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Abstract

Analysis of gene expression data is an important research field in DNA mi-
croarray research. Data mining techniques have proven to be useful in under-
standing gene function, gene regulation, cellular processes and subtypes of cells.
Most data mining algorithms developed for gene expression data deal with the
problem of clustering. The purpose of this thesis is to study different cluster-
ing approaches for gene expression data. Our first contribution is a dissimilarity
measure (DBK) which retains the regulation information and is robust to out-
liers. We have developed a graph-based clustering algorithm (GCA) for gene
expression data. Its main idea is that, inter-cluster genes have more repulsion
among them than intra-cluster genes. In particular, at any given moment, genes
are clustered based on a repulsion factor which is based on the genes that are
yet to be assigned a cluster. This consideration leads to an objective function
that is used to find the cluster parameter that optimizes this objective function.
Comparison of GCA with competitive algorithms over different real world data
sets shows the superiority of our approach. We have also developed a nearest
neighbor based clustering algorithm which incorporates frequent itemset mining
(FINN). The output of the frequent itemset mining phase is fed as input to the
nearest neighbor clustering for detection of clusters. The process is iterated over
multiple passes. After each pass, the dataset is pruned by not considering the
genes that have already been assigned clusters. Experimental evaluation shows
the method is capable in finding finer clustering of the dataset. This thesis also
includes a density based clustering algorithm (DGC) which uses the regulation
inforfnation and the order preserving property of gene expression profiles to clus-
ter genes into high density regions separated by sparse density regions. The
proposed algorithm has been validated on several real-life data sets and found to
perform well in comparison to similar algorithms. This thesis also incorporates
an incremental version of the DGC algorithm (incDGC). Experimental results
on six real world gene expression datasets demonstrate that incDGC can cluster
the data in an efficient manner while at the same time obtain the same result as
when DGC is applied to the whole updated database. All clustering algorithms

have been validated using various statistical measures to show their effectiveness



over biological data.

Keywords — Clustering, Gene expression, coherent pattern, co-expressed gene,
prozimity measure, graph based clustering, frequent itemset mining, shared

nearest neighbor, density based clustering, incremental clustering

i



Tezpur University

Certificate

This is to certify that the thesis entitled “Coherent Gene Expression Pattern
Finding Using Clustering Approaches” submitted to the Tezpur University in
the Department of Computer Science and Engineering under the School of En-
gineering in partial fulfillment of the requirements for the award of the degree of
Doctor of Philosophy in Computer Science is a record of research work carried

out by Ms. Rosy Das under my personal supervision and guidance.
All helps received by her from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for award of any other

degree.

Signature of Research Supgrvisor

£

(Dhruba Kumar Bhattacharyya)
Designation: Professor
School: Engineering

Department: Computer Science and Engineering



University of Colorado at Colorado Springs

Department of Computer Science
1420 Austin Bluffs Parkway

P.O. Box 7150

Colorado Springs, Colorado 80933-7150
(719) 262-3325

(719) 262-3369 Fax

January 11,2010

Certificate of the Joint Research Supervisor

This is to certify that the thesis entitled “Coherent Gene Expression Pattern Finding Using Clustering Approaches™ submitted
to Tezpur University in the Department of Computer Science & Engineering under the School of Engineering in partial
fulfillment for the award of the degree of the Doctor of Philosophy in Computer Science is a record of research work carried
out by Ms. Rosy Das under my supervision and guidance.

All helps received by her from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for award of any other degree.

WM |

J. K. Kalita
(Rescarch Supervisor)

v



Declaration

I, Rosy Das, hereby declare that the thesis entitled “Coherent Gene Ezpres-
sion Pattern Finding Using Clustering Approaches’ submitted to the Department
of Computer Science and Engineering under the School of Engineering, Tezpur
University, in partial fulfillment of the requirements for the award of the degree of
Doctor of Philosophy is based on bona fide work carried out by me. The results
embodied in this thesis have not been submitted in part or in full, to any other

university or institute for award of any degree or diploma.

(ot

(Rosy Das)



Acknowledgements

First, my greatest gratitude goes to Professor Dhruba Kumar Bhattacharyya,
my supervisor, for his devoted guidance, advice, support and endless patience
throughout the course of this research. With his excellent research experience,
he steered me to research on clustering gene expression data. This thesis would
not have been finished without his supervision and meticulous attention to details.

[ want to express my deep gratitude to my thesis co-supervisor, Professor
Jugal Kumar Kalita for his constant support. He is such a wonderful advisor,
mentor, and motivator. Throughout my research, he gave me countless construc-
tive comments and insightful suggestions.

I owe a debt of gratitude to Mr. Sauravjyoti Sarmah for his suggestions and
fruitful discussions.

I am also very thankful to the rest of my thesis guidance committee, including
Prof. Malay Ananda Dutta and Dr. Shyamanta M. Hazarika. Their advice and
suggestions have been very helpful.

I would like to express my sincerest appreciation to all my colleagues and
especially Dr. Utpal Sharma for his help. I am grateful to all the technical and
non-technical members of the Department for their support.

My deep gratitude goes to my family members specially my father and my
friends. I can never express my thanks enough for their endless love, support and
understanding.



Tezpur University

Certificate

This is to certify that the thesis entitled “Coherent Gene Expression Pattern
Finding Using Clustering Approaches” submitted by Ms. Rosy Das to Tezpur
University in the Department of Computer Science and Engineering under the
School of Engineering in partial fulfillment of the requirements for the award of
the degree of Doctor of Philosophy in Computer Science has been examined by
us on __L'_L/E,ZN_ and found to be satisfactory.

The Committee recommends for award of the degree of Doctor of Philosophy.

Signature of

Principal Supervisor External Examiner

Date:



Contents

1

Introduction

11 Cluster Analysis

12 Cntena for Evaluating Clustering Algorithms

13 Co-expressed Genes and Coherent Patterns

14 Gene Expression Clustering
15 Motivation
16 Work Done

17 Orgamzation of the Thesis

Gene Expression Pattern Identification

21 Microarray Technology A Brief Overview

22 Gene Expression Data

23 Genc Expression Pattern Identification using Data Mining

24 Proxumity Measures

25 Gene Expression Data Clustering Approaches

251
252
253
254
255
256
257

Partitioning Approaches
Hierarchical Approaches
Density Based Approaches
Model Based Approaches
Graph Theoretical Approaches
Soft Computing Approaches

Incremental Algorithms

2 6 Discussion

A Novel Dissimilarity Measure for Clustering Gene Expression

Data

31 Distance Metric

Vil

[CoRIEN B NS L S 2

10
10
14
15
16
17
17
18
19
19
19
20
20
21

22
23



32

33

34
395

36

37

Similanty and Dissimilanty Measures

321 Relationship between Similanty and Dissimilanty
322 Daifferent Stmilanty and Dissimilarity Measures
Proximity Measures for Gene Expression Data

331 Features of a Distance Measure

332 Comparing Simulanty Measures

Motivation

DBK Dissimilarity Measure

351 Gnd Approximation

352 Feature Condition for a Grid Cell

353 Computation of Dissimilarity

354 Effectiveness of DBK

355 Companson between DBK and Euclidean measure
356 Falsely Correlated Time Series by Pearson’s Correlation
357 False Correlation result by Spearman’s Correlation
Performance Evaluation

361 Results

Discussion

A Graph-based Method for Clustering Gene Expression Data

41
42

43
44

45

46

Introduction

Related Work

421 Fuzzy C-Means MST Clustering Algorithm (FMC)
422 Markov Clustering Algorithm (MCL)

423 Iterative Conductance Cutting Algonthm

424 The Geometric MST Clustering Algorithm

425 CLuster Identification via Connectivity Kernels
426 Cluster Affinity Search Techniques (CAST)
Motivation

An Effective Graph Based Clustering Algorithm (GCA)
441 Clustering

Performance Evaluation

451 Results

452 Cluster Qualty

453 Biological Sigmficance

Discussion

1X

23
24
25
30
30
31
32
33
33
34
37
41
44
46
47
47
49
61

63
64
64
65
65
65
66
66
67
68
69
69
78
78
79
88
99



5 Coherent Pattern Extraction using Maximal Frequent Patterns100

5.1
5.2

5.3
5.4

9.9

5.6

Introduction . . . . . . . ... 101
Related Work . . . . . . . . . .. .. 102
5.2.1 Apriori Algorithm . . . . . . ... 0oL 102
5.2.2 AprioriTid Algorithm . . . . . .. ... ... ... ... .. 102
5.2.3 AprioriHybrid Algorithm . . . . . . .. .. ... ... ... 103
5.2.4 FP-Tree Growth Algorithm . . . .. . ... ... ... .. 103
Motivation . . . . . . . . . . 105

Frequent Itemset Mining and Nearest Neighbor Clustering (FINN) 106
5.4.1 Phase [: Transformation from Gene Expression Matrix to

Transaction Matrix . . . . . . . . . . ... ... ... ... 106
5.4.2 Phase II: Maximal Frequent Itemset Generation . . . . . . 107
5.4.3 Phase III: Clustering . . . . . . . . . .. ... ... .... 110
Performance Evaluation . . . .. .. .. ... ... ... ..... 112
5.5.1 Results of FINN Clustering . . . ... ... ... ... .. 112
5.5.2 Cluster Quality . . . . .. ... ... ... ... ...... 114
5.5.3 Biological significance . . . . . . ... ... ... 123
Discussion . . . . . . . . . . . e 124

6 Finding Coherent Patterns using a Density Based Approach 130

6.1
6.2

6.3
6.4

6.5

Introduction . . . . . . .. ... 131
Related Work . . . . . . . .. . ... ... 131
6.2.1 Kernel Density Clustering Method . . . . ... .. .. .. 131
6.2.2 Density-based Hierarchical Clustering . . . . . . . ... .. 131
6.2.3 Nearest Neighbor based Density Estimation for Clustering
:Gene Expression Data . . . . ... .. ... ... ..... 132
6.2.4 Clustering based on Density and Shared Nearest Neighbor
Measure . . . . . . . .. ... 133
Motivation . . . . . . . ... 133
DenGeneClus (DGC) . . . .. .. ... ... ... . ... ..... 133
6.4.1 Phase I: Normalization and Discretization . . . ... . .. 133
6.4.2 Phase II: Clustering of genes . . . . . . . . ... ... ... 136
Performance Evaluation . . . . ... .. ... .. ... ...... 146
6.51 Results. . .. .. .. ... .. ... 146
6.5.2 Cluster Quality . . . . . .. ... .. ... ... ...... 147
6.5.3 Biological significance . . . . . .. . ... ... 156



6.6 DISCUSSION . . . . . . v e 157

incDGC: An Incremental Clustering Approach 171
7.1 Introduction . . . . . . .. ... 172
7.2 Related Work . . . .. . .. .. ... 172
7.2.1 Incremental DBSCAN . . ... ... ... ... .. ..., 172
7.2.2 Incremental Clustering Algorithm (C?2ICM) . . . .. . .. 172
7.2.3 HIREL: An Incremental Clustering Algorithm for Rela-
tional Datasets . . . . . . . .. ... ... ... ... 173
7.2.4 Rough Set based Data Clustering . . . . . ... ... ... 173
7.2.5 Incremental Genetic k-means Algorithm (IGKA). . . . .. 173
7.2.6 Best Incremental Ranked Subset (BIRS) . . ... ... .. 174
7.3 Motivation . . . . . ... 174
7.4 incDGC: Incremental DGC . . . . . . ... ... ... ... .. .. 174
7.5 Performance Evaluation . . ... ... ... . ... ...... .. 179
7.51 Cluster Quality . . . . . .. . .. ... ... ... ..., 179
7.5.2 Execution Time Performance . . ... ... ... ... .. 180
7.6 Discussion . . . . ... .. 183
Conclusions and Future work 184
81 Conclusions . . . ... .. ... ... 184
82 Future Work . . . . . . .. ..o 185



List of Tables

31
32
33
34

35

36

41
42
43
44
45

46

51
52
53
54

95

61

62

Comparison of Different Distance Measures
Uncentered expression values of two example genes
Centered expression values of two example genes

Uncentered log ratio values of two genes, viz, ENB1 and NPR2
from the time series dataset of [CDE*98]

Datasets used for evaluating the clustering algorithms introduced
n this thesis

Rand index on Yeast CDC28 data for various number of clusters
(NoC)

Rand index on Yeast CDC28 data for the clustering method GCA
Homogeneity values for GCA and other comparable algorithms
Silhouette Index for GCA and other comparable algorithms
z-scores for GCA, SOM and k-means for Dataset 1

z-scores for GCA, SOM, DCCA, k-means and UPGMA for reduced
set of Dataset 7 DCCA 1s a divisive partitional algorithm reported
n [BDO08]

P-value of Dataset 3

Homogeneity values for FINN and other comparable algorithms
Silhouette Index for FINN and other comparable algorithms
z-scores for k-means, DCCA, SOM and FINN for Dataset 2

z-scores for UPGMA, k-means, DCCA, SOM and FINN for re-
duced set of Dataset 3

P-values of Dataset 7

Homogeneity values for DGC and other comparable algorithms for
Datasets 2, 3 and 4

Homogeneity values for DGC and other comparable algorithms for
Datasets 5, 6 and 7

X11

32
39
39

46

50

61

79
84
85
87

87
90

121
122
123

123
125

149

150



6.3 Silhouette Index for DGC and other comparable algorithms for

Datasets 2and 4. . . . . . . . . .. ... 151
6.4 Silhouette Index for DGC and other comparable algorithms for

Datasets 5, 6and 7.. . . . . . . . . ... 152
6.5 z-scores for DGC and other methods for the reduced form of Dataset

3. 154
6.6 z-scores for DGC at different values of § for the full Dataset 3. . . 154
6.7 z-scores for UPGMA, k-means, DCCA and DGC for the full Dataset

R 154
6.8 z-scores for DCCA, k-means, SOM and DGC for the Dataset 2. . 155
6.9 z-scores for DCCA, k-means, CLICK, SOM and DGC for the

Dataset 7. . . . . . . .. . 155
6.10 p-valueof Dataset 2. . . . . . . . . . . ... .. ... .. ..., 158
6.11 p-value of cluster 3 obtained by DCCA over Dataset 2. . . . . . . 167

7.1

7.2

7.3
7.4

z-scores for incDGC, k-means at k=16 and 46 and UPGMA using
average linkage at cutoff = 16 and 46 for the reduced form of

Dataset 3 . . . . . . . .. 181
z-scores for incDGC, and UPGMA using average linkage at cutoff
= 176 for the full Dataset 3 . . . . . ... ... .. ...... .. 181

z-scores for DCCA, k-means, SOM, DGC and incDGC for Dataset 2182

z-scores for DCCA, k-means, CLICK, SOM, DGC and incDGC for
the Dataset 7 . . . . . . . . ... ... 182

xiii



List of Figures

21

22
23
24

31
32
33
34

35
36

37
38
39

310

311

312

Steps 1n a microarray experiment (Courtesy of [Ste06]) The Cy3
and Cy5 n the diagram refers to the mRNAs dyed using the two
fluorescent dyes of Cy3 and Cy5

Hybridization of probe array
The 1mage acquisition process

Clusters of genes showing similar temporal patterns

Cell ID for (a) level 0, (b) level 1 and (c) level 2
Example gene profiles in (a) level 0, (b) level 1 and (c) level 2
Example gene profile in level 1

The grid approximation and the I D(r, ¢, ) values for each point of
the 3 gene profiles

Three expression profiles from yeast sporulation [ESBB98] data set

Time series plot of expression profiles for indicated genes YJL157C
(diamond), YKL185W (solid square), Series3 (triangle), Seriesd
(dotted line with cross sign) and YALOOSW (hollow square)

Tine series plot of ENB1 (tniangle) and NPR2 (square)
Thime series plot of CAR2(Seriesl) and FYV4(Series2)

k-means clustering of profiles for Euclidean distance at k=30 The
single outher present at the 4** row and 3™ column 1s merged 1nto
a cluster

k-means clustering of profiles for Pearson’s correlation coefficient
at k=30 The single outher present at the 1% row and 1 column
1s merged into a cluster

k-means clustering of profiles using DBK dissimilanty measure at
k=30 Our measure does not merge the single outher into a cluster
as can be seen in the 3™ row 2™ column

Hierarchical clustering of profiles for Euchdean distance at cut-
off=49 and using complete linkage

Xiv

12
13
13
16

34
34
38

40
2

=

44
45
45

o1

52

53

54



3 13 Hierarchical clustering of profiles for Pearson’s correlation coefhi-

clent at cutoff=49 and using complete linkage 55
3 14 Hierarchical clustering of profiles for DBK measure at cutoff=49

and using complete linkage 56
3 15 k-means clustering of profiles for Pearson’s correlation coefficient

at k=16 57
3 16 k-means clustermg of profiles for DBK mcasurc at k=16 58
3 17 Hierarchical clustciing of profiles for DBK measure at cutoff=16

and using complete linkage 59
3 18 The dendrogram at cutoff=16 60
41 Algorithm for Cluster formation 73
42 Algonthm for finding the gene with mimmum dissimilanty 74
43 Algorithm for Cluster expansion 75
44 Algorithm for computing the cardinality of a cluster 76
45 Algonthm for computing the repulsion of a gene from a cluster 76
46 Algorithm for computing o 77

47 Algonthm for finding the gene with mmimum repulsion to a cluster 78

48 Some of the clusters obtained when our algorithm 1s used on 20%

of Dataset 1 80
49 Some of the clusters obtained when our algorithm 1s used on 75%

of Dataset 1 80
4 10 The trends of the clusters detected on Dataset 1 81
411 Cluster 1 consisting of 46 genes The genes obtain peak expression

in late G1 phase 82
51 Algorithm of FINN 113
52 Algonthm for computing the transaction matrix 114
53 Algonthm for computing the core genes 115
54 Shared neighbor clustering algorithm 116
55 The core genes of cluster 1 of Dataset 2 117
56 Final cluster 1 based on the core genes of Figure 5 5 of Dataset 2 117
57 The core genes of cluster 2 of Dataset 2 118
58 The final cluster 2 based on the core genes of Figure 5 7 of Dataset 2118
59 The Core genes at s=40% of Dataset 4 119
510 The final cluster 1 obtained from the core genes of Dataset 4 119
511 The Core genes at s=40% of Dataset 4 120

Xv



5.12

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9
6.10

6.11

7.1
7.2
7.3

The final cluster 2 obtained from the core genes of Dataset 4 . . . 120

Example dataset . . . ... ... ... ... . 135
Discretized matrix . . . . . . . ... L 135
Algorithm for cluster formation . . . . .. ... ... ... ... .. 143
Algorithm for cluster expansion . . . . . ... ... ... ..... 144

Result of DGC on the reduced form of Dataset 3 using our dissim-
ilarity measure . . . .. ... 147

Result of DGC on the full Dataset 3 using our dissimilarity measurel48
Result of k-means on the reduced form Dataset 3 at cutoff = 46 . 153
Result of UPGMA on the reduced form Dataset 3 at cutoff = 46 . 153

Result of UPGMA on the full Dataset 3 at cutoff = 176 . . . . . . 156
Some clusters generated using DGC on Dataset 2. A total of 17

clusters were detected. . . . . . . .. ..o 169
The clusters obtained by DGC on Dataset 6. . . . . . . . ... .. 170
Example dataset of genes . . . . . . . .. .. ... 176
The different cases of insertion . . . . . . . . . .. .. ... .... 176

Execution Times of DGC and incDGC with increase in the size of
dataset . . . . . . . e 183

XVl



Notations Used in this Thesis

R : Set of real numbers.

d(z,y) : distance between z and y, z and y are elements of set Y.
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Chapter 1
Introduction

Microarrays provide an extremely powerful way to analyze gene expression. Using
a microarray, it is possible to examine the expression levels of thousands of genes
across different developmental stages, clinical conditions or time points. It helps
in understanding gene functions, biological processes, gene networks, effects of

medical treatments, etc. Microarrays can be classified into two general types:

(i) cDNA arrays which consist of cDNA copies of mRNA spotted onto a glass

slide and

(ii) oligo arrays which consist of strands of oligonucleotides either spotted

onto a glass slide or lithographed onto a solid surface.

A typical microarray experiment consists of extracting RNA from the cells
or the tissues being examined, converting the RNA to cDNA, labeling the cDNA
with fluorescent dyes and allowing the labeled cDNA to hybridize with the mate-
rial (cDNA or oligonucleotide) on the microarray slide. The control and subject
RNAs are synthesized with different fluorescent dyes and mixed on the same
slide. Then an image of the surface of the hybridized array (chip or microarray
slide} is produced by scanning the chip to read the signal intensity that is emitted
from the fluorescent dye of the heteroduplexes on the array where the target has
bound to the probe. Raw data is obtained from this step. Next normalization
and standardization steps are performed to clean and filter the data. Finally the
real-valued gene expression data is obtained in the form of a matrix where the

rows refer to the genes and the columns represent the conditions. The next step



1s to use data mining techmques (such as clustering and association rule mining)
to extract the hidden information in this data Finally vahdation 1s performed

to check 1f the result obtained 1s good from a biological point of view

Data miming [HK04] 1s the techmque of analyzing datasets (often large) n
order to extract implicit, previously unknown and potentially useful information

that might otherwise remain unknown

Data mining techniques are useful 1n microarray analysis because

e Data volumes are too large for traditional analysis methods
¢ High dimensionahty
e Only a small portion of data 1s analyzed

o Decision support process becomes more complex

1.1 Cluster Analysis

Cluster analysis 1s an important technique in data minming, where the knowl-
edge about the distribution of the obscrved data mfile ///home/rosy/thesisay
not be available apriori Clustering 1s a data mining technique used to place data
elements into related groups without advance knowledge of group defimtions
Clustering methods divide the data according to inherent classes present in 1t
and arc used in diffcrent scientific disciplines and engincering applications In
recent years, clustering methods have been used extensively in analyzing biolog-
ical data, especially from DNA microarrays measurements Among the different
data mining techniques used 1n the analysis of gene expression data, clustering 1s
an mmportant technique that reveals natural structures and 1dentifies interesting
patterns in the undeilying data A key step 1s the identafication of a group of
genes that mamfest sirmlar expression patterns over several conditions into clus-
ters, thus revealing relations among genes and their functions A cluster of genes
can be defined as a set of biologically relevant genes which are similar based on
a proximity measure Intra-cluster genes are stmilar while inter-cluster genes are
dissimilar The basic steps to develop a clustering algorithm can be summarized

as follows



1 Feature selection This process 1dentifies the most effective subset of the
ongmal features to use in clustering Irrelevant and redundant genes or

conditions are not considered for future analysis

2 Clustering process This step refers to the application of a clustering al-
gorithm to generate a good clustering scheme that fits the data set A
clustering algorithm uses a proximity measure and a search method to find
the optimal or sub-optimal groupings in the dataset according to some clus-

tering criterion

A proximity measure quantifies the similanity (or dissimilanty) of two data

pomnts

The clustering criterion 1s based on the working defimtion of a cluster
and/or an expected distribution of underlying data i specific application

domain

3 Cluster vahdation Cluster vahdation 1s the assessment of a clustering
scheme Typically, validation indices are defined to assess the quahty of

clusters

1.2 Criteria for Evaluating Clustering Algorithms

It 1s desirable that optimal algorithms for analysis of gene expression data satisfy

the following properties [HK04]

1 Scalability and efficiency Algorithms should be efficient and scalable con-

sidering the large amount of data to be handled

2 Irregular shape Algorithms should be able to identify a dense set of objects
which may be organmized in irregular non-spherical shapes, including those

with lacunae or concave sections and nested shapes, as a cluster
3 Robustness Clustering algorithms should be 10bust to noise and outhers

4 Order nsensitivity Algorithms should be independent of data order

3



5 Cluster number The number of clusters in the data set should be deter-

mined by the algorithm 1itself and should not be an user input

6 Parameter estimation The algorithms should be able to estimate any pa-

rameters required by the algorithm from the dataset itself

7 Dimensionality Algorithms need the ability to handle data with high di-

mensionality or the ability to find clusters in subspaces of the original space

8 Stabiity The clustering 1esult should remain the same for different runs

of the algornthm

9 Incrementabiity Algorithms should be able to incrementally handle the
addition of new data or the deletion of old data nstead of re-running the

algorithms on the entire new data set

10 Interpretability The clustering results of the algorithms need to be inter-
pretable That 1s, clustering may need to be tied up with specific biological

interpretations and applications

1.3 Co-expressed Genes and Coherent Patterns

Genes that have similar expression profiles are known as co-expressed genes A
coherent ezpression pattern represents the common trend in expression levels for a
group of co-expressed genes Furthermore, co-expressed genes in the same cluster
are likely to be involved 1n the same cellular processes, and a strong correlation
of expression patterns between those genes indicates co-regulation In practice,
co-expressed genes may belong to the same or stmilar functional categores indi-
cating co-regulated famihes [THC*99] Coherent gene expression patterns may
characterize important cellular processes and may provide a foundation for under-
standing the regulation mechamsm 1n the cells [SSI*98] According to [ABN199),
[ESBB98|, [IER*99] and [JPZ03c] there 1s usually a hierarchy of co-expressed
genes and coherent expression patterns in a typical gene expression data The co-
expressed genes at the higher level have a “rough” coherent expression pattern

while those at the lower levels have “finer” coherent expression patterns The

4



interpretation of co-expressed genes and coherent expression patterns depends
mainly on the domain knowledge. Some challenges during gene expression data

analysis are given below:

o Gene expression data consists of thousands of genes. However, only a sub-
set of those genes may actually participate in the formation of coherent

patterns.

e What level of “coherence” (roughness and fineness of the gene patterns) is
required is dependent on the biologists, i.e., whether a group of genes should
be further sub-divided into finer patterns depends on domain knowledge.

By finer patterns we mean highly coherent patterns.

e It is ideal if biologists browse the rough patterns and decompose the pat-

terns of interest to them into finer patterns.

Gene clustering is usually the first step in uncovering regulatory elements in
transcriptional regulatory networks [ABN*99], [THC*99] as well.

1.4 Gene Expression Clustering

Clustering identifies genes with similar expression profiles (co-ezpressed genes).
To identify co-expressed genes and coherent expression patterns, different clus-
tering algorithms have been used. These include k-means [THC*99], SOM (Self
Organizing Map) [TSM*99], QT Clustering [HKY99], Hierarchical clustering ap-
proaches [ESBB98], DHC [JPZ03a], CAST [BDSY99] and CLICK [SS00] Gene
expression clustering algorithms are broadly divided into Partitional, Hierarchi-
cal, Density-based, Graph-based and Model-based approaches. The purpose of
this thesis is to study different clustering approaches for gene expression data.
Clustering algorithms use a proximity measure to group similar genes into the
same cluster. Different proximity measures give different results. The choice of
proximity measure depends on the application as well as the clustering approach
being used. A study of proximity measures is included in this thesis. we also

propose an effective proximity measure that is been found capable of detecting

S



clusters over gene expression data. Many different clustering algorithms have
been used over gene expression data. A survey of some of clustering algorithms
is given in [AMS94]. Generally clustering algorithms partition the set of genes
into clusters, where each cluster represents a group of co-expressed genes and the
coherent pattern of that cluster is the mean (centroid) of the expression profiles of

that cluster. Challenges in clustering gene expression data include the following.

e Most clustering algorithms generate disjoint clusters at a single level with-

out hierarchical representation among the groups of co-expressed genes.

e Most clustering algorithms cannot adapt to local structures within the clus-

ters

e The results of most clustering algorithms are dependent on appropriate
parameter settings. Often results are different depending on parameter

values and domain knowledge is required to assess the quality of the result.
o It is difficult to integrate domain knowledge into clustering algorithms.

e Since gene expression datasets consist of highly connected genes clustering
becomes a difficult task and it is often hard to find clear borders [JPZ04].

In this thesis, we have developed three clustering algorithms. They include a
graph-based algorithm, a frequent itemset-nearest neighbor based algorithm, and
a density based clustering algorithms. Each clustering algorithm uses our own
dissimilarity measure, presented in Chapter 3 of this thesis. Finally, we also
develop an incremental clustering algorithm based on the density based clustering
algorithm mentioned earlier. All clustering algorithms have been tested over
synthetic and real life data and have been found to detect biologically relevant

clusters w.r.t. various cluster validity measures.

1.5 Motivation

Based on a comprehensive literature survey we come to the following conclusions.
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o Clustering algorithms are dependent on the proximity measure being used.
Choosing an appropriate proximity measure is of utmost importance. That
there exists no particular measure which can handle all the issues of gene
clustering further complicates the job. It is highly desirable that the prox-
imity measure being used is robust to outliers and can retain the regulation

information inherent in a gene expression data.

e It has been observed that various clustering algorithms require different
types of input parameters and clustering results are highly dependent on the
value of the parameters. Graph based algorithms have a great advantage in
that, they do not require the number of clusters as an input parameter and
are robust to noise. However, it has been seen that graph based algorithms
require an input parameter (threshold). It would be of great help if a graph
based clustering algorithm could calculate the threshold dynamically during

clustering.

e Gene expression data contains highly connected clusters. Therefore, it
would be very helpful if finer clusters in the dataset could be identified.

