

Intrinsic Pattern Identification Using Clustering

Technique

A ihp\is sub~nzt ted in purtzal fulfi l lment of f h e r e q u t ~ e r n e ~ ~ t s for t he degree of Doctor

of Ph7losophy

Sauravjyoti Sarmah

Registration No 011 of 2010

School of Engineering

Department of Computer Science and Engineering

Tezpur University
2010

Abstract

Cluster analysis has been widely used over various domains to identify similar

groups or patterns inherent in the data. The aim of this thesis is to study different

clustering techniques applicable in spatial and gene expression data. For spatial

data domain, this thesis presents three clustering techniques. The first technique

(GDCT) is a grid-density based technique for identifying clusters of arbitrary shapes

from 2D spatial data even in presence of noise. We succeeded in detecting the

various types of outliers by using a outlier detection technique in-built with GDCT.

The next two techniques (SATCLUS and GDSDC) are used to detect clusters in

satellite data in a two phase process. Both SATCLUS and GDSDC use a grid-

density based technique to identify the coarse clusters in the first phase. In the second

phase, SATCLUS uses a partitioning strategy and GDSDC uses a fuzzy approach to

obtain the final clusters from the coarse clusters. Also, to handle massive datasets,

we propose two distributed techniques for 2D spatial data and satellite imagery.

A study of clustering techniques for the analysis of gene expression data has also

been discussed in this thesis. This thesis also includes t,wo gene expression data

clustering techniques. The first one is a density based clustering technique (GenClus)

which clusters genes without taking the number of clusters as an input parameter.

This thesis also incorporates an incremental version of the GenClus (InGenClus)

to handle incremental gene expression data. The second technique GeneClusTree

uses a hierarchical and density based approach to cluster the genes and forms a tree

structure which helps in the visualization of the results. The proposed algorithm has

been validated on several real-life datasets and found to perform well in comparison

to similar algorithms. All clustering algorithms have been validated using various

statistical measures.

Keywords - Clustering, proximity measure, density based clustering, grid based

clustering, embedded clusters, satellite data, coherent pattern, co-expressed gene,

hierarchical clustering, distributed clustering

@ - --
a's

Tezpur University

Certificate

This is to certify that the thesis entitled "Intrinsic Pattern Identification Using Clus-

tering Technique" submitted to the Tezpur University in the Department of Com-

puter Science and Engineering under the School of Engineering in partial fulfillment

of the requirements for the award of the degree of Doctor of Philosophy in Computer

Science is a record of research work carried out by Mr. Sauravjyoti Sarmah under

my personal supervision and guidance.

All helps received by him from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for award of any other de-

gree.

Signature of Research Supervisor

(~ h r u y a Kumar Bhat tacharyya)

Designation: Professor

School: Engineering

Department: Computer Science and Engineering

Declaration

I, Sauravjyoti Sarmah, hereby declare that the thesis entitled "Intmnszc Pattern

Identzficatzon Uszng Clusterzng Technzque" submitted to the Department of Com-

puter Science and Engineering under the School of Engineering, Tezpur University,

in partial fulfillment of the requirements for the award of the degree of Doctor of

Philosophy, is based on bona fide work carried out by me. The results embodied

in this thesis have not been submitted in part or in full, to any other university or

institute for award of any degree or diploma.

(Sauravjyoti Sarmah)

Acknowledgements

I want to express my deep gratitude to my thesis supervisor, Professor D.K. Bhat-
tacharyya for his devoted guidance, advices, support and endless patience throughout

the course of this research. With his excellent research experience, he steered me

to the research on intrinsic pattern identification using clustering techniques. This

thesis would not have been finished without his supervision and meticulous attention

to details.

I owe a debt of gratitude to my wife for her suggestions and fruitful discussions.

I am highly grateful to Prof. J. K. Kalita for his constructive comments and insight-
ful suggestions. I am also very thankful to the rest of my thesis guidance committee,

including Prof. M. Dutta and Dr. S.M. Hazarika. Their advice and suggestions have
been very helpful.

I would also like to thank NESAC, Umium, Meghalaya, for providing me some of
the satellite images that have been used in this thesis. The work on satellite images
is an outcome of a research project funded by ISRO under RESPOND scheme.

I am grateful to all the technical and non-technical members of the Department
for their support.

My deep gratitude goes to my family members, colleagues and my friends. I can
never express my thanks enough for their endless love, support and understanding.

Tezpur University

Certificate

This is to certify that the thesis entitled "Intrinsic Pattern Identification Using Clus-

tering Technique" submitted by Mr. Sauravjyoti Sarmah to Tezpur University in the

Department of Computer Science and Engineering under the School of Engineering

in partial fulfillment of the requirements for the award of the degree of Doctor of

Philosophy in Computer Science has been examined by us on ----------- and found

to be satisfactory.

The Committee recommends for award of the degree of Doctor of Philosophy.

Signature of

/-

External Examiner Principal Supervisor

Contents

1 Introduction
. 1.1 Data Mining Tasks

. 1.2 Clustering and its Importance

. 1.2.1 Types of Data

1.2.2 Proximity Measures .
. 1.2.3 Types of Clustering

1.2.4 Applications of Clustering .
. 1.3 Discussion

. 1.4 Contributions of this Thesis

1.4.1 Grid-Density based Clustering for Spatial Data
1.4.2 Grid-Density based Clustering for Pan-Chromatic and Multi-

. Spectral Satellite Data

. 1.4.3 Distributed Grid-Density based Clustering

1.4.4 Clustering Gene Expression Data for Coherent Pattern Iden-
. tification

. 1.5 Organization of the Thesis

2 Related Work
. 2.1 Proximity Measures

2.1.1 Relationship between Similarity and Dissimilarity
2.1.2 Some Distance Measures .

. 2.1.3 Some Similarity Measures

. 2.2 Existing Clustering Approaches
. 2.2.1 Partitional

. 2.2.2 Hierarchical
. 2.2.3 Density based

. 2.2.4 Grid based

. 2.2.5 Model based 41
. 2.2.6 Graph Based 42

. 2.2.7 Ensembles of Clustering Algorithms 43
. 2.2.8 Distributed Clustering 44

. 2.2.9 Soft Computing 45
. 2.2.10 Subspace Clustering 46

2.2.11 A General Comparison among Different Approaches 50
. 2.2.12 Handling Outliers 51

. 2.3 Discussion 53

3 Grid-Density based Spatial Data Clustering 56
. 3.1 Introduction 57

. 3.2 Related Work 57
. 3.2.1 Density based approach 58

. 3.2.2 Grid based approach 58

3.2.3 Clustering in multi-density and variable density data space . . 59
. 3.2.4 Discussion 61

. 3.3 Grid-Density based Clustering Technique 62

. 3.3.1 Density based approach 63
. 3.3.2 Density Confidence 65

3.4 GDCT: A Grid-Density based Clustering using Triangle-subdivision . 67
. 3.4.1 Complexity Analysis 73

. 3.4.2 Performance Evaluation 74

. 3.4.3 Performance Comparison 78

. 3.4.4 Handling of Outliers 79
. 3.5 Discussion 83

4 Grid-Density based Clustering for Pan-Chromatic and Multi-Spectral
Satellite Data 89

. 4.1 Introduction 90
. 4.2 Related Work 92

. 4.2.1 Clustering Satellite Images 92
. 4.2.2 Discussion 95

. 4.3 Basics of SATCLUS and GDSDC 95
. 4.3.1 Confidence in a Cell 97

4.4 Phase I: Rough Clustering phase of SATCLUS and GDSDC 98

. 4.5 Phase 11: Hard Clustering Approach for SATCLUS 101

. 4.6 Phase 11: Soft Clustering Approach for GDSDC 102
. 4.6.1 Mixed Pixel Handling 102

. 4.6.2 Fuzzy Approach: GDSDC 104
. 4.7 Complexity Analysis 106

. 4.8 Performance Evaluation 107

. 4.8.1 Satellite Images with Low Resolution 107

. 4.8.2 SatelliteImages with High Resolution 110
. 4.8.3 Cluster Validity 113

. 4.9 Discussion 114

5 Distributed Grid-Density based Clustering 116
. 5.1 Introduction 117

. 5.2 Related Work 121

. 5.2.1 Distributed and Parallel Clustering Techniques 121

. 5.2.2 Discussion 125

5.3 Distributed Grid-Density based Clustering Technique (DGDCT) . . . 126

. 5.3.1 Phase I: Partitioning the dataset 128

. 5.3.2 Phase 11: Local Clustering 131

. 5.3.3 Phase 111: Merging 131

. 5.3.4 Complexity Analysis 132

. 5.3.5 Performance Evaluation 133

5.4 Distributed Grid-Density based Clustering Technique for Satellite Data
. (DisClus) 136

. 5.4.1 The Proposed DisClus 137

. 5.4.2 Complexity Analysis 139

. 5.4.3 Performance Evaluation 140

. 5.4.4 Performance and Scalability Analysis 147

5.4.5 Comparison of Cluster Quality of DisClus with its Stand-alone
. Counterparts 149

. 5.5 Discussion 150

6 Clustering Gene Expression Data for Coherent Pattern Identifica-
t ion 153

. 6.1 Introduction 154
. 6.2 Gene Expression Data 156

. 6.3 Coherent Pattern Identification in Gene Expression Data 158
. 6.3.1 Gene based Clustering Approach 158

. 6.3.2 Sample based Clustering Approach 158
. 6.3.3 Subspace Clustering Approach 159

. 6.3.4 Challenges of Gene-based Clustering 161

. 6.4 Gene Based Clustering Algorithms: A Selected Review 161
. 6.4.1 Discussion and Motivation 168

. 6.5 GenClus 169
. 6.5.1 Basics of GenClus 170

. 6.5.2 Incremental Clustering 176

. 6.5.3 Performance Evaluation 178
. 6.6 GeneClusTkee 188

. 6.6.1 Basics of GeneClusTree 188

. 6.6.2 Performance Evaluation 196
. 6.7 Discussion 202

7 Conclusions and Future Works 205
. 7.1 Conclusions 205

. 7.2 Future Works 206

List of Tables

2.1 Comparison of various clustering algorithms 54

3.1 Datasets used . 74

3.2 Comparison of GDCT with different clustering algorithms 88

4.1 Homogeneity values for SATCLUS and GDSDC for some satellite im-
age datasets . 114

4.2 Comparison of beta value and CPU time for different clustering algo-
rithms . 114

5.1 Results of the clustering algorithm over several multi-spectral satellite
images . 141

5.2 Comparison of /3 values for different clustering algorithms 150

5.3 Comparison of DisClus with its counterparts 151

6.1 Datasets used for evaluating the clustering algorithms introduced in
this thesis . 181

6.2 z-scores for GenClus and its counterparts for Dataset 2 182

6.3 z-scores for InGenClus and GenClus for Dataset 1 182

6.4 P-value of Dataset 2 . 185

6.5 z-scores for GeneClusTree and its counterparts for Dataset 1 200

6.6 P-value of some of the clusters of Dataset 1 201

List of Figures

2.1 Core. border and noise objects in an example dataset 37

3.1 M depends on the number of data objects 63

3.2 (a) The white cell is the current cell and all its neighbors are in gray
(b) The white triangle P is the current triangle and all its neighbors
are shaded gray . 64

3.3 Example grid approximation for a dataset (gr, = 25) 68

3.4 Triangle-subdivision of grid cells . 70

3.5 The arrows show triangle reachability 72

3.6 Handling of Single linkage problem 72

3.7 Synthetic Dataset DS1 . 75

3.8 Final five clusters in DS1 . 75

3.9 Final cluster result of DS2 . 76

3.10 Clusters obtained from DS3 . 76

3.11 Clusters obtained from DS4 . 77

3.12 Clusters obtained from DS5 . 77

3.13 A total of 6 Clusters obtained from DS6 78

3.14 Result of VDBSCAN obtained from t8.8k.dat dataset 80

3.15 Result of DVBSCAN obtained from t8.8k.dat dataset (a) E = 10,
Minpts = 4, CDV = 70 and CSI = 20 (b) E = 8.44, Minpts = 4,
CDV = 70 and CSI = 20 . 80

3.16 Result of VDBSCAN and DVBSCAN obtained from t4.8k.dat dataset
(a) k = 4 (b) E = 5.2, Minpts = 4, CDV = 200 and CSI = 50 81

3.17 Result of VDBSCAN and DVBSCAN obtained from t7.lOk.dat dataset
(a) k = 3 (b) E = 5.9, Minpts = 9, CDV = 200 and CSI = 50 81

3.18 Result of VDBSCAN and DVBSCAN obtained from t5.8k.dat dataset
(a) k = 4 (b) E. = 3.7, Minpts = 4, CDV = 200 and CSI = 50 82

3.19 Algorithm for outlier detection . 84

3.20 Algorithm for checking the different cases 85

3.21 Result of GDCT obtained on a synthetic dataset generated by us . . 86

. 3.22 Result of outlier detection 87

4.1 a)An example image with 5 x 5 grids and the hue values for corre-
sponding pixels. and b) A 0-1 matrix obtained from the difference
value w.r.t. seed . 99

. 4.2 Population-object ratio of each grid cell 100

4.3 a) An example image with its grid structure. b) The four rough clus-
ters. c) Clusters along with their borders. and d) The final clusters . . 102

4.4 a) Mixed Pixels b) Different cases 104

4.5 a) Landsat-MSS image data. b) Output of SATCLUS c) Output of
GDSDC . 108

. . . . 4.6 a) IRS Kolkata b) Output of SATCLUS c) Output of GDSDC 109

4.7 FCM clustering of Figure 4.6 a) . 109

4.8 a) Cartosat-1 of Sonari b) Output of SATCLUS c) Output of GDSDC 110

4.9 a) IRS of Borapani b) Output of SATCLUS c) Output of GDSDC . . 111

4.10 a) IRS of Borapani (another view) b) Output of SATCLUS c) Output
of GDSDC . 111

4.11 a) Ikonos image of Shillong city, Meghalaya, b) Output of SATCLUS
c) Output of GDSDC . 112

5.1 The Shared-memory architecture . 118

5.2 The Shared-disk architecture . 119

5.3 The Shared-nothing architecture . 119

5.4 The architecture of the Proposed Technique 127

5.5 Overlapped spatial partitioning of a 2D dataset 129

5.6 Here the dataset is divided into three partitions and transmitted to
three computers (Ndkp) for local clustering. kp = 1.2. 3 130

5.7 Parallel execution time . 134

5.8 Relation between Speedup and number of processors for two datasets . 135

5.9 Scale-up curve . 135

5.10 Efficiency vs . number of processors employed 136

5.11 Landsat-MSS . 141

5.12 DisClus output of Figure 5.11 . 142

5.13 IRS Kolkata . 142

5.14 DisClus output of Figure 5.13 . 143

. 5.15 FCM output 144
. 5.16 Cartosat- 1 of Sonari 144

. 5.17 DisClus output of Figure 5.16 145
. 5.18 IRS image of Borapani 146

. 5.19 DisClus output of Figure 5.18 146
. 5.20 Execution time 147

. 5.21 Relative Speedup curves 148
. 5.22 Scale-up curve 148

. 6.1 Gene expression analysis pipeline 155
. 6.2 The image acquisition process 156

. 6.3 Example discretized dataset 172

6.4 Clustering of the example dataset given in Figure 6.3. Here, C, s (i =

1,2. ...) are clusters; SCa refer to the jth sub-cluster of cluster i and
UCak is the kth gene in cluster i not belonging to any sub-clusters . . . 175

. 6.5 Algorithm for cluster formation of GenClus 175

. 6.6 Algorithm for cluster expansion of GenClus 176

. 6.7 Some clusters are illustrated from the Dataset 1 178

. 6.8 Some clusters are illustrated from the full Dataset 2 179

. 6.9 Result of GenClus on the reduced form of Dataset 2 180

6.10 Some of the clusters obtained by GenClus over Dataset 3 181

. 6.11 Hierarchy of four clusters of Dataset 2 183

6.12 Some of the clusters obtained by InGenClus over data incrementally
. updated from Dataset 2 184

. 6.13 (b) Algorithm for Node creation 194

. 6.14 Algorithm for Node expansion 195

6.15 Each of the rows represents the six clusters formed from Dataset 1 .
Starting from the second column of each row, the reduced space clus-
ters are illustrated for the maximal space cluster given in the first

. column 197

. 6.16 Some of the clusters from the Dataset 2 198

6.17 Some of the clusters obtained from the reduced form of Dataset 2 . . 199

6.18 Each of the rows represents some of the clusters formed from Dataset
3 . Starting from the second column of each row, the reduced space
clusters are illustrated for the maximal space cluster given in the first

. column 204

...
Xll l

Notations Used in this Thesis

Pz,j

S M C

J

n

Jackni f e,,3

k~

Srn x grn

E

M i n P t s

E'

I"

Sz

Dissimilarity between object x and object y.

Similarity between objects x and y.

Database.

Total number of objects in dataset D.

Total number of clusters.

Minimum dissimilarity between object x and object y.

Maximum dissimilarity between object x and object y.

Minimum similarity between objects x and y.

Maximum similarity between object x and object y.

Number of variables with vfile:///usr/share/doc/HTML/index.htmlalue

1 for the ith object and 0 for the jth object

Number of variables with value 0 for the ith object and 1 for

the jth object

Number of variables with value 0 for the ith object and 0 for

the jth object

Number of variables with value 1 for the ith object and 1 for

the jth object

Pearson's correlation coefficient between objects i and j.

Simple Matching Coefficient.

Jaccard coefficient.

Number of dimensions.

Jacknife correlation coefficient between objects i and j.

Total number of processors.

Total number of grid cells.

Radius.

Minimum number of objects.

Core distance.

Number of iterations.

Size of sample.

Maximum number of neighbors.

Average number of neighbors.

CSIA

LOFUB

Density confidence between two cells in GDCT.

Density of cell pl .

Density of triangle Tpl .
The ith cluster.

The set of objects in cell p.

The jth neighbor of cell p,, where j = 1, - - - ,8 .

vth triangle inside the cell p,, where v = 1, . - - ,4.

Line outlier.

Single linkage outlier.

Minimum threshold for group outlier.

Minimum number of cells in line outlier.

Parameter for line outlier, 71 = 2.

Minimum number of cells in single linkage outlier, p' = 5.

Threshold for density variance of a core object.

Threshold for homogeneity of density variation.

Density threshold of DDSC algorithm.

Threshold for cluster file:///usr/share/doc/HTML/index.htmldensity

variance.

Threshold for cluster similarity index.

Minimum number of points for an object to be core in LDB-

SCAN algorithm.

Threshold for controlling the fluctuation of local-density.

Minimum number of points for calculating LOF.

Minimum number of points required for the clustering algo-

rithm LDBSCAN.

Population-object ratio of cell p.

Confidence between two cells in SATCLUS and GDSDC.

Total number of cells in a cluster.

Membership degree of x, to cluster C,.

Fuzziness parameter.

Average homogeneity.

Cluster validity index.

Grid mesh.

ith Partition.

ith Processor.

Number of clusters detected in local nodes.

Gene database.

Set of all genes in DG.

Set of all Conditions in DG.

Total number of Genes.

Total number of Conditions.

Expression value of gene g, at condition t3.

Discretized value of gene g, at condition t,.

Regulation pattern of g,.

Maximum expression value.

Minimum expression value.

Neighborhood level of gene g,.

Dynamically calculated parameter.

Range value of gene g, at condition t k .

Pattern of range values of gene g,.

ith sub-cluster.

Angle information of gene g, for condition tJ .

Angleid pattern of gene g,.

Set of conditions over which genes match.

Height of the tree.

Minimum number of genes in the neighborhood of an initiator.

Tuning parameter.

ith node of GeneClusTree.

Reference vector of the ith node.

Chapter 1

Introduction

Data mining also known as knowledge discovery is the process of analyzing data

from different perspectives and summarizing it into useful information. Data mining

is the extraction of hidden previously unknown and potentially useful information

from large databases. It allows users to analyze data from many different dimensions

or angles, categorize it, and summarize the relationships identified. Data mining is

defined in [HMS04] as follows:

Data mining is the analysis of (often large) observational datasets to find

unsuspected relationships and to summarize the data i n novel ways that

are both understandable and useful to the data owner.

Data mining tools predict future trends and behaviors, allowing businesses to make

proactive, knowledge-driven decisions. Data mining tools can answer business ques-

tions that traditionally are too time consuming to resolve. They scour databases for

hidden patterns, finding predictive information that experts may miss because it lies

outside their expectations or is too difficult to find.

1.1 Data Mining Tasks

Data mining tasks are categorized into different types based on the types of models

or patterns they find. Generally data mining tasks are of two types: predictive and

descriptive. Predictive mining tasks perform inference on the current data in order

to make predictions. Descriptive mining tasks characterize general properties of the

data in the database. Some important data mining tasks according to [HK06] are

given below.

1. Mining frequent patterns, Association and Correlations: Mining pat terns that

occur frequently in data leads to the discovery of interesting associations and

correlations within data.

2. Classzjication and prediction: Classification is the process of finding a model

(or function) that describes and distinguishes data classes or concepts. The

purpose is to use the model to predict the class of an object whose class label

is unknown. The derived model is based on the analysis of training data (i.e.,

data objects whose class labels are unknown).

3. Outlier analysis: A database may contain data objects whose characteristics

are significantly different from the rest of the data. These data objects are

known as outliers. In some applications such as fraud detection, rare events

can be more interesting than regular ones. The analysis of outlier data is

termed outlier mining.

4. Evolution analysis: Data evolution analysis describes and models trends or

regularities for objects whose behavior changes over time.

5. Cluster analysis: Cluster analysis groups data objects based on information

found in the data that describes the objects and their relationships. The goal is

to partition a set of objects into groups, so that objects with similar character-

istics are grouped together and different groups contain objects with dissimilar

characteristics. The greater the similarity within a group and the greater the

difference between groups, the better or more distinct is the clustering.

Our work focuses on clustering and therefore we concentrate on cluster analysis only.

1.2 Clustering and its Importance

Cluster analysis is an important task in data mining. It is the assignment of a set of

observations into subsets (called clusters) so that observations in the same cluster are

similar in some sense. The key idea is to identify classications of the objects that is

useful for the specific aims of the analysis. This idea has been applied in many areas

including astronomy, remote sensing, biology, archeology, medicine, chemistry, edu-

cation, psychology, linguistics and sociology. Clustering is an unsupervised learning

method, and a common technique for statistical data analysis used in many fields

including machine learning, data mining, pattern recognition, image analysis and

bioinformatics.

In recent years, clustering methods have been used extensively in analyzing spa-

tial data, satellite imagery and biological data, especially from DNA microarrays

measurements. The purpose of this work is to study clustering of data with numeric

attribute values. For our study, we use three different data domains namely spatial

2D data, satellite imagery and gene expression data.

1.2.1 Types of Data

Datasets may differ in a number of ways. For example, the attributes for describing

data objects can be of different types and datasets may have special characteristics

e.g., time series data which have explicit relationship between one data and another.

The different types of attributes for describing data objects [HK06] are as follows:

1. Interval-Scaled Variables: These are continuous measurements of a roughly

linear scale. Here differences between values are meaningful. Example: weight,

height, latitude, longitude, temperature etc.

2. Nominal Variable: These are just different names; provides enough information

to distinguish one from the other. Examples include ID numbers, eye color,

zip codes, gender.

3. Binary Variables: These variables can take either of two states: 0 or 1, where

0 means the variable is absent and 1 means the variable is present.

4. Categorical Variables: These variables are a generalization of the binary vari-

ables where it can take more than two states. For example, map color may

take five states: red, yellow, green, blue and pink.

5 . Ordinal Variables: These variables resemble categorical variables except that

the states must be ordered in a meaningful sequence. For example, the medals

won in a sporting event <gold, silver, bronze>, rankings (e.g., taste of potato

chips on a scale from 1-10), grades, height in <tall, medium, short>.

6. Ratio-Scaled Variables: These variables make positive measurements on a non-

linear scale such as an exponential scale. Here both differences and ratios are

meaningful. Examples include temperature in Kelvin, length, time, counts.

7. Mixed-type Variables: These variables may be mixture of the various types of

variables mentioned above.

General Characteristics of Datasets

The main characteristics that apply to datasets and have a significant impact on the

data mining techniques used are [TSKOS] given below.

1. Dimensionality: The dimensionality of a dataset is the number of attributes

that the objects in the dataset possess. Analyzing high dimensional data is

difficult due to the curse of dimensionality [HK06].

2. Sparsity: Only presence of data in the dataset counts. For example, in a

numeric dataset, most of the attributes of an object may consist of 0 values

i.e., fewer than 1% of the entries in the dataset may be non-zero. Therefore,

non-zero values only need to be stored and processed reducing the computation

time and storage space required.

3. Resolution: Properties of data obtained at different levels of resolution are dif-

ferent i.e., the patterns in the data are also dependent on the level of resolution.

A pattern may not be visible at a finer level of resolution but at coarser reso-

lution it might be visible. However, if the resolution is too coarse the pattern

may disappear.

In data mining, data are available from different sources and applications. A few of

them are mentioned below.

1. Record Data: Data that consists of a collection of records, each of which con-

sists of a fixed set of attributes

Data Matrix: If data objects have the same fixed set of numeric attributes,

the data objects can be thought of as points in a multi-dimensional space,

where each dimension represents a distinct attribute. Such dataset can

be represented by an N x T matrix, where there are N rows, one for each

object, and T columns, one for each attribute.

Document Data: Each document is represented as a 'term' vector where

each term is a component (attribute) of the vector. The value of each

component is the number of times the corresponding term occurs in the

document.

Transaction Data: A special type of record data, where each record (trans-

action) involves a set of items. For example, consider a grocery store. The

set of products purchased by a customer during one shopping trip consti-

tute a transaction, while the individual products that are purchased are

the items.

2. Graph Data: A graph data structure consists mainly of a finite (and possi-

bly mutable) set of pairs, called edges or arcs, of certain entities called nodes

or vertices. Much data mining research is focused on algorithms that can

discover concepts in non-relational data represented using only an entity's at-

tributes. However, much of the data collected is relational, or structural, in

nature, requiring tools for the analysis and discovery of concepts in structural

data. Graphs provide a natural representation for many of these structured

data applications. Graph mining is becoming increasingly popular in recent

years because of numerous applications some of which are presented below. A

detailed discussion on various kinds of graph mining algorithms is found in

[CH07].

Chemical Data: Chemical data is often represented as graphs in which the

nodes correspond to atoms, and the links correspond to bonds between

the atoms. In some cases, substructures of the data may also be used as

individual nodes [AW 101.

a Biological Data: Biological data is modeled in a similar way as chemical

data. However, the individual graphs are typically much larger. Further-

more, the nodes are typically represent specific entities of the biological

models. A typical example of a node in a DNA application is an amino-

acid. A single biological network may easily contain thousands of nodes

[AW 1 01 .

a Networked and Web Data: In the case of computer networks and the web,

the number of nodes in the underlying graph may be massive. Since the

number of nodes is massive, it may lead to a very large number of distinct

edges. This is also referred to as the massive domain issue in networked

data [AWlO].

a XML data: XML data is a natural and general representation of graph

data. We note that mining and management algorithms for XML data

are also quite useful for graphs, since XML data can be viewed as labeled

graphs. In addition, the attribute-value combinations associated with the

nodes make the problem much more challenging [AWlO].

3. Ordered Data: Ordered data indicate that the columns contain values that

define a sequence or order. It contains a sequence of transactions. Different

forms of ordered data include the following.

Spatial Data: Spatial data may be viewed as consisting of objects with

some location in a physical space.

Temporal Data: Data stored in a temporal database have a time period

attached to it. A temporal database contains built-in time infrastructure,

e.g. a temporal data model and a temporal version of Structured Query

Language. More specifically the temporal infrastructure usually includes

stamping with transaction-time.

Sequential Data: A sequence is an ordered set of elements and often arise

through measurement of time series phenomena. Each element can be

numerical, categorical or of mixed type. The length of a sequence is not

fixed. The order is determined by time or position and can be regular

or irregular. Applications of this type of data include speech (sequence

of phonemes), language (sequence of words and delimiters), handwrit-

ing (sequence of strokes), bioinformatics (A genes sequence has 4 pos-

sible nucleotides, example: AACTGACCTGGGCCCAATCC; A protein

sequence has 20 possible amino acids, example: MAQQWSLQRLAGRH-

PQDSYEDSTQSSIFIYTNSNSTRGPFEGPNYHIAPR) , telecommunica-

tions (alarms, data packets), retail data mining (customer behavior, ses-

sions in an e-store (example, Amazon)) and intrusion detection.

To form groups of similar objects, a measure of closeness is required. Based on the

nature of the variables (e.g., discrete, continuous or binary) or scales of measurement

(e.g., nominal, ordinal, interval or ratio), the choice of proximity measure varies.

Some proximity measures are discussed next.

1.2.2 Proximity Measures

In general, clustering requires a proximity measure for discovering similar or dissim-

ilar objects in a dataset. We therefore need to use a measure for distances between

objects so that similar objects are a short distance apart and dissimilar ones are

further from each other.

Distance Measure

An important step in clustering is to select a distance measure, which determines

how the similarity of two elements is calculated. This influences the shape of the

clusters, as some elements may be close to one another according to one distance and

further away according to another. A metric or distance function defines a distance

between elements of a set. The properties of an effective distance measure are the

following.

i) d,,, > 0 (non-negativity): Distance is always positive or zero.

ii) d,,, = 0 iff x = y (identity of indiscernibles): Distance is zero if and only if it

measured from an object to itself.

iii) d,,, = d,,, (symmetry): Distance is symmetric.

iv) d,,, < d,,, + d,,, (triangle inequality): Distances satisfy triangular inequality.

where d is a distance function and x, y, z are objects. A distance function is also

called metric if it satisfies all four conditions given above. Because of the triangular

inequality (condition 4), not all distance measures are metric, but all metrics are

distances. Some of the common distance functions are Euclidean distance (also called

2-norm distance or squared Euclidean distance), Manhattan distance (aka taxicab

norm or 1-norm), maximum norm (aka infinity norm), Mahalanobis distance and

Hamming distance.

Similarity Measures

From scientific and mathematical points of view, distance is defined as a quantitative

degree of how far apart two objects are. Similarity is a numerical quantity that

reflects the strength of relationship between two objects or two features. Similarities

are higher for pairs of objects that are more alike. This quantity is usually in the

range of either -1 to +1 or is normalized to the range from 0 to 1. If the similarity

between object x and object y is denoted by S,,,, we can measure this quantity in

several ways depending on the scale of measurement (or data type). The triangle

equality does not hold for similarity measures but the following properties hold true.

i) S,,, = 1 onlyif x = y (0 5 S 5 1).

ii) S,,, = S,,, for all x and y (Symmetry).

Some of the common similarity measures are Pearson's correlation, Simple Matching

Coefficient, Jaccard Coefficient, Jackknife correlation, Spearmanls rank-order cor-

relation coefficient, and Cosine Similarity. There are different types of proximity

measures, some of which will be discussed in the next chapter. However, not all the

measures are applicable in all domains. The efficiency of the proximity measures are

dependent on the domain in which they are applied.

1.2.3 Types of Clustering

Clustering methods are broadly classified into the following categories [HK06, TSKOS]:

Part it ioning met hods

Partitional clustering obtains a partition of a set of objects into Ic clusters such that

each cluster contains at least one object and each object belongs to exactly one

cluster. Partitional algorithms typically determine all clusters at once. This type of

clustering works well for spherical-shaped clusters. The main disadvantages with this

type of clustering are: (i) the number of clusters must be known prior to clustering,

(ii) the method detects clusters of spherical shapes only, (iii) detected clusters tend

to become uniformly sized and (iv) all objects are forced to belong to a cluster.

Hierarchical met hods

Hierarchical clustering is a set of nested clusters that are organized as a tree called

"dendrogram" . These algorithms can be either agglomerative ("bottom-up") or divi-

sive ("top-down") . Agglomerative algorithms begin with each element as a separate

cluster and merge them into successively larger clusters. Divisive algorithms begin

with the whole set and proceed to divide it into successively smaller clusters. The

general criterion of a good partition is that objects in the same cluster (partition)

are more similar to each other than they are to objects in other clusters. Detection

of arbitrary shaped clusters is possible using some hierarchical clustering algorithms.

This type of clustering suffers from the fact that once a step (merge or split) is done,

it cannot be undone. These algorithms are computationally expensive. Some hier-

archical algorithms exhibit "chaining effectv- a few objects located so as to form a

bridge between two clusters cause objects across the clusters to be grouped into a

single elongated cluster.

Density-based met hods

The concept of a cluster in density-based clustering is a dense region of objects

surrounded by a region of low or no density. Density is the number of objects in the

particular neighborhood of a data object. Density-based clustering algorithms are

devised to discover arbitrary-shaped clusters. Moreover, they can effectively separate

noise and outliers.

Grid-based met hods
- .

Grid-based methods quantize the object space into a finite number of cells that

form a grid structure. All clustering operations are performed on the grid structure.

The main advantage of this approach is its fast processing time, which is typically

independent of the number of data objects and dependent only on the number of cells

in each dimension in the quantized space. The problems inherent with this approach

are that the grids are square or rectangular and do not necessarily fit the shape of

the clusters. This can be handled by increasing the number of grid cells, but at the

expense of computational cost.

Model-based methods

Model-based methods hypothesize a probabilistic model for each of the clusters and

find the best fit of the data to the given model. A model-based algorithm may locate

clusters by constructing a density function that reflects the spatial distribution of

the data points. It also leads to a way of automatically determining the number of

clusters based on standard statistics.

Graph-based met hods

In graph-based clustering algorithms, graphs are built as combinations of objects,

features or both, as nodes and edges. The graph is then partitioned by using graph

theoretic algorithms. Graph based clustering algorithms are suitable for data that do

not follow a Gaussian or spherical distribution. They can be used to detect clusters

of varying shapes and sizes without the need to specify the number of clusters apriori.

Graph theoretic algorithms are also used for the problem of clustering cDNAs based

on their oligo-nucleotide fingerprints [HSL+99].

Soft Computing

Soft computing differs from conventional (hard) computing in that, unlike hard com-

puting, it deals with imprecision, uncertainty, partial truth, and approximation to

achieve tractability, robustness and low solution cost. Components of soft comput-

ing include: Fuzzy Systems, Neural Networks, Evolutionary Computation, Machine

Learning and Probabilistic Reasoning. Soft computing techniques have been widely

used in clustering data where the data deals with uncertainty, overlapping or mixed

clusters.

Distributed Clustering

Distributed Data Mining makes the assumption that either the computation or the

data itself is distributed. It can be used in environments ranging from parallel super-

computers to P2P networks. It can be applied in areas like distributed information

retrieval and sensor networks. Usually distributed clustering algorithms work by

first computing a local model. Next, the local models are aggregated by a central

node (or a super-peer in P2P clustering systems) and finally either a global model

is computed, or aggregated models are sent back to all the nodes to produce locally

optimized clusters.

Subspace Clustering

A subspace is a subset of a vector space that is itself a vector space. Subspace

clustering is the task of detecting all clusters in all subspaces. Subspace clustering

algorithms capture clusters formed by a subset of objects across a subset of features.

The choice of clustering algorithm depends both on the type of data and on the

particular purpose of the application. Some clustering algorithms integrate the idea

of several clustering methods, so that it is sometimes difficult to classify a given algo-

rithm as uniquely belonging to only one clustering category. Clustering algorithms

have been used extensively for many applications and some of them are listed below.

1.2.4 Applications of Clustering

Clustering algorithms can be applied in many fields [HK06, TSKOS].

1. Image Analysis: The goal of image clustering is to locate objects and bound-

aries (lines, curves, etc.) in images. It is the process of assigning a label to

every pixel in an image such that pixels with the same label share certain visual

characteristics'. Image clustering is used to locate tumors and other patholo-

gies for medical image segmentation, measure tissue volumes, disease diagnosis

etc.; to locate objects in satellite images (roads, forests, etc.) [Yam98a]; for

face recognition and fingerprint recognition.

2. Coherent Pattern Identification: Clustering techniques have been used to iden-

tify the co-expressed genes and coherent patterns from gene expression data.

Coherent patterns arise from co-expressed genes and co-expressed genes indi-

cate that the genes are correlated and may participate in similar biological

functions [JTZ04]. Gene expression data consists of thousands of genes and

identification of co-expressed genes from such data requires use of data mining

techniques such as clustering. This helps biologists gain knowledge of similarly

expressed genes [SteOG] .

3. Marketing: Finding groups of customers with similar behavior given a large

database of customer data containing their properties and past buying records

[HK06].

4. Fraud Detection and Management: Widely used in health care, retail, credit

card services, telecommunications (phone card fraud), etc. Such approaches

use historical data to build models of fraudulent behavior and use data mining

to help identify similar instances [TSKOS].

5. Insurance: Identifying groups of motor insurance policy holders with a high

average claim cost; detecting a group of people who stage accidents to collect

the insurance, detecting professional patients, and detecting rings of doctors

and rings of patient references.

6. Document Clustering: Finding groups of documents that are similar to each

other based on the important terms appearing in them, identifying frequently

occurring terms in each document [TSKOS], clustering weblog data to discover

groups of similar access patterns.

7. Astronomy: Discovering new galaxies and stars. (The Jet Propulsion Labora-

tory and the Palomar Observatory discovered 22 quasars with the help of data

mining).

Discussion

Based on a comprehensive literature survey we come to the following conclusions.

Clustering algorithms are dependent on the proximity measures used. Choosing

an appropriate proximity measure is of utmost importance. That there exists

no particular measure which can handle all the issues of clustering further

complicates the job. It is highly desirable that the proximity measure used is

robust to outliers and can detect clusters inherent in the dataset.

Various clustering algorithms require different types of input parameters and

clustering results are highly dependent on the values of the parameters. More-

over it is difficult to identify different types of clusters in a given dataset.

Detection of multi-density and intrinsic or embedded clusters is of utmost im-

portance in identifying the inner structure of a given dataset.

Handling of massive data can be done efficiently using distributed or parallel

clustering techniques.

Clustering has been applied to many real-world domains. We have studied the

application of two real-life domains in this work: satellite imagery and gene

expression data.

Satellite image data contains huge amount of data as well as there is the added

problem of mixed pixels. It is highly desirable to solve these problems if the

clusters from satellite images are properly identified.

Gene expression data contain highly connected clusters. Therefore, it would be

very helpful if sub-clusters in the dataset can be identified. The sub-clusters

consists of genes with highly coherent patterns.

Due to the large number of microarray experiments being conducted the quan-

tity of gene expression data is always increa,sing. New genes and new relation-

ships among genes are continuously being discovered. As a result, it is desirable

to cluster the newly available data incrementally instead of having to re-cluster

the whole database with every update.

1.4 Contributions of this Thesis

The main contributions of the work reported in this thesis are given in the following

subsections chapter wise.

1.4.1 Grid-Density based Clustering for Spatial Data

In Chapter 3, we propose a technique called GDCT, Grid-based Density Clustering

using Triangle-subdivision, that can identify arbitrarily shaped embedded clusters as

well as multi-density clusters in the presence of noise in large spatial datasets. The

triangle-subdivision procedure included in GDCT gives high quality clusters. GDCT

clusters the dataset according t o the structure of the embedding space. The method

exploits a grid based technique to group the data points into blocks and the density

of each grid cell is calculated. The blocks are then clustered by a topological search

algorithm. For finer clustering, the triangle-subdivision method is used. The tech-

nique finds quality clustering over variable density space. The experiments establish

that GDCT is superior than other comparable algorithms in terms of cluster quality.

To evaluate the technique in terms of clustering quality, we use several synthetic

datasets as well as the Chameleon datasets [KHK99]. From our experimental re-

sults, we conclude that GDCT is highly competent in detecting intrinsic as well as

multi-density clusters.

1.4.2 Grid-Density based Clustering for Pan-Chromatic and

Multi-Spectral Satellite Data

Chapter 4 presents two grid-density based clustering techniques for satellite data.

The first technique, SATCLUS, works in two phases: Phase I which identifies coarse

or rough clusters and Phase I1 which smoothens the cluster boundaries detected

in Phase I. It can handle the detection of irregular shaped clusters by pixel level

processing of the cluster borders (border smoothening process during Phase 11). In

Phase 11, the cluster boundaries detected in Phase I are smoothened by incorporating

a partitioning approach. The second technique, GDSDC, has the same first phase

as SATCLUS, while in the second phase a fuzzy approach is used to improve the

correctness of the cluster borders and detect the mixed pixels present in the dataset.

Both SATCLUS and GDSDC do not require specification of the initial cluster ten-

ters. Neither does the number of clusters play any role in the clustering process. The

proposed techniques were tested on a large number of multi-spectral satellite imagery

and the cluster results are found to be of excellent quality. A major advantage of

this method is its simplicity and being free of the need to make initial guesses about

cluster centers or the number of clusters.

Experimental results establish that SATCLUS and GDSDC can detect all classes

present in any satellite data effectively and dynamically. Moreover, the clusters

of the remotely sensed multi-spectral satellite images obtained by SATCLUS were

validated by using an index P as in [PGSOO] as well as the homogeneity measure

[SMKSOS] .

1.4.3 Distributed Grid-Density based Clustering

In Chapter 5 , we present two distributed clustering techniques for handling massive

datasets, one in spatial domain and the other for satellite imagery.

The first technique can handle voluminous data and at the same time effectively

detect multiple nested or embedded clusters even in presence of noise. The dis-

tributed grid-density based clustering technique (DGDCT) finds clusters in spatial

datasets according to the structure of the embedding space and can address the scal-

ability problem effectively. Better speedup and scale-up is the major attraction of

the proposed technique. DGDCT can detect global as well as embedded clusters by

sharing the computational efforts among kp processors. Experimental results using

several synthetic and the Chameleon datasets [KHK99] establish the superiority of

the technique. Scale-up and speedup results establish the superiority of the tech-

nique using several synthetic datasets.

The second distributed clustering technique (DisClus) can handle high resolution

satellite datasets qualitatively. The method exploits a grid-based technique to group

the data points into blocks and to calculate the density of each grid cell. The blocks

are then clustered by a neighborhood search algorithm. Finally, the pixels of the

border cells of the clusters already detected are reassigned to the clusters using a

partitioning based approach to get finer results.

While comparing DisClus to several competitive algorithms, we find that DisClus

requires only two parameters: the number of grid cells gr, x gr, and a merging

threshold. However, we observe in our experiments that the merging threshold does

not vary significantly with different datasets.

