
, - r - -  - - P !  , . . LIBRARY I 
I 

' I-&. - L h ~ q l V E E  S i  T'! 
I 
I ..cession .,. Lx-- - - \ 





MATHEMATICAL MODELLING AND STABILITY 
ANALYSIS OF SOME ECOLOGICAL P R ~ B L E M S  

A Theszs Subrnztted 
in Partial FulJillnzent of the Requzrernents 

For the degree of 

DOCTOR OF PHILOSOPHY 

by 
BARNALI DAS 

to the 

DEPARTMENT OF MATEMA TICAL SCIENCES 
SCHOOL OF SCIENCE AND TECHNOLOGY 

TEZPUR UNIVERSITY 
MAY, 1999 



Detlicntecl to 
MY 

Motlzev Smt. Mukul Dns 
nn (1 

Fcrtlzer Svi Tirtlztr Dns 



CERTIFICATE 

This is to certify that the matter embodied in the thesis entitled 
"MATHEMATICAL MODELLING AND STABILITY ANALYSIS OF SOME 
ECOLOGICAL PROBLEMS) by Ms .  Barnali Das for the award of degree of 
Doctor of Philosophy of Tezpur University is a record of bonafied research 
work carried out by her under my supervision and guidance. The results 
embodied in this thesis have not been submitted to any other University 
or Institute for the award of any degree or diploma. 

( B. ~ u b e y ' )  
Lecturer 

Department of Mathematical Sciences 
School of Science and Technology 

Tezpur University 
SONITPUR, ASSAM 

INDIA 



ACKNOWLEDGEMENT 

I wish to express my deep sense of gratitude to my supervisor, Dr. Balrcrrn Dubey, 
for his keen interest, invaluable suggestions, constructive criticism, excellent rupjJorl and 
more importantly ihe indefatigable guidance and encouragement throzrgkout the 
preparation of this thesis. I an? also grateful to hinz for providing me un oj?j?or.lunily lo 

work in a very inzporlant discij~line "Mcfthemuticul Biology". 

I would like to thank all teachers of the Departnzent of Mathematical Sciences und 
Computer Science, Tezpur University for their constant help and encourcigenzent. 

I would like to express my thankfulness fo  Prof: D. Saikia, Prof: D. Kon~rlet. and 
Prof A. Bcrrkukoty of Tezpur Universify for their encourcfgenzent und blessings. 

I duly ackrzowledge the sincere help and cooperufion rendered by the Sysfcm 
Analyst and Technicul AssistanIs of the Department of Computer Science and Dr. Dipak 
Nuth, Research OfJicer, Centre for Disaster Management, Tezpur University. 

I would also like to thank all staflnzenzbers of the Library, Tezpur University for 
.their sincere help and cooperution. 

I remain ever grateful to Md. Jumul Hussein for his help und coopcrution dz~ring 
nzy reseurch work. - 

I extend nzy hearflelt tlzunks to the stu$enfs of Muthenzaticul and Cornp~iler' 
Science Depurtment of the University, for their cooperation througlzout nz)) re.serrrc11 
work3 niaking it a pleusunt one. 

I crlso acknowledge with pleasure the help I received porn Jcgut, the OJJice 
Attendant of the Department of Mathenzutical Sciences, Tezpur University. 

Though it is beyond lhe scope of any ucknowledgemen~ for what I have received 
fionz rny parents andfiom my brother, Pinku, by the way of inspiration, cooperution and 
patience, yet I make an effort to express nzy hearfelt gratitude to them. 

I feel very much obliged to Dr. Uma S. Dubey, whose inspiration and 
encouragenzent and moral support at many critical hours have been a great source of 
strength to nze. 

Lasr but not the least, I .sincerely thank nzy husbund, Mr. Dhanuputi Delcu, for. his 
Inspiration, encourugement and over ull support. I also thank hirn for sparing rne so 
much tinze in this dedicutedjob. 

w &. 
(BARNALI DAS) 



PAPER PUBLISHED FROM THE THESIS 

1. Dubey B. and Das B., Models for the migrating populations in a forested grassland, 
Far east J. Appl. Math., l(1): 97-104, 1997. 

2. Dubey B. and Das B., Models for the survival of species dependent on resource in 
industrial environments, J. Math. Anal. Appl., 23 1 : 374-396: 1999. 

3. Dubey B. and Das B., A model? for two interacting predators competing for a prey 
species with diffusion, Indian J. Pure & Appl. Math., 2000 (In press). 



CONTENTS 

CHAPTER I GENERAL INTRODUCTION PAGE 

Introduction 

Objectives of the Thesis 

Effect of Diffusion 

Depletion of Grass Biomass and 

its Conservation 

Survival of Species Dependent on 

Resources in Industrial Environments 

Interaction among the  Species 

Mathematical Techniques used in the  thesis 

The Method of Characteristic Roots 

Liapunov's Direct Method 

Summary of the  Thesis 

CHAPTER I1 MODELS FOR THE DEPLETION OF A FORESTED 

GRASSLAND RESOURCE BY ANIMAL POPULATIONS 

2.0 Introduction 

2.1 Mathematical Model 

2.B Conservation Model 

2.3 Simulation Analysis 

2 4  Summary 

CHAPTER I11 MODELS WITH DIFFUSION FOR THE SURVIVAL 

OF SPECIES DEPENDENT ON A RESOURCE IN 

INDUSTRIAL ENVIRONMENTS 

3.0 Introduction 

3.1 Mathematical Model 

3.2 The Model without Diffusion 

3.3 The Model with Diffusion 

3.4 Conservation Model 



3.5 The Conservation Model without Diffusion 49 

3.6 The Conservation Model with Diffusion 5 4 

3.7 Simulation Analysis 5 4 

3.8 ' Summary 56 

CHAPTER IV A MODEL FOR TWO INTERACTING PREDATORS COMPETING 

FOR A PREY SPECIES WITH DIFFUSION 

4.0 ~ntroduct ion 

4 . 1  Mathematical Model 

4.2 The Model without Diffusion 

4.3 The Model with Diffusion 

4.4 Simulation Andy sis 

4.5 Summary 

CHAPTER V A MODEL FOR THE EFFECT OF PREDATION ON 

T W O  COMPETING PREY SPECIES WITH DIFFUSION 

5.0 Introduction 

5.1 Mathematical Model 

5.2 The Model without Diffusion 

5.3 The Model with Diffusion 

5.4 simulation Analysis 

5.5 Summary 

CHAPTER VI A MODEL FOR TWO PREDATORS COMPETING FOR TWO 

PREY SPECIES WITH DIFFUSION 

6.0 Introduction 

6.1  Mathematical Model 

6.2 The Model without Diffusion 
\ 

6.3 The Model with Diffusion 

6.4 Simulation Analysis 

6.5 Summary 



CHAPTER VII A PREDATOR-PREY INTERACTION MODEL WITH SELF 

AND CROSS-DIFFU SION 

7.0 Introduction 

7.1 Mathematical Model 

7.2 The Model Without Diffusion 

7.3 The Model with Diffusion 

7.4 Summary 

CHAPTER VIII A MODEL FOR TWO COMPETING SPECIES WITH SELF AND 

CROSS-DIFFU SION 

8.0 Introduction 

8.1 Mathematical Model 

8.2 The Model without Diffusion 

8.3 The Model with Diffusion 

8.4 Summary 

REFERENCES 



CHAPTER I 

GENERAL INTRODUCTION 

1.0 INTRODUCTION 

The Biosphere is an important zone for biological activities 

which are  mainly responsible for changes in ecology and environment on 

this  planet. The wide-spread depletion of the  world's biological 

resources is one of the  most serious and challenging problems which 

mankind faces today. The fast  growth of population causes a gradual 

reductions in per capita land, water availability and other resources. 

The manmade projects responsible for ecological and environmental 

degradation are  mainly caused by faster industrial growth taken up for 

the socio-economic improvement of the  people. A s  these developmental 

projects a re  essential, the  study of environmental planning and 

management is necessary to  maintain sustainable growth. 

Natural and anthropogenic global changes a re  associated wlth 

sustainable ecological disturbances. The Banni Grasslands located in 
1 
Katch, Gujrat, support the  traditional grazers of this  region. Though 

this area is a saline desert ,  after the  rains it t u r n s  into a lush 

grassland. However, thls  ecosystem is now endangered due to  

uncontrolled grazing practices, shifting from cattle to sheep and 

goat, and the  growth of foreign plant species. 

The depletion of grass  biomass due to their over exploitat-lon by 

ungulate's present in the  grassland and cattle migrating from plains 

into the  grassland during the period of scant rainfall and draught In 

the region is a major cause of concern to  mankind because it not only 

destroys the grassland but  also creates soil erosion problems in the  



region. I t  may be noted t ha t  t h e  development of fert i le  topsoil and 

fores t ry  biomass a r e  closely interl inked s o  much with each other  t ha t  

t he  severe  depletion of e i ther  b r ings  about  t h e  destruction of t he  

other.  Iri fac t  t h e  deplebon of fert i le  top soil causes  lesser  biomass 

production on t h e  one hand whlle t h e  depletion of fores t ry  biomass 

would cause a shor tage of rainfall, a decrease i n  sof t  water table, 

d raught  etc.  on t h e  other.  These in  t e r n  would enhance sol1 erosions 

and t h u s  decreasing t h e  level of fert i le  topsoil. This cycle may, 

therefore  transform t h e  forested zone into a grass land,  eventually 

converbng it in to  a wasteland under  excessive p r e s su re  due  t o  grazing 

etc. ( Frever t  e t  al. (1962), Whyte (1964), Ghosh and  Lohani (1972), 

Smith (1972), Moy-Meir (1976), Das (1977), Zachar (1982), Brown and 

Wolf (1984), Khoshoo (1986), Misra (1987)). 

I t  is well known t h a t  t h e  resource  ca r ry ing  capacity of our  

planet is limited. Therefore t h e  growth and  development in various 

sectors  of t h e  economy caused by a rapid pace of industrialization, a 

rising populabon and a n  increasing energy  requirement have s t ressed  

our environment t o  such  an  extent  t h a t  if concrete s t e p s  a r e  not  taken 

soon t o  control t h i s  menace, many undesirable effects  would occur 

leading t o  d isas t rous  consequences fo r  mankind (Frever t  e t  al. (1962), 

Smith (1972)) Anon (1977a, b) ,  Das (1977), Brown (1981), Gadgil e t  al. 

(1983), Larson e t  al. (1983), Brown and Wolf (1984), Haigh (1984), 

Repetto and  Holrnes (1983), ~ a d ~ h  (1985), Waring and Schiessinger 

(1985), Khoshoo (1986), Munn and  Fedorov (1986), Shukla e t  al. (1981, 

1989), Q ~ l i  (1992), Quli and  Siddiqui (1997)). 

The r ich natura l  diversi ty of t h e  Himalayas has  sustained Life in 

the  ent i re  Indo-gangehc region. Due t o  over  exploitation of its 

resources, t h e  Himalayan region is being rapidly degraded,  with direct  



ecological threat  to life in the entire area. The Doon Valley in the 

northern part  of Uttar Pradesh in India is also an example where the 

main reasons for the  depletion of forestry resources and threat  to 

ecological stability a re  given below (Munn and Fedorov, (1986)): 

1. Limestone quarrying, industrialization and associated pollution, 

2. growth of human population, 

3. growth of Livestock population. 

The rapid rate of shrinkage of per capita forest  area in Bihar, 

to  an extent of 0.03ha1 demands an urgent appraisal of various human 

impacts (Anon, (1995)). There a re  other ecologically unstable regions 

around the  world such a s  the  uplands of western Amazonia, the  Atlantic 

Coast of Brazil, the  Madagascar Islands, t he  Malaysian rain forest 

zones etc., (Wilson (1989)). 

Biodiversity, the  combination of species, genetic and ecological 

diversity (World Conservation Monitoring Centre (1992)) is currently 

one of the  issues most frequently addressed in both scientific and 

mass media. Along with diversity, stability and complexity, resilience 

is a difficult ecological parameter to measure. I t  can be defined as  

the capacity to return to  functional processes and interactions 

existing prior to  disturbances (Pimm (1991), Shrader Frechelte and 

Mecoy (1993)). For centuries, biologists have been interested in the 

diversity of life forms and their  evolution and extinction. The role 

of biological diversity in the  functioning of different ecosystems 

have also been investigated for several decades. However, the 

convqntion on biological diversity adopted a t  the  RIO Earth Summlt in 

June 1992, has led to  a resurgence of interest  in the subject of 

biodiversity and its various human dimensions (Heywood and Watson 

(1995)). 



The environmental cr is is  which society faces today can be 

controlled: 

* by restoring t h e  productivity of t h e  ecosystems and  by conserving 

genetic resources  and  diversi ty,  

* by affecting be t t e r  land use,  

* by insisting and  assess ing t h e  environmental impact of developmental 

projects  t o  en su re  harmonization of environment with development, 

* by  incorporating environmental sa feguards  and beneficial analysis 

fo r  development of indust r ia l  projects ,  

* by promoting environmental educabon awareness among people. 

Keeping t h e  above i n  view in  t h e  p resen t  thes i s  we develop some 

mathematical, models of ecosystems, taking into account b i r th ,  death 

and interaction ra tes ,  habitat-size, species migration (diffusion), 

species-competition and  t h e  surrounding environment, (LaSalle ancl 

Lefschetz (1961), Smith (1972), Denn (1975), Okubo (1980), Rao (1981), 

Hallam and Levin (1986), Kormondy (1986), Munn and  Fedorov (1986), 

Freedman (1987), Edelstein-Keshet (1988) etc.).  

1.1 OBJECTIVES OF THE THESIS 

The main objective of t h i s  thes i s  is t o  s t udy  problems of 

survival  of species sub jec t  t o  ecological stability. Specifically t h e  

following t h r ee  t y p e s  of problems a r e  studied in  t h e  thes is  using 

)mathematical models. 

1. Depletion of g r a s s  biomass and its conservabon,  

2. Sur,vival of diffusive species dependent  on some resource  in 

indust r ia l  environments. 

3. Interaction among species in  a diffusive system. 

In  t h e  following we outline t h e  relevant  l i tera ture  so t h a t  t h e  



research work carried out in the  thesis related to  the  above mentioned 

problems may be seen in its proper perspective. 

1.1.1 EFFECTS OF DIFFUSION 

Due to environmental factors and other related effects the  

tendency of any species living in a given habitat is to migrate to 

better suited regions for its survival and existence. In general, the  

movement of the  species arises due to certain factors such a s  

overcrowding, climate, predator-pre y relationships, refuge and 

fugitive strategies and more importantly due to  resource Limitations 

in the  given habitat, (Rosen (1974,75), Verma (1980), Grundy (1983)). 

A determinahon of the  effects of adding diffusion to ecological 

models is of biological interest  in recent years. The hrst successful 

attempt to  study the  migration of species mathematically is due to 

Skellam (1951) using the  concept of random dispersal. Since then, 

several investigators studied the  effects of dispersion on local and 

global stability of an interacting species system by considering Lotlta 

- Volterra and other types  of prey-predator and competition models, ( 

Comins and Blatt (1974)) Murray (1975), Hadeler and Rothe (1975), 

Jorne (1975, 1977), Chow and Tam (1976), Jorne and Carmi (1977), 

Caisson (1978), Fife (1979), Hallam (1979), Mimura and Kawasaki 

(1980), Cohen and Murray (1981), Leung (1981), Hastings (1982), 

Nallaswamy and Shukla (1982), Bergerud et al. (1984), Cosner and Laser 

(1984), Anderson and Arthur (1985), Bergerud and Page (1987), Freedman 

(1987), ,Cantre11 and Cosner (1987, 1989), Freedman and Krisztin 

(1992), Freedman and Wu (1992), Angulo and Linares (1995)) etc. 

Some workers have also studied the  coexistence, persistence and 

exbnc-bon in single species and Lotka-Volterra reaction-diffusion 



models, (Gopalsamy (1977), Allen (1983a, 198333, 1987) a s  well a s  the 

global stability in generalized Lotka-Volterra models wlth diffusion 

(Takeuchi (1986a), and the  references therein). 

In general, a diffusion process in an ecosystem tends to  give 

rise to a uniform density of population in the habitat.. A s  a 

consequence, it may be expected tha t  diffusion, when it occurs, plays 

a general role of increasing stability in a system of mlxed 

populations and resources. However, there  is an important exception, 

known a s  "diffusion induced instability" or "diffusive ~nstabili ty ". 

T h i s  exception might not be a ra re  event especially in a prey-predator 

system, (see Levin (1976), Casten and Holland (1978), Wollkind e t  al. 

(1991), T i m m  and Okubo (1992), Chattopadhyay e t  al. (1996), 

Raychaudhury e t  al. (1996)). In models wlth reservoir-type boundary 

conditions proposed by Gopalsamy (1977), boundedness of the domain is 

necessary for the  coexistence of competing species, in which the  

system is unstable without diffusion. Moreover, in Levln's (1876) 

model, boundedness of the  domain and non linearity a re  requisite for 

the coexistence of competing species. For unequal but constant 

dispersion coefficients of the  two species, it has been shown tha t  for 

competihon models, dif£usion may increase the  stability of an 

equilibrium state (at  least non decreasing) but  in the  case of a prey- 

predator model, diffusion instability may occur, ( Mimura and Nishida 

(1978), Chattopadhyay et al. (1996), Raychaudhury e t  al. (1996)). 

1.1.2 DEPLETION OF GRASS BIOMASS A N D  ITS CONSERVATION 

The depletion of grass  biomass in a grassland due to grazing by 

uilgulates present in the  grassland have been studied by several 

researchers (Whyte (1964), Noy-Meir (1975, 1976, 1978), Gadgil e t  al. 



(1983), MOA (1984), Gadgil (1985), Khoshoo (1986), Munn and ~ e d o r o v  

(1986)), but  very little effort has been made to  study the  degradation 

of grass  biomass by making suitable mathematical models. Noy-Meir 

(1975, 1976, 1978) was probably the first who has proposed a 

mathematical model for grazing of grasslands in terms of herbage 

growth and animal consumption rates. He has also studied the  stability 

of grazing systems by using the concept of a prey-predator model. I t  

may be noted here tha t  in the  study of Noy-Meir and his co-worlters, 

the effects of migrating cattle populations from outside into the  

grassland has not been considered. Keeping this in view, Agarwal e t  

al. (1993) studied the  effect of a g;azing of a forested grassland and 

its conservahon. They considered the  migration rates of cattle 

populahons as  a constant. They also considered the  growth and death 

rates a s  either linear or bilinear which need not be necessarily t rue.  

Keeping the  above in mind, in chapter 11, we propose and .analyze 

a mathematical model to study the depletion of grass  biornass due to 

overgrazing by animal populations. A model to  conserve the  grass  

biomass is also presented. 

1.1.3 SURVIVAL OF SPECIES DEPENDENT ON RESOURCES IN INDUSTRIAL 

ENVIRONMENTS 

A s  pointed out earlier, deforestation has caused migration and 

even extinction of certain animal species (a t  least locally) (Munn and 

Fedorov (1986), Shukla e t  al. (1989), (1996)). The Doon Valley in 

Indla is such an example where depletion of forest biomass has changed 
\ 

the overall ecological s t ructure of the Valley (Munn and Fedorov 

(1986)). Several invesbgations have been conducted to  study the 

effects of industrialization and population on resources using 



mathematical models. Shukla e t  al. (1989, 1996) proposed some models 

to s tudy  t h e  effect  of industrialization and population on resource  

depletion and have shown t h a t  if t h e  p ressure  of industrialization and 

population increase without control,  t h e  resource  may not  l a s t  long. 

However, if appropr ia te  measures fo r  conservation a r e  taken,  t h e  

resource can be maintained a t  a desired level even under  t h e  sustained 

p ressure  of industrialization and population. But little a t t enbon  has  

been paid t o  s t udy  t h e  effect  on resource  dependent  biological species 

with diffusion using mathematical models ( ~ o t h e  (1976). Hastings 

(1978b), Shukla and  Shukla (1987). Freedman and Shukla (1989), Shukla 

e t  61. (1996)). 

Keeping i n  mind of t h e  above l i tera ture  su rvey ,  i n  chapter  I11 of 

this thes is  a mathematical model i n  terms of nonlinear differenha1 

equation is proposed and  analyzed in  o rder  t o  s t udy  t h e  survival  of 

spgcies dependent on a resource  under  industrialization p ressure  in a 

given region and  with diffusion. A model t o  conserve  t h e  resource  

biomass and t o  control t h e  undesired level of industrialization 

p r e s su re  is also suggested.  

1.1.4 INTERACTIONS AMONG THE SPECIES 

Ecology is t h e  science t h a t  deals with t h e  relationship between 

living organisms and  also between them and  t h e  physical environment. 

Within t h e  framework of a given habitat.  Ecology r e f e r s  t o  t h e  fac t  

t h a t  various organisms s h a r e  t h e  same geographical space  with man. An 

organ+m lives in  a s t a te  of dynamic equilibrium with t h e  environment. 

A s  t h e  environment is in  a constant  s t a te  of flux, t h e  organism has t o  

make in ternal  adjustment,  fading which extinction of t h e  species may 

result  ( Hardin (1960), Rosenzweig and MacArthur (1363), Paine (1966). 



Connell (1970), Parr ish  and  Saila (1970), Cramer and May (1972), 

Porter (1972, 1974), Goh (1976), Hsu e t  al. (1977), Harada and  Fukao 

(19781, Hastings (1978a), Harrison (1979), Hsu and  Hubbell (1979), 

C u s k n g  (1980), Hsu (1981a, 1981b), Cosner and  Laser (1984), Conway 

and Smoller (1986), Freedman e t  al. (1986), Harrison (1986), Kirlinger 

(1986, 1988), Cantrell and Cosner (1987), Gard (1987), Jenson 

(1987), Freedman (1979, 1989), Mukherjee and  Roy (1990), Sarkar  e t  al. 

(1991), Mitra e t  al. (1992), Bonan (1993), Bergman and Greenberge 

(1994), Sikder and Roy (1994a,b), Dubey (1997)). 

A s  t h e  species do not  exist alone in  na tu re  it 1s of more 

biological significance t o  s t udy  t h e  behavior of each population In a 

system of two or  more species with and without diffusion i n  t h e  given 

habltat (see t h e  references  above and in section 1.1.1). Keeping th i s  

in mind t h e  following t y p e s  of problems in  t h e  forthcoming chap te r s  

a r e  discussed. 

In Chapter IV of t h i s  thes is ,  a mathematical model based on t h e  

dynamics of a Gause-type model with diffusion is proposed and 

analyzed. I n  t h a t  model we consider a resource  based ecological model 

where two predators  a r e  competing fo r  a limited prey with in terference 

in a diffusive system. 

Chapter V of t h i s  thes i s  is devoted t o  s t udy  t h e  effect  of 

predation on two competing prey species with diffusion. 

Chapter V I  of t h i s  thes i s  is focused on modelling and analyzing a 

system of two predators  competing for  two resource  prey species with 

diffusion. , 

In Chapter V I I  of t h i s  thes is ,  a general  mathematical model fo r  a 

predator-prey interaction with self and c ro s s  diffusion is proposed 

and analyzed. 



In Chapter VIII of this  thesis, a general model for two competing 

species with self and cross diffusion is proposed and analyzed. 

