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Abstract 

Analysis of gene expression data is an important research field in DNA mi- 

croarray research. Data mining techniques have proven to be useful in under- 

standing gene function, gene regulation, cellular processes and subtypes of cells. 

Most data mining algorithms developed for gene expression data deal with the 

problem of clustering. The purpose of this thesis is to study different cluster- 

ing approaches for gene expression data. Our first contribution is a dissimilarity 

measure (DBK) which retains the regulation information and is robust to out- 

liers. We have developed a graph-based clustering algorithm (GCA) for gene 

expression data. Its main idea is that, inter-cluster genes have more repulsion 

among them than intra-cluster genes. In particular, a t  any given moment, genes 

are clustered based on a repulsion factor which is based on the genes that are 

yet to be assigned a cluster. This consideration leads to an objective function 

that is used to find the cluster parameter that optimizes this objective function. 

Comparison of GCA with competitive algorithms over different real world data 

sets shows the superiority of our approach. We have also developed a nearest 

neighbor based clustering algorithm which incorporates frequent itemset mining 

(FINN). The output of the frequent itemset mining phase is fed as input to the 

nearest neighbor clustering for detection of clusters. The process is iterated over 

multiple passes. After each pass, the dataset is pruned by not considering the 

genes that have already been assigned clusters. Experimental evaluation shows 

the method is capable in finding finer clustering of the dataset. This thesis also 

includes a density based clustering algorithm (DGC) which uses the regulation 

information and the order preserving property of gene expression profiles to clus- 

ter genes into high density regions separated by sparse density regions. The 

proposed algorithm has been validated on several real-life data sets and found to 

perform well in comparison to similar algorithms. This thesis also incorporates 

an in'cremental version of the DGC algorithm (incDGC). Experimental results 

on six real world gene expression datasets demonstrate that incDGC can cluster 

the data in an efficient manner while a t  the same time obta.in the same result as 

when DGC is applied to the whole updated database. All clustering algorithms 

have been validated using various statistical measures to show their effectiveness 



over biological data. 

Keywords - Clustering, Gene expression, coherent pattern, co-expressed ggne, 
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nearest neighbor, density based clustering, incremental clustering 
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Chapter 1 

Introduction 

Microarrays provide an extremely powerful way to analyze gene expression. Using 

a microarray, it is possible to examine the expression levels of thousands of genes 

across different developmental stages, clinical conditions or time points. It helps 

in understanding gene functions, biological processes, gene networks, effects of 

medical treatments, etc. Microarrays can be classified into two general types: 

(i) cDNA arrays which consist of cDNA copies of mRNA spotted onto a glass 

slide and 

(ii) oligo arrays which consist of strands of oligonucleotides either spotted 

onto a glass slide or lithographed onto a solid surface. 

A typical microarray experiment consists of extracting RNA from the cells 

or the tissues being examined, converting the RNA to cDNA, labeling the cDNA 

with fluorescent dyes and allowing the labeled cDNA to hybridize with the mate- 

rial (cDNA or oligonucleotide) on the microarray slide. The control and subject 

RNAs are synthesized with different fluorescent dyes and mixed on the same 

slide. Then an image of the surface of the hybridized array (chip or microarray 

slide) is produced by scanning the chip to read the signal intensity that is emitted 

from the fluorescent dye of the heteroduplexes on the array where the target has 

bound to the probe. Raw data is obtained from this step. Next normalization 

and standardization steps are performed to clean and filter the data. Finally the 

real-valued gene expression data is obtained in the form of a matrix where the 

rows refer to the genes and the columns represent the conditions. The next step 



is to  use data mining techniques (such as clustering and association rule mining) 

to extract the hidden information in this data Finally validation is performed 

to check if the result obtained is good from a biological point of view 

Data mining [HK04] is the technique of analyzing datasets (often large) in 

order to  extract implicit, previously unknown and potentially useful information 

that might otherwise remaln unknown 

Data mining techniques are useful in microarray analysis because 

Data volumes are too large for traditional analysis methods 

High dimensionality 

Only a small portion of data is analyzed 

Decision support process becomes more complex 

1.1 Cluster Analysis 

Cluster analysls is an important technique in data mining, where the knowl- 

edge about thc distribution of the obscrvcd data mfile ///home/rosy/thesisay 

not be available apriori Clustering is a data mining technique used to place data 

elements into related groups without advance knowledge of group definitions 

Clustering methods divide the data according to inherent classes present in it 

and arc used in diffcrcnt scientific disciplines and cnginccring applications In 

recent years, clustering methods have been used extensively in analyzing biolog- 

ical data, especially from DNA microarrays measurements Among the d~ffereilt 

data mining techniques used in the analysis of gene expression data, clustering is 

an important technique that reveals natural structures and identifies interesting 

pattcrns in thc undcilying data A kcy stcp is thc idcnt~fication of a group of 

genes that manifest similar expression patterns over several conditions into clus- 

ters, thus revealing relations among genes and their functions A cluster of genes 

can be defined as a set of biologically relevant genes whlch are similar based on 

a proximity measure Intra-cluster genes are similar while inter-cluster genes are 

dissimilar The basic steps to develop a clustering algorithm can be summarized 

as follows 



1 Feature selection This process identifies the most effective subset of the 

original features to use in clustering Irrelevant and redundant genes or 

conditions are not considered for future analysis 

2 Clustering process This step refers to the application of a clustering al- 

gorithm to generate a good clustering scheme that fits the data set A 

clustering algorithm uses a proximity measure and a search method to find 

the optimal or sub-optimal groupings in the dataset according to some clus- 

tering criterion 

A proximity measure quantifies the similarity (or dissimilarity) of two data 

polnts 

The clustering criterion 1s based on the working definition of a cluster 

and/or an expected distribution of underlying data in specific application 

domain 

3 Cluster validation Cluster validation is the assessment of a clustering 

scheme Typically, validation indices are defined to assess the quality of 

clusters 

1.2 Criteria for Evaluating Clustering Algorithms 

It is desirable that optimal algorithms for analysis of gene expression data satisfy 

the following properties [HK04] 

1 Scalability and efficiency Algorithms should be efficient and scalable con- 

sidering the large amount of data to be handled 

2 Irregular shape Algorithms should be able to identify a dense set of objects 

which may be organized in irregular non-spherical shapes, including those 

with lacunae or concave sections and nested shapes, as a cluster 

3 Robustness Clustering algorithms should be iobust to noise and outliers 

4 Order insensitivity Algorithms should be independent of data order 



5 Cluster number The number of clusters in the data set should be deter- 

mined by the algorithm itself and should not be an user input 

6 Parameter estimation The algorithms should be able to estimate any pa- 

rameters required by the algorithm from the dataset itself 

7 Dimensionality Algorithms need the ability to handle data with high di- 

mensionality or the ability to find clusters in subspaces of the original space 

8 Stability The clustering iesult should remain the same for different runs 

of the algorithm 

9 Incrementability Algorithms should be able to incrementally handle the 

addition of new data or the deletion of old data instead of re-running the 

algorithms on the entire new data set 

10 Interpretability The clustering results of the algorithms need to be inter- 

pretable That is, clustering may need to be tied up with specific biologcal 

interpretations and applications 

1.3 Co-expressed Genes and Coherent Patterns 

Genes that have similar expression profiles are known as co-expressed genes A 

coherent expresszon pattern represents the common trend in expression levels for a 

group of co-expressed genes Furthermore, co-expressed genes in the same cluster 

are likely to be involved in the same cellular processes, and a strong correlation 

of expression patterns between those genes indicates co-regulation In practice, 

co-expressed genes may belong to the same or similar functional categories indi- 

cating co-regulated families [THC+99] Coherent gene expression patterns may 

characterize important cellular processes and may provide a foundation for under- 

standing the regulation mechanism in the cells [SSI+98] According to [ABN+99], 

[ESBB98], [IER+99] and [JPZ03c] there zs usually a hzerarchy of co-expressed 

genes and coherent expresszon patterns zn a typzcal gene expresszon data The co- 

expressed genes at  the higher level have a "rough" coherent expression pattern 

while those a t  the lowei levels have "finer" coherent expression patterns The 



interpretation of co-expressed genes and coherent expression patterns depends 

mainly on the domain knowledge. Some challenges during gene expression data 

analysis are given below: 

a Gene expression data consists of thousands of genes. However, only a sub- 

set of those genes may actually participate in the formation of coherent 

patterns. 

a What level of "coherence" (roughness and fineness of the gene patterns) is 

required is dependent on the biologists, i.e., whether a group of genes should 

be further sub-divided into finer patterns depends on domain knowledge. 

By finer patterns we mean highly coherent patterns. 

a I t  is ideal if biologists browse the rough patterns and decompose the pat- 

terns of interest to them into finer patterns. 

Gene clustering is usually the first step in uncovering regulatory elements in 

transcriptional regulatory networks [ABN+99], [THC+99] as well. 

1.4 Gene Expression Clustering 

Clustering identifies genes with similar expression profiles (co-expressed genes). 

To identify co-expressed genes and coherent expression patterns, different clus- 

tering algorithms have been used. These include k-means [THC+99], SOM (Self 

Organizing Map) [TSM+99], QT Clustering [HI(Y99], Hierarchical clustering ap- 

proaches [ESBB98], DHC [JPZ03a], CAST [BDSY99] and CLICK [SSOO] Gene 

expression clustering algorithms are broadly divided into Partitional, Hierarchi- 

cal, Density-based, Graph-based and Model-based approaches. The purpose of 

this thesis is to study different clustering approaches for gene expression data. 

Clustering algorithms use a proximity measure to group similar genes into the 

same cluster. Different proximity measures give different results. The choice of 

proximity measure depends on the application as well as the clustering approach 

being used. A study of proximity measures is included in this thesis. we also 

propose an effective proximity measure that is been found capable of detecting 



clusters over gene expression data. h4any different clustering algorithms have 

been used over gene expression data. A survey of some of clustering algorithms 

is given in [AMS94]. Generally clustering algorithms partition the set of genes 

into clusters, where each cluster represents a group of co-expressed genes and the 

coherent pattern of that cluster is the mean (centroid) of the expression profiles of 

that cluster. Challenges in clustering gene expression data include the following. 

Most clustering algorithms generate disjoint clusters at  a single level with- 

out hierarchical representation among the groups of co-expressed genes. 

Most clustering algorithms cannot adapt to local structures within the clus- 

ters 

The results of most clustering algorithms are dependent on appropriate 

parameter settings. Often results are different depending on parameter 

values and domain knowledge is required to assess the quality of the result. 

It is difficult to integrate domain knowledge into clustering algorithms. 

Since gene expression datasets consist of highly connected genes clustering 

becomes a difficult task and it is often hard to find clear borders [JPZ04]. 

In this thesis, we have developed three clustering algorithms. They include a 

graph-based algorithm, a frequent itemset-nearest neighbor based algorithm, and 

a density based clustering algorithms. Each clustering algorithm uses our own 

dissimilarity measure, presented in Chapter 3 of this thesis. Finally, we also 

develop an incremental clustering algorithm based on the density based clustering 

algorithm mentioned earlier. All clustering algorithms have been tested over 

synthetic and real life data and have been found to detect biologically relevant 

clusters w.r. t .  various cluster validity measures. 

1.5 Motivation 

Based on a comprehensive literature survey we come to the following conclusions. 



Clustering algorithms are dependent on the proximity measure being used. 

Choosing an appropriate proximity measure is of utmost importance. That 

there exists no particular measure which can handle all the issues of gene 

clustering further complicates the job. It  is highly desirable that the prox- 

imity measure being used is robust to outliers and can retain the regulation 

information inherent in a gene expression data. 

It has been observed that various clustering algorithms require different 

types of input parameters and clustering results are highly dependent on the 

value of the parameters. Graph based algorithms have a great advantage in 

that, they do not require the number of clusters as an input parameter and 

are robust to noise. However, it has been seen that graph based algorithms 

require an input parameter (threshold). It  would be of great help if a graph 

based clustering algorithm could calculate the threshold dynamically during 

clustering. 

Gene expression data contains highly connected clusters. Therefore, it 

would be very helpful if finer clusters in the dataset could be identified. 

The finer clusters consists of genes having liighly coherent patterns. 

A density-based clustering algorithm discovers clusters as highly dense re- 

gions separated by sparse regions. It  is based on the concept of density 

connectedness between objects and can detect clusters of arbitrary shapes 

even in presence of noise. Therefore, detecting clusters over gene expression 

data using a density based approach would give rise to quality clusters. 

Due to the large number of microarray experiments being conducted the 

quantity of gene expression data is always increasing and new genes are con- 

tinuously being discovered. As a result, it is desirable to cluster the newly 

available data incrementally instead of having to perform a re-clustering of 

the whole database. 

Work Done 

Following are our contributions reported in this thesis. 



a Clustering is dependent on the selection of a proximity measure. In this 

thesis we present our own dissimilarity measure (DBK) which retains the 

regulation information present in. the gene expression data and is robust 

to outliers. We establish it to perform equally well or better compared 

to existent proximity measures in clustering both synthetic and real-world 

data. 

a We present an effective graph-based clustering algorithm (GCA) for gene 

expression data. Its main idea is that inter-cluster genes have more re- 

pulsion among them than intra-cluster genes. In particular, at  any given 

moment, the genes are clustered based on a repulsion factor which is based 

on the genes that are yet to be assigned a cluster. This consideration leads 

to a objective function that is used to find cluster parameters that optimize 

this objective function. Comparison of this proposed algorithm with similar 

algorithms over different real world data sets shows the superiority of our 

algorithm. 

a Frequent itemset and nearest neighbor concepts are considered to be useful 

for gene clustering. We develop a nearest neighbor based clustering algo- 

rithm based on a popular frequent itemset generation technique. It expands 

clusters using the nearest neighbor concept based on frequent itemsets. The 

process is iterated over multiple passes. After each pass, it prunes those 

genes that have already been assigned clusters. Experimental evaluation es- 

tablishes that the method can find finer clustering of the dataset. The finer 

clustering produces clusters consisting of highly coherent gene patterns. 

a We present a density based clustering algorithm (DGC) that uses the regu- 

lation information and the order preserving nature that exist in gene expres- 

sion profiles to cluster genes into high density regions separated by sparse 

density regions. We validate DGC on real-life data sets and establish it to 

be effective. 

a We also present a modified version of the DGC algorithm to handle the 

scenario when the input data, instead of being all available simultaneously, 

arrive incrementally. It is based on the concept that the density connections 



of a newly arrived gene affects only the neighborhood of the gene. Experi- 

mental results on several real world gene expression data demonstrate that 

the incremental algorithm can cluster the data significantly faster while at  

the same time obtain the same result as when DGC is applied to the whole 

updated database. 

1.7 Organization of the Thesis 

The thesis is organized as follows: 

chapter 2 describe how gene expression data is collected. This chapter 

also gives a survey of literature regarding coherent gene expression pattern 

identification' using data mining techniques. 

Chapter 3 presents our own dissimilarity measure (DBK). The measure is 

established to be appropriate while clustering both synthetic and real-world 

data. 

In Chapter 4, an effective graph-based clustering algorithm (GCA) for gene 

expression data is presented. 

A frequent itemset nearest neighbor based clustering algorithm (FINN) is 

reported in Chapter 5. 

a Chapter 6 of this thesis describes the density based clustering algorithm 

(DGC). 

An incremental version of DGC algorithm that can handle incremental 

datasets is presented in Chapter 7. 

Finally, concluding remarks are given in Chapter 8. 

All our clustering algorithms are validated using various statistical validity 

measures to show their effectiveness over biological data while comparing with 

well-chosen similar algorithms. 



Chapter 2 

Gene Expression Pattern 

Identification 

2.1 Microarray Technology: A Brief Overview 

In 1970, Francis Crick introduced the central dogma of molecular biology [KW02] 

which has ever since, been one of the pillars of modern molecular biology It pins 

down DNA (Deoxyr~bonucleic aad )  as the carrier of genetic information and de- 

scribes the unidirectional flow of information from DNA via RNA (Ribonucleic 

acld) to protein in three steps Replzcatzon, Transcrzptzon and B-anslatzon This 

dogma IS at  the heart of bioinformatics which provides the framework to inter- 

relate and interpiet different types of data encouiltered in thls field The central 

dogma of molecular biology refers to the process of protein synthesis, which occurs 

in three major stages The first stage, Replzcutzon is the process which results 

in the duplication of the genetic information coded in DNA strands The second 

stage, Transcrzptzon, is the transfer of information flom double stranded DNA 

~ n t o  smgle-stranded mRNA The third stage, Translatzon, refers to the conver- 

sion inside the cell where mRNA is translated to produce a protein Together 

Transcrzptzon and Translatzon constitute Gene Expresszon Gene expression 

experiments provide a method to quantitatively measure the transcription phase 

of protein synthesis The objective of gene expression experiments is the quanti- 

tative measurement of mRNA expression particularly under the ~nfluence of drug 



or disease perturbations. 

A DNA microarray or gene chip consists of an array of oligonucleotides or 

complementary DNA (cDNA) molecules of known composition chemically bonded 

to a solid surface (made of chemically coated glass, nylon membrane or silicon) 

[SteOG]. Gene chips are usually categorized into one of two classes, based on 

the DNA actually arrayed onto the support. An oligo array is comprised of 

synthesized oligonucleotides, whereas a cDNA array contains cloned or PCR- 

amplified cDNA (complementary DNA) molecules [KW02] Both classes involve 

three common basic procedures [SteOG] which are depicted in Figure 2.1. 

i Chzp manufacture: A microarray is a small chip, onto which tens of thou- 

sands of DNA molecules (probes) are attached in fixed grids. Each grid 

cell relates to a DNA sequence. The DNA on the array are referred to as 

probes and the labeled DNA in solution as targe t .  

ii Sample preparatzon, labelzng, hybrzdzzatzon and washzng. The first step is 

the extraction of RNA from the tissue of interest. Next, two mRNA sam- 

ples are reverse-transcribed into cDNA and labeled using either fluores- 

cent dyes (Cy3 and Cy5) or radioactive isotopes. It is then hybridized 

with the probes on the surface of the chip. Hybridization is the step in 

which the DNA probes on the glass and the labeled DNA (or RNA) target 

form heteroduplexes via Watson-Crick base pairing. After hybridization, 

the slides are washed (using a low-salt wash or with a high-temperature 

wash) to remove excess hybridization solution from the array. This ensures 

that only the labeled target on the array is the target that has specifi- 

cally bound to the features on the array. This step also reduces cross- 

hybridization. This process is illustrated in Figure 2 2 reproduced from 

http://tztan. bzotec.uzuc. edu/c~491~h/~1zde~/c~~91-lez ppt. 

iii Image Acquzsztzon: In this step, an image of the surface of the hybridized 

array (chip) is produced by scanning the chip to read the signal intensity 

that is emitted from the fluorescent dye of the heteroduplexes on the array 

where the target has bound to the probe. 

The image acquisition process is shown in detail in Figure 2.3 and has been repro- 



Sample preparation n 

Figure 2.1: Steps in a microarray experiment (Courtesy of [SteOG]). The Cy3 and 

Cy5 in the diagram refers to the mRNAs dyed using the two fluorescent dyes of 

Cy3 and Cy5. 

duced from http://archive.student. bmj. com/issues/08/07/education/images/figa 

..ips. 

After hybridization, the slides are scanned using a laser device to determine 

the amount of fluorescent label that is attached to each cDNA on the slide. The 

amount of fluorescence is displayed as a cell on a matrix corresponding to the spot 

on the original slide. The images output from the scanner are colored according 

to a standard where a higher level of fluorescent label (enhanced gene expression) 

is colored red, a lower level (repressed level of gene expression) is colored green 

and equal levels are yellow. 

The digital image obtained from the image acquisition step is converted into 

numerical measures of hybridization intensity for each channel on each feature 

[SteOG]. The image is analyzed by (i) Gridding: Identify spots (this step can be 

automatic, semiautomatic or manual); (ii) Segmentation: Separate spots from 

background using fked circle, adaptive circle, adaptive shape or histogram meth- 

ods; (iii) Intensity extraction: Obtain mean or median of pixels in spots and (iv) 

Background correction: can be either local or global. The microarray data thus 

generated is then cleaned, transformed and normalized to resolve any errors, noise 
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and bias introduced by the microarray experiments [SteOG]. The logarithm of the 

raw intensities are taken to convert them into log intensities. Once expression 

data is obtained from the microarray images using various standardization and 

normalization procedures [SteOG], the information embedded in the data has to 

be analyzed. 

A gene is expressed in a cell when the protein it codes for is actually synthe- 

sized. About 10,000 genes are expressed in an average human cell. The set of 

(say 10,000) numbers that indicate the expression level of each of these genes is 

called the expression profile of the cell. 

The power of a microarray experiment derives from the fact that many thou- 

sands of different DNA molecules are bonded to a single array. So it is possible to 

measure the expression of many thousands of genes simultaneously, conveniently 

and efficiently. 

2.2 Gene Expression Data 

Gene expression of a gene refers to effective production of the protein that a gene 

encodes. A microarray experiment assesses a large number of DNA sequences 

(genes) under multiple conditions such as time-series, tissue samples (e.g., normal 

versus cancerous tissues), and experimental conditions. A gene expression data 

set from a microarray experiment may be considered as a G x T matrix DG as 

shown in Equation 2.1, the rows of which represent expression patterns of a set 

of G genes (91,. . . , gc}, and the columns represent expression profiles of a set 

of T samples, S = i s l , .  . . , sT )  and each cell g i ,  is the expression level of gene 

g, (where 1 5 i 5 G) on sample s, (where 1 5 1 5 T) .  

Cluster analysis starts with this gene expression matrix and calculates proximity 

among genes. Clustering algorithms group genes which are similar based on a 



proximity measure into the same cluster Therefore, similar genes are grouped 

into the same cluster and dissimilar genes are grouped into dlfferent clustcrs 

During the last few years, several significant coherent pattern identification 

techniques have been developed under the categories of gene based, sample based 

and subspace clustering approaches The next section is dedicated to reviewing 

the popular algorithms 

2.3 Gene Expression Pat tern Identification us- 

ing Data Mining 

Cluster Analysis is an unsupervised grouplng technique used to group similar ob- 

jects (in this case genes) into disjoint sets based on their attribute (condition) sim- 

ilaritics Clustering identifies gcncs with similar cxpression profilcs (co-cxprcsscd 

gcncs) Co-expressed genes have similar expression profiles, whlle a coherent ex- 

pression pattern represents the common trend among expression levels for a group 

of co-expressed genes Furthermore, co-expressed genes in the same cluster are 

l~kely to be involved in the same cellular processes, and a strong correlat~on among 

expression patterns of the genes indicates co-regulation In practice, co-expressed 

genes may belong to the same or similar functional categories and indicate co- 

regulated familles [AMS94] Various gene clustering methods have been used to 

identify co-expressed genes and discover coherent expression patterns A cluster 

of genes contains a group of co-expressed genes and the coherent expression pat- 

tern is obtained as the mean (the centroid) of the expression profilcs of thc gcncs 

m the cluster 

Gene clustering techniques are divided into three dlfferent types gene-based 

clustenng where the genes are treated as objects while the samples ale features, 

sample-based clustenng in which the samples can be partitioned into homogeneous 

groups where the genes are regarded as features and the samples as objects, 

and subspace clustertng in which either genes or samples can be regarded as 

objects or features Both gene-based and sample-based clustering approaches 

search exclusive and exhaustive partitions of objects that share the same feature 

space Subspace clustering algorithms capture clusters formed by a subset of 



Figure 2.4: Clusters of genes showing similar temporal patterns 

genes across a subset of samples. Throughout the work reported in this thesis, 

we use the gene-based clustering approach. In gene-based clustering, similar 

rows (genes) are grouped together into unique clusters. The premise is that each 

cluster shows a similar temporal expression pattern as shown in Figure 2.4 and 

may represent a group of functionally related genes i.e., a bzologzcal module. 

2.4 Proximity Measures 

A microarray experiment compares genes from an organism under different devel- 

opment time points, conditions or treatments. For a T condition experiment, a 

single gene has a T-dimensional observation vector known as its gene expression 

profile. A similarity (or dissimilarity) measure is a real-valued function that as- 

signs a real number as a similarity or dissimilarity value between any two expres- 

sion vectors. Therefore, to identify genes or samples that have similar expression 

profiles, appropriate similarity (or dissimilarity) measures are required. Some 

of the commonly used distance metrics are: Euclidean distance, Pearson's Cor- 

relation coefficient and Spearman's Rank-order Correlation Coefficient [SteOG]. 