Experimental results establish the capability of DisClus to handle large satellite im-

age data and to determine all clusters present effectively and dynamically. DisClus

is also superior in terms of execution time as well as relative speedup.

1.4.4 Clustering Gene Expression Data for Coherent Pat-

tern Identification

In Chapter 6, two clustering techniques capable of identifying coherent patterns in

gene expression data are presented.

The first, GenClus, is a technique for clustering gene expression datasets, designed

based on a density based approach. It can identify clusters and sub-clusters of arbi-

trary shapes in any gene expression dataset in presence of noise. Another advantage

of this technique is that it retains the magnitude as well as the regulation infor-

mation. It uses no proximity measures and is therefore free from the limitations

imposed by them. To test the performance of the clustering technique, we compare

the clusters identified by our method with the results from k-means, SOM, DCCA

and RDClust and find it to be superior.

Later in this chapter, we present an incremental version of GenClus (InGenClus)

that is capable of handling datasets that are updated incrementally. InGenClus was

tested using various datasets. The clusters obtained by InGenClus using the dataset

from [CCW+98] are same as those obtained by GenClus.

The second technique presents an effective tree-based clustering technique (GeneClus-

Tree) for finding clusters in gene expression data. GeneClusTree finds all clusters

in subspaces using a tree-based density approach by scanning the whole database in

the minimum number of possible passes. Another important advantage of GeneClus-

Tree is that it does not use a proximity measure. Our technique works by finding

the maximal space clusters and then proceeds in finding the reduced space clusters.

The clusters are represented as a tree with the reduced space clusters as the child

of its respective maximal space cluster. Effectiveness of GeneClusTree is established

in terms of well known z-score measure and pvalue over several real-life datasets.

The datasets have been obtained from http://faculty.washington.edu/kayee/cluster.

GeneClusTree was compared with UPGMA, RDClust and DCCA w.r.t. z-score and

found to give better result. The p-value analysis of GeneClusTree shows that it is

capable in detecting biologically relevant clusters from gene expression data.

We note here that both of our methods, GenClus and GeneClusTree, do not re-

quire the number of clusters as an input parameter. They detect the clusters present

in the dataset automatically and gives the rest as noise.

1.5 Organization of the Thesis

The thesis is organized as follows:

a Chapter 2 gives a survey of literature regarding different clustering and outlier

detection techniques.

Chapter 3 presents our own grid-density based clustering technique with tri-

angle subdivision (GDCT) for spatial data. The measure is established to be

appropriate in detecting variable density and embedded clusters with respect

to different synthetic datasets.

In Chapter 4, two Grid-Density based clustering techniques for pan-chromatic

and multi-spectral satellite data is presented.

Two distributed clustering techniques for handling massive datasets, one in

spatial domain (SATCLUS) and the other for satellite imagery (DisClus) is

reported in Chapter 5.

Chapter 6 of this thesis describes two gene expression clustering (GenClus and

GeneClusTree). An incremental version of GenClus algorithm that can handle

incremental datasets is also presented in Chapter 6.

Finally, concluding remarks and future works are given in Chapter 7.

The next chapter presents a selected survey of various clustering methods and outlier

detection techniques.

Chapter 2

Related Work

Cluster analysis is the process of division of data into groups (clusters) that are

meaningful, useful, or both. It should reflect the natural structure of the data. Clus-

ter analysis groups data objects based on information present in the data. The goal

of clustering is to group similar or related objects in the same cluster and different or

unrelated groups in different clusters. Clustering objects into meaningful groups is

based on similarity or dissimilarity measures. Cluster analysis is a difficult problem

because of many factors such as effective similarity measures, criterion functions, al-

gorithms and initial conditions. Moreover, it is well known that no clustering method

can adequately handle all sorts of cluster structures (shape, size and density). Outlier

detection is one of the major technologies in data mining, whose task is to find small

groups of data objects that are considerably different from rest of the data. Outlier

mining is applied over various fields such as telecommunication, financial fraud de-

tection, and data cleaning. In outlier mining, the patterns lying behind the outliers

are usually interesting and helps the decision makers to make profit or to improve

the service quality. It is considered to be an important research area, and outlier

detection is studied intensively by the data mining community [BKNSOO, HK06]. In

the succeeding sections, we discuss some commonly used proximity measures, vari-

ous well-known clustering techniques and also some of the existing outlier detection

techniques are discussed.

2.1 Proximity Measures

From scientific and mathematical point of view, distance is defined as a quantitative

degree of how far apart two objects are. Similarity is a numerical quantity that

reflects the strength of relationship between two objects or two features. Similarities

are higher for pairs of objects that are more alike. This quantity is usually in the

range of either -1 to +1 or is normalized into 0 t o 1. If the similarity between a pair

of objects (x, y) is denoted by S,,,, we can measure this quantity in several ways

depending on the scale of measurement (or data type) that we have.

Distance measure is also known as dissimilarity measure. Similarity and dissim-

ilarity measures are often called proximity measures. Dissimilarity measures the

discrepancy between the two objects, i.e., it measures the degree to which two ob-

jects are different. There are many types of distance and similarity measures. Each

similarity or dissimilarity measure has its own characteristics. Next, we consider

several important issues concerning proximity measures.

2.1.1 Relationship between Similarity and Dissimilarity

Let normalized dissimilarity between object x and object y be denoted by d,,,. Then

the relationship between dissimilarity and similarity [HK06] is given by

Here, S,,, is normalized similarity between objects x and y. Similarity is bounded

by 0 and 1. When similarity is one (i.e., two objects are exactly similar), the dis-

similarity'is zero and when the similarity is zero (i.e., two objects are very different),

dissimilarity is one. If the value of similarity has range of -1 to +l, and the dissimi-

larity is measured with range of 0 and 1, then

When dissimilarity is one (i.e., two objects are very different), similarity is minus one

and when the dissimilarity is zero (i.e., two objects are very similar), similarity is

one. In many cases, measuring dissimilarity (i.e., distance) is easier than measuring

similarity. Once we can measure dissimilarity, we can easily normalize it and convert

it to similarity measure. It is also common for dissimilarities to range from 0 to oo.

Frequently, proximity measures are transformed to the interval [0, 11. The transfor-

mation of similarities to the interval [0, 11 is given by

where, min-S,,, and max-S,,, are minimum and maximum similarities respectively.

Similarly, dissimilarity measures with a finite range can be mapped to the interval

[O, 11 by using the formula

where, min-d,,, and max-d,,, are minimum and maximum dissimilarities respec-

tively.

If the proximity measure has values in the range [0, oo], then a non-linear transfor-

mation is needed and the values in the transformed scale will not have the same

relationship to one another as the original. But, whether such a transformation is

desirable or not depends on the application it is used.

2.1.2 Some Distance Measures

A popular distance measure based on variables that take on continuous values is

to standardize the values by dividing by the standard deviation (sometimes other

measures such as range are used) and then to compute the distance between objects

using the Euclidean metric.

The Euclzdean dzstance d , , between two objects, i and j with variable values (x , ~ , x,2,
- , xZn) and (aj1, x32, . . , xjn) is defined by:

If some variables should be given more importance than others then the squared

difference terms should be multiplied by weights (positive numbers adding up to

one) and use larger weights for the important variables. The Wezghted Euclzdean

dzstance measure is given by:

where wl, w2, - - . , w, are the weights for variables 1 ,2 , . - . , n so that w, 2 0, x r = l w, =

1.

Other useful measures of dissimilarity other than the Euclidean distance that satisfy

the triangular inequality and so qualify as distance metrics are:

Manhattan dzstance is defined by

n

Minkowski distance is the generalized form of the two distance metrics discussed

above. It is given as

where p is a parameter. For p = 1, we get the Manhattan distance, and for p = 2 we

get the Euclidean distance.

Mahalanobzs dzstance corrects data for different scales and correlations in the vari-

ables. It is defined by

4 , = J(xz - xj)'vt(xZ - x,) (2.9)

where x, and x, are n-dimensional vectors of the variable values for z and J respec-

tively; and V is the covariance matrix for these vectors. This measure takes into

account the correlation between the variable: variables that are highly correlated

with other variables do not contribute as much as variables that are uncorrelated or

mildly correlated.

Maxzmum co-ordznate dzstance is defined by

For p = oo we get the Chebyshev dzstance (L,,, or L, norm) named after Chebyshev

[HDRT04]. This is the maximum distance between any pair of attributes of the

objects. Formally, L, is defined as

Hamming distance [Ham501 between two strings of equal length is the number of

positions at which the corresponding symbols are different. It measures the mini-

mum number of substitutions required to change one member into another. For a

fixed length n, the Hamming distance is a metric on the vector space of the words

of that length, as it obviously fulfills the conditions of non-negativity, identity of

indiscernibles and symmetry, and it can be shown easily by complete induction that

it satisfies the triangle inequality as well. For binary strings i and j the Hamming

distance is equal to the number of ones in i XOR j . If qlo = number of variables

with value 1 for the ith object and 0 for the jth object and qol = number of variables

with value 0 for the ith object and 1 for the jth object, we have

2.1.3 Some Similarity Measures

Sometimes it is more natural or convenient to work with a similarity measure be-

tween objects rather than distance which measures dissimilarity. Such measures can

always be converted to distance measures. In the above example we could define a

distance measure d , , = 1 - S,,J.

Pearson's correlation: The correlation coefficient, p, , is a widely used similarity

measure, defined by

where, is the mean of the n attributes of the ith object and is the mean of the n

attributes of the jth object and Similarity measures between objects that have only

binary attributes are called szmzlarzty coeficzents and have values between 0 and 1

A value of 0 means that the objects are completely dissimilar and a value of 1 means

that the objects are completely slmllar

Suppose objects z and j have n binary attrlbutes Then, on comparing z and j

the following quantities are obtalned

1) goo the number of attributes where z = 0 and 3 = 0,

11) gol the number of attributes where z = 0 and j = 1,

111) 910 the number of attrlbutes where z = 1 and j = 0, and

iv) 911 the number of attributes where z = 1 and 3 = 1

Using the above quantities different similarity coefficients can be obtained

Szmple Matchzng Coeficzent or S M C [HK06] is one of the most commonly used

similarity coefficients and is defined as,

Total number o f matched attrzbutes
S M C = - - 900 + 911

Total attrzbutes 900 f 901 + 910 + 911 (2 14)

S M C gives equal weight to both presences and absences

Jaccard Coeficzent [HK06] is used for handling objects consisting of asymmetric

binary attributes Jaccard Coefficient (J) is defined as follows,

Number of matched attrzbutes
J = - - 91 1

Total attrzbutes - non exzstence of both attrzbutes 901 + 910 + 911
(2 15)

Pearson's correlation is a powerful similarity measure However, empirical study has

shown that it 1s not robust with respect to outliers [HKY99], thus potentially yielding

false positives which assign a h ~ g h slmllarlty score to a pair of dissimilar patterns If

two patterns have a common peak or valley a t a slngle feature, the correlation wlll

be dominated by this feature, although the patterns at the remaining features may

be completely dissimilar Another drawback of Pearson's correlation coefficient is

that it assumes an approximate Gausslan distribution of the points and may not be

robust for non-Gaussian distributions [BicOl] .

Jackknzfe correlation [JTZ04], helps in overcoming the single outlier problem of Pear-

son's correlation. It is defined as,

1 Jackni f e , , = min{&, - . , Pzj, . . P:~ }

where d, , is the Pearson's correlation coefficient of data objects i and j with the lth

feature deleted. Use of Jackknife correlation avoids the "dominance effect" of sin-

gle outliers. More general versions of Jackknife correlation that are robust to more

than one outlier can similarly be derived. However, generalized Jackknife correlation,

which involves the enumeration of different combinations of features to be deleted,

is computationally costly and is rarely used.

Spearman's rank-order correlation coeficient is used to address the problem of non-

Gaussian distribution~ w.r.t. Pearson's correlation, the Spearman's rank-order cor-

relation coefficient [JTZ04] has been suggested as a similarity measure. The ranking

correlation is derived by replacing the data x,, with its rank r,, among all conditions.

For example, r,, = 3 if x,, is the third highest value among x,f, where 1 5 f 5 n.

Spearman's correlation coefficient does not require the assumption of Gaussian dis-

tribution and is more robust against outliers than Pearson's correlation coefficient.

However, as a consequence of ranking, a significant amount of information present

in the data is lost.

Cosine Similarity [TSKOS] is useful for finding document similarity. If x and y

are two document vectors, then cos,,, is given by the following equation,

where . indicates the vector dot product, x.y = x:=, xkylc, and llxll is the length of

vector x, and llxll = J K x : = m.

CorHsim: In [LWN+O9], a new similarity measure for gene expression microar-

ray data, CorHsim, is presented. It reflects the magnitude and shape information

of gene expression data at the same time and is defined as follows:

where, a, and a, are the standard deviations of x and y respectively. The disadvan-

tage of CorHsim is that it uses the mean value and may sometimes represent the

pattern differently.

The similarity/dissimilarity measures discussed above have been applied in vari-

ous domains. However, not all the measures are applicable throughout all domains.

There is a qualitative domain specific dependency among similarity/dissimilarity

measures.

2.2 Existing Clustering Approaches

Generally, clustering algorithms are categorized into partitioning methods, hierar-

chical met hods, density-based methods, grid-based methods, model-based methods,

graph based methods, cluster ensembles, distributed methods, soft computing meth-

ods, and subspace clustering [JMF99].

2.2.1 Partitional

Partitional clustering divides the set of data objects into non-overlapping (disjoint)

clusters such that each object is in exactly one cluster. Partitioning methods are

divided into two major subcategories [HK06], the centroid based and the medoid

based algorithms. The centroid based algorithms represent each cluster by using the

gravity center (mean) of the instances while the medoid algorithms represent each

cluster by means of the instances closest to the mean.

The k-means algorithm is one of the most well-known centroid algorithm. The k-

means method partitions the dataset into Ic subsets such that all points in a given

subset are closest to the same center. In randomly selects Ic of the instances to repre-

sent the cluster centers and based on the selected attributes, all remaining instances

are assigned to their nearest cluster center. K-means then computes the new cluster

centers by taking the mean of all data points belonging to the same cluster. The pro-

cess is iterated until some convergence criterion is met (usually till there is no change

in the cluster centers). Generally, the k-means algorithm has the following important

properties: (i) It is efficient in processing large datasets, (ii) It often terminates at a

local optimum, (iii) The clusters have spherical shapes, (iv) It is sensitive to noise.

However, the number of clusters have to be provided as an input parameter and

choosing the proper initial centroids is the key step of the basic k-means procedure

and results are dependent on it.

K-medoid is also a partitional clustering technique that clusters the dataset of N

objects into k clusters and is more robust to noise and outliers as compared to k-

means. A medoid is the most centrally located object in a given dataset. It can be

defined as that object of a cluster, whose average dissimilarity to all the objects in

the cluster is minimal[HKOG]. One of the most popular k-medoid clustering is the

Partitioning around Medoids (PAM) algorithm which begins with an arbitrary set

of k objects as medoid points out of N data objects. Each data object in the given

dataset is associated to the most similar medoid. Then a non-medoid object, say o,,

is selected randomly and the total cost ScOst of swapping initial medoid object to o,

is computed. If ScOst < 0, then swap initial medoid with the new one. The process of

selection of medoids and swapping is iterated until there is no change in the medoid.

The k-modes algorithm [Hua98] is a recent partitioning algorithm and uses the sim-

ple matching coefficient measure to deal with categorical attributes. For clustering

instances described by mixed attributes, a k-prototypes algorithm [Hua98] is also

proposed that integrates the k-means and k-modes algorithms and uses a combined

dissimilarity measure during clustering. In [Che03], a generalization of conventional

k-means clustering algorithm has been presented that is applicable to ellipse-shaped

data clusters as well as ball-shaped ones and does not require the exact cluster num-

ber apriori.

2.2.2 Hierarchical

Hierarchical clustering [HK06, TSKOS] provides a nested sequence of partitions, rep-

resented graphically with a dendrogram. Each node (cluster) in the tree (except the

leaf nodes) is the union of its children (sub-clusters), and the root of the tree is the

cluster containing all the objects. Sometimes the leaf nodes consists of a single object

and are termed as singleton clusters. Hierarchical methods are divided into two ma-

jor subcategories: (i) agglomerative method, which forms the clusters in a bottom-up

fashion starting with each object in a separate cluster and merging them until all

data instances belong to the same cluster and (ii) divisive method, which splits up

the dataset into smaller clusters in a top-down fashion until each cluster contains

only one instance. Both divisive algorithms and agglomerative algorithms can be

represented by dendrograms and are known for their quick termination. Other mer-

its include: (a) they do not require the number of clusters to be known in advance,

(b) they compute a complete hierarchy of clusters, (c) good result visualizations are

integrated into the methods, and (d) a flat partition can be derived later by cut-

ting through the dendrogram. However, both methods suffer from their inability to

perform adjustments once the splitting or merging decision is made. Hierarchical

clustering techniques use various criteria to decide locally at each step which clusters

should be merged (or split for divisive approaches). To merge or split clusters, the

distance between individual objects has been generalized to the distance between sub-

sets. Such derived proximity measure is called a linkage metric. Major inter-cluster

linkage includes: single-link, complete-link and average-link [JMF99]. The single-

link similarity between two clusters is the similarity between the two most similar

instances, one of which appears in each cluster. Single link is good at handling non-

elliptical shapes, but is sensitive to noise and outliers. The complete-link similarity

is the similarity between the two most dissimilar instances, one from each cluster.

Complete link is less susceptible to noise and outliers, but can break large clusters,

and has trouble with convex shapes. The average-link similarity is a compromise

between the two. There are various hierarchical clustering algorithms, some of them

are: Balanced Iterative Reducing and Clustering using Hierarchies BIRCH [ZRL96],

Clustering Using REpresentatives CURE [GRS98] and CHAMELEON [KHK99].

BIRCH [ZRL96] creates a height-balanced tree of nodes that summarize data by

accumulating its zero, first, and second moments (CF statistics). It uses a hierar-

chical data structure called CF-tree for partitioning the incoming data objects in

an incremental and dynamic way. CF-tree is a height-balanced tree, which stores

the clustering features and it is based on two parameters: branching factor B f and

threshold Th, which refer to the diameter of a cluster (the diameter (or radius) of

each cluster must be less than Th). A CF tree is built as the data is scanned. While

inserting each data object, the CF tree is traversed, starting from the root and choos-

ing the closest node at each level. When the closest leaf cluster for the current data

object is finally identified, a test is performed to see if adding the data object to

the candidate cluster will result in a new cluster with a diameter greater than the

given threshold, Th. If it fits the leaf well and if the leaf is not overcrowded, CF

statistics are incremented for all nodes from the leaf to the root. Otherwise a new

CF is constructed. Since the maximum number of children per node (B f) is limited,

one or several splits can happen. When the tree reaches the assigned memory size,

it is rebuilt and T h is updated to a coarser one. The outliers are sent to disk, and

refitted gradually during tree rebuilds. BIRCH can typically find a good clustering

with a single scan of the data and improve the quality further with a few additional

scans. It can also handle noise effectively. Moreover, because BIRCH is reasonably

fast (O (N)) , it can be used as a more intelligent alternative to data sampling in

order to improve the scalability of other clustering algorithms. However, it may not

work well when clusters are not spherical because it uses the concept of radius or

diameter to control the boundary of a cluster. In addition, it is order-sensitive as it

may generate different clusters for different orders of the same input data. Bubble

and Bubble-FM [GRG+98] clustering algorithms are extensions of BIRCH to handle

categorical data.

In CURE [GRS98], multiple well-scattered objects (representative points) are chosen

to represent a cluster. These points usually capture the geometry and shape of the

cluster. The first representative point is chosen to be the point farthest from the

cluster center, while the remaining points are chosen so that they are farthest from

all previously chosen points. This ensures that the representative points are naturally

relatively well distributed. The number of points chosen, is a parameter, but it was

found that a value of 10 or more worked well. The similarity between two clusters is

measured by the similarity of the closest pair of the representative points (after they

are shrunk toward their respective centers) belonging to different clusters. Once the

representative points are chosen they are shrunk toward the center by a factor which

ranges between 0 and 1. This helps moderate the effect of outliers, which are usually

farther away from the center and thus are shrunk more. CURE uses an agglomerative

hierarchical scheme to perform the actual clustering. Unlike centroid/medoid based

methods, CURE is capable of finding clusters of different shapes and sizes, as it rep-

resents each cluster via multiple representative points. Shrinking the representative

points towards the center helps CURE in avoiding the problem of noise. However, it

cannot be applied directly to large datasets. For this reason, CURE takes a random

sample and performs the hierarchical clustering on the sampled data points.

ROCK [GRS99], is a clustering algorithm for categorical data and uses the Jaccard

coefficient as a measure of similarity. It uses the concept of links i.e., the number of

common neighbors for any two objects. ROCK first draws a random sample from

the dataset and then performs clustering of the data with links. Finally the data in

the disk is labeled. It accepts as input the sampled set S to be clustered (that are

drawn randomly from the original dataset), and the number of desired clusters k.

ROCK samples the dataset in the same manner as CURE.

CHAMELEON [KHK99] uses a two-phase approach to cluster the data. In the

first phase, it uses a graph partitioning algorithm to divide the dataset into a set

of individual clusters. It generates a k-nearest neighbor graph that contains links

only between a point and its k-nearest neighbors. During the second phase, it uses

an agglomerative hierarchical clustering algorithm to find the genuine clusters by

repeatedly merging these sub-clusters. None of the clusters formed can contain less

than a user specific number of instances. Two clusters are merged only if the inter-

connectivity and closeness (proximity) between two clusters are high relative to the

internal inter-connectivity of the clusters and closeness of items within the clusters.

Therefore, it is better than both CURE and ROCK as CURE ignores information

about inter-connectivity of the objects while ROCK ignores information about the

closeness of two clusters.

A novel incremental hierarchical clustering algorithm (GRIN) for numerical datasets

based on gravity theory in physics is presented in [CH002]. One main factor that

makes the GRIN algorithm able to deliver favorite clustering quality is that the opti-

mal parameters settings in the GRIN algorithm are not sensitive to the distribution

of the dataset.

For 2D spatial data (for example, GIs database) the algorithm AMOEBA [ECLOO]

uses Delaunay diagram (the dual of Voronoi diagram) to represent data proximity

and has O(N1ogN) complexity. The algorithm consists of two steps: (i) The Delau-

nay diagram is constructed and a connected planar plane-embedded graph is passed

to the algorithm to act as the diagram. Clusters are made up of the points in a

connected component and the points in the clusters are reported recursively. Every

edge is matched against the criteria and passive edges and noise are discarded; active

edges and their points form proximity sub-graphs at each level of the hierarchy. (ii)

The algorithm calls itself recursively until no new connected components are created

when the passive edges and noise are discarded.

The advantages of hierarchical clustering include: (i) Embedded flexibility regarding

the level of granularity, (ii) Ease of handling of any forms of similarity or distance,

and (iii) Applicability to any attribute types. The disadvantages of hierarchical clus-

tering are: (i) Vagueness of termination criteria, (ii) The fact that most hierarchical

algorithms do not revisit once intermediate clusters that have been constructed with

the purpose of their improvement.

2.2.3 Density based

Density-based clustering algorithms try to find clusters based on density of data

objects in a region. The key idea of density-based clustering is that for each core

object of a cluster the neighborhood of a given radius (E) has to contain at least a

minimum number of instances (MinPts), where E and MinPts are the two input

parameters. One of the most well known density-based clustering algorithms is the

DBSCAN [EKSX96]. This algorithm grows regions with sufficiently high density into

clusters. DBSCAN separates data objects into three classes as illustrated in Figure

2.1.

Core points: These points are at the interior of a cluster. A point is an interior

point if there are enough points in its neighborhood.

Border points: A border point is a point that is not a core point, i.e., there are

not enough points in its neighborhood, but it falls within the neighborhood of

a core point.

Noise points: A noise point is any point that is not a core point or a border

point.

The neighborhood within a radius E of an object, say p is called the &-neighborhood

of p. If the &-neighborhood of p contains at least MinPts number of objects

then p is a core object. DBSCAN's definition of a cluster is based on the no-

tion of density-reachability. The basic concepts of DBSCAN are directly density-

reachability, density-reachability and density connectivity. Basically, an object q is

directly density-reachable from an object p if it is within the &-neighborhood of a

core object, p. An object q is called density-reachable from p if there is a sequence

of objects pl, p2, - - , pn such that pl = p and p, = q where each p,+l is directly

density-reachable from pa. The relation of density-reachability is not symmetric

(since q might lie on the edge of a cluster, having insufficient number of neighbors

for q to be core). Two objects p and q are density-connected if there is an object

o such that both p and q are density-reachable from o. A cluster, can therefore be

defined as a subset of the objects of the database that satisfies two properties: (i)

all objects within the cluster are mutually density-connected and (ii) if an object is

density-connected to any point of the cluster, it is part of the cluster as well. To find

a cluster, DBSCAN starts with an arbitrary object (p) in dataset (D) and retrieves

all objects of D w.r.t. E and MinPts. DBSCAN has a number of advantages such

as detection of arbitrary shaped clusters, noise handling and is hence quite attrac-

tive. However, it suffers from huge computational requirements (the time complexity

is O (N) 2) . So it can take huge amounts of time with large datasets. One way to

overcome this problem is to build spatial index structure over the dataset like R*
tree to locate points within E distance from the core points of the clusters. But this

solution is suitable only when the dimensionality of the data is low. Also DBSCAN

is dependent on the input parameters E and MinPts and there is no straight forward

way to fit them to the data. Moreover, different parts of data could require different

parameters due to variation in density of the parts.

The algorithm OPTICS (Ordering Points To Identify the Clustering Structure)

[ABKS99] can detect clusters of variable density by creating an ordering of the

dataset that represents its density-based clustering structure. OPTICS considers

a minimum radius (E') that makes a neighborhood legitimate for the algorithm. It

is a versatile basis for interactive cluster analysis and is consistent with DBSCAN,

but goes a step further by keeping the same two parameters E, MinPts and intro-

ducing the concept of core-distance E' (distance to MinPts nearest neighbor when

it does not exceed E , or undefined otherwise). OPTICS covers a spectrum of all dif-

ferent E' 5 E . The constructed ordering can be used automatically or interactively.

With each point, OPTICS stores only two additional fields, the so-called core- and

reachability-distances. Experimentally, OPTICS exhibits runtime roughly equal to

1.6 of DBSCAN runtime. While OPTICS can detect the different local densities, it

is highly sensitive to its three parameters.

An incremental version of DBSCAN (incremental DBSCAN) is presented in [EKS+98].

It has been proven that this incremental algorithm yields the same result as DB-

SCAN. In addition, another clustering algorithm (GDBSCAN) generalizing the density-

based algorithm DBSCAN is presented in [SEKX98]. GDBSCAN can be applied to

both numerical and categorical attributes. Furthermore, DBCLASD (Distribution

Based Clustering of Large Spatial Datasets) eliminates the need for E and MinPts

parameters [XEKS98]. DBCLASD incrementally augments an initial cluster by its

neighboring points as long as the nearest neighbor distance set of the resulting cluster

still fits the expected distance distribution. DBSCLAD defines a cluster as a non-

empty arbitrary shape subset in D that has the expected distribution of distance to

the nearest neighbor with a required confidence, and is the maximal connected set

Figure 2.1: Core, border and noise objects in an example dataset

with this quality. Regarding connectivity, DBCLASD relies on grid-based approach

to generate cluster-approximating polygons. The algorithm contains devices for han-

dling real databases with noise and implements incremental unsupervised learning

and can also handle spatial data. Two concepts are used here. First, assignments are

not final: points can change cluster membership. Second, certain points (noise) are

not assigned, but are tried later. Therefore, once incrementally fetched points can be

revisited internally. DBCLASD is known to run faster than CLARANS by a factor

of 60 on some examples. In comparison with much more efficient DBSCAN, it can be

2-3 times slower. However, DBCLASD requires no user input, while empirical search

for appropriate parameter requires several DBSCAN runs. In addition, DBCLASD

discovers clusters of different densities.

Another density-based algorithm is the DENCLUE [HHK98]. The basic idea of

DENCLUE is to model the overall point density analytically as the sum of influence

functions of the data points. The influeme function can be seen as a function, which

describes the impact of a data point within its neighborhood. Then, by determining

the maximum of the overall density function it can identify the clusters present. The

algorithm allows a compact mathematical description of arbitrarily shaped clusters

in high-dimensional datasets and is significantly faster than the other density based

clustering algorithms. Moreover, DENCLUE produces good clustering results even

when a large amount of noise is present. As in most other approaches, the quality

of the resulting clustering depends on an adequate choice of the parameters. In this

approach, there are two important parameters, the parameter a1 determines the in-

fluence of a point in its neighborhood and ~1 describes whether a density-attractor

is significant. Density-attractors are local maxima of the overall density function.

The runtime of DENCLUE scales with N sub-linearly. This is due to the fact that

though all the points are fetched, the bulk of analysis (in clustering stage) involves

only points in highly populated areas.

In [JPZ03], the Density-based Hierarchical Clustering method (DHC) is presented.

It considers a cluster as a high-dimensional dense area, where data objects are at-

tracted to each other. At the core part of the dense area, objects have higher density

whereas objects at the peripheral area are relatively sparse. Once the density and

attraction of data objects are defined, DHC organizes the cluster structure of the

dataset in two-level hierarchical structures: attraction tree (represents relationships

of objects in the dense area) and density tree (summarizes the cluster structure of the

attraction tree where each node represents a dense area). Density tree is mined (split

into sub-dense areas based on some criteria) for the final clusters. DHC is effective

for the high-connectivity characteristic of gene expression data because it first c a p

tures the core part of the cluster and then divides the borders of the clusters on the

basis of the attraction between the data objects. The two-level hierarchical represen-

tation of the dataset enables the relationship among the clusters and also organizes

the relationship among the data objects within the same cluster. The computational

complexity of this step is O(N2), which makes DHC inefficient. Furthermore, two

global parameters used in DHC to control the splitting process of dense areas are

also sensitive.

FDC algorithm (Fast Density-Based Clustering) is presented in [ZCK99] for density-

based clustering defined by the density-linked relationship. The clustering in this

algorithm is defined by an equivalence relationship on the objects in the database.

The complexity of FDC is linear to the size of the database, which is much faster than

that of the algorithm DBSCAN. More recently, the algorithm SNN (Shared Nearest

Neighbors) [ESK03] blends a density based approach with the idea of ROCK. SNN

sparsifies similarity matrix by only keeping k-nearest neighbors, and thus derives the

total strength of links for each object.

2.2.4 Grid based

Grid-based clustering algorithms first quantize the clustering space into a finite num-

ber of cells (hyper-rectangles) and then perform the required operations on the quan-

tized space. Cells that contain more than certain number of points are treated

as dense and the dense cells are connected to form the clusters. Here, we report

some of the grid-based clustering algorithms such as STatistical INformation Grid-

based method - STING [WYM97], Wavecluster [SC+98], and CLustering In QUEst

- CLIQUE [AGGR98].

STING [WYM97] is a grid based multi resolution clustering technique in which the

spatial area is divided into rectangular cells in order to form a hierarchical structure.

The cells in a high level are composed from the cells in the lower level. Each cell has

four (default) children and stores a point count, and attribute-dependent measures:

mean, standard deviation, minimum, maximum, and distribution type. Measures

are accumulated starting from bottom level cells, and further propagate to higher-

level cells (e.g., minimum is equal to a minimum among the children-minimums).

It generates a hierarchical structure of the grid cells so as to represent the cluster-

ing information at different levels. Therefore, STING constructs data summaries

and assembles statistics in a hierarchical tree of nodes that are grid-cells. Although

STING generates good clustering results in a short running time, there are two ma-

jor problems with this algorithm. Firstly, the performance of STING relies on the

granularity of the lowest level of the grid structure. Secondly, the resulting clusters

are all bounded horizontally or vertically, but never diagonally. This shortcoming

might greatly affect the cluster quality.

CLIQUE [AGGR98] uses the concepts of density and grid based methods. CLIQUE

starts by finding all the dense areas in the one-dimensional spaces corresponding to

each attribute. CLIQUE then generates the set of two-dimensional cells that might

possibly be dense, by looking at dense one-dimensional cells, as each two-dimensional

cell must be associated with a pair of dense one-dimensional cells. The dense units are

then connected to form clusters. It uses apriori algorithm (bottom up algorithm) to

find dense units. Generally, CLIQUE generates the possible set of n-dimensional cells

that might possibly be dense by looking at dense (n - 1) dimensional cells. CLIQUE

is able to find clusters in all subspaces of the original data space and present a min-

imal description of each cluster in the form of a DNF expression. Steps involved

in CLIQUE is i) identification of subspaces (dense Units) that contain cluster ii)

merging of dense units to form cluster and iii) Generation of minimal description for

the clusters. CLIQUE produces identical results irrespective of the order in which

the input records are presented. In addition, it generates cluster descriptions in the

form of DNF expressions [AGGR98] for ease of comprehension. Moreover, empirical

evaluation shows that CLIQUE scales linearly with the number of instances, and has

good scalability as the number of attributes is increased.

The algorithm WaveCluster [SC+98] works with numerical attributes and has an

advanced multi-resolution. The main idea is to transform the original feature by a p

plying wavelet transform and then find the dense regions in the new space. A wavelet

transform is a signal processing technique that decomposes a signal into different fre-

quency sub bands. The first step of the WaveCluster algorithm is to quantize the

feature space. In the second step, discrete wavelet transform is applied on the quan-

tized feature space and hence new units are generated. WaveCluster connects the

components in 2 set of units and they are considered as cluster. Corresponding to

each resolution of wavelet transform there would be set of clusters k , where usually

at the coarser resolutions number of cluster is less. In the next step, WaveCluster

labels the units in the feature space that are included in the cluster. WaveCluster

gives high quality of clusters, can work well in relatively high dimensional spatial

data and can successfully handle outliers. The algorithm's complexity is O (N) for

low dimensions, but with the increase in the number of dimensions it grows expo-

nentially. Unlike other clustering methods, WaveCluster [SC+98] does not require

users to give the number of clusters. It is a very powerful method and automatically

removes outliers, however, it is not efficient in high dimensional space.

2.2.5 Model based

Autoclass [CS96] uses the Bayesian approach, starting from a random initialization

of the parameters, incrementally adjusts them in an attempt to find their maximum

likelihood estimates. Another model based method is the SOM net [Koh95] which

is based on a single layered neural network. The data objects are organized with

a simple 2-D grid structure. Each neuron of the neural network is associated with

a reference vector, and each data point is mapped to the neuron with the closest

reference vector. In the process of running the algorithm, each data object acts as

a training sample which directs the movement of the reference vectors towards the

denser areas of the input vector space, so that those reference vectors are trained to

fit the distributions of the input dataset. When the training is complete, clusters are

identified by mapping all data points to the output neurons. An important property

of the SOM is that it is very robust. The outlier can be easily detected from the

map, since its distance in the input space from other units is large. SOM can deal

with missing data values, too. It generates intuitive cluster patterns of a high di-

mensional dataset. However, it suffers from some disadvantages such as the number

of clusters and the grid structure of the neuron map need to be given as input. It is

also sensitive to the input parameter.

Though the model based approach can be considered as more relevant to the data

mining problem, most of the existing methods under the approach suffer from the

following disadvantages: (i) they try to fit a mathematical model to the data which

may not be effective to all domains, (ii) the number of clusters and the grid structure

need to be given as input, (iii) they are sensitive to the input parameters and (iv)

the algorithms are not cost effective.

2.2.6 Graph Based

Graph theoretical clustering techniques represent the data in terms of a graph, thus

converting the problem of clustering a dataset into such graph theoretical problems

as finding minimum cut or maximum cliques in a proximity graph [BDSY99]. AUTO-

CLUST [LECOO] is a graph based algorithm that automatically extracts boundaries

based on Voronoi modeling and Delaunay Diagrams. Parameters required are not

specified by users but are revealed from the proximity structures of the Voronoi mod-

eling, and AUTOCLUST calculates them from the Delaunay Diagram. This removes

human-generated bias and also reduces the exploration time. The advantages are:

(i) it is effective in the detection of clusters of different densities, and (ii) it identifies

and removes multiple bridges linking clusters and has a complexity of O(NlogN).

CLuster Identification via Connectivity Kernels (CLICK) [SSOO] tries to identify clus-

ters as a highly connected component in a proximity graph based on a probabilistic

assumption and can detect intersecting clusters. Cluster Affinity Search Technique

(CAST) [BDSY99] is based on the concept of a corrupt clique graph data model.

CAST assumes that the true clusters of the data points are obtained by a disjoint

union of complete suhgraphs where each clique represents a cluster; where a cluster

is a set of high affinity elements subject to a threshold. CAST discovers clusters one

at a time. Both CAST and CLIQUE are popular for detecting clusters over gene

expression data. The graph theoretic approach can be considered to be more relevant

to gene expression data mining as they are capable of discovering intersected and

embedded clusters. However, it sometimes generates non-realistic cluster pat terns.

There are many applications that require the clustering of large amounts of high

dimensional data. However, most automated clustering techniques do not work ef-

fectively and/or efficiently on high dimensional data, i.e. they often miss clusters

with certain unexpected characteristics. The reasons for this are: (i) it is difficult to

estimate the necessary parameters for tuning the clustering algorithms to the spe-

cific application's characteristics, (ii) it is hard to verify and interpret the resulting

high dimensional clusters and (iii) often the concept of clusters inspired from low

dimensional cases cannot be extended to high dimensional cases. A solution to these

problems may be obtained by integrating all the requirements into a single algorithm

and to try to build a combination of clustering algorithms (ensembles of clustering

algorithms)

2.2.7 Ensembles of Clustering Algorithms

In the combination of techniques in a group or ensemble, the outputs provided by

different techniques are combined by one of several strategies in order to provide a

consensus output value [HCFdCOS]. The main goal is to use the best features of

each individual technique and improve the overall performance in terms of accuracy

or precision. The theoretical foundation of combining multiple clustering algorithms

is still in its early stages. According to [HK07, HKKO51, clustering ensembles are

formed by the combination of a set of partitions previously produced by several

runs of a single algorithm or by a set of algorithms. Since, there is no label associ-

ated with each object, some form of sophisticated strategies are needed in order to

combine partitions found by different algorithms or different runs of the same algo-

rithm in a consensus partition. Combining multiple clustering algorithms is a more

challenging problem than combining multiple classifiers. Clustering combination a

difficult task because various clustering algorithms produce very different results due

to different clustering criteria, combining these clustering results directly may not

generate a good meaningful result. According to [SG03], cluster ensembles can be

formed in a number of different ways, such as (i) the use of a number of different

clustering techniques (either deliberately or arbitrarily selected), (ii) the use of a

single technique many times with different initial conditions and/or (iii) the use of

different partial subsets of features or patterns. In [FJ02], a split-and-merge strategy

is followed. In the first step, k-means algorithm is used to generate small, compact

clusters. An ensemble of clustering algorithms is produced by random initializations

of cluster centroids. Data partitions present in these clustering are mapped into a

new similarity matrix between patterns, based on a voting mechanism. This matrix,

is independent of data sparseness, is then used to extract the natural clusters using

the single link algorithm. In [AK03], multiple clustering algorithms were combined

based on a Weighted Shared nearest neighbors Graph method. In [YAL+OG] multiple

crossover repetitions were used to combine partitions created by different clustering

algorithms. Each pair selected for a crossover operation should present a high overlap

in the clusters. The initial population comprises of all clusters created by the cluster-

ing algorithms used in the ensemble. This method, named heterogeneous clustering

ensemble (HCE), differ from other ensemble approaches by taking characteristics

from the individual algorithms and the dataset into account during the ensemble

procedure. This method was compared with individual clustering algorithms using

a gene expression dataset.

Due to the increasing size of current databases, constructing efficient distributed

clustering algorithms has attracted considerable attention.

2.2.8 Distributed Clustering

Distributed Clustering assumes that the objects to be clustered reside on different

sites. Instead of transmitting all objects to a central site (also known as server) where

we can apply standard clustering algorithms to analyze the data (also known as se-

quential clustering), the data are clustered independently on different local sites. The

central site updates the global clustering based on the local models, i.e. the repre-

sentative clustering transmitted from the local sites. Generally, as far as distributed

clustering is concerned, there are different scenarios: (i) Feature-Distributed Cluster-

ing (FDC), combines a set of clusterings obtained from clustering algorithm having

partial view of the data features, (ii) Object-Distributed Clustering (ODC), com-

bines clusterings obtained from clustering algorithm that have access to the whole

set of data features and to a limited number of objects, and (iii) Feature/Object-

Distributed Clustering (FODC) , consists in combining clusterings obtained from clus-

tering algorithm having access to limited number of objects and/or features of the

data. Various distributed clustering techniques have been proposed such as a paral-

lel version of the k-means algorithm was proposed in [DM99], a parallel version of

DBSCAN, called PDBSCAN was presented in [XJK99] that uses a shared-nothing

architecture with multiple computers interconnected through a network. PDBSCAN

offers nearly linear speedup and has excellent scale-up and size-up behavior. The

Density Based Distributed Clustering(DBDC) algorithm [JKP03] can be used in the

case when the data to be clustered is distributed and infeasible to centralize. A

detailed survey of distributed clustering is reported in Section 5.2.

2.2.9 Soft Computing

Traditional clustering approaches generate disjoint groups or clusters. Fuzzy cluster-

ing on the other hand associates each pattern with every cluster using a membership

function with larger membership values indicating higher confidence in the assign-

ment of the pattern to the cluster. One widely used fuzzy clustering algorithm is

the Fuzzy C-Means (FCM) algorithm [Bezgla] , which is based on k-means. FCM at-

tempts to find the most characteristic point in each cluster, which can be considered

as the cluster center and, then, the degree of membership for each object in the clus-

ters are computed. The work in [AZMOG] attempts to segment satellite image based

on FCM algorithm and to detect different road classes on it. Some variants of fuzzy

clustering for satellite image domain are presented in [ACNOS, AN09, GyFSlXrO91.

In [VB09], a density based clustering method called rough-DBSCAN is presented.

It is a modication of the well known density based clustering method DBSCAN

[EKSX96] and aims at achieving similar result as DBSCAN but in much smaller

time requirement (O (N)) .

