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ABSTRACT
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In the changing scenario of wireless communication, where the
demands are more on miniaturization and high data rate, microstrip
antenna has become a major research topic. A microstrip antenna is a
metallic patch on a dielectric magnetic slab mounted on a ground plane.
Depending on the shape of the radiating metallic patch, they are classified
as rectangular microstrip antenna, triangular microstrip antenna and
circular microstrip antenna etc. There can be of any irregular structure
also. They have many advantages like low cost, low profile, light weight
and ease of fabrication etc. However, they have some shortcomings too.
Major of which is their narrow bandwidth. Hence, the physical dimensions
have to be accurately predicted. For impedance matching, the feed
position has to be properly chosen. The spacing between antennas in
antenna arrays has to be optimized. Therefore, there is a growing demand
on use of Computer Aided Design(CAD) tools for antenna design. Current
trend of RF design gives much emphasis on efficient CAD design of RF
circuit, where antenna is an on board element. Most of the available
simulation packages are based on solution of Maxwell's equation in order

to characterize the RF circuit. The next generation CAD designs tool focus
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on faster prediction of simulation resuits, which is generally not possible
by field solution based packages. All these limitations have forced for
development of an efficient optimizing soft computing tool for accurate and

efficient miniaturized antenna design.

Soft computing techniques namely Genetic Algorithm(GA) and
Artificial Neural Networks(ANN), have gained great importance in the field
of electromagnetics. Genetic Algorithm is based on natural selection, i.e.
on Darwinian principle of survival of the fittest. This is a stochastic, global
and parallel in nature. On the other hand, Artificial Neural Networks is
based on mimic of human brain. The most commonly used neural network
algorithm is error back-propagation. This is a local search technique which
uses gradient information of the error surface. Therefore, it's an attempt in
this thesis to combine Genetic Algorithm with Artificial Neural Networks to
get faster and highly accurate soft computing tools for antenna design. A
GA can not be applied to problems where there is no proper fitness
function to evaluate and select the individuals for next generation.
Therefore, a trained ANN has been used as a fitness function of GA to
overcome such problem in this thesis. While training ANN by GA, “the
multiple representation problem” makes the algorithm slow when the
chromosomal representation exceeds 300 bits. Keeping such problem in
mind in this thesis, attempt has been made to train ANN by GA in different

ways such as training ANN by the weights initialized by GA and by
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choosing different steepness of activation for different weights. It takes
much man-time while selecting ANN parameters for training an ANN. A

GA has been used to optimize those ANN parameters.

The Finite-Difference Time-Domain(FDTD) method, first applied
by Yee in 1966, is a simple and elegant way to discretise the differential
form of Maxwell's equations. Yee used an electric-field(E) grid, which was
offset both spatially and temporally from a magnetic-field(H) grid to obtain
update equations that vyield the present fields throughout the
computational domain in terms of the past fields. The update equations
are used in a leap-frog scheme. Due to its Leap-Frog architecture, FDTD
is inherently slow. Therefore, an attempt has been made to incorporate a
temporal neural network for time series prediction of voltage and current of
FDTD to improve the time efficiency and accuracy of FDTD technique. To
further improve the scheme, GA is used to select the temporal neural

networks parameters thus the GA-ANN-FDTD.
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CHAPTER1

REVIEW OF MICROSTRIP PATCH
ANTENNA AND SOFT
COMPUTING TECHNIQUES



Chapter 1 Review of Microstrip Patch Antenna and Soft Computing Techniques

1.1 Introduction

Microstrip antennas proposed by Deschamp in the year 1953[1],
have gained a great attention in last few decades. Due to Its
advantages like, low profile, low cost, ease of construction, conformal
geometry and flexibility in terms of radiation pattern, gain and
polarization etc. Microstrip patch antennas are also used in most of the
modern  handsets, personal digital devices and laptop
computers[2,3,4]. It is a potential radiator for miniaturized portable or
hand-held devices. Many methods have been developed for analysis of
microstrip antenna[4,5]. They fall in to two broad categories:
approximate methods and full wave methods. The approximate method
include the transmission line model and cavity model. The full wave
methods that can be used to model microstrip patch antennas are the
method of moments (MoM), the finite element method(FEM) and the

finite-difference time-domain(FDTD)method.

1.1.1 Transmission Line Model

Microstrip antennas have a physical structure derived from
microstrip transmission lines [6-9]. Therefore, a transmission-line
model is one of the most obvious choices for the analysis and the

design of microstrip antennas.

’..
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Chapter 1 Review of Microstrip Patch Antenna and Soft Computing Techniques

The transmission line model representation of the microstrip
antenna is shown in figure 1.1. The microstrip patch antenna is
represented by two slots, separated by a transmission line of length ‘L’
and open circuited at both the ends. Along the width of the patch, the
current is minimum and voltage appears maximum due to the open
ends. The fields at the edges can be resolved into normal and
tangential components with respect to the ground plane. The fields
vary along the non-radiating edge of the patch, which is approximately
half a wave length, and remain constant across the width. Variation of
fields along the length depends on the propagation constant of the line.
Radiation occurs mainly due to the fringing fields at the open ends.

However, this model is often regarded as over simplified and
somewhat outdated[10]. This is true for the original, simple
transmission-line  model; but the accuracy of the improved
transmission-line model is comparable to those of other more

complicated methods[11].

Strip Conductor Dielectric
Substrate

Ground Plane

Fig. 1.1(a) Microstrip Line Fig. 1.1(b) Electric Field Line

Department of Computer Science and Engineering, Tezpur University
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Chapter 1 Review of Microstrip Patch Antenna and Soft Computing Techniques

Improved transmission-line models include substrate and conductor
losses, aperture coupling, reactive effects, and the mutual coupling
between the radiating apertures. The concept of the transmission-line
model can be applied to any microstrip antenna configuration for which
separation of variables is possible. Surface waves are not taken into
account in the transmission-line model, which limits its use to thick and

low substrate permittivity[12].

Radiating Slots
/ N\
L
i, . Patch
—» —> < L // >
N e g \
= s BRI
> A\ _
AL Patch Ground Plane
ad

Ground Plane

Fig. 1.2 Top and Side View of Rectangular Microstrip Antenna

1.1.2 Cavity Model

Transmission line model is useful for patches of rectangular
design and it ignores field variations along the radiating edges. These

disadvantages can be overcome by using the cavity model [13-21]. The

e —
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Chapter 1 Review of Microstrip Patch Antenna and Soft Computing Techniques
e ——
microstrip patch antennas being narrow-band resonant antennas can
be treated as lossy cavity. Therefore, cavity model becomes a natural
choice to analyze the patch antennas. This model is suitable for regular
geometries for which the Helhmoltz equation possesses an analytical

solution, such as disks, rings, rectangles, triangles, and ellipses.

Fig. 1.3 Charge Distributions and Current Density

on a Microstrip Antenna

When the microstrip patch is provided with power, the charge
distribution occurs on the upper and lower surfaces of the patch and on
the ground plane. This charge distribution is controlled by two
mechanisms namely attractive mechanism and a repulsive
mechanism[22]. The attractive mechanism is between the opposite
charges on the bottom side of the patch and the ground plane, which
helps in keeping the charge concentration intact at the bottom of the
patch. Whereas, the repulsive mechanism occurs between the like
charges on the bottom surface of the patch, which causes pushing out

of some charges from the bottom, to the top of the patch. As a result of

e e e e  ——
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this charge movement, currents flow at the top and bottom surface of
the patch.

The cavity model assumes that the height to width ratio (i.e. height of
substrate and width of the patch) is very small and as a result of this
the attractive mechanism dominates and causes most of the charge
concentration and the current to be below the patch surface. Much less
current flows on the top surface of the patch. As the height to width
ratio further decreases, the current on the top surface of the patch
becomes negligible. This does not allow the creation of any tangential
magnetic field components to the patch edges. Hence, the four side
walls are modeled as perfectly magnetic conducting surfaces. This
implies that the magnetic fields and the electric field distribution
beneath the patch are not disturbed. However, in practice, a finite width
to height ratio exists and this does not make the tangential magnetic
fields to be completely zero, but they being very small, the side walls
can be approximated to be perfectly magnetic conducting.

This model has limitation due to its applicability only in low frequencies
or electrically thin substrates; this is because the formulation inherently
does not account for losses due to radiation and surface waves

rigorously.

1.1.3 Full Wave Method — Moment Method

The most popular method, that provides the full wave analysis

for the microstrip patch antenna, is the moment method[23]. In

—————————————————— ——————————]
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mathematical literature, Moment Method is known as Weighted
residuals and can be applied to the solution of both differential and
integral equations. The method owes its name to the process of taking
moments by multiplying the function with an appropriate weighting
function and integrating. On microstrip antenna analysis with this
method, the surface currents are used to model the microstrip patch
and the volume polarizatioh currents are used to model the fields in the
dielectric slab. It has been shown by Newman and Tulyathan[23] how
an integral equation is obtained for these unknown currents and using
the method of moments, these electric field integral equations are
converted into matrix equations which can then be solved by various
techniques of algebra to provide the result. In electromagnetic theory,
the method became popular after the pioneering work done by
R.F.Harrington in 1967. Since than it has been one of the most popular

methods for solving the electromagnetic boundary value problem.

1.1.4 Finite Element Method (FEM) of Analysis

The basic concept of Finite Element Method (FEM) [24] lies in
the fact that although the behavior of a function may be complex when
viewed over a larger region, a simple approximation may suffice for a
small sub region. The total region is divided into a number of non-
overlapping sub-regions called finite elements. In two dimensions

usually polygons like triangles or squares or combinations of triangles
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and squares are used for approximating the total surface. Regardless
of the shape of the elements, the field is approximated by a different
expression over each element, but where the edges of adjoining
elements overlap, the field representation must agree to maintain
continuity of the field. The equations to be solved are usually stated in
terms not of the field variables but in terms of an integral type function
such as energy. The function is chosen such that the field solution

makes the functional stationary.

Finite element method is employed in many software packages for
design and evaluation of microwave circuit performance. Its precision
depends on developing proper meshing for the structure under
consideration. So it is important to develop a tool that can provide a

good mesh.

1.1.5 Finite-Difference Time-Domain (FDTD) Method

The FDTD method of analysis of an electromagnetic problem is
a volumetric computational method. The FDTD technique is a
numerical method for the solution of electromagnetic field problems
with large numerical but a low analytical expenses. Despite the large
numerical expenses, it is believed to be one of the most efficient
techniques, because it stores only the field distribution at one moment
in memory instead of working with a very large equation system matrix.

The field solution for each time instant is then determined from

]
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Maxwell’s equations and is calculated using a time stepping procedure
based on the finite difference formulation of Maxwell’'s equations in
space and time[25-28]. In this method, Maxwell's equations are
discretized in space and time over a finite volume, and the derivatives
are approximated by finite differences. By appropriately selecting the
points at which the various field components are to be evaluated, the
resulting set of finite-difference equations can then be solved, and a
solution that satisfies the boundary conditions can be obtained[29]. The
method can efficiently be implemented on vector or on parallel
computers. Sufficiently accurate results can be obtained by using a
single precision floating point expression requiring only four bytes.
FDTD method has been used for microstrip antenna analysis. Details
of implementation reported by various authors differ in respect of
excitation treatment, boundary conditions and post processing of
results to obtain frequency parameters of interest[25-30}. The EM field
in the space, which has to be analyzed, can be excited in different
ways. A transient analysis, where pulse in space and time, e.g., in the
form of a Gaussian pulse, is excited inside the circuit or component, is

mostly used for the analysis of the microstrip antenna.

1.2 Motivation

In the era of 3G and upcoming 4G and 5G wireless applications,

the demands are for miniaturized, high directional, high gain and

R ———— ——— e —
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flexible conformal microstrip patch antenna. The microstrip antenna
analysis performed by traditional methods are either less accurate or,
computationally expensive. Therefore, design of microstrip antenna by
such field analysis techniques is a difficult task for the researcher or
engineers. At the same time, the bio-inspired soft-computing
techniques like, Genetic  Algorithm(GA), Particle swarm
Optimization(PSO) and Artificial Neural Networks(ANN) etc. have
received much interest in all areas of research[31-39]. Their extensive
application to electromagnetic problem is yet to be achieved. The body
centric communication demands for antennas with size reduction and
with high efficiency. To design such antennas there is a tremendous
demand on development of accurate computational tools. Looking into
the needs of antenna and development of computationally efficient tool,

the thesis is planned to address these issues.

1.3 Dissertation Overview

This dissertation consists of seven chapters. The first chapter is
an introduction. It describes an overall outline of the thesis. Firstly it
describes Microstrip Antenna and various analytical methods used for
analysis. Then it explains about Genetic Algorithm and Artificial Neural
Networks. A brief introduction to the combination of Genetic Algorithm
and Artificial Neural Networks and its problem is also outlined. Further,

a brief introduction to Finite Difference Time Domain technique for

e R i _—
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microstrip antenna analysis, is presented to build the background of the

thesis. The objectives and methodologies are also presented.

Chapter two includes literature review of Genetic Algorithm and
Artificial Neural Networks. It gives basic concept of Genetic Algorithm
and Continuous Genetic Algorithm. It also describes different types of
crossover. Advantages and care to be taken while implementing GA. It
also outlines artificial neural networks and algorithms more specifically

error back propagation.

Chapter three describes application of Genetic Algorithm on
Microstrip Antenna designing as proposed by the candidate{40]. This
chapter presents how the accuracy of the designing of Microstrip
antenna can be improved using GA. The developed algorithm is used
for designing rectangular, circular and triangular Microstrip antenna.
The results found are validated by IE3D software of the Zealand Inc.,
USA and with the experimental results. The outcomes have been

published for the benefit of the research community.

Chapter four starts with an introduction to Artificial Neural
Networks. A tunnel-based Artificial Neural Networks is proposed to
overcome the local minima. This is used to find out the radiation
pattern of rectangular Microstrip antenna [41]. Proper selection of

fitness function of genetic Algorithm is one of the major limitations of
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GA. Hence, ANN is efficiently used to overcome such problems. A
trained ANN is used as fitness function of GA which has been applied

to design Microstrip antenna[42].

Chapter five shows how GA can be combined with ANN for
weight optimization. Firstly Genetic Algorithm is used to fix the initial
weight set of ANN and result is analyzed[43]. It is seen that 45% of
computational time has been reduced with better accuracy. Then
continuous/real valued crossover is replaced by introducing
knowledge-based continuous Genetic Algorithm for training Artificial
Neural Networks efficiently. The proposed technique is used to design
Microstrip antenna[44]. Taking different steepness of activation for
different neuron the problem of competing convention is taken care of
while training Artificial Neural Networks using Genetic Algorithm. Here
higher accuracy is achieved with 34% of computational time reduction.
This technique is used to calculate resonant frequency of rectangular
Microstrip antenna on thick substrate[45). Finally, various parameters
of Artificial Neural Networks are optimized by Genetic Algorithm. In this
method, the man-time required to select the ANN parameters has been
reduced considerably. Further, accuracy is improved by 30%. The
proposed algorithm is applied to calculate resonant frequency of

tunable single shorting post rectangular patch antenna[46].
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Finite Difference Time Domain Technique and its use in analysis
of microstrip antenna is described in chapter six. The presently used
FDTD algorithm takes long computational time for simulation of high Q
passive structure. In this thesis, the temporal neural networks is
introduced which is then applied with FDTD technique, and is named
as NFDTDI[42). Further to improve the time efficiency and accuracy
using the approach of soft fusion, GA coupled ANN is incorporated with
FDTD to develop GA-ANN-FDTD. The proposed technique is applied

for the calculation of input impedance of rectangular patch antenna[47).

The conclusion and future scopes are presented in chapter

seven.

1.4 Need for GA and ANN

Genetic Algorithm is a globa! search technique[31-33]. It is
parallel in nature, i.e., the search is population to population but not
point to point. It operates on encoded parameter instead of the
parameters itself. Thus, non-differentiable functions as well as
functions with multiple local optima represent classes of problems to
which genetic algorithms can be applied[48,49]. On the other hand,
Artificial Neural Networks is a mathematical model that learns from
experience(training) and applies its knowledge for new unknown

situations[50-52]. In the field of electromagnetics, there are various

 —— ——————————
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problems, where it is required to optimize many parameters
simultaneously. These problems are efficiently handled by using
Genetic Algorithm. There are cases such as body centric devices, hand
held devices etc., where it is very difficult to define the problem

mathematically. In such cases, we take help of bio-inspired computing.

1.5 Connection Weight Determination

GAs are used to find a set of connection weights. The fitness of
the network is determined solely by minimizing error. However,
sometimes GA is used to select a suitable initial set of weights, that is,
a set of weights which leads to a successful ANN after training with
some standard training routines. In this case, the training time plays an

important role[43-45,53].

1.6 Network Architecture Design

The network architecture is of great importance for the success
of an ANN. For some problems, a big network is unavoidable, while for
others smaller networks are more suitable. The space of all possible
networks is infinite, and as yet there is little or no theory about what
architecture works well for what problem. This makes GAs a viable tool

to search for a better ANN solution.

= ——————————————— ]
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1.7 Problems in Training of ANN by Means of GA

When the length of the chromosome is small, the ANN with GA
approach works well. When the length of chromosome increases, a
problem arises which is called, The Problem of Competing

Conventions, or, permutation problem[53-55,56]. They are of two

types:

Hidden Node Redundancy: A neuron sums the weighted inputs and
applies an odd activation function to the sum to produce the output
values. The output of the total network doesn’t change if the signs of all
the incoming and outgoing weights are fliped. Since for every node in
the ANN there are two possibilities, for the ANN as a whole, if there are

n hidden nodes, there are 2" different combinations.

(Two different but functionally equivalent neurons)

+2 -2
PN . » )
Inputs Inputs
+2 -2
Bias Bias

Fig. 1.4 Hidden Node Redundancy (In case of an Odd Function)
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Hidden Layer Redundancy: If a hidden neuron, with all its incoming
and outgoing connections, is exchanged with another neuron with all its
incoming and outgoing connections, we have a different structural
representation of ANN, but functionally the ANN remains exactly the
same. In a network with n hidden neurons, there are n! different

combinations of these hidden nodes.

(Two different but functionally equivalent neurons)

+2
2 1
N N
+3 -1 *+2 O—'
/'
+1 -2
-1 +3

Figure. 1.5 Hidden Layer Redundancy

Since these two transformations are independent of each other,
for a network with n hidden nodes, there are 2" n! functionally
equivalent but structurally different representations, if the activation

function is odd, and otherwise n! different representations.
1.8  Competing Convention as a Big Problem

First, its existence dramatically increases the size of the solution

space. That means, it takes a lot more time to converge to an

]
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acceptable solution. Secondly, it almost completely destroys the
usefulness of the crossover operator which is the most important

operator in GA.

For instance, suppose that each character in the string codes one
hidden node, and the string “abcdef” codes the fittest possible ANN. In
the population are the strings “abcdeg” and “hbcdef”. If we cross these
two strings, we might get the desired ANN. However, the second string
may reside in the population as, for example, “fedcbh”. Crossing may
now leave us with something like the strings “abccbh” and “feddeg”,

which may not fit at all.

1.9 Handling the Problem of Competing Convention

It may be noted that some researches ignore the problem of
competing conventions, and simply use the crossover operator.
Ultimately, the performance reduces. However, there are some ways to

overcome this problem[53] which are listed below.

i. Genetic Hill-climbing: To deal with hidden layer

redundancy, many researchers have just left the crossover
operator, and evolve ANNs with reproduction and mutation only.
The GA process then becomes a kind of random. This is

sometimes called Genetic Hill-climbing.

-
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ii. Another simple way of dealing with the problem of hidden
layer redundancy is using small populations. How ever, crossover
is of no use any more, and the process is evolved with big

mutation rate, strengthening the hill-climbing features.

iii. Restrictive Mating: Some literatures only use the

crossover operator if the parents are not too different. This is

sometimes called Restrictive Mating.

iv. Rearranging the Hidden Nodes in the Parent Individuals:

It can also be handied by rearranging the hidden nodes in the
parent individuals to ptace functionally equivalent hidden nodes in

the same positions on both parent chromosomes.

Rearranging the hidden nodes seems to be the most effective.
Since, it leaves all the aspects of GAs intact and is relatively easy to
analyze and understand. The reason it is not always used is that it
depends on the theory behind the determination of equivalent nodes of
ANNs, how difficult the method is to implement and how much time it
will cost. Most methods are very time consuming and difficult to
implement. Montana and Davis[57] have also designed two techniques
independently giving good results for small networks. But, they have

also ignored the problem of compete conventions.

]
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1.10 Finite Difference Time Domain Technique

In this section Yee’'s FDTD scheme[25-30] in brief is discussed

to implement for patch antenna. The FDTD update scheme is based on

two spatial and temporal dependent equations. In a linear, isotropic,

non-dispersive dielectrics, and non magnetic medium the time

depended Maxwell’s equations are

OF _lyp
o ¢

OH _ 142
ot Y7,

where,

E - Electric field intensity
H- Magnetic field intensity
&- Permittivity of the medium

p-Permeability of the medium

(1.1)

(1.2)

Under Cartesian coordinate system, these can be further expanded as:

o, __1(o8, 2,

X ——

ot ul oy oz
OH, 1(0E, BE,

ot H\ Oz Ox

oH, 1(0E, oE,

X

_6t—yax6y

O, _l(aHz _aH,J

o0 el oy oz
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(1.3)
The 2™ order accurate central difference scheme as proposed by Yee

is given by[29,30]

n+1/2 _  n-1/2

Ou . . U ik ijk
—(iAx, jAy, kAz, nAf) = 12502 1.4
at(l JjAy nAt) = (1.4)

Simplifying these equations by central difference scheme one will get,

E™(i, j k)= El(i, k) +

£

AtfHM G j+ LK) = HI G, j k) H GGk + D) = HM G ) k)
Ay Az

E(i,j, k)= E, (i, j,k)+

_A_tl:H:+I/2(i’jak+1)—H:+”2(i’jsk) _ H:+”2(i+1,j,k)—H:+”2(i,j,k)]

£ Az Ax

E™ (i, j, k)= E7(i, j, k) +

At H;+llz(i+1,j,k)—H;+l/2(i,j,k)_ H:+1/2(i’j+1,k)_H:+|/2(i’j,k)
& Ax Ay

H G, g, k) = H G . k) -

ﬂ E:(l,],k)—E:(l,]_l,k) _ E;(laj’k)—E;(l’j:k_l)
Y7, Ay Az

nell2 e o n-1/27- -
Hyl (laj9k)=Hyl (I’J’k)_
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ﬂ E:(lsj’k)_Ez"(l’j’k_l) _ E:(l,j,k)—E:(l—l,_],k)
7] Az Ax

H:HIZ (l, j, k) = Hzn—l/2 (l, j, k)—

Q{Eﬁ(i,j,k)—l?;(i—l,j,k)_E,"(i, J-E'G, j—l,k)} (15)

y7 Ax Ay

The numerical algorithm for Maxwell’'s curl equations as defined
by above equations requires that the time increment A¢have a specific
bound relative to the spatial discretization Ax, Ayand Az[25). For a
linear, isotropic, non-dispersive and homogeneous dielectric with
permittivity (¢)and permeability(y) the time increment has to obey the
following bound, known as Courant-Freidrichs-Lewy (CFL) Stability

Criterion and is expressed as

At< (1.6)

el L b 1
sz Ay2 AZZ

The structure and surrounding space are decomposed in

parallelepipeds called elementary cells. The six components of the
electromagnetic field are determined in each cell as shown in figure

1.6.
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Ey
Z 4 Ex t
H, 7 Ex
(i,k+1) "
wEZ

A=

Ez { Hy / Hy

4 - (i-1,j+1,k)
E | H

—1—>E

k) | 4 , Ai+109

/ E, Y
X Fig. 1.6 Field Calculation Points in a Typical Yee Cell

Due to finite capability of the computer used to implement the
finite-difference equations, the mesh must be limited in the x, y and z
directions. The difference equations cannot be used to evaluate the
field components tangential to the outer boundaries since they would
require the values of the field components outside of the mesh. One of
the six mesh boundaries is a ground plane and its tangential fields are
forced to be zero. Tangential electric field components on the other five
walls must be specified in such a way that outgoing fields are not
reflected using the absorbing boundary condition[58-62]. For the

structures considered in this work, the pulses on the microstrip lines
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will be normally incident to the mesh walls. Mur first order boundary
condition[56] is applied at the boundary walls.

