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Abstract 

Cluster analysis has been widely used over various domains to identify similar 

groups or patterns inherent in the data. The aim of this thesis is to study different 

clustering techniques applicable in spatial and gene expression data. For spatial 

data domain, this thesis presents three clustering techniques. The first technique 

(GDCT) is a grid-density based technique for identifying clusters of arbitrary shapes 

from 2D spatial data even in presence of noise. We succeeded in detecting the 

various types of outliers by using a outlier detection technique in-built with GDCT. 

The next two techniques (SATCLUS and GDSDC) are used to detect clusters in 

satellite data in a two phase process. Both SATCLUS and GDSDC use a grid- 

density based technique to identify the coarse clusters in the first phase. In the second 

phase, SATCLUS uses a partitioning strategy and GDSDC uses a fuzzy approach to 

obtain the final clusters from the coarse clusters. Also, to handle massive datasets, 

we propose two distributed techniques for 2D spatial data and satellite imagery. 

A study of clustering techniques for the analysis of gene expression data has also 

been discussed in this thesis. This thesis also includes t,wo gene expression data 

clustering techniques. The first one is a density based clustering technique (GenClus) 

which clusters genes without taking the number of clusters as an input parameter. 

This thesis also incorporates an incremental version of the GenClus (InGenClus) 

to handle incremental gene expression data. The second technique GeneClusTree 

uses a hierarchical and density based approach to cluster the genes and forms a tree 

structure which helps in the visualization of the results. The proposed algorithm has 

been validated on several real-life datasets and found to perform well in comparison 

to similar algorithms. All clustering algorithms have been validated using various 

statistical measures. 

Keywords - Clustering, proximity measure, density based clustering, grid based 

clustering, embedded clusters, satellite data, coherent pattern, co-expressed gene, 

hierarchical clustering, distributed clustering 
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Chapter 1 

Introduction 

Data mining also known as knowledge discovery is the process of analyzing data 

from different perspectives and summarizing it into useful information. Data mining 

is the extraction of hidden previously unknown and potentially useful information 

from large databases. It allows users to  analyze data from many different dimensions 

or angles, categorize it, and summarize the relationships identified. Data mining is 

defined in [HMS04] as follows: 

Data mining is the analysis of (often large) observational datasets to find 

unsuspected relationships and to  summarize the data i n  novel ways that 

are both understandable and useful to  the data owner. 

Data mining tools predict future trends and behaviors, allowing businesses to  make 

proactive, knowledge-driven decisions. Data mining tools can answer business ques- 

tions that traditionally are too time consuming to resolve. They scour databases for 

hidden patterns, finding predictive information that experts may miss because it lies 

outside their expectations or is too difficult to find. 

1.1 Data Mining Tasks 

Data mining tasks are categorized into different types based on the types of models 

or patterns they find. Generally data mining tasks are of two types: predictive and 

descriptive. Predictive mining tasks perform inference on the current data in order 



to make predictions. Descriptive mining tasks characterize general properties of the 

data in the database. Some important data mining tasks according to [HK06] are 

given below. 

1. Mining frequent patterns, Association and Correlations: Mining pat terns that 

occur frequently in data leads to the discovery of interesting associations and 

correlations within data. 

2. Classzjication and prediction: Classification is the process of finding a model 

(or function) that describes and distinguishes data classes or concepts. The 

purpose is to use the model to predict the class of an object whose class label 

is unknown. The derived model is based on the analysis of training data (i.e., 

data objects whose class labels are unknown). 

3. Outlier analysis: A database may contain data objects whose characteristics 

are significantly different from the rest of the data. These data objects are 

known as outliers. In some applications such as fraud detection, rare events 

can be more interesting than regular ones. The analysis of outlier data is 

termed outlier mining. 

4. Evolution analysis: Data evolution analysis describes and models trends or 

regularities for objects whose behavior changes over time. 

5. Cluster analysis: Cluster analysis groups data objects based on information 

found in the data that describes the objects and their relationships. The goal is 

to partition a set of objects into groups, so that objects with similar character- 

istics are grouped together and different groups contain objects with dissimilar 

characteristics. The greater the similarity within a group and the greater the 

difference between groups, the better or more distinct is the clustering. 

Our work focuses on clustering and therefore we concentrate on cluster analysis only. 

1.2 Clustering and its Importance 

Cluster analysis is an important task in data mining. It is the assignment of a set of 

observations into subsets (called clusters) so that observations in the same cluster are 



similar in some sense. The key idea is to identify classications of the objects that is 

useful for the specific aims of the analysis. This idea has been applied in many areas 

including astronomy, remote sensing, biology, archeology, medicine, chemistry, edu- 

cation, psychology, linguistics and sociology. Clustering is an unsupervised learning 

method, and a common technique for statistical data analysis used in many fields 

including machine learning, data mining, pattern recognition, image analysis and 

bioinformatics. 

In recent years, clustering methods have been used extensively in analyzing spa- 

tial data, satellite imagery and biological data, especially from DNA microarrays 

measurements. The purpose of this work is to  study clustering of data with numeric 

attribute values. For our study, we use three different data domains namely spatial 

2D data, satellite imagery and gene expression data. 

1.2.1 Types of Data 

Datasets may differ in a number of ways. For example, the attributes for describing 

data objects can be of different types and datasets may have special characteristics 

e.g., time series data which have explicit relationship between one data and another. 

The different types of attributes for describing data objects [HK06] are as follows: 

1. Interval-Scaled Variables: These are continuous measurements of a roughly 

linear scale. Here differences between values are meaningful. Example: weight, 

height, latitude, longitude, temperature etc. 

2. Nominal Variable: These are just different names; provides enough information 

to distinguish one from the other. Examples include ID numbers, eye color, 

zip codes, gender. 

3. Binary Variables: These variables can take either of two states: 0 or 1, where 

0 means the variable is absent and 1 means the variable is present. 

4. Categorical Variables: These variables are a generalization of the binary vari- 

ables where it can take more than two states. For example, map color may 

take five states: red, yellow, green, blue and pink. 



5 .  Ordinal Variables: These variables resemble categorical variables except that 

the states must be ordered in a meaningful sequence. For example, the medals 

won in a sporting event <gold, silver, bronze>, rankings (e.g., taste of potato 

chips on a scale from 1-10), grades, height in <tall, medium, short>. 

6. Ratio-Scaled Variables: These variables make positive measurements on a non- 

linear scale such as an exponential scale. Here both differences and ratios are 

meaningful. Examples include temperature in Kelvin, length, time, counts. 

7. Mixed-type Variables: These variables may be mixture of the various types of 

variables mentioned above. 

General Characteristics of Datasets 

The main characteristics that apply to datasets and have a significant impact on the 

data mining techniques used are [TSKOS] given below. 

1. Dimensionality: The dimensionality of a dataset is the number of attributes 

that the objects in the dataset possess. Analyzing high dimensional data is 

difficult due to the curse of dimensionality [HK06]. 

2. Sparsity: Only presence of data in the dataset counts. For example, in a 

numeric dataset, most of the attributes of an object may consist of 0 values 

i.e., fewer than 1% of the entries in the dataset may be non-zero. Therefore, 

non-zero values only need to  be stored and processed reducing the computation 

time and storage space required. 

3. Resolution: Properties of data obtained at different levels of resolution are dif- 

ferent i.e., the patterns in the data are also dependent on the level of resolution. 

A pattern may not be visible at a finer level of resolution but at coarser reso- 

lution it might be visible. However, if the resolution is too coarse the pattern 

may disappear. 

In data mining, data are available from different sources and applications. A few of 

them are mentioned below. 



1. Record Data: Data that consists of a collection of records, each of which con- 

sists of a fixed set of attributes 

Data Matrix: If data objects have the same fixed set of numeric attributes, 

the data objects can be thought of as points in a multi-dimensional space, 

where each dimension represents a distinct attribute. Such dataset can 

be represented by an N x T matrix, where there are N rows, one for each 

object, and T columns, one for each attribute. 

Document Data: Each document is represented as a 'term' vector where 

each term is a component (attribute) of the vector. The value of each 

component is the number of times the corresponding term occurs in the 

document. 

Transaction Data: A special type of record data, where each record (trans- 

action) involves a set of items. For example, consider a grocery store. The 

set of products purchased by a customer during one shopping trip consti- 

tute a transaction, while the individual products that are purchased are 

the items. 

2. Graph Data: A graph data structure consists mainly of a finite (and possi- 

bly mutable) set of pairs, called edges or arcs, of certain entities called nodes 

or vertices. Much data mining research is focused on algorithms that can 

discover concepts in non-relational data represented using only an entity's at- 

tributes. However, much of the data collected is relational, or structural, in 

nature, requiring tools for the analysis and discovery of concepts in structural 

data. Graphs provide a natural representation for many of these structured 

data applications. Graph mining is becoming increasingly popular in recent 

years because of numerous applications some of which are presented below. A 

detailed discussion on various kinds of graph mining algorithms is found in 

[CH07]. 

Chemical Data: Chemical data is often represented as graphs in which the 

nodes correspond to atoms, and the links correspond to bonds between 

the atoms. In some cases, substructures of the data may also be used as 

individual nodes [AW 101. 



a Biological Data: Biological data is modeled in a similar way as chemical 

data. However, the individual graphs are typically much larger. Further- 

more, the nodes are typically represent specific entities of the biological 

models. A typical example of a node in a DNA application is an amino- 

acid. A single biological network may easily contain thousands of nodes 

[ AW 1 01 . 

a Networked and Web Data: In the case of computer networks and the web, 

the number of nodes in the underlying graph may be massive. Since the 

number of nodes is massive, it may lead to a very large number of distinct 

edges. This is also referred to as the massive domain issue in networked 

data [AWlO]. 

a XML data: XML data is a natural and general representation of graph 

data. We note that mining and management algorithms for XML data 

are also quite useful for graphs, since XML data can be viewed as labeled 

graphs. In addition, the attribute-value combinations associated with the 

nodes make the problem much more challenging [AWlO]. 

3. Ordered Data: Ordered data indicate that the columns contain values that 

define a sequence or order. It contains a sequence of transactions. Different 

forms of ordered data include the following. 

Spatial Data: Spatial data may be viewed as consisting of objects with 

some location in a physical space. 

Temporal Data: Data stored in a temporal database have a time period 

attached to it. A temporal database contains built-in time infrastructure, 

e.g. a temporal data model and a temporal version of Structured Query 

Language. More specifically the temporal infrastructure usually includes 

stamping with transaction-time. 

Sequential Data: A sequence is an ordered set of elements and often arise 

through measurement of time series phenomena. Each element can be 

numerical, categorical or of mixed type. The length of a sequence is not 

fixed. The order is determined by time or position and can be regular 

or irregular. Applications of this type of data include speech (sequence 



of phonemes), language (sequence of words and delimiters), handwrit- 

ing (sequence of strokes), bioinformatics (A genes sequence has 4 pos- 

sible nucleotides, example: AACTGACCTGGGCCCAATCC; A protein 

sequence has 20 possible amino acids, example: MAQQWSLQRLAGRH- 

PQDSYEDSTQSSIFIYTNSNSTRGPFEGPNYHIAPR) , telecommunica- 

tions (alarms, data packets), retail data mining (customer behavior, ses- 

sions in an e-store (example, Amazon)) and intrusion detection. 

To form groups of similar objects, a measure of closeness is required. Based on the 

nature of the variables (e.g., discrete, continuous or binary) or scales of measurement 

(e.g., nominal, ordinal, interval or ratio), the choice of proximity measure varies. 

Some proximity measures are discussed next. 

1.2.2 Proximity Measures 

In general, clustering requires a proximity measure for discovering similar or dissim- 

ilar objects in a dataset. We therefore need to use a measure for distances between 

objects so that similar objects are a short distance apart and dissimilar ones are 

further from each other. 

Distance Measure 

An important step in clustering is to select a distance measure, which determines 

how the similarity of two elements is calculated. This influences the shape of the 

clusters, as some elements may be close to one another according to one distance and 

further away according to another. A metric or distance function defines a distance 

between elements of a set. The properties of an effective distance measure are the 

following. 

i) d,,, > 0 (non-negativity): Distance is always positive or zero. 

ii) d,,, = 0 iff x = y (identity of indiscernibles): Distance is zero if and only if it 

measured from an object to itself. 

iii) d,,, = d,,, (symmetry): Distance is symmetric. 



iv) d,,, < d,,, + d,,, (triangle inequality): Distances satisfy triangular inequality. 

where d is a distance function and x, y, z are objects. A distance function is also 

called metric if it satisfies all four conditions given above. Because of the triangular 

inequality (condition 4), not all distance measures are metric, but all metrics are 

distances. Some of the common distance functions are Euclidean distance (also called 

2-norm distance or squared Euclidean distance), Manhattan distance (aka taxicab 

norm or 1-norm), maximum norm (aka infinity norm), Mahalanobis distance and 

Hamming distance. 

Similarity Measures 

From scientific and mathematical points of view, distance is defined as a quantitative 

degree of how far apart two objects are. Similarity is a numerical quantity that 

reflects the strength of relationship between two objects or two features. Similarities 

are higher for pairs of objects that are more alike. This quantity is usually in the 

range of either -1 to +1 or is normalized to the range from 0 to 1. If the similarity 

between object x and object y is denoted by S,,,, we can measure this quantity in 

several ways depending on the scale of measurement (or data type). The triangle 

equality does not hold for similarity measures but the following properties hold true. 

i) S,,, = 1 onlyif x =  y (0 5 S 5 1). 

ii) S,,, = S,,, for all x  and y (Symmetry). 

Some of the common similarity measures are Pearson's correlation, Simple Matching 

Coefficient, Jaccard Coefficient, Jackknife correlation, Spearmanls rank-order cor- 

relation coefficient, and Cosine Similarity. There are different types of proximity 

measures, some of which will be discussed in the next chapter. However, not all the 

measures are applicable in all domains. The efficiency of the proximity measures are 

dependent on the domain in which they are applied. 

1.2.3 Types of Clustering 

Clustering methods are broadly classified into the following categories [HK06, TSKOS]: 



Part it ioning met hods 

Partitional clustering obtains a partition of a set of objects into Ic clusters such that 

each cluster contains at  least one object and each object belongs to exactly one 

cluster. Partitional algorithms typically determine all clusters at  once. This type of 

clustering works well for spherical-shaped clusters. The main disadvantages with this 

type of clustering are: (i) the number of clusters must be known prior to clustering, 

(ii) the method detects clusters of spherical shapes only, (iii) detected clusters tend 

to become uniformly sized and (iv) all objects are forced to belong to a cluster. 

Hierarchical met hods 

Hierarchical clustering is a set of nested clusters that are organized as a tree called 

"dendrogram" . These algorithms can be either agglomerative ( "bottom-up" ) or divi- 

sive ( "top-down" ) . Agglomerative algorithms begin with each element as a separate 

cluster and merge them into successively larger clusters. Divisive algorithms begin 

with the whole set and proceed to divide it into successively smaller clusters. The 

general criterion of a good partition is that objects in the same cluster (partition) 

are more similar to each other than they are to objects in other clusters. Detection 

of arbitrary shaped clusters is possible using some hierarchical clustering algorithms. 

This type of clustering suffers from the fact that once a step (merge or split) is done, 

it cannot be undone. These algorithms are computationally expensive. Some hier- 

archical algorithms exhibit "chaining effectv- a few objects located so as to form a 

bridge between two clusters cause objects across the clusters to be grouped into a 

single elongated cluster. 

Density-based met hods 

The concept of a cluster in density-based clustering is a dense region of objects 

surrounded by a region of low or no density. Density is the number of objects in the 

particular neighborhood of a data object. Density-based clustering algorithms are 

devised to discover arbitrary-shaped clusters. Moreover, they can effectively separate 

noise and outliers. 



Grid-based met hods 
- .  

Grid-based methods quantize the object space into a finite number of cells that 

form a grid structure. All clustering operations are performed on the grid structure. 

The main advantage of this approach is its fast processing time, which is typically 

independent of the number of data objects and dependent only on the number of cells 

in each dimension in the quantized space. The problems inherent with this approach 

are that the grids are square or rectangular and do not necessarily fit the shape of 

the clusters. This can be handled by increasing the number of grid cells, but at  the 

expense of computational cost. 

Model-based methods 

Model-based methods hypothesize a probabilistic model for each of the clusters and 

find the best fit of the data to the given model. A model-based algorithm may locate 

clusters by constructing a density function that reflects the spatial distribution of 

the data points. It also leads to a way of automatically determining the number of 

clusters based on standard statistics. 

Graph-based met hods 

In graph-based clustering algorithms, graphs are built as combinations of objects, 

features or both, as nodes and edges. The graph is then partitioned by using graph 

theoretic algorithms. Graph based clustering algorithms are suitable for data that do 

not follow a Gaussian or spherical distribution. They can be used to detect clusters 

of varying shapes and sizes without the need to specify the number of clusters apriori. 

Graph theoretic algorithms are also used for the problem of clustering cDNAs based 

on their oligo-nucleotide fingerprints [HSL+99]. 

Soft Computing 

Soft computing differs from conventional (hard) computing in that, unlike hard com- 

puting, it deals with imprecision, uncertainty, partial truth, and approximation to 

achieve tractability, robustness and low solution cost. Components of soft comput- 



ing include: Fuzzy Systems, Neural Networks, Evolutionary Computation, Machine 

Learning and Probabilistic Reasoning. Soft computing techniques have been widely 

used in clustering data where the data deals with uncertainty, overlapping or mixed 

clusters. 

Distributed Clustering 

Distributed Data Mining makes the assumption that either the computation or the 

data itself is distributed. It can be used in environments ranging from parallel super- 

computers to P2P networks. It can be applied in areas like distributed information 

retrieval and sensor networks. Usually distributed clustering algorithms work by 

first computing a local model. Next, the local models are aggregated by a central 

node (or a super-peer in P2P clustering systems) and finally either a global model 

is computed, or aggregated models are sent back to all the nodes to produce locally 

optimized clusters. 

Subspace Clustering 

A subspace is a subset of a vector space that is itself a vector space. Subspace 

clustering is the task of detecting all clusters in all subspaces. Subspace clustering 

algorithms capture clusters formed by a subset of objects across a subset of features. 

The choice of clustering algorithm depends both on the type of data and on the 

particular purpose of the application. Some clustering algorithms integrate the idea 

of several clustering methods, so that it is sometimes difficult to classify a given algo- 

rithm as uniquely belonging to only one clustering category. Clustering algorithms 

have been used extensively for many applications and some of them are listed below. 

1.2.4 Applications of Clustering 

Clustering algorithms can be applied in many fields [HK06, TSKOS]. 

1. Image Analysis: The goal of image clustering is to locate objects and bound- 

aries (lines, curves, etc.) in images. It is the process of assigning a label to 



every pixel in an image such that pixels with the same label share certain visual 

characteristics'. Image clustering is used to locate tumors and other patholo- 

gies for medical image segmentation, measure tissue volumes, disease diagnosis 

etc.; to locate objects in satellite images (roads, forests, etc.) [Yam98a]; for 

face recognition and fingerprint recognition. 

2. Coherent Pattern Identification: Clustering techniques have been used to iden- 

tify the co-expressed genes and coherent patterns from gene expression data. 

Coherent patterns arise from co-expressed genes and co-expressed genes indi- 

cate that the genes are correlated and may participate in similar biological 

functions [JTZ04]. Gene expression data consists of thousands of genes and 

identification of co-expressed genes from such data requires use of data mining 

techniques such as clustering. This helps biologists gain knowledge of similarly 

expressed genes [SteOG] . 

3. Marketing: Finding groups of customers with similar behavior given a large 

database of customer data containing their properties and past buying records 

[HK06]. 

4. Fraud Detection and Management: Widely used in health care, retail, credit 

card services, telecommunications (phone card fraud), etc. Such approaches 

use historical data to build models of fraudulent behavior and use data mining 

to help identify similar instances [TSKOS]. 

5. Insurance: Identifying groups of motor insurance policy holders with a high 

average claim cost; detecting a group of people who stage accidents to collect 

the insurance, detecting professional patients, and detecting rings of doctors 

and rings of patient references. 

6. Document Clustering: Finding groups of documents that are similar to each 

other based on the important terms appearing in them, identifying frequently 

occurring terms in each document [TSKOS], clustering weblog data to discover 

groups of similar access patterns. 

7. Astronomy: Discovering new galaxies and stars. (The Jet Propulsion Labora- 

tory and the Palomar Observatory discovered 22 quasars with the help of data 



mining). 

Discussion 

Based on a comprehensive literature survey we come to the following conclusions. 

Clustering algorithms are dependent on the proximity measures used. Choosing 

an appropriate proximity measure is of utmost importance. That there exists 

no particular measure which can handle all the issues of clustering further 

complicates the job. It is highly desirable that the proximity measure used is 

robust to outliers and can detect clusters inherent in the dataset. 

Various clustering algorithms require different types of input parameters and 

clustering results are highly dependent on the values of the parameters. More- 

over it is difficult to identify different types of clusters in a given dataset. 

Detection of multi-density and intrinsic or embedded clusters is of utmost im- 

portance in identifying the inner structure of a given dataset. 

Handling of massive data can be done efficiently using distributed or parallel 

clustering techniques. 

Clustering has been applied to many real-world domains. We have studied the 

application of two real-life domains in this work: satellite imagery and gene 

expression data. 

Satellite image data contains huge amount of data as well as there is the added 

problem of mixed pixels. It is highly desirable to solve these problems if the 

clusters from satellite images are properly identified. 

Gene expression data contain highly connected clusters. Therefore, it would be 

very helpful if sub-clusters in the dataset can be identified. The sub-clusters 

consists of genes with highly coherent patterns. 

Due to the large number of microarray experiments being conducted the quan- 

tity of gene expression data is always increa,sing. New genes and new relation- 

ships among genes are continuously being discovered. As a result, it is desirable 



to cluster the newly available data incrementally instead of having to re-cluster 

the whole database with every update. 

1.4 Contributions of this Thesis 

The main contributions of the work reported in this thesis are given in the following 

subsections chapter wise. 

1.4.1 Grid-Density based Clustering for Spatial Data 

In Chapter 3, we propose a technique called GDCT, Grid-based Density Clustering 

using Triangle-subdivision, that can identify arbitrarily shaped embedded clusters as 

well as multi-density clusters in the presence of noise in large spatial datasets. The 

triangle-subdivision procedure included in GDCT gives high quality clusters. GDCT 

clusters the dataset according t o  the structure of the embedding space. The method 

exploits a grid based technique to  group the data points into blocks and the density 

of each grid cell is calculated. The blocks are then clustered by a topological search 

algorithm. For finer clustering, the triangle-subdivision method is used. The tech- 

nique finds quality clustering over variable density space. The experiments establish 

that GDCT is superior than other comparable algorithms in terms of cluster quality. 

To evaluate the technique in terms of clustering quality, we use several synthetic 

datasets as well as the Chameleon datasets [KHK99]. From our experimental re- 

sults, we conclude that GDCT is highly competent in detecting intrinsic as well as 

multi-density clusters. 

1.4.2 Grid-Density based Clustering for Pan-Chromatic and 

Multi-Spectral Satellite Data 

Chapter 4 presents two grid-density based clustering techniques for satellite data. 

The first technique, SATCLUS, works in two phases: Phase I which identifies coarse 



or rough clusters and Phase I1 which smoothens the cluster boundaries detected 

in Phase I. It can handle the detection of irregular shaped clusters by pixel level 

processing of the cluster borders (border smoothening process during Phase 11). In 

Phase 11, the cluster boundaries detected in Phase I are smoothened by incorporating 

a partitioning approach. The second technique, GDSDC, has the same first phase 

as SATCLUS, while in the second phase a fuzzy approach is used to improve the 

correctness of the cluster borders and detect the mixed pixels present in the dataset. 

Both SATCLUS and GDSDC do not require specification of the initial cluster ten- 

ters. Neither does the number of clusters play any role in the clustering process. The 

proposed techniques were tested on a large number of multi-spectral satellite imagery 

and the cluster results are found to be of excellent quality. A major advantage of 

this method is its simplicity and being free of the need to make initial guesses about 

cluster centers or the number of clusters. 

Experimental results establish that SATCLUS and GDSDC can detect all classes 

present in any satellite data effectively and dynamically. Moreover, the clusters 

of the remotely sensed multi-spectral satellite images obtained by SATCLUS were 

validated by using an index P as in [PGSOO] as well as the homogeneity measure 

[SMKSOS] . 

1.4.3 Distributed Grid-Density based Clustering 

In Chapter 5 ,  we present two distributed clustering techniques for handling massive 

datasets, one in spatial domain and the other for satellite imagery. 

The first technique can handle voluminous data and at the same time effectively 

detect multiple nested or embedded clusters even in presence of noise. The dis- 

tributed grid-density based clustering technique (DGDCT) finds clusters in spatial 

datasets according to the structure of the embedding space and can address the scal- 

ability problem effectively. Better speedup and scale-up is the major attraction of 

the proposed technique. DGDCT can detect global as well as embedded clusters by 

sharing the computational efforts among kp processors. Experimental results using 

several synthetic and the Chameleon datasets [KHK99] establish the superiority of 



the technique. Scale-up and speedup results establish the superiority of the tech- 

nique using several synthetic datasets. 

The second distributed clustering technique (DisClus) can handle high resolution 

satellite datasets qualitatively. The method exploits a grid-based technique to group 

the data points into blocks and to calculate the density of each grid cell. The blocks 

are then clustered by a neighborhood search algorithm. Finally, the pixels of the 

border cells of the clusters already detected are reassigned to the clusters using a 

partitioning based approach to get finer results. 

While comparing DisClus to several competitive algorithms, we find that DisClus 

requires only two parameters: the number of grid cells gr, x gr, and a merging 

threshold. However, we observe in our experiments that the merging threshold does 

not vary significantly with different datasets. 

Experimental results establish the capability of DisClus to handle large satellite im- 

age data and to determine all clusters present effectively and dynamically. DisClus 

is also superior in terms of execution time as well as relative speedup. 

1.4.4 Clustering Gene Expression Data for Coherent Pat- 

tern Identification 

In Chapter 6, two clustering techniques capable of identifying coherent patterns in 

gene expression data are presented. 

The first, GenClus, is a technique for clustering gene expression datasets, designed 

based on a density based approach. It can identify clusters and sub-clusters of arbi- 

trary shapes in any gene expression dataset in presence of noise. Another advantage 

of this technique is that it retains the magnitude as well as the regulation infor- 

mation. It uses no proximity measures and is therefore free from the limitations 

imposed by them. To test the performance of the clustering technique, we compare 

the clusters identified by our method with the results from k-means, SOM, DCCA 



and RDClust and find it to be superior. 

Later in this chapter, we present an incremental version of GenClus (InGenClus) 

that is capable of handling datasets that are updated incrementally. InGenClus was 

tested using various datasets. The clusters obtained by InGenClus using the dataset 

from [CCW+98] are same as those obtained by GenClus. 

The second technique presents an effective tree-based clustering technique (GeneClus- 

Tree) for finding clusters in gene expression data. GeneClusTree finds all clusters 

in subspaces using a tree-based density approach by scanning the whole database in 

the minimum number of possible passes. Another important advantage of GeneClus- 

Tree is that it does not use a proximity measure. Our technique works by finding 

the maximal space clusters and then proceeds in finding the reduced space clusters. 

The clusters are represented as a tree with the reduced space clusters as the child 

of its respective maximal space cluster. Effectiveness of GeneClusTree is established 

in terms of well known z-score measure and pvalue over several real-life datasets. 

The datasets have been obtained from http://faculty.washington.edu/kayee/cluster. 

GeneClusTree was compared with UPGMA, RDClust and DCCA w.r.t. z-score and 

found to give better result. The p-value analysis of GeneClusTree shows that it is 

capable in detecting biologically relevant clusters from gene expression data. 

We note here that both of our methods, GenClus and GeneClusTree, do not re- 

quire the number of clusters as an input parameter. They detect the clusters present 

in the dataset automatically and gives the rest as noise. 

1.5 Organization of the Thesis 

The thesis is organized as follows: 

a Chapter 2 gives a survey of literature regarding different clustering and outlier 

detection techniques. 



Chapter 3 presents our own grid-density based clustering technique with tri- 

angle subdivision (GDCT) for spatial data. The measure is established to be 

appropriate in detecting variable density and embedded clusters with respect 

to different synthetic datasets. 

In Chapter 4, two Grid-Density based clustering techniques for pan-chromatic 

and multi-spectral satellite data is presented. 

Two distributed clustering techniques for handling massive datasets, one in 

spatial domain (SATCLUS) and the other for satellite imagery (DisClus) is 

reported in Chapter 5. 

Chapter 6 of this thesis describes two gene expression clustering (GenClus and 

GeneClusTree). An incremental version of GenClus algorithm that can handle 

incremental datasets is also presented in Chapter 6. 

Finally, concluding remarks and future works are given in Chapter 7. 

The next chapter presents a selected survey of various clustering methods and outlier 

detection techniques. 



Chapter 2 

Related Work 

Cluster analysis is the process of division of data into groups (clusters) that are 

meaningful, useful, or both. It should reflect the natural structure of the data. Clus- 

ter analysis groups data objects based on information present in the data. The goal 

of clustering is to group similar or related objects in the same cluster and different or 

unrelated groups in different clusters. Clustering objects into meaningful groups is 

based on similarity or dissimilarity measures. Cluster analysis is a difficult problem 

because of many factors such as effective similarity measures, criterion functions, al- 

gorithms and initial conditions. Moreover, it is well known that no clustering method 

can adequately handle all sorts of cluster structures (shape, size and density). Outlier 

detection is one of the major technologies in data mining, whose task is to find small 

groups of data objects that are considerably different from rest of the data. Outlier 

mining is applied over various fields such as telecommunication, financial fraud de- 

tection, and data cleaning. In outlier mining, the patterns lying behind the outliers 

are usually interesting and helps the decision makers to make profit or to improve 

the service quality. It is considered to be an important research area, and outlier 

detection is studied intensively by the data mining community [BKNSOO, HK06]. In 

the succeeding sections, we discuss some commonly used proximity measures, vari- 

ous well-known clustering techniques and also some of the existing outlier detection 

techniques are discussed. 



2.1 Proximity Measures 

From scientific and mathematical point of view, distance is defined as a quantitative 

degree of how far apart two objects are. Similarity is a numerical quantity that 

reflects the strength of relationship between two objects or two features. Similarities 

are higher for pairs of objects that are more alike. This quantity is usually in the 

range of either -1 to +1 or is normalized into 0 t o  1. If the similarity between a pair 

of objects (x, y) is denoted by S,,,, we can measure this quantity in several ways 

depending on the scale of measurement (or data type) that we have. 

Distance measure is also known as dissimilarity measure. Similarity and dissim- 

ilarity measures are often called proximity measures. Dissimilarity measures the 

discrepancy between the two objects, i.e., it measures the degree to which two ob- 

jects are different. There are many types of distance and similarity measures. Each 

similarity or dissimilarity measure has its own characteristics. Next, we consider 

several important issues concerning proximity measures. 

2.1.1 Relationship between Similarity and Dissimilarity 

Let normalized dissimilarity between object x and object y be denoted by d,,,. Then 

the relationship between dissimilarity and similarity [HK06] is given by 

Here, S,,, is normalized similarity between objects x and y. Similarity is bounded 

by 0 and 1. When similarity is one (i.e., two objects are exactly similar), the dis- 

similarity'is zero and when the similarity is zero (i.e., two objects are very different), 

dissimilarity is one. If the value of similarity has range of -1 to +l, and the dissimi- 

larity is measured with range of 0 and 1, then 

When dissimilarity is one (i.e., two objects are very different), similarity is minus one 

and when the dissimilarity is zero (i.e., two objects are very similar), similarity is 

one. In many cases, measuring dissimilarity (i.e., distance) is easier than measuring 



similarity. Once we can measure dissimilarity, we can easily normalize it and convert 

it to similarity measure. It is also common for dissimilarities to range from 0 to oo. 

Frequently, proximity measures are transformed to  the interval [0, 11. The transfor- 

mation of similarities to the interval [0, 11 is given by 

where, min-S,,, and max-S,,, are minimum and maximum similarities respectively. 

Similarly, dissimilarity measures with a finite range can be mapped to the interval 

[O, 11 by using the formula 

where, min-d,,, and max-d,,, are minimum and maximum dissimilarities respec- 

tively. 

If the proximity measure has values in the range [0, oo], then a non-linear transfor- 

mation is needed and the values in the transformed scale will not have the same 

relationship to  one another as the original. But, whether such a transformation is 

desirable or not depends on the application it is used. 

2.1.2 Some Distance Measures 

A popular distance measure based on variables that take on continuous values is 

to  standardize the values by dividing by the standard deviation (sometimes other 

measures such as range are used) and then to  compute the distance between objects 

using the Euclidean metric. 

The Euclzdean dzstance d , ,  between two objects, i and j with variable values ( x , ~ ,  x,2, 
- , xZn) and (aj1, x32, . . , xjn) is defined by: 

If some variables should be given more importance than others then the squared 

difference terms should be multiplied by weights (positive numbers adding up to 



one) and use larger weights for the important variables. The Wezghted Euclzdean 

dzstance measure is given by: 

where wl, w2, - - . , w, are the weights for variables 1 ,2 ,  . - . , n so that w, 2 0, x r = l  w, = 

1. 

Other useful measures of dissimilarity other than the Euclidean distance that satisfy 

the triangular inequality and so qualify as distance metrics are: 

Manhattan dzstance is defined by 

n 

Minkowski distance is the generalized form of the two distance metrics discussed 

above. It is given as 

where p is a parameter. For p = 1, we get the Manhattan distance, and for p = 2 we 

get the Euclidean distance. 

Mahalanobzs dzstance corrects data for different scales and correlations in the vari- 

ables. It is defined by 

4 ,  = J(xz - xj)'vt(xZ - x,) (2.9) 

where x, and x, are n-dimensional vectors of the variable values for z and J respec- 

tively; and V is the covariance matrix for these vectors. This measure takes into 

account the correlation between the variable: variables that are highly correlated 

with other variables do not contribute as much as variables that are uncorrelated or 

mildly correlated. 

Maxzmum co-ordznate dzstance is defined by 



For p = oo we get the Chebyshev dzstance (L,,, or L, norm) named after Chebyshev 

[HDRT04]. This is the maximum distance between any pair of attributes of the 

objects. Formally, L, is defined as 

Hamming distance [Ham501 between two strings of equal length is the number of 

positions at  which the corresponding symbols are different. It measures the mini- 

mum number of substitutions required to  change one member into another. For a 

fixed length n, the Hamming distance is a metric on the vector space of the words 

of that length, as it obviously fulfills the conditions of non-negativity, identity of 

indiscernibles and symmetry, and it can be shown easily by complete induction that 

it satisfies the triangle inequality as well. For binary strings i and j the Hamming 

distance is equal to  the number of ones in i XOR j .  If qlo = number of variables 

with value 1 for the ith object and 0 for the jth object and qol = number of variables 

with value 0 for the ith object and 1 for the jth object, we have 

2.1.3 Some Similarity Measures 

Sometimes it is more natural or convenient to  work with a similarity measure be- 

tween objects rather than distance which measures dissimilarity. Such measures can 

always be converted to distance measures. In the above example we could define a 

distance measure d , ,  = 1 - S,,J. 

