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Abstract

Fuzziness 1s ubiquitous in modeling spatial relations, occurring in most situa-
tions at object description or relational representation The central theme of our
study 1s to develop a fiamework fo1 representing topological relations of fuzzy
regions with holes and suggesting their applications to practical situations As
boundaiy 1s one of the important topological mputs for studying fuzzy spatial
objects, a comparative analysis of various forms of fuzzy boundary 1s carried
out, as a part of our study Some useful set-theoretic 1dentities on fuzzy bound-
arles have been established 1in the process The case of crisp fuzzy topological
spaces 1s taken up first for development of a theoretical framework to define a
fuzzy 1eglion with holes as a consistent generahzation of the established Tang
and Kainz’s defimtion of a simple fuzzy region Considering the content of n-
teiscction to be the eight basic topological 1elations between two fuzzy regions
without hole, we have provided a methodology to determine the topological
relations between fuzzy regions with holes and some of the basic fuzzy spatial
objects In the next phase the setting 1s extended to that of general fuzzy
topological spaces The approach i this setting, however, 15 different due to
intrinsic difference in the structure of these spaces A good number of additional
topological entities are devised to be used for the same purpose

Using node, arc and path consistency we intioduce a set compnising of several
geometric conditions n order to reduce the number of redundant topological

relations between fuzzy region with a hole and some of the basic fuzzy sets in a



crisp fuzzy topological space. We redefine the proof-by-constraint and drawing
method and apply it to eliminate the reducible topological relations between
fuzzy regions with and without holes in a crisp fuzzy topological space. We
also use the same method to identify the conditions for reducing the number
of inconsistent topological relations between fuzzy regions each with a hole in a
general fuzzy topological space.

Finally, we provide a novel methodology for application of our theoretical frame-
work to determine the distribution of the occurrence of bird flu effect over a lo-
cality in which, a particular colony, having taken some precautionary measures
to control the disease, acts as a hole. With this methodology we underline the
possibility of applying the model as well as other models developed on similar

lines to various real life situations
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Chapter 1

Introduction

1.1 Background

1.1.1 Spatial relations

The term spatial pertains to positioning of an object 1n a given space Geo-
graphical spatial objects correspond to the real world elements such as rivers,
mountains, valleys, buildings etc in their respective localities or neighbourhoods
Depending upon the attribute under study spatial objects can be broadly cate-
gotized to be of two types - crisp spatial objccts and fuzzy spatial objects Crisp
spatial objects are those whose behaviour or attribute under study 1s determi-
nate whereas fuzzy spatial objects are those whose attribute under consideration
1s uncertamn Topological spatial relations are those relations amongst spatial
objects that aic invariant under topological transformations In real situations
the spatial relations may vary with respect to time and other parameters For
example, two 1slands 1 a river may be separated during the rainy season and
connected 1n the dry season and during the transition from rany to dry there
may be many other rclations between the 1slands Thus, spatial relations be-

tween the i1slands provide information about the intermediate cases between
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separatedness and connectednesé of the two islands in the river in different sea-
sons. The utility of the above information can be easily seen. The area flooded
by water dﬁring the rainy season can be used for cultivation or other productive
purposes during the period fror‘n'dry season to the arrival of rainy season. Then
again, based on the type of the spatial objects concerned, spatial relations are
of two types - crisp topological relations and fuzzy topological relations. Crisp
topological relations are those in which crisp spatial objects are involved and
fuzzy topological relations are those in which fuzzy spatial objecvts are consid-

ered.

‘The importance of topological relations lies in the fact that they are used for
assessing topological information for storage purposes such as keeping records
of geographical maps, surveys etc. in one computer system and to transfer it to
another computer system. This is a process which usually results in vital infor-
mation loss and is also very expensive due to the requirement in storage space.
It is also very difficult to store all these relations explicitly for ready usability.
However, it is found to be much easier to infer these relations by their geometry
and topological relations play a vital role in this regard. Topological relations
are used by the Open Geographic Consortium (OGC) for developing industry
standard software {3]. In simple terms, two geographic areas are considered
to be planar spatial regions énd a.topologically based function is developed
to expand the intersection values for coding how two geographic regions lie in

relation to each other.

It is, however, commonly observed that a large number of phenomena occurring
in nature have discontinuities in the boundary and exterior in the form of cavities
which give rise to the study of spatial objects with holes. As simple examples,
we can think of an island in a river or of puddles ‘of water near a coastline
where the first object is a hole on the second because the membership grade of

the attribute of the second object inside the first object will be either zero or
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neghgible Crisp spatial objects without and with holes and their relations, and
models for relations between fuzzy spatial objects without holes have been fairly
extensively studied by various authors over the last few decades However, study
of fuzzy spatial objects with holes their 1elations and applications remains a
fairly untouched area of 1esearch, despite their potential for simulation of real
Iife phenomenon So, modeling of fuzzy spatial objects with explicit stimulation

of holes and their relations emerges as an potential area of research

In this thesis we undertake a novel topological approach for the study of these

objects, theu 1elations as well as appheations to sunple 1eal life hke situations

1.1.2 Review of classical topological relations

Classical topological relations are the relations that are invariant under home-
omorphistn - The basic model for intexpretation of cisp topological relations is
the 4-intersection model proposed by Egenhofer and Franzosa {30] based on the
fowr possible intersections of interior and boundary of the two spatial objects
Considening the content of intersection to be empty and non-empty, a total of
sixteen topological relations exist between any two sets mn R? However, 1if the
sets are restricted to spatial regions, then theie are only nine viable topological
relations Further if the two regions have connected boundaries then only eight
distinct topological relations between the regions are realizable In [27] Egen-
hofer and Herring provided prototypes for the eight relations that exist between
two regrons with connected boundary and provided refinement of these relations
by considering ciitenia such as number of segments of the four inteisections or
tharr dimensions  In [28] Egenhofer provided a formal defimtion of topological
relations based on the simplicial complex of algebraic topology Further, Egen-
hofer and Herring [31] provided the 9-intersection model as an extension of the

4-intersection model based on content of intersection of interior, boundary and
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exterior of the two spatial objects

Since then various other models have been developed to represent crisp spatial
objects and their relations These models have shown that topological changes

are qualitative n nature rather than being quantitative

In [32] Egenhofer and Al-Taha derived topological 1clations between spatial ob-
jects under deformations such as translation, rotation, reduction and expansion
of an object and looked for answers to the questions such as what will be the
next most likely state of the time and positional dependent spatial objects un-
der these deformations Further, Egenhofer and Mark [35] provided a miodel
to derive a conceptual neighborhood among the topological relations between
a region and a line They developed two similanty models, namely the snap-
shot model and the smooth-tiansition model The snapshot model compares
two snapshots of line-region relations without having any knowledge about the
potential process and select neighborhoods based on the least noticeable dif-
ferences Smooth-transition model derives neighborhood among the topological
relations under shght deformation based on the knowledge of the kind of de-
formation and test the results using data from human subject test or human

observational data

In 2007, Liu and Shi [56) provided an cxtended model to determine topological
relations between two convex or non-convex legions by using the concepts of
connectivity and that of a fundamental group They also provided a sequence
of 4 x 4 matrices for two convex regions based on the intersection and difference
operators of the interior and boundary of the two regions In his doctoral
work, Paiva [71] provided applcations of topological relations between spatial
regions 1n multiple representation for assessing topological consistency as well

as similarity measuies

Sometimes 1t has been scen that spatial objects may have discontinuitics in the
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boundary and exterior giving rise to the study of topological relations between
1egions with holes when they arc used in application purposes such as GIS,
robotics, artificial intelligence etc It may be noted that regions with holes are
visually similar to the broad boundary regions developed by Clementinmi and Di
Filice [15], Cohn and Gott [18] but their topologies are different The regions
with broad boundary 1s the union of mner subregion (called as yolk) and outer
subregion (called as white) whereas regions with holes is the union of the region
and hole (the part of the 1egion where attribute under study 1s zero but other
attiibute of the space remain same) Therefore, fiameworks for broad boundary
regions cannot be apphed to represent topological 1elations between regions with
holes Egenhofer et al [33] defined regions with holes in an R? framework and
denived topological relations between 1egions with ‘n’ and ‘m’ holes respectively
They provided an algorithm to mimimize the numba of redundant relations and
applied their model for assessment of consistency in multiple representation by
introducing the concept of dropping of holes Egenhofer and Vasardan: (36, 37,
38] provided models to derve topological relations between (1) regions with a
hole and without holes (11) regions cach with a hole and (u1) region without
holes and multr-holed region Considering the content of mvanant to be the
eight topological 1elations between two regions with connected boundary i R?,
they found that there are 23 distinct relations between regions without and with
a hole and 152 relations between two regions each with a hole In [93] Vasaidam
studied the compositional inference of the topological relations between regions
with and without holes regions each with a hole region without hole and with
multl-holes Application of these relations in the study of similaiity assessment

was also discussed m the same work

Huo et al [47] provided a D9-ntersection model for topological relations be-
tween holed regions by extending the 9-intersection model using binary codes

Zhang and Qin [104] provided a model for topological 1clations between objects
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with holes in 3D by decomposing complicated object into simple objects and
proposcd an algorithm to analyze complete scts of topological relations between

two objects with holes i 3D

Cnisp topological models have the usual shortcoming 1n representing real hfe sit-
uations as they model a situation using values 1 and 0 to indicate the presence
and absence of an attribute As a result vital information may be lost during
then transition in the modeling process In such cicumstances, fuzzy topologi-
cal relations prove to be a powerful tool to represent impiecision or uncertamnty

of the spatial phenomena

1.1.3 Fuzzy topological relational models

After the introduction of fuzzy sets by Prof Lotfy Zadeh in his seminal paper
[100}, C L Chang [13) mitiated the study of topology using fuzzy sets which
resulted in the branch of fuzzy topology [52 69, 70, 74, 77] The subject has
been developed extensively, and 1n the course of development, 1t has been shown
by various authois {7, 8, 9, 16, 21, 22, 25, 26, 39 85, 86, 87, 101, 103] that fuzzy
topology 1s a potential tool to model the uncertainty or vagueness of spatial
objects by assigning suitable membership values between 0 and 1 to indicate
the degree of belongingness of an element 1n relation to the space As in many
real life situations, 1t 15 not often possible Jto derive the exact relatlo.ns between
spatial objects due to intrinsic fuzziness In the sequel, we discuss some of these

models

Zhan [102] developed a fuzzy analogue of the 4-ntersection model of Egenhofer
[30) He proposed a method for approximately analyzing the binary topological
relations between fuzzy region without holes by dividing the region mnto number
of a-cut regions and provided a formula to determine membership grade of

eight elementary topological relations between two fuzzy regions Later on,
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Du et al [23, 24] attempted to fuzzify the 9-intersection model to describe
uncertainty of position by defining membership tunctions for interior boundary
and exterior, and derived their relations in a umiform framework by developing
raster algonthm for computing fuzzy 9-intersection matrix between two crisp

objects, between two fuzzy objects, and between a crisp and a fuzzy object

Winter {97, 98] determined topological relations between imprecise regions gen-
erahizing the concept of 4-intersection model of Egenhofer (30] in a probabilistic
approach by using some semantic examples These models, however have a

drawback due to lack of spatial abstractions

Schneider [79) provided defimtion of fuzzy regions in terms of open sets using the
concepts of a regularization function and continuity gap He also determined
topological relations between various complex spatial objects 1n his work [81]
This approach of fuzzy regions however has the drawback that it 1s inconsistent
with the crisp case In other words, 1t does not simply yield the crisp case as a

particular case of itself

Most notions developed 1n fuzzy topology caun be construed as a generalization
of notions in classical topology Therefore, 1t 1s only but natural that fuzzy
regions have also been attempted to be generalized as a proper extension of

crisp regions 1n classical topological space

In [89]) Tang observed that there are two kinds of fuzzy topological spaces (fts)
- cnisp and general that can be treated separately Tang and Kainz [88 89)
proposed two defimitions of a fuzzy region 1n a crisp and a general fuzzy topo-
logical spacc respectively and shown that their defimtions of fuzzy regions are
closed sets and provides a consistent generalization of the crisp case In [88, 91]
the same authors generalized the concept of broad boundary in thewr work
(15 16, 17, 18] and showed that n case of fuzzy topology the inteisection of

mterior and boundary as well as boundary and exterior 1s non empty They
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proposed a more detailed definition of the boundary of spatial objects and pro-
posed several other notions such as core, fringe, internal, internal boundary etc.
and proved that these notions are topological. Based on these topological parts,
a new 9-intersection matrix and a 4 x 4,5 * 5 intersection matrix were derived.
Further, using the notions of node, arc and path consistency, sets of geometric
conditions were derived to reduce the number of redundant relations between
various spatial objects, Tang and Kainz also proposed a framework for dealing
with fuzzy spatial object based on fuzzy cell complex structure [90]. Further, in
[92] they developed a formal framework for generation of fuzzy spatial objects

and utilized it in the analysis of land cover changes.

In a related development, Palshikar [73] provided a definition of fuzzy regions in
a finite discrete fts and reformulated the Regional Connection Calculus (RCC)
theory in the setting of this space. Around the same time, Bjorke (9] proposed a
model for generating verbal terms for topological relations between fuzzy regions
by providing a method to compute the fuzzy boundary of spatial objects and

provided a simulation experiment to illustrate the theoretical development.

In their work, Liu and Shi [55, 58, 59] developed a computational fuzzy topology
to practically implement conceptual topological relations. in a computer environ-
ment based on interior and closure operators which further generated a coherent
fuzzy topology and used it to determine the interior, boundary and exterior of
an area effected by a harmful weed. They also provided a mathematical model
for the topological relations between fuzzy s‘patial objects and introduced the
concept of bound on the intersection of the boundary and interior as well as
boundary and exterior of the computational fuzzy topology. In [57], the same
authors proposed a model to determine topological relations between fuzzy re-
gion and fuzzy line using the concepts of quasi-coincidence and quasi-difference
and used the same to deternlilie effects of Severe Acute Respiratory Syﬁdrome

(SARS) over the people in a particular community. This is one of the early
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applications of fuzzy topological methods mn a practical field of applications

In a parallel development, Schmitz and Morrns [82] provided definition of Re-
gion with Multiple Alpha-Cut (RMAC) to model a fuzzy region and desciibed
strategies for defining topological relations between two RMAC as well as to
minimize the number of relations Later, Schockaert et al [85, 86] proposed
the fuzzy extension of 1egional connection calculus (RCC) theory and show how
spatial reasoning based on this theory 1s helpful in hnear programming problem

and representing imformation about vague topological information

Alboody et al [7} provided another framework for modeling topological rela-
tions between fuzzy regions based upon a new model known as fuzzy intersection
and difference model In this model tuzzy spatial objects are decomposed into
fowr components and using these components, a new 4 * 4 intersection model
and fuzzy intersection and difference model are detived The main advantage of
fuzzy inteisection and difference model 15 that 1t reduccs the cost of computation

by replacing intersection operator by the difference operator

In spite of the existence of vanous models i fuzzy topology to handle im-
preusion of thie fuzzy spatial objects, the developunient has been 1 some sense
scattered and some of the important related aspects too aie required to be taken

up for fuither study

1.2 Motivational aspects

The fiamewoi ks of classical topological relations indeed have the inherent short-
coming due to their mability of representing unceitainty and vagueness which
invariably occw 1n physical phenomenon duc to the mtinsic imprecision of the
objects with 1espect to various parameters associated with them Topological
1elations based on fuzzy topology have the potential of 1emoving these shoit-

coming with their capacity to accommodate uncertainty or vagueness occuiring
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in different forms As described in the preceding section, there are many fiame-
works duc to Schneider [79), Tang and Kanz [88, 92] Liu and Sl [57] and
various other authors which model topological relations of fuzzy spatial objects
Since theie are a laige number of spatial phenomena 1esembling fuzzy region
with holes indicating tieatment of fuzzy spatial objects with hole, 1t underhnes
the 1cquirement of developing a model tor fuzzy regions with incorporation of
holes and their topological relations as well as utiizing these representations to

deal with 1eal Life situations

1.3 Objective and methodology

In broader terms the objective of our study 1s to develop fuzzy spatial objects
and then relations particulaily in the area of 1epresentation of topological ap-
proximate relations of fuzzy spatial objects with holes and modeling them based
on topological relations
The objectives of the thesis may therefore be summed up as follows
- To define fuzzy spatial objects unth the explicit incorporation of holes
- To develop theoretical frameworks for topological relations of sumple fuzzy
spatial objects unth holes
- To etplore the possibility of some application of the developed theoretical
framework to symulated real hife situation based on purely hypothetical data
sets
In order to deal with the above, we adopted the tollowing course of approach
(1) Extensive study of basics of classical topology fuzzy sets theory and fuzzy
topology was taken up (u) Extracting the salient aspects of the basic theoretical
frameworks for crisp spatial objects and then topological 1elations as regards to
various cxisting models (1) Intaipretation of Schucidar s as well as Taug and

Kamz s approaches of fuzzy regions and then topological relations
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(1) Analysis of Liu and Shi s quantitative model of topological 1elations between
fuzzy spatial objects (v) Developiig a model of tuzzy 1cgions with holes m two
separate cases of crisp and general ftss (v1) Use node arc and path consistency
of network relations m an appioptiate way to 1educe the number of 1edundant
relations  (v1) Adopting Zhan s formula for membeiship giade of topological
rclations between two fuszy regions based on defimtion of a-cuts of fuzzy sct

theory

1.4 Chapterwise overview of the thesis

This thesis 1s o1gamized in six chapters followed by references used 1n the study
General introduction 1s provided in Chapter 1 It sccks to present an overyiew
of the thesis mncluding a brief backgiound of the work after a detailed analysis
of previous work The motivational aspects of the 1esearch problem objective
of the woik methodology applied and outhine of the woik caiiied out in the

thesis 1s presented in this chapter

In Cliapter 2 we present the basic aspects and results of fuzzy topology that are
used fo1 developing some properties of fuzzy spatial objects then 1elations and
applications n the subsequent chapters The backgiound of classical topological

spaces 15 also included i this chapter

In Chaptais 3and 4 theorctical frameworks are developed to model fuzzy sptial
objects and theiwr topological telations in some of the simple cases Noting that
fuzzy boundaiy 1s one of the most mmpoitant mputs for studying topological
relations of tuzzy spatial objects, we provide a detailed analysis of different
types of fuzzy boundaiy at the beginnming of Chapter 3 We then méioduce
fuzzy 1eglons with holes 1 the setting of crisp fuzzy topological space Since a
cuisp fuzzy topological space exhibits behavior which to a laige extent 15 similar

to that ot a classical topological space the collection of fuzzy topological spaces
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are treated separately into classes of crisp and geneial fuzzy topological spaces
respectinely tor defiung fuzzy 1cgrlons with holes In Chapta 3 the case of
crisp fuzzy topological space 1s taken up The proposed defimtion of hzzy
1egion with holes 1s found to be consistent as a generalization with the existing
definition of ciisp regions with holes i a classical topological space Fuither
a genaral hamework s daveloped for detannmug topological rcdavions between
fuzzy regions with abitiary (fimte) number of holes and basic tuzzy spatial
object (viz fuzzy pomt fuzzy hine and fuzzy 1egion without hole) which ae
not 1estricted to sigle hole in any of the case under consideration As particular
cases fussy 1egrous with single hole has been considered 11 each of thie sivuations

which can then be easilv visualized and assessed to1 feasimlty

In Chapter 4 defimition of fuzzy 1egions with holes 15 proposed i the setting
of general fucsy topological space This developmient 1s mdependent of the de-
velopment m the case of cusp fuzzy topological spaces Since general Mizzy
topological spaces allow flexibility 1n membership grades than what 15 available
n a cuisp fuzzy topological spaces a general fuzzy topological space 1s obviously
a better 1epresentatine of the nuprecision ot the spatial objects though the set-
fing 15 much more challenging In this setting the stiuctwes of cuisp 1egions
with and without holes a1e defined fust and then proceeding to formulate con-
ditions to mantain consistency of the proposed defimition of fuszy regions aith
holes with csp regions with holes m general topological space  Work 1s then
caned out to determine the topological 1elations between fuzzy regions each
with holes Using node arc and path consistency a set of geometric conditions
have heen deinved whichhdentifies and thereby rcduees the nnmber of 1edundant

relations berween fuzzy tegions each with « hole

In Chapter 5 we attempt to provide an application of om theorenical toole de-

veloped in Chapters 3 and 4 The tool 15 applied for determination of sevcieness
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of bird flu over a paiticular vaccinated locality A methodology has been de-
vcloped to mdicate severencss over the locality when flu enters into a locality
which has a vaccinated colony which 1s interpreted as a fuzzy region with a
hole The stress however 1s on the development of a methodology and not on
the accuracy o1 rehability of assessment as the methodology 1s based purely on
a hypothetical data sct Fuirther, a pomnt-wise model 1s suggested to determine
the severeness of any point inside the locahity w r t flu point from the center of
the vaccinated colony of the locality as well as position of the pomnt mside the

locality

Finally, in Chapter 6 we have provided the conclusion and discussion on the
outcome 1s presented We present the significance of the work done 1n the thesis

and outhine future scope of the work

A bibhography containing all the references 1s included at the end of the thesis



Chapter 2

Preliminaries

In this chapter we provide the preliminary results and definitions used in the
thesis. It includes definitions and results in classical topology, fuzzy set the-
ory and fuzzy topology. We also recollect the basic theoretical frameworks of
topological and fuzzy topological relations. These are mostly available in the

literature and are adopted in the subsequent chapters of this thesis.

