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Abstract

In this thesis we have studied the congestion control mechanisms in two reliable
transport protocols, namely, TCP and SCTP. We have analyzed causes of the well

reported lacunae in the congestion control mechanism of the TCP protocol, namely-

I. TCP’s driving the network into congestion causing long queuing delays, packet
loss and retransmissions that lead to high packet latencies, large delay jitters, and
overloading of the network with retransmission traffic.

2. Considering any packet loss to be due to congestion and thus making the
protocol unsuitable for networks with wireless links, where packet losses due to

causes other than congestion are very common.

Based on the analysis we realize that TCP’s driving the network into deep
congestion, as a part of the probing for estimating the available bandwidth for the
connection that leads to both these problems. We have therefore devised a new
congestion control mechanism called RTT based congestion control (RBCC) for TCP

that avoids driving the network into deep congestion so as to overcome these problems.

We have developed adaptations of this new algorithm for both wired networks as
well as networks with wireless links. These adaptations have been implemented in NS2
environment and tested for comparison of their performance with respect to existing
prominent variants of TCP, namely, Newreno, Vegas, SACK, and Snoop. Both these
adaptations perform significantly better than the existing schemes in terms of lower
packet loss, lower packet latency, lower delay jitter, and higher fairness and that without
any compromise in the throughput. In the new scheme it is also possible to have control

over packet latency and delay jitter with a marginal tradeoff on throughput.

As SCTP copies the congestion control mechanism of TCP it inherits the problems
in TCP due to these mechanisms. We have therefore developed an adaptation of the new
congestion control scheme for SCTP too. This adaptation referred to as RTT based
congestion Avoidance (RBCA) has been implemented in NS2 environment and tested its

performance in comparison to the standard SCTP that incorporates SACK and Delayed



ACK as built-in mechanisms. The simulation based experiments show similar
improvements in the performance in SCTP with RBCA, in place of the existing

mechanisms, as in the case of TCP.

It has been observed that SCTP does not make full utilization of its multithoming
feature. It maintains an alternate path but uses it only for the retransmission of lost
packets. We therefore devise another congestion control mechanism for SCTP, referred
to as Switch Path on Congestion (SPC) that makes a balanced use of both, the primary
as well as the alternate path. This mechanism can be used in SCTP along with RBCA as
well as with standard SCTP. Simulation based experiments in NE2 environment show
significant improvement in the performance of SCTP in both these cases in terms of
packet loss, throughput, packet latency, and delay jitter. The new schemes also make

SCTP much more robust to the high bit error rates prevalent in wireless environment.

Vi



Table of Contents

No.
1. Introduction
2. A Survey of Transport Layer Congestion Control
2.1. Congestion Control in Transmission Control Protocol (TCP)
2.1.1. Issues in Congestion Control in TCP
2.1.2. Works on RTT/ Delay based Congestion Control in TCP
2.1.3. Works on wireless related issues in TCP
2.2. The Stream Control Transmission Protocol (SCTP)
2.2.1. Congestion Control Mechanisms in SCTP
2.2.2. Issues in SCTP ‘
2.2.3. Related Works on SCTP
2.3. Summary
3. A New Scheme for RTT Based Congestion Control
3.1. RTT as measure of level of congestion |
3.2.Use of RTT as a Control Parameter for Congestion Control
Avoiding Packet Dropping
3.3.The Proposed Scheme
3.4.Summary
4. Employing RBBCC in TCP for Wired Network
4.1. TCP RBCC for Wired Network
4.2.Addressing TCP’s Congestion Control Problem
4.3.Setting Threshold RTT Statically
4.4. Algorithm for Dynamic Computation of Threshold RTT
4.5.Experimental Study on Performance of RBCC in

Wired Network Environment

4.5.1. Topology and Environment for Experiments

vii

Page

12

15
15
21
25
25
26
27
30
32
32
35

36
38
39
39
39
40
40
47

48



4.5.2. Abilit)ll of the Scheme to Control Packet-loss

4.5.3. Throughput Sensitivity to RTT hreshotd

4.5.4. Ability of the Scheme to Remain Fair

4.5.5. Ability of the Scheme to Control Packet-Latency

4.5.6. Ability of the scheme to control bottle-neck queue-occupancy

4.5.7. Comparing Performance of TCP RBCC with NewReno,
Vegas and SACK

4.5.8. Performance of RBCC with Threshold RTT Computed
Dynamically in Comparision with Statically Fixed

Threshold RTT

4.6.Summary
5. Adaptation of RTT Based Scheme to Networks with

Wireless Links

5.1.RTT in Networks with Wireless Links

5.2.Proposed Adaptation of RBCC to Address Wireless Issues

5.3.Experimental Results ‘
5.3.1. Topology and Environment for Experiments
5.3.2. Ability of the Scheme to Control Congestion Related Packet-losses

5.3.3. Comparison of Throughput, Packet-loss and Fairness with TCP

Newreno, Vegas, SACK and Snoop
5.3.4. Packet Latency and Delay Jitter

5.3.5. Congestion Window Comparison
5.4.Summary
6. New Congestion Control Schemes for SCTP
6.1.Proposed Schemes for SCTP
6.1.1. Adaptation of RBCC to SCTP

6.1.2. Switch Path on Congestion (SPC) technique for
utilizing the alternate path in SCTP

viii

49
49
50
51
52

53

58

61
63

63
64
66
66
68
69

71
73

74
76
76
76
78



6.1.3. Resulting Schemes

6.2.Experimental Results

6.2.1. Topology and Environment for Experiments

6.2.2. Packet Losses due to Congestion

6.2.3. Throughput
6.2.4. Fairness
6.2.5. Packet Latency and Jitter
6.2.6. Queue Occupancy
6.3. Expeniment With Packet Losses due to Bit Errors

6.4. Summary

. Conclusions

7.1. Limitations and Scope for Future Work

Bibliography

Appendix ~I (Glossary)

1X

79

80

80
82

83
84
84
86
87
90
92
94

95

103



List of Tables

Table Number Title Page No.
2.1 Summary of existing RTT/Delay based Schemes 20
4.1 A Gist of Comparative Performance of various 57

TCP congestion control schemes in wired

network environment

5.1 A Gist of Comparative Performance of Various 75
TCP Congestion Control Schemes in Wireless
Environment under Different Error Conditions
(Path Loss Exponent (PLE}) using Simple
MAC Layer

6.1 SCTP performance for various congestion control 91
schemes in wired network environment for different

traffic loads and error conditions



List of Figures

Figure Number

3.1

3.2

3.3

3.4

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Title

Queue Length (in number of packets) Vs. Time (seconds)
in TCP Newreno

RTT Vs. Tume (both in seconds) in TCP Newreno
Queue Length (number of packets) Vs. Time(seconds)

in TCP RBCC

RTT (Latency) Vs. Time (both in seconds) in TCP RBCC
State Transition Diagram of Algorithm for the Dynamic
Computation of Threshold RTT

Topology for Experiment in Wired Network

Packet Loss Vs. RTT o sno1s Value in TCP RBCC
Throughput Vs. RTT \preunon Value in TCP RBCC

Fairness Vs. RTT prosp01a Value in TCP RBCC

Page No.

33

33

37

37

4]

48
49
50

57

RTT Vs. Time for different values of F (No. of Connections =5) 51

in TCP RBCC

Queue-Occupancy Vs. Time for different values of F
(No. of Connections =5) in TCP RBCC

Packet Loss Vs. Traffic Load in TCP RBCC (F=2.0),
NewReno, Vegas and Sack

Throughput Vs. Traffic Load in TCP RBCC (F=2.0),
NewReno, Vegas and Sack

Fairness Vs. Traffic Load in TCP RBCC (F=2.0),
NewReno, Vegas and Saci

RTT Vs. Time (seconds) in TCP RBCC (F=2.0),

NewReno, Vegas and Sack (No. of Connections =5)

X1

52

53

54

55

55



4.12

4.13

4.14

4.15

4.16

4.17

4.18

5.1

5.2

5.3

5.4

55

5.6

5.7

5.8

Queue-Occupancy Vs. Time (seconds) in TCP RBCC (F=2.0),
NewReno, Vegas and Sack (No. of Connections =5)
Queue-Occupancy Vs. Time (seconds) in TCP RBCC (F=2.0),
NewReno, Vegas and Sack (No. of Connections = 40)

Packet Loss Vs. Traffic Load in TCP RBCC with Static (F=2.0)
and Dynamic Threshold RTT

Throughput Vs. Traffic Load in TCP RBCC with Static (F=2.0)
and Dynamic Threshold RTT

Fairness Vs. Traffic Load in TCP RBCC with Static (F=2.0)
and Dynamic Threshold RTT

RTT Vs. Time in TCP RBCC with Static (F=2.0} and Dynamic
Threshold RTT ( No. Connections =5 and RTTs are taken for
the first flow in each case)

Queue-Occupancy Vs. Time in TCP RBCC with Static (F=2.0)
and Dynamic Threshold RTT ( No. Connections =5)

Wireless Topology

Packet Loss vs. F in RBCC-WL (for No. of Connections = 10)
Throughput in RBCC-WL, Newreno, Vegas, SACK and SNOOP
(No. of Connections = 10, F=1.7)

Packet Loss (Retransmissions) in RBCC-WL, Newreno, Vegas,
SACK and Snoop (No. of Connections = 10, F=1.7)

Fairness in RBCC-WL, Newreno, Vegas, SACK and Snoop
(No. of Connections = 10, F=1.7, PLE=2.2)

Latency in RBCC-WL, Newreno, Vegas, SACK and Snoop

(No. of Connections = 5, F=1.7, PLE=2.2)

56

57

58

59

59

60

61

67

69

72

Latency in RBCC-WL for different values of F (1.3, 1.7 and 2.7) 72

{No. of Connections = 5, PLE=2.2)
Congestion Window in RBCC-WL, Newreno, Vegas and SACK-

(No. of Connections = 5, F=1.7, PLE=2.2)

X1

73



59

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Congestion Window in RBCC-WL for different values
of F (1.3, 1.7and 2.7} (No. of Connections = 5, PLE=2.2)
Topology for SCTP in NS2

Packet Loss comparison between SCTP (Std.), SCTP (RBCA),
SCTP (RBCA & SPC) and SCTP (SPC)

Throughput comparison between SCTP (Std.), SCTP (RBCA),
SCTP (RBCA & SPC) and SCTP (SPC)

Fairness comparison between SCTP (Std.), SCTP (RBCA),
SCTP (RBCA & SPC) and SCTP (SPC)

Packet Latency comparison between SCTP (Sid.),

SCTP (RBCA), SCTP (RBCA & SPC) and SCTP (SPC)

Packet Latency comparison between different Values of F

in SCTP (RBCA)

Packet Latency comparison between different Values of F

in SCTP (RBCA & SPC)

Comparison of Queue Occupancy (in Path2) between

SCTP (Std.),SCTP (RBCA), SCTP (RBCA & SPC) and

SCTP (SPC)

Throughput comparison between SCTP (Std.), SCTP (RBCA),
SCTP (RBCA & SPC) and SCTP (SPC), F=2.0 with 0% error
Throughput comparison between SCTP (Std.), SCTP (RBCA),
SCTP (RBCA & SPC) and SCTP (SPC), F=2.0 with 1% error
Throughput comparison between SCTP (Std.), SCTP (RBCA),
SCTP (RBCA & SPC) and SCY:P (SPC), F=2.0 with 5% error
Throughput comparison between SCTP (Std.), SCTP (RBCA),
SCTP (RBCA & SPC) and SCTP (SPC), F=2.0 with 10% error
Throughput comparison between SCTP (Std.), SCTP (RBCA),

SCTP (RBCA & SPC) and SCTP (SPC), F=2.0 with 15% error

Xiii

74

80

83

84

85

85

86

87

88

88

89

89

90



Chapter 1

Introduction

1.1 Background

With the exponential nature of growth in the popularity of the Internet, the computer
networks have become part and parcel of our day-to-day lives. It has become impossible
to think of a world without the networks as information is a prime need of our lifestyle.
These networks carry the information between host computers all over the world and at
times beyond it. We have become so much dependent on these networks, particularly
the Internet, that any disruption in the Internet today causes a shock wave in the
business and commercial world as well as in the other spheres of human activity.
Therefore proper, undisruptive functioning of the Internet is imperative to the well being
of the world community, be it in the field of commerce, industry, education, governance

or for that matter even entertainment.

The Internet, which is the inter-network of diverse networks spread all over the
world, has TCP/IP protocol suite as base technology [Com03, SteO1, For06]. Like the
OSI model the TCP/IP protocol suite is also layered. Some of the most prominent
protocols in this suite are IP, TCP, UDP, and SCTP. The Internet Protocol (IP) at the
network layer binds the networks together to create the Internet. IP is built on the
principle of packet switching. It provides un-guaranteed. connectionless best effort
service for packet delivery as the underlying networks are of diverse characteristics. The
Transmission Control Protocol (TCP) at the Transport Layer is the most widely used
transport protocol for the data transport service on the Internet. It makes the Internet

connection oriented and reliable by adding flow control and error control mechanisms.
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In a packet-switched network packets are stored in the intermediate nodes in the
network before being forwarded to the next node on the path towards the destination.
Packets from different source nodes may arrive at a node destined for different hosts.
Depending upon the destination host these packets arriving at a node have to be
forwarded along different outgoing links from the node. Each link has a capacity of
carrying packets at a given data rate. If the arrival rate of packets at a node to be
forwarded along a given link is less thar the capacity of the link the packets get
forwarded without delay. However if the arrival rate of packets at the node exceeds the
carrying capacity of the outgoing links, the packets accumulate in the node. The packets
then get queued up in the node in its memory buffers. The size of the buffer decides the
maximum possible length of the queue. This phenomenon of accumulation of packets in

the intermediate nodes is referred to as congestion [GCKBO1, Tan99, WC91].

When packets accumulate at a node and the buffers get filled-up it starts
affecting the nodes along the path backwards towards the source nodes with link-level
back pressure pause mechanism [LPPBABO6, STJO2]. Packets start to accumulate in
these nodes too as the nodes ahead stop accepting packets. Similarly, packets may start
to accumulate in the nodes ahead too as the congested nodes send more packets to these
nodes. This leads to spreading of the congestion to the rest of the network, or a part of it,
with the originating node as the centre of the congestion [LPPBABO06]. The congestion
in a network may be local or may become global depending on the extent of the

spreading of congestion and the number of centres of congestion occurring at a time.

The result of congestion is that the utilization efficiency of the links leading to
the congested nodes fall. That leads to drop in the carrying capacity of the network.
During a congestion situation the queues in the nodes become long. The packets have to
spend longer time in the queues before being forwarded to the next node along the path.
The queuing delay suffered by the packets and thus the latency of the packets increase.
Another important consequence of congestion is that when the buffers in a congested

node become full, and the node becomes unable to accept any more packets. It then
2



starts dropping the subsequent packets forwarded to it. Packets are also dropped to
create a path for the packets so as to recover from a congestion situation. The dropping
of the packets leads to retransmission which causes additional traffic burden on the

network and contributes further to the packet latency.

Congestion in a packet switched network thus leads to the following:

1. Drop in throughput of the network

ii. High packet latency

iti. Increased variation in the packet latency, i.e. jitter
iv. Packet loss

v. Additional load on the network due to retransmissions.

Thus occurrence of congestion affects the performance of applications to the
extent of making the network unsuitable for many applications. Therefore it is very
important to have proper control over the congestion situation in a network so as to
maintain its suitability towards applications as well as for efficient utilization of the
network capacity. The mechanisms that are deployed for detection, avoidance and

recovery of congestion are called congestion control [RRQO03, Tan99].

The congestion control mechanisms can be built into one or more of the layers in
the network [WCO91]. The network layer can implement congestion avoidance and
congestion detection mechanism and can help the upper layers in congestion recovery.
Traffic Shaping [Liu92, VSKO06], Adaptive Routing [FRT02, XQYZ04, AA03],
Resource Reservation [SP98), Weighted Round Robin Scheduling (WRR) [Ray99,
FHO8), Active Queue Management (AQM) [BRHGO4, RRQO3] etc. are some of the
techniques that can be implemented at the routers for congestion avoidance. Schemes
such as Random Early Detection (RED) [FI93], Explicit Congestion Notification [RF99,
YSLO3) and eXplicit Congestion control Protocol (XCP) [KHRO2] have been

implemented with the help of the network layer for congestion detection and recovery.
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One common technique used at the network layer to assist in congestion recovery is
packet dropping [GCKBO1]. Once the congestion is detected by dropping some packets
at the routers resources can be freed to some of the flows so that the traffic movement
can resume and process of recovery from the congestion situation can start. However
without assistance from an end-to-end host layer in the way of reducing the rate of
packet injection into the network, the network layer alone cannot achieve full control
over congestion. The transport layer is the lowest end-to-end layer having full control
on the flows over the connections. Therefore it is suitable for implementing full fledged
congestion control mechanisms. For this, however, it has to maintain the state of the
connection and has to have a feedback mechanism. On the Internet the congestion

control mechanisms are built into the transport layer protocols.

1.2 Internet Data Transport

As has been said, the Internet embraces diverse networks with wide range of
technologies and communication characteristics and these are bound together by IP
[Com03, SteO1, For06]. In doing so it is unable to provide guaranteed packet delivery
service. However, the end user application needs some robust transport mechanism for
transferring user data without worrying about the underlying technologies. Internet Data
Transport (IDT) provides mechanisms by which Internet applications can be
provisioned with different kinds of services the user needs. These services are divided
broadly into two categories. One is reliable delivery of user data and second is the
unreliable but timely delivery. Most of the Internet applications need either of these two
kinds of services. Reliability is provided by maintaining connection state across source
and destination computers, retransmitting lost data, having congestion control, flow-
control and buffering. The reliable transport service ensures that a user message reaches
its destination in-order giving less attention to the amount of time it takes. It uses flow-
control techniqﬁes to prevent overflow in the buffer space at the receiver and
congestion-control mechanisms to control the rate of injection of packets into the

subnet.



The second type of transport service, on the other-hand, does not ensure reliable
and ordered delivery of messages. But it provides timely delivery of messages no matter
if some of packets are lost in the middle. Real-time applications that need data-packets

to be delivered with consistent inter-arrival time use this type of service.