1.2 MATHEMATICAL TECHNIQUES USED I N  THE THESIS 

In the  deterministic analysis of evolution and stability of the 

systems described above, many mathematical approaches have been 

adopted. In the  present thesis only the  following approaches have been 

utilized. 

1 .2 .1  THE METHOD OF CHARACTERISTIC ROOTS 

The conclusions regarding asymptotic stability of the systems 

very much lie in the  eigenvalues of the  variational matrices, i.e. a 

Jacobian matrices of f i r s t  order derivatives of interaction functions. 

A s  this Jacobian is determined by the  Taylor expansion of the  

interaction functions about an equilibrium and neglecting nonlinear 

higher order terms, this  method studies only the local stability of 

systems in vicinities of equilibria. Being a straightforward method, 

based purely on the  signs of the  real par ts  of the  eigenvalues, the  

Routh-Hurwitz criteria (Sanchetz (1968) and Gershgorin's theorem 

(Lancester and Tismanetsky (1985)) are  very useful in order to  study 

the  local stability of a wide range of systems in homogeneous 

environments. 

1.2.2 LIAPUNOV'S DIRECT METHOD 

The physical validity of this  method is contained in t h e  fact 

that  the  stability of the  system depends on the  energy of the  system 

\ 
which 1s a function of system variables. Liapunov's direct method 

consists in finding out such an energy function termed a Liapunov 

function which need not be unique. The major role in this process is 

played by positive or negahve definite funcbons which can be 



obtained in  general  by t r ia l  and  e r r o r  of some part icular  functions of 

s t a te  variables, and  in some cases  with a planned procedure.  The two 

basic theorems on stability can be  found in La Salle and Lefschetz 

(1961). 

The stability analysis in  conjunction with a suitable Liapunov 

function has  its two salient fea tures ,  namely it is a dlrect  method, 

and second is t h a t  t h i s  procedure provides a rea l iskc  s tudy  of t h e  

stability of multispecies systems. 

1.3 SUMMARY OF THE THESIS  

In Chapter I ,  a general  introduction with relevant  l i tera ture  is 

presented t o  provide a necessary background required fo r  t h e  

forthcoming chapters .  

In  Chapter 11, a mathematical model is proposed and  analyzed in 

order  t o  s t udy  t h e  depletion of g r a s s  biomass due  t o  overgrazing by 

animal populabons 

This model is analyzed uslng t h e  stability theory of differential 

equations. I t  is shown t h a t  under  certain conditions t h e  density of 

t he  g r a s s  biomass se t t les  down t o  its equilibrium level which 

decreases a s  t h e  density of t h e  animal populations increase.  Fur ther ,  

this level may tend t o  zero if t h e  density of t h e  animal populations 

increase t o  a sufficiently high level. 

A model t o  conserve t h e  g r a s s  biomass is d s o  suggested.  By 

analyzing t h e  conservation model it is shown t h a t  g r a s s  biomass can be 

maintame$ a t  an  appropr ia te  level by adopting suitable efforts .  

In Chapter 111, we attempt t o  Investigate t h e  survival  of 

wddbfe species dependent  on a r i sou rce  biomass in  an industr ial  

environment with diffusion. The species is assumed t o  be parhally o r  



wholly dependent o r  jus t  predating on t h e  resource  biomass. The 

dynamics of t h e  wildlife species, t h e  resource  biomass and t h e  

industrialization p r e s su re  a r e  assumed t o  be  governed by a system of 

autonomous logistic-type differential equations. When t h e r e  is no 

diffusion it is shown t h a t  increasing industrialization may lead t o  a 

decrease in t h e  density of t h e  resource  biomass and consequently t h e  

survival  of t h e  species w i l l  be  threatened,  bu t  diffusive migration 

may prevent  extinction of t h e  species. 

A model t o  conserve fo res t ry  biomass by irr igation,  fencing 

progra.rns, e tc .  and  t o  control t h e  undesired level of industrialization 

by some mechanical processes is also proposed. I t  is noted t h a t  if 

suitable efforts  a r e  made t o  conserve t h e  resource  biomass and to  

control t h e  undesired level of industrialization p ressure ,  t h e  

resource biolnass can be  maintained a t  a desired level and t h u s  t h e  

survival  of wildlife species living in  t h e  habitat  may be ensured.  

By analyzing t h e  diffusion models, it is shown t h a t  global 

stability is more plausible in  diffusion system than  in  t h e  case of no 

diffusion. For a given habitat,  it is shown t h a t  t h e  unstable steady 

s ta te  of a system without diffusion can be  made s table  by increasing 

t h e  diffusion coefficients t o  sufficiently large  values. 

In Chapter IV, a Gause-type mathematical model is proposed and  

analyzed t o  s t udy  t h e  growth and survival  of two predator species 

competing fo r  a single limited prey in a diffusive system. The growth 

r a t e s  of t h e  interacting populations a r e  assumed t o  be nonlinear. I t  

is showp t h a t  t h e  intraspecific in terference coefficients of t he  

competing predators  play a crucial role in  stabilizing t h e  interior  

equihbrium of t h e  system. If t h e  intraspecific interference 

coefficients of the competing predators  a r e  zero, then  in  t h e  absence 



d i f f ~ & ~ / & l e  interior  equilibriu~n of the  system becomes unstable. 

of diffusion it i s  shown tha t  if the  interior 

equilibriu~n of t h e  system i s  asyn~ptotically stable in the  absence of 

diffusir~n3 Illen i t  remains stable undc?r c-lil'fusion. Fi.rrIhcr 11y 

increasing the  diffusion coefficients to  s u f f i c i e ~ ~  tly lai-ze va11.1es. an 

urtslable is1 terior. ccj uilibriurll can be slal>il.i7ed. 

In Chapter V ,  a Gause-type matllematical   nod el is considered in 

order to investigate the  ef'fect of prerlation on lwo competing pre,y 

species in a diffusive system. I t  is assu~lred tha t  the  p~.eclalor species 

is influenced by the damage effect caused by crowding- from lhe ~ne~r lbers  

of its own populations. In t he  absence of diffusion cri teria for  local 

stability, instability and  global stability have been obtained. In the  

absence of diffusion it is found that t h e  globs1 stability of the  

interior equilibrium depends  upon the  in tersl:,ccific in terj'crencc 

coefficients of the  two competing prey species. If t he  intcrspecif'ic 

interference is too high then i t  niay lend the sys te~ . r~  to instabi1il.y. 

I-lowever, diffusion, when i t  occurs,  plays a general  role of increasing 

stability in the  s y s  tem. I t  is sllown tha t  suf ricien 1137 ~*apid  dil'fusiou 

by t he  prey species may stabilize an otherwise unstable ecluili111-ium. 

In Chapter VI, a rnathernatical model is presentecl to s t udy  a 

systenl of two-predator species competing for two-resource prey species 

w i t l i  diffusion. I t  is assumed t ha t  t he  dynamics of t he  prey species 

follow generalized logistic equations and the dynai~lics of t he  predator 

species a r e  govel.ned by general functional responses. In Ihe aBsence 

of clifqusion, it is noted that global stability behavior of the  

in tc~%ior  equiljl~riuol deperlils on the  in11.aspecil'ic interEcr*ence 

coefricients of the  predator species. I t  is also noted that  global 



ra les  of the prey species. I t  is shown that  increasing tlie diffusjon 

coefficients of both predator and/or prey species to sufficiently 

large  values stabilizes an other wise unstable interior  equilibrium. 

In Chapter VII, a Gause-type predator-prey interacting model with 

self a s  well a s  cross-diffusion is consiclered and tlsc stabilily 

conclitions in different  envirvn~vrenial consequences a r e  investigatecl. 

The model is analyzecl in three different  cases. In t he  r i r s t  case 

it is shown Chal if the predator species tend to diffuse in the 

direction of higher concenL~.ation of tlse prey species, and the prey 

species lnoves along its orvn concentration gradient .  then the interior  

equilibrium s ta te  i s  locally asy~nptotically stable. I t  is also noted 

that  when t he  critical wave length  is too small. t h a t  tlse predator 

species tend to diffuse in the  direction of lower concentr;1lion of 

prey species, and the  prey species moves along i t s  own concenlr.ation 

graclient, thcn this leads lo local inslabiliiy of the  ecluilibrium 

stale. In this case i t  is shown that  the  unstable equilib~.ium of the  

system becomes stable under certain paralnetric conditions. I n  tlse 

second case, it is shown tha t  if t h e  prey species tend to  cliffuse in 

the  direction of lower concentration of the  predator species, ancl t he  

predator species nloves along its own concentration gradient ,  then  the  

equilibrium s ta te  is locally asymptotically stable. Eut this  

equilibriuln becomes unstable if the  critical wave length is very 

sinall. I n  S L I C ~ I  a case 1 :  prey species tencl lo  i f '  i n  1111? 

djrcclion 01' liiglic~. concentralion of' Ihe p~.eclator sy>ec:ie.r;, ~ 1 1 l r l  llle 

pr*c(laLo~.,sl)ccies moves a l o n ~  i l s  o\vl~ cancel-111.nlion ~ r a d i e i l l .  [ I )  1 1 1 ~ 3  

t h i r d  case, i t  i s  shown I1saL i f  t l ~ c  p r e y  species i c i l c l  lo clil'ft~se in  

tlse direction of lower concentration of the  predator specie-s, and  (.he 

predator species tend to diffuse in the  direction of higher 



concentration of t he  prey species, then t he  equilibriuin s ta te  remains 

stable. Fur ther ,  it is found t ha t  Z t h e  equilibrium s ta te  of the  

systcnl rvith no diffusion is globally stable, then the  corresponcling 

uniform steady s la te  of l11e sysl.c~n with cliff'usion remains [ ~ l o l ~ i l l l y  

slnblc ullder. a ccrlain concliLion. 11 is also shown t t1 ; l t  i l '  t he  

equ i l i l j~~ iu~a  s ta te  of the sy s t en~  wit11 no diffusion is unstable, then 

the  corresponding uniform s teady s ta te  of the system wilh cliffusion 

can be rnade stable by increasing tlie self-cliffusion coefficients to  

sufficiently large  values. 

In Chapter VIII, a nonlinear mathematical model is proposed and 

analyzed in order  to s t udy  the  behavior of two competing species with 

self and  cross  diffusion. I t  is assumed t ha t  the  growth ra te  and 

carrying capacity of each competing species decreases a s  the  density 

of tlle compelitive species increases.  In the  absence of diffusion i t  

is  shown tha t  t he  two conipeting species sel t le  down to their  

respective equilibrium levels under  certain conditions, whose 

magnitudes a r e  lower than their  respective clensi1.y independent 

carrying capacities. I t  is noted t ha t  the  density of ei ther co~npetitor 

decreases and t he  density of' each species ma37 tend Lo zero if the  

equilibrium density of t he  other species increases beyond a threshold 

value. In the  presence of self-diffusion and in t he  absence of 

cross-diffusion i t  is  found tha t  the  stability of t he  system increases 

mil Lhc oLherwise unstable cquilibl.ium bccolnes stable. In 1 . 1 1 ~  prcscncc 

of self and cross-diffusion it is noted tha t  if t he  second competitor 

tends  lo diffuse in the  direction of highel. concenlral.ion of the f i r s t  

competi.lor, and the  f i r s t  competitor moves along i t s  own conccnL~.alion 

gradient ,  then  the  interior equilibrium. which is  stable in the 

absence of diffusion, remains locally asymp Lotically stable. I1 is  



f u r t he r  noted tha t  if t he  critical wave length is  sufficien-112; small, 

the second competitor t ends  to  diffuse in t he  direction of lower 

concenl.ration of t f ~ e  fir.:;l compctitor~, a~icl lllc f'irsi cor~ipcli lor* rrlovc:; 

along i t s  owl> concentration gradient ,  tllen the  interior  equilibrium, 

whicl) is stable in the  absence of diffusion, becolnes unstable. I t  is 

shown that  t he  equilibrium may be stable or  unstable depending upGn 

the density of the competitors, their self and cr-oss-diffusion 

coefflcien ts and t he  critica.1 wave lengths  of the  sysi.em. 1 t i s  slio\vn 

that  if the equilibrium of t he  system \ ~ i t h o u t  self and cross-diffusion 

is  globally asymptotically stable? then the  uniform steady s ta te  of 

the system with self-diffusion remains globally a~ylllpt0ticidl~7 stable. 

I t  is also noted that  if the  equilibriurn is unstable in the  absence of 

cliffusion, tliell i l  can be rriacle stable under. certain conditions in the 

presence of self and  cross-cliffusion. 

I t  is hoped that  the  research carried out  in the  present  thesis, 

will pr-ovide a basis for  better  stucly of ecology of lrldia a n d  also 

will be a very f rui t fu l  s tep  towards socio-economic sustainable 

developlnent. 



CHAPTER I1 

2.0 INTRODUCTION 

One of the important problems in mathematical ecology is the 

study of deplebon of resources by populations dependent upon such 

resources. The depletion of forested grassland resources (grass)  due 

to its overexploitation by ungulates present in the  grassland and by 

cattle migrating from the  plains into the  grassland during periods of 

scant rainfall and drought in the  region is a major cause of concern 

because it not only destroys the  grassland but also creates a soil 

erosion problem in the  region. In general the  forested grassland is 

depleted due to  overgrazing by cattle populabons and by various human 

activities such as  its use for the  expansion of agricultural land, its 

clearance for resettlement, colonization and industrialization, the  

cutting of t rees  for fuel fodder, etc., leading to  a considerable loss 

of grass  biomass on which the  survival of cattle populations is 

depen'dent. 

In recent decades some mathematical models have been proposed to  

study the  problems of grass  biomass grazing by animal populations, 

(Noy-Meir (1975, 1976, 1978)) Noy-Meir e t  al. (1989)). In models of 

Noy-Meir and his coworkers, the  grazing of grasslands is considered in 

terms of herbage growth and animal consumpbon rates but the  migration 

of cattle populations from the  plains into the  grasslands is not taken 



into account. Taking this  aspect into consideration, Agarwdl e t  al. 

(1993) proposed and analysed a mathematical model to  study the  effect 

of grazing of forested grasslands and their conservation by assuming 

the  migration rate of the  cattle population is a constant. In the 

study of Agarwal e t  al. (1993) the  growth and the  death rates appear 

either linear or b a n e a r  which need not be the case. Therefore in 

ths chapter a general non-linear model for grazing of forested 

grasslands is proposed by considering biomass density-dependent growth 

and death rate functions. A model to  conserve the  grass  biomass is 

also proposed and analysed. 

2 .1  MATHEMATICAL MODEL 

We consider a forested grassland consiskng of a simple closed 

region R with smooth boundary d l i  where its resource biomass (grass) is 

being continuously depleted due to overgrazing b y  cattle populabons. 

We assume tha t  the  dynamics of the  grass  biomass density follows a 

general logistic-type equation and the dynamics of the  cumulative 

density of cattle populations is governed by a predator-prey type 

equation. Thus, t he  dynamics of the  system can be governed by the 

following system of autonomous differential equations: 

G(0) 2 0, ~ ( 0 )  2 0. 
\ 

Here G(t) is the  density of the grass  biomass and N(t) the 

cumulative density of cattle populations a t  time t 2 0. 



In model ( 2 . 1 ,  r(N) denotes the  specific growth rate of the 

grass  biomass which satisfies 

r(0) = r > 0, r ' ( ~ )  < 0 for N > 0, 

and there exists a R > 0 such tha t  r(m) = 0. (2.2) 

This shows tha t  the  specific growth rate of grass  biomass 

decreases as  the  density of the  cattle populations increase and it may 

tend to zero if t he  density of the  cattle populations become too high 

(i.e. a t  N = 6). 

The function Q(G)  is net birh minus death rate  of the  cattle 

population and it increases as  G increases, and hence we assume 

Q ( O )  = Q > 0, Q'(G)  > 0 for  G > 0, 
0 

and l i m  Q(G) = Q, < m. (2.3) 
Z+m 

The function p(G) may be thought of a s  the  removal rate of the 

cattle population and it satisfies 

P(O) = po ' 0 ,  p ' ( ~ )  < 0 for G > 0. (2.4) 

The constant K in the  f i r s t  equation of model (2.1) is the 

carrying capacity of the  forested grassland corresponding to the  grass  

biomass. 

Remark: It may be noted here tha t  if we take 

r(N) = r - r N. Q(G) = Q,, p(G) = po - p l G  
0 1 ,  

where the  parameters r r Q , p , p are  positive constants, then 
0 ' 1 ' 0  0 1 

model (2.1) reduces to  tha t  of Agarwal e t  al. (1993). 



StabiLzty a n a l y s i s  o f  model (2.1) 

Model (2.1) has two nonnegative equfibria,  namely Eo(O,Qo/p0) 

and E*(G", N") ,  where G* and N* are  the  positive solutions of the 

following algebraic equations 

I t  can easily be verified that  the equdibrium E* exists if and 

only if 
- 

Q o  < p0N. (2.6) 

By computing the  variational matrices corresponding to  each 

equilibrium, we note tha t  E is a saddle point whose unstable manifold 
0 

is locally in the  N direction and whose stable manlfold is locally in 

the G direction. 

In the following theorem we prove tha t  E" is locally 

asymptobcally stable in the  G-N plane. 

Theorem 2.1.1: The equilibrium E*(G*, N") of model (2.1) is locally 

asymptotically stably in the  G-N plane. 

Proof: The variational matrix corresponcling to  E" is given by 

Now the characterstic equation of M" is 
\ 

l2 t a l l  t a = 0, 
2 



where 

By the  Routh-Hurwitz criteria we note that  all eigenvalues of M* 

have negabve real parts,  and hence the theorem follows. 

Now in order to investigate the  global stabihty behavior of the 

interior equilibrium E*, we f i r s t  state the  following lemma which 

establishes a region of attraction for system (2.1). The proof of this 

lemma is similar to  Hsu (1978) and hence is omitted. 

Lemma 2.1.1: The set  

attracts all solutions initiating in the  interior of the positive 

quadrant. 

The following theorem gives criteria under which E" is globally 

asymptotically stable. 

Theorem 2.1.2: In addition to  assumptions (2.2) - (2.4), let r(N), 

Q(G) and p ( ~ )  sahsfy in Q 3  

0 - ' ( N  p ,  0 5 Q'(G) I p2, 0 5 - p'(G) r: p, (2.7) 
a 

for some positive constants p P,. P,. If the £0110 wing inequality 

holds 

[ P I  + P ,  + Nxp312 < rop(GX)/K (2.8) 

then E" is globally asympto~cal ly stable with respect to all 

solutions initiating in the  interior of the  posikve quadrant. 



Proof: We conslder the following poslbve definlte f uncbon about E', 

Dee renbabng  V wlth respect to  t along solubons of (2.1),  we get  

after some algebrac manipulabons tha t  

+ N )  t ii 2 ( G )  + N Q$G))(G - G*)(N - N*). (2.10) 

where 

r(N) - r(IVX) 
I N # N" 

ill(N) = I 

r '  ( N * )  , 
N = N* 

i4e note from (2.7) and the  mean value theorem tha t  

Iql(N)l  2 P l f  1Q2(G)I P2/  1Q.p I 5 P3. (2.11) 

Mow V can fur ther  be written as  the  sum of the  quadrahcs,  

where 

r 
0 a = -  

11 . a,,' P(G*),  a12= q,(N)  t q2(G) + Nq3(G). (2.12b) 



A sufficient condition for V to  be negative definite is that  

the £0110 wing inequality holds 

Since (2.8) + (2.13) we conclude tha t  V is a Liapunov function 

(Lasalle and Lefschetz (1961), Rao (1981)) with respect to E" whose 

domain contains the  region 01, proving the  theorem. 

2.2 CONSERVATION MODEL 

To conserve the  grass  biomass, which is being depleted due to 

overgrazing by cattle population, some efforts such a s  irrigabon, 

plantation, fencing, use of fertilizers, etc. must be adopted so tha t  

the grass  biomass can be maintained a t  t he  desired level. Let F( t )  be 

the density of effort applied to  conserve the  grass  biomass with F(t) 

assumed to be proportional to  the variance of the  grass  biomass from 

its carrying capacity K. Then the  dynamics of the  system can be 

~7ritten as  

dG r G' 
af = r ( N ) G  - - ' t r F t r2GF, K 1 

Here 11 > 0 is the  growth rate  coefficient of the  effort applied 
1 

and 11 >O is its natural depreciahon rate coefficient due to various 
CJ , 

factors such a s  human or financial. r > 0 the  growth rate coefficient 
1 

of the grass  biomass due to effort as  in the  case of fencing, r > 0 
2 



is the  growth rate coefficient of gras  biomass due to its intraction 

with effort a s  in the  case of irrigation, use of fertilizers etc. The 

interpretations of the  other parameters and functions in model (2.14) 

are  the  same a s  in model (2.1). 

Stabil i ty  analysis of model (2.14) 

I t  is easy to  check tha t  system (2.14) has only one interior 
* -  ," - - * 

equilibrium E(G, N ,  F), where G, N and F are  the  positive solutions of 

the following algebraic equations 

e 

I t  rnay be noted here that  for F to be positive, we must have 

I t  can easily be verified that  the  first equation of (2.15) has a 
- * 

unique positive solution G in the  interval 0 < G < K ,  provided the 
- * 

inequality (2.6) holds. Then N and F can be computed from Eq.(2.15b) 
* 

and (2 .15~)  respectively. Thus the  interior equilibrium E exists under 

condihons (2.6) and (2.16). 
- 

In the following theorem w e  show tha t  E is locally asymptotically 

stable. The proof of this  theorem follows from the  Routh-Hurwitz 

Criteria aqd hence is omitted. 
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- 
Theorem 2.2.1: The equihbrium E is locally asymptotically stable in 

the G-N-F plane. 

In the  following lemma we show tha t  all solutions a re  bounded 

The proof of this  lemma is similar to Lemma 2.1.1 and hence is 

omitted. 

Lemma 2.2.1: The set  

n2 = {(GI N ,  F): 0 s G s Gc, 0 2 N i N c l  0 s F 2 "I"} 

is a region of attraction for all solutions initiating in the interior 

of the  positive orthant, where 

I t  may be noted here that  the  attracting set  Q2 is larger than 

the se t  R in Lemma 2.1.1 as  expected. 
1 

In the  following theorem we are  able to write down sufficient 
- 

conditions for E to  be globally asymptotically stable. 

Theorem 2.2.2: In addition to  assumptions ( 2 . 2 )  - (2.4), let r(N), 

Q(G) and p(G) satisfy in Q 2  

for some positive constants p 
1' P 3  

. If the  following inequality 

holds 

w 

then E I s  globally asymptotically stable with respect to  all solubons 

initiabng in the  interior of the positive orthant. 



Proof: We consider t h e  following Liapunov function about E ,  

Differentiabng V with respect  t o  t along t h e  solutions of model 
1 

(2.14), it can be  seen t h a t  V is negative definite under  condition 
1 

(2.18), proving t h e  theorem. 

2.3 SIMULATION ANALYSIS 

I n  t h i s  section we presen t  a simulated analysis t o  explain t h e  

applicability of t h e  resu l t  by choosing t h e  following part icular  form 

of t h e  functions in  models (2 .1 )  , and  (2.14): 

where all coefficients a r e  positive. 