A raised cosine pulse is used at the feed point. At the feed gap the
source is associated with an internal resistance[63] as shown in figure

1.7.

Fig. 1.7 FDTD Source with Source Resistance Rs

The current through the source is then given by

L7 = (H7 " o =L k) = H 2 G, o)A
(H; Gy, Jook) = H G =1, k) Ay (1.7)

The field at the source is given by

El(iy jo k) =V, (nAD/AZ +177"*R | Az (1.8)

The current at the feed point is calculated by integrating the magnetic

field around the feed location. Which is given by
I=(Hadl (1.9)
and voltage at the feed location is given by

=-jE.d1 (1.10)
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Finally the current and voltage are transformed to the Fourier domain.

The input impedance of the antennas is obtained from

z XD _p (1.11)
1(f)

The implementation of FDTD algorithm is as shown in figure 1.8.

A
Initialize all E and H field components to zero

Excite with a Gaussian/CW Pulse

Compute new E field component values at interior.
. Compute new E field component values at
boundary using boundary condition

l

" Compute new H field component values

Increment time loop  n=n+1

Maximum
time step
reached

No

Fig. 1.8 Basic FDTD Algorithm
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Chapter 2 Brief of Genetic Algorithm and Artificial Neural Networks

2.1 Introduction

Optimization is the minimization or maximization of a
function. le adjusting the variables of the function such that the function
gives its minimum or maximum result{1]. Root finding is search for
zeros of a function whereas, an optimization is search for zeros of the
derivative of the function. Finding derivative is not always easy. This
becomes more difficult when the function is highly nonlinear and
discontinuous. There we need use of optimization techniques like
Genetic Algorithm. Genetic Algorithm is based on natural selection
procedure, ie survival of the fittest or Darwinian principle. This is under
the class of Evolutionary Computing. In recent times, a large number of
biologically motivated algorithms have been invented and have been
applied for different complex problems. These are known as Bio-
inspired Soft-computing. Some of these techniques are Particle Swarm
Optimization(PS0)[2,3], Ant Colony Optimization(ACO)[4,5], Bacterial
Foraging Optimization(BFO)[6], Bio-geography Based Optimization

(BBO)[7] and Artificial Neural Networks(ANN)[8] etc.
2.2 Simple Genetic Algorithm

A Genetic Algorithm is a global search technique based on
Darwinian principle, i.e., survival of the fittest[1,9-12]. It performs

following six basic tasks:-

Department of Computer Science and Engineering, Tezpur University 35



Chapter 2 Brief of Genetic Algorithm and Artificial Neural Networks

a) Encode the solution parameters as genes,
Example: We adopt the test function f(x,y)=x*+y? to illustrate
the encoding operation. The test function would be maximized.
Suppose the range of x is [5-8] and that of y is [2-4]. Let us first
consider the first variable x. If the precession requirement is up
to two decimal points, we have (4-2)x10° values within the
range. To represent any value within this range, we require nine
binary bits. The mapping is such that nine zeros represent the
lower bound and nine ones represent the upper bound of the
variable. Suppose, the randomly generates string of binary bits
is[01001101 1) Its decimal equivalent is 155 which

represents 2.6067 after mapping to its real value.

b) Create a string of genes to form a chromosome,
Considering the same example, we can create a string of binary
bits for the second variable in same manner. Suppose, the string
of binary bitsis [1 0001010 1]. A chromosome is formed by
concatenating strings of all variables. Therefore, the first
individual or a chromosome becomes [0 1001101110001

0 1 0 1] where, the length of chromosome is eighteen.

¢) Initialize a starting population,
If the population size is set to popsize, we can get a population

of solution by repeating previous steps popsize times.

e ——
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d) Evaluate and assign fitness values to individuals in the
population,
The fitness value is calculated by putting the real values of the
variables in the cost function for all the individuals or
chromosomes in the population. For a population of five
individuals [ps, p2, p3. P4 Pps] the fitness value for above

example is as given below

Population

Chromosomes Real Values Fitness
Value

x Y f(x,y)

[010011011 100010101] 2.6067 6.6262 50.7015
[011000001 110111000] 2.7554 7.5832 65.0966
[001001101 101100101] 2.3014 7.0959 55.6480
[001100011 101011101] 2.3875 7.0489 55.3874
[110110101 100101111] 3.7104 6.7789 59.7199

e) Perform reproduction through the fitness-weighted selection of
individuals from the population,
In this step, the individuals of the population are first rearranged
according to their fitness value in ascending order. Then the
fitness values are ranked between zero to one by calculating the
cumulative factor so that, the individual having highest fitness
value is assigned to one. After ranking, the individuals are
selected by one of the procedures such as population
decimation, tournament selection and proportionate selection.
The detail of those selection procedures are narrated in the
subsequent sections. The ranking of fitness value of the

population in above example is given as:

=

Department of Computer Science and Engineering, Tezpur University 37



Chapter 2 Brief of Genetic Algorithm and Artificial Neural Networks

A\

Individuals having Cumulative Factor Ranked Fitness
increasing fitness (f) Value ( v
value >/
p+=50.7015 50.7015 0.1933
p+~=55.3874 106.0888 0.3702
p3=55.6480 161.7368 0.5644
ps=59.7199 226.8334 0.7916
p2=65.0966 286.5533 1.0000

f) Perform crossover and mutation to produce members of new
generation. The details crossover and mutation are described in
subsequent sections.

The flow-chart is as shown in figure. 2.1.

Generate initial population G(0) at random, i=0

Determine fitness of every individual in population G(i)

Select parents from G(i), based on their fitness, and a
genetic operator.

1

Apply genetic operator on selected parents to create
one or more individuals for G(i+1)

No

G(i+1) is filled up?
Yes

i=i+1

Termination criteria satisfied?

v Yes

Find the fittest individual in G(i), And Quit

Fig. 2.1 Flow Chart of Genetic Algorithm
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The pseudo code of a genetic algorithm program is depicted as below.

Simple Genetic Algorithm ()

{
Initialize the Population;
Calculate Fitness function;
While (Fitness Value I= Optimal Value)
{
Selection;
Crossover;
Mutation;
Calculate fitness Function;
}
}

2.2.1 Chromosomes and Parameter Coding

Genetic algorithm is a function optimizer. It gives the
solutions of the derivative of the function. One important feature of GA
is that it operates on encoded parameter instead of the parameters
itself. The parameters are represented or encoded as genes. They can
be binary or real value representation. Typically, a binary coding is
used. The bits, O's and 1's are called as genes. By concatenating
genes of all the parameters, forms a chromosome. GA doesn’t search
single solution point at a time; rather it searches a population of

solution.
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e S ——

2.2.2 Selection Procedure

A number of selection strategies have been developed and
have been utilized for genetic algorithm optimization[9-14]. These
strategies are generally classified as either stochastic or deterministic.
Usually, selection results in the choice of parents for participation in the
reproduction system. Some widely used selection strategies are

discussed below.

i.Population Decimation[10]:

The simplest of the deterministic strategies is population
decimation in which, individuals are ranked from largest to smallest,
according to their fitness values. An arbitrary minimum fitness is
chosen as a cut off point, and any individual with a lower fitness than
the minimum is removed from the population. The remaining
individuals are then used to generate the new generation through
random pairing. The pairing and application of GA operators are

repeated until the new generation is filled.

The advantage of population-decimation selection lies in its
simplicity. Its disadvantage is that once an individual has been
removed from the population, any unique characteristic of the

population possessed by that individual is lost.

Department of Computer Science and Engineering, Tezpur University 40



Chapter 2 Brief of Genetic Algorithm and Artificial Neural Networks

if. Proportic;nate Selection:

The most popular of the stochastic-selection strategies is
proportionate selection, sometimes called roulette-selection. In
proportionate selection, individuals are selected based on their

probability of selection given by

P,~=ﬁ 2.1)

where f, is the fitness of the " parent. And, Z f; is the sum of the
population's fitness.

1
Fig. 2.2 Rowlette Wheel Selection

The probability of selecting an individual from a population is
purely a function of the relative fitness of the individual. Individuals with
high fitness will participate in the creation of the next generation more
often than less-fit individuals. The distinction between population
decimation and proportionate selecltion is that in proportionate
selection, there is still a finite probability that highly unfit individuals will
participate in at least some of the matings, thereby preserving their

genetic information.
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iii, Tournament Selection[10]:

A second popular strategy is tournament selection. In this
selection, a sub-population of N individuals is chosen at random from
the population. The individuals of this sub-population compete on the
basis of their fitness. The individual in the sub-population with the
highest fitness wins the tournament, and becomes the selected
individual. All of the sub-population members are then placed back into
the general population, and the process is repeated until the new
population is full. The most commonly used form of tournament

selection is binary tournament selection, in which N equals two.

Both tournament selection and proportionate selection use
selection with replacement, so that individuals may, and usually do,
participate in multiple pairings. Tournament selection also has a some
what faster execution time. The time complexity of proportionate

selection is O(n?), while tournament selection has O(n) time complexity.
2.2.3 GA Operators

Once a pair of individuals has been selected as parents, a
pair of children is created by recombining and mutating the
chromosomes of the parents, utilizing the basic genetic-algorithm
operators, cross over and mutation. Crossover and mutation are

applied with probability pcross and pmutation, respectively.
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2.2.3.1 Crossover

The crossover is applied to selected mating pool with a hope
that they will produce better offspring[13]. It accepts two parents and
generates two children having mixed genetic information of two
parents. Many variations of crossover have been developed. Different
types of crossovers are a) One-point crossover, b) Two-point
crossover, ¢) N-point crossover and d) Uniform crossover{14]. The

simplest of these is single-point crossover.

One-point crossover: In single-point crossover, if p>Peross, @ random
location in the parent's chromosomes is selected. The portion of the
chromosome preceding the selected point is copied from parent A to
child A, and from parent B to child B. The portion of the chromosome of
parent A following the ranciomly selected point is placed in the
corresponding positions in child B and vice versa for the remaining
portion of parent B’s chromosome. If p<pcoss, the entire chromosome of
parent A is copied into child A, and similarly for parent B and child B.
Typically, it has been found that probability peoss values of 0.6-0.8 are

optimal.

Example:

ParentA 110j10 offspringA 110101

ParentB 100]01 offspringB 100[10
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Two-point crossover: In Two-point crossover, two points are selected

randomly and the bits within the points are exchanged as shown

below:-
Parent A 110J10]10 offspring A 110J0110
ParentB 100101100 offspringB 10010100

N-point crossover: It uses the same technique having N-crossover
points. Here the offspring are created by swapping parts of the

chromosomes between every other crossover point.

Uniform crossover: Here, for each bit, it is randomly decided, if it is

copied from parent one or two

2.2.3.2 Mutation

The mutation operator is applied to maintain genetic
diversity. In mutation, if p>Ppmuaton, @n element in the string making up
the chromosome is randomly selected and changed. In case of binary
coding, this amounts to selecting a bit from the chromosome string and
inverting it. In other words, a “1” becomes a “0" and a “0” becomes a
“1”. If higher-order alphabets are used, slightly more complicated

mutations are required.

e ——
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Generally, it has been seen that mutation occurs with a low
probability, usually on the order of pmutauon =0.01-0.1.The action of
mutation is as shown below.

Offspring: 11000 1
Mutate 4th gene (bit flip)

Mutated offspring: 110101

2.2.3.3 Fitness Function

The fitness function, or object function, is used to assign a
fitness value to each of the individuals in the GA population. The
fitness function is the only connection between the physical problem

being optimized and genetic algorithm.

2.3 Continuous Genetic Algorithm

A Continuous Genetic Algorithm[1,11-15] also, termed as
real coded Genetic Algorithm uses the real value of the parameters
instead of binary codes. It employs a reproduction strategy based on
roulette wheel selection. However, this strategy may lose genetic
diversity of population in an early stage [16], because it can not
generate new chromosomes which are different from present
chromosomes. A number of new crossover strategies have been

suggested[17].
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The simplest one-point crossover for parents P4 and Pg is
carried out by combining the parameter values from the two parents
which are selected for swapping, into the new parameter values in the
offspring.

P, =[PiusPras P3a--Pral
Py =[Py P2y Prp--Prs]
Puewa = PPra + (1= B)p),
Poews = Ppis + (1= B)p\,

(2.2)

Where, prews=First new offspring,
Prewp=Second new offspring and,

S =Random number between 0 and 1.

2.4 Basic Concept of Artificial Neural Networks

Artificial Neural Network is a mathematical model of human
brain[8,13,18,19]. As our brain learns from experience, an ANN also
learns form experience and applies its knowledge at new and unknown
environment. To understand the basic function of ANN, it is necessary

to have a look at human brain.

A human brain consists of approximately 10" computing
elements known as neurons. A neuron consists of a Cell body to sum
and threshold those incoming signals, dendrite: to carry electrical
signals into cell body and an Axon to carry the signal from the cell body
out to other neurons[20]. Signals are communicated from one neuron

to another by Synapse which connects an axon of one cell and a
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dendrite of another cell. The schematic diagram of a biological neuron

is as shown in figure 2.3.

Dendrite

Synapse

/’f

Fig. 2.3 Biological Neuron Artificial Neuron

A neuron is an information-processing unit

that

is

fundamental to the operation of a neural network. The block-diagram of

an artificial neural network is shown in figure 2.4. The basic elements

of ANN are:

Input: Analogous to signal on the dendrites,

Weight. Analogous to strength of a synapse,

Summation and transfer function or activation function: Analogous

to cell body,

Output. Analogous to signal on the axon.

Biological Neural Network

Artificial Neural Network

Celi body Neurons

Dendrite Weights or interconnections
Soma Net input

Axon Output
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Input iy

Output o

Input j;

Bias Input

Fig. 2.4 Block-Diagram of an Artificial Neural Network

The neuron model also includes an externally applied bias.
The function of the neuron (k) can be described mathematically as

follows,

m
Vi = ZWk}xJ’
=0

Ye =@, +b,).

(2.3)

Where x4, X2, ... , Xq are the input signals; wii, Wi, ., Wkm are
the synapti.c weights of the neuron k; uk is the linear combiner output
due to the input signals; by is the bias; ¢(v) is the activation function;
and yi is the output signal of the neuron. 'A common activation function
is the sigmoid function as shown in figure 2.5. And mathematically

given by,

(2.4)

_,h—l

x,,A)=
p(x,,4) l+e

Where, A is the steepness of activation function.
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11
Output

0.5

—

Input i

A

Fig. 2.5 Sigmoid Activation Function

Typical example of a multi-layered neural network is shown
in figure 2.6. A three layer neural network, in principle, is sufficient to
model a problem[20]. In the example, every neuron in a layer is
connected to every neuron in the next layer. Also, every neuron is
connected only to successive layers, but not to preceding ones. This

network is therefore called a feed forward network.

input layer hidden layers output layer

Fig. 2.6 Multi-Layered Neural Network
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2.4.1 Learning Rules

Learning means simply to get information and remember
from experience. In case of an Artificial Neural Network, learning is to
adjust the weights to satisfy a function which is the input-output

relation. If w, be the weight vector and, w,, is the component

connecting the j'th input with the i'th neuron, according the general

learning rule, the weight vector w, increases in proportion to the

product of input x and learning signal r. The learning signal r is a

function ofw,, x and the teacher’s signal 4, in case of supervised
learning. Mathematically it can be written as,
r=r(w,x,,d). (2.5)
Therefore, the increment of the weight vector w, produced

by the learning step at time t according to the general learning rule is
Vw,(£) = cr{w, (1), x,(¢),d, (1)]x(t) .
Where ¢ is a positive number called the learning constant that
determines the learning rate. The weight vector adopted at time t
becomes
w,(t +1) = w, () + cr{w (1), x, (1), d, (£)]x(t) (2.6)
at the next instant or, learning step.
Based on the learning signals, there are different types of learning
rules[8,20] such as Hebbian learning rule, Perceptron learning rule,
Delta learning rule, Widrow-Hoff learning rule, Correlation learning rule

and Winner-Take-All learning rule etc.
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2.4.2 Delta-Learning Rule [21,22]

The learning rule is only valid for continuous activation
function and, in the supervised training mode. This minimizes the
squared error. The learning signal of this delta-learning rule is termed

as delta which is defined as:

a
r=[di- f(Wix)] f'(Wix). (2.7)
The term f'(w'ix) is the derivative of the activation function f(ner)

computed for net =w'ix.

Continuous
Perceptron
Xy
X2
X;
X

Fig. 2.7 Delta Learning Rule

In this method, the squared error is first calculated as

41 21 T
E=_(d;=0)' =—[d,- f(W:)]'. (2.8)
Therefore, the gradient of the error field is,
VE=-(d,-0,)f'(Wix)x (2.9)

And the components of gradient vector are
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OF
ow,

i

=~(d,—0) f'(Wix)x;, forj=1,2, ..., n. (2.10)

Since the minimization of the error requires the weight
changes to be in the negative gradient direction, the weight correction
factor is given by,

Aw; = -nVE = (d, - 0,) f'(net,)x; . (2.11)

Where, nis a positive learning constant.

2.5 Back-Propagation Algorithm[21-23]

Normal feed forward back-propagation algorithm is the most
popular, efficient and most widely used algorithm in Artificial Neural

networks because of its ease in developing the code.

It is a supervised training method having at least two layers:

the hidden layer and the output layer. Let's consider the network shown

in figure. 2.8.
Input Layer Hidden Layer Output Layer

Z:

z: o

Zis Ok
Ok

Fixed

input

Fig. 2.8 Multi-Layered Feed-Forward Network
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Here Z, is the input vector; y; is the output of hidden neurons
and Ok is the output vector. The connecting weight vectors of hidden
layer and output layer are v, and wj; respectively. The fixed bias input

is -1. Now the back-propagation algorithm involves five basic tasks as

follows:

> Initialize the weights to small random numbers

> Randomly select a training pattern pair (xp, tp) and
present the input pattern xp to the network; compute the
corresponding network output zp

> Compute the error Ep = zp - tp for pattern (xp, tp)

> Back propagate the errors according to the BP weight
adjustment formulas

> Test the mean square error (MSE); if the MSE is below

the required threshold, stop; otherwise, repeat step 2-5.

1.  Weight initialization

Set all weights & node thresholds to small random numbers
(repeat step 2,3 until error criterion is met)

2.. Calculation of output levels

Output level of of a hidden neuron is
1
0,=Q.w,0-6)= ———1 TR (2.12)

Where, W= Weight of input i to neuron j.
3.  Weight training
i. Error gradient is computed as

For the output neurons
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ii.

iii.

§=0;(1-0)(dj-0) (2.13)
d, : desired output, o; : actual output for the hidden neurons
5=0;(1-0) T sw (2.14)

o . error gradient at neuron k to which a connection points
from hidden neuron j

Weight adjustment is computed as

Awj; = 176; Oi (2.15)

n : trial-independent learning rate (0< 7 <1)

Adjust weights is computed as

Awy (t+1) = Aw;(t) + aw; (2.16)

Awji(t) - weight from i to j at iteration t.
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Chapter 3 Design of Microstrip Patch Antenna Using Genetic Algorithm

3.1 Introduction

Microstrip antenna inherently has very low bandwidth. Hence it
\is very important to find accurate dimension and its feed position to
efficiently operate such antenna. There are many empirical formulae[1-
4] for different regular structure microstrip patch antenna for calculating
the resonant frequency. However, resonant frequency being a non-
linear function of parameters like the physical dimensions and material
property of the antenna, it is quite difficult to adjust all these
parameters simultaneously to design a microstrip patch antenna for a
particular operating frequency. Therefore, optimization tool like GA.
may lead an important role in such problems. GA performs its
searching process through population to population instead of point-to-
point search. The most favorite advantage of GA is its parallel
architecture. They use probabilistic and deterministic rules[5-7].
In this chapter, GA has been efficiently used to design rectangular,

circular and triangular microstrip patch antennae.

3.2 Design of Rectangular Microstrip Patch Antenna Using GA

The length (L), width (W), height (h) and the feed point location

(a) for a rectangular microstrip antenna are shown in the figure 3.1.
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Substrate

Ground Plane

Fig. 3.1 Rectangular Patch Antenna

The resonant frequency of the rectangular microstrip antenna[8] is
expressed as,

(3.1)

_ Co .
)= 2(L+AW ) Je.(W)

where, ¢y is the velocity of the electromagnetic waves in free space and

(W) is the effective dielectric constant, which is given by

e )=+ e—1 ; (3.2)
2 21410 h /W

AW is the line extension and is given by

AW =0 412 L& )+0.300 W /h+0.264 ), (3.3)

[e.(W )—0.258 YW /h+0.813 )

Equation (3.1) is used as the fitness function of GA. The two
independent variables are the length (L) and width (W). The population

size is taken as 20 individuals and 200 generations are produced. The

e —
Department of Computer Science and Engineering, Tezpur University 60



Chapter 3 Design of Microstrip Patch Antenna Using Genetic Algorithm

probability of crossover is set at 0.7, while the probability of mutation is
equal to 0.01. Thus, it is suitable for the calculation of the resonant
frequencies for antenna elements with h < 0.0815X4. Resonant
frequency (f;), dielectric constant (g;) and thickness of the substrate (h)
are given as inputs to GA, which gives the optimized values for the
length and width of the antennae[9]. The optimized lengths (L) obtained
using GA are in good agreement with the experimental results as listed
in column ‘VII' of Table 3.1. Using these calculated parameters, i.e. ‘L,
‘W, ‘h” and ‘e’ in IE3D simulation software, resonant frequencies are
calculated which almost match with the input resonant frequencies
considered, thus, validating the results of GA. The theoretical results
obtained by GA and IE3D software are listed in table 3.1 for 7 different

rectangular microstrip antennae.

Table 3.1 Resonant Frequency Results and Dimensions for

Rectangular Microstrip Antennae

I Il i v \' VI Vil Vil
Antenna f. €, h L w L expt Juso
No. In GHz In In mm In mm In mm In GHz
(Expt.) mm (GA) (GA) [3]
1 6.2 2.55 2.0 14.382 8.975 14.12 6.13
2 8.45 2.22 0.17 } 11.867 9.456 11.85 8.32
3 7.74 2.22 0.17 12.9 19.337 12.9 76
4 3.97 2.22 0.79 | 25.306 | 13.007 25 3.92
5 5.06 2.33 1.57 18.6 18.4 18.6 4.98
6 5.6 2.55 1.63 16.07 13.34 16.21 5.3
7 4.805 2.33 1.57 | 19.573 | 21.696 19.6 4.6
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The return loss and VSWR plots calculated using |IE3D simulation
software for antenna number 1 (L=14.382 mm, W=8.975 mm, h=2 mm
and ¢, =2.55)are shown in figure 3.2 and figure 3.3 respectively where
as, figure 3.4 and figure 3.5 show that of antenna number 5 (L=18.6

mm, W=18.4 mm, h=1.57 mm and ¢, =2.33).