The principal protocols used for data transport over the Internet are- the
Transmission Control Protocol (TCP), and the User Datagram Protocol (UDP). The
Stream Control Transmission Protocol (SCTP) is a newer transport protocol that has
attractive feature and has attracted attention of researchers as well as the industry
[ISASO3, CIALHSO03, FA04]. TCP is currently the most widely used transport protocol.
It provides reliable byte-stream service by ensuring that each data-byte sent from source
reaches the destination without fail |Com03, Ste01, For06]. It does so by establishing
connection between the application processes in the two hosts, having provision for
acknowledgement for each data-packet from receiver to the sender and having a
retransmission mechanism for lost or erroneous data-packets. TCP maintains two
window variables viz. receiver window (rwnd) and congestion window (cwnd). The first
one (i.e. rwnd) provides flow control which makes the sender not to exhaust recetver's
buffer space. The cwnd variable allows it to control packet injection rate and thereby

have control over congestion situation in the subnet.

UDP on the other hand provides unreliable transport service [Com03, SteOl,
For06]. It is a datagram oriented protocol without much overhead. Each output transport
operation by an application process produces exactly one UDP datagram, which causes
one IP packet to be sent. UDP does not guarantee the delivery of a datagram. The
datagram's arrival at the destination depends upon the conditions in the subnet. Also,
UDP does not have any congestion control mechanism. It injects the packets into the
subnet at whatever rate an application produces them. Therefore an application process

using UDP may need to have its own congestion control mechanism.



Stream control transmission protocol (SCTP) is the new evolving technology for
Internet Data Transport [Ste00]. It has embraced all the features of TCP and added some
new features to support next generation Internet applications. The new features
supported in SCTP primarily are- multi-homing, multi-streaming, message boundaries
and mechanism for protection against denial-of-service-attacks. The congestion control
mechanisms in SCTP are similar to those in TCP. With the multi-homing feature it
allows multiple paths between a source and destination pair. SCTP controls congestion

for each of such parallel paths independently.

TCP, UDP and SCTP use port numbers in their headers to multiplex more than
one application. This enables a host to maintain several network connections

simultaneously in spite of having a single IP address.

As UDP does not have a mechanism for congestion control, the study focuses on
the other two transport protocols, namely, TCP and SCTP. There are several issues
related to congestion control that affect the overall performance of the network and need

close scrutiny.

1.3 Measure of Performance for Congestion Control Scheme

The performance of a congestion control scheme is measured in terms of several
parameters. These parameters are- throughput, packet loss, fairness, packet latency,

jitter and queue occupancy in the bottle-neck link.

Throughput: Throughput is the total volume of data successfully delivered at the
receiving hosts over a given time. It can be expressed in terms of the
total number of bytes delivered. It can also be expressed in terms of
capacity utilization as percentage of the total carrying capacity of the

subnet.



Packet loss: Packet loss is the total number of packets that is not received by the
destination node. The loss of packets could be due to either traffic
overload at the bottle-neck link that leads to packet dropping or due to
link error (e.g. signal fading). While measuring the performance of a
congestion control scheme, only packets lost due to traffic overload (i.e.

network congestion) is taken into account.

Fairness: In a network each flow should get a fair share of the bandwidth. It
should not be such that some flows hog most of the bandwidth while the
others starve. This can happen if some of the flows while adjusting the
individual congestion windows set them higher than appropriate. By
fairness, one can measure how fairly the flows that are competing for
network resources get their share. If the share of the bandwidth enjoyed
by the flows are unequal then the mechanism is poor in faimness. If there
are ten flows that are competing for same network resources with
similar characteristics of network configurations then each of them
should ideally get 10% of aggregate resource. The fairness index can be

computed as follows [CJ89]:

F=(Z)pmz2) e (1.1)

Where x, is the throughput for i-th flow.

The fairness index above is bound between 0 and 1, which is a
continuous function. Greater the value of F (i.e. near to 1) the better is

the scheme in fairness. Fairness can also be expressed in percentage as-

F=(2x)/n2x?)X100%  --oeemeee- (1.2)



’

Packet Latency: Packet-latency is the total amount of time taken by a packet for
traversing from its source to the destination host. Packet latency
accounts for the transmission time, propagation time, queuing delay and

the processing time at the routing nodes.

Jitter: Delay jitter or simply jitter is the variation in the packet-latency that
occurs on a connection. It is normally expressed as the standard
deviation of the packet latencies experienced on the connection. Jitter
has affects on the performance of real-time applications requiring
connection oriented service. The effect of jitter can be reduced by using
memory buffers at the receiver. However the buffer size requirement

grows with jitter.

1.4 Motivation Behind the Work

TCP [Pos81, Ste01, Com03] is the most widely used transport protocol in the
Internet. Its congestion control mechanism has a significant role to play in the overall
performance of the network. TCP does not take help of the lower layers to determine the
availability of bandwidth for a new connection. Therefore it follows a policy of probing.
This probing consists of increasing the packet injection rate for a flow until there is a
congestion. When a congestion occurs it reduces the injection rate. It employs additive
increase and multiplicative decrease in the rate of injection of packets into the network
by increasing and decreasing the congestion window at the source additively and
multiplicatively respectively [Pos81, Ste01, Com03]. The increase is done when the
acknowledgements (ACKs) for the packets sent are received regularly. When congestion
occurs at a router. packets get dropped resulting is non-receipt of ACKs at the sender.
The sender then times out and interprets this non-receipt of ACKs within the time-out
duration as loss of packets due to congestion in the network. It then reduces the packet

injection rate by reducing the congestion window size by a factor. The source also then

3



retransmits packets that are presumed to be lost. In this scheme congestions are bound
to occur as the packet injection rate at the sending end is continued to be increased until

congestion occurs to the extent that the routers start dropping packets.

This reduction in the congestion window size in TCP is not restricted to packet
losses due to congestion as TCP cannot differentiate between packet lost due to
transmission errors (such as interference, fading etc.) and congestion. In a wireless
environment packet losses due to transmission errors are quite frequent. Reduction in

congestion window size in such situation leads to loss in throughput for the connection.

TCP’s dependence on packet dropping to detect congestion forces it to drive the
network into congestion. As a result all the ill-effects of congestion are inherent in the
TCP’s congestion control mechanism. Since the congestion control mechanism in

SCTP [Ste00] is borrowed from TCP, these ill-effects are inherited by SCTP too.

One way to overcome this problem is to avoid pushing the network into extreme
congestion situation that causes packet drops. When congestion situation approaches the
queue lengths at the routers start increasing. This increase in queue length causes the
packets to suffer more delays at the routers. Finally when the queues become full the
routers start dropping packets requiring retransmission of these packets. The
retransmitted packets suffer excessive delays leading to the highly undesirable delay
Jitters. Retransmissions also put additional traffic burden on the subnet. As a result the
throughput of the network also suffers. These inefficiencies have further detrimental
effects on the QoS parameters such as high latency, high delay jitter and reduction in the
packet throughput. To avoid these inefficiencies it is therefore necessary to control a
congestion situation while it approaches rather than allowing congestion to reach the

extreme stage of losing packets before starting the control mechanism.



1.5 The Work Done

In this thesis we present a new scheme for congestion contro} in TCP based on
round-trip time (RTT) that maintains the RTT for a connection hovering around a
threshold value. This new scheme, which is referred as RTT Based Congestion Control
(RBCC), avoids occurrence of extreme congestion situation and thus largely eliminates

packet losses due to congestion. The scheme also provides control over packet latency.

We have devised adaptations of this scheme for wired and wireless networks.
These adaptations of the scheme have been studied in simulated wired and wireless
communication environments. The simulation studies [DS04, DS061] show that RBCC
has significant advantages over existing schemes such as TCP Newreno[Hoe95, FH99],
TCP Vegas[BOP94] and SACK [MMFR96], in respect of reduction in retransmissions,
packet latency, and delay jitter while maintaining the same or even higher levels of
throughput in both of the wired and wireless environments. A comparative study with
TCP Snoop[BSAK95] in Wireless Environment shows that the new technique performs
better in terms of latency and fairness and in some situations better in terms of

throughput.

Further, the work has been extended to congestion control in SCTP. Apart from
this, a new technique called Switch Path on Congestion (SPC) [DSO6II] has also been
developed that uses the multi-homing feature of SCTP. Simulation study shows that that
RBCC with as well as without SPC has significant advantages over the existing SCTP in

terms throughput, packet-loss, fairness and latency.
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1.6 Organization of the Thesis

The rest of the thesis is organized as follows. A survey of the existing works in
the area and a discussion on the existing TCP congestion control mechanisms are
presented-in Chapter 2. In this chapter the SCTP protocol, its congestion control
mechanism and the relevant issues are also discussed. Chapter 3 makes an analysis of
RTT as a measure for congestion in the network and presents proposed RTT based
congestion contro! scheme for TCP. Chapter 4 presents the scheme for wired network
environment and the algorithms for setting the threshold RTT statically as well as on-
the-fly. The results of simulated experiments in ;zvired network environment showing the
comparative performance of the new scheme in relation to TCP Newreno, TCP Vegas
and TCP SACK are also presented in this chapter. Chapter 5 presents the adaptation of
the scheme to the wireless environment and the experimental results that compare its
performance with TCP Newreno, TCP Vegas, TCP SACK and TCP Snoop in a network
with wireless links. Chapter 6 discusses how the scheme is adapted to the new transport
protocol SCTP. It also presents the new scheme Switch Path on Congestion (SPC) that
exploits the multi-homing feature of SCTP. Results of experimental comparative study
of our schemes for SCTP with the existing ones are also presented here. Chapter 7

summarizes the work.
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Chapter 2

A Survey of Transport Layer Congestion Control

TCP is the reliable transport protocols primarily used in the internet today.
SCTP is a new and upcoming protocol with potential for being widely used on the
internet in the near future, particularly for real-time applications. In this chapter a survey

1s made on the congestion control techniques in these two transport protocols.

2.1 Congestion Control in Transmission Control Protocol (TCP)

In the Internet, congestion control is the responsibility of the transport layer.
TCP is the most widely used protocol for Internet Data Transport. Congestion control is
therefore an integral part of TCP. For congestion control TCP adopts a congestion

detection and recovery approach.

The prime function of TCP [Com03, Ste01, Pos81] is to ensure delivery of user
data to the destination host application process. This is achieved through an
acknowledgement mechanism in which the receiver sends an acknowledgement (ACK)
to the sender on receipt of an error free packet. A timer is associated at the sender’s end
with each of the packets transmitted to keep track of packets for which ACKs are
pending. If an ACK is not received for a packet within a time-out period the packet is
assumed to be lost. The lost packets are then retransmitted by the sender. The time-out
period is fixed based on the Round-Trip Time (RTT). RTT is defined as the time between
the sending of a packet and the receiving of its ACK at the sender’s end. The time out
period is set to be a factor of times higher than the average RTT to avoid premature

retransmissions.

TCPs general strategy is to keep the transport layer as independent of the other

layers as possible. Therefore the TCP does not take any direct help from the lower

12



CENTRAL LIBRARY, T. U.

ACC.NO...... 49’0

congestion along the path.

TCP does not get any information about the bandwidth availability
connection from the other layers. But it is important that TCP utilizes the available
bandwidth of the network to maximize throughput. To make an estimate of it TCP
follows a probing strategy. It tries to obtain as much bandwidth for a connection as
possible while being fair to the other connections. To achieve these objectives, TCP
matintains a transmission window called the Congestion Window (cwnd) at the sender.
The congestion window decides the number of bytes that can be injected into the
network at a time and thus keeps a control over the bandwidth that is consumed by the
connection. When a new connection is established, the starting cwnd is set to one
segment, which is generally set to the maximum packet size also called as Maximum
Transmission Unit (MTU). It then transmits a packet on receipt of which the receiver
sends back an ACK packet. On receipt of this ACK it increases the cwnd size by one
segment. Next time two packets (as the value of cwnd is then two segments) are sent
and upon receiving two ACKs the cwnd is increased by two. Thus the successful receipt
of ACK packets is interpreted by the sender as availability of bandwidth and doubles the
congestion window size thereby doubling the consumable bandwidth for the connection.
It continues doubling the cwnd size until it reaches a threshold level called the Slow
Start Threshold (ssthresh) while the packets are successfully delivered at the
destination. This phase of probing is known as the Slow Start phase. After the cwnd
reaches this threshold level, instead of doubling it the cwnd size is increased by one
segment per RTT on receipt of ACK for each successful delivery of packet at the
destination. This phase of linear increment of the congestion window is known as the
Congestion Avoidance phase. Though the rate is reduced in Congestion Avoidance
phase, the increment of cwnd is continued until some packet loss is detected. This
naturally leads to a rate of injection of packets by the sender into the network that is in
excess of what the network can accommodate thus driving the network into congestion.
This excess rate of injection results in dropping of packets at the bottle-neck links and
non receipt of ACKs at the sender. The sender then times-out and interprets this ACK

time-out as packet dropped due to occurrence of congestion. TCP then tries to overcome
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the congestion situation by bringing down the congestion window size to its minimum
(i.e. one segment) and starts the process of probing all over again with the Slow Srart

phase.

In the original version of TCP [Ste01] a packet-loss is detected when the timer
goes off. Then the packet is retransmitted. The Time-out is set to be significantly higher
than RTT. As a result at times this leads to long waiting time before the retransmission
can be done. This affects throughput, causes high packet latencies and large delay
jitters. To avoid these, the Fast Retransmit [Jac90, APS99] scheme uses the arrival of
three or more duplicate ACKs in a row as an indication of loss of a packet. and the
receiver then retransmits the missing packet without waiting for a retransmission timer
to expire. After a packet-loss detection in this manner Congestion Avoidance is
performed by setting ssthresh to half of the cwnd and then setting the cwnd value to
ssthresh. By setting the cwnd value to ssthresh the slow-start phase is avoided. The
scheme directly goes into the congestion avoidance phase. This modified scheme is a
known as Fast Recovery. The use of the Fast Recovery scheme along with Fast

Retransmit it is known as TCP Reno [Jac90, APS99].

TCP Reno however does not recover from multiple packet losses within a single
window. When there are multiple packet losses, the acknowledgement for the
retransmitted packet (the first one in Fast Retransmit) will acknowledge some but not all
of the packets transmitted before the Fast Retransmit. In an improved scheme called
TCP NewReno [Hoe95. FH99] the sender recovers from multiple packet losses by
inferring receipt of partial acknowledgements as packet lost and retransmitting the

indicated packets.

Multiple packet losses from a window of data can have a catastrophic effect on
TCP throughput. With the limited information available from cumulative
acknowledgments, a TCP sender can only learn about a single lost packet per round trip
time (RTT). A Selective Acknowledgment (SACK) mechanism [MMFR96], combined
with a selective retransmission policy, can help in overcoming these limitations. The
receiver in this case sends back SACK packets to the sender informing it of data that has
" been received. The sender can then retransmit only the missing packets. The TCP

FACK (Forward Acknowledgement) [MM96] improves congestion control during
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recovery phase by providing accurate measure of outstanding data in the network. TCP

FACK works in conjunction with TCP SACK.

2.1.1 Issues in Congestion Control in TCP

For~all the above the basic mechanism remains the same in that the network is
always driven into a deep congestion situation leading to packet loss before recovering
from it. This results in several undesirable effects. As more and more packets are
injected into the network the queue length in the switches start growing. This causes the
packets to suffer longer delays and hence the packet latencies increase. Finally when the
packets are dropped these packets are retransmitted. This puts extra burden on the
network and lowers its effective capacity. The reiransmitted packets also suffer large

delays leading to excessive jitters.

Another serious drawback of the scheme is that it interprets any packet loss as
packet drop due to congestion [BPSK97, BV98, CBDA98, GRL99, HK99A]. As a
result a packet lost due corruption over a noisy link is also interpreted as a packet
dropped due to congestion. This misinterpretation leads to unnecessary reduction in the
congestion window and a corresponding fall in the throughput [TM02]. In a network,
involving wireless links, packet loss due to noise is very common. In such environments
the above scheme becomes very inefficient and unsuitable [BPSK97, BV98, CBDA9S,
GRL99, HK99A]. To counter this, Explicit Congestion Notification (ECN) [RF99] was
proposed which takes the help of the network layer. In this scheme the routers are
allowed to set the congestion experienced (CE) bit in the IP packet header as an
indication of congestion to the end host rather than dropping the packet. Upon receiving
ACK packets set with CE bit, TCP reduces the size of it’s congestion window. One
advantage of this is TCP can avoid the retransmission of packets that would have been
dropped by the router. However, researcher have noted that ECN cannot be relied upon
to completely eliminate packet drops as an indication of congestion and would not

remove the danger of congestion collapse for best-effort traffic [Flo(0].

2.1.2 Works on RTT/ Delay based Congestion Control in TCP

To overcome the above shortcomings it is necessary to avoid driving the

network into extreme congestion situation and not. use packet loss for detection of
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congestion situation. One alternative is to use the Round Trip Time (R77) or delay as a
measure for the traffic load in the network and use it to estimate the available
bandwidth. As RTT depends upon queuing delay at the routers and queuing delay is an
indication of the level of traffic in the network it can be used as a measure for the traffic
volume in the network. The following are some RTT or delay based congestion control

schemes already proposed for TCP:

i) Jain’s Work

In one of the earliest works based on delay, Jair; [Jai89] proposed a scheme for
congestion avoidance which observes the sign of the variation in RTT with respect to
variation in the congestion window size. If an increase of the congestion window
results in an increase in the RTT, then the congestion window size is decreased.
Otherwise, the congestion window size is increased. The scheme defines a normalized

delay gradient (NDG) to be used as a decision function as follows:

NDG = ((D-Doia)/ (D+Doia)) (W Weial/ (W-Woia))

where D and D, are the round-trip delays at the windows W and W,

respectively.

Based on the value of NDG change is applied to the window size once every two
round-trip delay. If NDG > 0 or W = W,,, then the window is decreased
multiplicatively by c. Otherwise, if NDG < 0 or W = W,,,, then the window is
increased linearly by AW. The recommended value for AW is 1 and for ¢ it is 0.875.
Woun 18 the minimum window size and W,,,, is maximum window size. The scheme
is reported to able to keep the window around the knee point (the point where the

throughput starts saturating) well.

it) Tri-S Scheme

Tri-S [WC91] scheme uses a change in the throughput as an indication of
congestion. The algorithm computes normalized throughput gradient (NTG) aund
compares to a threshold to keep the connection at the optimal operating point which
maximizes the throughput while avoiding congestion. The scheme has three

operation modes as described below:
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a) When a user initiates a connection, it enters the nitialization mode. The
window size is set to one basic adjustment unit (BAU). Upon receiving each
ACK, the cwnd is increased by one BAU until the cwnd is equal to the
receiver window.

b) When a packet times out the cwnd is set to one BAU and increased by one
BAU for each ACK while the NTG is above a certain threshold N7Gj.