Neural Networks-based clustering approaches have also gained popularity in recent

years. Examples are SOFM (Self Organizing Feature Map) [Koh95, AN091 and ART

(Adaptive Resonance Theory) [THHK02]. SOFM attempts to visualize a high dimen-

sional input pattern with prototype vectors in a two-dimensional lattice structure,

where each node in the lattice structure is a neuron, which are connected to each other

via adaptable weights. During the training process, the neighboring input patterns

are projected into the lattice corresponding to adjacent neurons. The advantages of

SOFM are: (i) It enjoys the benefits of input space density approximation and, (ii) it

is input order independent. The disadvantages are (i) like k-means, SOFM needs to

predefine the size of the lattice, (the number of clusters) and, (ii) it may suffer from

input space density misrepresentation. ART [THHK02] is a large family of neural

network architecture and is capable of learning any input pattern in a fast, stable

and self-organizing way.

Genetic Algorithms (GA) [Go1891 are also used in cluster analysis. GA clustering is

basically a randomized search and optimization technique based on the principles of

evolution and natural genetics. Several GA-based clustering algorithms are found in

the literature [ACNO9, LLF+04b7 KM99, LLF+04a, BPO1, MB03a, BMM07al. GAS

have also been used to cluster satellite images such as the real-coded variable string

length genetic fuzzy clustering in [MB03a] and multi-objective optimization algo-

rithm in [BMM07a]. GGA (Genetically Guided Algorithm) is a genetic algorithm

for fuzzy and hard k-means [HOB99]. Evolutionary techniques rely on certain pa-

rameters to empirically fit data and have high computational costs that limit their

application in data mining. However, usage of combined strategies (e.g., generation

of initial guess for k-means) has been attempted [BM93].

Other soft clustering algorithms have been developed and most of them are based on

the Expectation-Maximization (EM) algorithm [DLR77]. They assume an underly-

ing probability model with parameters that describe the probability that an instance

belongs to a certain cluster. EM algorithm starts with initial guesses for the mixture

model parameters. These values are then used to calculate the cluster probabilities

for each object which in turn are used to re-estimate the parameters, and the process

is repeated. A drawback of such algorithms is that they tend to be computationally

expensive. Another problem found in this approach is called overfitting. This prob-

lem might be caused due to two reasons. On one hand, a large number of clusters

may be specified and on the other, the distributions of probabilities have too many

parameters. In this context, one possible solution is to adopt a fully Bayesian a p

proach, in which every parameter has a prior probability distribution.

In case of fuzzy clustering, the problem of specifying the number of clusters exists.

The basic advantage of ART is that it is fast, exhibits stable learning and pattern

detection. The disadvantage is its inefficiency in handling noise and higher dimen-

sional representation for clusters. GA-based clustering has also been used extensively

recently, however, solutions are not always free from the local optima problem.

2.2.10 Subspace Clustering

Subspace clustering was initially proposed by Agrawal et al. [AGGR98], to evaluate

features on only a subset of the data, based on a measure referred to as a "measure

of locality" representing a cluster. In this subsect ion, subspace clustering algorithms

are discussed in four broad categories.

a. Bottom-Up SubspaceSearch Methods take the advantage of downward closure

of the property of density to reduce the search space. It determines local-

ity by creating bins for each dimension which finally form multi-dimensional

grid, achieved by two approaches: (i) static grid-sized approach, e.g., CLIQUE

[AGGR98] and ENCLUS[CFZ99], two popular algorithms of this category, and

(ii) data driven strategies adopted to determine the cut-points, e.g., MAFIA,

CBF, CL Tree and DOC. CLIQUE [AGGR98] can find clusters within s u b

spaces using a grid-density based clustering approach and is capable of iden-

tifying arbitrary shaped clusters in any number of dimensions without spec-

ifying the number of clusters. The clusters may be found in the same space

or in overlapping and disjoint subspaces. CLIQUE scales well with the num-

ber of instances and dimensions in the dataset. This method is not without

its disadvantages, which are both grid size and the density threshold are in-

put parameters which affect the quality of the clustering results, the small but

important clusters can sometimes be eliminated during the pruning stage. EN-

CLUS [CFZ99]is a bottom-up clustering method which defines clusters based

on entropy and can locate overlapping clusters of various shapes in subspaces

of different sizes. However, its scalability is poor with respect to the s u b

space dimensions. Merging of Adaptive Finite Intervals Algorithm (MAFIA)

[GGN+99] is a variant of CLIQUE and uses an adaptive, grid-based approach

with parallelism, to improve scalability. The advantages of MAFIA are that it

can locate clusters of various sizes and shapes, its performance is faster than

CLIQUE due to the adoption of parallel approach and its scale-up is linear.

However, the running time grows exponentially as the number of dimensions in-

crease. Cell-Based Clustering (CBF) [CJ02] is also a bottom-up algorithm but

unlike CLIQUE and MAFIA, it uses an efficient algorithm for creation of par-

titions optimally, to avoid exponential growth of bins with the increase in the

number of dimensions. CBF locates clusters of various sizes and shapes, scales

linearly with respect to the number of records in a dataset and its performance

is better since the bins are stored in an index structure. But, it is sensitive

to the threshold which determines the bin frequency of a dimension and the

threshold which determines the number of data points in a bin. Density-based

Optimal projective Clustering (DOC) [PJAM02] is basically a hybridization of

bottom-up and topdown approaches. It introduces the notion of an optimal

projective cluster. The advantage is that the running time grows linearly with

the number of instances, whereas the disadvantages are it is sensitive to the

input parameters, is able to identify mostly hyper-rectangular shaped clusters,

and the running time grows exponentially with the increase in the number of

dimensions in the dataset.

b. TopDown SubspaceSearch Methods start with an initial approximation of

clusters over an equally weighted full feature space. Next, it follows an itera-

tive procedure to update the weights and accordingly reforms the clusters. It

is an expensive clustering algorithm over the full feature space. However, the

use of sampling technique can improve the performance. The number of clus-

ters and the size of the subspace are the most critical factors in this approach.

PROCLUS [AWY+99] is a sampling biased topdown subspace clustering algo-

rithm which randomly selects a set of k-medoids from a sample and iteratively

improves the choice of medoids to form better clusters. The disadvantages of

this method are it is biased towards hyper-spherical shaped clusters, cluster-

ing quality depend upon the size of the sample chosen, and it is sensitive to

the input parameters. ORCLUS [AYOO] at tempts to form clusters iteratively

by assigning the points to the nearest cluster representation. It computes the

dissimilarity between a pair of points as a set of orthonormal vectors over a

subspace. It is a fast and a scalable method. However, it requires the size of

the subspace dimensionality and the number of clusters apriori and may some-

times miss some small clusters. The algorithm 6-Clusters [YWWY02] starts

with an initial seed and attempts to improve the overall quality of the cluster

iteratively by swapping dimensions with instances. The advantage is that the

use of coherence as a similarity measure makes it more relevant for microarray

data analysis and its disadvantages are that (i) it is dependent on two input

parameters which are number and size of the cluster (ii) the running time is

dependent upon the cluster size. COSA [FM04] starts with an equally weighted

dimension for each instance and then it examines the k-nearest neighbors (knn)

of an instance. Based on knn, it calculates the respective dimension weights

for each instance and assigns higher weighted dimensions to those instances

which have lesser dispersion within the neighborhood. This process is then

repeated with the new instances till the weights stabilize. The advantage of

this method is that the number of dimensions in clusters need not be specified

and the dimension weights are calculated.

c. Biclustering Algorithms: A bicluster [CCOO] is an I x J sub-matrix that ex-

hibits some coherent tendency where I and J are set of genes (rows) and

conditions (columns), respectively, and 1 11 5 IGI and I JI 5 [TI. The volume

of a bicluster (I, J) is defined as the number of elements eij such that i E I

and j E J . The quality of a bicluster is assessed based on the mean squared

residue, which is the variance of the set of all elements in the bicluster, plus

the mean row variance and the mean column variance. The lower the mean

squared residue, stronger is the coherence exhibited by the cluster and better

is the quality of the bicluster. Cheng and Church [CCOO] were the pioneers in

applying biclustering to gene expression data. To obtain the larger bi-clusters

with minimum mean squared residue, the authors introduced the node addi-

tion method which simultaneously adds rows/columns as deletions took place.

However, it is not capable of identifying overlapping/embedded clusters be-

cause the elements of the already identified bicluster are masked by random

noise. FLexible Overlapped biclustering (FLOC) [YWWY03] addresses the

limitation of Cheng and Church [CCOO] and accelerates the biclustering pro-

cess, FLOC uses a probabilistic algorithm which can discover a set of k-possible

overlapping biclusters simultaneously. Order-preserving submatrices (OPSM)

[BdCKY02] is another probabilistic model which attempts to address the idea

of large OPSMs with maximum statistical significance. Tanay et al. in [TSS02]

introduced Statistical-Algorithmic Method for Bicluster Analysis (SAMBA), a

bi-clustering algorithm that performs simultaneous bicluster identification by

using exhaustive enumeration. An important advantage of SAMBA is that it

is capable of analyzing large datasets in lesser time. The Coupled Two-Way

Clustering (CTWC) [GLDOO] tries to identify couples of small subsets of fea-

tures and objects. The Interrelated Two-Way Clustering (ITWC) [TZRZOl]

is an iterative biclustering algorithm based on a combination of the results

obtained by clustering performed on each of the two dimensions of the data

matrix separately.

d. TriClustering Algorithms tries to find coherent clusters along gene-sample-

time (temporal) or gene-sample-region (spatial) dimensions, known as triclus-

ters, which may be arbitrarily positioned and overlapped [ZZ05]. TriClustering

algorithms are used for mining such coherent clusters in three-dimensional gene

expression datasets. TriCluster relies on a graph-based approach to mine vari-

ous types of clusters, including clusters having constant or similar values along

each dimension with scaling and shifting expression patterns, based on different

parameter values.

2.2.11 A General Comparison among Different Approaches

We have discussed some of the unsupervised clustering methods present in the litera-

ture. Partitioning algorithms typically represent clusters by a prototype and an iter-

ative control strategy is used to optimize the whole clustering such as the average or

squared distances of instances to its cluster centers (prototypes) are minimized. Par-

titional clustering algorithms are effective for determining clusters of convex shape,

similar size and density, and if the number of clusters can be reasonably estimated.

However, determining the appropriate number of clusters is very difficult. Hierarchi-

cal clustering algorithms decompose the dataset into several levels of partitioning and

are represented by a tree structure which splits the dataset recursively into smaller

subsets. Although hierarchical clustering algorithms can be very effective in knowl-

edge discovery, the cost of creating the tree is very expensive for large datasets. In

density-based approaches clusters are regarded as regions in the data space where the

objects are dense, and they are separated by regions of low density (noise). These re-

gions may have an arbitrary shape and the objects inside a region may be arbitrarily

distributed. Generally, grid-based clustering algorithms first separate the clustering

space into a finite number of cells (hyper-rectangles) and then perform the required

operations on the quantized space. Cells that contain more than certain number of

points are treated as dense and the dense cells are connected to form the clusters. A

solution for better results could be instead of integrating all the requirements into a

single algorithm, to try to build a combination of clustering algorithms. In addition,

the impact of various soft computing techniques is also considerable for identifying

clusters that are not crisp. The performance and quality of distributed and parallel

clustering techniques have helped in managing and processing massive data. For

high dimensional clustering, subspace clustering algorithms have given quite good

results. A performance comparison of various clustering algorithms is given in Table

2.1.

2.2.12 Handling Outliers

Data usually have an associated amount of noise, which can be viewed as outliers.

Alternately, outliers can be viewed as legitimate records having abnormal behavior.

The algorithm BIRCH [ZRL96] revisits outliers during the major CF tree rebuilds,

but in general handles them separately. Some algorithms have specific features for

outliers handling. The algorithm CURE [GRS98] uses shrinkage of cluster representa-

tives to suppress the effects of outliers. K-medoids methods are generally more robust

than k-means methods with respect to outliers. The algorithm DBSCAN [EKSX96]

uses concepts of internal (core), boundary (reachable), and outliers (non-reachable)

points. CLIQUE [AGGR98] eliminates subspaces with low coverage. Wavecluster

[SC+98] handles outliers very well through its filtering process. The algorithm OR-

CLUS [AYOO] produces a partition plus a set of outliers. A point is said to be an

outlier if its &-neighborhood contains less than MinPts-fraction of a whole dataset

D [KNTOO]. In essence, different subsets of data have different densities and may be

governed by different distributions. A point close to a tight cluster can be a more

probable outlier than a point that is further away from a more dispersed cluster. The

concept of local outlier factor (LOF) that specifies a degree of outlier-ness comes to

rescue [BKNSOO]. The definition is based on the distance to the k-nearest neighbor.

Knorr et al. [KNZOl] addressed a related problem of how to eliminate outliers in

order to compute an appropriate covariance matrix that describes a given locality.

Outlier detection techniques can be divided into the following categories given below.

Distribution-based methods handle one dimensional data and assume a statis-

tical distribution such as Gaussian and try to fit the data to the model by

estimating the parameters such as mean and variance from the data [BL94].

They vary in terms of type of distribution, number of outliers to be identied

and type of outliers. Then they employ a test based on the distribution prop-

erty to identify outliers w.r.t. this distribution. In reality, prior knowledge

about the distribution of the dataset is not always available.

Depth-based approaches [RR96, JKN981 employ computational geometry to

compute different layers of convex hulls and declare those objects in the outer

layer as outliers. However, they suffer from the dimensionality curse and cannot

cope with large dimensions.

Distance-based approaches distinguish points which are likely to be outliers from

others based on the number of points in their neighborhood and are suitable for

nding outliers in large datasets. Corresponding to clustering algorithms that

nd convex clusters [KR90, NH02], one well known technique is the DB(p, d)-

outlier [KN98], where a point in a dataset D is an outlier if at least p fraction

of points in D lie greater than distance d from it. A special case of DB(p, d)-

outlier is proposed in [RRSOO], where the distance to the k-th nearest neighbor

is used to rank the outlyingness. But, it cannot handle data with different local

densities and hence can only find global outliers. Besides, the users parameters,

such as p, dl k, are hard to determine.

Density-based approaches focus on the local density comparison only with the

immediate neighbors. They come in two classes, subspace and full space. Some-

times, an object could reside in a low density region only in a subspace, which

is obtained by projecting the original full space onto one of its subsets. In

[AGGR98], all possible subspaces were searched where there are regions with

much lower density than the rest of the subspace. All points in those low den-

sity regions are declared as outliers. In [BKNSOO], the authors introduced the

notion of LOF, which measures the degree of outlyingness, based on the differ-

ence in the local density of a point and its k-nearest neighbors. DB(p, d)-outlier

cannot detect local outliers w.r.t. a neighboring dense cluster in presence of

another very sparse cluster because although the local density of the outlier

can be lower than those inside the neighboring high density cluster, it may be

comparable to those inside the sparse (low density) cluster, therefore, a large

portion of points in the sparse cluster will also be classied as outliers. LOF

solves this problem by comparing local density of the outlier only with those of

its neighboring objects. The weakness of LOF is that it cannot detect outliers

whose local density is higher, not lower, than those inside the neighboring pat-

tern. Such a pattern may consist of a set of regularly spaced points that have

lower densities than their neighboring outliers.

2.3 Discussion

This chapter presents various proximity measures, clustering and outlier detection

techniques. Clustering algorithms are dependent on the proximity measure chosen.

Moreover, there exists no particular measure which can handle all the issues or do-

mains. F'rom the discussion above, we conclude that various clustering algorithms

require different types of input parameters and clustering results are highly depen-

dent on the values of the parameters. Clustering algorithms that can handle massive

data, identify clusters even in high dimensional and noisy data are in great demand.

Again, identification of variable density clusters is an important research area which

has gained focus due to its huge potential. Clustering algorithms that do not require

the number of clusters beforehand, insensitive to the proximity measure, and robust

to noise are of utmost importance.

In this thesis, we present several clustering techniques for application over 2D spatial

data, satellite and gene expression data. The advantages of our techniques are: (i)

Independence of the number of clusters, (ii) detection of variable density clusters, (iii)

identifications of sub-clusters, (iv) capability in detecting clusters in large-scale data

and (v) handling outliers and noise. The next chapter presents our first clustering

technique capable of identifying variable density clusters in 2D spatial data.

Table 2.1: Comparison of various clustering algorithms

Algonthms

k-means

k-modes

FCM

PAM

CLARA

CLARANS

BIRCH

CURE

ROCK

CHAMELEON

No. of
Parameters

No. of clusters

No, of clusters

No. of clusters

No of clusters

No, of clusters

No. of clus-

ters, Max no.

of neighbors

Branching fac-

tor, Diameter,

Threshold

No. of clusters,

No. of repre-

sentatives

No. of clusters

3 (k-nearest

neighbor,

MINSIZE, aC)

Optimized

For

Separated

Clusters

Separated

Clusters, large

datasets

Separated

Clusters

Separated

Clusters, small

datasets

relatively large

datasets

better than

PAM, CLARA

Large data

Any shape

large data

Small noisy

data

Small datasets

Structure

Spherical

spherical

Non-convex

shapes

spherical

spherical

spherical

Spherical

Arbitrary

Arbitrary

Arbitrary

Multz-

Densaty
Clusters

No

No

No

No

No

No

No

No

No

Yes

Embedded
Clusters

No

No

No

No

No

No

No

No

No

No

Complexzty

O(l%N)

O(l%N)

O (l a k (N -

kI2)

O (k x S r 2 +

k (N - k))
O (k N 2)

O (N)

O (N 2 1 0 g ~)

O (N 2 +
N m m m a +
N ~ ~ o ~ N)

o (N 2)

Noase
Handlzng

No

No

No

No

NO

No

Yes

Yes

Yes

Yes

Nozse

Handlzng

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Algorathms

DBSCAN

OPTICS

DENCLUE

Wavecluster

STING

CLIQUE

MAFIA

AUTOCLUST

No. of

Parameters

2 (MznPts , E)

3 (MznPts , E ,

.'I

2 (MznPts , E)

No. of cells

for each dimen-

sion, No of

applications of

transform

No. of cells

in lowest level,

No. of objects

in cell

Size of the grid,

minimum no.

of points in

each grid cell

Size of the grid,

minimum no.

of points in

each grid cell

NIL

Complexzty

O(N1ogN)

using R*

tree

O(N1ogN)

using R*

tree

O(N1ogN)

using R*
tree

O (N)

O (N)

O (N)

o (c k ')

O(N1ogN)

Optimized

For

Large datasets

Large datasets

Large datasets

Any shape,

Large data

Large spatial

datasets

High dimen-

sional, large

datasets

High dimen-

sional, large

datasets

Massive data

Structure

Arbitrary

Arbitrary

Arbitrary

Any

Vertical and

horizontal

boundary

Arbitrary

Arbitrary

Arbitrary

Multz-

Denszty

Clusters

No

Yes

No

Yes

No

No

No

No

Embedded

Clusters

No

Yes

No

No

No

No

No

No

Chapter 3

Grid-Density based Spatial Data

Clustering

Spatial information, also known as geo-spatial or geographic information identify

geographic locations of features and boundaries on earth. Among data mining tech-

niques, clustering has been widely used to mine information from such data. Spatial

data may contain data of different densities and the identification of clusters in vari-

able density regions is an important research issue.

This chapter presents a grid-density based clustering technique that can identify

embedded clusters in variable density space. The proposed technique can detect

clusters for different density regions and can also detect embedded clusters. The

technique has also been slightly enhanced for outlier detection. Experimental results

using several test and standard synthetic datasets establish the superiority of this

technique in terms of cluster quality.

3.1 Introduction

Spatial data contains information about the geographic location of features and

boundaries on earth, such as natural or constructed features and oceans. Spatial in-

formation is usually stored in terms of coordinates and topology, and can be mapped

for display. Spatial data is also stored in terms of pixels. From such data, infor-

mation units such as points, lines, regions, part itions (maps) and graphs (networks)

can be extracted. Spatial data is often accessed, manipulated or analyzed through

Geographic Information Systems (GIs). Spatial data may also contain non-spatial

attributes that may be either dependent or independent of location. Spatial data

is a specialized domain for data mining. Its aim is to discover latent or implicit

knowledge in spatial data. Spatial data mining has the end objective of finding pat-

terns in geography. The immense explosion in geographically relevant data created

by developments in IT, digital mapping, remote sensing, and the global diffusion of

GIs emphasizes the importance of developing data driven inductive approaches to

geographical analysis and modeling. Data mining, which is the automated search for

hidden patterns in large databases, offers great potential benefits for applied GIS-

based decision-making. Geo-spatial data repositories tend to be very large. Spatial

cluster analysis plays an important role in quantifying geographic variation patterns.

It is commonly used in disease surveillance, spatial epidemiology, population genet-

ics, landscape ecology, crime analysis and many other fields. The clustering task

becomes more challenging as the number of embedded patterns increases with the

increase in variable density regions. This chapter provides an overview of spatial clus-

ter analysis. Initially, we survey different forms of clustering applicable to spatial

data. Then, we discuss a new clustering technique for spatial data.

Related Work

Clustering techniques have been classified into partitional, hierarchical, density based,

grid based and model based approaches. Among these techniques, the density-based

approach stands out for its ability to discover arbitrary shaped clusters of good qual-

ity even in noisy datasets [EKSX96]. The grid-based clustering approach is well

known for its fast processing time especially for large datasets. This section provides

the background research on density based and grid based clustering.

3.2.1 Density based approach

The idea behind density based clustering approach is that the density of objects

within a cluster is higher compared to the objects outside of it. DBSCAN [EKSX96]

is a density-based clustering algorithm capable of discovering clusters of various

shapes even in presence of noise. The key idea of DBSCAN is that for each object of

a cluster, the neighborhood of a given radius (E) must contain at least a minimum

number of objects (MinPts) and the density in the neighborhood must exceed some

threshold. Thus it has two parameters E and MinPts. It is difficult for users to

correctly predict suitable values of these two parameters for a dataset. Another

drawback of this technique is the high computational complexity because it examines

all the neighborhoods to check if the core condition is satisfied for each object. This

step is very expensive especially when the algorithm runs on very large datasets.

Therefore, spatial index structures are used for large datasets. For massive datasets,

it becomes very time consuming, even if we use efficient data structures such as

R* tree. An additional drawback of DBSCAN is that due to the use of the global

parameters, it fails to detect embedded or nested clusters. OPTICS [ABKS99] can

identify embedded clusters in space of varying densities. However, its execution

time is high for large datasets with spaces of variable densities and nested cluster

structures. Moreover, OPTICS is highly sensitive to its parameters MinPts, E and

E' (core distance).

3.2.2 Grid based approach

Grid based methods divide the data space into a finite number of cells that form

a grid structure on which the clustering is performed. There is a high probability

that all data objects that fall into the same grid cell belong to the same cluster.

Therefore all data objects belonging to the same cell can be aggregated and treated

as one object [HC04]. It is due to this reason that grid-based clustering algorithms are

computationally efficient. Such algorithms have many advantages such as the total

number of the grid cells is independent of the number of data objects and is insensitive

to the order of input data objects. Some popular grid based clustering techniques are

discussed in [WYM97, NGCOO]. STING [WYM97] uses a multi-resolution approach

to perform cluster analysis. The advantage of STING is that it is query-independent

and easy to parallelize. However the shapes of clusters are restricted to horizontal

or vertical boundaries but no diagonal boundary is possible. Wavecluster [SC+98]

also uses a multidimensional grid structure and detects clusters of data at varying

levels of accuracy. It automatically removes outliers and is very fast. However,

it is not suitable for high dimensional datasets. CLIQUE [AGGR98] is a hybrid

clustering method that combines both density-based and grid-based approaches. It

automatically finds subspaces of the highest dimensionality and is insensitive to the

order of input. Moreover, it scales well as the number of dimensions in the data

increases. However, the accuracy of the clusters may degrade because the method

is simple. pMAFIA [NGCOO] is an optimized and improved version of CLIQUE.

It detects coarse clusters and scales exponentially as number of dimensions in the

dataset increases. GDILC [YJOl] is based on contour figures, density-based and grid-

based clustering algorithms. This algorithm needs expensive neighborhood distance

calculation with each of the cell's neighbors. Therefore, the cost of GDILC is too

high, especially for large datasets.

3.2.3 Clustering in multi-density and variable density data

space

One major application of clustering spatial databases is to find clusters of spatial

objects which are close to each other. Most traditional clustering algorithms dis-

cover clusters of arbitrary densities, shapes and sizes. Very few clustering algorithms

show desirable efficiency when clustering multi-density datasets. This is also because

small clusters with small number of objects in a local area are easily missed by a

global density threshold. Some clustering algorithms that can cluster multi-density

datasets are Chameleon [KHK99], SNN [ESK03] (shared nearest neighbor) and the

multi-stage density-isoline algorithm [YcMFJdO3]. Chameleon [KHK99] can handle

multi-density datasets, but for large datasets the time complexity is too high. SNN

[ESK03] can find clusters of varying shapes, sizes and densities. The disadvantage of

SNN is that the degree of precision is low in identifying multi-density clusters and

in handling outliers. The multi-stage density-isoline algorithm [YcMFJd03] clusters

datasets in multiple stages. The disadvantage of the algorithm is that clusters cannot

be separated efficiently. DGCL [KGX+OG] is based on a grid-density based clustering

approach. However, due to the use of a uniform density threshold, the low density

clusters are often lost.

Most real life datasets have a skewed density distribution and may also contain

nested cluster structures, the discovery of which is very difficult. OPTICS [ABKS99]

handles datasets with variable density successfully. OPTICS has been discussed in

detail in Section 2.2.3 of this thesis. A density based clustering technique, LDB-

SCAN, that can detect both embedded as well as overlapping clusters using local

density information is presented in [DXLGOG]. EnDBSCAN [RB05] makes an at-

tempt to detect embedded or intrinsic clusters using an integrated approach. Based

on our experimental analysis using very large synthetic datasets, we conclude that

EnDBSCAN can detect embedded clusters. However, with the increase in the volume

of data, its performance degrades. EnDBSCAN is highly sensitive to the parameters

MinPts and E. In addition to these two parameters, OPTICS requires an additional

parameter E / . DDDBSCAN [BB07] finds clusters of different shapes and sizes that

differ in local densities. However, the method is unable to handle the density varia-

tion within a cluster, i.e. a cluster may have wide density variation from one end to

another. A Density Differentiated Spatial Clustering Technique (DDSC), proposed

in [BB08], is also an extension of the DBSCAN method. It detects clusters that

have non-overlapped spatial regions with reasonable homogeneous density variations

within them. If there is significant change in densities of adjacent regions, then

such regions are separated into different clusters. An added advantage is that the

sensitivity to the input parameter E , which is an important disadvantage of DB-

SCAN, is reduced significantly. EDBSCAN [AASS09] is another improvement of

DBSCAN. It keeps track of density variation within a single cluster. It calculates

the density variance of a core object with respect to its &-neighborhood. If density

variance of a core object is less than or equal to a threshold value and also satisfies

the homogeneity index in its &-neighborhood, it allows the core object to expand. It

calculates the density variance and homogeneity index locally in the &-neighborhood

of a core object. Another method, VDBSCAN proposed in [LZW07], for analysis of

varied-density datasets. VDBSCAN adapts the traditional DBSCAN algorithm us-

ing K-dist plots to select values of the parameter E for different density regions. The

DBSCAN algorithm is run for different values of E to make sure that all the clusters

of the corresponding density are discovered. In a run of DBSCAN, the objects that

have already been clustered in previous runs are ignored; this avoids the problem

of marking both denser areas and sparser ones as one single cluster later. Another

method for detecting clusters of variable densities, DVBSCAN (Density Variation

Based Spatial Clustering of Applications with Noise), is proposed in [RJJKlO]. It

starts the formation of the cluster by selecting a core object. Then it computes the

Cluster Density Mean (CDM) of the growing cluster before allowing the expansion

of an unprocessed core object. After that it computes the Cluster Density Variance

(CDV) within the &-neighborhood of the unprocessed core object with respect to

Cluster Density Mean (CDM). If the Cluster Density Variance (CDV) of the grow-

ing cluster with respect to CDM is less than a specified threshold value, say, CDV,

and the difference between the minimum and maximum densities of objects in the

&-neighborhood of the objects of the growing cluster, including the &-neighborhood

objects of the unprocessed core object, is less than a specified threshold value CSIx

then only an unprocessed core object is allowed for expansion otherwise the object

is simply added into the cluster. This algorithm claims to handle variable density

clusters in the dataset but is computationally expensive.

3.2.4 Discussion

Based on our survey, we observe that partitional methods detect only spherically

shaped clusters, and sometimes cannot handle noise or detect outliers. Hierarchical

algorithms give a tree view of the clusters but are dependent on a termination factor

which is hard to derive apriori. Model based methods fit a mathematical model to

the data but are computationally expensive and not all data fit into the model. It

is also evident from our survey that Density Based methods are more efficient in

finding clusters and in handling outliers/noises in large spatial datasets. However,

a basic disadvantage of these methods is their dependency on input parameters and

the clusters detected are highly sensitive to these parameters. Hierarchical cluster-

ing algorithms fix the membership of a data object once it has been allocated to

a cluster. In hierarchical clustering, our regular point-by-attribute data representa-

tion is sometimes of secondary importance. BIRCH [ZRL96], CURE [GRS98] and

CHAMELEON [KHK99] use complex criteria for compressing and relocating data

before merging clusters. After carefully considering the advantages of both density

based and grid based approaches, this chapter presents a grid-density based cluster-

ing technique to enable (i) the detection of arbitrary shaped clusters, (ii) detection

of variable density and embedded clusters, (iii) handling of outliers, and (iv) faster

cluster discovery of finer clusters.

3.3 Grid-Density based Clustering Technique

The distribution of data in a dataset is not uniform in general. Some portions of the

data space are highly dense while some portions are sparse. Therefore, the data space

is divided into grid cells and the cells whose densities are similar are merged. These

similarly dense grid cells are together form the coarse clusters or rough clusters.

Once merging of grid cells according to density terminates, a set of coarse clusters is

obtained. Thus, coarse clusters represent the maximal space that can be covered by

the similar grid cells in terms of their densities. A method for computing the number

of grid cells (gr, x gr,) is given next.

Computing the Number of Grid Intervals (gr,)

The following formula is used to estimate the number of grid intervals gr,.

where N is the number of data objects and M is a positive integer to adjust the

value of grb. In fact, M stands for the average number of data samples in a cell. We

carried out a large number of experiments to understand the relationship between

Figure 3.1: M depends on the number of data objects

the number of data objects (N) and values for M. A graph of N versus M is shown

in Figure 3.1. The value of gr, is calculated based on Equation 3.1 and Equation

3.2. Based on our wide range of experiments, we observe that gr, varies within the

range given in Equation 3.2.

Next, we introduce a few definitions to help in understanding the proposed algo-

rithm.

3.3.1 Density based approach

Definition 1. Cell Density: It is defined as the number of objects within a grid cell.

Definition 2. Useful Cell: A cell is defined as a useful cell if it is populated, i e., it

contains data objects within it

Definition 3. Neighbor Cell. A cell which is edge neighbor or vertex nelghbor of a

current cell is defined as the neighbor of the current cell Figure 3 2 (a) shows the

neighbor cells (shaded) of the current cell P.

Figure 3.2: (a) The white cell is the current cell and all its neighbors are in gray (b)

The white triangle P is the current triangle and all its neighbors are shaded gray.

Definition 4. Density Confidence of a cell: If the ratio of the densities of the

current cell and one of its neighbors is less than some P' (given as user input), P' is

the density confidence between them. Density confidence plays an important role in

cluster formation. For two cells pl and ql to be merged into the same cluster, the

condition p' 5 dn(pl)/dn(ql) should be satisfied, where dn represents the density of

that particular cell.

Definition 5. Reachability of a cell: A cell p is reachable from a cell q if p is a

neighbor cell of q and cell p satisfies the density confidence condition w.r.t. cell q.

The proposed grid-density based clustering technique incorporates a Trzangle-

subdivision based approach for better processing of the boundary objects to get finer

clusters. A triangles is a degenerated quadrilaterals with two of the vertices merged

together. We have found the Triangle-subdivision based approach for selection of

the boundary objects to be more effective compared to the one based on rectangles.

The following definitions are introduced to support the Triangle-subdivision based

approach:

Definition 6. Triangle Density: The density of a triangle is defined as the number

of objects within that particular triangle of a grid cell.

Definition 7. Useful Triangle: A triangle T, in a cell p is defined as a useful triangle

if it is populated with at least one object.

Definition 8. Neighbor Triangle: A triangle which has a common edge with the

current triangle is said to be a neighbor of the current triangle. Figure 3.2 (b) shows

the neighbor triangles (shaded) of the current triangle P.

Definition 9. Density Confidence of a triangle: If the ratio of the densities of the

current triangle and one of its neighbors is less than p / 4 , the two triangles can be

merged into the same cluster. Therefore the following condition should be satisfied:

,0'/4 5 d,(T,)/d,(T,) where d, represents the density of the particular triangle.

Definition 10. Reachability of a triangle: A triangle T, is reachable from a triangle

T, if T, is a neighbor triangle of T, and triangle T, satisfies the density confidence

condition w.r.t. triangle T,.

Definition 11. Cluster: A cluster is defined to be the set of objects belonging to

a set of reachable cells and triangles. A cluster C, w.r.t. f l is a non-empty subset

satisfying the following condition,

Qp, q : if p E C, and q is reachable from p w.r.t. P', then q E C,, where p and q are

either cells or triangles, respectively.

Both cell-reachability and triangle-reachable relation have symmetric and transitive

properties within a cluster C,.

Definition 12. Noise: Noise is simply the set of objects belonging to the cells (or

triangles) not belonging to any of its clusters. Let Cl, C2, - . . , Ck be the set of k

clusters w.r.t. f l . Then

noise = {no,lp E n x n,Qi : p $ Ci) (3.3)

where no, is the set of objects in cell p.

3.3.2 Density Confidence

The density confidence for a given set of cells reflects the general trend of that set.

If the density of one cell is abnormal compared to that of the others it will not be

included in the set. Similarly, each useful cell has a density confidence with each of

its neighbor cells. If the density confidence of a current cell with one of its neighbor

cells does not satisfy the density confidence condition, that neighbor cell is not in-

cluded in the local dense area. On the contrary, if it satisfies the condition, we treat

the neighbor cell as a part of the local dense area and merge the cell with the dense

area. In comparison to other methods of setting a global threshold, this method has

the ability to recognize the local dense areas in the data space where multi-density

clusters exist.

In light of the above definitions, following lemmas are stated.

Lemma 1. Let C, be a cluster w.r.t. p' and let p be any cell in C,. Also, let T,

be a triangle in p. Then C, can be defined as the set of elements, S ={s U T,ls is

cell-reachable from p w.r.t. ,O' and T, is triangle-reachable from T, w.r.t. P').

Proof. Suppose r is a cell or a triangle, where r E sUT, and r is neither cell-reachable

nor triangle-reachable from p w.r.t. p. But, a cluster according to Definition 11 will

be the set of objects which are cell-reachable or trianglereachable from p. Therefore,

we come to a contradiction and hence the proof.

Lemma 2. A cell (or triangle) corresponding to noise objects is not cell-reachable

(or tr~~ianglereachable) from any of the clusters. For a cell p we have, V p : p is not

reachable from any cell (or triangle) in C,, i.e., p $ C,.

Proof. Suppose, C, is a cluster w.r.t P' and let p be a cell (or triangle) corresponding

to noise objects. Let p be cell-reachable (or triangle-reachable) from C,. Then p E C,.

But, this violates Definition 12 in that noise objects belong to cells that are neither

cell-reachable nor triangle-reachable from any of the clusters. Therefore, we come to

the conclusion that p is not reachable from any cell (or triangle) in C,.

Lemma 3. A cell (or a triangle) r can be cell-reachable (or a triangle-reachable)

from only a single unique cluster.

Proof. Let C, and C, be two clusters w.r.t. p' and let p be any cell (or a triangle)

in C, and q be any cell (or a triangle) in C,. Suppose a cell r is cell-reachable (or

triangle-reachable) from both p and q. Then r E C, and r E C,. This means that the

clusters C, and C, should be merged. This violates the basic notion that clusters are

unique sets. Thus, we can conclude that if r is cell-reachable (or a triangle-reachable)

from p w.r.t. p', r is not cell-reachable (or a triangle-reachable) from q w.r.t. ,O', i.e.

r E C, and r 4 C,. Therefore the lemma is proved.

GDCT: A Grid-Density based Clustering us-

ing Triangle-subdivision

Initially, the GDCT algorithm divides the data space into g r , x g r , non-overlapping

grid cells (where g r , is a user input) and maps the dataset to each cell. It then

calculates the density of each cell. The cells are sorted according to their density

values. The result is an ordered sequence < C,(,) >, where p(i) denotes a permuta-

tion of the index, i, defining the sorted order of the cells. The algorithm uses the cell

information (density) of the grid structure and clusters the data objects according

to their surrounding cells. The cell with the highest density becomes the cluster ini-

tiator. The remaining cells are then clustered iteratively in order of their densities,

thereby building new clusters or merging with existing clusters. Only the useful cells

adjacent to a cluster can be merged. A neighbor search is conducted, starting at the

highest density cell and inspecting adjacent cells. If a neighbor cell which satisfies

the density confidence condition of a cell is found, then the neighbor cell is merged

with the current cell to form the coarse cluster, and the search proceeds recursively

with this neighbor cell. This search is similar to a graph traversal where the nodes

represent the cells and an edge between two nodes exists if the respective cells are

adjacent and satisfies the density confidence condition of a cell.

A coarse cluster is an approximation of the innermost cluster or the cluster with

the maximum density, minus the boundary region. Cells falling inside a particular

coarse cluster are classified with the same clusterid. A coarse cluster is rough in its

shape and size. Its shape in the boundary region of the cluster varies abruptly and

rapidly since there is a transition from a denser region to sparser regions. Therefore,

this region needs special analysis. So, after the coarse cluster is formed, there may

still be some objects which are part of the cluster but have not been included in the

coarse cluster as shown by the red ellipses in Figure 3.3. Since the objects inside

these regions do not enter the coarse cluster though they should be part of the clus-

ter, we expand the cells in the boundary region of the coarse cluster with the help of

triangles. The objects inside the ellipses in the boundary region of the cluster have

been left out because the cells in which they belong have not satisfied the density

Figure 3.3: Example grid approximation for a dataset (gr, = 25)

confidence. This is because only a small portion of that part of the cluster has fallen

in a different cell and hence the density of that cell is much less than its neighbor

which is in the coarse cluster.

Therefore, to find the finer cluster boundaries, the cells located in the bound-

ary regions are triangulated by dividing into four triangles. Only those cells in the

coarse cluster that have at least one of its useful neighbor cells as ullclassified are

triangulated. The cells which are ullclassified and have at least one of its neighbor

cells in the most recent coarse cluster formed are also triangulated. The objects

of the cells that have been triangulated are mapped to the respective triangles in

which they fall. Barycentric coordinates1 are used to find which object falls in which

triangle. This method was chosen since it is independent of the cyclic order of the

vertices.

'Obtained from http//steve.hollasch.net/cgindex/math/baqemtric.html

Procedure of GDCT

The algorithm includes the following steps:

I. Create grid structure.

2. Compute density of each cell.

3. Sort cells according to their densities.

4. Identify the maximum dense cell from the set of unclassified cells.

5. Traverse neighbor cells starting from the dense cell to form the coarse cluster.

6. Perform Triangle-subdivision in the coarse grid of the border cells that have at

least a useful cell as one of its neighbors.

7. Perform Triangle-subdivision of the unclassified neighbor cells of these border

cells.

8. Merge the triangles and assign cluster-id.

9. Repeat steps 4 through 9 till all cells are classified.

The process of forming the coarse cluster starts by considering the cell, say p,, with

the maximum density from the sorted list. From pa, it initiates the process of expan-

sion by considering its neighboring cells p, (where cell p,, is the jth neighbor of pa)

depending upon two conditions which are

1. If p,, is not a member of any of the coarse clusters already formed, and

2. The ratio of the densities of the cells pa and p,, is more than some threshold 0'
(a user defined input parameter).

Let d, (p,) and d,(p,) denote the densities of p, and p, , respectively. Then p, will

merge with p,, if p' 5 d,(p,)/d,(p,,). The cells that satisfy the conditions given

above are merged to form the coarse clusters. The process of coarse cluster forma-

tion continues from p,, in the same way until no neighboring cells p,k of p, satisfy the

condition. The process then backtracks to p,, and restarts with the next neighbor

Figure 3.4: Triangle-subdivision of grid cells

cell of pij which has not already been processed. The coarse cluster formation con-

tinues recursively until no more cells satisfy the density confidence condition of a cell.

This coarse cluster is an approximation of the cluster with the maximum density.

The cells falling this particular coarse cluster are classified with the same cluster-id.

The process then checks the neighbors of the last formed coarse cluster. If any of its

neighbors is an unclassified useful cell, both the cell in the coarse cluster as well as the

unclassified neighbor cell are triangulated. Suppose p, is a cell of the coarse cluster

last formed and cell pi is one of its unclassified useful neighbor cells. Then both pi

as well as p, are triangulated (shown in Figure 3.4). During triangle-subdivision, a

particular grid cell is divided into four triangles.

Each of the triangles Tpi, inside the cell pi is verified for the following cases:

Case 1 : If Tp,U has a neighbor triangle TPmv which is a part of cell p, that belongs

to a coarse cluster, their densities dn(Tpmv) and dn(Tpiu) are compared for the

density confidence condition of a triangle given as f l /4 5 d,(Tp,,)/d,(Tp,U). If

this condition is satisfied, triangle TplU is merged with the triangle T,,, of the

coarse cluster and labeled with the same clusterid as p,.

Case 2 : If Tpzu has a neighbor triangle Tpav which has already been classified and the

densities of TpZu and Tpzv satisfy the condition given in case 1, TPzU is merged

with Tpzv and TPzu is classified with the same cluster-id as Tpa,,.

The process of triangle merging stops when no more triangles satisfy the density

confidence condition of a triangle. Figure 3.4 shows the formation of first coarse

cluster and triangle-subdivision of the border cells. The process then starts with the

next cell pa which is the cell of maximum density in the set of unclassified cells. The

process continues recursively merging neighboring cells that satisfy the density con-

fidence condition. Therefore, the coarse cluster formation and triangle-subdivision

method are repeated alternately till all the useful cells are classified. The classified

cells and triangles now give the distinct clusters and finally the data objects receive

the clusterid of the respective cells and triangles.