Now we choose t h e  following values of parameters in model 

(2 .1 )  and  in  Eq.(2.20): 

Example 1. Using Eq. (2.20) and  t h e  above s e t  of parameters given in  

(2.21) it can be checked t h a t  condition (2.6) fo r  t h e  existence of E" 

is satisfied, and E* is given by 

It can f u r t h e r  be verified t h a t  condibon (2 .8)  is also 
\ 

sabsfied,  which shows t h a t  E" is globally asy  mptobcally stable.  



Example 2. To show the  effect of conservation of grass  biomass, we 

choose again the  same se t  of funcbons a s  given in Eq.(2.20) and the 

same se t  of parameters as  given in E q .  (2.21). In addition to these, 

we choose the  following values of parameters in model (2.14). 

It- can be seen tha t  conditions (2.6) and (2.16) for the existence 

of a re  .sabsfied, and is given by 

I t  can also be checked tha t  all eigenvalues of the  variational 

matrix evaluated a t  have negabve real parts.  This shows tha t  is 

local1 y asymptotically stable 

Again in Theorem 2.2.2 it can be verified tha t  condition (2.18) 

is satisfied, showing the  global stability character of 3. 

Comparing the values from Eq.(2.22) and (2.24) we note that  the  

equilibrium levels of and 6 are  considerably higher than their 

previous values showing the  effect of conservabon. 

2.4 SUMMARY 

In this  chapter, a nonlinear mathematical model has been proposed 

and analysed in order to study the  depletion of grass  biomass in a 

forested grassland due to  overgrazing by animal populations. 

The model has been analysed using stabihty theory of 

differenbal equations. I t  has been shown tha t  under certain 

conditionis the  density of the  grass  biomass settles clown to its 

equilibrium level which decreases a s  the  density of the animal 

populations increase. Further,  this  level may tend to  zero if the 



density of t h e  animal populabons increase t o  a cr ikcal  level N = N. 

A model t o  conserve t h e  g r a s s  biomass has  also been proposed. By 

analysing t h e  conservabon model, it has  been shown t h a t  t h e  g r a s s  

biomass can be  m a n t a n e d  a t  a n  appropr ia te  level by adopbng suitable 

efforts .  Thus,  t h e  g r a s s  biomass may r e m a n  s u s t a n a b l e  fo r  a long 

period even under  conbnued grazing by animal populabons. 



3.0 INTRODUCTION 

The depletion of forest biomass due to the  rapid pace of 

industrialization pressclre and increase in population has become a 

serious problem for industrialized countries . (Kormondy (1986), Munn 

and Fedorov (1986), Shukla e t  al. (1989, 1996)). Deforestation has led 

to many undesirable ecological and environmental consequences, such a s  

top soil erosion, shortage of rainfall, lo wering the  water table, 

undesirable climatic change and formation of wasteland, apart  from the 

obvious economic one (Kormondy (1986), Munn and Fedorov (1986)). 

Deforestation has also caused migration and even exbnction of certain 

animal species (at  least locally) (Munn and Fedorov (1986), Shultla e t  

al. (1989)). The Doon Valley in India is such an example where the  

depletion of forest biomass has changed the overall ecological 

s t ructure of the  valley (Munn and Fedorov (1986)). Man-made projects 

such a s  the  expansion of agricultural land for food production, growth 

of mining and wood based industries, development of housing complexes, 

hmber t rade and cutting of t rees  for fuel and fodder etc. a re  

responsible for the  ecological degradation of the valley ( Munn and 

Fedorov (1986), Shukla e t  al. (1989, 1996)). Therefore the  various 

developm&ntal projects leading to industrialization, though 

essentially required for the benefit of human beings, must be 

undertaken by keeping in mind the  scientific methods of environmental 

planning and management for maintaining ecological balance. In recent 



years,  some investigations have been made t o  s t udy  t h e  effects  of 

industrialization p r e s su re  on resource  biomass ( ~ h u k l a  e t  al. (1989, 

1996)), b u t  little attention has  been paid t o  s t udy  such  effects  on 

resource  dependent  biological species with diffusion using 

mathematical models ( Rothe (1976), Hastings (1978b), Shukla and 

Shukla (1987), Freedman and Shulrla (1989), Shukla e t  al. (1996)). In 

this chapter ,  therefore,  a mathemahcal model in t h e  form of nonlinear 

differential equations with diffusion, in  o rde r  t o  s t udy  t h e  survival  

of species dependent on resource  in  indust r ia l  environment, is 

proposed and  analyzed. The effect  of conservation of t h e  resource  

biomass density and  control of t h e  undesired level of 

industrialization p r e s su re  is also incorporated into t h e  model. 

3.1 MATHEMATICAL MODEL 

We consider a fo res t  habitat  assumed to  consist  of a simp1.e 

closed region R with s m o ~ t h ' b o u n d a r ~  dR.  We assume t h a t  t h e  density of 

t he  wildlife species, resource  biomass and industrialization p ressure  

a r e  governed by generalized logistic-type equahons  (Freedman (1987), 

Quaddus  (1985)). Following (Freedman and  Shultla (1989), Hastings 

(1978), Shukla et al. (1989), Shukla and Shulrla (1987)), t h e  model 

governing the  system can be  written by means of t h e  following system 

of autonomous differential equations, 



a2 Here v2= - + - h2 is t h e  Lapiace diffusion operator and 
2 

dx a~ 
N(t,x,y), B(t,x,y), I(t,x,y) a r e  t h e  dens ihes  of wildhfe species, 

resource  biomass and industrialization p ressure ,  respectively, a t  

coordinate (x,y) E R and time t r 0. 

We impose t h e  following inihal  and  boundary condihons on system 

where n is t h e  uni t  outward normal t o  t h e  region aR. The 

above boundary conditions imply t h a t  no external  i npu t  is imposed from 

outslde. 

In model (3.1) t h e  funcbon r ( B )  is t h e  specific growth ra te  

coefficient of t h e  wildlife species and  i t i n c r e a s e s  a s  biomass 

density increases.  The function r ( B )  may sat isfy t h e  following t h r ee  

t ypes  of conditions, 

1. r(0) > 0, r'(~) > 0 fo r  B 2 0 (3.3a) 

i.e resource  biomass is an  a l ternate  food fo r  t h e  wildlife species. 

Here t h e  ~ i i l dh fe  species depends  partially on t h e  resource  biomass 

density.  

2 .  r (0)  = 0, rl(B) > 0 for  E  2 0 (3.3b) 

i.e t h e  'wildlife specles wholly depends  upon t h e  resource  biomass 

density,  

3. r (0)  < 0, r(B ) = 0 fo r  some B 0, r l ( B )  > 0 fo r  B  2 0 ( 3 . 3 ~ )  



i.e t he  wildli£e species act as a predator on the  resource biomass 

density. 

The function Kl(B,I) is the carrying capacity of the  forest 

habitat for wildlife species which increases a s  the  density of the  

forest biomass increases and decreases a s  the  industriahzation 

pressure increases. Hence, we assume, 

aic (B,I) 
1 

dK (B,I) 
1 

K (0,O) = K > 0, dB > 0, . d I 
(0 for B .r 0, I 2 0, 

1 10 
(3.4) 

where K l o  
is the  carrying capacity independent of B and I. 

The function g(B,K) is the  specific growth rate of forest 

biomass. For small density, the  forest  w i l l  grow in the  absence of 

wildlife and industrialization pressure. However there is a carrying 

capacity K beyond which the  forest  resource will decline. Thus we 

assume, 

a s ( E , K )  g(ol0) = go > 0, aB 0, a g ( B p K )  aK > 0 and ~ ( K , K )  = 0. (3.5) 

The function £(I,L) is the  specific growth rate of 

industrialization pressure and it satisfies 

af(1.L) < O, f(0,O) = f > 0, dI 0 
af ' l 'L)  > 0, a n d  £(L,L) = 0, ( 3 . 6 )  i3 i  

where L is the  carrying capacity for the  industriahzahon pressure.  

The functions p ( ~ )  and q ( E )  a re  functional responses 

corresponding t o  industrializahon pressure and wildlife species 

respectively. Since the functional response p(B) increases with the  

increase of forest resource biomass density, w e  assume, 
\ 

p(0) = 0, p J ( B )  > 0 for B z 0 and l im  p ( ~ )  = p,.. < to. (3.7)  
B-m 

The function q(B) has similar properhes as  p(B), so therefore we 



q(0) = 0, q t ( ~ )  > o for B 2 0, 'lirn q ( ~ )  = qm < a. (3 .8)  
B+a, 

Also in model (3.1), D D D? a re  the  diffusion coefficients in 
1 ' ' .-2 

R for the  wildhfe species, the  resource biomass and the 

industrialization pressure, respecbvely. The positive constants u and 

p are  depletion rate coefficients of the forest  biomass due to the 

industrialization and wildh£e respectively and a l  is the  growth rate 

coefficient of the  industrialization due to forest biomass. 

3.2 T H E  M O D E L  W I T H O U T  D I F F U S I O N  

In the case of no diffusion ( D = D = D = 0), model (3.1)-(3.2) 
1 2 3 

takes the  form 

where - d .= =; N(x,y.t) = ~ ( t ) .  B(x,y,t) = B(t), I(x,y,t) = ~ ( t ) .  

Stabi l i t y  ana l y s i s  of model (3.9): 

We f i rs t  analyze model (3.9) when the  wildhle species of density 

M(t) depends parbally on the resource biomass B(t). In such a case 

the  resource biomass may be considered a s  an alternate resource for 

the species. In this  case the  function r ( B )  sahsfies the  condihon 

(3.3a) and we take r(0) = r > 0. 
0 

Existence of eq u ~ ~ L - i a  

d x 
Setting (x=N,B,I) = 0 in equations (3.9), and on solving these 

equabons we get eight equilibria, namely E (0, 0, 0), E (0, K, 0), 
1 0  1 1  



E12(0, O r  L), E13(K10, 0, 01, EII(Kl(O, L), 0, L), E (M, B, O), - .,. 15 

E (0, B, I ) ,  E ~ ~ ( N :  B: 1%). The equl ibr ia  E - E obviously exist, 
16 10 1 4  

and we shall show the existence of other e q d b r i a  in the  following. 

Existence of E (fi, B, 0): Here fi and B a re  the  positive solutions of 
15 

the following equations 

From (3.10a) we note that 

This shows tha t  N is an increasing function of B starting from K 
10' 

From (3.10b) we note tha t  

when B + K, N i  0, (3.10e) 

when E -t 0, N + g(O,K) 
Bs'To) 

l i m  c i ~  K dg(IOI0 < 0. 

B-t K 
= aB 

d N  may be positive or negative depending From (3.lQg) w e  note tha t  a 
upon the  values of the  functions g ( B , K )  and q ( B ) .  However, it is 

negative in the  neighborhood of t h e  point B = K. Further,  $ is 
negative provided 



Thus t h e  two isoclines (3.10a) and  (3.10b) in te r sec t  a t  a unique point 

(M,B) under  t h e  condition 

Hence t he  e q d i b r i u m  E ( ~ , B , O )  exists  provided (3.10i) and (3.10j) 
15 

hold. 

- - - - 
Existence o f  E (0, B,  I ) :  Here B and  I a r e  t h e  positive solutions of 

16 

the  system of algebraic equations: 

f(1,L) = - u l p ( ~ ) .  (3.11b) 

A s  in t h e  existence of E , it can be  seen t h a t  t h e  equilibrium 
15 

E exists,  provided t h e  following conditions hold: 
1 6  

and L < g (O/IO 
-mj ' 

Remark 1: For p(B) = B, q(B) = B conditions (3.10i) and  ( 3 . 1 1 ~ )  a r e  

satisfied automatically. 

Existence of E;?(N*, B", 1 Here N*, B* and  I* a r e  t h e  positive 

solutions of t h e  following algebraic equations 



From (3.12a) it is clear t ha t  N increases  a s  B increases  o r  a s  I 

decreases. 

From (3.12b) we note t h e  following: 

when B + 0, I + I* where I* - 1 
(3 

c - m) [g(O,K) - Pq' (O)K~(O,I*)] ,  

when B + I(, I + I* where I* is a zero of 
K K 

'rle also have 

Now -dB < 0 if either 

(i) t h e  r igh t  hand side of (3.12f) is negative and t h e  coefficient of 

d1 in t h e  left  hand side is poslhve a3 ( 3 . m - 1  

(ii) t h e  r i gh t  hand s ide  of (3.12f) is posihve and t h e  coefficient of 

'I in t h e  left  hand s ide  is negative. a (3.12h) 

The ~ n t e r p r e t a h o n  of t h e  isochne ( 3 . 1 2 ~ )  is t h e  same a s  t h a t  of 

(3.11b). 

Thus  from t h e  above analysls  it is clear that t h e  isoclines 

(3.12b) and ( 3 . 1 2 ~ )  in te r sec t  a t  a unique point (B*,I*) If I* > L and 



either (3.12g) or (3.12h) hold. 

Knowing the  values of B* and I*, the  values of N" can then be 

computed from (3.12a). 

Stability of e q d b r i a  

The local stability of the  equilibria can be studied frorn 

variational matrices (Freedman (1987)) corresponding to  each 

equilibrium. By computing the  variational matrices corresponding to 

each equilibrium we note the  following obvious results 

1. E (0, 0, 0) has an unstable manifold lying in the N-B-I space. 
10 

2. E (0, K, 0) is a saddle point whose unstable manifold is locally 
11 

in the  N-I plane and stable manifold is locally along the  B-direction. 

3. E (0, 0, L) is a saddle point whose unstable manifold is locally 
1 2  

In the  N-B plane and stable manifold is locally along the  I-direcbon, 

provlded condition (3.11d) holds. 

4. E 1 3 ( K l o ,  0, 0) is a saddle point whose unstable manlfold is locally 

along the  N-direchon provided condibon (3.10j) holds. 

5. EII(K1(O,L), 0, L) is a saddle point whose stable manlfold is 

locally in the  N-I plane and whose unstable manifold is locally along 

the B-direction, provided 

LI(O,K) - U L P / ( O )  - P K ~ ( O , L ) S ' ( O )  > 0. 

6. E I S ( i ,  B, 0) has an unstable manifold locally along the  I-direction 

and has a stable manifold locally in the N-B plane, provided 

' - -  
7. E I 6 ( 0 ,  B, I )  has an unstable manifold locally along the N-direction 

and a has stable manifold locally in the  B-I plane if 



In general there is no obvious remark to  be made about whether 

E" is locally asymptotically stable. In the  following theorem we 
17 

shall give sufficient conditions for E" to be locally asymptotxally 
17 

stable. 

Theorem 3.2.1: In addihon to assumptions (3.3a), (3.4)-(3.8), if the  

following inequalities hold 

then E : ~  is locally asymptotically stable. 

Proof: Linearizing system (3.9) by substi tubng 

N = N * + ~ , E = B * + ~ , I = I " + ~  

and using the following positive definite function about E* 
17 

it can Be seen that  the  time derivative of U along the  solutions of 

(3.9) is negabve definite under conditions (3.13), proving the 

theorem. 

In the following theorem w e  w i l l  find condibons which guarantee 





then E:? is globally asymptotically stable with respect  to  all 

solutions initiating in  t h e  positive or thant .  

Proof: We consider t h e  following positive definite function about E" 
1 7  

Differentiating V with respect  t o  t along t h e  solutions of (3.9) we 

get 

t ( u l i , 2 ( ~ )  - u ~ ( B ) / B  )(B - E*)(I - I*) - s N B I N  - N")(I-I*) 
0 2 

(3.lGa) 

where 



f (1 .L.)  - £ ( I * , L )  

x ( I )  = -[ 1 - I*  
2 

I 
- ( ~ ( I * . L ) )  . 

a I 

We note from (3 .14)  and t h e  mean value theorem tha t  

Iq , (B) I  5 r m . P o <  I r 1 2 ( ~ ) I  P I ,  P4 < j v l ( B ) I  P,. 

n, ( u 2 ( B ) I  r q3. Po ( h l ( B ) I  P  , P3 1 x 2 ( 1 ) (  Pg. 

pl/K; l ~ ~ ( B . 1 )  I 5 pp/K: , (3.16b) 



Now V can fur ther  be written a s  the  sum of the  quadrabcs, 

where 
r 

0 

Sufficient conditions for V fo be negative definite a re  that  the  

following inequahties hold 

Since (3.15a) + (3.17a), (3.15b) +J (3.17b), (3 .15~)  + (3 .17~) '  we 

conclude tha t  V is a Liapunov function (Lasalle and Lefschetz (1961)' 

Rao (1981)) with respect to  E* whose domain contains the  region R 
1 7  I '  

thus  proving the  theorem. 

Remark 2. If the  function r(B) satisfies condition (3.3b), then model 

(3.9) can be analyzed in a similar fashion a s  described earlier. For 

example, it can be seen that  there a re  six equilibria, namely 
w ..! 

E20(O10.0)t E 2  l(OIKIO). E ~ ~ ( o . o . L ) ,  ~ ~ ~ ( i ~ 8 . 0 ) .  E ~ ~ ( o . B , I ) .  

E* (N*,B*,I*). I t  can be also checked tha t  E 2 3  exists if (3.10i) 
2 5 



holds. E exists, if ( 3 . 3 ~ )  and (3.3d) hold. E" exists, if in 
2 4 2 5 

addihon to conditions (3.12g) or (3.12h), g(0,K) > a Lpl(0) holds. 

The stability behaviors of the  equilibria a re  similar to  the  case 

described earlier. 

Remark 3. If the  function r(B) satisfies condition (3.3c), then it can 

be seen that  there a re  six equilibria, namely E30(0,010), E31(0,K,0), 
." - 

E02(0,0,L), E33(N,g,~)l  E34(0,B,I), E 3 5 ( ~ * , ~ " , ~ * ) .  I t  can be checked 

that EZ3 exists if in addition to  (3.10i). B I K holds, where B is 
a a 

defined in ( 3 . 3 ~ ) .  E34 exists under conditions (3 .11~)  and (3.11d). 

EI exists if in addition to conditions (3.12g) or (3.12h), the  
3 5 

following inequality holds 

The stability behavior of the  equilibria can be studied in a 

similar fashion a s  in the  case when the  wildlife species partially 

depends on the resource. 

3.3 THE MODEL WITH DIFFUSION 

in  this section we analyze model (3.1) only for the  case when 

r(0) > 0. A similar analysis can be carried out for the  case when 

r(0) = 0 and r(0)  < 0. The steady state solutions a re  obtained by 

solving the  system of equations given below, 

r o N 2  
D 0211 0, 

r(B)N + -x-(zm 1 
1 



'rle observe tha t  N = N I ,  B = B*, I = I* of E : ~  also satisfy (3.18) 

and is the  uniform steady state for system (3.1). 

We wish to  show that  if E : ~  is asymptotically stable for system 

(3.9), then the  corresponding steady state is also asymptotically 

stable for system (3.1)-(3.2). 

Now we prove it by considering the  following Liapunov function 

where V(N,B,I) is defined in (3.16). 

We assume tha t  V does not change its sign in the  region R. Then 

I l  has the same sign a s  V.  Thus if V s 0, then I1 s 0. 

Also we have the  following conditions, 

av - 1. - - av - E l  - - 
dN I,, a B  IaR = O f o r  all points of R. 



Again, using Green's f i r s t  idenhty we have 

where s is the  a rc  length of dR. 

Also 

Using boundary condition (3.2) we get, 

Thus 

Hence W = I t I2  r; 0. 
1 

Thus if E* ( N * , B ~ ~ I * )  is globally asymptohcally stable for 
17 

system (3.9), then the  corresponding uniform steady state is also 

globally asymptotically stable for system (3.1)-(3.2). Further we note 

that  even if V > 0 e l  if I >  0), by increasing 
1 D l /  D2'  

D sufficiently large, W can be made negative. 
3 

We shall illustrate the above results for a rectangular habitat 

R, where R is given by 

In this case, we note from (3 .19~)  tha t  I can be written a s  
2 



Letkng z = x/a we get  

b 1 
dx dy = a J 1 [ :jN - N*) ) 2 d z  dy. (3.20b) 

0 0 

Now utilizing the  known inequality (see Denn (1975), p. 225) 

in (3.20b), we get 

b a 2 

JoJo [ stN - N*) dy L (3.20d) (N - N * ) ~  d ~ .  etc,. 

Using (3 .20~-d)  in (3.20a), we obtain 



Thus W can be written as  

Substituting the  value of from (3.16a) into (3.20e) we note 

that sufficient conditions for W to  be negative definite a re  tha t  the  

£0110 wing inequalities hold: 

where the a have the same meanings a s  in (3.17) 
1 j 

From (3.20e) we observe tha t  if V is negabve definite, then so 

is W .  This is also clear as  (3.17a) + (3.21a), (3.17b) i (3.21b), 

(3 .17~)  + (3 .21~) .  I t  may be also be noted that  even If V is positive 

definite and if inequalities (3.21a-c) a re  satisfied, then W w i l l  be 

negative definite. Further,  inequalities (3.21a-c) may be satisfied by 

increasing diffusion coefficients D, ( i  = 1,2,3) to sufficiently large 
1 

values. 

This implies tha t  for a rectangular habitat an unstable steady 

state of the system with no diffusion can be made stable by increasing 

diffusion icoefficients to  sufficiently large values. 

In other words we say tha t  t he  unstable steady state of the  

system without diffusion can be made stable by increasing the 

diffusion coefficients. 



3.4 CONSERVATION MODEL 

Conservation of environment and ecology to sustain life and a t  

the same time to ensure progress has become the challenge of the  day. 

In the  previous section it was noted that  the  density of the resource 

biomass may vanish due to  uncontrolled industrialization pressure and 

consequently the  survival of the  species living in tha t  habitat may be 

threatened. Keeping this  in mind, we propose a model to  conserve the  

forestry biomass and to  control t he  undesired level of 

industrialization pressure. Let F l ( t )  be the  density of the effort 

applied to conserve the resource biomass by afforestation, irrigation, 

fencing, etc., and let F ( t )  be the density of effort applied to 
2 

control the undesired level of industrialization pressure. I t  is 

assumed that  F is proportional to  the  variance of the  biomass from 
1 

its carrying capacity, and F2 is proportional to  the  undesired level 

of the  industrialization pressure. The system may then be governed by 

the following autonomous differential equations: 

The\ inibal and boundary conditions a re  as  follows: 

N(x,Y.O) = (~(x.y) r O f  B(r.,y,O) = zy(r,,y) 2 0, 

I(x.y,O) = ~ ( X , Y )  0. F1(x,y,O) = X(X.Y) 2 0. 



d~ - a~ - a1  dF dF 
- - - - - - - - - - - - 

dn an an an an - 0; t > 0, where n is the 

outward unit normal to  the  region dR. (3.22b) 

In model (3.22), the  constants sl  > 0, s > 0 are  the  growth rate 
2 

coefficients of F l ( t )  and F (t) respectively and y I  > 0, y > 0 are 
2 2 

their respective depreciation rate coefficients, 8 is the  growth rate 
1 

coefhcient of B(t) due to the  effort F l ( t )  and e2 is the  depletion 

rate coefficient of I ( t )  due to  the  effort F2(t) .  Also I is the 
C 

critical value of I which is assumed to be harmless to  the  resource 

biomass. The function H(I - I ) is the  unit step function which takes 
C 

into account the  case when I 5 I . I t  may be noted tha t  in the unusual 
C 

circumstance, even in the  face of industrialization the  forest biomass 

exceeds its carrying capacity, then (i3F /6t) w i l l  be negative, giving 
1 

a decrease in the  reforestation effort. Other parameters and functions 

in model (3.22) a re  the  same a s  in model (3.1). 