¢) In the increase mode, the cwnd is increased by BAU/(current cwnd) each
time an ACK is received. If the accumulated increase is larger than the
packet-size, the NTG is checked. If the NTG is less than the threshold NTGy,

the cwnd is decreased by one packet-size, otherwise do nothing.

It has been reported [WCO1] that Tri-S performs better in comparison to the
slow-start algorithm in terms of throughput and fairness. It also maintains lower

queue length in the bottle-neck link than the slow-start.

iti) TCP Dual

TCP Dual [WC92] has the concept of delay threshold which is calculated
as the average of the minimum and maximum RTT. For every two round-trip time,
the round-trip delay is checked in Slow Srart phase and if it is greater than the
threshold then the cwnd size is reduced by 1/8 of the current size. TCP Dual resets
the cwnd size, the minimum RTT and the maximum RTT values on timeout. It then
updates the minimum and maximum RTT values on each round-trip time.

A study [WC92] shows that TCP Dual eliminates periodic packet losses
and reduces oscillation in window adjustment and the queue length. However, for
the initial period (until the first packet-drop) the performance of TCP Dual is
similar to that of TCP Newreno.
iv) TCP Vegas

The best-known TCP congestion control scheme that uses RTT is TCP

Vegas [BOP94]. Here, first an Expected throughput rate in the network is estimated
as the size of the current congestion window divided by the ininimum of all
measured round-trip times since the establishment of the connection. Then, Vegas

calculates the Acrual throughput rate in the network by recording the number of

bytes transmitted in a distinguished segment, determining the RTT for the segment
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and dividing the number of bytes transmitted by the RTT. Two thresholds a and f,
a < f3 are defined, roughly corresponding to having too little and too much extra
data in the network, respectively. If the difference Diff = (Expected — Actual) 1s
found to be less than a, the congestion window is increased linearly, and if Diff >
B, the congestion window size is decreased linearly during the next RTT. The
congestion window is left unchanged when a <Diff <f. Vegas also makes change
in the retransmission mechanism. It uses timestamp for each packet sent to
compute the round-trip time on each ACK received. When a duplicate ACK is
received it checks to see if the difference between the timestamp and the current
time is greater than the timeout value. If it is, Vegas retransmits the packet without

waiting for the third duplicate ACK.

v) TCP Westwood

The basic idea of TCP Westwood [MCGLS00] is to exploit the stream of
returning ACK packets in order to obtain an estimate of the available bandwidth for
the connection. It estimates the available bandwidth in the path using number of
packets acknowledged by an ACK packet and the time since last acknowledgement.
Then it deduces the congestion window and slow start threshold based upon the
estimated available bandwidth and the minimum RTT. The bandwidth estimate is
used to properly set the cwnd and ssthresh when a congestion situation is detected.

In absence of congestion situations, the dynamics of these variables conforms to

that of standard TCP.

vi) TCP FAST

TCP FAST [JWLO04] divides congestion control mechanism into four
functionally independent components. These four components are data control,
window control, burstiness control and esti;nation component. The data control
component determines which packet to transmit, window control determines how
many packets to transmit, and burstiness control determines when to transmit these
packets. These decisions are made based upon the information provided by the
estimation component. It uses both queuing delay and packet-loss as signal of
“congestion. TCP FAST updates the congestion window based on average RTT, the
minimum RTT observed over the path since the beginning of the connection and the

previous congestion window. It is reported [JWLO4, JWLO3] to demonstrate
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encouraging performance enhancements.

vil) The work of Zhang and Tsaoussidis

The work by Zhang et al. [ZT03] proposes a congestion avoidance
mechanism by reducing cwnd size based upon queuing delay that makes use of
RTT. This technique was proposed to improve the smoothness in the sending rate of
real-time applications within the framework of bandwidth efficiency and fairness.
The mechanism relies on fine-grained RTT estimation to measure the network
condition and coordinates the upward and backward window adjustments to avoid
the damage due to unsynchronized window control on throughput smocthness. The
scheme complements TCP’s standard congestion control algorithm specifically with
two techniques. Firstly, if it finds gdelay/max_gdelay >= Th,p,., then it reduces the
cwnd by a factor. Similarly, if it finds gdelay/max_qgdelay <= Thj,,.- then 1t
accelerates the cwnd increment by a factor. Initially it allows the bottle-neck queue
length to grow to the fullest to observe maximum RTT with highest queuing delay.
However it also reduces the cwnd on detection of packet-loss.

A comparison with Reno, Vegas, Reno/RED shows [ZT03] that the
above technique displays better fairness and smoothness in throughput without

sacrificing throughput.

viii)  Other RTT/delay related works

An algorithm called Virtual Rate Control (VRC) proposed in [PLPCO04]
makes the use of RTT along with queue length for controlling the window-size.
Similarly, in [MTZ05] authors claim that using an RTT-based mechanism the TCP
sender can determine, with sufficient accuracy, the level at which the bottleneck-
queue becomes full.

The above RTT and delay based techniques can be summarized in the

following table 2.1:
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Table 2.1: Summary of existing RTT/Delay based Schemes

SI. | RTT/Delay | Calculation of RTT | Use of RTT Performance
No. | based
Scheme
1 Jain’s Work | Round-trip delay on If increase 1n cund results in | It is able to keep window
respective windows an increase in the RTT then | below knee point
the cwnd is decreased
otherwise cwnd is
increased: this is done on
every two RTT.
2 7ri-S Scheme | Normal RTT The normal RTT i1s used to | Better than slow start
calculate throughput algorithm in terms of
throughput and fairness
3 TCP Dual Calculates delay On every two RTT it checks | Eliminates the periodic packet
threshold as an average | if the RTT 1s greater than losses and reduces oscillation
of minimum and the threshold then it reduces | in queue length
maximum RTTs the cwnd by 1/8
4 TCP Vegas Uses timestamp option | The base and sample RTTs { Shows 40-70% better
in TCP packets to are used 10 compute throughput than TCP Reno
calculate fine-grain expected and actual
Base RTT (the throughputs respectively.
mintmum of all
measured RTTs) and
sample RTTs
5 TCcP Calculates minimum Uses minimum RTT to Better throughput than SACK
Westwood RTT based upon estimate bandwidth and Reno
continuous monitoring
of RTTs (on every
ACK)
6 TCP FAST Calculates minimum It uses minimum and Shows better capacity
RTT and average RTT | average RTT to update the utilization than Linux TCP
cwnd (also including RED)
7 The work of | Does the fine-grain It calculates queuing delay Better fairness and smooth
Zhang and | RTT estimation and maximum queuing throughput than Reno, Vegas
Tsaoussidis delay using the RTT and and Reno-RED

then adjusts the cwnd
depending upon the ratio of

these two
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2.1.3 Works on wireless related issues in TCP:
In the literature, several solutions have been proposed for addressing TCP’s

problem over wireless networks. Some of these are discussed below:

i) Indirect-TCP
Indirect-TCP (I-TCP) [BB95] splits a TCP connection at the Base Station (BS)
so as to completely shield the sender from the effect of wireless losses. The BS
maintains two connections, one to the Fixed Host (FH) and another to the
Mobile Host (MH). This technique helps in hiding the poor quality of wireless
link from the FH. By splitting a connection, I-TCP doesn’t maintain end-
to-end semantics of TCP. When a packet arrives at the BS, it sends an ACK to
the FH and the packet to the MH after caching. Afterwards, if the packet is lost
between BS and MH links, BS itself retransmits. I-TCP acknowledgements are
not end-to-end. Since the TCP connection is explicitly split into two distinct
ones, acknowledgements of FCP packets can arrive at the sender even before the
packet actually reaches the intended recipient. This results in a break in the

semantics from the original TCP.

ii) Mobile TCP (MTCP)
The MTCP ([BS97] is similar to I-TCP, but here last byte of data is
acknowledged to the source only after it is received by the MH. Although the
source falsely believes that every data-byte except the last byte is received by the
receiver, it can take remedial action based on whether the last byte is received or
not. In particular, if ACK for the last byte is not received by source then it has to
resend all the data including those that may already have been received by MH.
By holding the last byte, the BS can send zero window advertisement to freeze

the source during handoffs, so that the window and timeout are not affected.

iii) Explicit Bad State Notification
In Explicit Bad State Notification (EBSN) [BKVP96] local retransmissions are
made from the BS to shield the wireless link errors and to improve throughput.
However if the wireless link is in error state for an extended duration, the source

may timeout causing unnecessary retransmissions. The EBSN approach avoids
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iv)

source timeout by using an explicit feedback mechanism. If the wireless link is
in bad state, the BS sends an EBSN message to the source for every
retransmission of a segment to the mobile host. The EBSN message causes the
source to reinitialize the timer. If the BS sends the EBSN message before the
source timer expires, then there will be no timeout at the source. However, the
main disadvantage of this approach is that it requires TCP code modification at
the source to be able to interpret EBSN messages as well as specific

requirements at the BS.

Wireless TCP

Wireless TCP (WTCP) [RM98] proposes to hide the time spent by a TCP
segment in the Base Station (BS) buffer. Thus RTT estimate and timeouts
maintained at the sender (and consequently sender’s ability to detect wired
congestion losses) are not affected by the wireless losses. This is achieved
without an explicit feedback message, rather by modifying the timestamp field
in the ACK packet. In WTCP, the TCP connection from source is terminated at
the BS and, another reliable connection is established from BS to MH. However
the BS acknowledges a TCP data segment to the FH only after getting ACK from
MH. The reliable connection from BS to MH takes into account the unique
characteristics of the local wireless link. In case of timeout. the transmission
window for wireless connection is reduced to just one segment assuming a
typical burst loss on the wireless link is going to follow. Unlike regular TCP,
each time an ACK is received, WTCP opens the wireless transmission window
completely assuming that an ACK indicates that wireless link is in good state.
That is, when an ACK is received, the transmission window size is set to the

receiver’s (1.e. MH’s) advertised window size.

TCP Snoop

Snoop [BSAK95] is similar to WTCP except it is implemented at link
layer of the base station. The base station sniffs the TCP segments destined for
wireless/ Mobile Host (MH) and buffers them if buffer space is available. The
segments retransmitted by the Fixed Host that have alrejad“y_ been acknowledged
by BS are not forwarded to MH. The BS also sniffs the ACK packets from the

MH. If it finds a duplicate’ ACK then it detects a segment loss and if the segment
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1s in the buffer then retransmits it to the MH and starts a timer. The duplicate
ACKs are also dropped to avoid unnecessary fast retransmits at the fixed host.
The Snoop also tries to hide wireless link related losses from the sending host.
The requirement of sniffing the packets in the BS in snoop however leads to
security problem. The sniffing is also not possible if encryption is used at the

network layer as in IPSec.

vi) Space Communications Protocol Standards-Transport Protocol

Durst et al. in [DMT96] have done some work for similar kind of
scenarios 1.e. space communication. In that, they have formulated the Space
Communications Protocol Standards-Transport Protocol (SCPS-TP). SCPS-TP
1s an extension of standard TCP with changes in some specifications that is
designed particularly for the links where there is chance of frequent transmission
errors and intermittent connectivity (i.e. link-outage). To deal with the
transmission error, when a receiving ground station moves into link-corrupted
state (i.e. when a threshold number of packets fail CRC), it begins sending
corruption-experienced ICMP messages to the destinations contained in the
cache. The destinations inform their respective SCPS-TP sources about the
corrupted link via a TCP option on the acknowledgement segment. Similarly, to
deal with link outage, a receiving ground station detects link outage by a loss of
carrier lock or the received signal strength falling below some threshold. Then
the ground station sends a link-outage ICMP message to any host on its own side
of the severed link from which it receives traffic. It makes adjustments to TCP
Vegas congestion control and window scaling mechanism, including detection
of packet loss due to bit errors on error-prone links [GRL99]. It avoids making
assumption that all packet loss is due to congestion rather than bit errors. SCPS-
TP uses header compression and Selective Negative Acknowledgement
(SNACK) to overcome link capacity limitations. SCPS-TP experimental results

on NASA ACTS satellite link showed improved performances.

vii) MAC in IEEE 802.11
IEEE 802.11 [IEEE99] is the IEEE standard for Wireless LAN (WLAN)
that provides the specifications for MAC and Physical Layers. One of the major
MAC Layer functionalities provided in IEEE 802.11 is the automatic
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transmission of acknowledgement frame by the receiver in response to error free
reception of a data frame from the sender. If no ACK is received within a
timeout period then the sender retransmits the data frame. The sender tries
several retransmissions of a data frame before giving up. This way MAC in
IEEE 802.11 can shield the wireless link related packet losses from the upper

layer protocols.

viii)  Satellite Transport Protocol

Similarly to address the TCP’s issues over satellite network a new
transport protocol termed as Satellite Transport Protocol (STP) was proposed in
[HK99B]. Like TCP, STP provides a reliable byte-oriented streaming data
service to the applications. The transmitter sends variable length packets to the
receiver, storing packets for potential retransmission until the receiver has
acknowledged them. However, STP’s automatic repeat request (ARQ)
mechanism uses selective negative acknowledgements, rather than the positive
acknowledgement method of TCP. Packets, not bytes, are numbered sequentially,
and the STP sender retransmits only those specific packets that have been
explicitly requested by the receiver. Unlike TCP, there is no retransmission

timers associated with packets.

From the works discussed above, it can be observed that the proposed solutions
address either the congestion control problem of TCP or the problems in TCP due to
wireless link. None of these address the two problems together. We however visualize

the possibility of tackling these two problems together.
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2.2 The Stream Control Transmission Protocol (SCTP)

SCTP [FA04, Ste00, CIALHSO03] is a new emerging transport protocol for the
Internet. Like TCP, it is a reliable transport protocol. Several new features have been
added to it to overcome some of the shortcomings in TCP. SCTP uses SACK based
selective acknowledgement technique with TCP like congestion control algorithm. The
most important features added in SCTP are multi-homing, multi-streaming and a four
way hand shaking mechanism at connection set-up time to protect against the SYN DoS
attacks. The multi-streaming feature helps in overcoming the problem of Head-of-Line
(HOL) blocking that occurs in TCP as it carries all the data objects in a single stream.
With the multihoming feature in SCTP a host can have multiple network addresses and
interfaces. There can be more than one path between the same source-destination (sink)
pair. The sender maintains a separate set of congestion control parameters for each of
the destination addresses it can send to. When needed, SCTP fragments user messages
into data chunks to ensure that as a packet is passed to the lower layer it conforms to the
path MTU. SCTP data chunks are indivisible units. For purpose of reliability,
congestion control and flow control, SCTP assigns each chunk a transmission sequence
number (TSN). A TSN is unique within it’s association until the 32-bit number wraps
around and it is independent of the stream on which the chunk is sent. The standard
allows SCTP to use delayed acknowledgement while sending back a SACK to the
sender after receiving data chunks. With delayed ACK, an ACK is generated at least

every second packet and within 200 ms of the arrival of any unacknowledged Data

chunk.

2.2.1 Congestion Control Mechanisms in SCTP

The congestion control mechanism in SCTP is identical to the window-based
control scheme of TCP. As in TCP it maintains the control variables cwnd and ssthresh
per destination. Beginning data transmission into a network with unknown conditions or
after a sufficiently long idle period requires SCTP to probe the network to determine the
available capacity [Ste00]. The slow start algorithm is used for this purpose at the
beginning of a transfer, or after repairing a loss detected by the retransmission timer. At
the beginning, SCTP initializes cwnd for a destination by two packet-size. Every time it
recetves an SACK Chunk it increases the cwnd size by either number of bytes ACKed or

maximum packet size whichever is smaller. If the received SACK Chunk does not
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advance the cumulative ACK point the cwnd is not increased. The congestion window 1s
increased in this fashion as long as it is less than or equal to the ssthresh. The
congestion avoidance phase is started for a path when the size of cwnd crosses ssthresh.
In this phase c¢wnd is increased per RTT by maximum packet size. Upon detection of
packet loss through gap reports in SACK chunks SCTP reduces cwnd by half. The
ssthresh is also assigned the same value. SCTP also assumes a packet as lost on the
expiry of the retransmission timer. If a packet-loss is detected on timer expiry SCTP
initializes the value of ssthresh to half of the cwnd size and then reduce cwnd drastically

to one packet-size.

To detect the congestion it depends upon the packet-loss before initiating the

recovery process.

2.2.2 Issuesin SCTP

In spite of the advanced features provided in the protocol, SCTP’s congestion
control mechanism is by and large borrowed from TCP. Like TCP, it follows the same
strategy for congestion control with the phases of slow-start, congestion avoidance and
finally drives the network into congestion. On detection of packet-loss it drastically
reduces the congestion window size. As a result SCTP inherits most of the congestion

related shortcomings of TCP.

In SCTP, due to multi-homing and multi-streaming feature there is possibility of
using multiple paths and multiple flows in a connection. However SCTP uses the
alternate path [Ste00] only for retransmitted chunks and for failover cases with the
assumption that the current path is likely-to be congested. It does not use the alternate
path for any other purpose. Recently there have been several proposals [KNKKO04,
FI0J05, ISAS03, CGGO04] for using the alternate paths to achieve load balancing and
higher throughput.
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2.2.3 Related Works on SCTP

The SCTP protocol has generated a lot of interest in the research community.