Pearson's correlation: The correlation coefficient, p, ,  is a widely used similarity 

measure, defined by 

where, is the mean of the n attributes of the ith object and is the mean of the n 

attributes of the jth object and Similarity measures between objects that have only 



binary attributes are called szmzlarzty coeficzents and have values between 0 and 1 

A value of 0 means that the objects are completely dissimilar and a value of 1 means 

that the objects are completely slmllar 

Suppose objects z and j have n binary attrlbutes Then, on comparing z and j 

the following quantities are obtalned 

1) goo the number of attributes where z = 0 and 3 = 0, 

11) gol the number of attributes where z = 0 and j = 1, 

111) 910 the number of attrlbutes where z = 1 and j = 0, and 

iv) 911 the number of attributes where z = 1 and 3 = 1 

Using the above quantities different similarity coefficients can be obtained 

Szmple Matchzng Coeficzent or S M C  [HK06] is one of the most commonly used 

similarity coefficients and is defined as, 

Total number o f  matched attrzbutes 
S M C  = - - 900 + 911 

Total attrzbutes 900 f 901 + 910 + 911 (2 14) 

S M C  gives equal weight to both presences and absences 

Jaccard Coeficzent [HK06] is used for handling objects consisting of asymmetric 

binary attributes Jaccard Coefficient (J) is defined as follows, 

Number of matched attrzbutes 
J = - - 91 1 

Total attrzbutes - non exzstence of both attrzbutes 901 + 910 + 911 
(2 15) 

Pearson's correlation is a powerful similarity measure However, empirical study has 

shown that it 1s not robust with respect to outliers [HKY99], thus potentially yielding 

false positives which assign a h ~ g h  slmllarlty score to a pair of dissimilar patterns If 

two patterns have a common peak or valley a t  a slngle feature, the correlation wlll 

be dominated by this feature, although the patterns at  the remaining features may 

be completely dissimilar Another drawback of Pearson's correlation coefficient is 

that it assumes an approximate Gausslan distribution of the points and may not be 



robust for non-Gaussian distributions [BicOl] . 

Jackknzfe correlation [JTZ04], helps in overcoming the single outlier problem of Pear- 

son's correlation. It is defined as, 

1 Jackni f e , ,  = min{&, - . , Pzj, . . P:~ } 

where d, ,  is the Pearson's correlation coefficient of data objects i and j with the lth 

feature deleted. Use of Jackknife correlation avoids the "dominance effect" of sin- 

gle outliers. More general versions of Jackknife correlation that are robust to more 

than one outlier can similarly be derived. However, generalized Jackknife correlation, 

which involves the enumeration of different combinations of features to be deleted, 

is computationally costly and is rarely used. 

Spearman's rank-order correlation coeficient is used to address the problem of non- 

Gaussian distribution~ w.r.t. Pearson's correlation, the Spearman's rank-order cor- 

relation coefficient [JTZ04] has been suggested as a similarity measure. The ranking 

correlation is derived by replacing the data x,, with its rank r,, among all conditions. 

For example, r,, = 3 if x,, is the third highest value among x,f, where 1 5 f 5 n. 

Spearman's correlation coefficient does not require the assumption of Gaussian dis- 

tribution and is more robust against outliers than Pearson's correlation coefficient. 

However, as a consequence of ranking, a significant amount of information present 

in the data is lost. 

Cosine Similarity [TSKOS] is useful for finding document similarity. If x and y 

are two document vectors, then cos,,, is given by the following equation, 

where . indicates the vector dot product, x.y = x:=, xkylc, and llxll is the length of 

vector x, and llxll = J K x :  = m. 

CorHsim: In [LWN+O9], a new similarity measure for gene expression microar- 

ray data, CorHsim, is presented. It reflects the magnitude and shape information 



of gene expression data at the same time and is defined as follows: 

where, a, and a, are the standard deviations of x and y respectively. The disadvan- 

tage of CorHsim is that it uses the mean value and may sometimes represent the 

pattern differently. 

The similarity/dissimilarity measures discussed above have been applied in vari- 

ous domains. However, not all the measures are applicable throughout all domains. 

There is a qualitative domain specific dependency among similarity/dissimilarity 

measures. 

2.2 Existing Clustering Approaches 

Generally, clustering algorithms are categorized into partitioning methods, hierar- 

chical met hods, density-based methods, grid-based methods, model-based methods, 

graph based methods, cluster ensembles, distributed methods, soft computing meth- 

ods, and subspace clustering [JMF99]. 

2.2.1 Partitional 

Partitional clustering divides the set of data objects into non-overlapping (disjoint) 

clusters such that each object is in exactly one cluster. Partitioning methods are 

divided into two major subcategories [HK06], the centroid based and the medoid 

based algorithms. The centroid based algorithms represent each cluster by using the 

gravity center (mean) of the instances while the medoid algorithms represent each 

cluster by means of the instances closest to the mean. 

The k-means algorithm is one of the most well-known centroid algorithm. The k- 

means method partitions the dataset into Ic subsets such that all points in a given 

subset are closest to the same center. In randomly selects Ic of the instances to repre- 

sent the cluster centers and based on the selected attributes, all remaining instances 



are assigned to their nearest cluster center. K-means then computes the new cluster 

centers by taking the mean of all data points belonging to the same cluster. The pro- 

cess is iterated until some convergence criterion is met (usually till there is no change 

in the cluster centers). Generally, the k-means algorithm has the following important 

properties: (i) It is efficient in processing large datasets, (ii) It often terminates at  a 

local optimum, (iii) The clusters have spherical shapes, (iv) It is sensitive to noise. 

However, the number of clusters have to be provided as an input parameter and 

choosing the proper initial centroids is the key step of the basic k-means procedure 

and results are dependent on it. 

K-medoid is also a partitional clustering technique that clusters the dataset of N 

objects into k clusters and is more robust to noise and outliers as  compared to k- 

means. A medoid is the most centrally located object in a given dataset. It can be 

defined as that object of a cluster, whose average dissimilarity to all the objects in 

the cluster is minimal[HKOG]. One of the most popular k-medoid clustering is the 

Partitioning around Medoids (PAM) algorithm which begins with an arbitrary set 

of k objects as medoid points out of N data objects. Each data object in the given 

dataset is associated to the most similar medoid. Then a non-medoid object, say o,, 

is selected randomly and the total cost ScOst of swapping initial medoid object to o, 

is computed. If ScOst < 0, then swap initial medoid with the new one. The process of 

selection of medoids and swapping is iterated until there is no change in the medoid. 

The k-modes algorithm [Hua98] is a recent partitioning algorithm and uses the sim- 

ple matching coefficient measure to deal with categorical attributes. For clustering 

instances described by mixed attributes, a k-prototypes algorithm [Hua98] is also 

proposed that integrates the k-means and k-modes algorithms and uses a combined 

dissimilarity measure during clustering. In [Che03], a generalization of conventional 

k-means clustering algorithm has been presented that is applicable to ellipse-shaped 

data clusters as well as ball-shaped ones and does not require the exact cluster num- 

ber apriori. 



2.2.2 Hierarchical 

Hierarchical clustering [HK06, TSKOS] provides a nested sequence of partitions, rep- 

resented graphically with a dendrogram. Each node (cluster) in the tree (except the 

leaf nodes) is the union of its children (sub-clusters), and the root of the tree is the 

cluster containing all the objects. Sometimes the leaf nodes consists of a single object 

and are termed as singleton clusters. Hierarchical methods are divided into two ma- 

jor subcategories: (i) agglomerative method, which forms the clusters in a bottom-up 

fashion starting with each object in a separate cluster and merging them until all 

data instances belong to the same cluster and (ii) divisive method, which splits up 

the dataset into smaller clusters in a top-down fashion until each cluster contains 

only one instance. Both divisive algorithms and agglomerative algorithms can be 

represented by dendrograms and are known for their quick termination. Other mer- 

its include: (a) they do not require the number of clusters to be known in advance, 

(b) they compute a complete hierarchy of clusters, (c) good result visualizations are 

integrated into the methods, and (d) a flat partition can be derived later by cut- 

ting through the dendrogram. However, both methods suffer from their inability to 

perform adjustments once the splitting or merging decision is made. Hierarchical 

clustering techniques use various criteria to decide locally at  each step which clusters 

should be merged (or split for divisive approaches). To merge or split clusters, the 

distance between individual objects has been generalized to the distance between sub- 

sets. Such derived proximity measure is called a linkage metric. Major inter-cluster 

linkage includes: single-link, complete-link and average-link [JMF99]. The single- 

link similarity between two clusters is the similarity between the two most similar 

instances, one of which appears in each cluster. Single link is good at handling non- 

elliptical shapes, but is sensitive to noise and outliers. The complete-link similarity 

is the similarity between the two most dissimilar instances, one from each cluster. 

Complete link is less susceptible to noise and outliers, but can break large clusters, 

and has trouble with convex shapes. The average-link similarity is a compromise 

between the two. There are various hierarchical clustering algorithms, some of them 

are: Balanced Iterative Reducing and Clustering using Hierarchies BIRCH [ZRL96], 

Clustering Using REpresentatives CURE [GRS98] and CHAMELEON [KHK99]. 



BIRCH [ZRL96] creates a height-balanced tree of nodes that summarize data by 

accumulating its zero, first, and second moments (CF statistics). It uses a hierar- 

chical data structure called CF-tree for partitioning the incoming data objects in 

an incremental and dynamic way. CF-tree is a height-balanced tree, which stores 

the clustering features and it is based on two parameters: branching factor B f and 

threshold Th, which refer to the diameter of a cluster (the diameter (or radius) of 

each cluster must be less than Th).  A CF tree is built as the data is scanned. While 

inserting each data object, the CF tree is traversed, starting from the root and choos- 

ing the closest node at  each level. When the closest leaf cluster for the current data 

object is finally identified, a test is performed to see if adding the data object to 

the candidate cluster will result in a new cluster with a diameter greater than the 

given threshold, Th. If it fits the leaf well and if the leaf is not overcrowded, CF 

statistics are incremented for all nodes from the leaf to the root. Otherwise a new 

CF is constructed. Since the maximum number of children per node (B f )  is limited, 

one or several splits can happen. When the tree reaches the assigned memory size, 

it is rebuilt and T h  is updated to a coarser one. The outliers are sent to disk, and 

refitted gradually during tree rebuilds. BIRCH can typically find a good clustering 

with a single scan of the data and improve the quality further with a few additional 

scans. It can also handle noise effectively. Moreover, because BIRCH is reasonably 

fast ( O ( N ) ) ,  it can be used as a more intelligent alternative to data sampling in 

order to improve the scalability of other clustering algorithms. However, it may not 

work well when clusters are not spherical because it uses the concept of radius or 

diameter to control the boundary of a cluster. In addition, it is order-sensitive as it 

may generate different clusters for different orders of the same input data. Bubble 

and Bubble-FM [GRG+98] clustering algorithms are extensions of BIRCH to handle 

categorical data. 

In CURE [GRS98], multiple well-scattered objects (representative points) are chosen 

to represent a cluster. These points usually capture the geometry and shape of the 

cluster. The first representative point is chosen to be the point farthest from the 

cluster center, while the remaining points are chosen so that they are farthest from 

all previously chosen points. This ensures that the representative points are naturally 



relatively well distributed. The number of points chosen, is a parameter, but it was 

found that a value of 10 or more worked well. The similarity between two clusters is 

measured by the similarity of the closest pair of the representative points (after they 

are shrunk toward their respective centers) belonging to different clusters. Once the 

representative points are chosen they are shrunk toward the center by a factor which 

ranges between 0 and 1. This helps moderate the effect of outliers, which are usually 

farther away from the center and thus are shrunk more. CURE uses an agglomerative 

hierarchical scheme to perform the actual clustering. Unlike centroid/medoid based 

methods, CURE is capable of finding clusters of different shapes and sizes, as it rep- 

resents each cluster via multiple representative points. Shrinking the representative 

points towards the center helps CURE in avoiding the problem of noise. However, it 

cannot be applied directly to  large datasets. For this reason, CURE takes a random 

sample and performs the hierarchical clustering on the sampled data points. 

ROCK [GRS99], is a clustering algorithm for categorical data and uses the Jaccard 

coefficient as a measure of similarity. It uses the concept of links i.e., the number of 

common neighbors for any two objects. ROCK first draws a random sample from 

the dataset and then performs clustering of the data with links. Finally the data in 

the disk is labeled. It accepts as input the sampled set S to  be clustered (that are 

drawn randomly from the original dataset), and the number of desired clusters k. 

ROCK samples the dataset in the same manner as CURE. 

CHAMELEON [KHK99] uses a two-phase approach to cluster the data. In the 

first phase, it uses a graph partitioning algorithm to divide the dataset into a set 

of individual clusters. It generates a k-nearest neighbor graph that contains links 

only between a point and its k-nearest neighbors. During the second phase, it uses 

an agglomerative hierarchical clustering algorithm to find the genuine clusters by 

repeatedly merging these sub-clusters. None of the clusters formed can contain less 

than a user specific number of instances. Two clusters are merged only if the inter- 

connectivity and closeness (proximity) between two clusters are high relative to the 

internal inter-connectivity of the clusters and closeness of items within the clusters. 

Therefore, it is better than both CURE and ROCK as CURE ignores information 



about inter-connectivity of the objects while ROCK ignores information about the 

closeness of two clusters. 

A novel incremental hierarchical clustering algorithm (GRIN) for numerical datasets 

based on gravity theory in physics is presented in [CH002]. One main factor that 

makes the GRIN algorithm able to deliver favorite clustering quality is that the opti- 

mal parameters settings in the GRIN algorithm are not sensitive to the distribution 

of the dataset. 

For 2D spatial data (for example, GIs database) the algorithm AMOEBA [ECLOO] 

uses Delaunay diagram (the dual of Voronoi diagram) to represent data proximity 

and has O(N1ogN) complexity. The algorithm consists of two steps: (i) The Delau- 

nay diagram is constructed and a connected planar plane-embedded graph is passed 

to the algorithm to act as the diagram. Clusters are made up of the points in a 

connected component and the points in the clusters are reported recursively. Every 

edge is matched against the criteria and passive edges and noise are discarded; active 

edges and their points form proximity sub-graphs at  each level of the hierarchy. (ii) 

The algorithm calls itself recursively until no new connected components are created 

when the passive edges and noise are discarded. 

The advantages of hierarchical clustering include: (i) Embedded flexibility regarding 

the level of granularity, (ii) Ease of handling of any forms of similarity or distance, 

and (iii) Applicability to any attribute types. The disadvantages of hierarchical clus- 

tering are: (i) Vagueness of termination criteria, (ii) The fact that most hierarchical 

algorithms do not revisit once intermediate clusters that have been constructed with 

the purpose of their improvement. 

2.2.3 Density based 

Density-based clustering algorithms try to find clusters based on density of data 

objects in a region. The key idea of density-based clustering is that for each core 

object of a cluster the neighborhood of a given radius ( E )  has to contain at least a 

minimum number of instances (MinPts),  where E and MinPts  are the two input 



parameters. One of the most well known density-based clustering algorithms is the 

DBSCAN [EKSX96]. This algorithm grows regions with sufficiently high density into 

clusters. DBSCAN separates data objects into three classes as illustrated in Figure 

2.1. 

Core points: These points are at  the interior of a cluster. A point is an interior 

point if there are enough points in its neighborhood. 

Border points: A border point is a point that is not a core point, i.e., there are 

not enough points in its neighborhood, but it falls within the neighborhood of 

a core point. 

Noise points: A noise point is any point that is not a core point or a border 

point. 

The neighborhood within a radius E of an object, say p is called the &-neighborhood 

of p. If the &-neighborhood of p contains at least MinPts number of objects 

then p is a core object. DBSCAN's definition of a cluster is based on the no- 

tion of density-reachability. The basic concepts of DBSCAN are directly density- 

reachability, density-reachability and density connectivity. Basically, an object q is 

directly density-reachable from an object p if it is within the &-neighborhood of a 

core object, p. An object q is called density-reachable from p if there is a sequence 

of objects pl, p2, - - , pn such that pl = p and p, = q where each p,+l is directly 

density-reachable from pa. The relation of density-reachability is not symmetric 

(since q might lie on the edge of a cluster, having insufficient number of neighbors 

for q to be core). Two objects p and q are density-connected if there is an object 

o such that both p and q are density-reachable from o. A cluster, can therefore be 

defined as a subset of the objects of the database that satisfies two properties: (i) 

all objects within the cluster are mutually density-connected and (ii) if an object is 

density-connected to any point of the cluster, it is part of the cluster as well. To find 

a cluster, DBSCAN starts with an arbitrary object (p) in dataset (D) and retrieves 

all objects of D w.r.t. E and MinPts.  DBSCAN has a number of advantages such 

as detection of arbitrary shaped clusters, noise handling and is hence quite attrac- 

tive. However, it suffers from huge computational requirements (the time complexity 

is O ( N ) 2 ) .  So it can take huge amounts of time with large datasets. One way to 



overcome this problem is to build spatial index structure over the dataset like R* 
tree to locate points within E distance from the core points of the clusters. But this 

solution is suitable only when the dimensionality of the data is low. Also DBSCAN 

is dependent on the input parameters E and MinPts  and there is no straight forward 

way to fit them to the data. Moreover, different parts of data could require different 

parameters due to variation in density of the parts. 

The algorithm OPTICS (Ordering Points To Identify the Clustering Structure) 

[ABKS99] can detect clusters of variable density by creating an ordering of the 

dataset that represents its density-based clustering structure. OPTICS considers 

a minimum radius (E') that makes a neighborhood legitimate for the algorithm. It 

is a versatile basis for interactive cluster analysis and is consistent with DBSCAN, 

but goes a step further by keeping the same two parameters E, MinPts  and intro- 

ducing the concept of core-distance E' (distance to MinPts  nearest neighbor when 

it does not exceed E ,  or undefined otherwise). OPTICS covers a spectrum of all dif- 

ferent E' 5 E . The constructed ordering can be used automatically or interactively. 

With each point, OPTICS stores only two additional fields, the so-called core- and 

reachability-distances. Experimentally, OPTICS exhibits runtime roughly equal to 

1.6 of DBSCAN runtime. While OPTICS can detect the different local densities, it 

is highly sensitive to its three parameters. 

An incremental version of DBSCAN (incremental DBSCAN) is presented in [EKS+98]. 

It has been proven that this incremental algorithm yields the same result as DB- 

SCAN. In addition, another clustering algorithm (GDBSCAN) generalizing the density- 

based algorithm DBSCAN is presented in [SEKX98]. GDBSCAN can be applied to 

both numerical and categorical attributes. Furthermore, DBCLASD (Distribution 

Based Clustering of Large Spatial Datasets) eliminates the need for E and MinPts 

parameters [XEKS98]. DBCLASD incrementally augments an initial cluster by its 

neighboring points as long as the nearest neighbor distance set of the resulting cluster 

still fits the expected distance distribution. DBSCLAD defines a cluster as a non- 

empty arbitrary shape subset in D that has the expected distribution of distance to 

the nearest neighbor with a required confidence, and is the maximal connected set 



Figure 2.1: Core, border and noise objects in an example dataset 

with this quality. Regarding connectivity, DBCLASD relies on grid-based approach 

to generate cluster-approximating polygons. The algorithm contains devices for han- 

dling real databases with noise and implements incremental unsupervised learning 

and can also handle spatial data. Two concepts are used here. First, assignments are 

not final: points can change cluster membership. Second, certain points (noise) are 

not assigned, but are tried later. Therefore, once incrementally fetched points can be 

revisited internally. DBCLASD is known to run faster than CLARANS by a factor 

of 60 on some examples. In comparison with much more efficient DBSCAN, it can be 

2-3 times slower. However, DBCLASD requires no user input, while empirical search 

for appropriate parameter requires several DBSCAN runs. In addition, DBCLASD 

discovers clusters of different densities. 

Another density-based algorithm is the DENCLUE [HHK98]. The basic idea of 

DENCLUE is to model the overall point density analytically as the sum of influence 

functions of the data points. The influeme function can be seen as a function, which 

describes the impact of a data point within its neighborhood. Then, by determining 

the maximum of the overall density function it can identify the clusters present. The 

algorithm allows a compact mathematical description of arbitrarily shaped clusters 



in high-dimensional datasets and is significantly faster than the other density based 

clustering algorithms. Moreover, DENCLUE produces good clustering results even 

when a large amount of noise is present. As in most other approaches, the quality 

of the resulting clustering depends on an adequate choice of the parameters. In this 

approach, there are two important parameters, the parameter a1 determines the in- 

fluence of a point in its neighborhood and ~1 describes whether a density-attractor 

is significant. Density-attractors are local maxima of the overall density function. 

The runtime of DENCLUE scales with N sub-linearly. This is due to the fact that 

though all the points are fetched, the bulk of analysis (in clustering stage) involves 

only points in highly populated areas. 

In [JPZ03], the Density-based Hierarchical Clustering method (DHC) is presented. 

It considers a cluster as a high-dimensional dense area, where data objects are at- 

tracted to each other. At the core part of the dense area, objects have higher density 

whereas objects at the peripheral area are relatively sparse. Once the density and 

attraction of data objects are defined, DHC organizes the cluster structure of the 

dataset in two-level hierarchical structures: attraction tree (represents relationships 

of objects in the dense area) and density tree (summarizes the cluster structure of the 

attraction tree where each node represents a dense area). Density tree is mined (split 

into sub-dense areas based on some criteria) for the final clusters. DHC is effective 

for the high-connectivity characteristic of gene expression data because it first c a p  

tures the core part of the cluster and then divides the borders of the clusters on the 

basis of the attraction between the data objects. The two-level hierarchical represen- 

tation of the dataset enables the relationship among the clusters and also organizes 

the relationship among the data objects within the same cluster. The computational 

complexity of this step is O(N2), which makes DHC inefficient. Furthermore, two 

global parameters used in DHC to control the splitting process of dense areas are 

also sensitive. 

FDC algorithm (Fast Density-Based Clustering) is presented in [ZCK99] for density- 

based clustering defined by the density-linked relationship. The clustering in this 

algorithm is defined by an equivalence relationship on the objects in the database. 



The complexity of FDC is linear to the size of the database, which is much faster than 

that of the algorithm DBSCAN. More recently, the algorithm SNN (Shared Nearest 

Neighbors) [ESK03] blends a density based approach with the idea of ROCK. SNN 

sparsifies similarity matrix by only keeping k-nearest neighbors, and thus derives the 

total strength of links for each object. 

2.2.4 Grid based 

Grid-based clustering algorithms first quantize the clustering space into a finite num- 

ber of cells (hyper-rectangles) and then perform the required operations on the quan- 

tized space. Cells that contain more than certain number of points are treated 

as dense and the dense cells are connected to form the clusters. Here, we report 

some of the grid-based clustering algorithms such as STatistical INformation Grid- 

based method - STING [WYM97], Wavecluster [SC+98], and CLustering In QUEst 

- CLIQUE [AGGR98]. 

STING [WYM97] is a grid based multi resolution clustering technique in which the 

spatial area is divided into rectangular cells in order to form a hierarchical structure. 

The cells in a high level are composed from the cells in the lower level. Each cell has 

four (default) children and stores a point count, and attribute-dependent measures: 

mean, standard deviation, minimum, maximum, and distribution type. Measures 

are accumulated starting from bottom level cells, and further propagate to higher- 

level cells (e.g., minimum is equal to a minimum among the children-minimums). 

It generates a hierarchical structure of the grid cells so as to represent the cluster- 

ing information at different levels. Therefore, STING constructs data summaries 

and assembles statistics in a hierarchical tree of nodes that are grid-cells. Although 

STING generates good clustering results in a short running time, there are two ma- 

jor problems with this algorithm. Firstly, the performance of STING relies on the 

granularity of the lowest level of the grid structure. Secondly, the resulting clusters 

are all bounded horizontally or vertically, but never diagonally. This shortcoming 

might greatly affect the cluster quality. 

CLIQUE [AGGR98] uses the concepts of density and grid based methods. CLIQUE 



starts by finding all the dense areas in the one-dimensional spaces corresponding to 

each attribute. CLIQUE then generates the set of two-dimensional cells that might 

possibly be dense, by looking at  dense one-dimensional cells, as each two-dimensional 

cell must be associated with a pair of dense one-dimensional cells. The dense units are 

then connected to form clusters. It uses apriori algorithm (bottom up algorithm) to 

find dense units. Generally, CLIQUE generates the possible set of n-dimensional cells 

that might possibly be dense by looking at dense (n - 1) dimensional cells. CLIQUE 

is able to find clusters in all subspaces of the original data space and present a min- 

imal description of each cluster in the form of a DNF expression. Steps involved 

in CLIQUE is i) identification of subspaces (dense Units) that contain cluster ii) 

merging of dense units to form cluster and iii) Generation of minimal description for 

the clusters. CLIQUE produces identical results irrespective of the order in which 

the input records are presented. In addition, it generates cluster descriptions in the 

form of DNF expressions [AGGR98] for ease of comprehension. Moreover, empirical 

evaluation shows that CLIQUE scales linearly with the number of instances, and has 

good scalability as the number of attributes is increased. 

The algorithm WaveCluster [SC+98] works with numerical attributes and has an 

advanced multi-resolution. The main idea is to transform the original feature by a p  

plying wavelet transform and then find the dense regions in the new space. A wavelet 

transform is a signal processing technique that decomposes a signal into different fre- 

quency sub bands. The first step of the WaveCluster algorithm is to quantize the 

feature space. In the second step, discrete wavelet transform is applied on the quan- 

tized feature space and hence new units are generated. WaveCluster connects the 

components in 2 set of units and they are considered as cluster. Corresponding to 

each resolution of wavelet transform there would be set of clusters k ,  where usually 

at the coarser resolutions number of cluster is less. In the next step, WaveCluster 

labels the units in the feature space that are included in the cluster. WaveCluster 

gives high quality of clusters, can work well in relatively high dimensional spatial 

data and can successfully handle outliers. The algorithm's complexity is O ( N )  for 

low dimensions, but with the increase in the number of dimensions it grows expo- 

nentially. Unlike other clustering methods, WaveCluster [SC+98] does not require 



users to give the number of clusters. It is a very powerful method and automatically 

removes outliers, however, it is not efficient in high dimensional space. 

2.2.5 Model based 

Autoclass [CS96] uses the Bayesian approach, starting from a random initialization 

of the parameters, incrementally adjusts them in an attempt to find their maximum 

likelihood estimates. Another model based method is the SOM net [Koh95] which 

is based on a single layered neural network. The data objects are organized with 

a simple 2-D grid structure. Each neuron of the neural network is associated with 

a reference vector, and each data point is mapped to the neuron with the closest 

reference vector. In the process of running the algorithm, each data object acts as 

a training sample which directs the movement of the reference vectors towards the 

denser areas of the input vector space, so that those reference vectors are trained to 

fit the distributions of the input dataset. When the training is complete, clusters are 

identified by mapping all data points to the output neurons. An important property 

of the SOM is that it is very robust. The outlier can be easily detected from the 

map, since its distance in the input space from other units is large. SOM can deal 

with missing data values, too. It generates intuitive cluster patterns of a high di- 

mensional dataset. However, it suffers from some disadvantages such as the number 

of clusters and the grid structure of the neuron map need to be given as input. It is 

also sensitive to  the input parameter. 

Though the model based approach can be considered as more relevant to the data 

mining problem, most of the existing methods under the approach suffer from the 

following disadvantages: (i) they try to fit a mathematical model to the data which 

may not be effective to all domains, (ii) the number of clusters and the grid structure 

need to be given as input, (iii) they are sensitive to the input parameters and (iv) 

the algorithms are not cost effective. 



2.2.6 Graph Based 

Graph theoretical clustering techniques represent the data in terms of a graph, thus 

converting the problem of clustering a dataset into such graph theoretical problems 

as finding minimum cut or maximum cliques in a proximity graph [BDSY99]. AUTO- 

CLUST [LECOO] is a graph based algorithm that automatically extracts boundaries 

based on Voronoi modeling and Delaunay Diagrams. Parameters required are not 

specified by users but are revealed from the proximity structures of the Voronoi mod- 

eling, and AUTOCLUST calculates them from the Delaunay Diagram. This removes 

human-generated bias and also reduces the exploration time. The advantages are: 

(i) it is effective in the detection of clusters of different densities, and (ii) it identifies 

and removes multiple bridges linking clusters and has a complexity of O(NlogN). 

CLuster Identification via Connectivity Kernels (CLICK) [SSOO] tries to identify clus- 

ters as a highly connected component in a proximity graph based on a probabilistic 

assumption and can detect intersecting clusters. Cluster Affinity Search Technique 

(CAST) [BDSY99] is based on the concept of a corrupt clique graph data model. 

CAST assumes that the true clusters of the data points are obtained by a disjoint 

union of complete suhgraphs where each clique represents a cluster; where a cluster 

is a set of high affinity elements subject to a threshold. CAST discovers clusters one 

at a time. Both CAST and CLIQUE are popular for detecting clusters over gene 

expression data. The graph theoretic approach can be considered to be more relevant 

to gene expression data mining as they are capable of discovering intersected and 

embedded clusters. However, it sometimes generates non-realistic cluster pat terns. 

There are many applications that require the clustering of large amounts of high 

dimensional data. However, most automated clustering techniques do not work ef- 

fectively and/or efficiently on high dimensional data, i.e. they often miss clusters 

with certain unexpected characteristics. The reasons for this are: (i) it is difficult to 

estimate the necessary parameters for tuning the clustering algorithms to the spe- 

cific application's characteristics, (ii) it is hard to verify and interpret the resulting 

high dimensional clusters and (iii) often the concept of clusters inspired from low 

dimensional cases cannot be extended to high dimensional cases. A solution to these 

problems may be obtained by integrating all the requirements into a single algorithm 



and to try to build a combination of clustering algorithms (ensembles of clustering 

algorithms) 

2.2.7 Ensembles of Clustering Algorithms 

In the combination of techniques in a group or ensemble, the outputs provided by 

different techniques are combined by one of several strategies in order to provide a 

consensus output value [HCFdCOS]. The main goal is to use the best features of 

each individual technique and improve the overall performance in terms of accuracy 

or precision. The theoretical foundation of combining multiple clustering algorithms 

is still in its early stages. According to [HK07, HKKO51, clustering ensembles are 

formed by the combination of a set of partitions previously produced by several 

runs of a single algorithm or by a set of algorithms. Since, there is no label associ- 

ated with each object, some form of sophisticated strategies are needed in order to 

combine partitions found by different algorithms or different runs of the same algo- 

rithm in a consensus partition. Combining multiple clustering algorithms is a more 

challenging problem than combining multiple classifiers. Clustering combination a 

difficult task because various clustering algorithms produce very different results due 

to different clustering criteria, combining these clustering results directly may not 

generate a good meaningful result. According to [SG03], cluster ensembles can be 

formed in a number of different ways, such as (i) the use of a number of different 

clustering techniques (either deliberately or arbitrarily selected), (ii) the use of a 

single technique many times with different initial conditions and/or (iii) the use of 

different partial subsets of features or patterns. In [FJ02], a split-and-merge strategy 

is followed. In the first step, k-means algorithm is used to generate small, compact 

clusters. An ensemble of clustering algorithms is produced by random initializations 

of cluster centroids. Data partitions present in these clustering are mapped into a 

new similarity matrix between patterns, based on a voting mechanism. This matrix, 

is independent of data sparseness, is then used to extract the natural clusters using 

the single link algorithm. In [AK03], multiple clustering algorithms were combined 

based on a Weighted Shared nearest neighbors Graph method. In [YAL+OG] multiple 

crossover repetitions were used to combine partitions created by different clustering 

algorithms. Each pair selected for a crossover operation should present a high overlap 



in the clusters. The initial population comprises of all clusters created by the cluster- 

ing algorithms used in the ensemble. This method, named heterogeneous clustering 

ensemble (HCE), differ from other ensemble approaches by taking characteristics 

from the individual algorithms and the dataset into account during the ensemble 

procedure. This method was compared with individual clustering algorithms using 

a gene expression dataset. 

Due to the increasing size of current databases, constructing efficient distributed 

clustering algorithms has attracted considerable attention. 

2.2.8 Distributed Clustering 

Distributed Clustering assumes that the objects to be clustered reside on different 

sites. Instead of transmitting all objects to a central site (also known as server) where 

we can apply standard clustering algorithms to analyze the data (also known as se- 

quential clustering), the data are clustered independently on different local sites. The 

central site updates the global clustering based on the local models, i.e. the repre- 

sentative clustering transmitted from the local sites. Generally, as far as distributed 

clustering is concerned, there are different scenarios: (i) Feature-Distributed Cluster- 

ing (FDC), combines a set of clusterings obtained from clustering algorithm having 

partial view of the data features, (ii) Object-Distributed Clustering (ODC), com- 

bines clusterings obtained from clustering algorithm that have access to the whole 

set of data features and to a limited number of objects, and (iii) Feature/Object- 

Distributed Clustering (FODC) , consists in combining clusterings obtained from clus- 

tering algorithm having access to limited number of objects and/or features of the 

data. Various distributed clustering techniques have been proposed such as a paral- 

lel version of the k-means algorithm was proposed in [DM99], a parallel version of 

DBSCAN, called PDBSCAN was presented in [XJK99] that uses a shared-nothing 

architecture with multiple computers interconnected through a network. PDBSCAN 

offers nearly linear speedup and has excellent scale-up and size-up behavior. The 

Density Based Distributed Clustering(DBDC) algorithm [JKP03] can be used in the 

case when the data to be clustered is distributed and infeasible to centralize. A 

detailed survey of distributed clustering is reported in Section 5.2. 



2.2.9 Soft Computing 

Traditional clustering approaches generate disjoint groups or clusters. Fuzzy cluster- 

ing on the other hand associates each pattern with every cluster using a membership 

function with larger membership values indicating higher confidence in the assign- 

ment of the pattern to the cluster. One widely used fuzzy clustering algorithm is 

the Fuzzy C-Means (FCM) algorithm [Bezgla] , which is based on k-means. FCM at- 

tempts to find the most characteristic point in each cluster, which can be considered 

as the cluster center and, then, the degree of membership for each object in the clus- 

ters are computed. The work in [AZMOG] attempts to segment satellite image based 

on FCM algorithm and to detect different road classes on it. Some variants of fuzzy 

clustering for satellite image domain are presented in [ACNOS, AN09, GyFSlXrO91. 

In [VB09], a density based clustering method called rough-DBSCAN is presented. 

It is a modication of the well known density based clustering method DBSCAN 

[EKSX96] and aims at  achieving similar result as DBSCAN but in much smaller 

time requirement ( O ( N ) ) .  

Neural Networks-based clustering approaches have also gained popularity in recent 

years. Examples are SOFM (Self Organizing Feature Map) [Koh95, AN091 and ART 

(Adaptive Resonance Theory) [THHK02]. SOFM attempts to visualize a high dimen- 

sional input pattern with prototype vectors in a two-dimensional lattice structure, 

where each node in the lattice structure is a neuron, which are connected to each other 

via adaptable weights. During the training process, the neighboring input patterns 

are projected into the lattice corresponding to adjacent neurons. The advantages of 

SOFM are: (i) It enjoys the benefits of input space density approximation and, (ii) it 

is input order independent. The disadvantages are (i) like k-means, SOFM needs to 

predefine the size of the lattice, (the number of clusters) and, (ii) it may suffer from 

input space density misrepresentation. ART [THHK02] is a large family of neural 

network architecture and is capable of learning any input pattern in a fast, stable 

and self-organizing way. 

Genetic Algorithms (GA) [Go1891 are also used in cluster analysis. GA clustering is 

basically a randomized search and optimization technique based on the principles of 



evolution and natural genetics. Several GA-based clustering algorithms are found in 

the literature [ACNO9, LLF+04b7 KM99, LLF+04a, BPO1, MB03a, BMM07al. GAS 

have also been used to cluster satellite images such as the real-coded variable string 

length genetic fuzzy clustering in [MB03a] and multi-objective optimization algo- 

rithm in [BMM07a]. GGA (Genetically Guided Algorithm) is a genetic algorithm 

for fuzzy and hard k-means [HOB99]. Evolutionary techniques rely on certain pa- 

rameters to empirically fit data and have high computational costs that limit their 

application in data mining. However, usage of combined strategies (e.g., generation 

of initial guess for k-means) has been attempted [BM93]. 

Other soft clustering algorithms have been developed and most of them are based on 

the Expectation-Maximization (EM) algorithm [DLR77]. They assume an underly- 

ing probability model with parameters that describe the probability that an instance 

belongs to a certain cluster. EM algorithm starts with initial guesses for the mixture 

model parameters. These values are then used to calculate the cluster probabilities 

for each object which in turn are used to  re-estimate the parameters, and the process 

is repeated. A drawback of such algorithms is that they tend to be computationally 

expensive. Another problem found in this approach is called overfitting. This prob- 

lem might be caused due to two reasons. On one hand, a large number of clusters 

may be specified and on the other, the distributions of probabilities have too many 

parameters. In this context, one possible solution is to  adopt a fully Bayesian a p  

proach, in which every parameter has a prior probability distribution. 