2.1 Classical Point-Set Topology

2.1.1 Topology and topological space

Definition 2.1.1. Let X be any set and 7" be a collection of subsets of X such
that

i)o,XeT

(ii) For any pair A,Be T, ANBeT

(i) For A, e T, U4, €T

Then the collection T is called a topology on X and the pair (X,T) is called a
topological space. The elements in T are called T-open sets or open sets and
their complements are called T-closed or closed sets. Those sets which are both

closed and open at the same time are called clopen sets.

14
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A classical topological space 15 also referied to as a crisp topological space

o1 simply as a topological spacc

2.1.2 Interior, closure, boundary and exterior

Let (X,T) be a topological space and let A be a subset of X

Definition 2.1.2, Interior of A 1s the umon of all open sets contammed in A

Alternatively, 1t 1s the laigest open sct contained in A denoted by A° or int(A)

Definition 2.1.3. Closure of A 1s the intersection of closed sets containing A

Alternatively, it 1s the smallest closed sct contaimng A, denoted by A or cl(A)

Definition 2.1.4. Boundary of a subset A (denoted by 0A) 1s defined as the
difterence between the closule and the mterior of the set A (1e 94 = A — A°)
Equivalently 1t 1s the intersection of the closuie of the set with the closuie of

the complement of the set (9A = A N A°)

Definition 2.1.5. Exterior of A 1s defined as the complement of the closure of

A and 1s denoted by A¢ o1 A~

The following proposition 1s an important featuie of an mterior, boundary

and exterior of a classical topological space

Proposition 2.1.1. Let A be a subset of a crisp topological space Then A°,

0A A€ are mutually disjoint parts

Definition 2.1.6. Lct A be a subset of a topological space (X,T) and 2 € X
be a pomnt Then A 1s said to be naighbowrhood of z if therc exists aset B € T
such that x € B C A The union of all the neighbourhoods of a pont 1s called

the neighbourhood of that system
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Definition 2.1.7. A function from a topological space (X, T) to a topological
space (Y,7T") 1s said to be continuous if for every open set mn 77, the mnverse
image 18 open in T

Alternatively, a function f X — Y from a topological space X to a topo-
logical space Y 1s called continuous at a pomnt x if for every open set Bm Y
containing f(z), there 1s an open set A in X contaiming z such that the image
of Aisasubset of Bie f(A) C B If f1s continuous at every pomnt of X then

f 1s a continuous function on X

Definition 2.1.8. A function f from a topological space X to a topological
space Y 1s said to be a homeomorphism if 1t 1s continuous, byective and its
mverse 15 also continuous A property that 1s preserved under homeomorphism

1s said to be a topological invanant (o1 a topological property)

Definition 2.1.9. (Topological relations are relations that are mnvariant under
topological transformation such as homeomorphism ) If R 1s a binary relation
from a subsct A C X to asubsct B C Y whae X and Y atc topological spaces
Then R 1s called a topological relation from A to B on X x Y 1if R1s a topological
mvariant (1e if f X xY — X xY 1s a homeomorphism then R 1s topological

wmvariant if R(z,y) = R(f(z), f(y)) where z € A and y € B)

Definition 2.1.10. A subset A n a topological space (X T)1s said to be regular

closed 1f A = A° and 1s said to be regular open if A = A°

Definition 2.1.11. Let A and B be two sets in a topological space X then A
and B are separated 1if there exist two open sets H and K such that A 2 A,
KDBand HNB=¢, ANK =¢

Definition 2.1.12. A topological space X 1s said to be connected if there do
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not exist two non empty sets A and B such that X = AU B and ANB+# ¢or
ANB # ¢.

Proposition 2.1.2. The following are equivalent:

1. X 1s connected.

2. The only clopen sets are X and ¢.

3. X cannot be represented as the union of two disjoint non-empty open sets

(or closed sets).

2.2 Crisp region with and without holes

A subset of a given classical topological space is said to be a crisp region if
either it is a singleton or for each point of the subset there is another point in

the main space.

Definition 2.2.1. A crisp region in a connected crisp topological space (X, T')

is a non empty regular closed subset A of X such that A° is connected.

Definition 2.2.2. A region with holes in R? is a region whose exterior is sep-
arated into one outer exterior and n > 0 inner exteriors. The outer exterior
will be denoted by Ay~ and inner exteriors by A; 7, A2, ..., A,~ such that their
union makes the entire exterior as A~ = U}ZjA;. Thus, a region with holes
denoted by A is a non-empty subset of R? with connected interior such that the
closure of any two different inner exteriors are disjoint and A is equal to closure

of A’s interior. ie. Vi,j=0,1,..,n;i# j, AT NA; = ¢ and A = A°.

Definition 2.2.3. A hole of A is the closure of an inner exterior denoted by

Hy.
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A hole 1s a connected set that 1s strictly contained in A and each hole Hy, 1s

disjomnt from hole Hy , 1 # 7

Definition 2.2.4. Supposc the icgion A has n holes Ha,, Ha,, ,Ha, then
the generalized region of A denoted by A* 1s the union of A and all the holes

contained ;m A

The concept of hole as the closure of inner exterior allows us to map any region
with holes mto a group of simple regions without holes By considering the
holes as separate objects, modeling of topological relations between region with
holes can be expressed in terms of topological relations between regions without

holes as given 1n section 2 2 1

Definition 2.2.5. A spatial scene s a conceptual model for deriving the new
sets of consistent relations using the binary 1elations between host-regions, be-

tween holes, between host-regions and holes

Definition 2.2.6. (Node consistency) If for every variable z the constraint on
1t comcides with the domain of z, then such consistency 1s referred to as node
consistency

For example - If IN 1s the set of Natuial numbers and Z 1s the sct of integers,
then {z; > 0 ,z, > 0,21 € N, ,z, € IN} 18 node consistent whereas

{z:20, ,2,.20,2; €N, ,z,1 €N, z, € Z} 15 not node consistent

Definition 2.2.7. (Arc consistency) A constraint C on the vanable z y with

domains X and Y (so C C X x Y) 1s arc consistent 1f
Va € X 3b €Y such that (a,b) € C

Vb €Y Ja € X such thal (a b) € C
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For example- {x <y z € [2 6],y € [3 7]} 15 arc consistent but {z <y z €

[2 7], y € [3 7]} 18 not arc consistent

Definition 2.2.8. (Path consistency) If z,y, z arc three vanables in the do-
mam X, Y, Z and Cy , Cy;, C, ; are constraints then they are said to be path
consistent 1f

C:l:ygcyz Cz.c

For example -{z < y,y < z,z < z,z € [0 4],y € [1 5],z € [6 10]} 1s path
consistent because C,, = {(a,b)la < b,a € [0 4],b € [1 5]}, Cy. = {(b,0)|b <
cbell 5],ce (6 10]}, Cr. ={(a,c)la<c,a€ (0 4] c€[6 10]}

2.2.1 Analysis of crisp topological relations

The 4-intersection model !

This model was developed by Egenhofer and Franzosa [30] in 1990 They char-
acterized the topological relations between two sets in terms of the four inter-
sections of the boundary and intenor of the spatial object Thus, if A and B are
two spatial objects with interior and boundary A°, B°, A and 0B respectively,

then the 4-intersection matrix 1s given by

A°nB° A°NOB
J0ANB° 0ANOB

Table 21 4-intersection matrix

Considering the content of the intersection to be empty (¢) or non empty (—¢),
there are a total of sixteen topological relations between two spatial objects in

R? which are listed in table 2 2
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Relation | (9N, oo, 3N o, 0N )
0 (¢, @, b, @)
at (-¢, ¢, ¢, )
T2 (9, -8, ¢, ¥)
T3 (-¢, -9, ¢, ¢)
T4 (¢, ¢, -9, ¢)
Ts (-4, ¢. -¢, ¢)
Te (¢, -9.-¢, ¢)
r7 (-¢, -4, -9, ¢)
T (¢, 6. ¢, -9)
To (-9, ¢. ¢, -¢)
T10 (¢, -9, ¢, -9)
™ (-¢, -, ¢, -¢)
712 (¢, ¢, -, -¢)
13 (-6, 6. -4, -9)
T4 (¢, -9.-¢,-9)
T1s (-¢, -6, -¢, -¢)

Table 2.2: Topological relations between two sets
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Out of the 16 relations, only 8 relations are realizable between two ob)ects with

connected boundary mn R* They arc given below m table 2 3

Relation | Intersection value Name
o (¢, ¢, ¢, 9) Disjomnt
" (6 9 ¢ ¢) Meet
T3 (-6, -0 ¢, @) Equal
T6 (9 -¢,-¢ ¢) Inside
7 (-¢ -9,-¢, #) | Coveredby
0 (¢ -¢, ¢,-9) Contain
™ (-¢ -9, ¢, -9) Cover
715 (-¢ -8, -¢,-9) Overlap

Table 23 Topological relations between two regions with connected boundary

This set of 8 relations provide a complete coverage and are mutually exclu-
sive relations so that exactly one relation holds good between two regions with

connected boundary 1n R?

Crisp 9-intersection model

Another mmportant model for analyzing binary topological relations between
two crisp sets 1s the 9-intersection model In this model, a spatial object A 1s
decomposed into thiee parts an intetior (A°) boundary (0A) and exterior (A7)
For two crisp objects A and B, their topological relations can be determined by
the mteisection of the mteniol, the boundary and the extenor of the objects
There are a total of nine intersections among the six parts of two objects These

nine inteisections can be represented by the following intersection matrix given

below
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A°NB° A°NoB A°NB-
0ANB° GANOB J0ANB~
A"NB° A" NdB A NnB~

Table 2.4: 9-intersection matrix

Considering the content of intersection to be empty and non empty, a total of

512 relations are realizable between two objects with connected boundary in

R2.

Intersection matrix for crisp regions with and without holes

The topological relations between a region A and a region B with a hole is mod-
eled as a spatial scene considering region, region with hole and hole as separate
spatial objects without hole and topological relations between two regions with
connected boundaries will be considered as content of intersection. Thus, the

relation matrix for this case is given below.

A B* Hg

Al HAA) | HA B | HA Hpg)
B* | 4(B*,A) | «(B*,B*) | t(B*, Hg)
KE t(Hg,A) | t(Hp, B*) | t(Hp, Hp)

Table 2.5: Topological relation matrix for holed regions

Here, B* is the generalized region, Hp is a hole in B* and t(A, B*) represents
the topological relation between A and B*.

"Using 8 topological relations between two regions with connected boundary as
the content of intersection, the topological relations in the above interéection

¢

. matrix are given by
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A B* Hg

A equal | t(A,B*) | t(A, Hg)

B* | t(B*,A) | equal | contain

Hg | t(Hpg,A) | inside equal

Table 2.6: Equivalent topological relation matrix for holed regions

Here, the relation t(A, B*) is implied by the relation ¢(B*, A) and vice-versa.
Therefore, the number of distinct relations in the matrix depends upon the rela-
tions t(A, B*) and ¢(A, Hp). Since, content of intersection is the eight relations
between two regions, so there are total of 8 choices for each of these two rela-
tions. Thus, the total number of relations in this matrix will be 82. However,
under node consistency, arc consistency and path consistency, there are only 23

relations realizable between regions without and with hole in R2.

2.3 Fuzzy set theory

Fuzzy set theory is an extension of classical set theory which allows the mem-

bership of an element in the range [0,1].

Definition 2.3.1. Let X be a set. A fuzzy set or a fuzzy subset in X is a
function A from X into the closed unit interval [0,1]. The function A is called
the membership function. For each z € X, A(z) is called the membership grade

of z in the closed interval [0, 1].

2.3.1 Basic fuzzy set theoretic operations

Definition 2.3.2. Let A and B be two fuzzy subsets of X. Then we have the

following:



Chapter 2 24

(1) Union : (AU B)(z) = maz{A(z), B(z)}; forz e X
(i) Intersection: (A N B)(z) = min{A(z), B(z)}; forz € X

(iii) Complement: The complement A€ of A is defined as
A%(z) = {A°(z) : A%(z) =1 - A(z), forz e X}

(iv) Equality: A = B iff A(x) = B(z), vz e X

(v) Containment: A C B iff A(z) < B(z), z€ X

(vi) Commutativity: AUB=BUA, ANB=BNA

(vii) Associativity: (AUB)UC = AU(BUC), ANB)NC=ANn(BNC)
(viii) Idempotency: AUA=A, ANA=A

ix) Distributivity: AU{BNC) = (AUB)N(AUC), AN(BUC) = (ANB)U(ANC)
x) Absorption: AU¢=A ANX=A

(
(
(xi) De Morgan’s law: (AU B)° = A°N B¢, (AN B)¢ = A°U B°
(xii) Involution: (A¢)¢ = A

(xiii)Equivalence formula: (A°U B)N (AU B¢) = (AN B°)U (AN B)
(

xiv) Symmetrical difference formula: (A°NB)U(ANB¢) = (A°UB°)N(AUB)

Remark 2.3.1. In fuzzy set theory, the law of contradiction and law of excluded

middle doesnot holds i.e. ANA®+# ¢ and AUA®# X

2.3.2 Extended operations

Definition 2.3.3. For any two fuzzy sets A and B in X
(i) Fuzzy difference: (A — B)(z) = (AN B%)(z), Yz € X

(ii) Simple difference: (A — B)(z) = {A(z) — B(z): z € X}

(iii) Bounded difference: (AVB)(z) = maz(0, A(z) — B(z)), Vzxe X
(

iv) Absolute difference: (A{ — |B)(z) = |A{z) — B(z)|, Vz e X
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(v) Product: (A - B)(z) = A(z) - B(z), Vz € X

(vi) Bold intersection: (A N B)(z) = maz(0, A(z) + B(z) — 1), Ve X
(vii) Probabilistic sum: (A+B)(z) = A(z) + B(z) — A(z).B(z), Vze X
(viii) Bounded union: (4 VB)(z) = min(l, A(z) + B(z)), Vz € X

Definition 2.3.4. A fuzzy set A on R is convex iff A(Az; + (1 — N)zz) >
min{A(z:), A(z2)} for all z;,z, € R and all A € [0,1], where min denotes the

minimum operator.

Definition 2.3.5. An a-cut of a fuzzy set A (where a € [0,1]) in X is defined
as A* = {z € X : A(z) > a}. Theset A*" = {z € X : A(z) > a} is called the

strong a-cut of A. Both a-cut and strong a-cut of a fuzzy set are crisp sets.

Definition 2.3.6. The support of a fuzzy set A is the collection of all those

elements whose membership grades are greater than zero.
Supp(A) = {z: A(z) >0,z € X}
The support of a fuzzy set is always a crisp set.

Definition 2.3.7. The height of a fuzzy set A denoted by H(A) is the highest

membership values of its membership grades i.e.

H(A) = max{A(z)}

zeX

A fuzzy set is normal if H(A) = 1 and subnormal if H(A) < 1.

2.3.3 Fuzzy relations

A crisp relation represents the presence or absence of an association, interaction

or interconnectedness between the elements of two or more sets. This concept is
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generalized to represent various degrees or strengths of association or interaction
bet.ween elements which can be represented by membership grades in a fuzzy
relation similar to the membership grade as in case of the fuzzy sets. Thus, a
crisp relation can also be viewed as a restricted or particular case of a fuzzy
relation. Each crisp relation can be defined by a characteristic function which
assigns a value 1 to every tuple of the universal set belonging to the relation and
0 to every tuple not belonging to it. The membership of a tuple in a relation
signifies that the elements of the tuple are related to or associated with one

another or not.

Definition 2.3.8. Let X,Y be universal sets, then

R={((z,y), Alz,y))l(z,y) € X x Y}
where A: X xY — [0,1] is called a binary fuzzy relation on X x Y.
Let R be a fuzzy relation on X xY. Then R is reflexive if R(z,2) =1, 2 € X; R
isirreflexive, if R(z,z) = 0, Vz € X. Rissymmetricif R{z,y) = R(y,z), z,y €
X. R is perfectly antisymmetric if Vz,y € X,z # y and R(z,y) > 0 implies
R(y,z) = 0. R is antisymmetric if z # y then R(y,z) = R(z,y) = 0, or
Ry, z) # R(z,y).
Definition 2.3.9. Let X, Y C Rand A = {(z, A(z))|z € X}, B = {(y, Bly))ly €
Y} be two fuzzy sets. Then R = {((z,v), R(z,y))|(z,y) € X x Y} is a fuzzy

relation on A and B if

R(z,y) < A(z) and R(z,y) < B(z), V(z,y) e X x Y

Definition 2.3.10. Let R and Z be two fuzzy relations in the same product

space. The union and intersection of K with Z is defined as

(RU Z)(z,y) = maz{R(z,y), Z(z,y)}, Y(z,y) € X x Y
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(RN Z)(z,y) = min{R(z,y), Z(z,y)}, V(z,y) € X xY

Definition 2.3.11. (Max-Min composition:) Let Ri(z,y), (z,y) € X xY and
Ry(y, 2), (y,2) € Y x Z be two fuzzy relations. The max-min composition of

R; and R, is defined as
Rio Ry = {((IZJ, z)’maxy{mzn{Rl(x)y): Rz(y,z)}}]lz € Xay € Y,Z € Z}

where R; o Ry is again the membership function of a fuzzy relation on fuzzy sets

defined in definition 2.3.10.

Definition 2.3.12. (Zadeh extension principle) Any given function f: X —
Y induces two functions, f7 : F(X) — F(Y) and f< : F(Y) — F(X) which
are defined as [f(A)|(y) = supgy=r@) A(z) for all A € F(X) and [f~1(B)(z) =
B(f(z)) for all B € F(Y), where F(X) and F(Y) denote the class of fuzzy
subsets of X and Y respectively. We simply denote f~ and f* by f and f~!

respectively, when there is no scope of confusion.

2.4 Fuzzy topology

Fuzzy topology is constructed using fuzzy sets. It may be noted that due to ex-
istence of stratum structure, each notion in general topology usually has several

counterparts in fuzzy topology.

Definition 2.4.1. A fuzzy topology is a family T of fuzzy sets in X which
satisfies the following:

) O0x,1x €T

i) IfA,B € Tthen ANB e T

iii) If {A, "7 € J} C T, where ] is an index set, then U,cyA, € T.
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Here, Ox and 1x respectively denotes the functions on X which are identically
0 and 1 respectively.

The pair (X, T) is called a fuzzy topological space (fts, in brief).

The elements in T are called the fuzzy open sets (or simply open sets) and their
complements are the fuzzy closed sets (or closed sets). Those fuzzy sets in X

which are both open and closed are called clopen sets.

Definition 2.4.2. Let A be a fuzzy set in (X, T) then

(1) The union of all the open sets contained in A is the interior of A, denoted
by A°.

(i) The intersection of all the closed sets containing A is the closure of A,

denoted by A.
Following are some of the properties of closure and interior of a fuzzy set:

Theorem 2.4.1. Let A and B be fuzzy sets in a fuzzy topological space (X, T).
The;t,

(i) A is fuzzy closed (resp. fuzzy open) < A = A(resp. A° = A)

(i) A< B= A< B and A° < B°

(iii) (A) = A and (A°)° = A°

(v) AUB=AUB

(v) ANB>ANB

(vi) A°UB° < (AU B)°
(’U'Li) A°NB°=(AN B)°
(viii) (A°)° = (A), AC = (A°), (A°)¢ = A¢ |

Theorem 2.4.2. For any fuzzy set A, A°=1x —1x — A

Definition 2.4.3. The exterior of A is the complement of the closure of A.
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Definition 2.4.4. A fuzzy set is said to be fuzzy regular closed if A = (A)°

and fuzzy regular open if A° = ((A°))°.