Some of the reported works on SCTP are presented below:

i) An Extension for Time Sensitive Traffic

The work in [BFO05] proposes extensions to the SCTP protocol for

time-sensitive traffic.

a)

b)

‘Unreliable time sensitive extension: When retransmissions reach

reliability level, the first packet loss (or out of order) detected must
trigger a forward TSN message. The sender does not wait for multiple
loss notifications, ailowing for earlier discard notifications of
unreliable Application Data Units (ADU). A discard notification is
issued after reliability level retransmissions only. This behavior allows
for a smoother flow of transport streams and application flow(s). Such
a discard behavior may cause extemporaneous delivery to the receiver
of either an ADU or a forward TSN message, none of them having a
significant transmission or processing cost. |

Selective forward TSN extension: By means of explicit discardable
indication (TSN, Streamld, StreamSeqNum) in packets following the
discardable ADU, the receiver is able to immediately ignore the lost
data. Discardable indication is done for ADU transmitted reliability

level times.

ii) Minimum Delay-based Path Selection

For multi-homed case with path asymmetry, Ribeiro et al.[RLO6]

proposes minimum delay based path selection technique for SCTP. It selects the

one-way path with the Jowest delay by taking into account the possible

asymmetry of delay values over the forward and reverse paths, under the

condition that only one of the available paths is selected for data transmission in

each direction. By considering all cross combinations of forward and reverse

paths between two multi-homed hosts, this method allows each host to

independently determine the lowest delay path and select it for transmitting data

to the other host. This allows each one-way data stream to experience the
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minimum possible delay, and consequently also minimize the round-trip delay.
This approach is targeted for real-time multimedia applications such as voice

conversation that require low delay for its periodically transmitted small packets.

iii) Proposal for Modification in cwnd Increment/Decrement

In [IOMO04] the authors propose change in SCTP’s behavior on cwnd
increment and decrement during slow-start and congestion avoidance phase for
wide area network [IOMO4]. During the slow-start phase the cwnd is proposed
to be increased by either the outstanding data packets acknowledged or the twice
of the destination’s path MTU, whichever is higher, instead of lower of these
two. This is because of the fact firstly that the SCTP sender has to wait for a
long time to receive the SACK chunk acknowledging the outstanding data due to
high-latency of the network. Secondly, the available rate will be utilized only
when the sending rate is high. During the congestion avoidance phase the cwnd
is increased by (0.01 * cwnd) and on the first detection of congestion the cwnd is

reduced by (0.125 * cwnd).

iv) Load Balancing over Multiple Paths

There have been several works on load-balancing over the multiple paths
in SCTP. The work in [ASLO3] suggested the extension of SCTP for load-
sharing, a mechanism to aggregate the bandwidth of all the active transmission
paths between the communication end-points. It extends the SCTP, but diverges
from it by providing separation between the association congestion control and
flow control. For this it requires more meta-data to be added into the packets and
also introduces new sequence numbers to maintain per-path ordering
information. The Concurrent Multi-path Transfer (CMT) in SCTP proposed in
[ISASO3] suggests simultaneous transfer of new data from a source to a
destination host via two or more end-to-end paths. The work highlights three
negative side-effects of reordering with CMT and proposes the solution for
these. The side-effects are unnecessary fast-retransmit at the sender, reduced
cwnd growth due to fewer cwnd updates at the sender and more ACK traffic due
to fewer delayed ACKs. The solution for these are proposed as- a) the sender
should infer the lost TSNs using information in SACKSs and history information

in the retransmission queue, b) the-sender should track the earliest outstanding
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TSN per destination and update the cwnd even in the absence of the cumulative
ACKs, and c) a CMT receiver should not immediately ACK an out-of-order
packet but should delay the ACK.

The work in {[CGGO04] proposes bandwidth-aware load balancing over
multiple paths in SCTP, with the objective of maximizing the chance of in-order
delivery over multiple paths. A rough estimation of the bandwidth available on
each round-trip path is performed by sending pairs of SCTP heartbeats on each
path and evaluating dispersion of the corresponding heartbeat ACKs sent back
by the receiver, a well-known technique called packet-pair bandwidth estimation
(PPBE). The fact that the return path is unloaded, guarantees that the estimate
correctly mirrors the available bandwidth on the forward path. In the current
implementation 720-byte heartbeats are sent every 30 seconds. An estimate is
made on the earliest time when the opposite end becomes idle on a path after
completing reception of last byte of data that is based upon the bandwidth on the
path, packet-size to be sent on the path, and one-way propagation time. Then the
data-packets are scheduled with a Fastest Path First (FPF) approach, which is
done by choosing the path for sending the packets that can deliver earliest to the

destination.

v) Path-Switching in SCTP

Use of the alternate path for other than retransmission and failover cases
has been proposed in [KNKKO4], this scheme first calculates application’s
bandwidth requirement and the available bandwidths in each of the paths. An
analysis is then made on which path may fulfill the application’s bandwidth
requirements. Based on this analysis the path is switched to the alternate path if
the primary path cannot fulfill the requirements. In case both the paths do not
fulfill the requirements, the path having better bandwidth or lesser delay is used
for data transmission. The work [FIOJOS5] takes into consideration the
application’s delay requirement apart from the bandwidth. This comparison
between the paths is done periodically to make the switching decision. To probe
the networks condition a heartbeat message is sent over each path as per the

periodicity.
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vi) RTT Based Handover in SCTP

The work in [KMPMO04] addresses the handover problem in SCTP in a
mobile environment. It uses RTT measurement to take the handover decisions.
The scheme periodically measures the RTT of each path and makes a handover
decision based on the measurement obtained. It calculates a Smoothed RTT
(SRTT) using RTT with previous value as baseline. This acts as a low pass filter
to minimize the effect of spikes on RTT. The scheme performs a handover to
the path with the shortest delay between the two end-points. As the handover is
based upon the delay metric rather than the current four timeouts to mark a
destination address as inactive, it does not incur any penalty. As a result the
scheme leads to fewer retransmissions and higher possibility of seamless

handover between networks.

It can be observed that none of the works adequately address the problems in
congestion controls inherited by SCTP from TCP. Further, there is ample scope for
exploiting the multi-homing and multi-streaming features of SCTP in its congestion

control strategy.

2.3 Summary

In this chapter the basic mechanisms of the two reliable transport protocols,
namely, TCP and SCTP and their congestion control principles have been reviewed.
The main issues with these two protocols are- that they drive the network into deep
congestion to the extent of packet-dropping and consider any packet-loss as an
indication of congestion. These cause underutilization of the network capacity, high
packet latency and high delay jitters. The problem becomes more acute for wireless
networks to make these protocols unsuitable to the wireless network where packet-
losses due to non-congestion related reasons can be very significant. Another lacuna of
SCTP is that it does not use the alternate path in situations other than for
retransmissions and failover cases. Thus its multi-homing feature remains largely

unutilized for congestion control and load-balancing.

These and some of the related issues have lead to” a significant amount of

research works.- A survey of these works that are relevant to the work of this thesis have
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been presented in this chapter. This includes RTT and delay based works in TCP,
wireless related works in TCP and some SCTP related works. It can be noticed that
there is a need of more work on delay or RTT based congestion control in TCP. The
same implies to SCTP too. It has been observed that almost all the schemes proposed
for wireless and satellite related issues advocate for major modification in either of the
TCP semantics or the Base Station infrastructure. The challenge still remains as to how

the congestion and wireless related issues can be resolved in an acceptable manner.

We have also surveyed several works on SCTP that proposes to utilize the muiti-
homing feature of SCTP. However, these do not adequately address the congestion

control and wireless link error aspects. Thus there is need for further study in this area

too.
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Chapter 3

A New Scheme for RTT Based Congestion Control

In this chapter an analysis is made on Round Trip Time (RTT) and its
relationship with volume of traffic on the network path. It then considers RTT as a
measure of level of congestion in the path. This allows us to arrive at a new congestion

control scheme based on RTT.

3.1 RTT as a measure of level of congestion

RTT is the time between the sending of a packet and the arrival of its
acknowledgement (ACK) at the source. RT7 depends upon the transmission time as
decided by bandwidth/ data rate of the links, propagation delay, processing delay and

queuing delay at the routers along the path. In other words it can be written as-

RIT =ty +tpg+ 1ty +lgg ool (3.1)

where 1, is the transmission time,
Ipq 1S the propagation delay,
tp- 18 the processing time and

1,4 1S the queuning delay along the path.

These terms take into account the total time required by the individual components for
both the data and the ack packets over the path. Assuming that the ﬁath for the transport
connection does not change, once it is set-up, the transmission time f,. and propagation
delay t,q4 for the path will be constant. The third component processing time f,, can also
be assumed to be constant for a path. Thus the only component that can vary with time
and is dependent on traffic pattern is the queuing delay t,4,. It generally increases or
decreases gradually with traffic volume. As traffic volume increases in a path the

packets get queued up and suffer longer queuing delays.
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Fig. 3.1 and Fig. 3.2 give plots of queue length Vs time and RTT Vs time

respectively for a path with a bottle-neck link in a ns2 [NS2] simulation run with TCP
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Newreno. In the.experiment when the traffic volume is increased by increasing the
number of packets into the network the lengths of the queues in the routers increase.
The effect of this on RTT is monitored. The plots display a high correlation between
RTT and queue length. An increase in the queue length is always followed by an
increase in the RTT value. Similarly a decrease in the queue length is followed by a
decrease in RTT. There is however a lag between the change in queue length and the
corresponding change in RTT. A close observation also reveals that this lag is also

dependent on the queue length. When the queue length increases this lag also increases.

When the traffic volume along the path is low the packets are forwarded almost
as soon as they arrive at the router. The queutng delay suffered by the packets is close to

nil and the RTT value is at its minimum. Thus,

anm =1,+ tpd + tpr ..................... (32)

When the traffic along a path increases the queues in the routers along the path also start
to grow. This makes the packets to wait longer duration in the routers thus increasing
the queuing delay component. As the queue(s) become full the queuing delay reaches a
maximum and the RTT value also reaches its maximum. In the plot in Figure 3.1 it can
be observed that the queue occupancy during the period 4.0-4.5 seconds reaches its
highest, which is an indication of highest traffic volume during the period. It can be
seen from the Figure 3.2 that RTT also approaches the peak at about the same period.

Therefore, the RTT maximum can be expressed as-

RTT e = RTTin + Lad(full)

where 4401y 1s the queuing delay when the queues along the path are full.

Thus, depending upon the traffic load the RTT value will vary between RTT,,;,
and RTT,,, with varying queue occupancy in the routers. The R7T value can therefore

be used as a measure for the traffic volume in the network.
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3.2 Use of RTT as a Control Parameter for Congestion Control Avoiding

Packet Dropping

From the discussion in the previous section it is clear that the RTT value varies
between RTT,,, and RTT,,,, and it reaches RTT,,, when the queue length attains the
maximum with the queue becoming full. When the queue in a router becomes full it
starts dropping packets (with the assumption that queuing mechanism used in the bottle-
neck link is DropTail or FIFO). Thus packet losses start to occur when RTT value
reaches a maximum. To avoid packet loss it is necessary to avoid high queue
occupancy. This queue occupancy is reflected in the value of RTT. Therefore, if the RTT
value can be controlled to remain within a range below RTTg,,, the queues in the
routers along the path will remain partially filled and packet dropping will not occur.
Also if the RTT value is controlled to hover around a threshold value RT7 .04 that lies
within the range (RT7,,, , RTT,,,), it will be possible to restrict the delays suffered by
packets to within desired limits by choosing the value of RTT 4yesn0a appropriately. This
will ensure that the queue length in the routers is also controlled within the desired limit.
The RTT nresnois Value can also be fixed sufficiently above the lowest end of the range so
that the queues in the routers have sufficient supply of packets to feed the output links.

This will result in an optimal throughput without suffering packet losses.

One important aspect that has to be kept in mind is fairness. The packet injection
rate of the flows should be such that each of them gets a fair share of the bandwidth.
Fairness may suffer if a flow sets its congestion window size higher than appropriate.
That will push RTT high which in turn may force the other flows to reduce their
congestion window thus bringing down their share of the bandwidth. This will lead to

drop in fairness.

Based on this reasoning a scheme has been devised for restricting the rate of
injection of packets into the network to make the RTT value hover around a RT T echord

value. The scheme is discussed in the following section.
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3.3 The Proposed Scheme

The idea is to control the injection of packets into network at such a rate so that the
queue occupancy does not exceed a limit so as to push the RTT value beyond a limit.
Similarly, care needs to be taken to maintain the queue occupancy such that the
throughput does not fall below the desired level. For this the packet injection rate 1s
maintained such that the RTT value does not touch RTT,,,. The way to control the
packet injection rate is by adjusting the Congestion Window size at the source. Since it
is desired to keep the RTT value hovering around a threshold RTT jesnos ONE possible
way to achieve this is whenever RTT exceeds RTT esn012 the Congestion Window size 1s
reduced in proportion to the RTT value exceeding RTT s eshots. The reverse can be done

when the RTT value fails below RTT 1, esh0i4-

Thus the scheme basically involves monitoring of the RTT of the packets
transmitted by a sender and increasing or decreasing the rate of injection of packets into
the network by appropriately adjusting the Congestion Window (cwnd) size depending
on RTT falling below the RTT ecn01a value or its going above it. To decide on the

increment and decrement required in the cwnd size, the equation (3.4) below is used.

(R TTlhre shold - R ]T)

cewndlncr = X Segment Size --- (3.4)
min ( R TT: Rnlhreshuld)

The cwnd is altered as-

cwnd = cwnd + cwndlncr --- (3.5)

The cwndlncr will be positive when RTT is lower than RTT esn01s and will be negative
when RTT is higher. The cwndlIncr function is devised in such a way that when the
difference between RTT jesnois and RTT is large the cwndlIncr value is also large so that
the cwnd is increased/ decreased sufficiently to allow the RTT to quickly catch-up with
the RTT presnnia value. The RTT value is monitored continuously for every ACK that

arrives and cwnd is updated accordingly.

Once again the plots for queue occupancy and corresponding RTT have been

obtained as shown in Fig. 3.3 and Fig. 3.4 by applying the technique above in TCP
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Newreno for adjustment of the Congestion Window. This resulting congestion control
technique for TCP shall be referred to as RTT Based Congestion Control (RBCC) or
TCP RBCC. In Figure 3.3, it can be seen that TCP RBCC maintains low queue

occupancy by anticipating congestion before-hand and controls the packet injection rate
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to achieve this. As a result of this, it can be seen in Figure 3.4 that TCP RBCC is able
to maintain low RTT or equivalently low packet latency by many folds than what 1s
possible with TCP Newreno (Figure 3.2). This low latency results from the low queue

length at the routers due to the controlled injection rate at the source.

However, it is also necessary to keep in mind the resulting throughput for the
flow. The queue occupancy in the routers should not be brought down to the level where
the throughput goes below the desired level. Therefore it is necessary to fix the
RTT hresnota value appropriately. In fact there is a tread-off between throughput and
packet latency. In this tread-off RTT hresnois can be used as the control parameter in the
proposed congestign control scheme. The ways to fix the RTT jesn014 are discussed in the

following chapter.

3.4 Summary

An analysis has been made on the relationship between traffic volume and RTT.
It is shown how RTT varies according to the traffic volume as reflected by the queue
length in the routers. Thus it is argued that RTT indicates the state of congestion in a
path and therefore can be used as a measure of level of congestion. Based on this a new
scheme has been proposed which monitors the RTT value and adjusts the Congestion
Window to maintain RTT value hovering around a threshold value decided upon as per
requirements such as desired throughput and packet latency. The RTT measurement is

fine-grained and also the probing is done for each packet using the time-stamp option in
TCP.
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Chapter 4

Employing RBCC in TCP for Wired Network

In this chapter, the proposed new RTT based scheme for congestion control in
TCP as used in wired networks is presented. Schemes for fixing the threshold RTT
statically and dynamically are also presented in this chapter. Finally the results of
simulation-based experiments in wired network environment comparing the

performance of the new scheme with TCP NewReno, Vegas and SACK are presented.

4.1 TCP RBCC for Wired Network

The congestion control in TCP with the new scheme RBCC in a wired network

involves the following:

1)  Initialize the size of cwnd to one segment at the time of connection setup.

i1)  Compute fine-grained R77T using TCP Timestamp option for each packet on

the reception of it’s ACK packet.

ii1) Maintain a threshold RTT value computed statically or dynamically as

discussed in Section 4.3 and Section 4.4.
iv) Change the size of cwnd based on the equation (3.4).
v)  For retransmission time-out estimation follow TCP NewReno.

vi) Use fast retransmit, fast recovery and recovery in case of more than one packet

loss in a single-window as in TCP NewReno.

4.2 Addressing TCP’s Congestion Control Problem

Employing the proposed mechanism, as described in the previous section, TCP
RBCC no longer needs to wait for occurrence of an extreme congestion situation

leading to packet loss for detection of congestion. As can be noted from the
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observations made in the previous chapter, RTT clearly reflects the behavior of bottle-
neck queue and if cwnd is controlled based on RTT then queue-occupancy is also
controlled in the routers. Therefore the congestion can be controlled independent of the
packet losses. Neither is the subnet required to push the traffic volume to the extreme of
buffer overrun. In this way the routers are able to maintain low queue length so that the
end-points observe lower latencies. This new technique, having the capability of
reducing the congestion related packet losses, can lower the retransmitted traffic
volume. Thus the subnet is able to transmit more meaningful packets and can have
better utilization of the scarce network resources rather than overloading the network

with retransmitted packets.

4.3 Setting Threshold RTT Statically

In the absence of a dynamic mechanism for computation of the value for
RTT ipreshola, 1t can be set statically based on a priori estimation of the RTT,,, as per
equation (3.2). This needs knowledge of the characteristics of the links along the path
between the source and the destination hosts. The RT T .01a Value can be taken as a

product of a constant factor F' (>/) and RTT,,,, that is:
RYTIhle\'h()[d =FX anm ——————— (4])

The value of F will decide the allowed queuing delay suffered by the packets and that in

turn will decide the allowed length of the queues in the routers.

4.4 Algorithm for Dynamic Computation of Threshold RTT

Setting Threshold RTT (RTT ,sn014) statically may not always be possible as the
characteristics of the path may not. at times, be known. Ability to decide the value of the
threshold on-the-fly and dynamically makes the congestion control scheme usable in
networks whose characteristics are unknown. An algorithm has therefore been devised
for computing the RTT rehord dynamically. In this the computation is started after the
connection is established. It is based on probing that lasts for a finite number of
iterations after which RTT..mo1s gets stabilized, except on certain rare conditions.

Figure 4.1 depicts the state transition diagram for the algorithm.

40



Start

Probing

Exiting the Probe Phase

Normal

Self Self

Lean Bully

+ve change “ve change

Balanced

Fig. 4.1: S1ate Transition Diagram of Algorithm for the Dynamic
Computation of Threshold RTT.

The algorithm -onsists of five heuristics for altering the value of RTT ,eshotq 0
two broad scenarios viz. probing phase and normal phase. The entire set of heuristics is
based on two intuitive elements, namely variation in ¢wnd and variation in RTT. With
the use of equation (3.4), if value of RTT 50 15 changed then the same is expected to
be reflected in the value of cwnd and RTT. So the heuristics take cautious steps of
changing the value of RTT,.sn0m and observing variations in cwnd and RTT. Though all
the five heuristics observe the variations in cwnd and RTT, the difference among them is
the amount and the sign of the variation. The RTT,;, 0 1S increased when RTT is not
rising and cwnd is also not growing. Similarly, it is decreased when RTT is rising and
cwnd is also growing. Below, in part A we define the terms used, in part B we present

the five heuristics, and in part C the steps involved in the algorithm are described.
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A. Definitions:
thresh_rtt
Bully

Lean

rtt_count

incr_clamp

decr_clamp

A Probe

Probe_clamp:

pp_increment:

: Threshold RTT

: A state in which the value of thresh_rit is too high and cwnd passes

through a phase of high growth.