2 —— dB{s(L1)]

0

dB

5.7 59 6.1 6.3 65 6.7

w
o
w

Frequency (GHz)

Figure 3.2 Return Loss Plot for Antenna No. 1

(L=14.382 mm, W=8.975 mm, h=2 mm and &, =2.55)

- ]
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—a— Pottl
10
q \

VSWRS /
q \

55 57 59 b1 63 6.5 67

Frequency (GHz)

Fig. 3.3 VSWR Plot for Antenna No. 1

(L=14.382 mm, W=8.975 mm, h=2 mm and ¢, =2.55)

—— dB[S(1.1)]

0 -M E

o 1

g 1| *

-13

=20 ]
3% - g "

4 45 5 93 6

Freyueuvy (GHz)

Fig. 3.4 Return Loss Plot for Antenna No. 5
(L=18.6 mm, W=18.4 mm, h=1.57 mm and ¢, =2.33)
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—— Port1

. /

4 45 5

]
w
-

Frequency (GHz)

Fig. 3.5 VSWR Plot for Antenna No. 5

(L=18.6 mm, W=18.4 mm, h=1.57 mm and &, =2.33)

Simultaneous variation of length and width of a microstrip antenna to
obtain optimized length and width for calculating the resonant
frequency of a said antenna that matches with the experimental
resonant frequency is a computationally tedious and time consuming
process. As seen from the table, using GA this can be achieved without
much computational time. The return loss plot and VSWR plot obtained
using IE3D Simulation package for two antennae are also presented.
These results have good agreement with that of experimental results.
Thus, application of GA to calculate optimized length and width of
microstrip antenna seems to be an accurate and simple method. This
will go a long way in helping antenna designs especially for small pack

antenna system where due to space limitation both length and width

S
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are to be adjusted simultaneously to achieve the required resonant
frequency. This is a forced situation in the present scenario of

miniaturization.

3.3 Design of Circular Microstrip Patch Antenna

Using GA

Circular microstrip antenna, due to its simple design features is
still popular in industrial and commercial applications[10-12]. However,
due to inherent narrow bandwidth, the resonant frequency or the

dimension of the patch antenna is to be predicted accurately.

Genetic Algorithm (GA) has been applied to calculate the optimized
radius of Circular Microstrip Antennae. Resonant frequency (f) in the
dominant TM44 mode, dielectric constant (g;) and thickness of the
substrate (h) are taken as inputs to GA, which gives the optimized radii
(a) of the antennae. Method of Moment (MOM) based IE3D software of
the Zealand Inc., USA, and experimental results are used to validate
the GA based code. It is seen that the GA results are more accurate
while taking less computational time. The results are in good

agreement with experimental findings[13].

The circular patch antenna with its design parameters i.e.
thickness of substrate ‘h’ and radius of circular patch ‘a’, is shown in
figure 3.6.
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Ground Plane

Fig. 3.6 Circular Patch Antenna

The resonant frequency of circular microstrip antenna[13] is expressed

as
A 1.84118 ¢, S -
27ale (2" ¢ S92 (1 445, +1.77 )+ (0 268 e, +1.65)] "
nE ,a 2h a
(3.4)
Where, the effective dielectric constant (¢ ), is given by
-1/2

» _g[+l+g —1[1+ 12 h :l

2 2 a~'n (3.5)

And ¢y is the velocity of light.
Equation (3.4) is used as the fitness function of GA to optimize radius
of the patch of the antennae. The population size is taken 20

individuals, and 200 generations are produced. The probability of

R —
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crossover is set at 0.25, while the probability of mutation was equal to
0.01. Resonant frequency (f;), dielectric constant (g;) and thickness of
the substrate (h) are given as inputs to GA, which gives the optimized
radii (a) of the antennae. The comparisons of GA and results obtained
by IE3D software are listed in table 3.2 for nine different fabricated
circular microstrip antennae. The optimized radii (a) obtained using GA
are in good agreement with the experimental results as listed in column
‘VII' of table 3.2.

Using these calculated radius (a) in IE3D simulation software,
resonant frequencies are calculated which almost match with the input
resonant frequencies used as input, thus, validating the results of GA.
Tﬁe percentage of error for calculation of radius using GA, are listed in

column VI. Average error obtained using GA is only 0.65 for seven

antennas.
Table 3.2 Comparison of Results
| ] 11 v \Y Vi )il
Antenna £, £, h a Error fiesp
No. In GHz In Inmm In % In GHz
mm By GA
1 4.945 4.55 235 | 7.6742 | 0.306234 494
2 3.75 4.55 2.35 | 10.3837 | 0.156731 3.735
3 2.003 4.55 2.35 | 20.0659 0.3295 2.02
4 1.03 4.55 2.35 | 39.5602 | 0.477484 1.05
5 0.825 4.55 2.35 | 49.502 | 0.0040404 0.82
6 1.51 2.33 | 3.175| 35.2043 | 0.785285 1.53
7 4.07 233 |0.794 | 13.0196 | 2.51654 412

* Measured by Abboud et al [14], reminder measured by Howell [15].
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Fig. 3.7 Return Loss Plot for Antenna No. 1
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Fig. 3.8 Return Loss Plot for Antenna No. 2

(a=10.3837 mm, h=2.35 mm and ¢,= 4.55)
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The return loss plots calculated using IE3D simulation software for

antenna number 1 (a=7.6742 mm, h=2.35 mm and ¢, = 4.55) and
antenna number 2 (a=10.3837 mm, h=2.35 mm and &, = 4.55) are

shown in figure 3.7 and figure 3.8 respectively.

Seven antennae are optimized to validate the developed code
using GA. IE3D software and experimental resuits are used to compare
and hence, to validate the obtained results by GA. Design parameter
obtained using GA are used to simulate the antenna using IE3D.
Return loss plots are presented for simulated antennas. As seen, the
results obtained using GA are more close to experimental results. Thus,
a highly selected fitness function in GA gives much accurate result.
Application of GA to microstrip antenna design seems to be an
accurate, computationally simple and cost effective method, which may

go a long way in antenna design.

3.4 Design of Triangular Microstrip Patch Antenna

Using GA

Triangular microstrip antenna, due to its simple design features
and patch area has gained much interest for investigation by
researchers since last few decades[16-23]. Most importantly they are
advantageous in arranging in such a way to reduce the coupling as
well as the spacing between two adjacent elements when used as

elements of a periodic array. Since they have very narrow bandwidth
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the resonant frequency or design parameter has to be predicted

accurately.

Genetic Algorithm (GA) has been applied to calculate the
optimized side length of Triangular Microstrip Antennae. The inputs to
the problem are the desired resonant frequency, dielectric constant and
thickness of the substrate. And output is the optimized side length.
Method of Moment (MOM) based IE3D software of the Zealand Inc.,
USA, and experimental results are used to validate the GA based
code. The basic formula developed in [24] is used to determine the

resonant frequency of Triangular microstrip antenna.

The side length (r), height (h) and the feed point location (a) for

a Triangular microstrip antenna are shown in the figure 3.9.

.
60

v
bad

Conducting
Patch

<
<

Coaxial

Feed

Fig. 3.9 Triangular Patch Antenna
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The fitness function used in GA to optimize the Triangular patch

antenna is the resonant frequency expression [24), given as

(n* + nm + m?)" (3.6)

f _ 2c
nml — -
3rgEreg

Where cis the velocity of the electromagnetic waves in free, and ¢, is

given by

. =2—37r-a,/<1+qj 3.7)

r

Equation (3.6) is used as the fitness function since it is more accurate
as compared to earlier empirical formulae. The variable to be optimized
is ‘'r. The population size is taken as 20 individuals, and 200
generations are produced. The probability of crossover is set at 0.25,

while the probability of mutation is set equal to 0.01.

Resonant frequency (f), dielectric constant (sr) and thickness of
the substrate (h) are given as inputs to GA, which gives the optimized
side length of the antennae. The optimized side lengths (r) obtained
using GA are in good agreement with the experimental results as listed
in column ‘VI' of the Table. Using these calculated parameters, i.e. ',
‘" and ‘e’ in IE3D smulation software, resonant frequencies are
calculated which almost match with the input resonant frequencies
considered, thus, validating the results of GA. The theoretical results
obtained by GA and results obtained by IE3D software are listed in

table 3.3 for 5 different Triangular Microstrip Antennas.
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Table 3.3 Resonant Frequency Results and Dimensions for

Triangular Microstrip Antennae

i Il i v \) Vi
Antenna f. & h Rea Rexer
No. in GHz Incm Incm Incm

From[23]

1 41 10.5 0.07 4.086 4.1

2 8.7 232 0.078 | 8.876 8.7
3 10.0 2.32 0.159 | 10.158 10.0
4 6.65 43 0.159 6.73 6.65
5 4.33 2.33 0.159 | 4.648 433

The mathematical expressions available for determination of
resonant frequency of Triangular Microstrip Antenna show that for
higher accuracy the effective permittivity of the dielectric substrate
must be considered. Hence, in such situation, it is difficult to calculate
the side length of the Triangular microstrip antenna. As seen from the
table, using GA this can be achieved without much computational time.
In proposed approach, five antennae are optimized to validate the
developed code using GA. IE3D software and experimental results are
used to compare and hence to validate the obtained results by GA. The
return loss .plot and VSWR plot obtained using IE3D Simulation

package for two antennae are also presented.
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3.5 Conclusion

This chapter presents design of different regular structure
microstrip antenna using GA. The results obtained are close to
experimental results. This method can be applied for other irregular
structures which are having empirical formulae to find the resonant
frequency. The technique can be further improved by choosing proper
selection of fitness function or, by developing new better empirical
formula where it is not available. This is a simple and efficient

technique for design a microstrip antenna.
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Chapter 4 ANN and Its Coupling With GA For Antenna Design

4.1 Introduction

In this chapter, Artificial Neural Networks (ANNs) is used for
design of microstrip antenna. Firstlyl, backpropagation algorithm is
applied to calculate resonant frequency of rectangular microstrip
antenna with shorting post. To further improve the backpropagation
algorithm, Tunnel Based Artificial Neural Networks (ANNs) is also
developed to calculate the radiation patterns of the antenna. In the
second phase, ANN is used to improve Genetic Algorithm(GA) for
problems those are not having a proper fitness function. The proposed
technique of using ANN as fitness function of GA is applied to calculate
the design parameters of a thick substrate rectangular microstrip
antenna. A Multi-Layer Feed-Forward Neural Network is used as
fitness function in a binary coded genetic algorithm. The results are in

very good agreement with experimental findings.

4.2 Calculation of Resonant Frequency of Single

Shorting Post Microstrip Patch Antenna

One of the major disadvantages of microstrip patch antenna is its
inherent narrow bandwidth, which restricts its wide applications. A
number of techniques have been developed for band width

enhancement[1-9].
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Use of shorting pins[10] is a simple and efficient method to handle
such problems. By changing the number and location of the shorting
posts, the operating frequency can be tuned, and the polarization can
also be changed. Figure 4.1 represents the schematic diagram of the
single shorting post rectangular microstip antenna. Depending on the
position of the shorting post, the resonant frequency of the rectangular

microstrip antenna can be tuned.

—tns
Shorting

4
Post ............................... .

Feed Probe

Fig. 4.1 Rectangular Microstrip Patch Antenna with a

Shorting Post

The network 5x20x1 is trained by normal feed forward back-
propagation algorithm having steepness of activation function,
lambda(A) = 1, learning constant(n) = 0.3 and, momentum factor(a) =
0.1. In this case, all the four parameters are chosen by hit and trial
method. The error vs. epoch for the training is shown in figure 2.10.
The training time is found to be 889 seconds for an error tolerance of
0.05. The average error per pattern for four patterns is found to be

0.0482 GHz.
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Fig. 4.2 No. of Cycles vs. Error
As shown in table 4.1, the results obtained by ANN are close to

experimental data.

Table 4.1 Resonant Frequency of a Microstrip Antenna Using

Single Shorting Pin Applying ANN

L/L) L w & h frexer) f fr(Back-
in |Incm Incm in GHz (Eqn. 10 | propagation)
cm off10]) In GHz

in GHz

0.1] 6.2 9 (255| 0.16 1.594 1.64 1.619

0.3 3757424 | 2.2 | 0.1524 2.788 - 2.808

07 | 6.2 9 |255| 0.16 1.525 1.544 1.493

09 [ 3757424 22 |0.1524 3.13 - 3.014

* The radius of the metallic post () = 0.064cm

-
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4.3 Application of Tunnel-Based ANN on Microstrip

Patch Antenna Design

Backpropagation algorithm i.e. the gradient decent method is modified
using the tunneling technique. The concept of tunneling[11,12] technique is
based on violation of Lipschitz condition[12] at equilibrium position, which is
governed by the fact that any particle placed at small perturbation from the
point of equilibrium will move away from the current point to another
within a finite amount of time. The tunneling is implemented by solving
the differential equation given by[12],

dw/dt=p(w-w*)"3 (4.1)
Where, 'p’ and ‘w* represent the strength of learning and last local
minima for ‘w’' respectively. The differential equation is solved for some
time till it attains the next minima position. To start with the training
cycle, some perturbation is added to the weights. Then, the sum of
square errors(E) for all the training patterns is calculated. If it is greater
than the last minima than it is tunneled according to above equation. If
the error is less than the last local minima than the weights are updated
according to the relation,
Aw(t)=-nVE(t)+aAw(t-1) (4.2)
Where, ‘i’ is called learning factor and ‘o’ is called momentum factor. ‘t
and ‘(t-1)’ indicate current and the most recent training steps respectively.
This technique is validated by implementing it for calculating radiation pattern

of a wide-band microstrip patch antenna as shown in figure 4.1.
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Fig. 4.3 Geometry of the Multi-Slots Hole-Coupled
Microstrip Antenna
(The antenna parameters are L= 45 mm, W=71 mm, h=2 mm, Ls=17.5
mm, Ws=04 mm, Feed position(xs, y£)=(0.75 mm, 69 mm))

The antenna has been designed on a substrate of thickness 2
mm with £=2.2. The patch size is characterized by length, width and
thickness (L, W, h) and is fed by a coaxial probe at position (x;, yi). A
hole of 0.2mm diameter has been made at location (xn, yn) for
impedance matching. Four slots are incorporated into this patch and
are positioned on both sides of feed position. The structure resembles
to the geometry as if an E-shaped patch has been joined with another
inverted E-shaped patch. The slot length (Ls), width (Ws) and position

(Ps) are important parameters in controlling the bandwidth. Due to
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slots, the length of the current path is increased[13], which leads to
additional inductance in series. Hence, the wide band is generatea as
resonant circuits get coupled. The slots aggregate the currents, which
give additional inductance, which is controlled by patch width (W). For
impedance compensation and for better matching, a hole is made at
(xh=6.75 mm., yn= 35 mm.). The approach of creating a hole gives the
flexibility of changing the reactive component for impedance matching.
IE3D software is used to calculate the return loss and VSWR of the
considered antenna.

A multilayer 2x80x1 structure, shown in figure 4.4, is used for
training the network. The other network parameters used are as

follows,

The network is trained by taking 36 patterns each for 6.0GHz,
6.5GHz, 10.5GHz and 12GHz. The training time required is 7.35
minutes. The network is tested for 480 patterns. Figure 4.3 shows the
radiation at 6GHz and 10.5GHz whereas Figure 4.4 shows the

radiation pattern at 6.5GHz and 12GHz.

Noise Factor=0.004 Time Step for Integrating for the
Differential Equation=5x10""

Momentum Factor=0.075 Strength of  Learning for
Tunneling=0.08

Learning Constant=0.08
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. . .}
Frequency

Gain
Angle

Fig. 4.4 Network Architecture Showing Angle and Frequency as

Input and Gain as Output

—— ANN Frequency: 6.0 GHz
—e— ANN Frequency:10.5 GHz
EXP Frequency:10.5 GHz
IE3D Frequency 6 GHz

IE3D Frequency 10.5 GHz

+ox *

180.0

Fig.4.5 Radiation Pattern for E-Total, theta=0 at 6 GHz

and 10.5GHz
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+ EXP Frequency:12.0 GHz
» |E3D Frequency 6.5 GHz
+ |E3D Frequency 12 GHz

136.0

.. P . -
180.0 # - - 0.0
g - 4 . . : .

Fig. 4.6 Radiation Pattern for E-Total, theta=0 at 6.5GHz

and 12.0GHz

The total average errors at different frequencies are 6GHz is 0.0408, at
6.5GHz is 0.0520241, at 10.5 GHz is 0.0745005 and at 12 GHz is
0.0181725. Experimental measurements are carried out to see the
radiation patterns at 10.5GHz and at 12GHz. The results are in good

agreement with the results of IE3D and with ANN.
The variation of slot parameters, hole size and positions gives

the flexibility to shift the frequency and match the impedance, which is

a notable feature of the referred antenna.

e —
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4.4 ANN Used as Fitness Function of GA and lIts

Application to Microstrip Patch Antenna Design

Over the years, genetic algorithm has been applied in many
applications. But lack of proper fitness function acts as a hindrance for
its wide spread application in many cases. Often in electromagnetics,
the objective function (fitness function) arises for optimization is
multimodal, stiff and non-differentiable. In addition, they are
computationally expensive to evaluate. Tentativeness of the objective
function cannot be relied upon when accuracy cannot be compromised.
The deterministic optimization technique like Monte Carlo technique,
simulated annealing and hill climbing, or evolutionary optimization
technique like Genetic algorithm (GA) [14-16,23] mostly rely upon
objective function, without which the optimization technique has no
meaning. Here a new class of objective function formulation technique
is presented in which trained Artificial Neural Networks (ANN) is used
as fitness function. The presented technique can be used everywhere
particularly in those cases, where the objective function formulation is

difficult, or the objective function is erroneous.

4.4.1 Application on Microstrip Patch Antenna

A novel technique of using Artificial Neural Networks as fitness

function of Genetic algorithm to calculate the design parameters of a

thick substrate rectangular microstrip antenna is presented here for
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which there is no closed form mathematical formula to calculate the
resonant frequency. A Multi-Layer Feed-Forward Neural Network is
used as fitness function in a binary coded genetic algorithm. It is seen
that the results obtained by this method are closer to experimental
value compared to earlier results obtained by curve fitting method. To
validate this, the results are compared with experimental values for five
fabricated antennae. The results are in very good agreement with

experimental findings.

With h/Ap>0.0815, the properties of the patch antenna changes
drastically[24,25], where 'h’ is the thickness of the substrate and Ap is
the free space wavelength. The standard formulae available in the
literature are valid for h/A¢<0.0815. So, for h/Ax>0.0815, the designer,
thus, forced to obtain the physical characteristics by trial and error
method or numerical method. But these formulae are derived by curve
fitting method which can be extrapolated to a certain extent only. Thus,
there is a need for a robust numerical approximation for the calculation
of the dimensions. A typical microstrip antenna with length (L), width
(W), height (h), and the feed point location (a) are shown in the figure

3.1.

The approach[26] is basically a two step calculation procedure.
In the first step a suitable network is selected and trained for a set of
training data. After successful training the network will learn the input-

output relation among length, width, thickness, permittivity and
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resonant frequency of the antenna. In the second step the network will
be used as objective function and GA will be used for calculation of the

optimized dimension.

4.4.2 Training Phase

The back propagation algorithm, using gradient decent method
is used for training the network. A three layers neural network,
consisting of four input neurons, thirty hidden neurons and one output
neuron(i.e 4 x 30 x 1) has been used. For this network, length, width,
substrate thickness and dielectric constant of the substrate are taken

as inputs where as, resonant frequency is taken as output. The

proposed model is as shown in the figure 4.7.

Resonant
Frequency

Fig. 4.7 Network Structure
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Twelve patterns from [24] are taken for training the networks and rest
five patterns are used for testing the networks and the ANN based GA

code. The parameters considered for training the network are,

Noise factor parameters = 0.0003
Learning Constant (parameter) = 4

Momentum factor = 0.0205.

Noise factor of 0.0003 is used during training of ANN to increase
its generalization capability. The number of hidden neurons and

various parameters are chosen by hit-and-trial method.

4.4.3 Optimization Phase

The two independent variables to be optimized are the length
and width of the antenna. The population size of 20 individuals, and
200 generations are produced. Roulette wheel selection procedure is
adopted to select new population. The probability of crossover is set to
0.7, while the probability of mutation is equal to 0.01. The fitness of the
selected population is calculated from the trained neural network. The
process is repeated until the termination criterion is met. The flow chart
of the proposed algorithm is presented in figure 4.6. The fitness of an

individual is decided according to following relation,

Fitness = f(L, W, ¢,,h) = 1/(1+| f, — desired frequency |)

= 1/(1+ | output of ANN - desired frequency |) (4.3)
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Fig. 4.8 Flow chart of the Proposed Algorithm

The optimized design parameters of five antennae considered
for testing is tabulated in Table 4.2. Out of three inputs, one is dielectric
constant (g = 2.55) of the substrate. The other two inputs are listed in

2", 3 column. The experimental dimensions of length and width are

Department of Computer Science and Engineering, Tezpur University 91



Chapter 4 ANN and Its Coupling With GA For Antenna Design

shown in 4™ and 7™ column respectively, while optimized output of our
GA-ANN based dimensions are listed in 6" and in the last column of
the table. By using empirical formulae derived by curve fitting method
[24], the average error in calculating length and width of thick substrate
microstrip antenna is found to be 0.06 and 0.074 respectively where
as, the presented method shows an average error of 0.032 for length
and that of for width is 0.018. Thus, an ANN coupled GA gives better

results compared to formulae derived in [24].

Table 4.2 Dimensions of Thick Substrate Rectangular Microstrip

Antenna (g, = 2.55)

L/L| L w & h frexen f; frBack-
In |[Incm Incm In GHz (Eqn. 10 |  propagation)
cm of [10])
In GHz
In GHz
01| 6.2 9 255| 0.16 1.594 1.64 1.619
0.3 |3.75|7.424| 2.2 |0.1524 2.788 - 2.808
0.7 | 6.2 9 |255| 0.16 1.625 1.544 1.493
0.9 | 3.75 | 7.424| 2.2 | 0.1524 3.13 - 3.014

* The radius of the metallic post (r,) = 0.064cm

The measure of accuracy of the solution obtained by GA depends
directly upon the efficient training of the neural networks. So, care must

be taken for efficient training of the network. Cases where, there is no
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accurate theoretical formulation for objective function, this technique

can be used for optimization purpose.

Simultaneous optimization of dielectric constant, height of the
substrate and dimensions etc. is possible in the proposed method
where as, in conventional method it is either computationally complex
or, not possible. The results obtained by the ANN coupled GA is
compared with experimental results. The results are in very good

agreement with experimental findings.

4.5 Conclusion

A back-propagation algorithm is used to calculate the resonant
frequency of single shorting post tunable microstrip antenna. This
technique to calculate resonant frequency of shorted microstrip
antenna seems to be a simple, inexpensive and highly accurate
method. Accuracy can be improved by choosing smaller error tolerance
and/or ftraining the network for more number of iterations while

evaluating the fitness value.