In case of fuzzy clustering, the problem of specifying the number of clusters exists. 

The basic advantage of ART is that it is fast, exhibits stable learning and pattern 

detection. The disadvantage is its inefficiency in handling noise and higher dimen- 

sional representation for clusters. GA-based clustering has also been used extensively 

recently, however, solutions are not always free from the local optima problem. 

2.2.10 Subspace Clustering 

Subspace clustering was initially proposed by Agrawal et al. [AGGR98], to evaluate 

features on only a subset of the data, based on a measure referred to as a "measure 



of locality" representing a cluster. In this subsect ion, subspace clustering algorithms 

are discussed in four broad categories. 

a. Bottom-Up SubspaceSearch Methods take the advantage of downward closure 

of the property of density to reduce the search space. It determines local- 

ity by creating bins for each dimension which finally form multi-dimensional 

grid, achieved by two approaches: (i) static grid-sized approach, e.g., CLIQUE 

[AGGR98] and ENCLUS[CFZ99], two popular algorithms of this category, and 

(ii) data driven strategies adopted to determine the cut-points, e.g., MAFIA, 

CBF, CL Tree and DOC. CLIQUE [AGGR98] can find clusters within s u b  

spaces using a grid-density based clustering approach and is capable of iden- 

tifying arbitrary shaped clusters in any number of dimensions without spec- 

ifying the number of clusters. The clusters may be found in the same space 

or in overlapping and disjoint subspaces. CLIQUE scales well with the num- 

ber of instances and dimensions in the dataset. This method is not without 

its disadvantages, which are both grid size and the density threshold are in- 

put parameters which affect the quality of the clustering results, the small but 

important clusters can sometimes be eliminated during the pruning stage. EN- 

CLUS [CFZ99]is a bottom-up clustering method which defines clusters based 

on entropy and can locate overlapping clusters of various shapes in subspaces 

of different sizes. However, its scalability is poor with respect to the s u b  

space dimensions. Merging of Adaptive Finite Intervals Algorithm (MAFIA) 

[GGN+99] is a variant of CLIQUE and uses an adaptive, grid-based approach 

with parallelism, to improve scalability. The advantages of MAFIA are that it 

can locate clusters of various sizes and shapes, its performance is faster than 

CLIQUE due to the adoption of parallel approach and its scale-up is linear. 

However, the running time grows exponentially as the number of dimensions in- 

crease. Cell-Based Clustering (CBF) [CJ02] is also a bottom-up algorithm but 

unlike CLIQUE and MAFIA, it uses an efficient algorithm for creation of par- 

titions optimally, to avoid exponential growth of bins with the increase in the 

number of dimensions. CBF locates clusters of various sizes and shapes, scales 

linearly with respect to the number of records in a dataset and its performance 

is better since the bins are stored in an index structure. But, it is sensitive 



to the threshold which determines the bin frequency of a dimension and the 

threshold which determines the number of data points in a bin. Density-based 

Optimal projective Clustering (DOC) [PJAM02] is basically a hybridization of 

bottom-up and topdown approaches. It introduces the notion of an optimal 

projective cluster. The advantage is that the running time grows linearly with 

the number of instances, whereas the disadvantages are it is sensitive to the 

input parameters, is able to identify mostly hyper-rectangular shaped clusters, 

and the running time grows exponentially with the increase in the number of 

dimensions in the dataset. 

b. TopDown SubspaceSearch Methods start with an initial approximation of 

clusters over an equally weighted full feature space. Next, it follows an itera- 

tive procedure to update the weights and accordingly reforms the clusters. It 

is an expensive clustering algorithm over the full feature space. However, the 

use of sampling technique can improve the performance. The number of clus- 

ters and the size of the subspace are the most critical factors in this approach. 

PROCLUS [AWY+99] is a sampling biased topdown subspace clustering algo- 

rithm which randomly selects a set of k-medoids from a sample and iteratively 

improves the choice of medoids to form better clusters. The disadvantages of 

this method are it is biased towards hyper-spherical shaped clusters, cluster- 

ing quality depend upon the size of the sample chosen, and it is sensitive to 

the input parameters. ORCLUS [AYOO] at tempts to form clusters iteratively 

by assigning the points to the nearest cluster representation. It computes the 

dissimilarity between a pair of points as a set of orthonormal vectors over a 

subspace. It is a fast and a scalable method. However, it requires the size of 

the subspace dimensionality and the number of clusters apriori and may some- 

times miss some small clusters. The algorithm 6-Clusters [YWWY02] starts 

with an initial seed and attempts to improve the overall quality of the cluster 

iteratively by swapping dimensions with instances. The advantage is that the 

use of coherence as a similarity measure makes it more relevant for microarray 

data analysis and its disadvantages are that (i) it is dependent on two input 

parameters which are number and size of the cluster (ii) the running time is 

dependent upon the cluster size. COSA [FM04] starts with an equally weighted 



dimension for each instance and then it examines the k-nearest neighbors (knn) 

of an instance. Based on knn, it calculates the respective dimension weights 

for each instance and assigns higher weighted dimensions to those instances 

which have lesser dispersion within the neighborhood. This process is then 

repeated with the new instances till the weights stabilize. The advantage of 

this method is that the number of dimensions in clusters need not be specified 

and the dimension weights are calculated. 

c. Biclustering Algorithms: A bicluster [CCOO] is an I x J sub-matrix that ex- 

hibits some coherent tendency where I and J are set of genes (rows) and 

conditions (columns), respectively, and 1 11 5 IGI and I JI 5 [TI. The volume 

of a bicluster (I, J) is defined as the number of elements eij such that i E I 

and j E J .  The quality of a bicluster is assessed based on the mean squared 

residue, which is the variance of the set of all elements in the bicluster, plus 

the mean row variance and the mean column variance. The lower the mean 

squared residue, stronger is the coherence exhibited by the cluster and better 

is the quality of the bicluster. Cheng and Church [CCOO] were the pioneers in 

applying biclustering to gene expression data. To obtain the larger bi-clusters 

with minimum mean squared residue, the authors introduced the node addi- 

tion method which simultaneously adds rows/columns as deletions took place. 

However, it is not capable of identifying overlapping/embedded clusters be- 

cause the elements of the already identified bicluster are masked by random 

noise. FLexible Overlapped biclustering (FLOC) [YWWY03] addresses the 

limitation of Cheng and Church [CCOO] and accelerates the biclustering pro- 

cess, FLOC uses a probabilistic algorithm which can discover a set of k-possible 

overlapping biclusters simultaneously. Order-preserving submatrices (OPSM) 

[BdCKY02] is another probabilistic model which attempts to address the idea 

of large OPSMs with maximum statistical significance. Tanay et al. in [TSS02] 

introduced Statistical-Algorithmic Method for Bicluster Analysis (SAMBA), a 

bi-clustering algorithm that performs simultaneous bicluster identification by 

using exhaustive enumeration. An important advantage of SAMBA is that it 

is capable of analyzing large datasets in lesser time. The Coupled Two-Way 

Clustering (CTWC) [GLDOO] tries to identify couples of small subsets of fea- 



tures and objects. The Interrelated Two-Way Clustering (ITWC) [TZRZOl] 

is an iterative biclustering algorithm based on a combination of the results 

obtained by clustering performed on each of the two dimensions of the data 

matrix separately. 

d. TriClustering Algorithms tries to find coherent clusters along gene-sample- 

time (temporal) or gene-sample-region (spatial) dimensions, known as triclus- 

ters, which may be arbitrarily positioned and overlapped [ZZ05]. TriClustering 

algorithms are used for mining such coherent clusters in three-dimensional gene 

expression datasets. TriCluster relies on a graph-based approach to mine vari- 

ous types of clusters, including clusters having constant or similar values along 

each dimension with scaling and shifting expression patterns, based on different 

parameter values. 

2.2.11 A General Comparison among Different Approaches 

We have discussed some of the unsupervised clustering methods present in the litera- 

ture. Partitioning algorithms typically represent clusters by a prototype and an iter- 

ative control strategy is used to optimize the whole clustering such as the average or 

squared distances of instances to its cluster centers (prototypes) are minimized. Par- 

titional clustering algorithms are effective for determining clusters of convex shape, 

similar size and density, and if the number of clusters can be reasonably estimated. 

However, determining the appropriate number of clusters is very difficult. Hierarchi- 

cal clustering algorithms decompose the dataset into several levels of partitioning and 

are represented by a tree structure which splits the dataset recursively into smaller 

subsets. Although hierarchical clustering algorithms can be very effective in knowl- 

edge discovery, the cost of creating the tree is very expensive for large datasets. In 

density-based approaches clusters are regarded as  regions in the data space where the 

objects are dense, and they are separated by regions of low density (noise). These re- 

gions may have an arbitrary shape and the objects inside a region may be arbitrarily 

distributed. Generally, grid-based clustering algorithms first separate the clustering 

space into a finite number of cells (hyper-rectangles) and then perform the required 

operations on the quantized space. Cells that contain more than certain number of 



points are treated as dense and the dense cells are connected to form the clusters. A 

solution for better results could be instead of integrating all the requirements into a 

single algorithm, to try to build a combination of clustering algorithms. In addition, 

the impact of various soft computing techniques is also considerable for identifying 

clusters that are not crisp. The performance and quality of distributed and parallel 

clustering techniques have helped in managing and processing massive data. For 

high dimensional clustering, subspace clustering algorithms have given quite good 

results. A performance comparison of various clustering algorithms is given in Table 

2.1. 

2.2.12 Handling Outliers 

Data usually have an associated amount of noise, which can be viewed as outliers. 

Alternately, outliers can be viewed as legitimate records having abnormal behavior. 

The algorithm BIRCH [ZRL96] revisits outliers during the major CF tree rebuilds, 

but in general handles them separately. Some algorithms have specific features for 

outliers handling. The algorithm CURE [GRS98] uses shrinkage of cluster representa- 

tives to suppress the effects of outliers. K-medoids methods are generally more robust 

than k-means methods with respect to outliers. The algorithm DBSCAN [EKSX96] 

uses concepts of internal (core), boundary (reachable), and outliers (non-reachable) 

points. CLIQUE [AGGR98] eliminates subspaces with low coverage. Wavecluster 

[SC+98] handles outliers very well through its filtering process. The algorithm OR- 

CLUS [AYOO] produces a partition plus a set of outliers. A point is said to be an 

outlier if its &-neighborhood contains less than MinPts-fraction of a whole dataset 

D [KNTOO]. In essence, different subsets of data have different densities and may be 

governed by different distributions. A point close to a tight cluster can be a more 

probable outlier than a point that is further away from a more dispersed cluster. The 

concept of local outlier factor (LOF) that specifies a degree of outlier-ness comes to 

rescue [BKNSOO]. The definition is based on the distance to the k-nearest neighbor. 

Knorr et al. [KNZOl] addressed a related problem of how to eliminate outliers in 

order to compute an appropriate covariance matrix that describes a given locality. 

Outlier detection techniques can be divided into the following categories given below. 



Distribution-based methods handle one dimensional data and assume a statis- 

tical distribution such as Gaussian and try to fit the data to the model by 

estimating the parameters such as mean and variance from the data [BL94]. 

They vary in terms of type of distribution, number of outliers to be identied 

and type of outliers. Then they employ a test based on the distribution prop- 

erty to identify outliers w.r.t. this distribution. In reality, prior knowledge 

about the distribution of the dataset is not always available. 

Depth-based approaches [RR96, JKN981 employ computational geometry to 

compute different layers of convex hulls and declare those objects in the outer 

layer as outliers. However, they suffer from the dimensionality curse and cannot 

cope with large dimensions. 

Distance-based approaches distinguish points which are likely to be outliers from 

others based on the number of points in their neighborhood and are suitable for 

nding outliers in large datasets. Corresponding to clustering algorithms that 

nd convex clusters [KR90, NH02], one well known technique is the DB(p, d)- 

outlier [KN98], where a point in a dataset D is an outlier if at least p fraction 

of points in D lie greater than distance d from it. A special case of DB(p, d)- 

outlier is proposed in [RRSOO], where the distance to the k-th nearest neighbor 

is used to rank the outlyingness. But, it cannot handle data with different local 

densities and hence can only find global outliers. Besides, the users parameters, 

such as p, dl  k, are hard to determine. 

Density-based approaches focus on the local density comparison only with the 

immediate neighbors. They come in two classes, subspace and full space. Some- 

times, an object could reside in a low density region only in a subspace, which 

is obtained by projecting the original full space onto one of its subsets. In 

[AGGR98], all possible subspaces were searched where there are regions with 

much lower density than the rest of the subspace. All points in those low den- 

sity regions are declared as outliers. In [BKNSOO], the authors introduced the 

notion of LOF, which measures the degree of outlyingness, based on the differ- 

ence in the local density of a point and its k-nearest neighbors. DB(p, d)-outlier 

cannot detect local outliers w.r.t. a neighboring dense cluster in presence of 



another very sparse cluster because although the local density of the outlier 

can be lower than those inside the neighboring high density cluster, it may be 

comparable to those inside the sparse (low density) cluster, therefore, a large 

portion of points in the sparse cluster will also be classied as outliers. LOF 

solves this problem by comparing local density of the outlier only with those of 

its neighboring objects. The weakness of LOF is that it cannot detect outliers 

whose local density is higher, not lower, than those inside the neighboring pat- 

tern. Such a pattern may consist of a set of regularly spaced points that have 

lower densities than their neighboring outliers. 

2.3 Discussion 

This chapter presents various proximity measures, clustering and outlier detection 

techniques. Clustering algorithms are dependent on the proximity measure chosen. 

Moreover, there exists no particular measure which can handle all the issues or do- 

mains. F'rom the discussion above, we conclude that various clustering algorithms 

require different types of input parameters and clustering results are highly depen- 

dent on the values of the parameters. Clustering algorithms that can handle massive 

data, identify clusters even in high dimensional and noisy data are in great demand. 

Again, identification of variable density clusters is an important research area which 

has gained focus due to its huge potential. Clustering algorithms that do not require 

the number of clusters beforehand, insensitive to the proximity measure, and robust 

to noise are of utmost importance. 

In this thesis, we present several clustering techniques for application over 2D spatial 

data, satellite and gene expression data. The advantages of our techniques are: (i) 

Independence of the number of clusters, (ii) detection of variable density clusters, (iii) 

identifications of sub-clusters, (iv) capability in detecting clusters in large-scale data 

and (v) handling outliers and noise. The next chapter presents our first clustering 

technique capable of identifying variable density clusters in 2D spatial data. 



Table 2.1: Comparison of various clustering algorithms 
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Chapter 3 

Grid-Density based Spatial Data 

Clustering 

Spatial information, also known as geo-spatial or geographic information identify 

geographic locations of features and boundaries on earth. Among data mining tech- 

niques, clustering has been widely used to mine information from such data. Spatial 

data may contain data of different densities and the identification of clusters in vari- 

able density regions is an important research issue. 

This chapter presents a grid-density based clustering technique that can identify 

embedded clusters in variable density space. The proposed technique can detect 

clusters for different density regions and can also detect embedded clusters. The 

technique has also been slightly enhanced for outlier detection. Experimental results 

using several test and standard synthetic datasets establish the superiority of this 

technique in terms of cluster quality. 



3.1 Introduction 

Spatial data contains information about the geographic location of features and 

boundaries on earth, such as natural or constructed features and oceans. Spatial in- 

formation is usually stored in terms of coordinates and topology, and can be mapped 

for display. Spatial data is also stored in terms of pixels. From such data, infor- 

mation units such as points, lines, regions, part itions (maps) and graphs (networks) 

can be extracted. Spatial data is often accessed, manipulated or analyzed through 

Geographic Information Systems (GIs). Spatial data may also contain non-spatial 

attributes that may be either dependent or independent of location. Spatial data 

is a specialized domain for data mining. Its aim is to discover latent or implicit 

knowledge in spatial data. Spatial data mining has the end objective of finding pat- 

terns in geography. The immense explosion in geographically relevant data created 

by developments in IT, digital mapping, remote sensing, and the global diffusion of 

GIs emphasizes the importance of developing data driven inductive approaches to 

geographical analysis and modeling. Data mining, which is the automated search for 

hidden patterns in large databases, offers great potential benefits for applied GIS- 

based decision-making. Geo-spatial data repositories tend to be very large. Spatial 

cluster analysis plays an important role in quantifying geographic variation patterns. 

It is commonly used in disease surveillance, spatial epidemiology, population genet- 

ics, landscape ecology, crime analysis and many other fields. The clustering task 

becomes more challenging as the number of embedded patterns increases with the 

increase in variable density regions. This chapter provides an overview of spatial clus- 

ter analysis. Initially, we survey different forms of clustering applicable to spatial 

data. Then, we discuss a new clustering technique for spatial data. 

Related Work 

Clustering techniques have been classified into partitional, hierarchical, density based, 

grid based and model based approaches. Among these techniques, the density-based 

approach stands out for its ability to discover arbitrary shaped clusters of good qual- 

ity even in noisy datasets [EKSX96]. The grid-based clustering approach is well 



known for its fast processing time especially for large datasets. This section provides 

the background research on density based and grid based clustering. 

3.2.1 Density based approach 

The idea behind density based clustering approach is that the density of objects 

within a cluster is higher compared to the objects outside of it. DBSCAN [EKSX96] 

is a density-based clustering algorithm capable of discovering clusters of various 

shapes even in presence of noise. The key idea of DBSCAN is that for each object of 

a cluster, the neighborhood of a given radius ( E )  must contain at least a minimum 

number of objects (MinPts) and the density in the neighborhood must exceed some 

threshold. Thus it has two parameters E and MinPts. It is difficult for users to 

correctly predict suitable values of these two parameters for a dataset. Another 

drawback of this technique is the high computational complexity because it examines 

all the neighborhoods to check if the core condition is satisfied for each object. This 

step is very expensive especially when the algorithm runs on very large datasets. 

Therefore, spatial index structures are used for large datasets. For massive datasets, 

it becomes very time consuming, even if we use efficient data structures such as 

R* tree. An additional drawback of DBSCAN is that due to the use of the global 

parameters, it fails to detect embedded or nested clusters. OPTICS [ABKS99] can 

identify embedded clusters in space of varying densities. However, its execution 

time is high for large datasets with spaces of variable densities and nested cluster 

structures. Moreover, OPTICS is highly sensitive to its parameters MinPts, E and 

E' (core distance). 

3.2.2 Grid based approach 

Grid based methods divide the data space into a finite number of cells that form 

a grid structure on which the clustering is performed. There is a high probability 

that all data objects that fall into the same grid cell belong to the same cluster. 

Therefore all data objects belonging to the same cell can be aggregated and treated 

as one object [HC04]. It is due to this reason that grid-based clustering algorithms are 

computationally efficient. Such algorithms have many advantages such as the total 



number of the grid cells is independent of the number of data objects and is insensitive 

to the order of input data objects. Some popular grid based clustering techniques are 

discussed in [WYM97, NGCOO]. STING [WYM97] uses a multi-resolution approach 

to perform cluster analysis. The advantage of STING is that it is query-independent 

and easy to parallelize. However the shapes of clusters are restricted to horizontal 

or vertical boundaries but no diagonal boundary is possible. Wavecluster [SC+98] 

also uses a multidimensional grid structure and detects clusters of data at varying 

levels of accuracy. It automatically removes outliers and is very fast. However, 

it is not suitable for high dimensional datasets. CLIQUE [AGGR98] is a hybrid 

clustering method that combines both density-based and grid-based approaches. It 

automatically finds subspaces of the highest dimensionality and is insensitive to the 

order of input. Moreover, it scales well as the number of dimensions in the data 

increases. However, the accuracy of the clusters may degrade because the method 

is simple. pMAFIA [NGCOO] is an optimized and improved version of CLIQUE. 

It detects coarse clusters and scales exponentially as number of dimensions in the 

dataset increases. GDILC [YJOl] is based on contour figures, density-based and grid- 

based clustering algorithms. This algorithm needs expensive neighborhood distance 

calculation with each of the cell's neighbors. Therefore, the cost of GDILC is too 

high, especially for large datasets. 

3.2.3 Clustering in multi-density and variable density data 

space 

One major application of clustering spatial databases is to find clusters of spatial 

objects which are close to each other. Most traditional clustering algorithms dis- 

cover clusters of arbitrary densities, shapes and sizes. Very few clustering algorithms 

show desirable efficiency when clustering multi-density datasets. This is also because 

small clusters with small number of objects in a local area are easily missed by a 

global density threshold. Some clustering algorithms that can cluster multi-density 

datasets are Chameleon [KHK99], SNN [ESK03] (shared nearest neighbor) and the 

multi-stage density-isoline algorithm [YcMFJdO3]. Chameleon [KHK99] can handle 

multi-density datasets, but for large datasets the time complexity is too high. SNN 



[ESK03] can find clusters of varying shapes, sizes and densities. The disadvantage of 

SNN is that the degree of precision is low in identifying multi-density clusters and 

in handling outliers. The multi-stage density-isoline algorithm [YcMFJd03] clusters 

datasets in multiple stages. The disadvantage of the algorithm is that clusters cannot 

be separated efficiently. DGCL [KGX+OG] is based on a grid-density based clustering 

approach. However, due to the use of a uniform density threshold, the low density 

clusters are often lost. 

Most real life datasets have a skewed density distribution and may also contain 

nested cluster structures, the discovery of which is very difficult. OPTICS [ABKS99] 

handles datasets with variable density successfully. OPTICS has been discussed in 

detail in Section 2.2.3 of this thesis. A density based clustering technique, LDB- 

SCAN, that can detect both embedded as well as overlapping clusters using local 

density information is presented in [DXLGOG]. EnDBSCAN [RB05] makes an at- 

tempt to detect embedded or intrinsic clusters using an integrated approach. Based 

on our experimental analysis using very large synthetic datasets, we conclude that 

EnDBSCAN can detect embedded clusters. However, with the increase in the volume 

of data, its performance degrades. EnDBSCAN is highly sensitive to the parameters 

MinPts and E.  In addition to these two parameters, OPTICS requires an additional 

parameter E / .  DDDBSCAN [BB07] finds clusters of different shapes and sizes that 

differ in local densities. However, the method is unable to handle the density varia- 

tion within a cluster, i.e. a cluster may have wide density variation from one end to 

another. A Density Differentiated Spatial Clustering Technique (DDSC), proposed 

in [BB08], is also an extension of the DBSCAN method. It detects clusters that 

have non-overlapped spatial regions with reasonable homogeneous density variations 

within them. If there is significant change in densities of adjacent regions, then 

such regions are separated into different clusters. An added advantage is that the 

sensitivity to the input parameter E ,  which is an important disadvantage of DB- 

SCAN, is reduced significantly. EDBSCAN [AASS09] is another improvement of 

DBSCAN. It keeps track of density variation within a single cluster. It calculates 

the density variance of a core object with respect to its &-neighborhood. If density 

variance of a core object is less than or equal to a threshold value and also satisfies 



the homogeneity index in its &-neighborhood, it allows the core object to expand. It 

calculates the density variance and homogeneity index locally in the &-neighborhood 

of a core object. Another method, VDBSCAN proposed in [LZW07], for analysis of 

varied-density datasets. VDBSCAN adapts the traditional DBSCAN algorithm us- 

ing K-dist plots to select values of the parameter E for different density regions. The 

DBSCAN algorithm is run for different values of E to make sure that all the clusters 

of the corresponding density are discovered. In a run of DBSCAN, the objects that 

have already been clustered in previous runs are ignored; this avoids the problem 

of marking both denser areas and sparser ones as one single cluster later. Another 

method for detecting clusters of variable densities, DVBSCAN (Density Variation 

Based Spatial Clustering of Applications with Noise), is proposed in [RJJKlO]. It 

starts the formation of the cluster by selecting a core object. Then it computes the 

Cluster Density Mean (CDM) of the growing cluster before allowing the expansion 

of an unprocessed core object. After that it computes the Cluster Density Variance 

(CDV) within the &-neighborhood of the unprocessed core object with respect to 

Cluster Density Mean (CDM). If the Cluster Density Variance (CDV) of the grow- 

ing cluster with respect to CDM is less than a specified threshold value, say, CDV, 

and the difference between the minimum and maximum densities of objects in the 

&-neighborhood of the objects of the growing cluster, including the &-neighborhood 

objects of the unprocessed core object, is less than a specified threshold value CSIx  

then only an unprocessed core object is allowed for expansion otherwise the object 

is simply added into the cluster. This algorithm claims to handle variable density 

clusters in the dataset but is computationally expensive. 

3.2.4 Discussion 

Based on our survey, we observe that partitional methods detect only spherically 

shaped clusters, and sometimes cannot handle noise or detect outliers. Hierarchical 

algorithms give a tree view of the clusters but are dependent on a termination factor 

which is hard to derive apriori. Model based methods fit a mathematical model to 

the data but are computationally expensive and not all data fit into the model. It 

is also evident from our survey that Density Based methods are more efficient in 

finding clusters and in handling outliers/noises in large spatial datasets. However, 



a basic disadvantage of these methods is their dependency on input parameters and 

the clusters detected are highly sensitive to these parameters. Hierarchical cluster- 

ing algorithms fix the membership of a data object once it has been allocated to 

a cluster. In hierarchical clustering, our regular point-by-attribute data representa- 

tion is sometimes of secondary importance. BIRCH [ZRL96], CURE [GRS98] and 

CHAMELEON [KHK99] use complex criteria for compressing and relocating data 

before merging clusters. After carefully considering the advantages of both density 

based and grid based approaches, this chapter presents a grid-density based cluster- 

ing technique to enable (i) the detection of arbitrary shaped clusters, (ii) detection 

of variable density and embedded clusters, (iii) handling of outliers, and (iv) faster 

cluster discovery of finer clusters. 

3.3 Grid-Density based Clustering Technique 

The distribution of data in a dataset is not uniform in general. Some portions of the 

data space are highly dense while some portions are sparse. Therefore, the data space 

is divided into grid cells and the cells whose densities are similar are merged. These 

similarly dense grid cells are together form the coarse clusters or rough clusters. 

Once merging of grid cells according to density terminates, a set of coarse clusters is 

obtained. Thus, coarse clusters represent the maximal space that can be covered by 

the similar grid cells in terms of their densities. A method for computing the number 

of grid cells (gr, x gr,) is given next. 

Computing the Number of Grid Intervals (gr,) 

The following formula is used to estimate the number of grid intervals gr,. 

where N is the number of data objects and M is a positive integer to adjust the 

value of grb. In fact, M stands for the average number of data samples in a cell. We 

carried out a large number of experiments to understand the relationship between 



Figure 3.1: M depends on the number of data objects 

the number of data objects (N) and values for M. A graph of N versus M is shown 

in Figure 3.1. The value of gr, is calculated based on Equation 3.1 and Equation 

3.2. Based on our wide range of experiments, we observe that gr, varies within the 

range given in Equation 3.2. 

Next, we introduce a few definitions to help in understanding the proposed algo- 

rithm. 

3.3.1 Density based approach 

Definition 1. Cell Density: It is defined as the number of objects within a grid cell. 

Definition 2. Useful Cell: A cell is defined as a useful cell if it is populated, i e., it 

contains data objects within it 

Definition 3. Neighbor Cell. A cell which is edge neighbor or vertex nelghbor of a 

current cell is defined as the neighbor of the current cell Figure 3 2 (a) shows the 

neighbor cells (shaded) of the current cell P. 



Figure 3.2: (a) The white cell is the current cell and all its neighbors are in gray (b) 

The white triangle P is the current triangle and all its neighbors are shaded gray. 

Definition 4. Density Confidence of a cell: If the ratio of the densities of the 

current cell and one of its neighbors is less than some P' (given as user input), P' is 

the density confidence between them. Density confidence plays an important role in 

cluster formation. For two cells pl and ql to be merged into the same cluster, the 

condition p' 5 dn(pl)/dn(ql) should be satisfied, where dn represents the density of 

that particular cell. 

Definition 5. Reachability of a cell: A cell p is reachable from a cell q if p is a 

neighbor cell of q and cell p satisfies the density confidence condition w.r.t. cell q. 

The proposed grid-density based clustering technique incorporates a Trzangle- 

subdivision based approach for better processing of the boundary objects to get finer 

clusters. A triangles is a degenerated quadrilaterals with two of the vertices merged 

together. We have found the Triangle-subdivision based approach for selection of 

the boundary objects to be more effective compared to the one based on rectangles. 

The following definitions are introduced to support the Triangle-subdivision based 

approach: 

Definition 6. Triangle Density: The density of a triangle is defined as the number 

of objects within that particular triangle of a grid cell. 

Definition 7. Useful Triangle: A triangle T, in a cell p is defined as a useful triangle 

if it is populated with at least one object. 

Definition 8. Neighbor Triangle: A triangle which has a common edge with the 

current triangle is said to be a neighbor of the current triangle. Figure 3.2 (b) shows 

the neighbor triangles (shaded) of the current triangle P. 



Definition 9. Density Confidence of a triangle: If the ratio of the densities of the 

current triangle and one of its neighbors is less than p / 4 ,  the two triangles can be 

merged into the same cluster. Therefore the following condition should be satisfied: 

,0'/4 5 d,(T,)/d,(T,) where d, represents the density of the particular triangle. 

Definition 10. Reachability of a triangle: A triangle T, is reachable from a triangle 

T, if T, is a neighbor triangle of T, and triangle T, satisfies the density confidence 

condition w.r.t. triangle T,. 

Definition 11. Cluster: A cluster is defined to  be the set of objects belonging to 

a set of reachable cells and triangles. A cluster C, w.r.t. f l  is a non-empty subset 

satisfying the following condition, 

Qp, q : if p E C, and q is reachable from p w.r.t. P', then q E C,, where p and q are 

either cells or triangles, respectively. 

Both cell-reachability and triangle-reachable relation have symmetric and transitive 

properties within a cluster C,. 

Definition 12. Noise: Noise is simply the set of objects belonging to the cells (or 

triangles) not belonging to any of its clusters. Let Cl, C2, - . . , Ck be the set of k 

clusters w.r.t. f l .  Then 

noise = {no,lp E n x n,Qi : p $ Ci) (3.3) 

where no, is the set of objects in cell p. 

3.3.2 Density Confidence 

The density confidence for a given set of cells reflects the general trend of that set. 

If the density of one cell is abnormal compared to that of the others it will not be 

included in the set. Similarly, each useful cell has a density confidence with each of 

its neighbor cells. If the density confidence of a current cell with one of its neighbor 

cells does not satisfy the density confidence condition, that neighbor cell is not in- 

cluded in the local dense area. On the contrary, if it satisfies the condition, we treat 

the neighbor cell as a part of the local dense area and merge the cell with the dense 



area. In comparison to other methods of setting a global threshold, this method has 

the ability to recognize the local dense areas in the data space where multi-density 

clusters exist. 

In light of the above definitions, following lemmas are stated. 

Lemma 1. Let C, be a cluster w.r.t. p' and let p be any cell in C,. Also, let T, 

be a triangle in p. Then C, can be defined as the set of elements, S ={s U T,ls is 

cell-reachable from p w.r.t. ,O' and T, is triangle-reachable from T, w.r.t. P'). 

Proof. Suppose r is a cell or a triangle, where r E sUT, and r is neither cell-reachable 

nor triangle-reachable from p w.r.t. p. But, a cluster according to  Definition 11 will 

be the set of objects which are cell-reachable or trianglereachable from p. Therefore, 

we come to  a contradiction and hence the proof. 

Lemma 2. A cell (or triangle) corresponding to  noise objects is not cell-reachable 

(or tr~~ianglereachable) from any of the clusters. For a cell p we have, V p  : p is not 

reachable from any cell (or triangle) in C,, i.e., p $ C,. 

Proof. Suppose, C, is a cluster w.r.t P' and let p be a cell (or triangle) corresponding 

to noise objects. Let p be cell-reachable (or triangle-reachable) from C,. Then p E C,. 

But, this violates Definition 12 in that noise objects belong to cells that are neither 

cell-reachable nor triangle-reachable from any of the clusters. Therefore, we come to 

the conclusion that p is not reachable from any cell (or triangle) in C,. 

Lemma 3. A cell (or a triangle) r can be cell-reachable (or a triangle-reachable) 

from only a single unique cluster. 

Proof. Let C, and C, be two clusters w.r.t. p' and let p be any cell (or a triangle) 

in C, and q be any cell (or a triangle) in C,. Suppose a cell r is cell-reachable (or 

triangle-reachable) from both p and q. Then r E C, and r E C,. This means that the 

clusters C, and C, should be merged. This violates the basic notion that clusters are 

unique sets. Thus, we can conclude that if r is cell-reachable (or a triangle-reachable) 

from p w.r.t. p', r is not cell-reachable (or a triangle-reachable) from q w.r.t. ,O', i.e. 

r E C, and r 4 C,. Therefore the lemma is proved. 



GDCT: A Grid-Density based Clustering us- 

ing Triangle-subdivision 

Initially, the GDCT algorithm divides the data space into g r ,  x g r ,  non-overlapping 

grid cells (where g r ,  is a user input) and maps the dataset to each cell. It then 

calculates the density of each cell. The cells are sorted according to their density 

values. The result is an ordered sequence < C,(,) >, where p(i) denotes a permuta- 

tion of the index, i, defining the sorted order of the cells. The algorithm uses the cell 

information (density) of the grid structure and clusters the data objects according 

to their surrounding cells. The cell with the highest density becomes the cluster ini- 

tiator. The remaining cells are then clustered iteratively in order of their densities, 

thereby building new clusters or merging with existing clusters. Only the useful cells 

adjacent to a cluster can be merged. A neighbor search is conducted, starting at the 

highest density cell and inspecting adjacent cells. If a neighbor cell which satisfies 

the density confidence condition of a cell is found, then the neighbor cell is merged 

with the current cell to form the coarse cluster, and the search proceeds recursively 

with this neighbor cell. This search is similar to a graph traversal where the nodes 

represent the cells and an edge between two nodes exists if the respective cells are 

adjacent and satisfies the density confidence condition of a cell. 

A coarse cluster is an approximation of the innermost cluster or the cluster with 

the maximum density, minus the boundary region. Cells falling inside a particular 

coarse cluster are classified with the same clusterid. A coarse cluster is rough in its 

shape and size. Its shape in the boundary region of the cluster varies abruptly and 

rapidly since there is a transition from a denser region to sparser regions. Therefore, 

this region needs special analysis. So, after the coarse cluster is formed, there may 

still be some objects which are part of the cluster but have not been included in the 

coarse cluster as shown by the red ellipses in Figure 3.3. Since the objects inside 

these regions do not enter the coarse cluster though they should be part of the clus- 

ter, we expand the cells in the boundary region of the coarse cluster with the help of 

triangles. The objects inside the ellipses in the boundary region of the cluster have 

been left out because the cells in which they belong have not satisfied the density 



Figure 3.3: Example grid approximation for a dataset (gr, = 25) 

confidence. This is because only a small portion of that part of the cluster has fallen 

in a different cell and hence the density of that cell is much less than its neighbor 

which is in the coarse cluster. 

Therefore, to find the finer cluster boundaries, the cells located in the bound- 

ary regions are triangulated by dividing into four triangles. Only those cells in the 

coarse cluster that have at least one of its useful neighbor cells as ullclassified are 

triangulated. The cells which are ullclassified and have at least one of its neighbor 

cells in the most recent coarse cluster formed are also triangulated. The objects 

of the cells that have been triangulated are mapped to the respective triangles in 

which they fall. Barycentric coordinates1 are used to find which object falls in which 

triangle. This method was chosen since it is independent of the cyclic order of the 

vertices. 

'Obtained from http//steve.hollasch.net/cgindex/math/baqemtric.html 



Procedure of GDCT 

The algorithm includes the following steps: 

I. Create grid structure. 

2. Compute density of each cell. 

3. Sort cells according to their densities. 

4. Identify the maximum dense cell from the set of unclassified cells. 

5. Traverse neighbor cells starting from the dense cell to form the coarse cluster. 

6. Perform Triangle-subdivision in the coarse grid of the border cells that have at 

least a useful cell as one of its neighbors. 