The finer clusters consists of genes having highly coherent patterns.

e A density-based clustering algorithm discovers clusters as highly dense re-
gions separated by sparse regions. It is based on the concept of density
connectedness between objects and can detect clusters of arbitrary shapes
even in presence of noise. Therefore, detecting clusters over gene expression

data using a density based approach would give rise to quality clusters.

e Due to the large number of microarray experiments being conducted the
quantity of gene expression data is always increasing and new genes are con-
tinuously being discovered. As a result, it is desirable to cluster the newly
available data incrementally instead of having to perform a re-clustering of

the whole database.

1.6 Work Done

Following are our contributions reported in this thesis.
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o Clustering is dependent on the selection of a proximity measure. In this
thesis we present our own dissimilarity measure (DBK) which retains the
regulation information present in.the gene expression data and is robust
to outliers. We establish it to perform equally well or better compared
to existent proximity measures in clustering both synthetic and real-world
data.

o We present an effective graph-based clustering algorithm (GCA) for gene
expression data. Its main idea is that inter-cluster genes have more re-
pulsion among them than intra-cluster genes. In particular, at any given
moment, the genes are clustered based on a repulsion factor which is based
on the genes that are yet to be assigned a cluster. This consideration leads
to a objective function that is used to find cluster parameters that optimize
this objective function. Comparison of this proposed algorithm with similar
algorithms over different real world data sets shows the superiority of our

algorithm.

e Frequent itemset and nearest neighbor concepts are considered to be useful
for gene clustering. We develop a nearest neighbor based clustering algo-
rithm based on a popular frequent itemset generation technique. It expands
clusters using the nearest neighbor concept based on frequent itemsets. The
process is iterated over multiple passes. After each pass, it prunes those
genes that have already been assigned clusters. Experimental evaluation es-
tablishes that the method can find finer clustering of the dataset. The finer

clustering produces clusters consisting of highly coherent gene patterns.

e We present a density based clustering algorithm (DGC) that uses the regu-
lation information and the order preserving nature that exist in gene expres-
sion profiles to cluster genes into high density regions separated by sparse
density regions. We validate DGC on real-life data sets and establish it to

be effective.

o We also present a modified version of the DGC algorithm to handle the
scenario when the input data, instead of being all available simultaneously,

arrive incrementally. It is based on the concept that the density connections
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of a newly arrived gene affects only the neighborhood of the gene. Experi-
mental results on several real world gene expression data demonstrate that
the incremental algorithm can cluster the data significantly faster while at
the same time obtain the same result as when DGC is applied to the whole

updated database.

1.7 Organization of the Thesis

The thesis is organized as follows:

e chapter 2 describe how gene expression data is collected. This chapter
also gives a survey of literature regarding coherent gene expression pattern

identification using data mining techniques.

o Chapter 3 presents our own dissimilarity measure (DBK). The measure is
established to be appropriate while clustering both synthetic and real-world
data.

o In Chapter 4, an effective graph-based clustering algorithm (GCA) for gene

expression data is presented.

o A frequent itemset nearest neighbor based clustering algorithm (FINN) is
reported in Chapter 5.

o Chapter 6 of this thesis describes the density based clustering algorithm
(DGC).

e An incremental version of DGC algorithm that can handle incremental

datasets is presented in Chapter 7.

¢ Finally, concluding remarks are given in Chapter 8.

All our clustering algorithms are validated using various statistical validity
measures to show their effectiveness over biological data while comparing with

well-chosen similar algorithms.



Chapter 2

Gene Expression Pattern

Identification

2.1 Microarray Technology: A Brief Overview

In 1970, Francis Crick introduced the central dogma of molecular biology [KW02]
which has ever since, been one of the pillars of modern molecular biology It pins
down DNA (Deoxyribonucleic acid) as the carrier of genetic information and de-
scribes the umdirectional flow of information from DNA via RNA (Ribonucleic
acid) to protein in three steps Replication, Transcription and Translation This
dogma 18 at the heart of bioinformatics which provides the framework to inter-
relate and interpret different types of data encountered in this field The central
dogma of molecular biology refers to the process of protein synthesis, which occurs
in three major stages The first stage, Replication 1s the process which results
in the duphcation of the genetic information coded in DNA strands The second
stage, Transcription, 1s the transfer of information fiom double stranded DNA
into single-stranded mRNA The third stage, Translation, refers to the conver-
sion inside the cell where mRNA 1s translated to produce a protein Together
Transcription and Translation constitute Gene Fxpression Gene expression
experiments provide a method to quantitatively measure the transcription phase
of protein synthesis The objective of gene expression experiments 1s the quanti-

tative measurement of mRNA expression particularly under the influence of drug
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or disease perturbations.

A DNA microarray or gene chip consists of an array of oligonucleotides or
complementary DNA (¢cDNA) molecules of known composition chemically bonded
to a solid surface (made of chemically coated glass, nylon membrane or silicon)
[Ste06]. Gene chips are usually categorized into one of two classes, based on
the DNA actually arrayed onto the support. An oligo array is comprised of
synthesized oligonucleotides, whereas a ¢cDNA array contains cloned or PCR-
amplified cDNA (complementary DNA) molecules [KW02] Both classes involve

three common basic procedures [Ste06] which are depicted in Figure 2.1.

i Chip manufacture: A microarray is a small chip, onto which tens of thou-
sands of DNA molecules (probes) are attached in fixed gnds. Each grid
cell relates to a DNA sequence. The DNA on the array are referred to as
probes and the labeled DNA in solution as target.

ii Sample preparation, labeling, hybridization and washing. The first step is
the extraction of RNA from the tissue of interest. Next, two mRNA sam-
ples are reverse-transcribed into ¢cDNA and labeled using either fluores-
cent dyes (Cy3 and Cy5) or radioactive isotopes. It is then hybridized
with the probes on the surface of the chip. Hybridization is the step in
which the DNA probes on the glass and the labeled DNA (or RNA) target
form heteroduplexes via Watson-Crick base pairing. After hybridization,
the slides are washed (using a low-salt wash or with a high-temperature
wash) to remove excess hybridization solution from the array. This ensures
that only the labeled target on the array is the target that has specifi-
cally bound to the features on the array. This step also reduces cross-
hybridization. This process is illustrated in Figure 2 2 reproduced from
http://titan.brotec. uruc. edu/cs4 913h/shdes/cs491-ler ppt.

ili Image Acquisition: In this step, an image of the surface of the hybridized
array (chip) is produced by scanning the chip to read the signal intensity
that 1s emitted from the fluorescent dye of the heteroduplexes on the array

where the target has bound to the probe.
The image acquisition process is shown in detail in Figure 2.3 and has been repro-
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Figure 2.1: Steps in a microarray experiment (Courtesy of [Ste06]). The Cy3 and
Cy5 in the diagram refers to the mRNAs dyed using the two fluorescent dyes of
Cy3 and Cy5.
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After hybridization, the slides are scanned using a laser device to determine
the amount of fluorescent label that is attached to each cDNA on the slide. The
amount of fluorescence is displayed as a cell on a matrix corresponding to the spot
on the original slide. The images output from the scanner are colored according
to a standard where a higher level of fluorescent label (enhanced gene expression)
is colored red, a lower level (repressed level of gene expression) is colored green

and equal levels are yellow.

The digital image obtained from the image acquisition step is converted into
numerical measures of hybridization intensity for each channel on each feature
[Ste06]. The image is analyzed by (i) Gridding: Identify spots (this step can be
automatic, semiautomatic or manual); (ii) Segmentation: Separate spots from
background using fixed circle, adaptive circle, adaptive shape or histogram meth-
ods; (iii) Intensity extraction: Obtain mean or median of pixels in spots and (iv)
Background correction: can be either local or global. The microarray data thus

generated is then cleaned, transformed and normalized to resolve any errors, noise
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and bias introduced by the microarray experiments [Ste06]. The logarithm of the
raw intensities are taken to convert them into log intensities. Once expression
data is obtained from the microarray images using various standardization and
normalization procedures [Ste06], the information embedded in the data has to

be analyzed.

A gene is expressed in a cell when the protein it codes for is actually synthe-
sized. About 10,000 genes are expressed in an average human cell. The set of
(say 10,000) numbers that indicate the expression level of each of these genes is

called the expression profile of the cell.

The power of a microarray experiment derives from the fact that many thou-
sands of different DNA molecules are bonded to a single array. So it is possible to
measure the expression of many thousands of genes simultaneously, conveniently

and efficiently.

2.2 Gene Expression Data

Gene expression of a gene refers to effective production of the protein that a gene
encodes. A microarray experiment assesses a large number of DNA sequences
(genes) under multiple conditions such as time-series, tissue samples (e.g., normal
versus cancerous tissues), and experimental conditions. A gene expression data
set from a microarray experiment may be considered as a G x T matrix Dg as
shown in Equation 2.1, the rows of which represent expression patterns of a set
of G genes {g1, - ,9c}, and the columns represent expression profiles of a set
of T samples, S = {s1,---,sr} and each cell g;, is the expression level of gene
g, (where 1 <4 < G) on sample s, (where 1 < 3 <T).

- -
gu g1z~ ar
Dg = ?21 g2 gor (2‘1)
i gc19G2- -+ gcr ]

Cluster analysis starts with this gene expression matrix and calculates proximity

among genes. Clustering algorithms group genes which are similar based on a
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proximity measure mto the same cluster Therefore, similar genes are grouped

into the same cluster and dissimilar genes are grouped nto different clusters

During the last few years, several sigmficant coherent pattern identification
techniques have been developed under the categories of gene based, sample based
and subspace clustering approaches The next section is dedicated to reviewing

the popular algonthms

2.3 Gene Expression Pattern Identification us-
ing Data Mining

Cluster Analysis 1s an unsupervised grouping technique used to group sumilar ob-
jects (1n this case genes) into disjoint sets based on their attribute (condition) sim-
lanitics  Clustering 1dentifies genes with similar expression profiles (co-cxpressed
genes) Co-expressed genes have similar expression profiles, while a coherent ex-
pression pattern represents the common trend among expression levels for a group
of co-expressed genes Furthermore, co-expressed genes in the same cluster are
likely to be involved in the same cellular processes, and a strong correlation among
expression patterns of the genes indicates co-regulation In practice, co-expressed
genes may belong to the same or similar functional categories and indicate co-
regulated farmlies [AMS94] Various gene clustering methods have been used to
identify co-expressed genes and discover coherent expression patterns A cluster
of genes contains a group of co-expressed genes and the coherent expression pat-
tern 1s obtained as the mean (the centroid) of the expression profiles of the gencs

in the cluster

Gene clustering techniques are divided mnto three different types gene-based
clustering where the genes are treated as objects while the samples aie features,
sample-based clustering in which the samples can be partitioned into homogeneous
groups where the genes are regarded as features and the samples as objects,
and subspace clustering in which either genes or samples can be regarded as
objects or features Both gene-based and sample-based clustering approaches
search exclusive and exhaustive partitions of objects that share the same feature

space Subspace clustering algorithms capture clusters formed by a subset of
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genes across a subset of samples. Throughout the work reported in this thesis,
we use the gene-based clustering approach. In gene-based clustering, similar
rows (genes) are grouped together into unique clusters. The premise is that each
cluster shows a similar temporal expression pattern as shown in Figure 2.4 and

may represent a group of functionally related genes i.e., a brological module.

2.4 Proximity Measures

A microarray experiment compares genes from an organism under different devel-
opment time points, conditions or treatments. For a T condition experiment, a
single gene has a T-dimensional observation vector known as its gene expression
profile. A similarity (or dissimilarity) measure is a real-valued function that as-
signs a real number as a similarity or dissimilarity value between any two expres-
sion vectors. Therefore, to identify genes or samples that have similar expression
profiles, appropriate similarity (or dissimilarity) measures are required. Some
of the commonly used distance metrics are: Euclidean distance, Pearson’s Cor-
relation coefficient and Spearman’s Rank-order Correlation Coefficient [Ste06].
The Euclidean distance measure imposes a fixed geometrical structure and finds
clusters of that shape even if they are not present. It is scale variant and cannot
detect negative correlation. Euclidean distance gives the distance between two
genes but does not focus on the correlation between them. Pearson’s Correlation,

on the other hand, retains the correlation information between two genes as well
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as the regulation information However, since 1t uses the mean values while com-
puting the correlation between genes, a single outher can aberrantly affect the
result Spearman’s Rank Correlation 1s not affected by outliers, however there 1s

information loss w r t regulation since 1t works on ranked data

2.5 Gene Expression Data Clustering Approaches

Data mining techniques have proven to be useful in understanding gene function,
gene regulation, cellular processes and subtypes of cells According to [Ste06),
most data mining algorithms developed for gene expression time series deal with
the problem of clustermg Clustering 1dentifies subsets of genes that behave
similarly along a course of time Categorization of gene expiession data clustering

techniques 1s discussed next

2.5.1 Partitioning Approaches

k-means [McQ67] 1s a typical partition-based clustering algorithm which divides
the data into pre-defined number of clusters i order to optimize a predefined
criterion The major advantages of 1t are 1ts sumpheity and speed, which allows
1t to run on large datasets However, 1t may not yield the same result with each
run of the algorithm Often, 1t can be found incapable of handling outhers and 1s
not suitable to detect clusters of arbitrary shapes A Self Organizing Map (SOM)
[Koh95] 1s more robust than k-means for clustering noisy data It requires the
number of clusters and the grid layout of the neuron map as user mnput Specify-
g the number of clusters in advance 1s difficult 1n case of gene expression data
Moreover, partitioning approaches are restricted to data of lower dimensional-
ity, with inherent well-separated clusters of high density But, gene expression
data sets may be high dimensional and often contain intersecting and embedded
clusters QT (quality threshold) clustering [HKY99] 1s an alternative method of
partitioning data, invented for gene clustering It requires more computing power
than k-means, but does not require specifying the number of clusters apiiori, and
always returns the same result when run several times The distance between

a pomt and a group of points 1s computed using complete hnkage, 1e, as the
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maximum distance from the point to any member of the group [ESBB98]. A hi-
erarchical structure can also be built based on SOM such as Self-Organizing Tree
Algorithm (SOTA) [DC97]. Recently, several new algorithms such as [HVDO1]
and [THHKO2] have been proposed based on the SOM algorithm. These al-
gorithms can automatically determine the number of clusters and dynamically
adapt the map structure to the distribution of data. Herrero et al. [HVDO1]
extend the SOM by a binary tree structure. At first, the tree only contains a
root node connecting two neurons. After a training process similar to that of the
SOM algorithm, the data set is segregated into two subsets. Then the neuron
with less coherence is split in two new neurons. This process is repeated level by
level, until all the neurons in the tree satisfy some coherence threshold. Other
examples of SOM extensions are Fuzzy Adaptive Resonance Theory (Fuzzy ART)
[THHKO02] which provide some approaches to measure the coherence of a neuron
(e.g., vigilance criterion). The output map is adjusted by splitting the existing
neurons or adding new neurons into the map, until the coherence of each neuron

in the map satisfies a user specified threshold.

2.5.2 Hierarchical Approaches

Hierarchical clustering generates a hierarchy of nested clusters. These algorithms
are divided into agglomerative and divisive approaches. Unweighted Pair Group
Method with Arithmetic Mean (UPGMA), presented in [ESBB98], adopts an ag-
glomerative method to graphically represent the clustered dataset. However, it
is not robust in the presence of noise. In [ABN*99], the genes are split through
a divisive approach, called the Deterministic-Annealing Algorithm (DAA). The
Divisive Correlation Clustering Algorithm (DCCA) [BDO08] uses Pearson’s Cor-
relation as the similarity measure. All genes in a cluster have highest average
correlation with genes in that cluster. Hierarchical clustering not only groups
together genes with similar expression patterns but also provides a natural way
to graphically represent the data set allowing a thorough inspection. However,
a small change in the data set may greatly change the hierarchical dendrogram

structure. Another drawback is its high computational complexity.
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2.5.3 Density Based Approaches

Density based clustering identifies dense areas in the object space. Clusters are
highly dense areas separated by sparsely dense areas. DBSCAN [EKSX96] was
one of the pioneering density based algorithms used over spatial datasets. In
[JPZ03a), Jiang et. al. propose the Density-Based Hierarchical clustering method
(DHC) to identify co-expressed gene groups. It can identify embedded clusters in
the dataset and can also handle outliers. It can effectively visualize the internal
structure of the data set. A kernel density clustering method for gene expression
profile analysis is reported in [SZCS03|. An alternative to this is to define the
similarity of points in terms of their shared nearest neighbors. This idea was first
introduced by Jarvis and Patrick [JP73]. A density-based approach discovers
clusters of arbitrary shapes even in the presence of noise. However, density-based
clustering techniques suffer from high computational complexity with increase
in dimensionality (even if spatial index structure is used) and input parameter

dependency.

2.5.4 Model Based Approaches

Model based approaches provide a statistical framework to model the cluster
structure in gene expression data. The Expectation Maximization (EM) algo-
rithm [DLR77] discovers good values for its parameters iteratively. It can handle
various shapes of data, but can be very expensive since a large number of itera-
tions may be required. In [THO09], a signal shape similarity method used to cluster
genes using a Variational Bayes Expectation Maximization algorithm [BGO03]. A
model-based approach provides an estimated probability that a data object will
belong to a particular cluster. Thus, a gene can have high correlation with two
totally different clusters. However, the model-based approach assumes that the

data set fits a specific distribution which is not always true.

2.5.5 Graph Theoretical Approaches

In graph-based clustering algorithms, graphs are built as combinations of objects,

features or both, as nodes and edges, and partitioned by using graph theoretic
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algonthms Graph theoretic algorithms are also used for the problem of clus-
tering cDNAs bascd on their ohigo-nucleotide fingerprints [HSL*99] CLuster
Identification via Connectivity Kernels (CLICK) [SS00] 1s suitable for subspace
and high dimensional data clustering The Cluster Affimty Search Technique
(CAST) by [BDSY99] takes as mnput pairwise similarities between genes and an
affinity threshold It does not require a user-defined number of clusters and han-
dles outhers cficiently But, 1t faces difficulty in determining a good threshold
value In CAST, the size and number of clusters produced 1s directly affected by
the fixed user-defined parameter ¢ and hence, aprior1 knowledge of the data set 1s
required To overcome this problem, E-CAST [BPC02] calculates the threshold
value dynamically based on the similarity values of the objects that are yet to be

clustered

2.5.6 Soft Computing Approaches

Fuzzy c-means [Bez8la] and Genetic Algorithms (GA) (such as [BMMO07] and
[MMBQ9]) have been used effectively mn clustering gene expression data The
Fuzzy c-means algorithm requires the number of clusters as an input parameter
The GA based algorithms have been found to detect biologically relevant clusters

but are dependent on proper tuning of the input parameters

The current information explosion, fuelled by the availability of the World
Wide Web and the huge amount of microarray experiments being conducted,
have led to ever-increasing volume of data Therefore, there 1s a need to introduce
incremental clustering so that updates can be clustered in an incremental manner
Though a lot of reseaich has been performed on incremental clustering in other
application domains, imcremental clustering of gene expression data has not been

exploited much yet

2.5.7 Incremental Algorithms

In [EKS*98], the authors present an incremental clustering approach based on
the DBSCAN [EKSX96] algorithm A one pass clustering algonthm for relational
datasets 1s proposed in [T'S08] Rough set theory 1s employed in the incremental
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approach for clustering interval datasets in [ANS06]. In [LLF*04b], an incremen-
tal genetic k-means algorithm is presented. In [RRARO6], an incremental gene
selection algorithm using a wrapper-based method that reduces the search space

complexity since it works on the ranking directly, is presented.

2.6 Discussion

From the discussion above, we conclude that various clustering algorithms require
different types of input parameters and clustering results are highly dependent on
the values of parameters. Gene expression data has coherent patterns embedded
in the full gene space, identification of which is an important research field. Co-
herent genes may indicate co-regulation and hence fall under the same functional
classification. Clustering algorithms that do not require the number of clusters
as an input parameter and are robust to noise are of utmost importance. Clus-
tering algorithms are sensitive to the proximity measure chosen. In this thesis,
we present several clustering methods and all of them use a proximity measure

developed by us which is introduced in the next chapter.
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Chapter 3

A Novel Dissimilarity Measure

for Clustering Gene Expression
Data

Distance or similarity measures, also known as proximity measures, are essential
to solve many pattern recognition problems such as classification, clustering, and
retrieval Various distance (similarity) measures have been reported in the hter-
ature However, choosing an appropriate measure for a specific problem depends
on the problem domain as well as data domain Clustering 1s based on proxim-
1ty measures that help 1n detecting clusters based on proximity among different
objects Clustering of gene expression data 1s highly sensitive to the proximity
measure used Choosing an appropriate dissimilarity measure 1s of utmost im-
portance In this chapter, a review of some sumlanty (dissimilarnty) measures
1s given and a dissimilarity measurc (DBK) 1s proposed for cffective clustering
of gene expression data In this thesis we have used the gene based clustering
The DBK measure retains the good characteristics of several commonly used
proximity measures while avoiding the bad characteristics It retamns the up-
down- regulation information inherent in gene expression data and 1s robust in

the presence of outhers
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3.1 Distance Metric

A metrnc or distance function defines a distance between elements of a set A

metric on a set Y 1s a function (called the distance function or simply distance)
d YxY—-R

where R 1s the set of real numbers For all z,y, z € Y, this function should satisfy

the following properties

1) d(z,y) > 0 (non-negativity) Distance 1s always positive or zero

1) d(z,y) = 01ff z = y (1dentity of indiscernibles) Distance 1s zero if and only

if 1t measured to 1itself
w) d(z,y) = d(y,z) (symmetry) Distance 1s symmetric

w) d(z,2) < d(z,y) + d(y, z) (trniangle mnequality) Distance satisfies triangle

inequality

A distance function 1s also called metric if 1t satisfies all four conditions given
above Thus, because of the triangle mnequality (condition 1v), not all distance

measures are metric, but all metrics are distances

3.2 Similarity and Dissimilarity Measures

From scientific and mathematical points of view, distance 1s defined as a quanti-
tative degree of how far apart two objects are Similarity 1s a numerical quantity
that 1eflects the stiength of 1elationship between two objects or two features
Similarities are higher for pairs of objects that are more alike This quantity
1s usually 1n the range of either -1 to +1 or 1s normalized into 0 to 1 If the
similarity between object 2 and object y 1s denoted by S, ,, we can measure this
quantity mn several ways depending on the scale of measurement (or data type)

that we have
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Distance measure is also known as dissimilarity measure. Similarity and dis-
similarity measures are often called proximity measures. Dissimilarity measures
the discrepancy between the two objects, i.e., it measures the degree to which two
objects are different. There are many types of distance and similarity measures.
Each similarity or dissimilarity measure has its own characteristics. Next, we

consider several important issues concerning proximity measures.

3.2.1 Relationship between Similarity and Dissimilarity

Let normalized dissimilarity between object  and object y be denoted by d(z, y).

Then the relationship between dissimilarity and similarity is given by
Sey =1—d(z,y). (3.1)

Here, S;, is normalized similarity between objects z and y. Similarity is bounded
by 0 and 1. When similarity is one (i.e., two objects are exactly similar), the
dissimilarity is zero and when the similarity is zero (i.e., two objects are very
different), dissimilarity is one. If the value of similarity has range of -1 to +1,

and the dissimilarity is measured with range of 0 and 1,
Sy = 1 — 2d(z, ). (3.2)

When dissimilarity is one (i.e., two objects are very different), similarity is minus
one and when the dissimilarity is zero (i.e., two objects are very similar), simi-
larity is one. In many cases, measuring dissimilarity (i.e., distance) is easier than
measuring similarity. Once we can measure dissimilarity, we can easily normalize
it and convert it to similarity measure. It is also common for dissimilarities to

range from 0 to oo.

Frequently, proximity measures are transformed to the interval [0, 1}. The

transformation of similarities to the interval [0, 1] is given by

, Szy — Mans,

Ty =

(3.3)

mazs, , — Mins,

where, ming, , and mazs, , are minimum and maximum similarities respectively.

Similarly, dissimilarity measures with a finite range can be mapped to the interval
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[0, 1] by using the formula

d(z,y) — Mgz y)
MATd(z,y) — MNd(z,y)

d'(z,y) =

(3.4)

where, ming(;,) and MaTq(zy) are minimum and maximum dissimilarities respec-
tively.

If the proximity measure has values in the range [0, 00|, a non-linear transfor-
mation is needed and the values in the transformed scale will not have the same
relationship to one another as the original. But, whether such a transformation

is desirable or not depends on the application it is used.

3.2.2 Different Similarity and Dissimilarity Measures

In this section various kinds of dissimilarities and similarities are discussed.

A. Some Dissimilarity Measures

This section reports on some of the popular dissimilarity measures.

i. Euclidean distance

Euclidean distance (Equation 3.5) expressed in terms of the Pythagorean theo-
rem is one of the most popular distance measures in use today. The Euclidean
distance between two sets of objects z and y in n-dimensional space is defined as

Fuclhdean(z,y) = (3.5)

where, £ = z1, 29, ...,2, and ¥y = y1, Y2, ..., Yn.

ii. Manhattan distance

Minkowski presented the city block distance [Kra75). The city block or the Man-
hattan distance or L, norm is given below

n

Z(zz - yz) :

=1

d(z,y) = (3.6)
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iii. Minkowski distance

Minkowski’s distance is the generalized form of the two distance metrics discussed

above. It is given as

(3.7)

where p is a parameter. For p = 1, we get the Manhattan distance, for p = 2 we
get the Euclidean distance.
iv. Chebyshev distance

For p = oo we get the Supremum or Chebyshev (L, or Lo, norm) distance
named after Chebychev [HDRTO04]. This is the maximum distance between any
attribute of the objects. Formally, L, is defined as

d(z,y) = lim (ka —ykl”) . (38)
P \ k=1
B. Some Similarity Measures

The triangle equality does not hold for similarity measures but the following

properties hold true:
i) Sgy=1lonlyifz=y(0<S5<1) and

i) Sz = Syz for all z and y (Symmetry).

i. Similarity measures for binary data

Similarity measures between objects that have only binary attributes are called
simalarity coeffictents and have values between 0 and 1. A value of 0 means that
the objects are completely dissimilar and a value of 1 means that the objects are

completely similar.

Suppose objects z and y have n binary attributes. Then, on comparing z and y

the following quantities are obtained:
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i) goo: the number of attributes where z =0 and y =0,
ii) q0,1: the number of attributes where z = 0 and y = 1,
iii) gjo: the number of attributes where z =1 and y = 0, and

) gy the number of attributes where z =1 and y = 1.
!

file:// /home/rosy/thesis Using the above quantities different similarity coeffi-

cients can be obtained.

Simple Matching Coefficient

Simple Matching Coefficient or SMC [HK04] is one of the most commonly used

similarity coefficients and is defined as,

Total number of matched attributes qoo + q11

SMC = - )
Total attributes Qoo + go1 + G10 + g1

(3.9)

SMC gives equal weight to both presences and absences.

Jaccard Coefficient

Jaccard Coefficient [HK04] is used for handling objects consisting of asymmetric

binary attributes. Jaccard Coefficient (J) is defined as follows,

Number of matched attributes g11

= Number of attributes not involved in 00 matches  qo1 + qio + G11

(3.10)

J

1i. Cosine Similarity
Cosine similarity [TSK09] is useful for finding document similarity. If z and y
are two document vectors, cos(z,y) is given by the following equation,

cos(z,y) = 3.11
=9) = T2 (311)

where . indicates the vector dot product, z.y = Y 7_; Zxyk, and ||z|| is the length

of vector z, and ||zl = /> ,_,22 = Vzoz.
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iii. Extended Jaccard Coeflicient

The Extended Jaccard Coefficient (EJ) [TSK09] can be used for document data

and it reduces to the Jaccard Coefficient in case of binary data.

EJ(z,y) = . 3.12
@) = ZP T -z (3.12)

iv. Correlation

Pearson’s correlation coefficient [TSK09] is a widely used similarity measure. It

is defined as

corr(,y) = covariance(z,y) _ COUgy (3.13)
Y= standard_deviation(z) * standard_deviation(y) o0, '
where
1 n
COUy = =—= > (%2 — 1) (¥ = t1y),
1=1
Oz = . zn:(x't tz )2,
n-—1 —
1 n
Oy = Z(yz - Ny)za (3‘14)
n—1 =

I .
Mo = mez 15 the mean of z, and

=1
1 n
Py = EZyi 15 the mean of y.
=1
Pearson’s correlation is always in the range [-1, 1}. Correlation and Euclidean
distance are useful for dense data such as time series or two-dimensional points
while Jaccard and cosine similarity measures are useful for sparse data like doc-

uments.