The Euclidean distance measure imposes a fixed geometrical structure and finds 

clusters of that shape even if they are not present. It is scale variant and cannot 

detect negative correlation. Euclidean distance gives the distance between two 

genes but does not focus on the correlation between them. Pearson's Correlation, 

on the other hand, retains the correlation information between two genes as well 



as the regulation information However, since it uses the mean values while com- 

puting the correlation between genes, a single outlier can aberrantly affcct thc 

result Spearman's Rank Correlation IS not affected by outliers, however there is 

information loss w r t regulation since lt works on ranked data 

2.5 Gene Expression Data Clustering Approaches 

Data mining techniques have proven to  be useful in understanding gene function, 

gene regulation, cellular processes and subtypes of cells According to [SteOG], 

most data mining algorithms developed for gene expression time series deal with 

the problem of clustering Clustering identifies subsets of genes that behave 

similarly along a course of time Categorlzatlon of gene expiession data clustering 

techniques is discussed next 

2.5.1 Partitioning Approaches 

k-means [McQ67] IS a typlcal partition-based clustering algorithm which divides 

the data lnto prc-defined numbcr of clusters In order to optimize a prcdcfined 

criterion The major advantages of it are its simplicity and speed, which allows 

it to run on large datasets However, it may not yield the same result with each 

run of the algorithm Often, it can be found incapable of handling outliers and is 

not suitable to detect clusters of arbitrary shapes A Self Organizing Map (SOM) 

[Koh95] is more robust than k-means for clustering noisy data It requires the 

number of clusters and the grid layout of the neuron map as user input Specify- 

ing the number of clusters in advance is difficult in case of gene expression data 

Moreover, partitioning approaches are restricted to data of lower dimensional- 

ity, with inherent well-separated clusters of high density But, gene expression 

data sets may be high dimensional and often contain liltersecting and embedded 

clusters Q T  (quality threshold) clustering [HKY99] is an alternative method of 

partitioning data, invented for gene clustering It requires more computing power 

than k-means, but does not require specifying the number of clusters apiiori, and 

always returns the same result when run several times The distance between 

a point and a group of points is computed using complete linkage, i e , as the 



maximum distance from the point to any member of the group [ESBB98]. A hi- 

erarchical structure can also be built based on SOM such as Self-organizing Tree 

Algorithm (SOTA) [DC97]. Recently, several new algorithms such as [HVDOl] 

and [THHK02] have been proposed based on the SOM algorithm. These al- 

gorithms can automatically determine the number of clusters and dynamically 

adapt the map structure to the distribution of data. Herrero et al. [HVDOl] 

extend the SOM by a binary tree structure. At first, the tree only contains a 

root node connecting two neurons. After a training process similar to that of the 

SOM algorithm, the data set is segregated into two subsets. Then the neuron 

with less coherence is split in two new neurons. This process is repeated level by 

level, until all the neurons in the tree satisfy some coherence threshold. Other 

examples of SOM extensions are Fuzzy Adaptive Resonance Theory (Fuzzy ART) 

[THHK02] which provide some approaches to measure the coherence of a neuron 

(e.g., vigilance criterion). The output map is adjusted by splitting the existing 

neurons or adding new neurons into the map, until the cohereilce of each neuron 

in the map satisfies a user specified threshold. 

2.5.2 Hierarchical Approaches 

Hierarchical clustering generates a hierarchy of nested clusters. These algorithms 

are divided into agglomerative and divisive approaches. Unweighted Pair Group 

Method with Arithmetic Mean (UPGMA), presented in [ESBB98], adopts an ag- 

glomerative method to graphically represent the clustered dataset. However, it 

is not robust in the presence of noise. In [ABNS99], the genes are split through 

a divisive approach, called the Deterministic-Annealing Algorithm (DAA). The 

Divisive Correlation Clustering Algorithm (DCCA) [BD08] uses Pearson's Cor- 

relation as the similarity measure. All genes in a cluster have highest average 

correlation with genes in that cluster. Hierarchical clustering not only groups 

together genes with similar expression patterns but also provides a natural way 

to graphically represent the data set allowing a thorough inspection. However, 

a small change in the data set may greatly change the hierarchical dendrogram 

structure. Another drawback is its high computational complexity. 



2.5.3 Density Based Approaches 

Density based clustering identifies dense areas in the object space. Clusters are 

highly dense areas separated by sparsely dense areas. DBSCAN [EKSX96] was 

one of the pioneering density based algorithms used over spatial datasets. In 

[JPZ03a], Jiang et. al. propose the Density-Based Hierarchical clustering method 

(DHC) to identify co-expressed gene groups. It  can identify embedded clusters in 

the dataset and can also handle outliers. It can effectively visualize the internal 

structure of the data set. A kernel density clustering method for gene expression 

profile analysis is reported in [SZCS03]. An alternative to this is to define the 

similarity of points in terms of their shared nearest neighbors. This idea was first 

introduced by Jarvis and Patrick [JP73]. A density-based approach discovers 

clusters of arbitrary shapes even in the presence of noise. However, density-based 

clustering techniques suffer from high computational complexity with increase 

in dimensionality (even if spatial index structure is used) and input parameter 

dependency. 

2.5.4 Model Based Approaches 

Model based approaches provide a statistical framework to model the cluster 

structure in gene expression data. The Expectation Maximization (EM) algo- 

rithm [DLR77] discovers good values for its parameters iteratively. It can handle 

various shapes of data, but can be very expensive since a large number of itera- 

tions may be required. In [TH09], a signal shape similarity method used to cluster 

genes using a Variational Bayes Expectation Maximization algorithm [BG03]. A 

model-based approach provides an estimated probability that a data object will 

belong to a particular cluster. Thus, a gene can have high correlation with two 

totally different clusters. However, the model-based approach assumes that the 

data set fits a specific distribution which is not always true. 

2.5.5 Graph Theoretical Approaches 

In graph-based clustering algorithms, graphs are built as combinations of objects, 

features or both, as nodes and edges, and partitioned by using graph theoretic 



algorithms Graph theoretic algorithms are also used for the problem of clus- 

tering cDNAs bascd on thcir oligo-nucleotidc fingerprints [HSL+99] CLuster 

Identification via Connectivity Kernels (CLICK) [SSOO] is suitable for subspace 

and high dimensional data clustering The Cluster Affinity Search Technique 

(CAST) by [BDSY99] takes as input pairwise similarities between genes and an 

affinity threshold It does not require a user-defined number of clusters and han- 

dles outliers cfficicntly But, it faces difficulty in determining a good threshold 

value In CAST, the size and number of clusters produced is directly affected by 

the fixed user-defined parameter t and hence, apriori knowledge of the data set is 

required To overcome this problem, ECAST [BPC02] calculates the threshold 

value dynamically based on the similarity values of the objects that are yet to be 

clustered 

2.5.6 Soft Computing Approaches 

Fuzzy c-means [Bez8la] and Genetic Algorithms (GA) (such as [BMM07] and 

[MMBOS]) have been used effectively in clustering gene expression data The 

Fuzzy c-means algorithm requires the number of clusters as an input parameter 

The GA based algorithms have been found to detect biologically relevant clusters 

but are dependent on proper tuning of the input parameters 

The current information explosion, fuelled by the availability of the World 

Wide Web and the huge amount of microarray experiments being conducted, 

have led to ever-increasing volume of data Therefore, there is a need to introduce 

incremental clusteling so that updates can be clustered in an incremental manner 

Though a lot of resealch has been performed on incremental clustering in other 

application domains, incremental clustering of gene expression data has not been 

exploited much yet 

2.5.7 Incremental Algorithms 

In [EKS+98], the authors present an incremental clustering approach based on 

the DBSCAN [EKSXgG] algorithm A one pass clustering algorithm for relational 

datasets is proposed in [TS08] Rough set theory is employed in the incremental 



approach for clustering interval datasets in [ANSOG]. In [LLF+04b], an incremen- 

tal genetic k-means algorithm is presented. In [RRAROG], an incremental gene 

selection algorithm using a wrapper-based method that reduces the search space 

complexity since it works on the ranking directly, is presented. 

2.6 Discussion 

From the discussion above, we conclude that various clustering algorithms require 

different types of input parameters and clustering results are highly dependent on 

the values of parameters. Gene expression data has coherent patterns embedded 

in the full gene space, identification of which is an important research field. Co- 

herent genes may indicate co-regulation and hence fall under the same functional 

classification. Clustering algorithms that do not require the number of clusters 

as an input parameter and are robust to noise are of utmost importance. Clus- 

tering algorithms are sensitive to the proximity measure chosen. In this thesis, 

we present several clustering methods and all of them use a proximity measure 

developed by us which is introduced in the next chapter. 



Chapter 3 

A Novel Dissimilarity Measure 

for Clustering Gene Expression 

Data 

Distance or similarity measures, also known as proxlmity measures, are essential 

to solve many pattern recognition problems such as classification, clustering, and 

retrieval Various dlstance (similarity) measures have been reported in the liter- 

ature However, choosing an appropriate measure for a specific problem depends 

on the problem domain as well as data domain Clustering is based on proxlm- 

~ t y  measures that help in detecting clusters based on proxlmity among diffcrcnt 

objects Clustering of gene expression data is highly sensitive to the proxlmity 

measure used Chooslng an appropriate dlssimllarity measure 1s of utmost Im- 

portance In this chapter, a review of some similarity (dissimilarity) measures 

is givcn arid a dissimilarity measure (DBK) is proposed for cffective clustering 

of gene expression data In this thesis we have used the gene based clustering 

The DBK measure retains the good characterlstics of several commonly used 

proxlmlty measures whlle avoidlng the bad characterlstics It retalns the up- 

down- regulation information inherent in gene expression data and is robust In 

the presence of outliers 



3.1 Distance Metric 

A metric or distance function defines a distance between elements of a set A 

metric on a set Y is a function (called the distance function or simply distance) 

where R is the set of real numbers For all x,  y, z E Y, this function should satisfy 

the following properties 

1) d(x, y) 2 0 (rion-negativity) Distance is always positive or zero 

11) d(x, y) = 0 iff x = y (identity of indiscernibles) Distance is zero if and only 

if it measured to itself 

111) d(x, y) = d(y, x) (symmetry) Distance is symmetric 

iv) d(x, z )  5 d(x, y) + d(y, z) (triangle inequality) Distance satisfies triangle 

inequality 

A distance function is also called metric if it satisfies all four conditions given 

above Thus, because of the triangle inequality (condition iv), not all distance 

measures are metric, but all metrics are distances 

3.2 Similarity and Dissimilarity Measures 

From scientific and mathematical points of view, distance is defined as a quanti- 

tative degree of how far apart two objects are Similarity is a numerical quantity 

that ieflccts thc sticrigth of ielationship bctwccn two objccts or two features 

Similarities are higher for pairs of objects that are more alike This quantity 

is usually in the range of either -1 to +1 or is normalized into 0 to 1 If the 

similarity between object s and object y is denoted by S, ,, we can measure this 

quantity in several ways depending on the scale of measurement (or data type) 

that we have 



Distance measure is also known a s  dissimilarity measure. Similarity and dis- 

similarity measures are often called proximity measures. Dissimilarity measures 

the discrepancy between the two objects, i.e., it measures the degree to which two 

objects are different. There are many types of distance and similarity measures. 

Each similarity or dissimilarity measure has its own characteristics. Next, we 

consider several important issues concerning proximity measures. 

3.2.1 Relationship between Similarity and Dissimilarity 

Let normalized dissimilarity between object x and object y be denoted by d(x, y). 

Then the relationship between dissimilarity and similarity is given by 

Here, S,,, is normalized similarity between objects x and y. Similarity is bounded 

by 0 and 1. When similarity is one (i.e., two objects are exactly similar), the 

dissimilarity is zero and when the similarity is zero (i.e., two objects are very 

different), dissimilarity is one. If the value of similarity has range of -1 to +1, 

and the dissimilarity is measured with range of 0 and 1, 

When dissimilarity is one (i.e., two objects are very different), similarity is minus 

one and when the dissimilarity is zero (i.e., two objects are very similar), simi- 

larity is one. In many cases, measuring dissimilarity (i.e., distance) is easier than 

measuring similarity. Once we can measure dissimilarity, we can easily normalize 

it and convert it to similarity measure. It is also common for dissimilarities to 

range from 0 to  m. 

Frequently, proximity measures are transformed to  the interval [0, 11. The 

transformation of similarities to the interval [0, 11 is given by 

where, minsz,, and ,maxsz,y are minimum and maximum similarities respectively. 

Similarly, dissimilarity measures with a finite range can be mapped to the interval 



[O, 11 by using the formula 

where, mind(x,y) and maxd(x,y) are minimum and maximum dissimilarities respec- 

tively. 

If the proximity measure has values in the range [O, 001, a non-linear transfor- 

mation is needed and the values in the transformed scale will not have the same 

relationship to one another as the original. But, whether such a transformation 

is desirable or not depends on the application it is used. 

3.2.2 Different Similarity and Dissimilarity Measures 

In this section various kinds of dissimilarities and similarities are discussed. 

A. Some Dissimilarity Measures 

This section reports on some of the popular dissimilarity measures. 

i. Euclidean distance 

Euclidean distance (Equation 3 . 5 )  expressed in terms of the Pythagorean theo- 

rem is one of the most popular distance measures in use today. The Euclidean 

distance between two sets of objects x and y in n-dimensional space is defined as 

where, x = XI, x2, ..., xn and y = yl, yz, ..., y,. 

ii. Manhattan distance 

Minkowski presented the city block distance [Kra75]. The city block or the Man- 

hattan distance or L1 norm is given below 



iii. Minkowski distance 

Minkowski's distance is the generalized form of the two distance metrics discussed 

above. It is given as 

where p is a parameter. For p = 1, we get the Manhattan distance, for p = 2 we 

get the Euclidean distance. 

iv. Chebyshev distance 

For p = m we get the Supremum or Chebyshev (L,, or L, norm) distance 

named after Chebychev [HDRT04]. This is the maximum distance between any 

attribute of the objects. Formally, L, is defined as 

B. Some Similarity Measures 

The triangle equality does not hold for similarity measures but the following 

properties hold true: 

i) S,, = 1 only if x = y (0 5 S 5 1). and 

ii) S,, = Sy,, for all x and y (Symmetry). 

i. Similarity measures for binary data 

Similarity measures between objects that have only binary attributes are called 

szmzlarity coeficzents and have values between 0 and 1. A value of 0 means that 

the objects are completely dissimilar and a value of 1 means that the objects are 

completely similar. 

Suppose objects x and y have n binary attributes. Then, on comparing x and y 

the following quantities are obtained: 



i) 900: the number of attributes where x = 0 and y = 0, 

ii) 401: the number of attributes where x = 0 and y = 1, 

iii) 410: the number of attributes where x = 1 and y = 0, and 

iv) q l ~ :  the number of attributes where x = 1 and y = '1. 
I 

file:///home/rosy/thesis Using the above quantities different similarity coeffi- 

cients can be obtained. 

Simple Matching Coefficient 

Simple Matching Coefficient or SMC [HK04] is one of the most commonly used 

similarity coefficients and is defined as, 

Total number of matched attributes 
S M C  = - - 400 + 411 

Total attributes 
. (3.9) 

400 + 401 + 410 + 411 

SMC gives equal weight to both presences and absences. 

Jaccard Coefficient 

Jaccard Coefficient [HK04] is used for handling objects consisting of asymmetric 

binary attributes. Jaccard Coefficient (J) is defined as follows, 

Number of matched attributes 
J = - - 91 1 

Number of attributes not involved in  00 matches 401 + 410 + 411 ' 

(3.10) 

ii. Cosine Similarity 

Cosine similarity [TSKOS] is useful for finding document similarity. If x and y 

are two document vectors, cos(x, y) is given by the following equation, 

where . indicates the vector dot product, x.y = C;=, xkyk, and llxll is the length 

of vector x, and llxll = , / z x t  = fi. 



iii. Extended Jaccard Coefficient 

The Extended Jaccard Coefficient (EJ) [TSE(O9] can be used for document data 

and it reduces to the Jaccard Coefficient in case of binary data. 

iv. Correlation 

Pearson's correlation coefficient [TSKO9] is a widely used similarity measure. It 

is defined as 

covarzance (z, y ) - - couxy 
corr (x, y ) = (3.13) 

standard-deviation(x) * standard-devzatzon(y) axay 

where 

1 
p. = - s, is the mean of s, and 

n 
a= 1 

1 
p - - xyi zs the mean of y. 

Y - n  
2= 1 

Pearson's correlation is always in the range [-I, 11. Correlation and Euclidean 

distance are useful for dense data such as time series or two-dimensional points 

while Jaccard and cosine similarity measures are useful for sparse data like doc- 

uments. 

Pearson's correlation is a powerful similarity measure. However, empirical 

study has shown that it is not robust in presence of outliers [HKY99], thus po- 

tentially yielding false positives which assign a high similarity score to a pair of 



dissimilar patterns If two patterns have a common peak or valley at a single 

feature, the correlation will be dominated by this feature, although the patterns 

at  the remaining features may be completely dissimilar Another drawback of 

Pearson's correlation coefficient is that it assumes an approximate Gaussian dis- 

tribution of the points and may not be robust for non-Gaussian distributions 

[BicOl] 

v. Jackknife correlation 

Jackknife correlation [JTZ03], helps in overcoming the single outlier problem of 

Pearson's correlation It is defined as 

Jackknz f e(x, y) = mzn{corr (x, y)l, , corr(x, y)', , corr(x, y),) (3 15) 

where corr(x, y)l is the Pearson's corrclation cocfficicnt of data objects x and y 

with the l th feature deleted Use of Jackknife correlation avoids the dominance 

effect of single outliers More general versions of Jackknife correlation that are 

robust to more than one outlier can similarly be derived However, generalized 

Jackknife correlation, which involves the enumeration of different combinations 

of features to be deleted, is computationally costly and is rarely used 

vi. Spearmants rank-order correlation coefficient 

To address the problem of non-Gaussian distributions w r t Pearson's correla- 

t ~ o n ,  Spearman's rank-ordcr corrclation cocfficicnt [JTZ03] has been suggested 

as a similarity measure The ranking correlation is derived by replacing the data 

x,, with its rank r,, among all conditions For example, r,, = 3 if x,, is the 

third highest value among x,k , where 1 5 k 5 n Spearman's correlation coeffi- 

cient does not require the assumption of Gaussian distribution and is more robust 

against outlicrs than Pearson's corrclation cocfficicnt However, as a consequence 

of ranking, a significant amount of information present in the data is lost 

vii. CorHszm 

In [LWN+O9], a new similarity measure foi gene expression data, CorHszm, is 

presented It reflects the magnitude and shape information of gene expression 



data at  the same time and is defined as follows. 

The disadvantage of CorHszm is that it uses the mean value and therefore may 

be affected by a very large or a small value of x or y. 

The similarity (dissimilarity) measures discussed above have been applied in var- 

ious domains. However, not all the measures are applicable in all domains. There 

is a qualitative domain specific dependency among similarity (dissimilarity) mea- 

sures. For gene expression data domain, not all the measures discussed above 

are applicable. Gene expression data with its inherent high dimensionality and 

direction information becomes challenging for similarity (dissimilarity) measures. 

The following section discusses in detail the various aspects of proximity measures 

used for gene expression data and presents our dissimilarity measure, DBK. 

3.3 Proximity Measures for Gene Expression Data 

There are many methods for quantifying similarity or dissimilarity between a pair 

of gene expression profiles. Different methods give different results and therefore 

one should carefully choose which method to use. 

3.3.1 Features of a Distance Measure 
i 

Similarity or dissimilarity between two profiles is described in terms of the dis- 

tance between them in the high dimensional space of gene expression measure- 

ments. A dissimilarity measure, d(ga, g,), obeys the following four properties (1-4) 

for any two genes g, and g,, while a true distance measure also satisfies a fifth 

([JW98]). The properties are given below. 

1. The distance between any two profiles cannot be negative. 

2. The distance between a profile and itself must be zero. 



3. The distance between profile g, and profile g, is the same as distance be- 

tween profile g, and profile g,, i.e., d(g,, g,) = d(g,, g,). 

4. The distance measure should obey the triangle inequality property, i.e., for 

profiles g,, g, ,  gq, we have d(g,, gq) L d(gz,g,) + d(g, , 9,). 

3.3.2 Comparing Similarity Measures 

A microarray experiment compares genes from an organism under different de- 

velopment time points, conditions or treatments. For an n condition experiment, 

a single gene has an n-dimensional observation vector known as its gene expres- 

sion profile. A similarity (or dissimilarity) measure is a real-valued function that 

assigns a positive real number as a dissimilarity value between any two expres- 

sion vectors. Therefore, to identify genes or samples that have similar expression 

profiles, appropriate similarity (or dissimilar~ty) measures are required. Some of 

the commonly used distance metrics are: Euclidean Distance, Pearson's Corre- 

lation coefficient and Spearman's rank-order correlation coefficient [JTZ03]. A 

comparison of three most widely used distance measures used for gene expression 

data is given in Table 3.11. Euclidean distance imposes a fixed geometrical struc- 

ture [SteOG] and finds clusters of that shape even if they are not present. It is 

scale variant and cannot detect negative correlation. Euclidean distance gives the 

distance between two genes but does not focus on the correlation between them. 

Pearson's Correlation, on the other hand, retains the correlation information be- 

tween two genes as well as the regulation information. However, since it uses the 

mean values while computing the correlation between genes, a single outlier can 

aberrantly affect the result. Spearman's rank correlation is not affectcd by out- 

liers; however, there is information loss w.r.t. regulation since it works on ranked 

data. Thus, it can also be observed from Table 3.1 that choosing an appropriate 

distance measure for gene expression data is a d~fficult task. 

' ~ o t e  that this table's first column corresponds Lo the distance measure we introduce later 

in this chapter 



Table 3 1: Comparison of Different Distance Measures 

3.4 Motivation 

From the discussion above, we conclude that  choosing an  appropriate similarity 

measure is of utmost importance. Tha t  there exists no particular measure which 

can handle all the issues further complicates the job. 
( 

In the rest of the chapter, we introduce a dissimilarity measure, DBK that  ad- 

dresses the challenge of identifying the coherent patterns from a gene expression 

dataset I t  can find dissimilarity bctwccn gcnc profiles cffcctively. While cluster- 

ing genes, DBK measure can identify coherent patterns even in the presence of 
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outliers That it retains information on the shape (trend) of the patterns is the 

major attraction and thus DBK gives the coherency measure between genes 

3.5 DBK Dissimilarity Measure 

To compute the dissimilarity between pairs of genes, our method uses a grid- 

based approach, where the number of grid cells is computed according to the 

spread of the dataset 

3.5.1 Grid Approximation 

Initially, the dataset is normalized to mean 0 and standard deviation 1 The 

dataset (gcne profilcs) is then plotted as a two-diniensional curve with time points 

in the horizontal direction and expression levels in the vertical direction The 

maxlmum and rmnimum expression levels as well as the maxlmum and minimum 

time points are found The spatial region is approximated by a quadrilateral of 

size A x  B, where the quadrilateral can be represented by the set of points (mzn- 

zmum tzme poznt, mznzmum expresszon level), (maxzmum tzme poznt, maxzmum 

expresszon level) This quadrilateral is divided into rectangular cells of width W, 

where W = 29-', A = 29a, B = 29b for some positive integers a ,  b, q and level, 

1 as shown in Figure 3 1 Initially, 1 = 0 i e , the block width is 29, a = b = 1 

and we have one rectangular cell with all the gene profiles lying within it For 

each cell, a feature condition (discussed in the next section) is tested based on 

the expression values of the gene profiles with~n that cell If the condition is not 

satisfied, the region is further divided into 2 h q u a l  sub-cells, where k = 2, 4, 

8, The process continues till the condition is satisfied Figure 3 2 (a) shows 

the initial condition of some example gene profiles a t  level, 1 = 0, Figure 3 2 (b) 

shows the intermediate condition at level, 1 = 1 and Figurc 3 2 (c) shows thc final 

condition of the example gene profiles at  level, 1 = 2 



AxB 

Figure 3.1: Cell ID for (a) level 0, (b) level 1 and (c) level 2. 

Figure 3.2: Example gene profiles in (a) level 0; (b) level 1 and (c) level 2. 

3.5.2 Feature Condition for a Grid Cell 

Initially a t  level, 1 = 0, all the profiles reside in one cell as shown in Figure 

3.2 (a). So, a t  1 = 0, the row, T = 0 and column c = 0. Therefore, the ID 

of this cell is given by ID(T,  c, 1) i.e., ID(O,O, 0). Note that, points of a profile 

refer to the points across time points (i.e., points of a profile in the horizontal 

direction) as  is shown by the solid circles for each example profile in the figure. 

Now, the condition for cell division is that, two consecutive points of a profile 

cannot reside within the same column, and cannot reside within the same row, if 

their expression levels are unequal. We call this the feature condztion. 

Figure 3.2 (a) shows the initial condition of the example gene profiles a t  level 

1 = 0. We see that consecutivc points of all the profiles reside within the same 

row and column. Therefore, we divide the cell into 2k equal sub-cells, where k 



= 2, and level, 1 now becomes 1. Thus we obtain 4 grid cells as can be seen in 

Figure 3.2 (b) at  1 = 1. We observe in this figure that thc second gene profile 

has consecutive points in the cell ID(O,1,1) but since both the points have equal 

expression values they can reside in the same row. But, since they reside in the 

same column for the two consecutive time points, it does not satisfy the feature 

condition and subdivision is required. Similarly, for the other genes, consecutive 

time points reside within the same column and therefore subdivision is required. 

Also for the other genes, we see that genes with dissimilar expression values 

reside in the same row, for example, gene 4, whose consecutive expression values 

even though being dissimilar reside in the same row, T = 1, of cell ID(1,0,1) 

and ID(1,1,1) and so on. Thus, we again subdivide the cells into 2k equal sub- 

cells, where k = 4, and 1 = 2. Now, we obtain the 16 grid cells as depicted in 

Figure 3.2 (c). We conclude from this figure that (i) no two consecutive time 

points fall in the same column and (ii) no two consecutive points with different 

expression values fall in the same row. Thus the feature condition is satisfied and 

cell division terminates. We thus obtain the row and column values for every 

gene profile across time points. For example the r values of gene 1 is 0,1,3,2 and 

its c values are 0,1,2,3 at  1 = 2. Similarly, the r and c values for the other genes 

may be obtained. 

Let ID( r ,  c, 1) be a cell in row r and column c at  level 1 in the region Ax B, 

with block width 24-'. For the top level, 1 = 0, the block width is W = 24. 