7. Perform Triangle-subdivision of the unclassified neighbor cells of these border 

cells. 

8. Merge the triangles and assign cluster-id. 

9. Repeat steps 4 through 9 till all cells are classified. 

The process of forming the coarse cluster starts by considering the cell, say p,, with 

the maximum density from the sorted list. From pa, it initiates the process of expan- 

sion by considering its neighboring cells p, (where cell p,, is the jth neighbor of pa) 

depending upon two conditions which are 

1. If p,, is not a member of any of the coarse clusters already formed, and 

2. The ratio of the densities of the cells pa and p,, is more than some threshold 0' 
(a user defined input parameter). 

Let d, (p,) and d,(p,) denote the densities of p, and p, , respectively. Then p, will 

merge with p,, if p' 5 d,(p,)/d,(p,,). The cells that satisfy the conditions given 

above are merged to form the coarse clusters. The process of coarse cluster forma- 

tion continues from p,, in the same way until no neighboring cells p,k of p, satisfy the 

condition. The process then backtracks to p,, and restarts with the next neighbor 



Figure 3.4: Triangle-subdivision of grid cells 

cell of pij which has not already been processed. The coarse cluster formation con- 

tinues recursively until no more cells satisfy the density confidence condition of a cell. 

This coarse cluster is an approximation of the cluster with the maximum density. 

The cells falling this particular coarse cluster are classified with the same cluster-id. 

The process then checks the neighbors of the last formed coarse cluster. If any of its 

neighbors is an unclassified useful cell, both the cell in the coarse cluster as well as the 

unclassified neighbor cell are triangulated. Suppose p, is a cell of the coarse cluster 

last formed and cell pi is one of its unclassified useful neighbor cells. Then both pi 

as well as p, are triangulated (shown in Figure 3.4). During triangle-subdivision, a 

particular grid cell is divided into four triangles. 

Each of the triangles Tpi, inside the cell pi is verified for the following cases: 

Case 1 : If Tp,U has a neighbor triangle TPmv which is a part of cell p, that belongs 

to a coarse cluster, their densities dn(Tpmv) and dn(Tpiu) are compared for the 

density confidence condition of a triangle given as f l /4 5 d,(Tp,, )/d,(Tp,U). If 



this condition is satisfied, triangle TplU is merged with the triangle T,,, of the 

coarse cluster and labeled with the same clusterid as p,. 

Case 2 : If Tpzu has a neighbor triangle Tpav which has already been classified and the 

densities of TpZu and Tpzv satisfy the condition given in case 1, TPzU is merged 

with Tpzv and TPzu is classified with the same cluster-id as Tpa,,. 

The process of triangle merging stops when no more triangles satisfy the density 

confidence condition of a triangle. Figure 3.4 shows the formation of first coarse 

cluster and triangle-subdivision of the border cells. The process then starts with the 

next cell pa which is the cell of maximum density in the set of unclassified cells. The 

process continues recursively merging neighboring cells that satisfy the density con- 

fidence condition. Therefore, the coarse cluster formation and triangle-subdivision 

method are repeated alternately till all the useful cells are classified. The classified 

cells and triangles now give the distinct clusters and finally the data objects receive 

the clusterid of the respective cells and triangles. 

The cluster expansion detects embedded and nested cluster structures since after 

full expansion of a cluster, the algorithm searches for the next candidate seed cell 

taking into account a variation in density in the dataset. The process starts ex- 

panding the new density region till there is again a density variation. This process 

iterates till all the cells have been classified. The triangle expansion produces finer 

clustering since the cluster expansion based on cells misses some border objects as 

seen in Figure 3.3. The expansion based on triangle-subdivision detects the bor- 

der objects which have been left out by cell based expansion. The final clusters 

obtained from Figure 3.3 are shown in Figure 3.8. Therefore, the quality of the clus- 

ters becomes highly accurate in spite of detecting intrinsic and multi-density clusters. 

During clustering, the algorithm considers only grid cells to identify the possible 

global and embedded clusters and assigns cluster-id accordingly. 



Figure 3.5: The arrows show triangle reachability 

Figure 3.6: Handling of Single linkage problem 



Advantages of GDCT 

The advantages of the proposed algorithm include embedded cluster detection and 

handling of single linkage problem. Embedded cluster detection is inherent to GDCT. 

To understand how GDCT handles the single linkage problem, we consider Figure 

3.5. Once the coarse cluster has been formed, the triangle sub-division process starts. 

For neighbor traversal in triangles there must be at least one common edge between 

triangles. Two triangles are merged according to Definition 9. As seen in Figure 3.6, 

a chain of single objects is not be merged as the objects do not satisfy Definition 10. 

Thus, the single linkage problem which affects DBSCAN does not affect the proposed 

algorithm. 

3.4.1 Complexity Analysis 

The partitioning of the dataset into gr, x gr, non-overlapping cells results in a com- 

plexity of O ( N )  where N is the total number of data objects and N >> gr, x gr,. 

Computing density of the cells requires O(gr, x gr,) time. The sorting of cells ac- 

cording to their density results in a complexity of O((gr, x gr,)log(gr, x gr,)). The 

expansion of the coarse cluster requires O ( m )  time, where m is the average number 

of cells in an coarse cluster formed and m << (gr, x gr,) in the average case. Cell 

subdivision into triangles takes place only in case of the border cells of the coarse 

cluster and its neighboring cells. Assuming there are p border and q neighbor cells, 

the time complexity is O(p + q). If the number of clusters obtained is k ,  the overall 

time complexity for the clustering will be O(k x ( m  + (p  + 9)) ) .  

Therefore, the total time complexity is O((gr, x gr,) +O((gr, x gr,)log(gr, x gr,)) + 
O(lc x (m + ( p  + 9 ) ) ) .  Thus the complexity due to partitioning of the dataset into 

grid cells almost dominates the other components. Therefore, the time complexity 

becomes O ( N )  since N >> (gr, x gr,). 



3.4.2 Performance Evaluation 

Table 3.1: Datasets used 

dimensions 

All our experiments were conducted on a Pentium IV 2.4GHz computer with 512MB 

main memory running Windows XP. GDCT was implemented in Java by using Sun's 

JDK version 1.4.2. 

DS6 

DS7 

Datasets Used 

To evaluate the performance of GDCT, we consider both randomly generated as well 

as standard synthetic datasets [KHK99]. Table 3.1 gives the number of objects and 

other related information about the datasets that we use. The synthetic dataset DS1 

we have generated is shown in Figure 3.7. The results of DS1 are shown in Figure 

3.8. We evaluated GDCT with several other synthetic datasets as well. The clusters 

obtained for one of them, DS2, is shown in Figure 3.9. GDCT was also applied to 

the Chameleon t8.8k1 t4.8k and t7.10k datasets [ABKS99] and the results obtained 

are shown in Figures 3.10, 3.11 and 3.12, respectively. The result obtained for t5.8k 

dataset is shown in Figure 3.13. From these experimental results, it is evident that 

GDCT is highly capable of detecting intrinsic as well as multi-density clusters. We 

also observe that the clustering behavior is dependent on the threshold f l  which we 

varied in the interval [0.5, 0.71. 

8000 

3150 

2 

2 

t5.8k obtained from [KHK99] 

Generated by us 



Figure 3.7: Synthetic Dataset DS1 

Figure 3.8: Final five clusters in DSI 



Figure 3.9: Final cluster result of DS2 

Figure 3.10: Clusters obtained from DS3 



Figure 3.11: Clusters obtained from DS4 

Figure 3.12: Clusters obtained from DS5 



Figure 3.13: A total of 6 Clusters obtained from DS6 

3.4.3 Performance Comparison 

To compare the quality of clustering by GDCT with other relevant algorithms, we 

used two other clustering techniques (VDBSCAN and DVBSCAN), which are also 

capable of detecting density varied clusters. For VDBSCAN, we used the K-dist plot 

[EKSX96] to find the E values corresponding to different density varied regions in the 

datasets. Whenever we detected a sharp change (knee) in the K-dist graph, we used 

the corresponding distance value as the E value of a density region. If more the11 one 

knee were detected, it meant that the dataset had density variations in it; in such a 

situation the distance values of those in the K-dist plot were used as E values to detect 

the different density varied clusters. A dataset without much density variation will 

have a smooth graph. The results of VDBSCAN on Chameleon t8.8k dataset is give11 

in Figure 3.14. For this dataset we used the value K = 4 for Minpts in different runs 

of DBSCAN for the different values: of E. This figure shows two different results of 

VDBSCAS for different slope diffcrerrcc~. We see that VDBSCAS cannot detect all 

clusters and suffers from the single link effect for the triangular and arbitrary shaped 

clusters. When, we tried to separate these clusters by using different slope variations 

to obtain different E values, the vertical cluster breaks down, and the clusters does 

not get separated. For other values, tlie cluster quality further deteriorates. Tlle 

results of DVBSCAN on Cllanleleon t8.81c.dat dat,aset is give11 in Figiue 3.15. DVB- 

SCAN also gives sii~ilar results on this dataset as VDBSCAN. Figure 3.16, sllo~vs the 



results of VDBSCAN and DVBSCAN on Chameleon t4.8k.dat dataset. Figure 3.17 

illustrates the clustering by VDBSCAN and DVBSCAN using Chameleon t7.lOk.dat 

dataset. Figure 3.18 presents the results on Chameleon t5.8k.dat dataset. We can 

see from Figures 3.16, 3.17 and 3.18 that both algorithms can detect all clusters 

properly. There are small discrepancies in very small region in Figures 3.16 and 3.17 

where there were density variations in very small regions inside clusters. But, our 

new algorithm GDCT can detect all of the clusters in all the Chameleon datasets 

effectively. Therefore, in terms of arbitrary shaped clusters as well as small density 

variations and robustness, our met hod GDCT performs better than its competitors. 

A detailed comparison of GDCT with some relevant clustering techniques w.r.t. 

features such as the number of parameter, structure, complexities is given in Ta- 

ble 3.2. From Table 3.2, we observe that DBSCAN requires two input parameters 

MinPts and E, and it cannot detect embedded clusters. OPTICS on the other hand, 

requires three input parameters MinPts, E and E'. But, it can detect embedded 

clusters. However, its performance degrades while detecting multiple nested clus- 

ters over large datasets. Again, GDLC and Density-isoline algorithms can detect 

multi-density clusters but fail to detect intrinsic cluster structures. GDCT requires 

the number of grid cells, i.e. n and threshold /3' as input parameters. In addition, 

from our experiments we conclude that the threshold ,8' does not vary significantly 

with different datasets. GDCT can effectively detect embedded clusters in variable 

density space as well as multiple nested clusters even in the presence of noise and 

outliers. GDCT can also use the outlier handling module as discussed in the next 

section to differentiate between the various types of outliers. 

3.4.4 Handling of Outliers 

In this section, we establish that GDCT can successfully handle the various types of 

outliers. Here, we introduce some definitions related to various outlier types. 

1. Distinct Inlier: A cell p, is called a distinct inlier if all its neighbors, p,,, 

(3 = 1, - - - ,8),  belong to the same cluster i.e., all p,, are classified with the 

same cluster-id. 



Figure 3.14: Result of VDBSCAN obtained from t8.8k.dat dataset 

Figure 3.15: Result of DVBSCAN obtained from t8.8k.dat dataset (a) E = 10, 

Minpts = 4 ,  CDV = 70 and CSI = 20 (b) E = 8.44, Minpts = 4, CDV = 70 

and CSI = 20 



Figure 3.16: Result of VDBSCAN and DVBSCAN obtained from t4.8k.dat dataset 

(a) k = 4 (b) E = 5.2, Minpts = 4, CDV = 200 and CSI  = 50 

Figure 3.17: Result of VDBSCAN and DVBSCAN obtained from t7.lOk.dat dataset 

(a) k = 3 (b) E = 5.9, Minpts = 9, CDV = 200 and CSI = 50 



Figure 3.18: Result of VDBSCAN and DVBSCAN obtained from t5.8k.dat dataset 

(a) k = 4 (b) E = 3.7, Minpts  = 4, CDV = 200 and CSI = 50 

2. Distinct Outlier: A cell pi is a distinct outlier if all its neighbors pij are unclas- 

sified. 

In GDCT, the border cells are triangulated for smoothening the coarse clus- 

ters. The following definitions intrduce the other types of outliers helpful for 

establishing outlier detection capability of GDCT. 

3. Border Inlier Cell: A classified cell, pi, is a border inlier cell if at least one of 

its neighbor cells is classified with a different clusterid or is unclassified. 

4. Border Inlier Triangle: A classified triangle, T,,, is a border inlier triangle if 

at least one of its neighbor cells is classified with a different cluster-id or is 

unclassified. 

5. Border Inlier: A border inlier is the set of all border inlier cells and triangles. 

6. Group Outlier: If the number of objects in a cluster is less than a minimum 

threshold C (where J' is an input parameter), the objects are classified as group 

oulier. 

7. Line Outlier: A cell pi E L, where L is a line outlier if 

(a) 1 L 12 7 i.e., L consists of atleast 7 cells. 

(b) 1 I( pij (5 q where q = 2, and 



(c) if I 2% I = 7 ,  then let PZ, = {pZ1, p22) and p,l n p,2 = p, and p,l, p,2 are not 
neighbors to each other. 

8. Single Linkage Outlier: A single linkage outlier, S ,  is defined as follows: 

(a) I S 12 p', where p' = 5, i.e., S consists of atleast p' cells say S = 

( ~ 1 1  P%) PJ, pk, ~ 5 1 ,  
(b) p1 .cluster-id # p5.cluster-id, and 

(c) QP,; PJ # {PI, p5), I p,f I = 77 (p, is f t h  neighbor of p,), and let p, = 

{P,, pk) i-e., P, pk = p3 and p,, pk are not neighbors to  each other. 

From our experiments, we find that y = 3 and q = 2. Line outliers for triangles are 

also obtained analogously. Similarly, triangles may also contribute to single linkage 

outlier. It is a chain of cells and triangles satisfying the line outlier property but the 

two ends of the line are classified with different clusterids. 

Apart from detecting embedded as well as varying density clusters, GDCT uses the 

outlier handling module based on the above definitions to  handle the special forms of 

outliers mentioned above. Once GDCT obtains clusters, the outlier detection process 

starts. The outlier detection algorithm is given in Figure 3.19. The algorithm starts 

by checking all the gr, x gr, grid cells. If any of the cells satisfies the distinct outlier 

condition as given earlier, all objects in it are marked as distinct outlier. Otherwise, 

the check-cluster-outlier function is called to find all the different forms of inliers 

and outliers as given in Figure 3.20. When the outlier detection algorithm is used on 

clusters obtained by GDCT on DS7 (as given in Figure 3.21), we obtain the different 

types of inliers and outliers as shown in Figure 3.22. Figure 3.22, illustrates the 

different cases of outliers and inliers graphically by using a different color for each 

case. 

3.5 Discussion 

This chapter presents a clustering method based on a grid-density approach. Our 

method is able to detect global as well as embedded clusters. An outlier handling 



check-outlier(set o f  cells (gr, x gr,)) 

id = 0; 

For cell i=l to gr, x gr, do 

status = check-distinct-outlier(i) ; 

if status == 1 

id = distinct-outlier; 

Mark cell,.id = id; 

Mark all objects in cluster cell, with id; 

else 

check~cluster~outlier(ceZ1, .cluster id) ; 

End if 

End for 

End 

Figure 3.19: Algorithm for outlier detection 

module is also presented for detection of different types of outliers. Experimental 

results using several standard synthetic datasets are reported to establish the supe- 

riority of the algorithm. In this chapter, we have only considered two-dimensional 

spatial objects. Therefore, there is scope for the enhancement of GDCT to detect 

clusters in higher dimensional datasets with minor modifications. In the next chap 

ter, a technique for clustering satellite image data is introduced. 



check-cluster-out lier (el -id) 

id = 0; 

if check~group~outlier(clid) == 1 

id = group-outlier; 

if check-line-outlier (clid) == 1 

id = line-outlier; 

End if 

End if 

else 

if check-line-outlier(c1id) == 1 

id = line-outlier; 

End if 

else 

if check-distinct -border inlier (cl-id) == 1 

id = distinct-borderinlier; 

End if 

else 

id = border; 

if id == border 

if check-singlelinkage(c1id) == 1 

id = singlelinkage 

End if 

End if 

Mark all objects in ~ l u s t e r , ~ - ~ ~  with id; 

End else 

End else 

End else 

End 

Figure 3.20: Algorithm for checking the different cases 
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Figure 3.21: Result of GDCT obtained on a synthetic dataset generated by us 



Figure 3.22: Result of outlier detection 



Table 3.2: Comparison of GDCT with different clustering algorithms 

Structure 

Arbitrary 

Arbitrary 

Arbitrary 

Arbitrary 

Arbitrary 

Arbitrary 

Arbitrary 

Arbitrary 

Arbitrary 

Arbitrary 

Algonthms 
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DBSC AN 

OPTICS 

EnDBSCAN 

EDBSCAN 

DDSC 

VDBSCAN 

DVBSCAN 

LDBSCAN 

GDCT 

Order 

Independence 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
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Densaty 
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Yes 

No 

Yes 

Yes 
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Clusters 

No 
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Yes 

Yes 
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Chapter 4 

Grid-Density based Clustering for 

Pan-Chromatic and Multi-Spectral 

Satellite Data 

High resolution and high dimensional satellite images contain clusters of different 

sizes, shapes and densities in addition to contain huge amount of data. Due to these 

reason, most algorithms for clustering satellite data sacrifice the correctness of their 

results to achieve better processing time. The processing time is greatly influenced 

by the amount of information that needs to be processed. In this chapter, we propose 

two grid density based clustering methods for detecting clusters present in satellite 

images. Each method is comprised of two phases. In the first phase, a grid density 

based technique is used to determine the initial (or rough) clusters. This phase 

can detect the overall clusters but the cluster boundaries are not smooth and are 

jagged in appearance due to the inherent problem with grid clustering. Therefore, a 

second phase is incorporated to smoothen the cluster borders. Experimental results 

using several real-life datasets are reported to establish the efficiency of the clustering 

methods. 



4.1 Introduction 

Clustering is the organization of a dataset into well separated partitions or clusters 

with respect to a similarity measure. The main characteristic of the clusters dis- 

covered is that they conserve the homogeneous property within a cluster i.e., data 

objects within the same cluster are more similar than the data points belonging to 

different clusters [HK06]. A high dimensional satellite image is a remotely sensed 

image of the earth's surface. Such an image is a collection of a huge amount of pixel 

data. In a high dimensional satellite image, each pixel represents an area on the 

earth's surface. Multi-spectral images constitute the main type of images acquired 

by remote sensing. It is a technology originally developed for space-based imaging 

to capture light from frequencies beyond the visible range (e.g., infrared). It enables 

the extraction of additional information that the human eye fails to capture with its 

receptors for red, green and blue. A multi-spectral satellite image is a digital image 

of multiple bands where each band represents a particular wavelength of light. Seg- 

mentation or clustering a multi-spectral satellite image is a complex problem that has 

been pursued for a long time. Clustering satellite images is the process of discovering 

a finite number of non-overlapping and meaningful regions or clusters in the image 

data space. Remotely sensed satellite images mainly consist of objects (regions) such 

as vegetation, water bodies, concrete structures, open spaces and habit ation. The 

regions are separated from one another due to their different reflectance characteris- 

tics. This leads to a wide variety of clusters of different sizes, shapes and densities. 

There are two fundamental properties of a pixel value: (i) discontinuity- discontinu- 

ities between gray level regions can be used to detect isolated points and contours 

within an image, and (ii) similarity- decision criteria can be used to separate clus- 

ters in an image based on the similarity of the pixel values. Based on these two 

fundamental properties, several image segmentation methods have been developed. 

Clustering approaches are based on the second property. Due to the presence of a 

huge amount of data in satellite images, there is utmost need for a good cluster- 

ing algorithm which can efficiently detect clusters. A good clustering technique for 

satellite images (i) should have minimal number of input parameters, (ii) be able to 

detect arbitrary shaped clusters accurately, and (iii) demonstrate good efficiency on 



large datasets. 

In this chapter, we present two new grid density based clustering methods each 

of which work in two phases: Phase I identifies the rough clusters and Phase I1 

smoothens the cluster boundaries detected in Phase I. Phase I is same for the meth- 

ods while Phase I1 differs. Experimental results are reported to establish that the 

proposed methods can determine all the classes present in any satellite image data 

effectively and dynamically. 

Each pixel in the image is represented by a 5 dimensional tuple: (x, y, h, s, i) ,  

where x and y are the pixel's coordinates, h the hue, s the saturation and i the in- 

tensity of the pixel. In Phase I, the image data is divided into equal sized grids based 

on the values of the (x, y) coordinates. The maximum occurring hue value among 

all the pixels is found and the grid cells whose pixels have this hue value become the 

seed for cluster expansion. The grid cells are then clustered by a topological search 

algorithm. Grid cells with similar hue are merged to form the clusters. When no 

more expansion is possible, the method checks for unclassified grid cells with hue 

values similar to that in the most recently formed cluster. Cluster expansion starts 

as before with these cells tagged with the same cluster id as the recently formed 

cluster. This process continues iteratively until no more grid cells satisfy the given 

condition. The method then restarts with the next maximum occurring hue from 

among the unclassified grid cells. When no more cluster expansion is possible the 

method is terminated. Thus, we obtained all the clusters present in the image data. 

After obtaining the rough clusters, we concentrate on smoothening the boundaries of 

the clusters in Phase 11. The proposed methods do not require any prior knowledge or 

a set of initial seeds to form the cluster centers. Neither does the number of clusters 

play any role in the clustering process. The proposed methods were tested on large 

number of multi-spectral satellite image data and the cluster results were found very 

satisfactory. A major advantage of this method is its simplicity. In addition, there 

there is no need to make initial guesses about the cluster centers or the number of 

clusters. 



The rest of the chapter is organized as follows. We discuss a few well-known clustering 

algorithms in Section 4.2. Section 4.3 provides the basics of our grid-density based 

clustering methods. In Section 4.8 we present the experimental evaluation of the 

effectiveness and efficiency of the proposed methods. Finally, Section 4.9 concludes 

with a concluding discussion of our work. 

Related Work 

In this section we discuss a few methods that have been used for clustering satellite 

image data. 

4.2.1 Clustering Satellite Images 

K-means [McQ67] and ISODATA [BH67] are two popular algorithms widely used 

for detecting clusters in satellite images. However, k-means depends heavily on user- 

supplied parameters such as the number of clusters and initial cluster centers. Result 

can be made more data dependent and the need to provide the number of clusters 

may be relaxed to  some extent if one uses the ISODATA algorithm. But, the main 

problem with these algorithms is that they require several parameter values to be 

supplied by the user. Hence, the performance of these clustering algorithms is very 

much dependent on the parameter values, the chosen measure of similarity and the 

method used for identifying clusters in the data. 

In [Yam98a], a robust clustering technique for multi-spectral satellite images was 

developed. The observed image data were assumed to come from a mixture of multi- 

variate normal densities and the number of different densities present in the dataset 

was assumed to be known. In the clustering technique the parameters were ten- 

tatively estimated by a multi-dimensional histogram and a minimum distance clas- 

sification method. The EM (Expectation Maximization) algorithm improved the 

estimates of the mixture of density parameters recursively. The satellite image clas- 

sification was carried out by the conventional maximum likelihood method with the 

estimated parameters. The method is robust for noises and gives stable classification. 



The work in [AZMOG] segments satellite image data based on the FCM algorithm 

detects different classes in it. 

FCM [Bez8la] is a local search optimization algorithm that converges to a local 

minimum point. FCM allows an object to belong to two or more clusters with 

varying degrees of membership. The FCM algorithm attempts to partition a finite 

collection of elements into a collection of fuzzy clusters with respect to some given 

criterion. In fuzzy clustering, each point has varius degrees of belonging to clusters, 

as in fuzzy logic, rather than belonging completely to  one cluster. Thus, points on 

the edge of a cluster may be in the cluster to a lesser degree than points in the center 

of cluster. FCM is quite effective for image segmentation, but the quality of clusters 

produced is greatly affected by the proper selection of initial values. FCM has been 

used separately but it rarely has showed success without combination with another 

met hod. 

Awad et al. in [ACNOS] proposed a method which uses FCM and Hybrid Dynamic 

GA (HDGA) . FCM gets the cluster centers from HDGA before segmenting different 

types of satellite images. This cooperative approach showed high accuracy in seg- 

menting this type of complex images. 

A new approach based on SOMs and FCM is reported in [AN09]. This method 

uses an unsupervised parameter free approach to segment different types of satellite 

images successfully. The approach has been applied to  both medium and high reso- 

lution satellite images. 

In [PC02], a simple measure of circular symmetry is used to extract all clusters 

including sub-clusters which are then used as building blocks to form the final clus- 

ters of arbitrary shapes by merging and splitting. This method does not require 

initial guesses regarding the cluster centers or the number of clusters. On the other 

hand, it initially considers each data point as a cluster center. 



Other approaches to segmentation of remotely sensed satellite images include fuzzy 

thresholding techniques reported in [PGSOO]. 

Genetic algorithms have been used to classify satellite image data in [BPOl], in par- 

ticular for partitioning different land cover regions with complex/overlapping clus- 

ter boundaries. These methods use supervised classification where prior knowledge 

about the images is essential. Real-coded variable string length genetic fuzzy clus- 

tering is used in [MB03a] to classify satellite images. The clusters are automatically 

evolved to the appropriate number of clusters. A multi-objective genetic optimization 

algorithm is presented in [BMM07a] to determine cluster centers and the correspond- 

ing partition matrix. Fuzzy clustering is modeled using two cluster validity measures 

that are simultaneously optimized. 

An image segmentation technique using M-band wavelet packet frames is presented 

in [AK07]. Here, unsupervised feature extraction is used to select the appropri- 

ate features from the output of the wavelet decomposition. A neuro-fuzzy feature 

evaluation technique is used to select an optimal set of features. The features thus 

obtained are used to segment satellite image data. The EM (Expectation Maximiza- 

tion) [Yam98b] algorithm improves the estimates of the mixture of density parameters 

recursively. The satellite image classification is carried out by the conventional max- 

imum likelihood method with the estimated parameters. The method can tolerate 

the presence of noise and gives stable classification but is computationally expensive. 

In [GyFSlXrO9], a remote sensing image segmentation method based on an improved 

FCM (fuzzy c-means) algorithm is presented. It uses the Mahalanobis distance as 

proximity measure. This method can solve the problem of selecting the initial clus- 

ter centers by combining the Evolving Clustering Method (ECM) with the modified 

FCM algorithm. The combination enables the FCM algorithm to converge to a global 

optimal with fewer iterations. 



4.2.2 Discussion 

Based on our survey, we come to the conclusion that there is no single algorithm that 

can effectively handle the following three factors at the same time: non-dependency 

on input parameters, fast processing time and quality cluster detection. Furthermore, 

mixed pixels (mixels) are present in satellite images. Mixels are not completely 

occupied by a single and homogeneous object and occur because the pixel size may 

not be fine enough to capture details on the ground. Fuzzy methods in remote sensing 

have received growing interest in these situations where the geographical phenomena 

are inherently fuzzy and consist of mixed pixels. The rest of the chapter presents 

two satellite clustering methods that address the above mentioned challenges. Each 

method has two phases and the first phase of both are the same. The difference is in 

the second phase. In the first phase a grid density based approach is used to detect 

the initial or rough clusters. For the second phase one of the methods (SATCLUS) 

uses a partition based approach for refining the rough clusters to obtain the final set 

of clusters. The other method (GDSDC) uses a fuzzy membership function to obtain 

the final clusters in the second phase. In the next section we present the foundational 

material including the basic definitions used by both methods. In Section 4.4, we 

present the rough clustering phase (Phase I) which is same for both SATCLUS and 

GDSDC. In Sections 4.5 and 4.6, we present the second phase of SATCLUS and 

GDSDC. 

Basics of SATCLUS and GDSDC 

High resolution and high dimensional satellite images cause difficulty for clustering 

methods due to the presence of clusters of different sizes, shapes and densities as they 

contain huge amount of data. Due to this reason, most algorithms for clustering 

satellite data sacrifice the quality of their results to achieve fast processing time. 

The time taken is greatly influenced by the amount of information that needs to be 

processed. In the rest of the chapter, we develop two grid based clustering methods 

for detecting the clusters present in satellite images. We establish the efficiency of 

the methods through experimental results. The aim of our clustering methods is to 

discover clusters in satellite image datasets. In both methods, we regard each pixel 



data as a point in space. The image data space is divided into grid cells and the grid 

cells whose HSI values are similar with respect to neighboring cells (see Figure 3.2 

(a)) are merged. Once merging of grid cells according to HSI values terminates, a 

set of rough clusters is obtained. The border cells in a cluster are found and the 

clustering proceeds at the pixel level to obtain the finer clustering of the dataset. 

Based on [EKSX96], we introduce some definitions, which are used in the proposed 

methods. The basis of the definitions has been taken from [SDB08]. 

Definition 13. Density of a cell: It is the number of pixels within a particular grid 

cell. 

Definition 14. Difference value of a pixel: It is the distance between the HSI values 

of a pixel w.r.t. the seed pixel. If it is within the range of certain threshold 8, the 

difference value is considered 1 else 0. 

The distance may be any of the distance measures discussed in Chapter 2. We 

have used the Mahalanobis distance since it gives better results in our experiments. 

Definition 15. Population count: The population count of a Grid cell is defined as 

the number of ones in each grid cell. 

Definition 16. Population-object ratio: It is defined as the ratio of the population 

count and cell density of a grid cell. 

population-count 
Population-object-ratio = 

cell-density 

Definition 17. Confidence in a cell: A current cell is said to have confidence in one 

of its neighbors if the difference of their population-object ratio is greater than or 

equal to some threshold w, where w is a user input. Confidence plays an important 

role in cluster formation. Two cells p and q are merged into the same cluster if the 

following condition is satisfied: 

where Po(p) represents the population-object ratio of a particular cell p. 

Definition 18. Reachability of a cell: A cell p is reachable from a cell q if p is a 

neighbor cell of q and cell p satisfies the confidence condition w.r.t. cell q. 



Definition 19. Rough cluster: A rough cluster is defined to be the set of points in 

the set of reachable cells. A rough cluster Ci w.r.t. w is a non-empty subset satisfying 

the following condition: 

Vp, q: if p E C and q is reachable from p w.r.t. w, then q E C, where p 

and q are cells. 

Definition 20. Border cell: A cell p is a border cell if it is part of a rough cluster 

Ci and at  least one of its neighbors is part of another rough cluster Cj.Gene Based 

Clustering Algorithms 

Definition 21. Noise: Noise is simply the set of points in the cells that are not in 

any of its clusters. Let Cl, C2, . - - Ck be the clusters w.r.t. w .  Then 

Noise = {no-p 1 p E n x n,  Vi : no-p 6 Ci) where n o p  is the set of points 

in cell p that are not in any of the clusters Ci (i = 1, . - . , k). 

4.3.1 Confidence in a Cell 

The confidence in a given set of cells reflects the general trend of that set. If the 

information of one cell is abnormal compared to the others it is not be included in 

the set. Similarly, each cell has a level of confidence on each of its neighbor cells. 

If the confidence of a current cell on one of its neighbor cell does not satisfy the 

confidence condition, that neighbor cell is not included into the local cluster area. 

On the contrary, if it satisfies the condition, we treat the neighbor cell as a part of 

the local cluster area and merge the cell with the cluster area to form the rough 

cluster. This method has the ability to recognize the local clusters in the data space 

in the presence of embedded clusters also. 

In light of the above definitions, the following lemmas are trivial. 

Lemma 4. Let Cl and C2 be two rough clusters w.r.t w and let p be any cell in C1 

and q be any cell in C2. Then, for a cell r, if r is reachable from p w.r.t w, r is not 

reachable from q w.r.t w ,  i.e., r E C1 and r 4 C2. 



Lemma 5. Let C be a set of clusters w.r.t w and let p be a cell corresponding to 

noise points. Then, 

V p  : p is not reachable from any cell in C i.e. p @ C. 

Both our algorithms, SATCLUS and GDSDC, have the same first phase and 

starts by dividing the image space into g r ,  x g r ,  non-overlapping square grid cells, 

where n is a user input. Each image pixel is mapped to its corresponding grid cell. It 

then calculates the density of each cell and converts the RGB values of each pixel to 

its corresponding HSI values. The methods uses the cell density in the grid structure 

and clusters the data points according to the densities in the surrounding cells. 

Both SATCLUS and GDSDC are divided into two phases. In the first phase a 

rough clustering of the image space is obtained and the second phase deals with 

cluster smoothening for quality cluster identification. 

Phase I: Rough Clustering phase of SATCLUS 

and GDSDC 

The maximum hue value in the grid is selected and an arbitrary pixel with this hue 

value becomes the seed for cluster initiation. An example is shown in Figure 4.1 (a) 

where the shaded pixel is the seed. Each grid cell contains 4 pixels. The difference of 

the HSI values of the remaining pixels with this seed is calculated. If the difference of 

the HSI values of a particular pixel and the seed pixel is less than some threshold 0, 

that corresponding pixel difference value for that pixel becomes 1 else 0. The image 

is converted into a 0-1 matrix as shown in Figure 4.1 (b). The population count of 

each grid cell is computed and the corresponding population-object-ratio calculated. 

The clustering process now starts with the grid cell with the highest population- 

object ratio as shown by the shaded grid cell in Figure 4.2. The remaining cells are 

then clustered iteratively according to their population-object ratio values, thereby 

building new clusters or merging with existing clusters. Only the cells adjacent to 

a cluster can be merged. A neighbor search is conducted, starting at  the highest 

population-object-ratio value grid-cell and inspecting adjacent cells. If a neighbor 



Figure 4.1: a)An example image with 5 x 5 grids and the hue values for corresponding 

pixels, and b) A 0-1 matrix obtainsd from thc difference value w.r.t. seed 

cell which satisfies the density confidence condition on a cell is found, then the neigh- 

bor cell is ~nerged with the current cell and the search proceeds recursively with this 

neighbor cell. This search is similar to a graph traversal where the nodes represent, 

the cells and an edge between two nodes exists if the corresponding cells are adjacent 

and satisfies the confidence condition on a cell. 

Merging of cells stops when no more cells satisfy the confidence condition on a cell. 

The process then starts the next cluster from the set of unclassified cells with the 

nlaxinlu~n hue pixel value. Tlie process conti~lues recursively merging neighl1)oring 

cells that satisfy the confidence condition on a cell. This process of merging cells and 

selecting seeds is repeated until all the useful cells have been classified. The classified 

cells represent the set of rough clusters and finally the pixels receive the clusterid of 

the respective cells. 

The algoritllm for rough clusteri~lg (Phase I) includes the following steps. 

1. Create the grid str~ct~ure.  

2. Conlpute the density of eadl cell. 

3. Convert the RGB values of each pixel into their HSI values. 

4. Identify the cell wit,h the maxillluili hue value as the seed. 

5. Calculate each pixel's difference value w.r.t. the seed. 



Figure 4.2: Population-object ratio of each grid cell. 

6. Compute population count of each grid cell and calculate the corresponding 

population-object ratio. 

7. Traverse the neighbor cells starting from the grid cell with the highest population- 

object ratio value. 

8. Merge the cells and assign cluster-id. 

9. Repeat steps 5 through 9 till all the cells are classified. 

Figure 4.3 (b) shows the result of the rough clustering phase of an example image 

shown in Figure 4.3 (a). The rough clusters obtained are grainy in nature. This is a 

drawback of grid based method. To obtain clusters with smooth borders, the border 

cells are detected and re-clustered using either a: (i) Partitioning approach or (ii) a 

Fuzzy approach. 

Since Phase I is a sampling-biased technique, the clusters formed may not be ac- 

curate near their boundaries. This may be due to the presence of the mixed pixels 

as well as the size of the grid. So, to address these problems, we concentrate on 

smoothening the boundaries of the clusters in Phase 11. In the cluster smoothening 

step, the number of clusters is already known since it is given by the number of 

rough clusters so formed. The border cells are detected according to Definition 20. 