2.4.1 Types of fuzzy boundary

In fuzzy topology there are three different useful definitions of fuzzy boundary
proposed by Warren in 1977, Pu-Liu in 1980, Cuchillo-Ibanez in 1997. Let A
be a fuzzy set in a fuzzy topological space (X,T). Then

Definition 2.4.5 (Warren). The fuzzy boundary of A is the infimum of all the

closed fuzzy sets D in X with the property D(z) > A(z) for all zeX for which
(AN A°)(z) > 0or A°(z) # 1.

Definition 2.4.6 (Pu and Liu). The fuzzy boundary of A is defined as AN Ac.

Definition 2.4.7 (Cuchillo-Ibanez and Tarres). Fuzzy boundary of A is the

infimum of all closed fuzzy sets D in X with the property D(z) > A(z) for all
zeX for which (A — A°)(z) > 0.

Notably, these definitions do not simultaneously satisfy properties that bound-
ary of a set satisfies in case of classical topology. Some of the useful properties
are discussed below. For convenience, we denote the fuzzy boundaries of 4 due
to Warren, Pu and Liu and Cuchillo-Ibanez by 0, A, 02 A and 05 A respectively.

The following results are trivial.

Theorem 2.4.3. (i) Boundary of an empty set as well as whole space s empty.
(i1) Boundary of a fuzzy set is a closed fuzzy set.

(iii) Boundary of a fuzzy set is contained in the closure of the set (i.e. 0;A <
Ai=1,23)

(iv) A is a closed fuzzy set iff LA < Ai=1,23.
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(v) For any fuzzy set A, boundary of the boundary of A 1s a subset of the
boundary of A (ve 8,(0,A) < 9, A,1=1,2,3)
(n) Boundary of the intersection of the set 1s less than or equal to the union of

thewr boundary (1e 9,(ANB)<0,AU0B,1=1,2,3)

In addition, the following results hold for the specific fuzzy boundaries

Theorem 2.4.4. (1) 0, A° < 5, A and 93A° < 03A

(1) 1A < 81 A and 534 < G54

(w1) A=0,AUA°, A=03AU A° and 4 > 0,AU A°

(w) 81A(z) = A(z) or 0, according as (AN AS)(z) 15> or = 0

(v) 03A(z) = A(z) or 0 according as (A — A°)(z) 158> or =0

(w) If (ANA) = 0 then &1 A(z) = B A%(z) = 0

(vi) For any fuzzy set A, A= AUBA A=AUGA, A> AUGA
(v1) O, A = 0, AC

In Chapter 3 some more properties of these three boundarics shall be discussed

for a comparative evaluation

2.4.2 Fuzzy point and fuzzy neighborhood

Definition 2.4.8. A fuzzy point 1s a fuzzy subset of a set X with support z

which 1s defined by

A fy =z,
33,\(1/) =
0 otherwise

In other words, a fuzzy set in X 1s called a fuzzy pomnt iff 1t has membership

degree zero for all y € X except one, say z € X We denote a fuzzy point by



Chapter 2 31

z2(0 < XA <1). An example of fuzzy point P (z,) is given in figure 2.1.
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Figure 2.1: A fuzzy point

The fuzzy point x, is contained in a fuzzy set A or belongs to A denoted by
zy € Aiff A < A(z) the membership degree of x belongs to A. A fuzzy set with

membership function

1, ifz=uy;
P(z) = Y
0, otherwise.

is called a crisp point.

Definition 2.4.9. [69] A fuzzy set A in (X,T) is called a neighbourhood of
a fuzzy point x, if there exists B € T such that zy € Band B C A. A
fuzzy point z, € A° iff ) has a neighborhood contained in A. Obviously,
a fuzzy point z, ¢ A° iff every neighborhood of z, is not contained in A.
A fuzzy point x, is said to be quasi-coincident with A, denoted by x qA, iff
A > A%(z) or A+ A(x) > 1. A fuzzy set A is said to be quasi-coincident with B
if A(z) > B(z) or A(z)+ B(z) > 1, Vo € X. A fuzzy set Ain (X, T) is called
a quasi-neighborhood of x, if there exists B € T such that zygB and B C A. A
fuzzy point x, € A~ iff each quasi-neighborhood of z, is quasi-coincident with

A.
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2.4.3 Connectedness in fuzzy topological space

Definition 2.4.10. [69) Two fuzzy sets A and B in an fts (X,T) are said to
be separated if there exists VU € T, such that U D A,V 2 Band UNB =
VNA=¢ Two fuzzy sets A and B in (X,T) are said to be Q-separated if
there exist closed sets H, K such that H 2 A, K D Band HNB=KNA=¢.

In general, Q-separation and separation do not imply each other. However, two

crisp sets 1n an fts are separated iff they are ()-separated.

Definition 2.4.11. [52] A fuzzy topological space X is called connected if there
are no separated sets C and D such that A = CU D. A fuzzy set A is said to
be open-connected if there are no separated sets C' and D such that A = CUD.
A fuzzy set A is said to be closed-connected if there are no @Q-separated sets C
and D such that A =CuU D. A fuzzy set is said to be double-connected if it is

both open-connected and closed-connected.

Definition 2.4.12. A connected component in a fts is a maximal connected

subset.

2.4.4 Fuzzy homeomorphism and topological relations

Definition 2.4.13. A function f: X — Y is said to be fuzzy continuous, if for

each fuzzy open set A in Y, f~1(A) is a fuzzy open set in X.

Definition 2.4.14. A mapping f : X — Y is said to be fuzzy open (fuzzy
closed), if for each fuzzy open (fuzzy closed) set A in X, its image f(A) is a

fuzzy open (fuzzy closed) set in Y.

Definition 2.4.15. A mapping f: X — Y from a fts (X,T) to fts (¥, T") is

said to be fuzzy homeomorphism if f is bijective, continuous and open.
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Fuzzy homeomorphism is a union preserving and crisp subset preserving. Those
properties of fuzzy set that are invariant under fuzzy homeomorphism are said
to be fuzzy topological invariant or simply topological invariant whenever there

will be no confusion.

Definition 2.4.16. Let R be a binary fuzzy relation from fuzzy set A C X to
fuzzy set B C X on fuzzy topological space X. R is called a fuzzy topological
relation from A to B on X if R is a topological invariant under fuzzy homeo-
morphism. If R(a,b), a € A, b € B takes only value 0 and 1, then R is crisp.
In other words fuzzy topological relations are relations that are invariant under

fuzzy homeomorphism.

2.5 Fuzzy line

A fuzzy line is a curve with continuous transition of membership grades with
neighboring points.

Let (X,T) be an fts. Then

Definition 2.5.1. [59] Let P and @ be two points in X. The non-fuzzy line
joining PQ is defined as the image of a map o : [0,1] — X given by a(t) =

P +t(Q — P), where [0,1] is a closed interval in R and ¢ € [0, 1].

Definition 2.5.2. [59] A fuzzy subset [ in X is called a fuzzy line if support of !
is a non-fuzzy line in X and its boundary has at most two supported connected

components. ,

Remark 2.5.1. In definution 2.5.2, Pu-Liwu’s notion of fuzzy boundary is con-

sidered.
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Example 2.5.2. The following 1s an ezample of a fuzzy hine mn R? :
L:R*—[0,1] by

0, if x <0.25
1f0.25 <z < 0.5

™

L(z) =13 1, f 0.5 <z<.75
%~e, f <<l
0, fxr>1

\

where ¢ > 0 1s any arbitrary real number.

It is represented by figure 2.2.

Lz}

membeiship grade

Figure 2.2: A fuzzy line in R?

2.6 Fuzzy regions

2.6.1 Reason for occurrence of fuzzy regions

A fuzzy region occurs due to a variety of causes. Two important reasons are

the following:
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1) Indetermunate boundary

Most of the spatial phenomena occurring in nature do not have sharp boundaries
or precisely defined boundary which gives rise to fuzzy spatial objects and fuzzy
regions

n) Temporal changes

Due to temporal changes of a spatial object 1t frequently changes 1ts position
which give rise to position uncertainty Some of the attributes of the object also

depend upon the passage of time and hence give rise to a temporal fuzzy region

Since their inception, fuzzy sets have been very effectively used in many branches
of knowledge to deal with uncertainty or vagueness associated with various phe-
nomenon Fuzzy 1egions are natural generalization of crisp regions to accom-
modate uncertainties 1nvolved 1n describing spatial objects particularly due to

reasons (1) and (11) above

2.6.2 Examples of fuzzy regions

Following are some typical examples of fuzzy rcgions that we encounter m our
day to day life

1) Clouds of polluted air near a chemical factory

1) Regions with different chances of contacting virus infections

m) Weather maps

2.6.3 Mathematical approaches

Informally speaking, a fuzzy region is a region that associates a degree of mem-
bership (in the fuzzy region) to cach point of the 1cgion wr t the space such

that the support set of a fuzzy region 1s a crisp region

There are two noteworthy definitions of fuzzy region proposed by Schneider [79]



Chapter 2 36

and Tang and Kainz [88, 89] provided in the next section.

2.6.4 Different approaches to fuzzy regions

There are various approaches of defining fuzzy regions in an fts provided by
various authors including Schneider [79], Tang and Kainz [88, 92|, Palshikar
[73] etc. In this work, we will consider Schneider’s as well as Tang and Kainz'’s
approach as these approaches consider fuzzy regions as open and closed sets
respectively so that a fuzzy region shall be an extension of a crisp region. Other

approaches discard this point.

Schneider’s approach (1999)

(a) Schneider’s fuzzy regions in reality: According to Schneider there are

four types of fuzzy regions in reality:

1) Core-boundary fuzzy regions:

In such type of fuzzy regions one can differentiate core, boundary and the exte-
rior of the region. It can be modeled by assigining membership value 1 to core,
% to boundary and 0 to exterior.

For example, a lake with minimal water level during dry periods (core) and max-
imal water level in rainy periods (boundary is the difference between maximal
and minimal water level). It can be seen that dry periods entail puddles which

are less flooded but more flooded (not completely flooded) in rainy season.

ii) Finite valued fuzzy regions:

In this case finite number of memberships are used for representation. If n € N
is the number of possible “truth value”, then an n-valued membership function
is used to represent a wide range of belongingness of a point into the region.
For example, we can consider a region with different possibilities for virus in-

fection where region will be divided into ‘n’ different risk levels extending from
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areas with extreme risk of infection over areas with average risk of infection to

safe areas

m) Interval-valued fuzzy regions

Here interval valued fuzzy sets are used i place of assigning single value to
represent a region If there 1s an order set of n-arbitrary but disjoint values of
the interval [0, 1], then we assign any value say v to one of this values and assign
values to other points of the component such that v 1s the lower bound of the
set and each pomnt has a successor If w 1s the greatest of all these successors,
then all point of the component 1s mapped to the interval [v, w)

For example, the map about the population density of a country Here the
country 1s sub-divided nto regions showing the mimimal guarantee population
density per unit area for each region The density values of different regions can

be rather different

1v) Smooth fuzzy regions

In this class of fuzzy region the distribution of attributes are smooth, which 1s
achicved by predominantly continuous membership function

For example magnetic field, temperature zone, sun insolation etc can be termed

as smooth fuzzy regions

It may be noted that core-boundary fuzzy regions and finite value fuzzy regions
are qualitative 1n character, 1e the number involved 1m membership function
gives indication about the symbolic role but 1t does not provide any information
regarding the size of the attribute o1 effect whereas interval-valued fuzzy regions

and smooth fuzzy regions give emphasis on quantitative character of the effect

Schneider’s approach [79]
Let T be a fuzzy topology on Euchdean space R?2 and A be a fuzzy sct in

(R?,T) The following topological mputs are required for formal definition of
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fuzzy regions:

Definition 2.6.1. Frontier of a fuzzy set A is defined as

frontierr(A) = {((z,y), palz,y)) : (z,y) € supp(A) — supp(A°)}

where p14 is a membership function from R? to [0,1].

Definition 2.6.2. A fuzzy set A is said to be spatially fuzzy regular set, if A is
a regular open set such that frontierr(A) C frontierr((A)°) and frontierr(A)

is a partition of ‘n’ connected boundary parts.

Definition 2.6.3. Regularisation function of a fuzzy set A is defined as regs(A) =
(A)° U (frontierr(A) N frontierr(A)°))

The interior operator eliminates dangling points and line features. The closure
operator introduces fuzzy boundary similar to crisp boundary separating the
points of closed set from exterior. The operator frontierr ensures the restriction

of the boundary because Schneider considered that fuzzy regilons are partially

bounded.

Definition 2.6.4. A function f is said to contain a continuity gap at point z,
of its domain if it is semi-continuous (i.e we recall that a function f: X —
[0,1] is said to be semi-continuous if f is continuous for both upper and lower
topology on [0,1] where upper and lower topologies are generated by the sets
{[0,a) : 0 < a <1} and {(a,1] : 0 < a < 1} respectively) but not continuous at

Zo.

Definition 2.6.5. A function f is said to be predominantly continuous if it is

continuous and has at most a finite number of continuity gaps.

Definition 2.6.6. A region R which 1s a subspace of spatially regular fuzzy set

and its membership is predominantly continuous.
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Tang and Kainz’s approach [92]:

Definition 2.6.7. A fuzzy set A is called a simple fuzzy region in a connected
crisp fts if it meets the following conditions:

(SR1) The closure of the simple fuzzy region is a regular closed subset in fts.
(SR2) The interior, the interior of the boundary and the exterior are non empty
connected sets.

(SR3) The support of the simple fuzzy region is equal to the closure of A.

The first condition ensures that a fuzzy region is an generalization of a crisp sim-
ple region. The regularity condition ensures the removal of geometric anomalies
(missing points and lines) in the region in the form of cuts and punctures. The
first part of the second condition ensures that the interior should be in one
piece. Connectedness of the interior of the boundary removes dangle points or
break lines. The connectedness of boundary and exterior of a simple fuzzy region
ensures that it shall not contain any hole or gap. The third condition requires

that A should be equal to a crisp simple region when A is projected to 1 of [0,1].

Possible settings of a fuzzy region in the crisp fts

Figure 2.3: Possible setting of a simple fuzzy region

These three figures simultaneously satisfy all the conditions required for Tang

and Kainz’s simple fuzzy region.
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Impossible settings of fuzzy region in a crisp fts

(a) (b) ()

(d) (f)

Figure 2.4: Impossible settings of simple fuzzy region

()

(2)

The figure 2.4 shows impossible settings for a simple fuzzy region as they do
not satisfy some of the conditions of fuzzy regions. In the figures (a), (b) and
(c) exterior is not connected, in figure (d) boundary is not connected. Figure
(e) in the second row, closure of the set is not regular closed set, in the figure
(f) in the same row, interior of the set is not connected and in the figure (g) in
the same row, interior of the boundary is not connected. Hence these do not

represent a simple fuzzy region in (R, C).

Tang and Kainz provided another definition of fuzzy regions in the setting of
a general fts which will be discussed later in Chapter 4, using some more fuzzy

topological notions.

Merits and demerits of the above approaches

Schneider’s definition of fuzzy region is based on open sets and Tang and Kainz's

definition is in terms of closed sets. Since, crisp region is considered to be a
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closed set, therefore, Tang and Kainz’s definition is seen as more consistent
than Schneider’s definition. However, each of these approaches has certain ad-
vantages and disadvantages. We now enlist some of the merits and demerits of

both the approaches.

Merits

i) Regularization function in the Schneider’s definition of fuzzy region can alone
work for the removal of geometric anomalies which decreases the complexity of
the model.

ii) Schneider’s definition can be applied even when exterior is not connected.
iii) Tang and Kainz’s definition is consistent with the definition of crisp simple
region.

Demerits

i) Schneider definition is inconsistent with the definition of crisp simple region.

ii) Tang and Kainz’s definition is applicable only when exterior is connected.

The approach of Tang and Kainz’s for defining a fuzzy region is seen to be
more consistent than Schneider’s approach because in the case of Schneider’s
definition regularization of the space only removes breaklines and dangle points
but in case of Tang and Kainz’s fuzzy region, as justified in the definition, reg-
ularization not only removes breaklines and dangle points, it also removes cuts
and punctures. Furthermore, Tang and Kainz’s definition is a direct extension
of that of a crisp region in fuzzy setting. However, both the definitions of fuzzy

regions would not work if the region contains holes.
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2.6.5 Topological relations of fuzzy spatial objects
Topological relations between two fuzzy regions:

A classical topological space cannot accommodate fuzzy sets since all subsets
are crisp. So, the study of topological relations between fuzzy sets in the set-
ting of an fts emerge as an useful area of research. Many authors have studied
the topological relations between fuzzy spatial objects in an fts. In fuzzy set
theory due to the non existence of the law of contradiction and excluded mid-
dle, the intersection of interior and boundary as well as boundary and exterior
is non-empty. Hence, further analysis of properties are required to study the
topological relations between two fuzzy sets. It has been shown by many au-
thors that the number of topological relations between two fuzzy sets will vary
depending on the procedure of derivation. But there are eight elementary topo-
logical relations viz. disjoint, meet, overlap, equal, cover, covered by, inside,
contain (similar to classical case) which will always exist between any two sim-
ple fuzzy regions A and B in any fts, in particular, in (R%,T) where T is a

topology on R2.

The mathematical definitions of these eight relations [55] are given below:

i) Disjoint: If (AN B)(z) = 0 for all z € R?.

ii) Meet: If there exists some zo € R? such that (AN B)(z) > 0 and there is
no ¢ € X such that neither A(z) < B(z) nor A(z) > B(z).

iii) Overlap: If (AN B)(zq) > 0, A(z1) < B(z1) and B{zs) < A(z,) for some
Zg,Z1,Z2 € R?

iv) Equal: If A(z) = B(z) for all z € R2

v) Cover: If A(z) > B(z) for all z € R? satisfying B(z) > 0 and there exists
. z; € R? such that A(z,) = B(z;) > 0.

vi) Covered by: If A(z) < B(z) for all z € R? satisfying A(z) > 0 and there
exists z; € R? such that A(z;) = B(z;) > 0.
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vii) Inside/contained in: If A(z) < B(z) for all z € R? satisfying A(z) > 0.
viii) Contain: If A(z) > B(z) for all z € R? satisfying B(z) > 0.
In an fts due to the occurrence of membership grades, each of these eight el-

ementary relations has certain membership which can be calculated by using

Zhan’s formula [102].

Quantitative topological relations between simple fuzzy objects

Liu and Shi {55, 58, 59] developed a method to determine quantitative fuzzy
topological relations between two fuzzy spatial objects. They have developed

the following 3 x 3 integration model

Ae OA (A%
Ba | [(AanBa)dV | [L(BANBL) AV | [,((A%an By) dV
8B | [, (Axn8B)dV | [,(BANSEB)dAV | [,((AaNB8B)dV
(B | Jx(AaN(B%)a) AV | [x(BAN(B)s) AV | [x((A%)a N (B)a) AV

Table 2.7: Quantitative topological relation matrix for fuzzy regions

where A and B are two fuzzy sets, A, is a-interior of A where
Aolz) = Az), if A(z) >
‘ 0, Alz) £ a.
[x(An B) = ([, (AN B)(z)dz| [, (AU B)(z)dz).

a; .
, OA-boundary of A, (A%),-exterior of A, and

The geometric meaning of fX(A N B)dV is that it represents the ratio of the
area (or volume) of the meet of two fuzzy spatial objects to the join of the two
fuzzy spatial objects, where join means union and meet means intersection of
the object parts. If the involved spatial objects are a fuzzy line and a fuzzy
point, then volume integral is replaced by surface or line integral.

Using 3 x 3 integration matrix, Liu and Shi [59] found that there are 3 realizable
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relations between a fuzzy region and a fuzzy point, 16 realizable relations be-
tween a fuzzy region and a fuzzy line, 3 between a fuzzy line and a fuzzy point,
and as many as 46 between two fuzzy lines in R?.