3.5 THE CONSERVATION MODEL WITHOUT DIFFUSION 

In the case of no diffusion, we take D = D = D = 0 in (3.22). I t  
1 2 3  

W  W W F t :  63 

can be checked that  there a re  two equilibria, viz, E(0, B, I ,  F 
1' F2)  

A A A A  A  

F ). We shall establish the existence of the  and E(N, 8 ,  I .  Fl ,  
A W  

equilibrium E only and the  existence of E w i l l  then follow from the 
A  

existence of E 

A A A A A  A  

Existence of E: We note that  N ,  B ,  I ,  F ,, F2 a re  the  positive 

solutions of the  following algebraic equations 



S 

F = - 2  ( I  - I ) H ( I  - I ). 
Y~ 

From (3.23b) we get ,  

when B -t 0, t hen  I -t co, 

when B -t K, t h en  I + I where I is a zero of 
K K 

We also have 

We note t h a t  d1  < 0, when ei ther aB 

(i) t h e  r igh t  hand side of ( 3 . 2 4 ~ )  is negative and  t h e  coefficient of 

i n  t h e  left  hand s ide  is positive, ;3B (3.24d) 

o r  

(ii) the r i gh t  hand s ide  of ( 3 . 2 4 ~ )  is positive and the coefficient 

of t h e  left  hand s ide  is negative. (3.24e) 

From ( 3 . 2 3 ~ )  we note t h a t  

when B -t 0, t hen  I -t I 
o r  



where I is given by 
0 

Xe also have 

y a 
' 2 1  1 - -  

e2s2 7 2  a1 d f ( l f L )  I a3 d1 - - Ti- P '  (B), 
2 2 

which shows tha t  % > 0 .  

Thus from the  above analysis, we note that  the  two isoclines 
A  A  

(3.23b) and (3 .23~)  intersect a t  a unique point (B, I )  under the  

conditions (3.24d) or (3.24e). 
A  A A A  A  

Knowing the  values of R and I ,  the  values of N ,  F1, F2  can be 

computed from (3.23a), (3,23d), (3.23e) respectively. 

By computing the  variational matrix corresponding to  equilibrium 
F3 M 

E it can be checked tha t  E is a unstable point. 
A  

In the  following theorem we find ' . ?  conditions for E to  be 

locally asymptotically stable. 

Theorem 3.5.1: L e t  the  following inequalihes hold: 



A 

then E is locally asymptotically stable. 

Proof : Linearizing system (3.22) with Dl = D2 = D = 0 by substitutmg 
3 '  

and using the Liapunov function 

it can be checked tha t  the  derivative of U 1  with respect to  t is 

negative definite under conditions (3.26). T h i s  proves the  theorem. 
A 

We now show tha t  E may also be globally asymptotically stable. 

For this we need the  following lemma, which establishes a region of 

attraction for system (3.22), whose proof is easy and hence is 

omitted. 

Lemma 3.5.1: The set 

a t t racts  all solutions initiating in the  interior of the positive 

orthant, where 

Theorem 3.5.2: In addition to  assumpbons (3.3a), (3.4) - (3.8) let 

r(B), p(B), q(B), g(B,K), f(1,L) and Kl(B,I) satisfy the  following 

conditions 



A A A A A A A A A  

in Q fo r  some positive constants  r , po ,  P I ,  P,, P,, P,, P,, qo l  q l r  
2 m 

A A A A A A A A A  

q2f  q3 /  K m r Pot P I  PI! P,! P,. P, . If the following inequalities hold 

A  

Then E is globally asymptotically stable with reqpect  t o  all solutions 

initiatmg in  t h e  positive or thant .  

A  

Proof: Taking t h e  following positive definite function about  E 

A A A A  A  A  A  .4 A A  A  

it can be  checked t h a t  t h e  derivative of V 1  with respec t  t o  t along 
\ 

solutions of (3.22) is negative definite under  conditions (3.29), 

proving t h e  theorem. 



3.6 THE CONSERVATION MODEL WITH DIFFUSION 

We now consider model (5.1) with D > 0, D 2  
1 

> 0, D3 > 0. 

We shall show in the  following theorem tha t  the  uniform steady state 
A A A A A 

N(x,y,t) = M, B(x,y,t) = B, I(x,y,t) = I ,  F (x,y,t)= F F (x,y,t)= F 
1 1' 2 2 

of system (3.22a)-(3.22b) may be globally asymptotically stable. 

A 

Theorem 3.6.1: If the  equilibrium E of system (3.22) without diffusion 

is globally asymptobcally stable, then the  corresponding positive 

uniform steady state of system (3.22) is also globally asymptotically 

stable with respect to  all solutions such that  $(x,y)>O, q~(x,y)>O, 

~,(:c,y)>O, x(x,y )>O, C,(x,y)>O, ( x , ~ )  E R. 

Proof: Considering the  following positive definite f uncbon, 

it can be verified under an analysis similar to  secbon 3.3 tha t  W 1  is 

negative definite If V is negative definite, where V is defined in 
1 1 

(3.30). This completes the  proof. 

By comparing V with W ,  and V with W1, we note that  there is an 
1 

extra negative term in W and W l .  This shows tha t  t he  global s tabkky 

is more plausible in diffusive system than in the  case of no 

diffusion. 

3.7 SIMULATION ANALYSIS 

In this secbon we present a simulation analysis to  explain the 

applicability of the  results by  choosing the  following particular form 

of the  functions in model (3.9) and (3.20). 



1 
£(I, L )  = r (1 - - ), 

I L 

P ( B )  = q(B) = B, 

where all coefficients a re  positive. 

Now we choose the  following values of the  parameters in model 

(3.9) and Eq. (3.32): 

r = 10.5, r = 0.02, K = 25.0, K = 0.05, 
0 1 1 0  1 1  

K = 0.01, 1: 5.0, K = 35.0, a = 0.04, 
1 2  B 

/j = 0.06, r = 8.0, L = 15.0, w. = 0.03. (3.33) 
1 1 

With the  above se t  of values of the  parameters in model (3.9), we 

show the effect of industrialization on N and B in the following 

examples 

Example 1. Using Eq. (3.32) and the  above se t  of parameters given in 

(3.33) it can be checked tha t  conditions (3.12g), and I" > L for the  

existence E% are satisfied, and E* is given b y  
17 17 

N* = 26.79435, B* = 19.24329, I* = 16.08244. (3.34) 

I t  can be verified tha t  conditions (3.13) in Theorem 3.2.1 are  

satisfied. This shows tha t  E : ~  is locally asymptotically stable. 

By choosing K = 10.0 in Theorem 3.2.2 it can also be seen that  
m 

conditions (3.15) are sahsfied, which shows tha t  E : ~  is globally 

asymptotically stable. 

\ 

Example 2. to  show the  effect of afforestation and control of 

industrialization pressure we choose again the  same se t  of functions 

as  given in E q .  (3.32) and the  same se t  of parameters a s  given in Eq .  

(3.33) with the  following additional values of parameters for model 



(3.22) without diffusion. 

A A 

I t  can be seen tha t  conditions for existence of E a re  satisfied, and E 

is given by 

I t  can also be checked tha t  conditions (3.26) in Theorem 3.5.1 
A 

are satisfied, which shows tha t  E is locally asymptotically stable. 
A 

Again choosing K = 10.0 in Theorem 3.5.2, it can be verified 
rn 

A 

that conditions (3.29) a re  satisfied. T h i s  shows tha t  E is globally 

asymptotically stable. 

Comparing Eq .  (3.34) and Eq.(3.36) we note tha t  the equilibrium 

levels of wildue species and resource biomass increase whereas the  

equilibrium level of industrialization pressure decreases due to  the  

conservation effort. 

3.8 SUMMARY 

This chapter is an attempt to  investigate the  survival of 

wildwe species dependent on resource in an industrial environment 

with diffusion. The species is assumed to be partially or wholly 

dependent or just  predaktng on the  resource biomass. The dynamics of 

the  wildlife species, t he  resource biomass and the  industrializakton 

pressure a re  assumed to  be governed by autonomous logistx-type 

differedtial equations. The model has been analyzed using the 

stability theory of differential equations. In absence of diffusion, 

criteria for local and global s tabfi ty  for positive equilibria a re  

obtained. I t  has been conclucled that  Increasing industrialization may 



lead t c  a decrease in the  density of the  resource biomass and 

ccnsequently the  survival of the  species may be threatened in absence 

cf diffusion, but diffusive migrabon may prevent extinction of the 

species. 

A model to  conserve the  forestry biomass by afforestation, 

irrigation, fencing programs etc. and to  control t he  undesired level 

of industrialization is also proposed. I t  has been noted here tha t  if 

suitable efforts a re  made to conserve the resource biomass and to 

control the undesired level of industriahzation pressure, the 

resource biomass can be maintained a t  a desired level and thus  the 

survival of wildlife species living in the  habitat may be ensured. 

By analyzing the  diffusion models, it has been shown tha t  the  

stability is more plausible in a diffusive system than the  case of no 

diffusion. For a given habitat, it has been pointed out that  the 

mstable  steady state of a system without diffusion can be made stable 

by increasing the  diffusion coefficients. Since forest  diffusion is 

too slow, when forest habitat is under industrialization pressure, a 

forestry regeneration program is needed to prevent extinction of 

species. 



4.0 INTRODUCTION 

The existence of interacbng populations using mathematical 

models have been of great  interest  in the  past few decades and have 

Seen investigated by several researchers ( May (1976), Goh (1976,78), 

Kazarinoff and van den Driessche (1978), Hsu (1978; 1981a,b), Albrecht 

e t  al. (1974), Harrison (1979), Freedman and Waltman (1984), Gopalsamy 

(1386), Dubey (1997)). The study of two predator species compehng for 

a single prey has occupied an important place in the  ecological 

literature ( Harrison (1979), Hsu (1981a), Freedman and Waltman 

(1984), Mitra e t  al. (1992)). In pa&cular, Hsu (1981a) proposed and 

analyzed a mathematical model with two predator species exploiting a 

single limited prey. He found tha t  when the  interspecific interference 

coefficient is small, the  winner in purely exploitation competition 

out competes its rival successfully. However, I£ the  interference is 

large enough, then the  competitive outcome depends upon the  initial 

population of the  predator species. In this  study, the  effect of 

intraspecific interference has not been investigat.ed. Freedman and 

Waltman (1984) considered three level food webs - two competing 

predators feeding on a single prey and a single predator feeding on 
\ 

two competing prey populations. They derived persistence criteria for 

the system. Gopalsamy (1986) established a model of two consumer 

species and one resource species, and obtained sufficient conditions 

for the  three species system to converge a s  t+cx, to  an equilibrium. 



Yitra e t  al. (1992) s tudied t h e  permanent coexistence and  globdl 

stability of a simple Lotka-Volterra-type mathemaka1 model of a 

living resource  suppo rhng  two competing predators.  They showed t h a t  

t he  permanent coexistence of t h e  system depends  on t h e  threshold of 

t h e  rat io between t h e  coefficients of numerical responses  of t h e  two 

consumers. Dubey (1997) proposed and  analyzed a mathematical model in  

wkch  two species utihze a common resource  and one of t h e  species is 

itself an  al ternative resource  fo r  t h e  other .  

Keeping in  mind t h e  above, in  t h i s  chapQr we develop a 

mathematical model of a t h r e e  dimensional system in  o rder  t o  s t udy  t h e  

interaction of two predators  competing fo r  a limited prey.  We consider 

t h e  growth ra tes  of t h e  prey and  predator  species a s  nonlinear with 

crowding effects. In our  model t h e  effect  of diffusion on t h e  

stability of t h e  system is also considered. Some investigations 

(Rothe (1976), Jorne  (1977), Jorne  and  Carmi (1977), Nallaswamy and 

Shukla (1982), Freedman e t  al. (1989)) have been made t o  s t udy  t h e  

dispersal of prey and predator  th rough  diffusion. In t h e  absence of 

diffusion, ou r  model generalizes t h e  resu l t s  of Hsu (1981a) and  Mitra 

e t  al. (1992). In t h e  presence of diffusion our  resu l t s  ag r ee  with 

those  In Hastings (1978b), Shukla and Shukla (1987), Shukla and  Verma 

(1981), Shukla e t  al. (1989), Freedman and Shukla (1989). By 

constructing a suitable Liapunov function (La Salle and Lefschetz 

(1961)) we invesbga te  t h e  local and  global behavior of t h e  undorm 

s teady s t a t e  of t h e  system. 

4.1 MATHEMATICAL MODEL 

Consider an ecosystem where we wish t o  model t h e  interaction of 

two predators  competing fo r  a limited p rey  with diffusion. The 

predator species compete not only by predatmg on t h e  populahon of 



the shared prey but also by interfering with its rival and with 

themselves. We consider the  interference coefficients to be CY 
i j  

measuring the  damage effect of predator species j on predator species 

i, and y measuring the  damage effect from its own species. Then the  
i 

dynamics of the  system can be written a s  

= Ng(N, K) - blxlpl(N) - b x p (N) t D D'N , a t  2 2 2  

We impose the  following boundary and initial conditions on system 

(4.1). 

N(O,u,v) = @ (u,v) 2 0, x.(O,u,v) = 7p (u,v) 2 0, 

where n is the  unit outward normal to  the  region (3R. @ and tp. (i=1,2) 
1 

are srnooth initial functions. R is a simply connected domain in the 

u-v plane with piecewise smooth boundary aR. 

2 a 2  a 2  In model (4.1), V s - + - is the Laplacian diffusion operator 
au2 a v 2  

and N(t,u,v), xi( t tu ,v)  2 a re  the  population densities of the  

prey species and the  i th  predator species respectively, a t  time t 2 0 

and coordinates (u,v) E R. 

The function g(N,K) is the  specific growth rate of the  prey 

species. I t  increases as  the  carrying capacity K of the  prey species 

increases and decreases a s  the  density of the  prey increases. Hence we 

assume 

(34(N.K) < g(0,O) > 0, aN ag(N,K) > 0, 
dK 

and there exists an x = K such tha t  g(I<,I<) = 0. 



The function p (N) is t h e  functional response  of t h e  i th  predator 
1 

and it satisfies 

p (0) = 0, p '(N) > 0, fo r  N 2 0, i=1,2. (4.4) 
1 1 

D, d l ,  d 2  a r e  t h e  diffusion coefficients of N(t), x ( t ) ,  x (t) in 
1 2 

R respectively. b is t h e  feeding r a t e  per  predator  (predator  species 
1 

i) per unit prey consumed, 0 is t h e  bi r th  r a t e  pe r  predator  (predator  
1 

species i )  pe r  unit prey consumed, 6 is t h e  death  r a t e  of t he  
1 

predator species i. 

Remark 1: I t  may be pointed ou t  he re  t h a t  If we t ake  

N 
y = y = D d = d = 0, g(N,K) = r ( 1  - R ) r  pl(N) = N = p (N), 

1 2  1 2 2 

where r is a positive constant ,  then  model (4.1) reduces  t o  t h a t  of 

Hsu (1981a). 

4.2 T H E  M O D E L  W I T H O U T  D I F F U S I O N  

We consider t h e  model without diffusion (i.e., D = d = d = 0) a s  
1 2  

follows 

i = xl(  0 p ( N )  - Sl- ylxl- uZlx2 ), 
1 1 1  

d = x2( 0 p (N) - a2- y2x2- ul2xl ), 
2 2 2 

N ( G )  2 0, x,(G) 2 0 ( I  1,2). 
1 

Before analysis we s ta te  one important lemma a s  follows, t h e  

proof of which directly follows from system (4.5). 

Lemma 4.2.1: A necessary condibon fo r  e i ther  predator  species x t o  
1 

survive  is 

f3 p , ( K )  > 6 , i=1,2. 
1 1  1 



E;fi's ten ce of e q uilibl-ia 

dZ 
Settlng af = 0 (Z = N ,  x l ,  x ) and solving (4.5) we g e t  t h e  

2 

following possible non-negative equilibria, namely, E (0, 0, O), 
- 0 - - 

E ( K ,  0, O), E ~ ( A ,  x,, 0),  E,(N, 0, x2),  E*(N: x*, xi'). The equilibria 
1 1 2  

P and El clearly exist. We shall show t h e  existence of t h e  other  
0 

equihbria a s  follows. 

Here and ?i a r e  t h e  positive solubons  of t h e  following 
1 

equations: 

From (4.Ca) we note t h e  following 

when N + K, x -t 0, 
1 

(4.7a) 

when N + O , x  g (0 .K)  , O, 
1 ' blp;(U) 

dx 
1 From ( 4 . 7 ~ )  we note t h a t  may be  positive o r  negabve.  

However, it is negative i n  t h e  neighborhood of t h e  point N = K .  

ds 
1 Fur ther ,  is negative provided 



From (4.6b) we note the  following 

I when N + K, then x + - (4,p,(K) - > 0, (4.8a) 
1 

Y1 

From the above analysis we note that  the two isochnes (4.6a) and 

(4.6b) intersect a t  a unique point ( X i )  under condihon (4.7e). 

Thus E7 exists if condition (4.7e) holds. This implies tha t  if 
&. 

inequality (4.7e) 1s satisfied, then the  prey species survives with 

the f i rs t  predator, whereas the  second predator is driven to  

extinction. 

Remark 2: If pl(N) = N, then condition (4.7e) is automatically 

E.~zstence of E (N, 0, x ) 
3 2 - 

"4 

Here N and x2 a re  the  positive solutions of the  following 

As in the  existence of E ? ,  one can see tha t  the  equihbrium E exists 
L 3 

i f  the  following inequality holds a t  E3, 

Thus, if condition ( 4 . 9 ~ )  holds, then the  prey species survives 

along with its second predator, whereas the  f i r s t  predator dies out. 



Existence of E ( N  , x2) 

Here N: x" and  x* a r e  t h e  positive s o l u ~ o n s  of t he  following 
1 2 

zlgebraic equations: 

Solving (4.10a) and  (4.10b), we ge t  

where p1= b2~ , (N) ( f i 1~ , (N)  - - a21Ng(NlK)l (4.12a) 

We note t h a t  x l  > 0 if e i ther  

(i). p l>  0, u 2 >  0, (4.13a) 

cr (ii). p < 0, p < 0 hold. 
1 2 

(4.13b) 

Simdarly, x2> 0 d ei ther  

(i). u3> 0, p2> 0, (4.14a) 

cr (ti). p 
3 

< 0, ,12 < 0 hold. (4.14b) 

Substi tut ing (4.11a) and  (4.11b) in to  ( 4 . 1 0 ~ )  and taking 



we note tha t  

- (y2blp1(N) - u lZb2~ , (N) ) ( i i l~ l (N) -  
- 

- 1 ~ . J ( N , K ) )  
y b p ( N )  - a  b P ( N ]  !Y1y2- U12UZ1)(9(N'K) + N 3N 

1 2 2  2 1  1 1 

From (4.16) we note tha t  F(O), F(K) and Ft(N) may be positive or 

negabve. However, there  exists a positive unique solution N = N* of 

(4.15) in the  interval 0 < N*< X such that  F(N*) = 0, if the  following 

inequalities hold: 

Knowing the  value of N: then x: and x'; can be computed from 

(4.11a) and (4.11b) respectively. Thus the  interior equilibrium E* 

exists if (4.13), (4.14) and (4.17) hold. 
i 

StabiLity of equilibria 

The local stability of the  equilibria can be studied b y  computing 

variational matrices (Freedman (1987)) corresponding to  each 



equilibrium. From these matrices we note the  following results: 

1. ~ ~ ( 0 ,  6, 0) is a saddle point whose unstable manlfold is locally in 

the  N direction and stable manifold is locally in the  x l -x  plane. 
2 

2. From Lemma 3.1, we note that  if 3 > /j p , ( K ) ,  then no predator will 
1  1 1  

survive. In such a case  el(^, 0, 0) is locally asymptotically stable. 

If 3 . c  /j p (K), then both predators w i l l  survive and E ( K ,  0, 0) will 
1 1  1 

be a saddle point with stable manifold locally in the  N-direction and 

with unstable manifold locally in the  xl-x plane. 
2 

- 
3. E (A, xl, 0) is locally asymptotically stable if 

2 

- 
f i 2 ? , ( ~ )  - L2 - a x (0 and Ti = ~ ( B , K )  t H 3g(E1K) - p , ( ~ )  C O. 

1 2  1 dN 1 1 1  

* * 

4. E (N, 0, x2) is locally asymptotically stable if 
3 

* ... % * 

B,P~(N) -  h1 - u x < 0 and H = g(N,K) t N 
2 1  2 

* a g ( N f K )  - b pJ(N) < 0. 
(3N 1 1 1  

In the  following theorems we are  able to  write down conditions 

fcr  local stability and instability of E*. The proofs of these 

theorems follow from the  Routh-Hurwitz criteria, and hence we omit 

them. 

We firs t  write out the  following notations: 



Theorem 4.2.1: Let the  following inequalities hold 

A , >  0 (i=1,2,3) and A A - A > 0. 
1 1 2  3 

Then E" is locally asymptotically stable. 

Theorem 4.2.2: Let a, = y = 0. Then E* is unstable. 
1 2  

I t  may be pointed out here tha t  the  result of Theorem 4.2.2 

agrees with Hsu (1981a). 

In the following theorem we show tha t  EX may be globally 

asymptot-lcally stable. We f i rs t  state the  following lemma whch 

establishes a region of attraction for system (4.5). The proof of this 

lemma is easy and hence is omitted. 

Lemma 4.2.2: The set  

I 
Q = {(N, Xl, X ): 0 6 N 5 K ,  0 i X i - (/3 P , ( K )  - 6 ), iz1,2} 

2 K l  1 1 

is a region of attraction for all solutions initiating in the  positive 

zrthant. 

Theorem 4.2.3: In addition to assumptions (4.3)-(4.5), let  g ( N , K ) ,  and 

p(N) satisfy the  following conditions in 12: 

G I - .  
m 

6 G M r  p ,  i pl,(N) i Q ~ + ~  , i = 1.2 (4.20) 
dN 

for some posibve constants G , GM, p i ,  p i  + 2  . (i=1,2). 
m 

If the following inequality holds 

where 

then E~ is globally asyrnptobcally stable with respect to  all 

solutions initiating in the  positive orthant. 



Proof: W e  consider t h e  following positive definite funchon about E", 

Differentiating V with respect  to  t along t h e  solutions of (4.5) we 

get  afker some algebraic manipulabons 

where 

From (4.20) and t h e  mean value theorem we note tha t ,  

Now V can f u r t h e r  he written a s  t h e  sum of quadratics,  

1 1 v 5 - - a ( N  - N')' + a (N  - N*)(x - x*) - - a (x - x " ) ~  
2 11 1 2  1 1  2 2 2 1  1 

1 * * 1 * 2 - - a  ( ~ - x ~ ) ~ t a  ( x - x ) ( x - x ) - - a  ( x - x )  
2 2 2 1  1 2 3 1  1 2  2 2 3 3 2  2 



where - a = h ( N ) ,  a Z 2  = c1yl1 a33 - c ~ Y ~ ~  
1 1  

a = c 0 1, ( N )  - b l p l ( ~ x ) / ~ x ,  
1 2  1 1  1 

a L 3 = ( c ~ u ~ ~ +  c laZl j l  

3 3 1 = c 2 p 2 p 2 ( ~ )  - b 2 p 2 ( ~ A ) / ~ * .  