ID(r ,  c, 1) is defined below. For a particular ID( r ,  c, l ) ,  the corresponding points 

of a profile that have coordinates (y, x),  where y refers to the time point and x 

the corresponding expression level value, fall in column c and row r a t  level 1 and 

is given by the following equation. 

W Y :  $ 1  5 x < + 1 ,  &) 5 y < $(c+ 1) 

(x, y) : 2qP'(r) 5 J: < 24-'(7- + I ) ,  (3.17) 

2 4 7 ~ )  5 y < 24-l(c + 1) 

where y and x are positive real numbers including zero, for 0 5 r < 2', 0 5 c < 2'. 

Figure 3.1 shows an example of constructing quadrilateral mesh from level 1 = 0 

to level 1 = 2. 

For a better understanding of how the grid approximation is done for gene 



profiles, we put forward the following example. For simplicity we assume that  

the quadrilateral is a square, i.e., A = B. At 1 = 0, block width is 24-1 = 24 = 16, 

for q = 4 and a = b = 2' = 1 as seen in Figure 3.1 (a). We subdivide this cell 

into 2k (where k = 2 , 4 , 8 , .  . . )  cells if the feature condition is not satisfied as 

explained before. Now, we obtain 4 cells on subdivision with k = 2 and level is 

incremented by 1 to  obtain 1 = 1. Now, the width of a cell is 2'3-" 2*-' = 8 

and A = 24-la = 8 x 2 = 16 and B = 24-lb = 8 x 2 = 16, where, a = b = 2' = 2. 

This is shown in Figure 3.1 (b). Further cell division results in 1 = 2 ,  k = 4 

and number of cells as 24 = 16. Then, the width of each cell becomes 4 (i.e., 

24-1 = 24-2 = 4). Therefore, A = 2'7-la = 4 x 4 = 16 and B = 24-lb = 4 x 4 = 16, 

where, a = b = 2' = 4. This process of cell division goes on iteratively till the 

feature condition is satisfied. Now, for finding the corresponding points (y, x) 

that  fall in row r and column c at level 1, we use either of the equations given in 

Equation 3.17. We assume that the top left corner of the grid is (0,O). We show 

the working of the equation next. 

For, 1 = 0, 

W W W W 
- ( T )  < x <  - ( r + l )  and  -(c) 5 y <  - ( c + l )  
21 21 21 21 

Initially, W = 24 = 24 = 16, Then for r = 0, we have, 

For c = 0, we have, 

Now, for 1 = 1 and r = 0, we have, 

For c = 0, we have, 

for r = 1, we have, 



For c = 1, we have, 

Similarly, the (y, x) values may be computed in level, 1 = 2,3, and so on Same 

results are obtained if we use the second equation of Equation 3 17 Thus, for 

each (y,x) point of a gene profile, we obtain a string of r and c values For 

example, from the Figure 3 2 (c), the r values of gene 1 is 0,1,3,2 and its c values 

are 0,1,2,3 a t  1 = 2 For gene 2, r values are 1,2,1,1 and c values are 0,1,2,3 

For gene 3, r values are 2,1,2,3 and c values are 0,1,2,3 For gene 4, r values are 

3,2,3,1 and c values are 0,1,2,3 

3.5.3 Computation of Dissimilarity 

Once cell division terminates, each cell has a unique ID, i e , ID( r ,  c, 1) Since each 

point of the curve of every profile now resldes In a separate cell, the ID of the cell 

is the ID of each point During comparison, every pair of points (one from each 

profile) always lics in thc same column So, the contribution of column value and 

level information is null and only the row information is considered which reflects 

the maxlmum variability For every point in a piofile, its corresponding r value 

is obtained For every gene, the median of the row values (r) is calculated across 

timc points (conditions) For evcry gcnc, thc dlfferencc of the row value of each 

point from the median is computed If the difference obtained is negative, the 

point is down-regulated, a positive value indicates up-regulation and 0 indicates 

equilibrium fiom the median This regulation information helps in finding the 

coherency between two genes As an example we take the gene profile plotted in 

Figure 3 3 has the r values as 2, 1, 2, 3 The median of these r values for this 

gene profile is 2 Next, the difference of the r values of each time point from the 

median of this gene will result in the diffelence value as 0, 1, 0, -1 From now on, 

in this chapter time point and point will refer to the same thing The median 

(m,) of the r values for each gene z is computed For each gene, 2, the difference 

of the T values of each point, x, from its respective median m, is computed as 

shown below Here, x represents a particular time point (or condition) of a gene 



Figure 3.3: Example gene profile in levcl 1. 
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and the value of x varies across time points for every gene under consideration. 

where, T is the number of time points (conditions) and rxz is the row value for 

the a;th time point of the th gene. 

Note that Dz f f,, is actually a pattern of length T for the ith gene. 

For a pair of genes, the difference between their individual Dz f f,, is calculated 

and summed. This gives us the dissimilarity measure for pairs of genes. The 

dissimilarity measure DBK(i, j) for gene z and gene J is computed a s  follows: 
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Coherent Gene Identification by DBK Measure 

Coherent gene identification is very important for gene expression clustering. 

Coherent genes are those genes which follow a similar trend. Two genes having 

the same trend will be highly coherent. For similarity measure the value of the 

similarity between two genes with same trend should be 1 and for dissimilarity 

measure, the dissimilarity between them should be 0. 

Our proposed DBK can identify coherent genes based on the shape or trend 

information. This can be illustrated by an example and the values of the example 
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gene profiles are given in Table 3 2 and their normalized values (mean 0 and stan- 

dard deviation 1)  are given in Table 3.3. The normalized gene profiles arc then 

Table 3.2. Uncentered expression values of two example genes 

Table 3.3: Centered expression values of two example genes 
- 
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and expression values in the vertical direction as given in Figure 3.4. The grid 

approximation is then done as expiained before to obtain the grid approximation 

as shown in Figure 3.4 at level, 1 = 3. The row values ( r )  of the three genes are: 
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Figure 3.4: The grid approximation and the I D ( r ,  c, 1 )  values for each point of 

the 3  gene profiles 

The median (m) of the row values are: 

Therefore the Dz f f values of the three genes are: 

Di f fgene2 = 6  - 2  0  - 4  4  

Dzffgene3=4 - 4  - 3  0  7  

Now, 

DBK (genel ,  gene2) = 

D B K  (genel ,  gene3) = 

J ( 6  - 4)2 + ( - 2  - ( -4))2  + (0  - ( -3))2  + ( -4  - 0)2 + (4  - 7 ) 2  = 6.48 

D B K  (gene2, gene3) = 

J ( 6  - 4)2 + ( -2  - ( - 4 ) ) 2  + ( 0  - ( -3 ) )2  + ( - 4  - 0 ) 2  + (4 - 7 ) 2  = 6.48 



We notice from Table 3 2, that genel and gene2 have the same trend values only 

that the magnitude of the values of gene2 have been increased by 200 However, 

both of them have the same trend or shape This is reflected in the value of DBK 

where we see that both genel and gene2 have the DBK value of 0 Also, the value 

of DBK for genel and gene3 is same as that of gene2 and gene3 Since, genel 

and gene2 have the same trend so their coherency is high and also their distance 

from the third gene is same respectively The Pearson's correlation between genel 

and gene2 is 1 and similarity between genel and gene3 and gene2 and gene3 is 

same and is equal to 0 74 Therefore, we conclude that both DBK and Peaison's 

correlation can identify the coherent patterns based on the shape information 

In another example, we consider three yeast sporulation expression profiles 

(YBR148W, YDR260C and YKL166C) from the study of [ESBB98] as given 

in Figure 3 5 We have replaced the missing values with the median We 

denote Pearson's correlation by COT, Euclidean distance by euc and our dis- 

similarity measure by prop We have C O T ( ~ B R , ~ D R )  = 0 984, COT(YDR,YKL) = 

0 815 and C O T ( ~ B R , Y K L )  = 0 851 NOW, e u c ( y ~ ~ , y ~ ~ )  = 3 422, e u c ( y ~ ~ , y ~ ~ )  = 

5 244 and euc(yB~,yKL) = 8 552 For our measure, DBK(yBR,yDR) = 3 606, 

DBK(YDR,YKL) = 3 742 and DBK(YBR,YKL) = 7 We see that according to 

both Euclidean and our measure YKL166C is more similar to YDR260C than to 

YBR148W, a result that does not agree with the correlation cocfficient result 

3.5.4 Effectiveness of DBK 

The proof that DBK satisfies the properties listed in Section 3 3 is given below 

Property 1 For genes z and J, D(z, J )  > 0, the square of Dz f f,, - Dz f f,,, 

x = 1, , T, gives a positive number and moreover, we take the positive 

square root of the sum of Dz f f,, - Dz f f,,, x = 1, , T This results in 

always positive numbers Therefore, DBK(z, 3)  2 0 

Property 2 Dissimilarity between a profile and itself must be zero 

D B K ( ~ ,  2) = J c T , ( D ~ ~  - ~ z f f , ) ~  = o 

Property 3 Dissimilarity between gene z and gene J is equal to the distance 

between gene J and gene z 



Figure 3.5: Three expression profiles from yeast sporulation [ESBB98] data set 

For identical genes. Assume, DBK(z, j) = 0. Then according to Property 

2, z and j are identical genes and DBK(3, z) = 0 Therefore, DBK(z, j )  = 

D B K  (j, z) = 0 for identical genes. 

For non-identical genes. Again assume, DBK(z, j)  = P. According to 

Equation 3 19, DBK(z, j )  = JCL,(DZ f f,. - Dz f fx,)2 and DBK(j,  z) = 

J C T = ~ ( D ~ ~ ~ ,  - Dzf ~ x z ) ~  Let (Dl f fi, - Dz f fl,) = y for the lst time 
~ o m t ,  then (Dzf fl, - Dz f fi,) = -7. But, since whle calculating DBK, we 

take the square of the terms both the terms become equal Similarly, for 

rest of the terms, we get (Dz f f,, - Dz f fx,)2 = (Dz f f,, - Dz f f,,)2 for z = 

2,3, - . . , T - 1 time points Therefore, we can conclude that D B K  (2, j ) = 

DBK(j,  2) = P 

Property 4: DBK satisfies the triangle inequahty property, i.e., DBK(E,, F,) 5 
D B K  (Ex, Hz) + d(Hz, Fy ) , where E,, F,, Hz are gene profiles 

Assume, Ex, F,, Hz are three row sequences and Ex = el e2 . - .  e~ , 
Fy = fl f2 ' "  fT and Hz = hl h2 hT 
We next transform them to the Dz f f values with medians, r n ~ ,  , mFy, m ~ ,  , 
where m ~ , ,  m ~ ,  and m ~ ,  are the medians of of Ex, Fy and Hz respectively 

Dz f fEz = Ael Ae2 . . - AeT, where Ae, = m ~ ,  - e, 

Dz f f ~ ,  = A fl A f2 . . . A f ~ ,  where A f, = m ~ ,  - f, 



Dz f fH, = Ahl Ah2 AhT, where Ah, = r n ~ ,  - h, 

Now, the calculation of DBK(E,, F,) reduces to the Euclidean distance 

calculation, i e , 

Similarly, DBK(E,, Hz) and DBK(H,,  F,) are calculated Now, it is ob- 

vious that the triangle inequality property of DBK is satisfied based on the 

Euclidean space 

Since, DBK satisfies all the metric measure properties, we can say that is a 

metric measure 

To establish that our dissimilarity measure satisfies the properties listed 

above, we take data from the work of [CDE+98] and [CCW+98] To validate the 

properties, we take the genes YJL157C, YKL185W, YAL008W from the dataset 

of [CCW+98] and two other synthetic profiles, viz , Series3 and Seiies4 Series 

3 and Series 4 have similar expression levels as that of YAL008W except a t  the 

4th time point, which is replaced by two random values We will refer to the 

profiles of Y JL157C, YKL185W Series3, Selles4 and YAL008W as profiles 1, 2, 

3, 4, and 5, respectively The expression plot is as shown in Figure 3 6 When 

we compute d~ssimilarities between pairs of profiles, the values are positive For 

example, dissimilarity between profile 1 and 2 is 5 292, profile 1 and 3 is 5 568, 

profile 1 and 4 is 5 477, profile 1 and 5 is 12 288, profile 2 and 3 is 7, profile 2 

and 4 is 6 633, piofilc 2 and 5 is 14 457, profilc 3 and 4 is 1, profile 3 and 5 is 

10 and profile 4 and 5 is 11 These are non-negative numbers and hence the first 

property follows A detailed workout shows that the other properties are also 

satisfied The dissimilarity between profiles 3 and 4 is only 1 This is due to the 

fact that their expression values are identical except for the value at  time point 

30 

We next compare DBK with three most commonly used proximity measures 

over gene expression data 

2~~ U ~ I C C  0rg/files/pdf/URTCC~TS~fina~Subrn1ssion~l92192 pdf 
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Figure 3.6: Time series plot of expression profiles for indicated genes: YJL157C 

(diamond), YKL185W (solid square), Series3 (triangle), Series4 (dotted line with 

cross sign) and YAL008W (hollow square) 

3.5.5 Comparison between DBK and Euclidean measure 

Euclidean measure is highly influenced by the magnitude of changes in the dataset. 

Although both Euclidean measure and DBK reflect the magnitude of the objects, 

Euclidean measure is concerned about the global information, and DBK is more 

concerned about the local information (since it uses the median of r values), 

which makes DBK more robust than Euclidean measure. An important advatage 

of DBK over Euclidean measure is that DBK retains the regulation (trend) in- 

formation due to the use of the median and thus is capable of finding coherent 

genes from the dataset. This can be justiiied by again taking the example gene 

profiles of Table 3.3. We saw that the DBK value of the two coherent genes, 

gene1 and gene2 were 0. However, their Euclidean distance is 2.1377 even on 

the centered data. This shows that Euclidean distance doesnot take the shape 

(trend) information into account. 



Figure 3.7: Time series plot of ENBl (triangle) and NPR2 (square) 

Figure 3.8. Time series plot of CAR2(Seriesl) and FYV4(Series2) 



3.5.6 Falsely Correlated Time Series by Pearson's Corre- 

lation 

During computation of Pearson's correlation, the mean of each profile is used 

whereas the DBK measure uses the median The disadvantage of using Pearson's 

correlation is that an aberrant value ~ 1 1  shift the mean and may falsely rcflcct the 

similarity between two genes The advantage of DBK over Pearson's correlation 

is that due to the use of median value, an aberrant value does not affect the 

similarity between two genes significantly This observation can be illustrated 

with the help of an example The uncentered log ratio values of two genes, viz , 

Table 3 4 Uncentered log ratio values of two genes, viz , ENBl and NPR2 from 

the time series dataset of [CDE+98] 

ENBl and NPR2 from the time series dataset of [CDE+98] is given in Table 3 4 

Figure 3 7 is the time series plot for these two genes after centering Pearson's 

correlation for the two genes is 0 633 indicating strong correlation However, 

the graph of Figure 3 7 show that the genes are not related with respect to 

the trend (behaviour of time series points) The 'outlier' that results in the 

strong correlation is a t  30 minutes, where both genes are down-regulated [SteOG] 

However, after the 30 minute time point, the behaviors of the two genes are 

completely different Our dissimilarity measure gives a value of 3 3166, which is 

sufficiently hlgh showing that thc two scrics arc not s~milar Therefore, we see 

that Pearson's correlation is susceptible to outliers whereas our measure is robust 
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to outliers 

3.5.7 False Correlation result by Spearman's Correlation 

Spearman's correlation does not work directly on the expression values, instead 

it works on the ranked data However, the rank-based methods could mistakenly 

interpret a pattern since the use of rank causes information loss Two gene profiles 

may be dissimilar w r t their expression values but may be similar w r t their 

ranks Therefore, the result will falsely reflect the similarity between them This 

problem is not there in DBK, as it does not work on ranked data In fact the 

discretized value ( r )  on which DBK works has been discretized with minimum 

information loss thereby retaining the shape of patterns 

The genes CAR2 and FYV4 of dataset [CDE+98] are shown in Figure 3 8 

These two genes have similar shape profiles but one is upregulated and the other 

is down-regulated The genes have a strong positive correlation (Spearman's cor- 

relation = 0 91) even though the expressions are very different The Euclidean 

distance (= 8 5) is large reflecting the difference Our measure also gives a suf- 

ficiently large valuc (=4 455) indicat~ng thc substantla1 diffcrcncc bctwccn thc 

profiles In thls case, both Euclidean dlstance as well as our measure are proba- 

bly good measures Table 3 1 gives a comparison of our measure with Euclidean 

distance, Pearson's and Spearman's correlation We note that our measure works 

best when used over mean zero and standard dev~ation 1 centered data 

3.6 Performance Evaluation 

In this thesis, we have used the following real-life data sets 

Dataset 1 In [CCW+98], Cho et a1 used the temperature sensitive mu- 

tant strain CDC28-13 to produce a synchronized cell culture of the Saccha- 

romyces cerevzszae from which 17 samples were taken at 10 minute intervals 

and hybridized to Affymetrix chips The final data is publicly available a t  

http //yscdp stanford edu/yeast-cell-cycle/full -data html Cho's dataset is 

widely available and has functional classification that allows validation of 



clustering results. This dataset contains 6218 genes at  17 time points. 

Dataset 2: Out of the full Dataset 1, a subset of 384 genes have been 

obtained from ht tp  : / / f a c u l t y  .washington.edu/kayee/cluster. 

a Dataset 3: In [DI97], the authors use DNA microarrays to study the tem- 

poral gene expression of 6089 genes in Saccharomyces cerevisiae during the 

metabolic shift from fermentation to respiration. Expression levels were 

measured a t  seven time points during the diauxic shift (the two growth 

phases of a microorganism in batch culture as it metabolizes a mixture of 

two sugars). The full data set can be downloaded from the Gene Expression 

Omnibus website, http://www. ncbi.nlm.nih. gov/geo/query. 

Dataset 4: The dataset used is from the study of [WFM+98] where the 

authors study the relationship among gene expression patterns of genes 

involved in the rat Central Nervous System (CNS), measured during the 

development of the rat's CNS. Gene expression patterns for 112 genes were 

measured a t  nine different de~elopmental~time points. This yields a 112 x 9 

matrix of gene expression data. This data set can be downloaded from 

ht tp  : // f aculty.washington.edu/kayee/cluster. 

Dataset 5: The dataset used is from the study of [RWDFOO] where the 

authors study the relationship among gene expression patterns of genes 

of Arabidopsis Thaliana. Gene expression patterns for 138 genes were 

measured a t  eight different time points. This yields a 138 x 8 matrix 

of gene expression data. This data set can be downloaded from http : 

//homes.esat.kuleuven.be/ thijs/Work/Clustering.html. 

Dataset 6: The dataset describes the response of human fibroblasts to serum 

on cDNA microarrays in order to study growth control and cell cycle pro- 

gression. These data were obtained from the study of [IER+99]. Primary 

cultured fibroblasts from human neonatal foreskin are induced to enteria 

quiescent state by serum deprivation for 48 hours and then stimulate by 

addition of medium containing 10% FBS. DNA microarray hybridization is 

used to measure the temporal changes in mRNA levels of 8613 human genes. 



The data set has 13 dimensions corresponding to  12 time points (0, 0.25, 

0.5, 1, 2 ,4 ,  6, 8, 12, 16, 20 and 24 hours) and one unsynchronized sample. In 

this thesis, we choose a subset of 517 genes whose expression changed sub- 

stantially in response to serum. The detailed information about the data set 

can be found at  the Web site: http://genome-www.stanford.edu/serum/. 

Dataset 7: The dataset used is from the study of [SSI'98] where the authors 

study the yeast cell cycle. There are a total of 698 genes at  72 conditions 

in the subset of this data obtained from the sample input files in Expander 

[SMKS03]. 

A brief overview of the datasets is given in Table 3.5. All the datasets are 

normalized to have mean 0 and standard deviation 1. 

3.6.1 Results 

We exhaustively tested our dissimilarity measure on all the datasets. We included 

the Euclidean distance, Pearson's correlation and our own DBK dissimilarity 

measure in both k-means [SteOG] and hierarchical clustering (UPGMA) [ESBB98] 

algorithms. Figure 3.9, Figure 3.10 and Figure 3.11 show the result when the full 

Dataset 1 is clustered using k-means for Euclidean distance, Pearson's correlation 

and our measure. The result when UPGMA clustering was applied on Dataset 

1 using Euclidean distance, Pearson's correlation and our measure are shown in 

Figure 3.12, Figure 3.13 and Figure 3.14, respectively. 

I t  is seen from Figure 3.9 and Figure 3.10 that a t  k=30, both Pearson's and 

Euclidean merge the single outlier into a cluster whereas our measure does not 

(cluster a t  3Td row 2nd column of Figure 3.11). At higher k values, the outlier 

is separated for k-means clustering using Euclidean distance. However even for 

higher k values the outlier is not separated for k-means clustering using Pearson's 

correlation. As can be seen from Figure 3.12, Figure 3.13 and Figure 3.14, all 

major cluster patterns can be detected by our measure when hierarchical cluster- 

ing is applied on 100% of the data. However, for Euclidean distance, the cluster 

a t  3rd row, 5th column of Figure 3.12 is produced as a singleton cluster whereas 

using our measure it is clustered with patterns similar to it in shape (6th row , lSt 



Table 3.5: Datasets used for evaluating the clustering algorithms introduced in 

this thesis 

column) of Figure 3.14. The Pearson's correlation measure mixes up the patterns 

with low variation across time points in different clusters; moreover it also suffers 

from the single outlier problem as can be seen in more than one of the clusters in 

Figure 3.13. Our measure on the other hand separates the low variation clusters 

from the rest and can detect the single outliers as can be seen from the singleton 

clusters. 

The results obtained when both k-means and hierarchical clustering algo- 
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Figure 3.9: k-means clustering of profiles for Euclidean distance a t  k=30. The 

single outlier present at  the 4th row and 3Td column is merged into a cluster 

rithms are applied on Dataset 2 are shown in Figure 3.15, Figure 3.16, Figure 3.17 

and Figure 3.18. 

To assess the quality of DBK, we employed the Rand index as given next. 

Rand Index 

Rand index is a measure of the similarity between two clusters. The Rand index 

is defined as the numbers of pairs of objects that are either in the same group 

or in different groups in both partitions divided by the total number of pairs of 

objects. It can be calculated as follows. 

The performance of a clustering process can be tested by comparing the 



Figure 3.10: k-means clustering of profiles for.Pearson's correlation coefficient a t  

k=30. The single outlier present a t  the lst row and lst column is merged into a .  

cluster 



Figure 3.11: k-means clustering of profiles using DBK dissimilarity measure a t  

k=30. Our measure does not merge the single outlier into a cluster as can be 

seen in the 3Td row 2nd column 



Figure 3.12: Hierarchical clustering of profiles for Euclidean distance at  cutoff=49 

and using complete linkage 



Figure 3 13 Hierarchical clustering of profiles for Pearson's correlation coefficient 

a t  cutoff=49 and using complete linkage 



Figure 3.14: Hierarchical clustering of profiles for DBK measure a t  cutoff=49 and 

using complete linkage 



Figure 3 15 lc-means clustering of profiles for Pcarson's correlation cocfficlcnt a t  

k=16 I 



Figure 3 16 k-means clustering of profiles for DBE< measure at  k=16 

clustering results with the ground truth of the cluster structure of the data set 

Given the clustering results C = C1 C,, we can construct a G x G binary 

matrix C ,  where G is the number of genes, C,, = 1 if g, and g, belong to the 

same cluster, and C,, = 0 otherwise Similarly, we can build the binary matrut. 

P for the ground truth P = PI, , P, The agreement between C and P can be 

disclosed via the following values 

a  is the number of object pairs (g,, g,), where C,, = 1 and P, = 1 

b  is the number of object pairs (g,, g,), where C,, = 1 and P, = 0 

c  is the number of object pairs (g,, g,), where C,, = 0 and Pa, = 1 

d  is the number of object pairs (g,, g,), where Cz, = 0 and P,, = 0 

Rand zndex = 
a + d  

a + b + c + d  



Flgure 3 17 Hierarchical clustering of profiles for DBK measure at cutoff=16 and 

uslng complete linkage 



Figure 3.18: The dendrogram at cutoff=16 



The Rand index lies between 0 and 1. The maximum value i.e., 1 is achieved 

when both partitions, C and PI agree perfectly. To test the performance of 

the clustering algorithm, we compare clusters identified by our method with the 

'ground truth' and with the results from k-means and UPGMA. With reference 

to the partitions in the Rand index, one partition is derived from the clustering 

results and the other partition is derived from the ground truth. The result of 

applying the Rand index on full Dataset 1 is shown in Table 3.6. It is observed 

from Table 3.6 that the DBK dissimilarity measure performs better for different 

values of the number of clusters, NoC, for Hierarchical clustering. However, 

for k-means it performs better than both Pearson's correlation and Euclidean 

distance for NoC = 30. 

Table 3.6: Rand index on Yeast CDC28 data for various number of clusters (NoC) 

3.7 Discussion 

An effective dissimilarity measure, DBK for clustering gene expression time series 

data is introduced in this chapter. The dissimilarity measure gives the shapes of 

the patterns of the gene expression data unlike Euclidean distance. In compari- 

son to Pearson's correlation coefficient, our method is less susceptible to outliers 

as we use row values as well as the median while computing dissimilarity. More- 

over, unlike Spearman's rank correlation, it also retains information about the 

regulation of the patterns. In the succeeding chapters, DBK is used in various 
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clustering techniques and found effective. The next chapter presents a graph 

based clustering technique which uses DBK as the proximity measure. 