The cluster expansion detects embedded and nested cluster structures since after

full expansion of a cluster, the algorithm searches for the next candidate seed cell

taking into account a variation in density in the dataset. The process starts ex-

panding the new density region till there is again a density variation. This process

iterates till all the cells have been classified. The triangle expansion produces finer

clustering since the cluster expansion based on cells misses some border objects as

seen in Figure 3.3. The expansion based on triangle-subdivision detects the bor-

der objects which have been left out by cell based expansion. The final clusters

obtained from Figure 3.3 are shown in Figure 3.8. Therefore, the quality of the clus-

ters becomes highly accurate in spite of detecting intrinsic and multi-density clusters.

During clustering, the algorithm considers only grid cells to identify the possible

global and embedded clusters and assigns cluster-id accordingly.

Figure 3.5: The arrows show triangle reachability

Figure 3.6: Handling of Single linkage problem

Advantages of GDCT

The advantages of the proposed algorithm include embedded cluster detection and

handling of single linkage problem. Embedded cluster detection is inherent to GDCT.

To understand how GDCT handles the single linkage problem, we consider Figure

3.5. Once the coarse cluster has been formed, the triangle sub-division process starts.

For neighbor traversal in triangles there must be at least one common edge between

triangles. Two triangles are merged according to Definition 9. As seen in Figure 3.6,

a chain of single objects is not be merged as the objects do not satisfy Definition 10.

Thus, the single linkage problem which affects DBSCAN does not affect the proposed

algorithm.

3.4.1 Complexity Analysis

The partitioning of the dataset into gr, x gr, non-overlapping cells results in a com-

plexity of O (N) where N is the total number of data objects and N >> gr, x gr,.

Computing density of the cells requires O(gr, x gr,) time. The sorting of cells ac-

cording to their density results in a complexity of O((gr, x gr,)log(gr, x gr,)). The

expansion of the coarse cluster requires O (m) time, where m is the average number

of cells in an coarse cluster formed and m << (gr, x gr,) in the average case. Cell

subdivision into triangles takes place only in case of the border cells of the coarse

cluster and its neighboring cells. Assuming there are p border and q neighbor cells,

the time complexity is O(p + q). If the number of clusters obtained is k , the overall

time complexity for the clustering will be O(k x (m + (p + 9))) .

Therefore, the total time complexity is O((gr, x gr,) +O((gr, x gr,)log(gr, x gr,)) +
O(lc x (m + (p + 9))) . Thus the complexity due to partitioning of the dataset into

grid cells almost dominates the other components. Therefore, the time complexity

becomes O (N) since N >> (gr, x gr,).

3.4.2 Performance Evaluation

Table 3.1: Datasets used

dimensions

All our experiments were conducted on a Pentium IV 2.4GHz computer with 512MB

main memory running Windows XP. GDCT was implemented in Java by using Sun's

JDK version 1.4.2.

DS6

DS7

Datasets Used

To evaluate the performance of GDCT, we consider both randomly generated as well

as standard synthetic datasets [KHK99]. Table 3.1 gives the number of objects and

other related information about the datasets that we use. The synthetic dataset DS1

we have generated is shown in Figure 3.7. The results of DS1 are shown in Figure

3.8. We evaluated GDCT with several other synthetic datasets as well. The clusters

obtained for one of them, DS2, is shown in Figure 3.9. GDCT was also applied to

the Chameleon t8.8k1 t4.8k and t7.10k datasets [ABKS99] and the results obtained

are shown in Figures 3.10, 3.11 and 3.12, respectively. The result obtained for t5.8k

dataset is shown in Figure 3.13. From these experimental results, it is evident that

GDCT is highly capable of detecting intrinsic as well as multi-density clusters. We

also observe that the clustering behavior is dependent on the threshold f l which we

varied in the interval [0.5, 0.71.

8000

3150

2

2

t5.8k obtained from [KHK99]

Generated by us

Figure 3.7: Synthetic Dataset DS1

Figure 3.8: Final five clusters in DSI

Figure 3.9: Final cluster result of DS2

Figure 3.10: Clusters obtained from DS3

Figure 3.11: Clusters obtained from DS4

Figure 3.12: Clusters obtained from DS5

Figure 3.13: A total of 6 Clusters obtained from DS6

3.4.3 Performance Comparison

To compare the quality of clustering by GDCT with other relevant algorithms, we

used two other clustering techniques (VDBSCAN and DVBSCAN), which are also

capable of detecting density varied clusters. For VDBSCAN, we used the K-dist plot

[EKSX96] to find the E values corresponding to different density varied regions in the

datasets. Whenever we detected a sharp change (knee) in the K-dist graph, we used

the corresponding distance value as the E value of a density region. If more the11 one

knee were detected, it meant that the dataset had density variations in it; in such a

situation the distance values of those in the K-dist plot were used as E values to detect

the different density varied clusters. A dataset without much density variation will

have a smooth graph. The results of VDBSCAN on Chameleon t8.8k dataset is give11

in Figure 3.14. For this dataset we used the value K = 4 for Minpts in different runs

of DBSCAN for the different values: of E. This figure shows two different results of

VDBSCAS for different slope diffcrerrcc~. We see that VDBSCAS cannot detect all

clusters and suffers from the single link effect for the triangular and arbitrary shaped

clusters. When, we tried to separate these clusters by using different slope variations

to obtain different E values, the vertical cluster breaks down, and the clusters does

not get separated. For other values, tlie cluster quality further deteriorates. Tlle

results of DVBSCAN on Cllanleleon t8.81c.dat dat,aset is give11 in Figiue 3.15. DVB-

SCAN also gives sii~ilar results on this dataset as VDBSCAN. Figure 3.16, sllo~vs the

results of VDBSCAN and DVBSCAN on Chameleon t4.8k.dat dataset. Figure 3.17

illustrates the clustering by VDBSCAN and DVBSCAN using Chameleon t7.lOk.dat

dataset. Figure 3.18 presents the results on Chameleon t5.8k.dat dataset. We can

see from Figures 3.16, 3.17 and 3.18 that both algorithms can detect all clusters

properly. There are small discrepancies in very small region in Figures 3.16 and 3.17

where there were density variations in very small regions inside clusters. But, our

new algorithm GDCT can detect all of the clusters in all the Chameleon datasets

effectively. Therefore, in terms of arbitrary shaped clusters as well as small density

variations and robustness, our met hod GDCT performs better than its competitors.

A detailed comparison of GDCT with some relevant clustering techniques w.r.t.

features such as the number of parameter, structure, complexities is given in Ta-

ble 3.2. From Table 3.2, we observe that DBSCAN requires two input parameters

MinPts and E, and it cannot detect embedded clusters. OPTICS on the other hand,

requires three input parameters MinPts, E and E'. But, it can detect embedded

clusters. However, its performance degrades while detecting multiple nested clus-

ters over large datasets. Again, GDLC and Density-isoline algorithms can detect

multi-density clusters but fail to detect intrinsic cluster structures. GDCT requires

the number of grid cells, i.e. n and threshold /3' as input parameters. In addition,

from our experiments we conclude that the threshold ,8' does not vary significantly

with different datasets. GDCT can effectively detect embedded clusters in variable

density space as well as multiple nested clusters even in the presence of noise and

outliers. GDCT can also use the outlier handling module as discussed in the next

section to differentiate between the various types of outliers.

3.4.4 Handling of Outliers

In this section, we establish that GDCT can successfully handle the various types of

outliers. Here, we introduce some definitions related to various outlier types.

1. Distinct Inlier: A cell p, is called a distinct inlier if all its neighbors, p,,,

(3 = 1, - - - ,8), belong to the same cluster i.e., all p,, are classified with the

same cluster-id.

Figure 3.14: Result of VDBSCAN obtained from t8.8k.dat dataset

Figure 3.15: Result of DVBSCAN obtained from t8.8k.dat dataset (a) E = 10,

Minpts = 4 , CDV = 70 and CSI = 20 (b) E = 8.44, Minpts = 4, CDV = 70

and CSI = 20

Figure 3.16: Result of VDBSCAN and DVBSCAN obtained from t4.8k.dat dataset

(a) k = 4 (b) E = 5.2, Minpts = 4, CDV = 200 and CSI = 50

Figure 3.17: Result of VDBSCAN and DVBSCAN obtained from t7.lOk.dat dataset

(a) k = 3 (b) E = 5.9, Minpts = 9, CDV = 200 and CSI = 50

Figure 3.18: Result of VDBSCAN and DVBSCAN obtained from t5.8k.dat dataset

(a) k = 4 (b) E = 3.7, Minpts = 4, CDV = 200 and CSI = 50

2. Distinct Outlier: A cell pi is a distinct outlier if all its neighbors pij are unclas-

sified.

In GDCT, the border cells are triangulated for smoothening the coarse clus-

ters. The following definitions intrduce the other types of outliers helpful for

establishing outlier detection capability of GDCT.

3. Border Inlier Cell: A classified cell, pi, is a border inlier cell if at least one of

its neighbor cells is classified with a different clusterid or is unclassified.

4. Border Inlier Triangle: A classified triangle, T,,, is a border inlier triangle if

at least one of its neighbor cells is classified with a different cluster-id or is

unclassified.

5. Border Inlier: A border inlier is the set of all border inlier cells and triangles.

6. Group Outlier: If the number of objects in a cluster is less than a minimum

threshold C (where J' is an input parameter), the objects are classified as group

oulier.

7. Line Outlier: A cell pi E L, where L is a line outlier if

(a) 1 L 12 7 i.e., L consists of atleast 7 cells.

(b) 1 I(pij (5 q where q = 2, and

(c) if I 2% I = 7 , then let PZ, = {pZ1, p22) and p,l n p,2 = p, and p,l, p,2 are not
neighbors to each other.

8. Single Linkage Outlier: A single linkage outlier, S , is defined as follows:

(a) I S 12 p', where p' = 5, i.e., S consists of atleast p' cells say S =

(~ 1 1 P%) PJ, pk, ~ 5 1 ,
(b) p1 .cluster-id # p5.cluster-id, and

(c) QP,; PJ # {PI, p5), I p,f I = 77 (p, is f t h neighbor of p,), and let p, =

{P,, pk) i-e., P, pk = p3 and p,, pk are not neighbors to each other.

From our experiments, we find that y = 3 and q = 2. Line outliers for triangles are

also obtained analogously. Similarly, triangles may also contribute to single linkage

outlier. It is a chain of cells and triangles satisfying the line outlier property but the

two ends of the line are classified with different clusterids.

Apart from detecting embedded as well as varying density clusters, GDCT uses the

outlier handling module based on the above definitions to handle the special forms of

outliers mentioned above. Once GDCT obtains clusters, the outlier detection process

starts. The outlier detection algorithm is given in Figure 3.19. The algorithm starts

by checking all the gr, x gr, grid cells. If any of the cells satisfies the distinct outlier

condition as given earlier, all objects in it are marked as distinct outlier. Otherwise,

the check-cluster-outlier function is called to find all the different forms of inliers

and outliers as given in Figure 3.20. When the outlier detection algorithm is used on

clusters obtained by GDCT on DS7 (as given in Figure 3.21), we obtain the different

types of inliers and outliers as shown in Figure 3.22. Figure 3.22, illustrates the

different cases of outliers and inliers graphically by using a different color for each

case.

3.5 Discussion

This chapter presents a clustering method based on a grid-density approach. Our

method is able to detect global as well as embedded clusters. An outlier handling

check-outlier(set o f cells (gr, x gr,))

id = 0;

For cell i=l to gr, x gr, do

status = check-distinct-outlier(i) ;

if status == 1

id = distinct-outlier;

Mark cell,.id = id;

Mark all objects in cluster cell, with id;

else

check~cluster~outlier(ceZ1, .cluster id) ;

End if

End for

End

Figure 3.19: Algorithm for outlier detection

module is also presented for detection of different types of outliers. Experimental

results using several standard synthetic datasets are reported to establish the supe-

riority of the algorithm. In this chapter, we have only considered two-dimensional

spatial objects. Therefore, there is scope for the enhancement of GDCT to detect

clusters in higher dimensional datasets with minor modifications. In the next chap

ter, a technique for clustering satellite image data is introduced.

check-cluster-out lier (el -id)

id = 0;

if check~group~outlier(clid) == 1

id = group-outlier;

if check-line-outlier (clid) == 1

id = line-outlier;

End if

End if

else

if check-line-outlier(c1id) == 1

id = line-outlier;

End if

else

if check-distinct -border inlier (cl-id) == 1

id = distinct-borderinlier;

End if

else

id = border;

if id == border

if check-singlelinkage(c1id) == 1

id = singlelinkage

End if

End if

Mark all objects in ~ l u s t e r , ~ - ~ ~ with id;

End else

End else

End else

End

Figure 3.20: Algorithm for checking the different cases

85

Figure 3.21: Result of GDCT obtained on a synthetic dataset generated by us

Figure 3.22: Result of outlier detection

Table 3.2: Comparison of GDCT with different clustering algorithms

Structure

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Algonthms

CHAMELEON

DBSC AN

OPTICS

EnDBSCAN

EDBSCAN

DDSC

VDBSCAN

DVBSCAN

LDBSCAN

GDCT

Order

Independence

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Multz-

Densaty

Clusters

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No of

Parameters

3 (k-nearest ne~ghbor

MINSIZE, a C)

2 (MznPts , E)

3 (MznPts , E ,

E f)

3 (MznPts , E ,

E f)

4 (MznPts , E ,

6 , r)

3 (MznPts , E ,

a n)

3 (MznPts , E ,

E ')

3 (MznPts , E ,

CDV,, C S I x)

3 (L O F U B , pct,

M ~ ~ P ~ ~ L o F , M ~ ~ P ~ ~ L D B S C A N)

2 (grn,L")

Optimized

For

Small datasets

Large datasets

Large datasets

Small datasets

Large datasets

Large datasets

Large datasets

Large datasets

Large datasets

Large datasets

Noase

Handlzng

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Embedded

Clusters

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Complexaty

o (N 2)

O(N1ogN)

using R* tree

O(NlogN)

using R* tree

O(N1ogN)

using R* tree

O(N1ogN)

using R' tree

O(N1ogN)

using R* tree

O(N1ogN)

using R* tree

O(N1ogN)

using R* tree

O(N1ogN)

using R* tree

O (N)

Chapter 4

Grid-Density based Clustering for

Pan-Chromatic and Multi-Spectral

Satellite Data

High resolution and high dimensional satellite images contain clusters of different

sizes, shapes and densities in addition to contain huge amount of data. Due to these

reason, most algorithms for clustering satellite data sacrifice the correctness of their

results to achieve better processing time. The processing time is greatly influenced

by the amount of information that needs to be processed. In this chapter, we propose

two grid density based clustering methods for detecting clusters present in satellite

images. Each method is comprised of two phases. In the first phase, a grid density

based technique is used to determine the initial (or rough) clusters. This phase

can detect the overall clusters but the cluster boundaries are not smooth and are

jagged in appearance due to the inherent problem with grid clustering. Therefore, a

second phase is incorporated to smoothen the cluster borders. Experimental results

using several real-life datasets are reported to establish the efficiency of the clustering

methods.

4.1 Introduction

Clustering is the organization of a dataset into well separated partitions or clusters

with respect to a similarity measure. The main characteristic of the clusters dis-

covered is that they conserve the homogeneous property within a cluster i.e., data

objects within the same cluster are more similar than the data points belonging to

different clusters [HK06]. A high dimensional satellite image is a remotely sensed

image of the earth's surface. Such an image is a collection of a huge amount of pixel

data. In a high dimensional satellite image, each pixel represents an area on the

earth's surface. Multi-spectral images constitute the main type of images acquired

by remote sensing. It is a technology originally developed for space-based imaging

to capture light from frequencies beyond the visible range (e.g., infrared). It enables

the extraction of additional information that the human eye fails to capture with its

receptors for red, green and blue. A multi-spectral satellite image is a digital image

of multiple bands where each band represents a particular wavelength of light. Seg-

mentation or clustering a multi-spectral satellite image is a complex problem that has

been pursued for a long time. Clustering satellite images is the process of discovering

a finite number of non-overlapping and meaningful regions or clusters in the image

data space. Remotely sensed satellite images mainly consist of objects (regions) such

as vegetation, water bodies, concrete structures, open spaces and habit ation. The

regions are separated from one another due to their different reflectance characteris-

tics. This leads to a wide variety of clusters of different sizes, shapes and densities.

There are two fundamental properties of a pixel value: (i) discontinuity- discontinu-

ities between gray level regions can be used to detect isolated points and contours

within an image, and (ii) similarity- decision criteria can be used to separate clus-

ters in an image based on the similarity of the pixel values. Based on these two

fundamental properties, several image segmentation methods have been developed.

Clustering approaches are based on the second property. Due to the presence of a

huge amount of data in satellite images, there is utmost need for a good cluster-

ing algorithm which can efficiently detect clusters. A good clustering technique for

satellite images (i) should have minimal number of input parameters, (ii) be able to

detect arbitrary shaped clusters accurately, and (iii) demonstrate good efficiency on

large datasets.

In this chapter, we present two new grid density based clustering methods each

of which work in two phases: Phase I identifies the rough clusters and Phase I1

smoothens the cluster boundaries detected in Phase I. Phase I is same for the meth-

ods while Phase I1 differs. Experimental results are reported to establish that the

proposed methods can determine all the classes present in any satellite image data

effectively and dynamically.

Each pixel in the image is represented by a 5 dimensional tuple: (x, y, h, s, i) ,

where x and y are the pixel's coordinates, h the hue, s the saturation and i the in-

tensity of the pixel. In Phase I, the image data is divided into equal sized grids based

on the values of the (x, y) coordinates. The maximum occurring hue value among

all the pixels is found and the grid cells whose pixels have this hue value become the

seed for cluster expansion. The grid cells are then clustered by a topological search

algorithm. Grid cells with similar hue are merged to form the clusters. When no

more expansion is possible, the method checks for unclassified grid cells with hue

values similar to that in the most recently formed cluster. Cluster expansion starts

as before with these cells tagged with the same cluster id as the recently formed

cluster. This process continues iteratively until no more grid cells satisfy the given

condition. The method then restarts with the next maximum occurring hue from

among the unclassified grid cells. When no more cluster expansion is possible the

method is terminated. Thus, we obtained all the clusters present in the image data.

After obtaining the rough clusters, we concentrate on smoothening the boundaries of

the clusters in Phase 11. The proposed methods do not require any prior knowledge or

a set of initial seeds to form the cluster centers. Neither does the number of clusters

play any role in the clustering process. The proposed methods were tested on large

number of multi-spectral satellite image data and the cluster results were found very

satisfactory. A major advantage of this method is its simplicity. In addition, there

there is no need to make initial guesses about the cluster centers or the number of

clusters.

The rest of the chapter is organized as follows. We discuss a few well-known clustering

algorithms in Section 4.2. Section 4.3 provides the basics of our grid-density based

clustering methods. In Section 4.8 we present the experimental evaluation of the

effectiveness and efficiency of the proposed methods. Finally, Section 4.9 concludes

with a concluding discussion of our work.

Related Work

In this section we discuss a few methods that have been used for clustering satellite

image data.

4.2.1 Clustering Satellite Images

K-means [McQ67] and ISODATA [BH67] are two popular algorithms widely used

for detecting clusters in satellite images. However, k-means depends heavily on user-

supplied parameters such as the number of clusters and initial cluster centers. Result

can be made more data dependent and the need to provide the number of clusters

may be relaxed to some extent if one uses the ISODATA algorithm. But, the main

problem with these algorithms is that they require several parameter values to be

supplied by the user. Hence, the performance of these clustering algorithms is very

much dependent on the parameter values, the chosen measure of similarity and the

method used for identifying clusters in the data.

In [Yam98a], a robust clustering technique for multi-spectral satellite images was

developed. The observed image data were assumed to come from a mixture of multi-

variate normal densities and the number of different densities present in the dataset

was assumed to be known. In the clustering technique the parameters were ten-

tatively estimated by a multi-dimensional histogram and a minimum distance clas-

sification method. The EM (Expectation Maximization) algorithm improved the

estimates of the mixture of density parameters recursively. The satellite image clas-

sification was carried out by the conventional maximum likelihood method with the

estimated parameters. The method is robust for noises and gives stable classification.

The work in [AZMOG] segments satellite image data based on the FCM algorithm

detects different classes in it.

FCM [Bez8la] is a local search optimization algorithm that converges to a local

minimum point. FCM allows an object to belong to two or more clusters with

varying degrees of membership. The FCM algorithm attempts to partition a finite

collection of elements into a collection of fuzzy clusters with respect to some given

criterion. In fuzzy clustering, each point has varius degrees of belonging to clusters,

as in fuzzy logic, rather than belonging completely to one cluster. Thus, points on

the edge of a cluster may be in the cluster to a lesser degree than points in the center

of cluster. FCM is quite effective for image segmentation, but the quality of clusters

produced is greatly affected by the proper selection of initial values. FCM has been

used separately but it rarely has showed success without combination with another

met hod.

Awad et al. in [ACNOS] proposed a method which uses FCM and Hybrid Dynamic

GA (HDGA) . FCM gets the cluster centers from HDGA before segmenting different

types of satellite images. This cooperative approach showed high accuracy in seg-

menting this type of complex images.

A new approach based on SOMs and FCM is reported in [AN09]. This method

uses an unsupervised parameter free approach to segment different types of satellite

images successfully. The approach has been applied to both medium and high reso-

lution satellite images.

In [PC02], a simple measure of circular symmetry is used to extract all clusters

including sub-clusters which are then used as building blocks to form the final clus-

ters of arbitrary shapes by merging and splitting. This method does not require

initial guesses regarding the cluster centers or the number of clusters. On the other

hand, it initially considers each data point as a cluster center.

Other approaches to segmentation of remotely sensed satellite images include fuzzy

thresholding techniques reported in [PGSOO].

Genetic algorithms have been used to classify satellite image data in [BPOl], in par-

ticular for partitioning different land cover regions with complex/overlapping clus-

ter boundaries. These methods use supervised classification where prior knowledge

about the images is essential. Real-coded variable string length genetic fuzzy clus-

tering is used in [MB03a] to classify satellite images. The clusters are automatically

evolved to the appropriate number of clusters. A multi-objective genetic optimization

algorithm is presented in [BMM07a] to determine cluster centers and the correspond-

ing partition matrix. Fuzzy clustering is modeled using two cluster validity measures

that are simultaneously optimized.

An image segmentation technique using M-band wavelet packet frames is presented

in [AK07]. Here, unsupervised feature extraction is used to select the appropri-

ate features from the output of the wavelet decomposition. A neuro-fuzzy feature

evaluation technique is used to select an optimal set of features. The features thus

obtained are used to segment satellite image data. The EM (Expectation Maximiza-

tion) [Yam98b] algorithm improves the estimates of the mixture of density parameters

recursively. The satellite image classification is carried out by the conventional max-

imum likelihood method with the estimated parameters. The method can tolerate

the presence of noise and gives stable classification but is computationally expensive.

In [GyFSlXrO9], a remote sensing image segmentation method based on an improved

FCM (fuzzy c-means) algorithm is presented. It uses the Mahalanobis distance as

proximity measure. This method can solve the problem of selecting the initial clus-

ter centers by combining the Evolving Clustering Method (ECM) with the modified

FCM algorithm. The combination enables the FCM algorithm to converge to a global

optimal with fewer iterations.

4.2.2 Discussion

Based on our survey, we come to the conclusion that there is no single algorithm that

can effectively handle the following three factors at the same time: non-dependency

on input parameters, fast processing time and quality cluster detection. Furthermore,

mixed pixels (mixels) are present in satellite images. Mixels are not completely

occupied by a single and homogeneous object and occur because the pixel size may

not be fine enough to capture details on the ground. Fuzzy methods in remote sensing

have received growing interest in these situations where the geographical phenomena

are inherently fuzzy and consist of mixed pixels. The rest of the chapter presents

two satellite clustering methods that address the above mentioned challenges. Each

method has two phases and the first phase of both are the same. The difference is in

the second phase. In the first phase a grid density based approach is used to detect

the initial or rough clusters. For the second phase one of the methods (SATCLUS)

uses a partition based approach for refining the rough clusters to obtain the final set

of clusters. The other method (GDSDC) uses a fuzzy membership function to obtain

the final clusters in the second phase. In the next section we present the foundational

material including the basic definitions used by both methods. In Section 4.4, we

present the rough clustering phase (Phase I) which is same for both SATCLUS and

GDSDC. In Sections 4.5 and 4.6, we present the second phase of SATCLUS and

GDSDC.

Basics of SATCLUS and GDSDC

High resolution and high dimensional satellite images cause difficulty for clustering

methods due to the presence of clusters of different sizes, shapes and densities as they

contain huge amount of data. Due to this reason, most algorithms for clustering

satellite data sacrifice the quality of their results to achieve fast processing time.

The time taken is greatly influenced by the amount of information that needs to be

processed. In the rest of the chapter, we develop two grid based clustering methods

for detecting the clusters present in satellite images. We establish the efficiency of

the methods through experimental results. The aim of our clustering methods is to

discover clusters in satellite image datasets. In both methods, we regard each pixel

data as a point in space. The image data space is divided into grid cells and the grid

cells whose HSI values are similar with respect to neighboring cells (see Figure 3.2

(a)) are merged. Once merging of grid cells according to HSI values terminates, a

set of rough clusters is obtained. The border cells in a cluster are found and the

clustering proceeds at the pixel level to obtain the finer clustering of the dataset.

Based on [EKSX96], we introduce some definitions, which are used in the proposed

methods. The basis of the definitions has been taken from [SDB08].

Definition 13. Density of a cell: It is the number of pixels within a particular grid

cell.

Definition 14. Difference value of a pixel: It is the distance between the HSI values

of a pixel w.r.t. the seed pixel. If it is within the range of certain threshold 8, the

difference value is considered 1 else 0.

The distance may be any of the distance measures discussed in Chapter 2. We

have used the Mahalanobis distance since it gives better results in our experiments.

Definition 15. Population count: The population count of a Grid cell is defined as

the number of ones in each grid cell.

Definition 16. Population-object ratio: It is defined as the ratio of the population

count and cell density of a grid cell.

population-count
Population-object-ratio =

cell-density

Definition 17. Confidence in a cell: A current cell is said to have confidence in one

of its neighbors if the difference of their population-object ratio is greater than or

equal to some threshold w, where w is a user input. Confidence plays an important

role in cluster formation. Two cells p and q are merged into the same cluster if the

following condition is satisfied:

where Po(p) represents the population-object ratio of a particular cell p.

Definition 18. Reachability of a cell: A cell p is reachable from a cell q if p is a

neighbor cell of q and cell p satisfies the confidence condition w.r.t. cell q.

Definition 19. Rough cluster: A rough cluster is defined to be the set of points in

the set of reachable cells. A rough cluster Ci w.r.t. w is a non-empty subset satisfying

the following condition:

Vp, q: if p E C and q is reachable from p w.r.t. w, then q E C, where p

and q are cells.

Definition 20. Border cell: A cell p is a border cell if it is part of a rough cluster

Ci and at least one of its neighbors is part of another rough cluster Cj.Gene Based

Clustering Algorithms

Definition 21. Noise: Noise is simply the set of points in the cells that are not in

any of its clusters. Let Cl, C2, . - - Ck be the clusters w.r.t. w . Then

Noise = {no-p 1 p E n x n, Vi : no-p 6 Ci) where n o p is the set of points

in cell p that are not in any of the clusters Ci (i = 1, . - . , k).

4.3.1 Confidence in a Cell

The confidence in a given set of cells reflects the general trend of that set. If the

information of one cell is abnormal compared to the others it is not be included in

the set. Similarly, each cell has a level of confidence on each of its neighbor cells.

If the confidence of a current cell on one of its neighbor cell does not satisfy the

confidence condition, that neighbor cell is not included into the local cluster area.

On the contrary, if it satisfies the condition, we treat the neighbor cell as a part of

the local cluster area and merge the cell with the cluster area to form the rough

cluster. This method has the ability to recognize the local clusters in the data space

in the presence of embedded clusters also.

In light of the above definitions, the following lemmas are trivial.

Lemma 4. Let Cl and C2 be two rough clusters w.r.t w and let p be any cell in C1

and q be any cell in C2. Then, for a cell r, if r is reachable from p w.r.t w, r is not

reachable from q w.r.t w , i.e., r E C1 and r 4 C2.

Lemma 5. Let C be a set of clusters w.r.t w and let p be a cell corresponding to

noise points. Then,

V p : p is not reachable from any cell in C i.e. p @ C.

Both our algorithms, SATCLUS and GDSDC, have the same first phase and

starts by dividing the image space into g r , x g r , non-overlapping square grid cells,

where n is a user input. Each image pixel is mapped to its corresponding grid cell. It

then calculates the density of each cell and converts the RGB values of each pixel to

its corresponding HSI values. The methods uses the cell density in the grid structure

and clusters the data points according to the densities in the surrounding cells.

Both SATCLUS and GDSDC are divided into two phases. In the first phase a

rough clustering of the image space is obtained and the second phase deals with

cluster smoothening for quality cluster identification.

Phase I: Rough Clustering phase of SATCLUS

and GDSDC

The maximum hue value in the grid is selected and an arbitrary pixel with this hue

value becomes the seed for cluster initiation. An example is shown in Figure 4.1 (a)

where the shaded pixel is the seed. Each grid cell contains 4 pixels. The difference of

the HSI values of the remaining pixels with this seed is calculated. If the difference of

the HSI values of a particular pixel and the seed pixel is less than some threshold 0,

that corresponding pixel difference value for that pixel becomes 1 else 0. The image

is converted into a 0-1 matrix as shown in Figure 4.1 (b). The population count of

each grid cell is computed and the corresponding population-object-ratio calculated.

The clustering process now starts with the grid cell with the highest population-

object ratio as shown by the shaded grid cell in Figure 4.2. The remaining cells are

then clustered iteratively according to their population-object ratio values, thereby

building new clusters or merging with existing clusters. Only the cells adjacent to

a cluster can be merged. A neighbor search is conducted, starting at the highest

population-object-ratio value grid-cell and inspecting adjacent cells. If a neighbor

Figure 4.1: a)An example image with 5 x 5 grids and the hue values for corresponding

pixels, and b) A 0-1 matrix obtainsd from thc difference value w.r.t. seed

cell which satisfies the density confidence condition on a cell is found, then the neigh-

bor cell is ~nerged with the current cell and the search proceeds recursively with this

neighbor cell. This search is similar to a graph traversal where the nodes represent,

the cells and an edge between two nodes exists if the corresponding cells are adjacent

and satisfies the confidence condition on a cell.

Merging of cells stops when no more cells satisfy the confidence condition on a cell.

The process then starts the next cluster from the set of unclassified cells with the

nlaxinlu~n hue pixel value. Tlie process conti~lues recursively merging neighl1)oring

cells that satisfy the confidence condition on a cell. This process of merging cells and

selecting seeds is repeated until all the useful cells have been classified. The classified

cells represent the set of rough clusters and finally the pixels receive the clusterid of

the respective cells.

The algoritllm for rough clusteri~lg (Phase I) includes the following steps.

1. Create the grid str~ct~ure.

2. Conlpute the density of eadl cell.

3. Convert the RGB values of each pixel into their HSI values.

4. Identify the cell wit,h the maxillluili hue value as the seed.

5. Calculate each pixel's difference value w.r.t. the seed.

Figure 4.2: Population-object ratio of each grid cell.

6. Compute population count of each grid cell and calculate the corresponding

population-object ratio.

7. Traverse the neighbor cells starting from the grid cell with the highest population-

object ratio value.

8. Merge the cells and assign cluster-id.

9. Repeat steps 5 through 9 till all the cells are classified.

Figure 4.3 (b) shows the result of the rough clustering phase of an example image

shown in Figure 4.3 (a). The rough clusters obtained are grainy in nature. This is a

drawback of grid based method. To obtain clusters with smooth borders, the border

cells are detected and re-clustered using either a: (i) Partitioning approach or (ii) a

Fuzzy approach.

Since Phase I is a sampling-biased technique, the clusters formed may not be ac-

curate near their boundaries. This may be due to the presence of the mixed pixels

as well as the size of the grid. So, to address these problems, we concentrate on

smoothening the boundaries of the clusters in Phase 11. In the cluster smoothening

step, the number of clusters is already known since it is given by the number of

rough clusters so formed. The border cells are detected according to Definition 20.

Phase I1 may be executed in two different ways depending on which technique we

choose. The algorithm for Phase I1 of SATCLUS is discussed in Section 4.5 and the

algorithm for Phase I1 of GDSDC is presented in Section 4.6.

4.5 Phase 11: Hard Clustering Approach for SAT-

CLUS

The first method (SATCLUS) uses partitioning to reassign the border objects of the

rough clusters to their appropriate clusters. In Phase 11, the border cells of the rough

clusters obtained are detected as shown in Figure 4.3 (c) for the image of Figure 4.3

(a). Once the border cells have been found, clustering process starts at the pixel level.

Suppose, the number of rough clusters created in the first phase of clustering is

k. Now, the pixels in the border cells are checked for their re-assignment to clusters

to improve the quality of clusters formed. The k rough clusters each has one seed

pixel. Let x be a pixel in a border cell. The distance of x with each of the k seeds

is calculated and x is assigned to that cluster from which it has the least distance

w.r.t. the seed.. This process is repeated for all pixels in the border cells. The final

set of clusters obtained after processing the border pixels using partitioning in Phase

I1 is shown in Figure 4.3 (d) .

The algorithm for the cluster smoothening is given below:

Input: q border cells, k seeds corresponding to the k rough clusters obtained from

Phase I

1. Start with an arbitrary border pixel x.

2. Find the distance of x to each of the k seeds.

3. Assign x to the cluster to which it has minimum distance w.r.t. the seed.

4. Repeat steps 1 to 4 till all border pixels have been reassigned.

In satellite images there is always the possibility of the presence of mixed pixels.

The handling of such pixels is very important and challenging. Our next technique

(GDSDC) deals with a fuzzy approach that helps in smoothening of the rough clusters

and handling the mixed pixels.

I Satcllrte Irnage Clustering and Classrfrcatcon Tool

Figure 4.3: a) An example image with its grid structure, b) The four rough clusters,

c) Clusters along with their borders, and d) The final clusters

4.6 Phase 11: Soft Clustering Approach for GDSDC

Mixed pixels (mixels) occur in a satellite image because the pixel size may not be fine

enough to capture details on the ground. Therefore some pixels are riot completely

occupied by a single and homogeneous object and fuzziness occurs due to the pres-

ence of mixels. Fuzzy methods are appropriate in remote serising since geographical

data are inherently fuzzy. Among the various types of fuzzy membership functions

available in the literature, the function reported in [Bez8la] is used in GDSDC to

classify the border pixels, which are common in satellite data, due to its effectiveness

in terms of accuracy.

4.6.1 Mixed Pixel Handling

The spatial resolution of satellite sensor systcnis iriiagirlg the eartli is coarser thali

tlle sizes of objects on ground. One pixel i11 the satellite iniage ilsually covers rliore

than oilc object on the grountl. Pixels ill tlic iniage coverii~g illore tllail OIW ohject

on the ground are mixed pixels. Mixed pixels present in a satellite image greatly

affect the quality of clusters produced since these pixels have a signature represen-

tative of more than one cluster (as with boundary pixels). Figure 4.4 (a) shows

a satellite image of resolution 30m x 30m which means each pixel in the image

represents an area of 30m x 30m on the ground. This image is reproduced from

http://clear. uconn. edu/projects/landscape/images/measufing/aefialgfid.gi~ In Fig-

ure 4.4 (a) each grid cell represents a pixel and each pixel may not contain all homo-

geneous objects. As an example, consider pixel 3. We see that this particular pixel

represents a house, cars, trees, fields, shrubs and a road. Therefore pixel 3 itself con-

sists of many non-homogeneous objects. Thus, it represents more than one object on

ground and is a mixed pixel. Different types of mixed pixels are shown in Figure 4.4

(b) . This image is reproduced from http://wgbis. ces. iisc. ernet. in/energy/paper/TR-

11 l/chapter4-clip-imageOOZ. jpg. The first case is that of a sub-pizel where a single

pixel represents information from more than that of one sub-pixel. In addition, the

objects are not homogeneous at sub-pixel level. The second case is boundary pixel.

In this case we see that mixed pixel occurs at the boundary between different ob-

jects. In the third case the intensity values change gradually. This is known as

intergrading. The fourth case is that of a linear sub-pixel (i.e., different objects are

aligned linearly at sub-pixel level) as given in Figure 4.4 (b). Tkaditional clustering

techniques can find clusters present in a satellite image, they are prone to misclassify

mixed pixels. Even with the improved resolution of the satellite images, the mixed

pixel problem remains. Therefore, to handle this problem, some researchers incor-

porate fuzzy classification allowing a mixed pixel (or border pixel) to belong to two

or more clusters. FCM [Bez8la], discussed previously, attempts to handle the mixed

pixel classification problem using the principles of fuzzy sets to evolve a set of pre-

specified number of partitions with minimum intra-cluster dissimilarity. However,

FCM suffers from two common drawbacks: (i) it requires the number of clusters,

and (ii) it often gets stuck at suboptimal solutions based on the initial configuration

of the system. To address these challenges, this section presents a fuzzy border pixel

classification approach that can effectively solve the mixed pixel problem as well as

smoothen the bordering regions of the clusters obtained by the grid-density based

clustering algorithm discussed in Phase I. The proposed approach has the following

30 meters

Figure 4.4: a) Mixed Pixels b) Different cases

distinguishable features.

Unlike FCM [Bez8la], it does not require the number of clusters as a input

parameter.

Unlike the other density-based approaches, it works over grid space which

makes the method faster.

Ulilike the other grid-based approaclies. it call detect clusters with diagoiial

boundaries.

Tlie fuzzy approach for smoothening of cluster border is illustrated in Section 4.6.2.

4.6.2 Fuzzy Approach: GDSDC

Tlie out,put of Phase I, the set of rough clusters, is the input for GDSDC. It iliitially

detects the border cells according to Definition 20. Once the border cells have beell

fo~uld, clustering stitrt,s at tlie pixel level using a fiizzy lllelnbership fiiliction [Bez8la]

as described below.

The border pixels detected for the image shown in Figure 4.3 (a) are shown in

Figure 4.3 (c). Suppose, k rough clusters are obtained in the first phase of cluster-

ing. Only the pixels in the border cells are checked for possible re-assignment to

improve the quality of clusters. Each of the k rough clusters detected has one seed

pixel. Let x, be a pixel in a border cell p of cluster C,. Since the 8-neighborhood

of the cell p may have any other cluster C, where 3 = 1, 2, . . . k, these clusters are

the neighbor clusters of cluster C, and x, can be assigned to any of the neighboring

clusters. The membership of x, in each of the clusters present in the 8-neighborhood

of cell p is calculated using Equation 4.2. x, is assigned to that cluster for which the

membership function has the least value w.r.t. the seed. This process is repeated

for all pixels belonging to border cells. The fuzzy membership function [Bez8la], is

given by,
- 1

UC, 7, - (4.2)

where x, is a border pixel, k is the number of clusters detected in the neighbor-

hood of the cell p to which x, belongs, u is the fuzzy membership matrix such that

u,, E [O , 1] is the membership degree of x, to cluster C,. C = {C1, C2, . . . , Ck) is

the set of rough clusters in the neighborhood of cell p. C, is the current cluster in

which the membership of x, is to be determined and Cl are the clusters present in

the &neighborhood of cell p, d is a distance measure (Euclidean distance) between

a seed of a rough cluster and a border pixel. The factor mf is called fuzziness and is

usually equal to 2 [Bez8 1 a].

The membership for each of the border pixels is computed and assigned to the

cluster for which it has the lowest value. It can be easily seen that Figure 4.3 (d)

has better quality clusters than those of Figure 4.3 (b).

The steps of the cluster boundary smoothening phase using the fuzzy approach are

given below:

Input: q border cells, k seeds corresponding to the k rough clusters obtained from

Phase I.

1. Start with an arbitrary border pixel x,

2. Find the membership of x, in each of the k seeds.

3. Assign x, to the cluster which minimizes the membership function given in

Equation 4.2.

4. Repeat steps 1 to 4 till all the border pixels have been considered for reassign-

ment.

4.7 Complexity Analysis

Phase I of both SATCLUS and GDSDC are the same. The complexity analysis for

Phase I is given below.

Phase I partitions the dataset and forms of the rough clusters. The partitioning of

the dataset into gr, xgr, non-overlapping cells results in a complexity of O(gr, xgr,).

In Phase I, the expansion of the grid cells to form clusters results in O(cel1,) time

complexity, where cell, is the total number of cells in a cluster so formed. cell, <<
gr, x gr, in the average case. If the number of clusters obtained is k , the overall

time complexity for clustering is O (k x cell,). Therefore, total time complexity for

the rough clustering is O(gr, x gr,) + O (k x cell,).

Phase I1 is different for both SATCLUS and GDSDC. Therefore the computational

complexity of both techniques are calculated separately.

In Phase I1 of SATCLUS, the identification of the q border cells require O(q) times

where q << gr, x gr,. The assignment of r pixels to k clusters using the partitioning

approach requires O (k x r) time, where r is the total number of pixels in q border

cells. Therefore, total time con~plexity for Phase I1 is O(q) + O (k x r) .

Overall time complexity of SATCLUS is O(gr, x gr,) + O (k x cell,) +O(q) +O(k x r) .

O (k x r) dominates the overall time complexity.

In Phase I1 of GDSDC, the identification of the q border cells require O(q) time

where q << gr, x gr,. The assignment of r pixels to k clusters using the fuzzy mem-

bership function requires O(k x r) time, where r is the total number of pixels in q

border cells. Therefore, total time complexity for Phase I1 is O(q) + O(k x r) .

Overall time complexity of GDSDC is O(gr, x gr,) + O(k x cell,) + O(q) + O(k x r) .

O(k x r) dominates the overall time complexity.

Therefore, we see that the time complexity of both algorithms is the same and

the user may choose either of the techniques without any time penalty. The added

advantage of GDSDC is that it can identify mixed pixels well.

4.8 Performance Evaluation

To evaluate the proposed methods in terms of quality of clustering, we use several

synthetic and real datasets. We implement the methods using Java in the Windows

environment on a PIV processor with 1 GHz processor speed and 256 MB RAM.

The satellite image datasets used have been divided into two parts according to their

resolution as discussed below.

4.8.1 Satellite Images with Low Resolution

a) Dataset I: This dataset is a Landsat MSS image as shown in Figure 4.5 (a).