Further, from the mathematical definition of topological relations between a
fuzzy region and a fuzzy point it can be seen that the set of topological rela-
tions between fuzzy region and fuzzy point is a subset of the set of topological
relations between two fuzzy regions, that is, if A be the fuzzy region and P be
the point then, the relevant mathematical definitions are

i) Disjoint: ANP =¢

i) Meet/overlap: OANP # ¢

iii) Inside/contain/cover/covered by: A°N P # ¢.
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Fuzzy region with holes and
their topological relations in a
crisp fts

3.1 Introduction

A fuzzy 1egion 1s a region with imprecise boundary which allows flexibility ot
strict belongingness criteria of a pomnt 1n space in relation to the region Fuzzy
regions were 1mtially defined by Schneider [79] in terms of fuzzy open sets A
fuzzy region can be considered as an extension of a crisp region that allows
flexability 1n belongingness of a pont in the 1egion with respect to the space
Tang and Kainz (88, 89, 92] provided two defimtions of fuzzy regions - one mn a
special type of fuzzy topological space viz a cnisp fuzzy topological space and
the other in a general fuzzy topological space They considered fuzzy regions
to be closed sets making 1t consistent with 1ts classical counterpart However,
incorporation of holes i a fuzzy region has not been considered by any of these
approaches A laige number of real life phenomena exhibit discontinuity at
boundary and exterior in the form of cavities giving rise to regions with holes
In order to capture these 1eal phenomena, 1t becomes essential to incorporate

!Selected portions of this chapter have appeaied in our papers [43] and [44]
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them explicitly in the formulation of fuzzy regions. In this Chapter, we have
defined fuzzy regions with holes in a crisp fts (R?, C') which will be an extension
of crisp region in a classical topological space in (R?,C).

The main purpose behind the development of fuzzy regions is the derivation of
topological relations. As discussed in Chapter 1, Zhan [102] formulated fuzzy
analogues of the 4-intersection model in terms of the a-cut operation. Du et.
al. [23] proposed the fuzzy extension of the 9-intersection matrix by defining
the membership grades for interior, boundary and exterior. Tang and Kainz
[88, 92], derived topological relations between fuzzy regions and used them in
analysis of land cover changes. In the current chapter, we have derived the
topological relations between fuzzy region with holes and various other basic

fuzzy spatial objects in a crisp fts.

3.2 A comparative study of fuzzy boundaries

In Chapter 2, we have discussed various types of fuzzy boundaries available in
the literature. It may be noted that the boundary of the spatial objects is one
of the important aspects of studying and analyzing fuzzy topological relations.
In this section we analyze and compare these definitions in terms of their set-
theoretic properties. The purpose is to justifiably identify the fuzzy boundary

suitable to be used in the context of application in this thesis.

3.2.1 Interrelationship among the boundaries

We recall the fuzzy boundaries in the sense of Warren, Pu-Liu and Cuchillo-
Ibanez-Tarres. For a fuzzy set A, we denote these boundaries by 0, A, 0,4, 0;A
respectively.

The following are obvious:

(i) A > 0,4 > 03A and (ii) 8,4 > 5,A
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i.e. O1A contains the other two boundaries, which in turn is the boundary

contained in the closure of the set.

Remark 3.2.1. Fuzzy boundaries wn the sense of Pu and L and Cuchillo-

Ibanez are independent of each other.

We consider the following example to establish the same:

Example 3.2.2. Let X = {a,b} and fuzzy topology on X s gwen by

T ={0x,{as,bs},{as:bo},{asb7},{as br},{as, b2}, {asb2},{as b2}, {as b},
{as,bs},{as,bs}, {as,br}{as bs},{as bo}, 1x}

Let A= {ag4,bs} and B = {a4 b7}

Then, 0, A = {a4,b,}, A ={a4,b,}, 034 =0x and

OB ={as,bs}, 3B ={as,b3}, 3B ={asbs}

Therefore, 3A S 8, A and 9,B S 03 B.

3.2.2 Comparison of important set theoretic identities

Theorem 3.2.3. §,(0,(8,A)) < (0,(8,A)), » =1,2,3.

Proof For 1 = 2 and 3 proofs were provided by Ahmed and Athar (3] and

Cuchillo-Ibanez [19] and for 2 = 1 the proof is trivial. O

Remark 3.2.4. It was shown wn [5] that O, A = G, A° but the result would not

hold for other two definitions

Example 3.2.5. Let X = {a,b,c}. Let the fuzzy topology on X be gien by :
T = {Ox,{a4,b3,02},{a5,bg,cl},{as,b7,03},{a4,bg,cl},{a'4,b7,cz},
{as,b7,c1},{aq,b7,c1},{as bs,ca}{as,bs,c1},{ag bo,ca},{as,bs, 2},
{ag,bg,ca}, {as, b7, ca},1x}.
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Let A = {CL.5, bAg; C_7}.
Th’en; a1’4 = {a'.S) b.3> C.7}) a:quc = ]-X) 83‘4 = {a5) b.3)c.7} and 83/46 = 1X
Hence, 01 A # 01 A® and 03A # 03 A°

Theorem 3.2.6. §;4A > A — A° (i=1,2,3).

Proof. (i) If (AN A€)(z) > 0 then 8, A(z) = A(x)

It suffices to examine only those 2 € X for which (AN A¢)(z) > 0.
If for all z € X, we have (AN A¢)(z) > 0 then 8, A(z) = A(z).
Now, if for all z € X, (AN A°¢)(z) = 0 then 0, A(z) = 0.

As A > A — A°, it follows that A > A — A°.

(i) GpA = AN A > A - A°

(iif) If (A — A°)(z) > 0 then 3A(z) = A(z) > A(z) — A°(z).
A°

On the other hand, if (A — A°)(z) = 0, then 934 > A — A° = 0x. a

In [5], it was shown that if f : X — Y is a fuzzy continuous function, then
By f~(A) < f7}(8,A) for each fuzzy set A in Y. The same also holds for other

two boundaries.

Theorem 3.2.7. Let f : X — Y be a fuzzy continuous function and A be a
fuzzy set in Y. Then 0;f~Y(A) < f~Y(5;A) (i=1,3).

Proof. Here, 8, A is fuzzy closed in Y. Then, f~(8,A) is fuzzy closed in X.
Since f is non-null, (f~1(A) N (f~1(A))c)(z) > 0.

Hence, 8, f1(A) < [1(014) = f~1(BiA).
Likewise, 9371 (A) < f~1(85A). a

Theorem 3.2.8. Let A< B and B € FC(X). Then 3,A < B (i=1,2,3).

Proof. The proof is obvious as ;A < A, i =1,2,3. a
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It has been shown in [19, 95] that 8,4° < 5,4 and 8;A < 8,4, 1 =1,3.

Theorem 3.2.9. (i) 9,A° < 0,A (i) 0,A < D, A

Proof. (i)aZAOZ—/‘Fﬂ(/P)C: °N CSZﬂﬁ=c’92A

(i) A<A= A> (A = Ac> (A= ANA > AN (A = 0,A<5,A. O

Theorem 3.2.10. In a crisp fts all three definitions of fuzzy boundary are

equivalent.

Proof. If A € X be any fuzzy set where X is a crisp fts. Then closed set
containing A is a crisp set. By definition of the Warren boundary, 0; A=infimum
of closed sets D such that D(z) > A(z) for all z € X for which (AN A¢)(z) > 0.
Since in crisp fts if (AN A¢)(z) > 0 then (AN A°)(z) = 1 that is (AN A°) is the
smallest closed set containing A. Hence 6,4 = AN A¢.

Similary 8,A = AN A° and 934 = AN Ac. O

Corollary 3.2.11. If the intersection of the closure of the set and closure of the

set complement s zero then value of all the three forms of boundary are equal.

Remark 3.2.12. From Theorem 3.2.10 we can infer that if space under con-
sideration is a crisp fts then Pu-Liu definition of fuzzy boundary shall be most
suitable, it being analogous to definition of boundary in classical topology. All
other forms are equivalent to this form under this setting. If the space under
consideration is a general fts then we would prefer to choose Warren boundary
because from Section §.2.1 it contains the other two. Results derived using the

same shall therefore be more general.
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3.3 Separate settings for crisp and general fts’s

In the course of this thesis, the settings of a crisp fts and general fts are taken
up separately for development of fuzzy regions with holes The reasons are as
follows

A crnisp fts exhibits behaviour similar to a classical topological space The
difference however, hes in the fact that in a crisp fts fuzzy sets are allowed while
the later does not allow 1t Further in a crisp fts, 1t was noted in 3 2 1 that all the
three definitions of fuzzy boundary will be equivalent So Pu-Liu definition of a
fuzzy boundary can be utilized as 1t 1s analogous to defimition of a boundary in
classical topological space Moteover, in this setting we can define a fuzzy region
with holes using simple topological notions such as interior, boundary, exterior
and the hkes However, a crisp fts has the defimte drawback that 1t overlooks
the membership grades of open sets and consequently the membership grades of
the closed sets as well As most of the real life phenomena shows variation due to
intrinsic fuzziness, these can be better represented if we allow the membership
grades of the open scts A general fts allows thc mtrinsic imprecision of the
objects by allowing membership grade of the open sets But 1n that setting, we
shall requue to define some special topological notions to deal with complexity
of the situation and to maintain the consistency of the defimition of fuzzy regions
with holes with crisp regions with holes mn classical topology at the same time

The main advantage of treating a crisp and a general fts separately and inde-
pendently, therefore, lies in the development of the framework, if the underlying
space of the spatial objects docs not show much vanation in the behaviour of
the attributes under study with respect to other time dependant attribute of
the space, then we choose the setting of a crisp fts, 1educing time as well as

complexity of the computation 1n the process
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3.4 Fuzzy region with holes

Fuzzy regions with holes occur in different real life situations:
Some typical example of fuzzy regions with holes are - the earth surrounded
by oceans and inside the earth there are various water bodies such as lakes,
pond etc. Generally, ocean water is not used for drinking purposes but water of
lakes and ponds can be used for drinking. So we can say that lakes and ponds
water are bounded as it contain fresh water which can be used for household
purpose and ocean water as unbounded as it contains impurities and hence
cannot be used in household activities. We can, therefore, consider oceans as
an outer exterior of the earth and lakes as well as ponds as an inner exterior
of the earth due to their differences in attributes. In this case the earth can be
considered as a fuzzy region with holes where the inner and outer exterior can
be distinguished. Occurrence of oil underground is another example of fuzzy
regions with holes because the membership grade of fertility of soil varies from
portion to portion and the pore that contain oil inside the ground are that
portion where membership grade of fertility of the soil is zero. In each of these
examples first object is a hole on the second. Holes are placed in host material
that surround them and therefore cannot occur alone unless a surface for its
occurrence is provided by the host.

In next subsection, we have provided a framework for defining a fuzzy region

with holes in a crisp fts.

3.4.1 Framework for definition of fuzzy region with holes

We now generalize the definition of fuzzy regions in crisp fts. Since, a crisp
subset is a special case of fuzzy set so a crisp region with and without holes is a
special case of fuzzy region with holes. We require the following definitions for

defining fuzzy regions with holes in the crisp fuzzy topological space (R2, C):
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Definition 3.4.1. Inner exterior of a fuzzy region with holes 1s the bounded

exterior contamed 1 the region
Definition 3.4.2. A hole 1s the closure of the inner exterior

Definition 3.4.3. Outer exterior of the fuzzy region corresponds to the un-

bounded exterior of the region

Definition 3.4.4. A component of boundary 1s a boundary of the hole which

separates the mnterior and inner exterior of the fuzzy region

Remark 3.4.1. The term ‘component’ used above 1s not being used wn the usual
meaming of the term It simply means the pieceunse connected boundary of the
reqron. We unll call the boundary of the fuzzy region with holes as mawn/outer

boundary of the region

3.4.2 Formal definition

For simplicity we assume that holes should contained in the region and are
disjoint from each other Further the region should contain at most finite

number of holes which are not along the main/outer boundary of the region

Definition 3.4.5. A fuzzy set A 1s called a fuzzy region with holes 1n a con-
nected cnisp fuzzy topological space i (R?, C), 1f 1t satisfies the following con-
ditions

SR1) The closure of A 1s a connected regular closed set

SR2) The interior of A 15 a connected set

SR4) Exterior 1s the disjoint unmon of inner and outer exteriors

SR5

(SR1)
(SR2)
(SR3) Boundary 1s the disjoint union of connected components
(SR4)
(SR5) Inne1 and outer exterior are themselves connected
)

(SR6) The support of A 1s equal to the closure of A
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A fuzzy region with holes with its different parts in a crisp fuzzy topological

space is schematically illustrated in Figure 3.1.

inner exterior
outer exterior

interior

outer boundary

connected component of boundary

Figure 3.1: A fuzzy region with holes

Justification of the formal definition

The first condition is an extension of a crisp region in the fuzzy setting as
crisp regions are considered as regular closed sets. In (SR2) we assume the
connectedness of the interior to ensure that a crisp region (with holes) is a
particular case of a fuzzy region (with holes). Conditions (SR3) and (SR4)
ensure the existence of holes disjoint from each other and are not along the
boundary of the fuzzy region. Connectedness condition in (SR5) ensures that
the region does not contain spikes so that if the holes are eliminated, it becomes
a fuzzy region without holes as provided by Tang [89]. Condition (SR6) signifies
that when we draw a plane through 1 of the interval [0, 1] then the projection
of fuzzy region in this plane will be the crisp region with hole provided by
Egenhofer et al. [33] in a classical topological space.

This definition therefore simultaneously generalizes Tang’s [89] definition of
fuzzy regions in crisp fts and Egenhofer et al.’s definition [33] of crisp regions
with holes in a classical topological space.

Fuzzy region with holes cannot be defined in an analogous way of the def-

inition of crisp region with holes in a classical topological space as defined by
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Egenhofer et al. {33], as then it becomes impossible to ensure that the region
and holes are disjoint topological invariants. Tang [89] had earlier shown that
in an fts, the intersection of interior and boundary as well as intersection of
boundary and exterior are, in general, non-empty due to non existence of the
law of contradiction and the law of excluded middle in the fuzzy case. Hence,
such a definition does not ensure that the region and holes are mutually disjoint
topological parts and therefore in that case we are unable to derive topological
relations without giving an explicit formula for interior, boundary, exterior of
the region and their intersections which makes the procedure cumbersome and
complex. The concept of hole as closure of inner exterior allows us to treat
the fuzzy region with holes into a number of fuzzy regions without hole so that
topological relations among these regions are expressed in terms of topological
relations between fuzzy region without hole. However, this definition would not
allow existence of infinite number of holes or a situation in which holes overlap
with each other and also would not allow regions where holes would be lying
along the boundary.

It may also be observed that holes are not isolated cases of points whose
membership of fuzzy attribute is zero but concerns a connected neighbourhood

with unsharp boundary whose membership is zero.

Remark 3.4.2. The crisp intersection of interior and component of boundary
as well as component of boundary and holes of a fuzzy region with holes in

connected crisp fts (R?,C) 1s empty.

Definition 3.4.6. A generalized fuzzy region is union of the interior, the com-

ponent of boundary and the holes.

Theorem 3.4.3. If component of boundary and inner exterior are empty then

fuzzy regions with hole becomes a simple fuzzy region.
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Proof. Let A be a fuzzy region with holes H;, Hy, H3 and let A* be the gen-
eralized fuzzy region of A. Then, A* = A° U (UL ,0H,) U (U3 H,). Since
H, = Zfa ¢ =1,2,3 and JH, and A" are empty, therefore, A* = A°. 0

3.5 Topological relations

In this section, we have determined the topological relations between fuzzy
region with holes and some of the basic fuzzy spatial objects. By definition of
holes we know that holes are the bounded exterior of the region, so hole/inner
exterior does not mean a void or empty set. Though it means that membership
grade of attribute under study in the holes are zero but membership grade of
other attribute of the region in the holes are not zero. Due to this reason we
will consider the generalized fuzzy region and holes as separate spatial objects
without hole for deriving topological relations otherwise considering hole as

separate spatial object will be meaningless.

3.5.1 Topological relations between fuzzy region with holes
and fuzzy point in a crisp fts

We have considered generalized fuzzy region, holes and fuzzy points as topo-
logical invariants to determine the relational matrix. We shall consider each
of the topological invariants as a fuzzy region without holes and the following
topological relations shall be considered (i) topological relations between gen-
eralized fuzzy region and holes (which are considered as simple fuzzy regions).
(ii) topological relations between generalized fuzzy region and fuzzy point and
(iil) topological relations between holes and fuzzy point as content of intersec-
tion to determine the topological relations between fuzzy region with holes and

fuzzy point. We have seen in the last chapter that topological relations between
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fuzzy region and fuzzy pont 1s a subset of the topological relations between two
fuzzy regions We therefore, consider the content of intersection to be the eight
topological relations between two fuzzy regions, 1 e , we consider the content of
mtersection to be the 8 relations of regional variations (disjont, meet, overlap,
covered by, inside, equal, covers, contamns as defined in Subsection 2 6 5) de-
pending on the nature of intersection As mentioned earlier, we assume that a
fuzzy region with holes contains at most a finite number of holes Let A* be
the generalized fuzzy region consisting of ‘n’ holes Hy, H, |, H, Pj4 be a fuzzy

pomnt, then the intersection matrix will be of the form given in table 3 1

A H H, Hy, Py

A* | t(A* AY) | t(A* Hy) | t(AY H2) t(A*, Hy,) | t(A*, Py)
Hy | t(Hy, A*) | t(Hy, Hy) | t(H,, Ha) t(Hy, Hy) | t(H,, Pa)
Hy | {Ha, A™) | t(Ha, Hy) | t(Ha, Ha) t(Ha, Hy) | t(Hz2, Pa)
Hy | t(Hn, A%) | t(Hn, H) | t(Hn, H2) t(Hy Hyp) | t(Hn, Pa)
Py | t(Pa, A") | t(Pa, H1) | U(Pa, Ha) HPa, Hn) | t{Pa, Pa)

Table 31 Intersection matrix for fuzzy region with holes and fuzzy pomnt

where t(A*, H) represents the topological relation between A* and H; Simi-

larly all other entries in the matrix have their usual meaning

There are a total of (n+2)? distinct entries mn this matrix and each entry will be
exactly one of the 8 relations that will be accounted to the number of consistent
relations

Further this matrix follows a kind of converse relation and imphed by rela-
tion 1n the following sense The relation H{A*, H,), + = 1,2, , n will be converse

of the relation t(H,, A*), 2 =1 2, n and these relations can be obtained if we
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know any of the two relations because if we say generalized fuzzy region con-
tains the holes then it also means that holes are inside the generalized fuzzy
region, such kind of relations are known as converse relations. Similarly, the
relation t(A*, P,) implies the relations for t(H,, Ps),1 = 1,2,...,n because if
the relation between generalized fuzzy region and fuzzy point is disjoint then
holes being contained in the generalized fuzzy region the relation between holes
and fuzzy point will trivially be disjoint, such relations are known as implied
by relations. So, the topological relations in the above matrix reduces to an

equivalent upper or lower triangular matrix given by table 3.2

A* H, H, H, Py
A | aan, A% | ean B | At By) $(A", Hy) | (A", Pa)
H, t(Hy, Hy) | t(Hy, Ho) t(Hy, Hy) | t(Hy, Pa)
H, t(H,, Ho) t(Hy, Hy) | t(Ha, Pa)
H, UHn, Hn) | t(Hn, Pa)
P4 . . . . . t(Pa, Pa)

Table 3.2. Upper triangular matrix for a fuzzy region with holes and a fuzzy

point

This is a topological relation matrix, 1.e. each entry in this matrix can have one
of the eight choices viz. disjoint, overlap, equal, inside, contain, cover, covered
by, as we have considered the content of intersection to be the topological rela-
tions between two fuzzy regions with connected boundary. The main advantage
of considering upper or lower triangular matrix is that it will reduce the number
of redundant relations (only mutually exclusive relations are considered). As a

result the number of steps of computation of mutually disjoint relations in the
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matrix 1s reduced resulting 1n mcreased efficiency in computation

To determine the number of consistent relations we add up the entries with
distinct relations 1n each row of the upper triangular matrix as follows
Number of elements in the 1% row =n + 1

Number of elements in the 2™ row =n

Number of elements in the (n + 1)* row =1
Number of elements 1n the (n + 2)* row =0

Therefore, total number of elements 1n this matnix =(n+ 1) +n+ +2+1

_ {(n+1)(n+2)
2

We know that if the generalized fuzzy region have the equal relation then gener-
1cally all the holes must have the equal relation So adding two (one due to the
equal relations between the generalized fuzzy region and other due to the equal
relations between the fuzzy point as each entry in the diagonal has the same
relation 1e equal relation) to total number of distinct entries, give us the re-
quued number of consistent relations

Therefore, the total number of distinct possible relations 1s Qilw +2

As per our assumption (a) the relation between each of the hole and the gener-
alized fuzzy region 1s that of containment and (b) each pair of holes are digjomnt
from each other Therefore, 1t 1s possible to further reduce the number of imphed
relations So that, in the first row of the above mtersection matrix the relations
t(A*, Hy), t(A*, Hy), , t(A*, H,) are considered to be a single relation, n the
second row t(Hs, H3), ,t(H, H,) are considered as a single relation Proceed-

ing in this manner, we get,

Number of elements 1n the 15 row = 2

Number of elements 1n the 24 row = 2
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Number of elements in the (n — 1) row = 2
Number of elements in the n'* row =2
Number of elements in the (n + 1) row =1
Number of elements in the (n + 2)% row = 0

Therefore, total number of elements = 2n + 1

Further, to obtain the total number of relations, as discussed above we add two
(due to equal relation of diagonal entries of the matrix) to the total number of

relations so that number of consistent relations becomes 2n + 3.
The following example illustrates the specific case of the above deduction when

we consider a fuzzy region with a single hole.