: A state in which the value of thresh_rtt is too low and cwnd passes

through a phase of negative or no growth.

: A counter to keep track of consecutive growth or fall in RTT. It is set

to zero when there is no change in RTT. Incremented if RTT is falling

and decremented when RTT is rising.

. A threshold value for rir_count. It 1s set to decide if the thresh_rtt

value needs to be enhanced.

: A threshold value for rir_count. It is set to decide if the thresh_rtt

value needs to be reduced.

: A probe is a sampling of the connection’s parameters, namely, RTT,

thresh_rtt, and cwnd for making a decision on updating the value of
thresh_rtt.

A threshold for the number of probes to be performed before exiting
from the probe phase.

It is a positive change (in %) to be made on the thresh_rtt on a probe.

pn_decrement: It is a negative change (in %) to be made on the thresh_rtt on a

Ip_increment :

probe.
It is a positive change (in %) to be made on the thresh_rtt during a

Lean state.

bn_decrement: It i1s a negative change (in %) to be made on the rhresh_rit during a

B. Heuristics

Bully state.

1. Heuristic for Positive Increment on Probe

The threshold RTT needs incrementing under the following conditions:

1. When the RTT esnoia 1s lower than RTT, as per equation (3.4) cwnd will not

grow but may fall. If this continues for several consecutive instances it will

mean that RTT p,esn014 1 Set at a low value than desired. The same may be the
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II.

case if RTT remains unchanged or drops for several consecutive ACKs. In
such situations R7T 7, esno14 DEEds incrementing.

2. At the beginning of setting-up of a TCP connection when there is no
congestion and the RTT has not been growing consecutively for several

mstances.

Thus, if cwnd has not grown continuously for y; (2 < y; £ 3) occasions,
rtt_count 2 0 and cwnd < 1.5, or if rtt_count 2 incr_clamp on alternate occasions
then apply an increment of -

pp_ianement = a;/ No. of increments in all the probes

where 7 < a; £ 15 1s a constant,

Choosing the value of the constant a; above 15 would make RTT jyeshod 1O rise
aggressively and can create unfairness among the competing flows. On the other
hand, a choice of a; lower than 7 would be too conservative and may end up
having too low a value for RTT ;esmois than desired. The reason for dividing a; by
number of increments in all the probes is to prevent the aggressiveness in the
growth of RTT p,esn01a Which ensures that amount of pp_increment gets reduced as
the number of probes increases. This also helps in maintaining fairness. Similarly,

choosing y; < 2 will make 1t aggressive and y; > 3 will make it conservative.

Here, the rit_count requires to be positive indicating that either RTT is
falling or not changing and there is still room for RTT sh04 to grow. However, at
the start of a connection for a few probes this condition is relaxed by setting the
value of incr_clamp to -5. The incr_clamp is increased on each probe until it
reaches value 2. This helps RTTyyesnotd for a flow to grow sufficiently. Otherwise it

may be forced to remain low in the presence of already established flows.
Heuristic for Negative Change on Probe
The RTT jeshols NEEAS decreménting under the following condition:

e When cwnd has been growing and also RTT has been rising for consecutive

instances.
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Thus, if cwnd grows for 1y, (e.g. 2) consecutive occasions, and
rtt_count < decr_clamp then negative incentive is applied as:
pn_decrement = 8,/ No. of decrements in all the probes
where 0< f3; <a;, normally f; should lie between 3 to 8.

y, 1s positive and normally lies in the range of 2 to 3.

Choosing value of £, below 3 will make the rate of reduction of RTTesnota t0O
slow delaying the convergence. On the other hand choosing a value above 8 may
lead to  RTT presnoia to be reduced too quickly and may end up having a too small a
value for RTT presnors than desired. The reason for dividing f; by number of
decrements in all the probes is to prevent the aggressiveness in the shrinking of
RTT preshota This also helps in maintaining fairness. Similarly choosing value lesser
than 2 for y, would make it aggressive and having larger than 3 would make it

conservative in the shrinking of RTT i eshotd-

Here the sign of r#t_count is required to be negative indicating that RTT
1s rising. Initially, this condition is relaxed by setting the value of decr_clamp to -
10. The decr_clamp is then increased gradually on each iteration until it reaches -
2. This prevents starting the reduction in the value of RTT preshorg 100 quickl’y at the

beginning of a TCP connection.

I11. Heuristic for Ending Probe

The probe has to be ended on one of the following conditions:

1. When the cwnd has achieved a reasonable growth and the queue occupancy for
the flow has "also risen a bit. This ascertains fhat the threshold has passed
through some growths.

2. When the flow has undergone a threshold number of probes including the

positive and negative changes.



Thus. if cwnd is grows continuously for y3; (e.g. 5) occasions, and rtt_count < y3;
(e.g. -5), or if the number of probes has crossed the probe_clamp then stop the
probing and enter into the normal state.

Here, y;3; is positive and normally lies in the range of 4 to 7,

y32 1s negative and normally lies in the range of -4 to -7

Experiments show a value of 20 for probe_clamp to be sufficient. Too low a value
may end the probe pre-maturely and too high a value may prolong the probe
unnecessarily. Choosing the values of y3; and y3; outside the specified ranges may

either end the probe too quickly or prolong the probe.
IV. Heuristic for lean state

A flow is declared /ean on the following condition:

e The cwnd is passing through a phase of very low value causing the traffic

volume to be very low.

Thus, if cwnd is not growing continuously for y4 (e.g. 15) occasions, rtt_count 2 0
cwnd £ 2, then determine if this is happening repeatedly for next ys (e.g. 15)
occasions, then declare the state as Lean and apply the following positive
incentive:
Ip_increment = ay/ No. of last back-to-back lean states
where a; is positive lies in the range of 3 to 6.
41 1s positive and normally lies in the range of 10 to 20,

Y42 1s positive and normally lies in the range of 10 to 20

Choosing value of a; above 6 would make RTTesno1a tO rise aggressively and can
create unfairness among the competing flows. Similarly, the choosing a a, lower
than 3 would be too conservative and may end up having too little value for
RTT hreshoa than desired. The reason for dividing a, by numbe; of last back-to-back
lean states 1s to prevent the aggressiveness in the growth of RTT presnors. This also
helps in maintaining ‘fairness. Similarly, choosing too little value for y4 and yg

would make it to declare the state as lean prematurely and having too much would
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unnecessarily delay the declaration. The first condition also may bring some

instability and the second one may starve the flow for too long.
V. Heuristic for bully state

A flow is declared bully on following condition:

e The cwnd grows substantially and causes a high level of congestion.

Thus, if the cwnd grows continuously for ys; (e.g. 15) occasions,
rit_count < decr_clamp and if the value of cwnd is more than 2, then determine if
this is happening repeatedly for next ys; (e.g. 15) occasions then declare the state
as bully and apply the following negative incentive:
bn_ decrement = 8,/ No. of last back-to-back Bully states
where 0< f3; <a;, f; normally lies in the range of 2 to 5,
ys; 1s positive and normally lies in the range of 10 to 20,

ys2 is positive and normally lies in the range of 10 to 20,

Choosing value of 5, below 2 would make RTT i esn0iq to be reduced very slowly
and it may take too long to reach an appropriate threshold value. Choosing a value
above 5, on the other hand, would cause fast reduction in R7 7 resnors and may end
up having too small a value for RTT pen01a- The reason for dividing S by the
number of last back-to-back bully states is to prevent aggressiveness in the
shrinking of RTT presioig, this also helps in minimizing chances of starving the
connection or reaching Lean state. Similarly choosing too small value for ys; and
ys52 would make it to declare the state as Bully prematurely and having too large

value would make it too late in declaring the state.

C. Steps for Dynamic Computation of Threshold RTT

1. Initially thresh_rtt (RTT presnoia) 1S assigned a value 10% above the presently
available minimum RTT.
2. Start the Probe phase and repeatedly check for Heuristic I, Heuristic Il and
Heuristic I11. T
a. If Heuristic I is successful apply pp_increment to thresh_rtt.

"~ b. If Heuristic 11 is successful then apply pn_ decrement to thresh_rtt.
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c. If Heuristic 111 is successful then exit from the Probe phase.

3. Enter the Normal Phase and reset the val‘ues of incr_clamp and decr_clamp to
10 and -10 respectively. Continue to check for Heuristic IV and Heuristic V each
time a new RTT and cwnd are calculated after receiving a fresh ACK.

a. If Heuristic 1V is successful then declare the state as Lean and increase
thresh_rtt by Ip_increment.
b. Otherwise if Heuristic V is successful then declare the state as Bully and
decrease thresh_rtt by bn_ decrement.
c. In steps a and b above reset the counters for cwnd and RTT growth
(rtt_count).
4. While applying negative changes in steps 2.b and 3.b make sure that the

minimum value of thresh_rtt 1s 2.5% above the presently available minimum
RTT.

4.5 Experimental Study on Performance of RBCC in Wired Network
Environment

In this section we present the results of simulated experimental studies on the
performance of RBCC in a wired nétwork environment. First, we study the behavior of
RBCC in respect of packet loss, throughput, fairness, packet latency, and queue
occupancy with varying RT7T yesno1a values. Then we compare the performance of RBCC
with NewReno, Vegas and SACK in respect of packet loss, throughput and faimess for
varying traffic load (simulated by varying the number of connection) and the packet
latency and queue occupancy patterns of RBCC with the existing schemes for fixed
number of connections. Finally, we compare the performances of RBCC with fixing of

the RTT ihreshoia Statically and dynamically.

In these experiments, the packet-loss is measured with the number of bytes
retransmitted at the sender. Throughput is measured as number of bytes transmitted
minus number of bytes retransmitted. When there are more than one flow, the packet-
loss and throughput computed are in aggregate. The queue-occupancy is measured using
length of queue in the bottle-neck link where paEEéts are queued waiting for
transmission. The latency is measured Gsing RTT itself. While” measuring fairness the

equation-(1.1) in Chapter 1 is used.
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4.5.1 Topology and Environment for Experiments

The experiments have been carried out using the Network Simulator (NS2)
package [NS2] on Linux platform. The topology shown in Fig.4.2 was used for the
experiments. Here every source-sink node pair (Sourc, - Sink,, i=0 10 4) is connected
through a common 1 Mbps bottleneck link (R;-R») with 10 ms propagation delay. Each
of the feeding links has also a bandwidth of 1 Mbps and 10 ms propagation delay. The
data transfers are done by running ftp on a very large file at every source node. The
queuing discipline used is Drop-Tail (i.e. FIFO Queuing). The queue buffer limit at the

router 1s set to 50.

Sourc, Sink,

Sourc, Sink,

Sinky

Sourc,

Fig. 4.2 Topology for Experiments in Wired Network

To increase the traffic load, simultaneous connections are setup between each of
the source-sink pairs with equal distribution. For example, if the total number of flows

1s 10, then 2 connections are setup between each of the source-sink pairs.

TCP window size is set to 20, three number of duplicate ACKs are used for Fast
Retransmit, TCP clock granularity is set to 0.01 seconds, the slow start threshold is set
to 20 and immediate ACK is performed as per RFC [APS99]. These parameters are
common across all the variants of TCP (including the new scheme). For TCP Newreno
(and also for RBCC), slow-but-steady variant is used as per RFC [FH99] with
retransmét timer reset after each partial new AC{(. Also, cwnd is set to ssthresh upon

leaving fast recovery and upon partial ACK (i.e. no window deflation option) [FH99].
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For TCP Vegas the values of Alpha, Beta and Gamma parameters are set to 1, 3 and 1

respectively, which are the default values. For TCP SACK, maximum SACK blocks is

set to 3.

4.5.2 Ability of the Scheme to Control Packet-loss

_ The first experiment was to verify the ability of the scheme to control packet
loss. Five ftp connections on top of TCP RBCC are set up between each of the source-
sink pairs and data injection rate is varied by varying the RT7T 010 value. Each of the
instances of the simulation runs for 100 seconds. It is observed that the packet-losses
could be avoided by limiting RTT esnoia- Packet-loss occurrence starts only when the
RTT presnoia Value is set above a certain limit. Fig.4.3 shows a plot of packet-loss volume
against RTT p,esnoia (represented by F). In the experiment the packet losses start for F

value of about 5.0.

RBCC Packet Loss (vs. F)

‘
1

| —— Bytes Retransmitted

Retransmission (% of injection)

Fig. 4.3 Packet Loss Vs. RTT yresnoa Value in TCP RBCC

4.5.3 Throughput Sensitivity to RTTireshold

Experiments have been conducted to examine the sensitivity of the throughput to
the RTT nresnols vValue. Five ftp applications have been run continuously for 100 seconds -
between the same pairs of source nodes and the sink nodes on top of the TCP RBCC

connections. With the bottleneck link between R; and Rz'limiting the data rate to 1
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Mbps the maximum possible volume of data transfer over the period is 100 M bits. Fig.
4.4 shows a plot of Throughput Vs. F. It can be seen that as the RTT pesnoia value is
increased by increasing F, the throughput (in % of capacity) quickly attains its
maximum possible value and it remains at that level for a wide range of RTT preshotd
values before the throughput starts falling when the packet losses start. It appears that
the throughput is not sensitive to RTT s.esnoia Over a wide range implying that fixing of

the RTT preshoia Value is not too critical as far as throughput is concerned.

RBCC Throughput (vs. F)
100 +——
z
S 80 | e S :
=}
3]
Q 1
©
o 60— O U — —
= , ,
2 40 o - - - e oo | e Throughput -
o ¢
3
£
E 20 [ e
0
0 2 4 6 8 10 12 14 16 i8 20
F

Fig. 4.4 Throughput Vs. RTT je\n01q Value in TCP RBCC

4.5.4 Ability of the Scheme to Remain Fair

The fairness of the scheme was tested against varying RTT resnois (F) and with a
fixed number (5) of Connections. It was found that RBCC maintains fairness above
80% up to an F value of 6 (as shown in Fig. 4.5). Beyond this the fairness drops a bit,

but always remains above 60%.
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RBCC Fairness (vs.F)
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Fig. 4.5 Fairness Vs. RTT p,espo1s Value in TCP RBCC

4.5.5 Ability of the Scheme to Control Packet-Latency

Fig. 4.6 shows the latency suffered by packets in the new scheme for different values of
RTT presinia as fixed with different of F. From the figure it can be observed that the
packet latency and the delay jitter can be limited by choosing appropriate value for
RTT jresnoia. Latencies can be lowered by choosing lower value for RTTesnoia. Thus

packet latency can be controlled as desired.

Latency Comparison for Different F Values in RBCC
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Fig. 4.6 RTT Vs. Time for different values of F (No. of Connections =5) in TCP RBCC
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4.5.6 Ability of the scheme to control bottle-neck queue-occupancy

Fig. 4.7 shows plots for queue-length in the bottle-neck link for each case of the
three different values viz. 1.5, 2.0 and 2.5 of F in the new scheme. As can be seen,
F=1.5 is maintaining lower queue-occupancy than the F=2.0 and 2.5; and F=2.0 is
having lower than 2.5. From this it can be observed that the queue-occupancy also can

be limited by choosing appropriate value for RT T eshola.

Queue OccupancyinTCPRBCC [---.-.. F=1.5
——F=20
—a—F=2.5
=
< . oA
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3 — U |
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B A
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0 2 4 6 8 10 12 14
Time (in seconds)

Fig. 4.7 Queue-Occupancy Vs. Time for different values of F (No. of Connections =5) in TCP RBCC
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4.5.7 Comparing Performance of TCP RBCC with NewReno, Vegas and SACK

A set of experiments have been carried out to compare the performance of the
new scheme with that of TCP NewReno, Vegas and SACK. We observe the
performance of these schemes in terms of packet loss, throughput and fairness against
varying traffic load. The variation in the traffic load is achieved by varying the number
of simultaneous connections through the network. We also study the performance in
terms of Packet latency, delay jitter and queue occupancy. Here we measure the
performance for a fixed number of connections. The RITeqn0a Set for RBCC for

measure of all the performance parameters was with F'=2.

4.5.7.1 Packet Loss

Fig. 4.8 shows the plots of packet losses with increasing number of connection
for the four schemes as percentage of the packets injected in to the network. In this
experiment the packet losses were estimated in terms of retransmitted packets. It can be
observed that the packet loss is negligible for RBCC even for very high traffic load. For
TCP Vegas the packet is very low for low load. But, after the load crosses a limit its
packet loss grows very fast. For NewReno and SACK packet losses are significant even

at Jow load and continue to grow with Joad. -

| 3 Packet Loss Comparison
5
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30 e — -
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25 | - .{—8— Vegas s
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o

Retransmission (% of injection)
8,

Traffic Load (No. of Connections)

Fig 4.8 Packer Loss Vs. Traffic Load in TCP RBCC (F=2.0), NewReno, Vegas and Sack
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45.7.2 Throughput

Fig. 4.9 plots the throughput for the four schemes as percentage of the capacity
of the network against increasing traffic load. The new scheme, RBCC, is able to
maintain a throughput of near 100% even a very high load. For Vegas, the throughput is
near 100% at low load and starts dropping slowly with load. SACK maintains a
throughput of about 95%. For NewReno the throughput drops from little over 95% at

low load to below 90% at high load.

Throughput Comparison
100 L3 I—R S G S o < © S S S S O o
X p - O S = i = e e L —
= A A--A- . A-- N
%' BB p A A A B AL A BT A A LAA
@ B0 |- = c— - - o et e e o een e b
Q
© 1
S !
© 60 | e e et e e i e . —..{—e—RBCC e
R
~ ---A---NewReno
= .
L T e -—8— Vegas I
§’ —>— Sack
T
£ 20 f o o e e e I
0 :
5 15 25 35 45 55 65 75 85 95
Traffic Load (No. of Connections)

Fig. 4.9 Throughput Vs. Traffic Load in TCP RBCC (F=2.0), NewReno, Vegas and Sack

4.5.7.3 Fairness

Fig. 4.10 shows the plots of fairness of the four schemes against increasing
traffic loafl‘i It was observed that RBCC maintains a near 100% fairness for a range of
traffic load and remains fairer than that of NewReno, Vegas and SACK most of the
time. At very high traffic load its fairness starts dropping slowly but continues to
perform better than NewReno and SACK. The fairness for the other three schemes

fluctuates with varying load.
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Fig. 4.10 Fairness Vs. Traffic Load in TCP RBCC (F=2.0), NewReno, Vegas and Sack

4.5.7.4 Packet Latency

Fig 4.11 shows the plots of packet latency and delay jitter suffered by packets in
the new scheme, RBCC in comparison to those of TCP Newreno, Vegas and SACK.