Sufficient conditions for V to be negative definite a re  that  the  

f 0110 wing inequalities hold 

a:2< a 1 1 a 2 2 f  (4.26a) 

a 2 < a  a 
2 3  2 2  33' 

(4.26b) 

a 2 < a  a 
31 33 11' 

(4 .26~)  

Ey choosing c and c a s  defined in (4.22) we note tha t  conditions 
1 2 

(4.26a) and (4 .26~)  a re  automatically satisfied. Further,  (4.21) 

(4.26b). Thus, we conclude that  V is a Liapunov function with respect 

to E*, whose domain contains the region 52, proving the  theorem. 

4.3  T H E  MODEL WITH D I F F U S I O N  

In this secbon we consider the  complete model (4.1)-(4.2). We 

note tha t  N = NX, x = x* x = x* is the  uniform steady state for 
1 l J  2 2 

system (4.1-(4.2). We wish to  show tha t  if E" is asymptotically 

stable for system (4.5), then the  corresponding uniform steady state 

is also asymptotically stable for system (4.1)-(4.2). Further,  we w i l l  

also show that  by increasing the  diffusion coefficients to  

sufficiently large values an unstable equilibrium state can be 

stabilized.' Now we prove this  by considering the  following Liapunov 

function 

W(Pl(t). :cl(t). x2(t)))  = ISR V(N(u,v.t). x ~ ( u . v , ~ ) ,  x2(u.v,t)) dA, 

(4.27) 



where \I is defined in E q .  (4.23). 

Now t h e  time derivative of W along t h e  solutions of (4.1)-(4.2) is 

given by, 

where 1 = ISR ;(N(U.V.t). x I ( ~ . ~ , t ) ,  x ~ ( u . v . ~ ) )  dA 
1 

(4.29) 

'rie f i r s t  assume t h z t  V does not  change its s ign i n  R. We now note t he  

following properhes  of V ,  namely 

- I = 0 for  aU points of R (1=1,2), 
1 d R  

From Green's f i r s t  identi ty,  we have 

= - SIR [ v ] . ON ] dA, using (4.2). 

Hence (4.34) reduces  t o  



Similarly we get 

This implies tha t  I s 0, i=1,2. Thus from (4.28) we get  
2 

d x x y 2  
- C 1 1 i  JJRIE1) '+ [ E l ]  '1 CIA. (4.36) 
1=1,2 ( p  P (K) - 6 . 1 ~  

1 I 

From (4.36) we note tha t  if V is negative definite, then W is 

also negative definite. This shows that  if the  equilibrium E* of the 

model without diffusion is globally stable, then the  corresponding 

~lniforrn steady state E* of the inihal boundary value problems 

(4.1)-(4.2) is also globally stable. Further,  we also note that  if V 

is positive definite, then by increasing D,  d l ,  d2 to  sufficiently 

large values, W can be made negative definite. This implies tha t  If 

the positive equilibrium E~ of the  model with no diffusion is 

~ n s t a b l e ,  then the  corresponding uniform steady s tate  of the  model 

wlth diffusion can be made stable by increasing diffusion coefficients 

to sufficiently large values. 

If we consider the  region R to  be a rectangular habitat given by 

R = { (u,v): 0 s u s a, 0 s v 5 b ), 

then under an analysis similar to  chapter 111, W can be estimated by, 

* 2 e d x y  
f 2 2 2 2  

(:i - x*) ')] d A .  
(B2p2(K) - s2) '  

2 2 



T h i s  shows that  i£ the  interior equlibrium E" of model (4.5) is 

globally asymptotically stable, then the  uniform steady state of the  

lnibal boundary value problems (4 .1 -4 .2 )  is also globally 

asymptotically stable. We fur ther  note that,  even if (4.26) is not 

satisfied, then by increasing diffusion coefficients D, d l ,  d to 
2 

sufficiently large values, W can be made negative definite. Thus an 

unstable equilibrium can be made stable by increasing diffusion 

coefficients appropriatly. 

Remark 3: From Theorem 4.2.2, we note tha t  if y = 0 = y then the 
1 2' 

interior equilibrium E X  of model (4.5) is unstable. Then from (4.36) 

and (4.37) we note that ,  sufficiently rapid diffusion by the  prey 

species will stabilize the  unstable equfibrium E*. 

4.4 SIMULATION ANALYSIS 

In this  section a numerical example is presented to check the  

feasibility of the results discussed above. We take the following 

particular form of the  functions ~ ( N , K )  and pl(N), p,(N) in model 

(4.5): 

We choose the  following values of the  various parameters in model 

(4.5) and in Eq. (4.38), 

r = 35.0, b = 2.0, b = 1.8, K = 60.0, 
1 2 

0,= i.G5, 6 = G.6, y = 3.5, u = 1.3. 
2 2 1 2  

With the above se t  of values of parameters, it can be seen that  

the conditions (4.13), (4.14) and (4.18) for the  existence of the 

interior equfibrium E" a re  satzsfied, a n d  E" is given by 



N = 28.20468, x = 3.37458, x = 6.55450. 
1 2 

I t  can also be checlred tha t  conditions (4.19) in Theorem 4.2.1 

a re  satisfied. This shows tha t  E" is locally asymptotically stable. 

I t  can also be verified that  condition (4.21) in Theorem 4.2.3 is 

satisfied which shows tha t  E* is globally asymptotically stable. 

4.5 SUMMARY 

In this chapter, a mathematical model has been considered in 

order to study the  growth. and survival of two predator species 

oompettng for a single limited prey in a diffusive system. The growth 

rates of the interacting populabons are  assumed to be nonlinear and 

the dynamics of the  system is of Gause-type. In the  absence of 

diffusion, criteria for local stability, instability and global 

stability have been obtained. In the  absence of diffusion it has been 

shown that  the  intraspecific interference coefficients of the 

competing predators play a crucial role in stabilizing the interior 

equilibrium of the  system. If the  intraspecific interference 

coefficients of the  competing predators a re  zero, then the interior 

equAbrium becomes unstable. In the  case of diffusion it has been 

sliown that  if the  interior equilibrium E" of model (4.5) 1s 

asymptotically stable, then the  uniform steady state E" of system 

(4.1)-(4.2) must be asymptotically stable. I t  has also been noted that  

tihen the  interior equilibrium E X  of model (4.5) is unstable, then the 

~niforrn steady state E* of system (4.1)-(4.2) can be made stable by 

increasiqg diffusion coefficients appropriately under certain 

conditions. Thus it has been concluded that  t he  solutions of the  model 

with diffusion approach to  its eqwlibrium faster than the  case of no 

diffusion. 



5.0 INTRODUCTION 

One of the  important problems in mathematical ecology is to  study 

the effect of predahon on competing prey species (Parrish and Saila 

(1970), Kazarinoff and van den Dlriessche (1978), Tansky (1978), 

Harnson (1979), Cheng e t  al. (1981), Brauer and Soudack (1981), Hsu 

(1981b) etc.). In particular, Kazarinoff and van den Driessche (1978) 

proposed a predator-prey model whch incorporates competihon among 

prey with a general functional response. They obtained criteria for 

the stability of small amplitude periodic solutions of the system. 

Tanslcy (1978) studied the  interaction of two prey and one predator 

which has the switching property of predation. Harrison (1979) studied 

the global stability of predator-prey interactions using Liapunov 

functions and showed tha t  conclusions do not depend exclusively on the  

specific function chosen by the  modeler, but  also on their general 

properties. Conell (1979) discussed the  role of predators in 

prevenbng competitive exclusion in the  r a n  forest  and the 

intertridal zone. Cheng e t  al. (1981) proposed a general model for 

predator-prey interactions with predator functional responses and 

derived some conditions to ensure the  global stability of the  system. 

Brauer 'and Soudack (1981) investigated the  qualitahve effects of 

constant rate stocking of either or both species in a predator-prey 

system. Hsu (1981b) discussed the  effect of predation on the  two 

compehng prey species and observed tha t  the  outcomes depend 



crihcally on the prey species's capability of invading the  

complementary sub  community formed by predator species and other prey. 

The competitive-exclusion principle ( ~ a r d i n  (1960)) states that  two 

competing species can coexist only if they exploit their  environment 

differently. Hsu (1981b) showed tha t  competing prey species can 

coexist even with exactly idenbcal resource requirements if each prey 

species has invasion potential for the  complementary predator- prey  

sub  community. Liou and Cheng (1988) proposed a general model for 

predator-prey interaction and studied the global stability of the 

system. In most of the  above studies the  effect of diffusion has not 

been considered, though such investigations a re  important from the  

point of size of the habitat ( ~ c M u r t r i e  (1978), Freedman and Shukla 

(1989), Freedman et. a1 (1989)). 

Keeping the  above in mind, in this chapter our  main purpose is to 

discuss the  effect of predation on two competing prey species in which 

the predator species is also influenced by the  damage effect from its 

cwn species. Further we also consider the  effect of diffusion on the  

stability of the  uniform steady s tate  of the  system. By constructing a 

suitable Liapunov function, the  local and global behavior of the  

~lniform steady state a re  investigated. In the  absence of diffusion our 

model is more general than that  of Hsu (1981b)) and in presence of 

diffusion, our results agree with those in Hastings (1978), Shukla and 

Verma (1981)) Shukla and Shukla (1987), Bergerud a t  el. (1984), Shukla 

e t  al. (1989), Freedman and Shukla (1989). 

5.1 MATHEMATICAL MODEL 

Consider an ecosystem where we wish to  model the  interaction of a 

predator with two compebng prey species in a diffusive system. Using 



a Gause model, the dynamlcs of the  system can be governed by the  

following differtial equations, (Hsu (1981b)): 

We impose the  following initial and boundary conditions on 

system (5.1) 

where n is the  unit outward normal to  the  region dR. cp and cy (1=1,2) 
I 

are the  smooth initial functions. R is a simply connected domain in 

the u-v plane with piecewise smooth boundary dR. 

a' In model ( 5 . )  v2 - t -  
2 

is the  Laplacian diffusion 
3 ~ 1  6' v~ 

2 

operator and N (t,u,v), x(t,u,v) (1=1,2) a re  the  population density of 
I 

t h  i prey species and predator species respectively, a t  time t 2 0 and 

zccrdinates (u,v) E Ei. 

The function g ( N  ,K ) is the  specific growth rate of the  i t h  
1 1 1  

prey specles. I t  increases as  the  carrying capacity K of the prey 
1 

specles increases and decreases a s  the  density of the prey species 

increases. Hence we assume 

and there exists N = K such that  g(K , K ) = 0, i = 1,2. 
1 I 1 1  



The funchon p , ( N , )  is the  predator funcbonal response on the 
1 1  

ith prey species and it satisfies 

p (0) = 0, p:(N.) > 0, for N . 2  0, (i=1,2). 
1 1 1  

(5.4) 

Dl, D2, D a re  the  diffusion coefficients in R for N N2, x 

respechvely. b is the  feeding rate per predator (prey species i) 
i 3 

per unit prey consumed. u a are  the  interspecific interference 
12' 2 1  

coefficients of prey species N and N 2  respectively, 13 is the  birth 
1 3 i 

rate per predator per unit prey (prey species i )  consumed. G is the  

death rate and -y is the  intraspecific interference coefficient of the 

predator species. 

Remark 1: If we take the  following particular form of functions in model 

(5.1) 

then model (5.1) reduces to  the  model in Hsu (1981b). 

5.2 THE MODEL WITHOUT DIFFUSION 

In this  sechon we consider the  model without diffusion. In such 

a case model (5.1) reduces to  

N 1  = N1gllN1'K1) - bl3xp1(N1) - U I 2 N 1 N 2 '  

3 2 = N2g2(N2.K2) - bZ3xp2(N2) - u ~ ~ N ~ N ~ ~  

f = ~ ( p , ~ p , ( ~ , ~ ) +  P,,P,(N~) - E - y n  ), (5.6 

N , ( O )  r 0 ,  x(0) r O (i  = 1,2). 
1 

Sethng " - 0 ( Z  = N ,N - ) and solving (5 .6 )  w e  get the  - 1 2- 



follcwing nonnegative equilibria, namely Eo(O, 0. 0). El(KI 9, 0) 

- A A 

E 2 ( 6 , ~ ~ .  o),  ~ ~ ( n ~ ,  N ~ ,  0). E , O ,  , ~ ~ ( 0 ,  N ~ ,  x ) ,  E*(N:, N:,x*). 

The equilibria E E and E obviously exist. We shall show the  
0' 1 2 

existence of other equihbria a s  follows. 

Existence of E3 m l ,  n 2 ,  0) 

Here A and E2 are the  positive solutions of t h e  following 
1 

equations: 

ix N = g ( N  , K ) ,  
1 2 2  1 1 1  

u 2 1  N 1 = g2(N2,K2). 

From (5.7a) we note tha t  

when N1+ K1, N 2 i  0. 

gl(O,K1) 
when N + O ,  N t  

1 2 a 
12 

dN 
2 - 1 W1(N1,K1) < 0. Also m - a d N  

( 5 . 8 ~ )  
1 1 2  1 

From (5.7b) we note tha t  

when N 2 1  K N 1 0, 
2 1 

(5.9a) 

g2!0.K2) 
when N i O ,  PI + 

2 1 
I 

U 
2 1 

dN , Jg2(N2,K2) 
1 - a. 

also - -  c G. (5.10) B a aNz 
2 2 1 

The above analysis shows tha t  t he  two isoc:lines (5.7a) and (5.7b) 

- 
intersect a t  a unique point (R N ) if 

l f  2 

g2(O,K2) s1(0,K1) 
K < 

1 CY 2 cx 
and K < 

2 1 1 2  



g2(D1K2) g ,(O'K1) 
or K > and K2) 

1 u 
2 1 12 

hold. 

Exzstence of E4(N1, 9, x) 

Here % and 2 are t h e  posltzlve solutzlons of following equabons:  
1 

N1gl(N1 ' K l )  
:< = b p N ) '  

13 1( 1 

From (5.12a) we note t h a t  

when N - t K  x + 0 ,  
1 1  

g $0  'K1) 
when N 7 0 , x  

1 'bp'o > 0, 
13 1 

dx From (5.14a) we note t h a t  may be posltrve o r  negabve.  
1 

However, ~.t  is negahve  in  t h e  neighborhood of t h e  point N; K 1 .  

d :: Fur ther ,  a?j is negabve provided 
1 

From (5.12b) we note t h a t  

1 when N 4 K x -r - (p31p1(K1) - S ) > 0 fo r  831p1(K1) > 8 ,  (5.16a) 
1 I '  Y 



C 

when f\l + 0, x + - 2 < 0, 
1 

(5.lGb) 
Y 

Thus the  two isoclines (5.12a) and (5.12b) Intersect a t  a .unique point 

(GI,;) I in addition to condihon (5.15), the  inequality 

83111(K1) > 6 

holds. 

This shows that  t he  equilibrium E 4  exists under the conditions 

(5.15) and (5.18). 

Remark 2: If p ( N  ) = N then (5.15) is automabcally satisfied. 
1 1  1' 

A A 

Existence of  E (0, N x ) 
5 2 

A A 

Here we note tha t  N and x a re  the  positive solubons of 
2 

Similar to the  existence of E one can check tha t  the  equilibrium 
4 '  

r. n 

P-(0,N2,x ) exists if 
3 .  

P,,P,(K~) ' 3 

hold. 

Existence of  E"(N* N;, x*) 
1' 

ilere N:, N" and x* are  the  posltive solubons of the following 
2 

algebraic equations, 



x = 2 [ B  P ( N ~ )  -I- ,632~2(N2)  - 6 1 = f(N1,N2), (say). (5 .21~)  
y 31 1 - 

Frcm (5.21a) we note t he  following 

when N 2 +  0, N + N where N is a solution of 
a 1 a 1 

Taking 

hl(N1) ' [N1g1(N1.Kl) - b13f(NltO)p 1 1  ( N  ) l / N l t  (5.22) 

we note t ha t  

hl(o) = gl(O.K1) -I- 6b pl (0) /y  > 0. 
13 1 

(5.23a) 

if t h e  inequality (5.18) holds. 

Thus, N is a positive unique solution of (5.22) in t h e  interval 
a 1 

Again from (5.21a) we note tha t  

when N -i 0, N + N where N is a solution of 
1 2 a 2  a 2 



we see  t ha t  

h 2 (0) = - b13p;(0)S - Y Q ~ ( G . K , )  < 0. 

h,(K2) = [u12K2 - gl(O,Kl)l l  + b -p ' (O)( / (  P ( K 2 )  - 6 > 0, (5  26b) 
13 1 3 2  2 

If 

a 1 2  2 > gl(ofKl) (5.27) 

and lnequahty (5.20b) holds. 

dh2(N2) 
We also have, 7 = U l r Y  t b i 3  P ' ( O ) I ~ ~ ~ P ; ( N ~ )  1 > 0. (5.28) 

2 

Thus N 1s a poslbve unlque s o l u ~ o n  of (5.25) In t h e  lnterval  
a 2 

r3 < N < K  lf (5.20b) and (5.27) hold. 
a 2 2 

PAgan from (5.21a), we have 

51 here  

-. 
A The lsochne (5.21b) can be analyzed In a slmllar fashlon. I t  may 

4 5 
I I 

f b ' , 
be seen that t h l s  lsochne passes  th rough  t h e  points' (N  ,0) and - (0, ' 

b 1 

Nb2), where 0 < N < K  and  0 < N b 2  < KT, 
b l  1 

and  ~t has  negabve  slope ~f 

In addlbon t o  assumpbons (5.18) and  (5.20b) t h e  following condlbons 

hold: 



From the above analysis it is clear tha t  the  two isoclines (5.2la) and 

(5.21b) intersect a t  a unique point (M" N "  ) if in addition to 
1' 2 

assumpbons (5.18)' (5.20b), (5.27), (5.29a) and (5.30), any one of 

the  following inequalities hold: 

2. N < N and N > N b 2 .  
a 1  b l  a 2 

(5.31b) 

Knok-ing the  values of N~ and N"  we can compute the  value of x" 
1 2 

from (5 .21~) .  We note tha t  for x* to  be positive must have 

This completes the  existence of E". 

Stab12ity of egtillibr-ia 

'The local stability of the  equilibria can be studied from 

varia.bona1 matrices corresponding to  each equilibrium. B y  compuhng 

the variational matrices corresponding to  each equilibrium w e  note the  

following results: 

1. E (0,0,0) is a saddle point whose stable manifold is locally in the  
0 

:: direction and unstable manifold is locally in the  N - N plane. 
1 2 



2. E (I< ,0,0) is locally asymptotically stable if 
1 1  

X I >  g 2 (OfK2)/uZ1 and 831~1(K1) < 6 (5.32) 

hold. If the  inequalities in Eq. (5.32) a re  reversed, then E l  is a 

saddle point with stable manifold locally in the  N direction and with 

~ n s t a b l e  manifold locally in the N - x plane. 
2 

3. E (G,K ,O) is locally asymptobcally stable if 
2 2 

K Z >  g1(0fK1)/u12 and B 3 , ~ , ( K 2 )  < 6 (5.33) 

hold. If inequalities in E q .  (5.33) a re  reversed, then it is a saddle 

point with stable manifold locally in the  N direction and with 
2 

unstable manifold locally in the  N,- :< plane. 

4. E ( N  ,N ,0) is locally asymptotically stable if 
3 1 2  

where 

and 

hold. Otherwise it is an unstable equilibrium. 

A A 

5. E 4 ( N  ,,O.x ) is locally asymptotically stable if 

hold. Otherwise it is an unstable equilibrium. 



- ... 
6 .  E ~ ( O , N  ,x) is locally asymptobcally stable iI 

2  

hold. Otherwise it is unstable point. 

In t h e  following theorem we a r e  able t o  write down coilditions for  

local stability of E*. The proof of t h e  theorem follows from t h e  

Routh-Hurwitz cri teria,  and  hence we omit it. We f i r s t  write t h e  

following notations: 

A = - ( H*+ H & )  i 7xX,  
1 % 

(5.37a) 
1 

- H"H" - (H:+ H:)yxx - 
A 2  - 1 2  

N*N* 
1 2 u 2 1  1 2 

* 
+ b23832x P~(N;)P;(N;) 

* 
+ b , 13 iB 31 :: P~(N:)P;(N:), (5.37b) 

A = (H*H*- u u N"N" )yx* 
3 1 2  1 2 2 1 1 2  

- b 2 3 " * ~ 2 ( ~ z ) ( a 3 2 ~ ; ~ ; ( ~ ; )  + a 1 2 8 3 1 ~ 1 ~ ; ( ~ : ) )  

- b 1 3 ~ * P 1 ( ~ ; ) ( @  H * ~ ' ( N : )  t a f i -  N*P'(N*)) ,  ( 5 . 3 7 ~ )  
3 3  2 1 2 1  3 2  2 2 2 

?low we can s ta te  t h e  following resul ts .  

Theorem 5.2.1: Let t h e  following inequalities hold 

A > 0, and  A A > A i = 1, 2, 3. 
1 1 2  3 



Then E ~ ( N ~ , N ~ , x * )  is locally asymptotically stable. 
1 2  

I t  may be noted here that  If any one of the  inequalities in E q .  

(5.39) is not satisfied, then E* is unstable. 

In the  following theorem we shall show tha t  E %  is globally 

asymptotically stable. We f i r s t  state the  following lemma which 

estabhshes a region of attraction for system (5.5). The proof of the 

lemma is easy 2nd hence is omitted. 

Lemma 5.2.1: The set  

!J1= { ( N l , N  ,x ): 0 s  N X K  0 S N  r K ,  
2 1 I '  2 2 

1 
0 2 " 5 7 (831~1(K1) + P 3 Z ~ Z ( K Z )  - 6 ) )  

is a region of attraction for. all solutions inibating in the  positive 

orthant. 

Theorem 5.2.2: In addition to assumptions (5.3) and (5.4), let 

g . (M , K .  1, p , (N ) satisfy the following conditions in Q 
1 1 1  I I 

for some positive constants G , G 
rn i P i #  P i + 2 )  (1=1,2). 

If the  following inequality holds 

then E* is globally asymptotically stable with respect to all 

solutions inittating in the  positive orthant. 