The radiation patterns of the antenna calculated by Tunnel
based Artificial Neural Networks (ANNs) is compared with experimental
results measured. The experimental results are in good agreement with
the simulated results of IE3D and that of ANNs. This simple method

saves computational time considerably giving better accuracy.
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In proposed method of coupling ANN with GA, the simulation
time is very less as compared to the simulation time of methods like
Method of Moments (MoM), Finite Difference Time Domain (FDTD)
and Finite Element Technique (FET) without compromising with the
error. The accuracy of the proposed model can be increased by using
a more effective ANN algorithm. Further, the accuracy can be
increased by taking more experimental results for training the artificial
neural network. This method may go a long way in improving the ANN
based techniques to solve problems like array factor correction, cross
polarization reduction, band width enhancement and array optimization

etc.

e e S ———
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Chapter 5 Application of GA Coupled ANN

5.1 Introduction

As seen in previous chapters, both Genetic Algorithm and
Neural Network independently has become an efficient tool to solve
various problems in electromagnetics[1,2]. Genetic Algorithm is a
global search technique where as Neural Network uses the gradient
information of the error surface. In this chapter, attempt is made to take

the advantages of both by coupling them together.

5.2 GA Used to Find Initial Weight Set of ANN for

Microstrip Antenna Design and Analysis

The multilayer neural network trained with gradient decent back-
propagation method is unique due to its high generalization capability.
Owing to its gradient-descent nature, back-propagation is very
sensitive to initial conditions[3,4]. If the choice of the initial weight
vector happens to be located within the attraction basin of a strong
local minima attractor (one where the minima is at the bottom of a
steep-sided valley of the error surface) then the convergence of back-
propagation will be fast. On the other hand the, back-propagation
converges very slowly if the initial weight vector starts the search in a
relatively flat region of the error surface. Here Genetic Algorithm is
used to fix the initial weights of a multilayer neural network. GAs are
capable of optimizing nonlinear multi-modal functions of many

variables[5-7]. They require no derivative information and they robustly

e ]
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find global or very strong local optima. Numerical experiments indicate
that using GA good solutions to highly non-linear equations can be
obtained quickly even in time comparable to that taken by analytical
methods such as steepest descent. Previously, attempt has been
made to train the network by evolutionary approach. As these method
is ignorant about the gradient information of the weight surface. The
main drawback of the evolutionary approach of the neural network
training is the training time. The back-propagation algorithm takes only
several minutes on average to its lowest error, on the other hand the

evolution approach takes over an hour(3,4,8].

A simple and accurate method for calculating the resonant frequency of
a rectangular microstrip patch antenna with a single shorting post is
proposed here[2]. By changing the location of the shorting post the
resonant frequency of the patch antenna can be tuned. The microstrip

patch antenna with single shorting post is shown in figure 5.1.

Shorting

W i i
7
post S M ,

Feed Probe

Fig. 5.1 Rectangular Microstrip Patch Antenna with Shorting Post

(e
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But, so far all the numerical and theoretical methods proposed failed to
agree with the experimental results. Here Neural Networks is used to
predict the resonant frequency and Genetic Algorithm is used to fix the

initial weight set to start the training by back-propagation.

The ERMS error of a multitayer neural network is given by,

EW)=05*(Q D (ug(x,)-d,(x,)") (5.1)

p=LF g=1, N*
where,

u’ Output of /" node in layer /.

w! , Weighting connecting the ™ node in layer | to k™ node in layer (-1)
x, p™ training sample.

d,(x,) Desired response of the [" output node for the p" training

sample.

N' Number of nodes in layer /.

L Number of layers.

P Number of training patterns.

In the above notation u, is=1 and w',, o represents the bias weights,
where F1.

Equation (5.1) is taken as the fitness function of the genetic algorithm.
The function is minimized to its saturation level. The corresponding
weights are taken as initial weights of the neural network. For the
training of the neural network the backpropagation algorithm{9] is used.
Depending on the position of the shorting post the resonant frequency

of the rectangular microstrip antenna can be tuned. Width of the
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patch(W), length of the patch(L), position of the shorting post(L1),
permittivity of the substrate(e;) and height of the substrate are taken as
input to a 5x30x1 network and resonant frequency of the patch is taken
as the output. Experimental results from[10] is taken fro training the
network.

To make the Network more generalized, mixed patterns training
in non-homogeneity is developed. For training the network in a non-
homogeneity data nine patterns from [10] and eleven patterns
generated by IE3D with litle change in configuration are taken for
training the network. The network structure is selected on trial and error
basis. The various parameters taken for training the network and
genetic algorithm "are selected on trial and error basis. These

parameters are,

GA initialized ANN ANN

Learning constant 3 learning constant 3
momentum factor 0.1 momentum factor 0.1
noise factor 0.004 noise factor 0.004
No. of population 1000

No. of generation 20

probability of cross over 0.6
probability of mutation  0.001

The training time for the network is 346 seconds(5.76 minutes) in
the GA coupled mode! and 642 seconds(10.7 minutes) for the ANN
model! in a P-lll HP PC. Figure 5.2 shows the graph between error and

number of training cycles in both the approach (with and with out GA).

M
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Fig. 5.2 No. of Cycles vs. Error

It shows that the proposed approach takes nearly half
computational time compared to the algorithm presented in [9] to get
the same accuracy. It may be due to the fact that the network starts

training from the attractor basin in the weight space.

To test the generalization of the presented model, the antenna
presented in [11] is used for testing. The output of the network for
those four patterns is shown in the table 5.1. The average error per

pattern is found to be 0.013545GHz.
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Table-5.1 Resonant Frequency of Single Shorting Post MSA by GA

Initialized ANN
L1/L | L w & H frexem) fr(GA-init-ANN)
In GHz In GHz
05 |62 |9 2.55(0.16 1.466 1.46789
06 |62 |9 2.55(0.16 1.480 1.48859
03 |3.75|7424|2.20|0.1524 | 2.788 2.81575
04 |016|7.424)|2.20|0.1524 | 2.664 2.67995

The results obtained in present technique is more close to the
experimental results compared to the numerical and analytical results
presented in[10]. The input-output relation is also checked for the
experimental results for (L=3.75cm, W=7.424cm, h=0.1524cm and

£=22).

33 T T T T =T T ™ T T

—+— Experimantal
~&- Coupled GA/ANN
—&— Theoretical[7}]

3.2

3t

29

2.8

Resonant Frequency(GHz)

27
2bf .
25 1 1 L 1 1 1 1 - 1

0 61 02 03 04 05 06 07 08 09 1

Lol
Fig. 5.3 Resonant Frequency of Tuned Antenna vs Post Position
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Figure 5.3 shows the graph between the experimental results,
theoretical results and the results with present approach for the above
said antenna for different positions of the post. Experimentally, it is
verified that the resonant frequency is slight asymmetric about L/L,
whereas the calculated results using[10] are symmetric. The results

obtained using proposed approach, follows the experimental trend.

5.3 Training ANN by GA Considering Competing
Convention for Resonant Frequency of RMA on Thick

Substrate

A normal feed forward back propagation algorithm is widely
used in electromagnetic applications because of its ease in
implementation and low computational cost. However, selection of a
suitable architecture and parameters such as the number of hidden
neurons, steepness of activation function, momentum factor, learning
constant etc. is a cumbersome job. Hence, combination of GA and
ANN in various ways is present problem of research. GAs are applied
in the design of ANNs in a number of areas as discussed in previous
section[1,2]. Most importantly, they are applied in weight optimization
and architecture optimization. But, especially, for long chromosomes,
the problem of competing conventions almost destroys the cross over
operator, the most important operator in GA. This is the reason, why it

takes a huge amount of computational time to train a neural network by

GA. However, an attempt has been made to overcome this limitation.

S|
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While GA is used for weight optimization, its performance
gradually reduces with increase in the length of chromosome [3]. This
is because of the permutation problem namely, hidden node
redundancy and hidden layer redundancy. As discussed earlier, for a
network with n hidden nodes, there are 2" n! functionally equivalent but
structurally different representations, if the activation functionn is odd,
and otherwise n! different representations. This increases the solution
space which leads to a high computational cost. However, using an
even activation function, hidden node redundancy can be overcome.
To handle the hidden layer redundancy, either it is ignored, or the

crossover is removed from GA which is not the right solution [4].

GA has been used for connection weight determination considering the
hidden layer redundancy. If a hidden neuron, with all its incoming and
outgoing connections, is exchanged with another neuron with all its
incoming and outgoing connections, we have a different structural
representation of ANN. But functionally the ANN remains the same
resuiting hidden layer redundancy. To make them functionally different,
the network should be chosen so that, for same input, each node would
give different output after applying the activation function. This is
possible if different steepness of activation function(A) is chosen for

each node.

The proposed method is applied to rectangular microstrip

antenna. The length (L), width (W), height (h), permittivity of the
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S —

substrate (g;) and the feed point location (a) for a typical thick RMA are
shown in the figure 5.4. Since its bandwidth is narrow, the resonant
frequency must be predicted accurately. The simplest method to
increase the bandwidth is to increase the substrate thickness. Existing
formulas can predict resonant frequency with good accuracy when the
antenna substrates are electrically thin [12,13]. But when the thickness
increases, the predicted resonant frequency diverges from its

experimental value. ANN is well suited for such situation.

Substrate

l

Ground Plane

Fig. 5.4 Rectangular Microstrip Antenna on Thick Substrate

The resonant frequency of a microstrip patch antenna depends mainly
on its length, width, thickness, feed point location and permittivity of the

substrate. So, these five parameters are taken as input and, resonant
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frequency(f;) is considered as the target output for training the

designed neural network. The network (5x20x1) is as shown in figure

5.5.
Length
Width
o Resonant
Permittivity Frequency
Substrate Height

Feed Position =——————»

Fig. 5.5 Network Structure

GA has been used to find the optimized weight set. A logarithmic
sigmoid function is used as activation function which is expressed as

1
fx) = e (5.2)

where,

A = Steepness of activation function, chosen different for different
hidden node.

The Egrus error of a multilayer neural network that gives the fitness

value, can be written as,

E(w)=%( Y Y kx,)-d,(x,)) (5.3)

p=1P g=1N*

where,
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u| = Output of /" node in layer /.
w!, = Weighting connecting the j" node in layer | to k™ node in layer (/-

1)

x, = p" training sample.
d,(x,) = Desired response of the j" output node for the p" training

sample.

N' = Number of nodes in layer /.

= Number of layers.

p = Number of training patterns.

In the above notation u,’ =1 and W) o represents the bias weights,
where /#1.

The population size is taken 30 individuals. It took 1395 generations to
achieve the accepted error tolerance. The probability of crossover is
set at 0.30, while the probability of mutation is equal to 0.01. The
algorithm presented in [6,7] for GA is used to train the network. Twelve
out of 17 patterns from [12] are taken for training and the rest are taken

to test the resuit.

While training ANN by GA keeping steepness of activation (A=1)
fixed, the error gets saturated above desired error tolerance after
certain generations of GA. By taking different values of steepness of
activation (A) for different hidden node, error goes on reducing with
number of generations. Figure 5.6 shows the graph between number of

generations and Erys error for both the cases.

P ]
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Fig. 5.6 No. of Generations vs. Error

The average error per pattern for five patterns is found to be 0.02257
GHz. Time taken for training the network is 122 seconds. The same
network is trained by normal feed forward back propagation algorithm.

The Network parameters taken are,

Lambda (A) 1
Learning constant (n) 0.08

Momentum factor (a) 0.205

The average error per pattern for those five patterns is found to be
0.0457 GHz whereas, training time is 181 seconds. The graph between
the number of training cycles and the Egryms error for normal feed

forward back propagation is as shown in the figure 5.7.
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8 10
No. of terations

Fig. 5.7 No. of Cycles vs. Error

The comparison of results obtained by present method with

experimental resonant frequency and that of normal feed forward back

propagation is as shown in the table 5.2.

Table-5.2 Comparison of Results of Proposed Method and Feed

Forward Back Propagation Algorithm with Experimental Results

Patch frExpt) fr(Present Method) T+ (Back-propagation)
No. In GHz In GHz In GHz
1 5.820 5.82515 5.79649
2 4.660 4.67353 4.52594
3 3.980 3.95329 3.93908
4 3.900 3.87665 3.91498
5 2.980 3.02413 2.99279
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In a gradient descent feed forward back propagation method,
there is a chance that the solution may be trapped by local minima
which does not happen in case of GA. Hence, proposed algorithm of
training ANN by GA takes the advantage of population-to-population
search of GA by overcoming the competing convention. This model

can be used as a CAD model for designing antennas.

5.4 Optimization of Parameters of ANN Using GA and

Its Application on RMA with Shorting Post

A lot has been tried to control various features of ANN by GA[8],
but all the efforts have their own limitations. The strategy for optimizing
the neural network using Genetic Algorithm is an open issue. Literature
survey shows that Genetic Algorithm has been used to provide a model
of evolution of the topology of ANN while supervised learning is used
for learning [3,14]. Yet another way of using Genetic Algorithm is the
weight optimization technique [4,15,16], where a network is trained by
using GA without any gradient information. The authors report that
ANN becomes victim of the parameters of GA. Mutation and Crossover,
the main parameters of GA arise the encoding problem. The third way
of dealing optimization of neural network is to associate the gradient
information of the network while training with ANN learning rules. In[2]
Genetic Algorithm has been used to aséign/ﬁnd out the initial weight
set, which are subsequently processed using back-propagation

algorithm. The algorithm takes much time to select an optimized model.
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Although there are some numerical approximations to initialize various
parameters of ANN, it is not true in all cases. In a gist, it is a tedious job
for a programmer to select an efficient model for a particular problem
thus, increasing man-time. Keeping these in view, GA has been used
in this problem to select an optimized trained ANN model. In the
present paper, Genetic Algorithm has been used to optimize number of
hidden neurons, steepness of activation function, learning constant and
momentum factor to achieve the output. In other words, in the present
paper, Genetic Algorithm has been used continuously to optimize the
Artificial Neural Networks to achieve the best result. Hence, it is seen
that GA takes less computational time for training the network while

giving high accuracy.

Here, genetic algorithm has been used to optimize number of
hidden neurons, steepness of activation function, momentum factor
and learning constant while training the network. A network with a
single hidden layer has been chosen for the present problem, as it is
sufficient to solve most of the problems. The model can be generalized
for muiti hidden layer network. Initially, a set of networks, which is the
population size of genetic algorithm, is trained for chosen minimum
number of cyclesl/iterations by normal feed-forward back-propagation
algorithm. The fitness value of the individuals of the population is

calculated in terms of the lowest Absolute Error E,, obtained by back-

propagation algorithm for given minimum number of cycles/iteration.

Thus, the fitness function is expressed as:
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Fitness = 1 (5.4)
(I+E,)

Then applying genetic operators such as cross over and

mutation, the E,, error is further reduced up to an accepted error

tolerance. And, the fittest trained network is selected which has been
trained while optimizing those four ANN parameters. However, as the
network is trained by delta learning rule, the weights are adjusted

depending on the root mean squared error Egys which is as given

below,
1 N M )
Epgs === 2 (di ()~ y,(n)) (5.5)
2N n=1 k=1
where,

N = Number of patterns,
M = Number of outputs,

d,(n) = Desired output for K" output neuron for n'" training pattern,

¥, (n) = Output of K™ output neuron for n™ training pattern,

m
= Z WyZ, (n),
J=)

where,
m = Number of hidden neurons,

w, = Weight connected between /" hidden neuron and k" output

neuron,

w,, = Bias applied to K" neuron and,

z,(n) = Output of jth hidden neuron for n™ training pattern.

)
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The flow-chart of presented algorithm is shown in figure 5.8.
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Fig. 5.8 Flow Chart of Presented Algorithm

M
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One of the major disadvantages of microstrip patch antenna is
its inherent narrow bandwidth, which restricts its wide applications. A
number of techniques have been developed for band width
enhancement. Use of shorting pins is a simple and efficient method to
handle such problems[17]. By changing the number and location of the
shorting posts, the operating frequency can be tuned, and the
polarization can also be changed. Figure 5.9 represents the schematic
diagram of the single shorting post rectangular microstip antenna.
Depending on the position of the shorting post, the resonant frequency

of the rectangular microstrip antenna can be tuned.

While optimizing those four ANN parameters(number of hidden
neurons, steepness of activation function, momentum factor and
learning constant) by GA, the population size taken is 30 individuals,
and the maximum number of generations is set at 30, 000. The
probability of crossover is set at 0.7, while the probability of mutation is
equal to 0.01. The length of chromosome is 43 bits. For each set of
ANN parameters selected by GA, the network is set to train which
measures the fitness value in terms of error obtained after completion
of all cycles. Absolute error tolerance considered is 0.02 to give the
desired set of ANN parameters and once it is achieved, the network

training is continued till saturation.
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Shorting

4;/ 1
Post ------------------------------- . b

Feed Probe -

Fig. 5.9 Rectangular Microstrip Patch Antenna with a Shorting

Post

To train the neural network for evaluating the fitness value, the
backpropagation algorithm is used. The number of inputs and outputs
in the input layer and output layer respectively are fixed in the model.
Width of the patch(W), length of the patch(L), position of the shorting
post(L+), permittivity of the substrate(e;) and height of the substrate(h)
are taken as inputs to the networks and resonant frequency of the
patch is taken as the output. In[10], experimental data has been
provided for fixed r,=0.064 cm. The proposed technique has been
validated with the experimental data to see the accuracy of the method.
Therefore, it has been considered for fixed r,=0.064 cm only. However,
using equation 10 of[10], and varying r, more data sets can be
generated to incorporate the dependency of r,  But the validation shall

not be with experimental data. 18 patterns out of 22 patterns presented

e ]
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in[10,11] are taken for training the network. Four antennas are taken
for testing the best trained neural network model selected by GA. The

optimized parameters of ANN by applying GA are found as:

No. of hidden neurons 35
Steepness of activation function (A) 5.382164
Learning constant (n) 0.106955

Momentum factor (a) 0.58947

As far as selection of ANN parameters is concerned, it takes
much time by hit and triél method to get the best trained network as in
chapter 4.2. i.e. the simulation time is less but the man-time is
excessive while training a network by normal feed forward back
propagation algorithm. But using GA, this man-time has been reduced
to 3856 seconds in presented algorithm. For the sake of comparison of
training time, the network 5x20x1 trained by normal feed forward back-
propagation algorithm in chapter 4.2 having steepness of activation
function, lambda(A) = 1, learning constant(n) = 0.3 and, momentum
factor(a) = 0.1 may be considered. In that case, all the four parameters
were chosen by hit and trial method. The training time was found to be

889 seconds for an error tolerance of 0.05. The average error per

pattern for four patterns was found to be 0.0482 GHz.

But in case of this proposed algorithm, it takes only 41 seconds

(30, 000 training cycles) to train the network even for a less error

g OO
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tolerance of 0.02. And, the average error for those four antennas is
found to be 0.0332 GHz. Figure 5.10 shows the graph between number
of cycles and error for both the cases. As shown in Table. 5.3, the
results are more close to the experimental results compared to the

numerical and analytical results presented in[10].

Table 5.3 Resonant Frequency of a Microstrip Antenna Using

Single Shorting Pin Applying GA on ANN

L/ L w & h frexen f frBack- friprosent
ln In cm In cm In GHZ (Eqn- 10 propagation) Method)
cm of [4]) In GHz In GHz
In GHz | (Chapter
4.2)
0.1 6.2 9 255 0.16 1.594 1.64 1.619 1.607
0.3 |3.75(7.424| 2.2 10.1524 2.788 - 2.808 2.798
07 ] 6.2 9 255| 0.16 1.625 1.544 1.493 1.517
09 | 3.75(7.424| 2.2 |0.1524 3.13 - 3.014 3.028

* The radius of the metallic post (,) = 0.064cm

e ]
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Fig. 5.10 No. of Cycles vs. Error

GA has been applied on back-propagation algorithm to calculate the
resonant frequency of single shorting post tunable microstrip antenna.
The presented technique to calculate resonant frequency of shorted
microstrip antenna seems to be a simple, inexpensive and highly
accurate method. Accuracy can be improved by choosing smaller error
tolerance and/or training the network for more number of iterations
while evaluating the fitness value. Further improvement to the model
can be done by taking a multi layer network considering the number of
hidden layers as another parameter to be optimized. This model can be
used as a potential simulator technique for designing microstrip

antennas.
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5.5 Design of Knowledge-Based Continuous Genetic
Algorithm and Its Application to Microstrip Patch

Antenna Design and Analysis

Genetic Algorithm(GA) and Artificial Neural Networks(ANN)
have been combined in a number of ways. One of the limitations of
binary representation, in GA, is that the solution space depends on the
precision chosen for the variable (weight of ANN) value. A higher
precision increases the length of the chromosome. This reduces the
effectiveness of crossover. Therefore, Continuous GA(CGA)[18,19] is
preferred to train a neural network. The number of variables in CGA
depends on the architecture of ANN. Instead of using the default
Crossover, a new type of knowledge based recombination technique is
proposed here. Delta training rule of ANN is used for knowledge based

recombination[20].

Initially, a set of weight set is randomly picked up. This is called
as the initial population. The number of individuals/chromosomes gives
the population size. Then they are fed to evaluation function that gives
the fitness value of each individual. The fitness value is caiculated in

terms of the root mean squared error (Eguys). It is given by

Fitness = 1 (5.6)
(1+ Egys)

Proportionate selection is the most effective selection strategy.

Theoretically the higher is the fitness value of an individual, the more is

e e e ]
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the probability of being selected of that individual. Based on this
selection strategy, multiple copies of this population are selected for
new generation. In each generation one of the training patterns is

sequentially selected to compute the correction factor (Aw,) for each
weight(w, ) by using delta learning rule where, i represents the weight

number. Then a number less than the length of chromosome(cross-
point) is randomly chosen and the genes after the cross-point are
computed by adding these correction factors as follows

w =w, +Aw, (6.7)

Finally, mutation is performed by simply inserting the new gene.
This is done gene wise depending on the probability of mutation. Once
it completes mutation, next generation starts repeating selection,
knowledge-based recombination and mutation and it is continued till

termination criteria is met.

In the present work, a knowledge based continuous genetic algorithm
is used to train an artificial neural network to calculate resonant
frequency of rectangular microstrip antenna(RMA) with shorting walls.
The results obtained using present technique is close to experimental

results with in less time.

The schematic diagram of the microstrip antenna with shorting

wall is shown in figure 5.11.
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Fig. 5.11 Geometry of Shorted Wall Patch

The length(a), width(b), d/b, height(h) and permittivity of the dielectric
substrate (g) are taken as inputs to the network(figure 5.12) and

resonant frequency as the output of the network. The experimental

data are taken for training from [22].

Length
Width
Resonant
dfb Frequency

Height (h)

Permittivity

Fig. 5.12 Network Structure
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While training ANN by CGA, the population size taken is 20
individuals, and the maximum number of generations is set at 15, 000.
The probability of mutation is equal to 0.001. The length of
chromosome or, the number of weights is 181 real numbers. Using
present technique in a CGA the training time is 89 secs, while giving an
average error of 0.023 GHz per training pattern. The results are shown

in Tabie- 5.4.

Table 5.4. Resonant Frequency of a Microstrip Aritenna Using

Shorting Walls Applying CGA on ANN

a b d/b h & frexP) TriPresent
Inmm | Inmm In mm In GHz Method)
In GHz

3.06 3.06 0.65 4 1.08 21 2.129
3.06 6.12 0.75 2 1.08 2.20 2.118
3.06 6.12 0.65 5 1.08 2.15 2.163
2.4 1.6 0.78 3.2 2.32 2.89 2.890
1.9 1.26 0.81 0.8 4 2.95 2.949

5.6 Conclusion

In the first phase, this chapter presents the utility of GA in
artificial neural networks to select the initial weights for efficient training
of neural networks. By using this coupled technique, substantial

amount of accuracy is achieved with less computational time. It
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reduces the simulation time to approximately half then the case where
the initial weights are selected randomly. The proposed technique to
calculate resonant frequency of shorted microstrip antenna is a simple,
inexpensive and highly accurate method. Similar approach can also be
extended to calculate resonant frequency where more then one
shorting posts are present. This will reduce the experimental cost and
computational time to a greater extent while giving accurate results.