Phase I1 may be executed in two different ways depending on which technique we 

choose. The algorithm for Phase I1 of SATCLUS is discussed in Section 4.5 and the 

algorithm for Phase I1 of GDSDC is presented in Section 4.6. 



4.5 Phase 11: Hard Clustering Approach for SAT- 

CLUS 

The first method (SATCLUS) uses partitioning to reassign the border objects of the 

rough clusters to their appropriate clusters. In Phase 11, the border cells of the rough 

clusters obtained are detected as shown in Figure 4.3 (c) for the image of Figure 4.3 

(a). Once the border cells have been found, clustering process starts at the pixel level. 

Suppose, the number of rough clusters created in the first phase of clustering is 

k.  Now, the pixels in the border cells are checked for their re-assignment to clusters 

to improve the quality of clusters formed. The k rough clusters each has one seed 

pixel. Let x be a pixel in a border cell. The distance of x with each of the k seeds 

is calculated and x is assigned to that cluster from which it has the least distance 

w.r.t. the seed.. This process is repeated for all pixels in the border cells. The final 

set of clusters obtained after processing the border pixels using partitioning in Phase 

I1 is shown in Figure 4.3 (d) . 

The algorithm for the cluster smoothening is given below: 

Input: q border cells, k seeds corresponding to the k rough clusters obtained from 

Phase I 

1. Start with an arbitrary border pixel x. 

2. Find the distance of x to each of the k seeds. 

3. Assign x to the cluster to which it has minimum distance w.r.t. the seed. 

4. Repeat steps 1 to 4 till all border pixels have been reassigned. 

In satellite images there is always the possibility of the presence of mixed pixels. 

The handling of such pixels is very important and challenging. Our next technique 

(GDSDC) deals with a fuzzy approach that helps in smoothening of the rough clusters 

and handling the mixed pixels. 



I Satcllrte Irnage Clustering and Classrfrcatcon Tool 

Figure 4.3: a) An example image with its grid structure, b) The four rough clusters, 

c) Clusters along with their borders, and d) The final clusters 

4.6 Phase 11: Soft Clustering Approach for GDSDC 

Mixed pixels (mixels) occur in a satellite image because the pixel size may not be fine 

enough to capture details on the ground. Therefore some pixels are riot completely 

occupied by a single and homogeneous object and fuzziness occurs due to the pres- 

ence of mixels. Fuzzy methods are appropriate in remote serising since geographical 

data are inherently fuzzy. Among the various types of fuzzy membership functions 

available in the literature, the function reported in [Bez8la] is used in GDSDC to 

classify the border pixels, which are common in satellite data, due to its effectiveness 

in terms of accuracy. 

4.6.1 Mixed Pixel Handling 

The spatial resolution of satellite sensor systcnis iriiagirlg the eartli is coarser thali 

tlle sizes of objects on ground. One pixel i11 the satellite iniage ilsually covers rliore 

than oilc object on the grountl. Pixels ill tlic iniage coverii~g illore tllail OIW ohject 



on the ground are mixed pixels. Mixed pixels present in a satellite image greatly 

affect the quality of clusters produced since these pixels have a signature represen- 

tative of more than one cluster (as with boundary pixels). Figure 4.4 (a) shows 

a satellite image of resolution 30m x 30m which means each pixel in the image 

represents an area of 30m x 30m on the ground. This image is reproduced from 

http://clear. uconn. edu/projects/landscape/images/measufing/aefialgfid.gi~ In Fig- 

ure 4.4 (a) each grid cell represents a pixel and each pixel may not contain all homo- 

geneous objects. As an example, consider pixel 3. We see that this particular pixel 

represents a house, cars, trees, fields, shrubs and a road. Therefore pixel 3 itself con- 

sists of many non-homogeneous objects. Thus, it represents more than one object on 

ground and is a mixed pixel. Different types of mixed pixels are shown in Figure 4.4 

(b) . This image is reproduced from http://wgbis. ces. iisc. ernet. in/energy/paper/TR- 

11 l/chapter4-clip-imageOOZ. jpg. The first case is that of a sub-pizel where a single 

pixel represents information from more than that of one sub-pixel. In addition, the 

objects are not homogeneous at  sub-pixel level. The second case is boundary pixel. 

In this case we see that mixed pixel occurs at  the boundary between different ob- 

jects. In the third case the intensity values change gradually. This is known as 

intergrading. The fourth case is that of a linear sub-pixel (i.e., different objects are 

aligned linearly at  sub-pixel level) as given in Figure 4.4 (b). Tkaditional clustering 

techniques can find clusters present in a satellite image, they are prone to misclassify 

mixed pixels. Even with the improved resolution of the satellite images, the mixed 

pixel problem remains. Therefore, to handle this problem, some researchers incor- 

porate fuzzy classification allowing a mixed pixel (or border pixel) to belong to two 

or more clusters. FCM [Bez8la], discussed previously, attempts to handle the mixed 

pixel classification problem using the principles of fuzzy sets to evolve a set of pre- 

specified number of partitions with minimum intra-cluster dissimilarity. However, 

FCM suffers from two common drawbacks: (i) it requires the number of clusters, 

and (ii) it often gets stuck at  suboptimal solutions based on the initial configuration 

of the system. To address these challenges, this section presents a fuzzy border pixel 

classification approach that can effectively solve the mixed pixel problem as well as 

smoothen the bordering regions of the clusters obtained by the grid-density based 

clustering algorithm discussed in Phase I. The proposed approach has the following 



30 meters 

Figure 4.4: a) Mixed Pixels b) Different cases 

distinguishable features. 

Unlike FCM [Bez8la], it does not require the number of clusters as a input 

parameter. 

Unlike the other density-based approaches, it works over grid space which 

makes the method faster. 

Ulilike the other grid-based approaclies. it call detect clusters with diagoiial 

boundaries. 

Tlie fuzzy approach for smoothening of cluster border is illustrated in Section 4.6.2. 

4.6.2 Fuzzy Approach: GDSDC 

Tlie out,put of Phase I, the set of rough clusters, is the input for GDSDC. It iliitially 

detects the border cells according to Definition 20. Once the border cells have beell 

fo~uld, clustering stitrt,s at tlie pixel level using a fiizzy lllelnbership fiiliction [Bez8la] 

as described below. 



The border pixels detected for the image shown in Figure 4.3 (a) are shown in 

Figure 4.3 (c). Suppose, k rough clusters are obtained in the first phase of cluster- 

ing. Only the pixels in the border cells are checked for possible re-assignment to 

improve the quality of clusters. Each of the k rough clusters detected has one seed 

pixel. Let x, be a pixel in a border cell p of cluster C,. Since the 8-neighborhood 

of the cell p may have any other cluster C, where 3 = 1, 2, . . . k, these clusters are 

the neighbor clusters of cluster C, and x, can be assigned to any of the neighboring 

clusters. The membership of x, in each of the clusters present in the 8-neighborhood 

of cell p is calculated using Equation 4.2. x, is assigned to that cluster for which the 

membership function has the least value w.r.t. the seed. This process is repeated 

for all pixels belonging to border cells. The fuzzy membership function [Bez8la], is 

given by, 
- 1 

UC, 7, - (4.2) 

where x, is a border pixel, k is the number of clusters detected in the neighbor- 

hood of the cell p to which x, belongs, u is the fuzzy membership matrix such that 

u,, E [ O , 1 ]  is the membership degree of x, to cluster C,. C = {C1, C2, . . . , Ck)  is 

the set of rough clusters in the neighborhood of cell p. C, is the current cluster in 

which the membership of x, is to be determined and Cl are the clusters present in 

the &neighborhood of cell p, d is a distance measure (Euclidean distance) between 

a seed of a rough cluster and a border pixel. The factor mf  is called fuzziness and is 

usually equal to 2 [Bez8 1 a]. 

The membership for each of the border pixels is computed and assigned to the 

cluster for which it has the lowest value. It can be easily seen that Figure 4.3 (d) 

has better quality clusters than those of Figure 4.3 (b). 

The steps of the cluster boundary smoothening phase using the fuzzy approach are 

given below: 

Input: q border cells, k seeds corresponding to  the k rough clusters obtained from 

Phase I. 



1. Start with an arbitrary border pixel x, 

2. Find the membership of x, in each of the k seeds. 

3. Assign x, to the cluster which minimizes the membership function given in 

Equation 4.2. 

4. Repeat steps 1 to 4 till all the border pixels have been considered for reassign- 

ment. 

4.7 Complexity Analysis 

Phase I of both SATCLUS and GDSDC are the same. The complexity analysis for 

Phase I is given below. 

Phase I partitions the dataset and forms of the rough clusters. The partitioning of 

the dataset into gr, xgr,  non-overlapping cells results in a complexity of O(gr,  xgr,). 

In Phase I, the expansion of the grid cells to form clusters results in O(cel1,) time 

complexity, where cell, is the total number of cells in a cluster so formed. cell, << 
gr, x gr, in the average case. If the number of clusters obtained is k ,  the overall 

time complexity for clustering is O ( k  x cell,). Therefore, total time complexity for 

the rough clustering is O(gr,  x gr,) + O ( k  x cell,). 

Phase I1 is different for both SATCLUS and GDSDC. Therefore the computational 

complexity of both techniques are calculated separately. 

In Phase I1 of SATCLUS, the identification of the q border cells require O(q) times 

where q << gr, x gr,. The assignment of r pixels to k clusters using the partitioning 

approach requires O ( k  x r )  time, where r is the total number of pixels in q border 

cells. Therefore, total time con~plexity for Phase I1 is O(q)  + O ( k  x r ) .  

Overall time complexity of SATCLUS is O(gr,  x gr,) + O ( k  x cell,) +O(q) +O(k  x r ) .  

O (k  x r )  dominates the overall time complexity. 



In Phase I1 of GDSDC, the identification of the q border cells require O(q) time 

where q << gr, x gr,. The assignment of r pixels to k clusters using the fuzzy mem- 

bership function requires O(k x r) time, where r is the total number of pixels in q 

border cells. Therefore, total time complexity for Phase I1 is O(q) + O(k x r )  . 

Overall time complexity of GDSDC is O(gr, x gr,) + O(k x cell,) + O(q) + O(k x r) . 

O(k x r )  dominates the overall time complexity. 

Therefore, we see that the time complexity of both algorithms is the same and 

the user may choose either of the techniques without any time penalty. The added 

advantage of GDSDC is that it can identify mixed pixels well. 

4.8 Performance Evaluation 

To evaluate the proposed methods in terms of quality of clustering, we use several 

synthetic and real datasets. We implement the methods using Java in the Windows 

environment on a PIV processor with 1 GHz processor speed and 256 MB RAM. 

The satellite image datasets used have been divided into two parts according to their 

resolution as discussed below. 

4.8.1 Satellite Images with Low Resolution 

a) Dataset I: This dataset is a Landsat MSS image as shown in Figure 4.5 (a). 

Landsat Multi Spectral Scanner (MSS) was a sensor on board Landsats 1 through 

5 and acquired images of the earth nearly continuously from July 1972 to October 

1992, with an 18-day repeat cycle for Landsats 1 through 3 and a 16-day repeat 

cycle for Landsats 4 and 5. Landsat MSS image data consist of 4 spectral bands 

although the specific band designations change from Landsats 1-3 to Landsats 4-5. 

The resolution for all bands is of 79 m, and approximate size is 170 km North-South 

by 185 km East-West. The clusters obtained from the image of Figure 4.5 (a) are 

shown in Figure 4.5 (b) for SATCLUS and Figure 4.5 (c) for GDSDC. 



Figure 4.5: a)  Landsat-MSS image data, b) Output of SATCLUS c) Output of 

GDSDC 

b) Dataset I I :  This dataset, shown in Figure 4.6 (a) was obtained from the Indian 

Remote Sensing Satellite which is a circular sun-synchronous satellite. It rotates 

around the earth at  the rate of 14 orbits per day, at  an altitude of 904 km and a 

repeat cycle of 22 days. This satellite has two sensors LISS (Linear Imaging Self 

Scanner)-I and LISS-11. LISS-I has a spatial resolution of 72.5 m x72.5 m while 

LISS-I1 has resolution of 36.25 nl x36.25 m. The IRS-1A image of Kolkata was 

taken by LISS-I1 sensor in the wavelength range 0.45pm - 0.86pm.. The full spec- 

trum range is decomposed into four spectral bands namely blue band of wavelength 

0.45pm-0.52pm, green band of wavelength 0.52pm - 0.59pm, red band of wavelength 

0.62pm - 0.68pm and near-infrared (NIR) band of wavelength 0.77pm - 0.86pm. This 

dataset shows an area around Kolkata in the NIR band. There is a prominent black 

stretch across the image representing the river Hoogly. The prominent light patch at  

the bottom right corner is the Salt Lake Stadium and the black patches nearby are 

the fisheries. Two parallel lines at the upper right hand side of the image correspond 

to airport runways in the Dumdum airport. Other than these there are several water 

bodies, roads and open spaces in the image. 

Both SATCLUS and GDSDC automatically detects four clusters for this data 

a s  observed in Figure 4.6 (b) and Figure 4.6 (c). From our back ground knowledge, 

we can infer that t,hese four clusters correspond to the four classes: Water Bodies 

(black color), Habitation and City area (deep gray color), Open space (light gray 



Figure 4.6: a) IRS Kolkata b) Output of SATCLUS c) Output of GDSDC 

Figure 4.7: FCM clustering of Figure 4.6 a )  

color) and Vegetation (white color). The river Hoogly, stadium, fisheries, city area 

as well as the airport runways are distinctly discernible in the output image. The 

predominance of city area on both sides of the river, particularly a t  the bottom part 

of the image is also correctly classified. This area correspoxlds to the central part of 

Iblkata  city. 

Figure 4.7 shows the Kolkata image partitioned using the FCM algorithm. From 

the figure, we note that the river Hoogly and the city area are not bee11 correctly 

classified. In fact, these are classified as belonging to the same class. Another rnisclas- 

sification is that the whole Salt Lake City area has been put in one class. Although 

some portions have been correctly identified such as the canals, the Durndurn airport 

runways and the fisheries there is still a significant amount of confusion in the FCM 

clusters. 



Figure 4.8: a) Cartosat-1 of Sonari b) Output of SATCLUS c) Output of GDSDC 

4.8.2 Satellite Images with High Resolution 

The experiments using the images presented next are aimed at handling two different 

types of terrains (plains and hills) to gauge the variation in classification accuracy. 

Images of the plain built up area of Sonari in Sibsagar district of Assam, the Bora- 

pani area of Meghalaya and a part of Shillong city of Meghalaya are considered for 

this study. 

a) Dataset I II:  This dataset1 was acquired from the Cartosat-1 remote sensing satel- 

lite using the panchromatic (PAN) cameras that take black and white stereoscopic 

pictures of the earth in the visible region of the electromagnetic spectrum. The 

swath covered by these high resolution PAN cameras is 30m x 30m and their spa- 

tial resolution is 2.5 m and wavelength of 0.5 - 0.85pm. Figure 4.8 (a) shows the 

Cartosat-1 image of a plain built up area of in Sibsagar district of Assam. Some 

characteristic regions in the image are the river Brahmaputra shown in black, spi- 

rally cutting across the middle of the image. We see roads, agricultural land and 

human settlements as well. The proposed clustering methods automatically detect 

all the 5 clusters (Figure 4.8) corresponding to river, road, agricultural land, water 

bodies and human settlements. 

b) Dataset IV and V: These two datasets' show two different views of the Bo- 

rapani area of the state of Meghalaya obtained from the IRS P6 LISS IV sensor that 

lThese datasets have been obtained from North East Space Application Center, Umium, Megha- 

laya 



Figure 4.9: a) IRS of Borapani b) Output of SATCLUS c) Output of GDSDC 

+m.a'-* '* 9.: 9.'; 

- -  AT. - 

Figure 4.10: a )  IRS of Borapani (another view) b) Output of SATCLUS c) Output 

of GDSDC' 

lias a spatial res~lut~ioil of 5.8 111. The full spectral range is divided illto four spec- 

tral bands 0.5 - 0.62pm (Green). 0.5 - 0.62pm (Red). 0.5 - 0.62pm (Iilfrared) and 

0.5 - 0.62pm (Blue). The characteristic regio~is ill the image sliowii in Figure 4.9 (a) 

are Deep water (deep blue color), Wetlallds (liglit blue color), Veget,atiori (Red and 

Pink colors) and Open spaces (\Vhit,e color). Exccl~ting the SATCLUS and GDSDC' 

algorithms with tliis image resulted in the detectio~i of the above four classes as 

shown in Figure 4.9 (b) arid (c). 

Tlie characteristic regioils in Figure 4.10 (a).  aliotlier image of Borapaui, hleglialayd. 

are the water (dark color). IVetlallds (liglit yellowisli-green color), Vegetat,ioll (violet 

color) and Open spaces (light green color). Both SATCLUS and GDSDC clustered 

the image into five classes as shown in Figure 4.10. showing the clustered regions as 

deep water (dark blue), wetland (sky blue), vegetation (pink), open spaces (white) 

and polid water (black). i4-e see tliat the water body at, the left liancl top corner of 



Figure 4.11: a) Ikonos image of Shillong city, Meghalaya, b) Output of SATCLUS c) 

Output of GDSDC 

the image is detected, corresponding well to the ground irlformation available. 

c) Dataset VI: This dataset1 was acquired frorn IKONOS over the area of Shil- 

long city of Meghalaya. IKONOS is a commercial earth observation satellite and 

offers multi-spectral and panchromatic imagery and ha3 a spatial resolutioii of 4111 

aiitl 1 111. rcspectivcly. Tlic. spectral resolutioii is dividetl iilt,o four 1)aiids iia~iir\l\. 

0.415 - 0.516pm (Blue), 0.506 - 0.595pm (Green). 0.632 - 0.698pm (Rccl) ~ i i t l  

0.757 - 0.853pm (NIR) .  Tlie swat11 covered is 11 lclri x 11 kin ill a single sc.c3iic1 

Fig~lre 4.11 (a)  slio\vs tlie IIiONOS image of Sllillong city, hIcgliala\-it. Tliv ~lic~~i\c.-  

tclistic regions in this iiriage are the colicrete structures. ro~ t l s  and ope11 spaceh. Tllc3 

rlustcred iinwgc o ~ ~ t p u t  obtaiiiecl by tlir proposed tcdll~iqucs is shon-ii in Figure 4.1 1. 

Tliese relate well wit11 tlic' groulld inforrilatior~ kl~owm to 11s. 

F~o in  tl-ie experiniental results given above. nle o1)scrve tliat 1)otli tlie iiletliods, SAT- 

CLUS itnd GDSDC. ~11.e liighl\. capablc of detcctiiig cli~sters of all shapcs. Tlic. set of 

clusters produced by of the proposed methods are further validated using two clus- 

ter validity measures: Cluster homogeneity measure [SMKS03] and the /3 measlire 

[PGSOO]. 



4.8.3 Cluster Validity 

To validate the quality of clustering, we use two validity measures: Homogeneity and 

p-measure. 

a) Cluster Homogeneity Measure: Homogeneity measures the quality of clusters on 

the basis of the definition of a cluster: objects within a cluster are similar while 

objects in different clusters are dissimilar. The homogeneity measure used is that of 

overall average homogeneity used in [SMKS03]. It is calculated as follows. 

i) Compute the average value of similarity between each object o, and the seed 

of the cluster to which it has been assigned. 

where o, is the centroid of C,. 

ii) Calculate the average homogeneity for the set of clusters C according to the 

size of the clusters as 

Where N is the total number of objects. 

Here, o, refers to a pixel and the centroid of the cluster is represented by the seed of 

the cluster (0,). The homogeneity values for the satellite images shown earlier are 

given in Table 4.1. Homogeneity values are reported for both SATCLUS (using a 

partitioning approach in Phase 11) and GDSDC (using a fuzzy approach in Phase 11). 

b) 0 Cluster Validity Measure: The set of clusters for the remote sensing images ob- 

tained above have also been evaluated quantitatively using the index as in [PGSOO]. 

Let n, be the number of pixels in the ith cluster (i = 1, - - - , c). Let X,, be the vector 

(of size 3 x 1) of the HSI values of the jth pixel ( j  = 1, . . . , n,) for all the images in 

cluster i, and X, the mean of n, HSI values of the ith cluster. Then, ,O is defined as 

[PGSOO] : 



Table 4.1: Homogeneity values for SATCLUS and GDSDC for some satellite image 

datasets 

where n is the size of the image and x is the mean HSI value of the image. Note 

that Xi j ,  X, and Xi are all 3 x 1 vectors. 

The above measure is the ratio of the total variation and within-cluster variation 

and is widely used for feature selection and cluster analysis [MMP02]. For a given 

image and a value for c (number of clusters), the higher the homogeneity within the 

segmented regions, the higher the P value. That both SATCLUS and GDSDC have 

higher P values than comparable algorithms is seen in Table 4.2. 

Table 4.2: Com~arison of beta value and CPU time for different clustering algorithms 
Method I k-means I Astrahan's I Mitra's I Acharyya's I SATCLUS I GDSDC I 

4.9 Discussion 

P 
CPU time 

(in hrs) 

This chapter has reported two grid-density based clustering methods, SATCLUS 

and GDSDC for high-resolution satellite image data2. The cluster creation using 

2This work is an outcome of a research project funded by ISRO under the RESPOND scheme 
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[McQ67] 

5.30 

0.11 

[Ast 701 

7.02 

0.71 

[MMP02] 

9.88 

0.75 

[AK07] 

3.84578 

unknown 

17.82 

0.08 

12.63 

0.09 



grid cells detects the rough cluster structures. This is because after expansion of a 

cluster the method searches for the next candidate cell that has a variation in the 

hue value in the dataset. The process expands the new region till there is again a hue 

value variation. This process iterates till all the cells have been classified. SATCLUS 

uses a partitioning based process of smoothening the cluster borders, giving a finer 

set of clusters since the cluster expansion based on cells may sometimes misclassify 

the border points. GDSDC exploits a fuzzy membership function for smoothening 

the cluster borders. This also helps in the handling of mixed pixels in the images. 

Both techniques reassign a border point to the most relevant cluster. This is because 

a border point may be misclassified during the cell based expansion. Reassignment 

improves the quality of the clusters to a great extent. Based on experimental results, 

both SATCLUS and GDSDC can detect clusters of all shapes. The homogeneity 

scores for the clusters are also quite good. Based on the CPU time needed and 

p measure, the methods perform better than several other comparable algorithms 

([McQ67], [Ast70], [MMP02]). 

In recent years there has been tremendous progress in the data accumulation tech- 

niques. This in turn has resulted in the generation of huge amounts of data. Handling 

such voluminous data is a challenge in the field of data mining. Parallel and dis- 

tributed techniques help in handling such large amounts of data. In the next chapter, 

we present two distributed clustering techniques for spatial data. 



Chapter 5 

Distributed Grid-Density based 

Clustering 

Identifying clusters in large spatial data is a difficult task due to the high amount 

of processing time needed in handling voluminous data. Distributed and parallel 

clustering approaches help to reduce the time needed by distributing the processing 

to different machines.This also improves the response time. 

In this chapter, we discuss two distributed clustering techniques that can be ap- 

plied to handle large scale 2D spatial datasets and large satellite image datasets with 

high resolution. The first technique (DGDCT) aims to identify embedded clusters in 

any large 2D spatial datasets with improved clustering quality. The second method 

is a distributed Grid-Density based Satellite data Clustering technique, DisClus, that 

can detect clusters of arbitrary shapes and sizes over large, high resolution, multi- 

spectral satellite datasets. Both techniques are implemented using a client server 

approach, where the huge dataset stored in the server is partitioned into almost Ic, 
equal partitions that are used by Ic, clients to identify the clusters in parallel for each 

partition. Finally, the clusters obtained from the kp clients are merged at the server 

for the final results. Experimental results establish the superiority of the techniques 

in terms of scale-up, speedup as well as cluster quality, in comparison to similar 

algorithms. 



5.1 Introduction 

Extraction of hidden information from huge datasets is a challenging task in data 

mining. With the increase in the amount of spatial data, the need for efficient and 

effective spatial data mining techniques is of utmost importance. Though traditional 

data mining algorithms may be applicable in some spatial datasets, the challenges 

imposed by the huge amount of spatial data, need to be addressed. The huge size 

of datasets, its wide distribution over several sites and the computational complex- 

ity are the factors contributing towards the development of parallel and distributed 

algorithms in the data mining domain. Clustering is the process of division of a 

dataset into subsets or clusters, so that the similarity of points in each partition is 

as high as possible while points in different partitions are dissimilar. Parallel and 

distributed spatial data clustering algorithms may help in addressing the problem 

mentioned before. Distributed clustering is the partitioning of data into groups, in 

a distributed environment. Although this field is relatively new, yet it has been ex- 

plored intensively in the last few years, as the need to employ distributed algorithms 

has grown signicantly. The evolution of the networking and storage equipment fos- 

tered the development of very large datasets and it is infeasible to centrally process 

these datasets in order to analyze them. Distributed clustering is applied when either 

the data that need to be processed is distributed, or the computation is distributed, 

or both of them. If none of these two is distributed, then it is centralized clustering. 

Parallel and distributed computing is expected to relieve current clustering methods 

from the sequential bottleneck, provide the ability to scale massive datasets and im- 

prove the response time. Such algorithms divide the data into partitions, which are 

processed in parallel. The results from the partitions are then merged. 

Although it is common for data to be distributed in a parallel/distributed envi- 

ronment, the distribution is governed solely by performance considerations. Three 

main architectures can be proposed for building parallel/distributed DBMSs '. 

1. In a shared-memory system, multiple CPUs are attached to an interconnection 

network and can access a common region of main memory. A shared memory 
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Figure 5.1: The Shared-memory architecture 

system is illustrated in Figure 5.1. 

2. In a shared-disk system, each CPU has a private memory and direct access to 

all disks through an interconnection network. Figure 5.2, shows a shared-disk 

system. 

3. In a shared-nothing system as shown in Figure 5.3, each CPU has local main 

memory and disk space, but no two CPUs can access the same storage area; 

all communications between CPUs are through a network connection. 

Shared memory architecture2 usually has a block of random access memory that can 

be accessed by different central processing units (CPUs) in a multiple-processor com- 

puter system. This type of architecture is quite easy to program since all processors 

share a single view of data and the communication between processors can be as fast 

as memory accesses to the same location. The problem with these systems is that 

many CPUs need fast access to memory and will likely cache memory, which has 

two complications: (i) CPU-to-memory connection becomes a bottleneck and shared 

memory computers cannot scale very well. (ii) Whenever one cache is updated with 

information by a particular processor, the change needs to be reflected to the other 
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Figure 5.3: The Shared-nothing architecture 



processors, otherwise the different processors will be working with incoherent data. If 

these issues are handled the system works well, provide extremely high-performance 

access to shared information between multiple processors. On the other hand they 

can sometimes become overloaded and become a bottleneck to performance 

In shared-disk architecture3 all processors can access the same disks with about the 

same performance, but are unable to access each other's RAM. With the advent of 

Network Attached Storage devices (NAS) which allow a storage device on a network, 

is to be mounted by a set of nodes, shared disk has become increasingly popular. One 

key advantage of shared-disk systems over shared-nothing is in usability, since DBAs 

of shared-disk systems do not have to consider partitioning tables across machines. 

In this system the failure of a single DBMS processing node does not affect the other 

nodes' ability to access the full database which is not the case with shared-memory 

systems (that fail as a unit), and shared-nothing systems (that lose at  least some 

data upon a node failure). 

Shared nothing architecture (SNA)4 is a distributed computing architecture con- 

sisting of multiple nodes such that each node has its own private memory, disks and 

input/output devices independent of any other node in the network. Each node is 

independent and self-sufficient, and shares nothing across the network. Therefore, 

there are no points of contention across the system and no scope for data sharing 

or system resources. This type of architecture is highly scalable and has become 

quite popular for web development because of its scalability. An SN system typically 

partitions its data among the different nodes such that each node may be responsi- 

ble for handling a particular task (interacting with different types of users, handling 

different types of queries, serving different geographic areas etc), or it may require 

every node to  maintain its own copy of the application's data, using some kind of 

coordination protocol to interact with other nodes as required. 

The disadvantage of the shared-memory and shared-disk architectures is interfer- 

ence. As the number of CPUs are increased, existing CPUs are slowed down because 



of the increased contention for memory accesses and network bandwidth. The shared- 

nothing architecture requires more extensive reorganization of the DBMS code, but 

it has been shown to provide a linear speed-up and linear scale-up. Linear speed- 

up occurs when the time required by an operation decreases in proportion to the 

increase in the number of CPUs and disks. Linear scale-up occurs when the perfor- 

mance level is sustained if the number of CPUs and disks are increased in proportion 

to the amount of data. As a result, ever-more-powerful parallel database systems 

can be constructed by taking advantage of the rapidly improving performance for 

single-CPU systems and connecting as many CPUs as desired. 

In this chapter, we propose two distributed clustering techniques that use the shared- 

nothing architecture. The first technique presented in Section 5.3 is capable of iden- 

tifying arbitrary shaped embedded clusters as well as multi-density clusters over 

large spatial datasets. The second technique is reported in Section 5.4 and has been 

applied over huge satellite images to detect the various clusters present in the data. 

Related Work 

This section presents a selected survey on some of the distributed and parallel algo- 

rithms. 

5.2.1 Distributed and Parallel Clustering Techniques 

For the past few decades the mainstream data clustering technologies have been fun- 

damentally based on centralized operation; datasets were of small manageable sizes, 

and usually resided on one site that belonged to one organization. Today, data is 

of enormous sizes and is usually located on distributed sites; the primary example 

being the Web. This created a need for performing clustering in distributed environ- 

ments. Distributed clustering solves two problems: infeasibility of collecting data at 

a central site, due to either technical and/or privacy limitations, and intractability 

of traditional clustering algorithms on huge datasets. 



In [BBD04], a parallel implementation of the DBSCAN algorithm based on low cost 

distributed memory multi-computers is presented. Here, a centrally located dataset 

is spatially divided into nearly equal partitions with minimum overlap. Each such 

partition is sent to one of the processors for parallel clustering. The clustering results 

of the partitions are then collected by the central processor in an orderly manner and 

they are merged together to obtain the final clustering. The algorithm is scalable 

both in terms of speedup and scale-up and significantly reduces the computation 

time. 

In [DM99], a parallel version of the k-means algorithm was proposed based on shared 

nothing architecture. This algorithm was designed based on the Single Program Mul- 

tiple Data (SPMD) model having several processors, each having its own local mem- 

ory, connected together with a communication network. Each processor, or node, 

receives only a segment of the data that needs to be clustered. One of the nodes 

selects the initial cluster centroids, before sending them to the others. New distances 

between centroids and data points are computed independently, but after each iter- 

ation of the algorithm, the independent results must be aggregated or reduced. This 

is done using the MPI (Message Passing Interface). The reduced centroids obtained 

after the last iteration represent the final result of the clustering process. 

Another parallel version of DBSCAN, called PDBSCAN [XJK99], also uses a shared- 

nothing architecture with multiple computers interconnected through a network. 

Here, as a data structure, the dR*-tree was introduced which is a distributed spa- 

tial index structure in which the data is spread among multiple computers and the 

indexes of the data are replicated on every computer. The master distributes the 

entire dataset to every slave. Each slave locally clusters the replicated data and 

the interference between computers is minimized due to local access of data. The 

slave-to-slave and master-to-slaves communication is done via message passing. The 

master manages the task of dynamic load balancing and merges the result produced 

by the slaves. PDBSCAN offers nearly linear speedup and has excellent scale-up and 

size-up behavior. 



In [JKPOS], a Density Based Distributed Clustering(DBDC) algorithm was presented 

which can be used in the case when the data to be clustered is distributed and in- 

feasible to centralize. DBDC works by first clustering the data locally at different 

sites independent of each other. The aggregated information about locally created 

clusters are extracted and transmitted to a central site. On the central site, a global 

clustering is performed based on the local representatives and the result sent back to 

the local sites. The local sites update their clustering based on the global model, that 

is, merge two local clusters to one or assign local noise to global clusters. For both 

the local and global clustering, density-based algorithms are used. This approach is 

scalable to large datasets and gives clusters of good quality. 

In [FLPTOO], a parallel version of the Autoclass system, P-Autoclass is described. 

In [JK99], a Collective Hierarchical Clustering (CHC) algorithm is reported for ana- 

lyzing data that is heterogeneously distributed, with each site having only a subset 

of all features. First, a local hierarchical clustering is performed on each site. After- 

wards, the obtained dendrograms are sent to a facilitator which computes the global 

model, using statistical bounds. The aggregated results are similar to centralized 

clustering results, making CHC an exact algorithm. 

The algorithm P2P K-means, developed by Datta et. al. [DGKOG] is one of the 

first algorithms developed for P2P systems. Each node requires synchronization 

only with the nodes that it is directly connected to, or its neighborhood. Only one 

node initializes the centroids used for k-means, which are then spread to the entire 

network. The centroids are updated iteratively. Before computing them at step i, a 

node must receive the centroids obtained at step i - 1 by all of its neighbors. When 

the new centroids of a particular node do not suffer major modications, then the node 

enters a terminated state, where it doesn't request any centroids, but it can response 

to requests by neighbors. Node or edge failures and additions are also accounted for 

by P2P k-means, making it suitable for dynamic networks. P2P K-Means algorithm 

was proposed in [BGM+OG] for distributed clustering of data streams in a peer-to- 

peer sensor network environment. 



Jin R. et al. [JGAOG] presented a distributed version of Fast and Exact K-Means 

(FEKM) algorithm, which collected sample data from each data source, and com- 

municated it to the central node. The main data structure of FEKM i.e. the cluster 

abstract table is computed and sent to all data sources to get global clusters. 

In [ALKK07], the authors proposed a lightweight distributed clustering technique 

based on a merging of independent local sub clusters according to an increasing vari- 

ance constraint. The key idea of this algorithm is to choose a relatively high number 

of clusters locally, or an optimal local number using an approximation technique, 

and to merge them at the global level according to an increasing variance criterion 

which requires a very limited communication overhead. 

Le-Khac N. et al. [LKAK07] presented an approach for distributed density-based 

clustering. The local models are created by DBSCAN at each node of the system 

and these local models are aggregated by using tree based topologies to construct 

global models. 

In [TMEDF08], the authors introduced a method to define intuitionistic fuzzy par- 

titions from the result of different fuzzy clustering algorithms such as FCM, entropy 

based FCM and FCM with tolerance. In this approach, the intuitionistic fuzzy par- 

tition permits to cope with the uncertainty present in the execution of different fuzzy 

clustering algorithms with the same data and with the same parameterization. 

In [DGKOS], Datta et. al. propose two approximate K-means clustering algorithms 

that work on uniformly sampled peers. The first algorithm is designed to operate 

in a dynamic P2P network that can produce clusterings by local synchronization 

only. The algorithm has been observed empirically to produce accurate clustering 

results with respect to centralized K-means clustering. However, it cannot offer an 

analytical accuracy guarantee. Therefore, the second algorithm is proposed which 

works by taking a uniform random sample of nodes from a static P2P network. This 

algorithm provides an analytical accuracy guarantee. 



Another intuitionistic fuzzy based distributed clustering algorithm is presented in 

[VTPlO] for homogeneously distributed datasets. The process is carried out in two 

different levels: local level and global level. In local level, numerical datasets are con- 

verted into intuitionistic fuzzy data. Modified fuzzy C-Means algorithm is then used 

to cluster this data independently from each other. In global level, global centroid 

is computed by clustering all local cluster centroids. The global centroid is again 

transmitted to local sites to update the local cluster model. 

5.2.2 Discussion 

Based on our selected survey and experimental analysis, it has been observed that 

density based approach is most suitable for quality cluster detection over massive 

dat asets. Almost all clustering algorithms require input parameters, determination 

of which are very difficult, especially for real world datasets containing high dimen- 

sional objects. Moreover, the algorithms are highly sensitive to those parameters. 