Landsat Multi Spectral Scanner (MSS) was a sensor on board Landsats 1 through

5 and acquired images of the earth nearly continuously from July 1972 to October

1992, with an 18-day repeat cycle for Landsats 1 through 3 and a 16-day repeat

cycle for Landsats 4 and 5. Landsat MSS image data consist of 4 spectral bands

although the specific band designations change from Landsats 1-3 to Landsats 4-5.

The resolution for all bands is of 79 m, and approximate size is 170 km North-South

by 185 km East-West. The clusters obtained from the image of Figure 4.5 (a) are

shown in Figure 4.5 (b) for SATCLUS and Figure 4.5 (c) for GDSDC.

Figure 4.5: a) Landsat-MSS image data, b) Output of SATCLUS c) Output of

GDSDC

b) Dataset I I : This dataset, shown in Figure 4.6 (a) was obtained from the Indian

Remote Sensing Satellite which is a circular sun-synchronous satellite. It rotates

around the earth at the rate of 14 orbits per day, at an altitude of 904 km and a

repeat cycle of 22 days. This satellite has two sensors LISS (Linear Imaging Self

Scanner)-I and LISS-11. LISS-I has a spatial resolution of 72.5 m x72.5 m while

LISS-I1 has resolution of 36.25 nl x36.25 m. The IRS-1A image of Kolkata was

taken by LISS-I1 sensor in the wavelength range 0.45pm - 0.86pm.. The full spec-

trum range is decomposed into four spectral bands namely blue band of wavelength

0.45pm-0.52pm, green band of wavelength 0.52pm - 0.59pm, red band of wavelength

0.62pm - 0.68pm and near-infrared (NIR) band of wavelength 0.77pm - 0.86pm. This

dataset shows an area around Kolkata in the NIR band. There is a prominent black

stretch across the image representing the river Hoogly. The prominent light patch at

the bottom right corner is the Salt Lake Stadium and the black patches nearby are

the fisheries. Two parallel lines at the upper right hand side of the image correspond

to airport runways in the Dumdum airport. Other than these there are several water

bodies, roads and open spaces in the image.

Both SATCLUS and GDSDC automatically detects four clusters for this data

a s observed in Figure 4.6 (b) and Figure 4.6 (c). From our back ground knowledge,

we can infer that t,hese four clusters correspond to the four classes: Water Bodies

(black color), Habitation and City area (deep gray color), Open space (light gray

Figure 4.6: a) IRS Kolkata b) Output of SATCLUS c) Output of GDSDC

Figure 4.7: FCM clustering of Figure 4.6 a)

color) and Vegetation (white color). The river Hoogly, stadium, fisheries, city area

as well as the airport runways are distinctly discernible in the output image. The

predominance of city area on both sides of the river, particularly a t the bottom part

of the image is also correctly classified. This area correspoxlds to the central part of

Iblkata city.

Figure 4.7 shows the Kolkata image partitioned using the FCM algorithm. From

the figure, we note that the river Hoogly and the city area are not bee11 correctly

classified. In fact, these are classified as belonging to the same class. Another rnisclas-

sification is that the whole Salt Lake City area has been put in one class. Although

some portions have been correctly identified such as the canals, the Durndurn airport

runways and the fisheries there is still a significant amount of confusion in the FCM

clusters.

Figure 4.8: a) Cartosat-1 of Sonari b) Output of SATCLUS c) Output of GDSDC

4.8.2 Satellite Images with High Resolution

The experiments using the images presented next are aimed at handling two different

types of terrains (plains and hills) to gauge the variation in classification accuracy.

Images of the plain built up area of Sonari in Sibsagar district of Assam, the Bora-

pani area of Meghalaya and a part of Shillong city of Meghalaya are considered for

this study.

a) Dataset I II: This dataset1 was acquired from the Cartosat-1 remote sensing satel-

lite using the panchromatic (PAN) cameras that take black and white stereoscopic

pictures of the earth in the visible region of the electromagnetic spectrum. The

swath covered by these high resolution PAN cameras is 30m x 30m and their spa-

tial resolution is 2.5 m and wavelength of 0.5 - 0.85pm. Figure 4.8 (a) shows the

Cartosat-1 image of a plain built up area of in Sibsagar district of Assam. Some

characteristic regions in the image are the river Brahmaputra shown in black, spi-

rally cutting across the middle of the image. We see roads, agricultural land and

human settlements as well. The proposed clustering methods automatically detect

all the 5 clusters (Figure 4.8) corresponding to river, road, agricultural land, water

bodies and human settlements.

b) Dataset IV and V: These two datasets' show two different views of the Bo-

rapani area of the state of Meghalaya obtained from the IRS P6 LISS IV sensor that

lThese datasets have been obtained from North East Space Application Center, Umium, Megha-

laya

Figure 4.9: a) IRS of Borapani b) Output of SATCLUS c) Output of GDSDC

+m.a'-* '* 9.: 9.';

- - AT. -

Figure 4.10: a) IRS of Borapani (another view) b) Output of SATCLUS c) Output

of GDSDC'

lias a spatial res~lut~ioil of 5.8 111. The full spectral range is divided illto four spec-

tral bands 0.5 - 0.62pm (Green). 0.5 - 0.62pm (Red). 0.5 - 0.62pm (Iilfrared) and

0.5 - 0.62pm (Blue). The characteristic regio~is ill the image sliowii in Figure 4.9 (a)

are Deep water (deep blue color), Wetlallds (liglit blue color), Veget,atiori (Red and

Pink colors) and Open spaces (\Vhit,e color). Exccl~ting the SATCLUS and GDSDC'

algorithms with tliis image resulted in the detectio~i of the above four classes as

shown in Figure 4.9 (b) arid (c).

Tlie characteristic regioils in Figure 4.10 (a). aliotlier image of Borapaui, hleglialayd.

are the water (dark color). IVetlallds (liglit yellowisli-green color), Vegetat,ioll (violet

color) and Open spaces (light green color). Both SATCLUS and GDSDC clustered

the image into five classes as shown in Figure 4.10. showing the clustered regions as

deep water (dark blue), wetland (sky blue), vegetation (pink), open spaces (white)

and polid water (black). i4-e see tliat the water body at, the left liancl top corner of

Figure 4.11: a) Ikonos image of Shillong city, Meghalaya, b) Output of SATCLUS c)

Output of GDSDC

the image is detected, corresponding well to the ground irlformation available.

c) Dataset VI: This dataset1 was acquired frorn IKONOS over the area of Shil-

long city of Meghalaya. IKONOS is a commercial earth observation satellite and

offers multi-spectral and panchromatic imagery and ha3 a spatial resolutioii of 4111

aiitl 1 111. rcspectivcly. Tlic. spectral resolutioii is dividetl iilt,o four 1)aiids iia~iir\l\.

0.415 - 0.516pm (Blue), 0.506 - 0.595pm (Green). 0.632 - 0.698pm (Rccl) ~ i i t l

0.757 - 0.853pm (NIR) . Tlie swat11 covered is 11 lclri x 11 kin ill a single sc.c3iic1

Fig~lre 4.11 (a) slio\vs tlie IIiONOS image of Sllillong city, hIcgliala\-it. Tliv ~lic~~i\c.-

tclistic regions in this iiriage are the colicrete structures. ro~ t l s and ope11 spaceh. Tllc3

rlustcred iinwgc o ~ ~ t p u t obtaiiiecl by tlir proposed tcdll~iqucs is shon-ii in Figure 4.1 1.

Tliese relate well wit11 tlic' groulld inforrilatior~ kl~owm to 11s.

F~o in tl-ie experiniental results given above. nle o1)scrve tliat 1)otli tlie iiletliods, SAT-

CLUS itnd GDSDC. ~11.e liighl\. capablc of detcctiiig cli~sters of all shapcs. Tlic. set of

clusters produced by of the proposed methods are further validated using two clus-

ter validity measures: Cluster homogeneity measure [SMKS03] and the /3 measlire

[PGSOO].

4.8.3 Cluster Validity

To validate the quality of clustering, we use two validity measures: Homogeneity and

p-measure.

a) Cluster Homogeneity Measure: Homogeneity measures the quality of clusters on

the basis of the definition of a cluster: objects within a cluster are similar while

objects in different clusters are dissimilar. The homogeneity measure used is that of

overall average homogeneity used in [SMKS03]. It is calculated as follows.

i) Compute the average value of similarity between each object o, and the seed

of the cluster to which it has been assigned.

where o, is the centroid of C,.

ii) Calculate the average homogeneity for the set of clusters C according to the

size of the clusters as

Where N is the total number of objects.

Here, o, refers to a pixel and the centroid of the cluster is represented by the seed of

the cluster (0,). The homogeneity values for the satellite images shown earlier are

given in Table 4.1. Homogeneity values are reported for both SATCLUS (using a

partitioning approach in Phase 11) and GDSDC (using a fuzzy approach in Phase 11).

b) 0 Cluster Validity Measure: The set of clusters for the remote sensing images ob-

tained above have also been evaluated quantitatively using the index as in [PGSOO].

Let n, be the number of pixels in the ith cluster (i = 1, - - - , c). Let X,, be the vector

(of size 3 x 1) of the HSI values of the jth pixel (j = 1, . . . , n,) for all the images in

cluster i, and X, the mean of n, HSI values of the ith cluster. Then, ,O is defined as

[PGSOO] :

Table 4.1: Homogeneity values for SATCLUS and GDSDC for some satellite image

datasets

where n is the size of the image and x is the mean HSI value of the image. Note

that Xi j , X, and Xi are all 3 x 1 vectors.

The above measure is the ratio of the total variation and within-cluster variation

and is widely used for feature selection and cluster analysis [MMP02]. For a given

image and a value for c (number of clusters), the higher the homogeneity within the

segmented regions, the higher the P value. That both SATCLUS and GDSDC have

higher P values than comparable algorithms is seen in Table 4.2.

Table 4.2: Com~arison of beta value and CPU time for different clustering algorithms
Method I k-means I Astrahan's I Mitra's I Acharyya's I SATCLUS I GDSDC I

4.9 Discussion

P
CPU time

(in hrs)

This chapter has reported two grid-density based clustering methods, SATCLUS

and GDSDC for high-resolution satellite image data2. The cluster creation using

2This work is an outcome of a research project funded by ISRO under the RESPOND scheme

114

[McQ67]

5.30

0.11

[Ast 701

7.02

0.71

[MMP02]

9.88

0.75

[AK07]

3.84578

unknown

17.82

0.08

12.63

0.09

grid cells detects the rough cluster structures. This is because after expansion of a

cluster the method searches for the next candidate cell that has a variation in the

hue value in the dataset. The process expands the new region till there is again a hue

value variation. This process iterates till all the cells have been classified. SATCLUS

uses a partitioning based process of smoothening the cluster borders, giving a finer

set of clusters since the cluster expansion based on cells may sometimes misclassify

the border points. GDSDC exploits a fuzzy membership function for smoothening

the cluster borders. This also helps in the handling of mixed pixels in the images.

Both techniques reassign a border point to the most relevant cluster. This is because

a border point may be misclassified during the cell based expansion. Reassignment

improves the quality of the clusters to a great extent. Based on experimental results,

both SATCLUS and GDSDC can detect clusters of all shapes. The homogeneity

scores for the clusters are also quite good. Based on the CPU time needed and

p measure, the methods perform better than several other comparable algorithms

([McQ67], [Ast70], [MMP02]).

In recent years there has been tremendous progress in the data accumulation tech-

niques. This in turn has resulted in the generation of huge amounts of data. Handling

such voluminous data is a challenge in the field of data mining. Parallel and dis-

tributed techniques help in handling such large amounts of data. In the next chapter,

we present two distributed clustering techniques for spatial data.

Chapter 5

Distributed Grid-Density based

Clustering

Identifying clusters in large spatial data is a difficult task due to the high amount

of processing time needed in handling voluminous data. Distributed and parallel

clustering approaches help to reduce the time needed by distributing the processing

to different machines.This also improves the response time.

In this chapter, we discuss two distributed clustering techniques that can be ap-

plied to handle large scale 2D spatial datasets and large satellite image datasets with

high resolution. The first technique (DGDCT) aims to identify embedded clusters in

any large 2D spatial datasets with improved clustering quality. The second method

is a distributed Grid-Density based Satellite data Clustering technique, DisClus, that

can detect clusters of arbitrary shapes and sizes over large, high resolution, multi-

spectral satellite datasets. Both techniques are implemented using a client server

approach, where the huge dataset stored in the server is partitioned into almost Ic,
equal partitions that are used by Ic, clients to identify the clusters in parallel for each

partition. Finally, the clusters obtained from the kp clients are merged at the server

for the final results. Experimental results establish the superiority of the techniques

in terms of scale-up, speedup as well as cluster quality, in comparison to similar

algorithms.

5.1 Introduction

Extraction of hidden information from huge datasets is a challenging task in data

mining. With the increase in the amount of spatial data, the need for efficient and

effective spatial data mining techniques is of utmost importance. Though traditional

data mining algorithms may be applicable in some spatial datasets, the challenges

imposed by the huge amount of spatial data, need to be addressed. The huge size

of datasets, its wide distribution over several sites and the computational complex-

ity are the factors contributing towards the development of parallel and distributed

algorithms in the data mining domain. Clustering is the process of division of a

dataset into subsets or clusters, so that the similarity of points in each partition is

as high as possible while points in different partitions are dissimilar. Parallel and

distributed spatial data clustering algorithms may help in addressing the problem

mentioned before. Distributed clustering is the partitioning of data into groups, in

a distributed environment. Although this field is relatively new, yet it has been ex-

plored intensively in the last few years, as the need to employ distributed algorithms

has grown signicantly. The evolution of the networking and storage equipment fos-

tered the development of very large datasets and it is infeasible to centrally process

these datasets in order to analyze them. Distributed clustering is applied when either

the data that need to be processed is distributed, or the computation is distributed,

or both of them. If none of these two is distributed, then it is centralized clustering.

Parallel and distributed computing is expected to relieve current clustering methods

from the sequential bottleneck, provide the ability to scale massive datasets and im-

prove the response time. Such algorithms divide the data into partitions, which are

processed in parallel. The results from the partitions are then merged.

Although it is common for data to be distributed in a parallel/distributed envi-

ronment, the distribution is governed solely by performance considerations. Three

main architectures can be proposed for building parallel/distributed DBMSs '.

1. In a shared-memory system, multiple CPUs are attached to an interconnection

network and can access a common region of main memory. A shared memory

Interconnection Nelwork

Global Shared Memory

disk disk eee disk

Figure 5.1: The Shared-memory architecture

system is illustrated in Figure 5.1.

2. In a shared-disk system, each CPU has a private memory and direct access to

all disks through an interconnection network. Figure 5.2, shows a shared-disk

system.

3. In a shared-nothing system as shown in Figure 5.3, each CPU has local main

memory and disk space, but no two CPUs can access the same storage area;

all communications between CPUs are through a network connection.

Shared memory architecture2 usually has a block of random access memory that can

be accessed by different central processing units (CPUs) in a multiple-processor com-

puter system. This type of architecture is quite easy to program since all processors

share a single view of data and the communication between processors can be as fast

as memory accesses to the same location. The problem with these systems is that

many CPUs need fast access to memory and will likely cache memory, which has

two complications: (i) CPU-to-memory connection becomes a bottleneck and shared

memory computers cannot scale very well. (ii) Whenever one cache is updated with

information by a particular processor, the change needs to be reflected to the other

Memory @ @

"@@

Memory

?
Interconnection Network

disk isk a disk

Figure 5.2: The Shared-disk architecture

Interconnection Network

Figure 5.3: The Shared-nothing architecture

processors, otherwise the different processors will be working with incoherent data. If

these issues are handled the system works well, provide extremely high-performance

access to shared information between multiple processors. On the other hand they

can sometimes become overloaded and become a bottleneck to performance

In shared-disk architecture3 all processors can access the same disks with about the

same performance, but are unable to access each other's RAM. With the advent of

Network Attached Storage devices (NAS) which allow a storage device on a network,

is to be mounted by a set of nodes, shared disk has become increasingly popular. One

key advantage of shared-disk systems over shared-nothing is in usability, since DBAs

of shared-disk systems do not have to consider partitioning tables across machines.

In this system the failure of a single DBMS processing node does not affect the other

nodes' ability to access the full database which is not the case with shared-memory

systems (that fail as a unit), and shared-nothing systems (that lose at least some

data upon a node failure).

Shared nothing architecture (SNA)4 is a distributed computing architecture con-

sisting of multiple nodes such that each node has its own private memory, disks and

input/output devices independent of any other node in the network. Each node is

independent and self-sufficient, and shares nothing across the network. Therefore,

there are no points of contention across the system and no scope for data sharing

or system resources. This type of architecture is highly scalable and has become

quite popular for web development because of its scalability. An SN system typically

partitions its data among the different nodes such that each node may be responsi-

ble for handling a particular task (interacting with different types of users, handling

different types of queries, serving different geographic areas etc), or it may require

every node to maintain its own copy of the application's data, using some kind of

coordination protocol to interact with other nodes as required.

The disadvantage of the shared-memory and shared-disk architectures is interfer-

ence. As the number of CPUs are increased, existing CPUs are slowed down because

of the increased contention for memory accesses and network bandwidth. The shared-

nothing architecture requires more extensive reorganization of the DBMS code, but

it has been shown to provide a linear speed-up and linear scale-up. Linear speed-

up occurs when the time required by an operation decreases in proportion to the

increase in the number of CPUs and disks. Linear scale-up occurs when the perfor-

mance level is sustained if the number of CPUs and disks are increased in proportion

to the amount of data. As a result, ever-more-powerful parallel database systems

can be constructed by taking advantage of the rapidly improving performance for

single-CPU systems and connecting as many CPUs as desired.

In this chapter, we propose two distributed clustering techniques that use the shared-

nothing architecture. The first technique presented in Section 5.3 is capable of iden-

tifying arbitrary shaped embedded clusters as well as multi-density clusters over

large spatial datasets. The second technique is reported in Section 5.4 and has been

applied over huge satellite images to detect the various clusters present in the data.

Related Work

This section presents a selected survey on some of the distributed and parallel algo-

rithms.

5.2.1 Distributed and Parallel Clustering Techniques

For the past few decades the mainstream data clustering technologies have been fun-

damentally based on centralized operation; datasets were of small manageable sizes,

and usually resided on one site that belonged to one organization. Today, data is

of enormous sizes and is usually located on distributed sites; the primary example

being the Web. This created a need for performing clustering in distributed environ-

ments. Distributed clustering solves two problems: infeasibility of collecting data at

a central site, due to either technical and/or privacy limitations, and intractability

of traditional clustering algorithms on huge datasets.

In [BBD04], a parallel implementation of the DBSCAN algorithm based on low cost

distributed memory multi-computers is presented. Here, a centrally located dataset

is spatially divided into nearly equal partitions with minimum overlap. Each such

partition is sent to one of the processors for parallel clustering. The clustering results

of the partitions are then collected by the central processor in an orderly manner and

they are merged together to obtain the final clustering. The algorithm is scalable

both in terms of speedup and scale-up and significantly reduces the computation

time.

In [DM99], a parallel version of the k-means algorithm was proposed based on shared

nothing architecture. This algorithm was designed based on the Single Program Mul-

tiple Data (SPMD) model having several processors, each having its own local mem-

ory, connected together with a communication network. Each processor, or node,

receives only a segment of the data that needs to be clustered. One of the nodes

selects the initial cluster centroids, before sending them to the others. New distances

between centroids and data points are computed independently, but after each iter-

ation of the algorithm, the independent results must be aggregated or reduced. This

is done using the MPI (Message Passing Interface). The reduced centroids obtained

after the last iteration represent the final result of the clustering process.

Another parallel version of DBSCAN, called PDBSCAN [XJK99], also uses a shared-

nothing architecture with multiple computers interconnected through a network.

Here, as a data structure, the dR*-tree was introduced which is a distributed spa-

tial index structure in which the data is spread among multiple computers and the

indexes of the data are replicated on every computer. The master distributes the

entire dataset to every slave. Each slave locally clusters the replicated data and

the interference between computers is minimized due to local access of data. The

slave-to-slave and master-to-slaves communication is done via message passing. The

master manages the task of dynamic load balancing and merges the result produced

by the slaves. PDBSCAN offers nearly linear speedup and has excellent scale-up and

size-up behavior.

In [JKPOS], a Density Based Distributed Clustering(DBDC) algorithm was presented

which can be used in the case when the data to be clustered is distributed and in-

feasible to centralize. DBDC works by first clustering the data locally at different

sites independent of each other. The aggregated information about locally created

clusters are extracted and transmitted to a central site. On the central site, a global

clustering is performed based on the local representatives and the result sent back to

the local sites. The local sites update their clustering based on the global model, that

is, merge two local clusters to one or assign local noise to global clusters. For both

the local and global clustering, density-based algorithms are used. This approach is

scalable to large datasets and gives clusters of good quality.

In [FLPTOO], a parallel version of the Autoclass system, P-Autoclass is described.

In [JK99], a Collective Hierarchical Clustering (CHC) algorithm is reported for ana-

lyzing data that is heterogeneously distributed, with each site having only a subset

of all features. First, a local hierarchical clustering is performed on each site. After-

wards, the obtained dendrograms are sent to a facilitator which computes the global

model, using statistical bounds. The aggregated results are similar to centralized

clustering results, making CHC an exact algorithm.

The algorithm P2P K-means, developed by Datta et. al. [DGKOG] is one of the

first algorithms developed for P2P systems. Each node requires synchronization

only with the nodes that it is directly connected to, or its neighborhood. Only one

node initializes the centroids used for k-means, which are then spread to the entire

network. The centroids are updated iteratively. Before computing them at step i, a

node must receive the centroids obtained at step i - 1 by all of its neighbors. When

the new centroids of a particular node do not suffer major modications, then the node

enters a terminated state, where it doesn't request any centroids, but it can response

to requests by neighbors. Node or edge failures and additions are also accounted for

by P2P k-means, making it suitable for dynamic networks. P2P K-Means algorithm

was proposed in [BGM+OG] for distributed clustering of data streams in a peer-to-

peer sensor network environment.

Jin R. et al. [JGAOG] presented a distributed version of Fast and Exact K-Means

(FEKM) algorithm, which collected sample data from each data source, and com-

municated it to the central node. The main data structure of FEKM i.e. the cluster

abstract table is computed and sent to all data sources to get global clusters.

In [ALKK07], the authors proposed a lightweight distributed clustering technique

based on a merging of independent local sub clusters according to an increasing vari-

ance constraint. The key idea of this algorithm is to choose a relatively high number

of clusters locally, or an optimal local number using an approximation technique,

and to merge them at the global level according to an increasing variance criterion

which requires a very limited communication overhead.

Le-Khac N. et al. [LKAK07] presented an approach for distributed density-based

clustering. The local models are created by DBSCAN at each node of the system

and these local models are aggregated by using tree based topologies to construct

global models.

In [TMEDF08], the authors introduced a method to define intuitionistic fuzzy par-

titions from the result of different fuzzy clustering algorithms such as FCM, entropy

based FCM and FCM with tolerance. In this approach, the intuitionistic fuzzy par-

tition permits to cope with the uncertainty present in the execution of different fuzzy

clustering algorithms with the same data and with the same parameterization.

In [DGKOS], Datta et. al. propose two approximate K-means clustering algorithms

that work on uniformly sampled peers. The first algorithm is designed to operate

in a dynamic P2P network that can produce clusterings by local synchronization

only. The algorithm has been observed empirically to produce accurate clustering

results with respect to centralized K-means clustering. However, it cannot offer an

analytical accuracy guarantee. Therefore, the second algorithm is proposed which

works by taking a uniform random sample of nodes from a static P2P network. This

algorithm provides an analytical accuracy guarantee.

Another intuitionistic fuzzy based distributed clustering algorithm is presented in

[VTPlO] for homogeneously distributed datasets. The process is carried out in two

different levels: local level and global level. In local level, numerical datasets are con-

verted into intuitionistic fuzzy data. Modified fuzzy C-Means algorithm is then used

to cluster this data independently from each other. In global level, global centroid

is computed by clustering all local cluster centroids. The global centroid is again

transmitted to local sites to update the local cluster model.

5.2.2 Discussion

Based on our selected survey and experimental analysis, it has been observed that

density based approach is most suitable for quality cluster detection over massive

dat asets. Almost all clustering algorithms require input parameters, determination

of which are very difficult, especially for real world datasets containing high dimen-

sional objects. Moreover, the algorithms are highly sensitive to those parameters.

Distribution of most of the real-life datasets are skewed in nature, so, handling of

such datasets for all types for qualitative cluster detection based on a global input

parameter seems to be impractical. Also handling high dimensional data is a chal-

lenging task. The performance of most of the algorithms aimed to identify quality

clusters for 2D spatial data degrades with the increase in dimensionality. Algorithms

like DBSCAN [EKSX96] and GDBSCAN [SEKX98], which give good quality clus-

tering~, do not work for high dimensional data. Often, the algorithms present in

the literature can be found to identify clusters over large spatial data at an abstract

level, however, some applications demand for identification of these at a more de-

tailed or finer level. None of the techniques discussed above, is capable to handle the

embedded or intrinsic cluster detection problem over massive datasets successfully.

An algorithm which is capable of handling voluminous data and at the same time

effectively detects nested or embedded clusters in presence of noise is of utmost im-

portance. The grid density based clustering algorithm(GDCT) discussed in Chapter

3 finds clusters according to the structure of the embedding space. For handling

massive datasets, a distributed clustering technique based on GDCT is presented

which can effectively address the scalability problem. Better speedup and scale-up

are the major attractions of the proposed technique.

5.3 Distributed Grid-Density based Clustering Tech-

nique (DGDCT)

This section presents a Distributed Grid-Density based Clustering Technique (DGDCT)

capable of identifying arbitrary shaped embedded clusters as well as multi-density

clusters over large spatial datasets. For handling massive datasets, we implemented

our method using a shared-nothing architecture where multiple computers are inter-

connected over a network. We consider a system having kp-nodes where the entire

dataset D is located in any of the nodes (say initiator node). DGDCT can be initiated

in any of the available nodes (computers). The initiator node starts a partitioning

strategy thereby dividing the whole dataset into partitions and then distributing

the partitions to each of the available computers on the network (one partition is

also retained by itself). The initiator node executes a fast partitioning technique

to generate the Ic, initial partitions. The partitions are then sent to kp nodes (in-

cluding itself) for cluster detection using a grid-density based clustering technique

(GDCT) which can operate over variable density space. Every node clusters only

its local data. The initiator node manages the task of dynamic load balancing. Fi-

nally, the local cluster results are received from the nodes at the initiator node and a

merger module is invoked to obtain the final cluster results. Basically the technique

works in three phases and the output of the previous Phase becomes the input of the

current Phase. Next, we describe the architecture as shown in Figure 5.4, phase-wise.

The proposed DGDCT can be found significant in view of the following issues:

1. Embedded cluster Detection,

2. Handling of single linkage problem,

3. Handling of huge datasets (Scalability),

The first two advantages is due to the fact that the clustering algorithm as given

in Section 3.4 can identify embedded clusters and can handle the problem of single

linkage which is inherent to most of the density based algorithms. DGDCT is scal-

able to huge datasets as it uses a fast partitioning technique to distribute the huge

I Initiator Node I

Partitioning
Module

Network

Clustering
Module

Module M e

Figure 5.4: The architecture of the Proposed Technique

Partition 6

data to different nodes for local clustering and finally merges the cluster results at

the initiator. The actual clustering is done on the distributed data and hence the

processing load reduces even in case of huge datasets. This has been explained in

detail in Section 5.3.1.

An overview of the hardware architecture is shown in Figure 5.4. It consists of

a number of nodes (e.g. PCs) connected via a network (e.g. Ethernet).

5.3.1 Phase I: Partitioning the dataset

Phase I of the architecture is executed in one of the nodes (initiator node). The

dataset is spatially divided into equal sized square grid cells and density of each grid

cell is computed. The square mesh is then partitioned with some overlap between

adjacent partitions and distributed over k, available computers (nodes). No subse-

quent movement of data between partitions will take place.

Initially, the data space is divided into gr, x gr, non-overlapping square grid cells,

where gr, is a user input, and maps the data points to each cell. It then calculates the

density of each cell. Assuming, the grid mesh D* contains the set of gr, x gr, objects

say7 D* = 0 0 , 0 1 , 0 2 , " ' 7°(gTnXgTn)-l ' SUPPOS~~ 0 3 = (a ~ j , a ~ J , a 2 3 , ' . ' ,a(n-l),;dn)

represents a grid cell with n real-valued attributes a,, i = 0,. . , n - 1 and density

d,. The ith attribute value of object 0, is drawn from domain a,. If there are kp

clients, the grid mesh D* is partitioned into Ic, subsets Do, Dl, . . . , DkpPl ordered in

sequence. We refer the clients by the corresponding partition D, that it receives for

processing.

D* = DoU Dl U D2U.. .UDkp-1

The partially overlapped partitions are shown in Figure 5.5 for 2D case. An overlap

of one grid cell occurs between two adjacent partitions. The overlapped regions are

much smaller than the partitions. The grid cells in the overlapped regions are locally

clustered in both the adjacent partitions. Thus they provide the information for

merging together the local clustering results of two adjacent partitions. The over-

lapped width should be at least one cell width because adjacent cells are neighbors

according to Definition 3. The grid mesh D* is partitioned in this manner based on

the values of a selected attribute of the data objects say a, as in [BBD04]. The values

of a, have a range of [min-a,, max-a,]. We need to select (Ic , + 1) constants in the

given range. Let ct , i = 1, . - . , Ic, + 1 represents the constants such that C; = min-a, ,
ci , = mas-a, and c,S < c,",,. Therefore the overlapped region can be represented

P+

as :

D, = 3j(0, E D*) I c," - cell-width 5 a,, 5 c,"+,, i = 2, - - . , Ic, - 1

Figure 5.5: Overlapped spatial partitioning of a 2D dataset

Figure 5.6: Here the dataset is divided into three partitions and transmitted to three

computers (Ndk,) for local clustering, lc, = 1 , 2 , 3

D, = 3(0, E D*) (c," 5 a,, 5 c,"+, + cell-width, i = 1

D, = 3j(0, E D*) (c," - cell-width 5 a,, < c,",,,i = 1

The constant c," should be selected in such a manner that 1 D, 1 becomes nearly

equal to [N/lc,l, where N is total number of data points in the dataset. Moreover,

those grid cells which fall within the overlapped regions are marked. Care has been

taken for load balancing. The Ic, partitions thus obtained are then sent to Ic, nodes

for global as well as intrinsic cluster detection (Figure 5.6).

A detailed discussion on the basic sequential algorithm i.e. GDCT is already re-

ported in Section 3.4, however, it was not scalable to huge datasets.

Load Balancing

Partition D, is sent to processor P,, i = 1,2, . . - , Ic, for concurrent clustering. Since

no data movement takes place after the partitions are received by the respective

nodes, care should be taken so that each processor receives nearly equal number of

data objects for processing. This will ensure that all the processors finish the clus-

tering job at the same time provided the processors have same processing speed. If

the processing speeds are different, then the input data should be distributed to the

processors proportionate to their processing speed. We assume that the speeds of the

processors are nearly equal and they receive nearly equal amount of data. For doing

this, the range of a, is divided into intervals of width of one cell-width and the fre-

quencies of data in each interval is counted. Let b = [(max-a, -min-a,)/cell-width],

N' = [N/kpl, dl = min-a,,

d, = dz-l + cell-width, i = 2,3, . . , b

F, = 3j(0, E D*) I d, -< a,, -< dz+17i = 2 , 3 , - . . , b

f a =I Fa I
Now, the constants, c," defined earlier, are computed as cf = d, such that x,"=, f, <
N' 5 x,":: f,, i = 1,2 , . - - , kp7 which will ensure that each partition gets number of

objects nearly equal to N/kp.

Minimized communication cost

The proposed method saves transmission cost by avoiding inter-node communication

during the process of local clustering. To achieve this goal, each concurrent process

of GDCT in each of the nodes, Nd = 1 , 2 , . - , kp, should avoid accessing those

data located on any of the other computers, because the access of the remote data

requires some form of communication. Therefore, nearby objects should be available

on the same computer. This is why an overlap of one cell-width has been taken into

consideration.

5.3.2 Phase 11: Local Clustering

Phase I1 of the architecture is executed in each of the kp nodes. This phase plays

the actual role of clustering. In this phase, each node executes the GDCT algorithm

over the partition of data received from the initiator node to detect the global and

nested clusters.

For the partition D, in node i, the grid cells in it will be assigned clusterid ac-

cording to the clusters formed in that partition. The cluster-ids will be used during

the server based merging process by the initiator node.

The cluster expansion based on grid cells helps to achieve a significant cost reduc-

tion as all the data points are not considered for cluster expansion only the density

information of each cell is used. Also, as the clusterid information are used during

Phase I11 merging process, it saves the cost of merging to a great extent.

5.3.3 Phase 111: Merging

In Phase 111, the cluster results received from the kp nodes undergo a simplified, yet

faster merging procedure to obtain the final clusters. Since the Phase I1 process in

a node may yield more than one cluster along with the embedded clusters, so there

are always possibilities for merging during Phase I11 operation. The Merger module

works as follows:

1. Join the partitions received from the kp nodes according to their overlapping

marks.

2. Consider the marked grid cells (overlapping cells) of the candidate clusters.

2.1 If any of the marked grid cells is identified by different clusterids by

different partitions (say I, m), then assign any one of the ids (say I) to

that cell.

3. Assign all those cells having the same clusterid as the replaced id (m) with 1.

5.3.4 Complexity Analysis

Phase I: The partitioning of the dataset into gr, x gr, non-overlapping cells results

in a complexity of O(N) where N is the total number of data points. The grid mesh

D* is spatially partitioned into kp partitions with overlap of one cell width which

results in a complexity of O(gr, x gr,), where gr, << N. Each of these Ic, partitions

will have nearly equal (approximately N/kp) data points. The data points along with

the grid information for each of Ic, partitions will be sent to the kp nodes. Therefore

(Nllc,) + t points will be sent, where t is the average number of points present in an

overlapped region. Next, to transmit these (Nllc,) + t points to each node requires

a communication time of O((N/lc,) + t) .

Phase 11: This phase is executed in each of the Ic, nodes. Computing density of

the cells in each node requires O((gr, x r) x ((Nllc,) + t)), where r is the average

number of cells along the selected attribute based on which partitioning in Phase

I has been performed. The sorting of cells according to their density results in a

complexity of O((gr, x r)log(gr, x r)) .

The expansion of the coarse cluster results in O(m,) time complexity, where m,

is the number of cells in an coarse cluster formed and m, << (gr, x r)/lc, in the

average case. Cell subdivision into triangles takes place only in case of the border

cells of the coarse cluster and its neighboring cells, Say, there are p border and q

neighbor cells where q >> p. This step results in a complexity of O (p + q). If the

number of clusters obtained is k then the overall time complexity for the clustering

will be O(k x m, x (p + q)) .

Therefore, total time complexity will be O((grn x r) x ((Nllc,) + t)) + O((gr, x

r)log(grn x r)) + O(k x m, x (p + q)) . Thus the complexity due to density calculation

almost dominates the other components, since (N/lc,) +t) >> (grn x r) . The clusters

detected in this phase are transmitted back to the initiator node with a transmission

cost of O ((N / k p) + t)) .

Phase 111: Merging of the clusters obtained from the Ic, nodes will take O (N + Ic,.t)

time.

Thus, the overall time complexity of distributed GDCT will be O (N) + O(grn x

grn) +O((N/kp) + t)) + O((grn x r) x ((N / k p) +t)) + O ((N / k p) + t)) + O (N + kP.t).
Therefore, the time complexity of DGDCT becomes O (N) since N >> (gr, x gr,).

5.3.5 Performance Evaluation

This section reports an empirical study of DGDCT by measuring execution time,

speedup, efficiency and scale-up factors. Since there is no inter-processor commu-

nication except for a single processor communicating with each of the remaining

processors. Each processor has the same specification i.e. PIV with 1 GHz speed

and 128 MB RAM and the processors are connected through Ethernet LAN of speed

10/100 Mbps. measurements. Our implementation is in C in Linux environment

and we considered several synthetic datasets containing arbitrary number of arbi-

trary shaped clusters having 2 x lo5, 4 x lo5, 6 x lo5 and 9 x lo5 objects respectively

and experimentation was carried out.

The graph of Parallel Execution Time is shown in Figure 5.7. From the graph we

conclude that the execution time decreases significantly as the number of processors

increases.

The Relative Speedup curves for two datasets with points N = 9 x lo5 and 6 x lo5 is

Number of procesm(s)

Figure 5.7: Parallel execution time

given in Figure 5.8. The number of dimensions and the number of clusters are fixed

for both the datasets.

The scale-up characteristic of the DGDCT has been found to be satisfactory with

the increase in the number of processors as can be seen from Figure 5.9. Here, the

number of data points is scaled by the number of processors while dimensions and

number of clusters are held constant. It is seen from the Figure 5.10 that if two

many processors are used then performance degrades.

DGDCT is an effective technique for handling huge 2D numeric datasets qual-

itatively. However, DGDCT can be applied only to 2D spatial data. For higher

dimensional spatial data, DGDCT may be modified in the line of [AGGR98]. For

clustering high resolution massive satellite data, a grid density based clustering tech-

nique based on DGDCT is reported in the next section.

I 1 1 I

1 2 3 4 5 6

Number of processor (s)

Figure 5.8: Relation between Speedup and number of processors for two datasets.

+Data size = 100000 Number of processors

I I I I I

1 2 3 4 5 6
Number of processors

Figure 5.9: Scale-up curve.

Number of praeessods)

Figure 5.10: Efficiency vs. number of processors employed

5.4 Distributed Grid-Density based Clustering Tech-

nique for Satellite Data (DisClus)

Clustering conserves the homogeneous property within a cluster i .e., data points

within a cluster are more similar than the data points belonging to different clus-

ters [HK06]. A high resolution satellite image is a remotely sensed image of the

earth's surface which is a collection of huge amount of information in terms of num-

ber of pixels where each pixel in the image represents an area on the earth's surface.

Multi-spectral images are the main type of images acquired by remote sensing. This

technology was originally developed for space-based imaging which can capture light

of frequencies beyond the visible range of light, such as infrared, which helps to ex-

tract additional information that the human eye fails to capture with its receptors

for red, green and blue. A multi-spectral satellite image is a digital image compris-

ing of multiple bands where each band represents a particular wavelength of light.

Remotely sensed satellite images mainly consists of objects (regions) such as vege-

tation, water bodies, concrete structures, open spaces, habitation, clouds etc. which

are separated due to their different reflectance characteristics, leading to wide variety

of clusters of different sizes, shapes and densities.

Based on our selected survey and experimental analysis, it has been observed that

handling large scale data is a challenging task. To discover clusters of varying shapes

and sizes effectively over massive spatial datasets is a difficult task. To address these

challenges, this chapter presents a distributed grid-density based clustering algorithm

(DisClus5) based on SATCLUS and GDSDC [SBlO] which can detect clusters over

high resolution satellite datasets qualitatively. Further, the post processing phase

helps in smoothening the bordering regions of clusters. The method was tested and

evaluated over satellite datasets and the results has been found satisfactory.

5.4.1 The Proposed DisClus

Like, DGDCT, DisClus also works in three phases. In the first phase, the satellite

image is partitioned into regions with marked overlappings at an initiator node and

sent to each of the nodes available for clustering. The second phase is executed in

each of the participating nodes. In this phase, the clustering of the data for each

partition is performed using either one of the techniques, SATCLUS or GDSDC, at

each node. Finally, during the third phase, the nodes transmit the cluster results

back to the initiator node where the result are merged to get the final result.

The proposed architecture adopts a shared nothing architecture. It considers a sys-

tem having kp-nodes where the whole image D is located in any of the nodes (say

node 1, also referred here as initiator node). It executes a fast partitioning technique

to generate the Ic, initial overlapped partitions. The partitions are then distributed

among Ic, - 1 nodes and one partition is kept at the initiator for cluster detection.

Finally, the local cluster results are received from the nodes at this node (node 1)

and a merger module is used to obtain the final cluster results. Next, each of these

phases is explained in brief.

Phase I: In the initiator node, the dataset is spatially divided into gr, x gr, non-

overlapping square grid cells, where gr, is a user input, and maps the data points

5This work is an outcome of a research project funded by ISRO under RESPOND scheme

137

to each cell. It then calculates the density of each cell. The grid mesh is then

partitioned with some overlap between adjacent partitions and distributed over Ic,
available computers (nodes). No subsequent movement of data between partitions

will take place. An overlap of single grid cell width occurs between two adjacent

partitions. The grid cells in the overlapped regions are locally clustered in both the

adjacent partitions. Thus, they provide the information for merging together the

local clustering results of two adjacent partitions.

Load Balancing: Partition Di is sent to processor Pi, i=l,-. . , k for concurrent

clustering. Since no data movement takes place after the partitions are created and

transmitted to the respective nodes till the clustering results are locally available at

each node, care has been taken so that each processor receives nearly equal number

of data objects (i.e. pixels) for processing. Like DGDCT, here also it is assumed that

the speed of all the processors are equal. The range of a, is divided into intervals

of width of one cell-width and the frequencies of data in each interval is counted.

The load balancing is done in a manner similar to [BBD04] which ensures that each

partition gets number of objects nearly equal to N / k p .

Phase 11: In this phase, either SATCLUS or GDSDC (discussed in previous chap-

ter) is executed in each of the Ic, nodes over the partition of data received from the

initiator node. For the partition Di in node i, the grid cells in it will be assigned

cluster-id according to the clusters formed in that partition.

The cluster expansion based on grid cells reduces the computation time as data

points are not considered for cluster expansion, only the density information of each

cell is used. Moreover, the information of the marked cells used during merging

process of Phase I11 saves the cost of merging to a great extent. Finally, Phase I1

transmits the cluster objects to the initiator node along with the cluster-ids.

Phase 111: Here, the cluster results are gathered from the lc, nodes into the ini-

tiator node. A merger module is used which uses the cluster-id information obtained

from the partitions to finalize the cluster results. The Merger module first joins the

partitions received from the kp nodes according to their overlapping marked cells. It

considers the marked grid cells (overlapping cells) of the candidate partitions. If any

of the marked grid cells is identified by different cluster-ids by different partitions

(say I, m) , then the smallest of the cluster-ids (say I) is assigned to that cell. Finally,

all those cells having the same cluster-id as that of the replaced cluster-id (m) is

assigned with cluster-id I.