In the second phase, Hidden node redundancy has been
handled by taking different steepness of activation function for different
neuron. Applying two-point crossover or uniform crossover and
replacing simple GA by micro-GA[22-23], the computational time may
be reduced. Further improvement can be done by considering
architecture optimization.

In the third phase, GA is used to optimize the parameters of
ANN to reduce the man-time while selecting appropriate values.

Finally, Continuous GA is used to train ANN. To improve its
performance, a new crossover ie, Knowledge Based Crossover is
proposed which is based on Delta learning rule. It is seen that the
proposed recombination technique increases the convergence speed
giving higher accuracy. This method is applied to calculate resonant
frequency of rectangular microstrip antenna with shorting walls. The

results are close to experimental findings.

e S
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Chapter 6 Application of GA Coupled ANN on FDTD

6.1 Introduction

In the previous chapter, GA is coupled with ANN in different ways
to take advantages of their behavior. In this chapter, attempt is made to
use time series prediction capability of temporal neural networks on
FDTD, called NFDTD. Further, GA is coupled with the NFDTD and,

applied in the analysis of a microstrip antenna.

The Finite-Difference Time-Domain(FDTD) method, first applied by Yee in
1966[1], is a simple and elegant way to discretise the differential form of
Maxwell's equations. Yee used an electric-field(E) grid, which was offset
both spatially and temporally from a magnetic-field(H) grid, to obtain
update equations that yield the present fields throughout the
computational domain, in terms of the past fields. The update equations

are used in a leap-frog scheme.

As the cost of computation decreases and shortcomings of the original
FDTD implementation were alleviated, FDTD gained interest. It has
become an increasingly popular approach for analyzing the
electromagnetic performance of antennas and microstrip devices. With
transient excitation, it provides impedance and scattering parameters over
a wide frequency band with one calculation by applying Fast Fourier

Transformation(FFT). Reineix and Jecko[2] in 1989 were the first to apply

e e e
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the FDTD method to the analysis of microstrip antennas. Since then,
many different configurations such as parasitically coupled patches [3],
active antennas [4], two element arrays[5], and microstrip antenna
mounted on curved surfaces[6] have been successfully analyzed with this
approach. Wu etal considerably improved the modeling technique that
enabled it to accurately characterize mulitalyer patch antennas with
various feed structures such as microstrip, coaxial, and aperture coupled

feeds[7,8].

However, It is well known that FDTD method requires long computational
time for solving the resonant type of high-Q-passive structures. This is due
to the fact the algorithm is based on the leap-frog technique. The
computational cost shoots up in whole body simulation, computation of
fields with in missile guidance section, SAR calculation of human head in

presence of cell phone etc[9).

In this chapter Artificial Neural Network(FIR ANN)[8,10,11] is applied as a
nonlinear predictor to predict time series signal for speeding up the FDTD
simulations. The FIR NN is trained by temporal backpropagation learning
algorithm. Neural network based FDTD(NFDTD)[12-17] has been
implemented to calculate the parameters of patch antenna. One of the
main advantages of NFDTD is less storage requirement. But for less

number of time steps data collected from FDTD, the temporal neural

e —
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network training time can exceed the normal FDTD computing time. On
the other hand, the major disadvantage is that selection of parameters
requires much man-time. Hence, GA has been used with NFDTD to speed

up the simulation time while meeting the accuracy requirement.

6.2 Temporal Neural Networks

A temporal neural network is used for time series data prediction. A
time series data consist of a sequence of values changing with time.
Therefore, a memory structure is needed in the traditional neural network
to change it from static to dynamic. This memory structure is incorporated
in neural networks by introducing a Finite Impulse Response(FIR) in
between the weights. i.e., weights are replaced by FIRs. The FIR network
is feed forward neural network architecture with internal time delay
lines[4]. It is a modification of the basic multi-layer network in which each
weight is replaced by a FIR linear filter as shown in figure 6.1(a).

The coefficients of a synaptic FIR filter connecting neuron i to j is

specified by the vector

w, =[wj,(0),wﬂ(l),....,wﬂ(p)]r (6.1)
And,
x,(n) =[x,(n),x,(n-1),....,x, (n-p) (6.2)

denotes the vector of delayed states along the FIR.

Output of neuron j is given by[17]
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s,(n) = zp:wj,(k)x,(n—k) (6.3)

For the filter, the output y,(n) corresponds to a weighted sum of past

delayed values of the input as shown in figure 6.1(b).

x{n) x(n-1) x(n-2) x,(n-p)
O P q'l > q-l > q-l
wil0) (S wi(1) wi(2) w;i{p)
> » 4 — s(n)

Fig. 6.1 (a) Filter Model of FIR Network

Input FIR | S®@ vy(n)
x,(n) filter °0) —  y@m

b,
Bias

Fig. 6.1 (b) Output of a Neuron of FIR Network

The weights of the output layer neuron are updated as,
w,(n+1)=w, (n)+76,(n)x,(n) (6.4)
where, 7 is learning constant

aEtola
5](71):—71 (65)

J

—_——— — — ———————————————————————
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Epu =D E(n) (6.6)
E(n)= %Zef (n) (6.7)
e,(n)=d (n)-y,(n) (6.8)

d,(n)=Desired output at time stem n(Obtained from FDTD).

The weights of the hidden layer neurons are updated as,

w,(n+tl)=w (n)+nd (n— p)x,(n-p) (6.9)
8,(n-p)=¢'(v,(n-p))Y. Al (n- pyw, (6.10)
A, (n-p)=[6.(n- p),5,(n+1-p),......,5, (] (6.11)

Where, A is the set of all neurons whose inputs are fed by neuron jin a
forward manner.
P is the order of each synaptic FIR filter

v.denote induced local field of neuron r that belongs to the set A.

6.3 Application of NFDTD for the Calculation of S-

Parameter of Microstrip Antenna

Application of FDTD saw a great degree of pros and cons during
last decade. FDTD simulation time for higher frequency range is very
large. In this work a novel technique is chosen to reduce the simulation
time step. FDTD is coupled with ANN, that is why the name NFDTD. The
NFDTD is applied to calculate the S parameter of a rectangular microstrip

]
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antenna as shown in figure 6.2. The dimensions of the rectangular
microstrip antenna are Length 14.12 mm, Width 8.975 mm, height 2 mm,

dielectric constant 2.55 and the patch is resonating at 6.13 GHz.
z

4

Substrate

l

Ground Plane

Fig. 6.2 Rectangular Patch Antenna

An Artificial Neural Network(ANN) whose each weights are
replaced by coefficient of FIR filter can predict a time series easily[17].
The time series prediction capability of an FIR filter is well established,
where the current inputs depend upon previous inputs and outputs. In this
work the patch antenna is first simulated with help of FDTD Engine up to
certain time steps(till the transient die down). The information is collected
for that time steps, after the decay of transient, which in turn is fed to an

ANN at the observation points for training. Figure 6.3 shows flow-chart of

[ = ————————————
Department of Computer Science and Engineering, Tezpur University 136



Chapter 6 Application of GA Coupled ANN on FDTD

the NFDTD algorithm where as the architecture chosen for temporal

neural networks is shown in figure 6.4. @

Initialize all E and H field components to 0

¢

Excite with a Gaussian/CW Pulse

|P1

Compute new E field component values at interior.
. Compute new E field component values at boundary
using boundary condition

v

Compute new H field component values

'

Increment time loop n=n+1

Sufficient data
collected for
training Neural
Netwnrk

No

Extract training data Yes

V(nAt) and I(nAt)

Train FIR Neural Network 0

v

Calculate V(nAt) and I(nAt)

for further time steps Fig. 6.3. Flow chart of NFDTD

Algorithm

v

Calculate Z(D=I(H)/V(£)

v

—— — —————————————————————————]
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V(t-1)

I(t-1)

Fig. 6.4 FIR-Neural Network Architecture

The FDTD is similar to [19] except the boundary condition. A raised
Gaussian pulse is used for excitation. The cell size is 0.5mm. The time
step is 2.5 ps. Cells per wave length taken is 20. The dimension of the
computational domain is 68x58x24. Patch dimension is 28x18. The FDTD
is run up to 8000 time steps. After 1500 time steps from the beginning, for
the next 3000 time step ANN is trained. The FIR-ANN parameters such as
the number of hidden neurons, depth of memory, learning constant and
momentum factor are chosen by ﬁit and trial basis which depends purely
on experience of the programmer. The FIR-ANN parameters are, Depth of
memory in each FIR filters 60, No. of hidden neurons 40, Learning
constant 0.821, Momentum factor 0.0001. Accuracy of the model depends
upon the selection of those parameters. For the next 3500 time step the
results are extracted form FIR-ANN. The current at an observation point

with both the FDTD and NFDTD are as shown in figure 6.5.

e e —
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——  FDTD
—— NFDTD
k=
2 . &
5
&)
-8 1 1 1 1 1 1 1 —
0 1000 2000 3000 4000 5000 6000 7000 8000

Time Step

Fig. 6.5 No. of Time Step Vs. Current at an Observation Point

S parameters are studied using FDTD, NFDTD and with IE3D. The results

obtained using NFDTD are better in terms of simulation time as shown in

figure 6.6. The memory management of presented technique is better than

FDTD at the expense of the code complexity.
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10k
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FDTD
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Frequency(GHz)

Fig. 6.6 S-Parameter of the Microstrip Antenna

A reduction of 3 minutes is achieved for the above problem. The method is
suitable for the case where the simulation takes hours using FDTD. To
further reduce computational time parallel simulation of FIR-ANN and
FDTD can be done. This type of technique is employed to study Plant
response. Optimization techniques can also be employed to select
suitable architecture. The proposed technique will go a long way to use as

a CAD technique.

e B T RS
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6.4 GA Coupled NFDTD for Input Impedance Calculation

The objective of this section is to investigate the suitability of
incorporating optimizing technique, GA with NFDTD for characterization
of microstrip patch antenna. FIR-ANN has been used as a nonlinear
predictor to predict time series signal for speeding up the FDTD
simulations for calculating S-parameter of a microstrip patch antenna[17].
it has been observed that the man-time required finding a suitable
architecture and parameter of NFDTD much more than the normal
simulation time of FDTD engine. The NFDTD is approximating the
voltage and current across the co-axial feed at different time steps in the
co-axially fed square patch antenna for which the architecture and
parameters of NFDTD are optimized by Continuous Genetic Algorithm.
The GA-NFDTD is used to calculate the input impedance of the square
patch microstrip antenna and the result is compared with those of the
traditional FDTD, NFDTD and experimental result. It has been observed
that the GA-NFDTD provides an accurate result with considerable

reduction in computational time.

A coaxially fed square patch antenna as shown in figure 6.7, is considered
to validate the technique. The dimensions of the patch antenna are side
length L 10mm, dielectric constant( &) 2.33, height of the substrate(h)

1.57 mm. The antenna is fed at 0.25 mm from corner(x,=y,=0.25mm).

P ———— — ———————————
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z

T

; Substrate

Ground Plane

Fig. 6.7 Coaxially Fed Square Patch Antenna

To model the dimensions of the antenna, the space descritization is

chosen to be Ax = Ay = Az =0.25mm. The total mesh dimensions are

80x80x26. The time step used is Ar=0.48ps. The simulation is performed
for 10000 time steps. The experimental result for comparison is taken from
[20]. The antenna is fed using a z-directed electric field at (21 Ax, 21 Ay, 6
Az) by a raised cosine pulse. The internal source resistance R is kept at
50 ohm. Transient current and voltage for 500 steps from the FDTD
simulation are collected. The FIR based feed forward neural network is

trained with data set comprising current and voltage with 500 samples.

R e e S s TR,
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Genetic algorithm found the optimized architecture in 24
generations. In each generation GA runs FIR-ANN for 100 cycles. The
absolute error is set to 0.6. After obtaining the optimized architecture the

FIR-ANN continued to obtain an absolute error tolerance level of 0.5.

Start

v

Initial Population

Selection

————»| Crossover

Is Temporary

Mutati
Population Full? utation
y
Evaluation of Fitness Value .
by Training FIRANN <+—> Replace Population
Is
Termination
Criteria Met?
No

Yes

Fig. 6.8 Flow chart of GA-NFDTD Algorithm
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The operation of the scheme is as shown in the flow chart figure 6.8.

The parameters of GA are set to as:
Population size: 20
Probability of crossover(Pcross): 0.7
Probability of mutation(Pmyt): 0.001

The parameters found for training the FIR-ANN is as shown in table-6.1.

Table 6.1. Parameters of NFDTD Optimized by GA

Number of Hidden Neurons: 08

Depth of memory: 59
Learning Constant: 0.888519
Momentum factor: 0.0539589

The network is tested for 9500 samples. FFT is applied on 10, 000
samples(500 samples of FDTD and output of 9500 samples of NFDTD).
Figure 6.9 shows the absolute error vs epoch curve. Figure 6.10 and 6.11
shows the comparison of Impedance for both real and imaginary part of
FDTD, NFDTD and experimental result and GA-NFDTD result. GA-

NFDTD results are close to experimental results[2].

|
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Fig. 6.9 Absolute Error vs. Epochs
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Fig. 6.10 Comparison of Input Impedance(Real) of FDTD, NFDTD and

Measured Results of Square Patch Antenna
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Fig. 6.11 Comparison of Input Impedance(imaginary) of FDTD,

NFDTD and Measured Results of Square Patch Antenna

The purpose of this work is to establish the suitability of ANN and
GA with FDTD for analysis of electromagnetic problems. A co-axial feed
square patch antenna is used to explain the implementation procedure.
FDTD results for 500 time steps have been considered for training the
FIR-ANN(NFDTD). GA decides the architecture and parameters of
NFDTD by setting minimum training cycles. Once the parameters are
decided, the network is further trained to reduce the error. Finally, for
remaining time steps the current and voltage are calculated using trained-
NFDTD. This technigue will have immense potential when the number of
time steps is more and for high-Q passive structures. One of the main

advantages of NFDTD is storage requirement. When, the number of time

]
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steps is few, the training time can exceed the normal FDTD computing
time. On the other hand, the major disadvantage is that selection of
parameters requires too much man time. Hence, use of GA with NFDTD

speeds up the simulation time[21].

6.5 Conclusion

In this chapter, time reduction is achieved for solving FDTD by using FIR-
ANN. The method is suitable for the case where the simulation takes
hours using FDTD. To further reduce computational time parallel
simulation of FIR-ANN and FDTD can be done. An optimization technique
can also be used to make the system faster by selecting proper
architecture of the neural networks. This is also done in second phase of
this chapter and applied the same to a square patch microstrip antenna.
The purpose of this work is to establish the suitability of ANN and GA with
FDTD for analysis of electromagnetic problems in time domain. FDTD
results for 500 time steps have been considered for training the FIR-
ANN(NFDTD). GA decides the architecture and parameters of NFDTD by
setting minimum training cycles. Once the parameters are decided, the
network is further trained to reduce the error. Finally, for remaining time
steps, the current and voltage are calculated using trained-NFDTD. This
technique will have immense potential when the number of time steps is

more and for high-Q passive structures. The technique can further be

- ————— —— —— —— —————— ————
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improved by replacing GA by faster s'oft-computing algorithms like Particle

Swarm Optimization(PSO), Bacterial Foraging Optimization(BFO) etc.
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7.1 Conclusion

Recent trends of miniaturized microstrip antenna design and
computational electromagnetic analysis demands efficient soft computing
tools that give high accuracy with less computational time. in this scenario,
genetic algorithm, neural networks and finite difference time domain
technique have become good tools for the researchers. In this thesis,
these tools have been used efficiently for the design of microstrip

antennas.

In chapter 1, review of microstrip antenna analysis, genetic
algorithm and artificial neural networks is presented. In chapter 2, detail of
genetic algorithm and artificial neural network is described. In chapter 3,
genetic algorithm has been used to design different regular structure
microstrip antennas. In chapter 4, neural networks has been used to find
out the resonant frequency of single shorting post microstrip antenna and
also, a tunnel-based neural networks is used to find the radiation pattern
of dual-band E-shaped microstrip antenna. Further, neural networks is
used as fitness function of genetic algorithm and the proposed technique
is applied to calculate resonant frequency of rectangular microstrip

antenna on thick substrate.

In chapter 5, genetic algorithm is used to train artificial neural
networks in a number of ways. First, genetic algorithm is used to find the
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initial weight set of neural networks. The proposed method is applied to
find out resonant frequency of microstrip antenna. Then, the problem of
competing convention is handled by choosing different steepness of
activation function for different neuron while training. Genetic algorithm is
also used to select the neural networks parameters while training by
backpropagation algorithm. These methods have been used to find out

resonant frequencies of microstrip antennas.

In chapter 6, a temporal neural networks is used to predict the time
series data generated during simulation of finite difference time domain
technique. This has been used to calculate s-parameter of microstrip
antenna. Then dgenetic algorithm is incorporated with the proposed
algorithm to select the FIR-neural network parameters during training. This

method is used to calculate input impedance of microstrip antennas.

This thesis describes the benefits of soft computing fusion and its
application to antenna design. The reduction in computational time,
enhanced accuracy and simplicity are the main features of this thesis
which are highly relevant in the present scenario of miniaturization and

portability.

 — ——————————————————
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7.2 Future Scope

In this thesis, three computational techniques are used separately
as well as by coupling them with one another. Therefo;e, this work can be
extended by improving in two ways, ie by developing them individually and
coupling them in more efficient ways. In case of design part of microstrip
antennas, new better empirical formulas may be formulated that can give
better accuracy while using those as fitness function of genetic algorithm.
Genetic algorithm may be improved by taking new crossover and mutation
operators in continuous micro-genetic algorithms. While coupling with
neural networks and finite difference time domain technique, faster
techniques like particle swarm optimization, bacteria foraging optimization
etc. may be used. The proposed methods may be applied in wide range
applications like calculation of radiation pattern, gain etc. of microstrip
antennas. Apart from regular single element, some irregular structures
may be investigated and antenna arrays may also be designed and

analyzed by using proposed techniques.
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ABSTRACT: In this paper, the genetic algorithm (GA) has been ap-
phied to calculate the optimized length and width of rectangular micro-
strip antennas The inputs to the problem are the desired resonant fre-
quency, dielectric constant, and thickness of the substrate, the outputs
are the optimized length and width The antennas considered are electrt
cally thin Method of moments (MoM) based IE3D software from Zea-
land Inc, USA, and experimental results are used to validate the GA-
based code The results are in good agreement © 2003 Wiley
Penodicals, Inc Microwave Opt Technol Lett 37 431-433, 2003,
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INTRODUCTION

The rectangular mucrostrip antenna, due to 1ts simple design fea-
tures, 1s stull currently popular 1n industrnial and commercial applt-
cations However, due to its inherent narrow bandwidth, the res-
onant frequency or dimension of the patch antenna must be
predicted accurately In this paper, the genetic algorithm (GA) 1s
applied 1n order to calculate the design parameters such as length
and width of these antennas

GA are search techmques based on biological genetics In
recent years, GAs have gained popularity in electromagnetic ap-
plications, 1n which the number of vanables tend to be higher, for
their easy searching process, global optimahty, searching-space
independence, and probabilistic nature [1] GAs are capable of
optimizing nonlinear multt-modal functions of many vanables
They require no denvative information and they robustly find
global or very strong local optima Numerical expenments indicate
that by using GA good soluuons for difficult antennas can be
obtained, quickly, comparable even to the time necessary for
analytical methods such as steepest descent

Figure 1 Rectangular patch antenna [Color figure can be viewed 1n the
online 1ssue, which 1s available at www interscience wiley com ]

The length L, width W, height A, and feed-point location a for
a rectangular microstnp antenna are shown in Figure 1 The fitness
function used 1n GA to optimuze the rectangular patch 1s taken
from [2]

PROBLEM FORMULATION AND DEVELOPMENT OF THE
MODEL
GA performs 1ts searching process via a population-to-population
(instead of point-to-point) search The most favored advantage of
GA 15 1ts parallel architecture, which uses probabilistic and deter-
mumstic rules A member 1n a population, called a chromosome, 15
represented by a binary string compnsed of 0, 1 bits Buts of the
chromosome are randomly selected and the length of bit strings 1s
defined 1n relevance An mitial randomly generated population 1s
required at first in order to start the methodology From the imtial
population, a child population 1s born and guided by three opera-
tors such as reproduction, crossover, and mutation Newborn child
members are judged by their fitness function values The fitness
function 1s formulated as per the ultimate goal concened These
child members act as parents 1n the next iteration In GA, the
iteration 1s called a generation A detailed analysis of the methods
and process of GA can be found 1n [3]

The resonant frequency of the rectangular microstrip antenna s

2 —— 4B{S(L1)]

dB

5§ S7 59 61 63 65 67
Frequeny (GHz)

Figure 2 Return loss plot for antenna no |

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol 37, No 86, June 20 2003 431



55 57 59 61 63 65 67
Frequency {(GHz)
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TRy TN o

where ¢ 18 the velocity of the electromagnetic waves 1n free space
and e,(W) 1s the effective dielectric constant, which 1s given by

(W) = g, +1 + g, — 1 )
T T T T o T tomw® @
and AW 1s the line extension and 1s given by
. + 0 300)(W/h + 0 264
aw =0 412 24W) i L

[e W) — 0 258](W/h + 0 813)

Eq (1) 1s used as the fitness function The two independent
vanables are the length L and width W The population size 1s
taken to be 20 individuals, and 200 generations are produced The
probability of crossover 1s set at 025, while the probability of

—— dJB[5(1.1)]

-10
dB

-15

-25 . .
4 45 5 55 6

Frequency (GHz)

Figure 4 Return loss plot for antenna no 5

—a— Port 1

[] 45 5 L] 6
Frequency (GHz)

Figure 5 VSWR plot for antenna no 5

mutation 1s equal to 0 01 Thus, 1t 1s suitable for the calculation of
the resonant frequencies for antenna elements with h =<
0 08151, Hence, 1n this paper, we have used Eq (1) for design-
ing antennas with thin substrates

Resonant frequency f,, dielectric constant ¢,, and thickness of
the substrate & are given as inputs to GA, which gives the opti-
muzed values for the length and width of the antennas The opti-
muzed lengths L obtained using GA are 1n good agreement with the
expenimental results, as listed in column VII of Table 1 Using
these calculated parameters (L, W, h, and &,) in IE3D simulation
software, resonant frequencies, which almost match the input
resonant frequencies considered, are calculated, thus, validating
the results of GA The theoretical results obtained by GA and
results obtained by the IE3D software are listed in Table | for
seven different rectangular microstrip antennae

CONCLUSION

Using simultaneous vanation of the length and width of a micros-
trip antenna to obtain optimized length and width, 1n order calcu-
laung the resonant frequency of said antenna that will match the
experimental resonant frequency, 1s a computationally tedious and
time-consuming process As seen from Table 1, by using GA, this
can be achieved without much computational ttme In this paper,
only seven antennas are optimuzed to validate the code developed
using GA IE3D software and expenimental results are used to
compare and validate the results obtained by GA The return-loss
plot and VSWR plot obtained using the IE3D simulation package
for two antennas are also presented These results are in good
agreement with those of expenmental results Thus, apphication of
GA to calculate the optimuzed length and width of mcrostrnp
antennas seems to be an accurate and simple method This wall
contnbute to helping facilitate 1improved antenna designs, espe-
cially for small pack antenna systems where, due to space hmita-
tions, both length and wadth are to be adjusted simultaneously 1n
order to achieve the required resonant frequency
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TABLE 1 Resonant Frequency Results and Dimensions for Rectangular Microstrip Antennae

