a minimum number of IP traffic features during 

attack detection, which makes it more cost-effective 

• The detection scheme is dependent on a minimum number of parameters. 

8.7 Summary 

In the beginning of this chapter, we presented an overview of DDoS attacks, a tax­

onomy, detection methods and tools. Then, we proposed an effective information 

entropy metric known as the extended entropy metric that can detect DDoS at­

tacks With several attack scenarios. The expenmental results demonstrate that the 

proposed scheme works effectively and stably in detecting DDoS attack traffic. It 

magnifies the spacing between the legitimate traffic and attack traffic significantly, 

which makes it easier to detect DDoS attacks. It also reduces the false alarm rate 

significantly when detecting DDoS attaeks. In addition, we extended our work to 

use an ensemble of extended entropy metrics for increasing detection rate in ncar 
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real-time. The use of the ensemble of extended metrics also produces better results 

during detection of DDoS attacks. We also show that our proposed extended en­

tropy metric-based DDoS attack detection scheme performs well in comparison to 

traditional detection schemes. 
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Chapter 9 

Conclusions and Future Directions 

This chapter summarizes the thesis with discussion of (a) the findings and the 

contributions to the state-of-the-art in the disciplines covered by this work, and 

(b) future work, those directions that Our research will undertake addressing open 

issues that deserve further attention. 

9.1 Summary of Research Contributions 

With the explosive growth of the Internet during last two decades, Internet-based 

attacks on large scale enterpnse networks have grown rapidly. It is important to 

keep secure enterprise networks from these threats The main motivation of the 

research conducted during this thesIs is to mom tor and analyze network traffic for 

anomaly detection. 

This thesis has mamly focused on applying data mining techniques in network 

traffic monitoring and analysis to address the problem of efficient anomaly detection 

and has evaluated their performance using real world benchmark network intrusion 

datasets. Summarized, the most important contributions of this thesis are the 

following . 

• In Chapter 2, we present the anomalies in networks, taxonomy of network 

based attacks, anomaly detection, and evaluation criteria. This chapter also 

discusses definitions, causes, sources, types of anomalies in networks or hosts 

and detection approaches for anomaly detection with generic architecture for 

each of them. 
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• A structured and comprehensIve review on network traffic anomaly detection, 

methods, systems and tools has been reported in Chapter 3. It includes de­

tection methods and systems under six different categorIes, VIZ, statIstIcal, 

classIficatIOn, clusterlllg and outher-based, soft computing, knowledge-based, 

and comblllatlOn learners. We also hst common and relevant tools used by 

both attackers and network defenders during hve network traffic capture, vi­

sualization and analysis 

• In Chapter 4, we present a systematic approach towards generatIOn of bench­

mark network llltrusion datasets Three separate datasets are prepared using 

the TUIDS testbed architecture. They are (I) TUIDS llltrusion dataset, (ii) 

TUIDS coordinated scan dataset, and (iii) TUIDS DDoS dataset Out of sev­

eral real world attacks, we have chosen and incorporated 28 attacks in prepar­

ing our datasets. We have been able to provide a path and a template that 

ultImately leads to generate a dataset that reflects the approprIate amounts of 

normality, anomalousness as well as realism Our datasets demonstrate several 

features including that (i) they are built by incorporation of latest network 

scenarios with real network traffic, (ii) We extraction maximum amounts of 

packet and flow level features during generation of final datasets, and (iii) 

They are large in sIze to support effective validation of the performance of 

detectlOn method. 

• In Chapter 5 we initially examine the state-of-the-art of modern port scans 

and detectIOn methods. Next we llltroduce an adaptive outlier-based method 

for coordinated scan detectIOn In contrast to exploring features for clus­

tering and visualization, AOCD uses random sample selection using a linear 

congruential generator for distinct profile generation. We also propose an 

outlIer score function to test each candidate object to Identify coordinated 

port scans using score values The method reports each candidate object as 

normal or coordlllated port scan with respect to a user defined threshold It 

is capable of detecting coordinated scans that have a stealthy and hOrIzontal 

or strobe footprInt across a contiguous network address space. We test this 

method using several real world datasets including the TUrDS coordinated 

274 



9.1. Summary o~ Research Contributions 

scan dataset and KDDcup99 probe dataset. Due to non availability of similar 

datasets from other sources, we use the KDDcup99 probe dataset to evalu­

ate the method. Coordinated scans are performed in an Isolated environment, 

combining network traffic traces with those collected from live networks. This 

method achieves high detection accuracy and low false positive rate on var­

ious real life datasets in comparison to existing coordinated scan detection 

methods . 