Pearson’s correlation is a powerful similarity measure. However, empirical
study has shown that it is not robust in presence of outliers [HKY99|, thus po-

tentially yielding false positives which assign a high similarity score to a pair of
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dissimilar patterns If two patterns have a common peak or valley at a single
feature, the correlation will be dominated by this feature, although the patterns
at the remaining features may be completely dissimilar Another drawback of
Pearson’s correlation coefficient 1s that 1t assumes an approximate Gaussian dis-
tribution of the points and may not be robust for non-Gaussian distributions
[B1c01]

v. Jackknife correlation

Jackknife correlation [JTZ03], helps 1in overcoming the single outlier problem of

Pearson’s correlation It 1s defined as
Jackkmafe(z,y) = man{corr(z,y)', ,corr(z,y)', ,corr(z,y)"} (315)

where corr(z,y)! 1s the Pearson’s correlation cocfficient of data objects z and y
with the [** feature deleted Use of Jackkmife correlation avoids the dominance
effect of single outhers More general versions of Jackkmfe correlation that are
robust to more than one outher can similarly be derived However, generalized
Jackkmife correlation, which involves the enumeration of different combinations

of features to be deleted, 1s computationally costly and 1s rarely used

vi. Spearman/s rank-order correlation coefficient

To address the problem of non-Gaussian distributions wrt Pearson’s correla-
tion, Spearman’s rank-order corrclation cocfficient [JTZ03] has been suggested
as a similarity measure The ranking correlation 1s derived by replacing the data
T, with 1ts rank r, among all conditions For example, r, = 3 if x,, 15 the
third highest value among ., , where 1 < k < n Spearman’s correlation coefhi-
cient does not require the assumption of Gaussian distribution and 1s more robust
against outhiers than Pearson’s corrclation cocflicient However, as a consequence

of ranking, a significant amount of information present in the data 1s lost

vii. CorHsim

In {[LWN*09], a new similarity measure fo1 gene expression data, Cor Hsim, 18

presented It reflects the magmtude and shape information of gene expression
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data at the same time and is defined as follows

n

COTHSim(x’y):lZ(l(SEz_lJ‘z)(yz“/JJy)l_*_ 1 > (3.16)

2n 050y |z -y |

The disadvantage of Cor Hsum is that it uses the mean value and therefore may

be affected by a very large or a small value of z or y.

The similarity (dissimilarity) measures discussed above have been applied in var-
ious domains. However, not all the measures are applicable in all domains. There
is & qualitative domain specific dependency among similarity (dissimilarity) mea-
sures. For gene expression data domain, not all the measures discussed above
are applicable. Gene expression data with its inherent high dimensionality and
direction information becomes challenging for similarity (dissimilarity) measures.
The following section discusses in detail the various aspects of proximity measures

used for gene expression data and presents our dissimilarity measure, DBK.

3.3 Proximity Measures for Gene Expression Data

There are many methods for quantifying similarity or dissimilarity between a pair
of gene expression profiles. Different methods give different results and therefore

one should carefully choose which method to use.

3.3.1 Features of a Distance Measure
{

Similarity or dissimilarity between two profiles is described in terms of the dis-
tance between them in the high dimensional space of gene expression measure-
ments. A dissimilarity measure, d(g,, g,), obeys the following four properties (1-4)
for any two genes g, and g,, while a true distance measure also satisfies a fifth

([JW98]). The properties are given below.

1. The distance between any two profiles cannot be negative.

2. The distance between a profile and itself must be zero.
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3. The distance between profile g, and profile g, is the same as distance be-

tween profile g, and profile g,, i.e., d(g,,9,) = d(g,, .)-

4. The distance measure should obey the triangle inequality property, i.e., for

profiles g,, g;, g, we have d(g., 94) < d(9., 9;) + (95 go)-

3.3.2 Comparing Similarity Measures

A microarray experiment compares genes from an organism under different de-
velopment time points, conditions or treatments. For an n condition experiment,
a single gene has an n-dimensional observation vector known as its gene expres-
sion profile. A similarity (or dissimilarity) measure is a real-valued function that
assigns a positive real number as a dissimilarity value between any two expres-
sion vectors. Therefore, to identify genes or samples that have similar expression
profiles, appropriate similarity (or dissimilarity) measures are required. Some of
the commonly used distance metrics are: Euclidean Distance, Pearson’s Corre-
lation coefficient and Spearman’s rank-order correlation coefficient [JTZ03]. A
comparison of three most widely used distance measures used for gene expression
data is given in Table 3.1'. Euclidean distance imposes a fixed geometrical struc-
ture [Ste06] and finds clusters of that shape even if they are not present. It is
scale variant and cannot detect negative correlation. Euclidean distance gives the
distance between two genes but does not focus on the correlation between them.
Pearson’s Correlation, on the other hand, retains the correlation information be-
tween two genes as well as the regulation information. However, since it uses the
mean values while computing the correlation between genes, a single outlier can
aberrantly affcct the result. Spearman’s rank correlation is not affected by out-
liers; however, there is information loss w.r.t. regulation since it works on ranked
data. Thus, it can also be observed from Table 3.1 that choosing an appropriate

distance measure for gene expression data is a difficult task.

INote that this table’s first column corresponds Lo the distance measure we introduce later
in this chapter
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Table 3 1: Companson of Different Distance Measures

DBK Fuclhdean Pearson’s Spearman’s Rank
Distance Correlation Correlation
Statistical Geometric Statistical Robust
Interpretation for non-Gaussian
distributions
Retains Retains Spots  posi- | Spots positive and
up- and down- | up- or down- regu- | tive and neg- | negative
regulation lation information | ative correlation
information with appropriate | correlation
scaling
Scale invari- | Not scale invari- | Scale invari- | Completely scale

ant on centered | ant; ant on cen- | invariant; No scal-

data Results dependent | tered data ing or centering
on scaling required
Robust to | Cannot detect | Susceptible Robust to outliers
outliers negative to outliers
Correlation
Can de- | Can detect mag- | Assumes Ignores up-
tect magnitude | nitude of change | linearity or down regula-

of change if used without tion in time series
scaling
3.4 Motivation

From the discussion above, we conclude that choosing an appropriate similarity
measure is of utmost importance. That there exists no particular measure which

can handle all the issues further complicates the job.

[

In the rest of the chapter, we introduce a dissimilarity measure, DBK that ad-
dresses the challenge of identifying the coherent patterns from a gene expression
dataset It can find dissimilanty between gene profiles effectively. While cluster-

ing genes, DBK measure can identify coherent patterns even in the presence of
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outliers That 1t retains information on the shape (trend) of the patterns 1s the

major attraction and thus DBK gives the coherency measure between genes

3.5 DBK Dissimilarity Measure

To compute the dissimlarnity between pairs of genes, our method uses a grid-
based approach, where the number of grid cells 1s computed according to the

spread of the dataset

3.5.1 Grid Approximation

Initially, the dataset 1s normalized to mean O and standard deviation 1 The
dataset (gene profiles) 1s then plotted as a two-dimensional curve with time points
in the horizontal direction and expression levels m the vertical direction The
maximum and mimmum expression levels as well as the maximum and mimimum
time points are found The spatial region 1s approximated by a quadrilateral of
size Ax B, where the quadrilateral can be represented by the set of points (man-
wmum tume pownt, muimamum expression level), (mazwmum time pownt, mazimum
expression level) This quadrilateral 1s divided into rectangular cells of width W,
where W = 297} A = 29a, B = 29 for some positive integers a, b, g and level,
[ as shown in Figure 31 Imtially, [ = 0 1e, the block width 1s 29, a = b =1
and we have one rectangular cell with all the gene profiles lying within 1t For
each cell, a feature condition (discussed in the next section) is tested based on
the expression values of the gene profiles within that cell If the condition 1s not
satisfied, the region 1s further divided nto 2* equal sub-cells, where k = 2, 4,
8, The process continues till the condition 1s satisfied Figure 3 2 (a) shows
the mtial condition of some example gene profiles at level, | = 0, Figure 3 2 (b)
shows the intermediate condition at level, [ = 1 and Figurc 3 2 (¢) shows the final

condition of the example gene profiles at level, [ = 2
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Figure 3.2: Example gene profiles in (a) level 0, (b) level 1 and (c) level 2.

3.5.2 Feature Condition for a Grid Cell

Initially at level, [ = 0, all the profiles reside in one cell as shown in Figure
3.2 (a). So, at I = 0, the row, 7 = 0 and column ¢ = 0. Therefore, the ID
of this cell is given by ID(r,c,l) i.e., 1D(0,0,0). Note that, points of a profile
refer to the points across time points (i.e., points of a profile in the horizontal
direction) as is shown by the solid circles for each example profile in the figure.
Now, the condition for cell division is that, two consecutive points of a profile
cannot reside within the same column, and cannot reside within the same row, if

their expression levels are unequal. We call this the feature condition.

Figure 3.2 (a) shows the initial condition of the example gene profiles at level
[l = 0. We see that consecutive points of all the profiles reside within the same

row and column. Therefore, we divide the cell into 2* equal sub-cells, where k
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= 2, and level, [ now becomes 1. Thus we obtain 4 grid cells as can be seen in
Figure 3.2 (b) at [ = 1. We observe in this figure that thc second gene profile
has consecutive points in the cell ID(0,1,1) but since both the points have equal
expression values they can reside in the same row. But, since they reside in the
same column for the two consecutive time points, it does not satisfy the feature
condition and subdivision is required. Similarly, for the other genes, consecutive
time points reside within the same column and therefore subdivision is required.
Also for the other genes, we see that genes with dissimilar expression values
reside in the same row, for example, gene 4, whose consecutive expression values
even though being dissimilar reside in the same row, r = 1, of cell ID(1,0,1)
and ID(1,1,1) and so on. Thus, we again subdivide the cells into 2% equal sub-
cells, where k£ = 4, and [ = 2. Now, we obtain the 16 grid cells as depicted in
Figure 3.2 (c). We conclude from this figure that (i) no two consecutive time
points fall in the same column and (ii) no two consecutive points with different
expression values fall in the same row. Thus the feature condition is satisfied and
cell division terminates. We thus obtain the row and column values for every
gene profile across time points. For example the r values of gene 1 is 0,1,3,2 and
its ¢ values are 0,1,2,3 at | = 2. Similarly, the r and c¢ values for the other genes

may be obtained.

Let ID(r,c,!) be a cell in row r and column c at level { in the region Ax B,
with block width 297, For the top level, [ = 0, the block width is W = 29.
ID(r,c, 1) is defined below. For a particular 1D(r,c,!), the corresponding points
of a profile that have coordinates (y, z), where y refers to the time point and z
the corresponding expression level value, fall in column ¢ and row 7 at level [ and

is given by the following equation.
(@y): ) <z <%r+1), ¥ <y< ¥le+)
ID(r,c,l) = ¢ (z,y):297Y(r) <z < 297r + 1), (3.17)
274(c) <y <2+ 1)
where y and z are positive real numbers including zero, for 0 < r < 2,0 < ¢ < 2%,

Figure 3.1 shows an example of constructing quadrilateral mesh from level [ = 0
to level [ = 2.

For a better understanding of how the grid approximation is done for gene
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profiles, we put forward the following example. For simplicity we assume that
the quadrilateral is a square, i.e., A = B. At =0, block width is 297 = 29 = 16,
for g =4 and a = b = 2! = 1 as seen in Figure 3.1 (a). We subdivide this cell
into 2% (where k = 2,4,8,---) cells if the feature condition is not satisfied as
explained before. Now, we obtain 4 cells on subdivision with £ = 2 and level is
incremented by 1 to obtain | = 1. Now, the width of a cell is 297! = 24-1 = 8
and A=29"a=8x2=16and B=29"'b=8 x 2 =16, where, a = b=2! = 2.
This is shown in Figure 3.1 (b). Further cell division results in [ = 2,k = 4
and number of cells as 2¢ = 16. Then, the width of each cell becomes 4 (i.e.,
297t = 2472 = 4). Therefore, A =29"'a =4 x4 =16and B = 297'b = 4 x 4 = 16,
where, a = b = 2! = 4. This process of cell division goes on iteratively till the
feature condition is satisfied. Now, for finding the corresponding points (y, z)
that fall in row 7 and column c at level [, we use either of the equations given in
Equation 3.17. We assume that the top left corner of the grid is (0,0). We show

the working of the equation next.

For, [ =0,

w w w w
?(r) <z< ?(r—l—l) and y(c) <y< ?(c—i- 1)

Initially, W = 29 = 2% = 16, Then for r = 0, we have,

w w

For ¢ = 0, we have,

1%
0+1)=0<y<16

w
—(O)Sy<g

2l

Now, for [ = 1 and r = 0, we have,

w %4

For ¢ = 0, we have,

% w
y(O)§y<7(0+l)=0§y<8

for r = 1, we have,

W 94
—(0)<z<=(0+1)=8<z<16



For ¢ = 1, we have,
w %4

Simularly, the (y, z) values may be computed 1n level, [ = 2,3, and so on Same
results are obtained if we use the second equation of Equation 3 17 Thus, for
each (y,z) pomnt of a gene profile, we obtamn a string of r and ¢ values For
example, from the Figure 3 2 (c), the 7 values of gene 115 0,1,3,2 and 1ts ¢ values
are 0,1,2,3 at [ = 2 For gene 2, r values are 1,2,1,1 and c values are 0,1,2,3
For gene 3, r values are 2,1,2,3 and ¢ values are 0,1,2,3 For gene 4, r values are
3,2,3,1 and ¢ values are 0,1,2,3

3.5.3 Computation of Dissimilarity

Once cell division terminates, each cell has a unique ID,1e, ID(r,¢,l) Since each
point of the curve of every profile now resides 1n a separate cell, the ID of the cell
15 the ID of each point During comparison, every pair of points (one from each
profile) always hes 1n the same column  So, the contribution of column value and
level information 1s null and only the row information is considered which reflects
the maximum variability For every point in a piofile, 1ts corresponding r value
1s obtained For every gene, the median of the row values (r) 1s calculated across
time pomnts (conditions) For every gene, the difference of the row value of each
point from the median 1s computed If the difference obtained 1s negative, the
point 1s down-regulated, a positive value indicates up-regulation and 0 indicates
equilibrium fiom the median This regulation information helps 1n finding the
coherency between two genes As an example we take the gene profile plotted in
Figure 3 3 has the r values as 2, 1, 2, 3 The median of these r values for this
gene profile 1s 2 Next, the difference of the  values of each time point from the
median of this gene will result in the difference value as 0, 1, 0, -1 From now on,
in this chapter time point and pomnt will refer to the same thing The median
(m,) of the r values for each gene 1 1s computed For each gene, 2, the difference
of the r values of each pont, z, from 1ts respective median m, 1s computed as

shown below Here, z represents a particular time point (or condition) of a gene
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Figure 3.3: Example gene profile in level 1.

and the value of z varies across time points for every gene under consideration.
D’Lff(l:‘izmz_rzi) $:1,2,3,"'>T (318)

where, T is the number of time points (conditions) and 7, is the row value for
the 2" time point of the #* gene.
Note that Dif f,, is actually a pattern of length T for the i** gene.

For a pair of genes, the difference between their individual D1 f f,, is calculated
and summed. This gives us the dissimilarity measure for pairs of genes. The

dissimilarity measure DBK (3, j) for gene 1 and gene j is computed as follows:

T

DBK(i,§) = \| Y (Dif for — Dif f,)2. (3.19)

=1

Coherent Gene Identification by DBK Measure

Coherent gene identification is very important for gene expression clustering.
Coherent genes are those genes which follow a similar trend. Two genes having
the same trend will be highly coherent. For similarity measure the value of the
similarity between two genes with same trend should be 1 and for dissimilarity

measure, the dissimilarity between them should be 0.

Our proposed DBK can identify coherent genes based on the shape or trend

information. This can be illustrated by an example and the values of the example
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gene profiles are given in Table 3 2 and their normalized values (mean 0 and stan-

dard deviation 1) are given in Table 3.3. The normalized gene profiles arc then

Table 3.2. Uncentered expression values of two example genes

Twvme | genel | gene2 | gened
1 600 800 450

2 200 400 50

3 300 500 100
4 100 300 250
5 500 700 600

Table 3.3: Centered expression values of two example genes

Twme | genel | gene2 | gene3
1 136 [ 231 |0.64
2 -0.55 [ 0.41 |-1.26
3 -0.07 | 0.88 |-1.03
4 -1.03 | -0.07 |-0.31
5 0.88 |1.84 |1.36

plotted as a two-dimensional curve with time points in the horizontal direction
and expression values in the vertical direction as given in Figure 3.4. The grid
approximation is then done as explained before to obtain the grid approximation

as shown in Figure 3.4 at level, [ = 3. The row values (r) of the three genes are:
Tgener =0 8 6 10 2

Teeme2 =4 12 10 14 6

Toenes =7 15 14 11 4
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Figure 3.4: The grid approximation and the ID(r,c,1) values for each point of
the 3 gene profiles

The median (m) of the row values are:
Mgenel = 6 Mgene2 = 10 Mgene3 = 11

Therefore the Dif f values of the three genes are:

szfgenelzﬁ -2 0 —4 4
Diffgene2:6 -2 0 -4 4 /
szfgene3:4 -4 -3 0 7

Now,

DBK(genel, gene2) =
V6 —6)2+(-2—(-2))2+0+(-4—-(-4))2+(4-4)2=0

DBK/(genel, gene3) =
V6 =42+ (-2 - (-2 +(0-(-3))2+(-4-02+(4-7)>=6.48

DBK(gene2, gene3) =
V6 =22+ (2= (<42 + (0— (-3))P + (4 —0)2+ (4—7)2 = 6.48
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We notice from Table 3 2, that genel and gene2 have the same trend values only
that the magmtude of the values of gene2 have been increased by 200 However,
both of them have the same trend or shape Thus 1s reflected 1n the value of DBK
where we see that both genel and gene2 have the DBK value of 0 Also, the value
of DBK for genel and gene3 1s same as that of gene2 and gene3 Since, genel
and gene2 have the same trend so their coherency 1s high and also their distance
from the third gene 1s same respectively The Pearson’s correlation between genel
and gene2 1s 1 and similarity between genel and gene3 and gene2 and gene3 1s
same and 1s equal to 0 74 Therefore, we conclude that both DBK and Peaison’s

correlation can 1dentify the coherent patterns based on the shape information

In another example, we consider three yeast sporulation expression profiles
(YBR148W, YDR260C and YKL166C) from the study of [ESBB98| as given
in Figure 35 We have replaced the missing values with the median We
denote Pearson’s correlation by cor, Euclidean distance by euc and our dis-
similanty measure by prop We have coriyprypr) = 0984, coryprykr) =
0815 and coryprykr) = 0851 Now, euciysrypr) = 3422, eucyprykr) =
5244 and eucyprykr) = 8552 For our measure, DBK(yprypr = 3 606,
DBKyprykr) = 3742 and DBKxyppykr) = 7 We see that according to
both Euclidean and our measure YKL166C 1s more similar to YDR260C than to
YBR148W, a result that does not agree with the correlation cocfficient result

3.5.4 Effectiveness of DBK

The proof that DBK satisfics the properties listed in Section 3 3 1s given below

Property 1 For genes ¢ and 3, D(s,7) > 0, the square of Dif fp - Dif fuy,
z =1, ,T, gives a positive number and moreover, we take the positive
square root of the sum of Diffy, - Dif fy,, 2 =1, ,T This results in
always positive numbers Therefore, DBK(1,7) > 0

Property 2 Dissimilarnty between a profile and 1itself must be zero

DBK(,1) = \/S3T_\(Dtf for — Daf fr)? = 0

Property 3 Dissimilarity between gene 2 and gene j 1s equal to the distance

between gene 7 and gene 1

41



6.y
§ 5
E“
.g, 3 o
o
21
T 2 —+—YBR148M
' . =-4-=YDR280C
Time - YKL86C

Figure 3.5: Three expression profiles from yeast sporulation [ESBB98| data set

For identical genes. Assume, DBK(1,7) = 0. Then according to Property
2, v and 7 are 1dentical genes and DBK(j,1) =0 Therefore, DBK(1,7) =
DBK{(3,1) = 0 for identical genes.

For non-identical genes. Again assume, DBK(1,3) = . According to
Equation 3 19, DBK (3, 3) = \/Zle(szfm — Dif fz;)? and DBK(3,1) =

\/Zle(szfzJ — Dif f,)? Let (Duf fr, — Dif f1,) = v for the 1% time
pomt, then (D:f fi, — Duf f1,) = —7. But, since while calculating DBK, we
take the square of the terms both the terms become equal Similarly, for
rest of the terms, we get (Duf fo, — Dif f2;)? = (Duf foy — Dif fo,)? for z =
2,3,--+,T — 1 time points Therefore, we can conclude that DBK (2, 7) =
DBK(y,2) =8

Property 4: DBK satisfies the triangle inequahty property, i.e., DBK(E;, F,) <
DBK(E., H,)+ d(H,, F,), where E,, F,,, H, are gene profiles

Assume, E., F,, H, are three row sequences and F, = e; e; --- er,
Fo=fifo - frand H,=hi hy --- hy

We next transform them to the Duif f values with medians, mg,, mr,, my,,
where mg,, mp, and my, are the medians of of E,, F,, and H, respectively
Dif fg, = Aey Dey --- Aep, where Ae, = mg, — €,

Diffe, = Afi Afa -+ Afr, where Af, = mp, — f,
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Daf fy, = Ahy Ahy Ahr, where Ah, = my, — h,
Now, the calculation of DBK(E;, F,) reduces to the Euchdean distance

calculation, 1e,

T
DBK(E;, Fy) = | Y (e, — Af)?

=1

Swmilarly, DBK(E;, H,) and DBK(H,, F,)) are calculated Now, 1t 15 ob-
vious that the triangle inequality property of DBK 1s satisfied based on the

Euclidean space 2

Since, DBK satisfies all the metric measure properties, we can say that is a

metric measure

To establish that our dissimilanty measure satisfies the properties listed
above, we take data from the work of [CDE*98] and [CCW*98] To validate the
properties, we take the genes YJL157C, YKL185W, YALOO8W from the dataset
of [CCW*98] and two other synthetic profiles, viz , Series3 and Senes4 Series
3 and Series 4 have similar expression levels as that of YALOO8W except at the
4 time point, which 1s replaced by two random values We will refer to the
profiles of YJL157C, YKL185W Senes3, Serics4 and YALOO8W as profiles 1, 2,
3, 4, and 5, respectively The expression plot 1s as shown i Figure 36 When
we compute dissimilarities between pairs of profiles, the values are positive For
example, dissimilarity between profile 1 and 2 1s 5 292, profile 1 and 3 15 5 568,
profile 1 and 4 1s 5 477, profile 1 and 5 1s 12 288, profile 2 and 3 1s 7, profile 2
and 4 1s 6 633, profile 2 and 5 1s 14 457, profile 3 and 4 1s 1, profile 3 and 5 1s
10 and profile 4 and 5 1s 11 These are non-negative numbers and hence the first
property follows A detailed workout shows that the other properties are also
satisfied The dissimulanty between profiles 3 and 4 1s only 1 This 1s due to the
fact that their expression values are 1dentical except for the value at time point

30

We next compare DBK with three most commonly used proximity measures

over gene expression data

2www ubice org/files/pdf/UBICC_TS fina Submission 192192 pdf
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Figure 3.6: Time series plot of expression profiles for indicated genes: YJL157C
(diamond), YKL185W (solid square), Series3 (triangle), Series4 (dotted line with
cross sign) and YALOO8W (hollow square)

3.5.5 Comparison between DBK and Euclidean measure

Euclidean measure is highly influenced by the magnitude of changes in the dataset.
Although both Euclidean measure and DBK reflect the magnitude of the objects,
Euclidean measure is concerned about the global information, and DBK is more
concerned about the local information (since it uses the median of r values),
which makes DBK more robust than Euclidean measure. An important advatage
of DBK over Euclidean measure is that DBK retains the regulation (trend) in-
formation due to the use of the median and thus is capable of finding coherent
genes from the dataset. This can be justified by again taking the example gene
profiles of Table 3.3. We saw that the DBK value of the two coherent genes,
genel and gene2 were 0. However, their Euclidean distance is 2.1377 even on
the centered data. This shows that Euclidean distance doesnot take the shape

(trend) information into account.
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3.5.6 Falsely Correlated Time Series by Pearson’s Corre-

lation

During computation of Pearson’s correlation, the mean of each profile 1s used
whereas the DBK measure uses the median The disadvantage of using Pearson’s
correlation 1s that an aberrant value will shift the mean and may falscly reflect the
similarity between two genes The advantage of DBK over Pearson’s correlation
1s that due to the use of median value, an aberrant value does not affect the
similanty between two genes significantly This observation can be illustrated

with the help of an example The uncentered log ratio values of two genes, viz ,

Table 34 Uncentered log ratio values of two genes, viz , ENB1 and NPR2 from
the time series dataset of [CDE*9§]

Twme | ENBI NPR2
05 -0 76359 | -4 05957

2 2276659 | -1 7788

3 2137332 | -0 97433
7 1900334 | -1 44114
9 0932457 | -0 87574

11 0 761866 | -0 52328

ENBI1 and NPR2 from the time series dataset of [CDE*98] 1s given in Table 3 4
Figure 3 7 1s the tume sertes plot for these two genes after centering Pearson’s
correlation for the two genes 1s 0633 indicating strong correlation However,
the graph of Figure 3 7 show that the genes are not related with respect to
the trend (behaviour of time series pomnts) The ‘outhier’ that results in the
strong correlation 1s at 30 minutes, where both genes are down-regulated [Ste06]
However, after the 30 minute time point, the behaviors of the two genes are
completely different Our dissimilarity measure gives a value of 3 3166, which 1s
sufficiently high showing that the two scrics arc not sirmlar Therefore, we see

that Pearson’s correlation 1s susceptible to outhers whereas our measure 1s robust
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to outliers

3.5.7 False Correlation result by Spearman’s Correlation

Spearman’s correlation does not work directly on the expression values, instead
1t works on the ranked data However, the rank-based methods could mistakenly
interpret a pattern since the use of rank causes information loss Two gene profiles
may be dissimilar wrt their expression values but may be similar wrt their
ranks Therefore, the result will falsely reflect the similarity between them This
problem 1s not there in DBK, as i1t does not work on ranked data In fact the
discretized value (r) on which DBK works has been discretized with mimmum

imformation loss thereby retaining the shape of patterns

The genes CAR2 and FYV4 of dataset [CDE*98] are shown mn Figure 3 8
These two genes have similar shape profiles but one 1s up-regulated and the other
1s down-regulated The genes have a strong positive correlation (Spearman’s cor-
relation = 0 91) even though the expressions are very different The Euchdean
distance (= 8 5) 1s large reflecting the difference Our measure also gives a suf-
ficiently large valuc (=4 455) indicating the substantial difference between the
profiles In this case, both Euclidean distance as well as our measure are proba-
bly good measures Table 3 1 gives a comparison of our measure with Euchdean
distance, Pearson’s and Spearman’s correlation We note that our measure works

best when used over mean zero and standard deviation 1 centered data

3.6 Performance Evaluation
In this thesis, we have used the following real-life data sets

e Dataset 1 In [CCW*98], Cho et al used the temperature sensitive mu-
tant strain CDC28-13 to produce a synchromized cell culture of the Saccha-
romyces ceremsiae from which 17 samples were taken at 10 minute intervals
and hybridized to Affymetrix chips The final data 1s publicly available at
http //yscdp stanford edu/yeast_cell_cycle/full .data html Cho’s dataset 1s

widely available and has functional classification that allows validation of
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clustering results. This dataset contains 6218 genes at 17 time points.

Dataset 2. Out of the full Dataset 1, a subset of 384 genes have been
obtained from http : // faculty. washington.edu/kayee/cluster.

Dataset 8 In [DI97], the authors use DNA microarrays to study the tem-
poral gene expression of 6089 genes in Saccharomyces cerevisiae during the
metabolic shift from fermentation to respiration. Expression levels were
measured at seven time points during the diauxic shift (the two growth
phases of a microorganism in batch culture as it metabolizes a mixture of
two sugars). The full data set can be downloaded from the Gene Expression

Omnibus website, http://www.ncbi.nlm.nih.gov/geo/query.

Dataset 4: The dataset used is from the study of [WFM+98] where the
authors study the relationship among gene expression patterns of genes
involved in the rat Central Nervous System (CNS), measured during the
development of the rat’s CNS. Gene expression patterns for 112 genes were
measured at nine different developmental time points. This yields a 112 x 9
matrix of gene expression data. This data set can be downloaded from

http : /] faculty.washington.edu/kayee/cluster.

Dataset 5: The dataset used is from the study of [RWDF00] where the
authors study the relationship among gene expression patterns of genes
of Arabidopsis Thaliana. Gene expression patterns for 138 genes were
measured at eight different time points. This yields a 138 x 8 matrix
of gene expression data. This data set can be downloaded from htip :
//homes.esat.kuleuven.be/ thijs/Work/Clustering. html.

Dataset 6: The dataset describes the response of human fibroblasts to serum
on cDNA micrdarrays in order to study growth control and cell cycle pro-
gression. These data were obtained from the study of [[ER*99]. Primary
cultured fibroblasts from human neonatal foreskin are induced to enter.a
quiescent state by serum deprivation for 48 hours and then stimulate by
addition of medium containing 10% FBS. DNA microarray hybridization is

used to measure the temporal changes in mRNA levels of 8613 human genes.
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The data set has 13 dimensions corresponding to 12 time points (0, 0.25,
0.5,1,2,4,6,8, 12, 16, 20 and 24 hours) and one unsynchronized sample. In
this thesis, we choose a subset of 517 genes whose expression changed sub-
stantially in response to serum. The detailed information about the data set

can be found at the Web site: http://genome-www.stanford.edu/serum/.

o Dataset 7: The dataset used is from the study of [SSI*98] where the authors
study the yeast cell cycle. There are a total of 698 genes at 72 conditions

in the subset of this data obtained from the sample input files in Expander
[SMKS03].

A brief overview of the datasets is given in Table 3.5. All the datasets are

normalized to have mean 0 and standard deviation 1.