The following lemma provides the theoretical basis for the merging process.

Lemma 6. Let m be a marked cell in the overlapping region of two adjacent parti-

tions p, and p,+l and C, and C, are two clusters belonging to p, and p,+l respectively.

If m E C, and also m E C,, then C, and C, are merged.

Proof. Suppose, m be a marked cell and cell x E C, in p, and cell y E C, in p,+l.

If m E C, and also m E C,, then x and y are reachable from rn and m E C, n C,.

So, x is connected to y and cells x and y should be in the same cluster. Therefore,

clusters C, and C, should be merged.

5.4.2 Complexity Analysis

Since the proposed technique is executed in three phases and each phase is indepen-

dent of each other, therefore, the total complexity will be the sum of the complexities

due to these three phases.

The first phase divides the dataset of N points into gr, x gr, cells which are parti-

tioned into Ic, overlapped partitions with a total of ((lc, - 1) x gr,) overlapped cells.

Therefore, this phase results in a complexity of O(gr, x gr,) approximately, where

gr, << N. After partitioning, (N + (k p - 1) x t) points will be transmitted to

k., nodes, where t is the average number of points present in an overlapped region,

results in a complexity of O((N + (Ic , - 1) x t).

The second phase results in a complexity of O(((gr, x gr,)/lc, + gr,) + (C h b))

[SBlO], where C1 is the number of clusters detected locally and b is the number of bor-

der points obtained in a partition in a node. The clustered points are re-transmitted

to the initiator node with a transmission cost of O ((N + (k p - 1) x t) .

The third phase is responsible for merging of the clusters resulting in atmost O (N

+ Ic, x t) time.

Thus, the overall time complexity of DisClus will be O (g r , x gr,) + O (N + (kp - 1) x t)

+ o (((g r n x grn) /kp + grn) + (C1 x b)) + O (N + (Ic, - 1) x t) + O (N + Ic, x t) .

Therefore, the time complexity becomes O (N) , since N >> (gr, x gr,) and also

N >> ((k p - 1) x t) .

5.4.3 Performance Evaluation

In this section we evaluate the performance of DisClus in light of several real-life

satellite image data.

Environment Used

The algorithm was implemented using Java in Windows environment with Pentium

IV processor with 1 GHz speed and 256 MB RAM. To smooth out any variation,

each experiment was carried out for several times and the average result was taken.

Dat aset s Used

The algorithm was tested over several real-life satellite images as shown in Table 5.1.

The Dataset 1 is shown in Figure 5.11. The clusters obtained from the image of

Figure 5.11 are shown in Figure 5.12. Figure 5.13 shows Dataset 2. There is a

prominent black stretch across the image which is the river Hoogly. The prominent

light patch at the bottom right corner is the Salt Lake stadium and the black patches

nearby are the fisheries. Two parallel lines at the upper right hand side of the image

correspond to the airport runway in the Dumdum airport. Other than these there

are several water bodies, roads, open spaces, etc. in the image.

DisClus automatically detects four clusters for this data as observed in Figure 5.14.

From our ground knowledge, we can infer that these four clusters correspond to the

Table 5.1: Results of the clustering algorithm over several multi-spectral satellite

imag
Serial No. I Dataset

Dataset 1 (Landsat MSS

I image of Sonari, Assam

Dataset 2

1 Sonari, Assaln

IRS LISS I1

image of Kolkata,

West Bengal

Spectral Resolution Clusters

Bands 1 1 Detected

Dataset 4

4 1 79 m (4 clusters

IRS P6 LISS IV

image of Borapani,

Meghalaya

Figure 5.11 : Landsat-hlSS

4 36.25 nl 4 clusters

Figure 5.12: DisClus output of Figure 5.11

Figure 5.13: IRS Kolkata

Figure 5.14: DisClus output of Figure 5.13

classes: Water Bodies (black color), Habitation and City area (deep gray color),

Open space (light gray color) and Vegetation (white color). The river Hoogly, sta-

dium, fisheries, city area as well as the airport runway is distinctly discernible in the

output image. The predominance of city area on both sides of the river, particularly

at the bottom part of the image is also correctly classified which corresponds to the

central part of Kolkata city. Figure 5.15 shows the Kolkata image partitioned using

FCM algorithm. It can be seen from the result that the river Hoogly and the city

area has not been properly classified. These two objects have been classified as be-

longing to the same class. Similarly, the whole Salt Lake city as a whole has been

put into one class. However, some portions such as canals, the Dumdum airport

runway, fisheries, etc. have been classified properly.

The experiments on the images presented next is aimed to handle two different

types of terrains (plain and hilly) in order to see the variation of classification accu-

racy. Dataset 3 shows the plain built up area of Sonari in Sibsagar district of Assam

(Figure 5.16).

Some characteristic regions in the image are the river Brahmaputra shown in black

--
Figure 5.15: FCM output

Figure 5.16: Cartosat-1 of Sonari

Figure 5.17: DisClus output of Figure 5.16

color and spirally cutting across the middle of the image, roads, agricultural land,

human settlements, etc. The DisClus clustering algorithm automatically detects 5

clusters (Figure 5.17 corresponding to river, road, agricultural land, water bodies

and human settlements.

The fourth dataset used in this work shows a view of the Borapani area of the

state of Meghalaya (Figure 5.18). The characteristic regions in this image are the

Deep water (Deep Blue color), Wetlands (light blue color), Vegetation (Red and Pink

colors) and Open spaces (White color).

DisClus clustered the image into five classes as shown in Figure 5.19. The re-

sulting image classified the regions as: deep water (dark blue), wetland (sky blue),

vegetation (pink), open spaces (white) and pond water (black). It can be seen that

the water body at the left hand top corner of the image has been detected which

corresponds well to the ground information available.

From the experimental results given above, we can conclude that the technique

is highly capable of detecting clusters of all shapes.

Figure 5.18: IRS image of Borapani

Figure 5.19: DisClus output of Figure 5.18

350 -

600000 data

0 1 1 1 l I I l

1 2 3 4 5 6 7

No. of processors

Figure 5.20: Execution time

Figure 5.21: Relative Speedup curves

r

8 -

7 -

a 6 -
3
P
0 5 - o
Q " 4 -
0
> -
% 3 - -
a
' 2 -

1 -

0

speedup
- + - 800000

-+ - 600000

--

1 2 3 4 5 6 7

No. of processors
1

I Numberof 1

1 2 3 4 5 6
Number of processors

Figure 5.22: Scale-up curve

5.4.4 Performance and Scalability Analysis

In our implementation environment, there is no inter-processor communication ex-

cept for a single processor communicating with each of the remaining processors.

Each processor has the same specification i.e. PIV with 1 GHz speed and 128 MB

RAM and the processors are connected through Ethernet LAN of speed 10/100 Mbps.

To smooth out any variation, each experiment was carried out for five times and the

average results were taken and each reported data point is to be interpreted as an

average over five measurements. Our algorithm was implemented in JAVA in Linux

environment in a HP xw8600 WS.

i. Parallel Execution Time: T(kp), the parallel execution time of a program

is the time required to run the program on kp nodes in parallel. When Ic, = T(1)

denotes the sequential run time of a program on a single processor. Figure 5.20 re-

veals that the execution time decreases significantly with the increase in the number

of processors.

ii. Speedup: Speedup is a measure of relative performance between a multipro-

cessor system and a single processor system, defined as, S(kp) = T(l)/T(kp). On

experimenting it has been found that the speedup factor increases with the increase

in the number of processors. Figure 5.21 shows relative speedup curves for two

datasets with points N = 8x lo5 and 6x lo5. The number of dimensions and the

number of clusters are fixed for both the datasets. The solid line represents "ideal"

linear relative speedup. For each dataset, a dotted line connects observed relative

speedups, which is a sub-linear type.

iii. Efficiency: The efficiency of a program on Ic, processors, i.e. E(lc,) is de-

fined as the ratio of speedup achieved and the number of processors used to &chieve

it. E(lc,) = S(lc,)/lc, = T(l)/lc,.T(kp). In case of the proposed technique we ob-

served that too many processors does not ensure the efficiency.

iv. Scale-up: The scale-up characteristic of the proposed technique has been found

to be satisfactory with the increase in the number of processors as can be seen from

Figure 5.22. Here the number of data points is scaled by the number of processors

while dimensions and number of clusters are held constant.

While comparing to DBSCAN, OPTICS, EnDBSCAN, GDLC and Density-isoline,

the proposed DisClus requires only two parameters i.e. the number of grid cells, i.e.

gr, and threshold a. However, based on our extreme experimental studies, it has

been observed that the threshold a does not vary significantly with different datasets.

5.4.5 Comparison of Cluster Quality of DisCIus with its Stand-

alone Counterparts

The results of clustering the remote sensing images have been evaluated quantita-

tively using an index, p as in [PGSOO]. Let n, be the number of pixels in the ith

cluster (i = 1, . . , c) , X,, be the vector (of size 3 x 1) of the HSI values of the jth

pixel (j = I , . . , n,) for all the images in cluster i , and X, the mean of n, HSI values

of the ith cluster. Then, ,O is defined as [PGSOO]:

where n is the size of the image and X is the mean HSI value of the image. It may be

noted that X,,, X, and are all 3 x 1 vectors. The above measure is the ratio of the

total variation and within-cluster variation and is widely used for feature selection

and cluster analysis [MMP02]. For a given image and c (number of clusters) value,

the higher the homogeneity within the segmented regions, the higher the P value.

The proposed DisClus has the highest P as can be seen in Table 5.2. DisClus was

also compared with its other stand-alone and density based counterparts in terms of

general parameters and the result is shown in Table 5.3.

Table 5.2: Comparison of ,O values for different clustering algorithms

5.5 Discussion

This chapter presents two clustering techniques: the first one (DGDCT) is for mas-

sive 2D spatial data and the second one is for satellite data. DGDCT is based on

a grid-density based approach and can detect global as well as embedded clusters

qualitatively. Experimental results of DGDCT in terms of scale-up and speedup are

reported to establish the superiority of the technique in light of several synthetic

datasets.

Method

P

DisClus is also a grid-density based clustering technique for high-resolution multi-

spectral satellite image. The technique was experimentally evaluated and found

capable in detecting the clusters qualitatively. Experimental results establish the ef-

ficiency of the technique in light of several satellite images. In DisClus, there is also

an option for choosing either the partition based algorithm (SATCLUS) or the fuzzy

k-means

[McQ67]

5.30

Astrahan's

[Ast70]

7.02

Mitra's

[MMP02]

9.88

SATCLUS

17.82

GDSDC

12.63

DisClus

15.31

Table 5.

k-means

FCM

OPTICS

SATCLUS

GDSDC

DisClus

: Comparison of Dj
No. of parameters

(MinPts, E)

3

(MinPts, E, EI)

Zlus with its

Structure

Spherical

- ~~

Non-Convex

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

wnterparts

Complexity

(Approximate)

O(N)

O(N1ogN)

using R* tree

O(NlogN)

using R* tree

based one (GDSDC) for the clustering process depending on the image data. Results

of both the algorithms have been reported in Chapter 4 to show their efficiencies.

Since satellite images are huge in size, DisClus helps in handling such data efficiently

and qualitatively. Moreover, DisClus uses the number of grid cells and threshold

a as input parameters, however, it has been seen that a does not vary much with

different datasets. The next chapter deals with the application of clustering over

gene expression datasets.

Chapter 6

Clustering Gene Expression Data

for Coherent Pat tern Identification

This chapter presents two clustering methods capable of identifying coherent patterns

over gene expression data. The first method, GenClus, is a technique for clustering

gene expression datasets, designed based on a density based approach. It is capable

of identifying clusters and sub-clusters of arbitrary shapes of any gene expression

dataset even in presence of noise. Experimental results show the efficiency of Gen-

Clus in detecting quality clusters over gene expression data in terms of the z-score

cluster validity measure. An incremental version of GenClus (InGenClus) is also

presented that has been established to be effective in handling datasets that are up-

dated increment ally.

The second method presents an effective tree-based clustering technique (Gene Clus-

Tree) for finding clusters over gene expression data. GeneClus'Tkee works by finding

the maximal space clusters and then proceeds in finding the reduced space clusters.

The clusters are represented as a tree with the reduced space clusters as the child

of its respective maximal space cluster. The pvalue analysis of GeneClusTree shows

that it is capable in detecting biologically relevant clusters from gene expression data.

6.1 Introduction

Microarrays are a powerful technology that enables the monitoring of the expression

levels of thousands of genes across different developmental stages, clinical conditions

or time points. It helps in understanding gene functions, biological processes, gene

networks, effects of medical treatments, etc.

The central dogma of bioinformatics describes the unidirectional flow of information

from DNA via RNA (Ribonucleic acid) to protein in three steps: Replication, Tran-

scription and Translation [KWOZ]. The first stage, Replication is the process which

results in the duplication of the genetic information coded in DNA strands. The

second stage, Transcription, is the transfer of information from the double stranded

DNA into single-stranded mRNA. The third stage, Translation, refers to the con-

version inside the cell where mRNA is translated to produce a protein. Together

Transcription and Translation constitute Gene Expression. Gene expression ex-

periments provide a method to quantitatively measure the transcription phase of

protein synthesis. The objective of gene expression experiments is the quantitative

measurement of mRNA expression particularly under the influence of drug or disease

perturbations.

The two major types of microarray experiments are: cDNA microarray and oligonu-

cleotide arrays. Though both the types of experiments follow different protocols, yet

they have some common basic procedures [SteOG]. The analysis of gene expression

is shown in Figure 6.1. The basic building blocks used in the analysis pipeline are

described in brief below.

i Chip manufacture: A DNA microarray is a small chip consisting of a solid

surface (made of chemically coated glass, nylon membrane or silicon), onto

which DNA molecules (probes) have been chemically bonded in fixed grids.

The purpose of a microarray is to detect the presence and abundance of labeled

nucleic acids in a biological sample, which will hybridize to the DNA on the

WA m~cmanay& Sampk
prepuatwn Hybndlzabm.

Scannen ha@
Acquls~boa

Computer aided
data analr\k

cluster sadvsrs

Figure 6.1 : Gene expression analysis pipeline

array and can be detected by the label [SteOG]. The labeled nucleic acids are

derived in the mRNA of a sample and hence microarray measures the gene

expression. Since thousands of DNA molecules are bonded to a single array, it

is possible to measure the expression of many thousands of genes in parallel.

ii Sample preparation, labeling: The first step is the extraction of RNA from the

tissue of interest. Next, two mRNA samples are reverse-transcribed into cDNA

and labeled using fluorescent dyes (Cy3 and Cy5).

iii Hybridization and washing: Hybridization is the step in which the DNA probes

on the glass and the labeled DNA (or RNA) target form heteroduplexes via

Watson-Crick base pairing [KW02]. After hybridization, the slides are washed

(using a low-salt wash or with a high-temperature wash) to remove excess

hybridization solution from the array. This ensures that only the labeled target

on the array is the target that has specifically bound to the features on the

array. This step also reduces cross-hybridization.

iv Image Acquisition: In this step, an image of the surface of the hybridized array

(chip) is produced by scanning the chip to read the signal intensity that is

emitted from the fluorescent dye of the heteroduplexes on the array where the

target has bound to the probe. Raw data is obtained from this step.

Next, various normalization and standardization steps are performed to clean and

filter the data and resolve any errors, noise and bias introduced by the microarray

experiments. Finally, the real-valued gene expression data is obtained in the form of

a matrix where the rows refer to the genes and the columns represent the conditions.

Figure 6.2: The image acquisition process

The next step is to use data mining techniques (such as clustering, association rule

mining, etc) to extract the hidden information in this data. Finally, validation is

performed to check if the result obtained is good from a biological point of view.

The image acquisition process is shown in detail in Figure 6.2 and has been repro-

duced from http://www.mun.ca/biology/scarr/cDNA~microarray~ Principle.jpg.

The power of a microarray is that there may be many thousands of different DNA

molecules bonded to an array, and so it is possible to measure the expression of many

thousands of genes simultaneously.

6.2 Gene Expression Data

Gene expression is the effective production of the protein that a gene encodes. A

microarray experiment assesses a large number of DNA sequences (genes) under

multiple conditions (such as time-series, tissue samples (e-g., normal versus cancerous

tissues), experimental conditions, etc.). A gene expression dataset from a microarray

experiment may be considered as a G x T matrix DG as shown in Equation 6.1,

where DG = {g,,j), the rows of which represent expression patterns of a set of G

genes {gl, . . , gG), the columns represent expression profiles of a set of T samples,

S = {sl, . . . , sT) and each cell g , , is the expression level of gene g,(where 1 5 i 5 G)

on sample s, (where 1 5 j 5 T).

DG =

The main advantages of the analysis of gene expression data are: (i) meaningful pat-

terns in the data are identified i.e. genes with unique properties are clustered and (ii)

specific genes belonging to a pattern as well as the associations among groups of genes

are identified. However, the large number of genes and the complexity of biologi-

cal networks pose a serious challenge in interpreting the resulting data, which often

consists of millions of measurements. This challenge can be addressed by the use of

clustering techniques, which reveals natural structures and identifies the interesting

patterns in the underlying data. A number of clustering methods have emerged for

the analysis of gene expression data. Cluster analysis starts with this gene expres-

sion matrix and finds proximity between the different genes. Clustering algorithms

group genes which are similar based on the proximity measure into the same cluster.

Therefore, similar genes are grouped into the same cluster and dissimilar genes are

grouped into different clusters. During the last couple of years, several significant

coherent pattern identification techniques have been evolved under the categories of

gene based, sample based and subspace clustering approaches. Next subsection is

dedicated to reviewing some of those popular algorithms. According to [SteOG], most

data mining algorithms developed for microarray gene expression data deal with the

problem of clustering. Clustering groups genes with similar expression patterns into

the same cluster. One of the characteristics of gene expression data is that it is

meaningful to cluster both in terms of genes or samples. Co-expressed genes can

be grouped into clusters based on their expression patterns ([BDSY99], [ESBB98]).

Two major challenges for clustering gene expression data are: (i) to group genes

with similar expression patterns (co-expressed genes), and (ii) to extract the useful

patterns intelligently from noisy datasets.

- -
911 g12 . ' . ' g 1 ~

g21 g22 ' . * ' ' g2T
.

g ~ i Q G ~ " " " ~ G T -

(6.1)

Coherent Pattern Identification in Gene Ex-

pression Data

In this section, we report some of the popular gene based, sample based and subspace

clustering methods, for identifying coherent patterns in gene expression data.

6.3.1 Gene based Clustering Approach

The goal of gene-based clustering is to group co-expressed genes together. Co-

expressed genes indicate co-function, co-regulation and reveals the natural data struc-

tures [JTZ04]. In gene-based clustering, the genes are treated as the objects, while

the samples are the features. Gene expression data consists of a high level of back-

ground noise. Therefore, clustering algorithms for gene expression data should be

capable of extracting useful information from such noisy data and should depend as

little as possible on prior knowledge. Also it is an added advantage if the clustering

algorithm provides a graphical representation of the cluster structure other than just

partitioning the data.

6.3.2 Sample based Clustering Approach

In sample-based clustering, the samples can be partitioned into homogeneous groups

where the genes are regarded as features and the samples as objects. Samples are

generally related to various time points, disease or drug effects within a gene ex-

pression matrix. According to [JTZ04], the goal of sample-based clustering is to find

the "phenotype structures or substructures of the samples". Only a small subset of

genes whose expression levels strongly correlate with the class distinction, rise and

fall coherently and exhibits fluctuation of a similar shape under a subset of condi-

tions, participate in any cellular process and are relevant. These genes are called the

informative genes. The remaining genes are regarded as noise in the data and are

irrelevant to the sample of interest. By focusing on a subset of genes and conditions

of interest, the noise levels induced by other genes and conditions can be lowered

which are characterized by co-clustering. Therefore, to identify informative genes and

reduction of gene dimensionality for clustering samples to detect their substructure

particular methods should be applied. The sample-based clustering techniques are

divided into two main categories: (i) clustering based on supervised informative gene

selection and (ii) unsupervised clustering and informative gene selection. Since the

percentage of the informative genes is very less, the major challenge of sample-based

clustering is informative gene selection. In Supervised informative gene selection

techniques, the sample's phenotype information is used to select informative genes.

It is relatively easy to use and gets a high clustering accuracy rate since the majority

of the samples are used as the training set to select informative genes. Unsupervised

sample-based clustering as well as informative gene selection is quite difficult due to

the fact that no prior knowledge is supposed to be known in advance. There are two

strategies to address this problem. The first strategy reduces the number of genes

before clustering samples and the second strategy utilizes the relationship between

the genes and samples to perform gene selection and sample clustering simultane-

ously in an iterative paradigm [JTZ04]. One drawback of these approaches is that

the gene filtering process is non-invertible. The deterministic filtering will cause data

to be grouped based on local decisions. Also some knowledge about the number of

clusters is needed which will be an input parameter of the clustering method. An-

other problem is determination of the number of iterations which usually is hard to

estimate.

Both the gene-based and sample-based clustering approaches search for exclusive

and exhaustive partitions of objects that share the same feature space. Apart from

these, a third category, that is subspace clustering, captures clusters formed by a

subset of genes across a subset of samples.

6.3.3 Subspace Clustering Approach

For subspace clustering algorithms, either genes or samples can be regarded as objects

or features. To find subset of objects such that the objects emerge as a cluster in

a subspace created by a subset of the features [JTZ04]. Genes and samples are

treated symmetrically such that either genes or samples can be regarded as objects

or features. A single gene may participate in multiple pathways that may or may not

be co-active under all conditions. Subspace clustering [AGGR98] techniques confine

coherence exhibit by the blocks within gene expression matrices. A block is a sub-

matrix defined by a subset of genes on a subset of samples. A subspace clustering

algorithm, CLIC, has been proposed in [YHCYlO]. CLIC first clusters the genes in

individual dimensions and the ordinal labels of clusters in each dimension are then

used for further full dimension-wide clustering. CLIC also finds the sub-clusters of

the clusters detected in the first round of clustering which helps in finding more

homogeneous groups in the data. Subspace clustering algorithms can be further

subdivided into biclustering and triclustering algorithms as discussed next.

Biclustering: Biclustering [MOO41 performs simultaneous clustering on the

row and column dimensions of the data matrix. Simultaneous gene-condition

(row-column) clustering is performed to identify sub-matrices, sub-groups of

genes and subgroups of conditions. Clustering derives a global model while

biclustering produces a local model. Unlike clustering algorithms, biclustering

algorithms identify groups of genes that show similar activity patterns under

a specific subset of the experimental conditions, each gene and condition in a

bicluster are only a subset of the genes and conditions. In biclustering, if some

points are similar in several dimensions they will be clustered together in that

subspace. Biclustering has been proved of great value in finding the interesting

pat terns in the microarray expression data.

Triclustering: Triclustering [ZZ05] is mining coherent clusters in three-dimensional

(3D) gene expression datasets. It mines arbitrary positioned and overlapping

clusters and depending on different parameter values it mines diverse variety

of clusters. It can detect clusters with constant or similar values along each

dimension as well as scaling and shifting expression patterns. Tricluster relies

on graph-based approach to mine all valid clusters and mergeldelete some clus-

ters having large overlaps and has been found to detect significant triclusters

in the real microarray datasets. In [LT09], the authors designed a tricluster-

ing algorithm which utilizes a divide-and-conquer strategy, and an Automatic

Boundary Searching (ABS) algorithm that is capable to detect statistically sig-

nificant Regulated Expression Values [LT09] that correspond to a tricluster. A

parallel version of tricluster algorithm is reported in [AF0+08].

Gene expression data has certain special characteristics and is a challenging re-

search problem. In this chapter, we will mainly focus on gene-based clustering as

we are interested in finding the co-expressed genes which will indicate co-function,

co-regulation and reveal the natural structures in the data. Here, we will first present

the challenges of gene-based clustering and then review a series of gene-based clus-

tering algorithms.

6.3.4 Challenges of Gene-based Clustering

The purpose of clustering gene expression data is to reveal the natural structure

inherent in the data. A good clustering algorithm should depend as little as possible

on prior knowledge, for example, requiring the predetermined number of clusters

as an input parameter. Clustering algorithms for gene expression data should be

capable of extracting useful information from noisy data. Gene expression data are

often highly connected and may have intersecting and embedded patterns [JPZOS].

Therefore, algorithms for gene-based clustering should be able to handle this situation

effectively. Finally, biologists are not only interested in the clusters of genes, but also

in the relationships (i.e., closeness) among the clusters and their sub-clusters, and

the relationship among the genes within a cluster (e.g., which gene can be considered

as the representative of the cluster and which genes are at the boundary area of the

cluster). A clustering algorithm, which also provides some graphical representation

of the cluster structure is much favored by the biologists.

6.4 Gene Based Clustering Algorithms: A Selected

Review

We now present a review of some selected gene based clustering algorithms.

k-means [McQ67] is a typical partition-based clustering algorithm which divides the

data into pre-defined number of clusters in order to optimize a predefined criterion.

The major advantages of it are its simplicity and speed, which allows it to run on

large datasets. However, it may not yield the same result with each run of the algo-

rithm. Often, it can be found incapable of handling outliers and is not suitable to

detect clusters of arbitrary shapes. A Self Organizing Map (SOM) [Koh95] is more

robust than k-means for clustering noisy data. It requires the number of clusters and

the grid layout of the neuron map as user input. Specifying the number of clusters

in advance is difficult in case of gene expression data. Moreover, partitioning ap-

proaches are restricted to data of lower dimensionality, with inherent well-separated

clusters of high density. But, gene expression datasets may be high dimensional and

often contain intersecting and embedded clusters. QT (quality threshold) clustering

[HKY99] is an alternative method of partitioning data, invented for gene clustering.

It requires more computing power than k-means, but does not require specifying

the number of clusters apriori, and always returns the same result when run several

times. The distance between a point and a group of points is computed using com-

plete linkage, i.e., as the maximum distance from the point to any member of the

group [ESBB98]. A hierarchical structure can also be built based on SOM such as

Self-organizing Tree Algorithm (SOTA) [DC97]. Recently, several new algorithms

such as [HVDOl] and [THHK02] have been proposed based on the SOM algorithm.

These algorithms can automatically determine the number of clusters and dynami-

cally adapt the map structure to the distribution of data. Herrero et al. [HVDOl]

extend the SOM by a binary tree structure. At first, the tree only contains a root

node connecting two neurons. After a training process similar to that of the SOM

algorithm, the dataset is segregated into two subsets. Then the neuron with less

coherence is split into two new neurons. This process is repeated level by level,

until all the neurons in the tree satisfy some coherence threshold. Other examples

of SOM extensions are Fuzzy Adaptive Resonance Theory (Fuzzy ART) [THHK02]

which provide some approaches to measure the coherence of a neuron (e.g., vigilance

criterion). The output map is adjusted by splitting the existing neurons or adding

new neurons into the map, until the coherence of each neuron in the map satisfies a

user specified threshold.

The drawbacks of k-means are the lack of prior knowledge of the number of gene

clusters in a gene expression data which results in the altering of results in successive

runs since the initial clusters are selected randomly and the quality of the attained

clustering has to be assessed. The drawbacks of SOM is that it is not effective since

the main interesting patterns may be merged into only one or two clusters and can-

not be identified.

Unweighted Pair Group Method with Arithmetic Mean (UPGMA), presented in

[ESBB98], adopts an agglomerative method to graphically represent the clustered

dataset. However, it is not robust in the presence of noise. In [ABN+99], the genes

are split through a divisive approach, called the Deterministic- Annealing Algorithm

(DAA). The Divisive Correlation Clustering Algorithm (DCCA) [BD08] uses Pear-

son's Correlation as the similarity measure. All genes in a cluster have highest av-

erage correlation with genes in that cluster. Hierarchical clustering not only groups

together genes with similar expression patterns but also provides a natural way to

graphically represent the dataset allowing a thorough inspection. However, a small

change in the dataset may greatly change the hierarchical dendrogram structure. The

drawbacks of this method are its high computational complexity, lack of robustness,

vagueness of termination criteria and failure with large number of genes as datasets

grow in complexity.

A density based cluster can be defined as a region over the gene space, in which

the local density is higher than its surrounding region. To identify such a region,

we need to calculate local densities of genes in space. The density of genes is gov-

erned by two factors: (a) the typical distances among the genes, and (b) the number

of neighbors of a gene, indicative of the dimension in which the points are embed-

ded. Density based clustering algorithms identify dense areas in the object space.

Clusters are hypothesized as high density areas separated by sparsely dense areas.

A kernel density clustering method for gene expression profile analysis is reported

in [SZCS03]. It assumes no parametric statistical model and does not rely on any

specific probability distribution. Hyper-spherical uniform kernels of variable radius

are used and density estimate of the data points are found. The method is robust

and less sensitive to outliers. However, accurate density estimation and assignment

of cluster membership require multiple data points in near neighborhoods and thus

density estimation is less accurate when cluster size is small. In [JPZ03], the au-

thors propose the Density-based Hierarchical Clustering method (DHC) that uses a

density-based approach to identify co-expressed gene groups from gene expression

data. It considers clusters as high dimensional dense areas where the genes are at-

tracted to each other. DHC uses two-level hierarchical structures (attraction tree

and density tree) to organize the cluster structure of the dataset. The attraction

tree reflects relationships among genes in the dense area. Each node in the attrac-

tion tree represents a gene and its parent is the attractor of it. The highest density

gene becomes the root of the tree. The attraction tree becomes complicated for large

datasets and hence the cluster structure is summarized in a density tree. Each node

of the density tree represents a dense area. Initially the whole dataset is considered

a single dense area represented by the root node of the density tree. This dense

area is then split into several sub-dense areas based on some criteria where each

sub-dense area is represented by a child node of the root node. The sub-dense areas

are further split till each sub-dense area contains a single cluster. DHC is suitable

for detecting highly connected clusters but is computationally expensive and is de-

pendent on two global parameters. An alternative to this is to define the similarity

of points in terms of their shared nearest neighbors. This idea was first introduced

by Jarvis and Patrick [JP73]. In [CJM04], a k-nearest neighbor based density es-

timation technique has been exploited. The density based algorithm proposed by

[CJM04] works in three phases: density estimation for each gene, rough clustering

using core genes and cluster refinement using border genes. Density of a gene is cal-

culated by the sum of similarities among its k nearest neighbors. Core genes are high

density genes and the method proceeds by clustering core genes to form the rough

clusters. Once the rough clusters are formed, the border genes are assigned to the

most relevant cluster. In [SAPOG], the authors present a density and shared nearest

neighbor based clustering method. The similarity measure used is that of Pearson's

correlation and the density of a gene is given by the sum of its similarities with its

neighbors. The shared nearest neighbors of the dense genes are found and merged

into the same cluster. The merging is done efficiently using a data structure called

the P-tree [PerOl]. In [DBKOSa], a density based method (RDClust) is presented

for clustering gene expression data using a two-objective function. The method uses

regulation information as well as a suitable dissimilarity measure to cluster genes

into regions of higher density separated by sparser regions. Density based approach

give clusters of good quality but suffers from input parameter dependency and high

computational complexity with increase in dimensionality.

The Expectation Maximization (EM) algorithm [DLR77] is a model based algorithm

and it discovers good values for its parameters iteratively. It can handle various

shapes of data, but can be very expensive since a large number of iterations may

be required. In [TH09], a signal shape similarity method is used to cluster genes

using a Variational Bayes Expectation Maximization algorithm [BG03]. An impor-

tant advantage of model-based approach is that it provides an estimated probability

that a data object will belong to a particular cluster. Thus, a gene can have high

correlation with two totally different clusters. Gene expression data are typically

highly-connected; there may be instances in which a single gene has a high corre-

lation with two different clusters. Thus, the probabilistic feature of model-based

clustering is particularly suitable for gene expression data. However, model-based

clustering relies on the assumption that the dataset fits a specific distribution which

may not be true in many cases.

Among the graph based algorithms, the CLuster Identification via Connectivity Ker-

nels (CLICK) method ([SSOO]) is suitable for subspace and high dimensional data

clustering. CLICK is robust to outliers and does not make assumptions about the

number or structure of clusters. Although CLICK does not need the number of clus-

ters apriori, the algorithm may generate a large number of clusters because of the use

of a homogeneity parameter. Ben-Dor introduced the idea of corrupted clique graphs

and used the concept of a clique graph and divisive clustering in his algorithm, Clus-

ter Affinity Search Techniques (CAST) [BDSY99]. A Clique graph is an undirected

graph formed by the union of disjoint complete sub-graphs where each clique rep-

resents a cluster. The model assumes that there is a true biological partition of the

genes in to disjoint clusters based o n the functionality of genes [BDSY99]. The genes

(objects) form sub-graphs or cliques where intra-clique genes are completely similar

and inter-cluster genes are completely dissimilar. CAST takes as input the pair-

wise similarities between genes and an affinity threshold, t . The algorithm searches

through the clusters one at a time adding to or removing genes from a cluster w.r.t.

a connectivity condition. CAST does not require a user-defined number of clusters

and is capable of handling outliers efficiently. But, it faces difficulty in determining a

good threshold value. In CAST, the size and number of clusters produced is directly

affected by the fixed user-defined parameter, affinity threshold, t. Hence, apriori

domain knowledge of the dataset is required. To overcome this problem, ECAST

([BPC02]) calculates the threshold value dynamically based on similarity values of

the objects that are yet to be clustered. The threshold is computed at the creation

of each cluster. The graph theoretic approach can be considered to be relevant to

gene expression data mining as they are capable of discovering intersected clusters.

However, it sometimes generates non-realistic cluster patterns.

Fuzzy c-means [Bezglb] and Genetic Algorithms (GA) (such as [BMM07b], [Go1891

and [MMBOS]) have been used effectively in clustering gene expression data. The

Fuzzy c-means (FCM) algorithm [Bezglb] when applied to gene expression data links

each gene to all clusters via a real-valued vector of indexes. The values u k z of the

components of this vector lie between 0 and 1. For a given gene, an index close to 1

indicates a strong association to the cluster. Inversely, indexes close to 0 indicate the

absence of a strong association to the corresponding cluster. The vector of indexes

thus defines the membership of a gene with respect to the various clusters. Member-

ship vector values u k , and cluster centroids ck can be obtained after minimization of

the total inertia criterion [Bez8lb]. The FCM algorithm requires the specification of

two parameters, Ic i.e., the number of clusters in the dataset and m i.e., the fuzziness

parameter. In [DK03], an empirical method, based on the distribution of distances

between genes in a given dataset, is proposed to determine an adequate value for m.

In [TBKOS], the authors propose a novel semi-supervised clustering method called

GO Fuzzy c-means, which is based on the fuzzy c-means clustering algorithm and

utilizes the Gene Ontology annotations as prior knowledge to guide the process of

grouping functionally related genes. Genetic algorithms [Go1891 have been exten-

sively used to develop efficient clustering techniques. These techniques use a single

cluster validity measure as the fitness function to reflect the goodness of an encoded

clustering. However, a single cluster validity measure is seldom equally applicable

for different kinds of datasets. GA based methods have been applied over gene ex-

pression data and good results were obtained [MMBOS], [BMM07b]. In [MMBOS],

a fuzzy majority voting approach is proposed that first identifies the genes which

are assigned to some particular cluster with high membership degree by most of

the Pareto-optimal clustering solutions. Using this set of genes as the training set,

the remaining genes are classified by Support Vector Machine (SVM) classifier. A

two-stage clustering algorithm employing, (i) variable string length genetic scheme

[MBOSb] and (ii) multiobjective genetic clustering has been proposed in [BMM07b].

The method is based on the concept of points having significant membership to mul-

tiple classes. For the clustering an iterated version of FCM is used. The GA based

algorithms have been found to detect biologically relevant clusters but are dependent

on proper tuning of the input parameters.

The current information explosion, fuelled by the availability of the World Wide

Web and the huge amount of microarray experiments being conducted, have led to

ever-increasing volume of data. Therefore, there is a need to introduce incremen-

tal clustering so that updates can be clustered in an incremental manner. Though

a lot of research has been performed on incremental clustering in other application

domains, incremental clustering of gene expression data has not been explored much.

Due to the huge number of microarray experiments being conducted regularly, when-

ever new gene expression data becomes available it is highly desirable to perform up-

dates (i.e., incorporate the new results to existing clusters) with these newly arrived

genes incrementally. In [EKS+98], the authors present an incremental clustering

approach based on the DBSCAN [EKSX96] algorithm. Rough set theory has been

employed in the incremental approach for clustering interval datasets in [ANSOG].

It groups the given dataset into a set of overlapping clusters by employing a rough

variant of the Leader algorithm [ANSOG]. The algorithm generates cluster abstrac-

tions in a single scan and is robust to outliers. In [CCFM97], the authors present an

incremental clustering model for information retrieval applications. [CHNW96] and

[FAAM971 also report efficient methods for modifying a set of association rules.

In [LLFS04b], an incremental genetic k-means algorithm (IGKA) has been pre-

sented. IGKA calculates the objective value called Total Within-Cluster Variation

(TWCV) and cluster centroids incrementally whenever the mutation probability is

small. IGKA converges to the global optimum. In the Genetic k-means Algorithm

(GKA) proposed in [KM99], a genetic algorithm is hybridized with the k-means algo-

rithm and therefore GKA converges to the global optimum faster than other genetic

algorithms. In [LLF+04a], the authors present a faster version of GKA (FGKA)

that efficiently evaluates the TWCV, avoids illegal string termination overhead and

simplifies the mutation operator. IGKA inherits all the advantages of FGKA and

outperforms FGKA when the mutation probability is small. The cost of calculating

the centroids in FGKA is more expensive when the mutation probability is smaller

than when it is calculated incrementally in IGKA. The Hybrid Genetic k-means Al-

gorithm (HGKA) in [LLF+04b] combines the advantages of both IGKA and FGKA

and obtains an even better performance. However, it is very difficult to obtain the

threshold value which is dataset dependent. In [RRAROG], an incremental gene selec-

tion algorithm (Best Incremental Ranked Subset (BIRS)) that reduces search space

complexity using a wrapper-based method is presented. This method works on the

ranking directly. In BIRS [RRAROG], genes are first ranked w.r.t. an evaluation

measure. Then, the set of genes is updated by crossing the ranking from the begin-

ning to the last ranked gene. Classification accuracy with the first gene in the list

is obtained and it is marked as selected. The classification rate is again obtained

and the second gene is selected depending on whether the classification accuracy is

significantly better. The process is repeated till the last gene on the ranked list is

processed. The algorithm returns the best subset formed and it does not contain

irrelevant or redundant genes.

6.4.1 Discussion and Motivation

From our selected survey we conclude that clustering algorithms are useful in iden-

tifying groups of co-expressed genes and in discovering coherent expression patterns.

Also it is observed that various clustering algorithms require different types of input

parameters and clustering results are highly dependent on the values of the param-

eters. Majority of the clustering techniques are dependent on a choice of proximity

measure. Also, due to the inherent high dimensionality and presence of noise in gene

expression data, it is a challenging task to find the clusters inherent in the subspaces

of the dataset. Therefore, development of clustering techniques which are free from

the restrictions offered by proximity measures, are independent of input parameters

and are able to detect clusters embedded in the subspaces of gene expression data

is of utmost importance. This chapter presents two clustering techniques (GenClus

and GeneClusTree) for gene expression data which handles some of the challenges

offered by gene expression data.

InGenClus is designed based on density based approach. It retains the regulation

information which is also the main advantage of the clustering. It uses no proximity

measure and is therefore free from the restrictions offered by them. An incremental

version of GenClus (InGenClus) is also presented that can handle incremental data.

The hierarchical approach of clustering genes helps in visualizing the clusters at dif-

ferent levels of hierarchy. Also, it is important to establish that the clusters obtained

are biologically relevant. We introduce an effective tree-based clustering technique

(GeneClusTree), which is capable of identifying clusters of arbitrary shapes of any

gene expression dataset, even in presence of noise. GeneClusTree attempts to find

all the possible clusters over subspaces in minimum possible scans of the dataset.

GenClus

In this section, we introduce an effective gene-based clustering approach (GenClus),

which is capable of identifying clusters and sub-clusters of arbitrary shapes of any

gene expression dataset, even in presence of noise. GenClus attempts to find sub-

clusters which may be relevant for biologists. The detection of sub-clusters provides

the opportunity to uncover more homogeneous groups in the clusters. An advantage

of GenClus is that it does not use any proximity measure during clustering the genes

and is therefore free from the restrictions offered by various proximity measures.

GenClus gives a hierarchical view of the clusters and sub-clusters formed. With the

increasing development of internet technology and with the constant increase in the

microarray experimentation conducted, it has led to the ever-increasing volume of

data. There is, therefore, a need to introduce incremental clustering so that updates

'can be clustered in an incremental manner. To handle such increase in volume of mi-

croarray data, incremental clustering technique often has been found suitable. This

section also introduces an incremental version of GenClus i.e., InGenClus which has

been established to perform well in terms of several gene datasets.

Both GenClus and InGenClus can be found to be significant in view of the following

points:

provides a hierarchical cluster solution;

free from the use of proximity measures;

faster processing due to simplified matching mechanism;

capable of handling noisy datasets;

does not require the number of clusters apriori;

GenClus improves the quality of the clusters by identifying sub-clusters within large

clusters. It can also handle the situation when the database is updated incrementally

using less computation time.

6.5.1 Basics of GenClus

GenClus is a gene based clustering technique which adopts the notion of density

based approach as can be found in [DBKIO], [EKSX96]. It exploits a discretization

technique which retains the u p or down- regulation information. Discretization is

the process of putting values of a continuous set of data into buckets so that there

are a limited number of possible values. The discretization of the dataset helps in

keeping track of the regulation information of the data which is used later on in the

clustering phase. GenClus normalizes the gene expression data and works over a dis-

crete domain (of regulation information). Clustering is then run on the discretized

data.

The gene expression data is normalized to have mean 0 and standard deviation 1.