Chapter 4 

A Graph-based Method for 

Clustering Gene Expression Data 

This chapter presents a Graph based Clustering Algorithm, GCA, for clustering 

gene expression data. One of the main problems with clustering algorithms is 

the need to provide appropriate values for input parameters; this requires domain 

knowledge on the part of the user. This problem has been handled in GCA by 

using a dynamically calculated parameter for the clustering. GCA clusters genes 

based on a repulsion factor a gene has with other genes. Genes in a cluster 

have low repulsion whereas genes in different clusters have high repulsion. GCA 

uses the DBK dissimilarity measure introduced in the previous chapter. We 

also perform GCA using other commonly used proximity measures and compare 

results with those obtained using the DBK measure. 



4.1 Introduction 

A number of classical algorithms are commonly used for performing the task 

of clustering genes These include hierarchical algorithms (UPGMA) [ESBB98] 

and partitioning algorithms (k-means) [McQ67] as well as many novel approaches 

proposed recently Graph based clustering algorithms ale suitable for data that 

do not follow a Gaussian or spherical distribution [FPSV07a] They can be used 

to detect clusters of varying shapes and sizes without the need to specify the 

number of clusters apriori Some popular partitioning based clustering algorithms 

such as k-means [McQ67] and SOM [Koh95] fail if data are distributed in the 

feature space along a non-smooth mamfold [JusOG] Such algorithms assume a 

Gaussian or a spherical distribution for the data Moreover, they also require the 

number of clusters or some other input parameters to the algorithm Clustering 

algorithms based on graph theoretic approaches can alleviate the problems just 

mentioned Giaph based algorithms represent the data by an undirected graph 

wheie each node represents an object in the feature space and each edge represents 

the proximity measure among the nodes it connects A cluster in this notion 

is defined to be a connected sub-graph, obtained according to criteria specific 

to cach spccific algorithm [FPSV07a] Algorithms bascd on this dcfinition are 

capable of detecting clusters of various shapes and sizes, especially when the 

clusters are well separated [JusOG] Objects that are not connected form singleton 

clusters and are later on discarded as noise 

In graph-based clustering algorithms, graphs ale built as combinations of 

objects, features or both, as nodes and edges The graph is then partitioned 

by using graph theoretic algorithms Graph theoretic algorithms are also used 

for the problem of clustering cDNAs based on their oligo-nuclcotidc fingerprints 

([HSL+99], [LL9 11) 

4.2 Related Work 

We now present a review of some selected graph based clustering algorithms 
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4.2.1 Fuzzy C-Means MST Clustering Algorithm (FMC) 

The FMC algorithm [FPSV07b] starts by constructing a complete graph where 

each node is associated with an object and the edge weight gives the distance 

between two connected nodes. Then the minimum spanning tree (MST) of the 

graph is computed by using Prim's algorithm [HS78]. By removing all edges > X 

(a user defined threshold), a forest of trees is obtained. Each tree corresponds 

to a cluster. In this way, the method automatically groups nodes into clusters. 

For finding the optimal A ,  the method uses a fuzzy c-means approach [Bezglb] 

and partitions the whole set of edges into two clusters according to their weights, 

one containing the edges of the MST with small weights while the other cluster 

contains edges removed from the MST. 

4.2.2 Markov Clustering Algorithm (MCL) 

The MCL algorithm [vDOO] is based on the observation that if a group of nodes 

is strongly connected internally and has few connections (weakly connected) to 

the outside (both are properties of a cluster), a random walk starting at a node 

inside the group, is more likely to remain inside the group after a few steps than 

go outside. The MCL algorithm alternates between two phases: expansion and 

inflation, until a fixed point is reached. In expansion, the probability of a random 

walk of length k is computed by raising the matrix of the edge probabilities to 

the kth power. In the inflation phase, re-norn~alization of the matrix is performed 

after raising each element to r where r is an input parameter. The matrix result- 

ing from these two phases is used as input for the subsequent expansion process. 

The inflation phase reduces the smaller probabilities towards 0 and enhances the 

larger ones towards one. At the end, the clustering is determined by resulting 

probabilities which are significantly different from 0. Though there is no proof of 

convergence yet after a few tens of iterations, a fixed point is usually achieved. 
/ 

4.2.3 Iterative Conductance Cutting Algorithm 

The Iterative Conductance Cutting Algorithm (ICC) was proposed in [KVVOO] 

and works in a divisive hierarchical manner. At first, the whole graph is con- 



sidered a cluster and a t  each step, a cluster is split into two depending on the 

performance measure (known as cluster conductance) being e a. The splitting 

process stops when there are no more clusters that can be divided based on a. 

The cluster conductance compares the sum of the inter-cluster edges with 

the sum of the intra-cluster edges. Lower the values of conductance, better is the 

clustering result. The maximum value of conductance is one which is attained 

for singleton (one node) clusters or whole-graph clusters. 

4.2.4 The Geometric MST Clustering Algorithm 

The Geometric MST Clustering (GMC) Algorithm introduced in [Gae02] gives a 

solution to the problem of finding a suitable threshold for cutting the edges of the 

minimum spanning tree. For various possible thresholds, a performance measure 

is computed and the optimal one is chosen. For non-attributed graphs [GaeO2] a 

geometric graph embedding is used to define the distance between nodes. 

4.2.5 CLuster Identification via Connectivity Kernels 

The CLuster Identification via Connectivity Kernels (CLICK) method ([SSOO]) 

is suitable for subspace and high dimensional data clustering. (A subspace is a 

subset of a vector space that is itself a vector space. Here, the vector space refers 

to the high dimensional space of gene expression data. Subspace clustering is the 

task of detecting all clusters in all subspaces). CLICK is robust to outliers and 

does not make assumptions about the number or structure of clusters. Although 

CLICK does not need the number of clusters apriori, the algorithm may generate 

a large number of clusters because of the use of a homogeneity parameter. 

Initially, the algorithm generates a fully connected weighted graph where 

the nodes represent objects and edges connect pairs of objects with weight as- 

signed equal to proximity values among the objects. CLICK searches for highly 

connected components in the graph as clusters. CLICK makes the assumption 

that after standardization, pair-wise proximity values between objects (genes) 

are normally distributed. It, then recursively divides the graph in two using the 

minimum weight cut computations, until a certain kernel condition is met. The 



division of the graph in two is done in such a manner that the sum of the weights 

of the discarded vertices is minimized. The clustering process in CLICK iter- 

ates by searching for the minimum cut in the graph and recursively splitting the 

dataset into a set of connected components. A partition with a single object is 

set apart as a singleton set. The kernel condition tests if the cluster formed by a 

given graph is highly coupled or not. If it is highly coupled the cluster is not sub- 

divided further. CLICK builds a statistical estimator to evaluate the probability 

that the edges contained in a given graph belong to a single cluster. CLICK also 

uses two post-processing steps to refine cluster results. The adoptzon step handles 

singleton clusters and updates current clusters while the merging step iteratively 

merges two clusters having similarity greater than some predefined threshold. 

The authors in [SSOO] compared the clusters obtained using CLICK with 

those of SOM [Koh95] and Eisen's Hierarchical approach [ESBB98] and have 

found them to be better in terms of homogeneity and separation of clusters. 

However, there is little guarantee that CLICK does not generate unbalanced 

partitions (e.g., by mixing of noise in partitions with data objects). 

4.2.6 Cluster Affinity Search Techniques (CAST) 

Ben-Dor introduced the idea of corrupted clzque graphs [BDSY99] and used the 

concept of a clique graph and divisive clustering in his algorithm, Cluster Affinity 

Search Techniques (CAST) [BDSY99]. A clique graph is an undirected graph 

formed by the union of disjoint complete sub-graphs where each clique represents 

a cluster. The model assumes that there is a true bzologzcal partztzon of the 

genes znto dzsjoznt clusters based on the functzonalzty of genes [BDSY99]. The 

genes (objects) form sub-graphs or cliques where intra-clique genes are completely 

similar and inter-cluster genes are completely dissimilar. 

CAST takes as input the pairwise similarities between genes and an affinity 

threshold, t .  The algorithm searches through the clusters one at a time The 

currently searched cluster is denoted as C,,,. Each gene g, has an affinity value 

a(gz) w.r.t. Copen computed as a(gz) ~,,Eco,,, S(gz, g j )  where S(gt, gl) denotes 
the similarity value between g, and g, A gcnc is said to have high affinity 

if a(g,) 2 t 1 C,,, 1 ;  else it has low affinity. CAST alternatively adds high 



affinity genes and removes low affinity genes from the current cluster. When the 

process stabilizes, C,,, is considered a complete cluster, and the process starts 

with another cluster. The process continues iteratively until all genes have been 

assigned to  a cluster. 

The affinity threshold, t ,  in CAST is actually the average of pairwise sim- 

ilarities within a cluster. It does not require a user-defined number of clusters 

and handles outliers efficiently. But, it faces difficulty in determining a good 

threshold value. In CAST, the size and number of clusters produced is directly 

affected by the fixed user-defined parameter, affinity threshold, t. Hence, prior 

domain knowledge of the data set is required. To overcome this problem, E 

CAST [BPC02] calculates the threshold value dynamically based on similarity 

values of the objects that are yet to  be clustered. The threshold is computed at  

the creation of each cluster. 

4.3 Motivation 

From the discussion above, we conclude that various clustering algorithms require 

different types of input parameters and resulting clusters are highly dependent 

on the values of the parameters. Graph based algorithms have a great advantage 

in that, they do not require the number of desired clusters as an input parameter 

and are robust to noise. However, the graph based algorithms are not totally free 

from input parameters. 

In this chapter, we develop a graph-based clustering algorithm, GCA, that 

addresses the challenges presented by a gene expression dataset. It can find 

clusters from gene expression data without using any input parameters and is 

robust to outliers. It uses the DBK dissimilarity measure discussed Chapter 

3. GCA requires an input parameter during cluster expansion, however, it is 

calculated dynamically. 



4.4 An Effective Graph Based Clustering Algo- 

rithm (GCA) 

Among the large number of genes encoded in microarray gene expression data, 

only a small fraction is pert~nent to a certmn task Ident~ficat~on of useful fea- 

tures (genes) is a challenging problem that needs to be addressed According to 

[LAA05], the selection of genes is important because it is impossible for biologists 

to examine the whole feature space a t  one time Moreover, talung into account 

irrelevant features results in unnecessary noise and computational cost Once 

the relevant features have been selected, the next step is to find an appropriate 

proximity measure for the gene expression data This chapter presents a graph 

based clustering algorithm (GCA) which uses the dissimilarity measure, DBK 

introduced in the previous chapter Our graph based clustering method works in 

three phases In the first phase, the gene expression data is normalized to mean 

0 and standard deviation 1 Also the low variance and low entropy genes are 

filtered out The second phase computes the dissimilarities among genes using 

a grid based method and the third phase is dedicated to the task of clustering 

using a graph based approach 

4.4.1 Clustering 

Our proposed clustering method, GCA, IS graph theoretlc which exploits the 

concept of clique graph introduced by [BDSY99] However, GCA 1s different 

from CAST [BDSY99] in the following aspects 

1 GCA uses 'icpulsion' factor instead of 'affinity' uscd in CAST [BDSY99] to 

form cluster 

2 GCA adds genes with low repulsion to a cluster, whereas CAST [BDSY99] 

adds high affinity genes to a cluster and deletes low affinity genes from a 

cluster 

3 GCA uses a threshold, a ,  which is computed dynamically in each iteration 

to find the conilcctivity of an unclassified gene to  a c l~~s tc r ,  whlle CAST 

[BDSY99] uses a constant threshold value, t as the similarity cutoff 



The dynamic computation of CY makes GCA a parameter-less method The graph 

can be thought of as a disconnected graph with the nodes being the genes and the 

repulsion value of the genes is initially set to zero In this chapter, we will use the 

terms node and gene interchangeably to refer to the same thing A gene (node) 

with minimum pairwise dissimilarity value is selected and becomes the initiator 

of a cluster The repulsion value of the other genes (nodes) are updated w r t 

the cluster recently formed As the algorithm proceeds genes are being added 

to the cluster based on a connectedness condition defined later The following 

definitions and concepts provide the basis for the proposed clustering method 

Repulsion 

A gene cluster consists of similar genes while dissimilar genes belong to different 

clusters Thus, we can say that genes belonging to different clusters will repel 

each other i e , inter-cluster genes have more repulsion between them while the 

repulsion of intra-cluster genes is less A gene will belong to a cluster if its 

repulsion w r t the genes belonging to that particular cluster is least The 

repulsion of an unclustered gene to a cluster can be computed by the summation 

of the dissimilarity (distance) values of that gene w r t all the genes belonging 

to that particular cluster Thus, repulsion is the distance of an unclustered gene 

from the cluster under consideration and is defined next 

Definztzon 4 1 The repulsion r of a node x from a cluster C is defincd as 

ICI 

Connectivity of a Node to a Cluster 

Connectivity of an unclustered node to a cluster is very important for clustering 

To check the connectivity of an unclustered node to a cluster, we need to consider 

the connectivity of the node in consideration to the nodes present in the particular 

cluster 

The basic idea is that a node among a large number of unclustered nodes will 

be included into the highly connected region identified as a cluster if it's repulsion 



w r t the cluster satisfies a connectivity condition 

We know that a dissimilarity (distance) measure d(z, j) defined between all 

pairs of nodes z and J will correspond to similar expressions for small distances 

and large distances means dissimilar expressions In clustering, clusters have 

a higher density of nodes than the surrounding background i e , clusters contain 

highly connected nodes This may be obtained by connecting a pair of nodes that 

are within a connectivity threshold, J ,  from each other For J = 0, every node 

1s a cluster by itself Now, if J is gradually increased from zero, then the nodes 

from the region of highest density would get interconnected first to form tight 

clusters, next, the more dilute (sparser) clusters will form Later, as connections 

are made between nodes, they merge to form even larger clusters until eventually 

a t  some large J, all nodes will be interconnected Thus, J should have a value 

that will stop the over-dilution (sparcification) of a cluster For this, we compute 

the value of J for each cluster based on the unclustered nodes and the cardinality 

of the current cluster Hcrc, wc notc that sincc wc have to  find the connectivity of 

an unclustered node to a cluster, we use the repulsion factor as discussed before 

If the repulsion of a node is within the connectivity threshold, J, then the node 

is included in the current cluster The value of J is updated dynamically, so 

that it reflects the change in the clustering aftel every insertion of a node to the 

current cluster Thus, every insertion of a node to the current cluster results in 

the change of the value of o which is a deciding factor in the process of clustering 

Definztzon 4 2 The connectivity threshold, J ,  of a cluster C is defined as the 

product of the threshold cr and cardinality of cluster C 

Durlng expansion of the cluster, the threshold a is calculated dynamically 

based on the number of unclassified genes, U, i e , 

where, DG is the total set of all genes, C, is the zth cluster 

The parameter a is based on dissimilarity values of the nodes (genes) yet to 



be clustered and the number of pairs of genes yet to be clustered 

The dynamically calculated value of a reflects the overall dissimilarity of the 

unclustered genes and is fuither used in the calculation of 5 as discussed before 

Definztzon 4 3 A node is said to be connected to  a cluster C if its repulsion from 

the cluster is less than the connectivity, i e , 

where r(x)  is the repulsion of node x from cluster C 

In thc clustcring proccss first the repulsion of all of the genes is set to zero 

Clustering starts by selecting the gene 1 from the set of unclassified genes with the 

least dissimilarity value with its pair as given in Figure 4 1 The function module 

fznd-mzn-DBK() given in Figure 4 2 finds the gene with minimum dissimilarity 

The function fznd-DBK(x, y )  calculates the DBK distance between genes x and 

y  As given in Figure 4 1, the gene 1 is then selected as the seed for cluster 

expansion and is sent to the Cluster-expand() module reported in Figure 4 3 

1 is assigned to a cluster CclusteTrd and the cardinality I CclusteTld I is found 

as in Figure 4 4 The repulsion of all the unclassified genes is updated with 

respect to  the elements in the current cluster CclusteT-zd as in Figure 4 5 The 

connectivity cont and threshold alpha (as in Figure 4 6) are calculated using 

Equation 4 2 and Equation 4 4, respectively, where J = a I C I In the algorithm, 

a = alpha and J = cont From the set of unclassified genes, we select a gene x that 

has minimum repulsion with the cluster CclusteT-zd (as given in Figure 4 7) and 

whosc icpulsion valuc satisfies thc connectcdncss condition given in Equation 4 5 

Cluster expansion continues recursively with this selected gene x When no inore 

genes can be added to a cluster, the cluster creation process starts with another 

unclassified gene, and the process continues till all the genes have been classified 

In the clustering process, we do not use any global threshold Our threshold value 

is calculated by the process and adapts dynamically to the numbcr of unclassihcd 

genes 



Cluster-creation() 

// Initially, U, = DG do 

FOR x from 0 to G do 

x.classified = 0; / /  initially all genes are unclassified 

x.repulsion = 0; // initially all genes have a repulsion of 0 

x.cluster-id = -1; // initially all genes have clusterid = -1 

End FOR 

clusterid = 0; 

DO 

1 = find-min-DBK(); 

Cluster-expand(1, cluster-id) ; 

clusterid ++; 

WHILE 1 # -1; 

End 

Figure 4.1: Algorithm for Cluster formation 



f 2nd-min-DBK () 

min-DBK = 9999.99; 

min-DBKzene = -1; 

FOR 1 from 0 to G do 

IF 1.classified == 0 do 

FOR m from 0 to G do 

IF m.classified == 0 do 

x = find-DBK(1, m) 

IF x < minDBK do 

min-DBK-gene = 1; 

min-DBK = x; 

End IF 

End IF 

End FOR 

End IF 

End FOR 

return min-DBK-gene; 

Figure 4.2: Algorithm for finding the gene with minimum dissimilarity 



Cluster-expand(1, Cluster-id) 

IF 1.classified == 1 

RETURN 

End IF 

1 .classified == 1 

1 .cluster-id = Cluster-id; 

//Update repulsion of all unclassified genes present in current cluster C 

FOR x from 0 to G do 

IF x.classified == 0 OR x. clusterid == Clusterid do 

x.repulsion += s u m D B K  (x, Cluster-id)); 

End IF 

End FOR 

alpha = calculate(); 

cont = alpha x total-gene-cluster(C1uster-zd) ; 

x = f 2nd-minimurn-repulsion(); 

IF x.repulsion L con, AND x > -1 do 

Cluster-expand(z, Cluster-id) ; 

End IF 

Figure 4.3: Algorithm for Cluster expansion 



total -gene-cluster (Cluster-id) 

count = 0; 

FOR x from 0 to G do 

IF  x.cluster-id == Cluster-id do 

count++; 

End IF  

End FOR 

return count; 

Figure 4.4: Algorithm for computing the cardinality of a cluster 

sum-D BK (x, Cluster-id) 

sum = 0; 

FOR y from 0 to G do 

IF  y.clusterid == Cluster-id do 

sum += findDBK(x, y); 

End IF  

End FOR 

return sum; 

Figure 4.5: Algorithm for computing the repulsion of a gene from a cluster 



count = 0; 

FOR x from 0 to G do 

IF x.classified == 0 do 

count++; 

End IF 

End FOR 

total-unclassified-pairs = (count * (count - 1))/2; 

total-unclassified-DBK = 0; 

FOR x from 0 to G do 

IF x.classified == 0 do 

FOR y from 0 to  G do 

IF y.classified == 0 do 

total-unclassificd-DBK += find-DBK(x, y); 

End IF 

End FOR 

End IF 

End FOR 

total = (total-unclassificd_DBK) / (total-unclassified-pairs); 

return total; 

Figure 4.6: Algorithm for computing cr 



min-repulsion = 99999.99; 

minrep-gene = -1; 

FOR x from 0 to  G do 

IF x.classified == 0 do 

IF  x.repulsion 5 minrepulsion do 

minrepulsion = x.repulsion; 

minrep-gene = x; 

End IF 

End IF 

End FOR 

return minrep-gene; 

Figure 4.7: Algorithm for finding the gene with minimum repulsion to a cluster 

4.5 Performance Evaluation 

We implemented the GCA method in C in Linux environment and evaluated it 

using the real-life datasets discussed in Chapter 3. 

4.5.1 Results 

We exhaustively test our graph based clustering algorithm on Dataset 1 taking 

lo%, 20%, 50%, 75% and 100% of the data. The exhaustive results are shown 

in Figure 4.8 and Figure 4.9 for 20% and 75% of the data from Dataset 1. From 

these detailed experiments we come to the following conclusions. 

1. Most gene profiles are flat and do not significantly differ from others, and 

2. Most genes have low variation over time. 

Due to these reasons, the cluster space becomes cluttered with unimportant gene 

profiles making it difficult to extract real cluster structures. Therefore, we remove 



genes with low variation as well as flat gene profiles All other authors do the 

same 

When we apply the filtering process on Dataset 1, we obtain a reduced gene 

set consisting of 800 genes 

We test our method on the previously published dataset of [CCW+98] to 

determine whether it can quickly and automatically find known patterns without 

using prior knowledge In [CCW+98], expression levels of 6,218 yeast ORFs were 

measured a t  17 time points 

Similar to [TSM+99], our method can also automatically and quickly (com- 

putation time 15 07 sec on a Pentium IV machine having lGHz speed and 128MB 

RAM in Linux environment) extract the cell-cycle periodicity The trends of the 

clusters (a  total of 30 clusters were detected) identified by our method are shown 

in Figure 4 10, with expression levels along y-axls and time points along x-axls 

The clusters (for example 0, 1, 7) contain genes with peak expression in late G1 

phase are shown in Figure 4 10 and Figure 4 11 The genes agree well with those 

identified by visual inspection 

Table 4 1 Rand index on Yeast CDC28 data for the clustering method GCA 

4.5.2 Cluster Quality 

To assess the quality of our method, we need an objective external criterion In 

order to validate our clustering result, we employed Rand index, Homogeneity, 

Silhouette index [JTZOS] and z-score as the measules of agreement 

Rand zndex 

0 789 

0 778 

0 806 

Method 

GCA 

GCA 

GCA 

In this section, the reported Rand index is averaged over 20 repeated experi- 

ments According to [TSM+99], the total number of clusters contained in Dataset 

1 is 30 The results found on comparing the GCA using Euclidean distance, Pear- 

Settzng 

Euclidean dist 

Pearson's corr 

DBK 



Figure 4.8: Some of the clusters obtained when our algorithm is used on 20% of 

Dataset 1 

Figure 4.9: Some of the clusters obtained when our algorithm is used on 75% of 

Dataset 1 



Figure 4.10: The trends of the clusters detected on Dataset 1 



Figure 4.11: Cluster 1 consisting of 46 genes. The genes obtain peak expression 

in late G1 phase 

son's correlation and DBK is given in Table 4.1. Clearly our measure performs 

better than Euclidean distance and Pearson's correlation when used with GCA. 

Due to non-availability of the functional classification for the other datasets, we 

can not compile the Rand index for them. 

i. Cluster  Homogenei ty  

Homogeneity measures the quality of clusters on the basis of the definition of 

a cluster: objects within a cluster are similar while objects in different clusters 

are dissimilar. Homogeneity measure used in this section is that of the overall 

average homogeneity used in [SMKSOS]. It is calculated a s  follows. 

a) Compute the average value of similarity between each gene g, and the cen- 

troid of the cluster to which it has been assigned. 

where gi is the centroid of C,. 

b) Calculate the average homogeneity for the clustering C weighted according 

to the size of the clusters as, 



The homogeneity values for GCA and some other algorithms are reported in 

Table 4.2. It can be observed that the homogeneity value for GCA is the highest 

from which we can conclude that the coherence of the clusters produced by GCA 

are better than those produced by competing algorithms. 

ii. Silhouette Index 

Silhouette index [Rou87] is used to  assess the quality of any clustering solution. 

This index reflects the compactness and separation of clusters. It is calculated 

as follows. 

a) Compute a(g,) , i.e., the average distance of gene i to the the other genes of 

cluster A to which it belongs, i.e., g, E A. 

b) Compute d(g,, C k )  where d(gz, Ck) is the average distance of gene g, from 

the genes of cluster Ck where g, $ Ck. 

c) Compute b(g,) , where b(gz) = min{d(g,, C)) where C = {C1, C2, . . . , C,) 

and A 4 C ,  i.e., b(gz) represents the distance of gene g, to its closest cluster. 