Distribution of most of the real-life datasets are skewed in nature, so, handling of 

such datasets for all types for qualitative cluster detection based on a global input 

parameter seems to be impractical. Also handling high dimensional data is a chal- 

lenging task. The performance of most of the algorithms aimed to identify quality 

clusters for 2D spatial data degrades with the increase in dimensionality. Algorithms 

like DBSCAN [EKSX96] and GDBSCAN [SEKX98], which give good quality clus- 

tering~, do not work for high dimensional data. Often, the algorithms present in 

the literature can be found to identify clusters over large spatial data at an abstract 

level, however, some applications demand for identification of these at a more de- 

tailed or finer level. None of the techniques discussed above, is capable to handle the 

embedded or intrinsic cluster detection problem over massive datasets successfully. 

An algorithm which is capable of handling voluminous data and at the same time 

effectively detects nested or embedded clusters in presence of noise is of utmost im- 

portance. The grid density based clustering algorithm(GDCT) discussed in Chapter 

3 finds clusters according to the structure of the embedding space. For handling 

massive datasets, a distributed clustering technique based on GDCT is presented 

which can effectively address the scalability problem. Better speedup and scale-up 

are the major attractions of the proposed technique. 



5.3 Distributed Grid-Density based Clustering Tech- 

nique (DGDCT) 

This section presents a Distributed Grid-Density based Clustering Technique (DGDCT) 

capable of identifying arbitrary shaped embedded clusters as well as multi-density 

clusters over large spatial datasets. For handling massive datasets, we implemented 

our method using a shared-nothing architecture where multiple computers are inter- 

connected over a network. We consider a system having kp-nodes where the entire 

dataset D is located in any of the nodes (say initiator node). DGDCT can be initiated 

in any of the available nodes (computers). The initiator node starts a partitioning 

strategy thereby dividing the whole dataset into partitions and then distributing 

the partitions to each of the available computers on the network (one partition is 

also retained by itself). The initiator node executes a fast partitioning technique 

to generate the Ic, initial partitions. The partitions are then sent to kp nodes (in- 

cluding itself) for cluster detection using a grid-density based clustering technique 

(GDCT) which can operate over variable density space. Every node clusters only 

its local data. The initiator node manages the task of dynamic load balancing. Fi- 

nally, the local cluster results are received from the nodes at the initiator node and a 

merger module is invoked to obtain the final cluster results. Basically the technique 

works in three phases and the output of the previous Phase becomes the input of the 

current Phase. Next, we describe the architecture as shown in Figure 5.4, phase-wise. 

The proposed DGDCT can be found significant in view of the following issues: 

1. Embedded cluster Detection, 

2. Handling of single linkage problem, 

3. Handling of huge datasets (Scalability), 

The first two advantages is due to the fact that the clustering algorithm as given 

in Section 3.4 can identify embedded clusters and can handle the problem of single 

linkage which is inherent to most of the density based algorithms. DGDCT is scal- 

able to huge datasets as it uses a fast partitioning technique to distribute the huge 
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data to different nodes for local clustering and finally merges the cluster results at 

the initiator. The actual clustering is done on the distributed data and hence the 

processing load reduces even in case of huge datasets. This has been explained in 

detail in Section 5.3.1. 

An overview of the hardware architecture is shown in Figure 5.4. It consists of 

a number of nodes (e.g. PCs) connected via a network (e.g. Ethernet). 



5.3.1 Phase I: Partitioning the dataset 

Phase I of the architecture is executed in one of the nodes (initiator node). The 

dataset is spatially divided into equal sized square grid cells and density of each grid 

cell is computed. The square mesh is then partitioned with some overlap between 

adjacent partitions and distributed over k,  available computers (nodes). No subse- 

quent movement of data between partitions will take place. 

Initially, the data space is divided into gr, x gr, non-overlapping square grid cells, 

where gr, is a user input, and maps the data points to each cell. It then calculates the 

density of each cell. Assuming, the grid mesh D* contains the set of gr, x gr, objects 

say7 D* = 0 0 , 0 1 , 0 2 , " '  7°(gTnXgTn)-l '  SUPPOS~~ 0 3  = ( a ~ j , a ~ J , a 2 3 , ' . '  ,a(n-l),;dn) 

represents a grid cell with n real-valued attributes a,, i = 0,.  . , n - 1 and density 

d,. The ith attribute value of object 0, is drawn from domain a,. If there are kp 

clients, the grid mesh D* is partitioned into Ic, subsets Do, Dl, . . . , DkpPl ordered in 

sequence. We refer the clients by the corresponding partition D, that it receives for 

processing. 

D* = DoU Dl U D2U.. .UDkp-1 

The partially overlapped partitions are shown in Figure 5.5 for 2D case. An overlap 

of one grid cell occurs between two adjacent partitions. The overlapped regions are 

much smaller than the partitions. The grid cells in the overlapped regions are locally 

clustered in both the adjacent partitions. Thus they provide the information for 

merging together the local clustering results of two adjacent partitions. The over- 

lapped width should be at  least one cell width because adjacent cells are neighbors 

according to Definition 3. The grid mesh D* is partitioned in this manner based on 

the values of a selected attribute of the data objects say a, as in [BBD04]. The values 

of a, have a range of [min-a,, max-a,]. We need to select ( Ic ,  + 1) constants in the 

given range. Let ct , i = 1, . - . , Ic, + 1 represents the constants such that C; = min-a, , 
ci , = mas-a, and c,S < c,",,. Therefore the overlapped region can be represented 

P+ 

as : 

D, = 3j(0,  E D*) I c," - cell-width 5 a,, 5 c,"+,, i = 2, - - .  , Ic, - 1 



Figure 5.5: Overlapped spatial partitioning of a 2D dataset 

Figure 5.6: Here the dataset is divided into three partitions and transmitted to three 

computers (Ndk,)  for local clustering, lc, = 1 , 2 , 3  



D, = 3(0,  E D*) ( c," 5 a,, 5 c,"+, + cell-width, i = 1 

D, = 3j(0, E D*) ( c," - cell-width 5 a,, < c,",,,i = 1 

The constant c," should be selected in such a manner that 1 D, 1 becomes nearly 

equal to [N/lc,l, where N is total number of data points in the dataset. Moreover, 

those grid cells which fall within the overlapped regions are marked. Care has been 

taken for load balancing. The Ic, partitions thus obtained are then sent to Ic, nodes 

for global as well as intrinsic cluster detection (Figure 5.6). 

A detailed discussion on the basic sequential algorithm i.e. GDCT is already re- 

ported in Section 3.4, however, it was not scalable to huge datasets. 

Load Balancing 

Partition D, is sent to processor P,, i = 1,2, . . - , Ic, for concurrent clustering. Since 

no data movement takes place after the partitions are received by the respective 

nodes, care should be taken so that each processor receives nearly equal number of 

data objects for processing. This will ensure that all the processors finish the clus- 

tering job at the same time provided the processors have same processing speed. If 

the processing speeds are different, then the input data should be distributed to the 

processors proportionate to their processing speed. We assume that the speeds of the 

processors are nearly equal and they receive nearly equal amount of data. For doing 

this, the range of a, is divided into intervals of width of one cell-width and the fre- 

quencies of data in each interval is counted. Let b = [(max-a, -min-a,)/cell-width], 

N' = [N/kpl, dl = min-a,, 

d, = dz-l + cell-width, i = 2,3, . . , b 

F, = 3j(0, E D*) I d, -< a,, -< dz+17i = 2 , 3 , - . .  , b 

f a  =I Fa I 
Now, the constants, c," defined earlier, are computed as cf = d, such that x,"=, f, < 
N' 5 x,":: f,, i = 1,2 , .  - - , kp7 which will ensure that each partition gets number of 

objects nearly equal to N/kp. 



Minimized communication cost 

The proposed method saves transmission cost by avoiding inter-node communication 

during the process of local clustering. To achieve this goal, each concurrent process 

of GDCT in each of the nodes, Nd = 1 , 2 , .  - , kp, should avoid accessing those 

data located on any of the other computers, because the access of the remote data 

requires some form of communication. Therefore, nearby objects should be available 

on the same computer. This is why an overlap of one cell-width has been taken into 

consideration. 

5.3.2 Phase 11: Local Clustering 

Phase I1 of the architecture is executed in each of the kp nodes. This phase plays 

the actual role of clustering. In this phase, each node executes the GDCT algorithm 

over the partition of data received from the initiator node to detect the global and 

nested clusters. 

For the partition D, in node i, the grid cells in it will be assigned clusterid ac- 

cording to the clusters formed in that partition. The cluster-ids will be used during 

the server based merging process by the initiator node. 

The cluster expansion based on grid cells helps to achieve a significant cost reduc- 

tion as all the data points are not considered for cluster expansion only the density 

information of each cell is used. Also, as the clusterid information are used during 

Phase I11 merging process, it saves the cost of merging to a great extent. 

5.3.3 Phase 111: Merging 

In Phase 111, the cluster results received from the kp nodes undergo a simplified, yet 

faster merging procedure to obtain the final clusters. Since the Phase I1 process in 

a node may yield more than one cluster along with the embedded clusters, so there 

are always possibilities for merging during Phase I11 operation. The Merger module 

works as follows: 



1. Join the partitions received from the kp nodes according to their overlapping 

marks. 

2. Consider the marked grid cells (overlapping cells) of the candidate clusters. 

2.1 If any of the marked grid cells is identified by different clusterids by 

different partitions (say I, m), then assign any one of the ids (say I) to 

that cell. 

3. Assign all those cells having the same clusterid as the replaced id (m) with 1. 

5.3.4 Complexity Analysis 

Phase I: The partitioning of the dataset into gr, x gr, non-overlapping cells results 

in a complexity of O(N) where N is the total number of data points. The grid mesh 

D* is spatially partitioned into kp partitions with overlap of one cell width which 

results in a complexity of O(gr, x gr,), where gr, << N. Each of these Ic, partitions 

will have nearly equal (approximately N/kp) data points. The data points along with 

the grid information for each of Ic, partitions will be sent to the kp nodes. Therefore 

(Nllc,) + t points will be sent, where t is the average number of points present in an 

overlapped region. Next, to transmit these (Nllc,) + t points to each node requires 

a communication time of O((N/lc,) + t ) .  

Phase 11: This phase is executed in each of the Ic, nodes. Computing density of 

the cells in each node requires O((gr, x r )  x ((Nllc,) + t)), where r is the average 

number of cells along the selected attribute based on which partitioning in Phase 

I has been performed. The sorting of cells according to their density results in a 

complexity of O((gr, x r)log(gr, x r)) .  

The expansion of the coarse cluster results in O(m,) time complexity, where m, 

is the number of cells in an coarse cluster formed and m, << (gr, x r)/lc, in the 

average case. Cell subdivision into triangles takes place only in case of the border 

cells of the coarse cluster and its neighboring cells, Say, there are p border and q 

neighbor cells where q >> p. This step results in a complexity of O ( p  + q). If the 



number of clusters obtained is k  then the overall time complexity for the clustering 

will be O(k x m, x ( p  + q ) ) .  

Therefore, total time complexity will be O((grn x r )  x ((Nllc,)  + t ) )  + O((gr, x 

r)log(grn x r ) )  + O(k  x m, x (p  + q ) ) .  Thus the complexity due to density calculation 

almost dominates the other components, since (N/lc,) +t)  >> (grn x r ) .  The clusters 

detected in this phase are transmitted back to the initiator node with a transmission 

cost of O ( ( N / k p )  + t ) ) .  

Phase 111: Merging of the clusters obtained from the Ic, nodes will take O ( N  + Ic,.t) 

time. 

Thus, the overall time complexity of distributed GDCT will be O ( N )  + O(grn x 

grn) +O((N/kp)  + t ) )  + O((grn x r )  x ( ( N / k p )  +t))  + O ( ( N / k p )  + t ) )  + O ( N +  kP.t). 
Therefore, the time complexity of DGDCT becomes O ( N )  since N  >> (gr, x gr,). 

5.3.5 Performance Evaluation 

This section reports an empirical study of DGDCT by measuring execution time, 

speedup, efficiency and scale-up factors. Since there is no inter-processor commu- 

nication except for a single processor communicating with each of the remaining 

processors. Each processor has the same specification i.e. PIV with 1 GHz speed 

and 128 MB RAM and the processors are connected through Ethernet LAN of speed 

10/100 Mbps. measurements. Our implementation is in C in Linux environment 

and we considered several synthetic datasets containing arbitrary number of arbi- 

trary shaped clusters having 2 x lo5, 4 x lo5, 6 x lo5 and 9 x lo5 objects respectively 

and experimentation was carried out. 

The graph of Parallel Execution Time is shown in Figure 5.7. From the graph we 

conclude that the execution time decreases significantly as the number of processors 

increases. 

The Relative Speedup curves for two datasets with points N = 9 x lo5 and 6 x lo5 is 
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Figure 5.7: Parallel execution time 

given in Figure 5.8. The number of dimensions and the number of clusters are fixed 

for both the datasets. 

The scale-up characteristic of the DGDCT has been found to be satisfactory with 

the increase in the number of processors as can be seen from Figure 5.9. Here, the 

number of data points is scaled by the number of processors while dimensions and 

number of clusters are held constant. It is seen from the Figure 5.10 that if two 

many processors are used then performance degrades. 

DGDCT is an effective technique for handling huge 2D numeric datasets qual- 

itatively. However, DGDCT can be applied only to 2D spatial data. For higher 

dimensional spatial data, DGDCT may be modified in the line of [AGGR98]. For 

clustering high resolution massive satellite data, a grid density based clustering tech- 

nique based on DGDCT is reported in the next section. 
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Figure 5.8: Relation between Speedup and number of processors for two datasets. 
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Figure 5.9: Scale-up curve. 
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Figure 5.10: Efficiency vs. number of processors employed 

5.4 Distributed Grid-Density based Clustering Tech- 

nique for Satellite Data (DisClus) 

Clustering conserves the homogeneous property within a cluster i .e., data points 

within a cluster are more similar than the data points belonging to different clus- 

ters [HK06]. A high resolution satellite image is a remotely sensed image of the 

earth's surface which is a collection of huge amount of information in terms of num- 

ber of pixels where each pixel in the image represents an area on the earth's surface. 

Multi-spectral images are the main type of images acquired by remote sensing. This 

technology was originally developed for space-based imaging which can capture light 

of frequencies beyond the visible range of light, such as infrared, which helps to ex- 

tract additional information that the human eye fails to capture with its receptors 

for red, green and blue. A multi-spectral satellite image is a digital image compris- 

ing of multiple bands where each band represents a particular wavelength of light. 

Remotely sensed satellite images mainly consists of objects (regions) such as vege- 

tation, water bodies, concrete structures, open spaces, habitation, clouds etc. which 

are separated due to their different reflectance characteristics, leading to wide variety 



of clusters of different sizes, shapes and densities. 

Based on our selected survey and experimental analysis, it has been observed that 

handling large scale data is a challenging task. To discover clusters of varying shapes 

and sizes effectively over massive spatial datasets is a difficult task. To address these 

challenges, this chapter presents a distributed grid-density based clustering algorithm 

(DisClus5) based on SATCLUS and GDSDC [SBlO] which can detect clusters over 

high resolution satellite datasets qualitatively. Further, the post processing phase 

helps in smoothening the bordering regions of clusters. The method was tested and 

evaluated over satellite datasets and the results has been found satisfactory. 

5.4.1 The Proposed DisClus 

Like, DGDCT, DisClus also works in three phases. In the first phase, the satellite 

image is partitioned into regions with marked overlappings at an initiator node and 

sent to each of the nodes available for clustering. The second phase is executed in 

each of the participating nodes. In this phase, the clustering of the data for each 

partition is performed using either one of the techniques, SATCLUS or GDSDC, at 

each node. Finally, during the third phase, the nodes transmit the cluster results 

back to the initiator node where the result are merged to get the final result. 

The proposed architecture adopts a shared nothing architecture. It considers a sys- 

tem having kp-nodes where the whole image D is located in any of the nodes (say 

node 1, also referred here as initiator node). It executes a fast partitioning technique 

to generate the Ic, initial overlapped partitions. The partitions are then distributed 

among Ic, - 1 nodes and one partition is kept at the initiator for cluster detection. 

Finally, the local cluster results are received from the nodes at this node (node 1) 

and a merger module is used to obtain the final cluster results. Next, each of these 

phases is explained in brief. 

Phase I: In the initiator node, the dataset is spatially divided into gr, x gr, non- 

overlapping square grid cells, where gr, is a user input, and maps the data points 

5This work is an outcome of a research project funded by ISRO under RESPOND scheme 

137 



to each cell. It then calculates the density of each cell. The grid mesh is then 

partitioned with some overlap between adjacent partitions and distributed over Ic, 
available computers (nodes). No subsequent movement of data between partitions 

will take place. An overlap of single grid cell width occurs between two adjacent 

partitions. The grid cells in the overlapped regions are locally clustered in both the 

adjacent partitions. Thus, they provide the information for merging together the 

local clustering results of two adjacent partitions. 

Load Balancing: Partition Di is sent to processor Pi, i=l,-. . , k for concurrent 

clustering. Since no data movement takes place after the partitions are created and 

transmitted to the respective nodes till the clustering results are locally available at 

each node, care has been taken so that each processor receives nearly equal number 

of data objects (i.e. pixels) for processing. Like DGDCT, here also it is assumed that 

the speed of all the processors are equal. The range of a, is divided into intervals 

of width of one cell-width and the frequencies of data in each interval is counted. 

The load balancing is done in a manner similar to [BBD04] which ensures that each 

partition gets number of objects nearly equal to N / k p .  

Phase 11: In this phase, either SATCLUS or GDSDC (discussed in previous chap- 

ter) is executed in each of the Ic, nodes over the partition of data received from the 

initiator node. For the partition Di in node i, the grid cells in it will be assigned 

cluster-id according to the clusters formed in that partition. 

The cluster expansion based on grid cells reduces the computation time as data 

points are not considered for cluster expansion, only the density information of each 

cell is used. Moreover, the information of the marked cells used during merging 

process of Phase I11 saves the cost of merging to a great extent. Finally, Phase I1 

transmits the cluster objects to the initiator node along with the cluster-ids. 

Phase 111: Here, the cluster results are gathered from the lc, nodes into the ini- 

tiator node. A merger module is used which uses the cluster-id information obtained 

from the partitions to finalize the cluster results. The Merger module first joins the 



partitions received from the kp nodes according to their overlapping marked cells. It 

considers the marked grid cells (overlapping cells) of the candidate partitions. If any 

of the marked grid cells is identified by different cluster-ids by different partitions 

(say I, m) , then the smallest of the cluster-ids (say I )  is assigned to that cell. Finally, 

all those cells having the same cluster-id as that of the replaced cluster-id (m) is 

assigned with cluster-id I. 

The following lemma provides the theoretical basis for the merging process. 

Lemma 6. Let m be a marked cell in the overlapping region of two adjacent parti- 

tions p, and p,+l and C, and C, are two clusters belonging to p, and p,+l respectively. 

If m E C, and also m E C,, then C, and C, are merged. 

Proof. Suppose, m be a marked cell and cell x E C, in p, and cell y E C, in p,+l. 

If m E C, and also m E C,, then x and y are reachable from rn and m E C, n C,. 

So, x is connected to y and cells x and y should be in the same cluster. Therefore, 

clusters C, and C, should be merged. 

5.4.2 Complexity Analysis 

Since the proposed technique is executed in three phases and each phase is indepen- 

dent of each other, therefore, the total complexity will be the sum of the complexities 

due to these three phases. 

The first phase divides the dataset of N points into gr, x gr, cells which are parti- 

tioned into Ic, overlapped partitions with a total of ((lc, - 1) x gr,) overlapped cells. 

Therefore, this phase results in a complexity of O(gr, x gr,) approximately, where 

gr, << N. After partitioning, (N + ( k p  - 1) x t )  points will be transmitted to 

k., nodes, where t is the average number of points present in an overlapped region, 

results in a complexity of O((N + ( Ic ,  - 1) x t). 

The second phase results in a complexity of O(((gr, x gr,)/lc, + gr,) + ( C h  b)) 

[SBlO], where C1 is the number of clusters detected locally and b is the number of bor- 

der points obtained in a partition in a node. The clustered points are re-transmitted 



to the initiator node with a transmission cost of O ( ( N  + ( k p  - 1 )  x t ) .  

The third phase is responsible for merging of the clusters resulting in atmost O ( N  

+ Ic, x t )  time. 

Thus, the overall time complexity of DisClus will be O ( g r ,  x gr,) + O ( N  + ( kp -  1 )  x t )  

+ o ( ( ( g r n  x grn) /kp  + grn) + (C1 x b ) )  + O ( N  + (Ic,  - 1 )  x t )  + O ( N  + Ic, x t ) .  

Therefore, the time complexity becomes O ( N ) ,  since N >> (gr, x gr,) and also 

N >> ( ( k p  - 1 )  x t ) .  

5.4.3 Performance Evaluation 

In this section we evaluate the performance of DisClus in light of several real-life 

satellite image data. 

Environment Used 

The algorithm was implemented using Java in Windows environment with Pentium 

IV processor with 1 GHz speed and 256 MB RAM. To smooth out any variation, 

each experiment was carried out for several times and the average result was taken. 

Dat aset s Used 

The algorithm was tested over several real-life satellite images as shown in Table 5.1. 

The Dataset 1 is shown in Figure 5.11. The clusters obtained from the image of 

Figure 5.11 are shown in Figure 5.12. Figure 5.13 shows Dataset 2. There is a 

prominent black stretch across the image which is the river Hoogly. The prominent 

light patch at  the bottom right corner is the Salt Lake stadium and the black patches 

nearby are the fisheries. Two parallel lines at  the upper right hand side of the image 

correspond to the airport runway in the Dumdum airport. Other than these there 

are several water bodies, roads, open spaces, etc. in the image. 

DisClus automatically detects four clusters for this data as observed in Figure 5.14. 

From our ground knowledge, we can infer that these four clusters correspond to the 



Table 5.1: Results of the clustering algorithm over several multi-spectral satellite 

imag 
Serial No. I Dataset 

Dataset 1 ( Landsat MSS 

I image of Sonari, Assam 

Dataset 2 

1 Sonari, Assaln 

IRS LISS I1 

image of Kolkata, 

West Bengal 

Spectral Resolution Clusters 

Bands 1 1 Detected 

Dataset 4 

4 1 79 m ( 4 clusters 

IRS P6 LISS IV 

image of Borapani, 

Meghalaya 

Figure 5.11 : Landsat-hlSS 

4 36.25 nl 4 clusters 



Figure 5.12: DisClus output of Figure 5.11 

Figure 5.13: IRS Kolkata 



Figure 5.14: DisClus output of Figure 5.13 

classes: Water Bodies (black color), Habitation and City area (deep gray color), 

Open space (light gray color) and Vegetation (white color). The river Hoogly, sta- 

dium, fisheries, city area as well as the airport runway is distinctly discernible in the 

output image. The predominance of city area on both sides of the river, particularly 

at  the bottom part of the image is also correctly classified which corresponds to  the 

central part of Kolkata city. Figure 5.15 shows the Kolkata image partitioned using 

FCM algorithm. It can be seen from the result that the river Hoogly and the city 

area has not been properly classified. These two objects have been classified as be- 

longing to the same class. Similarly, the whole Salt Lake city as a whole has been 

put into one class. However, some portions such as canals, the Dumdum airport 

runway, fisheries, etc. have been classified properly. 

The experiments on the images presented next is aimed to  handle two different 

types of terrains (plain and hilly) in order to see the variation of classification accu- 

racy. Dataset 3 shows the plain built up area of Sonari in Sibsagar district of Assam 

(Figure 5.16). 

Some characteristic regions in the image are the river Brahmaputra shown in black 



-- 
Figure 5.15: FCM output 

Figure 5.16: Cartosat-1 of Sonari 



Figure 5.17: DisClus output of Figure 5.16 

color and spirally cutting across the middle of the image, roads, agricultural land, 

human settlements, etc. The DisClus clustering algorithm automatically detects 5 

clusters (Figure 5.17 corresponding to river, road, agricultural land, water bodies 

and human settlements. 

The fourth dataset used in this work shows a view of the Borapani area of the 

state of Meghalaya (Figure 5.18). The characteristic regions in this image are the 

Deep water (Deep Blue color), Wetlands (light blue color), Vegetation (Red and Pink 

colors) and Open spaces (White color). 

DisClus clustered the image into five classes as shown in Figure 5.19. The re- 

sulting image classified the regions as: deep water (dark blue), wetland (sky blue), 

vegetation (pink), open spaces (white) and pond water (black). It can be seen that 

the water body at  the left hand top corner of the image has been detected which 

corresponds well to  the ground information available. 

From the experimental results given above, we can conclude that the technique 

is highly capable of detecting clusters of all shapes. 



Figure 5.18: IRS image of Borapani 

Figure 5.19: DisClus output of Figure 5.18 
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Figure 5.22: Scale-up curve 

5.4.4 Performance and Scalability Analysis 

In our implementation environment, there is no inter-processor communication ex- 

cept for a single processor communicating with each of the remaining processors. 

Each processor has the same specification i.e. PIV with 1 GHz speed and 128 MB 

RAM and the processors are connected through Ethernet LAN of speed 10/100 Mbps. 

To smooth out any variation, each experiment was carried out for five times and the 

average results were taken and each reported data point is to be interpreted as  an 

average over five measurements. Our algorithm was implemented in JAVA in Linux 

environment in a HP xw8600 WS. 

i. Parallel Execution Time: T(kp), the parallel execution time of a program 

is the time required to run the program on kp nodes in parallel. When Ic, = T(1) 

denotes the sequential run time of a program on a single processor. Figure 5.20 re- 

veals that the execution time decreases significantly with the increase in the number 

of processors. 



ii. Speedup: Speedup is a measure of relative performance between a multipro- 

cessor system and a single processor system, defined as, S(kp) = T(l)/T(kp). On 

experimenting it has been found that the speedup factor increases with the increase 

in the number of processors. Figure 5.21 shows relative speedup curves for two 

datasets with points N = 8x lo5 and 6x lo5. The number of dimensions and the 

number of clusters are fixed for both the datasets. The solid line represents "ideal" 

linear relative speedup. For each dataset, a dotted line connects observed relative 

speedups, which is a sub-linear type. 

iii. Efficiency: The efficiency of a program on Ic, processors, i.e. E(lc,) is de- 

fined as the ratio of speedup achieved and the number of processors used to &chieve 

it. E(lc,) = S(lc,)/lc, = T(l)/lc,.T(kp). In case of the proposed technique we ob- 

served that too many processors does not ensure the efficiency. 

iv. Scale-up: The scale-up characteristic of the proposed technique has been found 

to be satisfactory with the increase in the number of processors as can be seen from 

Figure 5.22. Here the number of data points is scaled by the number of processors 

while dimensions and number of clusters are held constant. 

While comparing to DBSCAN, OPTICS, EnDBSCAN, GDLC and Density-isoline, 

the proposed DisClus requires only two parameters i.e. the number of grid cells, i.e. 

gr, and threshold a. However, based on our extreme experimental studies, it has 

been observed that the threshold a does not vary significantly with different datasets. 

5.4.5 Comparison of Cluster Quality of DisCIus with its Stand- 

alone Counterparts 

The results of clustering the remote sensing images have been evaluated quantita- 

tively using an index, p as in [PGSOO]. Let n, be the number of pixels in the ith 

cluster (i = 1, . . , c) ,  X,, be the vector (of size 3 x 1) of the HSI values of the jth 

pixel ( j  = I ,  . . , n,) for all the images in cluster i ,  and X, the mean of n, HSI values 



of the ith cluster. Then, ,O is defined as [PGSOO]: 

where n is the size of the image and X is the mean HSI value of the image. It may be 

noted that X,,, X, and are all 3 x 1 vectors. The above measure is the ratio of the 

total variation and within-cluster variation and is widely used for feature selection 

and cluster analysis [MMP02]. For a given image and c (number of clusters) value, 

the higher the homogeneity within the segmented regions, the higher the P value. 

The proposed DisClus has the highest P as can be seen in Table 5.2. DisClus was 

also compared with its other stand-alone and density based counterparts in terms of 

general parameters and the result is shown in Table 5.3. 

Table 5.2: Comparison of ,O values for different clustering algorithms 

5.5 Discussion 

This chapter presents two clustering techniques: the first one (DGDCT) is for mas- 

sive 2D spatial data and the second one is for satellite data. DGDCT is based on 

a grid-density based approach and can detect global as well as embedded clusters 

qualitatively. Experimental results of DGDCT in terms of scale-up and speedup are 

reported to establish the superiority of the technique in light of several synthetic 

datasets. 

Method 

P 

DisClus is also a grid-density based clustering technique for high-resolution multi- 

spectral satellite image. The technique was experimentally evaluated and found 

capable in detecting the clusters qualitatively. Experimental results establish the ef- 

ficiency of the technique in light of several satellite images. In DisClus, there is also 

an option for choosing either the partition based algorithm (SATCLUS) or the fuzzy 

k-means 

[McQ67] 

5.30 

Astrahan's 

[Ast70] 

7.02 

Mitra's 

[MMP02] 

9.88 

SATCLUS 

17.82 

GDSDC 

12.63 

DisClus 

15.31 
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based one (GDSDC) for the clustering process depending on the image data. Results 

of both the algorithms have been reported in Chapter 4 to show their efficiencies. 

Since satellite images are huge in size, DisClus helps in handling such data efficiently 

and qualitatively. Moreover, DisClus uses the number of grid cells and threshold 

a as input parameters, however, it has been seen that a does not vary much with 

different datasets. The next chapter deals with the application of clustering over 

gene expression datasets. 



Chapter 6 

Clustering Gene Expression Data 

for Coherent Pat tern Identification 

This chapter presents two clustering methods capable of identifying coherent patterns 

over gene expression data. The first method, GenClus, is a technique for clustering 

gene expression datasets, designed based on a density based approach. It is capable 

of identifying clusters and sub-clusters of arbitrary shapes of any gene expression 

dataset even in presence of noise. Experimental results show the efficiency of Gen- 

Clus in detecting quality clusters over gene expression data in terms of the z-score 

cluster validity measure. An incremental version of GenClus (InGenClus) is also 

presented that has been established to be effective in handling datasets that are up- 

dated increment ally. 

The second method presents an effective tree-based clustering technique (Gene Clus- 

Tree) for finding clusters over gene expression data. GeneClus'Tkee works by finding 

the maximal space clusters and then proceeds in finding the reduced space clusters. 

The clusters are represented as a tree with the reduced space clusters as the child 

of its respective maximal space cluster. The pvalue analysis of GeneClusTree shows 

that it is capable in detecting biologically relevant clusters from gene expression data. 



6.1 Introduction 

Microarrays are a powerful technology that enables the monitoring of the expression 

levels of thousands of genes across different developmental stages, clinical conditions 

or time points. It helps in understanding gene functions, biological processes, gene 

networks, effects of medical treatments, etc. 

The central dogma of bioinformatics describes the unidirectional flow of information 

from DNA via RNA (Ribonucleic acid) to protein in three steps: Replication, Tran- 

scription and Translation [KWOZ]. The first stage, Replication is the process which 

results in the duplication of the genetic information coded in DNA strands. The 

second stage, Transcription, is the transfer of information from the double stranded 

DNA into single-stranded mRNA. The third stage, Translation, refers to the con- 

version inside the cell where mRNA is translated to produce a protein. Together 

Transcription and Translation constitute Gene Expression. Gene expression ex- 

periments provide a method to quantitatively measure the transcription phase of 

protein synthesis. The objective of gene expression experiments is the quantitative 

measurement of mRNA expression particularly under the influence of drug or disease 

perturbations. 

The two major types of microarray experiments are: cDNA microarray and oligonu- 

cleotide arrays. Though both the types of experiments follow different protocols, yet 

they have some common basic procedures [SteOG]. The analysis of gene expression 

is shown in Figure 6.1. The basic building blocks used in the analysis pipeline are 

described in brief below. 

i Chip manufacture: A DNA microarray is a small chip consisting of a solid 

surface (made of chemically coated glass, nylon membrane or silicon), onto 

which DNA molecules (probes) have been chemically bonded in fixed grids. 

The purpose of a microarray is to detect the presence and abundance of labeled 

nucleic acids in a biological sample, which will hybridize to the DNA on the 
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Figure 6.1 : Gene expression analysis pipeline 

array and can be detected by the label [SteOG]. The labeled nucleic acids are 

derived in the mRNA of a sample and hence microarray measures the gene 

expression. Since thousands of DNA molecules are bonded to a single array, it 

is possible to measure the expression of many thousands of genes in parallel. 

ii Sample preparation, labeling: The first step is the extraction of RNA from the 

tissue of interest. Next, two mRNA samples are reverse-transcribed into cDNA 

and labeled using fluorescent dyes (Cy3 and Cy5). 

iii Hybridization and washing: Hybridization is the step in which the DNA probes 

on the glass and the labeled DNA (or RNA) target form heteroduplexes via 

Watson-Crick base pairing [KW02]. After hybridization, the slides are washed 

(using a low-salt wash or with a high-temperature wash) to remove excess 

hybridization solution from the array. This ensures that only the labeled target 

on the array is the target that has specifically bound to the features on the 

array. This step also reduces cross-hybridization. 

iv Image Acquisition: In this step, an image of the surface of the hybridized array 

(chip) is produced by scanning the chip to read the signal intensity that is 

emitted from the fluorescent dye of the heteroduplexes on the array where the 

target has bound to the probe. Raw data is obtained from this step. 

Next, various normalization and standardization steps are performed to clean and 

filter the data and resolve any errors, noise and bias introduced by the microarray 

experiments. Finally, the real-valued gene expression data is obtained in the form of 

a matrix where the rows refer to the genes and the columns represent the conditions. 



Figure 6.2: The image acquisition process 

The next step is to use data mining techniques (such as clustering, association rule 

mining, etc) to extract the hidden information in this data. Finally, validation is 

performed to check if the result obtained is good from a biological point of view. 

The image acquisition process is shown in detail in Figure 6.2 and has been repro- 

duced from http://www.mun.ca/biology/scarr/cDNA~microarray~ Principle.jpg. 

The power of a microarray is that there may be many thousands of different DNA 

molecules bonded to an array, and so it is possible to measure the expression of many 

thousands of genes simultaneously. 

6.2 Gene Expression Data 

Gene expression is the effective production of the protein that a gene encodes. A 

microarray experiment assesses a large number of DNA sequences (genes) under 

multiple conditions (such as time-series, tissue samples (e-g., normal versus cancerous 

tissues), experimental conditions, etc.). A gene expression dataset from a microarray 

experiment may be considered as a G x T matrix DG as shown in Equation 6.1, 



where DG = {g,,j), the rows of which represent expression patterns of a set of G 

genes {gl, . . , gG), the columns represent expression profiles of a set of T samples, 

S = {sl, . . . , sT) and each cell g , ,  is the expression level of gene g,(where 1 5 i 5 G) 

on sample s, (where 1 5 j 5 T). 

DG = 

The main advantages of the analysis of gene expression data are: (i) meaningful pat- 

terns in the data are identified i.e. genes with unique properties are clustered and (ii) 

specific genes belonging to a pattern as well as the associations among groups of genes 

are identified. However, the large number of genes and the complexity of biologi- 

cal networks pose a serious challenge in interpreting the resulting data, which often 

consists of millions of measurements. This challenge can be addressed by the use of 

clustering techniques, which reveals natural structures and identifies the interesting 

patterns in the underlying data. A number of clustering methods have emerged for 

the analysis of gene expression data. Cluster analysis starts with this gene expres- 

sion matrix and finds proximity between the different genes. Clustering algorithms 

group genes which are similar based on the proximity measure into the same cluster. 

Therefore, similar genes are grouped into the same cluster and dissimilar genes are 

grouped into different clusters. During the last couple of years, several significant 

coherent pattern identification techniques have been evolved under the categories of 

gene based, sample based and subspace clustering approaches. Next subsection is 

dedicated to reviewing some of those popular algorithms. According to [SteOG], most 

data mining algorithms developed for microarray gene expression data deal with the 

problem of clustering. Clustering groups genes with similar expression patterns into 

the same cluster. One of the characteristics of gene expression data is that it is 

meaningful to cluster both in terms of genes or samples. Co-expressed genes can 

be grouped into clusters based on their expression patterns ([BDSY99], [ESBB98]). 