Expression data having a low variance across conditions as well as data having more

than 3-fold variation are filtered. Discretization is then performed on this normalized

expression data. Discretization uses the regulation information, i.e. up- or down-

regulation in each of the conditions for a particular gene. Here, let G* be the set of

all genes and T* be the set of all conditions. The discretization is done as follows:

i. The discretized value of gene g, at condition, t l (i.e., the first condition)

ii. The discretized values of gene g, at conditions t , (j = l,..(T - 1)) i.e., at the

rest of the conditions (T - {tl))

where egr,t j is the discretized value of gene g, at condition t, (j = l , . .(T - 1)). The

expression value of gene g, at condition t, is given by E ~ ~ ~ ~ ~ . We see in the above com-

putation that the first condition, tl, is treated as a special case and it's discretized

value is directly based on ~ ~ , , t ~ i.e., the expression value at condition tl. For the

rest of the conditions the discretized value is calculated by comparing its expression

value with that of the previous value. This helps in finding whether the gene is up-

(1) or -down (-1) regulated at that particular condition. Each gene will now have

a regulation pattern (Q) of 0, 1, and -1 across the conditions or time points. This

pattern is represented as a string.

Each gene is divided into various rangeids depending on their expression values

as follows. The range-value for each expression level is given by uniformly dividing

the difference between the maximum and minimum values in the normalized data.

MaxEv - MinEv
range-value =

interval

Figure 6.3: Example discretized dat aset

where Maxev is the maximum expression value and MinEv is the minimum expres-

sion value. For example, suppose interval = 7. Therefore, we will have 7 range-ids

(3, 2, 1, 0, -1, -2, -3), where the expression values of a gene falling in the correspond-

ing range will get its rangeid. Now, each gene will have a pattern of range-ids

across the conditions or time points which is represented as a string. Figure 6.3

illustrates an example of a discretized matrix showing the regulation pattern and

range-ids, where the number of intervals is set to 7, namely (3, 2, 1, 0, -1, -2, -3).

The regulation information and range values are used together to cluster the gene

expression dataset using a density based approach. By using these two values in

combination as will be seen next, we do not need the use of any proximity measure.

A string matching approach is used for matching the regulation pattern and range

pattern of two genes. Next, we give some definitions which provide the foundation

of GenClus.

Definition 22. Neighborhood level of a gene: A gene gj is said to be a neighbor

of gene gi i.e., gj E Nlevel(gz) if (i) gi matches with gj over each of the v conditions,

where v is greater than a user defined threshold, a; (ii) range-id(gi,tk) f level =

range-id(gj, tk), tk refers to the conditions where k = 1 , 2 , . - . , T and level is a

dynamically calculated parameter. (Initially, level = 0)

Definition 23. Core gene: A gene g, is said to be a core gene if I Nlevel(gi) I > a

(user-defined threshold).

In our experiments we have obtained good results for a = 2. Initially, level

= 0 and the neighborhood of gene g, is searched for genes satisfying the core gene

condition of Definition 23. If no neighbor gene is found, then level is increased in

both positive and negative range by one i. e., we search for neighbor genes in adjacent

range-ids of (g,, tk) and the neighborhood search continues.

Definition 24. Direct-Reachability: A gene g, is said to be directly reachable from

another gene g, if g, is a core gene and g, E Nle,el (g,) .

Definition 25. Reachability: A gene g, is said to be reachable from another gene g,

if there is a chain of genes gl, g2, - - - , gp between g, and g, such that g,+l is directly

reachable from g,.

Finding sub-clusters within bigger clusters gives the finer clustering of a dataset.

Sub-cluster information may be useful for the biologists by means of visual display

and in the interpretation.

Definition 26. Sub-Cluster: Let DG be a database of genes. A sub-cluster S, is a

non-empty subset of DG satisfying the following conditions:

1. Vg,, g, : if g, E S, and g, is reachable from g,, then g, E S,.

2. g, matches with g, over each of the v conditions.

3. r ~ n ~ e - i d (~ , , tk) f level = range-zd(g,, tk), tk refers to the conditions where

k = l,2;.. ,T.

Definition 27. Cluster: Genes g,, g, E Ct (ith cluster), if g, matches with g, over

each of the v conditions i.e., all genes having same regulation pattern over v condi-

tions are grouped into the same cluster.

Sub-cluster S, where, J = 1,2, - . - will belong to cluster C,, if it has the same

regulation pattern w.r.t. C,.

Definition 28. Noise Genes: Let C1, C2, - - - C, be the set of clusters of DG, then

noise is the set of genes in DG not belonging to any cluster C,, i.e.,

noise = {g, E DG I Vi : g, $ C,)

The clustering process starts with an arbitrary gene g, and searches the neigh-

borhood of it to check if it is core. If g, is not core then the process restarts with

another unclassified gene. If g, is a core gene, then clustering proceeds with finding

all reachable genes from g,. All reachable genes are assigned the same sub-cluster-id

as 9,. From the neighbors of g,, if any gene satisfies the core gene condition, sub

cluster expansion proceeds with that gene. The process continues till no more genes

can be assigned to the sub cluster. The process then restarts with another unclassi-

fied gene and starts forming the next sub cluster. The clustering process continues

till no more genes can be assigned sub-clusterid. Once all sub clusters have been

assigned, the process groups all sub-clusters as well as genes having no sub-cluster-id

but having the same regulation pattern into the same cluster and assign them the

same clusterid. All unclassified genes are now termed as noise genes.

The clusters and sub-clusters for the example dataset of Figure 6.3 is illustrated

in Figure 6.4. It can be observed that sub-clusters give the highly coherent patterns

in the dataset. The algorithms for cluster formation and cluster expansion are given

in Figure 6.5 and Figure 6.6. The experimental results of GenClus are reported in

Section 6.5.3.

Microarrays generate tens of thousands of data in one experiment. Data volume is

constantly increasing due to the huge amount of microarray experiments performed.

While clustering this type of data, it is of utmost importance that the updations

of the database are handled incrementally. Some of the incremental clustering al-

gorithms have been reported in section 6.4. Though a lot of work has focused on

incremental clustering over spatial datasets, not much research has been done on

handling incremental gene expression data.

We therefore introduce an incremental clustering technique (InGenClus) for gene

expression data, which is based on GenClus. Once clustering of the dataset is ob-

Example Datasd

C 1 C2 C3

Figure 6.4: Clustering of the example dataset given in Figure 6.3. Here, C,s (i =

1,2, - . .) are clusters; SCzJ refer to the j th sub-cluster of cluster i and UCZk is the kth

gene in cluster i not belonging to any sub-clusters.

//Precondition: All genes are unclassified

// cluster-id = 0

FOR i from 1 to DG do

IF gz.classified = unclassified THEN

Cluster-expand(g,, cluster i d)

cluster-id++;

END IF

END FOR

Figure 6.5: Algorithm for cluster formation of GenClus

Cluster-expand(g,, cluster-zd)

IF get-core(g,) = 0 THEN

g,.cluster-id = cluster-id;

RETURN;

ELSE

g, .classified = classified;

FOR j from 1 to DG do

IF g, .classified = unclassified

Expand-cluster(g, , cluster-id)

END IF

END FOR

END IF

Figure 6.6: Algorithm for cluster expansion of GenClus

tained, each of the clusters are represented by cluster profiles. The cluster profiles

store the regulation of that particular cluster. The sub-clusters are represented by

the sub-cluster profiles which stores the regulation and range information of that par-

ticular sub-cluster. This information is further used by InGenClus when clustering

the updated database incrementally.

6.5.2 Incremental Clustering

In this section, we present InGenClus which is based on GenClus and is capable of

handling incremental data. Due to the density based nature of GenClus, the inser-

tion of a gene affects the current clustering only in the neighborhood of the gene.

We examine the parts of an existing clustering affected by an update and show how

InGenClus can handle incremental updates of a clustering after insertions.

The changes of the clustering of the gene database DG are restricted to the neigh-

borhood of an inserted gene. The previously core genes [DBKlO] retain their core

property but, non-core genes (border genes or noise genes) may become cores. Thus

new density connections may surface. The insertion of a gene g, may result in a

change of cluster membership of genes in the neighborhood of g, and all genes reach-

able from one of these genes in DL = DG U {g,), where DL is the updated dataset.

While inserting g, the following cases may occur:

1. Fusion: A gene g, may be fused to a cluster C, if regulation pattern of g,

matches with cluster profile of C,, then g, is fused into cluster C,. Gene g, may

be fused to a cluster S, if g, is reachable from S,.

2. Cluster Creation: Gene g, may have same regulation pattern w.r.t. some

other noise or unclassified gene(s) and may lead to the formation of a new

cluster.

3. Sub - cluster Creation: Gene g, may become core w.r. t . (i) some other noise

or unclassified gene(s) and may lead to the formation of a new sub-cluster, (ii)

some gene(s) in a cluster which are not members of any sub-cluster and this

also lead to the creation of a new sub-cluster.

4. Noise: If g, does not match with any of the cluster profiles then g, is a noise

gene and no density-connections are changed.

InGenClus starts with a newly inserted gene g, and finds if its regulation and range

information matches with any of the cluster or sub-cluster profiles then there can be

the following cases:

i. g, matches with cluster profile of C,, then GenClus will assign cluster-id of C,

to g,. After insertion of g,, one of the genes gk E C, and gk E S, (S, is a sub-

cluster in C,) may become core and hence can become a potential candidate

for sub-cluster expansion (case 1).

ii. g, matches with none of the cluster profiles, but it matches with some other

unclassified genes. Then it creates a new cluster (case 2) and finds if it can form

sub-clusters (case 3). Finally, it forms the cluster and/or sub-cluster profiles

accordingly.

iii. g, matches with cluster profile of C,, then InGenClus will assign cluster-id of

C, to 9,. After insertion of g,, any gene gk E C, and gk 4 any sub-clusters in C,

Figure 6.7: Some clusters are illustrated from the Dataset 1

may become core and hence may become a potential candidate for sub-cluster

creation (case 3).

iv. g, matches with none of the cluster profiles nor does it match with any other

gene, then case 4 occurs.

In case of fusion, the affected cluster profiles are updated based on our own string

matching technique. To achieve better space-time complexity, the cluster profiles are

organized using an effective data structure. It has been found that the InGenClus

yields the same result as when compared with GenClus, yet in a lesser time.

6.5.3 Performance Evaluation

GenClus was implemented in Java in Windows environment and evaluated with

several real-life datasets as discussed next.

1. Datasets Used

Dataset 1: In [CCW+98], Cho et al. used the temperature sensitive mu-

tant strain CDC28-13 to produce a synchronized cell culture of the Saccha-

romyces cerevzszae from which 17 samples were taken at 10 minute inter-

vals and hybridized to Affymetrix chips. The final data is publicly available

Figure 6.8: Some clusters are illustrated from the full Dataset 2

at http://yscdp.stanford. edu/yeast-celLcycle/full -data. html. Cho's dataset is

widely available and has functional classification that allows validation of clus-

tering results. This dataset contains 6218 genes at 17 time points. Out of

the full Dataset 1, a subset of 384 genes have been obtained from http :

// f aculty.washzngton.edu/lcayee/cluster.

Dataset 2: In [DI97], the authors use DNA microarrays to study the tem-

poral gene expression of 6089 genes in Saccharomyces cerevzszae during the

metabolic shift from fermentation to respiration. Expression levels were mea-

sured at seven time points during the diauxic shift (the two growth phases of a

microorganism in batch culture as it metabolizes a mixture of two sugars). The

full dataset can be downloaded from the Gene Expression Omnibus website,

http://www. ncbz. nlm. nzh.gov/geo/query.

Dataset 3: The dataset describes the response of human fibroblasts to serum

on cDNA microarrays in order to study growth control and cell cycle progres-

sion. These data were obtained from the study of [IER+99]. Primary cultured

fibroblasts from human neonatal foreskin are induced to enter a quiescent state

by serum deprivation for 48 hours and then stimulate by addition of medium

Figure 6.9: Result of GenClus on the reduced form of Dataset 2

containing 10% FBS. DNA microarray hybridization is used to measure the

temporal changes in mRNA levels of 8613 human genes at 13 time points,

ranging from 15 min to 24 hours after serum stimulation. In this thesis, we

choose a subset of 517 genes whose expression changed substantially in response

to serum. The detailed information about the dataset can be found at the Web

site: http: //genome-www.stanford.edu/serum/.

A brief overview of the datasets is given in Table 6.1. All the datasets are normalized

to have mean zero and standard deviation one. Of the various datasets, the clusters

obtained from the reduced Dataset 1 are shown in Figure 6.7. Some of the clusters

formed from the full and reduced form of Dataset 2 are shown in Figure 6.8 and

Figure 6.9. The datasets have been reduced by filtering out low variance genes and

genes having more than 3-fold standard deviation. Some of the clusters obtained

by GenClus from Dataset 3 are shown in Figure 6.10. The hierarchy of four of the

clusters and sub-clusters of Dataset 2 is shown in Figure 6.11 where the full dataset

is at the root, the clusters are shown with the single line frames, sub-clusters are

shown with double line frames and the genes which are part of a higher level cluster

but not part of any sub-clusters are shown with dotted line frames. In the figure, the

full dataset is at the root, the clusters are shown with the single line frames, sub-

clusters are shown with double line frames and the genes which are part of a higher

level cluster but not part of any sub-clusters are shown with dotted line frames.

The data from Dataset 2 was inserted incrementally and InGenClus was executed.

Table 6.1: Datasets used for evaluating the clustering algorithms introduced in this

Serial

No.

Dataset No. of

genes

Yeast CDC28-13 11 6218

Yeast Diauxic 6089 II

man Fibroblasts I (
Serum [IER+99])I

condi-

tions 1) I

Figure 6.10: Some of the clusters obtained by GenClus over Dataset 3

Figure 6.12 shows a sample output of some clusters of Dataset 2 with genes inserted

incrementally. The inserted genes are shown in red color (gray for black & white

images) with filled circles at the time points.

2. Cluster Quality

To evaluate the effectiveness of our method as compared to other algorithms, we

used two validity measures: z-score and pvalue. Next, we report our evaluation of

GenClus in terms of these measures.

Table 6.2: z-scores for GenClus and its counterparts for Dataset 2

k-means

Table

Method AppIied

SOM

DCCA

No. of z-score

Clusters

62

Total no.

42

42

RDClust

GenClus

11 clusters 11 11 of genes I

5.57

6.3: z-scores for InGenClus and GenClus for Dataset 1

of genes

614

5.78

-0.78

42

6 1

Method Applied

InGenClus 11 21 11 11.68 11 384 1

614

614

GenClus

a) z-score

6.61

7.39

No. of

Z-score [GR02] is calculated by investigating the relationship between a clustering re-

sult and the functional annotation of the genes in the cluster. We have used Gibbons

ClusterJudge [GR02] tool to calculate the z-score. A higher value of z-score indicates

that genes would be better clustered by function, indicating a more biologically rele-

vant clustering result. To assess the quality of GenClus, we employed z-score [GR02]

as the measure of agreement. To test the performance of the clustering algorithm,

we compared the clusters identified by our method with the results from k-means,

SOM, DCCA and RDClust. The result of applying GenClus on the reduced form of

Dataset 2 is shown in Table 6.2. This table shows that GenClus performed better

than the other algorithms in terms of z-score. Similarly, InGenClus was implemented

and tested over various datasets. The results were compared with GenClus and have

been found satisfactory. Some of the results obtained by InGenClus over Dataset 2

are reported in Figure 6.12. It has been found that InGenClus yields the same result

as GenClus, as can be observed from Table 6.3.

614

614

2 1

z-score Total no.

11.68 384

Figure 6.11: Hierarchy of four clusters of Dataset 2.

Figure 6.12: some of the clusters obtained by InGenClus over data incrementally

updated from Dataset 2

b) Biological significance

1 gene inserted

The biological relevance of a cluster can be verified based on the gene ontology

(GO) annotation database http://db. yeastgenome. org/cgi-bin/GO/goTermFznder. It

is used to test the functional enrichment of a group of genes in terms of three struc-

tured controlled ontologies, uzz., associated biological processes, molecular functions

and biological components. The functional enrichment of each GO category in each

of the clusters obtained is calculated by its pvalue ([THC+99]). The pvalue is com-

puted using a cumulative hyper-geometric distribution. It measures the probability

of finding the number of genes involved in a given GO term (i.e., function, process,

component) within a cluster. The genes in a cluster are evaluated for the statistical

significance by computing the pvalue for each GO category. This signifies how well

the genes in the cluster match with the different GO categories. pvalue represents

the probability of observing the number of genes from a specific GO functional cate-

gory within each cluster. A low pvalue indicates the genes belonging to the enriched

functional categories are biologically significant in the corresponding clusters. To

compute the pvalue, we used the software FuncAssociate [B+03]. FuncAssociate

[B+03] computes the hyper-geometric functional enrichment score based on Molecu-

lar Function and Biological Process annotations. The resulting scores are adjusted

for multiple hypothesis testing using Monte Carlo simulations. The enriched func-

tional categories for some of the clusters obtained by GenClus method on Dataset

2 are listed in Table 6.4. The functional enrichment of each GO category in each

of the clusters is calculated by its pvalue. We have reported pvalues < e - 06. Of

the 61 clusters obtained from the dataset, the cluster C6 contains several enriched

categories on 'ribosome'. The highly enriched categories in C6 is the 'ribosome' with

\ J d
2 genes inserted 1 gene inserted 2 genes inserted

P-value GO number GO category

le-10 I GO 0006119 I oxidative phosphorylation

5 4e-10 1 GO 0006091 I generation of precursor metabolites and energy

2 8e-08 I GO 0022900 I electron transport cham

2 8e-08 I GO 0022904 I res~iratorv electron t rans~or t chain I
2 8e-08 GO 0042773 ATP synthesis coupled electron transport

2 8e-08 GO 0042775 organelle ATP synthesis coupled electron trans-

nort

7.2-08 1 GO 0005739 I mitochondrion

7 9e-08 I GO 0044455 1 mitochondria1 membrane part

1 5e-07 GO 0015078 hydrogen ion transmembrane transporter activ-

ity
1 9e-07 GO 0005743 mitochondrlal inner membrane

2 8e-07 GO 0015077 monovalent inorganic catlon transmembrane

transporter activltv

3 3e-07- I GO 0019866 organelle inner membrane

3 5e-07 1 GO 0031966 I mitochondria1 membrane

7 6e-07 I GO 0005740 1 mitochondria1 envelope

15e-11 I GO 0042254 1 ribosome bionenesis and assemblv

4e-11 GO 0005730 nucleolus

2 8e-10 GO 0022613 r~bonucleoprotein complex biogenesis and as-

I sembly

3e-10 I GO 0043228 I non-membrane-bounded organelle

3e-10 GO 0043232 intracellular non-membrane-bounded organelle

4 9e-07 GO 0042273 ribosomal large subunlt biogenesis and assem-

bly
9 4e-07 GO 0006364 rRNA processing

7 7e-10 GO 0042254 ribosome biogenesis and assembly

8 6e-10 GO 0022613 ribonucleoproteln complex biogenesis and as-

semblv

14e-14 I GO 0006119 I oxidative phosphorylation I
8 5e-14 I GO 0044455 I mitochondrlal membrane part I
6 3e-11 GO 0015078 hydrogen ion transmembrane transporter activ-

ity
9 8e-11 GO 0006091 generation of precursor metabolites and energy

14e-10 GO 0015077 monovalent inorganic cation transmembrane

I transporter activity
1 8e-09 I GO 0005753 I mitochondrlal proton-transporting ATP syn-

1 I thase complex 1
1 8e-09 I GO 0045259 I proton-transporting ATP synthase complex

3 8e-09 I GO 0005743 I mitochondrial inner membrane

7 2e-09 GO 0019866 organelle Inner membrane

le-08 GO 0015985 energy coupled proton transport, down electro-

chemical gradient

le-08 I GO 0015986] ATP synthesis coupled proton transport

1 3e-08 I GO 0006754 I ATP biosynthetlc process

17e-12 0022613~- r~bonucleoproteln complex biogenes~s and as-

2 2e-12

9 5e-12

3e- 11

17e-10

GO 0022626

GO 0003735

GO 0044445

GO 0033279

sembly

cytosol~c ribosome

structural constituent of r~bosome

cytosolic part

r~bosomal subun~t

a pvalue of 3.6e-13. The GO category 'ribonucleoprotein complex' is also highly

enriched in this cluster with pvalue of 1. le- 12. Cluster C6 also contains the highly

enriched categories on 'non-membrane-bounded organelle' with a pvalue of 2.7e-14.

Cluster C5 contains an enriched category 'oxidative phosphorylation' with pvalue of

1.4e-14. C5 also contains several enriched categories on 'mitochondria7. Cluster C2

contains several enriched categories on 'biogenesis7. The highly enriched categories

in C2 are the 'ribosome biogenesis and assembly7 with pvalue of 1.5e-11, 'ribonu-

cleoprotein complex biogenesis and assembly7 with pvalue of 2.8e-10 and 'ribosomal

large subunit biogenesis and assembly' with pvalue of 4.9e-07. In the cluster C7

all the functionally enriched categories are from Biological Process annotation with

'trehalose metabolic process' with a pvalue of 2.5e-09 being the highly enriched one.

From the Table 6.4, we can conclude that GenClus shows a good enrichment of func-

t ional categories.

In this section, we have presented GenClus which can detect clusters over gene ex-

pression data without the use of any proximity measures. The clusters obtained were

found satisfactory when compared with other relevant algorithms. An incremental

version of GenClus is also presented for handling incremental data. Gene expres-

sion data have highly intersecting clusters, the detection of which is very difficult.

Hierarchical algorithms helps in identifying the clusters at different levels. In the

next section we present a hierarchical density based technique for clustering gene

expression data which can also identify clusters in the subspaces of the data.

GO category

structural molecule activity

cellular biosynthetic process

cytosolic large ribosomal subunit

nucleolus

translation

large ribosomal subunit

trehalose metabolic process

carbohydrate metabolic process

cellular carbohydrate metabolic process

trehalose biosynthetic process

disaccharide biosynthetic process

alcohol catabolic process

monosaccharide metabolic process

Cluster

C6

C7

P-value

3.7e-09

2.6e-08

3.le-08

4.4e-08

3.4e-07

6.8e-07

2.5e-09

1.9e-08

2.6e-08

5.8e-08

5.8e-08

1.9e-07

9.4e-07

GO number

GO:0005198

GO:0044249

GO:0022625

GO:0005730

GO:0006412

GO:0015934

GO:0005991

GO:0005975

GO:0044262

GO:0005992

GO:0046351

GO:0046164

GO:0005996

GeneClusTree

GeneClusTree is a gene based clustering technique which attempts to cluster the gene

dataset using a tree-based density approach. GeneClusTree does not use any prox-

imity measure during clustering the genes and is therefore free from the restriction

offered by them. The other two important advantages of GeneClusTree are:

capable of handling noisy datasets;

does not require the number of clusters apriori.

6.6.1 Basics of GeneClusTree

At first, the gene expression data is normalized to have mean 0 and standard devia-

tion 1. Expression data having a low variance across conditions as well as data having

more than 3-fold variation are filtered out. Discretization is then performed on this

normalized expression data by retaining the up- or down- regulation information in

each of the conditions for a particular gene as discussed in Section 6.5.1. After the

regulation based discretization process, each gene will now have a regulation pattern

(63) of 0, 1, and -1 across the conditions or time points and is represented as a string.

To avoid the restrictions caused due to the use of any proximity measure, GeneClus-

Tree exploits the angle information computed over the normalized expression values.

The angle information is computed condition-wise for each of the gene profiles based

on their normalized expression values. The angle information gives the trend angle

between each pair of conditions. We illustrate the whole gene-condition space as

a graph with conditions across x-axis and expression levels along y-axis. Let the

x-axis for a gene g, be denoted as xt3 for condition t, and its corresponding y-axis be

denoted by the expression value Now, for the gene g,, the angle information

for each of its T conditions is computed according to the formula' given in Equation

below.

'Available in http://mathematics.learnhub.com/lesson/5945-trigonometry-bmi~s

Each gene g, will now have a pattern of angle information a,? consisting of T values.

This angle information is then further discretized by dividing it into discrete equal

intervals depending on their angle values where the width of the interval is a user

input. After discretization of the angle values, each gene, g,, will have a pattern of

angleids (cub) across conditions, the angleid value at the kth condition is denoted

as The regulation information and discretized angle patterns are used together

to cluster the gene expression dataset using a tree-based density approach. A string

matching approach is used for matching the regulation and the discretized angle

patterns of two genes. Next, we give some definitions which provide the foundation

of GeneClusTree.

Definition 29. Matched Subspace: Let g,, g, E G and p(g,), ~ (9 ,) denote their

corresponding regulation patterns. Then the matched subspace, M (9, , g,) , of (g,, 9,)

is the set of ti conditions where both g, and g, match and O* 5 ti 5 T and O* is a

user defined parameter.

Definition 30. Maximal Matched Subspace: A matched subspace can be defined

as maximal if it is a matched subspace and no superset of this can be found to be a

matched subspace, or,

A pair of genes (g,, 9,) is said to be maximally matched if the cardinality of the

subset of conditions over which they are matched is maximal i.e., over no superset

of conditions g, and g, are matched.

Definition 31. Neighbor of a gene: A gene g, is said to be a neighbor of gene g,

i.e., 9, E Nle,el(9,), iff

i. g, and g, are in the same level, say, level,

iii. a: , = [CX;~,,~
37 f i

+ 6', - 6'1, where th refers to Ti conditions and 6' has an

initial value of 1 in the first level for each sub-tree and is incremented by 1 in

every subsequent levels.

For regulation matching, GeneClusTree initially attempts to find neighbors of a

gene g, over full set of conditions i.e., T number of conditions. If no match is found,

the number of conditions is decremented by 1 at each step upto a certain threshold

(say, 0') till a match occurs i.e., p(gZ) = ~ (g ,) . However, at each subsequent step,

the previously computed matching information is used which makes the searching

more efficient.

Definition 32. Initiator: A gene g, in the level say, level, is said to be an initiator

if I N~evel(~z) 12 0.

The neighborhood of a gene g, is searched for genes satisfying the initiator

condition. If no neighbor gene is found, then the process is repeated with another

unclassified gene. In our experiments we have obtained good results for a = 2.

Definition 33. Node: A node n, in the level say, level, is a non-empty subset of

genes of G where, any gene g, E n, is either

(i) itself an initiator gene, or

(ii) is within the neighborhood of an initiator gene g, E n, i.e., g, E Nlevel(g,).

Definition 34. Node Reference Vector: Reference Vector of a node is the subset of

conditions where all the genes belonging to that node match maximally.

The Reference Vector of a node n, (RVnl) to which, say, genes g, and g, belong

is computed as follows:

(x otherwise

Definition 35. Intra-node reachability: A pair of genes (g,, g,) in any level, say

level, is said to be intra-node reachable if,

(i) one of them is an initiator and the other is a neighbor of it, or

(ii) another gene gk is an initiator and g,, g, E Nlevel (gk), or

(iii) both g,, g, are initiators and they are neighbors to each other i.e., either g, E

Nlevel(g3) or 9, E Nlevel(~z).

The intra-node reachable genes satisfy the condition that they match in the same

subset of conditions of regulation pattern.

Definition 36. Inter-node Reachability: A gene g, E n, is said to be inter-node

reachable from another gene g, E n,, (where n, is the parent of n,), if pg3 matches

with pg, in a total of (T - (1, - 1)) number of conditions, where, 1, is the level of n,.

Finding subspace clusters in different levels gives different level of finer clustering

of a dataset which may be useful for the biologists.

Definition 37. Maximal-Space cluster: A node n, is said to be maximal-space

cluster if n, is created at the first level (i.e., level 1) and the set of genes in n, match

over a set of h conditions, where 0* 5 h 5 T.

Definition 38. Reduced-Space cluster: A node n, is a said to be a reduced-space

cluster if n, is created in the jth level and the set of genes in n, match over a set of

(h - (j - 1)) conditions where fi is cardinality of the set of conditions in which the

genes in the parent node of n, match in the (j - l)th level where 2 5 j 5 (h- (0* - 1)).

In the rest of the chapter, we will use the terms node and subspace cluster inter-

changeably to represent a cluster over a subset of conditions.

Definition 39. Noise Genes: Let nl , na, . . n, be the set of subspace clusters of G,

then noise genes in G is the set of genes not belonging to any subspace cluster n,,

i.e.,

noise = {g, E G I Vi : g, @ n,)

GeneClusTree starts by creating a tree structure in a depth-first manner with an

empty node as the root. The root is at level 0 and is connected to all the nodes in

level 1. The nodes in level 1 are created by a density based approach and each of

these nodes is the basis of formation of the reduced-space clusters of the sub-tree.

The process of creating a level 1 node i.e., a maximal space cluster starts with an

arbitrary unclassified gene g, and the neighborhood of g, is searched to check whether

it is an initiator. If no gene is found to satisfy the neighborhood condition with g,,

then the process restarts with another unclassified gene. On the other hand, if g, is

an initiator gene it initiates the process of creating a new node with a node reference

vector formed according to Definition 34. Then the process proceeds with finding all

the genes that satisfies the intra-node reachability condition with g, in terms of the

node reference vector and are assigned to the same node to which g, belongs. If any

gene g, from the set of intra-node reachable genes of g, satisfies the initiator gene

condition, then the node expansion proceeds with the gene g,. The process continues

till no more genes can be assigned to the node.

Each of the nodes in level 1 is a maximal-space cluster and determines the nodes to

be formed as reduced-space clusters, across different subset of conditions, in the next

level of the sub-tree. After completion of the formation of the node(s) of a particular

level in a sub-tree, the value of level is incremented by 1.

Each of the nodes formed at level 1 becomes the parent node of the sub-trees formed

at the next level (i.e., level 2). Similarly, for the nodes in level i , their parents will

be in level (i - 1). Also, with the increase in the height of the tree, the cardinal-

ity of the matched condition set decreases from parent to child by 1 at each level.

For a particular sub-tree, the genes in each of the ith nodes agrees over a set of

(h - (level - 1)) conditions of the parent node's reference vector. Genes belonging

to the sibling node(s) at the same level in a particular sub-tree have the same cardi-

nality of matched conditions, however the match is over different set(s) of conditions.

On completion of the child nodes along with their sibling nodes of a particular

node in a sub-tree, the process continues similarly in the next level until the sub-tree

reaches a depth of O* or no more nodes can be added to the sub-tree. The process

then backtracks to level 1 and finds the next maximal subspace cluster and inserts it

as a child of the root. The sub-tree of this node is created in the similar manner as

described before. The whole process repeats itself until no more maximal subspace

clusters are inserted in level 1 of the tree. All the remaining unclassified genes are

treated as noise genes. The algorithm is given in detail in Figures 6.13(a), (b) and

6.14.

The following lemmas are formulated from the definitions of GeneClusTree.

Lemma 7. A gene g, belonging to nl,, (nl,, is the ith subspace cluster of level 1)

cannot be a neighbor of any gene gj E nl,,, where n l , is the jth subspace cluster of

Tree-creation(Dc, node-id)

1 = level

FOR all g, E DG do

IF g,.classified != 1 and chkini-condition(g,) == true then

create-node(g, .no, p id , temp, tempcmnt, nodeid, 1);

WHILE((T - (1 - 1)) 2 8') do

I++;

FOR all g, E DG do

IF g, .classified != 1 then

p i d = chk-gene-parent(g, .no, 1);

IF p i d > -1 and chk-ini-condition(g,) == true then

create_node(g, .no, p id , temp, tempcmnt, nodeid, 1);

End IF

End IF

End FOR

End WHILE

1 = 1;

End IF

End FOR

(a) Algorithm for Tree Creation

crea tenode(n0, p i d , temp, tempcwnt, id, 1)

nodezd = new node();

nodezd.temp = temp;

nodetd .templcmnt = tempcmnt;

nodeZd.pnode = p id ;

nodead.core-gene = no;

nodeZd.id = id;

n0deZd.le~el = 1;

expandnode(n0, id, nodeZd.temp, tempcmnt, 1);

temp = NULL;

tempcant = 0;

nodeid++;

Figure 6.13: (b) Algorithm for Node creation

193

expand-node(no, id, temp, tempcmnt, 1)

IF gno.classified == 1 then

Return;

Else

gno.classified = 1;

gn,.nodeid = id;

FOR all g, E DG do

IF g,.classified != 1 then

matchcmnt = findmatch-temp(g, , temp, tempcount);

IF matchcmnt >= (tempcount - (1 - 1)) and matchcmnt >= 0* then

expandaode(g, .no, id, temp, tempcmnt, 1) ;

End IF

End IF

End FOR

End IF

Figure 6.14: Algorithm for Node expansion

level 1.

Proof. Suppose, g, E nl,, and g, E n l , and let g, E NLevel(g,) . Then, g, is intra-node

reachable from g, according to Definition 35. Therefore, both g, and g, belongs to

the same node (subspace cluster). Therefore, we come to a contradiction and hence

the proof.

Lemma 8. A gene g, belonging to n , , may not belong to n(, - l) ,k (i = 2, 3,. . . , 8)

where n, , refers to j t h subspace cluster of level z .

Proof. Let g, E n,,,, then according to Definition 36, g, is inter node reachable from

any node n,-l ,k in level (z - 1) and gk E n , - l , k . Then p(g,) matches in a total of

(T - ((z - 1) - 1)) conditions, i.e., one condition less than gk. The reference vector

of n,, will be same as that for n,-l,k except for the condition where gk and g, do not

match. Therefore, g, 4 n,-l,k and hence the proof.

Lemma 9. Genes g,, g, E G. Now, if g, E n, and g, E n, where n, and n, are two

subspace clusters, then g, and g, are not intra-node reachable.

Proof. Let g, and g, be two intra-node reachable genes and g, E n, and g, E n,, where

n, and n, are two subspace clusters at any level. Then, according to Definition 35,

either they are neighbors or both of them are neighbors of another initiator gene,

that is, g, and g, must be in the same subspace cluster according to Definition 33.

Therefore, we come to a contradiction and hence the proof. I7

Lemma 10. Assume genes g,, g, E G and g, E n, and g, E n, where n, and n, are

two subspace clusters (n , and n, are not parent-child or vice versa), then g, and g,

are not inter-node reachable.

Proof. Let g, and g, be two inter-node reachable genes and g, E n, and g, E n,, where

n, and n, are two subspace clusters but do not share a parent-child relationship be-

tween them. However, according to Definition 36, two genes are inter-node reachable

if one of them belongs to a parent node and the other to its child. Therefore, n, and

n, should be parent-child or vice versa. Thus, we come to a contradiction and hence

the proof.

Theorem 1. Two genes g, and g, belonging to two different nodes are not coherent.

Proof. Let g, E n, and g, E n,. Now, as per lemma 1, g, cannot be a neighbor

of g,. Again, since genes g, and g, are not neighbors, then the conditions given in

Definition 30 do not satisfy and hence they are not coherent.

Theorem 2. A gene g, without a neighbor is a noise.

Proof. A gene g, without a neighbor is neither intra-node nor inter-node reachable

from any other node, hence such a gene g, can be trivially proved to be a noise gene

according to 39, lemma 3 and lemma 4.

6.6.2 Performance Evaluation

GeneClusnee was implemented in Java in Windows environment and evaluated with

several real-life datasets. Of the various datasets, the results of some of the datasets

as given in Table 6.1 are reported in this chapter. All the datasets are normalized

to have mean 0 and standard deviation 1. The datasets have been obtained from

http://faculty. washington. edu /kayee/cluster.

1. Results

Figure 6.15 shows some of the maximal space and reduced space clusters of Dataset

1. The clusters formed from the full form of Dataset 2 are shown in Figure 6.16.

Figure 6.17 shows some of the clusters obtained from the reduced form of Dataset 2.

The maximal and reduced space clusters of Dataset 3 are shown in Figure 6.18.

2. Cluster Quality

In order to validate our clustering result, we employ z-score [GR02] as the measure

of agreement. The biological relevance of a cluster can be verified based on the gene

ontology (GO) annotation database http://d b. y eastgenome. org/cgi- bin/GO/g o Term

Fznder. It is used to test the functional enrichment of a group of genes in terms of

three structured ontologies, viz., associated biological processes, molecular functions

and biological components. The functional enrichment of each GO category in each

Figure 6.15: Each of the rows represents the six clusters formed from Dataset 1.

Starting from the second column of each row, the reduced space clusters are illus-

trated for the maximal space cluster given in the first column.

of the clusters obtained is calculated by its p-value.

As given in section 6.5.3 2a), to assess the quality of GeneClusTree, we employed

z-score [GR02] as the measure of agreement. Higher the value of z, better the cluster

results indicating more biologically relevant clusters of genes. z-score is calculated by

investigating the relation between a clustering result and the functional annotation

of the genes in the cluster. We have used Gibbons ClusterJudge [GR02] tool to cal-

culate the z-score. To test the performance of the clustering algorithm, we compared

clusters identified by GeneClusTree with the 'ground truth' and with the results from

RDClust, DCCA and UPGMA. The result of applying the z-score on Dataset 1 is

Figure 6.16: Some of the clusters from the Dataset 2

L*,
-k\

1 k,

-
7

* I*'

,/ 1

" ,

q

1

."B

-- -

. I

W d k / = !

/ '

-j\

'i
P

'?

!

'n9:

'"

k >.'

-1 "1,
-\

\ %

4 ' " i y*"

c,
I ,.% , i

b

r- -

\\

\

,\c * > "3

p--pp--p------p-

h
i

.! i

%?J 2

t
/** 1

& /\\-\

Figure 6.17: Some of the clusters obtained from the reduced form of Dataset 2.

I 1) Clusters 1) 1) of genes I

Table 6.5: z-scores for GeneClusTree and its counterparts for Dataset 1

I UPGMA 11 16 1) 5.57 11 384 1

Method Applied

/ DCCA 11 10 11 6.2 (1 384 1
I RDClust 11 10 (1 6.95 11 384 1

No. of

I GeneClusTree I(17 (1 7.42 (1 384 1

shown in Table 6.5. In this table, the proposed algorithm is compared with the well

known agglomerative hierarchical algorithm, UPGMA, DCCA and RDCLust . Table

6.5 clearly shows that GeneClusTree outperforms UPGMA, RDClust and DCCA

w.r.t. the cluster quality. We note here that unlike k-means our method does not

require the number of clusters as an input parameter. It detects the clusters present

in the dataset automatically and gives the rest as noise. However, the algorithm

UPGMA requires the input parameter cutoff.

z-score

As given in section 6.5.3 2b), the functional enrichment of each GO category in

each of the clusters obtained is calculated by its p-value ([THCt99]). A low pvalue

indicates the genes belonging to the enriched functional categories are biologically sig-

nificant in the corresponding clusters. To compute the pvalue, we used the software

Total no.

FuncAssociate [B+03]. To restrict the size of this chapter, the enriched functional

categories for only three clusters obtained by GeneClusTree on Dataset 1 are par-

tially listed in Table 6.6. The functional enrichment of each GO category in each of

the clusters is calculated by its pvalue. Cluster C2 contains genes involved in DNA

replication with the highly enriched category being 'MCM complex' with a pvalue of

1.1 x 10-12. The highly enriched categories in C5 is the 'cellular bud' with a pvalue

of 7.0 x 10-07. The genes in cluster C10 are involved in cell cycle. C10 contains

the highly enriched cellular components of 'DNA metabolic process', 'DNA replica-

tion', 'chromosome', 'chromosomal part', 'cell cycle, etc. with p-values of 1.8 x

1.8 x 9.7 x 1.5 x and 8.8 x lo-'' being the highly enriched one.

From the Table 6.6, we can conclude that GeneClusTree shows a good enrichment

of functional categories and therefore project a good biological significance.

We present an effective tree-based clustering technique (GeneClusTree) for finding

clusters over gene expression data. GeneClusTree attempts to find all the clusters

over subspaces using a tree-based density approach by scanning the whole database in

minimum possible scans of the dataset. Another important advantage of GeneClus-

n e e .is that it is free from the restrictions of using a proximity measure. Our al-

gorithm works by finding the maximal space clusters and then proceeds in finding

the reduced space clusters. The clusters are represented as a tree with the reduced

space clusters as the child of its respective maximal space cluster. Effectiveness of

GeneClusTree is established in terms of well known z-score measure and pvalue over

several real-life datasets. Using z-score analysis we show that GeneClusTree outper-

forms other comparable algorithms. The pvalue analysis shows that our technique

is capable in detecting biologically relevant clusters from gene expression data.

Discussion

This work presents a tree-based density approach which finds useful subgroups of

genes within a cluster and obtains a tree structure of the dataset where the clusters

at the bottom level gives the finer clustering of the dataset. GeneClusTree does not

require the number of clusters apriori and the clusters obtained have been found

7e-07 I GO 0005933 I cellular bud

5 1-06 I GO 0004857 I enzyme ~nh~bi to r activlty

1 le-07

1 2e-07

3 9e-07

2 8e-05 1 GO 0005935 I cellular bud neck

4 7e-05 I GO 0019887 I protein kinase regulator activ~tv

GO 0009378

GO 0022403

GO 0022402

c 5

four-way junction helicase actlvlty

cell cycle phase

cell cycle process

18e-21 (GO 0006260 (DNA replication

9 7e-21 1 GO 0005694 1 chromosome 1

8 3e-06

8 3e-06

9 6e-06

5 6e-05

6 7e-05

1 8e-22

13e-16 I GO 0006974 / response to DNA damage stlmulus

4 7e-16 I GO 0009719 1 response to endogenous stlmulus

GO 0004860

GO 0019210

GO 0030427

GO 0019207

GO 0004861

GO 0006259

1 5e-20

8 8e-19

14e-18

1 6 4e-16 I GO 0006261 I DNA-de~endent DNA re~l ica t~on I

prote~n kinase ~nhlb~tor activ~ty

klnase inhib~tor activlty

slte of ~olarized nowth

klnase regulator actlvrty

cycl~n-dependent protein kinase inh~b~tor activ-

ity
DNA metabolic ~rocess

le-05 I GO 0006261 (DNA-dependent DNA repllcat~on

GO 0044427

GO 0007049

GO 0006281

1 56e-14 1 GO 0022402 1 cell cvcle orocess 1

chromosomal part

cell cycle

DNA repalr

9 6e-14 I GO 0005634 / nucleus

le-13 1 GO 0007064 1 mitotlc sister chromatid cohesion

7 2e-13 1 GO 0005657 I repl~cation fork

9 le-13 1 GO 0022403 I cell cycle phase I
1 3e-12 I GO 0051276 I chromosome orsanlzation and biosenesis I

6 4e-12 I GO 0007062 I sister chromatid cohesion 1

C10

12e-11 I GO 0044454 1 nuclear chromosome part

7 5e-11 I GO 0006273 I lagging strand elongation 1

3 5e-12 1 GO 0000228 1 nuclear chromosome

4 4e-12 I GO 0000278 1 mitotlc cell cycle

satisfactory on visual inspection and also based on z-score as well as pvalues for

three real datasets. However, work is going on for establishing the effectiveness of

GeneClusnee over more real-life datasets. Also we are trying to incorporate GO

term information during node expansion to make the method more effective biolog-

ically.