Here the experiments were conducted with 5 simultaneous TCP connections in the
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Fig. 4.11 RTT Vs. Time (seconds) in TCP RBCC (F=2.0}, NewReno, Vegas and Sack (No. of

Connections = 5)

. network and the latencies measured in one of the connections against time is plotted. In

these comparisons the additional delay due to packet loss and resulting retransmissions
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is not taken into account. From the Fig. 4.11, it can be observed that RBCC maintains
very low latency which is significantly lower than the other three schemes. The latency
for Vegas is closer to that of the new scheme. RBCC also has a much lower jitter than

NewReno and SACK. However, the jitter for Vegas is lower than that of RBCC.

4.5.7.5 Queue-Occupancy

Queue-occupancy indicates the memory buffer requirement in the routers.
Fig. 4.12 and Fig. 4.13 show the plots of queue occupancy for the four schemes over
time in the bottle-neck queue. The plots in Fig. 4.12 have been obtained with 5
simultaneous TCP connections while those in Fig. 4.13 are for increased traffic load
with 40 simultaneous TCP connections. It can be seen that the queue occupancy is the
lowest for RBCC. For NewReno and SACK the queue occupancy fluctuates heavily and

grows very high. At low load the queue occupancy for Vegas is lower than NewReno
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Fig. 4.12 Queue-Occupancy Vs. Time (seconds) in TCP RBCC (F=2.0), NewReno, Vegas and Sack

(Number of Connections = 5)

and SACK and its fluctuations are very low. However, at high load the performance of
Vegas becomes as poor as the other two schemes. RBCC continues to show much lower
queue occupancy at high load while the fluctuations in the occupancy get reduced

significantly
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(Number of Connections = 40)

4.5.7.6 Summary of Comparative performance of the Congestion Control Schemes

A Gist of the comparative performance of the four congestion control schemes

for TCP, namely, RBCC, NewReno, Vegas, and SACK, are presented in Table 4.1.

Table 4.1

A Gist of Comparative Performance of various TCP congestion control schemes
in wired network environment

Scheme Packet-Drop Average Jitter Capacity Fairness
(retransmission at Latency (Standard Utilization
source in % of packets (Seconds) Deviation) (in %)
Injected)
RBCC 0% (5) 0.1241(5) 0.00908 (5) 99% (5) 0.95(5)
(F=2.0) (F=2.0) (F=2.0) (F=2.0) (F=2.0)
0% (25) 0.1549(5) 0.00805 (5) 99% (25) 0.99(25)
(F=2.0) (F=2.5) (F=2.5) (F=2.0) (F=2.0)
Newreno |1.3%(5) 0.4239 (5) 0.06158 (5) 95% (5) 0.81(5)
12.2% (25) 92% (25) 0.96 (25)
Vegas 0% (5) 0.1997(5) 0.00600(5) 99% (5) 0.99(5)
8.5% (25) 98% (25) 0.94 (25)
SACK | 1.4%(5) 0.4003(5) 0.09926(5) 94% (5) 0.68(5)
9.0% (25) 94% (25) 0.96 (25)

Note;- 1. The numbers S and 25 in the bracket indicate the number of active connections.
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4.5.8 Performance of RBCC with Threshold RTT Computed Dynamically in
Comparision with Statically Fixed Threshold RTT

So far while comparing RBCC with the existing schemes, its threshold RTT was
fixed using the static method. In this section we present a study of the comparative
performance of RBCC by setting RTT presnoia Statically and using the dynamic algorithm.
The RTT,e5m01a value set in the static method is with F=2. For the dynamic algorithm

the values of different parameters in the heuristics taken as-

a;=12, ax=5, Bi=5, fo=3, =2, =2,
y31=5,v30=-5, 9y =15, y2 =15, y5; = 15, 52 = 15.

45.8.1 Packet Loss

Fig. 4.14 shows the plots for packet-loss for increasing traffic load. It car be
seen that performances of RBCC (Static) and RBCC (Dynamic) are similar up to a
reasonably high traffic load. Only at very high traffic load situation the packet losses in
RBCC (Dynamic) grow higher than RBCC (Static).

Packet Loss Comparison

5 |- | —e—RBCC (Static) e S il

---A--- RBCC (Dyanamic) .
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Retransmission (% of injection)

5 15 25 35 45 55 65 75 85 95

Traffic Load (No. of Connections)

Fig. 4.14 Packet Loss Vs. Traffic Load in TCP RBCC with Static (F=2.0) and-Dynamic
Threshold RTT
4.5.8.2 Throughput

Fig. 4.15 shows the plots of throughput in RBCC(Static) and RBCC(Dynamic)

for increasing traffic load. It can be seen that there is no visible difference in the
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performance of the two schemes in terms of throughput. In both the cases the capacity

utilization is near 100%.
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Fig. 4.15 Throughput Vs. Traffic Load in TCP RBCC with Static (F=2.0) and Dynamic

4.5.8.3 Fairness

Threshold RTT

Fig.4.16 shows the plots for faimess of RBCC(Static) and RBCC(Dynamic)

against varying traffic load. It can be observed that in terms of fairness both the methods

perform equally well most of the time. Only at low load the dynamic algorithm shows

somewhat lower fairness than the static one.
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Fig. 4.16 Fuairness Vs. Traffic Load

in TCP RBCC with Static (F=2.0) and Dynamic Threshold RTT
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4.5.8.4 Packet Latency

Fig. 4.17 shows the plots for packet latency for RBCC(Static) and RBCC(Dynamic)
against time for a fixed number of connections. It can be observed that the dynamic

algorithm is able to maintain a marginally lower latency than the static one.
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Fig. 4.17 RTT Vs. Time in TCP RBCC with Static (F=2.0) and Dynamic Threshold RTT
{ No. Connections =5 and RTTs are taken for the first flow in each case)

4.5.8.5 Queue-Occupancy

The queue-occupancy plot for RBCC(Static) and RBCC(Dynamic) against time are
shown in Fig. 4.18. It can be observed that the dynamic algorithm is able to maintain a

marginally lower queue-occupancy than the static one.
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Fig. 4.18 Queue-Occupancy Vs. Time in TCP RBCC with Static (F=2.0) and Dynamic
Threshold RTT ( No. Connections =35)

4.6 Summary

In this chapter, the TCP RBCC scheme as applied in Wired Network has been
presented. Methods for setting the threshold RTT statically as well as through dynamic
computation have also been presented. Results of experiments carried out in simulated
environments demonstrate the ability RBCC to address TCP’s congestion control
problems by keeping low queue-length and low packet-drops. The performance of the
scheme has been compared with TCP NewReno, Vegas and SACK. It has been shown
that RBCC performs better than these three existing schemes in terms of packet-loss,
throughput, latency, queue-occupancy and fairness. The RBCC does a better job
because it eliminates the main flaw in traditional TCP (e.g. Newreno, Sack etc.) viz.
primary mechanism for detection of congestion is packet drop and reduce the
congestion window size always on packet drop. This mechanism can be termed as
reactive approach. RBCC, rather, adopts the proactive approach by taking corrective
measures when congestion starts building up in the bottle-neck link. It uses RTT as a
control parameter for congestion as congestion is reflected in RTT by means of the
queuing delay. Though Vegas reduces cwnd (if the difference between actual and
expected throughput is greater than beta parameter) without depending upon packet
drop, but its parameters don't seem to reflect congestion accurately. Because the

expected throughput invariably remains the same whatever could be the dynamics in the
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subnet. Also the calculation of actual throughput is done per RTT, whereas RBCC does

it more granularly i.e. per ACK.

The performance of RBCC with dynamic computation of Threshold RTT has
been shown to be at per with that done statically; though the dynamic algorithm some
time shows lower performance than that of static. With the static fixing of the Threshold
RTT the experiments were carried out with threshold values fixed over a range to show
that desired performance can be achieved by appropriately fixing the threshold value.
For one or more of the threshold values the scheme produces the best results. Dynamic
fixing of the threshold is required so that the scheme adopts the appropriate Threshold
RTT value on its own to produce the desired performance. In an ideal case the threshold
value chosen will be such as to produce the best possible performance. However,
dynamic scheme uses heuristics and it only tries to come as close to the ideal solution as

possible.

On the other hand, dynamic algorithm could be better answer for the scenario
where there is possibility of changing route dynamically in a lifetime of a connection.
Though the experiment could not be conducted for such scenarios in this study, with
the dynamic fixing of the Threshold RTT, due to the mechanism for monitoring the
conditions of the network and for adopting the appropriate threshold value, it is
expected that the schemes will perform satisfactorily even when the topology changes.
This however is not the case for static fixing of the Threshold RTT as it is required to

fix the threshold value as appropriate for the topology.
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Chapter 5

Adaptation of the RTT Based Scheme to Networks with
Wireless Links

In this chapter, an adaptation of the RTT based congestion control scheme for
TCP, discussed in Chapter 3, to networks with wireless links is presented. This adaptation
particularly addresses the issue of non-congestion related packet-losses that are prevalent
in wireless environment. Simulation based experimental results comparing the
performance of this adaptation with NewReno, Vegas, SACK and Snoop are also

presented.

5.1 RTT in Networks with Wireless Links

In a wired network where all the links are wired, most of the packet-losses are due
to congestion, RTT varies only due to queuing delay. In a network with wireless links,
however, apart from congestion related losses, there are frequent occurrences of losses due
to signal fading, packet-corruption, bit-errors etc. This causes network performance to
degrade and there is drop in bandwidth utilization efficiency. To counter this, some
mechanisms are adapted in the MAC Layer of Wireless Networks. For example, IEEE
802.11 uses acknowledgement (ACK) mechanism at the MAC layer. If the sender does not
receive an ACK frame within some period of time, it retransmits the data frame. The
number of retransmission is, however, limited. There is also provision for exchange of two
control packets, RTS and CTS between the sender and receiver, before exchanging a data
packet to address the hidden terminal and exposed terminal problems. The Bluetooth, on
the other hand, uses strong FEC (Forward Error Correction) scheme that increases
overhead on MAC layer for processing the data frames and introduces significant amount
of delay. It also uses ARQ (Automatic Repeat Request) technique that retransmits a data

frame if its ACK is not received. The MAC Layer, in Wireless Networks, entailing these
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additional functionalities lead to a high delay component in RTT. The delays introduced
by FEC and RTS/CTS are generally constant. However, the delay due to the ACK
mechanism in the link layer depends much on the link state. Whenever there is a link-layer
retransmission there is a jump in the delay. Therefore the RTT on Wireless Networks
(involving the MAC Layer such as IEEE 802.11 or Bluetooth) does not only vary due to
queuving delay but also due to the retransmission delay. Thus the RTT in this case can be

expressed as:
RITwi=ty+tya+ tyr 4t +tya+ bty —emeeee- (5.1)

Where 1 is the constant delay due to processing of the routine tasks such as FECs and
RTS/CTS and ¢4 is the variable delay due to retransmission at link-layer. The remaining

components are being same as those in equation-(3.1).

Now, there are two variable delays components in RTT viz. t,4 and t,. In this
circumstance, RTT will not be able to reflect the congestion scenario properly as #,4 is not
due to congestion. If RBCC is to be used in wireless environment, the MAC Layer should
be without the DATA/ACK and retransmission mechanism. Therefore a simple MAC
Layer without the DATA/ACK and retransmission mechanism is considered for

employing RBCC. The RTT with a simple MAC layer is then-

RIT =ty +tpa+tyr+tp+teg  —meeee (5.2)

In this 7,4 1s the only variable component and therefore can be relied on as a measure of

congestion.

5.2 Probosed Adaptation of RBCC to Address Wireless Issues

The adaptation of RBCC for Wireless Network which will be referred to as
RBCC-WL consists of the following steps:

1) Initialize the size of cwnd to one segment at the time of connection setup
11) Compute fine-grained RTT using TCP Timestamp option for each packet on
reception of it’s ACK packet
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111) Maintain a Threshold RTT value which may be calculated statically or
dynamically.

1v) On reception of each ACK increment the size of cwnd by-

(Rn!hreshald - RTT)
‘ cwndlncr = X Segment Size ~ ---------- (3.3)
max ( RTT, RTT!hresho[d)

V) Do not reduce the size of cwnd on packet-drop.

vi) Follow TCP NewReno for detection of packet-loss, retransmission time-out

estimation, fast retransmit and fast recovery.

There are two changes in the adaptation. The first, in the denominator of the
expression for computation cwndlncr, in equation (5.3), the larger of the two values of
RTT and RTT.sn0q 1S taken instead of the smaller one. The absolute value of cwndlncr
becomes smaller here. Though, it makes cwnd increment or decrement little more
conservative, it helps in having lesser delay-jitters and more stable queue-length. It is also
related to the second change, i.e. cwnd is not reduced on detection of packet loss. Here

being aggressive in cwnd increment/decrement is likely to backfire.

One of the main issues with the TCP has been treating all types of packet loss as
losses due to congestion. TCP reduces the size of the cwnd to by either half or one
depending upon how the loss was detected. In RBCC-WL the packet losses due to
congestion are rare as extreme congestioﬁ situation is not allowed to occur. Most packet
losses are, therefore, wireless-related. As congestion is handled independently, the
reduction in cwnd is therefore not required on detection of packet-loss. Other than these,
the new scheme follows TCP Newreno for cwnd initialization to one segment-size at the
beginning of a connection, in detection of multiple packet-losses in a single-window and

for fast retransmuit.
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5.3 Experimental Results

Experiments have been carried out in a Simulated Wireless Environment using NS2 to
observe the performance of the new scheme (RBCC-WL) in comparison to TCP Newreno,

Vegas, Sack and Snoop.

5.3.1 Topology and Environment for Experiments

The topology used for the experiments is shown in Fig.5.1, where every source-
sink pair (Src, - Sink,, i = 0 to 4) is connected through a common 1 Mbps link (R-BS)
with 10 ms propagation delay. Each of the feeding links also has a band\;vidth of 1 Mbps
and 10 ms propagation delay. The host nodes connected with wireless links are allowed to
be mobile in a topology covering an area of 600m by 600m. These mobile nodes are
connected to the Base Station (BS) through a 2 Mbps wireless-channel having omni type
antenna. The ad-hoc routing protocol used for mobile nodes is DSDV [PB94]. The
wireless interface queue type is Drop Tail and queue buffer limit is configured as 50. The
radio-propagation model used for the wireless link is shadowing [Rap03], [FV00] as it is
the closest model for real environment. The shadowing deviation, the standard deviation
of a Gaussian random variable with zero mean used in the shadowing model that reflects
the variation of the received power over varying distances, is kept constant at value 4.0.
The reference distance, the close-in distance in free space that is used with actual distance
to compute the average path loss,‘is taken as 1.0 m [Rap03]). The Path Loss Exponent
(PLE) [Rap03] determjnes~ the extent of the wireless related packet losses and its value is

kept within the range [2-2.7] that reflects the obstructions in a factory scenario.

All the experiments were carried out with the simple MAC Layer for the wireless
link. In this, the MAC layer does not use Forward Error Correction (FEC) and link level
retransmissions (ARQ). Therefore RTT can be assumed to have only the queuing delay as

the variable component.

The wireless nodes are mobile and allowed to move around within a given range.
For the data generation at the sink an FTP transfer of a very large file is done in each
connection. The queuing discipline used is Drop Tail with queue buffer limit of 50. Every
simulation is run for 50 seconds duration. The traffic patterns are changed by starting and

terminating the TCP connections from the Fixed Hosts to the Wireless Mobile Hosts.
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Experiments have been conducted to observe the various aspects such as- ability of
the scheme to control packet-loss, performance of RBCC-WL in comparison to the
existing schemes in terms of throughput, fairness, packet latency and delay jitter. In these
experiments the RTT pesnaa value is fixed statically as a product of a factor F' (>0) and
RTT,, (i.e. RTT preshoid = F X RTT,, where RTT,,, is the minimum estimated R7T7T that
pre-computed based on link delay, hops, propagation time and processing time). The

variation in RT T pesnoiq 18 achieved by varying F.

TCP window size is set to 20, three number of duplicate ACKs are used for Fast
Retransmit, TCP clock granularity is set to 0.01 seconds, the slow start threshold is set to
20 and immediate ACK is performed as per RFC [APS99]. These parameters are common
across all the variants of TCP (including the new scheme). For TCP Newreno (and also the
RBCC), slow-but-steady variant is used as per the RFC [FH99] with retransmit timer reset
after each partial new ACK. Also, cwnd is set to ssthresh upon leaving fast recovery and

upon partial ACK (i.e. no window deflation option) [FH99]. For TCP Vegas the values of
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Fig. 5.1 Wireless Topology

Alpha, Beta and Gamma parameters are set to 1, 3 and 1 respectively, which are default.
For TCP SACK, maximum SACK blocks is set to 3. For Snoop, maximum packet buffer

size is set to 100 and maximum retransmission is configured to be 10.

5.3.2 Ability of the Scheme to Control Congestion Related Packet-losses

_ The first experiment was to verify the ability of the scheme to control congestion related

lpack'et loss. It was carried out for PLE values of 2.1 and 2.3. The results are presented in
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Fig. 5.2. Ten FTP connections were set up over TCP RBCC-WL and the data injection
rate was varied by varying the RTT pem0e Value. It can be observed in Fig. 5.2 that the
packet losses remain low up to a certain RTTemos Value (represented by F). After
RTT yresiois €xceeds this value the packet-losses start growing fast as the threshold becomes
too high to be effective. In the initial portion where the threshold value is very low the
packet injection rate is too low. For PLE=2.3 the packet losses are higher as the path

obstruction become high in this case.