VI vl Vi
n 11 v Calculated Width  Expenmental IE3D Simulated Resonant
Theoretical Resonant  Permuttivity of Height (2)  Calculated Length (W) in mm Length (L) Frequency (f,) in GHz
1 Frequency (f,) Substrate (¢,) mmmas (L) in mm Using Using GA as m mm from  Using Calculated (L and
Antenna No GHz as Input as Input Input GA as Qutput Qutput 1] Wasin V and VI)
1 62 255 20 14382 8975 14 12 613
2 845 222 017 11867 9456 1185 832
3 774 222 017 19 337 129 76
4 397 222 079 25306 13 007 25 3N
S 506 233 157 184 186 498
6 56 255 163 16 07 1334 1621 53
7 4805 233 157 19573 21 696 196 46

The return loss and VSWR plots calculated using IE3D Simulation Software for antenna number 1 are shown i Figs 2 and 3, respectively, Figs 4 and 5

show that of antenna number 5
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ABSTRACT: Having obtained the eigenvalue and the modal field by
using the Ritz~Galerkin method, we quit the cladding-field expression in
the form of a Laguerre-Gaussian function and reconstruct it with a
modified Bessel function. The accuracy of the cladding field is thus im-
proved We also show its apphication to the calculation of the coupling
coefficient ® 2003 Wiley Pertodicals, Inc Microwave Opt Technol Lett
37 433-436, 2003, Published online 1n Wiley InterScience (www
interscience wiley com) DOI 10 1002/mop 10941

Key words: opncal fibers, modal fields, Laguerre-Gauss expansion,
coupling coefficient

1. INTRODUCTION

In order to properly design and use an optical-fiber link, the
propagation charactenstics and field distnibutions of the propagat-
ing modes 1n the optical fiber must be known An accurate de-
scription of the transverse field of the mode propagating in such

Contract grant sponsor Nautional Natural Science Foundauon of China
(60277025)

fibers 1s essential for charactensation and the evaluation of splice
loss, microbending loss, coupling coefficients, and so on

Except for a few special refractive index profile shapes that
allow explictt field solutions, the gurded modes capable of prop-
agating along the fiber must be determined by approximate meth-
ods, such as the perturbation method [1, 2], the WKB method (3,
4] or the vanational method [5-10], which are reviewed n [11]

The perturbation method gives good results only if the refrac-
tive index profile of the fiber 1s very close to that of the fiber for
which the exact modes are analytically known, while the WKB
method gives accurate resuits only for multumode fibers Among
vanational methods, approximation {5] 1s very simple, but its
accuracy 1s not suffictently high, especially for modal fields Other
analytical formulas, such as the Gaussian-exponential approxima-
tion [7, 9, 10] and the Gaussian-Hankel approximation (8], have
been shown to give quite accurate results for both the fundamental
mode field and the propagation constant at low V values However,
they need two-parameter optimusation and cannot be applied to
multimode optical fibers

There are numencal methods, for example, Rayleign-Ruz
method ([12], power-senes expansion method [13], fimte element
method [14], staircase approximation method (15), and so on
Though numencal methods are exact methods, they usually are
cumbersome and take more computation ime The Ritz—Galerkin
method [16] or vaniational method [17], using Laguerre—Gaussian
basis function, seem to have both ments of simplhcity and accu-
racy Because these basis functions approximate the electromag-
netic field very well, only a few terms are needed Besides, finding
the eigenvalues and eigenvactors can be easily done by a routine
program for a square matrix However, there 1s one drawback the
Gaussian function behavior of the basis function allows the modal
field n cladding to decay too quickly, thus 1t 1s only a good
approximation n the core region [18] Although the modal field in
the core region 1s accurate enough, if a few terms used, the
accuracy of the cladding field 1s poor Certainly, we can add more
terms, but this will require more computation time and the con-
vergence of the cladding field will occur much more slowly with
Increasing terms

In this paper, we present an improvement on the Ritz—Galerkin
method by expressing the core field with a Laguerre-Gaussian
function and the cladding field with a modified Bessel function,
respectively Having obtained the eigenvalue and the modal field
by using the Rutz-Galerkin method, we quit the cladding field
expression 1n the form of a Laguerre—Gausstan function and re-
construct 1t with a modified Bessel function In this way, the
accuracy for cladding field is improved and the cladding field
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ABSTRACT: Both genetic algorithms (GAs) and artificial neural net-
works (ANNs) have been used in the field of computational electromag-
netics as the most powerful optimuzing tools In this paper, a simple and
efficient method 1s presented to handle the problem of competing con-
vention while training an ANN by using a GA This techmique 1s applied
to calculate the resonant frequency of a thick-substrate rectangular mi-
crostrip antenna (RMA) The training time 1s less than that of a normal
feed-forward backpropagation algonthm. The measured results are in very
good agreement with experimental results © 2004 Wiley Penodicals, Inc
Microwave Opt Technol Lett 41 313-315, 2004, Pubhished online 1n
Wiley InterScience (www interscience wiley com) DOI 10 1002/mop
20126

Key words: genetic algorithm, artificial neural networks, problem of
compeling conventions, microstrip antenna, resonant frequency

1. INTRODUCTION

A genetic algorithm (GA) 15 a global search method based on a
natural-selection procedure that consists of genetic operators such
as selection, crossover, and mutatton GA optimizers are particu-
larly effective in a uigh-dimenston, multimodal function, in which
the number of vanables tends to be higher, for their easy searching
process A GA performs 1ts searching process via population-to-
population (instead of point-to-point) search GAs are robust due
to their parallel architecture They use probabilistic and determin-
istic rules A member 1n a population, called a chromosome, 1s
represented by a binary stning compnsing 0, 1 bits Bits of the
chromosome are randomly selected and the length of bit strings 1s
defined according to relevance An imuial randomly generated
population 1s required, at first, to start the methodology From the
mitial population, a child population guided by three operators
(such as reproduction, crossover, and mutation) 1s born Newborn
child members are judged by their fitness-function values These
child members act as parents 1n the next iteration {1, 2}

Since the last decade, application of ANNs 1s taking place n
electromagnetics due to their versatile features and ease of imple-
mentation [3, 4] A normal feed-forward backpropagation algo-
rithm (5] 1s widely used 1n electromagnetic applications because of
its ease of implementation and low computational cost However,
selection of a suitable architecture and parameters such as the
number of hidden neurons, steepness of activation function, mo-
mentum factor, learning constant, and so forth 1s a cumbersome
job Hence, combination of GAs and ANNs 1n vanous ways 15 a
current problem of research GAs are applied to the design of
ANNSs 1n a number of areas {6] Most importantly, they are applied
in weight optumuzation and architecture optimization But, espe-

cially, for long chromosomes, the problem of competing conven-
tions almost destroys the crossover operator, the most important
operator mn a GA This 1s why 1t takes a huge amount of compu-
tattonal ume to train a neural network using a GA However, 1n
this paper, an attempt has been made to overcome this imutation

2. PRESENT APPROACH

When a GA 1s used for weight optimuzation, its performance 1s
gradually reduced with an increase in chromosome length (7] This
1s because of the permutanon problem, namely, hdden node
redundancy and hidden layer redundancy Literature shows that,
for a network with n hidden nodes, there are 27 n' functionally
equivalent but structurally different representations, if the activa-
tion function 1s odd, and otherwise there are n! different represen-
tations This increases the solution space, which leads to a high
computational cost However, using an even activation funcnon,
hidden node redundancy can be overcome To handle the ludden
layer redundancy, either 1t 1s 1gnored, or the crossover 1s removed
from the GA, which 1s not the correct solution [8]

In this paper, a GA has been used for connection-weight
determnation, taking the hidden layer redundancy into consider-
attion If a hudden neuron, with all its incomung and outgoing
connections, 1s exchanged with another neuron with all its incom-
ing and outgoing connections, we have a different structural rep-
resentation of the ANN However, the ANN remains functionally
the same, which results in hidden layer redundancy To make them
functionally different, the network should be chosen so that, for the
same 1nput, each node would give a different output after applying
the activation function This 1s possible if we choose different
values for the acuvation-function steepness A for each node

3. RESONANT FREQUENCY OF RMA ON THICK
SUBSTRATE

Because of advantages like low profile, low cost, light weight,
conformal structure, and ease of fabnication, the rectangular mi-
crostrip antenna (RMA) has become popular n industrial applica-
wons The length L, width W, height A, permituvity ¢, of the
substrate, and the feed-point location a for a typical thick RMA are
shown n the Figure | Since 1ts bandwidth 1s narrow, the resonant
frequency must be predicted accurately The simplest method to
increase the bandwidth 1s to increase the substrate thickness
Existing formulas can the predict resonant frequency with good

4
Substrate
v

Feed

Point ;
Width

Leagth
Height
Groungd Plane

Figure 1 Rectangular microstnp antenna on thick substrate [Color fig-
ure can be viewed in the online issue, which is available at www
interscience wiley com )
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Figure 2 Network structure. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

accuracy when the antenna substrates are electrically thin [9, 10].
But when the thickness increases, the predicted resonant frequency
diverges from its experimental value. ANNs are well suited for
such a situation.

The resonant frequency of a microstrip patch antenna depends
mainly on its length, width, thickness, feed-point location, and
permittivity of the substrate. Thus, these five parameters are taken
as input and the resonant frequency f, is considered as the target
output for training the designed neural network, The 5 X 20 X 1
network is shown in Figure 2.

A GA has been used to find the optimized weight set. A
logarithmic sigmoid function is used as activation function, which
is expressed as

1
Ax) = {37 (N

where A is the steepness of activation function, chosen separately
for different hidden nodes.

The Egyys error of a multilayer neural network that gives the
fitness value, can be written as

1
E(w) =3 ( 2 > (ukx,) - d,,(xp))2>, @
p=1P g=1N

where 4/ is the output of J® node in layer I, w; . is the weight
connecting the /™ node in layer  to the £ node in layer i~1, x
is the p™ training sample, d,(x,) is the desired response of the j'ﬂ
output node for the p' training sample, N’ is the number of nodes
in layer I, I is the number of layers, and p is the number of training
patterns. In the above notation, u’, = 1 and W,l.o represents the bias
weights, where [ # 1.

The population size is taken 30 individuals. It took 1395
generations to achieve the accepted error tolerance. The probabil-
ity of crossover is set at 0.30, while the probability of mutation is
equal to 0.01. The algorithm presented in [1] is the GA used to
train the network. Twelve out of 17 patterns from {9] are taken for
traiming and the rest are taken to test the result.

4. NUMERICAL RESULTS AND DISCUSSION

While training ANNs by using a GA and keeping the steepness of
activation (with A = 1) fixed, the error becomes saturated above

14} -~ Different lambda (A)
—— Fixed lambda (3=1)

12

D4} 4

0.2 5

-
20 400 600 800 1000 1200
No. of Generations

Figure 3 Number of generations vs. error. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

the desired error tolerance after a certain number of generations of
the GA. By taking different values of steepness of activation A for
different hidden nodes, the error continues to be reduced with the
number of generations. Figure 3 shows the graph of the number of
generations versus Eg,, error for both cases.

The average error per pattern for the five patterns is found to be
0.02257 GHz. The time taken for training the network is 122 s. The
same network is trained by a normal feed-forward backpropaga-
tion algorithm. The network parameters used are A = 1, learning
constant 11 = 0.08, and momentum factor @ = 0.205.

The average error per pattern for those five patterns is found to
be 0.0457 GHz, whereas the training time is 181 s. The graph of
the number of training cycles versus Eg,, error for normal feed-
forward backpropagation is shown in Figure 4.

A comparison of the results obtained by using the present
method, experimental resonant frequency, and normal feed-for-
ward backpropagation is shown in Table 1.

5. CONCLUSION

In this paper, the connection weights of an ANN are optimized by
using a GA, taking the competing-convention problem, specifi-
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Figure 4 Number of cycles vs. error. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.}
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TABLE 1 Comparison of the Resuilts of Using the Present
Method, the Feed-Forward Backpropagation Algorithm, and
Experimental Resonant Frequency

Experimental Resonant
Resonant Resonant Frequency (GHz)
Frequency Frequency (GHyz) (Backpropagation
Patch No (GHz) (Present Method) Algonthm)
1 5 820 582515 579649
2 4 660 467353 452594
3 3980 395329 393908
4 3900 3 87665 391498
5 2980 302413 299279

cally, the hidden-node redundancy into consideration In a gradi-
ent-descent feed-forward backpropagation method, there 18 a
chance that the solution may be trapped by local mmmma, which
does not happen 1n the case of the GA Hence, the present algo-
nthm of traming ANNs by using a GA takes advantage of the
population-to-population GA search Hidden-node redundancy has
been handled by taking different values of the steepness of acti-
vation function Applying two-point crossover or umiform cross-
over and replacing sumple the GA by a micro-GA, the computa-
tional ime may be reduced Further improvement can be done by
considering architecture optimization This model can be used as a
CAD mode] for antenna design
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ABSTRACT: The derivation of a new condition for characternizing iso-
tropic deelectric-magnetic materials exhubiting negative phase velocity,
and the equivalence of that condition with previously derived conditions,
are presented © 2004 Wiley Penodicals, Inc Microwave Opt Technol
Lett 41 315-316, 2004, Published online 1n Wiley InterScience (www
interscience wiley com) DOI 10 1002/mop 20127
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1. INTRODUCTION

Nondissipative media with both simultaneously negative permit-
tivity and permeability were first invesugated by Veselago [1] in
1968 These media support electromagnetic-wave propagation, 1n
which the phase velocity 1s antiparallel to the direction of energy
flow, and other unusual electromagnetic effects, such as the rever-
sal of the Doppler effect and Cerenkov radiation After the publi-
cation of Veselago’s work, more than three decades went by before
the actual realization of artificial materials that are effectively
1sotropic, homogeneous, and possess negative real permittivity and
permeability 1n some frequency range (2, 3]

A general condition for the constitutive parameters of an 1so-
tropic dielectric-magnetic medium to have phase velocity directed
oppositely to the power flow, when dissipation 1s included 1n the
analysis, was reported about two years ago [4] Most importantly,
according to that condition, the real parts of both the permittivity
and the permeability need not be both negative

In this paper, we denve a new condition for charactenzing
1sotropic matenals with negative phase velocity Although this
new condition looks very different from 1ts predecessor [4], we
also show the equivalence between both conditions

2. THE NEW CONDITION
Let us consider a linear isotropic dielectric-magnetic medium
characterized by complex-valued relative permuttivity and relative
permeability scalars ¢ = ¢, + 1g, and p = p, + u, An
exp(—iwt) ume dependence 1s implicit, with @ as the angular
frequency

The wave equation gives the square of the complex-valued
refractive index n = n, + in, as

nt=gu > nl—nl+unn = e, — e (e ¥ pE)
(O]

The sign of n, gives the phase-velocity direction, whereas the sign
of the real part of n/u, given by

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Val 41, No 4, May 20 2004 315



INVERTED L-SHAPED AND
PARASITICALLY COUPLED INVERTED
L-SHAPED MICROSTRIP PATCH
ANTENNAS FOR WIDE BANDWIDTH

D. K. Neog,'! S. S. Pattnaik,2 M. Dutta,® S. Devi,? B. Khuntia,?
and D. C. Panda?

' Dhemaji College

Dhemaji

Assam, Pin. 787 057, india

2 NERIST, Nirjuli-791 109, India

3 Tezpur Central University

Assam, India

Received 23 December 2003

ABSTRACT: Coax-fed inverted L-shaped microstrip antennas and par-
asitically coupled inverted L-microstrip antennas are presented. The
inverted L-shaped microstrip gives an impedance bandwidth of
30.6%, which is increased to 33.7% by parasitic coupling. The band-
width has been achieved with a substrate thickness of 2 mm. Radiation
patterns and gains are also studied and presented. © 2004 Wiley Peri-
odicals, Inc. Microwave Opt Technol Lett 42: 190-192, 2004;
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/mop.20248

Key words: inverted L-microstrip antenna; parasitically coupled; radia-
tion pattern; wide bandwidth

INTRODUCTION
Microstrip antennas in various forms and geometries have been exten-
sively used in many applications {1, 2]. In the recent past, significant work
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Figure 1 (a) Inverted L-shaped microstrip antenna; (b) parasitic coupled
inverted L-shaped microstrip antenna

Impedance in ohm
—— 5{1,1)

Figure 2 Smith Chart plot of (a) inverted L-shaped microstrip patch
antenna; (b) parasitically coupled inverted L-shaped microstrip patch an-
tenna. {Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

has been reported on small size, broadband width, and suitable polariza-
tion of microstrip antennas for wireless communication systems. To
enlarge the inherent narrowband width of microstrip patch antennas, a
large number of techniques have been proposed. The use of thick sub-
strate, stacking, and so on, is among the acceptable techniques in broad-
band design. In this paper, the authors have successfully generated a
wide-bandwidth 30.6% impedance bandwidth and a 26.5% pattern band-
width by the asymmetric feeding of an inverted L-microstrip patch
antenna in its narrow side. The large bandwidth has been achieved on a
substrate thickness of 2 mm (thin substrate) without any stacking or
parasitic elements. Upon seeing the current distribution of the inverted
L-microstrip patch, a parasitic strip is placed on the side of the notched
edge to compensate the reactance component in order to generate further
wideband width. An impedance bandwidth of 33.7% and a pattern
bandwidth of 33.7% are achieved by this method while occupyng a
space similar to that of a rectangular microstrip antenna, The size of the
antenna is also 1/3™ of the wavelength.

DESCRIPTION OF ANTENNAS

Figure 1(a) depicts the geometry of the inverted L-microstrip
antenna, which is fed at a point (x, = 3.8 mm, y, = 3.2 mm),
whereas Figure 1(b) represents the parasitically coupled inverted
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Figure 3 VSWR plot of (a) inverted L-shaped microstnp patch antenna;
(b) parasitically coupled inverted L-shaped microstrip patch antenna.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com ]

L-microstrip patch antenna with a feed pomnt at (x, = 3.8 mm,
¥y = 3.2 mm).

The thickness of the substrate used is 2 mm, while £, = 2.2.
The value of L, and W, are the optimized values selected based on
current distribution. The feed point is highly dependent on L, and
W,. The width of the parasitic strip and spacing from the main
patch are selected based upon the current distribution on the patch.

RESULTS AND DISCUSSION

Figures 2(a) and 2(b) show the Smuth-chart plots of the inverted L-
microstrip patch antenna and parasitically coupled inverted L-microstrip
patch antenna, respectively, whereas Figures 3(a) and 3(b) show the
VSWR plots. As seen from the figures, the inverted L-microstnp antenna
offers an impedance bandwidth of 3.35 GHz, while the parasitically
coupled inverted L-microstrip patch antenna offers 3.60 GHz. It is seen
that the probe dimension affects impedance. The practical radius of a
central conductor of a SMA connector 15 0.6 mm. In the present problem,
we present our result using this value.

The selection of parasitic element is based on the idea of
offering capacitive reactance in order to compensate for the induc-
tive reactance due to the feeding probe, thus, increasing the band-

width. The current distributions are calculated using the method of
moments (MoM). For viewing the pattern bandwidth, these anten-
nas are simulated at different frequencies n order to study the
radiation pattemns in both azimuth and elevation planes. Figures
4(2) and 4(b) represent the azimuth radiation pattern and elevation
radiation pattern of the inverted L-microstrip patch antenna, re-
spectively. The 3-dB pattern bandwidth is calculated to be 2.5
GHz. The azimuth and elevation patterns of the parasitically cou-
pled inverted L-microstnp patch antenna are plotted in Figures
5(a) and 5(b), respectively. The 3-dB pattern bandwidth is found to
be 3.61 GHz. The simulations are carried out using IE3D software
by Zeeland, Inc. The linear gain of the inverted L-microstrip
antenna is calculated to be 5.35 dB1, while that for parasitically
coupled one is 5.71 dB1. The large bandwidth has been achieved
with a substrate of 2-mm thickness compared to that of the L-
shaped plate antenna (10 mm) [3].
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Figure 4 (a) Azimuth pattern of inverted L-shaped mucrostrip patch
antenna, (b) elevation pattern of inverted L-shaped microstrip patch an-
tenna. {Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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Figure 5 (a) Azimuth pattern of parasitically coupled inverted L-shaped
microstrip patch antenna; (b) elevation pattern of parasitically coupled
inverted L-shaped microstrip patch antenna. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

CONCLUSION

In this paper, the impedance and radiation characteristics of coax-
fed inverted-L and parasitically coupled inverted-L microstrip
patch antennas have been investigated. The impedance plots and
radiation patterns show that these antennas exhibit wider band-
width. The study of current distribution has provided insights
regarding the technique of choosing the shape (width) and spacing
of the parasitic element and hence increasing the efficiency and
bandwidth. The inverted L-shaped microstrip patch antenna with
simple structure and large bandwidth seems to be a potential
radiator for wireless communication and for biomedical applica-
tions where large bandwidth is an essential requirement.
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ABSTRACT: A 32-channel arrayed-waveguide-grating (AWG) multi-
plexer operating around 1550 nm has been designed and fabricated us-
ing synthesized cross-linkable fluorinated poly (ether ether ketone). The
channel spacing is 0.8 nm (100 GHz). The insertion loss of the multi-
plexer is 12-17 dB and the cross talk is less than —20 dB. © 2004
Wiley Periodicals, Inc. Microwave Opt Technol Lett 42: 192-196, 2004;
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/mop.20249

Key words: arrayed waveguide grating; wavelength division multiplex-
ing (WDM); fluorinated poly (ether ether ketone); reaction ion etching

1. INTRODUCTION

It is inevitable that transmission capacity will increase in highly
developed telecommunication systems. The wavelength-division
multiplexing (WDM) system has become the preferred technology
for further increasing the capacity of the optical-fiber telecommu-
nication infrastructure (1, 2]. The arrayed-waveguide-grating
(AWG) multiplexer is a key component for wavelength-division
multiplexing (WDM) systems [3, 4] because both add-drop mul-
tiplexing and wavelength routing require its use. AWG multiplex-
ers have been fabricated using silicas [5], semiconductors (InP)
[6], and polymers [7, 8). Among them, a polymeric AWG multi-
plexer has recently attracted much attention due to its low-cost
processing and a variety of optical functions [9].

However, polymers have high optical loss in the infrared region
due to the carbon-hydrogen (C-H) bond vibrational absorption. By
modifying a molecule via the substitution of fluorine or deuterium
for hydrogen in the C-H greatly reduces optical loss [10). To
overcome the abovementioned problems, we designed and synthe-
sized cross-linkable fluorinated poly (ether ether ketone) (FPEEK)
to fabricate the AWG multiplexer.

The multiplexer is composed of an arrayed waveguide grating,
input-output (1-O) waveguides, and focusing-slab waveguides. The
AWG consists of regularly arranged waveguides joining the two
slabs, with the lengths of adjacent waveguides differing by a
constant value. The length difference results in wavelength-depen-
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ABSTRACT: In this article, an efficient application of a genetic algorithm (GA) in an artificial
neural network (ANN) to calculate the resonant frequency of a coaxially-fed tunable rectan-
gular microstrip-patch antenna is presented. For a normal feed-forward back-propagation
algorithm, with a compromise between time and accuracy, it is difficult to train the network
to achieve an acceptable error tolerance. The selection of suitable parameters of ANNs in a
feed-forward network leads to a high number of man-hours necessary to train a network
efficiently. However, in the present method, the GA is used to reduce the man-hours while
training a neural network using the feed forward-back-propagation algorithm. It is seen that
the training time has also been reduced to a great extent while giving high accuracy. The
results are in very good agreement with the experimental results.  © 2004 Wilcy Periodicals, Inc.
Int } RF and Microwave CAE 15: 140144, 2005.