3.6.1 Results

We exhaustively tested our dissimilarity measure on all the datasets. We included
the Euclidean distance, Pearson’s correlation and our own DBK dissimilarity
measure in both k-means [Ste06] and hierarchical clustering (UPGMA) [ESBB9S|
algorithms. Figure 3.9, Figure 3.10 and Figure 3.11 show the result when the full
Dataset 1 is clustered using k-means for Euclidean distance, Pearson’s correlation
and our measure. The result when UPGMA clustering was applied on Dataset
1 using Euclidean distance, Pearson’s correlation and our measure are shown in

Figure 3.12, Figure 3.13 and Figure 3.14, respectively.
It is seen from Figure 3.9 and Figure 3.10 that at £=30, both Pearson’s and

Euclidean merge the single outlier into a cluster whereas our measure does not
(cluster at 3" row 2" column of Figure 3.11). At higher k values, the outlier
is separated for k-means clustering using Euclidean distance. However even for
higher k values the outlier is not separated for k-means clustering using Pearson’s
correlation. As can be seen from Figure 3.12, Figure 3.13 and Figure 3.14, all
major cluster patterns can be detected by our measure when hierarchical cluster-
ing is applied on 100% of the data. However, for Euclidean distance, the cluster
at 37 row, 5% column of Figure 3.12 is produced as a singleton cluster whereas

using our measure it is clustered with patterns similar to it in shape (6 row , 1%
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Table 3.5: Datasets used for evaluating the clustering algorithms introduced in
this thesis

Serial | Dataset No. of | No of | Source
No. genes | conditions
1 Yeast CDC28-13 | 6218 17 http://yscdp.  stan-
[CCW98] ford.edu/yeast_cell
_cycle/full_data.html
2 Subset of | 384 17 http://faculty. wash-
Yeast Cell Cycle ington.edu/kayee
[CCWT98] /cluster
3 Yeast  Diauxic | 6089 7 http://www.ncbi.nlm.
Shift [DI197] nih.gov/geo/query
4 Rat CNS | 112 9 http://faculty. wash-
[WFM™*98] ington.edu/kayee
/cluster
5 Arabidopsis 138 8 http://homes.esat.
Thaliana kuleuven.be/
[RWDF00] thijs/Work/Cluste
ring.html
6 Subset of Hu- | 517 13 http://www.science
man Fibroblasts mag.org/feature/data
Serum [IER*99) /984559.hsl
7 Yeast Cell Cycle | 698 72 Sample input files in
[SST*98] Expander [SMKS03]

column) of Figure 3.14. The Pearson’s correlation measure mixes up the patterns
with low variation across time points in different clusters; moreover it also suffers
from the single outlier problem as can be seen in more than one of the clusters in
Figure 3.13. Our measure on the other hand separates the low variation clusters
from the rest and can detect the single outliers as can be seen from the singleton

clusters.

The results obtained when both k-means and hierarchical clustering algo-
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Figure 3.9: k-means clustering of profiles for Euclidean distance at k=30. The

single outlier present at the 4*" row and 3™ column is merged into a cluster

rithms are applied on Dataset 2 are shown in Figure 3.15, Figure 3.16, Figure 3.17
and Figure 3.18.

To assess the quality of DBK, we employed the Rand index as given next.

Rand Index

Rand index is a measure of the similarity between two clusters. The Rand index
is defined as the numbers of pairs of objects that are either in the same group
or in different groups in both partitions divided by the total number of pairs of

objects. It can be calculated as follows.

The performance of a clustering process can be tested by comparing the
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Figure 3.10: k-means clustering of profiles for.Pearson’s correlation coefficient at
k=30. The single outlier present at the 1°* row and 1% column is merged into a-

cluster
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Figure 3.11: k-means clustering of profiles using DBK dissimilarity measure at

k=30. Our measure does not merge the single outlier into a cluster as can be

seen in the 37 row 2™ column
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Figure 3.12: Hierarchical clustering of profiles for Euclidean distance at cutoff=49

and using complete linkage

o4



S
N
)

R

WA '
d

PSP 2 L 1% S

Figure 3 13 Hierarchical clustering of profiles for Pearson’s correlation coefficient
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Figure 3.14: Hierarchical clustering of profiles for DBK measure at cutoff=49 and

using complete linkage
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Figure 3 16 k-means clustering of profiles for DBK measure at k=16

clustering results with the ground truth of the cluster structure of the data set
Given the clustering results C = C;  C,, we can construct a G x G binary
matrix C, where G 1s the number of genes, C,, = 1 1f g, and g, belong to the
same cluster, and C,, = 0 otherwise Similarly, we can build the binary matrix
P for the ground truth P = P, , P; The agreement between C and P can be

disclosed via the following values

e a1s the number of object pairs (g,,9,), where C,; =1 and P, =1

b 1s the number of object pairs (g,,9,), where C,; =1 and P, =0

c 18 the number of object pairs (g,, g,), where C,, =0 and P, =1

d 1s the number of object pairs (g,, g,), where C,;, =0 and P,, =0

a-+d

d =
Rand indezx Tl ord
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Figure 3.18: The dendrogram at cutoff=16
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The Rand index lies between 0 and 1. The maximum value i.e., 1 is achieved
when both partitions, C and P, agree perfectly. To test the performance of
the clustering algorithm, we compare clusters identified by our method with the
‘ground truth’ and with the results from k-means and UPGMA. With reference
to the partitions in the Rand index, one partition is derived from the clustering
results and the other partition is derived from the ground truth. The result of
applying the Rand index on full Dataset 1 is shown in Table 3.6. It is observed
from Table 3.6 that the DBK dissimilarity measure performs better for different
values of the number of clusters, NoC, for Hierarchical clustering. However,
for k-means it performs better than both Pearson’s correlation and Euclidean
distance for NoC = 30.

Table 3.6: Rand index on Yeast CDC28 data for various number of clusters (NoC)

Method Setting NoC=380 | NoC=42 | NoC=45 | NoC=49
kmeans Euclidean dist | 0.520 0.622 0.671 0.739
kmeans Pearson’s corr 0.604 0.667 0.739 0.806
kmeans DBK 0.614 0.622 0.698 0.802

Hierarchical | Euclidean dist 0.961 0.588 0.642 0.738
Hierarchical | Pearson’s corr 0.601 0.623 0.640 0.697
Hierarchical DBK 0.568 0.638 0.684 0.787

3.7 Discussion

An effective dissimilarity measure, DBK for clustering gene expression time series
data is introduced in this chapter. The dissimilarity measure gives the shapes of
the patterns of the gene expression data unlike Euclidean distance. In compari-
son to Pearson’s correlation coefficient, our method is less susceptible to outliers
as we use row values as well as the median while computing dissimilarity. More-
over, unlike Spearman’s rank correlation, it also retains information about the

regulation of the patterns. In the succeeding chapters, DBK is used in various
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clustering techniques and found effective. The next chapter presents a graph

based clustering technique which uses DBK as the proximity measure.
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Chapter 4

A Graph-based Method for

Clustering Gene Expression Data

This chapter presents a Graph based Clustering Algorithm, GCA, for clustering
gene expression data. One of the main problems with clustering algorithms is
tﬁe need to provide appropriate values for input parameters; this requires domain
knowledge on the part of the user. This problem has been handled in GCA by
using a dynamically calculated parameter for the clustering. GCA clusters genes
based on a repulsion factor a gene has with other genes. Genes in a cluster
have low repulsion whereas genes in different clusters have high repulsion. GCA
uses the DBK dissimilarity measure introduced in the previous chapter. We
also perform GCA using other commonly used proximity measures and compare

results with those obtained using the DBK measure.
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4.1 Introduction

A number of classical algorithms are commonly used for performing the task
of clusterng genes These include hierarchical algorithms (UPGMA) [ESBB9g|
and partitioning algorithms (k-means) [McQ67) as well as many novel approaches
proposed recently Graph based clustering algorithms are suitable for data that
do not follow a Gaussian or spherical distribution [FPSV07a] They can be used
to detect clusters of varying shapes and sizes without the need to specify the
number of clusters aprior1 Some popular partitioning based clustering algorithms
such as k-means [McQ67] and SOM [Koh95] fail if data are distributed in the
feature space along a non-smooth mamfold [Jus06] Such algorithms assume a
Gaussian or a spherical distribution for the data Moreover, they also require the
number of clusters or some other input parameters to the algorithm Clustering
algorithms based on graph theoretic approaches can alleviate the problems just
mentioned Giaph based algorithms represent the data by an undirected graph
whete each node represents an object in the feature space and each edge represents
the proximity measure among the nodes 1t connects A cluster in this notion
1s defined to be a connected sub-graph, obtained according to criteria specific
to cach spcafic algorithm [FPSV(07a] Algorithms bascd on this definition are
capable of detecting clusters of various shapes and sizes, especially when the
clusters are well separated [Jus06] Objects that are not connected form singleton

clusters and are later on discarded as noise

In graph-based clustering algorithms, graphs aie built as combinations of
objects, features or both, as nodes and edges The graph 1s then partitioned
by using graph theoretic algonithms Graph theoretic algorithms are also used

for the problem of clustering cDNAs based on their ohigo-nuclcotide fingerprints
([HSL*99], [LLI1])

4.2 Related Work

We now present a review of some selected graph based clustering algorithms
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4.2.1 Fuzzy C-Means MST Clustering Algorithm (FMC)

The FMC algorithm [FPSVQ7b] starts by constructing a complete graph where
each node is associated with an object and the edge weight gives the distance
between two connected nodes. Then the minimum spanning tree (MST) of the
graph is computed by using Prim’s algorithm [HS78]. By removing all edges > X
(a user defined threshold), a forest of trees is obtained. Each tree corresponds
to a cluster. In this way, the method automatically groups nodes into clusters.
For finding the optimal A, the method uses a fuzzy c-means approach [Bez81b]
and partitions the whole set of edges into two clusters according to their weights,
one containing the edges of the MST with small weights while the other cluster

contains edges removed from the MST.

4.2.2 Markov Clustering Algorithm (MCL)

The MCL algorithm [vDO00] is based on the observation that if a group of nodes
is strongly connected internally and has few connections (weakly connected) to
the outside (both are properties of a cluster), a random walk starting at a node
inside the group, is more likely to remain inside the group after a few steps than
go outside. The MCL algorithm alternates between two phases: expansion and
inflation, until a fixed point is reached. In expansion, the probability of a random
walk of length k is computed by raising the matrix of the edge probabilities to
the k% power. In the inflation phase, re-normalization of the matrix is performed
after raising each element to r where r is an input parameter. The matrix result-
ing from these two phases is used as input for the subsequent expansion process.
The inflation phase reduces the smaller probabilities towards 0 and enhances the
larger ones towards one. At the end, the clustering is determined by resulting
probabilities which are significantly different from 0. Though there is no proof of

convergence yet after a few tens of iterations, a fixed point is usually achieved.

-

4.2.3 Iterative Conductance Cutting Algorithm

The Iterative Conductance Cutting Algorithm (ICC) was proposed in [KVV(00]

and works in a divisive hierarchical manner. At first, the whole graph is con-
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sidered a cluster and at each step, a cluster is split into two depending on the
performance measure (known as cluster conductance) being < a. The splitting

process stops when there are no more clusters that can be divided based on a.

The cluster conductance compares the sum of the inter-cluster edges with
the sum of the intra-cluster edges. Lower the values of conductance, better is the
clustering result. The maximum value of conductance is one which is attained

for singleton (one node) clusters or whole-graph clusters.

4.2.4 The Geometric MST Clustering Algorithm

The Geometric MST Clustering (GMC) Algorithm introduced in [Gae02] gives a
solution to the problem of finding a suitable threshold for cutting the edges of the
minimum spanning tree. For various possible thresholds, a performance measure
is computed and the optimal one is chosen. For non-attributed graphs [Gae02] a

geometric graph embedding is used to define the distance between nodes.

4.2.5 CLuster Identification via Connectivity Kernels

The CLuster Identification via Connectivity Kernels (CLICK) method ([SS00])
is suitable for subspace and high dimensional data clustering. (A subspace is a
subset of a vector space that is itself a vector space. Here, the vector space refers
to the high dimensional space of gene expression data. Subspace clustering is the
task of detecting all clusters in all subspaces). CLICK is robust to outliers and
does not make assumptions about the number or structure of clusters. Although
CLICK does not need the number of clusters apriori, the algorithm may generate

a large number of clusters because of the use of a homogeneity parameter.

Initially, the algorithm generates a fully connected weighted graph where
the nodes represent objects and edges connect pairs of objects with weight as-
signed equal to proximity values among the objects. CLICK searches for highly
connected components in the graph as clusters. CLICK makes the assumption
that after standardization, pair-wise proximity values between objects (genes)
are normally distributed. It, then recursively divides the graph in two using the

minimum weight cut computations, until a certain kernel condition is met. The
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division of the graph in two is done in such a manner that the sum of the weights
of the discarded vertices is minimized. The clustering process in CLICK iter-
ates by searching for the minimum cut in the graph and recursively splitting the
dataset into a set of connected components. A partition with a single object is
set apart as a singleton set. The kernel condition tests if the cluster formed by a
given graph is highly coupled or not. If it is highly coupled the cluster is not sub-
divided further. CLICK builds a statistical estimator to evaluate the probability
that the edges contained in a given graph belong to a single cluster. CLICK also
uses two post-processing steps to refine cluster results. The adoption step handles
singleton clusters and updates current clusters while the merging step iteratively

merges two clusters having similarity greater than some predefined threshold.

The authors in [SS00] compared the clusters obtained using CLICK with
those of SOM [Koh95] and Eisen’s Hierarchical approach [ESBB98] and have
found them to be better in terms of homogeneity and separation of clusters.
However, there is little guarantee that CLICK does not generate unbalanced

partitions (e.g., by mixing of noise in partitions with data objects).

4.2.6 Cluster Affinity Search Techniques (CAST)

Ben-Dor introduced the idea of corrupted chque graphs [BDSY99] and used the
concept of a clique graph and divisive clustering in his algorithm, Cluster Affinity
Search Techniques (CAST) {BDSY99]. A clique graph is an undirected graph
formed by the union of disjoint complete sub-graphs where each clique represents
a cluster. The model assumes that there is a true biological partition of the
genes wnto disjownt clusters based on the functionality of genes [BDSY99]. The
genes (objects) form sub-graphs or cliques where intra-clique genes are completely

similar and inter-cluster genes are completely dissimilar.

CAST takes as input the pairwise similarities between genes and an affinity
threshold, t. The algorithm searches through the clusters one at a time The
currently searched cluster is denoted as Copern. Each gene g, has an affinity value

a(g,) w.r.t. Copen computed as a(g,) =Y S(9.,9,) where S(g,, g,) denotes

93€Copen
the similarity value between g, and g, A genc is said to have high affinity

if a(g.) > t | Copen |, €lse it has low affinity. CAST alternatively adds high
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affinity genes and removes low affinity genes from the current cluster. When the
process stabilizes, Cypen is considered a complete cluster, and the process starts
with another cluster. The process continues iteratively until all genes have been

assigned to a cluster.

The affinity threshold, ¢, in CAST is actually the average of pairwise sim-
ilarities within a cluster. It does not require a user-defined number of clusters
and handles outliers efficiently. But, it faces difficulty in determining a good
threshold value. In CAST, the size and number of clusters produced is directly
affected by the fixed user-defined parameter, affinity threshold, ¢. Hence, prior
domain knowledge of the data set is required. To overcome this problem, E-
CAST [BPCO02] calculates the threshold value dynamically based on similarity
values of the objects that are yet to be clustered. The threshold is computed at

the creation of each cluster.

4.3 Motivation

From the discussion above, we conclude that various clustering algorithms require
different types of input parameters and resulting clusters are highly dependent
on the values of the parameters. Graph based algorithms have a great advantage
in that, they do not require the number of desired clusters as an input parameter
and are robust to noise. However, the graph based algorithms are not totally free

from input parameters.

In this chapter, we develop a graph-based clustering algorithm, GCA, that
addresses the challenges presented by a gene expression dataset. It can find
clusters from gene expression data without using any input parameters and is
robust to outliers. It uses the DBK dissimilarity measure discussed Chapter
3. GCA requires an input parameter during cluster expansion, however, it is

calculated dynamically.
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4.4 An Effective Graph Based Clustering Algo-
rithm (GCA)

Among the large number of genes encoded 1n microarray gene expression data,
only a small fraction 1s pertinent to a certain task Identification of useful fea-
tures (genes) 1s a challenging problem that needs to be addressed According to
[LAAOS5], the selection of genes 1s important because 1t 1s impossible for biologists
to examine the whole feature space at one time Moreover, taking into account
irrelevant features results in unnecessary noise and computational cost Once
the relevant features have been selected, the next step 1s to find an appropnate
proximity measure for the gene expression data This chapter presents a graph
based clustering algorithm (GCA) which uses the dissimilarity measure, DBK
introduced 1n the previous chapter Our graph based clustering method works n
three phases In the first phase, the gene expression data 1s normalized to mean
0 and standard deviation 1 Also the low variance and low entropy genes are
filtered out The second phase computes the dissimilarities among genes using
a grid based method and the third phase 1s dedicated to the task of clustering
using a graph based approach

4.4.1 Clustering

Qur proposed clustering method, GCA, 1s graph theoretic which exploits the
concept of clique graph mtroduced by [BDSY99] However, GCA 1s different
from CAST [BDSY99] in the following aspects

1 GCA uscs ‘repulsion’ factor mnstead of ‘affimity’ used in CAST [BDSY99) to

form cluster

2 GCA adds genes with low repulsion to a cluster, whereas CAST [BDSY99]
adds ligh affimty genes to a cluster and deletes low affinity genes from a

cluster

3 GCA uses a threshold, «, which 1s computed dynamically 1n each iteration
to find the connectivity of an unclassificd gene to a cluster, while CAST

[BDSY99] uses a constant threshold value, ¢ as the similanty cutoff
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The dynamic computation of o makes GCA a parameter-less method The graph
can be thought of as a disconnected graph with the nodes being the genes and the
repulsion value of the genes 1s imitially set to zero In this chapter, we will use the
terms node and gene mterchangeably to refer to the same thing A gene (node)
with mimimum pairwise dissimilarity value 1s selected and becomes the imitiator
of a cluster The repulsion value of the other genes (nodes) are updated wrt
the cluster recently formed As the algorithm proceeds genes are being added
to the cluster based on a connectedness condition defined later The following

definitions and concepts provide the basis for the proposed clustering method

Repulsion

A gene cluster consists of similar genes while dissimilar genes belong to different
clusters Thus, we can say that genes belonging to different clusters will repel
each other 1 e, inter-cluster genes have more repulsion between them while the
repulsion of intra-cluster genes 1s less A gene will belong to a cluster if 1ts
repulsion wrt the genes belonging to that particular cluster 1s least The
repulsion of an unclustered gene to a cluster can be computed by the summation
of the dissimilanty (distance) values of that gene wrt all the genes belonging
to that particular cluster Thus, repulsion 1s the distance of an unclustered gene

from the cluster under consideration and 1s defined next
Definition 4 1 The repulsion r of a node z from a cluster C' 1s defined as

ICl

r(z)= Y DBK(zy,) (41)

J=1,yJGC

Connectivity of a Node to a Cluster

Connectivity of an unclustered node to a cluster 1s very important for clustering
To check the connectivity of an unclustered node to a cluster, we need to consider
the connectivity of the node in consideration to the nodes present in the particular

cluster

The basic 1dea 1s that a node among a large number of unclustered nodes will

be included into the highly connected region 1dentified as a cluster 1f 1t’s repulsion
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wrt the cluster satisfies a connectivity condition

We know that a dissimilanity (distance) measure d(z, 7) defined between all
pairs of nodes 2 and 7 will correspond to similar expressions for small distances
and large distances means dissimilar expressions In clustering, clusters have
a higher density of nodes than the surrounding background 1e, clusters contain
highly connected nodes This may be obtained by connecting a pair of nodes that
are within a connectivity threshold, &, from each other For £ = 0, every node
15 a cluster by 1itself Now, if £ 1s gradually increased from zero, then the nodes
from the region of highest density would get interconnected first to form tight
clusters, next, the more dilute (sparser) clusters will form Later, as connections
are made between nodes, they merge to form even larger clusters until eventually
at some large &, all nodes will be interconnected Thus, £ should have a value
that will stop the over-dilution (sparcification) of a cluster For this, we compute
the value of £ for each cluster based on the unclustered nodes and the cardinalty
of the current cluster Here, we note that since we have to find the connectivity of
an unclustered node to a cluster, we use the repulsion factor as discussed before
If the repulsion of a node 1s within the connectivity threshold, &, then the node
1s mncluded 1in the current cluster The value of £ 1s updated dynamically, so
that 1t reflects the change in the clustering after every insertion of a node to the
current cluster Thus, every insertion of a node to the current cluster results in

the change of the value of o which 1s a deciding factor in the process of clustering

Definition 4 2 The connectivity threshold, &, of a cluster C 1s defined as the
product of the threshold o and cardinalty of cluster C

§=al|C| (42)

During expansion of the cluster, the threshold « 1s calculated dynamically

based on the number of unclassified genes, U, 1€,
Up=Dg—- (CoUC,UC,U  UCGC,) (4 3)

where, D¢ 1s the total set of all genes, C, 1s the 2** cluster

The parameter « 1s based on dissimilanty values of the nodes (genes) yet to
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be clustered and the number of pairs of genes yet to be clustered

_ 2uyeu DBK(1, )
T % (U [-D)/2 (44)

The dynamically calculated value of a reflects the overall dissimilarty of the

unclustered genes and 1s further used in the calculation of £ as discussed before

Definition 4 3 A node 1s said to be connected to a cluster C if 1ts repulsion from

the cluster 1s less than the connectivity, 1€,
r{z) < ¢ (4 5)

where 7(z) 1s the repulsion of node z from cluster C

In the clustering process first the repulsion of all of the genes 1s set to zero
Clustering starts by selecting the gene [ from the set of unclassified genes with the
least dissumilarity value with 1ts pair as given in Figure 4 1 The function module
find-man_DBK() given 1n Figure 4 2 finds the gene with mimimum dissimilanty
The function find_DBK (z,y) calculates the DBK distance between genes z and
y As given in Figure 4 1, the gene [ 1s then selected as the seed for cluster
expansion and 1s sent to the Cluster_ezpand() module reported in Figure 4 3
[ 15 assigned to a cluster Ceuysterna and the cardinality | Ceysteraa | 1 found
as 1n Figure 44 The repulsion of all the unclassified genes 1s updated with
respect to the elements in the current cluster Cguystersqa as 1 Figure 45 The
connectivity con, and threshold alpha (as in Figure 4 6) are calculated using
Equation 4 2 and Equation 4 4, respectively, where ¢ = o | C'| In the algorithm,
a = alpha and € = con; From the set of unclassified genes, we select a gene z that
has mimimum repulsion with the cluster Cyyster.a (as given i Figure 4 7) and
whose 1cpulsion valuc satishics the connectedness condition given in Equation 4 5
Cluster expansion continues recursively with this selected gene + When no more
genes can be added to a cluster, the cluster creation process starts with another
unclassified gene, and the process continues till all the genes have been classified
In the clustering process, we do not use any global threshold Our threshold value
1s calculated by the process and adapts dynamically to the number of unclassificd

genes
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Cluster_creation()
// Initially, U, = D¢ do
FOR z from 0 to G do
x.classified = 0; // initially all genes are unclassified
z.repulsion = 0; // initially all genes have a repulsion of 0
z.cluster_id = -1; // initially all genes have cluster_id = -1
End FOR
cluster_id = 0;
DO .
| = find-min_DBK();
Cluster_expand(l, cluster_id);
cluster_id ++;
WHILE [ # —1;
End

Figure 4.1: Algorithm for Cluster formation
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find_min_DBK ()
min_DBK = 9999.99;
min_DBK_gene = -1;
FOR [ from 0 to G do
IF [.classified == 0 do
FOR m from 0 to G do
IF m.classified == 0 do
z = find_DBK(l, m)
IF z < min.DBK do
min.DBK _gene = [;
min_.DBK = z;
End IF
End IF
End FOR
End IF
End FOR

return min_DBK _gene;

Figure 4.2: Algorithm for finding the gene with minimum dissimilarity
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Cluster_expand(l, Cluster_id)
IF [.classified ==
RETURN
End IF
l.classified ==
l.cluster_id = Cluster_id;
//Update repulsion of all unclassified genes present in current cluster C
FOR z from 0 to G do
IF z.classified == 0 OR z. cluster_.id == Cluster_id do
z.repulsion += sum_DBK(z, Cluster_id));
End IF
End FOR
alpha = calculate();
cony = alpha x total_gene_cluster(Cluster_id);
z = find-minimum_repulsion();
IF z.repulsion < con, AND z > —1 do
Cluster_expand(z, Cluster_id);
End IF

Figure 4.3: Algorithm for Cluster expansion
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total_gene_cluster (Cluster _id)

count = 0;
FOR z from 0 to G do
IF z.cluster_id == Cluster.id do
count++;
End IF
End FOR

return count;

Figure 4.4: Algorithm for computing the cardinality of a cluster

sum_DBK (z, Cluster_id)

sum = 0;
FOR y from 0 to G do
IF y.cluster_id == Cluster_id do
sum += find_DBK(z, y);
End IF
End FOR

return sum,

Figure 4.5: Algorithm for computing the repulsion of a gene from a cluster

76



calculate()

count = 0;
FOR z from 0 to G do
IF z.classified == 0 do
count++;
End IF
End FOR
total_unclassified_pairs = (count * (count - 1))/2;
total_unclassified_.DBK = 0;
FOR z from 0 to G do
IF z.classified == 0 do
FOR y from 0 to G do
IF' y.classified == 0 do
total_unclassificd_DBK += find_ DBK(x, y);
End IF
End FOR
End IF
End FOR
total = (total_unclassified.DBK) / (total_unclassified_pairs);

return total;

Figure 4.6: Algorithm for computing «
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find_manimum _replusion()

min_repulsion = 99999.99;
min_rep_gene = -1;
FOR z from 0 to G do
IF z.classified == 0 do
IF z.repulsion < min_repulsion do
min_repulsion = z.repulsion;
min_rep_gene = z;
End IF
End IF
End FOR

return min rep_gene;

Figure 4.7: Algorithm for finding the gene with minimum repulsion to a cluster
4.5 Performance Evaluation

We implemented the GCA method in C in Linux environment and evaluated it

using the real-life datasets discussed in Chapter 3.

4.5.1 Results

We exhaustively test our graph based clustering algorithm on Dataset 1 taking
10%, 20%, 50%, 75% and 100% of the data. The exhaustive results are shown
in Figure 4.8 and Figure 4.9 for 20% and 75% of the data from Dataset 1. From

these detailed experiments we come to the following conclusions.

1. Most gene profiles are flat and do not significantly differ from others, and

2. Most genes have low variation over time.

Due to these reasons, the cluster space becomes cluttered with unimportant gene

profiles making it difficult to extract real cluster structures. Therefore, we remove
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genes with low vanation as well as flat gene profiles All other authors do the

same

When we apply the filtering process on Dataset 1, we obtain a reduced gene

set consisting of 800 genes

We test our method on the previously published dataset of ([CCW*98] to
determine whether 1t can quickly and automatically find known patterns without
using prior knowledge In [CCW*98], expression levels of 6,218 yeast ORFs were

measured at 17 time points

Similar to [TSM*99], our method can also automatically and quickly (com-
putation time 15 07 sec on a Pentium IV machine having 1GHz speed and 128MB
RAM 1n Linux environment) extract the cell-cycle periodicity The trends of the
clusters (a total of 30 clusters were detected) 1dentified by our method are shown
in Figure 4 10, with expression levels along y-axis and time points along x-axis
The clusters (for example 0, 1, 7) contain genes with peak expression 1n late G1
phase are shown 1n Figure 4 10 and Figure 4 11 The genes agree well with those

identified by visual inspection

Table 4 1 Rand index on Yeast CDC28 data for the clustering method GCA

Method Setting Rand index
GCA Euclidean dist 0 789
GCA Pearson’s corr 0778
GCA DBK 0 806

4.5.2 Cluster Quality

To assess the quality of our method, we need an objective external criterion In
order to validate our clustering result, we employed Rand index, Homogeneity,

Silhouette mndex [JTZ03] and z-score as the measuies of agreement

In this section, the reported Rand index is averaged over 20 repeated exper-
ments According to [TSM*99], the total number of clusters contamed in Dataset

115 30 The results found on comparing the GCA using Euclhidean distance, Pear-
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Figure 4.8: Some of the clusters obtained when our algorithm is used on 20% of
Dataset 1

Figure 4.9: Some of the clusters obtained when our algorithm is used on 75% of
Dataset 1
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Figure 4.10: The trends of the clusters detected on Dataset 1




Figure 4.11: Cluster 1 consisting of 46 genes. The genes obtain peak expression

in late G1 phase

son’s correlation and DBK is given in Table 4.1. Clearly our measure performs
better than Euclidean distance and Pearson’s correlation when used with GCA.
Due to non-availability of the functional classification for the other datasets, we

can not compile the Rand index for them.

i. Cluster Homogeneity .

Homogeneity measures the quality of clusters on the basis of the definition of
a cluster: objects within a cluster are similar while objects in different clusters
are dissimilar. Homogeneity measure used in this section is that of the overall

average homogeneity used in [SMKSO03]. It is calculated as follows.

a) Compute the average value of similarity between each gene g, and the cen-

troid of the cluster to which it has been assigned.