Now compute the silhouette width of gene g, as  

d) Compute silhouette index by finding the average of S(i) over i = 1,2, . . . , GI 

where G is the total number of genes: 

The value of silhouette index varies from -1 to 1 with higher values indicating 

better clustering. We observe from Table 4.3 that the silhouette index for clusters 

produced by GCA is superior then the values for clusters produced by other 

algorithms. 

iii. Z-score 

For evaluating the quality of clusters produced by different algorithms, we need 

an objective external criterion. We obtain a statistical rating of the relative 



Table 4.2: Homogeneity values for GCA and other comparable z 

Datasets Method Applied No. of Clusters Threshold value 

Dataset 2 k-means 16 N A 

SOM 16 4 x 4 grid 

DCCA 10 N A 

GCA 4 N A 

Dataset 7 k-means 5 N A 

SOM 6 2 x 3 grid 

11  CLICK 1 1  5 11  Default value 

I I I I 

GCA 5 N A 



algorithms 
Silhouette Index 

0.443 

0.439 

0.387 

0.439 

0.368 

0.838 

0.87 

0.451 

0.487 

0.405 

0.412 

0.482 

0.179 

0.910 

0.933 

0.431 

0.401 

0.364 

0.315 

0.652 

0.536 

0.449 

0.609 

0.745 

0.415 

0.395 

0.299 

0.356 

0.324 

0.631 

and other comparable 
No. of Clusters 

5 

5 

6 

4 

6 

15 

17 

6 

6 

5 

6 

7 

3 

10 

8 

4 

4 

4 

5 

10 

9 

6 

10 

10 

6 

6 

8 

4 

6 

14 

Table 4.3: 
Datasets 

Dataset 2 

Dataset 4 

Dataset 5 

Dataset 6 

Silhouette Index for GCA 
Method Applied 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

Average linkage 

SOM 

DCCA 

GCA 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

Average linkage 

SOM 

CLICK 

DCCA 

GCA 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

Average linkage 

k-means 

SOM 

CLICK 

DCCA 

GCA 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

Average linkage 

SOM 

GCA 



gene-expression activity shown by the genes associated in each cluster and the 

GO terms. In order to  validate our clustering result, we employ z-score [GR02] 

as the measure of agreement. Z-score [GR02] is calculated by investigating the 

relation (mutual information) between a clustering obtained by an algorithm 

and the functional annotation of the genes in the cluster. To compute this, 

we use the Saccharomyces Genome Database (SGD) annotation of yeast genes, 

along with the gene ontology (GO) developed by the Gene Ontology Consortium 

[ABB+OO]. A higher value of z-score indicates that genes are better clustered 

by function, indicating a more biologically relevant clustering result. We use the 

Gibbons ClusterJudge [GR02] tool to calculate z-scores. The concept of z-score 

computation is as follows: 

1. First, parse annotation from SGD of S. cerevzszae genes with GO attributes 

in such a way that a gene-attribute table is produced in which a '1' in the 

position (2, 3) indicates that the gene i is known to possess attribute j, and 

a '0' indicates lack of knowledge about whether gene i possesses attribute 

j or not. 

2. From the gene-attribute table, construct a contingency table for each cluster- 

attribute pair. 

3. Compute total mutual information between the cluster result C and all the 

attributes A,s as: 

Z 2 Z 

where HA,,C is the entropy for each cluster-attribute pair, Hc is the entropy 

for the clustering result independent of attributes, and HA, is the entropy for 

each of the N A  attributes in the contingency table independent of clusters. 

Z-score [GR02] of a clustering is computed a s  follows: 

I. Compute Mutual Information (MI) for the clustered data (MIrea1) by using 

the attribute database derived from GO/SGD; 

2. Obtain a clustering by randomly assigning genes to clusters of uniform size. 

Compute mutual information (MITand,), repeating until a distribution of 

values is obtained; 



Table 4.5: z-scores for GCA, SOM, DCCA, k-means and UPGMA for reduced 

Table 4.4: z-scores for GCA, SOM and k-means for Dataset 1 

set of Dataset 7. DCCA is a divisive partitional algorithm reported in [BD08] 

Method Applied 

k-means 

SOM 

GCA 

3. Compute z-score as z = (MIT,al-MITandom)/~Tanda where, mean of the MI- 

values computed for randomly obtained cluster is MITand, and standard 

deviation of these MI-values is sTand,). 

The z-score represents a standardized distance between the MI value obtained 

by clustering and those MI values obtained by random assignment of genes to 

clusters. The larger the z-score, the greater the distance. Higher z-scores indicate 

that the clustering results are more significantly related to gene function. 

Also, we see in Table 4.4 that GCA performs better than other algorithms 

in terms of z-score measure of cluster validity. A higher z-score value indicates 

more biologically relevant clusters. The z-score values of clusters produced by 

GCA along with those produced by other algorithms for Dataset 1 and Dataset 

7 are given in Table 4.4 and Table 4.5, respectively. We make the observation 

from the tables that GCA can cluster better than the other algorithms in terms 

of z-score and can hence give more biologically significant clusters. 

No. of Clusters 

30 

30 

30 

z-score 

12.56 

14.44 

16.81 



4.5.3 Biological Significance 

The biological relevance of a cluster can be verified based on the gene ontology 

(GO) annotation database located a t  http://db. yeastgenome. org/cgi-bzn/GO/go 

TerrnFinder. It is used to test the functional enrichment of a group of genes 

in terms of three structured controlled ontologies, vzz., associated biological pro- 

cesses, molecular functions and biological components. The functional enrich- 

ment of each GO category in each of the clusters obtained is calculated by its 

p-value. The p-value is computed using a cumulative hypergeometric distribu- 

tion. It measures the probability of finding the number of genes involved in a 

given GO term (i.e., function, process, component) within a cluster. From a given 

GO category, the probability p of getting lc or more genes within a cluster of size 

n, is defined as [THC+99]: 

( i )  (:I:) 

where f and g denote the total number of genes within a category and within 

the genome respectively. The genes in a cluster are evaluated for the statistical 

significance by computing the pvalue for each GO category. This signifies how 

well the genes in the cluster match with the different GO categories. pvalue 

represents the probability of observing the number of genes from a specific GO 

functional category within each cluster. A low pvalue indicates the genes be- 

longing to the enriched functional categories are biologically significant in the 

corresponding clusters. 

To compute the pvalue, we used the software FuncAssociate [B+03]. FuncAs- 

sociate [B+03] computes the hypergeometric functional enrichment score based 

on Molecular Function and Biological Process annotations. The resulting scores 

are adjusted for multiple hypothesis testing using Monte Carlo simulations. Fun- 

cAssociate is a Web-based tool that accepts as input a list of genes and returns 

a list of GO attributes that are over-represented (or under-represented) among 

the genes in the input list. 



To test the biological significance of the clusters obtained by GCA, we use a 

reduccd form of Datasct 3 Thc datasct is reduced by filtering out low variance 

and low entropy genes from the data The enriched functional categories for 

each cluster obtained by the GCA method on the reduced form of Dataset 3 

are listed in Table 4 6 The functional enrichment of each GO category in each 

of the clusters is calculated by its pvalue Of the 16 clusters obtained from 

the dataset, the cluster C6 contains several enrlched categorles on 'ribosome' 

The highly enriched category in C6 is the 'ribosome' with a pvalue of 3 6e- 

13 The GO category 'ribonucleoprotein complex' is also hghly enriched in this 

cluster with pvalue of 1 1 x 10-l2 Cluster C1 contains genes involved in different 

biological processes Cluster C2 contains genes involved in different ribosomal 

functions C2 contains several enriched categorles on 'biogenesis' The highly 

enriched categories in C2 are the 'ribosome biogenesis and assembly' with p 

value of 1 5 x lo-'', 'ribonucleoprotein complex biogenesis and assembly' with 

pvalue of 2 8 x 10-lo and 'ribosomal large subunit biogenesis and assembly' with 

pvalue of 4 9 x 10-O7 Cluster C5 contains genes involved in energy synthesis 

The highest enriched category in C5 is 'oxidative phosphorylation' with pvalue 

of 1 4  x 10-l4 C5 also contains several enriched categories on 'mitochondria' 

Cluster C6 contains the highly enriched cellular components of 'non-membrane- 

bounded organelle' and 'intracellular non-membrane-bounded organelle' with a p 

value of 2 7 x 10-l4 each In the cluster C7 all the functionally enriched categories 

are from Biological Process annotation with 'trehalose metabolic process' with a 

pvalue of 2 5 x 10-O9 being the highly enriched one C7 contains genes involved 

in the functions of metabolism Cluster C8 contains several enriched categories 

on 'catabolic process' with 'cellular catabolic process' having a pvalue of 1 x 

10-O5 being the highly enriched category C8 contains functional categories on 

energy synthesis and metabolic pathways Cluster C9 contains genes involved 

in metabolic pathways with 'mitochondria1 respiratory cham' having the highest 

pvalue of 4 x lovo7 From the Table 4 6, we can conclude that GCA shows a 

good enrichment of functional categories and therefore project a good biological 

significance 



Table 4.6: P-valuc 
GO number 

of Dataset 3 
Cluster GO category 

oxidative phosphorylation 

generation of precursor metabo- 

lites and energy 

electron transport chain 

respiratory electron transport 

chain 

ATP synthesis coupled electron 

transport 

organelle ATP synthesis coupled 

electron transport 

oxidation reduction 

mitochondrion 

mitochondrial membrane part 

hydrogen ion transmembrane 

transporter activity 

mitochondrial inner membrane 

monovalent 

inorganic cation transmembrane 

transporter activity 

organelle inner membrane 

mitochondrial membrane 

mitochondrial envelope 

phosphorylation 

mitochondrial respiratory chain 

phosphorous metabolic process 

phosphate metabolic process 

inorganic cation transmembrane 

transporter activity 

mitochondrial part 

organelle envelope 

envelope 



- 
GO category 

mitochondria1 electron transport, 

ubiquinol to cytochrome c 

mitochondria1 proton- 

transporting ATP synthase com- 

plex, coupling factor F(o) 

mitochondria1 electron transport, 

cytochrome c to oxygen 

proton-transporting 

ATP synthase complex, coupling 

factor F(o) 

oxidoreductase activity 

aerobic respiration 

ribosome biogenesis and assembly 

nucleolus 

ribonucleoprotein complex bio- 

genesis and assembly 

non-membrane-bounded organelle 

intracellular 

non-membrane-bounded organelle 

ribosomal large subunit biogenesis 

and assembly 

rRNA processing 

rRNA metabolic process 

nuclear lumen 

ribonucleoprotein complex 

ribosome biogenesis and assembly 

ribonucleoprotein complex bio- 

genesis and assembly 

ribosomal large subunit biogenesis 

and assembly 

homocitrate synthase activity 

GO number 

GO:0006122 

GO:0000276 

GO:0006123 

GO:0045263 

GO:0016491 

GO:0009060 

GO:0042254 

GO:0005730 

GO:0022613 

GO:0043228 

GO:0043232 

GO:0042273 

GO:0006364 

GO:0016072 

GO:0031981 

GO:0030529 

GO:0042254 

GO:0022613 

GO:0042273 

GO:0004410 

Cluster 

C1 
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C5 
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4.6 Discussion 

This chapter presents a parameter-less clustering technique that uses a dynami- 

cally calculated threshold to assign cluster membership. Our experimental results 

show that the clusters obtained are similar to those obtained by [TSM+99]. The 

GCA method also obtains better Rand index, homogeneity, silhouette and z-score 

values than several competitors, showing that GCA can cluster gene expression 

data effectively. Unlike hierarchical algorithms, GCA does not build a tree of 

clusters but a set of disjoint clusters. In contrast with SOM [Koh95], it does not 

assume the number of clusters and spatial structure, but determines the cluster 

number and structure based on the dataset itself. Also, the clusters obtained by 

GCA is found to be of high biological significance. 



Chapter 5 

Coherent Pattern Extraction 

using Maximal Frequent Patterns 

This chapter presents a frequent itemset nearest neighbor based technique for 

clustering gene expression data. It attempts to find finer clusters over the gene 

expression data by integrating the nearest neighbor clustering technique with 

frequent itemset discovery. The advantage of using frequent itemset discovery is 

that it can capture relations among more than two genes while normal similarity 

measures can calculate the proximity between only two genes at  a time. We 

experimented with FINN using real-life datasets and we observe that it can find 

the finer clustering of the dataset. 



5.1 Introduction 

Association rule learning is a popular and well researched method for discovering 

Interesting associations and/or correlation relationships among large set of data 

items Association rules show attribute value conditions that occur frequently 

together in a given dataset Association rule mining has received considerable 

attention since its introduction in [ATS93] A typical and mdely-used example of 

association rule mining is Market Basket Analysis The market-basket problem 

assumes we have some large number of items, e g , "bread", " milk", "butter" 

Customers fill their market baskets with some subset of the items, and we get 

to know what items people buy together An example rule for the supermarket 

could be {mzlk, bread) -+ {butter) meaning that if milk and bread is bought, 

customers also buy butter Marketers use this information to position Items, and 

control the way a typical customer traverses the store 

Association rules provide information of this type in the form of "if-then" 

statements These rules are computed from the data and, unlike the lf-then rules 

of logic, association rules are probabilistic in nature Association mining analysis 

is a two part plocess First, is the identication of sets of items or itemsets within 

the dataset Second, the subsequent derivation of inferences or rules from these 

itemsets 

Association rules follow the form X 4 Y where X and Y are disjoint sets 

of items (or itemsets) i e , X and Y are subsets of the set of items A In the 

transaction database T X is called the antecedent and Y the consequent of the 

rule The intended meaning of such a rule is that data instances that contain X 

are likely to contain Y as well The extent to which the rule applies to a given 

dataset can be measured using various metrics including support and confidence 

The support of a rule is the probability of X and Y occurring togethe~ In an 

instance, P(X and Y) The confidence of a rule is the conditional probability of Y 

given X, P ( Y  1 X) Here, probability is taken to be the observed frequency in the 

underlying dataset An itemset X c A is said to frequent in T w r t support s, 

if support(X) 2 s A frequent set IS a maxzmal frequent set if it is a frequent set 

and no superset of this is a frequent set Association rules are required to satisfy 

a user-specified mlnimum support and a user-specified miniinurn confidence at 



the same time. To achieve this, association rule generation is a two-step process. 

First, minimum support is applied to find all frequent itcmsets in a database. In 

a second step, these frequent itemsets and the minimunl confidence constraint are 

used to form rules. While the second step is straight forward, the first step needs 

more attention. We next present a review of some selected association mining 

techniques. 

Related Work 

A review of frequent pattern mining strategies is given in [ADRB+O9]. This 

section discusses various methods for gene association analysis in DNA microarray 

gene expression data. 

5.2.1 Apriori Algorithm 

The Apriori algorithm [ATS93] is a pioneering algorithm for association rule 

mining; it finds all frequent itemsets whose supports are above a threshold. It 

is based on the fact that all subsets of a frequent itemset are also frequent. The 

algorithm first makes one pass over the dataset and finds the large items. Then 

the algorithm makes many passes over the data. Each pass starts with the seed 

set of large itemsets which are used to generate new potentially large itemsets 

called candidate itemsets. Then, support for each candidate itemset is found 

during the pass over the data and actual large itemsets are determined. These 

large iteinsets become the seed for the next pass. This process continues till no 

more large itemsets can be found. The algorithm is very easy to implement and 

finds all possible frequent itemsets. However, it is expensive from the view point 

of storage as well as execution time. 

5.2.2 AprioriTid Algorithm 

AprioriTid algorithm [JPZ03b] is a modification of the Apriori algorithm. It 

generates the candidates using the same candidate generating function as Apriori. 

The main feature of the algorithm is that the original database is not used after 



the first pass Instead a data structure C i  is used Each member of the set 

Ckl is of the form < TID, {Xk) >, where Xk is a potentially large k-itemset 

present in the transaction with the identifier T I D  For Ic = 1, Ckl is the database 

itself with each item z replaced by itemset {z). For k > 1, the member of Ck '  

corresponding to a transaction t is < t T I D ,  {c E Ck 1 c contained in t )  > If 

a transaction does not contain any candidate set, Ckl does not have any entry 

for that transaction So the number of entries in Ckt gets reduced in successive 

passes resulting in fewer transactions to be scanned in each subsequent pass One 

shortcoming of the algorithm is the creation and updation of Ckl, which takes 

considerable amount of execution time It differs from Apriori in that it scans 

the database once and uses a better data structure for the rest of the iterations 

It suffcrs from thc simllar disadvantages as Apriori and In addition requires extra 

memory and extra disk space for the data structure Moreover, to maintain the 

data structure extra time is required 

5.2.3 AprioriHybrid Algorithm 

AprioriHybrid algorithm [JPZOSb] is basically a fusion of Aprioii and ApriorlTid 

It uses Aprlori fol thc first few passes and AprioriTid for thc remaining passes 

based on some threshold value, z e , whcn lt finds that candidates can bc stored 

in memory, it uses AprioriTid It has the advantages of both the algorithms and 

IS superior to both However, it also suffers from the disadvantages of both the 

algorithms 

5.2.4 FP-Tree Growth Algorithm 

The FP-growth algoiithm [HPYOO] finds frequent itcmscts without candidate gen- 

eration The algorithm is based on a data structure called FP(Frequent Pattern)- 

tree, wh~ch is a prefix tree of the transactions of the database such that each path 

represents a set of t~ansactions that share the same prefix The algorithm first 

scans the database once to find frequent items in the database Infrequent items 

are removed from the database and items in the transactions are rearranged in 

the descending order of frequency Then, the least frequent items are removed 



from the transactions, resulting in a reduced (~rojected) database This projected 

database is processed to find ficqucnt itemsets The piocess is repeated with the 

next least frequent item The FP-tree contains all necessary information about 

the transactions and the frequent itemsets So to find any informat~on about the 

transactions and the frequent itemsets, just the tree needs to be searched The 

FP-growth algorithm is one of the most efficient algorithms for finding frequent 

itemsets from large databases The FP-tree algorithm [HPYOO] does not rely on 

a candidate generation step and is therefore faster than the Apriori algorithm 

However, the algorithm takes much time to construct the FP-tree, especially for 

higher dimensions 

Association rules, used widely in the area of market basket analysis, can be 

applied to the analysis of expression data as well Association rules can reveal bi- 

ologically relevant associations between different genes or between environmental 

effects and gene expression In the analysis of gene expression data, the items in 

an association rule can represent genes that are strongly expressed or repressed, 

as well as relevant facts describing the cellular environment of the genes (e g a 

diagnosis for a tumor sample that was profiled, or a drug treatment given to cells 

in the sample before profiling) An example of an association rule mined from 

expression data might be {cancer)  -+ {gene A T, gene B L, gene C T), meaning 

that, for the data set that was mincd, In most profile cxpcrimcnts where the cells 

used were cancerous, gene A was measured as being up (1 e highly expressed), 

gene B was down (1 e highly repressed), and gene C was up, altogether 

Recently, several authors have proposed the use of association rules for the 

analysis of gene expression data [CH03, TA02, CSCR+O6] in order to extract as- 

sociations and relationships among subsets of genes This approach avoids some 

of the drawbacks of standard clustering algorithms and has been successful in 

extracting new and informative gene relatioilships A major disadvantage of the 

association rules discovery method is the large number of rules that are gener- 

ated This becomes a major problem in many applications In several studies, 

post-processing pruning methods have been proposed to reduce the number of 

generated rules For example, in the context of gene expression, Creighton and 

Hanash [CH03] impose constraints on the size of the rules, extracting only those 

formed by seven or more genes while Tuzhilin and Adomavicius [TA02] propose 



several post-processing operators to select and explore interesting rules from the 

whole set. In [CSCR+OG], another method for the integrative analysis of mi- 

croarray data based on the association rules discovery technique is presented. 

The approach integrates gene annotations and expression data to discover in- 

trinsic associations among both data sources based on co-occurrence patterns. 

Filter options have been used to eliminate irrelevant and redundant associations. 

This option drastically reduces the number of associations to be examined. In 

[GWB0'07], the authors propose a new similarity measure that can be applied 

together with hierarchical clustering leading to grouped similar patterns. The 

mining part first constructs a compact data structure called Gene Profile tree (or 

GP-tree), from which the frequent co-regulated gene profiles are extracted. 

Motivation 

In this chapter, we present a finer clustering method that integrates a traditional 

clustering technique with frequent itemset discovery. The gene expression dataset 

is encoded in binary with respect to correlated genes. Frequent itemset mining 

is then run on this data to discover the maximal frequent set(s). This maximal 

frequent set gives the core genes in a cluster. Cluster expansion proceeds with 

this set of core genes using a shared neighbor approach. Previous authors have 

applied frequent itemset mining to gene expression data. However, to the best 

of our knowledge, an approach similar to the one reported in this chapter has 

not yet been explored in the domain of gene expression datasets. The advantage 

of our method is that it produces finer clustering of the dataset. Also, it avoids 

redundant checking and guarantees to form clusters. The advantage of using 

frequent itemset discovery is that it can capture relations among more than two 

genes while normal similarity measures can calculate the proximity between only 

two genes a t  a time. 



5.4 Frequent Itemset Mining and Nearest Neigh- 

bor Clustering (FINN) 

The FINN algorithm exploiis frequent itemsets and uses a nearest neighbor ap- 

proach for clustering gene sets. Most work related to the application of association 

rule mining on gene expression profiles relies on discretization of the data before 

applying any data mining technique. Although discretization may imply loss of 

information, it also alleviates noise [CH03], [CSCR+OG]. The FINN algorithm 

worlcs in three phases. In the first phase, the gene expression data DG is trans- 

formed into a 0-1 transaction matrix. The second phase finds maximal frequent 

itemsets using a frequent itemset mining algorithm such as Apriori or FP-tree 

Growth algorithm. The third phase is dedicated to the task of clustering using a 

shared nearest neighbor based approach. 

5.4.1 Phase I: Transformation from Gene Expression Ma- 

trix to Transaction Matrix 

The gene expression dataset DG is a G x T matrix of expression values where 

G is the number of rows (genes) and T is the number of columns (time points) 

as shown in Equation 5.1. Using our dissimilarity measure between the genes, 

we build a G x G dissimilarity matrix for the whole dataset. We introduce some 

dcfinitioiis as we proceed with thc description of our mcthod. 

Definztzon 5.1. Nearest Neighbor of a gene 

A gene gi is the nearest neighbor of a gene g, if DBK(g,, g,) 5 el, where O1 is 

the nearest neighbor threshold and D B K  is our dissimilarity measure discussed 

in Chapter 3. 

From the nearest neighbor lists, we build the G x G gene-gene transaction 

matrix, TG, of zeroes and ones (Equation 5.2). For each gene g,, a T-pattern of 

0's and 1's is obtained with 1 if a gene g, is neighbor of g, and 0 otherwise as 

given in (Equation 5.3). 



. .  

. 
1 if DBK(g,, g,) 5 4, where z = 1,2 , .  G; 

TG = tZ3 = 1 = 1 , 2 , . . . G a n d z # j  

0 otherwise 

Pruning 

Those trailsactions are pruned to satisfy the following conditions. 

i. In the transaction matrix, the value of t,,, where i = j is set to zero since 

a gene does not contribute to frequent itemset generation with itself. 

ii. In this transaction matrix, if for a particular row i the value of t,, across 

all j conditions are zero and the same applies for column j and all i rows, 

that ith row and jth column both are discarded. 

These two steps reduce the size of the transaction matrix considerably. 

Phase I1 now uses TG to calculate the frequent itemset using FP-tree Growth 

algorithm. 

5.4.2 Phase 11: Maximal Frequent Itemset Generation 

In this phase, we use the FP-tree Growth algorithm to generate maximal frequent 

itemset(s) (MFIS) at  support threshold sup,%. The gene-gene G x G transaction 



matrix, TG is fed as input along with a user defined support threshold to obtain 

frequent itemsets. The maximal frequent itemset obtained from this phase gives 

us the set of core genes. The identification of core genes is done as follows. 

a If only one MFIS is obtained at supc% support, the genes within that set 

become the set of core genes for a particular cluster. 

a If more than one MFIS is obtained at supc% support and there is a chain of 

genes (items) from one MFIS to the other, the genes are merged together 

into the set of core genes for a particular cluster. 

a If more than one MFIS is obtained at supc% support and there is no chain 

of genes (items) from one MFIS to the other, each MFIS gives the set of 

core genes for a different cluster. 

This set of core genes provides the seeds for cluster expansion, giving the core 

clustcring of thc datasct. Different clustering approaches such as hierarchical or 

density based clustering can be applied on these core genes to get the final cluster. 

The next phase gives a detailed overview of the clustering process. 

The following definitions provide the foundation for thc clustering process. 

Definztzor~ 5.2. Density of a gene 

The density of a gene g, is the number of nearest neighbors of that gene in the 

gene-gene transaction matrix, TG. 

G 

Density (g,) = t,, where t, = 1 
3=1 

(5.4) 

Definztion 5.3. Core genes 

A set of core genes CTz that gives a cluster C, is defined by an MFIS,  i.e., a 

maximal frequent itemset generated by the FP-tree Growth algorithm [HPYOO]. 

Assume MFIS-set  is the set of k maximal frequent itemsets generated by FP- 

Tree growth algorithm. Then, the set of core genes, C,, may be obtained a s  

follows: 

Case 1. If k = 1, CT, = MFIS, ,  where z = 1 and MFIS-set  = MFIS,.  



Case 2. If k > 1 and MFIS ,  r) MFIS,  # 4, for i # j, and i = 1 ,2 , .  . . , k ,  j = 

1 ,2 , .  . . , k. Then, MFIS ,  = MFIS,  U MFIS,  and k = k - 1. 

Finally, we have, 

MFIS-set = MFIS1,  M F I S 2 , .  . . , M F I S k .  Then, C,, = MFISi  for i = 

1,2 , .  . . , k .  

Here, each C,, will give the set of core genes of different clusters and the total 

number of clusters given by this MFIS-set is k. 

For better understanding of the above cases, we take the help of an example a s  

given next. 

Case 1. Let MFIS-set = {1,2,4), hence k = 1 and C,, = {1,2,4) which is the set 

of core genes of a particular cluster. 

Case 2. Let MFIS-set = {1,2,3,4),  {6,7), {8,9), {1,4,10,11) where k = 4. Since, 

MFIS1  and M F I S 4  have the genes 1 and 4 a s  common, therefore we take 

the union of these MFISs to obtain, 

MFIS-set = {1,2,3,4,10, l l ) ,  {6,7), {8,9), now lc = 3. 

Therefore, C,, = {1,2,3,4,10, ll), C,, = {6,7), and C,, = {8,9). 

Here, C,, consists of the core genes of a cluster. Similarly, C,, and C,, are 

core genes of two different clusters. Thus, we obtain three different clusters 

for the given example MFIS-set.  

Definition 5.4. Shared Neighbors 

Let C,, be the set of core genes and C,, = {gl, .  . . , g,). A gene gq is said to be 

the shared neighbor of each of the core genes in C,,, if it satisfies the following 

condition: 

where ,O is the shared neighbor threshold. 