Keywords: artificial neural networks; genetic algorithm; microstrip antenna; shorting post; resonant

frequency

. INTRODUCTION

Artificial neural networks (ANNs) and genetic algo-
rithms (GAs) have become very important in the field
of computational electromagnetics due to their many
attractive features. Much effort has been made to
control various features of ANNs by using GAs [1],
but each of these efforts has its own limitations. The
strategy of optimizing neural nctworks using GAs is
an open issue. A literature survey shows that GAs
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have been used to provide a model of the evolution of
the ANN topology, while supcrvised learning is used
for learning [2, 3]. Yet another way of using the GA
is the weight-optimization technique [4-6], where a
network is trained by using a GA without any gradient
information. The authors report that thc ANN be-
comes a victim of the parameters of the GA. Mutation
and crossover, the main parameters of the GA, emerge
as an encoding problem. The third way of addressing
the optimization of neural networks is to associate the
gradient information of the network while training
with the ANN learning rules {6]. In [7], the GA was
used to assign/find out the initial weight set, which is
subsequently processed using a back-propagation al-
gorithm. The algorithm presented in [8] takes a long



time to select an optimized model. Although there are
some numerical approximations to initialize the vari-
ous ANN parameters, this is not true in all cases. In
essence, the selection of an efficient model for a
particular problem is a tedious job for a programmer,
which increases man-hours. Keeping these factors in
view, the GA is used in this problem to select an
optimized trained ANN model. In the present article,
the GA optimizes the number of hidden neurons,
steepness of activation function, learning constant,
and momentum factor to achicve the output. In other
words, in the present article, the GA has been used to
optimize the ANN continuously in order to achieve
the best result. Hence, it is seen that the GA takes less
computational time for training the network while
providing high accuracy.

Il. ALGORITHM DESCRIPTION

The genetic algorithm performs its search process
through a population-to-population (instead of point-
to-point) search. The most popular advantage of the
GA s its parallel architecture, which uses probabilis-
tic and deterministic rules. A member in a population
called a chromosome is represented by a binary string
comprising 0,1 bits in a simple GA. Bits of the chro-
mosome are randomly selected and the length of the
bit strings is defined with regard to relevance. Real
values are also represented in the continuous/decimal
GA, which gives a better result, especially when the
number of variables to be optimized is increased. The
increase in the number of variables increases the
length of chromosome, that is, thc number of binary
bits in the GA that negatively affects crossover. How-
ever, in the present article, as the number of variables
is only four, binary representation is therefore consid-
ered.

First, an initial randomly gencrated population is
required to start the methodology. From the initial
population, a child population 1s born and guided by
three operators, such as reproduction, crossover, and
mutation. Newborn child members are judged by their
fitness-function values. These child members act as
parents in the next iteration. The algorithm presented
in [9] is used in the present problem. A detailed
analysis of the methods and process of GA can be
found in [10, 11].

In this article, the GA is uscd to optimize the
number of hidden neurons, steepness of activation
function, momentum factor, and learning constant
while training the network. A network with a single
hidden layer is chosen for the present problem, as it is
sufficient to solve most of the problems. The model
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can be generalized for a multi-hidden-layer network.
Initially, a set of networks, which is the population
size of the GA, is trained for a chosen minimum
number of cycles/iterations using a normal feed-for-
ward back-propagation algorithm. The fitness value of
the individuals of the population is calculated in terms
of the lowest absolute error E,,, obtained by using a
back-propagation algorithm for a given minimum
number of cycles/iterations. Thus, the fitness function
is expressed as

1
Fitness 0% By’ €))]
Then, by applying genetic operators such as crossover
and mutation, the E,,, error is further reduced up to
an accepted error tolerance. Also, the fittest trained
network, which has been trained while optimizing
those four ANN parameters, is selected. However, as
the network is trained by the delta learning rule, the
weights are adjusted depending upon the root-mean-
squared error Egy,s, given by

N M

Epys = é‘ﬁ Z Z (di(n) — )’k("))z, (2

n=1 A=t

where N = number of patterns, M = number of
outputs, d, (1) = desired output for the ¥ output
neuron for the n training pattern, and y, () = output
of the & output neuron for the n™ training pattern,

m
=2 wyz(n),

s=

where = number of hidden neurons, w, = weight
connected between the j* hidden neuron and the k*
output neuron, wy, = bias applied to the K neuron,
and z, (1) = output of the j hidden neuron for the n™”
training pattern.

The flow chart of presented algorithm is shown in

Figure 1.

il. PROBLEM FORMULATION

One of the major disadvantages of thc mucrostrip-
patch antenna is its inherent narrow bandwidth, which
restricts its wide applications. A number of techniques
have becn developed for bandwidth cnhancement.
The use of shorting pins [12] is a simple and efficient
method to handle such problems. By changing the
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Evaluatios of Fitness
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Figure 1. Flow chart of the presented algorithm.

number and location of the shorting posts, the oper-
ating frequency can be tuned and the polarization can
also be changed. Figure 2 represents a schematic
diagram of the single-shorting-post rectangular-mi-
crostip antenna. Depending on the position of the
shorting post, the resonant frequency of the rectangu-
lar-microstrip antenna can be tuned.

For optimizing these four ANN parameters —
number of hidden neurons, steepness of activation
function, momentum factor, and learning constant —
using the GA, the population size taken is 30 individ-
uals and the maximum number of generations is set at
30,000. The probability of crossover is set at 0.7,
while the probability of mutation is equai to 0.01. The
length of each chromosome is 43 bits. For each set of
ANN parameters selected by the GA, the network is
set to train that which measures the fitness value in
terms of error obtained, after completion of all cycles.

Feed Probe ~—

Figure 2. Rectangular microstrip-patch antenna with a
shorting post.

The absolute error-tolerance considered is 0.02 in
order 1o obtain the desired set of ANN parameters
and, once this is achieved, the network training is
continued until saturation.

To train the neural network for evaluating the
fitness value, the algorithm presented in {7] is used.
The number of inputs and outputs in the respective
input and output layers are fixed in the model. The
width of the patch (W), length of the patch (L), posi-
tion of the shorting post (L,), permittivity of the
substrate (g,), and height of the substrate (h) are taken
as inputs to the networks and the resonant frequency
of the patch is taken as the output. In [13], experi-
mental data were provided for fixed r, = 0.064 cm.
The proposed technique presented in this article has
been validated with the experimental data to examine
the accuracy of the method. Therefore, it has been
considered for fixed r; = 0.064 cm only. However,
using eq. 10 of {13}, and varying r,,, more data sets
can be generated to incorporate the dependency of r,.
But the validation will not occur with the experimen-
tal data. Eighteen out of 22 patterns presented’in [13,
14] are taken for training the network, and four an-
tennas are taken for testing the best-trained neural
network mode! selected by the GA. The optimized
parameters of the ANN obtained by applying the GA
are as follows:

¢ the number of hidden neurons is 35;
o the steepness of activation function (A) is
5.382164;

04 v ' , - v
...... Nﬁm\ﬂ mN

0% ———  Applying GA on ANN

03

0%

ERROR(GHz)
2 o
5 N

[
—-
N

0 05 1 15 2 25 3
NO OF ITERATIONS <0

Figure 3. Number of cycles vs. error.
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Table I. Resonant Frequency of a Microstrip Antenna Using Single Shorting Pin Applying GA on ANN*
Resonant Resonant
Frequency Frequency Resonant Frequency Resonant Frequency
(Experimental) (Eqn (10) (Norma! Back- (Presented Method)
LJL L(m) Wi(m) €, #h{m) (GHz2) of 113]) (GHz) propagation) (GHz) (GHz)
01 62 9 255 01lé6 1594 164 1619 1607
03 375 7424 22 01524 2788 — 2808 2798
07 62 9 255 016 1525 1544 1493 1517
09 3175 7424 22 01524 313 — 3014 3028

* The radus of the metathic post (ry) = 0 064 cm

¢ the learning constant () 1s 0 106955,
¢ the momentum tactor () 15 0 58947

IV. RESULTS AND DISCUSSION

Selection of the ANN parameters takes a long time via
trial-and-error method to obtain the best-trained net-
work, that 1s, the simulatnon time 1s less, but the
man-hours are excessive while training a network
using the normal feed-forward back-propagation al-
gorithm However, by using a GA, these man-hours
have been reduced to 3856 s in the presented algo-
nthm In order to compare the tramnng times, the
network (5X20X1) s trained using a normal feed-
forward back-propagation algorithm with a steepness
of activation function A = 1, learming constant n =
0 3, and momentum factor a = 01 In this case, all
four parameters are chosen using the trial-and-error
method The tramning time 1s found to be 889 s for an
error tolerance of 0 05 The average error per pattern
for four patterns 1s found to be 0 0482 GHz

In the case of the algorithm presented n this arti-
cle, 1t takes only 41 s (30,000 training cycles) to train
the network, even for a lower erioi tolerance of 0 02
And the average error for these four antennas 1s found
to be 0.0332 GHz Figurc 3 shows the comparison
between the number of cycles and the error for both
cases Asshown in Table I, the results are closer to the
expenimental results, as compared to the numerical
and analytical results presented wn (8, 9]

V. CONCLUSION

In this article, a genetic algorithm (GA) has been
applied to a back-propagation algorithm 1n order to
calculate the resonant frequency of a single-shorting-
post tunable mucrostrip antenna The presented tech-
nique to calculate the resonant frequency of a shorted-
microstrip antenna was found to be a simple,
mexpensive, and highly accurate method The accu-

racy can be improved by choosing a smaller error
tolerance and/or by traiming the netwoik for a larger
number of iterations while evaluating the fitness
value Further improvement to the model may involve
taking a multilayer network that considers the number
of udden layers as another parameter to be optimized
This model can be used as a potential symulator tech-
mque for the design of microstrip antennas
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ABSTRACT: Over the years genetw algorithms (GAs) have been ap
phed in many applications But the lack of a propct fitness function has
been a lundrance o its widespread application in mmany cases In this
paper, a novel technique of using arttficial neural networks (ANNs) as
the fitness function of a genetic algoritiun i order to calculate the de
sign parameters of a thick substrate rectangular microstrip antenna 1s
presented A mululayer feed forward neural netw o1k is used as the fit
ness function in a binary coded genetic algorithin The results obtained
using this method are found to be closer to the experunental value as
compared 1o previous results obtained using the curve-fitung method To
validate tlus the results are compared with the experimental values for
five fabricated antennas The results are in very good agieement with
the expeyunental findings © 2004 Wiley Penodicals, Inc Microwave
Opt Technol Lett 44 144-146, 2005, Published onlinc 1n Wiley Inter-
Science (www interscience wtley com) DOI 10 1002/mop 20570

Key words: genenc algornithm artficial neural nerworks, mucrostrip
antenna resonant frequency

INTRODUCTION

In the recent past, the field of theoretical electromagnetics has
shifted towards computational electromagnetics due to the devel-
opment of high-speed digital processors, that is, these high-speed
mathematical processors have helped to serve as a catalyst for this
shift Often n electromagnetics, the objective function (fitness
function) that arnises for optimization 1s multumodal, stff, and
nondifferentiable In addition, 1t 1s computationally expensive to
evaluate The objective function cannot be relied upon due to 1ts
tentativeness, especially when accuracy cannot be compromsed
Deterministic optimization techniques such as the Monte Carlo
techmque, simulated annealing, and hill chimbing, or an evolution-
ary optimization techmque such as the genetic algonthm (GA)
{1-3], mostly rely upon the objective function, without which the
optimization techmque has no meaning In this paper, a new class
of objective-function formulation 1s presented i which artificial
neural networks (ANNs) are used as the fitness function The
techmque presented can be used everywhere, particularly in those
cases where the objective-function formulation 1s difficult, or the

objective function 1s erroneous For instance, in the present work
we use this technique to calculate the optimized dimension of a
rectangular patch antenna on thick substrate (4, 5], since there 15 no
closed-form mathematical formula to calculate the resonant fre-
quency of a thick-substrate rectangular microstrip antenna

The GA 15 a global search method based on a natural-selection
procedure that consists of genetic operators such as selection, cross-
over, and mutaton GA optimizers are particularly effective n a
high-dimension, multimodal function, that 1s, where the number of
ophmizing parameters are large Since the last decade, application of
the ANN has occurred in electromagnetics due to 1ts versatility and
ease of implementation [6—8] An ANN trained by the back-propa-
gation algonthm has been introduced as a fitness function Coupling
of ANNs with a GA can avoid the hmutation encountered for objec-
tive-function formulation tn the GA The global-function approxima-
tion capability [9] and greater generalizatuon capability of ANNs
further facilitate the coupling phenomenon

PROBLEM FORMULATION AND DEVELOPMENT OF THE
MODEL

The GA, due to its parallel archutecture and probabilistic and deter-
mimstic nature, 15 used to solve problems in many applicatons The
GA performs its searching process via a population-to-population
(instead of point-to-point) search A member 1n a population, called a
chromosome, 15 represented by a binary stnng compnsing 0, 1 bits
Bits of the chromosome are randomly selected and the length of the
bit strings 15 defined according to relevance An imtal randomly
generated population 1s required at first to start the methodology
From the imitial population, a child population, gwided by three
operators such as reproduction, crossover, and mutation, 15 bom
Newborn child members are judged by their fitness-function values
The fitness function 1s formulated as per the ulimate goal concemned
These child members act as parents 1n the next generation

With /A, > 00815, the properties of the patch antenna
change drastically (4, 5}, where 4 15 the thickness of the substrate
and A, 1s the free-space wavelength The standard formulas avail-
able 1n the Iiterature are vahd for i/A, < 0 0815 So, for h/A, >
0 08135, the designer 15 thus forced to obtain the physical charac-
tenistics using the trial-and-error method or the numerical method
[4] But these formulas are derived using the curve-fiting method,
which can be extrapolated only to a certain extent Thus, there 15
a need for a robust numerical approximation for the calculation of

Substrate

Ground Plane

Figure 1 Rectangular microstnip antenna on thick substrate [Color fig
ure can be viewed in the onhine 1ssue, which 1s avalable at www
interscience wiley com)
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Frequency

Figure 2 Network structure. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com)

the dimensions. A typical microstrip antenna with length L, width
W, height A, and the feed-point location a are shown in Figure I.

The present is approach is basically a two-step calculation proce-
dure. In the first step, a suitable network is selected and trained for a
set of training data. After being successfully trained, the network will
leam the input-output relation among the length, width, thickness,
permittivity, and resonant frequency of the antenna. In the second
step, the network will be used as the objective function and the GA
will be used for calculation of the optimized dimension.

Training Phase

The back-propagation algorithm (6] using the gradient descent
method is used for training the network. A three-layer neural network,
consisting of four input neurons, 30 hidden neurons, and one output
neuron (that is, 4 X 30 X 1) has been used. For this network, the
length, width, substrate thickness, and dielectric constant of the sub-
strate are taken as inputs, whereas the resonant frequency is taken as
the output. The proposed model is shown in Figure 2.

Twelve patterns from [4] are taken for training the networks
and five other patterns are used for testing the networks and the
ANN-based GA code. The parameters considered for training the
network are as follows:

noise-factor parameters = 0.0003,
learning constant (parameter) = 4,
momentum factor = 0.0205.

Noise factor is used during the ANN training to increase its
generalization capability. The number of hidden neurons and var-
ious parameters are chosen using the trial-and-error method. The
training time of the network to obtain the best resuit using an HP
850-MHz 128-MB PC is 375 s (6.25 min).

Optimization Phase
The two independent variables to be optimized are the length and
width of the antenna. A population size of 20 individuals and 200

Is Temporary

Mutatl
Population Full? wtation

Evalustion of Fitness
Value from Trained ANN

Ia
Termination
Criteria Met?

Figure 3 Block diagram of the presented algorithm

generations is produced. A roulette-wheel selection procedure is
adopted to select the new population. The probability of crossover
is set to 0.7, while the probability of mutation is equal to 0.01. The
fitness of the selected population is calculated from the trained
neural network. The process is repeated until the termination
criterion is met. The block diagram of the proposed algorithm is
presented in Figure 3. The fitness of an individual is decided
according to the following relation:

Fitness = f{L, W, &,, h) = 1/(1 + |f, — desired frequencyl)
= 1/(1 + |output of ANN ~ desired frequency]).

RESULTS AND DISCUSSION

The optimized design parameters of the five antennas considered for
testing is tabulated in Table 1. Of the three inputs, one is the dielectric
constant (¢, = 2.55) of the substrate. The other two inputs are listed
in the 2™ and the 3™ columns. The experimental dimensions of length
and width are shown in the 4™ and 7" columns, respectively, while
the optimized output of our GA-ANN-based dimensions are listed in
the 6™ and last columns of the table. By using empirical formulas
derived using the curve-fitting method [4], the average error in cal-
culating the length and width of the thick-substrate microstrip antenna

TABLE 1 Dimensions of Thick-Substrate Rectangular-Microstrip Antenna (g, = 2.55)

Length L Length L Width W Width W
Resonant Height Length L Using Using Present Width W Using Using Present

Patch Frequency h in Experiment Eq. (18) Method in Experiment Eq. (19) Method in
No. f,in GHz mm 4] in mm (4] in mm mm {4] in mm [4) in mm mm
1 5.82 4.76 15.2 15.27 15.21 10.0 10.13 10.02
2 4.66 6.26 19.7 19.57 19.65 12.0 11.92 11.99
3 3.98 9.52 26.2 26.12 26.15 9.74 9.64 9.70
4 3.90 11.0 28.35 28.36 28.37 7.77 7.77 7.76
5 2.98 12.81 35.0 35.01 35.03 12.65 1227 12.66
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1s found to be 006 and 0 074, respectively, whereas the presented
method shows an average error of 0032 for length and 0018 for
width Thus, an ANN-coupled GA gives better results, as compared to
the formulas denved m (4]

CONCLUSION

A novel method of coupling an ANN with a GA n order to
calculate the dimensions of a thick-substrate microstrip antenna
has been discussed mn this paper The measure of accuracy of the
solution obtained by the GA depends directly upon the efficient
training of the neural networks Thus, care must be taken for an
efficient traiming of the network In cases where there 1s no
accurate theoretical formulation for the objective function, this
technique can be used for optimization purposes

Simultaneous optimization of the dielectric constant, height of the
substrate, dimensions, and so forth 1s possible in the present method,
whereas m the conventtonal method, 1t 15 either computationally
complex or not possible The results obtaned by the ANN-coupled
GA are compared with the expernimental results The results are in
very good agreement with the experimental findings In the presented
method, the sunulation time 15 less than the simulation times of
methods such as the method of moments (MoM), fimte-difference
time-domain (FDTD), and finite-element techmque (FET), without
compromusing the error The accuracy of the proposed model can be
increased by using a more effective ANN algorithm Furthermore, the
accuracy can be increased by taking more experimental results for
training the ANN This method may contribute to the improvement of
ANN-based techmiques for solving problems such as array-factor
correction, cross-polanzation reduction bandwidth enhancement, ar-
ray optumization, and so on
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ABSTRACT: A low voltage fast switching frequency synthesizer at 2 4
GHz 1s presented The phase nose s analyzed and measured to be —96
dBc/Hz at 100 KHz offset The measured spectial punty is also good
This synthesizer can be used for fiequency hopping spread spectrum
applications © 2004 Wiley Periodicals, Inc Microwave Opt Technol
Lett 44 146-148 2005 Published online in Wiley InterScience (www
interscience wiley com) DOI 10 1002/mop 20571

Key words. frequency synthesizer, phase locked loop PLL

1. INTRODUCTION

Recently, frequency-hopping spread-spectrum (FH-SS) communi-
cation has been developing rapidly The frequency synthesizer in
a transceiver plays a key role 1n system performance (1] During
signal reception, the synthesizer usually functions as the first-stage
local oscillator Dunng signal transmussion, the synthesizer gen-
erates the carner For better jamming susceptibility, the hop rate
needs to be high [2] In the case of fixed channel-switching time,
the channel efficiency drops as the hop rate increases Hence, a
fast-switching synthesizer 1s desirable Usually, the phase noise of
a low-voltage fast-switching synthesizer 1s high at low offset
frequencies from the carner It should be noted that, for fast-
switching application, low phase nowse at close-in frequencies 1s
not required This paper reports a fast-switching frequency syn-
thesizer dedicated to FH-SS communication Phase-noise analysis
and measurement are conducted to show that satisfactory noise has
been achieved

2. SYSTEM ANALYSIS AND DESIGN

In practice, implementing fast-switching synthesizers under low
voltage 1s a difficult task A special technique must be employed to
achieve this goal In this paper, the direct memory-access tech-
nique 15 used Resembling the technique, the resultant synthesizer
15 referred to as the direct memory-access frequency synthesizer
(DMAFS) The DMAFS 15 based on a conventional charge-pump
phase-locked loop (PLL) frequency synthesizer [3, 4] The block
diagram of the DMAFS is shown 1n Figure 1 The DMAFS will
undergo a calibration mode and a normal-measurement mode To
minmmuze the channel-switching tme duning frequency hopping,
data conversion and memory-access circuits are nserted between

data congers:on
K an
RAM memory access

ctreutt
fref £
OMI— phase | kharge| [ toop out
comparator] | pump [ filter VvCO
N-counter

Figure 1 Block diagram of the DMAFS
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Abstract

This paper deals with the design of a muiti-slot hole-coupled microstrip antenna on a substrate of 2 mm thickness that gives
multi-frequency (wideband) characteristics. The Method of Moments (MoM)-based /E3D software was used to simulate the
results for return loss, VSWR, the Smith chart, and the radiation patterns. A tunnel-based artificial neural netwark (ANN) was
also developed to calculate the radiation patterns of the antenna. The radiation patterns were measured experimentally at
10.5 GHz and 12 GHz. The experimental results were in good agreement with the simulated results from /E3D and those of
the artificial neural network. A new method of using a genetic algorithm (GA) in an artificial neural network is aiso discussed.
This new method was used to calculate the resonant frequency of a single-shorting-post microstrip antenna. The resonant
frequency calculated using the genetic-algorithm-coupled artificial neural network was compared with the analytical and

experimental results. The results obtained were in very good agreement with the experimental results.

Keywords: Microstrip antennas; slot antennas; wideband antennas; neural networks; tunneling; genetic algorithms

1. Introduction

ue to their many attractive features, microstrip antennas have

drawn the attention of researchers over the past decades [1-4].
Microstrip antennas are used in an increasing number of applica-
tions, ranging from biomedical diagnosis to wireless communica-
tions [§). Such a wide range of applications, coupled with the fact
that microstrip structures are relatively easy to manufacture, have
turned microstrip analysis into an extensive research problem.
Research on microstrip antenna in the 21st century aims at size
reduction, high gain, wide bandwidth, multiple functionality, and
system-fevel integration. Significant research work has been
reported on the enhancement of the bandwidth of microstrip anten-
nas, which are otherwise inherently narrowband. Many techniques
have been suggested for achieving wide bandwidth (6-9]. Stacked
patches, parasitic loading, and U-shaped microstrip antennas have
been used to enhance the bandwidth. But the present trends of the
size reduction of wireless handheld devices and multiple function-
ality present challenges for the antenna designer to design multi-

€0 ISSN 1045-9243/2005/$20 ©2005 |EEE

frequency antennas in a simple manner and for easy fabrication.
Complex geometries and complexity in the designs are not in the
interest of the rapidly growing wircless industries. In this paper, an
attempt has been made to design a wideband microstrip antenna
without any geometrical complexities.