1

Z Svmalarity(g,, 9)) (4.6)

g.€C,

where g; is the centroid of C,.

b) Calculate the average homogeneity for the clustering C weighted according

to the size of the clusters as,

1 .
Hug = 12 O ICIH(C)). (47)
Gl &2
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The homogeneity values for GCA and some other algorithms are reported in
Table 4.2. It can be observed that the homogeneity value for GCA is the highest
from which we can conclude that the coherence of the clusters produced by GCA

are better than those produced by competing algorithms.

1i. Silhouette Index

Silhouette index [Rou87] is used to assess the quality of any clustering solution.
This index reflects the compactness and separation of clusters. It is calculated

as follows.

a) Compute a(g,), i-e., the average distance of gene ¢ to the the other genes of

cluster A to which it belongs, i.e., g, € A.

b) Compute d(g,, Ck) where d(g,, Ci) is the average distance of gene g, from
the genes of cluster Cy where g, ¢ C;.

c) Compute b(g,), where b(g,) = min{d(g,,C)} where C = {C},Cs,...,Cn}
and A ¢ C, i.e., b(g,) represents the distance of gene g, to its closest cluster.

Now compute the silhouette width of gene g, as

b(gz) - a(gz)
maz{a(g.), ()}

S(g) = (4.8)

d) Compute silhouette index by finding the average of S(¢) overi = 1,2,...,G,
where G is the total number of genes:

S = average{(S(¢.)}- (4.9)

The value of silhouette index varies from -1 to 1 with higher values indicating
better clustering. We observe from Table 4.3 that the silhouette index for clusters
produced by GCA is superior then the values for clusters produced by other

algorithms.

iii. Z-score

For evaluating the quality of clusters produced by different algorithms, we need

an objective external criterion. We obtain a statistical rating of the relative
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Table 4.2: Homogeneity values for GCA and other comparable algorithms

Datasets || Method Applied || No. of Clusters || Threshold value || Homogeneity
Dataset 2 k-means 16 NA 0.671
SOM 16 4 x 4 grid 0.710
CLICK 3 Default value 0.549
DCCA 15 NA 0.818
GCA 16 NA 0.778
Dataset 3 k-means 119 NA ~0.553
SOM 47 10 x 12 grid 0.865
DCCA 4 NA 0.818
GCA 119 NA 0.844
Dataset 4 k-means NA 0.781
SOM 2 x 4 grid 0.772
CLICK Default value 0.676
DCCA 10 NA 0.834
GCA NA 0.878
Dataset 5 k-means NA 0.512
SOM 2 x 2 grid 0.562
CLICK Default value 0.729
DCCA 10 NA 0.812
GCA 10 NA 0.901
Dataset 6 k-means NA 0.551
SOM 2 x 2 grid 0.553
CLICK Default value 0.483
DCCA 10 NA 0.813
GCA 4 NA 0.898
Dataset 7 k-means NA 0.577
SOM 2 x 3 grid 0.514
CLICK Default value 0.501
DCCA 43 NA 0.699
GCA 5 NA 0.815
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Table 4.3: Silhouette Index for GCA and other comparable algorithms

Datasets Method Applied No. of Clusters || Silhouette Index
Dataset 2 | MOGA-SVM (RBF) 5 0.443
MOGA (without SVM) 5 0.439
FCM 6 0.387
Average linkage 4 0.439
SOM 6 0.368
DCCA 15 0.838
GCA 17 0.87
Dataset 4 | MOGA-SVM (RBF) 6 0.451
MOGA (without SVM) 6 0.487
FCM 5 0.405
Average linkage 6 0.412
SOM 7 0.482
CLICK 3 0.179
DCCA 10 0.910
GCA 8 0.933
Dataset 5 f MOGA-SVM (RBF) 4 0.431
MOGA (without SVM) 4 0.401
FCM 4 0.364
Average linkage 5 0.315
k-means 10 0.652
SOM 9 0.536
CLICK 6 0.449
DCCA 10 0.609
GCA 10 0.745
Dataset 6 | MOGA-SVM (RBF) 6 0.415
MOGA (without SVM) 6 0.395
FCM 8 0.299
Average linkage 4 0.356
SOM 6 0.324
GCA 14 0.631
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gene-expression activity shown by the genes associated in each cluster and the
GO terms. In order to validate our clustering result, we employ z-score [GRO02]
as the measure of agreement. Z-score [GR02] is calculated by investigating the
relation (mutual information) between a clustering obtained by an algorithm
and the functional annotation of the genes in the cluster. To compute this,
we use the Saccharomyces Genome Database (SGD) annotation of yeast genes,
along with the gene ontology (GO) developed by the Gene Ontology Consortium
[ABB*00]. A higher value of z-score indicates that genes are better clustered
by function, indicating a more biologically relevant clustering result. We use the
Gibbons ClusterJudge [GR02] tool to calculate z-scores. The concept of z-score

computation is as follows:

1. First, parse annotation from SGD of S. cerewsiae genes with GO attributes
in such a way that a gene-attribute table is produced in which a ‘1’ in the
position (1, 7) indicates that the gene ¢ is known to possess attribute 7, and
a ‘0’ indicates lack of knowledge about whether gene 7 possesses attribute

J or not.

2. From the gene-attribute table, construct a contingency table for each cluster-

attribute pair.

3. Compute total mutual information between the cluster result C' and all the

attributes A,s as:

MI(C, Ay, Ay, An,) = Y MI(C,A)=NsHc+ > Ha —) Hagc

where H 4, ¢ is the entropy for each cluster-attribute pair, H¢ is the entropy
for the clustering result independent of attributes, and H 4, is the entropy for

each of the N, attributes in the contingency table independent of clusters.
Z-score [GR02] of a clustering is computed as follows:

1. Compute Mutual Information (MI) for the clustered data (M I,.,) by using
the attribute database derived from GO/SGD;

2. Obtain a clustering by randomly assigning genes to clusters of uniform size.
Compute mutual information (M Lgndgom ), repeating until a distribution of

values is obtained;
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Table 4.4: z-scores for GCA, SOM and k-means for Dataset 1

Method Applied || No. of Clusters || z-score
k-means 30 12.56
SOM 30 14.44
GCA 30 16.81

Table 4.5: z-scores for GCA, SOM, DCCA, k-means and UPGMA for reduced
set of Dataset 7. DCCA is a divisive partitional algorithm reported in [BD08]

Method Applied || No. of Clusters || z-score
UPGMA 8 6.67
k-means 5 8.14

DCCA 8 9.41
SOM 8 8.16
GCA 5 9.62

3. Compute z-score as z = (M I eq1— M I 4ngom) / Srandom Where, mean of the MI-
values computed for randomly obtained cluster is M1, n40m and standard

deviation of these MI-values iS Srandom)-

The z-score represents a standardized distance between the MI value obtained
by clustering and those MI values obtained by random assignment of genes to
clusters. The larger the z-score, the greater the distance. Higher z-scores indicate

that the clustering results are more significantly related to gene function.

Also, we see in Table 4.4 that GCA performs better than other algorithms
in terms of z-score measure of cluster validity. A higher z-score value indicates
more biologically relevant clusters. The z-score values of clusters produced by
GCA along with those produced by other algorithms for Dataset 1 and Dataset
7 are given in Table 4.4 and Table 4.5, respectively. We make the observation
from the tables that GCA can cluster better than the other algorithms in terms

of z-score and can hence give more biologically significant clusters.
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4.5.3 Biological Significance

The biological relevance of a cluster can be verified based on the gene ontology
(GO) annotation database located at http://db.yeastgenome.org/cgi-bin/GO/go
TermFinder. It is used to test the functional enrichment of a group of genes
in terms of three structured controlled ontologies, mz., associated biological pro-
cesses, molecular functions and biological components. The functional enrich-
ment of each GO category in each of the clusters obtained is calculated by its
p-value. The p-value is computed using a cumulative hypergeometric distribu-
tion. It measures the probability of finding the number of genes involved in a
given GO term (i.e., function, process, component) within a cluster. From a given

GO category, the probability p of getting k or more genes within a cluster of size

n, 18 defined as [THC*99):
f 9g-f
i n—i

e

where f and g denote the total number of genes within a category and within

p=1-

the genome respectively. The genes in a cluster are evaluated for the statistical
significance by computing the p-value for each GO category. This signifies how
well the genes in the cluster match with the different GO categories. p-value
represents the probability of observing the number of genes from a specific GO
functional category within each cluster. A low p-value indicates the genes be-
longing to the enriched functional categories are biologically significant in the

corresponding clusters.

To compute the p-value, we used the software FuncAssociate [B*03]. FuncAs-
sociate [B*03] computes the hypergeometric functional enrichment score based
on Molecular Function and Biological Process annotations. The resulting scores
are adjusted for multiple hypothesis testing using Monte Carlo simulations. Fun-
cAssociate is a Web-based tool that accepts as input a list of genes and returns
a list of GO attributes that are over-represented (or under-represented) among

the genes in the input list.
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To test the biological significance of the clusters obtained by GCA, we use a
reduced form of Datasct 3 The datasct 1s reduced by filtering out low vanance
and low entropy genes from the data The enriched functional categories for
each cluster obtained by the GCA method on the reduced form of Dataset 3
are histed in Table 4 6 The functional enrichment of each GO category in each
of the clusters 1s calculated by its p-value Of the 16 clusters obtained from
the dataset, the cluster C6 contains several enriched categories on ‘ribosome’
The highly enriched category m C6 1s the ‘ribosome’ with a p-value of 3 6e-
13 The GO category ‘nbonucleoprotein complex’ 1s also highly enriched in this
cluster with p-value of 1 1 x 107*2 Cluster C1 contains genes involved 1n different
biological processes Cluster C2 contains genes involved in different ribosomal
functions C2 contains several enriched categories on ‘biogenesis’ The highly
enriched categories in C2 are the ‘ribosome biogenesis and assembly’ with p-
value of 15 x 107!, ‘nibonucleoprotemn complex biogenesis and assembly’ with
p-value of 2 8 x 1071% and ‘nbosomal large subunit biogenesis and assembly’ with
p-value of 49 x 107%7 Cluster C5 contains genes involved 1n energy synthesis
The highest enriched category in C5 1s ‘oxadative phosphorylation” with p-value
of 14 x 107! C5 also contains several enriched categories on ‘mitochondria’
Cluster C6 contains the highly enriched cellular components of ‘non-membrane-
bounded organelle’ and ‘intracellular non-membrane-bounded organelle’ with a p-
value of 2 7x 107 each In the cluster C7 all the functionally enriched categories
are from Biological Process annotation with ‘trehalose metabolic process’ with a
p-value of 2 5 x 107% being the highly enriched one C7 contains genes involved
in the functions of metabolism Cluster C8 contains several enriched categories
on ‘catabolic process’ with ‘cellular catabolic process’ having a p-value of 1 x
107% being the highly enrniched category C8 contains functional categories on
energy synthesis and metabolic pathways Cluster C9 contains genes involved
in metabolic pathways with ‘mitochondrial respiratory chain’ having the hghest
p-value of 4 x 107°7  From the Table 4 6, we can conclude that GCA shows a
good enrichment of functional categories and therefore project a good biological

significance
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Table 4.6: P-valu

of Dataset 3

Cluster | P-value GO number GO category
C1 le-10 G0O:0006119 oxidative phosphorylation

5.4e-10 G0:0006091 generation of precursor metabo-
lites and energy

2.8¢-08 G0:0022900 electron transport chain

2.8e-08 G0:0022904 respiratory electron transport
chain

2.8e-08 G0:0042773 ATP synthesis coupled electron
transport

2.8e-08 GO:0042775 organelle ATP synthesis coupled

. electron transport

2.8e-08 GO:0055114 oxidation reduction

7.2e-08 G0:0005739 mitochondrion

7.9e-08 G0:0044455 mitochondrial membrane part

1.5e-07 G0:0015078 hydrogen ion transmembrane
transporter activity

1.9e-07 G0:0005743 mitochondrial inner membrane

2.8e-07 GO:0015077 monovalent
inorganic cation transmembrane
transporter activity

3.3e-07 G0:0019866 organelle inner membrane

3.5e-07 G0:0031966 mitochondrial membrane

7.6e-07 GO:0005740 mitochondrial envelope

1.7¢-06 G0:0016310 phosphorylation

2e-06 G0:0005746 mitochondrial respiratory chain

2.5e-06 GO:0006793 phosphorous metabolic process

2.5e-06 GO:0006796 phosphate metabolic process

1.2e-05 G0:0022890 inorganic cation transmembrane
transporter activity

1.4e-05 G0O:0044429 mitochondrial part

2.1e-05 G0:0031967 organelle envelope

2.2e-05 | GO:0031975 envelope
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Cluster | P-value GO number GO category
Cl1 5.8e-05 G0:0006122 mitochondrial electron transport,
ubiquinol to cytochrome c
7.6e-05 G0:0000276 mitochondrial proton-
transporting ATP synthase com-
plex, coupling factor F(o)
7.6e-05 G0:0006123 mitochondrial electron transport,
cytochrome ¢ to oxygen
7.6e-05 G0:0045263 proton-transporting
ATP synthase complex, coupling
factor F(o)
8.5e-05 G0:0016491 oxidoreductase activity
9.5¢-05 GO:0009060 aerobic respiration
C2 1.5e-11 G0:0042254 ribosome biogenesis and assembly
4e-11 G0:0005730 nucleolus
2.8e-10 G0:0022613 ribonucleoprotein complex bio-
genesis and assembly
3e-10 G0O:0043228 non-membrane-bounded organelle
3e-10 G0:0043232 intracellular
non-membrane-bounded organelle
4.9e-07 G0O:0042273 ribosomal large subunit biogenesis
and assembly
9.4e-07 G0:0006364 rRNA processing
1.1e-06 G0:0016072 rRNA metabolic process
1.8e-06 G0:0031981 nuclear lumen
1.7e-05 G0:0030529 ribonucleoprotein complex
C3 7.7e-10 G0:0042254 ribosome biogenesis and assembly
8.6e-10 G0:0022613 ribonucleoprotein complex bio-
genesis and assembly
3.4e-05 G0:0042273 ribosomal large subunit biogenesis
and assembly
3.5e-05 G0O:0004410 homocitrate synthase activity
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Cluster | P-value GO number GO category
C5 1.4e-14 G0:0006119 oxidative phosphorylation

8.5e-14 G0:0044455 mitochondrial membrane part

6.3e-11 G0:0015078 hydrogen ion transmembrane
transporter activity

9.8e-11 G0O:0006091 generation of precursor metabo-
lites and energy

1.4e-10 GO:0015077 monovalent
inorganic cation transmembrane
transporter activity

1.8e-09 G0:0005753 mitochondrial
proton-transporting ATP
synthase complex

1.8e-09 G0:0045259 proton-transporting ATP
synthase complex

3.8e-09 G0:0005743 mitochondrial inner membrane

7.2e-09 G0:0019866 organelle inner membrane

le-08 G0O:0015985 energy coupled proton transport,
down electrochemical gradient

1e-08 G0:0015986 ATP synthesis coupled proton
transport

1.3e-08 GO:0006754 ATP biosynthetic process

1.3e-08 G0O:0046034 ATP metabolic process

2e-08 G0:0022890 inorganic cation transmembrane
transporter activity

2.6e-08 G0:0005746 mitochondrial respiratory chain

2.6e-08 GO:0009144 purine nucleoside triphosphate
metabolic process

2.6e-08 G0:0009145 purine nucleoside triphosphate
biosynthetic process

2.6e-08 G0:0009205 purine ribonucleoside

triphosphate metabolic process
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Cluster | P-value GO number GO category
C5 2.6e-08 G0:0009206 purine ribonucleoside

triphosphate biosynthetic process

4e-08 G0O:0009199 ribonucleoside triphosphate
metabolic process

4e-08 GO:0009201 ribonucleoside triphosphate
biosynthetsic process

4.4e-08 G0:0016310 phosphorylation

5.8e-08 GO:0009142 nucleoside triphosphate biosyn-
thetic process

6.2e-08 GO0:0008324 cation transmembrane
transporter activity

7e-08 G0:0016469 proton-transporting  two-sector
ATPase complex

7.1e-08 G0O:0031966 mitochondrial membrane

8.3¢-08 G0:0009141 nucleoside triphosphate metabolic
process

1.6e-07 G0:0005740 mitochondrial envelope

1.6e-07 G0O:0006818 hydrogen transport

1.6e-07 G0:0015992 proton transport

2.7e-07 G0:0015075 ion transmembrane transporter
activity

6.4e-07 G0:0022900 electron transport chain

6.4e-07 G0:0022904 respiratory  electron  transport
chain

6.4e-07 G0:0042773 ATP synthesis coupled electron
transport

6.4e-07 GO:0042775 organelle ATP synthesis coupled
electron transport

6.4e-07 G0:0055114 oxidation reduction

6.6e-07 GO:0006793 phosphorous metabolic process

6.6e-07 G0:0006796 phosphate metabolic process
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Cluster | P-value GO number GO category
C5 8.1e-07 G0:0009152 purine ribonucleotide biosynthetic

process

9.1e-07 G0O:0009150 purine ribonucleotide metabolic
process

1e-06 G0:0015672 monovalent  inorganic  cation
transport

1.1e-06 G0:0009260 ribonucleotide biosynthetic
process

1.3e-06 G0:0009259 ribonucleotide metabolic process

1.6e-06 G0:0006164 purine nucleotide biosynthetic
process

1.9e-06 G0:0006163 purine  nucleotide  metabolic
process

2.5e-05 GO:0000275 mitochondrial proton-
transporting ATP synthase com-
plex, catalytic core F(1)

2.5e-05 GO:0045261 proton-transporting
ATP synthase complex, catalytic
core F(1)

2.8e-05 G0:0044429 mitochondrial part

4.3e-06 G0:0046933 hydrogen ion transporting
ATP synthase activity, rotational
mechanism

4.7e-06 G0:0031967 organelle envelope

4.9¢-06 G0:0031975 envelope

8.2e-06 G0:0022891 substrate-specific transmembrane
transporter activity

1.5e-05 GO:0005739 mitochondrion

2e-05 GO:0046961 hydrogen

ion transporting ATPase activity,

rotational mechanism
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Cluster | P-value GO number GO category
C5 2.5e-05 G0:0009165 nucleotide biosynthetic process
2.7e-05 G0:0022857 transmembrane transporter
activity
2.8¢-05 G0:0016491 oxidoreductase activity
3.6e-05 G0:0019829 cation-transporting ATPase
activity
4.1e-05 G0:0005754 mitochondrial proton-
transporting ATP synthase, cat-
alytic core
4.1e-05 G0:00452671 proton-transporting ATP
synthase, catalytic core
4.3e-05 G0:0022892 substrate-specific transporter
activity
5.3e-05 GO0:0005751 mitochondrial respiratory chain
complex IV
5.3e-05 G0:0006123 mitochondrial electron transport,
cytochrome c to oxygen
5.3e-05 GO:0045277 respiratory chain complex IV
6.9e-05 GO:0033178 proton-transporting
two-sector ATPase complex, cat-
alytic domain
C6 2.7e-14 G0:0043228 non-membrane-bounded organelle
2.7e-14 G0:0043232 intracellular
non-membrane-bounded organelle
3.6e-13 G0:0005840 ribosome
1.1e-12 G0:0030529 ribonucleoprotein complex
1.5e-12 GO:0042254 ribosome biogenesis and assembly
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Cluster | P-value GO number GO category
Cé 1.7e-12 G0:0022613 ribonucleoprotein complex bio-

genesis and assembly

2.2e-12 G0:0022626 cytosolic ribosome

9.5e-12 G0:0003735 structural constituent of ribosome

3e-11 GO:0044445 cytosolic part

1.7e-10 G0:0033279 ribosomal subunit

3.7e-09 G0:0005198 structural molecule activity

2.6e-08 G0:0044249 cellular biosynthetic process

3.1e-08 G0O:0022625 cytosolic large ribosomal subunit

4.4e-08 GO:0005730 nucleolus

3.4e-07 G0:0006412 translation

6.8e-07 G0:0015934 large ribosomal subunit

1.1e-06 G0:0009058 biosynthetic process

1.8e-06 G0:0010467 gene expression

4.1e-06 G0O:0006996 organelle organization  and
biogenesis

6.5e-06 G0:0009059 macromolecule biosynthetic
process

1.6e-05 G0:0032991 macromolecular complex

1.6e-05 G0:0006364 rRNA processing

1.9e-05 G0:0016072 rRNA metabolic process

2.5e-05 GO:0022627 cytosolic small ribosomal subunit

2.6e-05 G0:0019843 rRNA binding

3e-05 G0O:0005829 cytosol

5.5e-05 G0O:0044452 nucleolar part

8e-05 G0:0031981 nuclear lumen
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Cluster | P-value GO number GO category
C7 2.5e-09 G0:0005991 trehalose metabolic process

1.9e-08 G0:0005975 carbohydrate metabolic process

2.6e-08 GO:0044262 cellular carbohydrate metabolic
process

5.8e-08 G0:0005992 trehalose biosynthetic process

5.8e-08 G0:0046351 disaccharide biosynthetic process

1.9e-07 G0:0046164 alcohol catabolic process

9.4e-07 G0:0005996 monosaccharide metabolic process

1.1e-06 GO:0009946 alpha, alpha-trehalose-phosphate
synthase complex (UDP-forming)

2.5e-06 GO:0046365 monosaccharide catabolic process

2.7¢-06 G0:0016052 carbohydrate catabolic process

2.7e-06 G0:0044275 cellular carbohydrate catabolic
process

4.3e-06 G0:0006096 glycolysis

6e-06 G0:0019200 carbohydrate kinase activity

6.3e-06 GO0:0005984 disaccharide metabolic process

7.1e-06 GO:0006066 alcohol metabolic process

8e-06 G0O:0019318 hexose metabolic process

1.9e-05 G0:0006007 glucose catabolic process

2.1e-05 G0:0006006 glucose metabolic process

3e-05 G0:0019320 hexose catabolic process

4.3e-05 G0:0004186 carboxypeptidase C activity

4.3e-05 G0:0043043 peptide biosynthetic process

4.3e-05 G0:0046937 phytochelatin metabolic process

4.3e-05 G0:0046938 phytochelatin biosynthetic
process

7.2e-05 G0O:0044265 cellular macromolecule catabolic

process

97




Cluster | P-value GO number GO category
C8 le-05 G0:0044248 cellular catabolic process
1.8e-05 G0:0006099 tricarboxylic acid cycle
1.8e-05 G0:0046356 acetyl-CoA catabolic process
1.9e-05 G0O:0009056 catabolic process
2e-05 G0:0015980 energy derivation by oxidation of
organic compounds
3.1e-05 GO0:0006084 acetyl-CoA metabolic process
3.1e-05 GO:0009109 coenzyme catabolic process
3.1e-05 G0:0004867 serine-type endopeptidase
inhibitor activity
3.5e-05 GO:0051187 cofactor catabolic process
8e-05 G0:0006091 generation of precursor metabo-
lites and energy
C9 4e-07 G0:0005746 mitochondrial respiratory chain
1.9e-06 GO0:0004061 peroxidase activity
1.9e-06 GO:0016684 oxidoreductase activity, acting on
peroxide as acceptor
5.2e-06 G0:0006091 generation of precursor metabo-
lites and energy
5.4e-06 G0:0016209 antioxidant activity
9.4e-06 G0:0005743 mitochondrial inner membrane
1.4e-05 G0:0006099 tricarboxylic acid cycle
1.4e-05 G0:0046356 acetyl-CoA catabolic process
1.4e-05 G0:0019866 organelle inner membrane
2.4e-05 G0:0006084 acetyl-CoA catabolic process
2.4e-05 G0:0009109 coenzyme catabolic process
2.7e-05 GO:0051187 cofactor catabolic process
3.1e-05 G0:0016491 oxidoreductase activity
5.3e-05 G0:0044429 mitochondrial part
6.2e-05 G0:0005740 mitochondrial envelope
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4.6 Discussion

This chapter presents a parameter-less clustering technique that uses a dynami-
cally calculated threshold to assign cluster membership. Our experimental results
show that the clusters obtained are similar to those obtained by [TSM*99]. The
GCA method also obtains better Rand index, homogeneity, silhouette and z-score
values than several competitors, showing that GCA can cluster gene expression
data effectively. Unlike hierarchical algorithms, GCA does not build a tree of
clusters but a set of disjoint clusters. In contrast with SOM [Koh95], it does not
assume the number of clusters and spatial structure, but determines the cluster
number and structure based on the dataset itself. Also, the clusters obtained by

GCA is found to be of high biological significance.
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Chapter 5

Coherent Pattern Extraction

using Maximal Frequent Patterns

This chapter presents a frequent itemset nearest neighbor based technique for
clustering gene expression data. It attempts to find finer clusters over the gene
expression data by integrating the nearest neighbor clustering technique with
frequent itemset discovery. The advantage of using frequent itemset discovery is
that it can capture relations among more than two genes while normal similarity
measures can calculate the proximity between only two genes at a time. We
experimented with FINN using real-life datasets and we observe that it can find

the finer clustering of the dataset.
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5.1 Introduction

Association rule learning 1s a popular and well researched method for discovering
interesting associations and/or correlation relationships among large set of data
items Association rules show attribute value conditions that occur frequently
together in a given dataset Association rule mining has received considerable
attention since 1ts mtroduction in [ATS93] A typical and widely-used example of
association rule mining 1s Market Basket Analysis The market-basket problem
assumes we have some large number of items, e g, "bread”, ” mulk”, "butter”
Customers fill their market baskets with some subset of the items, and we get
to know what 1tems people buy together An example rule for the supermarket
could be {malk,bread} — {butter} meamng that if milk and bread 1s bought,
customers also buy butter Marketers use this information to position items, and

control the way a typical customer traverses the store

Association rules provide information of this type in the form of "if-then”
statements These rules are computed from the data and, unlike the if-then rules
of logic, association rules are probabilistic in nature Association mining analysis
1s a two part process First, 1s the 1dentication of sets of 1tems or itemsets within
the dataset Second, the subsequent derivation of inferences or rules from these

itemsets

Association rules follow the form X — Y where X and Y are disjoint sets
of 1items (or 1temsets) 1e, X and Y are subsets of the set of items A mn the
transaction database T X is called the antecedent and Y the consequent of the
rule The intended meaning of such a rule 1s that data instances that contain X
are likely to contain Y as well The extent to which the rule applies to a given
dataset can be measured using various metrics including support and confidence
The support of a rule 1s the probability of X and Y occurring together i an
instance, P(X and Y) The confidence of a rule 1s the conditional probability of ¥
given X, P(Y | X) Here, probability 1s taken to be the observed frequency 1n the
underlying dataset An itemset X C A 1s said to frequent in T wrt support s,
if support(X) > s A frequent set i1s a mazimal frequent set if 1t 1s a frequent set
and no superset of this 1s a frequent set Association rules are required to satisfy

a user-specified mimimum support and a user-specified mimmimum confidence at

101



the same time. To achieve this, association rule generation is a two-step process.
First, minimum support is applied to find all frequent itcmsets in a database. In
a second step, these frequent itemsets and the minimum confidence constraint are
used to form rules. While the second step is straight forward, the first step needs
more attention. We next present a review of some selected association mining

techniques.

5.2 Related Work

A review of frequent pattern mining strategies is given in [ADRB*09]. This
section discusses various methods for gene association analysis in DNA microarray

gene expression data.

5.2.1 Apriori Algorithm

The Apriori algorithm [ATS93| is a pioneering algorithm for association rule
mining; it finds all frequent itemsets whose supports are above a threshold. It
is based on the fact that all subsets of a frequent itemset are also frequent. The
algorithm first makes one pass over the dataset and finds the large items. Then
the algorithm makes many passes over the data. Each pass starts with the seed
set of large itemsets which are used to generate new potentially large itemsets
called candidate itemsets. Then, support for each candidate itemset is found
during the pass over the data and actual large itemsets are determined. These
large itemsets become the seed for the next pass. This process continues till no
more large itemsets can be found. The algorithm is very easy to implement and
finds all possible frequent itemsets. However, it is expensive from the view point

of storage as well as execution time.

5.2.2 AprioriTid Algorithm

AprioriTid algorithm [JPZ03b] is a modification of the Apriori algorithm. It
generates the candidates using the same candidate generating function as Apriori.