Proof: Ne conslder t h e  following poslbve definlte funckon  about E*, 

Differenbabng V wlth respect  t o  t along t h e  soluhon of (5.5) we 

ge t  a f t e r  some a l g e b r a c  manlpulahons 

- c b p ( N ~ ) / N * )  ( n2 -  N ~ ) ( x  -x*) ' ' ",P32'2(N2) 1 2 3  2 2 

+ c u ) (N1- N l ) ( N 2 -  N 2 ) ,  
+ (u12 1 21 

(5.43) 

w here 

From (5.40) and t h e  mean value theorem w e  note tha t ,  

?low V can f u r t h e r  be  written as t h e  sum of quadrabcs ,  



where m = A ~ ( N , ) ~  (5.45a) 
1 1 

m - - C ~ ~ ~ ( N , ) .  (5.45b) 
22 

m33 = C2Y f (5 .45~)  

12 
+ c a  = ( 5 2  1 2 1  

(5.45d) 

m 2 3 = c ~ ~ ~ ~ S ~ ( N ~ )  - C ~ ~ ~ , P ~ ( N ; ) / N ; ~  (5.45e) 

" 3 1 = c ~ ~ ~ ~ E ~ ( N ~ )  - ~ , , P , ( N ~ ) / N ~ .  (5.15f) 

Sufficient conditions for  V to  be negabve definite a re  that  the 

following inequalities hold 

m 2  ; m  m (5.46a) 
1 2  1 1  2 2 )  

We note tha t  in Eq.  (5.41) the  values of c and c are such that  
1 2 

conditions (5.46b) and (5 .46~)  a re  automatically sahsfied. Further 

(5.41) 3 (5.46d), we conclude that  V is a Liapunov funchon with 

respect to  E* whose domain contains region R , proving the  theorein. 
1 

5.3 T H E  MODEL WITH D I F F U S I O N  

In  this  section we consider the  complete model (5.1) together 

with initial and boundary conditions (5.2). We observe that  N l =  N:, 

* 
N 2 =  N;, x = x is the  uniform steady state fo r  system (5.1)-(5.2). We 

state the  main results of this  section in the  form of t he  following 

theorem. 



Theorem 5.3.1: If the  interior equilibrium E" is asymptotically 

stable for system (5.6) then the corresponding uniform steady state is 

also asymptotically stable for system (5.1)-(5.2). 

Proof: Let us  consider the  following Liapunov function 

w h ~ r e  JI is defined by E q .  (5.42). 

Now the  time derivative of W along the  solutions of model (5.1)-(5.2) 

is given by 

where I 1 = [[, V ( ~ ~ ( U , V ~ t ) , ~ ~ ( x , y ~ t ) , ~ ( u , v , t ) )  dA. 

'N'e first assume that  does not change its sign in R. 

Xe now note the  following properties of V, namely 

ax  = 0 for all points of R (1=1,2), 
dR 

N c w  under an analysis similar to  chapter 111, it can be checked tha t  

and 



This shows tha t  I 1; 0. 
2 

Thus from (5.49),  W can be estimated as  

From (5.57) we note tha t  if V 5 0, then W 5 0. This imphes tha t  if E" 

is asymptotically stable for system (5.6), then the  uniform steady 

state E' of system ( 5 . 1 - ( 5 . 2 )  is also asymptotically stable, and 

hence the theorem follows. 

If we consider the  region R to  be a rectangular habitat given by 

then under an analysis similar to  chapter 111, w can be estimated a s  

This shows that  if the  interior equlliblnum EX of model (5.6)  is 

globally asymptotically stable, then the  uniform steady state of the  

initial , boundary  value problem ( 5 . 1 - ( 5 . 2 )  is also globally 

asymptotically stable. F7e fur ther  note that ,  even if V is positive 

definite, i.e. EX is unstable in the  absence of diffusion, then by 

increasing the diffusion coefficients to  sufficiently large values, W 



:an be made negative definite. This implies that  by increasing the 

diffusion coefficients to sufficiently large values, an unstable 

equihbrium can be made stable. 

5.4 S I M U L A T I O N  A N A L Y S I S  

In this section a numerical example is presented to demonstrate 

the feasibility of the  results discussed above. We take the  particular 

form of the functions a s  defined by Eq. (5.5) for model (5.6). 

We choose the following values of parameters in model (5.6) and 

in Eq. (5.5), 

Xith the  above set  of values of parameters, it can be seen tha t  

conditions for the  existence of the  interior equilibrium E" are  

satisfied. Our numerical computation shows that  E" is given by 

I t  can be checlted that  conditions (5.39) in Theorem 5.2.1 a re  

satisfied. T ~ S  shows tha t  E* is locally asymptotically stable. 

I t  can also be verified tha t  condibon (5.41) in Theorem 5.2.3 1s 

satisfied which shows tha t  E X  is globally asymptotically stable. 

5.4 SUMMARY 

In this  chapter, a Gause type mathematical model has been 

considered to  study the  effect of predation on two compehng prey 

species in a df ius ive  system. F7e discussed here the effect of 

predation on two compebng prey species, in which the  predator species 



is liifiuenced b y  the  damage effect caused by crowding from the  members 

of its own population in a diffusive system. In the  absence of 

diffusion, criteria for local - stability, instability and global 

stability have been obtained. In the  absence of diffusion it has been 

shown tha t  t he  global stability of the  interior equilibrium E" depends 

upon the  interspecific interference of the  two competing prey species. 

If the  interspecific interference of the  two competing prey species is 

too high then the  system may lead to  instability. 

By analyzing the. complete model with diffusion (5.1)-(5.2), it 

has been shown that  if the  interior equilibrium E* of model (5.5) is 

asymptotically stable, then the  uniform steady state of system 

(5.1) -(5.2) is asymptotically stable with diffusion. I t  has also been 

shown that  sufficiently rapid diffusion by the  prey species may 

stabilize an otherwise unstable equilibrium. 



CHAPTER VI 

6.0 INTRODUCTION 

I t  is well known t h a t  species may not coexist always in their  

habitat under certain conditions. Therefore i t  is of biological 

significance to investigate the  existence of each population in a 

system of two or  more interacting species. In recent years  a growing 

interest  has been shown by several researchers to determjne the 

criteria for coexistence and persistence (MacArthur ( 19721, Gopalsam y 

(19771, Hsu and Hubbell (1979), Verina (19801, H a i  e t  aI. (19831, 

Freedman and Waltman (19841, Siltder and Roy (1994a1, Dubey (1997) 

etc.). MacArthurS (1972) studied the  Volterru classical lnodcl of t-wo 

species competition and obtained some condjtions for existence 

involving competition coefficients and carrying capacities from his 

two consumer two resource modeL However he didn't  completely 

determine analytically under what conditions wdl either, one, or both 

predator species and one o r  both prey species survive. Hsu and Hubbell 

(1979) proposed and analyzed MacArthur's model wlth more general 

parameters and concluded tha t  the  two-predator, two-prey system 

caixstrophically collapses to a one-predator, two prey system or  even 

to ~ n e ~ p r e d a t o r ,  one-prey system. They considered and anal.ysed the  

behavlor of a model of two species competing exploitativeiy for* two 

prey species. They showed tha t  each prey specles grows loglstlcally In 

the  absence of predation, and the  predator species corlsume t h e  r)tney 

according t o  a linear functional response. I t  has been also shown that 



d n predator species a re  competing for  a single prey species which 

grows logistically, and if t he  predators consume prey according to a 

Linear functional response then  only one predator species WLU survive 

in the  end. In  the  above investigation, the  effect of diffusion has 

not been considered though it does play an important role in 

stabihzing the  system (Cosner and Laser (1984), Bergerud and Page 

(19871, Cantrell and Cosner (1987,89), Freedman and Shukla (1989), 

S hu kla  et. al (19891, etc. 1. 

In this  chapter, therefore, we propose a mathematical model to 

study t h e  effect of two competing predators on two prey species. Our 

model is the  generahzation of the  Hsu & Hubbel model (1979). In the 

present rriodel we take the  specific growth rates and the  funtional 

responses of the  species a s  nonhnear functions by incorporating the 

effect of diffusion on the  stability of t h e  system. 

6.1 MATHEMATICAL MODEL 

Consider an ecosystem where two predators a re  feeding on t w o  prey 

species. We assume t h a t  t h e  dynamics of the  prey species a re  governed 

by generalized logistic equations and the  growth rates of the  

predators a re  governed by general functional responses. If N i ( t )  and 

t h  x. (t) (i=l.2) a r e  the  population densities of the  i prey and 
1 

predator species respectively a t  time t r 0, then the  dynamics of the  

system with diffusion can be written a s  

(6 .  l a )  



We impose the  following boundary and initial conditions on system 

where n is the  unit outward normal to t he  region dR. (0. and v.  (i=1,2) 
1 1 

are t h e  smooth initial functions, R is a simply connected domain in 

the  u-v plane with piecewise smooth boundary dR. 

a In model 6 1  v2 e - t -  is the  Laplacian diffusion 
au2 av 

operator. 

The function g. ( N .  ,K. is the  specific growth rate of the  i t h  
1 1 1  

prey species. I t  increases as the  carrying capacity K ,  of t he  prey 

species increases and decreases a s  the  density of t h e  prey species 

increases. Hence we assume 

and there  exists N = K .  such t h a t  g .  ( K .  ,K. = 0. 
i 1 1 1 1  

(6.2) 

The function pi(N is the  ith predator functional response on 
1 

the  prey species of density N1 and it satisfies the  following 

properties 

~ ~ ( 0 )  = 0, p;(Nl) > 0, for N1z 0, i=1.2. (6.3) 

The function qi(N2) has similar properties a s  pI(NI) and i t  

satisfies, 

q.(O) = 0. q:(N2) > 0 for  N z 2  0, i = 1,2. (6.4) 
1 1 

D , d a re  the diffusion coefficients of the  ith prey and 
i i 

predator species in R, respectively. b is the  feeding rate per 
i j 

predator (predator species i) per unit prey (prey species j) consumed, 



p i  j is the  birth rate per predator (predator species i) per unit prey 

(prey species j) consumed, 6 is the death rate and y is the 
i i 

intraspecific interference coefficient of 1 t h  predator species 

respectively. 

Remark 1: I t  may be pointed out  t h a t  if we take 

gl(NllK1) = r l ( l  - N l / K l ) I  g2(NZ1K2) = r2(1 - N Z / K 2 I l  

where r and r a r e  positive constants, then  model (6.1) reduces to 
1 2 

Hsu and Hubbell's model (1979). 

6.2 THE MODEL WITHOUT D I F F U S I O N  

We corisider the model without diffuslori (i.e., D = cl = U )  a s  
i i 

dZ Setting = 0 (Z = N ,Pi .x1,x2) and solvi~lg (6.6) we g e t  the  
1 2  

foll.ow~ng possible nonr~egative equilibrjn, namely Eo(O,O,O,O) .  E (I<  
1 1' 

The equhbr ia  E - E clearly exist. W e  shall sl'low the  existence 
0 3 

of other equihbria as follows. 



Existence of Eq (XI. 0. 2 0) 
1 

9 7 

Here hil and xl a re  t h e  positive solutions of the  followjng 

equations: 

Y ,xl+ 61= Bl p1(Nl 1- (6.7b) 

I t  can be checked tha t  the  two isoclines (6.7a) and (6.7b) 

intersect a t  a unique point (m 2 ) If t he  following inequahties 
1) 1 

hold: 

This jmphes tha t  Lf i nequa t i e s  ( 6 . 8 ~ ~ )  and (6.8b) hold, thcn 

the  prey species of density N and the  predator species of density s 
1 1 

survive while the  other prey and predator species die out. 

Existence of ~ ~ ( 8  0. 0. g2) 
1 

Here and L are  the  positive solutions of the  following 
1 2 

equations: 

I t  can be checked tha t  t h e  two isoclines (6.9a) and (6.9bI 

intersect at a unique point (n l l? l )  if the  following inequahties 

hold: 

B 2 1 ~ 2 ( K I )  > S2 . (6. lob) 

This shows tha t  the  prey specles of density N 1  and the  predator 



of density x survive If inequahties (6.10a) and (6.10b) are 
2 

satisfied. 



This implres tha t  If inequahties (6.14a) and (6.14b) hold, then 

the  prey species of density N 2  and t h e  predator species x2 survive 

while the  other prey and predator die out. 

Ex~stence of E ~ ( A ~ ,  R Z ,  0) 

Here A l l  m 2  and 2 a re  t h e  positive solutions of t h e  following 
1 

equations: 

gl(N1,K1) - x b p ( N , ) / N I  = 0, 
1 11 1 

(6.15a) 

g2(NI.K2) - x b q (N ) I N  = 0, 
1 1 2 1  2 2 (6.15b) 

x = f1(N1,N2), 
1 

( 6 . 1 5 ~ )  

where f l ( N 1 ~ N 2 )  = ( @ , , P , ( N ~ )  + Bl2q1(N2)- 61)/71. 

I t  can be checked t h a t  isocline (6.15a) passes through t h e  points 

( , 0) and (0, R > if the  following inequahties hold: 
1 a 2 a 

- 
where hl(N1) = gl(N1,K1) - bl  lpl(Nl)f l(Nl,O)/Nl. 

Here Nla and a re  t h e  posltive solutions of 
2 a 



where 0 < R < K1, 0 < RZa< K1* 
1 a 

I t  can also be seen t h a t  isocline (6.15a) has  a negaitive slope 
q 

Lf t he  following inequahty holds 

(6.16d 

Similarly isocline (6.15b) passes through the  points ( m l b , O )  and 

( o , R ~ ~ )  if the  following inequalities hold: 

where L 2 ( N 2 )  = g2(N2,K2) - b12ql(N2)fl(0,N2)/N2. 

Here Rib and R z b  a re  the  positive solutions of 

g2(0.K2) - b12q;(0)fl(N1,0) = 0, 

g2(N2.K2) - b12ql(N2)fl(0,N2)/NZ= 0, 

* 

where 0 < Nib< K2. 0 < R < K2. 
2 b 

Further, isochne (8.15b) has negative slope if t he  following 

inequahty holds 

Thus, t h e  two isochnes (6.15a) and (6.15b) jntersec-1; a t  a unique 

point tQ1. A ) if any one of the  following holds: 
2 



1. IV' > and m l b  < m . (6.18a) 
2 b  2 a 1 a 

2. 9 > R a n d R Z b <  9 . 
l h  1 a 2 a 

(6.18b) 

Knowing the  values of R I l  A w e  can compute 2 from (6.15~).  I t  
2 1 1  

may be noted tha t  for 2 to be positive we must have 
1 

Thus we conclude tha t  the  equdibrium E exists if conditions 
8 

(6.16a)-(6.16d), (6,17a)-(6.17d) and either (6.18a) or  (6.18b) hold. 

Existence of E ~ ~ W ~ ,  W2, 0, g2) 

Here A l l  f=i and 3 are  the  posltive solutions of the  following 
2 1 

equations: 

x 2 = f 2 ( N l 1 N 2 ) ,  ( 6 .20~)  

where f2(N , N ) = ( B  p ( N  ) 4- p22q2(N2)- ij2)/y2. 
1 2  2 1  2 1 

I t  can be checked tha t  t he  isochne (6.20a) passes through the  

p o ~ n t s  (f! ,0) and (0,f! 1 Lf t he  following inequahtles hold: 
1 a 2 a 

where T l ( ~ l )  = gl(Nl,K1) - b21p2(Nl)f2(N110)/N2. 



Here R and fl a re  t h e  positive solutions of 
1 a 2 a 

gl(N1,K1) - bZlp2(Nl)f2(N1,O)/N2 = 0, 

gl(O.K1) - b12p;(0)f2(0,N2) = 0, 

where 0 < < K1, 0 < R < K~'. 
1 a 2 a 

Further, t he  isochne (6.20a) has a negative slope if the 

following inequalrty holds: 

Similarly the isochne (6.20b) passes through the  points (fl ,0) 
1 b 

and ( o , R ~ ~ )  if t he  following inequalities hold: 

where T 2 ( ~ 2 ) =  g2(N2,K2) - b22q2(N2)f2(0,N2)/N2. 

Here W l b  and R Z b  a re  the  positive solutions of 

g2(0,K2) - b22q;(0)f2iNl,0) = 0, 

g2(N2,K2) - b22q,(N2)f2(0,N2)/N2 = 0, 

! 

where 0 < Rib < K2,  0 < R < K2. 
2 b 

I t  can also be checked tha t  t he  isocline (8.20b) has negative 

slope if the  following hold 



Thus, t he  two isochnes (6.20a) and (6.20b) intersect a t  a unique 

solution (RllW2).  if any one of t h e  following inequality holds 

Knowing the  values of 8 , W  we can compute 2 from (6 .20~) .  I t  
1 2  1 

may be noted tha t  for ? to be positive we must have 
2 

Thus, we conclude t h a t  t h e  equllibrium E9 exists d conditions 

(6.21a)-(6.21d), (6.22a)-(6.22d) and either (6.23a) or (6.23b) holcl. 

Existence of E ( N  0, x x ) 
10 11) 11) 1 2  

Here N1 xl and x12 are  the  positive solutions of t h e  following 

equations: 

It can be seen that the  equllibrium E I O  exists rf the  IoJlowirlg 

~nequalities hold: 
\ 



I t  inay be noted tha t  for  xl l  and x to be posltive we must have 
12  

respecively 

Existence of E (0, N x x 1 
11 22'  21' 2 2  

Here N22, x and x a re  the  posi t~ve solutions of t h e  followirlg 
2 1 2 2 

equations: 

x 2 = ( /322q2(N2) - h 2 ) / y 2 .  ( 6 .28~)  

I t  can be seen tha t  t he  equihbrium E l l  exists if t h e  following 

inequalities hold: 

1. Ol2q1(K2)  - 0 and B2,q2(K2)  - S2 > 0 ,  (6.29a) 



I t  may be noted here tha t  for  xZ1 and x to be posltlve we 
2 2 

must have resectlvely 

Exstence of E*(N:, N:, x:, x:) 

* * Here N:, N;, xl. x2 a re  the  posltlve solutions of the  followlng 

a lgebrac  equations 

where f (N ,N2) = ( B , , P , ( N ~ )  t B12q1(NZ) - 61)/711 
1 1  

f 2 ( N  1 , N 2 )  = (821~2(N1) + 822q2(NZ) - 62)/y2. 

From (6.31a) we note the  followlng: 

when N + 0, then Nl+  N , where N 1s a posltlve solutlon of 
2 1 a 1 a 

F1(NI) = gl(NIIKI) - b l l P 1 ( N 1 ) ( ~ l l ~ l ( N l )  - 61)/y1N1 

; b21~2(N1)(B21~2(N1) - 62) /~ZN11 (6.32a) 

we note tha t  

F1(0) = gl(O,Kl) + bll~;(0)61/y1 + b 2 1 ~ ; ( 0 ) 6 2 / ~ 2  > 0. (6.32b) 



Thus, N is a positive unique solution of (6.32a) in  t h e  interval 
1 a 

O < N  < K 1 l f  
1 a 

where 

Thus, there  exists a unique positive solution N1= N in t h e  interval 
1 a 

0 < N < K1 such t h a t  Fl(N ) = 0, if inequahties (6.324) and 
1 a 1 a 

(6.32e) a r e  satisfied. 

Again from (6.31a) we note that ,  when N + 0. N + N where N z a  
1 2 2a 

is a positive solution of 

gl(OsKl) - [bll~;(0)(f312q1(N2)- 61)/71+ b21~;(0)(j322q2(N2)- 6 2 ) / y  2 1=O. 

Taking 

F2(N2) = g1(O1K1), -[bl  l~;(0)(j312ql(N2) - 61)/yl 

+ bZ1p;(0)(pZ2q2(N2) - 62)1~21,  (6.33a) 

we note that ,  



The above al'lalysis shows tha t  there exists a positive unique 

solution N2= N in the  intewrval 0 < N < K 2  such t h a t  F2(N = 0 if 
2 a 2 a 2 a 

where F2(K2) is defined in  Eq. (6 .33~) .  

dN 
Also from (6.31a) we note tha t  2 < O I f  

1 

The isochne (6.31b) can be analyzed in a sirr~llnr way. I t  may be 

checked tha t  there  exist two unique solutions (N 0) and (0, N Z b )  in 
1 b' 

intervals 0 < Nib< Klarld 0 < N < K 2  respectrvely if the  following 
2 b 

inequalities hold 

From (6.31b) we also note tha t  - d N 2  < 0 d t he  following holds: 
dN 1 



From the  above analysis i t  is clear tha t  t he  two isoclines 

(6.31a) and (6.31b) intersect a t  a unique point (N*,N*) lf In addition 
1 2  

to assumptions (6.32d), (6.32e), (6.33e1, (6.33f ), (6.34a-dl, any one 

of the  following inequaities hold: 

2. N < Nzband N > N l b .  
2 a 1 a 

(6.35b) 

Knowing the  values of N* N* we can compute x* xi from ( 6 . 3 1 ~ )  
1' 2 1 

and (6.31d) resectlvely. I t  may be noted tha t  for x* and x* to be 
1 2 

positive we must have respectively 

Sta blh t y  of eq u& bria 

The local s t a b d t y  of the  equAbria can be studied from 

variational matrices corresponding to each equilibrium. By computing 

the  variational matrices corresponding to each equilibrium we note the  

fouowing results: 

I. Eo(O. 0, 0, 0) is a saddle point whose stable manifold is locally 

in the  x -s plane and unstable manifold is locally in the  N1-N2 
1 2  

plane. 

2. E1(K1, 0, 0, 0) is a saddle point whose stable manlfold 1s locaJly 

in the  N direction and whose unstable manlfold is locally in the  
1 

N -direction. Further, E has an unstable manlfold In t h e  xl-x2 plane 
2 1 



f l l l ~ , ( K 1 )  - 61> 01 

P 2 , ~ , ( K 1 )  - a2> 0. 

3. E2(0, K2, 0, 0) is a saddle piont whose stable manlfold is  locally 

in t he  N 2  direction and whose unstable manlfold is locally in t he  

N -direction. Further, E has an unstable inanlfold in t h e  x -x plane 
1 2 1 2  

lf 

4. E3(Kl. KZ.  0. 0) is also a saddle point with stable manifold 

locally in t he  N1-N plane a n d .  with unstable manlfold locally in t he  
2 

x - x plane d the  following hold 
1 2  

5. E ~ ( E ~ ,  0, XI, 0) is a saddle p o i n t  with stable manlfold locally in 

the  N1- xl plane and with unstable manlfold locally in t he  N2- x2 

plane if t he  following hold 

6. ~ ~ ( m ~ ,  0, 0, z2) is a saddle point with stable rnanlfold locally in 

the N1- x2 plane and with unstable mandold locally in the  N2- x1 

plane d the  following hold 



A A 

7. E6(0, N2, xl, 0) is a saddle point with stable manifold locally in 

N2- x1 plane and with unstable mandold in the  N -x plane d the  
1 2  

following hold 

8. E7(0, R2, 0. f f 2 )  is a saddle point with stable manlfold locally in 

the N2-x plane and with unstable manlfold locally in the  N -x plane 
1 1 1  

d the  following hold: 

81241(f42) - 0. ( 6 . 4 1 ~ )  

9. E (R 2 0) is  locally unstable in the  x2 direction d 
8 1) 2' 1) 

B ~ ~ P ~ ( N ~ )  + pZ2q2(R2) - 6 2 > 0. (6.42) 

Using the  Routh-Hurwitz criteria i t  can be seen tha t  E8 has a 

stable manlfold locally in the N1-N2-x space lf t he  following 
1 

inequht ies  hold: 

a > 0, a3 > 0 and a a > a3, 
1 1 2  

(6.43) 



where 

al= -(Ill+ R 2 )  t yl? l l  

a = $ ll -tFt t Ii )y 2 + b p ? q  (R2)q;(R2) 
2 1 2  1 2 1 1  1 2 1 2 1 1  

+ b l l ~ l l ~ l ~ l ( ~ l ) ~ ; ( R 1 ) ~  

I t  may be noted here  t h a t  

Lf f f . <  0, 1=1,2, then  a > 0, j=1,2,3. 
j 

10. E (R , R  is locally unstable in  t h e  xl- d~ rec t l on  d 
9 1 2  

Uslng t h e  Routh-Hurwitz crl terja it can be seen t h a t  E g  has a 

stable manifold in t h e  N - N - x space ~f t h e  following lnequahties 
1 2 2  

hold: 

a > 0, a13> 0, alla12> a13, 
11 

where 



I t  may be noted here tha t  

a > 0 (j=1,2,3) If f f . <  0, i = 1,2. 
1 j 

11. E l o (  N l l ,  0, xll .  x 1 is locally asymptotically stable d the 2 1 

following inequalities hold: 

H < 0, a > 0, aZ3> 0 and az laz2> a 
23' 

(6.46) 
2 1 2 1 

where Hz l=  g2(0,K2) - b12x11q;(0) - b x ql(0) .  
2 2  2 1  2 

I t  may be noted tha t  li H1 0, then a > 0, (j = 1,2.3). 
2 j 

Further, d H > 0, then E l o  is locally unstable in the  N2- direction. 
2 1 

x x 1 is locally asymptotically stable Lf the  12. E l l (  01 N Z Z l  12. 2 2  

following ineq u h t i e s  hold: 

where HIZ= gl(OIK1) - bllxIZp;(0) - b x pl(0) ,  
21 22 2  (6.48) 

d 

(6.49) 

I t  may be noted tha t  Lf H x 2  < 0, then a3j > 0 (j=1,2,3). Further, 



IP H12> 0, then E l  is locally unstable in t h e  N -dlrectlon. 
1 

In  t h e  followlng theorem we a re  able to find sufficient 

condltlons for E" to be locally asymptotlcally stable. 