RBCC-WL Packet Loss (vs. F)

18
Loss for PLE=2.1 ,
16 |-— - e - - - P
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Retransmission (% of injection)
o]

Fig.5.2 Packet Loss vs. F in RBCC-WL (for No. of Connections = 10)

5.3.3 Comparison of Throughput, Packet-loss and Fairness with TCP
Newreno, Vegas, SACK and Snoop

Simulations were carried out to compare the throughput and packet-loss behavior of
the new scheme (RBCC-WL) with TCP Newreno, Vegas, SACK and Snoop against
varying values of the path loss exponent (PLE). For the exper}ments with Snoop, TCP
Newreno was used at the source nodes (i.e. Fixed Hosts) and the Snoop Agent was
attached at the Base Station (BS) node. The wireless related losses increase with increased
values of PLE. The comparison of Fairness was done against varying number of TCP

connections.
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The experiments were conducted on simple MAC Layer. Fig. 5.3 shows plots of the
throughput (against PLE) for TCP RBCC-WL, Newreno, Vegas, Sack and Snoop.
Though for initial values of PLE, RBCC-WL and Vegas show similar throughout, RBCC-
WL shows better performance than all the others for PLE up to 2.4. For PLE higher than
2.4 the performance of RBCC-WL falls below Snoop, but it continues to perform better

than the rest of the schemes.

Throughput Comparison
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Fig.5.3 Throughput in RBCC-WL, Newreno, Vegas, SACK and SNOOP
(No. of Connections = 10, F=1.7)
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Fig.5.4 Packet Loss (Retransmissions) in RBCC-WL, Newr—eno, Vegas, SACK and Snoop
(No. of Connections = 10, F=1.7)
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Fig. 5.4 shows that the packet losses detected at source (retransmissions at source as
percentage of packets injected). In RBCC-WL it is lesser than in Newreno, Vegas, SACK as
well as Snoop except at high values of PLE. For high values of PLE, RBCC-WL’s packet
losses are higher as most of these losses are due to wireless link degradation and RBCC-WL
continues to inject packets without reducing cwnd size. For Snoop most of the packet losses
are not detected at source as the wireless related losses are tackled by packet retransmission

from the BS node.

The fairness graphs plotted in Fig. 5.5 shows that RBCC-WL is fairer than TCP Sack.
It 1s also fairer than the other three except for small number of connections. In fact
RBCC-WL grows fairer with increasing number of connections before its fairness starts to

fall gradually for very large number of connections.
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Fig.5.5 Fairness in RBCC-WL, Newreno, Vegas, SACK and Snoop
(No. of Connections = 10, F=1.7, PLE=2.2)

5.3.4 Packet Latency and Delay Jitter

Packet Latency and delay jitter for RBCC-WL, TCP Newreno, Vegas, Sack and
Snoop in terms of RTT are plotted in Fig. 5.6. It can be seen that here Snoop performs very
poorly. Both latency and jitter for TCP Snoop are significantly higher than the other four
schemes. One reason for this is that the RTT includes the retransmission delay from the BS
node. In latency the performance of RBCC-WL and Vegas are more or less similar.

Compared to New Reno and Sack latency and jitter are significantly lower for RBCC-WL.

Compared to Vegas, RBCC-WL performs better in terms of delay jitter.
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Fig.5.6 Latency in RBCC-WL, Newreno, Vegas, SACK and Snoop
(No. of Connections = 5, F=1.7, PLE=2.2)
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Fig.5.7 Latency in RBCC-WL for different values of F (1.3, 1.7 and 2.7)
(No. of Connections = 5, PLE=2.2)

It is also possible to contro! the packet latency and delay jitter in RBCC-WL by
choosing appropriate value for RTTineshols (In this case by adjusting the F value) as can be
seen in Fig. 5.7 For low F values it maintains lower latencies and jitter. Thus these QoS

parameters can be set in RBCC-WL as desired.
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5.3.5 Congestion Window Comparison

To understand the behavior of the schemes the variations in the congestion window
size in time for the schemes are plotted in Fig. 5.8. It can be observed that for Newreno, Sack
and Snoop the congestion window size grows very high and comes down suddenly whenever
packet drops are detected. RBCC-WL and Vegas maintain a steady level and achieve a
steady throughput. Fig. 5.9 shows plots for congestion window in RBCC-WL for different

R TTlhresh()ld values.
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Fig.5.8 Congestion Window in RBCC-WL, Newreno, Vegas and SACK
(No. of Connections = 5, F=1.7, PLE=2.2)
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Fig.5.9 Congestion Window in RBCC-WL for different values of F (1.3, 1.7 and 2.7)
(No. of Connections = 5, PLE=2.2)

5.4 Summary

In this chapter, an adaptation of TCP RBCC for Wireless Network has been
presented. The RTT for wireless scenarios has been analyzed and two changes in TCP RBCC
have been proposed for the modified version referred to as TCP RBCC-WL. The changes
proposed are- non-reduction of cwnd size on packet-drop and making the congestion window
increment less aggressive by replacing the minimum function by a maximum function in the
cwndlIncr expression. The first modification helps in avoiding unnecessary reduction in cwnd
as the congestion is controlled independently. The second change makes the absolute value of
cwndIncr little more conservative and helps in reducing the delay-jitters. The results of the
simulation experiments presented demonstrate RBCC-WL’s ability to address the problems
of TCP related to wireless networks by making the congestion detection independent of the
packet loss. The performance results of the scheme have been compared with TCP NewReno,
Vegas, SACK and Snoop and have been shown that RBCC-WL performs better than the first
three schemes in terms of throughput, latency and fairness, which are summarized in
Table 5.1. TCP Snoop shows better throughput than RBCC-WL when wireless related losses

are high. However, it performs very poorly in terms of fairness, latency and delay jitter.
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Table 5.1

A Gist of Comparative Performance of Various TCP Congestion Control Schemes
in Wireless Environment under Different Error Conditions (Path Loss Exponent (PLE))

Scheme Packet-Drop Average Jitter Capacity Fairness
(retransmission | Laténcy (Std. Dev.) Utilization
at source) (Seconds) (in %)
( % of Injected
Packets)
RBCC-WL | 0.43%(2.0) 0.1050(2.2) } 0.00874(2.2) 99% (2.0) 0.24(5)
(F=1.7) (F=1.7) (F=1.7) (F=1.7) 0.38(25)
0.48 (50)
2.4%(2.2) 0.1176 (2.2) |0.01077(2.2) 97% (2.2)
(F=1.7) (F=1.9) (F=1.9) (F=1.7)
Newreno 5.9% (2.0) 0.2672 (2.2) | 0.04999(2.2) 95% (2.0) 0.26 (5)
0.27 (25)
4.1%(2.2) 94% (2.2) 0.22 (50)
Vegas 0.49% (2.0) 0.1047 (2.2) | 0.02707(2.2) 99% (2.0) 0.24 (5)
0.46 (25)
4.9% (2.2) 95% (2.2) 0.23 (50)
Sack 5.2%(2.0) 0.2109(2.2) {004238(2.2) 95% (2.0) 0.29(5)
0.28 (25)
2.9%(2.2) 94% (2.2) 0.30(50)
Snoop (with | 6.1% (2.0) 0.5749(2.2) | 0.22330(2.2) 95% (2.0) 0.67 (5)
Newreno) 0.37 (25)
4.6%(2.2) 94% (2.2) 0.28 (50)

Note: 1) The numbers 2.0 and 2.2 within brackets indicate the PLE. Higher PLE means higher bit-
errors.

2) The numbers 5, 25 and 50 in bracket are the number of connections in the fairness column
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Chapter 6

New Congestion Control Schemes for SCTP

In this chapter, we present two new congestion control scheme for SCTP. The
first one, called RTT Based Congestion Avoidance (RBCA), is an adaptation of the
RTT based congestion scheme (RBCC) for TCP presented in Chapter 3. The second
scheme called Switch Path on Congestion (SPC) exploits the multihoming feature of
SCTP. A éomparative study of performance of both these schemes with the standard
version of SCTP has been carried out through simulation experiments. The results of

this study are also presented in this chapter.

6.1 Proposed Schemes for SCTP
6.1.1 Adaptation of RBCC to SCTP

The scheme basical‘ly involves monitoring of RTT for the packets transmitted on
each path and increasing or decreasing the rate of injection of packets into the network
by appropriately adjusting the Congestion Window size depending on the RTT value
falling below a RTTjpesnoia Value or crossing over it. To decide on the increment /
decrement required in the Congestion Window size the equation (6.1) below is used.
The values of RTT and RTTeshois are maintained for each path. The Congestion

Window size is updated as follows:

i. Compute fine-grained RTT on receipt of each SACK using the Timestamp
Control Chunk.
il. As in standard SCTP cwnd is changed only if the current cwnd is fully utilized
and the incoming SACK advances cumulative ACK point.
iii. On receipt of SACK on a path, compute CwndlIncr, the Congestion Window
increment as per the expression below: |
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1v.

V1.

(R TTthrexhold -R YT)

Cwndincr = XDSize 000 e (6.1)
max(Rm RTTthreslmld)

Where
DSize = min(NewlyAckedBytes, MaxDataSize)
NewlyAckedBytes is the number of newly ACKed Bytes in a SACK
MaxDataSize is the Maximum Packet Size

Compute Cwnd as-
Cwnd = Cwnd + CwndIncr. = ====eeeme—e- (6.2)

If computed Cwnd < MaxDataSize then Cwnd is set to MaxDataSize.

. Do not reduce Cwnd on packet drops.

Do not use Delayed ACKs [1].

The changes in the expression for cwndIncr with reference to equation 3.4 are-

a.

Further, in the modified scheme for SCTP cwnd is not reduced on packet drop and
delayed ACK is not used. The reason for not reducing cwnd is that with appropriate
fixing of RTT presnoia value extreme congestion situations are avoided. Any packet drop
will very likely be due to reasons other than congestion. The reason for the delayed

ACK not being used is that it leads to RTT values that do not reflect the queuing delays

Segment Size in equation 3.4 is replaced by DSize in equation 6.2. DSize is
nothing but the size by which the standard SCTP changes cwnd. Unlike in
standard SCTP, here cwnd is changed by fraction of DSize proportionate to the

difference between RTT and RTT,,,, 4..4- DOt by DSize.

In the denominator of the expression the larger one of RTT and RTT,,,, 4,0 1S
chosen instead of the smaller. This is similar to the equation 5.3 in the wireless
adaptation. Like in the wireless case, this becomes a little conservative in cwnd

change but compensates the fact that cwnd is not reduced on packet-loss. It also

helps SCTP in improving on fairness and delay jitter.

correctly.
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In the following this new scheme for SCTP will be referred to as RTT Based
Congestion Avoidance (RBCA).

6.1.2 Switch Path on Congestion (SPC) technique for utilizing the
alternate path in SCTP

This scheme observes the back-to-back RTTs to determine the traffic status of the
primary path. If the RTT increases consecutively and crosses the RTT presiois then the
primary path is assumed to be approaching congestion. In such situation the traffic is
switched to the alternate path making it the primary path. The steps involved in this

scheme referred to as Switch Path on Congestion (SPC) are as follows:

i. On receipt of an SACK update RT7, the previous RTT (PRTT) and the RTT prior
to PRTT (PPRTT)

ii. If on the primary path the RTT grows consecutively for two SACKs and lies
above RTT,,, o0 1-€- If PPRTT >RTT pyeshois and RTT > PRTT, PRTT > PPRTT
then

a. Make alternate path as the primary path.
b. Ininalize RTT, PRTT and PPRTT to 0 on the new primary path.

c. Set the Cwnd in the new primary path as-

Cwnd = max(OldCwnd X P, 2 X MaxDataSize) @~ — — -~ (6.3)
Where,
(3 + floor (HowOld / 10))
P= T e (6.4)

max(7, HowOld)

In equation-(6.4) OldCwnd is the congestion window of the new primary path
before the switching. HowOld is a measure for the duration for which the primary path
(prior to switching) was continuously in use. The measure is in count of the number of
SACK chunks received during the period. This variable is initialized on each path

switch.
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The expression P above is made to lay in a range 0.1 <P<0.44 so that it shrinks
as the value of HowOld increases. The numbers 3, 10 and 7 used in the expression have
been chosen experimentally to achieve the best performance. The value of HowOld
specifies the freshness of the new primary path and indicates whether resumption of the
transmission is being made after short period or long period of time. Low value means
high freshness and high value means its being idle for some time. Thus, on resumption
of transmissions on the new primary path, cwnd will be reduced by a factor inversely

proportional to the length of time this path was idle.

Since the proposed schemes need continuous monitoring of the current RTT
value, it uses Timestamp option which adds a 12-byte Timestamp chunk into every

packet with DATA or SACK chunk(s) [CASO3]. This allows RTT measurements to be

made per packet on both original transmussion and rétransmissions.

6.1.3 Resulting Schemes

The use of RBCA and SPC lead to the following three new schemes for
congestion control in SCTP:
1. SCTP with RBCA - SCTP (RBCA),
2. SCTP with SPC - SCTP (SPC),
3. SCTP with both RBCA & SPC -~ SCTP (RBCA & SPC).

In the first case SCTP will use RBCA for congestion control, i.e. adjustments of the
congestion window will be done as per RBCA. In the second case SPC will be used
with standard SCTP. That is, the congestion window adjustments will be made as for
normal SCTP, but the primary path will be changed based on the congestion status
reported by the SPC Technique. In the third case the congestion window adjustments
will be made as per RBCA and the primary path will be changed based on the

congestion status reported by SPC Technique.

79



6.2 Experimental Resulits

A sernes of experiments have been carried out to verify the advantage of using
RBCA and SPC for SCTP For the experiments the following cases of SCTP are

considered-

I SCTP with the standard congestion control mechamsm - SCTP(Std ),
2 SCTP with RBCA - SCTP (RBCA),

3 SCTP with SPC - SCTP (SPC),

4 SCTP with both RBCA & SPC - SCTP (RBCA & SPC)

6.2.1 Topology and Environment for Experiments
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Fig 6 1 Topology for SCTP in NS2

The eXperuments have been carried out using the Network Simulator package NS
[NS2] on Linux platform The topology shown in Fig 6 1 was used for the experiments
Here every source-sink node pair (Source, — Sink,, 1=/ to N) 1s connected through two
parallel paths each having a 1 Mbps bottleneck link These are R, ;-Rz; and R ;-R:»,
each with 10 ms propagation delay Each of the feeding links has a bandwidth of 1
Mbps and 10 ms propagation delay Each of the end nodes (1 ¢ etther source or sink
node) has two interfaces (Interface, and Interface;) one each for the two paths Thus,

each of the end nodes can connect through two parallel paths using two separate feeding

80




links through two separate interfaces. In the experiments the data packets are generated
by running an fip application on a very large file at every source node where each of the
simulation is run for 200 seconds and the primary path is switched at 20 second. The
queuing discipline used is Drop-Tail with buffer limit of 50. A few experiments are also
conducted with different bit error rates, to see how the different versions of SCTP
perform in a scenario where there are non-congestion related packet losses. For this, unit
of error is taken as ‘packet’ and the random variable for generating errors is uniformly

distributed from O to 1.

Experiments have been conducted to observe the various aspects such as- ability
of the scheme to control packet-loss, to maintain good throughput and fairness and to
be able to keep latency and jitter low. In the experiments for RBCA the RTT reshotd
value is fixed statically as-

RTTpeshors = FX R ~ emeeeeeemeeees (6.5)

where RTT,,, is computed a priori based on propagation time, transmission time

and processing time along the path to the destination node as per equation (3.2).
The variation in RTT p,esn0i4 Was achieved by varying the constant factor F.

While comparing packet-drop, throughput and fairness, the experiments were
carried out as follows. Multiple ftp connections were set up and the traffic load was
increased by increasing the number of source-sink pairs. ;I’he RTT hreshoid Was kept fixed
with F=2.0 for the three new schemes of SCTP. While taking account of bandwidth
utilization, the sum of the bandwidths of both of the paths has been considered. The
throughput and the packet-drops were taken as aggregate of the flows. Here no non-

congestion related losses are introduced.

The different parameters of SCTP [Ste00] are configured as following:

1. Association.Max.Retrans = 10 attempts

1. Path.Max.Retrans = 5 attempts (per destination)
1. Max.Init.Retransmits = 8 attempts
iv.  Heartbeat Interval = 30 seconds

v. MTU = 1500 (MTU of Ethernet, most common)
vi.  Initial Receiver Window = 1310720
vii.  Inttial Ssthresh = 65536
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viii.  Initial cwnd =2 * MTU
ix.  Initial RTO =3 secs
X.  Minimum RTO = | sec
xi.  Maximum RTO = 60 secs
xii.  Number of missing reports to trigger fast retransmit = 4
xiii.  Data Chunk Size = 1456
xiv.  Use Delayed Sacks = Yes, but no for SCTP RBCA
xv.  Sack Delay =200 ms
xvi. By default retransmission to alternate destination = Yes

6.2.2 Packet Losses due to Congestion

The first experiment was to verify the ability of the scheme to control packet losses.
The comparison has been made between the four versions of the SCTP viz. SCTP
(Std.), SCTP (RBCA), SCTP (SPC) and SCTP (RBCA & SPC). As shown in the plots
in Fig. 6.2, SCTP (Std.) displays highest number of packet drops. As the traffic load
increases the losses grow very rapidly for SCTP(Std.). On the other hand, SCTP
(RBCA) shows very less number of packet drops. SCTP (RBCA & SPC) also shows
similar results. In case of SCTP (SPC) the packet-drops significantly lower than
SCTP(Std.).

Packet Loss

25 i
SCTP (Std.)
------- SCTP (RBCA)
20 ——SCTP (RBCA & SPC)
— - -SCTP (SPC)

15

Retransmission (% of injection)

Traffic Load (i.e. number of flows)

Fig. 6.2 Packet Loss comparison between SCTP (Std.), SCTP (RBCA), SCTP (RBCA & SPC)
and SCTP (SPC) .
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6.2.3 Throughput

A comparison of the throughput achieved by the four versions is shown in Fig. 6.3.
Th;: throughput is lowest in case of SCTP (RBCA). It achieves throughput equal to the
capacity of one of the paths. SCTP (Std.) shows some what higher throughput than
SCTP (RBCA) and it grows with traffic load. This happens due to use of the alternate
path for the retransmissions. With traffic load packet losses grow thus increasing the
retransmissions through the alternate path. Therefore the throughput grows in
SCTP(Std.) with traffic load. On the other hand, SCTP (RBCA) has very less
retransmission of packets and uses the alternate path very infrequently, while the

primary path is used to the fullest.