Definition 5.5. Cluster 

A cluster, C, can be defined as  the set of core genes along with their shared 

neighbors. 



Definztzon 5.6. Noise genes 

A gene g, is said to be a noise gene, if it has no nearest neighbor gene g,,, where 

gm E G. 

The following lemmas provide the foundation of FINN. 

Lemma 5.1. A gene belonging to an MFIS has nearest neighbors. 

Proof. A gene g, can be a member of an MFIS ,  iff g, is frequent over TG at s% 

support. Therefore, g, has nearest neighbors to it and hence the proof. 

Lemma 5.2. Seeds selected for cluster expansion cannot be noise. 

Proof. Let g,, be the j t h  gene in C,, and g,, is a seed, i.e., g,, E C,,, where 

C,, = MFIS, .  Then g,, has nearest neighbors according to Lemma 5.1. Again, 

according to Dcfinitlon 5 6, a gcne with nearest neighbors cannot be a noise gene 

and hence the proof. 0 

5.4.3 Phase 111: Clustering 

We use a shared neighbor approach to expand the cluster from the core clustering 

to obtain the final clusters. The clustering procedure is initiated from the set of 

core genes, C,,, (z = 1, . .  . , k), identified In Phase I1 First, these genes are 

labeled. The set of core genes are classified as follows. 

If C,, = {MFIS,) and MFIS,  = {gl, 92,. . . , gx), 

Label {gl, g2, . . . , gx) with the same cluster-id. 

For a labeled C,, of cardinality x, an arbitrary unclass~fied gcne g, is a shared 

neighbor if g, is a shared neighbor of each of the genes of that C,, w.r.t. P. A 

major advantage of FINN is that it eliminates exhaustive neighbor search over 

TG. If gq has dissimilarities less than a given shared nezghbor threshold (0) with 

each of the core genes of C,,, g, is labeled with the same cluster-id as that of the 

core genes of that C,, and grouped into the same cluster. This process of cluster 

expansion is iterated until there are no more genes that can be merged into this 



cluster. The cluster thus obtained gives a final cluster. This process repeats for 

all C,,, where i = 1, . . . , k .  Finall, we obtain k clusters. 

Once cluster expansion terminates, the row and column of each classified 

gene in the transaction matrix TG are discarded from further consideration. This 

step reduces the number of items (genes) which have to be checked for itemset 

generation in the next iteration. The process then restarts phase I1 with the new 

compact transaction matrix TG. 

The steps of the FINN approach are given below. 

i. Calculate the G x G dissimilarity matrix using our dissimilarity measure 

and generate the G x G gene-gene transaction matrix. 

ii. Generate maximal frequent itemsets (MFIS-set) using FP-tree algorithm 

on Tc 

iii. Classify each of the set of core genes, C,, (MFIS,) with the same cluster-id. 

iv. Select an unclassified gene, g,, and classify it with the same clusterid as 

that of CTt, if g, is a shared neighbor of each of the core genes in C,,. 

v. Repeat step iv till no more genes satisfy the shared neighbor condition 

vi. Discard the rows and columns of the classified genes from the gene-gene 

transaction matrix. 

vii. Increment i and goto step iv. 

viii. Repeat through step ii. till all genes in TG are classified. 

The algorithm for FINN is given in Figure 5.1. The input to the algorithm 

is the gene dataset, DG; the number of genes, G; nearest neighbor threshold, 

d l ,  support count, sup,; and shared neighbor threshold, P.  The first line of 

the algorithm calls the create_transaction-mutrix(9, G) module to create the 

transaction matrix according to Figure 5.2. The module f ind-DBK(i,  j )  cal- 

culates the DBK distance between genes i and j .  the MFIS-set will hold the 

maximal frequent itemsets generated by the FP-Tree growth algorithm. The 

call-FP-Tree(sup-c) module of Figure 5.1 calls the F P  Tree Growth algorithm of 



[HPYOO] to generate maxlmal frequent itemset(s) (MFIS(s)) a t  support thresh- 

old sup-c Each MFIS is a set of frequent genes The k in the figure holds 

the total number of MFIS generated by the F P  Tree Growth algorithm The 

check-MFIS(MFIS-set, k) module given in Figure 5 3, gives the set of core 

genes for different clusters from the different m m m a l  frequent sets stored in 

MFIS-set The total number of core gene sets is stored in actual-count, which 

will finally bc uscd to gcncratc actual-count number of clusters The module 

get-MFIS-tokens(z, M F I S )  inserts the zth MFIS into MFIS-tokens[z] which 

is of length k The get-zndzvzdual-token(1, MFIS-tokens[z]) extracts each in- 

dividual gene 1 from the zth  MFIS The processMFIS(  ) combines the MFIS 

as explained in Case 2 of Definition 5 3 to obtain the set of core genes The 

get-token-length(MFIS-tokens[zncrement]) module gives the total number of 

genes of each MFIS-tokens[zncrement] and stores it in token-length The mod- 

ule cluster(MFIS-tokens[zncrement], token-length, cl-zd, P )  of Figure 5 4 gen- 

erates the clusters using the shared neighbor clustering described before The 

results of clustering using the FINN method using our dissimlarity measure are 

reported in Section 5 5 1 

5.5 Performance Evaluation 

We implemented the FINN method is implemented in Java in Windows environ- 

ment and evaluated it using the real-life datasets discussed in Chapter 3 

5.5.1 Results of FINN Clustering 

We exhaustively tested the FINN approach on all the datasets in Table 3 5 The 

similarity matrix is fiist computed and the transaction matruc is obtained from 

it When the method IS executed on Dataset 1, the clusters obtained agree well 

with the functional classification of [CCW+98] Of thc diffcrcnt clustcrs obtained 

from Dataset 2, two are shown In t h ~ s  chapter The first cluster along with its 

core genes of Dataset 2 is shown in Figure 5 5 and Figure 5 6 The second cluster 

results are shown in Figure 5 7 and Figure 5 8 

When we execute the method on Dataset 4, we obtain eight clusters Some 



F I N N ( D G ,  G, 01, s ~ p - c ,  P )  
create-transactzon-matrzx(01, G), 

do 

MFIS-set  = "",  

k = -1, 

actual-count = 0, 

k = call-F'PYree(sup-c), 

IF k > 1 do 

actual-count = check-MFIS(MFIS-set ,  k ) ,  

zncrement = 0, 

do 

token-length = get..token-length(MFISStokens[zncrement]), 

cluster(MFIS-tokens[zncrement], token-length, cl-zd, P ) ,  
zncrement + +, 
cl-zd + +, 

WHILE actual-count - zncrement > 1, 

End IF 

sup-C = sup-c-5, 

WHILE sup-c 1 10, 

Figure 5.1 Algorithm of FINN 



create-transcatzon-matrzx(O1 G) 

FOR z from 0 to G do 

FOR j from 0 to G do 

dzsszmzlarzty = f zndDBK(z, J) ,  

IF dzsszmzlarzty 5 el do 

transactzon-matrzx[z] [j] = 1, 

ELSE 

transactzon-matrzx[z][~] = 0, 

End IF 

End FOR 

End FOR 

Figure 5 2 Algorithm for computing the transaction matrix 

of the clusters obtained are shown in Figure 5 10 and 5 12 and their respectlve 

core genes are shown in Figure 5 9 and Figure 5 11 From these results, we can 

also conclude that the core genes give the overall trend of the cluster Therefore, 

this approach can also be used to detect the embedded clusters in the dataset 

5.5.2 Cluster Quality 

In this section, we validate the results obtained by the FINN approach using Av- 

erage Homogeneity [SSOO], Silhouette index [Rou87] and z-score [GR02] measures 

of cluster validity The homogeneity and silhouette index values for FINN along 

with some of the other algorithms are glven in Tables 5 1 and 5 5 respectively 

To test the performance of the clustering algorithm, we compare the clusters 

idcntificd by our method w ~ t h  thc results from k-mcans, UPGMA, DCCA and 

Soh4 The result of applylng the z-score measure on Dataset 2 is shown In Ta- 

ble 5 3 Table 5 3 clearly shows that FINN outperforms k-means, DCCA and 

SOM w r t the cluster quality The z-score values obtalned from clustering the 

reduced set of Dataset 3 1s given In Table 5 4 The Dataset 1s reduced by uslng 

the technique In [HCML05] As can be seen in the table, our method performs 

better than k-means, hierarchical clustering, DCCA and SOM 



check-MFIS(MFIS-set, countl) 

MFIS-tokens[countl] 

count = countl; 

FOR z from 0 to countl-1 do 

MFIS-tokens[i] = get-MFIS-tokens(z, MFIS-set); 

End FOR 

IF count > 1 do 

FOR z from 0 to countl-1 do 

FOR j from (i + 1) to countl-1 do 

FOR 1 from 0 to MFIS-tokens[z] .length-1 do 

tokenl = get-zndzvzdual-token(2, MFIS-tokens[zJ); 

FOR m from 0 to MFIS-tokens[j].length-1 do 

token2 = get-zndzvzdual-token(m, MFIS-tokens[j]); 

IF tokenl == token2 do 

count = count - 1; 

process-MFIS(m, z,j, 1, MFIS-tokens, actual-count); 

End IF 

End FOR 

End FOR 

End FOR 

End FOR 

End IF 

Return count; 

Figure 5.3: Algorithm for computing the core genes 



cluster(MFIS-token, count, cl-zd, P) 

FOR x from 0 to count-1 do 

tokens[x] = get-zndzvzdual -token(x, MFIS-token), 

no = tokens[x], 

gno classified = 1, 

gno cluster-id = cl-zd 

End FOR 

FOR x from 0 to G do 

Flag = 0, 

IF  g, classified == 0 do 

FOR z from 0 to count-1 do 

IF (fznd-DBK(x, tokens[z]) 2 P) 

Flag = 1, 

End IF  

End FOR 

IF Flag == 0 do 

g, classified = 1, 

g, cluster~d = cl-zd, 

End IF  

End IF 

End FOR 

Figure 5 4 Shared neighbor clustering algorithm 



core genes of cluster 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 li 
Time polntr 

Figure 5.5: The core genes of cluster 1 of Dataset 2 

Time points 

Figure 5.6: Final cluster 1 based on the core genes of Figure 5.5 of Dataset 2 



Time points 

Figure 5.7: The core genes of cluster 2 of Dataset 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Time points 

Figure 5.8: The final cluster 2 based on the core genes of Figure 5.7 of Dataset 2 



1 2 3 4 5 6 7 8 9  

Time points 

Figure 5.9: The Core genes at  s=40% of Dataset 4 

I 1 3 1 5 6 1 8 9 

Time points 

Figure 5.10: The final cluster 1 obtained from the core genes of Dataset 4 



I 2 I 5 6 I 3 9 

nmt points 

Figure 5.11: The Core genes at  s=40% of Dataset 4 

I 2 3 1 f 1 0 9 

Time points 

Figure 5.12: The final cluster 2 obtained from the core genes of Dataset 4 



DCCA 4 N A 

FINN 119  NA 

Dataset 4 k-means 8 N A 

SOM 8 2 x 4 grid 

CLICK 3 Default value 

DCCA 10 N A 

FINN 8 N A 

DCCA 10 N A 

FINN 4 NA 

Dataset 7 k-means 5 N A 
I 

SOM 6 2 x 3 grid 

CLICK 5 Default value 

DCCA 43 N A 

FINN 5 N A 

Homogeneity 



Table 5.2: Silhouette Index for FINN and other comwarable alnorithms 
Datasets 

Dataset 2 

Dataset 4 

Dataset 5 

Dataset 6 

Method Applied 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

Average linkage 

SOM 

DCCA 

F I N N  

No. of Clusters 

5 

5 

6 

4 

6 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

DCCA 11 10 11 0.910 1 

Silhouette Index 

0.443 

0.439 

0.387 

0.439 

0.368 

15 

16 

Average linkage 

SOM 

CLICK 

F I N N  11 8 1) 0.928 1 

0.838 

0.855 

6 

6 

5 

0.451 

0.487 

0.405 

6 

7 

3 

0.412 

0.482 

0.179 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

CLICK 0.449 

0.609 

MOGA-SVM (RBI?) 0.415 

Average linkage 

k-means 

SOM 

4 

4 

4 

0.431 

0.401 

0.364 

5 

10 

9 

MOGA (without SVM) 

FCM 

Average linkage 

SOM 

F I N N  

0.315 

0.652 

0.536 

6 

8 

4 

6 

7 

0.395 

0.299 

0.356 

0.324 

0.747 



Table 5.3: z-scores for k-means, DCCA, SOM and FINN for Dataset 2 

Table 5.4: z-scores for UPGMA, k-means, DCCA, SOM and FINN for reduced 

set of 

5.5.3 Biological significance 

The functional enrichment of each GO category in each of the clusters obtained 

is calculated by its p-value. To compute the pvalues for the clusters obtained 

by FINN, we used the software FuncAssociate [B+03]. To restrict the size of 

the chapter, we report only functional categories with pvalue < 7 x 10-05. The 

highly enriched categories for the various clusters are shown in Table 5.5. Cluster 

C1 contains genes involved in ATP activity. Some of the highly enriched func- 

tional categories in C1 are 'helicase activity', 'ATP-dependent helicase activity', 

'ATPase activity coupled', 'ATPase activity' et al. with pvalues of 6.4 x 

6.7 x 6.2 x 4.7 x 10-18, respectively. Cluster C2 contains genes 

involved in cell cycle. Among the various enriched functional categories in C2, 

the ones scoring the highest are 'DNA replication', 'DNA metabolic process', 

'cell cycle' and 'DNA-dependent DNA replication' with pvalues of 1.3 x 10-11, 

2.2 x 10-11, 1.3 x 10-lo and 4.6 x 10-lo respectively. Cluster C4 consists of genes 

responsible for cell wall functions. Cluster C5 contains gencs involved in different 

components and functions of nucleus. This cluster also contains highly enriched 



GO attributes with 'nuclear nucleosome' scoring the highest in terms of pvalue 

(3.5 x The other enriched attributes are 'nucleosome' with a pvalue of 

7.7 x 'nucleosome assembly' with a pvalue of 7.1 x 'nuclear chro- 

matin' with a pvalue of 9.5 x 'chromatin' with a pvalue of 1.8 x 10-la and 

so on Cluster C6 has varlous genes contrlbutlng to different phases of cell cycle 

with 'cell cycle' being the highly enriched category with a pvalue of 6.3 x 10-ll. 

From the results of Table 5.5, we arrive at  the conclusion that the genes in a 

cluster obtained by FINN seem to be involved in similar functions. 
I 

5.6 Discussion 

From our exhaustive experiments with FINN over the datasets mentioned in Table 

3.5, we come to the conclusion that by varying the value of P ,  the quality of the 

clusters can be further increased. The support count in the frequent itemset 

generation has a pivotal role in the detection of the core genes. With the increase 

in the support count, more compact sets of core genes can be obtained. Moreover, 

for high values of support count, frequent itemset generation also becomes faster. 

Taking these factors into count, more compact clusters may be obtained. To test 

the performance of the clustering algorithm, we compare the clusters obtained 

by our method and those obtained by several other methods, and the result was 

found satisfactory. The clusters detected by FINN is also found to be biologically 

significant in terms of pvalue. 



Table 5.5: P-values of Dataset 7 
Cluster ( P-value I GO number 1 GO category 

1 6.7e-25 1 G0:0008026 1 ATP-dependent helicase activity 

C 1 

( 6.2e-20 ( GO:0042623 ( ATPase activity, coupled 

6.4e-26 1 GO:0004386 helicase activity 

4.7e-18 

2.6e-16 

5.4e-16 

hydrolase activity, acting on acid 

5.4e-16 

GO:0016887 

GO:0017111 

GO:0016462 

purine nucleotide binding 

DNA helicase activity 

nucleotide binding 

ATPase activity 

nucleoside-triphosphatase activity 

pyrophosphatase activity 

GO:0016818 

2e-12 

5.6e-12 

5.6e-12 

1 I 1 recombination 

hydrolase activity, acting on acid 

anhydrides, in phosphorus- 

containing anhydrides 

( 5e-10 1 GO:0016787 1 hydrolase activity 

GO:0030554 

GO:0032553 

GO:0032555 

adenyl nucleotide binding 

ribonucleotide binding 

purine ribonucleotide binding 

6.7e-08 

8.le-08 

8e-07 

8.9e-05 

I 1.3e-10 1 GO:0007049 1 cell cycle 

GO:0006312 

GO:0003676 

C2 

I 4.6e-10 1 GO:0006261 1 DNA-dependent DNA replication 

mitotic recombination 

nucleic acid binding 

GO:0003824 

GO:0006310 

catalytic activity 

DNA recombination 

1.3e-11 

2.2e-11 

GO:0006260 

GO:0006259 

DNA replication 

DNA metabolic process 



GO category 

cell division 

replication fork 

cell cycle process 

regulation of cyclin-dependent 

protein kinase activity 

DNA repair 

cell cycle phase 

mismatch repair 

maintenance of fidelity during 

nucleoside, nucleotide and nucleic 

GO number 

GO:0051301 

GO:0005657 

GO:0022402 

GO:0000079 

GO:0006281 

GO:0022403 

GO:0006298 

Cluster 

C2 

P-value 

4.2e-08 

8.2e-08 

1.3e-07 

1.4e-07 

1.6e-07 

2.2e-07 

7.2e-07 



Cluster 

C2 

C4 

C5 

GO category 

regulation of DNA metabolic 

process 

cyclin-dependent protein kinase 

regulator activity 

chromosomal part 

nuclear chromosome 

Gl /S  transition of mitotic cell 

cycle 

DNA binding 

negative regulation of cellular 

metabolic process 

mitotic cell cycle 

negative regulation of metabolic 

process 

MutSalpha complex 

DNA strand elongation during 

DNA replication 

DNA strand elongation 

chromosome organization and 

biogenesis 

regulation of cell cycle 

fungal-type cell wall 

cell wall 

external encapsulating structure 

nuclear nucleosome 

nucleosome 

nucleosome assembly 

nuclear chromatin 

chromatin 

protein-DNA complex assembly 

P-value 

1.3e-05 

1.3e-05 

1.6e-05 

1.9e-05 

2.5e-05 

2.8e-05 

3e-05 

3e-05 

3.le-05 

4.3e-05 

5.9e-05 

5.9e-05 

6e-05 

6.7e-05 

1.3e-05 

3.le-05 

3.3e-05 

3.5e-27 

7.7e-26 

7.le-22 

9.5e-20 

1.8e-18 

2.4e-16 

GO number 

GO:0051052 

GO:0016538 

GO:0044427 

GO:0000228 

GO:0000082 

GO:0003677 

GO:0031324 

GO:0000278 

GO:0009892 

GO:0032301 

GO:0006271 

GO:0022616 

GO:0051276 

GO:0051726 

GO:0009277 

GO:0005618 

GO:0030312 

GO:0000788 

GO:0000786 

GO:0006334 

GO:0000790 

GO:0000785 

GO:0065004 



GO category 

chromatin assembly 

DNA packaging 

chromatin assembly or 

disassembly 

nuclear chromosome part 

nuclear chromosome 

chromosomal part 

establishment 

and/or maintenance of chromatin 

tion from RNA polymerase I1 pro- 

GO number 

GO:0031497 

GO:0006323 

GO:0006333 

GO:0044454 

GO:0000228 

G0:0044427 

GO:0006325 

Cluster 

C5 

P-value 

2.2e-15 

4.5e-15 

5.3e-15 

2.4e-14 

1.6e-13 

1.7e-12 

4.9e-12 



Cluster 

C5 

C6 

GO number 

GO:0006358 

GO:0006974 

GO:0006259 

GO:0009719 

GO:0016043 

GO:0007049 

GO:0000278 

GO:0022402 

GO:0007067 

GO:0000087 

GO:0022403 

GO:0051301 

GO:0000279 

GO:0005935 

GO:0005933 

GO:0030427 

P-value 

3.7e-05 

3.7e-05 

3.8e-05 

4.7e-05 

6.8e-05 

6.3e-11 

1.2e-10 

1.8e-10 

1.3e-09 

1.5e-09 

1.9e-09 

9.6e-08 

1.5e-07 

2.3e-07 

9.7e-07 

9.7e-07 

GO category 

regulation of transcription from 

RNA polymerase II promoter, 

global 

response to  DNA damage stimulus 

DNA metabolic process 

response to  endogenous stimulus 

cellular component organization 

and biogenesis 

cell cycle 

mitotic cell cycle 

cell cycle process 

mitosis 

M phase of mitotic cell cycle 

cell cycle phase 

cell division 

M phase 

cellular bud neck 

cellular bud 

site of polarized growth 



Chapter 6 

Finding Coherent Patterns using 

a Density Based Approach 

This chapter presents a Density based Clustering Algorithm, DGC, for cluster- 

ing gene expression data. DGC uses a regulation based discretization technique 

to transform the gene expression data into 3 discrete levels. I t  then uses the 

discretized data to find coherent patterns using a density based clustering ap- 

proach. DGC is independent of any proximity measure, however, we establish 

the effectiveness of DGC based on DBK measure introduced in Chapter 3. 



6.1 Introduction 

A cluster can be defined as a reglon over the gene space, in which the local 

density is higher than its surrounding region To identify such a region, we need 

to calculate local densities of genes in space The density of genes is governed by 

two factors (a) the typical distances among the genes, and (b) the number of 

neighbors of a gene, indicative of the dimens~on in which the points are embedded 

6.2 Related Work 

Density based clustering algorithms identify dense areas in the object space 

Clusters are hypothesized as high density areas separated by sparsely dense areas 

6.2.1 Kernel Density Clustering Method 

A lcerncl dcnsity clustering method for gcne expicssion profile analysis is reported 

in [SZCSOS] It assumes no parametric statistical model and does not rely on 

any specific probability distribution Hypel-spherical uniform kernels of variable 

rad~us are used and density estimate of the data points are found The distance 

between two clusters (or observations) z and 1 IS computed [SAS99] as follows 

d(x,, 2,) = 
m otherwzse 

where R is the user-specified radius and f (x) is the estimated density at  x 

[SAS99] The method is robust and less sensitive to outliers Howevei, accu- 

rate denslty estimation and assignment of cluster membership require multiple 

data points in near-neighborhoods and thus density estimation is less accurate 

when cluster size is small 

6.2.2 Density-based Hierarchical Clustering 

In [JPZ03a], the authors propose the Density-based Hierarchical Clustering method 

(DHC) that uses a density-based approach to identify co-expressed gene groups 



from gene expression data It considers clusters as high dimensional dense areas 

where the genes are attracted to each other DHC uses two-level hierarchical 

structures (attraction tree and denslty tree) to organize the cluster structure 

of the data set The attraction tree reflects relationships among genes in the 

dense area Each node in the attraction tree represents a gene and its parent 

is the attractor of it The highest density gene becomes the root of the tree 

The attraction tree becomes complrcated for large datasets and hence the cluster 

structure is summarized in a density tree Each node of the density tree repre- 

sents a dense area Initially the whole dataset is considered as a single dense area 

represented by the root node of the density tree This dense area is then split 

into several sub-dense areas based on some criteria and each sub-dense area is 

represented by a child node of the root node The sub-dense areas are further 

split till each sub-dense area contains a single cluster DHC is suitable for detect- 

ing highly connected clusters but is computationally expensive and is dependent 

on two global parameters 

An alternative to this is to define the simllarlty of points in terms of their 

shared nearest neighbors This idea was first introduced by Jarvis and Patrick 

[JP73] 

6.2.3 Nearest Neighbor based Density Estimation for Clus- 

tering Gene Expression Data 

In [CJM04], a k-nearest neighbor based density estimation technique is exploited 

The density based algorithm proposed by [CJM04] works in three phases density 

estimation for each gene, rough clustering using core genes and cluster refinement 

using border genes Density of a gene is calculated by the sum of similarities 

among its k nearest neighbors Core genes are high density genes and the method 

proceeds by clustering core genes to form rough clusters Once rough clusters are 

formed, the border genes are assigned to the most relevant cluster 



6.2.4 Clustering based on Density and Shared Nearest 

Neighbor Measure 

In [SAPOG], the authors present a density and shared nearest neighbor based 

clustering method The similarity measure used 1s that of Pearson's correlation 

and the density of a gene is given by the sum of its similarities with its neighbors 

The shared nearest neighbors of the dense genes are found and meiged into the 

same cluster The merging is done efficiently using a data structure called the 

P-tree [PerOl] 

6.3 Motivation 

Denslty-based approach discovers clusters of arbitrary shapes even in the presence 

of noise However, density-based clustering techniques suffer from high computa- 

tional complexity with increase in dimensionality (even if spatial index structure 

is used) and input parameter dependency In this chapter, we present a density 

based clustering method that uses a regulation based cluster expansion process 

It overcomes the problem of maintaining the pattern information usually linked 

w t h  the different clustering approaches due to traditional similarity measures 

The advantage of our method is that it produces quality clustering and can handle 

noisy datasets 

DenGeneClus (DGC) 

DGC works in two phases The first phase normalizes and discretizes the gene ex- 

pression data wlth minlmum information loss whlle the second phase is dedicated 

to clustering the discretized normalized data 

6.4.1 Phase I: Normalization and Discretization 

This phase is a two stcp proccss The first stcp dcals with nornlalization of 

the gene expression data to have mean 0 and standard deviation 1 Expression 



data having a low variance across conditions as well as data having more than 

3-fold variation are filtered out in this step. The second step, i.e., discretization 

is performed on this normalized expression data where the regulation pattern, 

i.e., up- or down- regulation in each of the conditions for a particular gene plays 

an important role. An example of a discretized matrix obtained from the data 

in Figure 6.1 is shown in Figure 6.2. Discretization is carried out as follows: 

Suppose, G* is the set of all genes and T* is the set of all conditions. Let 

{g , )  E G* be the ith gene and {t,) E T* be the jth condition. The expression 

value of gene {g , )  a t  condition {t ,)  is given by ~ , j .  The discretization step gives 

us the regulation pattern of genes across conditions. For a particular gene, the 

regulation pattern is computed for all conditions except the first condition based 

on the previous condition value For the first condition, t l ,  its discretized value 

is directly based on &,,I .  For t,+lth condition, its discretized value is computed 

w.r.t. the tJth condition, i.e., ~ , ~ + 1  and E,,,. Here, is the expression value for a 

gene g, at condition t l ,  E , ,  is the expression value for a gene g, at condition t, and 

similarly, &,,]+I is the expression value for a gene gi a t  t,+]. While discretizing, 

following two cases occur: 

Case 1: For condition tl (i.e., the first condition). 