The current information explosion, fueled by the availability of World Wide Web and

the huge amount of microarray experiments conducted has led to the ever-increasing

volume of data. There is therefore a need to introduce incremental clustering so that

updates can be clustered in an incremental manner. As a future direction of our

work, we are focusing on introducing an incremental version of GeneClusTree in the

line of work of [DBKOSb] which would be able to handle datasets that are updated

increment ally.

r
Cluster

C10

GO number

GO 0043228

GO 0043232

GO 0006271

GO 0022616

GO 0030894

GO 0043601

GO 0006950

GO 0051052

GO 0000819

GO 0006139

GO 0045934

GO 0000070

GO 0043596

GO 0051301

GO 0000793

GO 0031324

GO 0003677

GO 0009892

GO 0000279

P-value

3 le-10

3 le-10

4 2e-10

4 2e-10

5 l e10

5 le-10

5 7e-10

9 le-10

1 le-09

1 5e-09

6 5e-09

6 5e-09

8 6e-09

3 le-08

3 8e-08

5 4e-08

5 4e-08

5 7e-08

7 8e-08

GO category

non-membrane-bounded organelle

intracellular non-membranebounded organelle

DNA strand elongation during DNA replication

DNA strand elongation

replisome

nuclear repllsome

response to stress

regulation of DNA metabolic process

sister chromatid segregation

nucleobase, nucleos~de, nucleotide and nucleic

acid metabolic process

negative regulation of nucleobase, nucleoside,

nucleotide and nucleic acid metabolic process

mitotic slster chromatid segregation

nuclear replication fork

cell division

condensed chromosome

negative regulation of cellular metabolic pro-

cess

DNA binding

negative regulation of metabolic process

M phase

Figure 6.18: Each of the rows represents some of the clusters formed from Dataset

3. Starting from the second column of each row, the reduced space clusters are

illustrated for the maximal space cluster given in the first column.

Chapter 7

Conclusions and Future Works

We now conclude this thesis and provide some directions for future scope of work.

7.1 Conclusions

In this thesis, we have developed clustering techniques for three different types of

data domains namely 2D spatial data, satellite image data and gene expression data.

Detecting global as well as embedded clusters in presence of noise in less time is an

important goal in cluster analysis. In our quest to achieve this goal, we have pre-

sented GDCT, a fast grid-density based clustering technique for identifying arbitrary

shaped clusters of variable density. We have also incorporated an outlier detection

module in this algorithm. Identifying clusters from high resolution satellite images

has received focus in recent years. This thesis also presents two clustering techniques,

SATCLUS and GDSDC, for high-resolution satellite images. Both techniques first

find coarse clusters and then reassigns border points to the most appropriate cluster

which may have been misclassified during the first step and thus improve the quality

of clustering. Satellite images usually have the problem of mixed pixels and handling

of such pixel is very important. GDSDC helps in the detection of mixed pixels by

including a fuzzy set based approach. Both SATCLUS and GDSDC are better than

other comparable algorithms in terms of ,O measure.

Due to the huge amount of data generated with tremendous progress in data ac-

cumulation techniques, mining useful information from such voluminous data has

become a challenge. Parallel and distributed techniques have been used widely for

mining such large amount data. In this thesis, we have presented two distributed

clustering techniques for spatial data. The first, DGDCT, has been used for clus-

tering massive 2D spatial data and the second, DisClus, has been used for satellite

data. Both techniques detect clusters of good quality and the results obtained using

synthetic and satellite image datasets establish that the techniques are efficient and

obtain scale up.

This thesis also presents two clustering techniques for finding coherent genes from

gene expression data. The first technique GenClus identifies useful subgroups of

highly coherent genes within a cluster and obtains a hierarchical structure where the

sub-clusters give the finer clustering of the dataset. An incremental version of Gen-

Clus, i.e., InGenClus is also presented. The second technique is a tree-based density

approach which finds useful subgroups of genes within a cluster and obtains a tree

structure of the dataset where the clusters at the bottom level give the finer clus-

tering of the dataset. Both GenClus and GeneClusTree do not require the number

of clusters apriori and the clusters have been validated based on z-score and pvalue

measures.

Future Works

The work reported in this thesis can be expanded and improved in many different

ways. Below, we briefly outline future scope of work.

In SATCLUS, we use a grid-density based approach with a partitioning method

to obtain the final clusters. However, satellite images have inherent vagueness

in pixel information due to the fact that a single pixel represents quite a lot

of data on ground owing to the resolution of the camera used. Therefore, a

pixel may belong to more than one cluster. Fuzzy rough set theory exploits the

fact that an element can belong to several %oft similarity classes" at the same

time with some degree of certainty and therefore provides efficient algorithms

for finding hidden patterns in the data. SATCLUS can be further enhanced

by incorporating a rough-fuzzy set theoretic approach to provide an efficient

classification scheme.

SATCLUS and GDSDC have been used with multi-spectral high resolution

satellite images. Therefore, there are scopes to extend them to handle hyper-

spectral high resolution satellite data.

In GDSDC, we use a fuzzy membership function to handle the mixed pixels

problem present in the border regions of the clusters. As a future direction of

work, a sub-pixel approach may be incorporated to handle the mixed pixels.

For the gene pattern identification, we use two techniques for identifying co-

expressed genes. But genes determined to be co-expressed using clustering may

not necessarily be co-regulated and hence may not have similar functions. A

possible approach may be that the annotated subset of differentially expressed

genes be clustered together based on functional similarity and superimposed on

top of the clustering techniques to obtain more biologically relevant clusters. In

future work, we plan to integrate the analysis of gene expression datasets with

biological information regarding functions of genes to identify the co-regulated

genes.

Bibliography

[AAS+09] Ram A., Sharma A., Jalall A. S., Singh R., and Agrawal A. EDBSCAN:

Enhanced density based spatial clustering of applications with noise.

In Proceedings of IEEE International Advance Computing Conference

(IACC 2009), Patiala, India, 2009.

[ABKS99] M. Ankerst, M. M. Breuing, H. P. Kriegel, and J. Sander. Optics:

Ordering points to identify the clustering structure. In Proceedings of

ACM-SIGMOD 99, pages 49-60, 1999.

[ABN+99] U. Alon, N. Barkai, Notterman, D. A., K. Gish, S. Ybarra, D. Mack,

and A. J . Levine. Broad patterns of gene expression revealed by clus-

tering analysis of tumor and normal colon tissues probed by oligonu-

cleotide array. In Proceedings of National Academy of Sciences, volume

96(12), pages 6745-6750, USA, 1999.

[ACNOS] M. Awad, K. Chehdi, and A. Nasri. Multi-component image segmenta-

tion using hybrid dynamic genetic algorithm and fuzzy c-means. IET

image processing, 3(2) :52-62, 2009.

[AF0+08] R. B. Arajo, G. H. T . Ferreira, G. H. Orair, W. Meira, R. A. C. Ferreira,

D. 0. G. Neto, and M. J. Zaki. The partricluster algorithm for gene

expression analysis. International Journal of Parallel Programming,

36(2):226-249, 2008.

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic

subspace clustering of high dimensional data for data mining applica-

tions. In Proceedings of SIGMOD '98, pages 94-105, Seattle, 1998.

[AYOO]

Hanan Ayad and Mohamed Kamel. Finding natural clusters using

multi-clusterer combiner based on shared nearest neighbors. In Pro-

ceedings of the 4th international conference on Multzple classzfier sys-

tems, pages 166-175, Berlin, Heidelberg, 2003. Springer-Verlag.

M. Acharyya and M.K. Kundu. Image segmentation using wavelet

packet frames and neuro-fuzzy tools. IEEE Transactions of Computa-

tional Cognition, 5(4):27-41, 2007.

Lamine M. Aouad, Nhien-An Le-Khac, and Tahar M. Kechadi.

Lightweight clustering technique for distributed data mining applica-

tions. In Proceedings of the '7th industrial conference on Advances in

data mining: theoretical aspects and applications, ICDM707, pages 120-

134, Berlin, Heidelberg, 2007. Springer-Verlag.

M.M. Awad and A. Nasri. Satellite image segmentation using self- orga-

nizing maps and fuzzy c-means. In IEEE International Symposium on

Signal Processing and Information Technology (ISSPIT), 2009, pages

398 -402, 2009.

S. Asharaf, M. Narasimha, and S.K. Shevade. Rough set based incre-

mental clustering of interval data. Pattern Recognition Letters, 27:5 15-

519, 2006.

M.M. Astrahan. Speech analysis by clustering, or the hyper-phoneme

method. Stanford A. I. Project Memo, 1970.

Ed. Charu Aggarwal and Haixun Wang, editors. Managing and Mining

Graph Data. Springer, 2010.

Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, and

Jong Soo Park. Fast algorithms for projected clustering. In Proceedings

of the 1999 ACM SIGMOD international conference on Management

of data, SIGMOD '99, pages 61-72, New York, NY, USA, 1999. ACM.

Charu C. Aggarwal and Philip S. Yu. Finding generalized projected

clusters in high dimensional spaces. SIGMOD Record, 29:70-81, 2000.

[BDSY99]

[Be28 la]

[Be28 1 b]

F. Ameri, M. J. V. Zoej, and M. Mokhtarzade. Satellite image segmen-

tation based on fuzzy c-means clustering. In Proceedings of Map Asia,

2006.

F. G. Berriz et al. Characterizing gene sets with funcassociate. Bioin-

formatics, 19:2502-2504, 2003.

B. Borah and D.K. Bhattacharyya. A clustering technique using den-

sity difference. In Proceedings of International Conference on Signal

Processing, Communications and Networking, pages 585-588, 2007.

B. Borah and D.K. Bhattacharyya. DDSC: A density differentiated

spatial clustering technique. Journal of Computers, 3(2):72-79, 2008.

B. Borah, D. K. Bhattacharyya, and R. K. Das. A parallelization of

density based clustering technique on distributed memory multicom-

puter. In Proceedings of ADCOM, pages 536-541, Ahmedabad, 2004.

A. Bhattacharya and R. De. Divisive correlation clustering algorithm

(dcca) for grouping of genes: detecting varying patterns in expression

profiles. Bioinformatics, 24(11):1359-1366, 2008.

Amir Ben-dor, Benny Chor, Richard Karp, and Zohar Yakhini. Dis-

covering local structure in gene expression data: The order-preserving

submatrix problem. In Proceedings of the 6th International Conference

on Computational Biology (RECOMBOZ), pages 49-57, 2002.

A. Ben-Dor, R. Shamir, and 2. Yakhini. Clustering gene expression

patterns. Journal of Computational Biology, 6(3-4):281-297, 1999.

J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Al-

gorithms. Plenum, New York, USA, 1981.

J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Al-

gorithms. Plenum Press, New York, 1981.

[BKNSOO]

M.J. Beal and Z. Ghahramani. The variational bayesian em algorithm

for incomplete data: with application to scoring graphical model struc-

tures. In Proceedings of the 7th Valencia International Meeting on

Bayesian Statistics, volume 63(4), pages 453-464, Spain, 2003.

Sanghamitra Bandyopadhyay, Chris Giannella, Ujjwal Maulik, Hill01

Kargupta, Kun Liu, and Souptik Datta. Clustering distributed

data streams in peer-to-peer environments. Information Sciences,

176(14):1952 - 1985, 2006.

G.H. Ball and D. J. Hall. A clustering technique for summarizing mul-

tivariate data. Behavioural Science, 12:153-155, 1967.

D.R. Bickel. Robust cluster analysis of dna microarray data: An ap-

plication of nonparametric correlation dissimilarity. In Proceedings of

the Joint Statistical Meetings of the American Statistical Association

(Biometm'cs Section), 2001.

Markus Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jrg Sander.

LOF: Identifying density-based local outliers. In Proceedings of SIG-

MOD, pages 93-104, 2000.

V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley &

Sons, 1994.

G. Babu and M. Murty. A near-optimal initial seed value selection

in k-means algorithm using a genetic algorithm. Pattern Recognition

Letters, 14(10):763-769, 1993.

S. Bandyopadhyay, U. Maulik, and A. Mukhopadhyay. Multiobjective

genetic clustering for pixel classification in remote sensing imagery.

IEEE Transactions on Geoscience and Remote Sensing, 45(2):1506-

1511, 2007.

S. Bandyopadhyay, A. Mukhopadhyay, and U. Maulik. An im-

proved algorithm for clustering gene expression data. Bioinformatics,

23(21) :2859-2865, 2007.

[CCOO]

[CCFM97]

S. Bandyopadhyay and S.K. Pal. Pixel classification using variable

string genetic algorithms with chromosomal differentiation. IEEE

Transactions on Geoscience and Remote Sensing, 39(2):303-308, 2001.

A. Bellaachia, D. Portnoy, and A. G. Chen, Y.and Elkahloun. Ecast:

A data mining algorithm for gene expression data. In Proceedings of

the BIOKDD02: Workshop on Data Mining in Bioinfomnatics (with

SIGKDD02 Conference), page 49, 2002.

Yizong Cheng and George M. Church. Biclustering of expression data.

In Proceedings of the Eighth International Conference on Intelligent

Systems for Molecular Biology, pages 93-103. AAAI Press, 2000.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clus-

tering and dynamic information retrieval. In STOC '97: Proceedings

of the twenty-ninth annual ACM symposium on Theory of computing,

pages 626-635, New York, NY, USA, 1997. ACM.

R. J. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Con-

way, L. Wodicka, T. Wolfsberg, A. Gabrielian, D. Landsman, and

D. Lockart. A genome-wide transcriptional analysis of the mitotic cell

cycle. Molecular Cell, 2(1):65-73, 1998.

Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. Entropy-based

subspace clustering for mining numerical data. In Proceedings of the

jifth ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 84-93, New York, NY, USA, 1999. ACM.

D. Cook and L. Holder. Mining Graph Data. John Wiley & Sons Inc,

2007.

Yiu-Ming Cheung. k*-means: A new generalized k-means clustering

algorithm. Pattern Recognition Letters, 24(15) :2883 - 2893, 2003.

D.W. Cheung, J . Han, V.T. Ng, and Y. Wong. Maintenance of discov-

ered association rules in large databases: An incremental technique.

In Proceedings of 1 2 ~ ~ International Conference on Data Engineering,

pages 106-114, New Orleans, USA, 1996.

Chien-Yu Chen, Shien-Ching Hwang, and Yen-Jen Oyang. An incre-

mental hierarchical data clustering algorithm based on gravity the-

ory. In Proceedings of the 6th Pacific-Asia Conference on Advances in

Knowledge Discoveq and Data Mining, PAKDD '02, pages 237-250,

London, UK, 2002. Springer-Verlag.

Jae-Woo Chang and Du-Seok Jin. A new cell-based clustering method

for large, high-dimensional data in data mining applications. In Pro-

ceedings of the 2002 ACM symposium on Applied computing, pages

503-507, New York, NY, USA, 2002. ACM.

S. Chung, J. Jun, and D. McLeod. Mining gene expression datasets

using density based clustering. Technical Report IMSC-04-002,

USC/IMSC, University of Southern California, 2004.

Peter Cheeseman and John Stutz. Advances in knowledge discovery

and data mining, 1996.

R. Das, D.K. Bhattacharyya, and J.K. Kalita. Clustering gene expres-

sion data using a regulation based density clustering. International

Journal of Recent Trends in Engineering, 2(1-6) : 76-78, 2009.

R. Das, D.K. Bhattacharyya, and J.K. Kalita. An incremental cluster-

ing of gene expression data. In Proceedings of NABIC, pages 742-747,

Coimbatore, India, 2009.

R. Das, D.K. Bhattacharyya, and J.K. Kalita. Clustering gene ex-

pression data using an effective dissimilarity measure. International

Journal of Computational BioScience (Special Issue), 2010.

J. Dopazo and JM. Carazo. Phylogenetic reconstruction using an un-

supervised neural network that adopts the topology of a phylogenetic

tree. Journal of Molecular Evolution, 44:226-233, 1997.

[DXLGOG]

[ECLOO]

[EKS+ 981

S. Datta, C. Giannella, and H. Kargupta. K-Means Clustering over a

Large, Dynamic Network. In Proceedings of 2006 SIAM Conference on

Data Mining, Bethesda, MD, April 2006.

Souptik Datta, Chris Giannella, and Hill01 Kargupta. Approximate dis-

tributed k-means clustering over a peer-to-peer network. IEEE Trans-

actions on Knowledge and Data Engineering, 21: 1372-1388, 2009.

J.L. DeRisi and P.O. Iyer, V.R.and Brown. Exploring the metabolic

and genetic control of gene expression on a genomic scale. Science,

278:680-686, 1997.

D. Dembl and P. Kastner. Fuzzy C-means method for clustering mi-

croarray data. Bioinfomnatics, 19(8):973-980, 2003.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical

Society, 39 (1):l-38, 1977.

I. S. Dhilon and D. S. Modha. A data-clustering algorithm on dis-

tributed memory multiprocessors. In Proceedings of the International

Conference on Knowledge Discovery and Data Mining (SIGKDD 99),

San Diego, CA, USA, 1999.

L. Duan, D. Xiong, J. Lee, and F. Guo. A local density based spatial

clustering algorithm with noise. In IEEE International Conference on

Systems, Man, and Cybernetics, Taipei, Taiwan, 2006.

V. Estivill-Castro and I. Lee. Amoeba: Hierarchical clustering based

on spatial proximity using delaunay diagram. In Proceedings of the 9th

International Symposium on Spatial Data Handling, 2000.

M. Ester, H. P. Kriegel, J. Sander, M. Wimmer, and X. Xu. An incre-

mental clustering for mining in a data warehousing environment. In

Proceedings of the 2dth VLDB Conference, New York, USA, 1998.

[FLPTOO]

[FM04]

[GGN+99]

M. Ester, H. P. Kriegel, J . Sander, and X. Xu. A density-based al-

gorithm for discovering clusters in large spatial databases with noise.

In Proceedings of International Conference on Knowledge Discovery

in Databases and Data Mining (KDD-96), pages 226-231, Portland,

Oregon, 1996.

M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and

display of genome-wide expression patterns. In Proceedings of National

Academy of Sciences, volume 95, pages 14863-14868, 1998.

L. Ertoz, M. Steinbach, and V. Kumar. Finding clusters of different

sizes, shapes, and densities in noisy high dimensional data. In SIAM

International Conference on Data Mining, 2003.

R. Feldman, Y. Aumann, A. Amir, and H. Mannila. Efficient al-

gorithms for discovering frequent sets in incremental databases. In

Proceedings of A CM SIGMOD Workshop on Research Issues on Data

Mining and Knowledge Discovery, pages 59-66, Tucson, AZ, 1997.

Ana L.N. Fred and Anil K. Jain. Data clustering using evidence ac-

cumulation. In Proceedings of the 16th International Conference on

Pattern Recognition (ICPR '02), volume 4 of ICPR '02, pages 276-280,

Washington, DC, USA, 2002. IEEE Computer Society.

D. Foti, D. Lipari, C. Pizzuti, and D. Talia. Scalable parallel clustering

for data mining on multicomputers. In Lecture Notes in Computer

Science, pages 390-398. Springer Verlag, 2000.

Jerome H. Friedman and Jacqueline J. Meulman. Clustering objects on

subsets of attributes. Journal of the Royal Statistical Society, 66:815-

849, 2004.

Sanjay Goil, Sanjay Goil, Harsha Nagesh, Harsha Nagesh, Alok Choud-

hary, and Alok Choudhary. Mafia: Efficient and scalable subspace

clustering for very large data sets. Technical report, Northwestern

University, 2145 Sheridan Road, Evanston IL 60208, 1999.

[GLDOO] G. Getz, E. Levine, and E. Domany. Coupled two-way clustering anal-

ysis of gene microarray data. Proceedings of the National Academy of

Sciences of the United States of America, 97(22):12079-12084, 2000.

[Go1891 D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley, New York, 1989.

[GR02] F. Gibbons and F. Roth. Judging the quality of gene expression based

clustering methods using gene annotation. Genome Research, 12: 1574-

1581, 2002.

[GRG+98] Venkatesh Ganti, Raghu Ramakrishnan, Johannes Gehrke, Allison

Powell, and James French. Clustering large datasets in arbitrary metric

spaces. In IN PROCeedings OF THE 15TH INTernational CONFer-

ence ON DATA ENGineering, pages 502-51 1, 1998.

[GRS98] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering al-

gorithm for large databases. In SIGMOD Record, volume 27(2), pages

73-84, 1998.

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust

clustering algorithm for categorical attributes. In In Proceedings of the

15th International Conference on Data Engineering, pages 512-521,

1999.

[GyFSlXrO9] D. Gen-yuan, M. Fang, T. Sheng-li, and G. Xi-rong. Remote sensing

image sequence segmentation based on the modified fuzzy c-means.

Journal of Software, 5(1), 2009.

[Ham501 R. W. Hamming. Error detecting and error correcting codes. Bell

System Technical Journal, 26(2):147160, 1950.

[HC04] C. Hsu and M. Chen. Subspace clustering of high dimensional spatial

data with noises. In Proceedings of PAKDD 04, pages 31-40, 2004.

[HCFdCO9] Eduardo Raul Hruschka, Ricardo J. G. B. Campello, Alex A. Freitas,

and Andr C. Ponce Leon F. de Carvalho. A survey of evolutionary algo-

rithms for clustering. IEEE TRANSACTIONS ON SYSTEMS, MAN,

[HD RT041

AND CYBERNETICSPART C: APPLICATIONS AND REVIEWS,

39(2), 2009.

F. V. D. Heijden, R. Duin, D. Ridder, and D. M. J . Tax. Classifi-

cation, Parameter Estimation and State Estimation: An Engineering

Approach Using MATLAB. John Wiley and Sons, 2004.

Alexander Hinneburg, Er Hinneburg, and Daniel A. Keim. An efficient

approach to clustering in large multimedia databases with noise. In

Proceedings of the 4th International Conference on Knowledge Discov-

ery and Data Mining, pages 58-65. AAAI Press, 1998.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Mor-

gan Kaufmann Publishers, San Fransisco, USA, 2006.

J . Handl and J . Knowles. An evolutionary approach to multiobjective

clustering. IEEE Transactions on Evolutionary Computing, 11(1):56-

76, 2007.

J . Handl, J . Knowles, and D. B. Kell. Computational cluster validation

in post-genomic data analysis. Bioinformatics, 21:3201-32 12, 2005.

L. J . Heyer, S. Kruglyak, and S. Yooseph. Exploring expression data:

identication and analysis of co-expressed genes. Genome Research,

9(11):11061115, 1999.

D. Hand, H. Mannila, and P. Smyth. Princzples of Data Mining.

Prentice-Hall of India, New Delhi, 2004.

L.O. HALL, B. OZYURT, and J.C. BEZDEK. Clustering with a genet-

ically optimized approach. IEEE Transactions on Evolutionary Com-

putation, 3(2): 103-1 12, 1999.

E. Hartuv, A. Schmitt, J . Lange, S. Meier-Ewert, H. Lehrach, and

R. Shamir. An algorithm for clustering cDNAs for gene expression

analysis using short oligonucleotide fingerprints. In Proceedings of 3rd

International Symposium on Computational Molecular Biology (RE-

COMB 99), pages 188-197. ACM Press, 1999.

[HVDO I]

[IER+99]

Zhexue Huang. Extensions to the k-means algorithm for clustering

large data sets with categorical values. Data Mining and Knowledge

Discovery, 2(3):283-304, 1998.

J. Herrero, A. Valencia, and J . Dopazo. A hierarchical unsupervised

growing neural network for clustering gene expression patterns. Bioin-

formatics, 17: 126136, 2001.

V.R. Iyer, M.B. Eisen, D.T. Ross, G. Schuler, T. Moore, J. Lee, J.M.

Trent, L.M. Staudt, J .J . Hudson, M.S. Boguski, D. Lashkari, D. Shalon,

D. Botstein, and P.O. Brown. The transcriptional program in the

response of the human fibroblasts to serum. Science, 283:83-87, 1999.

Ruoming Jin, Anjan Goswami, and Gagan Agrawal. Fast and exact

out-of-core and distributed k-means clustering. Knowledge and Infor-

mation Systems, 10:17-40, 2006.

Erik L. Johnson and Hill01 Kargupta. Collective, hierarchical clustering

from distributed, heterogeneous data, 1999.

T. Johnson, I. Kwok, and R.T. Ng. Fast computation of 2-dimensional

depth contours. In Proceedings of the 4th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 224-228,

1998.

Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Towards effec-

tive and efficient distributed clustering. In In Workshop on Clustering

Large Data Sets (ICDM), pages 49-58, Melbourne, Florida, 2003.

A.K. Jain, M.N. Murty, and P.J. Flyn. Data clustering: A review.

A CM Computing Surveys, 31 (3), 1999.

R.A. Jarvis and E.A. Patrick. Clustering using a similarity measure

based on shared nearest neighbors. IEEE Transactions on Computers,

11, 1973.

[KNTOO]

[KNZOI]

D. Jiang, J. Pei, and A. Zhang. DHC: a density-based hierarchical

clustering method for time series gene expression data. In Proceedings

of BIBE2003: 3rd IEEE International Symposium on Bioinfomatics

and Bioengineering, page 393, Bethesda, Maryland, USA, 2003.

D. Jiang, C. Tang, and A. Zhang. Cluster analysis for gene expression

data: A survey. IEEE Transactions on Knowledge and Data Engineer-

ing, 16(11): 1370-1386, 2004.

H. S. Kim, S. Gao, Y. Xia, G.B. Kim, and H. Y. Bae. Dgcl: An

efficient density and grid based clustering algorithm for large spatial

database. In Advances in Web-Age Information Management (WAIM

2006), pages 362-371, 2006.

G. Karypis, J. Han, and V. Kumar. CHAMELEON: A hierarchi-

cal clustering algorithm using dynamic modelling. IEEE Computer,

32(8) :68-75, 1999.

K. Krishna and M. Murty. Genetic k-means algorithm. IEEE Transac-

tions on Systems, Man and Cybernetics - Part B: Cybernetics, 29:433-

439, 1999.

Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-

based outliers in large datasets. In Proceedings of the 24rd International

Conference on Very Large Data Bases, VLDB '98, pages 392-403, San

Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers:

Algorithms and applications. The Very Large Data Bases Journal,

8(3):237-253, 2000.

Edwin M. Knorr, Raymond T. Ng, and Ruben H. Zamar. Robust

space transformations for distance-based operations. In Proceedings

of the seventh A C M SIGKDD international conference on Knowledge

discovery and data mining, pages 126-135, New York, NY, USA, 2001.

ACM.

[LECOO]

T . Kohonen. Self-organzzzng maps. Springer-Verlag, Heidelberg, Ger-

many, 1995.

L. Kaufman and P. J . Rousseeuw. Fzndzng Groups zn Data: An Intro-

ductzon to Cluster Analyszs John Wiley & Sons, 1990.

S. A. Krawetz and D. D. Womble. Introductzon to Bzoznformatzcs: A

Theoretzcal and Practzcal Approach. Humana Press, Totowa, NJ, USA,

2002.

I. Lee and V. Estivil-Castro. Autoclust: Automatic clustering via

boundary extraction for mining massive point data sets. In Proceedzngs

of the 5th Internatzonal Conference on Geocomputatzon, 2000.

Nhien-An Le-Khac, Lamine M. Aouad, and M-Tahar Kechadi. A new

approach for distributed density based clustering on grid platform. In

Proceedzngs of the 24th Brztzsh natzonal conference on Databases, BN-

COD'07, pages 247-258, Berlin, Heidelberg, 2007. Springer-Verlag.

Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S.J. Brown. FGKA: A fast ge-

netic k-means algorithm. In Proc. ACM Symposzum on Applzed Com-

putzng, 2004.

Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S.J. Brown. Incremental genetic

k-means algorithm and its application in gene expression data analysis.

BMC Bzoznformatzcs, 5(172), 2004.

Ao Li and David Tuck. An effective tri-clustering algorithm combining

expression data with gene regulation information. Gene Regulatzon and

Systems Bzology, 3:49-64, 2009.

G. Li, Z. Wang, Q. Ni, X. Wang, B. Qiang, and

H. Qing-juan. Application of a new similarity measure

in clustering gene expression data. Downloaded from:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=O5l62382,

2009.

[LZW07] P. Liu, D. Zhou, and N. Wu. Vdbscan: Varied density based spatial

clustering of applications with noise. In IEEE, 2007.

[MB03a] U. Maulik and S. Bandyopadhyay. Fuzzy partitioning using a real-

coded variable-length genetic algorithm for pixel classification. IEEE.

Transactions on Geoscience and Remote Sensing, 41 (5) : 1075-1081,

2003.

[MB03b] U. Maulik and S. Bandyopadhyay. Fuzzy partitioning using a real-

coded variable-length genetic algorithm for pixel classification. IEEE

Transactions on Geoscience and Remote Sensing, 41 : 1075-108 1, 2003.

[McQ67] J.B. McQueen. Some methods for classification and analysis of multi-

variate observations. In L. M. Le Cam and J . Neyman, editors, Proceed-

ings of the Fifth Berkeley Symposium on Mathematical Statistics and

Probability, volume 1, pages 281-297. University of California Press,

1967.

[MMBOS] U. Maulik, A. Mukhopadhyay, and S. Bandyopadhyay. Combining

pareto-optimal clusters using supervised learning for identifying co-

expressed genes. BMC Bioinfomnatics, 10(27), 2009.

[MMP02] P. Mitra, C. A. Murthy, and S. K. Pal. Density-based multiscale data

condensation. IEEE Transactions on Pattern Analysis and Machine

intelligence, 24(6), June 2002.

S.C. Madeira and A.L. Oliveria. Biclustering algorithms for biological

data analysis: A survey. IEEE, 1(1), 2004.

[NGCOO] H. S. Nagesh, S. Goil, and A. N. Choudhary. A scalable parallel sub-

space clustering algorithm for massive data sets. In Proceedings of

International Conference on Parallel Processing, page 477, 2000.

R. Ng and J. Han. Clarans: A method for clustering objects for spatial

data mining. IEEE Transactions on Knowledge and Data Engineering,

14(5): 1003-1016, 2002.

[PGSOO]

[RRSOO]

P. Pal and B. Chanda. A symmetry based clustering technique for

multi-spectral satellite imagery, 2002.

W. Perrizo. Peano count tree technology. Technical report, NDSU-

CSOR-TR-01-1, North Dakota State University, Fargo, North Dakota,

United States, 2001.

S.K. Pal, A. Ghosh, and B. U. Shankar. Segmentation with remotely

sensed images with fuzzy thresholding and quantitative evaluation. In-

ternational Journal of Remote Sensing, 21 (1 1) :2269-2300, 2000.

Cecilia M. Procopiuc, Michael Jones, Pankaj K. Agarwal, and T. M.

Murali. A monte carlo algorithm for fast projective clustering. In

Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, SIGMOD '02, pages 418-427, New York, NY,

USA, 2002. ACM.

S. Roy and D. K. Bhattacharyya. An approach to find embedded

clusters using density based techniques. In Proceedings of the ICDCIT,

pages 523-535, 2005.

A. Ram, S. Jalal, A. S. Jalal, and M. Kumar. DVBSCAN: A density

variation based spatial clustering of applications with noise. Interna-

tional Journal of Computer Applications, 3(6), 2010.

I. Ruts and P. Rousseeuw. Computing depth contours of bivariate point

clouds. Computational Statistics and Data Analysis, 23:153-168, 1996.

R. Ruiz, J .C. Riquelme, and J .S. Aguilar-Ruiz. Incremental wrapper-

based gene selection from microarray data for cancer classification. Pat-

tern Recognition, 39:23832392, 2006.

S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for min-

ing outliers from large data sets. In Proceedings of the 2000 ACM SIG-

MOD International Conference on Management of Data, pages 427-

438, 2000.

[SAP061 R. Syamala, T. Abidin, and W. Perrizo. Clustering microarray data

based on density and shared nearest neighbor measure. In Computers

and Their Applications, pages 360-365, 2006.

[SBlO] S. Sarmah and D. K. Bhattacharyya. Disclus: A distributed clustering

technique over high resolution satellite data. In Proceedings of ICDCN

2010, 2010.

[SC+98] G. Sheikholeslami, S. Chatterjee, et al. Wavecluster: A multi- resolu-

tion clustering approach for very large spatial database. In Proceedings

of SIGMOD '98, Seattle, 1998.

[SDB08] S. Sarmah, R. Das, and D. K. Bhattacharyya. A distributed algorithm

for intrinsic cluster detection over large spatial data. International

Journal of Computer Science, 3(4) :246-256, 2008.

[SEKX98] Jorg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu.

Density-based clustering in spatial databases: The algorithm GDB-

SCAN and its applications. Data Mining and Knowledge Discovery,

2(2):169-194, 1998.

[SG03] Alexander Strehl and Joydeep Ghosh. Cluster ensembles - a knowledge

reuse framework for combining multiple partitions. Journal of Machine

Learning Research, 3:583-617, 2003.

[SMKS03] R. Sharan, A. Maron-Katz, and R. Shamir. Click and expander: a sys-

tem for clustering and visualizing gene expression data. Bioinformatics,

19(14):1787-1799, 2003.

[SSOO] R. Sharan and R. Shamir. Click: A clustering algorithm with applica-

tions to gene expression analysis. In Proceedings of 8th International

Conference on Intelligent Systems for Molecular Biology, pages 307-

316. AAAI Press, 2000.

[St eOG] D. Stekel. Microarray Bioinformatics. Cambridge University Press,

Cambridge, UK., 2006.

[SZCS03] G. Shu, B. Zeng, Y.P. Chen, and O.H. Smith. Performance assessment

of kernel density clustering for gene expression prole data. Comparative

and Functional Genomics, 4:287299, 2003.

[TBKOS] Luis Tari, Chitta Baral, and Seungchan Kim. Fuzzy c-means clustering

with prior biological knowledge. Journal of Biomedical Informatics,

42(1):74-81, 2009.

[THO91 J.H. Travis and Y. Huang. Clustering of gene expression data based

on shape similarity. EURASIP Journal on Bioinformatics and Systems

Biology,, 2009(195712), 2009.

[THC+99] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church. Sys-

tematic determination of genetic network architecture. Nature Genet,

22:281285, 1999.

[THHK02] S. Tomida, T. Hanai, H. Honda, and T. Kobayashi. Analysis of ex-

pression profile using fuzzy adaptive resonance theory. Bioinformatics,

18(8):1073-83, 2002.

[TMEDF08] V. Torra, S. Miyamoto, Y. Endo, and J. Domingo-Ferrer. On intuition-

istic fuzzy clustering for its application to privacy. In Fuzzy Systems,

2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational In-

telligence). IEEE International Conference on, pages 1042 -1048, 2008.

[TSKOS] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.

Pearson Education, New York, 2009.

[TSS02] Amos Tanay, Roded Sharan, and Ron Shamir. Discovering statistically

significant biclusters in gene expression data. Bioinformatics (Oxford,

England), 18 Suppl 1:s 136S144, 2002.

[TZRZOl] Chun Tang, Li Zhang, Murali Ramanathan, and Aidong Zhang. In-

terrelated two-way clustering: An unsupervised approach for gene ex-

pression data analysis. In Proceedings of the 2nd IEEE International

Symposium on Bioinformatics and Bioengineering, pages 41-48, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[VB09] P. Viswanath and V. Suresh Babu. Rough-dbscan: A fast hybrid den-

sity based clustering method for large data sets. Pattern Recognztzon

Letters, 30:14771488, 2009.

[VTPlO] N. Karthikeyani Visalakshi, K. Thangavel, and R. Parvathi. An intu-

itionistic fuzzy approach to distributed fuzzy clustering. Internatzonal

Journal of Computer Theory and Engzneemng, 2(2) : 1793-8201, 2010.

[WYM97] W. Wang, J. Yang, and R. R. Muntz. Sting: A statistical information

grid approach to spatial data mining. In Proceedzngs of VLDB 97,

pages 186 - 195, Athens, Greece, 1997.

[XEKS98] X. Xu, M. Ester, H.-P. Kriegel, and J . Sander. A nonparametric clus-

ter~ng algorithm for knowledge discovery in large spatial data sets. In

Proceedzngs of IEEE Internatzonal Conference on Data Engzneemng.

IEEE Computer Society Press, 1998.

[XJK99] Xiaowei Xu, Jochen Jager, and Hans-Peter Kriegel. A fast parallel clus-

tering algorithm for large spatial databases. Data Mznzng and Knowl-

edge Dzscovery, 3(3) :263-290, 1999.

[YAL+O6] H.-S. Yoon, S.-Y. Ahn, S.-H. Lee, S.-B. Cho, and J. H. Kim. Het-

erogeneous clustering ensemble method for combining different cluster

results. In Proceedzngs of BzoDM, Lecture Notes zn Computer Sczence,

volume 3916, page 8292, 2006.

[Yam98a] T. Yamazaki. A robust clustering technique for multi-spectral satel-

lite images. In Proceedzngs of the Internatzonal Symposzum on Nozse

Reductzon for Imagzng and Communzcatzon Systems (ISNIC), 1998.

[Yam98 b] T. Yamazaki. A robust clustering technique for multi-spectral satellite

images, 1998.

[YcMFJd03] Z. Yan-chang, S. Mei, X. Fan, and S. Jun-de. Clustering datasets

containing clusters of various densities. Journal of Bezjzng Unzverszty

of Posts and Telecommunzcatzons, 26(2):42-47, 2003

[YHCYlO] T. Yun, T. Hwang, K. Cha, and GS. Yi. CLIC: clustering analysis of

large microarray datasets with individual dimension-based clustering.

Nucleic Acids Research, 38:W246-W253, 2010.

[YJOl] Z. Yanchang and S. Junde. Gdilc: A grid-based density-isoline cluster-

ing algorithm. IEEE, 2001.

[YWWY02] J. Yang, W. Wang, H. Wang, and P. Yu. S-clusters: Capturing subspace

correlation in a large data set. In Proceedings of 18th International

Conference on Data Engineering, pages 517-528, 2002.

[YWWYO3] Jiong Yang, Haixun Wang, Wei Wang, and Philip Yu. Enhanced bi-

clustering on expression data. In Proceedings of the 3rd IEEE Sympo-

sium on BioInformatics and BioEngineering, BIBE '03, pages 321-327,

Washington, DC, USA, 2003. IEEE Computer Society.

[ZCK99] Bo Zhou, David W. Cheung, and Ben Kao. A fast algorithm for density-

based clustering in large database. In Proceedings of the Third Pacific-

Asia Conference on Knowledge Discovery and Data Mining, pages 338-

349. Springer-Verlag., 1999.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data

clustering method for very large databases. In Proceedings of ACM-

SIGMOD International Conference Management of Data, pages 103-

114, Montreal, Canada, 1996.

[ZZ05] L. Zhao and M.J. Zaki. tricluster: An effective algorithm for mining

coherent clusters in 3d microarray data. In In Proc. of the 2005 ACM

SIGMOD international conference on Management of data, pages 694-

705. ACM Press, 2005.

List of Publications

1. Communicated Papers:

(a) Sauravjyoti Sarmah, Rosy Das and D.K. Bhattacharyya, A n Effective

Density-based Hierarchical Clustering Technique to identify Coherent Pat-

terns from Gene Expression Data, Communicated to the 15th Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD) , 201 1.

(b) Sauravj yoti Sarmah and D .K. Bhattacharyya, A Grid-density based Tech-

nique for Clustering Satellite Image, Communicated to the Journal of

Pattern Recognition Letters, 2010.

2. Journal Papers:

(a) Sauravjyoti Sarmah and D.K. Bhattacharyya, A n Effective Technique for

Clustering Incremental Gene Expression data, International Journal of

Computer Science Issues (IJCSI), Vol. 7, Issue 3, No 3, pp. 31-41, May

2010.

(b) Sauravjyoti Sarmah, R. Das and D.K. Bhattacharyya, A Distributed Al-

gorithm for Intrinsic Cluster Detection over Large Spatial Data, Inter-

national Journal of Electrical and Computer Engineering, vol 3(4), Fall

2008, pp. 246-256.

3. Conference Papers:

(a) Sauravj yoti Sarmah and D.K. Bhattacharyya, DisClus: A Distributed

Clustering Technique over High Resolution Satellite Data, 11th Interna-

tional Conference on Distributed Computing and Networking, Published

as a book chapter in the Distributed Computing and Networking, LNCS

5935, ISSN 0302-9743, pp 353-364, 2010, Springer-Verlag, Kolkata, India.

(b) Rory Lewis, J.K. Kalita, Sauravjyoti Sarmah and D.K. Bhattacharyya,

Music Industry Scalar Analysis Using Unsupervised Fourier Feature Se-

lection, 17th International Conference on Intelligent Information Systems,

pp. 485-494, IIS 2009, Poland. 0
(c) Sauravjyoti Sarmah, R. Das and D.K. Bhattacharyya, DGDCT: A Dis-

tributed Grid-Density based Algorithm for Intrinsic Cluster Detection over

Massive Spatial Data, International Conference on Distributed Computing

and Networking (ICDCN 2008), Published as a book chapter in the Dis-

tributed Computing and Networking, LNCS ISSN 0302-9743, pp 239-250,

Kolkata, India.

(d) Sauravjyoti Sarmah and D.K. Bhattacharyya, Grid-based Clustering Tech-

nique for Satellite Image Application, in the Proceedings of INCA2008,

Ahmedabad, India.

(e) Sauravjyoti Sarmah, R. Das and D.K. Bhattacharyya, Intrinsic Cluster

Detection Using Adaptive Grids, The Fifteenth International Conference

On Advanced Computing & Communications (ADCOM 2007), pp. 371-

376, 2007, Guwahati, India.

(f) Sauravjyoti Sarmah and D.K. Bhattacharyya, A Faster Clustering Tech-

nique for Intrinsic Cluster Detection over Spatial Datasets, National Con-

ference on Trends in Advanced Computing (NCTAC 2007), pp 147-154,

Tezpur, India.

(g) Sauravjyoti Sarmah, R. Das and D.K. Bhattacharyya, A Distributed CZUS-

tering Technique for Intrinsic Cluster Detection, The Fourteenth Interna-

tional Conference On Advanced Computing & Communications (ADCOM

2006), pp 117-122, Mangalore, India.