The main feature of the algorithm is that the original database is not used after
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the first pass Instead a data structure Cy 1s used Each member of the set
Cy' 15 of the form < TID,{X;} >, where X} 1s a potentially large k-itemset
present 1n the transaction with the identifier TID For k = 1, Ci’ 1s the database
itself with each item « replaced by itemset {:}. For k > 1, the member of C}'
corresponding to a transaction t 18 < t TID, {c € C¢ | ¢ contammed mn t} > If
a transaction does not contamn any candidate set, C}' does not have any entry
for that transaction So the number of entries in C}’ gets reduced in successive
passes resulting in fewer transactions to be scanned in each subsequent pass One
shortcoming of the algorithm 1s the creation and updation of Ci', which takes
considerable amount of execution time It duffers from Aprior1 in that 1t scans
the database once and uses a better data structure for the rest of the iterations
It suffers from the similar disadvantages as Apriort and 1n addition requires extra
memory and extra disk space for the data structure Moreover, to maintain the

data structure extra time 1s required

5.2.3 AprioriHybrid Algorithm

AprioriHybrid algorithm [JPZ03b) 1s basically a fusion of Apriot: and AprioriTid
It uses Aprion for the first few passes and AprioniTid for the remaining passes
based on some threshold value, 2 e , when 1t finds that candidates can be stored
i memory, 1t uses Apriorni’Tid It has the advantages of both the algorithms and
1s superior to both However, 1t also suffers from the disadvantages of both the

algorithms

5.2.4 FP-Tree Growth Algorithm

The FP-growth algonithm [HPY00] finds frequent 1tcmscts without candidate gen-
eration The algorithm 1s based on a data structure called FP(Frequent Pattern)-
tree, which 1s a prefix tree of the transactions of the database such that each path
represents a set of transactions that share the same prefix The algorithm first
scans the database once to find frequent 1tems in the database Infrequent items
are removed from the database and items in the transactions are rearranged in

the descending order of frequency Then, the least frequent items are removed
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from the transactions, resulting 1n a reduced (projected) database This projected
database 1s processed to find ficquent 1temsets The process 1s repeated with the
next least frequent item The FP-tree contains all necessary information about
the transactions and the frequent 1temsets So to find any information about the
transactions and the frequent 1temsets, just the tree needs to be searched The
FP-growth algorithm 1s one of the most efficient algonthms for finding frequent
1temsets from large databases The FP-tree algorithm [HPY00] does not rely on
a candidate generation step and 1s therefore faster than the Aprion algonthm
However, the algorithm takes much time to construct the FP-tree, especially for

higher dimensions

Association rules, used widely in the area of market basket analysis, can be
applied to the analysis of expression data as well Association rules can reveal bi-
ologically relevant associations between different genes or between environmental
effects and gene expression In the analysis of gene expression data, the items in
an assoclation rule can represent genes that are strongly expressed or repressed,
as well as relevant facts describing the cellular environment of the genes (eg a
diagnosis for a tumor sample that was profiled, or a drug treatment given to cells
1 the sample before profihng) An example of an association rule mined from
expression data might be {cancer} — {gene A 1, gene B |, gene C 1}, meaning
that, for the data set that was mined, in most profile experiments where the cells
used were cancerous, gene A was measured as being up (1e highly expressed),

gene B was down (1 e highly repressed), and gene C was up, altogether

Recently, several authors have proposed the use of association rules for the
analysis of gene expression data [CH03, TA02, CSCR*06] in order to extract as-
soclations and relationships among subsets of genes This approach avoids some
of the drawbacks of standard clustering algorithms and has been successful 1n
extracting new and informative gene relationships A major disadvantage of the
association rules discovery method 1s the large number of rules that are gener-
ated This becomes a major problem in many applications In several studies,
post-processing prumng methods have been proposed to reduce the number of
generated rules For example, 1 the context of gene expression, Creighton and
Hanash [CHO3] impose constraints on the size of the rules, extracting only those

formed by seven or more genes while Tuzhilin and Adomavicius [TA02] propose

104



several post-processing operators to select and explore interesting rules from the
whole set. In [CSCR'06], another method for the integrative analysis of mi-
croarray data based on the association rules discovery technique is presented.
The approach integrates gene annotations and expression data to discover in-
trinsic associations among both data sources based on co-occurrence patterns.
Filter options have been used to eliminate irrelevant and redundant associations.
This option drastically reduces the number of associations to be examined. In
[GWBO*07], the authors propose a new similarity measure that can be applied
together with hierarchical clustering leading to grouped similar patterns. The
mining part first constructs a compact data structure called Gene Profile tree (or

GP-tree), from which the frequent co-regulated gene profiles are extracted.

5.3 Motivation

In this chapter, we present a finer clustering method that integrates a traditional
clustering technique with frequent itemset discovery. The gene expression dataset
is encoded in binary with respect to correlated genes. Frequent itemset mining
is then run on this data to discover the maximal frequent set(s). This maximal
frequent set gives the core genes in a cluster. Cluster expansion proceeds with
this set of core genes using a shared neighbor approach. Previous authors have
applied frequent itemset mining to gene expression data. However, to the best
of our knowledge, an approach similar to the one reported in this chapter has
not yet been explored in the domain of gene expression datasets. The advantage
of our method is that it produces finer clustering of the dataset. Also, it avoids
redundant checking and guarantees to form clusters. The advantage of using
frequent itemset discovery is that it can capture relations among more than two
genes while normal similarity measures can calculate the proximity between only

two genes at a time.
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5.4 Frequent Itemset Mining and Nearest Neigh-
bor Clustering (FINN)

The FINN algorithm exploits frequent itemsets and uses a nearest neighbor ap-
proach for clustering gene sets. Most work related to the application of association
rule mining on gene expression profiles relies on discretization of the data before
applying any data mining technique. Although discretization may imply loss of
information, it also alleviates noise [CHO3], [CSCR*06]. The FINN algorithm
works in three phases. In the first phasc, the gene expression data D¢ is trans-
formed into a 0-1 transaction matrix. The second phase finds maximal frequent
itemsets using a frequent itemset mining algorithm such as Apriori or FP-tree
Growth algorithm. The third phase is dedicated to the task of clustering using a

shared nearest neighbor based approach.

5.4.1 Phase I: Transformation from Gene Expression Ma-

trix to Transaction Matrix

The gene expression dataset Dy is a G x T matrix of expression values where
G is the number of rows (genes) and T is the number of columns (time points)
as shown in Equation 5.1. Using our dissimilarity measure between the genes,
we build a G x G dissimilarity matrix for the whole dataset. We introduce some

dcfinitions as we proceed with the description of our method.

Definition 5.1. Nearest Neighbor of a gene

A gene g; is the nearest neighbor of a gene g, if DBK(g,,g,) < 61, where 6; is
the nearest neighbor threshold and DBK is our dissimilarity measure discussed
in Chapter 3.

From the nearest neighbor lists, we build the G x G gene-gene transaction
matrix, Tg, of zeroes and ones (Equation 5.2). For each gene g,, a T-pattern of
0’s and 1’s is obtained with 1 if a gene g, is neighbor of g, and 0 otherwise as
given in (Equation 5.3).
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all a12 ...... alT
a21 a22 ...... a2T
Dg=| (5.1)
a‘Gl aGZ ...... aGT ]
B T
tll t12 ...... th
toy tog oo toc
Te = (5.2)
] tGl tG2 ...... tGG ]

1if DBK(g.,9,) < 61, where1=1,2,---G;
Te =1, = 7=12--Gand1+#}. (5.3)
0 otherwise

Pruning

Those transactions are pruned to satisfy the following conditions.

i. In the transaction matrix, the value of t,,, where ¢ = j is set to zero since

a gene does not contribute to frequent itemset generation with itself.

ii. In this transaction matrix, if for a particular row 7 the value of ¢,, across
all 7 conditions are zero and the same applies for column 7 and all 7 rows,

that i** row and 7" column both are discarded.

These two steps reduce the size of the transaction matrix considerably.

Phase II now uses T¢ to calculate the frequent itemset using FP-tree Growth

algorithm.

5.4.2 Phase II: Maximal Frequent Itemset Generation

In this phase, we use the FP-tree Growth algorithm to generate maximal frequent

itemset(s) (MFIS) at support threshold sup.%. The gene-gene G x G transaction
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matrix, Tg is fed as input along with a user defined support threshold to obtain
frequent itemsets. The maximal frequent itemset obtained from this phase gives

us the set of core genes. The identification of core genes is done as follows.

o If only one MFIS is obtained at sup.% support, the genes within that set

become the set of core genes for a particular cluster.

e If more than one MFIS is obtained at sup.% support and there is a chain of
genes (items) from one MFIS to the other, the genes are merged together

into the set of core genes for a particular cluster.

e If more than one MFIS is obtained at sup.% support and there is no chain
of genes (items) from one MFIS to the other, each MFIS gives the set of

core genes for a different cluster.

This set of core genes provides the seeds for cluster expansion, giving the core
clustering of the datasct. Different clustering approaches such as hierarchical or
density based clustering can be applied on these core genes to get the final cluster.

The next phase gives a detailed overview of the clustering process.

The following definitions provide the foundation for the clustering process.

Definition 5.2. Density of a gene
The density of a gene g, is the number of nearest neighbors of that gene in the

gene-gene transaction matrix, Tg.

G
Density(g,) = th, where t,, = 1 (5.4)
3=1
Defination 5.3. Core genes
A set of core genes C,, that gives a cluster C, is defined by an MFIS, ie., a
maximal frequent itemset generated by the FP-tree Growth algorithm [HPY00].
Assume M FIS_set is the set of k maximal frequent itemsets generated by FP-
Tree growth algorithm. Then, the set of core genes, C, may be obtained as

follows:

Casel. Ifk =1, C,, = MFIS,, where 1 =1 and MFIS _set = MFIS,.
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Case 2. If k > 1 and MFIS,(N\MFIS, # ¢, fori # j,and i = 1,2,--- ,k, j =
1,2,---,k. Then, MFIS, = MFIS,|JMFIS, and k =k - 1.

Finally, we have,

MFIS set = MFIS,,MFIS,,--- ,MFISy. Then, C,, = MFIS; for i
1,2,-- k.

Here, each C, will give the set of core genes of different clusters and the total
number of clusters given by this MFIS set is k.
For better understanding of the above cases, we take the help of an example as

given next.

Case 1. Let MFIS_set = {1,2,4}, hence k = 1 and C,, = {1,2,4} which is the set

of core genes of a particular cluster.

Case 2. Let MFIS_set = {1,2,3,4},{6,7},{8,9},{1,4,10,11} where k = 4. Since,
MFIS, and MFIS, have the genes 1 and 4 as common, therefore we take
the union of these MFISs to obtain,

MFIS set ={1,2,3,4,10,11},{6,7}, {8, 9}, now k = 3.

Therefore, C,, = {1,2,3,4,10,11}, C,, = {6, 7}, and C,, = {8,9}.

Here, C,, consists of the core genes of a cluster. Similarly, C,, and C,, are
core genes of two different clusters. Thus, we obtain three different clusters

for the given example M FIS _set.

Definition 5.4. Shared Neighbors
Let C;, be the set of core genes and C,, = {g1,---, 9z} A gene g, is said to be
the shared neighbor of each of the core genes in C,,, if it satisfies the following
condition:

DBK(g1,94) <8 N DBK(g2,9q)

SN C’r,) =
(Cr., 9q) <BAN---NDBK(gs,g4) <8

(5.5)

where [ is the shared neighbor threshold.

Definition 5.5. Cluster

A cluster, C, can be defined as the set of core genes along with their shared
neighbors.
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Definition 5.6. Noise genes
A gene g, is said to be a noise gene, if it has no nearest neighbor gene g,, where

gm € G.

The following lemmas provide the foundation of FINN.

Lemma 5.1. A gene belonging to an MFIS has nearest neighbors.

Proof. A gene g, can be a member of an MFIS, iff g, is frequent over T at s%

support. Therefore, g, has nearest neighbors to it and hence the proof. O

Lemma 5.2. Seeds selected for cluster expansion cannot be noise.

Proof. Let g,, be the 7* gene in C,, and g, is a seed, ie., g, € C,,, where
Cr, = MFIS,. Then g,, has nearest neighbors according to Lemma 5.1. Again,
according to Definition 5 6, a gene with nearest neighbors cannot be a noise gene

and hence the proof. 4

5.4.3 Phase III: Clustering

We use a shared neighbor approach to expand the cluster from the core clustering
to obtain the final clusters. The clustering procedure is initiated from the set of
core genes, C,, (t = 1,---,k), identified in Phase II First, these genes are

labeled. The set of core genes are classified as follows.
If C., ={MFIS,} and MFIS, = {g1,92," " , 9=z},
Label {g1, 92, -, 9.} with the same cluster_id.

For a labeled C., of cardinality z, an arbitrary unclassified gene g, is a shared
neighbor if g, is a shared neighbor of each of the genes of that C,, w.r.t. 5. A
major advantage of FINN is that it eliminates exhaustive neighbor search over
Tc. If g, has dissimilarities less than a given shared neighbor threshold (8) with
each of the core genes of C,, g, is labeled with the same cluster_id as that of the
core genes of that C,, and grouped into the same cluster. This process of cluster

expansion is iterated until there are no more genes that can be merged into this
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cluster. The cluster thus obtained gives a final cluster. This process repeats for
all Cy,, where i = 1,--- | k. Finall, we obtain k clusters.

Once cluster expansion terminates, the row and column of each classified
gene in the transaction matrix T¢ are discarded from further consideration. This
step reduces the number of items (genes) which have to be checked for itemset
generation in the next iteration. The process then restarts phase IT with the new

compact transaction matrix T¢.

The steps of the FINN approach are given below.

i. Calculate the G x G dissimilarity matrix using our dissimilarity measure

and generate the G x G gene-gene transaction matrix.

ii. Generate maximal frequent itemsets (M FIS_set) using FP-tree algorithm

on TG.
ili. Classify each of the set of core genes, C, (M FIS,) with the same cluster_id.

iv. Select an unclassified gene, g4, and classify it with the same cluster_id as

that of C,, if g, is a shared neighbor of each of the core genes in C,,.
v. Repeat step iv till no more genes satisfy the shared neighbor condition

vi. Discard the rows and columns of the classified genes from the gene-gene

transaction matrix.
vii. Increment ¢ and goto step iv.

viii. Repeat through step ii. till all genes in T are classified.

The algorithm for FINN is given in Figure 5.1. The input to the algorithm
is the gene dataset, D¢; the number of genes, G; nearest neighbor threshold,
61, support count, sup.; and shared neighbor threshold, §. The first line of
the algorithm calls the create_transaction.matriz(6, G) module to create the
transaction matrix according to Figure 5.2. The module find DBK(i,7) cal-
culates the DBK distance between genes 7 and j. the M FIS_set will hold the
maximal frequent itemsets generated by the FP-Tree growth algorithm. The
call_FP Tree(sup_c) module of Figure 5.1 calls the FP Tree Growth algorithm of
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[HPYO00] to generate maximal frequent 1temset(s) (MFIS(s)) at support thresh-
old sup.c Each MFIS 1s a set of frequent genes The &k n the figure holds
the total number of MFIS generated by the FP Tree Growth algorithm The
check_ M FIS(MF1IS_set, k) module given in Figure 5 3, gives the set of core
genes for different clusters from the different maximal frequent sets stored 1n
MFIS set The total number of core gene sets 1s stored 1n actual_count, which
will finally be used to gencrate actual_count number of clusters The module
get_MFIS tokens(i, MFIS) inserts the 1! MFIS into MFIS tokens[i] which
1s of length k The getindividual token(l, MFIS tokens[i]) extracts each in-
dividual gene [ from the 1!* MFIS The process-M FIS() combines the MFIS
as explamed 1n Case 2 of Defimition 53 to obtain the set of core genes The
get_token_length(M FIS tokensincrement]) module gives the total number of
genes of each M F'IS _tokens[increment] and stores 1t in token_length The mod-
ule cluster(M FIS tokens[increment], token_length, clad, §) of Figure 54 gen-
erates the clusters using the shared neighbor clustering described before ~ The
results of clustering using the FINN method using our dissimilanity measure are

reported i Section 55 1

5.5 Performance Evaluation

We implemented the FINN method 1s implemented in Java in Windows environ-

ment and evaluated 1t using the real-hife datasets discussed in Chapter 3

5.5.1 Results of FINN Clustering

We exhaustively tested the FINN approach on all the datasets in Table 35 The
similarity matrix 1s fiist computed and the transaction matrix 1s obtained from
1t When the method 1s executed on Dataset 1, the clusters obtained agree well
with the functional classification of [CCW*98] Of the different clusters obtained
from Dataset 2, two are shown m this chapter The first cluster along with 1its
core genes of Dataset 2 1s shown in Figure 5 5 and Figure 5 6 The second cluster

results are shown i Figure 5 7 and Figure 5 8

When we execute the method on Dataset 4, we obtain eight clusters Some
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FINN(Dg, G, 61, sup_c, 3)
create_transaction.matriz(6,, G),
do
MFIS _set = 7,
k=-1,
actual_count = 0,
k = call_ FP Tree(sup_c),
IF k>1do
actual_count = check MFIS(MFIS set, k),
wmcrement = 0,
do
token_length = get_token length( M FIS tokens[increment]),
cluster (M FIS tokens[increment), token_length, cl1d, 8),
wncrement + +,
clad+ +,
WHILE actual_count — increment > 1,
End IF
Sup-c = sup-c-o,
WHILE sup.c > 10,

Figure 5.1 Algorithm of FINN
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create_transcation_matriz(6 G)
FOR ¢ from 0 to G do
FOR 7 from 0 to G do
disssmalarity = find_ DBK(z,7),
IF disssmularity < 6; do
transaction_matrizij|y] = 1,
ELSE
transaction_matrizijs] = 0,
End IF
End FOR
End FOR

Figure 5 2 Algorithm for computing the transaction matrix

of the clusters obtained are shown in Figure 5 10 and 5 12 and their respective
core genes are shown in Figure 59 and Figure 511 From these results, we can
also conclude that the core genes give the overall trend of the cluster Therefore,

this approach can also be used to detect the embedded clusters in the dataset

5.5.2 Cluster Quality

In this section, we validate the results obtained by the FINN approach using Av-
erage Homogeneity [SS00], Silhouette index [Rou87] and z-score [GR02} measures
of cluster validity The homogeneity and silhouette index values for FINN along
with some of the other algorithms are given in Tables 5 1 and 5 5 respectively

To test the performance of the clustering algorithm, we compare the clusters
wdentified by our method with the results from k-means, UPGMA, DCCA and
SOM The result of applying the z-score measure on Dataset 2 1s shown in Ta-
ble 53 Table 53 clearly shows that FINN outperforms k-means, DCCA and
SOM wrt the cluster quality The z-score values obtained from clustering the
reduced set of Dataset 3 1s given in Table 54 The Dataset 1s reduced by using
the technique in [HCMLO05] As can be seen 1 the table, our method performs
better than k-means, hierarchical clustering, DCCA and SOM
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check_ M FIS(MFIS _set, countl)
MFIS tokens|countl]
count = countl;
FOR 1 from 0 to countl-1 do
MFIS tokensli| = get_M FIS_tokens(1, MFIS_set);
End FOR
IF count > 1 do
FOR 7 from 0 to countl-1 do
FOR 7 from (i + 1) to countl-1 do
FOR [ from 0 to M FIS _tokens[z).length-1 do
tokenl = get_andwvidual token(l, M FIS tokens[i]);
FOR m from 0 to MFIS tokens(j].length-1 do
token2 = getandwvnidual token(m, M FIS tokens(j));
IF tokenl == token2 do
count = count - 1;
process_ M FIS(m,1, 3,1, MFIS tokens, actual_count);
End IF
End FOR
End FOR
End FOR
End FOR
End IF

Return count;

Figure 5.3: Algorithm for computing the core genes
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cluster(M FIS _token, count, cl_id, §)
FOR z from 0 to count-1 do
tokens(z] = get_individual token(z, M FIS token),
no = tokens(z],
Jno Classified = 1,
gno clusteraid = cl.ad
End FOR
FOR z from 0 to G do
Flag =0,
IF g5 classified == 0 do
FOR 1 from 0 to count-1 do
IF (find-DBK (z, tokens[z]) > )
Flag = 1,
End IF
End FOR
IF Flag == 0 do
g classified = 1,
gz clusterad = ¢lad,
End IF
End IF
End FOR

Figure 54 Shared neighbor clustering algorithm
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Figure 5.5: The core genes of cluster 1 of Dataset 2
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Figure 5.6: Final cluster 1 based on the core genes of Figure 5.5 of Dataset 2
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Figure 5.7: The core genes of cluster 2 of Dataset 2
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Figure 5.8: The final cluster 2 based on the core genes of Figure 5.7 of Dataset 2
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Figure 5.9: The Core genes at s=40% of Dataset 4
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Figure 5.10: The final cluster 1 obtained from the core genes of Dataset 4
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Figure 5.11: The Core genes at s=40% of Dataset 4
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Figure 5.12: The final cluster 2 obtained from the core genes of Dataset 4
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Table 5.1: Homogeneity values for FINN and other comparable algorithms

Datasets || Method Applied || No. of Clusters || Threshold value || Homogeneity
Dataset 2 k-means 16 NA 0.671
SOM 16 4 x 4 grid 0.710
CLICK 3 Default value 0.549
DCCA 15 NA 0.818
FINN 16 NA 0.778
Dataset 3 k-means 119 NA 0.553
SOM 47 10 x 12 grid 0.865
DCCA 4 NA 0.818
FINN 119 NA 0.844
Dataset 4 k-means NA 0.781
SOM 2 x 4 grid 0.772
CLICK Default value 0.676
DCCA 10 NA 0.834
FINN 8 NA 0.878
Dataset 5 k-means NA 0.512
SOM 2 x 2 grid 0.562
CLICK Default value 0.729
DCCA 10 NA 0.812
FINN 10 NA 0.901
Dataset 6 k-means NA 0.551
SOM 2 x 2 grid 0.553
CLICK Default value 0.483
DCCA 10 NA 0.813
FINN 4 NA 0.898
Dataset 7 k-means S NA 0.577
SOM 6 2 x 3 grid 0.514
CLICK 5 Default value 0.501
DCCA 43 NA 0.699
L FINN ) NA 0.815
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Table 5.2: Silhouette Index for FINN and other comparable algorithms

Datasets Method Applied No. of Clusters || Silhouette Index
Dataset 2 || MOGA-SVM (RBF) 5 0.443
MOGA (without SVM) 5 0.439
FCM 6 0.387
Average linkage 4 0.439
SOM 6 0.368
DCCA 15 0.838
FINN 16 0.855
Dataset 4 || MOGA-SVM (RBF) 6 0.451
MOGA (without SVM) 6 0.487
FCM 5 0.405
Average linkage 6 0.412
SOM 7 0.482
CLICK 3 0.179
DCCA 10 0.910
FINN 8 0.928
Dataset 5 | MOGA-SVM (RBF) 4 0.431
MOGA (without SVM) 4 0.401
FCM 4 0.364
Average linkage 5 0.315
k-means 10 0.652
SOM 9 0.536
CLICK 6 0.449
DCCA 10 0.609
FINN 10 0.69
Dataset 6 | MOGA-SVM (RBF) 6 0.415
MOGA (without SVM) 6 0.395
FCM 8 0.299
Average linkage 4 0.356
SOM 6 0.324
FINN 7 0.747
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Table 5.3: z-scores for k-means, DCCA, SOM and FINN for Dataset 2

Method Applied || No. of Clusters || z-score
k-means 16 11.6
DCCA 14 6.995
SOM 16 6.46
FINN 16 12.1

Table 5.4: z-scores for UPGMA, k-means, DCCA, SOM and FINN for reduced

set of Dataset 3
Method Applied || No. of Clusters || z-score || Total no. of genes
UPGMA 8 8.7 614
k-means 8 9.4 614
DCCA 8 7.22 614
SOM 8 6.6 614
FINN 8 12.12 614

5.5.3 Biological significance

The functional enrichment of each GO category in each of the clusters obtained
is calculated by its p-value. To compute the p-values for the clusters obtained
by FINN, we used the software FuncAssociate [B*03]. To restrict the size of
the chapter, we report only functional categories with p-value < 7 x 107%. The
highly enriched categories for the various clusters are shown in Table 5.5. Cluster
C1 contains genes involved in ATP activity. Some of the highly enriched func-
tional categories in C1 are ‘helicase activity’, ‘ATP-dependent helicase activity’,
‘ATPase activity coupled’, ‘ATPase activity’ et al. with p-values of 6.4 x 10,
6.7 x 10725, 6.2 x 1072, 4.7 x 10718 respectively. Cluster C2 contains genes
involved in cell cycle. Among the various enriched functional categories in C2,
the ones scoring the highest are ‘DNA replication’, ‘DNA metabolic process’,
‘cell cycle’ and ‘DNA-dependent DNA replication’ with p-values of 1.3 x 10711,
2.2x 1071, 1.3 x 1071% and 4.6 x 10710 respectively. Cluster C4 consists of genes
responsible for cell wall functions. Cluster C5 contains gencs involved in differcnt

components and functions of nucleus. This cluster also contains highly enriched
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GO attributes with ‘nuclear nucleosome’ scoring the highest in terms of p-value
(3.5 x 1072"). The other enriched attributes are ‘nucleosome’ with a p-value of
7.7 x 10728, ‘nucleosome assembly’ with a p-value of 7.1 x 10722, ‘nuclear chro-
matin’ with a p-value of 9.5 x 10~%, ‘chromatin’ with a p-value of 1.8 x 107! and
so on Cluster C6 has various genes contnibuting to different phases of cell cycle
with ‘cell cycle’ being the highly enriched category with a p-value of 6.3 x 10711
From the results of Table 5.5, we arrive at the conclusion that the genes in a

cluster obtained by FINN seem to be involved in similar functions.

5.6 Discussion

From our exhaustive experiments with FINN over the datasets mentioned in Table
3.5, we come to the conclusion that by varying the value of 3, the quality of the
clusters can be further increased. The support count in the frequent itemset
generation has a pivotal role in the detection of the core genes. With the increase
in the support count, more compact sets of core genes can be obtained. Moreover,
for high values of support count, frequent itemset generation also becomes faster.
Taking these factors into count, more compact clusters may be obtained. To test
the performance of the clustering algorithm, we compare the clusters obtained
by our method and those obtained by several other methods, and the result was
found satisfactory. The clusters detected by FINN is also found to be biologically

significant in terms of p-value.
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Table 5.5: P-values of Dataset 7

Cluster | P-value GO number GO category
C1 6.4e-26 G0:0004386 helicase activity
6.7e-25 GO:0008026 ATP-dependent helicase activity
6.2e-20 G0:0042623 ATPase activity, coupled
4.7e-18 G0:0016887 ATPase activity
2.6e-16 GO0:0017111 nucleoside-triphosphatase activity
5.4e-16 G0:0016462 pyrophosphatase activity
5.4e-16 G0:0016818 hydrolase activity, acting on acid
anhydrides, in  phosphorus-
containing anhydrides
5.8e-16 GO:0016817 hydrolase activity, acting on acid
anhydrides
7.9e-13 G0:0005524 ATP binding
8.6e-13 G0:0032559 adenyl ribonucleotide binding
2e-12 G0:0030554 adenyl nucleotide binding
5.6e-12 G0:0032553 ribonucleotide binding
5.6e-12 G0:0032555 purine ribonucleotide binding
1.2e-11 GO:0017076 purine nucleotide binding
2.6e-11 G0:0003678 DNA helicase activity
4.5e-11 G0:0000166 nucleotide binding
3.5e-11 G0:0000722 telomere maintenance via
recombination
5e-10 G0O:0016787 hydrolase activity
6.7e-08 G0:0006312 mitotic recombination
8.1e-08 G0:0003676 nucleic acid binding
8e-07 G0:0003824 catalytic activity
8.9e-05 G0:0006310 DNA recombination
C2 1.3e-11 G0:0006260 DNA replication
2.2e-11 GO:0006259 DNA metabolic process
1.3e-10 G0O:0007049 cell cycle
4.6e-10 G0O:0006261 DNA-dependent DNA replication
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Cluster | P-value GO number GO category
C2 4.2e-08 G0:0051301 cell division

8.2e-08 G0:0005657 replication fork

1.3e-07 G0:0022402 cell cycle process

1.4e-07 GO:0000079 regulation of cyclin-dependent
protein kinase activity

1.6e-07 G0:0006281 DNA repair

2.2e-07 G0:0022403 cell cycle phase

7.2e-07 GO:0006298 mismatch repair

7.2e-07 G0:0045005 maintenance of fidelity during
DNA-dependent DNA replication

9e-07 G0O:0006974 response to DNA damage stimulus

1.1e-06 G0:0005694 chromosome

1.5e-06 GO:0009719 response to endogenous stimulus

1.6e-06 G0:0005935 cellular bud neck

1.8e-06 G0:0043549 regulation of kinase activity

1.8e-06 G0O:0045859 regulation of protein kinase
activity

2.1e-06 GO:0051338 regulation of transferase activity

2.2e-06 G0O:0030894 replisome

2.2e-06 G0O:0043601 nuclear replisome

6e-06 G0:0006273 lagging strand elongation

8.9e-06 G0:0006310 DNA recombination

9.2e-06 G0O:0043596 nuclear replication fork

9.6e-06 G0:0045934 negative regulation of nucleobase,
nucleoside, nucleotide and nucleic
acid metabolic process

9.8e-06 G0:0005933 cellular bud

9.8e-06 G0:0030427 site of polarized growth

le-05 GO0:0051329 interphase of mitotic cell cycle

1.1e-05 GO:0051325 interphase

1.1e-05 G0:0005634 nucleus
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Cluster | P-value GO number GO category
C2 1.3e-05 G0:0051052 regulation of DNA metabolic
process
1.3e-05 G0:0016538 cyclin-dependent protein kinase
regulator activity
1.6e-05 GO:0044427 chromosomal part
1.9¢-05 G0:0000228 nuclear chromosome
2.5e-05 G0:0000082 G1/S transition of mitotic cell
cycle
2.8e-05 GO:0003677 DNA binding
3e-05 GO:0031324 negative regulation of cellular
metabolic process
3e-05 G0:0000278 mitotic cell cycle
3.1e-05 G0:0009892 negative regulation of metabolic
process
4.3e-05 G0:0032301 MutSalpha complex
5.9e-05 G0:0006271 DNA strand elongation during
DNA replication
5.9e-05 G0:0022616 DNA strand elongation
6e-05 GO0:0051276 chromosome organization and
biogenesis
6.7e-05 G0:0051726 regulation of cell cycle
C4 1.3e-05 GO:0009277 fungal-type cell wall
3.1e-05 G0:0005618 cell wall
3.3e-05 G0:0030312 external encapsulating structure
C5 3.5e-27 G0:0000788 nuclear nucleosome
7.7e-26 G0:0000786 nucleosome
7.1e-22 GO:0006334 nucleosome assembly
9.5e-20 G0:0000790 nuclear chromatin
1.8e-18 G0:0000785 chromatin
2.4e-16 G0O:0065004 protein-DNA complex assembly
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Cluster | P-value GO number GO category
C5 2.2e-15 GO:0031497 chromatin assembly