The discretized value of gene g, at condition, tl 

Case 2: For the conditions (T* - { t l ) ) :  

The discretized value of gene g, at t, 

where ti, is the discretized value of gene g, at condition t j  ( j  = 1 ,. . (T - 1)). Each 

gene now has a regulation pattern (p) of 0, 1, and 2 across the conditions or time 

points. 

Once p of each gene is obtained, the second phase, i.e., the clustering process is 

initiated. 



Figure 6.1: Example dataset 

Figure 6.2: Discretized matrix 



6.4.2 Phase 11: Clustering of genes 

The clustering of genes is initiated with the finding of the maximal matching 

genes with respect to regulation pattern. 

i. A Density Based Notion of Clusters 

Clusters consist of genes having similar expression patterns across conditions 

while nozse genes are those that do not belong to any of the clusters. The basic 

idea behind recognizing a cluster is that within each cluster we have a typical 

density (of genes with similar expression patterns) that is considerably higher 

than that outside the cluster. Furthermore, the density within the areas of noise 

is lower than the density in any of the clusters. In the following, we try to 

formalize this intuitive notion of clusters and noise in a database DG of genes. 

The key idea is that for each gene in a cluster, the neighborhood must contain at  

least a number of genes that have similar expression pattern (regpattern). The 

shape of a neighborhood is determined by the choice of a distance function for 

two genes g, and g, , denoted by D(g,, g,) . Note that our approach works with 

any distance measure and hence there is provision for selecting the appropriate 

similarity function for a given application. In this chapter, we give results for our 

own dissimilarity measure, DBK, discussed in detail in Chapter 3. 

ii. Basis of the Clustering Approach 

The regulation matchzng, order preservatzon and proxzmzty are the three funda- 

mental pillars based on which the clustering technique (DenGeneClus or DGC) 

is designed. 

i. Regulation Matching: For a particular gene g,, the maximal matching reg- 

ulation pattern (defined later) is found. All genes having the same maximal 

matching regulation pattern w.r.t. g, are grouped into the same cluster. 

ii. Order Preservation: We preserve order based on [BDCKYO'L] in the follow- 

ing way. For a condition set t C T* and a gene g, E G*, t can be ordered 

in a way such that the expression values are in ascending order. In order 



ranking, we search for expression levels of genes in ascending order within a 

cluster. Such a pattern arises, for example, if the experiments in t represent 

distinct stages in the progress of a disease or in a cellular process and the 

expression levels of all genes in a cluster vary across the stages in the same 

way [BDCKY02]. 

Each gene has a rank (Rank) which gives the permutation order of that 

gene across conditions t .  The rank is calculated according to the expression 

values of a gene across conditions. In other words, the elements of the rank 

pattern are given by their rank in ascending order of their expression values. 

iii. Proximity: The proximity between any two genes g, and g, is given by 

D(g,, g,) where D is any proximity measure such as Euclidean distance, 

Pearson's Correlation and DBK. 

The identification of clusters is based on the following definitions. The definitions 

are given based on the notion of density available in [EKSX96]. 

Definztzon 6.1. Match 

Let pg, and pg, be the regulation patterns of two genes g, and g,. Then, the match 

(M)  between g, and g, is given by the number of agreements NoAgreements 

' (i.e., the number of condition-wise common regulation values excluding condition 

1) between the two regulation patterns, i.e., 

Definztzon 6.2. Maximal Match 

Gene g, is referred to as maximally matched (MM)  with gene g,, if the number 

of agreements between (pgt, pg,) > 6 where g, E {G* - g,) and b is a user-defined 

threshold. 

Definztzon 6.3. Maximal Matching Regulation Pattern 

If a gene g, maximally matches with gene g,, then the regulation pattern p$, and 

p$, formed by taking the subset of conditions where both p ,  and pg, match is 

referred to as the Maximal Matching Regulation Pattern (MMRP). 



MMRP of genes g, and g, is computed as follows. 

( x otherwise. 

Here t refers to the conditions (t = 2,3,  . . . , T - 1). 

Each gene has a rank which gives the permutation order of that gene across 

conditions t  c T*. The rank is calculated according to the expression values 

of a gene across conditions, z.e., the elements of the rank pattern are given by 

their ranking in ascending order of their expression values. The rank of a gene is 

calculated as follows: 

1. For a gene g,, find p 6 .  

2. Rank g, in ascending order according to the expression values where g ~ $ , , ~  # 

To understand the rank computation, let us refer to the example given in figurc 

6.1. Here, the rows represent the genes gl, g2, . . . , g6 and the columns represent 

the corresponding conditions (excluding condition 1 as stated before). 

p g 2 = 2  0 1 1  2 

,$Ig3 = 1 2' 2 1 0 

p g 4 = l  0 2 1 0  

Pg5 = 2 0 1 1 2  

P96 = 1 0 1 1 2  

Matching among pairs of genes are given below. 



M(g2i 94) = M(g2,95) = 4 M(g2, g6) = 4 

M(g3,94) = 3 M(g3,95) = 1 M(g3, g6) = 1 

M(g47 95) " M(g4,96) = 2 M(95, g6) = 4 

Suppose 6 = 3, then Maximal Matching of pairs of genes are as follows. 

MM(g2,95) = 4 MM(g2, gs) = 4 

MM(93,94)=3 MM(g5,gtj)=4 

Thus, MMRP is given below. 

From the example given above, it is clear that the MMRP of gl, g2, gg and gg are 

same, as well as the MMRP of g3 and g4 are same. 

Genes 1, 2, 5 and 6 have the MMRP over conditions 2, 3, 4, 5. Rank order over 

these four conditions are computed w.r.t. their expression values (E, j, i = 1,2 ,5 ,6  

and j = 2,3,4,5,  where 2 refers to gene i and j refers to condition j )  and ranks 

as follows. 

Rank(g1) = 1 3 4 2 



Similarly, genes 3 and 4 can be found to have the MMRP over conditions 3, 4, 5 

and ranks obtained are as follows. 

Definztzon 6.4. Sneighborhood 

The 8-neighborhood of a gene g,, denoted by No(g, )  is defined by 

where D may be any distance measure such as Euclidean, Pearson's correlation 

and our dissimilarity measure, DBK. 

Definztzon 6.5. Core Gene 

A gene g, is said to be a core gene w.r.t. 8 if there is a t  least one gene g, such 

that 

iii. R a n k ( g , )  z R a n k ( g ,  ) , and 

where 1s a user defined threshold for the minimum number of genes in the 

0-neighborhood of g,. 

Definztzon 6.6. Directly Reachable Gene 

A gene g, is directly reachable from gene g, w.r.t. 0 if 

i. g, is a core gene, 

ii. g, E No(g,) ,  and 

iii. p$, M p$,. 

Direct reachability relation of a gene is symmetric for pairs of core genes. 

However, in case of a pair consisting of a core and a non-core gene, it may not 

be symmetric. 



Definztzon 6.7. Reachable Gene 

A gene p is said to be reachable from gene q w.r.t. 8, if there is a chain of genes 

PI, P2 , .  . . , Pn, where PI = q, Pn = p such that P,+l is direct reachable from P,. 

Thus, reachability relation is a cailonical extension of direct reachability 

[EKSX96]. This relation is transitive, but not symmetric. However, over this 

gene expression domain reachability is symmetric for core genes. 

Definztzon 6.8. Connected Genes 

A gene g, is said to be connected to another gene g, if both g, and g, are reachable 

from another gene g, w.r.t. 0. 

Connectivity is a symmetric relation. 

Definztzon 6.9. Cluster 

A cluster C w.r.t. 0 is a non-empty subset of G* and 1 C 12 u (o is a user-defined 

threshold) satisfying the following conditions: 

i. Vg,, g, if g, E C and g, is reachable from g, w.r.t. 8 then, g3 E C(reachabi1ity). 

ii. Vg,, g, E C : g, is connected to g, w.r.t. 8 (connectivity). 

Therefore, a cluster can be defined as a set of reachable and/or connected 

genes. 

Definztzon 6.10. Noise 

Let C be the set of clusters w.r.t. parameter 8. Noise is defined as the set of 

genes not belonging to any cluster C, E C.  In other words, 

Also, a gene g, is said to be a noise gene if it does not satisfy the 8-neighborhood 

condition i.e., 

Note that any cluster C, w.r.t. 6 contains a t  least two genes (i.e. a = 2) to 

satisfy the core gene condition. 



iii. Identifying core genes 

The clustering process starts with the identification of Core genes according to 

Definition 6.5. Cluster expansion starts from a core gene and finds all reachable 

genes from it. 

iv. Finding maximal coherent clusters 

Cluster identification starts with an arbitrary gene and finds the MMRP with 

other unclassified genes. For regulation pattern matching, two genes are matched 

w.r.t. regulation across conditions starting from condition 2. Condition 1 is 

not considered since its regulation is w.r.t. the expression level rather than the 

previous condition. If the arbitrary gene is a core gene, cluster expansion proceeds 

with this core gene, and finds reachable and connected genes from this core 

gene. All reachable and connected genes in a particular iteration of the clustering 

process are grouped into the same cluster. The process then recursively continues 

until all genes are classified. This expansion process can be summarized in terms 

of the following steps. 

i. Start with an arbitrary unclassified gene g, and find its rank order and 

regulation pattern. 

ii. Call get-Core(gi). 

iii. For each core gene g,. 

a) Find all reachable and connected genes w.r.t. g,. 

b) Classify all those genes with the same Cluster-id. 

iv. Repeat steps ii. - iii.unti1 no more core gene is found. 

v. Repeat steps i. to iv. till all genes arc classified. 

The cluster creation process is given in Figure 6.3 and the cluster expansion 

process is given in Figure 6.4. Here, get-core(g,) is a function which checks the 

core condition as stated in Definition 6.5 and returns a truc value if g, is core; 

otherwise, it returns a false value. Assuming G* be the set of genes and C the 



DGC-cluster-creation() 

Precondition: All genes in DG are unclassified 

FOR all g, E G do 

Compute dg , )  ; 

END FOR 

F O R i = O t o G d o  

IF g,.classified # CLASSIFIED then 

Compute pl(ge) & Rank(g,); 

IF  get-core(g,) == TRUE then 

expand-cluster (g,, clusterid); 

clusterid = clusterid + 1; 

END IF  

END IF 

END FOR 

Figure 6.3: Algorithm for cluster formation 



expand-cluster(g,, cluster-id) 

IF g, .classified == CLASSIFIED then 

RETURN; 

END IF 

gi.classified = CLASSIFIED; 

g, .cluster-id = clusterid; 

F O R j = O t o G d o  

IF gt # 9, 

IF P$, P$, && 9, E Ne(gz) then 

IF  get-core(g,) == TRUE then 

expand-cluster (g, , cluster i d )  ; 

END IF 

g, .classified = CLASSIFIED; 

g, .clusterid = clusterid; 

END IF  

END IF  

END FOR 

Figure 6.4: Algorithm for cluster expansion 



set of clusters, the following lemmas are introduced to provide the basis of our 

clustering algorithm. Intuitively they state that given the parameter 9, we can 

discover a cluster in a two-step approach. First, an arbitrary gene which satisfies 

the core gene condition is chosen as the seed. Second, all genes reachable from 

the seed are retrieved. These two steps result in a cluster containing the seed. 

Lemma 6.1. Let g, be a core gene in G, then the set X = {xlx E G* and x is 

reachable from g, w.r.t. 9) is a cluster w.r.t. 8. 

Proof. Let g, E G* be a core gene and let g, E C, (where C, is a cluster). Again, 

let x E G* be any gene in Ci, which is not reachable from g,. However, as per 

Definition 6.9 (condition i.), x must be reachable from g,. Therefore it contradicts, 

hence the proof. 

Lemma 6.2. Assume genes g,, g, E G* and C1, C2 are two clusters where g, E C1 

and g, E C2, then g, and gj are not connected. 

Proof. Consider genes g, E C1 and g, E C2 where g, and g, are connected. Then 

as per Definition 6.9 (condition ii.), g, and g, must belong to the same cluster. 

Thus we come to a contradiction and hence the proof. 

Lemma 6.3. Let gene g, E G* and C be the set of all clusters. If g, is a noise 

gene, then g, 4 C .  

Proof. Let gene g, E G* be a noise gene and let g, E C, where C, E C. Now, g, 

must be reachable w.r.t. 8 from a t  least one core gene g, where g, E C, as per 

Definition 6.9 (rcachability condition). But this violatcs the noise condition as 

defined in Definition 6.10 and hence the proof. 

Observatzon 1. Any core gene g, E Ck (where i = 1,2, . . . , m and Ck is a cluster) 

w.r.t. 9 have the same MMRP and rank with the other core genes in Ck. 

Observatzon 2. All genes in a cluster Ck have same MMRP with the core gene(s) 

E Ck. 

The result of clustering using DGC with our dissimilarity measure is reported 

in Section 6.5.1 



6.5 Performance Evaluation 

We implement DGC in Java in the Windows environment. We use the.rea1-life 

datasets given in Table 3.5 to evaluate the methods. 

6.5.1 Results 

We exhaustively test DGC on the given datasets with a = 2. The value of a 

is taken to be 2 since we search exhaustively for the different patterns. We use 

Euclidean distance and our dissimilarity measure, DBK, for D and the value of 

0 = 2. On experimentation with various real-life and synthetic datasets, the 

method is found to detect biologically significant clusters. We compare our al- 

gorithm with that of the k-means, hierarchical clustering (UPGMA), CLICK, 

DCCA, SOM algorithms. The k-means and UPGMA algorithms are evaluated 

using the built-in MATLAB implementation. CLICK and SOM algorithms are 

run using the implementation provided by the Expander tool [SMKS03]. CLICK 

is run with the default parameter provided by Expander. Expander is also used 

for finding the homogeneity of k-means clustering. For k-means, k is varied from 

2 to 30 by increments of two. The results obtained by our method over a re- 

duced form of Dataset 3 are shown in Figure 6.5. The dataset is reduced by 

filtering out low variance and low entropy genes from the data. We note here 

that the clusters obtained by our algorithm are detected automatically and unlike 

k-means no input parameter for number of clusters is needed. We test k-means 

with k = 16,20,30,40,48. Since our method gives a total of 47 clusters (when 

Euclidean distance is used) and 44 clusters (when our dissimilarity measure is 

used) for the reduced form of Dataset 3, we also test k-means algorithm for k = 

44 and 47 respectively. Similarly, UPGMA algorithm is tested for cutoff = 43, 

44, 47 and also for other values. Some of the clusters obtained by our method 

over full Dataset 3 are shown in Figure 6.6. A total of 118 clusters are gener- 

ated from the full Dataset 3. In Figure 6.7 the clusters generated by k-means on 

the reduced form of Dataset 3 are given. In Figure 6.8 and Figure 6.9, clusters 

generated from the reduced form and full form of Dataset 3 using UPGMA at 

cutoff= 46 and 176 are shown, respectively. In Figure 6.10 some of the clusters 



Figure 6.5: Result of DGC on the reduced form of Dataset 3 using our dissimi- 

larity measure 

generated from the full Dataset 2 using DGC method (with DBK measure) are 

shown and in Figure 6 11 the clusters Identified from Dataset 6 using DGC (with 

DBK measure) are shown. Finally, to validate the cluster results, three cluster 

validity measures, viz., z-score, homogeneity and silhouette index are used and 

the results were compared with the different clustering algorithms. 

6.5.2 Cluster Quality 

In this section the performance of DGC is demonstrated on the six publicly 

available benchmark microarray data sets stated earlier in Table 3.5. We report 

a comparative study of several widely used microarray clustering algorithms. The 

performance of DGC is judged by Silhouette index [Rou87] and Average Homo- 

geneity score [SSOO]. Table 6.1, Table 6.2 and Table 6.4 respectively show the 

homogeneity and silhouette values for the different clustering algorithms on the 

real-life datasets. I t  can be seen from Table 6 1 and Table 6.2 that the homo- 

geneity values of DGC is superior for all the datasets. Table 6.4 shows that 

the silhouette values of DGC is superior to those obtained by other methods. 



Figure 6.6: Result of DGC on the full Dataset 3 using our dissimilarity measure 

However, for Dataset 4 the silhouette value of DGC is less than DCCA. This 

is because DCCA has two more clusters than DGC. DGC detects eight clus- 

ters in the Dataset which is also the number of clusters detected in [WFM+98]. 

Moreover, the z-score value of DGC for the Dataset 2 is more than DCCA. This 

concludes that the clusters detected by DGC is more relevant than DCCA. 

For validating DGC, we employ z-score [GR02] as the measure of agreement. 

A higher value of z indicates that genes are better clustered by function, indicat- 

ing a more biologically relevant clustering result. Z-score [GR02] is calculated 

by investigating the relation between a clustering result and the functional anno- 

tation of the genes in the cluster. In this section, the reported z-score is averaged 

over 50 repeated experiments. The result of applying the z-score on the reduced 

form of Dataset 3 is shown in Table 6.5. Table 6.5 clearly shows that our method 

outperforms k-means, DCCA and SOM w.r.t. cluster quality. Table 6.6 shows 

the z-score values when our method, DGC, IS cxccutcd at diffcrent values of 0. 

It  is observed that DGC gives better clustering a t  0 = 2 for the full Dataset 3. 



Table 6.1: Homogeneity values for DGC and other comparable algorithms for 

Datasets 2, 3 and 4. 



Table 6.2: Homogeneity values for DGC and other comparable algorithms for 

Datasets 5, 6 and 7. 

Dataset 6 

Homogeneity 

0.512 

SOM 

Datasets 

Dataset 5 

k-means 

k-means 

k-means 

SOM 

CLICK 

DCCA 

D G C  

D G C  

No. of Clusters 

4 

Met hod Applied 

k-means 

9 

14 

Dataset 7 

Threshold value 

N A 

6 

10 

14 

6 

5 

10 

9 

14 

3 x 3 grid 

2 x 7 grid 

D G C  

N A 

N A 

NA 

2 x 3 grid 

0.571 

0.775 

Default value 

N A 

8 = 1.5 

8 = 1  

0.633 

0.682 

0.769 

0.707 

0.483 

0.813 

0.928 

0.989 

5 8 = 4.5 0.906 



Table 6.3: Silhouette Index for DGC and other comparable algorithms for 

.tasets 2 an 
Datasets 

Dataset 2 

Dataset 4 

Method Applied 

MOGA-SVM (RBI?) 

MOGA (without SVM) 

FCM 

No. of Clusters 

5 

Average linkage 

SOM 

Silhouette Index 

0.443 

5 

6 

DCCA 

DGC at 8 = 2  

Average linkage )I 6 1) 0.412 I 

0.439 

0.387 

4 

6 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

0.439 

0.368 

15 

17 

0.838 

0.851 

6 

6 

5 

SOM 

SOM 

k-means 

CLICK 

I 

0.451 

0.487 

0.405 

DCCA 

DGC at 8 = 4  

6 

8 

8 

3 

0.482 

0.357 

0.554 

0.179 

10 

8 

0.910 

0.777 



Table 6.4: Silhouette Index for DGC and other comparable algorithms for 

Silhouette Index 

0.431 

0.401 

0.364 

0.315 

0.652 

0.536 

0.449 

0.609 

0.871 

0.415 

0.395 

0.299 

0.356 

0.324 

0.9 

0.722 

0.361 

0.077 - 
0.51 

0.908 

0.524 

No. of Clusters 

4 

4 

4 

5 

10 

10 

6 

10 

10 

6 

6 

8 

4 

6 

14 

9 

7 

5 

6 

43 

7 

Datasets 5, 6 
Datasets 

Dataset 5 

Dataset 6 

Dataset 7 

and 7. 
Method Applied 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

Average linkage 

k-means 

SOM 

CLICK 

DCCA 

D G C  at 8 = 0.87 

MOGA-SVM (RBF) 

MOGA (without SVM) 

FCM 

Average linkage 

SOM 

D G C a t  8 = 1  

D G C  at 0 = 1.5 

k-means 

CLICK 

SOM 

DCCA 

D G C a t 8 = 5  



Figure 6 7 Result of k-means on the reduced form Dataset 3 at cutoff = 46 

Figure 6 8 Result of UPGMA on the reduced form Dataset 3 at cutoff = 46 

The z-score values of several clustering algorithms over the full Dataset 3 are re- 

ported in Table 6 7 From the table we conclude that DGC performs better than 

k-means, hierarchical clustering and DCCA We note here that unlike k-means 

our method does not require the number of clusters as an input parameter It 

detects the clusters present in the dataset automatically and gives the rest as 

noise Also, UPGMA requires the parameter cutoff as input to the algorithm 

The z-score values of DGC for datasets 2 and 7 is compaied with DCCA 

and other algorithms and is shown in Table 6 8 and Table 6 9 respectively I t  is 

observed from thein that DGC performs better than its competitors in telms of 

z-score 

Since ClusterJudge can operate only on yeast datasets, we could not find thc 

z-score values for Datasets 4, 5 and 6 Therefore, we could not compare the z- 



Table 6.5: z-scores for DGC and other methods for the reduced form of Dataset 

Method Applied 

k-means 

Table 6.6: z-scor 

DCCA 

SOM 

for DGC at different values of 0 for the full Dataset 3. 

No. of Clusters 

44 

Table 6.7: z-scores for UPGMA, k-means, DCCA and DGC for the full Dataset 

3. 

z-score 

8.6 

2 

3 5 

-0.995 

4.46 



Table 6.9: z-scores for DCCA, k-means, CLICK, SOM and DGC for the Dataset 

7. 

Table 6.8: z-scores for DCCA, k-means, SOM and DGC for the Dataset 2. 

D G C a t 8 = 2  

DGC a t  8 = 4.5 

D G C a t 8 = 5  

1 17 

7 

7 

5.51 384 

11.747 

16.55 

698 

698 



Figure 6 9 Result of UPGMA on the full Dataset 3 a t  cutoff = 176 

score values of DGC wlth those of clusters generated by other methods for these 

three datasets 

6.5.3 Biological significance 

The funct~onal enrichment of each GO category In each of the clusters obtalned is 

calculated by ~ t s  p-value To compute the p-value, we use the software FuncAsso- 

c ~ a t e  [B+03] We report functional categor~es w ~ t h  pvalue < 7 x 10-O5 in order to 

restrict the slze of the chaptel Of the seventeen clusters obtalned from Dataset 



2, the highly enriched categories are shown in Table 6.10. As can be seen in clus- 

ter C3, the highly enriched categories of 'cell cycle', 'DNA metabolic process', 

'DNA replication' and 'chromosome' have pvalues of 1.1 x 7.6 x 

4.1 x 3.4 x 10-18, respectively. The highly enriched categories in clus- 

ter C6 are the 'cellular bud' and the 'cell cycle' with pvalues of 3 x 10-l2 and 

8.4 x 10-12, respectively. The genes in clusters C3 and C6 are involved in cell cy- 

cle. Cluster C9 have genes involved in DNA replication. The cluster C10 contains 

highly enriched categories such as 'spindle', 'cytoskeletal part' and 'microtubule 

cytoskeleton' with pvalues of 1.3 x 10-12, 1.8 x 10-11, 1.9 x 10-11, respectively. 

C10 contains genes whose functions are related to various phases of cell cycle. 

Cluster C13 contains genes belonging to various functional categories related to 

synthesis of various amino acids. From the results of Table 6.10, we see that the 

clusters obtained by DGC shows a high enrichment of functional categories. 

We also compare the results obtained by DGC with those by DCCA. To 

restrict the size, we report the pvalues of only one of the clusters obtained from 

DCCA in Table 6.11. This cluster corresponds to the cluster C10 of DGC reported 

in Table 6.10. We observe that the pvalues for the functional categories of DGC 

are smaller than those obtained by DCCA. For example, the enriched category 

'spindle' has a pvalue of 1.3 x 10-l2 in the result of DGC whereas for DCCA, the 

value is 9.0 x 10-12. Similarly, for the GO attribute 'microtubule cytoskeleton', 

DGC obtains apvalue of 1.9 x 10-l1 whereas DCCA obtains 1.2 x 10-lo. Also, for 

'cytoskeleton', the pvalue of DGC is 8.9 x 10-'I and for DCCA it is 1.7 x 10-07. 

This trend continues for other GO attributes as well. Therefore, we can conclude 

that the clustering solution obtained by DGC is more biologically significant than 

that of DCCA. 