Theorem 6.2.1 Tn addltiorl to assumptions (6.3)-(6.51, let  the  

followlng inequahtles hold: 

k 2 ~ 1 8 1  2c1;(Q2) b l l p l C ~ l )  b ~ T N )  
where lc = , k =  2 1  2 1 , k 3  = 

1 2 
. ( 6 . 5 0 ~ )  

b q (N;) 
12 1 X ; P ~ ~ P ; ( N ; )  x;p2 ,P;(N;) 

Then E" 1s locally asymptotlcally stable. 

Proof : Llnearizlng system (6.6) by substituting 

and uslng the  following Llapunov functlon 

where t h e  k '  s (j=1,2,3) a re  deflned in (6.50~1, ~t can be checked 
j 

t h a t  the  tlme derlvatlve of U along the  solutions of system (6.6) 

under condrtlons (6.50a,b) 1s negative deflnlte, provlng the  theorem. 

In t he  folloclring theorem we a re  able to write down condltlons 

which guarantee t h a t  F*  1s g l o b a ~ y  asymptotlcaLty stable. We f ~ r s t  

state t h e  followlng lemma whrch e sbbhshes  a reglon of attraction for  

system (6.6). The proof of t he  lemma 1s easy and hence 1s omltted. 

Lemma 6.2.1: The se t  

Q = ~(N1,N21x1,~2):0  5 N K , 0 5 x 5 L /y  , I = 1,21 
1 A 1 

(6.51) 

IS a region of attraction for  all solutions initiating In the  

Interior of t h e  posltlve orthant,  where 



Theorem 6.2.2 In addition to assumptions (6.3)-(6.5)) le t  gi(N.,K ), 
1 i 

p , ( N  , q , ( N 2 )  satisfy t he  following conditions in R 
1 1  1 

(6.52) 

for  some positive constants G , G M i J  p i ,  B i ,  i = 2  If t he  
mi 

following inequahty holds 

8 N* 
C 2 @ 1 2  1 2 

b p (N:) 
11 1 b 2 1 ~ 2 ( ~ ; )  where c = - , c2 - , c =  

1 3 3 (6.53b 
b12ql(N;) PI lplN: ~ 2 1 ~ 2 ~ :  

then  E* is  globally asymptotically stable wrth respect to all 

solutions initiating in t he  positive orthant. 

Proof: We consider t he  following positive definite function around 

E*, 

* V ( N  1 (t),N2(t),xl(t),x2(t)) = N*- N1 - N l  ln(N:/~* 1 
1 

Differentiating V with respect to t along t h e  solutior~s of (6.6) we 

ge t  after some algebraic manipulation 



where 

g .  ( N .  , K , )  - g.(N ",K ) 
I l l  1. N ~ # N *  

N -  N* i 

h.(N. = i 1 
1 1  

ag .  ( N .  JK. ) 
1 1 1  N i =  N* 

I i 
i 

We note from (6.52a) and the  mean value theorem that ,  

(6.55b) 

Now V can fur ther  be written as the  sum of quadratics, 

- where a l l =  xl(N1), a z 2  = c ~ x ~ ( N ~ ) ,  a33 = c2y1. a44-  c3yZI (6.57a) 
, 

a 13 = - bl lp1(~: ) /~ : ,  (6.57b) 

a I I = c 3 p 2 1  p 2 ( N ~ )  - b z l p 2 ( ~ : ) / ~ ; ,  ( 6 . 5 7 ~ )  

a 2 3 = C ~ $ ~ , E , ( N ~ )  - c l b l 2 q l ( ~ ; ) / ~ ; ,  (6.57d) 

a = c3pZ2e2(N2) - c b q (N*)/N:. 
1 2 2 2  2 

(6.57e) 
2 1 



Sufficient conditions for  V to be negative definite a re  tha t  the  

following inequahties hold: 

We note tha t  in Eq. (6.53a) t h e  values of cl, c2  and c a re  such 
3 

tha t  conditions (6.58a-c) a r e  automatically satisfied. Further (6.53a) 

s (6.58d1, we conclude tha t  V is a Liapunov function with respect to  

E X  whose domain contains the  region R, proving the  theorem. 

The above analysis shows t h a t  both the  prey and predator species 

settle down to their  respective equ&brium levels under certain 

conditions. I t  has been noted t h a t  the  interspeclfic interference 

coefficient of either predator species plays a crucial role in 

stabjhzing the  interior equilibrium. 

6.3 THE MODEL WITH D I F F U S I O N  

In this  section we consider t h e  complete model (6.1) together 

with initial and boundary conditions (6.2). We observe tha t  N.= N* 
I '  

x = x* (i=1,2) is the  uniform steady state for system (6.la)-(6.lb). 
i i 

We state the  main results of this section in the  form of the  following 

theorem. 

Theorem 6.3.1 

(i) If E* is asymptotically stable for system (6.6) then the  
\ 

corresponding steady state is also asymptotically stable for system 

(6.1)-(6.2). 

(li) If the  equilibrium E* of model (6.6) is unstable, then 

sufficiently rapid cliff usion by t h e  prey species N1 and N2 wil l  

s t abdze  the  unstable equhbrlum E*. 



Proof : Consider the  fouowing Liapunov function 

where V is defined in Eq.(6.54). 

Now the  time derivative of W along the  solutions of model 

(6,la)-(6. l b )  is given by 

where 

I 1 = J'SR ; ( N ~ ( u , v , ~ ) , N  2 ( U , V , ~ ) , X ~ ( U . V . ~ ) , X ~ ( U , V . ~ ) )  d ~ .  (6.61a) 

Under an analysis similar to chapter 111, \.J can be estimated as 

From (6.62) we note that  if V 2 0, then W 5 0. This implies that  IT E~ 

is asymptotically stable for system (6.6), then the unLform steady 

state E* of system (6 . la46 . lb)  is also asymptotically stable. Frorn 
i 

(6.62) we also note tha t  d V is positive definite, then by increasing 

D , d .  (i= 1,2), W can be made negative definite. This shows tha t  If 
i 1 

the interior equ~librium E* of model (6.6) is unstable, then by 

Increasing 1) and d l  (i=1,2) to sufficiently Large values, the 
i i 

unstable equhbrium can be made stable. Hence the  theorem follows. 



If we consider the  region R to be a rectangular habltat given by 

then under an analysis simllar to chapter 111, W can be estimated a s  ' 

This shows tha t  Lf the  interior equilibrium E* of model (6.6) is 

globalls7 asymptotically stable, t h e n  the  unlform steady state of the  

initial-boundary-value-problem (6.la)-(6. l b )  is also globally 

asymptotically stable. We further  note tha t  even if V is positive 

definite, i,e. E~ is unstable in the  absence of diffusion, then by 

increasing the dlff usion coefficients to sufficiently large values W 

can be made negative definite. 

6.4 S I M U L A T I O N  A N A L Y S I S  

In this  section a numerical example is presented to  explain the  

applicabhty of the results disscused in section 6.2, we t a k e  the  

particular form of the  functions as given in Eq.(6.5) 

We choose the  following values of parameters in lnoclel (6.1) and 

in Eq .  (6.5): 
\ 

r = 5.0, K1= 15.0, b l l=  0.1, bzl= 0.2, 
1 

r = 5.5, Kz= 10.0, b12= 0.2, b22= 0.4, 
2 

81 I = 2.5, plz= 3.0, 6 = 1.0, y = 1.5. 
1 1 

8 = 1 . 5 , 8  = 2 . 5 , 6  =1.0, y z = 2 . 0 .  
2 1 2 2 2 



With the  above se t  of values of parameters, it can be seen that  

the criteria for t h e  existence of t h e  interior equihbrium E* a re  

satlsfied. Our numerical computation shows tha t  E* is given by 

I t  can be checked tha t  conditions (6.50) In Theorem 6.2.1 a re  

satisfied. This shows tha t  E* is locally asyinptotlcally stable. 

I t  can also be verdied tha t  condition (6.53a) in Theorem 6.2.2 

1s satlsfied which shows tha t  E* is globally stable. 

6.5 SUMMARY 

Tn thls chapter a mathematical model has been presented to study 

the  effect of competition of two predators species for two resource 

prey in a ddfusive system. I t  has been assumed tha t  the  dynamics of 

the  prey species follow generahzed logistic equations and the 

dynamics of predators species . are  governed by general functional 

responses. In the  absence of diffusion, criteria for local stabrbty, 

instability and global stab&ty of t h e  interior equfibrlum of t h e  

systern have been obtained. It has been noted tha t  global behavior of 

the  interior equihbrlum depends on the  intraspecific interference 

coefficlent of both predator specles, I t  has rtlso been noted tha t  

,, global. s t a b h t y  the  iriteriort eq~~di'brrum depends on -;the specif~c ' 

growth rate of both of the  prey species. I t  has also been shown tha t  

diffusion stabilizes the  otherwise unstable equhbrium. I t  has been 

fur ther  noted t h a t  increasing diffusion coeffecients of the  predator 

and prey gpecles to sufficiently large values, an unstable interior 

equhbrlum can be stabilized, 



7.0 INTRODUCTION 

in  recent years there has been considerable interest  to 

investigate the  stability behavior of a system of interacting 

populations by taking into account the  effect of self as  well as  

cross-diffusion ( Gurtin (1974), Jorne (1975)) Freedman (1976), Gatto 

and Rlnaldi (1977), Jorn and Carrni (1977), Hastings (1978b), Okubo 

(1980), Shukla and Verma (1981), Chattopadhyay e t  al. (1996)). In most 

of these studies, models for interachng populations a re  of 

Lotka-Volterra type, and the  general interaction with functional 

response has not been studied. Although there  has been some 

invesbgations of a general predator-prey system without diffusion 

where interesting stability criteria have been found depending on the  

nature of growth and the  functional response (Rosenzweig and MacArthur 

(1963), Freedman (1976), Goh (1976), Hsu (1978)). In particular, Goh 

(1976) established sufficient conditions for global s t a b h t y  in a 

Lotka-Volterra model of two species interachons. Freedman (1976) 

explained the  stability of the  equilibrium of a two-dimensional 

mathematical model for predator-prey interactions by using a graphical 

method (Rosenzweig and MacArthur (1963)). Hsu (1978) proposed two 

criteria for global stability of the  equilibrium of a predator-prey 

model to make the  graphical method of Rosenzweig and MacArthur more 

significant. Gatto and Rinaldi (1977) studied t h e  stability properties 

cf the  non-trivial equilibrium of a generalized Lotka-Volterra model 

~ ls ing  Liapunov's method. The global stability of two species is also 



discussed in detail by some other researchers (Goh (1978), Hastings 

(1978), Kazarinoff and van den Driessche (1978) Harrison (1979), Cheng 

e t  al. (1981) ) Hastings (1978) derived sufficient condihons for 

global stability in n-species Lotka-Volterra systems with diffusion. 

Freedman and Shukla (1989) extended the two dimensional predator-prey 

system to three  dimensions by considering the  influence of an 

addibonal resource term and investigated t h e  effect of 

self-diffusion. Mimura and Murray (1978) showed that  when the 

diffusion of prey is small compared with tha t  of the  predator, then 

stable heterogeneity can persist indefinitely. However, if the 

diffusion of both species is sufficiently large then there can be no 

spakal s t ructure within a bounded region, the  faster a species moves 

around the  less chance it has of staying in a locahty long enough to 

make its presence felt there.  Recently, Takeuchi and Lu (1995) 

considered a diffusive competitive Lotka-Volterra model, and studied 

the permanence and global stability of the system. But in all these 

studies, little attention has been paid in studying the effect of 

cross-diffusion (Gurtin (1974), Jorne (1975), Shukla and Verma (1981), 

Pao (1995a,b), Chattopadhyay e t  al. (1996) ) In particular, Gurtin 

(1974) investigated the  effect of self and cross-diffusion in 

population dynamics and showed tha t  the  effect of cross-diffusion may 

give rise to  the  segregation of the  two species. Shukla and Verma 

(1981) showed that  the  cross-diffusion of species inay lead to 

stability depending upon the  nature and the  magnitudes of the  self and 

cross-diffusion coefficients. Pao (1995a,b) studied the  reaction 

cllffusion equations with nonlocal boundary and inikial conditions. 

Chattopadhyay e t  al. (1996) showed that  t he  critical wave length is 

just sufficient to drive a system into local instability. Segal and 



Jackson (1972) were the  f i rs t  to  draw attention to this  fact and they 

presented an example of a predator-prey interact-lon. Kuznetsov e t  al. 

(1994) presented a mathematical model of cross-diffusion type with two 

interacting components qualitatively describing spatial-temporal 

dynamics of a mixed-age mono-species forest. But the  general 

predator-prey system with self and cross-diffusion has not been 

investigated. The prey species may tend to  diffuse away from its 

exploiter and the predator may tend to  move towards the  lower 

czncentrabon of the  victims in search of easy catch in the  absence of 

strong group defence by the latter. Thus, t he  diffusion of the  prey 

may affect the growth of the  predator and visa versa. The main purpose 

of this  chapter is to examine the  s tabfi ty  behavior of a modified 

Gause-type model of a predator-prey interacting system by taking into 

account self a s  well a s  cross-diffusion. 

The model considered in this chapter reduces to  Hsu (1978) in the  

absence of diffusion. Then we consider the  effect of self and 

cross-diffusion on the  predator-prey interaction. We also investigate 

the effect of critical wave length on the  stability of two species. 

Following the construcbon of a suitable Liapunov function ( ~ a  Salle 

and Lefschetz (1961)), the  global behavior of the  system is also 

sxamined. 

7.1 MATHEMATICAL MODEL 

In nature the tendency of the  prey would be to  keep away from 

predatprs and hence the  escape velocity of the  prey may be taken as  

proportional to the  dispersive velocity of predators. Also, the 

tendency of predators would be to get closer to  the prey and hence the  

chase velocity of predators )nay be considered to  be propotional to the 



dispersive velocity of the  prey. Thus prey-predator model with self 

and cross-dl££ usion can be wrltten a s  

3:< - '32.7 - , - xg(x) - yp(x) t D I 1  ---1: i D - d2y 
0 .. 

33 2 1 2  2 ' 
33 

Model (7.1) needs to  be analyzed with t h e  initial populations 

:c(u,O) > 0, y(u,O) > 0. (7.2) 

We also assume tha t  no external input is imposed from outside. 

Hence zero flux boundary condihons 

are  assumed. 

In model (7.1), x(u,t) and y(u,t) represent the  prey and predator 

population density respectively a t  time t. 

The function g(x) represents the  specific growth rate of the  prey 

in the  absence of any predator and it satisfies 

g(0) > 0, and g l ( x )  2 0 for x 2 0, 

and there exists a K > 0, called the  carrying capacity of the  

environment, such that  

g(K) = 0. (7 .4 )  

The function p(x) is the  predator response function for t.he 

predator with respect to  that  particular prey. W e  assume 

p(0) = 0, p l (x )  > 0 for x z 0. (7.5) 

The death rate q(x), which depends on the  prey population, is 

assumed to satisfy 

q(0) = q 1 0, q ' (x)  5 0 for x 2 0, l i m  q(x) = qLn > 0. 
0 x+ a (7.6) 

D 2 2  
a re  the  self-diffusion coefficients and D l Z  D Z 1  are the  

crcss-diffusion coefficients of prey and predator respechvely  in a 



finite one-dimensional domain (u)  . 

7.2 THE MODEL WITHOUT D I F F U S I O N  

In this section we consider model (7.1) without diffusion 

( i.e. D  = D = D = D = 0). In such a case the  model reduces to  
11 22 1 2  2 1  

There a re  three equilibria. namely Eo(O,O). E1(K,O) and E"(X' .~*) .  

The last one exists (Hsu (1978)) and is in the  f i rs t  quadrant if there  

exists x: with 0 < x*< K ,  such that  

We then have 

By computing the  variational matrices (Freedman (1987)) 

corresponding to  E and El, it can be checked that  E0 is a saddle 
0 

point with stable manifold locally in the  y-direction and unstable 

manlfold locally in the  x-direction. E l  is also a saddle point with 

stable manifold in the  x-direcbon and unstable manifold locally in 

the y-direction. We state the  following results from Hsu (1978). 

Let 

li(xk) = x X g ' ( x * ~  + g(x*) - y*pJ(x"), (7.9) 

which is the  trace of the variational matrix corresponding to 
\ 

~ * ( x * , ~ * ) ,  and 



which 1s our  Liapunov function. 

Theorem 7.2.1 

(i) If ~ ( x * )  < 0, then  E"(xX,yK) is locally asymptotically stable. 

(ii) If ~ ( x " )  > 9, then  ~ " ( x :  y*) is unstable. 

Lemma 7.2.1 The solutions of (7.7) a r e  positive and  bounded, and 

furthermore,  t h e r e  exists  a T 2 0 such  t h a t  x(t)  < K fo r  t r T. 

:<g(x) 
Theorem 7.2.2 If - y (x - x") 5 0, then  ~ " ( x ; y * )  is globally [ m  *I 
asy lnptotically s table  in t h e  positive quadrant .  

In t h e  next section we shall investigate t h e  effect of diffusion 

on t h e  prey-predator model (7.1). 

7.3 THE MODEL WITH DIFFUSION 

In t h i s  section we consider t h e  full  model (7.1) together  with 

initial and boundary conditions (7.2) and (7.3). A s  a consequence of 

initial-boundary conditions (7.2)-(7.3), EX(x: y *) is a uniform s teady 

s ta te  for  t h i s  system. 

'r7e now investigate t h e  stability conditions for  system 

(7.1)-(7.3) in  different  environmental consequences and  show t h a t  t h e  

critical wave length ,  which is given by 18 = R/nx, where R is t h e  

length of t h e  system and  2ic/n is t h e  period, plays a crucial role for  

instability. 

'r7ith t h e  boundary conditions under  considerahon,  we look fo r  

eigenfunctxons of t h e  form 

and t h u s  for  solutions, of t h e  Linearized system, of the form 



) PXP ( A t )  cos - ("3 
Then the characteriskc equation of the  system is given by 

where 
2 2 n n 

Q = - ~ ( x * )  t ( D  t D Z 2 )  - 
1 11 

R 2  

Ye note tha t  if ~ ( x * )  < G ,  then u I  > O and o > 0. ~ h u s  from the 
2 

Routh-Hurwitz criteria, t he  stability of the  equilibrium E* depends on 

the sign of 

Ye shall discuss the  following cases under the  assumption that  

Case I: D = 0 and Dzl# 0. 
12 

Then E ~ ( X :  y*) is locally stable if 

i.e. ~ ' / n ~ n '  > bDzl/02 for all n L 0. (7.15a) 

We note tha t  if DZ1< 0, then (7.15a) 1s autornatlcally sabsfied. 



This shows that  i£ the predator species tends to diffuse in the 

direcbon of h g h e r  concentration of the  prey species, and the  prey 

species moves along its own concentration gradient, then the  

~quihbr ium E~ remains locally asymptotically stable. This situation 

is a usual phenomenon in nature. 

If D > 0, E* is unstable, there  always exist values of n such 
2 1 

that 

This shows tha t  when the  critical wave length is too small that  

the predator species tends  to  diffuse in t h e  direction of lower 

concentration of the  prey species, and the  prey species moves along 

its own concentration gradi,ent, then the  equilibrium state EX becomes 

unstable. Such a case arises in nature where the predator prefers to 

avoid group defense by a large number of prey and chooses to  catch its 

prey from a smaller group unable to  sufficiently resist. 

Remark 1: Let ~ ( x * )  >'O. Then from Theorem 7.2.1, we note tha t  the 

interior equilibrium ~ " ( x " , ~ " )  of moclel (7.7) is unstable. Then in 

case I (i.e. D = 0, DZl$ 0). t h e  unstable e q d b r i u m  E" w i l l  be 
1 2  

stable if the  £0110 wing inequalities hold: 

0 > 0, 
1 

(7.16a) 

I t  may be noted tha t  if D Z 1 <  0, then by increasing D I 1  to  a large 

2 2 n x value,so tha t  - H ( X ~ )  + D - > 0, inequalities (7.16a) and (7.16b) 
11 R 2  

are  satisfied. 



Case 11: D ii G and D z l =  0. 
1 2  

Then E'(xTyX) is locally stable If 

( ~ ~ / n ~ n ~ )  t (aD / u  ) > 0 for all n 2 0. (7.17a) 
12 2 

Xe note tha t  if D > 0, then (7.17a) is satisfied. This implies 
1 2  

that  if the prey species moves in the  direction of lower concentration 

of the predator species, and the  predator species moves along its own 

concentration gradient, then the  equilibrium E* remains locally 

asymptobcally stable. This situation can be compared in nature where 

the prey moves towards the  lower concentration of the  predator in 

search of new food. 

3ut  ~ ' ( x ~ ~ " )  is unstable if D < 0, since there always exist 
12 

values of n iuch that  

T h i s  shows tha t  when the  critical wave length is so small that  

the prey species moves towards the  h g h e r  concentrabon of the  

predator species and the  predator species moves along its own 

concentrabon gradient, then the  equilibrium state which is stable 

without self and cross-diffusion becomes unstable. This situation can 

be compared in nature where the predator a t t racts  the  prey towards 

itself as  a predation technique and the  suicidal tendencies among the 

prey exist. 

Remark 2: Let ~ ( x ' )  > 0. Then the  interior equilibrium E" of model 

(7.7) is unstable. In case I1 ( i t  D12# 0, D = O), the  unstable 
2 1 

equdibyium E' becomes stable if  t he  following inequalibes hold: 

We note tha t  by increasing D to  a large value so tha t  
11 



L L n a 
0 - - H(::") > 0: and if D > 0, then inequalities (7.18a) and 

l 1  1 1 ~  1 2  

(7.18b) a re  satisfied. 