Two major challenges for clustering gene expression data are: (i) to group genes 

with similar expression patterns (co-expressed genes), and (ii) to extract the useful 

patterns intelligently from noisy datasets. 
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Coherent Pattern Identification in Gene Ex- 

pression Data 

In this section, we report some of the popular gene based, sample based and subspace 

clustering methods, for identifying coherent patterns in gene expression data. 

6.3.1 Gene based Clustering Approach 

The goal of gene-based clustering is to group co-expressed genes together. Co- 

expressed genes indicate co-function, co-regulation and reveals the natural data struc- 

tures [JTZ04]. In gene-based clustering, the genes are treated as the objects, while 

the samples are the features. Gene expression data consists of a high level of back- 

ground noise. Therefore, clustering algorithms for gene expression data should be 

capable of extracting useful information from such noisy data and should depend as 

little as possible on prior knowledge. Also it is an added advantage if the clustering 

algorithm provides a graphical representation of the cluster structure other than just 

partitioning the data. 

6.3.2 Sample based Clustering Approach 

In sample-based clustering, the samples can be partitioned into homogeneous groups 

where the genes are regarded as features and the samples as objects. Samples are 

generally related to various time points, disease or drug effects within a gene ex- 

pression matrix. According to [JTZ04], the goal of sample-based clustering is to find 

the "phenotype structures or substructures of the samples". Only a small subset of 

genes whose expression levels strongly correlate with the class distinction, rise and 

fall coherently and exhibits fluctuation of a similar shape under a subset of condi- 

tions, participate in any cellular process and are relevant. These genes are called the 

informative genes. The remaining genes are regarded as noise in the data and are 

irrelevant to the sample of interest. By focusing on a subset of genes and conditions 

of interest, the noise levels induced by other genes and conditions can be lowered 

which are characterized by co-clustering. Therefore, to identify informative genes and 

reduction of gene dimensionality for clustering samples to detect their substructure 



particular methods should be applied. The sample-based clustering techniques are 

divided into two main categories: (i) clustering based on supervised informative gene 

selection and (ii) unsupervised clustering and informative gene selection. Since the 

percentage of the informative genes is very less, the major challenge of sample-based 

clustering is informative gene selection. In Supervised informative gene selection 

techniques, the sample's phenotype information is used to select informative genes. 

It is relatively easy to use and gets a high clustering accuracy rate since the majority 

of the samples are used as the training set to select informative genes. Unsupervised 

sample-based clustering as well as informative gene selection is quite difficult due to 

the fact that no prior knowledge is supposed to be known in advance. There are two 

strategies to address this problem. The first strategy reduces the number of genes 

before clustering samples and the second strategy utilizes the relationship between 

the genes and samples to perform gene selection and sample clustering simultane- 

ously in an iterative paradigm [JTZ04]. One drawback of these approaches is that 

the gene filtering process is non-invertible. The deterministic filtering will cause data 

to be grouped based on local decisions. Also some knowledge about the number of 

clusters is needed which will be an input parameter of the clustering method. An- 

other problem is determination of the number of iterations which usually is hard to 

estimate. 

Both the gene-based and sample-based clustering approaches search for exclusive 

and exhaustive partitions of objects that share the same feature space. Apart from 

these, a third category, that is subspace clustering, captures clusters formed by a 

subset of genes across a subset of samples. 

6.3.3 Subspace Clustering Approach 

For subspace clustering algorithms, either genes or samples can be regarded as objects 

or features. To find subset of objects such that the objects emerge as a cluster in 

a subspace created by a subset of the features [JTZ04]. Genes and samples are 

treated symmetrically such that either genes or samples can be regarded as objects 

or features. A single gene may participate in multiple pathways that may or may not 

be co-active under all conditions. Subspace clustering [AGGR98] techniques confine 



coherence exhibit by the blocks within gene expression matrices. A block is a sub- 

matrix defined by a subset of genes on a subset of samples. A subspace clustering 

algorithm, CLIC, has been proposed in [YHCYlO]. CLIC first clusters the genes in 

individual dimensions and the ordinal labels of clusters in each dimension are then 

used for further full dimension-wide clustering. CLIC also finds the sub-clusters of 

the clusters detected in the first round of clustering which helps in finding more 

homogeneous groups in the data. Subspace clustering algorithms can be further 

subdivided into biclustering and triclustering algorithms as discussed next. 

Biclustering: Biclustering [MOO41 performs simultaneous clustering on the 

row and column dimensions of the data matrix. Simultaneous gene-condition 

(row-column) clustering is performed to identify sub-matrices, sub-groups of 

genes and subgroups of conditions. Clustering derives a global model while 

biclustering produces a local model. Unlike clustering algorithms, biclustering 

algorithms identify groups of genes that show similar activity patterns under 

a specific subset of the experimental conditions, each gene and condition in a 

bicluster are only a subset of the genes and conditions. In biclustering, if some 

points are similar in several dimensions they will be clustered together in that 

subspace. Biclustering has been proved of great value in finding the interesting 

pat terns in the microarray expression data. 

Triclustering: Triclustering [ZZ05] is mining coherent clusters in three-dimensional 

(3D) gene expression datasets. It mines arbitrary positioned and overlapping 

clusters and depending on different parameter values it mines diverse variety 

of clusters. It can detect clusters with constant or similar values along each 

dimension as well as scaling and shifting expression patterns. Tricluster relies 

on graph-based approach to mine all valid clusters and mergeldelete some clus- 

ters having large overlaps and has been found to detect significant triclusters 

in the real microarray datasets. In [LT09], the authors designed a tricluster- 

ing algorithm which utilizes a divide-and-conquer strategy, and an Automatic 

Boundary Searching (ABS) algorithm that is capable to detect statistically sig- 

nificant Regulated Expression Values [LT09] that correspond to a tricluster. A 

parallel version of tricluster algorithm is reported in [AF0+08]. 



Gene expression data has certain special characteristics and is a challenging re- 

search problem. In this chapter, we will mainly focus on gene-based clustering as 

we are interested in finding the co-expressed genes which will indicate co-function, 

co-regulation and reveal the natural structures in the data. Here, we will first present 

the challenges of gene-based clustering and then review a series of gene-based clus- 

tering algorithms. 

6.3.4 Challenges of Gene-based Clustering 

The purpose of clustering gene expression data is to reveal the natural structure 

inherent in the data. A good clustering algorithm should depend as little as possible 

on prior knowledge, for example, requiring the predetermined number of clusters 

as an input parameter. Clustering algorithms for gene expression data should be 

capable of extracting useful information from noisy data. Gene expression data are 

often highly connected and may have intersecting and embedded patterns [JPZOS]. 

Therefore, algorithms for gene-based clustering should be able to handle this situation 

effectively. Finally, biologists are not only interested in the clusters of genes, but also 

in the relationships (i.e., closeness) among the clusters and their sub-clusters, and 

the relationship among the genes within a cluster (e.g., which gene can be considered 

as the representative of the cluster and which genes are at the boundary area of the 

cluster). A clustering algorithm, which also provides some graphical representation 

of the cluster structure is much favored by the biologists. 

6.4 Gene Based Clustering Algorithms: A Selected 

Review 

We now present a review of some selected gene based clustering algorithms. 

k-means [McQ67] is a typical partition-based clustering algorithm which divides the 

data into pre-defined number of clusters in order to optimize a predefined criterion. 

The major advantages of it are its simplicity and speed, which allows it to run on 

large datasets. However, it may not yield the same result with each run of the algo- 



rithm. Often, it can be found incapable of handling outliers and is not suitable to 

detect clusters of arbitrary shapes. A Self Organizing Map (SOM) [Koh95] is more 

robust than k-means for clustering noisy data. It requires the number of clusters and 

the grid layout of the neuron map as user input. Specifying the number of clusters 

in advance is difficult in case of gene expression data. Moreover, partitioning ap- 

proaches are restricted to data of lower dimensionality, with inherent well-separated 

clusters of high density. But, gene expression datasets may be high dimensional and 

often contain intersecting and embedded clusters. QT (quality threshold) clustering 

[HKY99] is an alternative method of partitioning data, invented for gene clustering. 

It requires more computing power than k-means, but does not require specifying 

the number of clusters apriori, and always returns the same result when run several 

times. The distance between a point and a group of points is computed using com- 

plete linkage, i.e., as the maximum distance from the point to any member of the 

group [ESBB98]. A hierarchical structure can also be built based on SOM such as 

Self-organizing Tree Algorithm (SOTA) [DC97]. Recently, several new algorithms 

such as [HVDOl] and [THHK02] have been proposed based on the SOM algorithm. 

These algorithms can automatically determine the number of clusters and dynami- 

cally adapt the map structure to the distribution of data. Herrero et al. [HVDOl] 

extend the SOM by a binary tree structure. At first, the tree only contains a root 

node connecting two neurons. After a training process similar to that of the SOM 

algorithm, the dataset is segregated into two subsets. Then the neuron with less 

coherence is split into two new neurons. This process is repeated level by level, 

until all the neurons in the tree satisfy some coherence threshold. Other examples 

of SOM extensions are Fuzzy Adaptive Resonance Theory (Fuzzy ART) [THHK02] 

which provide some approaches to measure the coherence of a neuron (e.g., vigilance 

criterion). The output map is adjusted by splitting the existing neurons or adding 

new neurons into the map, until the coherence of each neuron in the map satisfies a 

user specified threshold. 

The drawbacks of k-means are the lack of prior knowledge of the number of gene 

clusters in a gene expression data which results in the altering of results in successive 

runs since the initial clusters are selected randomly and the quality of the attained 



clustering has to be assessed. The drawbacks of SOM is that it is not effective since 

the main interesting patterns may be merged into only one or two clusters and can- 

not be identified. 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA), presented in 

[ESBB98], adopts an agglomerative method to graphically represent the clustered 

dataset. However, it is not robust in the presence of noise. In [ABN+99], the genes 

are split through a divisive approach, called the Deterministic- Annealing Algorithm 

(DAA). The Divisive Correlation Clustering Algorithm (DCCA) [BD08] uses Pear- 

son's Correlation as the similarity measure. All genes in a cluster have highest av- 

erage correlation with genes in that cluster. Hierarchical clustering not only groups 

together genes with similar expression patterns but also provides a natural way to 

graphically represent the dataset allowing a thorough inspection. However, a small 

change in the dataset may greatly change the hierarchical dendrogram structure. The 

drawbacks of this method are its high computational complexity, lack of robustness, 

vagueness of termination criteria and failure with large number of genes as datasets 

grow in complexity. 

A density based cluster can be defined as a region over the gene space, in which 

the local density is higher than its surrounding region. To identify such a region, 

we need to calculate local densities of genes in space. The density of genes is gov- 

erned by two factors: (a) the typical distances among the genes, and (b) the number 

of neighbors of a gene, indicative of the dimension in which the points are embed- 

ded. Density based clustering algorithms identify dense areas in the object space. 

Clusters are hypothesized as high density areas separated by sparsely dense areas. 

A kernel density clustering method for gene expression profile analysis is reported 

in [SZCS03]. It assumes no parametric statistical model and does not rely on any 

specific probability distribution. Hyper-spherical uniform kernels of variable radius 

are used and density estimate of the data points are found. The method is robust 

and less sensitive to outliers. However, accurate density estimation and assignment 

of cluster membership require multiple data points in near neighborhoods and thus 

density estimation is less accurate when cluster size is small. In [JPZ03], the au- 



thors propose the Density-based Hierarchical Clustering method (DHC) that uses a 

density-based approach to identify co-expressed gene groups from gene expression 

data. It considers clusters as high dimensional dense areas where the genes are at- 

tracted to each other. DHC uses two-level hierarchical structures (attraction tree 

and density tree) to organize the cluster structure of the dataset. The attraction 

tree reflects relationships among genes in the dense area. Each node in the attrac- 

tion tree represents a gene and its parent is the attractor of it. The highest density 

gene becomes the root of the tree. The attraction tree becomes complicated for large 

datasets and hence the cluster structure is summarized in a density tree. Each node 

of the density tree represents a dense area. Initially the whole dataset is considered 

a single dense area represented by the root node of the density tree. This dense 

area is then split into several sub-dense areas based on some criteria where each 

sub-dense area is represented by a child node of the root node. The sub-dense areas 

are further split till each sub-dense area contains a single cluster. DHC is suitable 

for detecting highly connected clusters but is computationally expensive and is de- 

pendent on two global parameters. An alternative to this is to define the similarity 

of points in terms of their shared nearest neighbors. This idea was first introduced 

by Jarvis and Patrick [JP73]. In [CJM04], a k-nearest neighbor based density es- 

timation technique has been exploited. The density based algorithm proposed by 

[CJM04] works in three phases: density estimation for each gene, rough clustering 

using core genes and cluster refinement using border genes. Density of a gene is cal- 

culated by the sum of similarities among its k nearest neighbors. Core genes are high 

density genes and the method proceeds by clustering core genes to form the rough 

clusters. Once the rough clusters are formed, the border genes are assigned to the 

most relevant cluster. In [SAPOG], the authors present a density and shared nearest 

neighbor based clustering method. The similarity measure used is that of Pearson's 

correlation and the density of a gene is given by the sum of its similarities with its 

neighbors. The shared nearest neighbors of the dense genes are found and merged 

into the same cluster. The merging is done efficiently using a data structure called 

the P-tree [PerOl]. In [DBKOSa], a density based method (RDClust) is presented 

for clustering gene expression data using a two-objective function. The method uses 

regulation information as well as a suitable dissimilarity measure to cluster genes 



into regions of higher density separated by sparser regions. Density based approach 

give clusters of good quality but suffers from input parameter dependency and high 

computational complexity with increase in dimensionality. 

The Expectation Maximization (EM) algorithm [DLR77] is a model based algorithm 

and it discovers good values for its parameters iteratively. It can handle various 

shapes of data, but can be very expensive since a large number of iterations may 

be required. In [TH09], a signal shape similarity method is used to cluster genes 

using a Variational Bayes Expectation Maximization algorithm [BG03]. An impor- 

tant advantage of model-based approach is that it provides an estimated probability 

that a data object will belong to a particular cluster. Thus, a gene can have high 

correlation with two totally different clusters. Gene expression data are typically 

highly-connected; there may be instances in which a single gene has a high corre- 

lation with two different clusters. Thus, the probabilistic feature of model-based 

clustering is particularly suitable for gene expression data. However, model-based 

clustering relies on the assumption that the dataset fits a specific distribution which 

may not be true in many cases. 

Among the graph based algorithms, the CLuster Identification via Connectivity Ker- 

nels (CLICK) method ([SSOO]) is suitable for subspace and high dimensional data 

clustering. CLICK is robust to outliers and does not make assumptions about the 

number or structure of clusters. Although CLICK does not need the number of clus- 

ters apriori, the algorithm may generate a large number of clusters because of the use 

of a homogeneity parameter. Ben-Dor introduced the idea of corrupted clique graphs 

and used the concept of a clique graph and divisive clustering in his algorithm, Clus- 

ter Affinity Search Techniques (CAST) [BDSY99]. A Clique graph is an undirected 

graph formed by the union of disjoint complete sub-graphs where each clique rep- 

resents a cluster. The model assumes that there is a true biological partition of the 

genes in to  disjoint clusters based o n  the functionality of genes [BDSY99]. The genes 

(objects) form sub-graphs or cliques where intra-clique genes are completely similar 

and inter-cluster genes are completely dissimilar. CAST takes as input the pair- 

wise similarities between genes and an affinity threshold, t .  The algorithm searches 



through the clusters one at a time adding to or removing genes from a cluster w.r.t. 

a connectivity condition. CAST does not require a user-defined number of clusters 

and is capable of handling outliers efficiently. But, it faces difficulty in determining a 

good threshold value. In CAST, the size and number of clusters produced is directly 

affected by the fixed user-defined parameter, affinity threshold, t. Hence, apriori 

domain knowledge of the dataset is required. To overcome this problem, ECAST 

([BPC02]) calculates the threshold value dynamically based on similarity values of 

the objects that are yet to be clustered. The threshold is computed at  the creation 

of each cluster. The graph theoretic approach can be considered to  be relevant to 

gene expression data mining as they are capable of discovering intersected clusters. 

However, it sometimes generates non-realistic cluster patterns. 

Fuzzy c-means [Bezglb] and Genetic Algorithms (GA) (such as [BMM07b], [Go1891 

and [MMBOS]) have been used effectively in clustering gene expression data. The 

Fuzzy c-means (FCM) algorithm [Bezglb] when applied to gene expression data links 

each gene to all clusters via a real-valued vector of indexes. The values u k z  of the 

components of this vector lie between 0 and 1. For a given gene, an index close to 1 

indicates a strong association to the cluster. Inversely, indexes close to 0 indicate the 

absence of a strong association to the corresponding cluster. The vector of indexes 

thus defines the membership of a gene with respect to the various clusters. Member- 

ship vector values u k ,  and cluster centroids ck can be obtained after minimization of 

the total inertia criterion [Bez8lb]. The FCM algorithm requires the specification of 

two parameters, Ic i.e., the number of clusters in the dataset and m i.e., the fuzziness 

parameter. In [DK03], an empirical method, based on the distribution of distances 

between genes in a given dataset, is proposed to determine an adequate value for m. 

In [TBKOS], the authors propose a novel semi-supervised clustering method called 

GO Fuzzy c-means, which is based on the fuzzy c-means clustering algorithm and 

utilizes the Gene Ontology annotations as prior knowledge to guide the process of 

grouping functionally related genes. Genetic algorithms [Go1891 have been exten- 

sively used to develop efficient clustering techniques. These techniques use a single 

cluster validity measure as the fitness function to reflect the goodness of an encoded 

clustering. However, a single cluster validity measure is seldom equally applicable 



for different kinds of datasets. GA based methods have been applied over gene ex- 

pression data and good results were obtained [MMBOS], [BMM07b]. In [MMBOS], 

a fuzzy majority voting approach is proposed that first identifies the genes which 

are assigned to some particular cluster with high membership degree by most of 

the Pareto-optimal clustering solutions. Using this set of genes as the training set, 

the remaining genes are classified by Support Vector Machine (SVM) classifier. A 

two-stage clustering algorithm employing, (i) variable string length genetic scheme 

[MBOSb] and (ii) multiobjective genetic clustering has been proposed in [BMM07b]. 

The method is based on the concept of points having significant membership to mul- 

tiple classes. For the clustering an iterated version of FCM is used. The GA based 

algorithms have been found to detect biologically relevant clusters but are dependent 

on proper tuning of the input parameters. 

The current information explosion, fuelled by the availability of the World Wide 

Web and the huge amount of microarray experiments being conducted, have led to 

ever-increasing volume of data. Therefore, there is a need to introduce incremen- 

tal clustering so that updates can be clustered in an incremental manner. Though 

a lot of research has been performed on incremental clustering in other application 

domains, incremental clustering of gene expression data has not been explored much. 

Due to the huge number of microarray experiments being conducted regularly, when- 

ever new gene expression data becomes available it is highly desirable to perform up- 

dates (i.e., incorporate the new results to existing clusters) with these newly arrived 

genes incrementally. In [EKS+98], the authors present an incremental clustering 

approach based on the DBSCAN [EKSX96] algorithm. Rough set theory has been 

employed in the incremental approach for clustering interval datasets in [ANSOG]. 

It groups the given dataset into a set of overlapping clusters by employing a rough 

variant of the Leader algorithm [ANSOG]. The algorithm generates cluster abstrac- 

tions in a single scan and is robust to outliers. In [CCFM97], the authors present an 

incremental clustering model for information retrieval applications. [CHNW96] and 

[FAAM971 also report efficient methods for modifying a set of association rules. 



In [LLFS04b], an incremental genetic k-means algorithm (IGKA) has been pre- 

sented. IGKA calculates the objective value called Total Within-Cluster Variation 

(TWCV) and cluster centroids incrementally whenever the mutation probability is 

small. IGKA converges to the global optimum. In the Genetic k-means Algorithm 

(GKA) proposed in [KM99], a genetic algorithm is hybridized with the k-means algo- 

rithm and therefore GKA converges to the global optimum faster than other genetic 

algorithms. In [LLF+04a], the authors present a faster version of GKA (FGKA) 

that efficiently evaluates the TWCV, avoids illegal string termination overhead and 

simplifies the mutation operator. IGKA inherits all the advantages of FGKA and 

outperforms FGKA when the mutation probability is small. The cost of calculating 

the centroids in FGKA is more expensive when the mutation probability is smaller 

than when it is calculated incrementally in IGKA. The Hybrid Genetic k-means Al- 

gorithm (HGKA) in [LLF+04b] combines the advantages of both IGKA and FGKA 

and obtains an even better performance. However, it is very difficult to obtain the 

threshold value which is dataset dependent. In [RRAROG], an incremental gene selec- 

tion algorithm (Best Incremental Ranked Subset (BIRS)) that reduces search space 

complexity using a wrapper-based method is presented. This method works on the 

ranking directly. In BIRS [RRAROG], genes are first ranked w.r.t. an evaluation 

measure. Then, the set of genes is updated by crossing the ranking from the begin- 

ning to the last ranked gene. Classification accuracy with the first gene in the list 

is obtained and it is marked as selected. The classification rate is again obtained 

and the second gene is selected depending on whether the classification accuracy is 

significantly better. The process is repeated till the last gene on the ranked list is 

processed. The algorithm returns the best subset formed and it does not contain 

irrelevant or redundant genes. 

6.4.1 Discussion and Motivation 

From our selected survey we conclude that clustering algorithms are useful in iden- 

tifying groups of co-expressed genes and in discovering coherent expression patterns. 

Also it is observed that various clustering algorithms require different types of input 

parameters and clustering results are highly dependent on the values of the param- 

eters. Majority of the clustering techniques are dependent on a choice of proximity 



measure. Also, due to the inherent high dimensionality and presence of noise in gene 

expression data, it is a challenging task to find the clusters inherent in the subspaces 

of the dataset. Therefore, development of clustering techniques which are free from 

the restrictions offered by proximity measures, are independent of input parameters 

and are able to detect clusters embedded in the subspaces of gene expression data 

is of utmost importance. This chapter presents two clustering techniques (GenClus 

and GeneClusTree) for gene expression data which handles some of the challenges 

offered by gene expression data. 

InGenClus is designed based on density based approach. It retains the regulation 

information which is also the main advantage of the clustering. It uses no proximity 

measure and is therefore free from the restrictions offered by them. An incremental 

version of GenClus (InGenClus) is also presented that can handle incremental data. 

The hierarchical approach of clustering genes helps in visualizing the clusters at dif- 

ferent levels of hierarchy. Also, it is important to establish that the clusters obtained 

are biologically relevant. We introduce an effective tree-based clustering technique 

(GeneClusTree), which is capable of identifying clusters of arbitrary shapes of any 

gene expression dataset, even in presence of noise. GeneClusTree attempts to find 

all the possible clusters over subspaces in minimum possible scans of the dataset. 

GenClus 

In this section, we introduce an effective gene-based clustering approach (GenClus), 

which is capable of identifying clusters and sub-clusters of arbitrary shapes of any 

gene expression dataset, even in presence of noise. GenClus attempts to find sub- 

clusters which may be relevant for biologists. The detection of sub-clusters provides 

the opportunity to uncover more homogeneous groups in the clusters. An advantage 

of GenClus is that it does not use any proximity measure during clustering the genes 

and is therefore free from the restrictions offered by various proximity measures. 

GenClus gives a hierarchical view of the clusters and sub-clusters formed. With the 

increasing development of internet technology and with the constant increase in the 



microarray experimentation conducted, it has led to the ever-increasing volume of 

data. There is, therefore, a need to introduce incremental clustering so that updates 

'can be clustered in an incremental manner. To handle such increase in volume of mi- 

croarray data, incremental clustering technique often has been found suitable. This 

section also introduces an incremental version of GenClus i.e., InGenClus which has 

been established to perform well in terms of several gene datasets. 

Both GenClus and InGenClus can be found to be significant in view of the following 

points: 

provides a hierarchical cluster solution; 

free from the use of proximity measures; 

faster processing due to simplified matching mechanism; 

capable of handling noisy datasets; 

does not require the number of clusters apriori; 

GenClus improves the quality of the clusters by identifying sub-clusters within large 

clusters. It can also handle the situation when the database is updated incrementally 

using less computation time. 

6.5.1 Basics of GenClus 

GenClus is a gene based clustering technique which adopts the notion of density 

based approach as can be found in [DBKIO], [EKSX96]. It exploits a discretization 

technique which retains the u p  or down- regulation information. Discretization is 

the process of putting values of a continuous set of data into buckets so that there 

are a limited number of possible values. The discretization of the dataset helps in 

keeping track of the regulation information of the data which is used later on in the 

clustering phase. GenClus normalizes the gene expression data and works over a dis- 

crete domain (of regulation information). Clustering is then run on the discretized 

data. 



The gene expression data is normalized to have mean 0 and standard deviation 1. 

Expression data having a low variance across conditions as well as data having more 

than 3-fold variation are filtered. Discretization is then performed on this normalized 

expression data. Discretization uses the regulation information, i.e. up- or down- 

regulation in each of the conditions for a particular gene. Here, let G* be the set of 

all genes and T* be the set of all conditions. The discretization is done as follows: 

i. The discretized value of gene g, at condition, t l  (i.e., the first condition) 

ii. The discretized values of gene g, at conditions t ,  ( j  = l,..(T - 1)) i.e., at the 

rest of the conditions (T - {tl)) 

where egr,t j  is the discretized value of gene g, at condition t, ( j  = l , . .(T - 1)). The 

expression value of gene g, at condition t, is given by E ~ ~ ~ ~ ~ .  We see in the above com- 

putation that the first condition, tl,  is treated as a special case and it's discretized 

value is directly based on ~ ~ , , t ~  i.e., the expression value at condition tl. For the 

rest of the conditions the discretized value is calculated by comparing its expression 

value with that of the previous value. This helps in finding whether the gene is up- 

(1) or -down (-1) regulated at that particular condition. Each gene will now have 

a regulation pattern ( Q )  of 0, 1, and -1 across the conditions or time points. This 

pattern is represented as a string. 

Each gene is divided into various rangeids depending on their expression values 

as follows. The range-value for each expression level is given by uniformly dividing 

the difference between the maximum and minimum values in the normalized data. 

MaxEv - MinEv 
range-value = 

interval 



Figure 6.3: Example discretized dat aset 

where Maxev is the maximum expression value and MinEv is the minimum expres- 

sion value. For example, suppose interval = 7. Therefore, we will have 7 range-ids 

(3, 2, 1, 0, -1, -2, -3), where the expression values of a gene falling in the correspond- 

ing range will get its rangeid. Now, each gene will have a pattern of range-ids 

across the conditions or time points which is represented as a string. Figure 6.3 

illustrates an example of a discretized matrix showing the regulation pattern and 

range-ids, where the number of intervals is set to 7, namely (3, 2, 1, 0, -1, -2, -3). 

The regulation information and range values are used together to cluster the gene 

expression dataset using a density based approach. By using these two values in 

combination as will be seen next, we do not need the use of any proximity measure. 

A string matching approach is used for matching the regulation pattern and range 

pattern of two genes. Next, we give some definitions which provide the foundation 

of GenClus. 

Definition 22. Neighborhood level of a gene: A gene gj is said to be a neighbor 

of gene gi i.e., gj E Nlevel(gz) if (i) gi matches with gj over each of the v conditions, 

where v is greater than a user defined threshold, a;  (ii) range-id(gi,tk) f level = 

range-id(gj, tk),  tk refers to the conditions where k = 1 , 2 , .  - .  , T and level is a 

dynamically calculated parameter. (Initially, level = 0) 

Definition 23. Core gene: A gene g, is said to be a core gene if I Nlevel(gi) I >  a 

(user-defined threshold). 



In our experiments we have obtained good results for a = 2. Initially, level 

= 0 and the neighborhood of gene g, is searched for genes satisfying the core gene 

condition of Definition 23. If no neighbor gene is found, then level is increased in 

both positive and negative range by one i. e., we search for neighbor genes in adjacent 

range-ids of (g,, tk) and the neighborhood search continues. 

Definition 24. Direct-Reachability: A gene g, is said to be directly reachable from 

another gene g, if g, is a core gene and g, E Nle,el (g,) . 

Definition 25. Reachability: A gene g, is said to be reachable from another gene g, 

if there is a chain of genes gl, g2, - - - , gp between g, and g, such that g,+l is directly 

reachable from g,. 

Finding sub-clusters within bigger clusters gives the finer clustering of a dataset. 

Sub-cluster information may be useful for the biologists by means of visual display 

and in the interpretation. 

Definition 26. Sub-Cluster: Let DG be a database of genes. A sub-cluster S, is a 

non-empty subset of DG satisfying the following conditions: 

1. Vg,, g, : if g, E S, and g, is reachable from g,, then g, E S,. 

2. g, matches with g, over each of the v conditions. 

3. r ~ n ~ e - i d ( ~ , ,  tk) f level = range-zd(g,, tk), tk refers to the conditions where 

k =  l,2;.. ,T. 

Definition 27. Cluster: Genes g,, g, E Ct (ith cluster), if g, matches with g, over 

each of the v conditions i.e., all genes having same regulation pattern over v condi- 

tions are grouped into the same cluster. 

Sub-cluster S, where, J = 1,2, - .  - will belong to cluster C,, if it has the same 

regulation pattern w.r.t. C,. 



Definition 28. Noise Genes: Let C1, C2, - - - C, be the set of clusters of DG, then 

noise is the set of genes in DG not belonging to any cluster C,, i.e., 

noise = {g, E DG I Vi : g, $ C,) 

The clustering process starts with an arbitrary gene g, and searches the neigh- 

borhood of it to check if it is core. If g, is not core then the process restarts with 

another unclassified gene. If g, is a core gene, then clustering proceeds with finding 

all reachable genes from g,. All reachable genes are assigned the same sub-cluster-id 

as 9,. From the neighbors of g,, if any gene satisfies the core gene condition, sub 

cluster expansion proceeds with that gene. The process continues till no more genes 

can be assigned to the sub cluster. The process then restarts with another unclassi- 

fied gene and starts forming the next sub cluster. The clustering process continues 

till no more genes can be assigned sub-clusterid. Once all sub clusters have been 

assigned, the process groups all sub-clusters as well as genes having no sub-cluster-id 

but having the same regulation pattern into the same cluster and assign them the 

same clusterid. All unclassified genes are now termed as noise genes. 

The clusters and sub-clusters for the example dataset of Figure 6.3 is illustrated 

in Figure 6.4. It can be observed that sub-clusters give the highly coherent patterns 

in the dataset. The algorithms for cluster formation and cluster expansion are given 

in Figure 6.5 and Figure 6.6. The experimental results of GenClus are reported in 

Section 6.5.3. 

Microarrays generate tens of thousands of data in one experiment. Data volume is 

constantly increasing due to the huge amount of microarray experiments performed. 

While clustering this type of data, it is of utmost importance that the updations 

of the database are handled incrementally. Some of the incremental clustering al- 

gorithms have been reported in section 6.4. Though a lot of work has focused on 

incremental clustering over spatial datasets, not much research has been done on 

handling incremental gene expression data. 

We therefore introduce an incremental clustering technique (InGenClus) for gene 

expression data, which is based on GenClus. Once clustering of the dataset is ob- 





Example Datasd 

C 1 C2 C3 

Figure 6.4: Clustering of the example dataset given in Figure 6.3. Here, C,s (i = 

1,2,  - . . ) are clusters; SCzJ refer to the j th sub-cluster of cluster i and UCZk is the kth 

gene in cluster i not belonging to any sub-clusters. 

//Precondition: All genes are unclassified 

// cluster-id = 0 

FOR i from 1 to DG do 

IF gz.classified = unclassified THEN 

Cluster-expand(g,, cluster i d )  

cluster-id++; 

END IF 

END FOR 

Figure 6.5: Algorithm for cluster formation of GenClus 



Cluster-expand(g,, cluster-zd) 

IF get-core(g,) = 0 THEN 

g,.cluster-id = cluster-id; 

RETURN; 

ELSE 

g, .classified = classified; 

FOR j from 1 to DG do 

IF g, .classified = unclassified 

Expand-cluster(g, , cluster-id) 

END IF 

END FOR 

END IF 

Figure 6.6: Algorithm for cluster expansion of GenClus 

tained, each of the clusters are represented by cluster profiles. The cluster profiles 

store the regulation of that particular cluster. The sub-clusters are represented by 

the sub-cluster profiles which stores the regulation and range information of that par- 

ticular sub-cluster. This information is further used by InGenClus when clustering 

the updated database incrementally. 

6.5.2 Incremental Clustering 

In this section, we present InGenClus which is based on GenClus and is capable of 

handling incremental data. Due to the density based nature of GenClus, the inser- 

tion of a gene affects the current clustering only in the neighborhood of the gene. 

We examine the parts of an existing clustering affected by an update and show how 

InGenClus can handle incremental updates of a clustering after insertions. 

The changes of the clustering of the gene database DG are restricted to the neigh- 

borhood of an inserted gene. The previously core genes [DBKlO] retain their core 

property but, non-core genes (border genes or noise genes) may become cores. Thus 



new density connections may surface. The insertion of a gene g, may result in a 

change of cluster membership of genes in the neighborhood of g, and all genes reach- 

able from one of these genes in DL = DG U {g,), where DL is the updated dataset. 

While inserting g, the following cases may occur: 

1. Fusion: A gene g, may be fused to a cluster C, if regulation pattern of g, 

matches with cluster profile of C,, then g, is fused into cluster C,. Gene g, may 

be fused to a cluster S, if g, is reachable from S,. 

2. Cluster Creation: Gene g, may have same regulation pattern w.r.t. some 

other noise or unclassified gene(s) and may lead to the formation of a new 

cluster. 

3. Sub - cluster Creation: Gene g, may become core w.r. t .  (i) some other noise 

or unclassified gene(s) and may lead to the formation of a new sub-cluster, (ii) 

some gene(s) in a cluster which are not members of any sub-cluster and this 

also lead to the creation of a new sub-cluster. 

4. Noise: If g, does not match with any of the cluster profiles then g, is a noise 

gene and no density-connections are changed. 

InGenClus starts with a newly inserted gene g, and finds if its regulation and range 

information matches with any of the cluster or sub-cluster profiles then there can be 

the following cases: 

i. g, matches with cluster profile of C,, then GenClus will assign cluster-id of C, 

to g,. After insertion of g,, one of the genes gk E C, and gk E S, (S, is a sub- 

cluster in C,) may become core and hence can become a potential candidate 

for sub-cluster expansion (case 1). 

ii. g, matches with none of the cluster profiles, but it matches with some other 

unclassified genes. Then it creates a new cluster (case 2) and finds if it can form 

sub-clusters (case 3). Finally, it forms the cluster and/or sub-cluster profiles 

accordingly. 

iii. g, matches with cluster profile of C,, then InGenClus will assign cluster-id of 

C, to 9,. After insertion of g,, any gene gk E C, and gk 4 any sub-clusters in C, 



Figure 6.7: Some clusters are illustrated from the Dataset 1 

may become core and hence may become a potential candidate for sub-cluster 

creation (case 3). 

iv. g, matches with none of the cluster profiles nor does it match with any other 

gene, then case 4 occurs. 

In case of fusion, the affected cluster profiles are updated based on our own string 

matching technique. To achieve better space-time complexity, the cluster profiles are 

organized using an effective data structure. It has been found that the InGenClus 

yields the same result as when compared with GenClus, yet in a lesser time. 

6.5.3 Performance Evaluation 

GenClus was implemented in Java in Windows environment and evaluated with 

several real-life datasets as discussed next. 