6.6 Discussion 

This chapter presents a regulation based density pattern matching approach that 

does not require the number of clusters as an input parameter. The clusters 

obtained by DGC on the six microarray data sets have been found to be func- 

tionally enriched based on the pvalues. The clusters obtained have been validated 



Table 6 10 wvalue of Dataset 2 

Cluster 

C1 

P-value 

6 4e-06 

1 le-25 ( GO 0007049 1 cell cycle I 

1 2e-05 

1 3e-05 

5 7e-06 

5 6e-05 

6 6e-05 

GO number 

GO 0051301 

3 4e-18 I GO 0005694 ( chromosome 1 

GO category 

cell division 

GO 0019887 

GO 0019207 

GO 0005933 

GO 0044429 

GO 0031966 

protein kinase regulator activity 

kinase regulator activity 

cellular bud 

m~tochondrial part 

initochondrial membrane 

DNA metabolic process 

DNA replication 

7 6e-22 

4 le-21 

GO 0006259 

GO 0006260 

2 2e-17 

5 6e-17 

le-16 

negative regulation of nucleobase, 

3 6e-15 

8 7e-15 

1 5e-14 

2 6e-14 

I I nucleoside, nucleotide and nucle~c I 

GO 0044427 

GO 0006261 

GO 0022402 

chromosomal part 

DNA-dependent DNA replication 

cell cycle process 

GO 0022403 

GO 0006281 

GO 0000278 

GO 0005657 

I I biogenesis 1 

cell cycle phase 

DNA repair 

mitotic cell cycle 

replication fork 

1 9e-11 

2 le-11 I GO 0006273 1 lagging strand elongation I 

GO 0051276 

acid metabolic process 

chromosome organlzat~on and 



GO category 

nuclear chromosome part 

negative regulation of cellular 

metabolic process 

negative regulation of metabolic 

process 

nucleus 

cell division 

replisome 

nuclear replisome 

Cluster 

C3 

P-value 

2.8e-11 

4e-11 

4.3e-11 

5.3e-11 

7.6e-11 

8.5e-11 

8.5e-11 

GO number 

GO:0044454 

GO:0031324 

GO:0009892 

GO:0005634 

GO:0051301 

GO:0030894 

GO:0043601 



GO category 

regulation of gene expression, 

epigenetic 

interphase 

regulation of cell cycle 

DNA binding 

chromatin assembly 

sister chromatid segregation 

regulation of DNA metabolic 

process 

GO number 

GO:0040029 

GO:0051325 

GO:0051726 

GO:0003677 

GO:0031497 

GO:0000819 

GO:0051052 

Cluster 

C3 

P-value 

4.2e-09 

5.8e-09 

6.le-09 

1.7e-08 

2.7e-08 

3.le-08 

3.4e-08 

I 

le-07 

le-07 

l.le-07 

l.le-07 

l.le-07 

1.3e-07 

GO:0043228 

GO:0043232 

GO:0043549 

GO:0045859 

GO:0000793 

GO:0006310 

non-membrane-bounded organelle 

intracellular 

non-membrane-bounded organelle 

regulation of kinase activity 

regulation of protein kinase 

activity 

condensed chromosome 

DNA recombination 



maintenance of fidelity during 

ide, nucleotide and nucleic aci 



GO category 

gene conversion a t  mating-type 

locus 

cyclin-dependent protein kinase 

regulator activity 

base-excision repair 

DNA replication initiation 

structure-specific DNA binding 

cell cycle checkpoint 

Gl /S  transition of mitotic cell 

Cluster 

C3 

P-value 

3.5e-06 

3.5e-06 

4.2e-06 

4.3e-06 

6.4e-06 

7.4e-06 

7.4e-06 

chromatin silencing at  silent 

biological regulation 

GO number 

GO:0007534 

G0:0016538 

GO:0006284 

GO:0006270 

GO:0043566 

GO:0000075 

GO:0000082 

2.6e-05 

2.7e-05 

2.7e-05 

2.7e-05 

3.2e-05 

GO:0031323 

GO:0000135 

GO:0005658 

GO:0031565 

GO:0065009 

regulation of cellular metabolic 

process 

septin checkpoint 

alpha DNA polymerase: primase 

complex 

cytokinesis checkpoint 

regulation of molecular function 



Cluster 

C3 

C6 

P-value 

3.7e-05 

3.9e-05 

4.4e-05 

4.6e-05 

4.6e-05 

4.6e-05 

5.2e-05 

6e-05 

6.8e-05 

6.8e-05 

3e- 12 

8.4e-12 

5.3e-11 

5.5e-11 

1.2e-08 

5.7e-08 

1.7e-07 

6.le-07 

1.5e-06 

1.5e-06 

3.5e-06 

4e-06 

7.le-06 

1.2e-05 

1.8e-05 

1.8e-05 

2.le-05 

GO number 

GO:0016568 

GO:0051320 

GO:0043283 

GO:0003006 

GO:0007530 

GO:0007531 

GO:0019222 

GO:0032502 

GO:0000400 

GO:0008622 

GO:0005933 

GO:0007049 

GO:0005935 

GO:0030427 

GO:0051301 

GO:0022402 

GO:0000278 

GO:0022403 

GO:0000142 

GO:0005826 

GO:0007067 

GO:0000087 

GO:0044430 

GO:0000910 
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: 6.11: pvalue of cluster 3 obtained by DCCA over Dataset 2 
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by homogeneity, silhouette index and z-score measures of cluster validation. The 

regulation based cluster expansion maintains the pattern information in a simple 

regulation pattern. From our experimental results we conclude that the cluster- 

ing solution obtained by DGC has higher degree of biological significance than 

the algorithms with which we compared it. The next chapter introduces an in- 

cremental clustering algorithm based on DGC that is capable of handling large 

incremental gene expression datasets. 
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Figure 6.10: Some clusters generated using DGC on Dataset 2. A total of 17 

clusters were detected. 



Figure 6.11: The clusters obtained by DGC on Dataset 6. 



Chapter 7 

incDGC: An Incremental 

Clustering Approach 

In this chapter, we introduce an incremental density based gene clustering tech- 

nique (incDGC) which is designed based on our existing density based clustering 

technique i.e., DGC which has been discussed in Chapter 6. The incDGC a p  

proach uses cluster profile information to cluster genes incrementally. We com- 

pare it's performance with that of a few other methods using real-life datasets 

and find that it detects biologically relevant clusters. 



7.1 Introduction 

The current information explosion, fuelled by the availability of the World Wide 

Web and the huge numbers of microarray experiments being continuously con- 

ducted, has led to ever-increasing volumes of gene expression data. Therefore, 

there is a need for incremental clustering so that updates can be clustered in 

an incremental manner. Though a lot of research has focussed on incremen- 

tal clustering for other application domains, there has not been much study of 

incremental clustering in the context of gene expression data. 

7.2 Related Work 

We now present a review of some selected incremental clustering algorithms. 

7.2.1 Incremental DBSCAN 

In [EKS+98], the authors present an incremental clustering approach based on 

the,DBSCAN [EKSX96] algorithm. The main idea behind the algorithm is that 

the insertion or deletion of an object affects the current clustering only in the 

neighborhood of this object. Density connections may surface or get removed 

depending on whether an object is added or deleted, respectively. Incremental 

DBSCAN yields the same result as DBSCAN executed over the whole updated 

database. 

7.2.2 Incremental Clustering Algorit hrn ( C 2 1 c ~ )  

In [Can93], the authors propose an incremental clustering for dynamic processing. 

Docu~nents are clustered by assigning them to clusters of the seed that covers 

them the most. Updations (additions and deletions) are handled by checking the 

newly inserted data, the ragbag cluster (documents not covered by any seed) and 

the members of the f alsz f zed clusters and assigned to the most appropriate seed. 



7.2.3 HIREL: An Incremental Clustering Algorithm for 

Relational Dat asets 

In [TS08], the authors present a one pass clustering algorithm for relational 

datasets HIREL is a multi-phase clustering algorithm where the dataset is first 

divided into a set of micro-clusters so that the variance of each cluster is equal 

to or less than some threshold A hierarchical dendrogram is built based on the 

micro-clusters to optimize the result The micro-clusters are indexed by a bal- 

anced search tree S to facilitate the assignment of new data to the appropriate 

cluster 

7.2.4 Rough Set based Data Clustering 

Rough set theory has been employed in the incremental approach for clustering 

interval datasets in [ANSOG] It groups the given dataset into a set of overlapping 

clusters by employing a rough variant of the Leader algorithm [ANSOG] The algo- 

rithm generates cluster abstractions in a single scan and is robust to outliers In 

[CCFM97], the authors present an incremental clustering model for information 

retrieval applications [CHN\V96] and [FAAM971 also report efficient methods 

for modifying a set of association rules 

7.2.5 Incremental Genetic k-means Algorithm (IGKA) 

In [LLF+04b], an incremental genetic k-means algorithm (IGKA) has been pre- 

sented IGKA calculates the objective value called Total Within-Cluster Varia- 

tion (TWCV) and clusters centroids incrementally whenever the mutation prob- 

ability is small IGKA converges to the global optimum In the Genetic k-means 

Algorithm (GKA) proposed in [KM99] a genetic algorithm is hybridized with the 

k-means algorithm and therefore GKA converges to the global optimuin faster 

than other genetic algorithms In [LLF+04a], the authors present a faster version 

of GKA (FGKA) that efficiently evaluates the TWCV, avoids illegal string ter- 

mination ovcrhcad and simplifies thc mutation opcrator IGKA inherits all the 

advantages of FGKA and outperforms FGKA when the mutation probability is 



small The cost of calculating the centroids in FGKA is more expensive when 

the mutation probability is small than when it is calculated incrementally in 

IGKA The Hybrid Genetic k-means Algorithm (HGKA) in [LLF+04b] combines 

the advantages of both IGKA and FGKA and obtains an even better perfor- 

mance However it is very difficult to obtain the threshold value which is dataset 

dependent 

7.2.6 Best Incremental Ranked Subset (BIRS) 

In [RRAROG], an incremental gene selection algorithm that reduces search space 

complexity using a wrapper-based method is presented This method woiks on 

the ranking directly In BIRS [RRAROG], genes are first ranked w r t an evalua- 

tion measure Then, the set of genes is updated by crossing the ranking from the 

beginning to the last rankcd genc Classification accuracy with the first gcnc in 

the list is obtained and ~t 1s marked as selected The classification rate is again 

obtained and the second gene is selected depending on whether the classification 

accuracy IS sign~ficantly better The process is repeated till the last gene on the 

ranked list is processed The algorithm returns the best subset formed and it 

does not contain irrelevant or redundant genes 

7.3 Motivation 

Due to the huge number of microarray experiments being conducted regularly, 

whenever new gene expression data becomes available it is highly desirable to 

perform updates (1 e , incorpoiate the new results to exlsting clusteis) with these 

newly arrived genes incrementally Therefore, we propose an incremental clus- 

tering method, zncDGC, based on DGC 

7.4 incDGC: Incremental DGC 

The DGC algorithm as discussed in Chapter 6 can be used for clustering static 

gene expression data Due to the density based nature of DGC, the insertion of 



a gene affects the current clustering only in the neighborhood of this gene. We 

find that the incrcmental algorithm yields the same rcsult as DGC. A significant 

achievement would be if we could simply and incrementally update the clustering 

obtained by DGC (on the old database) to handle the new updates. We examine 

the parts of an exlsting set of clusters affected by an update and present the algo- 

rithm called incDGC for incremental updates of a set of clusters after insertions. 

The incremental clustering problem can be stated a s  follows: for an update of 

y genes in Dupd, incDGC maintains a collection of k clusters such that as each 

input gene is presented, either it is assigned to one of the current k clusters, or it 

starts a new cluster, or it merges two or more existing clusters into one, or that 

it is a noise gene. 

The changes in the set of clusters in the gene dataset DG are restricted to 

the neighborhood No(g,), of an inserted gene g,. The previously identified core 

genes retain their core property, but non-core genes (border genes or noise genes) 

in Ne(g,) may become core. Thus new density connections may surface; that 

is, a new chain 91,. . . , g,, gl = r ,  g, = s may arise with g,+l directly density 

reachable from g, for two genes r and s which were not density reachable before 

the insertion of g,. Thus one of the genes g, for j < n must be contained in 

Ne(g,). Figure 7.1 shows an example dataset of genes illustrated in 2D and the 

gene g, is to  be inserted. Each of the points represents a gene. The genes a and 

b are density connected w.r.t. 8 and a = 4 without using any gene E Ne(g,). On 

the other hand genes r. and s are density connected via the genes E Ns(g,) if the 

gene g, is present. If g, is not present r and s are not connected and they belong 

to different clusters. Thus thc cluster rncmberships of r and s are dependent on 

the presence or absence of g,. The insertion of a gene g, may result in a change 

of cluster membership of genes in 8-neighborhood of g, and all genes density 

reachable from one of these genes in DG U 9,. While inserting g, the following 

cases may occur. 

1. h s i o n  

If g, is reachable from exactly one cluster C,, gi and possibly some noise 

genes are fused into cluster C,. 

2. Creation 
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Figure 7.1: Example dataset of genes 
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Figure 7.2: The different cases of insertion 



g, may become core w.r.t some other noise or unclassified gene(s) and may 

lead to the formation of a new cluster. 

3. Merge 

Gene g, E Ne(g,) and g, becomes core after insertion of g,. Also, gene g, is 

core and g, E Ne(gq). If both g, and g, belong to different clusters then all 

these clusters as well as g, are merged to form one cluster. 

4. Noise 

g, is neither a core gene nor it is density reachable from any other core gene. 

Moreover, insertion of g, does not produce any new core genes. Then g, is 

noise gene and no density-connections are changed. 

The four cases given above are depicted in Figure 7.2 for 2D illustration where a = 

4. The incDGC algorithm starts with a newly inserted gene g, and finds its regula- 

tion pattern. Each of the clusters obtained by a call to the DGC-cluster-creatzon() 

(given in previous chapter) over the old database has a cluster MMRP. The up- 

dated database Dupd contains genes from both the old database DG and incre- 

mental database DI, z.e., Dupd = DG U DI and I Dupd I= G + y, where, G is 

the total number of genes and y is the total number of genes in the incremental 

dataset, DI. 

The steps of incDGC are given below. 

1. Call DGC to create the clusters on DG. 

2. Represent each cluster by the cluster MMRPs. 

3. For each of the unclassified genes, g,, in the updated database, Dupd 

(a) Find the regulation pattern of g,. 

(b) g, is matched with each of the cluster MMRPs obtained from 

DG . 
5 

(c) If g, matches with the MMRP of exactly one cluster C, then 

incDGC proceeds with the gene g, (and can be a viable case 

either for case 1, 2 or 4 above). In the 8-neighborhood of 

g,, only those genes which belong to C, or arc unclassified 

become the seeds for cluster expansion. 



(d) If g, matches more than one cluster, then, the seeds for cluster 

expansion arc gcncs in thcse clusters as well as unclassified 

genes belonging to 8-neighborhood of g, (Case 3) 

(e) If g, matches none of the clusters, then, either case 2 or 4 

may occur 

4 Step 3 is repeated till all genes in Dupd are classified 

For a gene expression database of G genes and y inserted genes, we derive the 

followng theorems and lemmas 

Theorem 1 incDGC has time complexlty O(G + y) in the worst case 

Proof Assume m clusters have been detected by DGC in the database DG of 

size G For an insertion of y genes, the cardinality of the updated database Dupd 

becomes (G + y) For finding matcliing profilc(s), lncDGC comparcs the newly 

inserted genes with m profiles where m << G This results in a complexity of 

O(m) Once matching profile(s) is identified, neighborhood processing starts 

Let, x be the number of genes in a cluster Let g, E {DUpd - DG) be an inserted 

gene Assume g, matches k clusters (k 5 m) Then the neighborhood query 

searches ((x x k) + z) genes where (x x k) << G and z is thc sct of unclassificd 

genes E Dupd This gives a complexlty of O((x x k) + z) Once the neighborhood 

of g, is identified, the four cases discussed above are checked Out of the four, 

the merging case is more costly taking at most O(x x k) time Therefore, 

total tzme complexzty = O(m) + O((x x k) + z) + O(x x k) 

In the worst case, k = m, 

total tzme complex~ty = O((x x m) + z) = O(G + y) 

Observatzon 1 Clustering obtained by incDGC is the same as the clustering 

obtained by DGC 



Lemma 7.1. Let g, be an inserted gene. Let there be two other genes g, E C1 

and g, E C2 where C1, C2 are two clusters. If g, becomes core and both g, and 

g, are reachable from g,, then C1 and C2 are merged. 

Proof. Suppose g, E C1 and g, E C2 and the inserted gene g, is a core gene. Also, 

let g, and g, be reachable from g,. Then g, is density connected to g,. Thus, as 

per Definition 6.9, g, and g, belong to the same cluster, i.e., clusters C1 and C2 

should be merged. Hence the proof. 

Lemma 7.2. Let g, be an inserted gene and genes g, E Cl and g, E C2 where 

C1, C2 are two clusters. If g, is not core and g, is reachable from both g, and g,, 

then g, belongs to either C1 or C2. 

Proof. Let, g, be an inserted gene and assume g, is not core. Also, let g, be 

reachable from both the clusters g, E C1 and g, E C2. Then according to 

Definition 6.9, g, E C1 and g, E Cz. However, as per Lemma 7.1, Cl, C2 cannot 

be merged as g, is not core. Therefore g, can be included in any of C1 or C2. 

Hence the proof. 

A significant advantage of incDGC is that genes in the No(g, )  having MMRP 

different from that of g, are not considered for cluster expansion. This in turn 

reduces the computational cost of the algorithm significantly. 

7.5 Performance Evaluation 

We have implemented incDGC using Java in Windows environment and tested 

it on the real-life datasets given in Table 3.5. 

7.5.1 Cluster Quality 

To assess the quality of incDGC, we need an objective external criterion. We per- 

form a statistical rating of the relative gene-expression activity in each cluster. In 

order to validate our clustering result, we use z-score [GR02] as the measure of 

agreement. A higher value of z indicates that genes are better clustered by func- 

tion, indicating a more biologically relevant clustering result. Z-score [GR02] 



is calculated by investigating the relation between a clustering result and the 

functional annotation of the genes in the cluster We have used Gibbons Cluster- 

Judge [GR02] tool to calculate z-score To test the performance of the clustering 

algorithm, we compare the clusters identified by our method with the results 

from k-means, UPGMA, SOM, DCCA and CLICK We average the z-score value 

over 50 repeated experiments The result of applying the z-score on the reduced 

form of Dataset 3 is shown in Table 7 1 In this table DGC is compared with the 

well known k-means and agglomerative hierarchical algorithm, UPGMA Table 

7 1 clearly shows that our method outperforms both k-means and UPGMA w r t 

the cluster quality The z-score values obtained from clustering the full Dataset 3 

is given in Table 7 2 We observe from the table that our method performs better 

than k-means and hierarchical clustering We note here that unlike k-means, our 

method does not require the number of clusters as an input parameter It  detects 

the clusters present in the dataset automatically and identifies the rest as noise 

Also, UPGMA requires the parameter cutoff as input to the algorithm From 

both tables we see that DGC gives better cluster set a t  B = 2 for Dataset 3 The 

z-score for DGC and incDGC are shown in Table 7 1 and Table 7 2, respectively 

We see from the tables that incDGC discovers all the clusters as DGC Table 7 3 

and Table 7 4 demonstrate that the clusters detected by DGC and incDGC for 

Dataset 2 and Dataset 7 are same respectively 

We do not report the homogeneity and silhouette index values for incDGC 

since they are the same as for DGC We thus conclude that the clusters detected 

by incDGC are same as those detected by DGC 

7.5.2 Execution Time Performance 

We compare the execution times of DGC and incDGC by increasing the size of 

the dataset with updates of 500 genes for each iteration The execution time for 

both algorithms is illustrated in Figure 7 3 We see that incDGC is much more 

efficient than DGC We also scc that with iiicreasc in the sizc of the updated 

database, the performance of DGC degrades unlike lncDGC 



Table 7.1: z-scores for incDGC, k-means a t  k=16 and 46 and UPGMA using 

aver 

Table 7.2: z-scores for incDGC, and UPGMA using average linkage a t  cutoff = 

176 for the full Dataset 3 

DGC at 0 = 2 

DGC a t  B = 2.7 

incDGC 

119 

121 

119 

12 

11.2 

12  

6089 

6089 

6089 



Table 7.3: z-scores for DCCA. k-means, SOM. DGC and incDGC for Dataset 2 

Table 7.4: z-scores for DCCA, k-means, CLICK, SOM, DGC and incDGC for 

the Dataset 7 
Method Applied No. of Clusters z-score 

DCCA 43 7.06 

k-means 

CLICK 

SOM 

I SOM I I 6 11  11.7 

I SOM I I 9 11 10.7 

Total no. of genes 

698 



Figure 7.3:, Execution Times of DGC and incDGC with increase in the size of 

dataset 

7.6 Discussion 

This chapter presents an incremental clustering algorithm (incDGC) based on 

DGC. incDGC does not require the number of clusters as input. The clusters 

obtained by incDGC are superior to those obtained by k-means, UPGMA, DCCA, 

SOM and CLICK based on z-score for three real datasets. The regulation based 

cluster expansion that we use also helps in maintaining the pattern information by 

using a simple pattern matching approach. The incDGC algorithm brings down 

the cost of performing DGC on the whole database after insertions are carried 

out. The number of neighborhood queries are scaled down very effectively than 

if DGC were allowed to run on the whole updated data. Moreover, the incDGC 

always gives the same result as DGC run on the whole updated database and is 

also much faster than DGC. 



Chapter 8 

Conclusions and Future work 

8.1 Conclusions 

In this thesis, we have developed four clustering algorithms for identification of 

coherent patterns in gene expression data. Clustering algorithms are dependent 

on the proximity measure used. Gene expression data are usually either up- or 

down- regulated across conditions. For gene expression data, capturing this reg- 

ulation information is important. Moreover, the measure should also be robust 

in the presence of noise. We have developed an effective dissimilarity measure 

which addresses the above mentioned issues. Since gene expression data have a 

non-Gaussian distribution we have developed a graph based clustering algorithm 

which detects the clusters in non-Gaussian gene space. Our main objective is 

the detection of quality clusters. To this end we have developed a frequent item- 

set nearest neighbor based algorithm which gives finer clustering of the dataset. 

Finer clusters contain highly coherent genes. Density based clustering algorithms 

are known to detect quality clusters. We have developed a density based gene 

clustering technique that finds superior cluster sets than those obtained by k- 

means, UPGMA, DCCA, SOM, and CLICK based on cluster quality metrics 

such as z-score and coherence computation. With the increase in the size of gene 

databases and due to continuous updations of gene data, it is highly desirable if 

the newly inserted genes can be clustered incrementally. We have developed an 

incremental density based clustering approach which can handle such updations 



in the gene dataset incrementally. All the clustering algorithms presented have 

been validated over several real-life datasets and found to be satisfactory. 

Future Work 

The work reported in this thesis can be expanded and improved in many different 

ways. Below, we list some ideas for future work. 

Clustering samples via genes as features is one of the key issues in problems 

such as class discovery, normal and tumor tissue classification and drug 

treatment evaluation [THC+99]. In this thesis, we have used gene-based 

clustering and it is desirable to experiment with sample based clustering in 

future. 

Since DGC finds clusters in subsets of conditions, one may be able to ex- 

ploit a biclustering approach to  make it more useful. Standard clustering 

algorithms group genes whose expression levels are similar across all con- 

ditions. However, a group of genes involved in the same biological process 

might only be co-expressed in a small subset of experimental conditions. In 

this sense, methods that can pull out subsets of genes associated with small 

subsets of experiments are likely to be useful. Much research has focused 

on biclustering approaches although they are still mainly focused on finding 

sets of related genes based only on expression data. Biological knowledge 

is still incorporated as a subsequent step to expression data analysis. In 

our future work, we plan to incorporate biological knowledge into gene ex- 

pression data to detect the presence of sets of genes that share a similar 

expression pattern and common biological properties, such as function or 

regulatory mechanism. 

The use of external information is a helpful strategy in any data mining 

task. In association analysis of gene expression data, we may be able to use 

prior biological knowledge in many phases. The use of external information, 

such as gene annotations, is a useful strategy in any data mining task and 

may be incorporated into the data mining techniques such as clustering or 



association mining In future work, a method for the integrative analysis of 

microarray data based on the association rules discovery technique might 

be used to  automatically extract intrinsic associations among gene anno- 

tations and expression patterns These relationships will provide valuable 

information for the analysis and interpretation of gene expression datasets 

Furthermore, it will be useful to investigate how biological information can 

be integrated in the gene expression database duiing the clustering process 

A lot of research to analyze microarray data is frequently based on the a p  

phcat~on of clustering algorithms to  estabhsh sets of co-expressed genes 

However, these algorithms do not incorporate available information about 

genes and gene products, they just take into account experimental measure- 

ments Therefore, each set of co-clustered genes has to be further examined 

with the aim of discovering common biological connections among them In 

this way, biological information is incorporated as a subsequent process to 

the analysis of expression data However, simultaneously expressed genes 

may not always share the same function 01 regulatory ~nechanism Even 

when similar expression patterns are related to similar biological roles, dis- 

covering these biological connections among co-expressed genes is not a 

trivial task and requires substantial additional work A future direction 

of work could be to integrate the analysis of gene expression dataset with 

biological information about the different functions performed by the genes 

from sourccs such as Gcne Ontology (GO) and finally usc a scmi-supervised 

clustering on the integrated dataset to identify the co-regulated genes 

It is also of utmost importance to validate if the final association rules gen- 

erated are significant from a biological point of view Therefore significant 

biological validation methods must be used in order to validate the results 

obtaincd aic biologically significant and will bc of usc to biologists 

As a future direction of our work, we plan to incorporate annotation infor- 

mation along with gene expression data while mining for coherent patterns 
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