Example 3.5.1. If there is only one hole then only 5 distinct topological rela-
tions are realizable between a fuzzy point and a fuzzy region with the hole in a

crisp fts as shown in Figure 3.2.

Figure 3.2: Possible topological relations between a single holed fuzzy region

and a fuzzy point
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The matrix form in this case is given by the matrix given in the Table 3.3.

A H P

A |A*NA* |A"NH | A"NP
H|HNA* | HNH | HNP

P|PnA* | PNH | PNP

Table 3.3: Intersection matrix for single holed fuzzy region and fuzzy point

Here, A* is the generalized region, H is hole and P is a fuzzy point.
Since we have considered a generalized fuzzy region, holes and fuzzy points for
determining topological relation matrix, so naming of the topological predicates

is possible if we consider the particular case of fuzzy region containing only one

hole.

Relations between a single holed fuzzy region and a fuzzy point

The following five relations are possible.
1. Disjoint: A* N Supp(P) = ¢ and H N Supp(P) = ¢.

2. Meet: dA N Supp(P) # ¢ and H N Supp(P) = ¢, where JA means outer
boundary of the fuzzy region with hole.

3. Contain: A° N Supp(P) # ¢ and H N Supp(P) = ¢.

4. Contain meet: Supp(P) € 9,A and Supp(P) ¢ H, where §,A means

boundary of holes.
5. Disjoint contain: Supp(P) ¢ A and Supp(P) C H.

Here, all the three considered sets viz., A*, H, P are fuzzy sets.
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3.5.2 Topological relations between fuzzy regions with
holes and fuzzy line in crisp fts

Suppose a generalized fuzzy region A* consists of n holes Hy, Hs, ..., H,. Let L4

be a fuzzy line. Then the relation between the fuzzy line and the fuzzy region

with ‘n’ holes is determined by a relational matrix as given in table 3.4.

A* H, H, H, Ly
A | t(An A0 | sar Hy) | oar, ) H(A* Ha) | 8(A%, L)
Hy | t(H, A% | t(Hy HyY) | 6(Hy, H) H(Hy, Hy) | ¢(H1, La)
Hy | t(H, A) | t(Ha, Hy) | t(Ha, Hy) t(Ha, Hy) | t(Ha, La)
Hy | 4(Hn, A”) | t(Hn, H1) | t(Hn, H2) t(Hyp, Hy) | t(Hn, La)
La | U{La,A%) | t(La, H1) | {La, Ha) t(La, Hn) | t(La, La)

Table 3.4: Intersection matrix for a fuzzy region with holes and a fuzzy line

Here, the symbols in the intersection matrix have their usual meaning as in case

of fuzzy region with holes and fuzzy point.

Further, generalized fuzzy region and holes can be considered as simple fuzzy
region without holes. From regional connection calculus of fuzzy region and
fuzzy line given by Liu and Shi [59], we know that only 16 recognizable relations
exist between fuzzy region without holes and a fuzzy line. So each entry in the
intersection matrix can be filled in 16 ways. Therefore, the total number of
relations between a fuzzy line and a fuzzy region with hole are 16™*? where ‘n’

is the number of holes.

In particular, for n = 1 i.e. fuzzy region with a hole there are total 4096
relations. It has been, however, observed that under certain conditions only a

few of them will actually be realized in R2.
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Conditions for reducing redundant relations between fuzzy region

with hole and fuzzy line

Egenhofer and Herring {31] listed 8 geometric conditions between a region and
a line in a classical topological space R?. These conditions can be extended to
determine the relations between a fuzzy line and a fuzzy region with hole in a
crisp fts R?. But in the crisp case the content of intersection are considered as
empty and non-empty intersection of interior, boundary and exterior. Whereas
in the fuzzy setting, we have considered the content of intersection to be 16
relations between a fuzzy region without hole and a fuzzy line. So, to determine
the conditions for obtaining feasible relations we have named the 16 relations
as follows: disjoint, meet-at-end, meet-at-ends, meet-at-center, overlap, inside,;
relations other than these relations are named as wntersect. Thus, using node,
arc and path consistency we have derived a set of 9 conditions to reduce the

eliminate relations between fuzzy region with hole and fuzzy line.

These conditions are

1. If the relation between fuzzy line and the generalized fuzzy region is dis-

joint then the relation between the fuzzy line and the hole is also disjoint.

2. If the relation between fuzzy line and the generalized fuzzy region is meet-
at-end/meet-at-ends/meet-at-center then also the relation between the

fuzzy line and the hole is disjoint.

3. If the relation between fuzzy line and the hole is inside/meet-at-end /meet-
at-ends /meet-at-center, then the relation between fuzzy line and general-

ized fuzzy region must be inside.

4. If the relation between fuzzy line and the generalized fuzzy region is inside,
then the relation between fuzzy line and the hole will be anyone of the

sixteen relations.
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5. If the relation between fuzzy line and the generalized fuzzy region is
overlap, then the relation between fuzzy line and the hole will be dis-

joint /intersect.

6. If the fuzzy line intersects the hole, then the relation between the fuzzy

line and the generalized fuzzy region will be overlap/inside/intersect.

7. If the fuzzy line is along the boundary of the hole then the relation between

generalized fuzzy region and the fuzzy line is inside.

8. If the fuzzy line is along the outer boundary of the fuzzy region with hole,

then the relation between the hole and the fuzzy line is disjoint.

[{=)

. If the relation between the fuzzy line and the hole is intersect, then the
relation between the fuzzy region with hole and the fuzzy line is any one

of the sixteen relations other than disjoint and inside.

The relational matrix of the existing relations between a fuzzy line and a fuzzy
region with hole can be determined by successively applying the conditions and
canceling the corresponding non existing relations from the set of 4096 relations.
Out of 4096 relations, only 52 relations satisfy these conditions. The geometrical

representation of relations between a fuzzy line and a fuzzy region with hole is

e 2
i <F

shown in figure 3.3.
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Figure 3.3: Topological relations between a single-holed fuzzy region and a fuzzy

line
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3.5.3 Topological relations between a fuzzy region with
holes and a fuzzy region without hole

As in the previous cases, if A* be a generalized fuzzy region consisting of ‘n’
holes Hy, Hs, ..., H, and B be a fuzzy region without holes in R?, then the
topological relational matrix between the fuzzy regions with and without holes

are given by Table 3.5

A H, H, H, B
A* (A A% | t(AY Hy) | LAY H)) t(A*, H,) | t{(A*, B)
Hy | t(Hy, A | e(Hy By | 6, By) t(Hi, Hy) | t(Ha, B)
Hy | t(Hay, A*) | t(Ha, H1) | t(Ha, Hy) t(Hz, Hy) | t(Ha, B)
Hy | t(Hn, A*) | t(Hn, H1) | t(Hn, H2) t(Hn, Hn) | t(Hy, B)
B | (B, A") | (B, H,) | t(B,Hy) #(B,H,) | #(B,B)

Table 3.5: Intersection matrix for fuzzy regions with and without holes

where the symbol in each entry of the intersection matrix has their usual mean-

ing as given in Subsection 3.5.1.

Here we have used a spatial scene (i.e. considering the fuzzy region without hole,
the generalized fuzzy region and holes together with eight binary topological
relations amongst these regions) to know exactly which spatial relation exists
between a fuzzy region without hole and a fuzzy region with ‘n’ holes. Therefore,
to obtain the number of feasible relations we will consider the variations (or
possible choices for the number of feasible relations) of the fuzzy region B with
the generalized fuzzy region A* and possible choices of B with the holes of
A w.r.t the eight basic relations between two fuzzy regions. Thus, the total

number of relations between fuzzy regions with and without holes 1s 8"+
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In particular, if n = 1, i.e. fuzzy region with one hole there are total of 8% = 64

relations.

Next, we shall determine certain conditions to reduce the number of redundant

relations in R2.

Conditions to reduce redundant relations between fuzzy regions with

and without hole:

We now identify conditions to reduce the number of redundant topological rela-
tions between a fuzzy region without hole and a fuzzy region with a hole either
by proofing it or discussing the validity of the argument by proof-by-constraint

and drawing method or by node, arc and path consistency.

Proof-by-constraint and drawing method [81]

Proof-by-constraint and drawing method is a method to determine consistency
of topological relations between two spatial objects. It involves the following

two steps:

1. Bach combination of topological relations can be formulated in terms of
existing relationship, that is, the set of topological relations can be reduced
by evaluating the relation which does not fulfill the rule of the set of eight

elementary relations between two regions.

2. The existence of topological relations are given by realizing prototypical
spatial configurations in R?, that is, the consistency of the configuration

can be determined by drawing it n the plane.

If A be a fuzzy region with hole Ay, A* be the generalized fuzzy region and B
be the fuzzy region without hole then
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Lemma 3.5.2. If the relation between generalized fuzzy region and fuzzy reqion
without hole 1s disjoint then relation between hole and fuzzy region unthout hole

18 also disyoint, that s,
t(A*, B) = disyjomnt then t(Ay. B) = disyoint.

Lemma 3.5.3. If the relation between generalized fuzzy reqion and fuzzy region
without hole 1s meet then relation between hole and fuzzy region without hole 1s

disjount, that 1s,
t(A", B) = meet then t(Ay, B) = disjoint

Lemma 3.5.4. If the relation between generalized fuzzy region and fuzzy reqion
without hole 15 equal then relotion between hole and fuzzy reqion without hole 18

mside, that 1s,
. t(A*, B) = equal then t(Ay,B) = nside

Lemma 3.5.5. If the relation between generalized fuzzy region and fuzzy region
without hole 1s overlap then relation between hole and fuzzy region without hole

18 not anyone of equal/contain/cover, that 1s
t(A", B) = overlap then t(An, B) # equal/contain/cover

Lemma 3.5.6. If the relation between generalized fuzzy region and fuzzy region
without hole 1s inside then relation between hole and fuzzy region without hole

18 also wnside, that 18

t(A*, B) = inside then t(Ay.B) = nsiude.
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Lemma 3.5.7. If the relation between generalized fuzzy reqion and fuzzy region
without hole 1s covered by then relation between hole and fuzzy region without

hole 15 mside, that 1s,
t(A™, B) = covered by then t(Ay,B) = nside

Lemma 3.5.8. If the relation between generalized fuzzy reqion and fuzzy region
unthout hole 1s cover then relation between hole and fuzzy reqron without hole 1s

any one of disjownt/meet/overlap/inside, that 1s,
t(A", B) = cover then t(Am,B) = disjount/meet/overlap/inside

Lemma 3.5.9. If the relation between generalized fuzzy reqion and fuzzy region
unthout hole 1s contawn then relation between hole and fuzzy region unthout hole
1s anyone of U (where U 1s the set consisting of eight relations between two fuzzy

regions), that 1s,
t(A", B) = contawn then t(Ay,B)=U

Lemma 3.5.10. If the relation between hole and fuzzy region without hole 1s
equal then relation between fuzzy region without hole and generalized fuzzy region

18 nside, that 1s,
t{(Ay, B) = equal then t(B, A™) = wnside

Theorem 3.5.11. Based on the intersection matriz for holed regions, 23 differ-

ent topological relations are wdentified between two fuzzy regions each with and

without hole n R?

Proof For each of the condition of lemmas 352,353 354,356,357 and

3 5 10 there 1s one distinct relation between fuzzy regions with and without hole,



Chapter 3 70

under lemma 3.5.5 there are five different relations between fuzzy regions with
and without hole; under lemma 3.5.8 there are four distinct relations and under
lemma 3.5.9 there are eight consistent relations between fuzzy regions with and
without hole. Therefore, adding the number of distinct relations due to each
lemma, there are a total of 23 distinct relations exist between fuzzy regions with

and without hole in R?. O

The set of 23 distinct relations between fuzzy regions with and without hole in

R? is shown in figure 3.4.

3.6 Conclusion

We have proposed a definition of fuzzy regions with holes in a crisp fts while
making it a consistent generalization of the definition of a crisp region with
holes in classical topology. Further, we have provided general frameworks for
topological relations between fuzzy region with hole and fuzzy point, fuzzy re-
gion with hole and fuzzy line as well as fuzzy regions with and without hole. In
case of topological relations between fuzzy region with holes and fuzzy point,
fuzzy_ regions with and without holes we have considered the content of inter-
section to be the eight binary topological relations between two fuzzy regions
with connected boundary and derive relational matrix which is related to the
9-intersection matrix (but not based on it). After calculation we have found °
that in case of fuzzy region with hole and fuzzy point there are only 5 distinct
realizable relations. Liu and Shi’s model [59] shows that there are only three
consistent relations between fuzzy region (without hole) and fuzzy point. Thus,
the number of relations between fuzzy region with hole and fuzzy point exceeds
the number of relations between fuzzy region (without hole) and fuzzy point. In

case of topological relations between fuzzy region with holes and a fuzzy line we
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Figure 3.4: Topological relations between fuzzy regions with and without hole

in a crisp fts
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have considered the content of intersection to be sixteen topological relations
between fuzzy region (without holes) and a fuzzy line and found that there are
52 recognizable relations. For fuzzy regions without and with a hole, our model
gives only 23 consistent relations while Tang and Kainz’s approach [88] and, Liu
and Shi model [39] have shown that there are 44 recognizable relations between
two fuzzy regions without hole. The number of relations between fuzzy regions
with and without hole are same as the number of relations between crisp re-
gions with and without hole as determined by Egenhofer and Vasardani [36] in
classical topology. The challenge, however remains to fully accommodate the
membership grades of points in the fuzzy region with holes and for the same it is
required to formulate a suitable fuzzy region with holes in the general framework

in fts. The same is undertaken in the next chapter.
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Topological relations of fuzzy

regions with holes in a general
fts

4.1 Introduction

In the previous chapter, we have provided a formal definition of a fuzzy region
with hole in the setting of a crisp fts. Since a general fts allows flexibility and
relaxation of membership grades of points in space. As shown by Tang and
Kainz (88, 89|, additional topological invariants are required for defining fuzzy
regions without hole in a general fts. Thus, fuzzy regions with holes in this
space cannot be defined analogous to its definition in a crisp topological space.
Furthermore, it is required that the definition of fuzzy regions with holes should
ensure that the hole/s and the region will be disjoint topological parts so that
the generalized region can be defined as union of the region and the holes, and
these definitions would be used in the derivation of topological relations. In
this Chapter, we have proposed a definition of fuzzy regions with holes in the
setting of general fts utilizing the framework for fuzzy regions without hole given

by Tang and Kainz [88] and obtained the topological relations between fuzzy

1Selected results of this chapter have been published in [45].
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regions with holes under general and restricted conditions.

This chapter is structured as follows: in section 4.2 we have revisited some of the
important topological notions which are required for defining fuzzy regions as
provided by Tang and Kainz [88]. In section 4.3 we have provided the definition
of fuzzy regions with holes in the setting of a general fts and developed some of
its mathematical properties. In section 4.4 we have derived topological relations

between two fuzzy regions with holes. Section 4.5 summarizes the chapter.

4.2 Fuzzy regions

In the last chapter, we have defined fuzzy regions with holes in a crisp fts. In this
chapter, we take up fuzzy regions with holes in a general fts. We shall require
some of the special topological notions as given below, which were introduced’

by Tang [89]. Some of the required results are reproduced with proofs.

4.2.1 Topological notions for defining fuzzy regions

Definition 4.2.1. Let (X, T) be an fts and A be a fuzzy set in X. Then
i) The core of A (denoted by A®) is the subset of A defined as

A(z), if (AN A°)(z) =0;
jol = | A T ANEE)
0, otherwise.

ii) The fringe (denoted by lA) is the subset of A where

[A(z) =

A(z), if (AN A9)(z) > 0;
0, otherwise.

Theorem 4.2.1. A® is the only crisp subset of A°.
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Proof. According to the definition of core, Vz € X, A®(z) = A(z) > 0 iff
(ANA¢)(z) = 0. Then either A(z) = 0 or A°(z) = 0. (i) When A(z) = 0, then
A®(z) = 0 which is a contradiction.
(ii) When A¢(z) = 0, then A°(z) = 0. So, A°(z) = A(z) = 1. It shows Vz € X,
if A°(z) > 0, then A®(z) =1 and A°(z) = 1. On the other hand, if A°(z) =1,
then A°¢ =0, so A¢ = 0. Therefore (AN A¢)(z) = 0.
It follows that if A°(z) = 1, then A®(z) = 1. O

Proposition 4.2.2. A® U B® = (AU B)® where A and B are fuzzy sets in X.

Proof. From theorem 4.2.1 we know that A® and B® are crisp subsets of A° and
B° respectively, then A® U B® is a crisp subset of A°U B°. Since (A° U B°) <
(AU B)°, so A® U B® is also a crisp subset of (AU B)°. By theorem 4.2.1,
(AU B)® is the only crisp subset of (AU B)°.

Therefore, we have A® U B® = (AU B)*®. O

Remark 4.2.3. lA is a subset of 0A. If A is closed then |A = 0A.

Definition 4.2.2. Let (X, T) be an fts. Then
i) The frontier of A (denoted by [°A) is a subset of A, where

FA(z) = A(z), if A(z) > A°(z);
0,

otherwise.

ii) The internal of A (den(;ted by A') is a subset of the closure of the fuzzy set

A where

Ai() = A(z), if A(z) = A°(x);

0,  otherwise.

Theorem 4.2.4. 1) A® C A C A°;
it) 0A D [A D [°A.
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Proof. (i) We know that A® is the crisp subset of A°. According to the definition
of At it is a subset of A° and it contains the crisp subset of A°.

(ii) If A(z) > A°(z) for all z € X, then A°(z) < 1 and A = A°¢ > 0. Therefore
(AN A¢)(z) = A(z) N A¢(z) > 0, therefore 1A(z) > 0. So, [A D IA. O

Definition 4.2.3. Let (X, T) be an fts. Then
(1) Internal fringe of A (denoted by I*A) is defined as

A = A(z), if (A°N (4®9)%)(z) > 0

0, otherwise.

(ii) Outer of fuzzy set A denoted by A= is defined as

A™(z) = (Supp(A))*(z)

which is obviously a crisp set.

Properties of core, fringe, internal, frontier, internal fringe and outer:

We shall recall some of the properties of core, fringe, internal, frontier, internal

fringe, outer etc. without proof. Proofs are available in Tang and Kainz (88, 89].

Proposition 4.2.5. Let A be fuzzy set in an fts (X, T) . Then A = AP UOA =
AP UIA.

Proposition 4.2.6. Let A and B be a fuzzy sets in fts (X,T)
(i) A®® C A®

(i) A°® = A®; A® = A®

(111) If A D B then A® O B®

(iv) AN B® = (AN B)®

(v) If A® is open then A® NI(A®) = ¢



Chapter 4 77

(vi) A®® = A® {ff A® is open

(vir) 1A = AN A®C

(vin) (lA)® = ¢ and I(lA) = 0A

(1z) If A® 1s open then ((1A)®) C 1A
(z) AN A® = ¢ 1ff DA=IA

(z1) If A® 1s open then OA = [A

(z11) I°A and A* are disjoint with each other, Y'AN A* = ¢
(zua) A = AU A

(ziv) IA=1FAUI'A and A* = AP U A
(zv) 'A = ¢ and I'(A®) = ¢

(zn) I'(A®) = ¢

(zvn) If A® 1s open then [°(A®) = ¢

Proposition 4.2.7. Let A and I°A be closed sets in fts (X,T) then I°A =
I1e(lcA).

Theorem 4.2.8. Let A be a fuzzy set wm an fis (X, T). Then A=, I°A, I'A, A®

are mutually disjoint and they are topological wnvariants

Formal definition of a fuzzy region

Definition 4.2.4. A fuzzy set is called a simple fuzzy region in a connected fts
if it satisfies the following conditions.