1. Datasets Used 

Dataset 1: In [CCW+98], Cho et al. used the temperature sensitive mu- 

tant strain CDC28-13 to produce a synchronized cell culture of the Saccha- 

romyces cerevzszae from which 17 samples were taken at 10 minute inter- 

vals and hybridized to Affymetrix chips. The final data is publicly available 



Figure 6.8: Some clusters are illustrated from the full Dataset 2 

at http://yscdp.stanford. edu/yeast-celLcycle/full -data. html. Cho's dataset is 

widely available and has functional classification that allows validation of clus- 

tering results. This dataset contains 6218 genes at 17 time points. Out of 

the full Dataset 1, a subset of 384 genes have been obtained from http : 

// f aculty.washzngton.edu/lcayee/cluster. 

Dataset 2: In [DI97], the authors use DNA microarrays to study the tem- 

poral gene expression of 6089 genes in Saccharomyces cerevzszae during the 

metabolic shift from fermentation to respiration. Expression levels were mea- 

sured at seven time points during the diauxic shift (the two growth phases of a 

microorganism in batch culture as it metabolizes a mixture of two sugars). The 

full dataset can be downloaded from the Gene Expression Omnibus website, 

http://www. ncbz. nlm. nzh.gov/geo/query. 

Dataset 3: The dataset describes the response of human fibroblasts to serum 

on cDNA microarrays in order to study growth control and cell cycle progres- 

sion. These data were obtained from the study of [IER+99]. Primary cultured 

fibroblasts from human neonatal foreskin are induced to enter a quiescent state 

by serum deprivation for 48 hours and then stimulate by addition of medium 



Figure 6.9: Result of GenClus on the reduced form of Dataset 2 

containing 10% FBS. DNA microarray hybridization is used to measure the 

temporal changes in mRNA levels of 8613 human genes at 13 time points, 

ranging from 15 min to 24 hours after serum stimulation. In this thesis, we 

choose a subset of 517 genes whose expression changed substantially in response 

to serum. The detailed information about the dataset can be found at the Web 

site: http: //genome-www.stanford.edu/serum/. 

A brief overview of the datasets is given in Table 6.1. All the datasets are normalized 

to have mean zero and standard deviation one. Of the various datasets, the clusters 

obtained from the reduced Dataset 1 are shown in Figure 6.7. Some of the clusters 

formed from the full and reduced form of Dataset 2 are shown in Figure 6.8 and 

Figure 6.9. The datasets have been reduced by filtering out low variance genes and 

genes having more than 3-fold standard deviation. Some of the clusters obtained 

by GenClus from Dataset 3 are shown in Figure 6.10. The hierarchy of four of the 

clusters and sub-clusters of Dataset 2 is shown in Figure 6.11 where the full dataset 

is at the root, the clusters are shown with the single line frames, sub-clusters are 

shown with double line frames and the genes which are part of a higher level cluster 

but not part of any sub-clusters are shown with dotted line frames. In the figure, the 

full dataset is at the root, the clusters are shown with the single line frames, sub- 

clusters are shown with double line frames and the genes which are part of a higher 

level cluster but not part of any sub-clusters are shown with dotted line frames. 

The data from Dataset 2 was inserted incrementally and InGenClus was executed. 



Table 6.1: Datasets used for evaluating the clustering algorithms introduced in this 

Serial 

No. 

Dataset No. of 

genes 

Yeast CDC28-13 11 6218 

Yeast Diauxic 6089 II 

man Fibroblasts I (  
Serum [IER+99] )I 

condi- 

tions 1) I 

Figure 6.10: Some of the clusters obtained by GenClus over Dataset 3 

Figure 6.12 shows a sample output of some clusters of Dataset 2 with genes inserted 

incrementally. The inserted genes are shown in red color (gray for black & white 

images) with filled circles at the time points. 

2. Cluster Quality 

To evaluate the effectiveness of our method as compared to other algorithms, we 

used two validity measures: z-score and pvalue. Next, we report our evaluation of 

GenClus in terms of these measures. 



Table 6.2: z-scores for GenClus and its counterparts for Dataset 2 

k-means 

Table 

Method AppIied 

SOM 

DCCA 

No. of z-score 

Clusters 

62 

Total no. 

42 

42 

RDClust 

GenClus 

11 clusters 11 11 of genes I 

5.57 

6.3: z-scores for InGenClus and GenClus for Dataset 1 

of genes 

614 

5.78 

-0.78 

42 

6 1 

Method Applied 

InGenClus 11 21 11 11.68 11 384 1 

614 

614 

GenClus 

a) z-score 

6.61 

7.39 

No. of 

Z-score [GR02] is calculated by investigating the relationship between a clustering re- 

sult and the functional annotation of the genes in the cluster. We have used Gibbons 

ClusterJudge [GR02] tool to calculate the z-score. A higher value of z-score indicates 

that genes would be better clustered by function, indicating a more biologically rele- 

vant clustering result. To assess the quality of GenClus, we employed z-score [GR02] 

as the measure of agreement. To test the performance of the clustering algorithm, 

we compared the clusters identified by our method with the results from k-means, 

SOM, DCCA and RDClust. The result of applying GenClus on the reduced form of 

Dataset 2 is shown in Table 6.2. This table shows that GenClus performed better 

than the other algorithms in terms of z-score. Similarly, InGenClus was implemented 

and tested over various datasets. The results were compared with GenClus and have 

been found satisfactory. Some of the results obtained by InGenClus over Dataset 2 

are reported in Figure 6.12. It has been found that InGenClus yields the same result 

as GenClus, as can be observed from Table 6.3. 

614 

614 

2 1 

z-score Total no. 

11.68 384 



Figure 6.11: Hierarchy of four clusters of Dataset 2. 



Figure 6.12: some of the clusters obtained by InGenClus over data incrementally 

updated from Dataset 2 

b) Biological significance 

1 gene inserted 

The biological relevance of a cluster can be verified based on the gene ontology 

(GO) annotation database http://db. yeastgenome. org/cgi-bin/GO/goTermFznder. It 

is used to test the functional enrichment of a group of genes in terms of three struc- 

tured controlled ontologies, uzz., associated biological processes, molecular functions 

and biological components. The functional enrichment of each GO category in each 

of the clusters obtained is calculated by its pvalue ([THC+99]). The pvalue is com- 

puted using a cumulative hyper-geometric distribution. It measures the probability 

of finding the number of genes involved in a given GO term (i.e., function, process, 

component) within a cluster. The genes in a cluster are evaluated for the statistical 

significance by computing the pvalue for each GO category. This signifies how well 

the genes in the cluster match with the different GO categories. pvalue represents 

the probability of observing the number of genes from a specific GO functional cate- 

gory within each cluster. A low pvalue indicates the genes belonging to the enriched 

functional categories are biologically significant in the corresponding clusters. To 

compute the pvalue, we used the software FuncAssociate [B+03]. FuncAssociate 

[B+03] computes the hyper-geometric functional enrichment score based on Molecu- 

lar Function and Biological Process annotations. The resulting scores are adjusted 

for multiple hypothesis testing using Monte Carlo simulations. The enriched func- 

tional categories for some of the clusters obtained by GenClus method on Dataset 

2 are listed in Table 6.4. The functional enrichment of each GO category in each 

of the clusters is calculated by its pvalue. We have reported pvalues < e - 06. Of 

the 61 clusters obtained from the dataset, the cluster C6 contains several enriched 

categories on 'ribosome'. The highly enriched categories in C6 is the 'ribosome' with 

\ J d  
2 genes inserted 1 gene inserted 2 genes inserted 



P-value GO number GO category 

le-10 I GO 0006119 I oxidative phosphorylation 

5 4e-10 1 GO 0006091 I generation of precursor metabolites and energy 

2 8e-08 I GO 0022900 I electron transport cham 

2 8e-08 I GO 0022904 I res~iratorv electron t rans~or t  chain I 
2 8e-08 GO 0042773 ATP synthesis coupled electron transport 

2 8e-08 GO 0042775 organelle ATP synthesis coupled electron trans- 

nort 

7.2-08 1 GO 0005739 I mitochondrion 

7 9e-08 I GO 0044455 1 mitochondria1 membrane part 

1 5e-07 GO 0015078 hydrogen ion transmembrane transporter activ- 

ity 
1 9e-07 GO 0005743 mitochondrlal inner membrane 

2 8e-07 GO 0015077 monovalent inorganic catlon transmembrane 

transporter activltv 

3 3e-07- I GO 0019866 organelle inner membrane 

3 5e-07 1 GO 0031966 I mitochondria1 membrane 

7 6e-07 I GO 0005740 1 mitochondria1 envelope 

15e-11 I GO 0042254 1 ribosome bionenesis and assemblv 

4e-11 GO 0005730 nucleolus 

2 8e-10 GO 0022613 r~bonucleoprotein complex biogenesis and as- 

I sembly 

3e-10 I GO 0043228 I non-membrane-bounded organelle 

3e-10 GO 0043232 intracellular non-membrane-bounded organelle 

4 9e-07 GO 0042273 ribosomal large subunlt biogenesis and assem- 

bly 
9 4e-07 GO 0006364 rRNA processing 

7 7e-10 GO 0042254 ribosome biogenesis and assembly 

8 6e-10 GO 0022613 ribonucleoproteln complex biogenesis and as- 

semblv 

14e-14 I GO 0006119 I oxidative phosphorylation I 
8 5e-14 I GO 0044455 I mitochondrlal membrane part I 
6 3e-11 GO 0015078 hydrogen ion transmembrane transporter activ- 

ity 
9 8e-11 GO 0006091 generation of precursor metabolites and energy 

14e-10 GO 0015077 monovalent inorganic cation transmembrane 

I transporter activity 
1 8e-09 I GO 0005753 I mitochondrlal proton-transporting ATP syn- 

1 I thase complex 1 
1 8e-09 I GO 0045259 I proton-transporting ATP synthase complex 

3 8e-09 I GO 0005743 I mitochondrial inner membrane 

7 2e-09 GO 0019866 organelle Inner membrane 

le-08 GO 0015985 energy coupled proton transport, down electro- 

chemical gradient 

le-08 I GO 0015986 ] ATP synthesis coupled proton transport 

1 3e-08 I GO 0006754 I ATP biosynthetlc process 



17e-12 0022613~- r~bonucleoproteln complex biogenes~s and as- 

2 2e-12 

9 5e-12 

3e- 11 

17e-10 

GO 0022626 

GO 0003735 

GO 0044445 

GO 0033279 

sembly 

cytosol~c ribosome 

structural constituent of r~bosome 

cytosolic part 

r~bosomal subun~t 



a pvalue of 3.6e-13. The GO category 'ribonucleoprotein complex' is also highly 

enriched in this cluster with pvalue of 1. le- 12. Cluster C6 also contains the highly 

enriched categories on 'non-membrane-bounded organelle' with a pvalue of 2.7e-14. 

Cluster C5 contains an enriched category 'oxidative phosphorylation' with pvalue of 

1.4e-14. C5 also contains several enriched categories on 'mitochondria7. Cluster C2 

contains several enriched categories on 'biogenesis7. The highly enriched categories 

in C2 are the 'ribosome biogenesis and assembly7 with pvalue of 1.5e-11, 'ribonu- 

cleoprotein complex biogenesis and assembly7 with pvalue of 2.8e-10 and 'ribosomal 

large subunit biogenesis and assembly' with pvalue of 4.9e-07. In the cluster C7 

all the functionally enriched categories are from Biological Process annotation with 

'trehalose metabolic process' with a pvalue of 2.5e-09 being the highly enriched one. 

From the Table 6.4, we can conclude that GenClus shows a good enrichment of func- 

t ional categories. 

In this section, we have presented GenClus which can detect clusters over gene ex- 

pression data without the use of any proximity measures. The clusters obtained were 

found satisfactory when compared with other relevant algorithms. An incremental 

version of GenClus is also presented for handling incremental data. Gene expres- 

sion data have highly intersecting clusters, the detection of which is very difficult. 

Hierarchical algorithms helps in identifying the clusters at different levels. In the 

next section we present a hierarchical density based technique for clustering gene 

expression data which can also identify clusters in the subspaces of the data. 

GO category 

structural molecule activity 

cellular biosynthetic process 

cytosolic large ribosomal subunit 

nucleolus 

translation 

large ribosomal subunit 

trehalose metabolic process 

carbohydrate metabolic process 

cellular carbohydrate metabolic process 

trehalose biosynthetic process 

disaccharide biosynthetic process 

alcohol catabolic process 

monosaccharide metabolic process 

Cluster 

C6 

C7 

P-value 

3.7e-09 

2.6e-08 

3.le-08 

4.4e-08 

3.4e-07 

6.8e-07 

2.5e-09 

1.9e-08 

2.6e-08 

5.8e-08 

5.8e-08 

1.9e-07 

9.4e-07 

GO number 

GO:0005198 

GO:0044249 

GO:0022625 

GO:0005730 

GO:0006412 

GO:0015934 

GO:0005991 

GO:0005975 

GO:0044262 

GO:0005992 

GO:0046351 

GO:0046164 

GO:0005996 



GeneClusTree 

GeneClusTree is a gene based clustering technique which attempts to cluster the gene 

dataset using a tree-based density approach. GeneClusTree does not use any prox- 

imity measure during clustering the genes and is therefore free from the restriction 

offered by them. The other two important advantages of GeneClusTree are: 

capable of handling noisy datasets; 

does not require the number of clusters apriori. 

6.6.1 Basics of GeneClusTree 

At first, the gene expression data is normalized to have mean 0 and standard devia- 

tion 1. Expression data having a low variance across conditions as well as data having 

more than 3-fold variation are filtered out. Discretization is then performed on this 

normalized expression data by retaining the up- or down- regulation information in 

each of the conditions for a particular gene as discussed in Section 6.5.1. After the 

regulation based discretization process, each gene will now have a regulation pattern 

(63) of 0, 1, and -1 across the conditions or time points and is represented as a string. 

To avoid the restrictions caused due to the use of any proximity measure, GeneClus- 

Tree exploits the angle information computed over the normalized expression values. 

The angle information is computed condition-wise for each of the gene profiles based 

on their normalized expression values. The angle information gives the trend angle 

between each pair of conditions. We illustrate the whole gene-condition space as 

a graph with conditions across x-axis and expression levels along y-axis. Let the 

x-axis for a gene g, be denoted as xt3 for condition t, and its corresponding y-axis be 

denoted by the expression value Now, for the gene g,, the angle information 

for each of its T conditions is computed according to the formula' given in Equation 

below. 

'Available in http://mathematics.learnhub.com/lesson/5945-trigonometry-bmi~s 



Each gene g, will now have a pattern of angle information a,? consisting of T values. 

This angle information is then further discretized by dividing it into discrete equal 

intervals depending on their angle values where the width of the interval is a user 

input. After discretization of the angle values, each gene, g,, will have a pattern of 

angleids (cub) across conditions, the angleid value at the kth condition is denoted 

as The regulation information and discretized angle patterns are used together 

to cluster the gene expression dataset using a tree-based density approach. A string 

matching approach is used for matching the regulation and the discretized angle 

patterns of two genes. Next, we give some definitions which provide the foundation 

of GeneClusTree. 

Definition 29. Matched Subspace: Let g,, g, E G and p(g,), ~ ( 9 , )  denote their 

corresponding regulation patterns. Then the matched subspace, M (9, , g, ) , of (g,, 9,) 

is the set of ti conditions where both g, and g, match and O* 5 ti 5 T and O* is a 

user defined parameter. 

Definition 30. Maximal Matched Subspace: A matched subspace can be defined 

as maximal if it is a matched subspace and no superset of this can be found to be a 

matched subspace, or, 

A pair of genes (g,, 9,) is said to be maximally matched if the cardinality of the 

subset of conditions over which they are matched is maximal i.e., over no superset 

of conditions g, and g, are matched. 

Definition 31. Neighbor of a gene: A gene g, is said to be a neighbor of gene g, 

i.e., 9, E Nle,el(9,), iff 

i. g, and g, are in the same level, say, level, 

iii. a: , = [CX;~,,~ 
37 f i  

+ 6', - 6'1, where th refers to Ti conditions and 6' has an 

initial value of 1 in the first level for each sub-tree and is incremented by 1 in 

every subsequent levels. 

For regulation matching, GeneClusTree initially attempts to find neighbors of a 

gene g, over full set of conditions i.e., T number of conditions. If no match is found, 



the number of conditions is decremented by 1 at each step upto a certain threshold 

(say, 0') till a match occurs i.e., p(gZ) = ~ ( g , ) .  However, at each subsequent step, 

the previously computed matching information is used which makes the searching 

more efficient. 

Definition 32. Initiator: A gene g, in the level say, level, is said to be an initiator 

if I N~evel(~z) 12 0. 

The neighborhood of a gene g, is searched for genes satisfying the initiator 

condition. If no neighbor gene is found, then the process is repeated with another 

unclassified gene. In our experiments we have obtained good results for a = 2. 

Definition 33. Node: A node n, in the level say, level, is a non-empty subset of 

genes of G where, any gene g, E n, is either 

(i) itself an initiator gene, or 

(ii) is within the neighborhood of an initiator gene g, E n, i.e., g, E Nlevel(g,). 

Definition 34. Node Reference Vector: Reference Vector of a node is the subset of 

conditions where all the genes belonging to that node match maximally. 

The Reference Vector of a node n, (RVnl) to which, say, genes g, and g, belong 

is computed as follows: 

( x otherwise 

Definition 35. Intra-node reachability: A pair of genes (g,, g,) in any level, say 

level, is said to be intra-node reachable if, 

(i) one of them is an initiator and the other is a neighbor of it, or 

(ii) another gene gk is an initiator and g,, g, E Nlevel (gk), or 

(iii) both g,, g, are initiators and they are neighbors to each other i.e., either g, E 

Nlevel(g3) or 9, E Nlevel(~z). 

The intra-node reachable genes satisfy the condition that they match in the same 

subset of conditions of regulation pattern. 



Definition 36. Inter-node Reachability: A gene g, E n, is said to be inter-node 

reachable from another gene g, E n,, (where n, is the parent of n,), if pg3 matches 

with pg, in a total of (T - (1, - 1)) number of conditions, where, 1, is the level of n,. 

Finding subspace clusters in different levels gives different level of finer clustering 

of a dataset which may be useful for the biologists. 

Definition 37. Maximal-Space cluster: A node n, is said to be maximal-space 

cluster if n, is created at the first level (i.e., level 1) and the set of genes in n, match 

over a set of h conditions, where 0* 5 h 5 T. 

Definition 38. Reduced-Space cluster: A node n, is a said to be a reduced-space 

cluster if n, is created in the jth level and the set of genes in n, match over a set of 

(h - (j - 1)) conditions where fi is cardinality of the set of conditions in which the 

genes in the parent node of n, match in the (j - l)th level where 2 5 j 5 (h- (0* - 1)). 

In the rest of the chapter, we will use the terms node and subspace cluster inter- 

changeably to represent a cluster over a subset of conditions. 

Definition 39. Noise Genes: Let nl ,  na, . . n, be the set of subspace clusters of G, 

then noise genes in G is the set of genes not belonging to any subspace cluster n,, 

i.e., 

noise = {g, E G I Vi : g, @ n,) 

GeneClusTree starts by creating a tree structure in a depth-first manner with an 

empty node as the root. The root is at level 0 and is connected to all the nodes in 

level 1. The nodes in level 1 are created by a density based approach and each of 

these nodes is the basis of formation of the reduced-space clusters of the sub-tree. 

The process of creating a level 1 node i.e., a maximal space cluster starts with an 

arbitrary unclassified gene g, and the neighborhood of g, is searched to check whether 

it is an initiator. If no gene is found to satisfy the neighborhood condition with g,, 

then the process restarts with another unclassified gene. On the other hand, if g, is 

an initiator gene it initiates the process of creating a new node with a node reference 

vector formed according to Definition 34. Then the process proceeds with finding all 



the genes that satisfies the intra-node reachability condition with g, in terms of the 

node reference vector and are assigned to the same node to which g, belongs. If any 

gene g, from the set of intra-node reachable genes of g, satisfies the initiator gene 

condition, then the node expansion proceeds with the gene g,. The process continues 

till no more genes can be assigned to the node. 

Each of the nodes in level 1 is a maximal-space cluster and determines the nodes to 

be formed as reduced-space clusters, across different subset of conditions, in the next 

level of the sub-tree. After completion of the formation of the node(s) of a particular 

level in a sub-tree, the value of level is incremented by 1. 

Each of the nodes formed at  level 1 becomes the parent node of the sub-trees formed 

at the next level (i.e., level 2). Similarly, for the nodes in level i ,  their parents will 

be in level (i - 1). Also, with the increase in the height of the tree, the cardinal- 

ity of the matched condition set decreases from parent to  child by 1 at  each level. 

For a particular sub-tree, the genes in each of the ith nodes agrees over a set of 

( h  - (level - 1)) conditions of the parent node's reference vector. Genes belonging 

to the sibling node(s) at  the same level in a particular sub-tree have the same cardi- 

nality of matched conditions, however the match is over different set(s) of conditions. 

On completion of the child nodes along with their sibling nodes of a particular 

node in a sub-tree, the process continues similarly in the next level until the sub-tree 

reaches a depth of O* or no more nodes can be added to the sub-tree. The process 

then backtracks to level 1 and finds the next maximal subspace cluster and inserts it 

as a child of the root. The sub-tree of this node is created in the similar manner as 

described before. The whole process repeats itself until no more maximal subspace 

clusters are inserted in level 1 of the tree. All the remaining unclassified genes are 

treated as noise genes. The algorithm is given in detail in Figures 6.13(a), (b) and 

6.14. 

The following lemmas are formulated from the definitions of GeneClusTree. 

Lemma 7. A gene g, belonging to nl,, (nl,, is the ith subspace cluster of level 1) 

cannot be a neighbor of any gene gj E nl,,, where n l ,  is the jth subspace cluster of 



Tree-creation(Dc, node-id) 

1 = level 

FOR all g, E DG do 

IF g,.classified != 1 and chkini-condition(g,) == true then 

create-node(g, .no, p id ,  temp, tempcmnt, nodeid, 1); 

WHILE((T - (1 - 1)) 2 8') do 

I++; 

FOR all g, E DG do 

IF g, .classified != 1 then 

p i d  = chk-gene-parent(g, .no, 1); 

IF p i d  > -1 and chk-ini-condition(g,) == true then 

create_node(g, .no, p id ,  temp, tempcmnt, nodeid, 1); 

End IF 

End IF 

End FOR 

End WHILE 

1 = 1; 

End IF 

End FOR 

(a) Algorithm for Tree Creation 

crea tenode(n0,  p i d ,  temp, tempcwnt, id, 1) 

nodezd = new node(); 

nodezd.temp = temp; 

nodetd .templcmnt = tempcmnt; 

nodeZd.pnode = p id ;  

nodead.core-gene = no; 

nodeZd.id = id; 

n0deZd.le~el = 1; 

expandnode(n0, id, nodeZd.temp, tempcmnt, 1); 

temp = NULL; 

tempcant = 0; 

nodeid++; 

Figure 6.13: (b) Algorithm for Node creation 
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expand-node(no, id, temp,  tempcmnt, 1) 

IF gno.classified == 1 then 

Return; 

Else 

gno.classified = 1; 

gn,.nodeid = id; 

FOR all g, E DG do 

IF g,.classified != 1 then 

matchcmnt = findmatch-temp(g, , temp, tempcount); 

IF matchcmnt >= (tempcount - (1 - 1)) and matchcmnt >= 0* then 

expandaode(g, .no, id, temp, tempcmnt, 1) ; 

End IF 

End IF 

End FOR 

End IF 

Figure 6.14: Algorithm for Node expansion 



level 1. 

Proof. Suppose, g, E nl,, and g, E n l ,  and let g, E NLevel(g,) .  Then, g, is intra-node 

reachable from g, according to Definition 35. Therefore, both g, and g, belongs to 

the same node (subspace cluster). Therefore, we come to a contradiction and hence 

the proof. 

Lemma 8. A gene g, belonging to n , ,  may not belong to n( , - l ) ,k  (i = 2,  3,. . . , 8 )  

where n, ,  refers to j t h  subspace cluster of level z .  

Proof. Let g, E n,,,, then according to Definition 36, g, is inter node reachable from 

any node n,-l ,k in level (z - 1) and gk E n , - l , k .  Then p(g,)  matches in a total of 

(T - ( ( z  - 1) - 1)) conditions, i.e., one condition less than gk. The reference vector 

of n,,  will be same as that for n,-l,k except for the condition where gk and g, do not 

match. Therefore, g, 4 n,-l,k and hence the proof. 

Lemma 9. Genes g,, g, E G. Now, if g, E n, and g, E n, where n, and n, are two 

subspace clusters, then g, and g, are not intra-node reachable. 

Proof. Let g, and g, be two intra-node reachable genes and g, E n, and g, E n,, where 

n, and n, are two subspace clusters at  any level. Then, according to Definition 35, 

either they are neighbors or both of them are neighbors of another initiator gene, 

that is, g, and g, must be in the same subspace cluster according to Definition 33. 

Therefore, we come to a contradiction and hence the proof. I7 

Lemma 10. Assume genes g,, g, E G and g, E n, and g, E n, where n, and n, are 

two subspace clusters ( n ,  and n, are not parent-child or vice versa), then g, and g, 

are not inter-node reachable. 

Proof. Let g, and g, be two inter-node reachable genes and g, E n, and g, E n,, where 

n, and n, are two subspace clusters but do not share a parent-child relationship be- 

tween them. However, according to Definition 36, two genes are inter-node reachable 

if one of them belongs to a parent node and the other to its child. Therefore, n, and 

n, should be parent-child or vice versa. Thus, we come to a contradiction and hence 

the proof. 



Theorem 1. Two genes g, and g, belonging to two different nodes are not coherent. 

Proof. Let g, E n, and g, E n,. Now, as per lemma 1, g, cannot be a neighbor 

of g,. Again, since genes g, and g, are not neighbors, then the conditions given in 

Definition 30 do not satisfy and hence they are not coherent. 

Theorem 2. A gene g, without a neighbor is a noise. 

Proof. A gene g, without a neighbor is neither intra-node nor inter-node reachable 

from any other node, hence such a gene g, can be trivially proved to be a noise gene 

according to 39, lemma 3 and lemma 4. 

6.6.2 Performance Evaluation 

GeneClusnee was implemented in Java in Windows environment and evaluated with 

several real-life datasets. Of the various datasets, the results of some of the datasets 

as given in Table 6.1 are reported in this chapter. All the datasets are normalized 

to have mean 0 and standard deviation 1. The datasets have been obtained from 

http://faculty. washington. edu /kayee/cluster. 

1. Results 

Figure 6.15 shows some of the maximal space and reduced space clusters of Dataset 

1. The clusters formed from the full form of Dataset 2 are shown in Figure 6.16. 

Figure 6.17 shows some of the clusters obtained from the reduced form of Dataset 2. 

The maximal and reduced space clusters of Dataset 3 are shown in Figure 6.18. 

2. Cluster Quality 

In order to validate our clustering result, we employ z-score [GR02] as the measure 

of agreement. The biological relevance of a cluster can be verified based on the gene 

ontology (GO) annotation database http://d b. y eastgenome. org/cgi- bin/GO/g o Term 

Fznder. It is used to test the functional enrichment of a group of genes in terms of 

three structured ontologies, viz., associated biological processes, molecular functions 

and biological components. The functional enrichment of each GO category in each 



Figure 6.15: Each of the rows represents the six clusters formed from Dataset 1. 

Starting from the second column of each row, the reduced space clusters are illus- 

trated for the maximal space cluster given in the first column. 

of the clusters obtained is calculated by its p-value. 

As given in section 6.5.3 2a), to assess the quality of GeneClusTree, we employed 

z-score [GR02] as the measure of agreement. Higher the value of z, better the cluster 

results indicating more biologically relevant clusters of genes. z-score is calculated by 

investigating the relation between a clustering result and the functional annotation 

of the genes in the cluster. We have used Gibbons ClusterJudge [GR02] tool to cal- 

culate the z-score. To test the performance of the clustering algorithm, we compared 

clusters identified by GeneClusTree with the 'ground truth' and with the results from 

RDClust, DCCA and UPGMA. The result of applying the z-score on Dataset 1 is 



Figure 6.16: Some of the clusters from the Dataset 2 
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Figure 6.17: Some of the clusters obtained from the reduced form of Dataset 2. 

I 1)  Clusters 1) 1) of genes I 

Table 6.5: z-scores for GeneClusTree and its counterparts for Dataset 1 

I UPGMA 11 16 1) 5.57 11 384 1 

Method Applied 

/ DCCA 11 10 11 6.2 ( 1  384 1 
I RDClust 11 10 ( 1  6.95 11 384 1 

No. of 

I GeneClusTree I( 17 ( 1  7.42 (1 384 1 

shown in Table 6.5. In this table, the proposed algorithm is compared with the well 

known agglomerative hierarchical algorithm, UPGMA, DCCA and RDCLust . Table 

6.5 clearly shows that GeneClusTree outperforms UPGMA, RDClust and DCCA 

w.r.t. the cluster quality. We note here that unlike k-means our method does not 

require the number of clusters as an input parameter. It detects the clusters present 

in the dataset automatically and gives the rest as noise. However, the algorithm 

UPGMA requires the input parameter cutoff. 

z-score 

As given in section 6.5.3 2b), the functional enrichment of each GO category in 

each of the clusters obtained is calculated by its p-value ([THCt99]). A low pvalue 

indicates the genes belonging to the enriched functional categories are biologically sig- 

nificant in the corresponding clusters. To compute the pvalue, we used the software 

Total no. 



FuncAssociate [B+03]. To restrict the size of this chapter, the enriched functional 

categories for only three clusters obtained by GeneClusTree on Dataset 1 are par- 

tially listed in Table 6.6. The functional enrichment of each GO category in each of 

the clusters is calculated by its pvalue. Cluster C2 contains genes involved in DNA 

replication with the highly enriched category being 'MCM complex' with a pvalue of 

1.1 x 10-12. The highly enriched categories in C5 is the 'cellular bud' with a pvalue 

of 7.0 x 10-07. The genes in cluster C10 are involved in cell cycle. C10 contains 

the highly enriched cellular components of 'DNA metabolic process', 'DNA replica- 

tion', 'chromosome', 'chromosomal part', 'cell cycle, etc. with p-values of 1.8 x 

1.8 x 9.7 x 1.5 x and 8.8 x lo-'' being the highly enriched one. 

From the Table 6.6, we can conclude that GeneClusTree shows a good enrichment 

of functional categories and therefore project a good biological significance. 

We present an effective tree-based clustering technique (GeneClusTree) for finding 

clusters over gene expression data. GeneClusTree attempts to find all the clusters 

over subspaces using a tree-based density approach by scanning the whole database in 

minimum possible scans of the dataset. Another important advantage of GeneClus- 

n e e  .is that it is free from the restrictions of using a proximity measure. Our al- 

gorithm works by finding the maximal space clusters and then proceeds in finding 

the reduced space clusters. The clusters are represented as a tree with the reduced 

space clusters as the child of its respective maximal space cluster. Effectiveness of 

GeneClusTree is established in terms of well known z-score measure and pvalue over 

several real-life datasets. Using z-score analysis we show that GeneClusTree outper- 

forms other comparable algorithms. The pvalue analysis shows that our technique 

is capable in detecting biologically relevant clusters from gene expression data. 

Discussion 

This work presents a tree-based density approach which finds useful subgroups of 

genes within a cluster and obtains a tree structure of the dataset where the clusters 

at the bottom level gives the finer clustering of the dataset. GeneClusTree does not 

require the number of clusters apriori and the clusters obtained have been found 
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satisfactory on visual inspection and also based on z-score as well as pvalues for 

three real datasets. However, work is going on for establishing the effectiveness of 

GeneClusnee over more real-life datasets. Also we are trying to incorporate GO 

term information during node expansion to make the method more effective biolog- 

ically. 

The current information explosion, fueled by the availability of World Wide Web and 

the huge amount of microarray experiments conducted has led to the ever-increasing 

volume of data. There is therefore a need to introduce incremental clustering so that 

updates can be clustered in an incremental manner. As a future direction of our 

work, we are focusing on introducing an incremental version of GeneClusTree in the 

line of work of [DBKOSb] which would be able to handle datasets that are updated 

increment ally. 
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Figure 6.18: Each of the rows represents some of the clusters formed from Dataset 

3. Starting from the second column of each row, the reduced space clusters are 

illustrated for the maximal space cluster given in the first column. 



Chapter 7 

Conclusions and Future Works 

We now conclude this thesis and provide some directions for future scope of work. 

7.1 Conclusions 

In this thesis, we have developed clustering techniques for three different types of 

data domains namely 2D spatial data, satellite image data and gene expression data. 

Detecting global as well as embedded clusters in presence of noise in less time is an 

important goal in cluster analysis. In our quest to achieve this goal, we have pre- 

sented GDCT, a fast grid-density based clustering technique for identifying arbitrary 

shaped clusters of variable density. We have also incorporated an outlier detection 

module in this algorithm. Identifying clusters from high resolution satellite images 

has received focus in recent years. This thesis also presents two clustering techniques, 

SATCLUS and GDSDC, for high-resolution satellite images. Both techniques first 

find coarse clusters and then reassigns border points to the most appropriate cluster 

which may have been misclassified during the first step and thus improve the quality 

of clustering. Satellite images usually have the problem of mixed pixels and handling 

of such pixel is very important. GDSDC helps in the detection of mixed pixels by 

including a fuzzy set based approach. Both SATCLUS and GDSDC are better than 

other comparable algorithms in terms of ,O measure. 

Due to the huge amount of data generated with tremendous progress in data ac- 



cumulation techniques, mining useful information from such voluminous data has 

become a challenge. Parallel and distributed techniques have been used widely for 

mining such large amount data. In this thesis, we have presented two distributed 

clustering techniques for spatial data. The first, DGDCT, has been used for clus- 

tering massive 2D spatial data and the second, DisClus, has been used for satellite 

data. Both techniques detect clusters of good quality and the results obtained using 

synthetic and satellite image datasets establish that the techniques are efficient and 

obtain scale up. 

This thesis also presents two clustering techniques for finding coherent genes from 

gene expression data. The first technique GenClus identifies useful subgroups of 

highly coherent genes within a cluster and obtains a hierarchical structure where the 

sub-clusters give the finer clustering of the dataset. An incremental version of Gen- 

Clus, i.e., InGenClus is also presented. The second technique is a tree-based density 

approach which finds useful subgroups of genes within a cluster and obtains a tree 

structure of the dataset where the clusters at the bottom level give the finer clus- 

tering of the dataset. Both GenClus and GeneClusTree do not require the number 

of clusters apriori and the clusters have been validated based on z-score and pvalue 

measures. 

Future Works 

The work reported in this thesis can be expanded and improved in many different 

ways. Below, we briefly outline future scope of work. 

In SATCLUS, we use a grid-density based approach with a partitioning method 

to obtain the final clusters. However, satellite images have inherent vagueness 

in pixel information due to the fact that a single pixel represents quite a lot 

of data on ground owing to the resolution of the camera used. Therefore, a 

pixel may belong to more than one cluster. Fuzzy rough set theory exploits the 

fact that an element can belong to several %oft similarity classes" at  the same 

time with some degree of certainty and therefore provides efficient algorithms 

for finding hidden patterns in the data. SATCLUS can be further enhanced 



by incorporating a rough-fuzzy set theoretic approach to provide an efficient 

classification scheme. 

SATCLUS and GDSDC have been used with multi-spectral high resolution 

satellite images. Therefore, there are scopes to extend them to handle hyper- 

spectral high resolution satellite data. 

In GDSDC, we use a fuzzy membership function to handle the mixed pixels 

problem present in the border regions of the clusters. As a future direction of 

work, a sub-pixel approach may be incorporated to handle the mixed pixels. 

For the gene pattern identification, we use two techniques for identifying co- 

expressed genes. But genes determined to be co-expressed using clustering may 

not necessarily be co-regulated and hence may not have similar functions. A 

possible approach may be that the annotated subset of differentially expressed 

genes be clustered together based on functional similarity and superimposed on 

top of the clustering techniques to obtain more biologically relevant clusters. In 

future work, we plan to integrate the analysis of gene expression datasets with 

biological information regarding functions of genes to identify the co-regulated 

genes. 
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