When SPC is used SCTP achieves much higher throughput. It nearly doubles, 1.e. the
capacity of both the paths, primary and alternate get utilized. With SPC whenever
congestion approaches there is a switching of the paths. Thus packets are injected
alternately into the two paths. Both the paths are used nearly to the fullest of the
capacity. Both SCTP (RBCA & SPC) and SCTP (SPC) show similar throughput. Both
achieve a high degree of load balancing when traffic load is high.

Throughput

100 f o <o o e oo i e

Throughput (% of capacity)

40 - S . -
1 SCTP (Std.)
R SCTP (RBCA)
20 b SCTP (RBCA& SPC) |- . . ..
i — - -SCTP (SPC) *
0 !
1 6 11 16 21 26 31 36 41 46

Traffic Load (i.e. number of flows)

Fig. 6.3 Throughput comparison between SCTP (Std.), SCTP (RBCA), SCTP (RBCA &
) SPC) and SCTP (SPC)
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6.2.4 Fairness

As shown in the plots in the Fig. 6.4, as the traffic load increases SCTP (Std.)’s
fairness drops significantly. SCTP (RBCA), SCTP (RBCA & SPC) and SCTP (SPC)

demonstrate similar high fairness even at high traffic loads.

Fairness
103
096
089
082 {~---
%075
] :
£
& 068 SCTP (Std.) N | | R
------- SCTP (RBCA) ‘ |
SCTP (RBCA & SPC)
06111 . .SCTP (SPC) ma | Ba— | 5
054 |- - - e e e l——~-—§ I S
i ’ ’ i
: !
047 | = - B I ; ! e
0.4 : ‘ ;
1 6 11 16 21 26 31 36 41 46

Traffic Load (i.e. number of flows)

Fig. 6.4 Fairness comparison between SCTP (Sid.), SCTP (RBCA), SCTP (RBCA & SPC) and SCTP
(SPC)

6.2.5 Packet Latency and Jitter

The comparison of the delay and delay jitters suffered by packets-is made between
all the four versions of SCTP in Fig. 6.5. SCTP (Std.) demonstrates high delay and
jitters, whereas SCTP (RBCA) and SCTP (RBCA & SPC) maintain very low delay and
jitters. Here SCTP (SPC) hangs in the middle, reiterating that SPC has left its mark on

latency too.

Fig. 6.6 and Fig. 6.7 show the delay suffered by packets in SCTP (RBCA) and

SCTP .(RBCA & SPC) for ditterent values of F. From this it can be observed that the
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Latency Comparison between diffent F Values for SCTP (RBCA & SPC)

0.35

0.1

0.05

Time (seconds)

Fig. 6.7 Packet Latency comparison between different Values of F in SCTP (RBCA & SPC)

6.2.6 Queue Occupancy

The comparison of the queue-occupancy at the bottle-neck link of Path 2 is
shown in Fig. 6.8. The comparison is made between all the four versions of SCTP.
SCTP (Std.) demonstrates high queue-occupancy, whereas the other three schemes
maintain very low queﬁe-bccupancy. It 1s lowest for SCTP (RBCA & SPC). The time in
the plot is put from 20" second onwards as the primary path was switched to Path 2

after 20 seconds of the simulation run.
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Queue Occupancy Comparison between SCTP (Std.), SCTP (RBCA), SCTP (RBCA
SPC) and SCTP (SPC) All for F=2.0
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Fig. 6.8 Comparison of Queue Occupancy (in Path2) between SCTP (Std.), SCTP (RBCA), SCTP
(RBCA & SPC) and SCTP (SPC)

6.3 Experiment With Packet Losses due to Bit Errors

A set of experiments were also carried out to observe the effect of bit errors in the
path on the different versions of SCTP. These experiments have been conducted with a
single connection between a source-sink pair. Bit errors with different error rates were
introduced and the effects on the throughput were observed. For RBCA the F' value was
set to 2.0. The results of these experiments are shown in Fig. 6.9 to Fig. 6.13. It can be
observed that as the error rate increases SCTP (Std.)’s performance degrades rapidly.

The degradation in performance for SCTP with RBCA & SPC is very gradual.
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Fig. 6.9 Throughput comparison berween SCTP (Std.), SCTP (RBCA), SCTP (RBCA & SPC) and
SCTP (SPC), F=2.0 with 0% error
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Fig. 6.10 Throughput comparison betrween SCTP (Std.), SCTP (RBCA), SCTP (RBCA & SPC) and
SCTP (SPC), F=2.0 with 1% error
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Throughput at 5% Error Rate
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Fig. 6.11 Throughput comparison between SCTP (S1d.), SCTP (RBCA), SCTP (RBCA & SPC) and
SCTP (SPC), F=2.0 with 5% error
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Fig. 6 12 Throughput comparison between SCTP (Std.), SCTP (RBCA), SCTP (RBCA & SPC) and
SCTP (SPC), F=2.0 with 10% error.
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Throughput at 15% Error Rate
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Fig. 6.13 Throughput comparison between SCTP (Std.), SCTP (RBCA), SCTP (RBCA &
SPC) and SCTP (SPC), F=2.0 with 15% error.

It can be seen in Fig. 6.9 that at 0% error rate all the four versions of SCTP perform
equally well. At error rate of 1% (Fig. 6.10) SCTP (Std.)’s performance drops a little
more than the other three. At 5% error rate, as shown in Fig. 6.11, the difference opens
up more and here SCTP (RBCA) and SCTP (RBCA & SPC) display throughput more
than double of that of SCTP (Std.). The performance of SCTP (SPC) hangs in the
middle. This trend continues for the higher error rates. Thus at high erroneous condition
SCTP (Std.)’s performance degrades severely. It grossly underutilizes the available
bandwidth under such conditions. This is due to the fact that SCTP (Std.) assumes all
type of packet-losses as due to congestion. SCTP with RBCA shows far better
performance than SCTP (Std.), since RBCA adapts the policy of handling congestion
using RTT and making it independent of the packet-loss.

6.4 Summary

In this chapter, we have presented two schemes for congestion control in SCTP.
The first scheme called RBCA is an adaptation of TCP RBCC. This adaptation is
similar to that for wireless networks except that the delayed ACK mechanism of
standard SCTP is not used here. This is done so that RTT can reflect the queuing delay

more closely.
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The second scheme called Switch Path on Congestion (SPC) exploits the
multihoming feature of SCTP to avoid congestion. This scheme uses RT7T to monitor the
congestion situation in the primary path. When it detects a congestion situation

approaching it switches to the alternate path and makes it the primary.

The two new schemes can be employed independently or together for congestion
control in SCTP. These schemes have been implemented in NS2 simulation
environment in different combinations for a comparative study of their performance.
The results of the experiments indicate significant improvement in the performance of
SCTP with the two new schemes in terms of reduced packet loss, lower packet latency
and delay jitter, fairness, and utilization of network capacity. The new schemes also
show much higher level of sturdiness in a noisy environment with high bit error rates.
The experimental results as summarized in Table 6.1 below

Table 6.1

SCTP performance for various congestion control schemes in wired network environment
for different traffic loads and error conditions

Scheme | Packet-Drop | Average Jitter Capacity Fairness | Capacity
(retransmiss- | Latency (Std. Dev.) | Utilization Utilization in noisy
ion at source) | (Seconds) environment (in
( % of %) with a single
Injected connection
packets)

SCTP 0% (5) 0.1244 (5) | 0.00995(5) | 49% (5) 0.99(5) 45% (5% Err)

with 0% (25) (F=2.0) (F=2.0) 49% (25) 0.99(25) | 37% (10% Err)

RBCA (F=2.0) (F=2.0) (F=2.0) (F=2.0)

0.1427 (5) | 0.02085 (5)
(F=2.3) (F=2.3)

SCTP 2.82% (5) 0.6002 (5) | 0.09078(5) 50% (5) 0.99(5) 22% (5% Err})
Standar | /7.31%(25) 59% (25) 0.96 (25) | 10% (10% Err)
d (F=2.0)

SCTP 0% (5) 0.1242 (5) | 0.00992 (5) 92% (5) 0.93(5) 44% (5% Err)
with 0.17% (25) (F=2.0) (F=2.0) 96% (25) 0.99(25) | 35%(10% Err)
RBCAC | (F=2.0) (F=2.0) (F=2.0) (F=2.0)

& SPC

0.1424 (5) | 0.01414(5)
(F=2.3) (F=2.3)

SCTP | 0.88% (5) 0.1854(5) | 0.08664(5) | 82% (5) | 0.99(5) | 38% (5% Err)
with 4.10% (25) 96% (25) | 0.99(25) | 22% (10% Err)
SPC (F=2.0) (F=2.0)

Note:- 1. The numbers 5 and 25 in the bracket indicate the number of connections.
2. While considering capacity utilization sum of the capacities of the two paths is taken
as the capacity.
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Chapter 7

Conclusion

In this thesis we have studied the congestion control mechanisms in two reliable
transport protocols, namely, TCP and SCTP. TCP being the most widely used transport
protocol and SCTP being a promising protocol has generated lot of interest both in the
research arena as well as the industry. We have analyzed causes of the well reported

lacunae 1n the congestion control mechanism of the TCP protocol, namely-

1. TCP’s driving the network into congestion causing long queuing delays, packet
loss and retransmissions that lead to high packet latencies, large delay jitters, and
overloading of the network with retransmission traffic.

2. Considering any packet loss to be due to congestion and thus making the
protocol unsuitable for networks with wireless links, where packet losses due to

causes other than congestion are very common.

Based on the analysis we came to the understanding that TCP’s driving the network
into deep congestion as a part of probing for estimating the available bandwidth for the
connection is the cause of the two problems above. Thus it was concluded that both the
above problems can be addressed if TCP’s driving the network into deep congestion

could be avoided by maintaining the queue occupancy in the routers at a lower level.

Considering this we have devised a new congestion control mechanism based on
RTT called RTT based congestion control (RBCC) for TCP that avoids driving the
network into deep congestion. This scheme maintains a threshold RTT for the
connection and continuously adjusts the congestion window such that the RTT hovers
around the threshold RTT. We have developed adaptations of this new algorithm for
both wired networks as well as networks with wireless links. These adaptations referred

to as RBCC and RBCC-WL respectively, have been implemented in NS2 environment
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and tested for comparison of their performance with respect to existing prominent
variants of TCP, namely, Newreno, Vegas, SACK, and Snoop. These two adaptations
have been found to perform well in the following respects without any degradation in
the throughput-

- The percentage of packets retransmitted drop drastically.

- The packet latencies drop significantly.

- There is substantial reduction in delay jitters.

- The fairness maintained is generally higher.

- The queue occupancy in the routers drop substantially.
In addition, it is alsc possible to have control over packet latency and delay jitter with a

marginal tradeoff on throughput.

The congestion control mechanism of TCP is also inherited by SCTP. As a result
the problems in TCP due to these mechanisms also migrate to SCTP. We have therefore
developed an adaptation of the new congestion control scheme for SCTP too. This
referred to as RTT based congestion Avoidance (RBCA) has been implemented in NS2
environment and tested for comparison of its performance with the standard SCTP that
incorporates SACK and Delayed ACK as built-in mechanisms. The simulated
experiments show similar improvements in the performance in SCTP with RBCA, in

place of the existing mechanisms, as in the case of TCP.

It has been observed that the standard SCTP does not make full utilization of its
multihoming feature. It maintains an alternate path but uses it only for the
retransmission of lost packets. We have devised another new congestion control
mechanism for SCTP referred to as Switch Path on Congestion (SPC) that makes a
balanced use of both, the primary as well as the alternate path. This mechanism can be
used in gCTP along with RBCA as well as with standard SCTP. Simulated experiments
in NS2 environment show significant improvement in the performance of SCTP in both
these cases in terms of packet loss, throughput. packet latency, and delay jitter. The new
schemes also make SCTP much more robust to the high rate of bit errors prevalent in

wireless environment.
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7.1 Limitations and Scope for Future Work

Some of the limitations of the work presented in the thesis and that need further

exploring are the following:

1.

One of the assumptions of the RTT Based Congestion Control technique is that
the components in RTT other than the queuing delay do not vary for a given
path. This assumption is not correct for networks with wireless segments that
use IEEE 802.11 MAC layer. Some mechanism needs to be developed to deal
with the varying MAC layer delay in IEEE 802.11 based Wireless LANs.

In a dynamic network scenario the route to a destination may get changed during
a TCP connection or an SCTP association. Such a change in the route is likely to
cause change in the delay characteristics of the connection and make any
previous computation of the threshold RTT invalid.

In high-speed networks, where the bandwidth is in the range of gigabits, the
queuing delay component is likely to be a very small fraction of the RTT. So the
change in the RTT due to the variation in the queuing delay is likely to be
negligible. Therefore, adapting RBCC to high-speed networks will require some
further study.

The Algorithm for Dynamic Computation of Threshold RTT has higher
algorithmic complexities and has been tested only in wired network with one set
of delay and bandwidth. So it requires further study to simplify and generalize
this algorithm.

Delayed ACKs are not used in the new scheme for SCTP to let RTT reflect the
queuing delays closely. This creates some otherwise avoidable ACK traffic
towards the upstream. Adapting the scheme to the use of delayed ACKs shall
help in avoiding this shortcoming.

One issue in (;;l;e of the SCTP adaptation is that the two paths between the
source and the sink may be of asymmetric delays and bandwidths. Studying the
behavior of RBCA and SPC in such scenarios will be useful.

The SPC scheme for SCTP currently provides for only two alternate paths. It
may be useful to generalize the scheme for more than two alternate paths.

In the present work no queuing theory based analysis has been made on the
proposed schemes. A queuing theory based analysis for the schemes is therefore

due for these. -
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Appendix |

Glossary

ACK An Acknowledgement packet sent by receiver to the
sender on reception of a data-packet.

ARP Address Resolution Protocol is used for translating IP
Address to Hardware Address.

ARQ Automatic Repeat Request

BER Bit Error Rate, which is the cause of packet-loss in
Wireless Network.

BS Base Station in a Infrastructure based Wireless Network.

Chunk A unit of data or control information used in SCTP. A
SCTP data-packet may contain several data or control
chunks.

CMT Concurrent Multi-path Transfer scheme for data transfer
over multiple paths in SCTP.

Congestion The load of data-packets on a transmission path that exceed
1ts capacity.

CRC Cyclic Redundancy Check

CTS Clear-To-Send

cwnd Congestion Window variable used in TCP and SCTP for
congestion control.

cwndlIncr The value by which cwnd size is increased or decreased.

DCA Delay-based Congestion Avoidance technique.

Delay The time consumed by a data-packet while being

transmitted on a path towards the destination which may be

due to processing, propagation or waiting.

Delay-Jitter

The variation in packet latency is known as delay-jitter.

DoS

Denial of Service
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Drop Tail

A queuing mechanism which is used in routers that drops
the packet from the tail of the queue. It is also known as

Tail Drop.

Fairness The degree uniformity in sharing of the network bandwidth
by a number of competing flows.

FEC Forward Error Correction

FH Fixed Host

FIFO First in first out, this is a queuing mechanism that serves
the first incoming packet first in the queue.

HOL Head-of-Line

HowOld A variable to keep track of how old a path is in SCTP. A
lesser value implies the path being used more recently.

ICMP Internet Control Message Protocol which is used for
transmitting control and error messages by IP.

IDT Internet Data Transport

IP Internet Protocol is the network layer in the Internet that is
used for forwarding data-packets.

1SO International Organization of Standards

LAN Local Area Network

MAC Medium Access Control

MH Mobile Host

MSS Maximum Segment Size.

MTU Maximum Transfer Unit.

Newreno A version of TCP that provides recovery in case of

multiple packet losses in a single-window.

Non-Queuing Delay

Delay caused by other than queuing in router such as
propagation, transmission, processing, retransmission and

route change.

NS Network Simulator, a standard software for simulating
computer networks.

OldCwnd The value of cwnd for a path prior to switching in SCTP.

N Open System Interconnection architecture of ISO for
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Computer Networks.

Packet-Drop

When a router is too congested and can not hold anymore
packets in its buffer, then subsequent arrival of packets are

discarded. This i1s known as packet-drop.

Packet-Loss

When data-packets are sent by source, but are not correctly
received by destination or not received at all due to packet
drop by router or due to bit-errors over noisy link. This

phenomenon is known as packet-loss.

Path Switching

A change in the transmission path from the current one to

an alternate path available.

PLE Path Loss Exponent; Used in Shadowing (Propagation)
Model of Wireless Network for simulating obstruction.

PPRTT The RTT prior to PRTT.

PRIT The Previous RTT.

QoS Quality of Service.

Queue Length The length of buffer space in a router occupied by data-

packets waiting to be forwarded towards the destination.

Queuing Delay

The delay suffered by a data-packet while waiting in the

router queues.

RBCA The RTT Based Congestion Avoidance scheme for SCTP.

RBCC The RTT Based Congestion Control scheme for TCP.

RBCC-WL The RTT Based Congestion Control for TCP adapted for
Wireless Networks.

Router A network node that receives packets from one network
link and forwards it on another network link towards the
destination.

RTS Request-To-Send message used in wireless MAC layer
protocol.

RTT Round trip time. It is the time between the sending of a
packet and the arrival of it’s acknowledgement at the
sender.

RTT The minimum possible RTT for a given network path.
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rwnd

Receiver Window in TCP and SCTP

SACK Selective Acknowledgement. with the help of which TCP
or SCTP can acknowledge a set of data packets together to
the sender.

SCTP The Stream Control Transmission Protocol is the reliable
and connection-oriented transport protocol of Internet
which has provision of multi-homing, multi-streaming and
some security features.

Sink Node One end of the communicating nodes that receives data-
packets from the source node. It is also known as
destination node.

Source Node One end of the communicating nodes that sends the data-
packets to the sink node.

SPC Switch Path on Congestion. A congestion control scheme
for SCTP that has multiple paths to a destination node.

SSN Stream Sequence Number given to a SCTP Stream.

ssthresh Slow-start threshold variable used in TCP and SCTP.

SYN Synchronize TCP segment that is used for initiating a TCP
connection by setting SYN flag.

CP Transmission Control Protocol 1s the reliable and
connection-oriented transport protocol the Internet.

Threshold RTT A value of RTT lying in the range between it’s minimum
and maximum values.

Throughput The number of data-bytes received at the destination node
in a given period of time.

TSN Transmission Sequence Number assigned to an SCTP
Packet.

UDP User Datagram Protocol is the wunreliable and
connectionless transport protocol of the Internet.

Vegas A version of TCP which uses RTT to calculate expected

and actual throughput before deciding change in the

congestion window.
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WLAN

Wireless LAN

XCP

eXplicit Congestion control Protocol.
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