1) It is a non-empty proper double-connected closed set.

ii) The interior, the core and the outer are double-connected regular open.

iii) The support is equal to the support of the closure of the interior.

iv) The fringe is double connected and the internal fringe is a double-connected

open set.
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v) The frontier is a non-empty closed set.

Condition (i) provides an extension of the definition of simple crisp region. Con-
dition (ii) implies that core being equal to the interior of fuzzy region and since
in a crisp region interior is considered to be regular open set so core of a fuzzy
region should be open. Condition (iii) signifies that if we draw a plane through
1 of the interval [0, 1], then the projection of the fuzzy region in this plane will
be simple crisp region in a classical topological space. Condition (iv) ensures
the non existence of holes. Condition (v) ensures the non existence of spikes.
Double connectedness of the internal signifies that interior is not separated into

pieces.

An schematic illustration of a fuzzy region without hole is given below in

the figure 4.1.

Outer

Internal fringe

Core

Fringe
Interior /Internal

Figure 4.1: Fuzzy region without hole in a general fts

4.3 Fuzzy region with holes

Initially, a crisp region was defined in a crisp topological space but a crisp region
being the special case of a fuzzy region it has been seen that crisp regions are

also accommodated in an fts. So, for defining a fuzzy region with holes in a



Chapter 4 79

general fts, we should adopt the following principles:

1) A crisp subset of a simple fuzzy region should exhibit the same behaviour as
a subset of simple crisp region in a general topological space.

ii) A crisp region with holes in an fts should exhibit behaviour similar to a region
with holes in a general topological space.

iii) When holes are eliminated, it should be fuzzy region without hole in a
general fts.

The first condition implies that crisp sets are special cases of fuzzy sets. The
second condition stipulates extension of crisp regions in classical topological
space to fuzzy regions in an fts. The third condition signifies that fuzzy regions
without holes is a special case of fuzzy regions with holes in an fts.

In order to define fuzzy regions with holes which will satisfy the above three
conditions, we shall at first define the structure of crisp region with holes in
an fts. In 1994, Egenhofer et. al. (33] provided a definition of crisp regions
with holes in such a way that the holes and the region are disjoint topological
parts so that if we eliminate the holes it should be the definition of crisp region
without holes in classical topological space. To maintain the consistency with
the classical definition, next we have to define the structure of crisp regions with

holes in an fts.

Definition 4.3.1. A subset is called a simple crisp region with hole in a fts if
it meets the following conditions

i) Its interior is a non-empty proper double connected open crisp set.

ii) It boundary and exterior are not closed as a whole but are the union of disjoint
connected components of the fringes which are themselves double connected

regular crisp sets.

In a classical topological space, connected sets are those which cannot be sep-

arated by two disjoint closed/open sets. In fuzzy topology, Q-separation does
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not imply separation because in this case open connectedness does not implies
closed connectedness as shown in Chapter 2. We have, therefore, adopted the
notion of double connectedness for representing connectedness in an fts. Next,
we consider boundary and exterior not to be connected as whole because if
they are connected then fringe being similar to the boundary in a general fts
it does not allow the existence of hole and above definition becomes the defini-
tion of crisp regions without holes in an fts. We further require the following

definitions:

Definition 4.3.2. Main outer is the outer of the fuzzy region.

Definition 4.3.3. Inner outer is the outer inside the interio} of the fuzzy region.
Definition 4.3.4. Hole of the fuzzy region is the closure of the inner outer.

Definition 4.3.5. Connected component of fringe (frontier) is a fringe (frontier)

which separates interior (internal) of the fuzzy region and the inner outer.

4.3.1 Formal definition of a fuzzy region with holes

Throughout our discussion, we consider that holes are disjoint from each other
and are not along the boundary of the region with holes and the region should

have at most finite number of holes.

Definition 4.3.6. A fuzzy set A in a connected fts (X,T) is called a simple
fuzzy region with holes if it meets the following requirements:

i) The interior and the core are double-connected regular open sets.

ii) The outer as a whole is not double connected but is the disjoint union of
main outer and inner outer which are itself double connected.

ili) Inner outers are double connected regular open sets.

iv) The support is equal to the support of the closure of the interior.
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v) The fringe and the frontier as a whole are not double connected but they are
the union of disjoint connected components such that each component itself is
closed.

vi) The internal fringe is a double connected open set.

Condition (i) is a direct extension of a crisp region in the fuzzy setting as con-
nectedness is extended into double connectedness (i.e. both open connectedness
and closed connectedness) in fuzzy topology. Conditions (ii) and (v) signify the
existence of holes as the outer is equal to an exterior of the fuzzy region and
the fringe as well as frontier is equal to the boundary of the region. Double
connectedness of inner outer and fringe signifies the non existence of cuts and
punctures. Condition (iii) removes the irregular points or spikes etc. Condition
(iv) signifies that shadow of the region will be a crisp region with holes in a crisp
topological space. Internal fringe being a subset of the internal which in turn is
a subset of the interior, meaning thereby that the internal fringe is a subset in
the interior of the fuzzy region. Thus, if internal fringe is not double connected,
then it will separate the interior of the fuzzy region into several pieces, as a
result of which our definition would cease to be a proper extension of a crisp
region in which the interior is connected. We, therefore, consider the internal
fringe to be a double connected open set.

Figure 4.2 provides an illustration of a fuzzy region with holes in a general fts

which allows the membership of a point in the region in relation to the space.

Definition 4.3.7. The generalized fuzzy region is the union of the double con-

nected interior and the holes.

The above definition is seen as a more suitablé representative of the uncertainty
of the spatial objects and can be used in the derivation of topological relations
between fuzzy regions with holes and basic spatial objects.

Since derivation of topological relations between fuzzy regions with holes and



Chapter 4 82

+— main outer

inner outer
internal fringe
internal

interior
connected component of fringe/frontier

Figure 4.2: Fuzzy region with hole in a general fts

a fuzzy point as well as fuzzy regions with holes and a fuzzy line and fuzzy
regions with and without holes in a general fts is similar to their derivation in
a crisp fts so in this chapter we have restricted ourselves only to the derivation

of topological relations between fuzzy regions each with a hole.

Remark 4.3.1. Unlike 1 a crisp fts the definition of fuzzy region with holes
m a general fts 1s not formulated wn terms of interior, boundary and exterior.
Thas 1s because of we do so, then the hole and the generalized region would cease
to be disjoint. We therefore define fuzzy regions wnth holes wn terms of core,
fringe, wnternal, frontier, wnternal fringe, outer etc. Also, we know that wn an
fts intersection of interior with boundary as well as intersection of boundary unth
exterior are not empty mn general A fuzzy reqion unth holes 1s defined in such a
way that 1t 1s a consistent generalization of a crisp reqion wn a classical topology.
Further, 1t would ensure that the intersection of holes and the fuzzy reqron unth
holes are disjownt from each other so that we can use 1t in the derwation of

topological relations.
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4.3.2 Properties of simple fuzzy regions with holes

Theorem 4.3.2. Let A be a simple fuzzy reqion with holes Ay, A, ,An 1 a
connected fts (X, T)

(1) The boundary of A 1s equal to the union of the fringe of the region and holes
(1) The wnternal boundary 1s equal to the union of fringes of A,

(1) The frontier of the boundary 1s equal to the union of the frontier of A,
(w) The fringe of the wnner (main) outer 1s equal to the boundary of the inner
(mawn) outer

(v) Interior of the component of fringe/frontier 1s regular open

() The core of the component of fringe/frontier 1s empty

(vie) The closure of the boundary s equal to boundary of the boundary of A,

(vir) The interior of the fringe of the core of A,’s are empty 1e (I[(A®))° = ¢

Proof (1) By definttion of fuzzy region with holes, the core 1s open so fringe
being 1ts complement 1s closed as core and fringe are mutually disjoint parts
We know fiom Remark 4 2 3 that 1if the fringe 1s closed, then 1t 1s equal to the
boundary Hence, the boundary of a fuzzy region with hole 1s equal to the fringe
and by definition of a fuzzy region with hole, the fringe 1s the unon of the fringe
of the region and the holes Therefore, boundary of fuzzy region with holes 1s
the union of the fringe of the region and holes

(1) We know that I*(A)(z) = A'(z) Vo € X for which (A* N A®¢)(z) > 0 and
O*A(z) = 0A(z) Vz € X for which A(z) = A°(z) Now, 0'A(z) = 0A(z) =

U l' A, (z) = U, 4} () (using (1))
In particular, 8'A(z) = 0A(z) = U, A} (z) Vz € X for which (A'N A®¢)(z) > 0
(1) Since the fringe contamns the frontier and from (1) boundary 1s equal to the

union of fringe of the region and the holes so 04 = lAUIA, = 0A D lA, and
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1A, D I°A,. So A D 1A, = I19(DA) D IS(I°A,) = 1A, = 19(BA) D U,(I°A,).
Next, since A, C A, = I5(0A,) C I°A, V1 So, I°(0A,) C U,(I°A,).

(iv) Since A= is open so A=® is also open Then, [A = A (by Proposition 4.2.6
part (xi)), we therefore have {,(A%) = 3,(A%)

(v) Since, A® is regular open so A®° is regular closed Hence, A®* is regular
open.

Now, (I'A4,)° = (AN A®°)° = (AN A®)°(A bemng closed)= A° N A®®°, which is
regular open. Hence, the fringe of a hole is regular open.

Similarly (I4,)° = (AN A%°)° = (AN A®)° = A°N A9 which is regular open.
(vi) Since [A = U,lA,. (1A)® = (U,lA)® = U,(IA,)® (using proposition 4.2.2).
We know that (14)® = ¢ s0 U,(I4,)® = ¢ = (IA,)® = ¢ V2. Likewise, (I°4,)® =
@ V.

(vii) We have 94, = (8A,)® U 8(0A,) = 8(0A,) (by using (1) and (vi)).

(viii) Since A® is open so I(A®) = (A®) and AB® NI(A®) = AP NI(A®) = ¢.
Suppose ({(A®))° # ¢ then A®° U (I(A®))° 2 A®° and A® is not regular open

which 1s a contradiction. O

4.4 Topological relations between fuzzy regions
with holes

We shall consider the generalized region and holes as mutually disjoint topo-
logical invariants to determine topological relations between two fuzzy regions
with holes. From regional connection calculus, we know that there are only 8
recognizable relations between two spatial objects with connected boundary. As

each generalized region and holes can be considered as separate spatial objects
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without holes and topological relations between them 1s determined by consid-
ering spatial scene (1 e, we consider each generahzed region and holes as sepa-
rate spatial objects without holes and 8 topological relations between them are
considered as content of the topological imnvariants) Let A* and B* be two gen-
,Hp

eralized regions with ‘n’ and ‘m’ holes Ha,, Ha,, ,Ha, and Hp,, Hp,,

™m

respectively Then the topological relations between these two regions are given

by the following relational matrix

WRR)| A Ha, Ha, B Hs, Ha,
A (A" A7) t(A” Ha) t(A" Han) t(A” B7) | (A" Hgm) t(A” Hgn)
HAl t(HAI A ) t(HAl HA!) t(HAllHAn) t(HAHB‘) t(HAUHBl) t(HA\IHBm)
Ha, | HHa,, AT) | H(Ha, Ha) t(Ha, Ha,) | t(Ha, B") | t(Ha, Hy,) t(Ha,, Hy.,)
B | «B, A7) | «B Ha) WB Ha) | UB B) | 4B Hy) (B Hy,)
HU\ t(HBI A) t(HBl HAl) t(HHl HAn) t(HHl B.) t(HBI HH]) t(Hﬁn HB,..)
Hg,, t(HBm A') t(HE,.,‘ HA,) t(HBm H.‘") t(HBm,B') t(HBm HB.) i(Hgm,HBm)

Table 41 Topological relational matrix for fuzzy regions with holes

Here, t(A*, H4,) denotes the topological relation between the object parts Fur-

ther, t(A*, Hy,) » = 1,2, ,n1simphed by t(Hs,,A*) 1 =1,2, ,n asaknd

of converse relation and t(A*, Hg,) ¢+ = 1,2 ,m 1s 1mplied by t(A*, B*) as a
kind of implied by relation
Therefore, the intersection matrix in table 4 1 can be reduced to an equivalent

upper triangulai or lower triangular matiix

Since the relation between each pair of the holes 1s disjoint, relation to itself 1s

equal and holes of the generalized region should inside the region Therefore, the
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t(R R) A Ha, Hy B- Hpg, Hp
A | oA an

n

Ha, t(Ha, A%) | t(Ha, Ha,)

Ha, |t{Ha, A7) | t(Ha, Ha) t(Ha, Ha,)

B | t(B" A) | t(B* Hu) (B Ha) | 1(B* B)

Hp, | t(Hp, A7) | t(Hp, Ha,) t(Hp, Ha,) | t(Hp, B*) | t(Hp, Hg,)

HB..,. t(HBm A') t(HBm HAl) i(HBm HA") t(HBm B') t(HBm HB‘) t(HB,,, HB,..)

Table 4 2 Lower triangular matrix for fuzzy regions with holes

number of redundant relations 1n the relational matrnx can be reduced fuither

Undar this assumption the number of distinct relations in 1% row, 2™ row, |,

,nth

row 1s zero but the number of distinct elements mn (n + 1), (n + 2)**, |
(m +n + 1) row are given as follows
Number of distinct elements 1n the (n + 1)t row = 8"+!

Number of distinct clements 1n the (n + 2)** row = 8!

Number of distinct elements 1n the (m + n + 2)* row = 8"*1
Now, the number of consistent relations will be equal to the sum of the number
of distinct relations in each row of the relation matrix
Therefore, the total number of consistent relations will be 8(+1)(m+1)
As a particulai case, 1f n = 1 and m = 11e each region with a single hole there
will be 8* = 4096 relations but under certain conditions only a few subsets of

them are realized between two fuzzy regions each with a hole
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4.4.1 Formulation of conditions for reducing redundant
relations

Topological relations between two fuzzy regions each with a hole can be identi-
/

fied by using intersection matrix considering the generalized regions and holes
as separate spatial objects without holes as discussed above We now identify
some of the geometric conditions to reduce the number of redundant relations
between two fuzzy regions each with a hole by proving it or discussing the ar-
gument by proof-by-constraint and drawing method.

If A and B are two fuzzy regions with holes Ay and By respectively and let A*,

B* be the two corresponding generalized regions. We, then have the following:

Lemma 4.4.1. If ‘disjoint’/‘meet’ 1s the relation between the generalized regions

then ‘disjoint’ ws the relation between holes, that 1s,
t(A*, B*) = disyount/meet then t(Ag, By) = disjoint.

Lemma 4.4.2. If ‘inside’ is the relation between the generalized regions then
‘disjoint’ 1s the relation between the holes of both the regions and the relation
between first generalized region and the hole of the second 1s U (where U denote

the set of eight elementary relations between two fuzzy regions), that 1s,
t(A*, B*) = inside, then t(Ay, By) = disjoint and t(A*, Bg) = U.

Lemma 4.4.3. If ‘contain’ 1s the relation between the generalized regions then
‘disjoint’ is the relation between the holes of both the regions and U is the relation

between first generalized region and the hole of the second region, that 1s,

t(A*, B*) = contain then t(Ay,By) = disjount and t(A*, By) = U.
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Lemma 4.4.4. If ‘equal’ 1s the relation between generalized regions then U 1s

the relation between the holes, that 1s,
t(A*, B*) = equal then t(Ay,By)=U

Lemma 4.4.5. If ‘equal’ 1s the relation between the holes of both the regions
then the relation between generalized regions 1s any relation other than ‘disjoint’

and ‘meet’, that 1s,
t(An, By) = equal then t(A, B*) # disyownt/meet

Lemma 4.4.6. If the relation between generalized regions s ‘overlap’ and re-
lation between first generalized reqion and hole of the second 1s ‘contain’ and
relation between hole of the first and second generalized region 1s “inside, then

relation between the holes will be anyone of the eight relations wn U, that s,
t(A*, B*) = overlap, t(A*, By) = contain, t(Ay, B*) = inside then t(Ay, By) = U.

Lemma 4.4.7. If ‘mmside/contain’ is the relation between first generalized region
and hole of the second then relation between first generalized region and second

fuzzy reqron unth hole 1s any one of U, that 1s,
t(A", By) = winside/contain then t(A*,B)=U

Lemma 4.4.8. If ‘nside’/‘contain’ 1s the relation between generalized regions
and hole of one overlap with the generalized region of the other then U 1s the

relation between holes, that 1s,

t(A*, B*) = winside/contawn, t(Ay,B*) = overlap then t(An,Buy)=U
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Lemma 4.4.9. If ‘cover’/‘covered by’ 1s the relation between generalized regions
and relation between the holes 1s ‘disjoint’ then U 1s the relation between hole

of the first and the second generalized region, that 1s,
t(A*, B*) = cover/coveredby, t(Ay By) = disjount then t(Apy,B*)=U

Lemma 4.4.10. If relation between holes of the reqions 1s ‘overlap’ then relation

between generalized reqions cannot be ‘disjoint’/‘meet’, that 1s,
t(An, By) = overlap then t(A*, B*) # disjoint/meet

Lemma 4.4.11. If relation between generalized regions 1s ‘cover’/‘covered by’
and relation between one generalized region and hole of the other 1s ‘inside’ then

relation between holes of both the regions 1s any one of U, that 1s,
t(A*, B*) = cover/coveredby, t(B* Agy) = wnside, then t(Aw,By)=U

Lemma 4.4.12. If ‘overlap’ 1s the relation between generalized regions and
relation between one generalized region and hole of the other s also ‘overlap’
and relation between hole of first with the generalized region of the second 1s
“anside’ then relation between holes of both 1s any one of U other than equal,

that 1s,
t(A”, B*) = overlap = t(A*, By), t(Ayg, B*) = inside then t(An, By) # equal

Theorem 4.4.13. If we consider the content of intersection to be the eight
topological relations, there are only 117 different consistent relations between

two fuzzy regions each with a hole

Proof Under the constraint rule of Lemma 4 4 1, only two distinct relations

exist between two fuzzy regions each with a hole Lemmas 442, 443, 44 4,
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4.4.6 imply that there are eight different relations between two single-holed fuzzy
regions. Under Lemmas 4.4.5 and 4.4.10 there are six consistent relations for
each condition, under Lemmas 4.4.7, 4.4.8, 4.4.9 and 4.4.11, there are sixteen
different relations for each condition whereas under Lemma 4.4.12, there are
seven relations. Thus, adding the number of distinct relations implied by the
twelve lemmas, there are total of 117 relations that can be identified between

two single-holed fuzzy regions. a

The set of 117 distinct relations between two fuzzy regions each with a hole is

shown in figure 4.3.
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Figure 4.3: Topological relations between two single holed fuzzy regions
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4.5 Conclusion

In this chapter, we have proposed a formal definition of a fuzzy region with
holes in a general fts and derived the topological relations between two fuzzy
regions each with holes. As a particular case topological relations between two
single holed fuzzy regions are derived. This definition provides a more general
framework to deal with imprecision of the objects such as dealing with complex
spatial objects. We have seen that in case of general fts there are only 117 dis-
tinct topological relations recognizable between two single-holed fuzzy regions.
Egenhofer et. al. [33, 37|, considered his framework in a crisp topological space
and determined topological relations between two regions each with single hole
(by considering the generalized region and the hole as topological invariant) as
well as regions each with 2 and 3 holes respectively. Here, we have considered
our space to be a general fts and defined fuzzy region with holes in such a way
that the intersection between the fuzzy region and the holes is disjoint. We have
discussed the topological relations between two fuzzy regions each with ‘m’ and
‘n’ holes respectively and found that there are total of 8+1(+1) relations. In
particular, if we consider m = 1 = n i.e., both fuzzy regions with single hole,
theﬁ the number of relations between two fuzzy regions each with a hole is
4096. Further, we have deduced a set of twelve geometric conditions to reduce
the number of redundant relations between two fuzzy regions each with a hole
in R? by proving it or discussing the argument with proof-by-constraint and
drawing method. After applying the conditions we have found that the number

of consistent relations reduces to only 117.
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An application of topological
relations of fuzzy regions with
holes

5.1 Introduction

In the last two chapters, we have provided theoretical frameworks for fuzzy re-
gions with holes in terms of closed sets in the settings of crisp and general fts
respectively while maintaining consistency of the definition with crisp region
with holes in classical topological space. In the present chapter, we aim to de-
velop an application of topological relations of fuzzy regions with holes to a real
life situation. In this context, there are various models including Liu and Shi’s
model [57, 58], Tang and Kainz’s model [92] etc. which present applications of
topological relations among the fuzzy spatial objects. Liu and Shi [58] devel-
oped a computable fuzzy topology by defining new interior and closure operator
and used it to determine interior, boundary and exterior of an area affected by
a harmful weed. In [57], the same authors provided another model to show an
application of topological relations of a fuzzy region and a fuzzy line for in-
vestigating the effect of the distribution of SARS over a particular community.