4.5e-15 G0:0006323 DNA packaging

5.3e-15 GO:0006333 chromatin assembly or
disassembly

2.4e-14 G0:0044454 nuclear chromosome part

1.6e-13 G0:0000228 nuclear chromosome

1.7e-12 G0:0044427 chromosomal part

4.9e-12 G0:0006325 establishment
and/or maintenance of chromatin
architecture

7.5e-12 G0:0005694 chromosome

1.5e-10 G0:0065003 macromolecular complex
assembly

3.4e-09 GO:0003677 DNA binding

5.5e-09 G0:0022607 cellular component assembly

6.5e-09 G0:0051276 chromosome organization and
biogenesis

9e-07 G0:0043228 non-membrane-bounded organelle

9e-07 G0:0043232 intracellular
non-membrane-bounded organelle

2.6e-06 G0:0044428 nuclear part,

8.6e-06 G0:0043234 protein complex

1.6e-05 G0:0006281 DNA repair

1.9e-05 G0O:0003676 nucleic acid binding

2.4e-05 G0:0006996 organelle  organization  and
biogenesis

2.5e-05 G0:0045816 negative regulation of transcrip-

tion from RNA polymerase II pro-

moter, global
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Cluster | P-value GO number GO category
C5 3.7e-05 G0:0006358 regulation of transcription from
RNA polymerase II promoter,
global
3.7e-05 G0:0006974 response to DNA damage stimulus
3.8e-05 GO:0006259 DNA metabolic process
4.7¢-05 G0:0009719 response to endogenous stimulus
6.8e-05 G0:0016043 cellular component organization
and biogenesis
Cé 6.3e-11 GO:0007049 cell cycle
1.2e-10 GO:0000278 mitotic cell cycle
1.8e-10 G0:0022402 cell cycle process
1.3e-09 G0:0007067 mitosis
1.5e-09 G0:0000087 M phase of mitotic cell cycle
1.9e-09 G0:0022403 cell cycle phase
9.6e-08 G0:0051301 cell division
1.5e-07 G0O:0000279 M phase
2.3e-07 G0:0005935 cellular bud neck
9.7e-07 G0:0005933 cellular bud
9.7e-07 GO:0030427 site of polarized growth
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Chapter 6

Finding Coherent Patterns using

a Density Based Approach

This chapter presents a Density based Clustering Algorithm, DGC, for cluster-
ing gene expression data. DGC uses a regulation based discretization technique
to transform the gene expression data into 3 discrete levels. It then uses the
discretized data to find coherent patterns using a density based clustering ap-
proach. DGC is independent of any proximity measure, however, we establish

the effectiveness of DGC based on DBK measure introduced in Chapter 3.
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6.1 Introduction

A cluster can be defined as a region over the gene space, in which the local
density 1s higher than 1ts surrounding region To 1dentify such a region, we need
to calculate local densities of genes 1n space The density of genes 1s governed by
two factors (a) the typical distances among the genes, and (b) the number of

neighbors of a gene, indicative of the dimension 1n which the points are embedded

6.2 Related Work

Density based clustering algorithms identify dense areas in the object space

Clusters are hypothesized as high density areas separated by sparsely dense areas

6.2.1 Kernel Density Clustering Method

A kernel density clustering method for gene expression profile analysis 1s reported
i {SZCS03] It assumes no parametric statistical model and does not rely on
any specific probability distribution Hypei-spherical uniform kernels of variable
radius are used and density estimate of the data points are found The distance
between two clusters (or observations) ¢ and 7 1s computed [SAS99] as follows

1 1 1
d(w,z,) = { > (75 + 1) of dlwom) S R

(61)
oo otherwise

where R 1s the user-specified radius and f(z) 1s the estimated density at x
[SAS99] The method 1s robust and less sensitive to outhers However, accu-
rate density estimation and assignment of cluster membership require multiple
data pomnts in near-neighborhoods and thus density estimation 1s less accurate

when cluster size 1s small

6.2.2 Density-based Hierarchical Clustering

In {JPZ03a], the authors propose the Density-based Hierarchical Clustering method
(DHC) that uses a density-based approach to 1dentify co-expressed gene groups
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from gene expression data It considers clusters as high dimensional dense areas
where the genes are attracted to each other DHC uses two-level hierarchical
structures (attraction tree and density tree) to orgamze the cluster structure
of the data set The attraction tree reflects relationships among genes in the
dense area Each node in the attraction tree represents a gene and its parent
1s the attractor of 1t The highest density gene becomes the root of the tree
The attraction tree becomes complicated for large datasets and hence the cluster
structure 1s summanzed 1n a density tree Each node of the density tree repre-
sents a dense area Imitially the whole dataset 1s considered as a single dense area
represented by the root node of the density tree This dense area 1s then split
into several sub-dense areas based on some criteria and each sub-dense area 1s
represented by a child node of the root node The sub-dense areas are further
splhit till each sub-dense area contains a single cluster DHC 1s suitable for detect-
ing highly connected clusters but 1s computationally expensive and 1s dependent

on two global parameters

An alternative to this 1s to define the similarity of points in terms of their

shared nearest neighbors This 1dea was first introduced by Jarvis and Patrick
[JP73]

6.2.3 Nearest Neighbor based Density Estimation for Clus-

tering Gene Expression Data

In [CIMO4], a k-nearest neighbor based density estimation techmque 1s exploited
The density based algorithm proposed by [CIJM04] works 1n three phases density
estimation for each gene, rough clustering using core genes and cluster refinement
using border genes Density of a gene 1s calculated by the sum of sumilarities
among 1ts k nearest neighbors Core genes are high density genes and the method
proceeds by clustering core genes to form rough clusters Once rough clusters are

formed, the border genes are assigned to the most relevant cluster
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6.2.4 Clustering based on Density and Shared Nearest
Neighbor Measure

In [SAPO6], the authors present a density and shared nearest neighbor based
clustering method The similanty measure used 1s that of Pearson’s correlation
and the density of a gene 1s given by the sum of its similarities with 1ts neighbors
The shared nearest neighbors of the dense genes are found and meiged into the
same cluster The merging 1s done efficiently using a data structure called the
P-tree [Per01}

6.3 Motivation

Density-based approach discovers clusters of arbitrary shapes even in the presence
of noise However, density-based clustering techniques suffer from high computa-
tional complexity with increase in dimensionality (even if spatial index structure
1s used) and mput parameter dependency In this chapter, we present a density
based clustering method that uses a regulation based cluster expansion process
It overcomes the problem of maintaining the pattern information usually hinked
with the different clustering approaches due to traditional similarity measures
The advantage of our method 1s that 1t produces quality clustering and can handle

noisy datasets

6.4 DenGeneClus (DGC)

DGC works 1mn two phases The first phase normalizes and discretizes the gene ex-
pression data with mimimum information loss while the second phase is dedicated

to clustering the discretized normalized data

6.4.1 Phase I: Normalization and Discretization

This phasc 1s a two step process The first step deals with normalization of

the gene expression data to have mean 0 and standard deviation 1 Expression
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data having a low variance across conditions as well as data having more than
3-fold variation are filtered out in this step. The second step, i.e., discretization
is performed on this normalized expression data where the regulation pattern,
i.e., up- or down- regulation in each of the conditions for a particular gene plays
an important role. An example of a discretized matrix obtained from the data
in Figure 6.1 is shown in Figure 6.2. Discretization is carried out as follows:
Suppose, G* is the set of all genes and T™ is the set of all conditions. Let
{g.} € G* be the i*" gene and {t,} € T* be the j** condition. The expression
value of gene {g,} at condition {t,} is given by ¢, ;. The discretization step gives
us the regulation pattern of genes across conditions. For a particular gene, the
regulation pattern is computed for all conditions except the first condition based
on the previous condition value For the first condition, t;, its discretized value
is directly based on €,;. For t,,,? condition, its discretized value is computed
w.r.t. the tJth condition, i.e., €,,41 and €, ;. Here, ¢, is the expression value for a
gene g, at condition ¢y, €, , is the expression value for a gene g, at condition ¢, and
similarly, €, 41 is the expression value for a gene g; at ¢,,,. While discretizing,
following two cases occur:

Case 1: For condition ¢; (i.e., the first condition).

The discretized value of gene g, at condition, t;

1 if &1 > 0
fz,l = 0 if &1 = 0
2 if &1 < 0.

Case 2: For the conditions (T — {¢;}):

The discretized value of gene g, at ¢,

1 if €13 < E1,7+1
o= 0 ife,;=¢6,4

2 ife,,; >e,5n

where &; ; is the discretized value of gene g, at condition t; (j = 1,..(T —1)). Each
gene now has a regulation pattern (p) of 0, 1, and 2 across the conditions or time
points.

Once p of each gene is obtained, the second phase, i.e., the clustering process is
initiated.
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0.26188 | -0.26188 | 0.662408 1.097367 | 0.653668
-1.34928 | -1.34928 | .0.26188 0.009968 -0.2347
0.281818 | 0.009968 | -0.80558 -0.26188 | -0.26188
0.825517 | 0.825517 | 0.009968 0.281818 | 0.281818
1.51239 | -1.51239 | -1.07743 0.281818 | -1.45802
1.097367 | 1.097367 | 4.641067 2.184767 | 1.097367
Figure 6.1: Example dataset

2 0 i 1 2

2 0 1 1 2

1 2 2 1 0

1 g 2 1 0

2 0 1 | 2

1 0 1 1 2

Figure 6.2: Discretized matrix
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6.4.2 Phase II: Clustering of genes

The clustering of genes is initiated with the finding of the maximal matching

genes with respect to regulation pattern.

i. A Density Based Notion of Clusters

Clusters consist of genes having similar expression patterns across conditions
while nowse genes are those that do not belong to any of the clusters. The basic
idea behind recognizing a cluster is that within each cluster we have a typical
density (of genes with similar expression patterns) that is considerably higher
than that outside the cluster. Furthermore, the density within the areas of noise
is lower than the density in any of the clusters. In the following, we try to
formalize this intuitive notion of clusters and noise in a database Dg of genes.
The key idea is that for each gene in a cluster, the neighborhood must contain at
least o number of genes that have similar expression pattern (regPattern). The
shape of a neighborhood is determined by the choice of a distance function for
two genes g, and g,, denoted by D(g,,9,). Note that our approach works with
any distance measure and hence there is provision for selecting the appropriate
similarity function for a given application. In this chapter, we give results for our

own dissimilarity measure, DBK, discussed in detail in Chapter 3.

ii. Basis of the Clustering Approach

The regulation matching, order preservation and prozimity are the three funda-
mental pillars based on which the clustering technique (DenGeneClus or DGC)

is designed.

i. Regulation Matching: For a particular gene g,, the maximal matching reg-
ulation pattern (defined later) is found. All genes having the same maximal

matching regulation pattern w.r.t. g, are grouped into the same cluster.

ii. Order Preservation: We preserve order based on [BDCKY02] in the follow-
ing way. For a condition set ¢t C 7™ and a gene g, € G*, t can be ordered

in a way such that the expression values are in ascending order. In order
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ranking, we search for expression levels of genes in ascending order within a
cluster. Such a pattern arises, for example, if the experiments in ¢ represent
distinct stages in the progress of a disease or in a cellular process and the
expression levels of all genes in a cluster vary across the stages in the same
way [BDCKYO02).

Each gene has a rank (Rank) which gives the permutation order of that
gene across conditions t. The rank is calculated according to the expression
values of a gene across conditions. In other words, the elements of the rank

pattern are given by their rank in ascending order of their expression values.

ili. Proximity: The proximity between any two genes g, and g, is given by
D(g,,9,) where D is any proximity measure such as Euclidean distance,

Pearson’s Correlation and DBK.

The identification of clusters 1s based on the following definitions. The definitions

are given based on the notion of density available in [EKSX96).

Defination 6.1. Match

Let gpq4, and gy, be the regulation patterns of two genes g, and g;. Then, the match
(M) between g, and g, is given by the number of agreements No_Agreements
" (i.e., the number of condition-wise common regulation values excluding condition

1) between the two regulation patterns, i.e.,
M(g.,9,) = No_Agreements(p,,, pq, )-

Defination 6.2. Maximal Match
Gene g, is referred to as maximally matched (M M) with gene g,, if the number

of agreements between (g,,, g, ) > 0 where g, € {G* —g,} and 0 is a user-defined
threshold.

Definition 6.3. Maximal Matching Regulation Pattern

If a gene g, maximally matches with gene g;, then the regulation pattern g and
50;] formed by taking the subset of conditions where both g, and g, match is
referred to as the Maximal Matching Regulation Pattern (MMRP).
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MMRP of genes g, and g, is computed as follows.

lf pg-.,: = pgj,t = 1

1
KJ, — P, — 0 if Bg.c = Pg;0 = 0
9: 9 2 lf Sog,,g — pg_;,t — 2
z otherwise.

Here t refers to the conditions (¢t = 2,3, --,T — 1).

Each gene has a rank which gives the permutation order of that gene across
conditions ¢ C T*. The rank is calculated according to the expression values
of a gene across conditions, u.e., the elements of the rank pattern are given by
their ranking in ascending order of their expression values. The rank of a gene is

calculated as follows:

1. For a gene g,, find gy, .

2. Rank g, in ascending order according to the expression values where g , #

x.

To understand the rank computation, let us refer to the example given in figurc
6.1. Here, the rows represent the genes g1, 92, -, gs and the columns represent

the corresponding conditions (excluding condition 1 as stated before).
Pe=2 0 1 1 2

P, =2 0 1 1 2
P =1 2 2 1 0
pg,=1 0 2 1 0
Pgs =2 0 1 1 2
pe=1 0 1 1 2

Matching among pairs of genes are given below.
M(g1,92) =4  M(g1,93)=1  M(g1,94) =2

M(glag5):4 M(glag6)=4 M(QQ)QB)ZI
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M(92,94) =2 M(gz,gs) =4 M(gmge) =4
M(g3,94) = 3 M(gs,g5) =1 M(gs, gs) =1

M(94,95) = 2 M(gar96) =2  M(gs,ge) = 4

Suppose § = 3, then Maximal Matching of pairs of genes are as follows.
MM(g1,92) =4  MM(q1,95) =4  MM(g1,96) =4

MM(92,95)=4 MM(92,96)=4
MM(g3,g4) =3 MM(95796) =4

Thus, MMRP is given below.

P, =% 2 1 0
P =2 2 1 0

From the example given above, it is clear that the MMRP of gy, g5, g5 and gg are

same, as well as the MMRP of g3 and g4 are same.

Genes 1, 2, 5 and 6 have the MMRP over conditions 2, 3, 4, 5. Rank order over
these four conditions are computed w.r.t. their expression values (€.j,1=1,2,5,6
and j = 2,3,4,5, where 2 refers to gene ¢ and j refers to condition 7) and ranks

as follows.
Rank(g,) =1 3 4 2

Rank(gs) =1 2 3 4
Rank(gs) =1 3 4 2

Rank(gs) = 1 2 3 1
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Similarly, genes 3 and 4 can be found to have the MMRP over conditions 3, 4, 5

and ranks obtained are as follows.
Rank(gs) =1 2 2

Rank(gs) =1 2 2

Definition 6.4. 6-neighborhood
The 6-neighborhood of a gene g,, denoted by Ny(g,) is defined by

No(gv.) = {g] €G” l D(gugj) < 0}

where D may be any distance measure such as Euclidean, Pearson’s correlation

and our dissimilarity measure, DBK.

Defination 6.5. Core Gene
A gene g, is said to be a core gene w.r.t. 6 if there is at least one gene g, such
that

i. g, € Ne(g.),

ii. | No(g) |2 0,
iii. Rank(g,) ~ Rank(g,), and
V. gy, ~ g,

where o 1s a user defined threshold for the mimmum number of genes in the

f-neighborhood of g,.
Definition 6.6. Directly Reachable Gene

A gene g, is directly reachable from gene g, w.r.t. 8 if
i. g, is a core gene,
ii. g, € Ng(g,), and
il pp, =~ 80/93-

Direct reachability relation of a gene is symmetric for pairs of core genes.
However, in case of a pair consisting of a core and a non-core gene, it may not

be symmetric.
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Defination 6.7. Reachable Gene
A gene p is said to be reachable from gene ¢ w.r.t. 8, if there is a chain of genes
P, P, -, P, where P, = q, P, = p such that P,;; is direct reachable from P,.

Thus, reachability relation is a canonical extension of direct reachability
[EKSX96). This relation is transitive, but not symmetric. However, over this

gene expression domain reachability is symmetric for core genes.

Defination 6.8. Connected Genes
A gene g, is said to be connected to another gene g, if both g, and g, are reachable

from another gene g, w.r.t. ¢.

Connectivity is a symmetric relation.

Definition 6.9. Cluster
A cluster C w.r.t. 0 is a non-empty subset of G* and | C |> o (o is a user-defined

threshold) satisfying the following conditions:

i. Vg,,g,if g, € C and g, is reachable from g, w.r.t. § then, g, € C(reachability).

ii. Vg,, g9, € C: g, is connected to g, w.r.t. 8 (connectivity).

Therefore, a cluster can be defined as a set of reachable and/or connected

genes.

Defination 6.10. Noise
Let C be the set of clusters w.r.t. parameter §. Noise 1s defined as the set of

genes not belonging to any cluster C, € C. In other words,
nose = {g, € G* | V2 : g, & C.}.

Also, a gene g, is said to be a noise gene if it does not satisfy the §-neighborhood

condition i.e.,
| No(g.) |= ¢

Note that any cluster C, w.r.t. 8 contains at least two genes (i.e. o = 2) to

satisfy the core gene condition.
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iii. Identifying core genes

The clustering process starts with the identification of Core genes according to
Definition 6.5. Cluster expansion starts from a core gene and finds all reachable

genes from it.

iv. Finding maximal coherent clusters

Cluster identification starts with an arbitrary gene and finds the MMRP with
other unclassified genes. For regulation pattern matching, two genes are matched
w.r.t. regulation across conditions starting from condition 2. Condition 1 is
not considered since its regulation is w.r.t. the expression level rather than the
previous condition. If the arbitrary gene is a core gene, cluster expansion proceeds
with this core gene, and finds reachable and connected genes from this core
gene. All reachable and connected genes in a particular iteration of the clustering
process are grouped into the same cluster. The process then recursively continues
until all genes are classified. This expansion process can be summarized in terms

of the following steps.

i. Start with an arbitrary unclassified gene g, and find its rank order and

regulation pattern.
ii. Call get_Core(g;).
iii. For each core gene g,.

a) Find all reachable and connected genes w.r.t. g,.

b) Classify all those genes with the same Cluster-id.
iv. Repeat steps ii. - iii.until no more core gene is found.

v. Repeat steps i. to iv. till all genes arc classified.

The cluster creation process is given in Figure 6.3 and the cluster expansion
process is given in Figure 6.4. Here, get_core(g,) is a function which checks the
corc condition as stated in Definition 6.5 and returns a truc value if g, is core;

otherwise, it returns a false value. Assuming G* be the set of genes and C the
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DGC_cluster_creation()

Precondition: All genes in D¢ are unclassified

FOR all g, € G do
Compute p(g,);
END FOR
FORi=0to G do
IF g,.classified # CLASSIFIED then

Compute ©'(g,) & Rank(g,);

IF get_core(g,) == TRUE then
expand_cluster(g,, cluster-id);
cluster.id = cluster_id + 1;

END IF

END IF
END FOR

Figure 6.3: Algorithm for cluster formation
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expand_cluster(g,, cluster_id)

IF g,.classified == CLASSIFIED then
RETURN;
END IF
gi-classified = CLASSIFIED,;
g,.cluster_id = cluster_id;
FOR j=0to G do
IF g. # g
IF pg, ~ g && g, € No(g,) then
IF get_core(g,) == TRUE then
expand_cluster(g,, cluster_id);
END IF
g,.classified = CLASSIFIED;
g;-cluster_id = cluster_id;
END IF
END IF
END FOR

Figure 6.4: Algorithm for cluster expansion
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set of clusters, the following lemmas are introduced to provide the basis of our
clustering algorithm. Intuitively they state that given the parameter 8, we can
discover a cluster in a two-step approach. First, an arbitrary gene which satisfies
the core gene condition is chosen as the seed. Second, all genes reachable from

the seed are retrieved. These two steps result in a cluster containing the seed.

Lemma 6.1. Let g, be a core gene in G, then the set X = {z|z € G* and z is

reachable from g, w.r.t. 8} is a cluster w.r.t. .

Proof. Let g, € G* be a core gene and let g, € C, (where C, is a cluster). Again,
let £ € G* be any gene in C;, which is not reachable from g,. However, as per
Definition 6.9 (condition i.),  must be reachable from g,. Therefore it contradicts,

hence the proof. |

Lemma 6.2. Assume genes g,, g, € G* and C}, C, are two clusters where g, € C,

and g, € Cy, then g, and g; are not connected.

Proof. Consider genes g, € C; and g, € C; where g, and g, are connected. Then
as per Definition 6.9 (condition ii.), g, and g, must belong to the same cluster.

Thus we come to a contradiction and hence the proof. a

Lemma 6.3. Let gene g, € G* and C be the set of all clusters. If g, is a noise
gene, then g, ¢ C.

Proof. Let gene g, € G* be a noise gene and let g, € C, where C, € C. Now, g,
must be reachable w.r.t. @ from at least one core gene g, where g, € C, as per
Definition 6.9 (rcachability condition). But this violates the noise condition as
defined in Definition 6.10 and hence the proof. 0

Observation 1. Any core gene g, € C (wherei = 1,2,--- ,m and Cy is a cluster)

w.r.t. 6 have the same MMRP and rank with the other core genes in Cy.

Observation 2. All genes in a cluster Cy have same MMRP with the core gene(s)
€ Cy.

The result of clustering using DGC with our dissimilarity measure is reported
in Section 6.5.1
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6.5 Performance Evaluation

We implement DGC in Java in the Windows environment. We use the.real-life

datasets given in Table 3.5 to evaluate the methods.

6.5.1 Results

We exhaustively test DGC on the given datasets with ¢ = 2. The value of o
is taken to be 2 since we search exhaustively for the different patterns. We use
Euclidean distance and our dissimilarity measure, DBK, for D and the value of
8 = 2. On experimentation with various real-life and synthetic datasets, the
method is found to detect biologically significant clusters. We compare our al-
gorithm with that of the k-means, hierarchical clustering (UPGMA), CLICK,
DCCA, SOM algorithms. The k-means and UPGMA algorithms are evaluated
using the built-in MATLAB implementation. CLICK and SOM algorithms are
run using the implementation provided by the Expander tool [SMKS03]). CLICK
is run with the default parameter provided by Expander. Expander is also used
for finding the homogeneity of k-means clustering. For k-means, k is varied from
2 to 30 by increments of two. The results obtained by our method over a re-
duced form of Dataset 3 are shown in Figure 6.5. The dataset is reduced by
filtering out low variance and low entropy genes from the data. We note here
that the clusters obtained by our algorithm are detected automatically and unlike
k-means no input parameter for number of clusters is needed. We test k-means
with k = 16,20, 30, 40, 48. Since our method gives a total of 47 clusters (when
Euclidean distance is used) and 44 clusters (when our dissimilarity measure is
used) for the reduced form of Dataset 3, we also test k-means algorithm for k =
44 and 47 respectively. Similarly, UPGMA algorithm is tested for cutoff = 43,
44, 47 and also for other values. Some of the clusters obtained by our method
over full Dataset 3 are shown in Figure 6.6. A total of 118 clusters are gener-
ated from the full Dataset 3. In Figure 6.7 the clusters generated by k-means on
the reduced form of Dataset 3 are given. In Figure 6.8 and Figure 6.9, clusters
generated from the reduced form and full form of Dataset 3 using UPGMA at

cutoff= 46 and 176 are shown, respectively. In Figure 6.10 some of the clusters
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generated from the full Dataset 2 using DGC method (with DBK measure) are
shown and in Figure 6 11 the clusters 1dentified from Dataset 6 using DGC (with
DBK measure) are shown. Finally, to validate the cluster results, three cluster
validity measures, viz., z-score, homogeneity and silhouette index are used and

the results were compared with the different clustering algorithms.

6.5.2 Cluster Quality

In this section the performance of DGC is demonstrated on the six publicly
available benchmark microarray data sets stated earlier in Table 3.5. We report
a comparative study of several widely used microarray clustering algorithms. The
performance of DGC is judged by Silhouette index [Rou87] and Average Homo-
geneity score [SS00]. Table 6.1, Table 6.2 and Table 6.4 respectively show the
homogeneity and silhouette values for the different clustering algorithms on the
real-life datasets. It can be seen from Table 6 1 and Table 6.2 that the homo-
geneity values of DGC is superior for all the datasets. Table 6.4 shows that
the silhouette values of DGC is superior to those obtained by other methods.
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Figure 6.6: Result of DGC on the full Dataset 3 using our dissimilarity measure
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However, for Dataset 4 the silhouette value of DGC is less than DCCA. This
is because DCCA has two more clusters than DGC. DGC detects eight clus-
ters in the Dataset which is also the number of clusters detected in [WFM*98].
Moreover, the z-score value of DGC for the Dataset 2 is more than DCCA. This
concludes that the clusters detected by DGC is more relevant than DCCA.

For validating DGC, we employ z-score [GR02] as the measure of agreement.
A higher value of z indicates that genes are better clustered by function, indicat-
ing a more biologically relevant clustering result. Z-score [GR02] is calculated
by investigating the relation between a clustering result and the functional anno-
tation of the genes in the cluster. In this section, the reported z-score is averaged
over 50 repeated experiments. The result of applying the z-score on the reduced
form of Dataset 3 is shown in Table 6.5. Table 6.5 clearly shows that our method
outperforms k-means, DCCA and SOM w.r.t. cluster quality. Table 6.6 shows
the z-scorc values when our method, DGC, 1s exccuted at different values of 8.

It is observed that DGC gives better clustering at § = 2 for the full Dataset 3.
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Table 6.1: Homogeneity values for DGC and other comparable algorithms for
Datasets 2, 3 and 4.

Datasets || Method Applied || No. of Clusters | Threshold value || Homogeneity
Dataset 2 k-means 4 NA 0.553
k-means 5 NA 0.591
k-means 6 NA 0.601
k-means 16 NA 0.771
k-means 29 NA 0.787
k-means 30 NA 0.8
SOM 2 x 2 grid 0.624
SOM 3 x 3 grid 0.723
SOM 25 7 x 7 grid 0.792
SOM 41 8 x 8 grid 0.840
SOM 33 10 x 10 grid 0.823
CLICK 3 Default value 0.549
DCCA 15 NA 0.818
DGC 17 6 =2 0.877
Dataset 3 k-means 119 NA 0.553
SOM 47 10 x 12 grid 0.865
DCCA 4 NA 0.818
DGC 119 =2 0.887
Dataset 4 k-means 8 NA 0.781
SOM 4 2 x 2 grid 0.668
SOM 6 2 x 3 grid 0.753
SOM 8 2 x 4 grid 0.772
CLICK 3 Default value 0.676
DCCA 10 NA 0.834
DGC 8 0=14 0.928
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Table 6.2: Homogeneity values for DGC and other comparable algorithms for
Datasets 5, 6 and 7.

Datasets || Method Applied | No. of Clusters || Threshold value | Homogeneity
Dataset 5 k-means 4 NA 0.512
k-means 6 NA 0.680
k-means 10 NA 0.755
SOM 4 2 x 2 grid 0.562
SOM 2 x 3 grid 0.641
SOM 10 2 x 5 grid 0.775
CLICK 6 Default value 0.728
DCCA 10 NA 0.825
DGC 10 6 =0.87 0.901
Dataset 6 k-means 6 NA 0.633
k-means 10 NA 0.682
k-means 14 NA 0.769
SOM 6 2 x 3 grid 0.707
SOM 9 3 x 3 grid 0.571
SOM 14 2 x 7 grid 0.775
CLICK 5 Default value 0.483
DCCA 10 NA 0.813
DGC 9 =15 0.928
DGC 14 =1 0.989
Dataset 7 k-means 7 NA 0.507
SOM 4 2 x 2 grid 0.453
SOM 6 2 x 3 grid 0.514
SOM 9 3 x 3 grid 0.535
CLICK ) Default value 0.501
DCCA 43 NA 0.699
DGC 7 #=5 0.883
DGC 5 =45 0.906
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Table 6.3: Silhouette Index for DGC and other comparable algorithms for
Datasets 2 and 4.