• In Chapter 6, we introduce an effective outlier detection technique to iden­

tIfy anomalies in high dimensIOnal network traffic datasets. It introduces 

a tree-based subspace clustering techmque to cluster large high dimensIOnal 

datasets The clustering technique arranges the data in depth-first manner 

before applying our algorithm for network anomaly detection It also uses the 

outlIer score function to rank each candIdate data object based on scores. The 

key features of this technique are (i) It IS able to successfully detect all outlier 

cases that we consider and (ii) It can use any proximity measure for the com­

putation of anomaly score. But choosing the threshold value is a difficult task 

during network traffic anomaly detection. We choose this threshold based on 

a heuristic approach. The performance of the proposed technique is assessed 

using several datasets, viz, (i) synthetic, (il) UCI ML repository datasets, 

(iIi) TUIDS intrusion dataset, (iv) TUIDS coordinated scan dataset, and (v) 

KDDcup99 and NSL-KDD datasets. Our techmque performs well compared 

to similar algorithms . 

• Chapter 7 presents a tree-based subspace clustering technique for unsuper­

vised network anomaly detection in high dimensional large datasets. It gener­

ates the approximate number of clusters without having any prior knowledge 

of the domain. We analyzed cluster stabIlity for each cluster by usmg an en­

semble of cluster indices. We also introduce a multi-objective cluster labelling 

technique to label each stable cluster as normal or anomalous The major 

attractions of this method are· (i) TreeCLUSS does not require the number 

of clusters apriori, (ii) It is free from the restrictIOn of using a specific proxim­

ity measure, (iii) CLUSSLab is a multi-objective cluster labelling technique 
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contallling an effective unsupervised feature clustering technique to identify a 

dominant feature subset for each cluster, and (iv) TreeCLUSS exhibits a high 

detection rate and a low false positive rate, especially in case of probe, U2R, 

and R2L attacks Thus, we are able to establish the proposed method to be 

supenor compared to competlllg network anomaly detection techmques. We 

also demonstrate that the results produced by our method are statistically 

significant . 

• Flllally, in Chapter 8, we discuss an overview of DDoS attacks, generic archi­

tectures, detection schemes and tools. We use information entropy metrics 

for DDoS flooding attack detectIOn. We propose an extended entropy metric­

based victim-end scheme for detecting classes of DDoS flooding attacks by 

measuring the difference of the metnc between legitimate traffic and attack 

traffic. The method explOIts a generahzed entropy metric with packet inten­

sity computation over sampled traffic Within a time interval. We also extend 

the mechanism to an ensemble of extended entropy metrics for increasing 

detection rate in near real-time. The proposed scheme is evaluated using sev­

eral real world DDoS datasets and It outperforms competing schemes when 

detecting classes of DDoS ftoodmg attacks, viz, constant rate, increasing rate, 

pulsing rate and subgroup attack. 

9.2 Future Work 

Despite being well-investigated fields, the tOPICS covered in this thesis are far from 

being dead-ends. ThiS final sectIOn IS devoted to discuss pOSSible contmuations for 

the research earned out in this thesis, some being part of our ongoing work. 

• Even though several network llltruslOn datasets are available for the research 

community, they lack comprehensiveness and completeness, and are not avail­

able m the public domain Therefore, we provide a template toward generation 

and preparation of benchmark network intrusion datasets. It is possible to 

further extend the work by incorporating both low rate and high rate attacks 

for all categories of datasets 

276 



9.2. Future Work 

• Coordmated scan represent a community effort to reduce network bandwidth 
~ 

when attempting to quickly gain the vulnerability information, helpful to 

attackers We introduce an adaptive outlier-based technique to detect coordi­

nated scans. But its observations of scan activitIes are limIted to the network 

layer. So, It needs to be extended further to detect address resolutIOn protocol 

(ARP) based coordinated scanning, low-rate coordinated scans, and high rate 

coordinated scans within stipulated time periods. 

• An outlIer-based network anomaly detection technique can play an important 

role in identifying types of attacks We develop a distance-based outlIer de­

tection technique and apply it to anomaly detection. There IS ample scope 

stIll to develop a parameter free hybrid outlier detectiOn technique for mixed 

type data to efficiently detect a larger number of attacks that combine both 

distance and density features. 

• If a method can detect network traffic anomalies without usmg any domain 

knowledge, it is known as an unsupervised method. Such methods always 

generate large amounts of false alarms because they do not use appropriately 

labeled data for training We introduce a completely unsupervised network 

anomaly detection method. Developing a real-tIme unsupervised network 

anomaly detection method for mixed-type data remains a challenging task. 

• Though we develop an information metric-based scheme to detect DDoS flood­

mg attacks, there arc several open challenges to achieve real-time performance. 

Hence we arc planning to apply our outlIer-based technique to detect DDoS 

flooding attacks and also aim to extend our scheme with an effective IP trace­

back mechanism. Finally, we note that the development of low-rate DDoS 

attack detection with an appropriate IP traceback techlllque is another open 

problem 
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