In another model, Tang and Kainz [58] provided an application of topological

95
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relations between fuzzy regions in land cover changes in China. In this chapter,
we will discuss a simple model that seeks to utilize the concepts of topological
relations between fuzzy region with hole and a fuzzy point developed in last two
chapters for assessing bird flu distribution over a particular locality in which a
particular colony is vaccinated. Whereas, the people in a vaccinated colony are
usually not affected by the disease, the people in the non-vaccinated colonies
are always at a higher risk of being infected. Thus, the whole locality can be
considered as a fuzzy region with hole with reference to the effect/risk factor
of the disease Severity is then calculated using topological relations between
fuzzy region with holes and fuzzy point. The data used in the model is purely
hypothetical and the physical implications obtained are not in a rigorous sense.
The basic purpose of the model is simply to explore possibilities of application

of the topological model.

There are three sections in this chapter. In the Section 2, we have formulated
vaccinated locality as a fuzzy region with hole and have determined the effect of
flu on the people at different position of the locality using topological relations.
In Section 3, we have formulated a method to determine qualitative iqformation
about the severeness of the disease using membersh‘ip grades of topological re-
lations considering a set of hypothetical data. In Section 4, a point-wise model
is provided to determine the severity and position of any point of the locality

w.r.t. the flu point.

5.2 A model application

We assume that there is a vaccinated locality near a locality infected by bird
flu. The term vaccinated is being used in the sense that a particular colony
of the locality takes some precautions for prevention or spread of the disease,

for instance, such as killing and burial of affected/likely to be affected poultry,
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imposing restriction on selling and buying exposed poultry etc. Bird flu is a well
known viral disease which affects the life of the people residing in the nearby
areas and spreads even when a single bird migrates from the infected locality to
the nearby regions. Though the people in the vaccinated colony are at a lower
risk of being infected by the disease but they are still susceptible to the disease.
So, when people in the vaccinated colony are susceptible to the disease, the
people in the non vaccinated colonies are at much higher risk of being affected
by the disease. The fuzzy set under consideration is the risk of disease at each
point of the locality for each day which varies from individual to individual in
the vaccinated and non-vaccinated colonies of the locality. We have formulated
the vaccinated locality as a fuzzy region with a hole considering the vaccinated
colony as the hole and the union of vaccinated and non-vaccinated colonies of
the locality as the generalized fuzzy region in a crisp fts (R?,C). A carrier
is considered as a fuzzy point due to variation in level of infection. This is

illustrated in figure 5.1.

Non-vaccinated colonies

- —— Fuzzy point/Bird flu

Vaccinated colony/Hole

Figure 5.1: A vaccinated locality and a fuzzy point

We then use topological relations between fuzzy region with hole and fuzzy

point to determine the various stages of infection as given in Table 5.1.

Here, A* represents the locality which is considered as a generalized fuzzy region,
H represents the vaccinated colony in the locality considered as a hole, P is bird

flu infection considered as a fuzzy point. t(A* H) represents the topological
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A* H P
A* | 1(A% AY) | t(A%, H) | t(4%, P)
t(H,A*) | t(H, H) | t(H,P)
P | t(P,A*) | t(P,H) | t(P,P)
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Table 5.1: Topological relations between vaccinated locality and bird flu

relation between A* and H.

As discussed in Chapter 3, there are only 5 distinct consistent relations between
a fuzzy region with a hole and a fuzzy point. The physical significance of these
five relations over the locality w.r.t. bird flu infection is given in the observations

below:

Observations:

The following cases may arise:

e The relation between fuzzy region with hole and flu point is ‘disjoint’ (i.e.,
t(H, P) and t(A*, P) are disjoint). It then implies that infection has not

reached the area or locality. They are, however, susceptible to the flu.

e The relation between the fuzzy region with hole and flu point is ‘meet’
(i.e., t(A*, P) is meet and t(H, P) is disjoint). It implies that the people
in the locality are at a lower risk of infection. The flu has just entered the

locality.

e The relation between the fuzzy region with hole and flu point is ‘contain’
(i.e., t(A*, P) is contain and t(H, P) is disjoint), then the people in the
locality are at considerable risk of being infected. The flu has affected the

locality to some extent.

e The relation between the fuzzy region with hole and flu point is ‘contain
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meet’ (i.e. t(A*, P) = contain, t(H, P) = meet). People in the locality
are at greater risk of being infected. The flu covers the maximum extent

of the locality.

e The relation between the fuzzy region with hole and flu point is ‘disjoint
inside’ (i.e. t(A*, P) = disjoint, t(H, P) = inside). The flu covers the entire

locality with incidence of maximum risk in the non-vaccinated colony.

Now, membership grades of these topological relations shall be used to deter-
mine the severeness of the disease af different position of the locality. The
membership grade of topological relations for the above five cases are deter-
mined by slightly modifying Zhan’s formula considering a set of hypothetical

data in Section 5.3.

5.2.1 Zhan’s formula for membership grade of topologi-
cal relations

Let A and B be two fuzzy regions in R?. If ‘n’ is the number of a-cut regions of a
given region which are nested and 7(A*, B®) denotes the membership value of
topological relations between two a-cut regions A* and B®, then membership
value of topological relation between two fuzzy regions A and B in R? is given
by
n n
(A B) = 303 (o = v)(ay = oua)Te(A%, BY)

=1 j=1
where k € {disjoint, meet, overlap, equal, contain, inside, cover, covered by}

and oy, o, € [0,1].
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5.3 A case study

5.3.1 Objective and Methodology

Our aim is to propose a methodology to find the degree of severeness of the
disease over the locality when flu reaches a particular distance from the center
of the vaccinated locality and severeness of flu at any point within the locality
w.r.t flu point in a given time interval. We use a hypothetical data set for
the number of infected people in the vaccinated and non vaccinated colonies,
assuming that the number of infected people on each day should occur either in
increasing or decreasing order while the vaccinated colony remains in the center

of the locality.

Fuzzy set of the problem: Here, our fuzzy set under consideration is the risk of
infection or the proportion of the number of person infected by the disease at
any position of the locality on each day. The number of persons infected over
vaccinated and non-vaccinated colony will increase with time and risk of the
already infected person will also fluctuate so that fuzziness of the problem is
time and positional dependent.

Adaptation of Zhan’s formula for relative membership: Zhan’s formula is appli-
cable for determining membership grade of topological relations between two
fuzzy regions without holes. But here, as we consider the locality as fuzzy
region with hole, Zhan’s formula cannot be applied directly to determine the
membership grade of topological relations. To apply Zhan’s formula we utilize
the theoretical framework on topological relations between fuzzy region with
holes and fuzzy point developed in Chapter 3. As this framework considers
generalized region and hole as two separate fuzzy objects without holes and
topological relations are determined considering generalized region, hole and

point as distinct spatial object without holes which is related to 9-intersection
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matrix. Hence, Zhan’s formula can be extended for determining relative mem-
bership grade of topological relations between fuzzy region with hole and flu

point as
o= 30> (ei— ) (B =B )tH, P)+ 3 Y (es— i) (85— B} (AT, P)

where o, and §, are a-cut regions of the vaccinated and non-vaccinated colonies
in the locality respectively; ¢, 7 are the positional number of a-cut of vaccinated
and non-vaccinated colony, k € {disjoint, meet, contain, contain meet, disjoint

contain} and 7, is the membership grade of the topological relation k.

In the above formula, since we are using the a-cut of both the vaccinated and
non-vaccinated colonies for each relations, this formula will give relative mem-
bership grades of the topological relations w.r.t vaccinated and non-vaccinated
colony of the locality. To apply the modified Zhan’s formula we required the
value of a and the value of corresponding crisp topological relation between
fuzzy region with hole and fuzzy point, and between hole and fuzzy point.
Then to determine severeness at any point inside the locality, we first find the
relative severeness of vaccinated and non-vaccinated colony on each day and
then multiply the difference of relative severeness of two consecutive days by

inverse of distance.

Value of o for relative severeness: The relative severeness will be calculated
considering the value of a to be the ratio of the number of individuals infected
in the vaccinated/non-vaccinated colonies each day to the total of the num-
ber of people residing in that vaccinated/non-vaccinated colonies so that the
corresponding crisp set will be the set of all infected person in vaccinated and

non-vaccinated colonies of the locality.
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Figure 5.2: Relative a-cut regions of a generalized region and hole on the 1%

day

5.3.2 Relative membership grades of topological rela-
tions

Our theoretical framework for topological relations between fuzzy region with
holes and fuzzy point will give qualitative information about the situation. To
obtain the information on severeness at a particular distance of flu point from
the center of the vaccinated colony of the locality we need to find relative mem-
bership grade of the relations (i.e. quantitative information about the relations)
which can be calculated by modified Zhan'’s formula. The relative membership
grades of the disease at any position of the vaccinated and the non-vaccinated

colony of the locality for each day (as shown in Figure 5.2) is given as follows:
Tk = azﬂit(H, P) + Oéiﬁit(A*, P)

where o; and 3; are a-cuts of the vaccinated and non-vaccinated colony respec-

tively on i** day.

Theorem 5.3.1. For any k € {disjoint, meet, contain, disjoint contain,

containmeet} the value of T = o;Bit(H, P) + oy B3it(A*, P) lies in [0,1].
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Proof. For the relations ‘disjoint’, ‘meet’, ‘contain’, we have ¢t(H, P) = 0. So,
7 € (0,1]. Similarly, for ‘disjoint contain’, we have t(A*, P) = 0. Consequently,
7k € (0,1]. But if the relation is ‘contain meet’ then both the relations t(f, P) #
0 and t(A*, P) # 0, then also 7 € [0, 1] as initially when point meets the hole
crossing the generalized region, its value is less than 0.5.

Hence, in any case 7, € [0,1]. a

Since, we are considering the a-cuts of both the vaccinated and non-vaccinated
colonies for determining relative membership grade, therefore, t(H, P) and t(A*, P)
will be crisp relations taking values 0 and 1 only, depending on whether the re-
lations between H and P as well as A* and P belong to the topological relations

under consideration or not.

The relative membership grade of vaccinated and non-vaccinated colony of the

locality for each day is given by
Relative severeness (R.S.) = Maz{r}

where k € {disjoint, meet, contain, contain meet, disjoint contain}

The data set considered below is purely hypothetical. As mentioned earlier, the
primary stress is on the methodology and not on the authenticity of the data
or implied outcome.

Consider a locality of 1386 sq. kms(approx) consisting of 16000 people, of
which 1000 are residing in vaccinated colony which is 63.585 sq. kms (approx).
The hypothetical data of infected by the disease in seven days over the vacci-
nated and non-vaccinated colonies of the locality are given in Table 5.2.

The relative membership grade of the five relations between fuzzy region with
hole and point for the first day are

Tdisjount — 0.
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Day | vaccinated region(out of 1000) | non-vaccinated region(out of 15000)
1 5 1000
2 7 1030
3 8 1070
4 9 1100
) 11 1200
6 17 1450
7 25 1650

Table 5.2: Number of infected people

Tmeet = 01 S1t(A*, P) = 0.005 x .0667 = .000334.

Teontam = @101t(A*, P) = 0.005 x .0667 = .000334.
Teontamn meet = 20131 = 2 % 0.005 x .0667 = .000667.
Tdisjomt contan = Q1P1t(H, P) = 0.005 x .0667 = .000334.

Hence, the relative severeness for the first day is 0.000667.

Similarly, relative membership grades of severeness of infection in the vaccinated

and non-vaccinated colonies for the remaining six days are given in Table 5.3.

5.3.3 Severeness at a particular distance of flu point in
the locality from the center of the vaccinated colony

From the observation in Section 5.2, we know that when people in the vacci-

nated colony are susceptible to the disease then the people.in the non-vaccinated
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Day | Relative severeness (R. S.)

1 .000668
2 .00098
3 .001143
4 .00132
5 .00176
6 .003287
7 .0055

Table 5.3: Relative degree of severeness

colonies are at a much higher risk of being infected. That is, severity of the dis-
ease decreases as the distance of the carrier of infection increases from the vac-
cinated colony. The elements in Table 5.3, indicates the maximum of member-
ship grade of the disease in the people w.r.t. the vaccinated and non-vaccinated
colony of the locality on each day of the survey. In reality, however, the effect
of flu at different position of the locality will be different although sometime it
may be equal at some points. To determine the severity at a particular distance
of flu point in the locality in the present Subsection we have provided a basic
formula for severeness using relative membership grade of topological relations
and distance of the flu point from the center of the vaccinated colony. We,
therefore, consider the relative membership grades of flu over vaccinated and
non-vaccinated colonies for each day to divide whole locality into number of

a-cut regions as shown in the Figure 5.3.

Thus, the membership grade of severeness when the fuzzy point is at a distance

‘r’ from the center of the locality on ith day of the survey is given by
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1% a-cut region

27 q-cut region
3" a-cut region
4% q-cut region
5% a-cut region
6" a-cut region

Tt a-cut region

Figure 5.3: a-cut regions of the vaccinated locality

Severity at any point P at a distance ‘r’ on ** day

__ R.S.of i*" day—R. S. of (i—1)*" day s A
- total of R. S. T

Here, we consider the difference of relative membership grade of severeness
of two consecutive days because the number of infected persons on each day
is double counted in the number of infected person in the succeeding/next day
(i.e. in the considered data the number of infected for the 1 day are 5 infected
and for the 2" day the number of infected are 7 that is the number of infected
on the second day are only 2 which would contributed to the severity of the
locality on the 2"¢ day). Then, we divide it by the sum of all the relative severi-
ties for given period. Finally, we multiply it with the inverse of distance so that
it will give severeness of that point of the locality where flu had reached as the

severeness increase as flu entered toward the center of the locality.

In the subsequent section this formula is modified to determine severeness
at any point w.r.t flu point as well as position of the point in the locality as
the current formula does not provide any information about the position of the

point. Severeness of the bird flu at a distance 8km and 13km from the center

of the vaccinated colony inside the locality for seven days is given in Table 5.4.
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Distance &km 13km

Day 1 .005697 | .003506

Day 2 .002661 | .001637

Day 3 .00139 | .000855

Day 4 | .001509 | .000929

Day 5 | .0030018 | .002309

Day 6 013022 | .008013

Day 7 | .018872 | .011614

Table 5.4; Severeness at a distance

5.4 Pointwise/Local severeness model

Suppose the bird flu enters the locality from east to west and the point at which
we want to find severeness is along the same side of the flu point. We then use
vector difference to calculate the position and the value of severeness of the
point from the flu point.

As shown in Figure 5.4, ‘P’ is at a distance ‘a’ from the center of the vaccinated
colony and lies in the upper region at which we want to find the severity when
the flu reached the point ‘P’ at a distance ‘r’ from the center of the vaccinated

locality. Then severeness at the point P, on #** day is given by

R S oni"day—- RS on (i—1)" day o
B total of R. S. la — |

Here, we consider the vector difference in the formula because we want to find

S

(5.4.1)

the severeness of any point of the locality w.r.t flu point. Then vector difference
will gives the relative distance between the points if the point lies in the same

direction.
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Figure 5.4: Point lies in the same side of fuzzy point but upper region

N

Figure 5.5: Point lies in the same side of fuzzy point but lower region
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—
In Figure 5 4, direction of PP 1s towards P, which 1s 1n anticlockwise direction

so 1t 1s towards the upper half or in the left side of the locality

Similarly, if the point lies at P, which 1s along the flu point and in the lower
region at which we want to calculate the severity as shown in Figure 55, we
shall use the same formula as given n equation (54 1) But n this case, the
direction of the P_P; 1s towards P, which 1s 1n clockwise direction so 1t 1s towards

the lower half of the region or towards the right side of the region

Likewise, we can find the position and membership of any point along the same

side of the flu pomnt if the flu enter the locahty from the left side

Next, if bird flu entered the locality from the right and the point at which we
want to find severeness 1s along the opposite direction of flu point (as shown 1n
Figure 56 and 57) Then we use resultant of the vector sum to calculate the

position and the value of severeness of the pont from the flu point

Then the severeness at the point 1s given by

R S onithday— R S on (2 — 1) day 1
= X
total of R S la + 7|
The direction of the 1esultant gives the position of the point whether 1t 1s along

S

(542)

the upper or lower, left or right side of the locahty and magmtude of vector

will denote the severeness of the flu at the target pomnt For instance, if OP =

5Km = r towards east and OP;, = 10Km = ¢ towards north-east in the above
discussed locality with the hypothetical data set, then PP, = 3Km east to
north 1 e anticlockwise direction and the value of severencss at any pomnt P
when flu reach P on the 1'*-day 15 given by the Table 5 5 I

Next, if OP = 5Km = r towards east-south and OFP, = 10Km = a towards
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Figure 5.6: Point lies on opposite side of fuzzy point in upper region

N

Figure 5.7: Point lies in the opposite side of fuzzy point but lower region
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Day | Severeness at point P

1 22786
2 106425
3 .0556

4 060375
5 15009
6 520873
7 754475

Table 5.3: Severeness at any point along the same side of the flu point

east south in the above locality with the considered data then PP, = 5Km

towards south-east and the value will remains same as given in the Table 5.5.

Further, if OP = 5Km = r north-east and OF," = 10Km = a towards north-
west in the considered locality with considered data then R = 15Km towards

east-west and the severeness at the point when flu reach point P,’ is given in

the Table 5.6

Similarly, if OP = 5Km towards east-south and the OP,’ = 10km towards
west-south in the above discussed hypothetical locality then R = 15Km to-
wards the north-south and the membership grades of the severeness on different

days at the given point from the bird flu point is same as in Table 5.6.

From the two Tables 5.5 and 5.6, it can be seen that points which are at same
distance from the center of the vaccinated locality and lie in the either side of
the locality, the severeness decrease from the side where flu entered the locality

to the point which lies opposite or far away from the flu point.
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Day | Severeness at point P
1 .0030397
2 .0014197
3 0007417
4 .000805
5 .002002
6 .006949
7 .010065

Table 5.6: Severeness at the opposite side of flu point

5.4.1 Limitations

The following two assumptions that

(1) the number of infected people over the vaccinated and non-vaccinated colonies
of the locality should be either in increasing or in decreasing order, and that
(i1) the vaccinated colony should be in the center ‘

are the two main limitations of the model. However, most of the part of the
model have been deduced using theoretical derivations and assumptions sup-
ported by valid arguments, so the model is applicable on real life situation.
Here, we are using a purely hypothetical data set instead of real life data, the
objective being just to exhibit as to how this framework can be applicable to a

real life situation.

5.5 Conclusion

In this chapter, we have proposed an application of our theoretical model on

topological relations between fuzzy region with holes and their relations for the
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determination of effect of bird flu over a particular locality in which certain
colony is vaccinated. The basic idea is to formulate the locality as fuzzy region
with hole and carrier of infection as fuzzy point. Subsequently, the topological
relations between a fuzzy region with hole and a fuzzy point are used to deter-
mine the various level of risk over the different positions of the locality. The
membership grades of the relations are calculated by modifying Zhan’s formula
based on our framework of topological relations between fuzzy region with hole
and a fuzzy point. The number of infected people and intensity of affliction at
different position of the vaccinated and non-vaccinated colony will vary from
day to day. Hence, the fuzziness is time and positional dependent. Therefore,
the modified Zhan’s formula will give relative membership grade of severeness.
Then value of relative severeness will be used for dividing the whole locality
into number of a-cut regions. Finally, the value of relative membership grades
are used to determine the severeness of the people at a given distance of the flu
point from the center of the locality. But as it does not give idea about severe-
ness of any point of the locality w.r.t. the flu point and position of the point
in the locality, we have further provided a point-wise model which determines
severeness of a point w.r.t flu point as well as position of the point. This model
will be helpful in analyzing different real life situations by determining relative
membership grades of topological relations using a-cuts, then using these val-
ues determine severeness of any point i the affected region. This model may
be used to classify extent of severeness or intensity of any harmful infectious
disease/epidemics over different colonies of an area so that remedial measures
can be taken according to necessity. Models for multi-holed regions may be

developed as an extension of this work.
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Conclusion

6.1 Outcome

Study of spatial relations between spatial objects is one of the important aspects
in upcoming fields including branches of spatial reasoning, artificial intelligence,
cognitive sciences etc. Of the two kinds of spatial objects - crisp and fuzzy, the
crisp spatial objects and their relations have been extensively studied over last
two decades. Fuzzy spatial objects carry vast potential due to their ability to
present real situations more meaningfully but at the same time pose higher
degree of difficulty of being modeled. In this front though there are various
models to deal with fuzzy regions without hole, no model for fuzzy regions
provided for intrinsic incorporation of holes, which is an unavoidable necessity.
In this thesis, we provided a formal framework for modeling fuzzy regions with
holes and their topological relations in the frameworks of general and crisp fuzzy
topological spaces respectively. A model is also proposed as an application of
the developed framework to real life situations. Our study is expected provide
a step towards the development of optimal solution of topological relations of

fuzzy spatial objects with holes.