Due to its greater generalization capability, an artificial neu-
ral network has been used to calculate the radiation patterns of the
designed antenna. A back-propagation algorithm bas been used to
train the network, which leams using the gradient-descent methad.
The training time has been considerably reduced by using the tun-
neling technique in the fast artificial neural network algorithm.
Owing to its gradient-descent nature, back-propagation is very
sensitive to the initial conditions [10]. If the choice of the initial
weight vector happens to be located within the attraction basin of a
strong local-minimum attractor (one where the minimum is at the
bottom of a steep-sided valley of the error surface), then the con-
vergence of back-propagation will be fast. On the other hand,
back-propagation converges very slowly if the initial weight vector
starts the search in a relatively flat region of the error surface [2].
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-In this paper, a genetic algorithm is used to fix the initial weights
of a multilayer neural network for faster convergence, by coupling
the genetic algorithm with the artificial neural network to sclect the
initial weights. This is a new approach.

Genetic algorithms are capable of optimizing nonlinear
multi-modal functions of many variables [11, 12]. They require no
derivative information, and they robustly find global or very strong
local optima. Numerical experiments indicate that using a genetic
algorithm, good solutions to highly noniinear equations can be
quickly obtained, even in times comparable to those taken by ana-
Iytical methods, such as stecpest descent. Previously, an attempt
was made to train the artificial neural network via an evolutionary
approach using a genetic algorithm, as these methods are ignorant
about the gradient information of the weight surface. The main
drawback of the evolutionary approach for neural-network training
is the training time. The back-propagation algorithm takes only
scveral minutes, on average, to reach its lowest error. On the other
hand, the evolutionary approach takes a longer time [13).

This paper consists of two major subsequent sections. In the
first section, a simple and novel design is presented for achieving
wide bandwidth in a microstrip antenna. A tunnel-based artificial
neural network is applied to calculate the radiation pattern of the
antenna. In the second section, a new approach for using an artifi-
cial neural network and a coupled genetic algorithm technique for
calculating the resonant frequency of a single shorted rectangular
microstrip antenna is presented.

2. Wideband Multi-Siot Hole-Coupled
Microstrip Antenna

2.1 Design and Performance Features

In a microstrip antenna, some parts of the radiating surface or
ground plane can be removed without any significant changes in
the antenna’s performaance in terms of the radiation patterns, as the
current distributions remain relatively intact [14]. It is also known
that the frequency of a patch antenna can be increased or decreased
by a capacitive or inductive load [15]. In this paper, a multi-slot
microstrip antenna has been designed implementing the above
facts to achieve a wide bandwidth.

The antenna is designed on a substrate of thickness 2 mm,
with &, =2.2. The patch size is characterized by its length, width,

and thickness (L, W, h), and is fed by a coaxial probe at position
(x7,¥7)- A hole of diameter 0.2 mm is made at location (x;, )

for impedance matching. Four slots are incorporated into this
patch, and are positioned on both sides of the feed. The structure
resembles the geometry that would result if an E-shaped patch is
joined with another, inverted E-shaped patch (Figure 1). The slot’s
length (Ls), width (), and position (Ps) are imporiant parameters
in controlling the bandwidth. The length of the current path is
increased due to the slots [16], which leads to additional induc-
tance in series. Hence, the wide bandwidth is generated as the
resonant circuits become coupled. The slots aggregate the currents,
which give additional inductance, which is controlled by the patch
width (). A hole is made at (x; =6.75mm, y, =35mm) for

impedance compensation and for better matching. The approach of
creating a hole gives the flexibility to change the reactive compo-
nent for impedance matching. /E3D software from Zeland Corp.
was used to calculate the return loss and the VSWR of the antenna.
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Figure 1. The geometry of the multi-slot hole-coupled micro-
strip antepna: ! =45mm, W =71 mm, b =2mm, Ls=17.5mm,
Ws = 4 mm, feed position (x ., y,) = (0.75 mm, 69 mm).

Figure 2 shows the return loss and VSWR of the multiple-slot
bole-coupled microstrip patch antenna,

As can be seen, the antenna operated in distinct multiple fre-
quency bands, with center frequencies at 6 GHz, 6.5 GHz, 9 GHz,
10.5 GHz, and 12 GHz. The calculation of the radiation pattemns
shows that the radiation patterns for 6 GHz, 6.5 GHz, 10.5 GHz,
and 12 GHz were well within 3 dB. Interestingly, the gain, beam-
width, shape, and efficiency at 6 GHz completely matched with
those values at 10.5 GHz, whereas tbe values for 6.5 GHz matched
with the values for 12 GHz. The -10dB(Sy;) bandwidth was
nearly 800 MHz at each of those frequencies. There was also per-
fect isolation between these bands.

The slot lengths, widths, and the positions of the hole were
varied to see the effects on return loss, VSWR, and on the radia-
tion patterns. It was observed that the antenna’s performance could
be controlled by changing these parameters. The dimensions pre-
sented in this paper were the optimum dimensions after consider-
ing all these effects to achieve the best results. Figure 3 shows the
8y, values in dB for a slot length of Ls=19.5mm, i.e., for an
increased slot length. This figure also shows the Sy; values in dB
with a slot width of Ws=3mm, i.e., for a decreased slot width.
These plots clearly show the effects of Ls and Ws on the S, val-

ues.

The ground plane size is a critical parameter. In the present
design, the ground plane was selected with respect to the lowest
frequency, ie., 6.5GHz. It had dimensions of L=55mm and
W =81mm.

2.2 Radiation Pattern of Microstrip
Antenna Using Tunnel-Based Artificial
Neural Network

A multilayer 2x80x1 structure, shown in Figure 4, was used
for training the network. The other network parameters used were
a noise factor of 0.004, a momentum factor of 0.075, a learning
constant of (.08, a time step for integrating the differential equa-

tion of 5x107'%, and strength of leaming for tunneling of 0.08.
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Figure 4. The network archifecture, showing the angle and
frequency as inputs and the gain as output.
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-Figure 7. The rectangular microstrip' patch antenna with a
shorting post.

The back-propagation algorithm ~ the gradient descent
method ~ was modified using the tunneling technique. The concept
of the tunneling technique is based on violation of the Lipschitz
condition [18] at the equilibrium position. This is governed by the
fact that any particle placed at a small perturbation from the point
of equilibrium will move away from the current point to another
within a finite amount of time. Tunneling was implemented by
solving the differential equation given by (18]

d a3
Z=p(w-w)", (1)

where p and w'" represent the strength of learning and the last
local minimum for w, respectively. The differential equation was
solved for some time until it attained the next minimum position.
To start the training cycle, some perturbation was added to the
weights. Then, the sum of the square errors () for all of the train-
ing patterns was calculated. If it was greater than the last mini-
mum, then it is tunneled according to the above equation. If the
error was less than the last local minimum, then the weights were
updated according to the relation

Aw(t)=-nVE(r)+adw(t-1}, 2)

where 7 is called the learning factor, and a is called the momen-
tum factor. ¢ and ‘(1—1) indicate training steps. Using /E3D, 36

patterns, each at a step angle of 10°, for frequencies of 6 GHz,
6.5GHz, 10.5GHz, and 12GHz were generated. These
(36 x4 =144) patterns (the gain in dB at a given angle) were used
to train the network; Finally, the network was subjccted to testing

62

for 480 (120 x4 ) patterns, which were generated at a step angle of
37 for each of the frequencies given above. Figure 5 shows the
radiation patterns at 6 GHz and 10.5 GHz, whereas Figure 6 shows
the radiation patterns at 6.5 GHz and 12 GHz.

The average error (the deviation from the data taken for test-
ing) at 6 GHz was 0.0408, at 6.5 GHz it was 0.0520241, at
10.5 GHz it was 0.0745005, and at 12 GHz it was 0.0181725.
Experimental measurements were carried out to see the radiation
patterns at 10.5 GHz and at 12 GHz. The results (se¢ Figures 5 and
6) were in good agreement with the results of JE3D and with those
of the artificial neural network.

3. GA-Coupled ANN Model for Calculating
the Resonant Frequency of a
Post-Tuned Patch Antenna

3.1 Implementation Strategy

A genetic algorithm performs its searching process through
population to population, instead of doing a point-to-point search.
The most favorite advantage of a genetic algorithm is its parallel
architecture. Genetic algorithms use probabilistic and deterministic
rules. A binary string, called a chromosome, comprised of “0s” and
“Is,” represents a member in a population. Bits of the chromosome
are randomly selected, and a relevant length of the bit strings is
defined. An initial randomly generated population is required to
start the method. From the initial population, a child population is
bormn guided by three operators: ' reproduction, crossover, and
mutation. Newbomn child members are judged by their fitness-
function values. These child members act as parents in the next
iteration. A detailed analysis of the methods and processes of
genetic algorithms can be obtained from [11-12].

The ERMS error of a multilayer neural network can be writ-
ten as

Ew)=05Y ¥ [u";(xp)—dq(xp)]z, @)

p=1,Pg=|,N"

* where u§ is the output of the )‘th node in layer /, w/j x is the

weighting connecting the jth node in layer / to the kth node in layer
(I-1), x, is the pth training sample, d,(x,) is the desired

response of the jth output node for the pth training sample, N’ is
the number of nodes in layer /, L is the number of layers, and P is

the number of training patterns. In the above notation, u} =1 and
wj_o represents the bias weights, where /1.

Equation (3) was taken as the fitness function of the genetic
algorithm. The function was minimized to its saturation level. The
corresponding weights were taken as the initial weights for the
neural-network training. The network structure used in the present
model was 5x30x1. The algorithm presented in [5] was used for
training the neuraf network.

The resonant frequency of the rectangular microstrip antenna
(Figure 7) can be tuned, depending on the position of the shorting
post. The width of the patch, W, the length of the patch, L, the
position of the shorting post L, the permittivity of the substrate, .
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Figure 2. The return loss (S;;) in dB (solid dots) and the

VSWR (circles) of the muitiple-slot hole-coupled microstrip
antenna,
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Figure 3. The return Joss of the multiple-slot hole-coupled
microstrip antenna for different values of Ls and Ws: solid

dots, Ls=19.5mm, Ws=4mm; circles, Ls=I17mm,
Ws=3Imm.
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Figure 5. The radiation patterns for E-total, theta = 0°, at
6 GHz and 10.5 GHz. The dash-dotted line is the ANN results
at 6 GHz, the solid black dots are the ANN results at 10.5 GHz,
the red asterisks are the experimental results at 10.5 GHz, the
green asterisks are the IE3D resuits at 6 GHz, and the green
crosses are the JE3D results at 10.5 GHz.

IEEE Antennas and Propagation Magazine, Vol 47, No 3, June 2005

Figure 6. The radiation patterns for E-total, theta = 0°, at
6.5 GHz and 12.0 GHz. The dash-dotted line is the ANN results
at 6.5 GHz, the solid black dots are the ANN results at 12 GHz,
the red asterisks are the experimental results at 12 GHz, the
green asterisks are the JE3D results at 6.5 GHz, and the green
crosses are the IEID results at 12 GHz

33 v v —
by Enpormanist

azl GO Caupld GAIANN 3
GF—q Teswicagiv]

e
© -

~
>,

Rasonam Frequency(QHe )
N
o

»
N

~
»

2% A
] a1 02 03 Qs 08 X ] o? [2 ] 09 1
taL
Figure 8. The resonant frequency (vertical axis, in GHz) of the
tuned antenna as a function of the post position (holgn_ntal
axis, L, /L). The asterisks are the experimental results, the cir-
cles are the results from the coupled genetic algorithm-

artificial neural network, and the triangles are the theoretical
results from {19].

025} <

A |

Ewor{GHz)
e
>

o1}
0“} .................. j
0 - e y -
() 05 1 15 2 23
Tratning Cycles 210"

Figure 9. The error (vertlcal axis, GHz) as a function of the
number of training cycles (horizontal axis) for the coupled
genetic algorithm-artificial neural network (solid lin¢) and the
artificlal neural network (dotted line).

63



Table 1. The resonant frequency of a microstrip antenna using a single shorting pin: results from theory, experiment, and genetic-
algorithm-coupled artificlal neural network calcutation.

Resonant Resonant Resonant
LjL| L w 5 h Frequency: | Frequency: | Frequency:
(cm) [ (cm) 4 (cm) Theory Experiment | GA-ANN
(GH2) (GHz) (GHz)
0.5 6.2 9 2.55 0.16 1.48439 1.466 1.46789
06 | 62 9 255 ] 0.16 1.50073 1.480 1.48859
03 [ 3.75] 7424 | 2.20 | 0.1524 2.68041 2.788 2.81575
04 | 3.75 | 2424 | 2.20 | 0.1524 2.6153) 2.664 2.67995

'e,, and the beight of the substrate were taken as inputs to a

5x30x1 network, and the resonant frequency of the patch was
taken as the output. Experimental results from [19) were used for
training the network. The network structure was selected on a trial
and error basis. The various parameters used for training the net-
work and the genetic algorithm were selected on a trial and error
basis. These parameters were a leaming constant of 3, a2 momen-
tum factor of 0.1, a noise factor of 0.004, the size of the population
was 20, the number of generations was 1000, the probability of
crossover was 1, and the probability of mutation was 0.001.

To make the network more generalized, mixed-pattern train-
ing in inhomogeneity was developed. For training the network on
inhomogeneous data, nine patterns from [19] and eleven pattemns
generated by JE3D with little change in configuration were used
for training the network. To see the validity of the network, the
network was tested with four patterns from [20] (Table 1).

3.2 Results

The average error per pattern was found to be 0.013545 GHz.
The output of the network for those four patterns is shown in
Table 1. The training time for the network was 346 seconds with
the genetic-algorithm coupled model, and 642 seconds for the arti-
ficial neural network model, using a P-II{ HP PC.

The results obtained with the present technique were closer
to the experimental results, compared to the numerical and analyti-
cal results presented in [19]). To test the generalization of the pre-
sented model, the antenna presented in [20] was used for testing.
The input-output relation was also checked for the experimental
results presented in [19], for L=3.75cm, W =7424cm,
h=0.1524cm, and £, =2.2). Figure 8 shows a plot comparing the

experimental results, the theoretical results, and the results from
the present approach for the above antenna, for different positions
of the post. Figure 9 shows comparing the error and the number of
training cycles in the approach with and without the genetic algo-
rithm). Figure 9 shows that the present approach took nearly half
the computationa! time compared to the algorithm presented in
{20] to get the same accuracy. This may be due to the fact that the
network started training from the attractor basin in the weight
space. Experimentally, it was verified that the resonant frequency
was slight asymmetric about ;/L, whereas the calculated results

using [19] were symmetric. The results obtained using present the
approach followed the experimental trend. -

4. Conclusion

The return loss and radiation patterns of the multiple-slot
hofe-coupled microstrip antenna presented in this paper clearly
showed that the antenna is a wideband, multiple frequency
antenna. It has the attractive features of simplicity and flexibility in
controlling the bandwidth, with high isolation between frequency
bands. With almost omni-directional radiation patterns, the multi-
ple-slot hole-coupled microstrip antenna seems to be a good
antenna for wireless communications, especially for cellular tele-
phone applications. The achievement of a wide bandwidth with a
substrate thickness of 2 mm is a focus of attention. Careful study
of the current distribution may help in housing the active compo-
nents in the etched region of the patch, for possible system-level
integration of this antenna. The variation of the slot parameters,
and the hole size and positions, gives the flexibility to shift the fre-
quency and match the impedance, which is a notable feature of this
antenna. The calculation of radiation pattemns using artificial neural
networks is a new and interesting part of the paper, which reflects
the simplicity and accuracy of the method. The calculation of
radiation patterns using tunnel-based artificial neural networks can
save considerable computational time while giving accurate
results.

Further, this paper has demonstrated the utility of the genetic
algorithm in an artificial neural network for selecting the initial
weights for efficient training of a neural network. By using this
coupled technique, a substantial amount of accuracy is achieved
with less computational time. It reduces the simulation time to
approximately half of the case where the initial weights are
selected randomly. The technique presented for calculating the
resonant frequency of a shorted microstrip antenna seems to be a
simple, inexpensive, and highly accurate method. A similar
approach can also be extended to calculating the resonant fre-
quency where more than one shorting post is present. This will
reduce the experimental cost and computational time to a greater
extent, while giving accurate results.
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I. INTRODUCTION

The Finite Difference Time Domain method, proposed by Yee in 1966(1], is a simple and elegant
way to discretise the differential form of Maxwell’s equations[2]. Yee used an electric-field(E)
grid, which was offset both spatially and temporally from a magnetic-field(H) grid, to obtain
update equations that yield the present fields throughout the computational domain, in terms of
the past fields. The update equations are used in a leap-frog scheme. However, FDTD method
requires long computational time for solving the resonant type of high-Q-passive structures. This
is due to the fact that FDTD algorithm is based on the leap-frog technique. The computational
cost shoots up in whole body simulation, computation of fields within missile guidance section,

SAR calculation of human head in presence of cell phone[3] etc.

In [4] FIR-ANN is applied to calculate the input impedance of square patch antenna. The detailed
concept of NFDTD is explained in[5]. But the man-time required in finding a suitable
architecture in general and dept of memory in particular takes much time than the normal
simulation time of FDTD engine. In this paper, Real Coded Genetic Algorithm is used to find the
architecture and training parameter of FIR-ANN. The FIR-ANN is applied as a nonlinear
predictor to predict time series signal for speeding up the FDTD simulations. One of the main
advantages of NFDTD is less storage requirement. But for less number of time-steps data
collected from FDTD, the temporal neural network training time can exceed the normal FDTD
computing time. On the other hand, the major disadvantage is that selection of parameters
requires much man-time. Hence, use of GA with NFDTD speeds up the simulation time while

meeting the accuracy requirement.



II. PROBLEM STATEMENT AND IMPLEMENTATION

A temporal neural network is used for time series data prediction. A time series data
consists of a sequence of values changing with time. Therefore, a memory structure is needed in
the traditional neural network to change it from static to dynamic. This memory structure is
incorporated in neural networks by introducing a Finite Impulse Response(FIR) in between the
. weights. i.e., weights are replaced by FIRs. The FIR network is feed forward neural network
architecture with internal time delay lines{4]. It is a modification of the basic multi-layer network
in which each weight is replaced by an FIR linear filter as shown in figure 1(a).

The coefficients of a synaptic FIR filter connecting neuron i to j is specified by the vector

W, =[Wﬂ(O),Wﬂ(l),....,wﬂ(p)]r 1)
And,
x,(n) =[x,(n),x,(n=1),.....x,(n- p)J Q)

denotes the vector of delayed states along the FIR.

Output of neuron j is given by
5,00 = w, ()5 (n=B) ®
k=0

For the filter, the output y,(n) corresponds to a weighted sum of past delayed values of the

input as shown in figure 1(b).

x{n) x(n-1) x,(n-2) x,(n-p)
O q- ] > q-| » g- !
wid0) ¢f w(1) w(2) Wi(P)
- — s(n)

Fig. 1 (a) Filter Model of FIR Network
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xi(n) filter

() |

b;
Bias

Fig. 1 (b) Output of a Neuron of FIR Network

The weights of the output layer neuron are updated as,
wji(n +h)= W (n)+ 775_,' (n)x,(n)
where, 7 is leamning constant.
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d;(n) =Desired output at time stem n(Obtained from FDTD).
The weights of the hidden layer neurons are updated as,
W, (n+1)=w () + 76 (n - p)x,(n~ p)
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Where, 4 is the set of all neurons whose inputs are fed by neuronj in a forward manner.

P is the order of each synaptic FIR filter.
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v:denote induced local field of neuron r that belongs to the set 4.

The operation of FIR-Neural networks is referred from [4].

The NFDTD parameters such as the number of hidden neurons, depth of memory, learning
constant and momentum factor are chosen by hit and trial basis which depends purely on
experience of the programmer. Proper selection takes much man-time. In this paper, Genetic
Algorithm is used to set those parameters to reduce the man-time.

A coaxially fed square patch antenna as shown in figure 2, is considered to validate the proposed
technique. The dimensions of the patch antenna are (i) side length L 10mm, (ii) dielectric
constant( &) 2.33, (iii) height of the substrate(s) 1.57 mm. The antenna is fed at 0.25 mm from

comer(x,=y,=0.25mm).

Substrate

Ground Plane

Figure 2. Coaxially Fed Square Patch Antenna

To model the dimensions of the antenna, the space descritization is chosen to be

Ax=Ay=Az=0.25mm. The total mesh dimensions are 80x80x26. The time step used is



At =0.48ps. The FDTD simulation is performed for 10000 time steps. The experimental result for
comparison is taken from [3]. The antenna is fed using a z-directed electric field at (21 Ax,
21Ay, 6 Az) by a raised cosine pulse. The internal source resistance R is kept at 50 ohm.

Transient current and voltage for 500 steps from the FDTD simulation are collected. The FIR
based feed forward neural network is trained with data set comprising current and voltage with

500 samples. The architecture chosen for temporal neural networks is shown in figure 3.

V(t-1)

1(t-1)

Fig. 3 FIR-Neural Network Architecture

Genetic algorithm is used to find the optimized FIR-ANN architecture. The training is
done with temporal backpropagation algorithm. In each generation GA runs FIR-ANN for 100
cycles. The absolute error is set to 0.6. Genetic algorithm found the optimized architecture in 24
generations, After obtaining the optimized architecture, the FIR-ANN continued to obtain an
absolute error tolerance level of 0.5.

The parameters of GA are set to as:

Population size: 20,

Probability of crossover(Prss): 0.7,

Probability of mutation(Pp,,): 0.001.



Figure 4 shows the flow-charts of the NFDTD algorithm where as the flow-chart of GA-NFDTD

algorithm proposed by authors is shown in figure 5. @

Initialize all E and H field components to 0

¢

Excite with a Gaussian/CW Pulse

| P

Compute new E field component values at interior.

. Compute new E field component values at boundary

using boundary condition

v

Compute new H field component values

v

Increment time loop n=n+1

Sufficient data
collected for
training Neural

Netwark
No
Extract training data Yes
V(nAt) and I(nAt) I
L Stop
Train FIR Neural Network

!

Calculate V(nAt) and I(nAt)
for further time steps

v

Calculate Z(H)=1(H/V(f)

v

Figure 4. Flow chart of NFDTD
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Figure 5. Flow chart of GA-NFDTD Algorithm



II. RESULTS AND DISCUSSION

The NFDTD parameters found by GA for training the FIR-ANN are as follows:

Number of Hidden Neurons: 08

Depth of memory: 59
Leamning Constant: 0.888519
Momentum factor: 0.0539589

The network is tested for 9500 samples. FFT is applied on 10, 000 samples(500 samples of
FDTD and output of 9500 samples of NFDTD). Figure 6 shows the absolute error vs epoch curve.
Figure 7 and 8 shows the comparison of Impedance for both real and imaginary part of FDTD,
NFDTD and experimental and GA-NFDTD results. GA-NFDTD results are close to experimental

results and are in good agreement with the simulation results published in[6].
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Figure 6. Error vs. Epochs
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IV. CONCLUSION

The purpose of this work is to establish the suitability of ANN and GA with FDTD for
analysis of electromagnetic problems in time domain. A co-axial feed square patch antenna is
used to explain the implementation procedure. FDTD results for 500 time steps have been
considered for training the FIR-ANN(NFDTD). GA decides the architecture and parameters of
NFDTD by setting minimum training cycles. Once the parameters are decided, the network is
further trained to reduce the error. Finally, for remaining time steps, the current and voltage are
calculated using trained-NFDTD. This technique will have immense potential when the number
of time steps is more and for high-Q passive structures. The technique can further be improved by
replacing GA by faster soft-computing algorithms like Particle Swarm Optimization(PSO),

Bacterial Foraging Optimization(BFO) etc.
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