Case 111: D12# O and D # 0. 
2 1 

In this case E*(X; I(*) is locally stable if 

+ aPl - bp2 - PIP2 > 0, 2 
(7.19) 

and unstable if t he  inequality is reversed in Eq. (7.19). We note that  

if p > 0 and p2 < 0 i.e., if D > 0 and D z l  < 0, then condition 
1 1 2  

(7.19) is automatically sabsfied. This shows tha t  if the  prey species 

tends to diffuse in the  direction of lower concentration of the 

?redator species, and the  predator species tends to  diffuse in the  

direcbon of higher concentration of the  prey species, then the  stable 

equilibrium state  without self and cross-diffusions remains stable. 

Such situations a re  common in nature for  the  survival of the  

prey -predator species. 

Remark 3: Let ~ ( x * )  > 0. Then the  interior equilibrium E* of model 

(7.7) is unstable. In case I11 (i.e., D f 0, D # 0) it may be seen 
1 2  2 1 

that the  unstable equilibrium E x  becomes stable if the following 

inequahties hold: 

ol> 0, (7.20a) 

- rr,+ 3p1 - bp2 p l p 2  > 0. (7.20b) 
8- 

In particular, it may be noted that  t he  above two inequalities 

a re  satisfied if p > 0 (i.e., D12> 9 ), p2 < 0 (i.e., D z l <  O ) ,  and if 
1 

3 is iLcreased to  a large value so tha t  
11 

In the following theorem we shall investigate the  global 



stability behavior of the  interior equiJibrium E'. For this, we f i rs t  

write the  following notations: 

Theorem 7.3.1: Let D # 0, D f 0. If t he  following cnditions hold: 
12 2 1 

then the  uniform steady s ta te  E" of t h e  initial-boundary-value problem 

(7 .I)-(7.2) is globally asymptotically stable with respect t o  all 

solutions initiating in t h e  positive quadrant. 

Proof: For t he  sake of notation, let  x(u,t) = x and y(u,t) = y. Now, 

l ~ s i n g  the  positivity of :< and y for u E [O,R] and t E [ON), we define 

a functional 

where V is defined in Eq.(7.10).  

Taking the  derivative of V along the  soluhons of model (7.1) ,  we 
1 

cbtain 

- du + D I -- 
+ D l r  J o  x du. c3u2 J o  a y  3u2 



Using the  boundary conditions we get 

where a a re  defined in (7.21). 
ij 

From Eq.(7.24) we note tha t  V I  is negative definite under 

conditions (7.22a-b), proving the  theorem. 

Remark 4: If D = D = 0, then we note tha t  condition ( 7.22b) is 
12 2 1 

automatically satisfied. This shows tha t  if the equilibrium E* of 

model (7.7) is globally asymptotically stable, then t h e  uniform steady 

state E" of the  initial-boundary-value problem (7.1-(7.2) is also 

globally asymptotically stable. 

Remark 5: If D # D f 0, and if V is positive definite, then from 
12 2 1 

Eq.  (7.24) we note tha t  V can be made negative definite by increasing 
1 

3 and D Z 2  t o  sufficiently large values. This implies tha t  the 
1 1  I 

~ n s t a b l e  equilibrium E* of model (7.1) can be made stable by 

increasing self diffusion coefficient to  sufficiently large values. 



7.4 S U M M A R Y  

In this chapter we have considered a Gause-type predator-prey 

interacting model with self as  well as cross-diffusion and 

investigated the  stability conditions in different environmental 

consequences. We have analyzed the  model by using stability theory of 

rlifferenbal equations. Criteria for local stability, instability and 

global stability of an interior equilibrium a r e  obtained. Criteria for 

global stability a re  also obtained by construcbng a suitable Liapunov 

fgnction. 

By analyzing the  initial-boundary value problems (7.1)-(7.3) it 

has been shown tha t  in case I (i.e. D = 0, D Z l #  0), if the  predator 
1 2  

"'.i 

species tend to  diffuse i:-the direction of higher concentration of 

the prey species, and the  prey species moves along its own 

csncentration gradient, then the  equilibrium state E" is locally 

asymptotically stable. In this case it has also been noted that  when 

the crikcal wave length is too small, tha t  t he  predator species tends 

to diffuse in the direction of lower concentrahon of the  prey 

species, and the  prey species moves along its own concentration 

gradient, then it leads to  local instability of the  equilibrium state. 

In this case, it has been noted that  the unstable equilibrium E" of 

model (7.7) becomes stable if condibons (7.16a) and (7.16b) a re  

sahsfied. In case I1 (i.e. D12; 0, DZ1= 0)) it has been shown that  if 

the prey species tend to  di££use in the  direction of lower 

concentration of the  predator species, and the  predator species moves 

along its own concentration gradient, then the  equjhbrium state E' is 

locally asymptotically stable. But this equilibrium E* becomes 

xnstable if the  critical wave length is very small. In such a case the 

prey species tend to diffuse in the direchon of higher concentration 



cf the predator species. and the  predator species moves along its own 

concentration gradient. In this  case, it has also been noted tha t  the 

unstable equilibrium E" of model (7.7) becomes stable if conditions 

(7.18a) and (7.18b) a re  satisfied. In case I11 (i.e. D,12# 0, D Z l #  0) 

it has been shown tha t  if the  prey species tend to  diffuse in the 

direction of lower concentration of the  predator species, and the 

predator species tend to  diffuse in the  direction of higher 

concentration of the  prey species, then the  equjhbrium state remains 

stable. In this case it has been found tha t  the  unstable equilibrium 

E* of model (7.7) becomes stable if the  conditions (7.20a) and (7.20b) 

are  satisfied. Further,  it has been found that  the  uniform steady 

state E* of the initial boundary value problems (7 .1- (72)  is 

globally asympt.otically stable under a certain condition. I t  has been 

shown that  if the  equilibrium state E* of the  system with no diffusion 

is globally stable, then the  corresponding uniform steady state of the 

system with diffusion remains globally stable. I t  has also been shown 

that if the equilibrium state E~ of the system with no diffusion is 

unstable, then the corresponding uniform steady state of the  system 

with dlff usion can be made stable by increasing self -diff usion 

coefficients to  sufficiently large values. 



CHAPTER '{I I i 

A MODEL FOR TWO COMPETING SPECIES WITH SELF AND CROSS-DIFFUSICN 

3.0 INTRODUCTION 

In a real habitat  each species has  an  inhibiting effect on t h e  

growth of t h e  other due  t o  competition fo r  food, breeding si tes,  etc.  

The usual analysis of competition between two species goes back t o  

Lotka (1925), Volterra (1927) and Gause (1934). Since then  several  

investigations have been 1-nade t o  s t udy  conditions which must be 

satisfied if two compebng species a r e  t o  co-exist in t h e  same habitat  

( Hardin (1960), Gopalsamy (1977, 86), Harada and  E'ukao (1978), Hsu e t  

31. (1978, 1979, 1981a, 1995), Freedman (1979, 1987), Cushing (1980), 

Cheng e t  al. (1981), Cosner and Laser (1984), Cantrell e t  al. (1987), 

Mitra e t  al. (1992), Dubey (1997) etc.). I t  may be noted t h a t  t h e  

Lotka-Volterra model focuses on population interactions a t  a point in 

space ignoring movement, which means perfect  mixing of t h e  species in  

a given region, (Levin (1974, 1976, 1986), Okubo (1980)). 

In  general,  t he  movement of t h e  species i n  t h e  habitat may ar ise  

due t o  certain fac tors  such  a s  overcrowding, anticlimate, predater  

chasing prey etc.,  b u t  more importantly due  t o  a resource  limitation 

in  t h e  habitat,  (Verma (1980)). In recent  years ,  considerable in te res t  

has  been paid in  order  t o  s t udy  t h e  parmanence and global stability of 

a c ~ m p e t i k v e  Lotka-Volterra diffusive system, bu t  little attention 

has  been paid i n  s tudying t h e  effect of cross-diffusion (Jorne  (1975), 

Hastings (1978), Gurbn (1974), Shukla and  Verma ( 1 9 )  Allen 

(1983a,b), Pao (1995a, b), Talceuchi and Lu (1995), Chattapadhyay e t  

A. (1996), Raychaudhuri e t  al. (1996.)). Keeping these  in mind, t h i s  



chapter  Is devoted t o  develop and analyse a general  nonhnear 

competition model fo r  two species taking in to  account self a s  well a s  

cross-diff usion. Criteria for  local stability, global stability and 

i n s t a b h t y  a r e  obtained in  t h e  absence of diffusion. By const rucbng 

a s u t a b l e  Liapunov function, t h e  global s tabihty  of t h e  system is 

investigated. 

3.1 MATHEMATICAL MODEL 

Xe consider an ecosystem where we wish t o  develop a nonlinear 

compebtion model with self and cross-diffusion. In t h e  model, it is 

assumed t ha t  t h e  intr insic growth and carrying capacity of each 

species decrease a s  t h e  population density of t h e  other  increases  

Then t h e  dynamics of t h e  system is governed by t h e  following 

autonomous differential equauons  

Model (8.1) needs  t o  be analyzed with t h e  initial populabons 

e also assume t h a t  no external i npu t  is imposed from t h e  

2utside. Hence zero flux boundary conditions 

a r e  assumed. 

i n  'mcdel (8.1)) N (x ,  t )  and  N_(x ,  t) represen t  t h e  densities of 
i - 

twc c ~ m p e t i t m g  species a t  time t r 0. 

The function r ( N  ) represen t s  t h e  specrhc growth r a t e  of 
1 2  



the compebng species of density N , and it s tasf ies ,  
1 

(3r (NJ 
r (0) = r '. 0, z A i 0, for N L 0, and there exists M = IT 
I 10 art! 2 2 2 

2 

such tha t  r (R ) = 0. 
1 2  

(8.4) 

T h i s  shows that  the specific growth rate of the  f i rs t  competing 

species decreases a s  the  density of the  second competing species 

increases and it may tend to  zero if the  density of the  second 

- 
ccmpeutor reaches a critical level N_ = N . 

I_ 2 

The function r (M ) represents the  specific growth rate of the 
2 1 

species of denslty N , and it also satisfies the following condition: 
2 

(3r2(N1) 
~ ~ ( 0 )  = r > 0, dN 

< 0, for N r 0, and there exists N 
L 2 0 1 3 1 

1 .  

such that  r (El) = 0. 
2  ('9.5) 

This implies tha t  the  specific growth rate of the  second 

competitor deceases a s  the  density of the  f i rs t  competitor increases, 

and it may also tend to  zero if the  density of the  f i rs t  competitor 

- 
reaches a critical level N N . 

1  1 

The function K (N ) is the maximum density of the  ith competitor 
.I 

which the environment can support and it decreases as  N increases. 
I 

Hence we assume, 

K (0) = K~~ > 0, K'(N ) < 0 for  N 2 0, i ,  = 2 i J. (8.6) 
1 I J  I 

D and D a re  the  self-diffusion coefficients and D and D Z 1  
1 1  2  2 1 2  

are  the cross-diffusion coefficients of N and M species respectively 
I  2 

in a finite one-dimensional domain (x). D and D a re  assumed to  be 
11 2 2 

posiuve constants, whereas D12 and D may be positive, negative or 
2 1 

xer o. 

In the  next section we analyze the  system without diffusion. 



8.2 THE M O D E L  WITHOUT D I F F U S I O N  

i n  this  section we consider model (8.1)-(8.3) without diffusion 

(i.e. D = D = D = D = 0). In such a case the model reduces to 
1 1  2 2  1 2  2 1  

N (0) > 0 , i = 1,  2. 
1 

It is easy to check that  there are  four nonnegative equilibria, 

namely, Eo(O.O), EI(Klo, 0), E,(O, Kzo), E"(N:, N") .  2 The equilibria 

EO, El and E 2  clearly exist. We shall show the existence of E~ a s  

fcllows. 

Here N *  and 11: are the positive solutions of the following 
1 L 

algebraic equations: 

r1(M2) K I ( N  ) 
N = 2 

1 r / 

10 

r 2 (N*) I q 2 ( N l )  
N 2  = r 

2 0  

From (8.8a) we note the following : 

when N_+ 0, N 
L 1 K l o !  

- 
when N-+ N2, N i 0, 

L 1 

Further,  frcm (8,8b) we note the following: 

- 
when PI -, M , N -t 0 ,  

1 I .2 



From the  above analysis we note tha t  the  two isochnes (8.8a) and 

(8.8b) intersect a t  a unique polnt E*(N* N*)  if any one of the 
1, 2 

fcllowing inequality hold: 

(i) A > K l o  
1 

and B > KZo, 
2 

- 
(11) N l  < K l o  and 2 < K z o  . 

Stabdity of equiLibra 

The local stability of the  equihbria can be studied from 

variational matrices corresponding to  each equllibrlum. By compuhng 

the ;lariabond matrices corresponding to each equilibrium we note the 

fcllo wing results. 

1. E (0, 0) is unstable in the N -N plane. 
0 1 2  

-, E1(KlO, 0) is a saddle point whose .stable manifold is locally along 

N -direchon and unstable manifold locally along the  N -direcbon. 
I 2 

3. E (0, K \ is also a saddle point whose stable manifold is locally 
2 20 '  

along the  N -direction and unstable mainfold is locally along the  
2 

4. E*(N:. N:) is locally asymptotically stable if and only if the 

following inequahty holds : 

where G* and G X  are  defined a s  follows: 
1 2 



Ncw in crder  to  investigate the  global behavior of the interior 

equilibrium E", we f i rs t  state the  following lemma which establishes a 

region of attraction for system (8.7). The proof of this  lemma is easy 

and hence we omit i t .  

Lemma 8.2.1 The set  

attracts all solutions initiating in the  posihve quadrant. 

The following theorem gives criteria under whch E~ is globally 

asymptotically stable. 

Theorem 8.2.1 

In addition to assumptions (8.4)-(8.6), let r l ( N  r2(H2), 

K ( N 1 ) ,  K2(N2) satisfy 

G I - r ; ( ~ ~ ) ' s  pl, G 5 - r l ( N  ) r: p2, G 5 - K1(N ) 5 p 
2 1 1 2  3' 

0 s - R1(N ) 2 
2 1 P 4 f  K n, r: R 1 ( N 2 )  5 KlO, R 5 K2(N,) i K 2 o (8 .16)  

in R for some positive constants p P2t P,I P , t  R ,  K .  If the  
rn c. 

following mequality holds 

then E* is globally asymptotxally stable with respect to all 

solubons initiating in the positive quadrant. 



Przof: F7e consider t h e  following positive definite function about E", 

Dlfferentiabng V with respec t  t o  t along t h e  solutions of (8.7) we 

where 

Frcm (8.16) and t h e  mean value theorem w e  note t ha t ,  



Now V can be written a s  the  sum of quadratics, 

v = - a 1 1  (N 1 - N:)~  - a 2 2  (N, 2 - N:)~  t a12(N1- N:)(N2- N:), (8.20) 

where 

a = A (  - A ( N )  - r N F ( N 2 )  - r20N2<Z(Nl). (8 .21~)  
12 2 10 1'1 

The sufficient condition for V to  be negative definite is that  

the £0110 wing inequality holds. 

Since (8.17) =j (8.22), we conclude tha t  V is a Liapunov function 

with respect to  E* whose domain contains the  region Q,  proving the  

theorem. 

The above theorem implies that  in the  absence of diffusion the  

two competing species coexist and settle down to their  nrespective 

equilibrium levels under certain conditions whose magnitudes a re  lower 

than their respective density independent carrying capacities. Keeping 

in view of (8.18) it is fur ther  noted tha t  t h e  equilibrium level of 

each species decreases a s  the  equilibrium level of the  other increases 

and if the equilibrium level of one increases beyond a threshold value 

the other species may become esinct. 

8.3 THE MODEL WITH DIFFUSION 

In this  secbon we consider the  full model (8.1) together with 

inibal and boundary conditions (8.2) and (8.3). A s  a consequence of 

initial-boundary conditions (8.2)-(8.3), E*(N:, N*)  is a uniform 
2 



steady s tate  for this system. 

Trle now invesbgate the  stability conditions for system 

(8.1)-(8.3) in different environmental consequences as  follows. 

With the boundary conditions under considerabon, we look for an 

eigenf unction of the  form 

( ~ ) e x p  ( ~ t )  c3s ( nilx 1- 

Here 1 = R/nn is the  critical wave length, 

R = length of the  system, 

2 n  - and - - period of the  coslne. n 

The characterstic equahon of the system is glven by 

IZ t o l I  -+ {02 -+ G;kZ -+ G:U, - L ~ ~ u ~ }  = 0 ,  (8.24) 

where 

apd G:, G; a re  given by (8.15). 

Thus, f-rcm the  Routh Hurwitz criteria the  stablity of the  

equihbrium E~ depends on the  sign of 



Now we shall discuss the following cases under the assumphon 

that in the  absence of diffusion the  interior equilibrium E*(N:, N:) 

is locally asymptotically stable, which implies that  (8.14) is 

sausfied. In such a case u3> 0. - 

Czse I : D  = 9 and D z l +  0. 
12 

Then E" is locally stable if 

X 

O2+ ' 0,  

We note that  if D < 0, then (8.26) is automatically sahsfied. 
2 1 

T h s  shows that  the M2-species tends to  dlffuse in the  direction of 

higher concentration of the  N -species and t h e  N -species moves along 
1 

its own concentration gradient, then the  interior equilibrium E~ 

remains locally asymptotically stable. Further. EX is unstable if DZ1> 

0, since there always exists values of n such tha t  

R This shows that  when the critical wave length (=) is too small 

that  the  competitor species N tends to  diffuse in the  direction of 
2 

lcwer concentration of the  other competitor species N and the  N 1  
1 

-species moves along its own concentration gradient, then the 

equilibrium state EX becomes unstable. Such a case arises in nature 

where one competitor species prefers to avoid group defense by a large 

number of other competitor species, and chooses to attack its 

csmpehtor from a smaller group unable to  sufficiently resist. 

Similarly reverse cases will arise if D $ 0 and D = 0. 
'1 2 2 1 



Remark: Let the  equihbrium E"(N';, N:) of inodel (8.7) is unstable. 

then condition (8.14) is not sabsfied. This implies tha t  o2 need not 

be positive. Then in case I (i.e. D = 0, D # 0 ) t he  unstable 
1 2  2  1 

eqldibrium E* can be made locally stable if t he  following inequahty 

holds: 

P,s it is assumed in case I tha t  inequality (8.14) is satisfied. 

Hence o2 > 0 and if D z l  < 0, then inequality (8.26) is automatically 

satisfied. But in (8.28), u may not be positive and hence even if D 
2 Z 1  

< 0, inequahty (8.28) may not be sa'usfied. I t  may fur ther  be noted 
>.. 

that the  inequality (8.28) may be satisfied by increasing D and D z 2  
11 

to sufficiently large values. 

Case  I1 : D f O and...D # 0. 
1 2  2 1 

In this  subcase E* is locplly stable if 

17 + G * ~  + G~~ - / 1 1 ~ 1 2  > 0. 
2 1 2  2 1  

and unstable if the  inequahty is reversed. 

Theorem 8.3.1 

I. Let D = D = 0. Then the  following results hold. 
1 2  2 1  

(a) If the time derivatives of V along the  solutions of model (8.7) is 

negative definite (i.e. if the  interior equilibrium Ex of model (8.7) 

is globally asymptobcally stable ), then the  uniform steady state 

,% 
c of t he  initial boundary value problems (8.1)-(8.3) is also globally 

as  ymp<otxally stable. 

(b) If the interior equAbriurn E" of rnodel (8.7) is unstable, then by 

increasing the self diffusion coefficients D and D to  sufficiently 
11 2 2 

large values, the unstable equilibrium E* can be made stable. 



11. Let D # 0, Dz1# 0. Let t h e  time derivative of 1; along t h e  
1 2  

3olutions of model (8.7) be  negahve  definite. If t h e  following 

mequality holds 

then t h e  uniform s teady s ta te  E' of t h e  initial boundary value 

problems (8.1)-(8.3) is globally asymptotically stable. 

Proof : For t h e  sake  of nofation, l e t '  

Nl(x, t )  = N l  and  N2(x, t )  = N2.  

Now using t h e  positivily and  boundedness N I  and  N 2  for  x E [OrR] 

and t E [0, a), we define a functional 

where V is defined in  E q  (8.18). Taking t h e  derivative of V a  along the 

aolutions of model (8.1) and  initial boundary con&tiorLs l.d.TI-[2.3j, 

we obtain 

dV a 2 ~  
dx + ' D ~ ~ [ ~  - - dx. 

3N2 ax2 

After a Little algebraic manipulation V l  can be written a s  

We note from Eq. (8.31) t h a t  jf D = D = 0 and V is negahve 
1 2  2 1  

d e h i t e ,  then  V 1  is also a negative definte function. I E  V is 

positive definite t hen  by increasing D and  D Z 2  t o  sufficiently large  
1 1  



~ a l u e s  V 1  can be made negative definite, hence the  f i rs t  par t  of the 

theorem £0110 w s .  

When D12# 0, D2,# 0. it may be noted tha t  if V is negative 

definite along solutions of (8.7), then V is also negative definite 
1 

under condition (8.30), and hence the second part  of the  theorem 

follows. 

8.4 SUMMARY 

In this chapter, a nonlinear mathematical model has been proposed 

and analyzed to  study the  behavior of two competing species with self 

and cross-diffusion. It has been assumed tha t  the  growth rate  and 

carrying capacity of each competing species decreases a s  the  density 

of the other species increases. In the  absence of diffusion it has 

been shown tha t  t he  two competing species settles down to their 

respective equilibria levels under a certain condition, and their 

magnitudes a re  lower than their respective density independent 

carrying capacities. I t  has been noted tha t  density of either 

competitor decreases and the  density of each species may tend to  zero 

if the  equilibrium density of the  other species increases beyond a 

threshold value. In t h e  presence of self-diffusion and in the  absence 

of cross diffusion it has been found tha t  t he  stability of the  system 

increases and the  othewise unstable equilibrium becomes stable. In the  

presence of self and cross-diffusion it has been noted tha t  if the 

second competitor of density N tends to  diffuse in the direction of 
2 

higher concentration of the  £irst competitor of density NI, and the 
\ 

first competitor moves along its own concentration gradient ( D  = 0, 
12  

D 0), then t h e -  interior equilibrium E;" which is stable in the  
2 1 

absence of diffusion, remains locally asymptotically stable. I t  has 



i s t o o  been further found that  if the critical wave length 1 = nzr 
small that the second competitor of density N 2  tends to diffuse in the 

direction of lower concentration of the first competibr of density 

N1, and the first competitor moves along its own concentration 

gradient, (D12= 0, D > 0) then the interior equilibrium, which is 
2 1 

stable in the absence of diffusion, becomes unstable. Similar results 

have also been found in the case when D12# 0, Dzl= 0. When D f 0, 
1 2  

Dz1# 0, it has been shown that  the equdibrium may be stable or 

unstable depending upon the density of the competitors, their self and 

cross-diffusion coefficients and the critical wave length of the 

system. I t  has been shown that if the equilibrium E* of the system 

with self and cross-diffusion is globally asymptotically stable, then 

the uniform steady state E" of the system with self-diffusion only 

remains globally asymptotically stable. I t  has idso been found that  if 

the equilibrium E* is unstable in the absence of diffusion, then it  

can be made stable under certain conditions in the presence of self 

and cross-diffusion, 
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