114
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6.2 Future directions

Modeling complex real life phenomenon for useful application oriented purposes
presents a great challenge to researchers working in different interdisciplinary
flelds of knowledge. Despite the recognition of its immense potential and highly
developed theoretical stature, serious applications of topology in directly ap-
plicable fields have started less than two decades ago. Research on topological
relations of fuzzy spatial objects is one area of work carrying vast potential
and at the same time posing a hard challenge to researchers. As an attempt
in this direction, we have, in this work, endeavoured to develop a theoretical
framework to define fuzzy regions with holes containing a finite number of holes
upon the assumption that holes are not along the boundary of the region and
are not overlapping. It is however readily accepted that most of the real life
phenomena may not always or perhaps more often than not satisfy the above
restrictions, calling for further work to be carried out to formulate fuzzy regions
to take care of these situations. We have attempted to provide a simple appli-
cation of topological relations between fuzzy region with hole and fuzzy point.
Given the occurrence of such situations in real life, application of topological
relations of fuzzy regions which containing more than one holes are bound to be
useful in different contexts. Further, future research can be done to represent
application of topological relations between fuzzy region with holes and fuzzy
line, fuzzy region with and without holes, fuzzy region each with a holes and
thereby representing different complex real life situations. It is expected that
our work shall open up newer avenues from the theoretical as well as application

perspectives.



Bibliography

[1]

[5]

(6]

(7]

Azad, K. K. On fuzzy semi continuity, fuzzy almost continuity and fuzzy

weakly continuity, J. Math. Anal. Appl 82, 14-32, 1981.

Altman, D. Fuzzy set theoretic approaches for handling imprecision in spa-
tial analysis, Int. Journal of Geographical Information Systems, 8(3), 271-
289, 1994.

Adams, C. and Franzosa, R. An Introduction to Topology: Pure and Ap-
plied, Pearson Education, India, 2008.

Ahmad, B. and Athar, M. Fuzzy almost continuous functions, Int. J. Con-
temp. Math. Sciences, 3(34), 1665-1677, 2008.

Athar, M. and Ahmad, B. Fuzzy boundary and fuzzy semiboundary, Ad-

vances in Fuzzy System, 2008.

Ahmad, B. and Athar, K. Fuzzy sets, fuzzy. s-open and s-closed mappings,
Advances in Fuzzy System, 2009.

Alboody, A., Sedes, F. and Ingada, J. Fuzzy intersection and difference
model for topological relation, Proceedings of the Joint 2009 International
Fuzzy Systems Association World Congress and 2009 European Society
of Fuzzy Logic and Technology Conference, 1079-1084, (IFSA-EUSFLAT,
Libson, Portugal), 2009.

116



(8]

(10]

[11]

[12]

(13]

[14]

(15]

(16]

Bibliography 117

Alboody, A., et al. Modeling Topological Relations between Uncertain Spa-
tial Regions in Geo-Spatial Databases: Uncertain Intersection and Differ-
ence Topological Model, Second International Conference on Advances in

Databases, Knowledge, and Data Applications, 2010.

Bjorke, J. T. Topological relations between fuzzy regions: derivations of

verbal terms, Fuzzy Sets and Systems, 141, 449-467, 2004.

Bae, J. H., et al. Applications of semi-open sets, Honam Mathematical J.

29(3), 307-326, 2007.

Bejaoui, L., et al. Qualified topological relation between spatial objects
with possible vague shape, Int. J. Geographical Information Science, 1-

45, 2008.

Bageerathi, K. and Thangavelu, P. A generalization of fuzzy boundary, Int.
J. Math. Archive, 1(3), 73-80, 2010.

Chang, C. L. Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182-190,
1968.

Cheng, T\, et al. Identification of fuzzy spatial objects from field objects, In:
Spatial Information Theory, A Theoretical Basis for GIS, LNCS (Springer-
Verlag), 1327, 241- 259, 1997.

Clementini, E. and Di Felice, P. An algebraic model for spatial objects
with indeterninate boundaries, In: Burrough, P. A. Frank, A. U. (Eds),
Geographic Object with Indeterminate Boundaries, Taylor and Francis,

London, 153-169, 1996.

Clementini, E. and Di Felice, P. Approximate topological relations, Int. J.

Approzimate Reasoning, 16, 173-204, 1997.



[17]

18

19

(20]

21

[22]

[23]

[24)

(28]

Bibliography 118

Clementini, E. and Di Felice, P. A spatial model for complex objects with a
broad boundary supporting queries on uncertain data, Data and Knowledge

Engineering, 37, 285-305, 2001.

Cohn, A. G. and Gotts, N. M. The egg-yolk representation of regions with
indeterminate boundaries, In: Burrough, P. A. Frank, A. U. (Eds), Geo-
graphic Object with Indeterminate Boundaries, Taylor and Francis, Lon-

don, 171-187, 1996.

Cuchillo-Ibahez E. and Tarres, J. On the boundary of fuzzy sets, Fuzzy
Sets and Systems, 89, 113-119, 1997.

Chen, J., et al. A Voronoi-based 9-intersection model for spatial relations,

Int. J. Geographical Information Science, 15(3), 201-220, 2001.

Dubois, D. and Jaulent, M. C. A general approach to parameter evaluation

in fuzzy digital pictures, Pattern Recognition Letters, 6, 251-259, 1987.

De, S. K., et al. An application of intuitionistic fuzzy sets in medical diag-

nosis, Fuzzy Sets and Systems 117, 209-213, 2001.

Du, S, et al. Fuzzy description of topological relation I: a unified fuzzy 9-
intersection model, In: Advances in Natural Computation, LNCS, Springer,

3612, 1260-1273, 2005.

Du, S., et al. Fuzzy description of topological relation IT: computation meth-
ods and example, In: Advances in Natural Computation, LNCS, Springer,

3612, 1274-1279, 2003.

Du, S., et al. Evaluating structural and topological consistency of com-
plex regions with broad boundaries in multi-resolution spatial databases,

Information Sciences, T8, 52-68, 2008.



[26]

127)

(28]

29]

[30]

[31]

[32]

(33]

Bibliography 119

Du, S., et al. Reasoning about topological relations between regions with

broad boundaries, Int. J. of Approzimate Reasoning, 47, 219-232, 2008.

Egenhofer, M. J. and Herring, J. A mathematical framework for the defi-
nition of topological relationships, In: Proceedings of the 4" International

Symposium on Spatial Data Handling, vol. 2, 803-813, 1990.

Egenhofer, M. J. A formal definition of binary topological relationships,
In Litwin, W. and Schek, H. (eds.) 3rd International Conference on Foun-
dations of Data Organization and Algorithms (FODO), LNCS, Springer-
Verlag, 367, 1989.

Egenhofer, M. J., et al. A topological data model for spatial databases,
Symposium the Design and Implementation of Large Spatial Databases,

Springer-Verlag, 1989.

Egenhofer, M. J. and Franzosa, R. Point-set topological spatial relations,
Int. J. Geographical Information Science, 5(2), 161-174, 1990.

Egenhofer, M. J. and Herring, J. Categorizing binary topological relation-
ships between region, lines and points in geographic databases, Technical
report, Department of Survey Engineering, University of Maine, Orono,

1991.

Egenhofer, M. J. and Al-Taha, K. K. Reasoning about gradual changes
of topologica,l'relationship, In: Theories and Methods of Spatio-Temporal
Reasoning in Geographic Space, LNCS, 603, 161-174, 1992.

Egenhofer, M. J., Clementini, E. and Di Felice, P. Topological relation
between region with holes, Int. J. Geographical Information Science, 8(2),

129-142, 1994.



(34]

(35]

[36]

[37]

[38]

[39]

[40]

(41]

Bibliography 120

Egenhofer, M. J. and Franzosa, R. On the equivalence c;f topological rela-
tions, Int. J. Geographical Information Science, 8(6), 133152, 1994.

Egenhofer, M. J. and Mark, D. M. Modelling conceptual neighborhoods of
topological line-region relations, Int. J. Geographical Information Science,

9(5), 195-212, 1995.

Egenhofer, M. J. and Vasardani, M. Spatial reasoning with a hole, In Spa-
tial Information Theory, 8th International Conference, COSIT 2007, Mel-
bourne, Australia, LNCS, Springer, New York, 4736, 303-320, 2007.

Egenhofer, M. J. and Vasardani, M. Single holed regions: their relation and
inference, 5th International Conference on Geographic Science-GIS 2008,
Park City, UT, LNCS, Springer- Verlag Berlin Heidelberg, 5266, 337-353,
2008.

Egenhofer, M. J. and Vasardani, M. Comparing relation with multi-holed
regions, Conference on Spatial Information Theory (COSIT’09), Aber
Wrac’h, France, LNCS, Springer- Verlag Berlin Heidelberg, 5756, 159-176,
2009.

Freeman, J. Modelling of spatial relations, Computer Graphics and Image

Processing, 4, 156-171, 1975.

Guliato, D., et al. Segmentation of Breast Tumors in Mammograms by
Fuzzy Region Growing, Proceedings of the 20th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society, 20(2),
1002-1005, 1998.

Guo, L. and Du, S. Deriving topological relations between regions from
direction relations, Journal of Visual Languages and Computing, 20, 368

384, 2009.



(42]

[43]

[44]

48]

[46]

[47]

[48]

[49]

[50]

[51]

Bibliography 121

Harriet Linda, C. and Wiselin Jiji, G. Crack detection in X-ray images using
fuzzy index measure, Applied Soft Computing, 11(4), 3571-3579, 2011.

Hazarika, D. and Hazarika, D. Fuzzy boundaries and their generalizations,

J. Puzzy Math. 20(3), 721-730, 2012.

Hazarika, D. and Hazarika, D. Fuzzy regions with holes and their topologi-
cal relations in a special fuzzy topological space, Ann. Fuzzy Math. Inform.

3(1), 89-101, 2012.

Hazarika, D. and Hazarika, D. Topological relations between fuzzy regions
with holes in a general fuzzy topological space, J. Inform. Math. Sci. 4(2),
189-198, 2012.

Hazarika, D. and Hazarika, D. A model of topological relations of fuzzy

regions with holes for assessing bird flu distribution, (Submitted).

Huo, L., Ouyang, J. and Liu, D. A model for topological relations between
regions with holes, The 1st Int. Conference on Information Science and

Engineering (ICISE2009), 1947-1951, 2009.

Klir, G. J. and Yaun, B. Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions, Prentice Hall of India, 1997.

Kapur, J. N. Mathematical Modelling, New Age International (P) Ltd,
1998.

Lowen, R. Fuzzy topological spaces and fuzzy compactness, J. Math. Anal.

Appl. 56, 621-633, 1976.

Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer.

Math. Monthly, 70, 36-41, 1961.



[52]

(53]

(54]

[55]

[57)

[58]

[59]

[60]

[61]

Bibliography 122

Liu, Y. M. and Luo, M. K. Fuzzy Topology, Advances in Fuzzy Systems -
Applications and Theory, World Scientific, 1997.

Li Y. and Li, S. A fuzzy sets theoretic approach to approximate spatial
reasoning, IEEE Transactions of Fuzzy Systems, 12(6) 2004.

Lee, K. H. First Course on Fuzzy Theory and Applications, Springer, 2005.

Liu, K. and Shi, W. Computing the fuzzy topological relations of spatial ob-
jects by induced fuzzy topology, Int. J. Geographical Information Science,
20(8), 857-883, 2006.

Liu, K. and Shi, W. Extended model of topological relation between spatial
objects in geographic information system, Int. J. of Applied Earth Obser-
vation and Geoinformation, 9, 264-275, 2007.

Liu, K. and Shi, W. Modeling fuzzy topological relations between uncertain
objects in GIS, Photogrammetric Engineering and Remote Sensing, 70(8),
921-929, 2004.

Liu, K. and Shi, W. A fuzzy topology for computing the interior, bound-
ary and exterior of spatial objects quantitatively in GIS, Computers and

Geoscience, 33, 898-915, 2007.

Liu, K. and Shi, W. Quantitative Fuzzy topological relations of spatial
objects by induced fuzzy topology, Int. J. of Applied Earth Observation
and Geoinformation, 11, 38-45, 2009.

Mackworth, A. K. Consistency in networks of relations, Artificial Intelli-

gence, 8, 99-118, 1977.

Mukherjee, M. N. and Sinha, S. P. Fuzzy #-closure operator on fuzzy topo-
logical spaces, Int. J. Math. and Math. Sci. 14, 309-314, 1991.



[62]

[63]

[64]

[65]

[66]

[67)

[68]

[69]

[70)

[71]

Bibliography 123

Mukaidono, M. Fuzzy Logic for Beginners, World Scientific, 1991.

Mark, D. M. and Egenhofer, M. J. Modelling spatial relations between lines
and regions: combining formal mathematical models and human subjects
testing, Cartography and Geographic Information Systems, 21, 195-212,
1994.

Molenear, M. An Introduction to the Theory of Spatial Object Modelling,
Taylor and Francis, London, 1998.

Munkres, J. R. Topology, Pearson Education Inc., 2000.

Mahmoud, F. S., Fath Alla, M. A. and Abd Ellah, S. M. Fuzzy topology on
fuzzy sets: fuzzy semicontinuity and fuzzy semiseparation axioms, Applied

Mathematics and Computation, 153, 127-140, 2004.

McKenney, M., et al. Deriving Topological Relationships between Simple
Regions with Holes, 13th Int. Symposium on Spatial Data Handling (SDH),
In: Headway in Spatial Data Handling, Springer-Verlag, 521-532, 2008.

Nawgaje, D. D. and Kanphade, R. D. Implementation of fuzzy inference
system for white blood cell cancer detection using DSP TMS320C6711, Int.
J. Engineering Science and Technology, ISSN:0975-5462, 123-127, 2011.

Pu, P. M. and Liu, Y. M. Fuzzy topology [: neighbourhood structure of a
fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76, 571-
599, 1980.

Pu, P. M. and Liu, Y. M. Fuzzy topology II: product and quotient spaces,
J. Math. Anal. Appl. 77, 20-37, 1980.

Paiva, J. Topological equivalence and similarity in multi-representation ge-

ographic databases, Ph.D Thesis, University of Maine, USA, 1998.



(72)

(73]

[74]

[75]

[76]

[77]

(78]

[79]

Bibliography 124

Park, J. and Keller, J. Fuzzy patch label relaxation in bone marrow seg-
mentation, Proceeding of IEEE International Conference on Systems, Man

and Cybernetics, Orlando, FL, 1133-1138, 1997.

Palshikar, G. K. Fuzzy region connection calculus in finite discrete space

domains, Applied Soft Computing, 4, 13-23, 2004.
Palaniappan, N. Fuzzy Topology, Narosa, India, 2003.

Roy, A. J. and Stell, J. G. Spatial relations between indeterminate regions,

Int. J. Approzimate Reasoning, 27, 205-234, 2001.

Stadler, M. M. and De Prada Vicente, M. A. On fuzzy subspace, Fuzzy
Sets and Systems, 58, 365-373, 1993.

Shostak, A. P. Two decades of fuzzy topology: basic ideas, notions, and

results, Russian Math. Surveys, 44(6), 125-186, 1998.

Schneider, M. Modelling spatial objects with undeterminant boundaries us-
ing the Realm/ROSE approach, In Geographic Object with Indeterminate
Boundaries, Taylor and Francis, London, 141-152, 1996.

Schneider, M. Uncertainty management for spatial database: fuzzy spa-
tial data types, The 6th International Symposium on advances in spatial

databases (SSD), LNCS, Springer Verlag, 1651, 330-351, 1999.

Schneider, M. Metric Operations on Fuzzy Spatial Objects in Databases,
8th ACM Symposium on Geographic Information Systems (ACM GIS),
921-26, 2000.

Schneider, M. and Behr, T. Topological relationship between complex spa-

tial objects, ACM Transcation on Database Systems, 31(1), 39-81, 2006.



(82]

(83]

[84]

(85)

86)

(87]

[88]

(89]

Bibliography 125

Schmitz, A. and Morris, A. Modeling and manipulating fuzzy regions:
strategies to define the topological relation between two fuzzy regions, Con-

trol and Cybernetics, 35(1), 73-95, 2006.

Sobrevilla, P., et al. White blood cell detection in bone marrow image,
18th Int. Conference of the North American Fuzzy Information Processing

Society, New York, 403-407, 1999.

Sobrevilla, P., et al. Using a fuzzy morphological structural element for
image segmentation, 19th Int. Conference of the North American Fuzzy

Information Processing Society, New York, 95-99, 2000.

Schockaert, S., et al. Fuzzy regional connection calculas: representing vague

topological information, Int. J. Approzimate Reasoning, 48, 314-331, 2008.

Schockaert, S., et al. Spatial reasoning in a fuzzy region connection calculus,

Artificial Intelligence, 173, 258-298, 2009.

Shi, W., Liu, K. and Zhang, H. A study of supervised classification accu-
racy in fuzzy topological methods, Int. J. Applied Farth Observation and
Geoinformation, 13(1), 89-99, 2010.

Tang, X. M. and Kainz, W. Analysis of topological relations between fuzzy
regions in a general fuzzy topological space, In: Proceedings of SDH Con-

ference, Canada, 114-123, 2002.

Tang, X. M. Spatial object modelling in fuzzy topological space: with appli-
cations to land cover change, Ph.D. Thesis, University of T'wente, Nether-

lands, 2004.

Tang, X. M., et al. Fuzzy topological relations between fuzzy spatial object,
Fuzzy Systems and Knowledge Discovery, LNCS, Springer Berlin, 4223,
324-333, 2006.



Bibliography 126

[91] Tang, X. M., et al. Some topological invariants and a quantitative topolog-
ical relation model between fuzzy regions, Proceedings of 4th International
Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 241-246,
2007.

(92} Tang, X. M., et al. Topological relations between fuzzy regions in a fuzzy
topological space, Int. J. of Applied Farth Observation and Geoinforma-
tion, 12(2), 151-165, 2010.

(93] Vasardani, M. Qualitative spatial reasoning with holed regions, Ph. D. The-
sis, University of Maine, USA, 2009.

(94] Willard, S. Topology, Addision-Wesely, 1970.

[95] Warren, R. H. Boundary of a fuzzy set, Indiana Univ. Math. J. 26, 191~
197, 1977.

[96] Wong, C. K. Fuzzy point and local properties of fuzzy topology, J. Math.
Anal. Appl. 46, 316-328, 1974.

[97] Winter, S. Uncertainty of topological relations in GIS, In Proceeding of
ISPRS Commission III Symposium on Spatial Information from Digital

Photogrammetry and Computer Vision, 1994.

(98] Winter, S. Uncertain topological relations between imprecise regions, Int.

J. Geographical Information Science, 14(5), 411-430, 2000.

[99] Yalvac, T. H. Semi-interior and semi-closure of a fuzzy set, J. Math. Anal.

Appl. 132, 356-364, 1985.
[100] Zadeh, L. A. Fuzzy sets, J. Inform. and Control, 8(3), 338-353, 1965.

[101] Zimmermann, H. J. FPuzzy Set Theory and its Applications, Springer, 1991.



Bibliography 127

[102] Zhan, F. B. Topological relations between fuzzy regions, In: Proceedings

of the ACM symposium on Applied Computing, 192-196, 1997.

[103) Zhan, F. B. Approximate analysis of binary topological relations between
geographic regions with indeterminate boundaries, Soft Computing, 2, 28—

34, 2008.

[104] Zhang, J. and Qin, X. Topological analysis between bodies with holes,
Int. J. of Computer Science and Network Security, 8(5), 167-174, 1998.