Datasets Method Applied No. of Clusters || Silhouette Index
Dataset 2 || MOGA-SVM (RBF) 5 0.443
MOGA (without SVM) 5 0.439
FCM 6 0.387
Average linkage 4 0.439
SOM 6 0.368
DCCA 15 0.838
DGC at § =2 17 0.851
Dataset 4 | MOGA-SVM (RBF) 6 0.451
MOGA (without SVM) 6 0.487
FCM 5 0.405
Average linkage 6 0.412
SOM 6 0.482
SOM 8 0.357
k-means 8 0.554
CLICK 3 0.179
DCCA 10 0.910
DGC at § =4 8 0.777
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Table 6.4: Silhouette Index for DGC and other comparable algorithms for

Datasets 5, 6 and 7. ,
Datasets Method Applied No. of Clusters || Silhouette Index

Dataset 5 | MOGA-SVM (RBF) 4 0.431
MOGA (without SVM) 4 0.401
FCM 4 0.364
Average linkage 5 0.315
k-means 10 0.652
SOM 10 0.536
CLICK 6 0.449
DCCA 10 0.609
DGC at § =0.87 10 0.871
Dataset 6 | MOGA-SVM (RBF) 6 0.415
MOGA (without SVM) 6 0.395
FCM 8 0.299
Average linkage 4 0.356
SOM 6 0.324
DGCat =1 14 0.9
DGC at §=1.5 9 0.722
Dataset 7 k-means 7 0.361
CLICK 5 0.077
SOM 6 0.51
DCCA 43 0.908
DGC at §=5 7 0.524
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Figure 6 7 Result of k-means on the reduced form Dataset 3 at cutoff = 46
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Figure 6 8 Result of UPGMA on the reduced form Dataset 3 at cutoff = 46

The z-score values of several clustering algorithms over the full Dataset 3 are re-
ported in Table 6 7 From the table we conclude that DGC performs better than
k-means, hierarchical clustering and DCCA We note here that unhke k-means
our method does not require the number of clusters as an mput parameter It
detects the clusters present in the dataset automatically and gives the rest as

noise Also, UPGMA requires the parameter cutoff as input to the algorithm

The z-score values of DGC for datasets 2 and 7 1s compared with DCCA
and other algorithms and 1s shown in Table 6 8 and Table 6 9 respectively It 1s
observed from them that DGC performs better than 1ts competitors in terms of
z-score

Since ClusterJudge can operate only on yeast datasets, we could not find the

z-score values for Datasets 4, 5 and 6 Therefore, we could not compare the z-
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Table 6.5: z-scores for DGC and other methods for the reduced form of Dataset
3.

Method Applied || No. of Clusters || z-score
k-means 44 8.6
DCCA 2 -0.995

SOM 35 4.46

DGC at § =2 44 12.6

Table 6.6: z-scores for DGC at different values of 8 for the full Dataset 3.
DGC at || No. of Clusters | z-score
0=0.7 176 8
=1 128 9.6
0=15 120 10.6
=2 119 13.2
6 =27 121 12.9
=232 120 11.3
=37 120 12.5
0 =47 120 10.5

Table 6.7: z-scores for UPGMA, k-means, DCCA and DGC for the full Dataset
3.

Method Applied || No. of Clusters || z-score || Total no. of genes
UPGMA 119 9.7 6089
k-means 119 8.6 6089

DCCA 4 12.1 6089

DGC at 8 =0.7 177 9.12 6089

DGCatf=1 129 7.02 6089

DGCat =15 121 11.2 6089

DGC at 6 =2 119 13.8 6089

DGC at 8 =27 121 11.2 6089
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Table 6.8: z-scores for DCCA, k-means, SOM and DGC for the Dataset 2.

Method Applied || No. of Clusters || z-score | Total no. of genes
DCCA 15 4.4]1 384
k-means 15 4.48 384
k-means 17 4.56 384

SOM 15 4.66 384
SOM 18 5.11 384
DGC at § =2 17 5.51 384

Table 6.9: z-scores for DCCA, k-means, CLICK, SOM and DGC for the Dataset
7.

Method Applied {{ No. of Clusters || z-score || Total no. of genes
DCCA 43 7.06 698
k-means 7 10.8 698
CLICK 5 11.3 698

SOM 4 11.9 698
SOM 6 11.7 698
SOM 9 10.7 698
DGC at 6 =4.5 7 11.747 698
DGC at § =5 7 16.55 698
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Figure 6 9 Result of UPGMA on the full Dataset 3 at cutoff = 176

score values of DGC with those of clusters generated by other methods for these

three datasets

6.5.3 Biological significance

The functional enrichment of each GO category 1n each of the clusters obtained 1s

calculated by 1ts p-value To compute the p-value, we use the software FuncAsso-

ciate [BT03] We report functional categories with p-value < 7 x 107% 1n order to

restrict the size of the chapter Of the seventeen clusters obtained from Dataset
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2, the highly enriched categories are shown in Table 6.10. As can be seen in clus-
ter C3, the highly enriched categories of ‘cell cycle’, ‘DNA metabolic process’,
‘DNA replication’ and ‘chromosome’ have p-values of 1.1 x 1072, 7.6 x 1072,
4.1 x 1072!, 3.4 x 10718, respectively. The highly enriched categories in clus-
ter C6 are the ‘cellular bud’ and the ‘cell cycle’ with p-values of 3 x 107!2 and
8.4 x 10712, respectively. The genes in clusters C3 and C6 are involved in cell cy-
cle. Cluster C9 have genes involved in DNA replication. The cluster C10 contains
highly enriched categories such as ‘spindle’, ‘cytoskeletal part’ and ‘microtubule
cytoskeleton’ with p-values of 1.3 x 10712, 1.8 x 107!, 1.9 x 10~!, respectively.
C10 contains genes whose functions are related to various phases of cell cycle.
Cluster C13 contains genes belonging to various functional categories related to
synthesis of various amino acids. From the results of Table 6.10, we see that the

clusters obtained by DGC shows a high enrichment of functional categories.

We also compare the results obtained by DGC with those by DCCA. To
restrict the size, we report the p-values of only one of the clusters obtained from
DCCA in Table 6.11. This cluster corresponds to the cluster C10 of DGC reported
in Table 6.10. We observe that the p-values for the functional categories of DGC
are smaller than those obtained by DCCA. For example, the enriched category
‘spindle’ has a p-value of 1.3 x 10712 in the result of DGC whereas for DCCA, the
value is 9.0 x 1072, Similarly, for the GO attribute ‘microtubule cytoskeleton’,
DGC obtains a p-value of 1.9 x 10~!* whereas DCCA obtains 1.2x 1071, Also, for
‘cytoskeleton’, the p-value of DGC is 8.9 x 10~ and for DCCA it is 1.7 x 10797,
This trend continues for other GO attributes as well. Therefore, we can conclude
that the clustering solution obtained by DGC is more biologically significant than
that of DCCA.

6.6 Discussion

This chapter presents a regulation based density pattern matching approach that
does not require the number of clusters as an input parameter. The clusters
obtained by DGC on the six microarray data sets have been found to be func-

tionally enriched based on the p-values. The clusters obtained have been validated
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Table 6 10 p-value of Dataset 2

Cluster | P-value GO number GO category
C1 6 4e-06 GO 0051301 cell division
1 2e-05 GO 0019887 protein kinase regulator activity
1 3e-05 GO 0019207 kinase regulator activity
C2 5 7e-06 GO 0005933 cellular bud
5 6e-05 GO 0044429 mitochondrnal part
6 6e-05 GO 0031966 muitochondrial membrane
C3 11e-25 GO 0007049 cell cycle
7 6e-22 GO 0006259 DNA metabolic process
4 le-21 GO 0006260 DNA replication
3 4e-18 GO 0005694 chromosome
2 2e-17 GO 0044427 chromosomal part
5 6e-17 GO 0006261 DNA-dependent DNA replcation
le-16 GO 0022402 cell cycle process
3 6e-15 GO 0022403 cell cycle phase
8 7e-15 GO 0006281 DNA repair
1 be-14 GO 0000278 mutotic cell cycle
2 6e-14 GO 0005657 replication fork
8 6e-14 GO 0006974 response to DNA damage stimulus
2 5e-13 GO 0000228 nuclear chiomosome
31e-13 GO 0009719 response to endogenous stimulus
1 9e-12 GO 0045934 negative regulation of nucleobase,
nucleoside, nucleotide and nucleic
acid metabolic process
1 9e-11 GO 0051276 chromosome orgamzation and
biogenesis
2 1le-11 GO 0006273 lagging strand elongation
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Cluster | P-value GO number GO category
C3 2.8e-11 G0:0044454 nuclear chromosome part

4e-11 GO:0031324 negative regulation of cellular
metabolic process

4.3e-11 G0:0009892 negative regulation of metabolic
process

5.3e-11 G0:0005634 nucleus

7.6e-11 G0:0051301 cell division

8.5e-11 G0:0030894 replisome

8.5e-11 G0:0043601 nuclear replisome

1.1e-10 G0:0007064 mitotic sister chromatid cohesion

1.3e-10 G0:0048523 negative regulation of cellular
process

1.7e-10 G0:0048519 negative regulation of biological
process

3e-10 G0:0006271 DNA strand elongation during
DNA replication

3e-10 GO:0022616 DNA strand elongation

1.1e-09 G0:0006323 DNA packaging

1.5e-09 G0:0000079 regulation of cyclic dependent
protein kinase activity

1.7¢-09 G0:0005933 cellular bud

2.1e-09 G0O:0006342 chromatin silencing

2.1e-09 GO0:0031507 heterochromatin formation

2.1e-09 GO:0045814 negative regulation of gene expres-
sion, epigenetic

2.5e-09 G0:0043596 nuclear replication fork

2.5e-09 G0:0005935 cellular bud neck

3.8e-09 G0:0007062 sister chromatid cohesion

4.2e-09 G0:0016458 gene silencing
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Cluster | P-value GO number GO category
C3 4.2e-09 G0:0040029 regulation of gene expression,

epigenetic

5.8e-09 G0:0051325 interphase

6.1e-09 GO:0051726 regulation of cell cycle

1.7e-08 G0:0003677 DNA binding

2.7e-08 G0O:0031497 chromatin assembly

3.1e-08 G0:0000819 sister chromatid segregation

3.4e-08 G0:0051052 regulation of DNA metabolic
process

3.6e-08 G0:0000279 M phase

4.2e-08 G0:0045892 attribute negative regulation of
transcription, DNA-dependent

4.3e-08 G0:0051329 interphase of mitotic cell cycle

4.5e-08 GO:0006139 nuclecbase, nucleoside, nucleotide
and nucleic acid metabolic process

4.6e-08 G0:0051253 negative regulation of RNA
metabolic process

7.9e-08 G0:0030427 site of polarized growth

8.9e-08 G0:0006333 chromatin assembly or
disassembly

le-07 G0:0016481 negative regulation of
transcription

1le-07 G0O:0043228 non-membrane-bounded organelle

le-07 G0:0043232 intracellular
non-membrane-bounded organelle

1.1e-07 G0:0043549 regulation of kinase activity

1.1e-07 G0:0045859 regulation of protein kinase
activity

1.1e-07 G0:0000793 condensed chromosome

1.3e-07 G0:0006310 DNA recombination
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Cluster | P-value GO number GO category
C3 1.3e-07 G0:0000731 DNA synthesis during DNA repair

1.4e-07 GO0:0051338 regulation of transferase activity

1.5e-07 GO:0050794 regulation of cellular process

3.7e-07 GO:0006950 cresponse to stress

5.3e-07 G0:0006298 mismatch pair

5.3e-07 G0:0045005 maintenance of fidelity during
DNA-dependent DNA replication

6.4e-07 GO:0000798 nuclear cohesin complex

6.4e-07 G0:0008278 cohesin complex

7.7e-07 G0:0050789 regulation of biological process

1.2e-06 G0:0006338 chromatin remodeling

1.2e-06 GO:0019887 protein kinase regulator activity

1.3e-06 G0:0051053 negative regulation of DNA
metabolic process

1.4e-06 G0:0019219 regulation of nucleobase, nucleo-
side, nucleotide and nucleic acid
metabolic process

le.4-06 G0O:0007067 mitosis

1.5e-06 G0:0000070 mitotic sister chromatid
segregation

1.6e-06 G0:0007059 chromosome segregation

1.7e-06 G0:0000087 M phase of mitotic cell cycle

1.8e-06 G0O:0019207 kinase regulator activity

2.1e-06 GO:0006289 nucleotide-excision repair

2.2e-06 G0:0000794 condensed nuclear chromosome
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Cluster | P-value GO number GO category
C3 3.5e-06 GO0:0007534 gene conversion at mating-type

locus

3.5e-06 G0O:0016538 cyclin-dependent protein kinase
regulator activity

4.2e-06 G0:0006284 base-excision repair

| 4.3e-06 GO:0006270 DNA replication initiation

6.4e-06 G0:0043566 structure-specific DNA binding

7.4e-06 G0:0000075 cell cycle checkpoint

7.4e-06 G0:0000082 G1/S transition of mitotic cell
cycle

1.2e-05 G0:0003690 double stranded DNA binding

1.5e-05 G0:0006348 chromatin silencing at telomere

1.5e-05 GO0:0031509 telomeric heterochrmatin
formation

1.5e-05 G0:0006275 regulation of DNA replication

1.5e-05 G0:0007533 mating type switching

1.5e-05 GO0:0000217 DNA secondary structure binding

1.6e-05 G0:0050896 response to stimulus

1.8e-05 G0:0030466 chromatin silencing at silent
mating-type cassette

2e-05 G0:0050790 regulation of catalytic activity

2e-05 G0:0065007 biological regulation

2.6e-05 G0:0031323 regulation of cellular metabolic
process

2.7e-05 G0:0000135 septin checkpoint

2.7e-05 GO:0005658 alpha DNA polymerase: primase
complex

2.7e-05 GO0:0031565 cytokinesis checkpoint

3.2e-05 G0:0065009 regulation of molecular function
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Cluster | P-value GO number GO category
C3 3.7e-05 G0:0016568 chromatin modification
3.9e-05 GO0:0051320 S phase
4.4e-05 G0O:0043283 biopolymer metabolic process
4.6e-05 G0:0003006 reproductive developmental
process
4.6e-05 G0:0007530 sex determination
4.6e-05 G0:0007531 mating type determination
5.2e-05 G0:0019222 regulation of metabolic process
6e-05 GO:0032502 developmental process
6.8e-05 G0:0000400 four-way junction DNA binding
6.8e-05 G0:0008622 epsilon DNA polymerase complex
Cé6 3e-12 G0:0005933 cellular bud
8.4e-12 GO:0007049 cell cycle
5.3e-11 G0O:0005935 cellular bud neck
5.5e-11 G0:0030427 site of polarized growth
1.2e-08 G0:0051301 cell division
5.7e-08 G0:0022402 cell cycle process
1.7e-07 G0:0000278 mitotic cell cycle
6.1e-07 G0O:0022403 cell cycle phase
1.5e-06 G0:0000142 cellular bud neck contractile ring
1.5e-06 G0O:0005826 contractile ring
3.5e-06 G0:0007067 mitosis
4e-06 G0:0000087 M phase of mitotic cell cycle
7.1e-06 G0:0044430 cytoskeletal part
1.2e-05 GO:0000910 cytokinesis
1.8e-05 G0:0032153 cell division site
1.8e-05 G0:0032155 cell division site part
2.1e-05 G0:0005856 cytoskeleton
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Cluster | P-value GO number GO category
C9 6 7e-09 GO 0042555 MCM complex
6 5e-07 GO 0005656 pre-rephicative complex
6 8e-07 GO 0006267 pre-replicative complex assembly
6e-06 GO 0051052 regulation of DNA metabolic
process
6e-06 GO 0003688 DNA replication origin binding
7 3e-06 GO 0031261 DNA replication preimitiation
complex
2 3e-05 GO 0006270 DNA replication imtiation
6 9e-05 GO 0006260 DNA replication
C10 1 3e-12 GO 0005819 spindle
1 8e-11 GO 0044430 cytoskeletal part
19e-11 GO 0015630 microtubule cytoskeleton
8 9e-11 GO 0005856 cytoskeleton
3 6e-10 GO 0000278 mitotic cell cycle
4e-10 GO 0007020 microtubule nucleation
7 2e-10 GO 0007049 cell cycle
7 7Te-10 GO 0007017 microtubule-based process
6 8e-05 GO 0008622 epsilon DNA polymerase complex
2 1e-09 GO 0005200 structural constituent of
cytoskeleton
3 7e-09 GO 0000226 microtubule cytoskeleton organi-
zation and biogenesis
4 2e-09 GO 0005874 microtubule
5 3e-09 GO 0007059 chiomosome segregation
1 7e-08 GO 0000775 chromosome, pericentric region
2 5e-08 G0.0043228 non-membrane-bounded organelle
2 5e-08 GO 0043232 intracellular
non-membrane-bounded organelle
4 4e-08 GO 0007010 cytoskeleton orgamzation and
biogenesis J
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Cluster | P-value GO number GO category
C10 4.5¢-08 G0:0022402 cell cycle process

5e-08 G0:0051301 cell division

1.3e-07 G0O:0000776 kinetochore

1.4e-07 G0O:0005815 microtubule organizing center

1.4e-07 GO:0005816 spindle pole body

2.2e-07 G0:0000070 mitotic sister chromatid
segregation

2.2e-07 G0:0005694 chromosome

2.4e-07 G0:0000922 spindle pole

3.6e-07 GO:0005822 inner plaque of spindle pole body

3.9e-07 G0:0000819 sister chromatid segregation

6.3e-07 GO0:0044427 chromosomal part

9.7¢-07 G0:0007067 mitosis

1.1e-06 G0:0000087 M phase of mitotic cell cycle

2.2e-06 G0:0000780 condensed nuclear chromosome,
pericentric region

2.6e-06 G0O:0005876 spindle microtubule

3e-06 G0:0000779 condensed chromosome, pericen-
tric region

3.1e-06 G0:0019237 centromeric DNA binding

9.6e-06 GO:0000279 M phase

1e-05 G0:0022403 cell cycle phase

1.4e-05 G0:0000228 nuclear chromosome

1.4e-05 GO:0003777 microtubule motor activity

2.7e-05 G0:0000794 condensed nuclear chromosome

3.7e-05 GO:0000778 condensed nuclear chromosome

kinetochore
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Cluster | P-value GO number GO category
C10 3.9e-05 G0:0044450 microtubule organizing center
part
4.5e-05 G0:0007052 mitotic spindle organization and
biogenesis
4.6e-05 G0:0044454 nuclear chromosome part
4.8e-05 G0O:0006996 organelle organization  and
biogenesis
4.9e-05 G0:0000777 condensed chromosome
kinetochore
5e-05 G0:0000793 condensed chromosome
5.8e-05 G0:0007051 spindle organization and
biogenesis
6.2e-05 G0:0000928 gamma-tubulin small complex,
spindle pole body
6.2e-05 G0:0000930 gamma-tubulin complex
6.2e-05 GO:0008275 gamma-tubulin small complex
C13 4e-07 G0:0009086 methionine biosynthetic process
7.2¢-07 | GO:0000097 sulfur amino acid biosynthetic
process
1e-06 G0:0006555 methionine metabolic process
1.7e-06 G0:0044272 sulfur compound biosynthetic
process
1.8e-06 G0:0000096 sulfur amino acid metabolic
process
1.9e-06 GO:0009067 aspartate family amino acid
biosynthetic process
4.5e-06 G0:0009066 aspartate family amino acid
metabolic process
7.7e-06 GO:0006790 sulfur metabolic process
2.2e-05 GO0:0019344 cysteine biosynthetic process
3e-05 GO:0006534 cysteine metabolic process
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Cluster | P-value GO number GO category

C13 4.2e-05 G0:0008652 amino acid biosynthetic process
5.2e-05 GO:0009309 amine biosynthetic process
5.3e-05 G0O:0044271 nitrogen compound biosynthetic

process

3e-05 G0:0006534 cysteine metabolic process
4.2e-05 G0:0008652 amino acid biosynthetic process
5.2e-05 G0O:0009309 amine biosynthetic process
5.3e-05 G0:0044271 nitrogen compound biosynthetic

process

Table 6.11: p-value of cluster 3 obtained by DCCA over Dataset 2

Cluster | P-value GO number GO category
C3 9.0e-12 G0O:0005819 spindle
1.2e-10 GO:0015630 microtubule cytoskeleton
4.0e-09 G0:0007017 microtubule-based process
1.4e-08 G0:0005874 microtubule
1.6e-08 G0:0000226 microtubule cytoskeleton organi-
zation and biogenesis
2.1e-08 G0:0007010 cytoskeleton organization and
biogenesis
2.7e-08 G0:0007059 chromosome segregation
4.9e-08 G0:0044430 cytoskeletal part
8.9e-08 G0:0007020 microtubule nucleation
1.7e-07 G0O:0005856 cytoskeleton
2.5e-07 G0:0005200 structural constituent of
cytoskeleton
5.1e-07 G0:0000278 mitotic cell cycle
6.0e-07 GO:0005822 inner plaque of spindle pole body
5.1e-06 GO:0005876 spindle microtubule
1.0e-05 G0:0005875 microtubule associated complex
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Cluster | P-value GO number GO category
C3 1.0e-05 G0:0005815 microtubule organizing center
1.0e-05 G0:0005816 spindle pole body
1.6e-05 G0:0000922 spindle pole
2.4e-05 G0O:0003777 microtubule motor activity
2.4e-05 G0:0022402 cell cycle process
2.9e-05 GO0:0000775 chromosome, pericentric region
4.0e-05 GO:0007067 mitosis
4.5e-05 G0O:0000087 M phase of mitotic cell cycle
6.5e-05 G0:0044450 microtubule organizing center
part
7.2e-05 G0:0000778 condensed nuclear chromosome
kinetochore
8.7e-05 G0:0007052 mitotic spindle organization and
biogenesis

by homogeneity, silhouette index and z-score measures of cluster validation. The
regulation based cluster expansion maintains the pattern information in a simple
regulation pattern. From our experimental results we conclude that the cluster-
ing solution obtained by DGC has higher degree of biological significance than
the algorithms with which we compared it. The next chapter introduces an in-
cremental clustering algorithm based on DGC that is capable of handling large

incremental gene expression datasets.
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Figure 6.10: Some clusters generated using DGC on Dataset 2. A total of 17

clusters were detected.
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Figure 6.11: The clusters obtained by DGC on Dataset 6.
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Chapter 7

incDGC: An Incremental

Clustering Approach

In this chapter, we introduce an incremental density based gene clustering tech-
nique (incDGC) which is designed based on our existing density based clustering
technique i.e., DGC which has been discussed in Chapter 6. The incDGC ap-
proach uses cluster profile information to cluster genes incrementally. We com-
pare it’s performance with that of a few other methods using real-life datasets

and find that it detects biologically relevant clusters.
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7.1 Introduction

The current information explosion, fuelled by the availability of the World Wide
Web and the huge numbers of microarray experiments being continuously con-
ducted, has led to ever-increasing volumes of gene expression data. Therefore,
there is a need for incremental clustering so that updates can be clustered in
an incremental manner. Though a lot of research has focussed on incremen-
tal clustering for other application domains, there has not been much study of

incremental clustering in the context of gene expression data.

7.2 Related Work

We now present a review of some selected incremental clustering algorithms.

7.2.1 Incremental DBSCAN

In [EKS*98], the authors present an incremental clustering approach based on
the.DBSCAN [EKSX96] algorithm. The main idea behind the algorithm is that
the insertion or deletion of an object affects the current clustering only in the
neighborhood of this object. Density connections may surface or get removed
depending on whether an object is added or deleted, respectively. Incremental
DBSCAN yields the same result as DBSCAN executed over the whole updated

database.

7.2.2 Incremental Clustering Algorithm (C?ICM)

In [Can93], the authors propose an incremental clustering for dynamic processing.
Documents are clustered by assigning them to clusters of the seed that covers
them the most. Updations (additions and deletions) are handled by checking the
newly inserted data, the ragbag cluster (documents not covered by any seed) and

the members of the falstfied clusters and assigned to the most appropriate seed.
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7.2.3 HIREL: An Incremental Clustering Algorithm for

Relational Datasets

In [TS08], the authors present a one pass clustering algorithm for relational
datasets HIREL 1s a multi-phase clustering algorithm where the dataset 1s first
divided into a set of micro-clusters so that the variance of each cluster 1s equal
to or less than some threshold A hierarchical dendrogram 1s built based on the
micro-clusters to optimize the result The micro-clusters are indexed by a bal-
anced search tree S to facihtate the assignment of new data to the approprate

cluster

7.2.4 Rough Set based Data Clustering

Rough set theory has been employed 1n the incremental approach for clustering
interval datasets in [ANS06] It groups the given dataset into a set of overlapping
clusters by employing a rough variant of the Leader algorithm [ANS06] The algo-
rithm generates cluster abstractions in a single scan and 1s robust to outhers In
[CCFM97], the authors present an incremental clustering model for information
retrieval applications [CHNWO96] and [FAAM97] also report efficient methods

for modifying a set of association rules

7.2.5 Incremental Genetic k-means Algorithm (IGKA)

In [LLF*04b}, an incremental genetic k-means algorithm (IGKA) has been pre-
sented IGKA calculates the objective value called Total Within-Cluster Varia-
tion (TWCV) and clusters centroids incrementally whenever the mutation prob-
ability 1s small IGKA converges to the global optimum In the Genetic k-means
Algorithm (GKA) proposed in [KM99] a genetic algorithm 1s hybridized with the
k-means algorithm and therefore GKA converges to the global optimum faster
than other genetic algorithms In [LLF*04al, the authors present a faster version
of GKA (FGKA) that efficiently evaluates the TWCV, avoids illegal string ter-
mination ovcrhcad and simplifics the mutation operator IGKA inhents all the

advantages of FGKA and outperforms FGKA when the mutation probability 1s
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small The cost of calculating the centroids in FGKA 1s more expensive when
the mutation probabihity 1s small than when 1t 1s calculated incrementally in
IGKA The Hybrid Genetic k-means Algorithm (HGKA) in [LLF*04b] combines
the advantages of both IGKA and FGKA and obtains an even better perfor-
mance However 1t 1s very difficult to obtain the threshold value which 1s dataset

dependent

7.2.6 Best Incremental Ranked Subset (BIRS)

In [RRARO6], an incremental gene selection algorithm that reduces search space
complexity using a wrapper-based method 1s presented This method woiks on
the ranking directly In BIRS [RRARO6], genes are first ranked wrt an evalua-
tion measure Then, the set of genes 1s updated by crossing the ranking from the
beginning to the last ranked genc Classification accuracy with the first gene in
the list 1s obtaned and 1t 1s marked as selected The classification rate 1s again
obtained and the second gene 1s selected depending on whether the classification
accuracy 1s significantly better The process 1s repeated till the last gene on the
ranked lList 1s processed The algorithm returns the best subset formed and it

does not contain irrelevant or redundant genes

7.3 Motivation

Due to the huge number of microarray experiments being conducted regularly,
whenever new gene expression data becomes available 1t 1s highly desirable to
perform updates (1 e, incorporate the new results to existing clusters) with these
newly arrived genes incrementally Therefore, we propose an incremental clus-
tering method, 1ncDGC, based on DGC

7.4 incDGC: Incremental DGC

The DGC algorithm as discussed in Chapter 6 can be used for clustering static

gene expression data Due to the density based nature of DGC, the insertion of
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a gene affects the current clustering only in the neighborhood of this gene. We
find that the incremental algornthm yields the same result as DGC. A significant
achievement would be if we could simply and incrementally update the clustering
obtained by DGC (on the old database) to handle the new updates. We examine
the parts of an existing set of clusters affected by an update and present the algo-
rithm called incDGC for incremental updates of a set of clusters after insertions.
The incremental clustering problem can be stated as follows: for an update of
y genes in D,;q, incDGC maintains a collection of k clusters such that as each
input gene is presented, either it is assigned to one of the current k clusters, or it
starts a new cluster, or it merges two or more existing clusters into one, or that

it is a noise gene.

The changes in the set of clusters in the gene dataset D¢ are restricted to
the neighborhood Ng(g,), of an inserted gene g,. The previously identified core
genes retain their core property, but non-core genes (border genes or noise genes)
in Ng(g,) may become core. Thus new density connections may surface; that
is, a new chain gy, -- , 9, g1 = 7,9» = s may arise with g,4; directly density
reachable from g, for two genes r and s which were not density reachable before
the insertion of g,. Thus one of the genes g, for ;7 < n must be contained in
Ng(g,). Figure 7.1 shows an example dataset of genes illustrated in 2D and the
gene g, is to be inserted. Each of the points represents a gene. The genes a and
b are density connected w.r.t. § and o = 4 without using any gene € Ny(g,). On
the other hand genes r and s are density connected via the genes € Ny(g,) if the
gene g, is present. If g, is not present r and s are not connected and they belong
to different clusters. Thus the cluster memberships of 7 and s are dependent on
the presence or absence of g,. The insertion of a gene g, may result in a change
of cluster membership of genes in é-neighborhood of g, and all genes density
reachable from one of these genes in Dg U g,. While inserting g, the following

cases may occur.

1. Fusion
If g, is reachable from exactly one cluster C,, g; and possibly some noise

genes are fused into cluster C,.

2. Creation
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g, may become core w.r.t some other noise or unclassified gene(s) and may

lead to the formation of a new cluster.

3. Merge
Gene g, € Ny(g.) and g, becomes core after insertion of g,. Also, gene g, is
core and g, € Ng(g,). If both g, and g, belong to different clusters then all

these clusters as well as g, are merged to form one cluster.

4. Noise
g, 1s neither a core gene nor it is density reachable from any other core gene.
Moreover, insertion of g, does not produce any new core genes. Then g, is
) y g

noise gene and no density-connections are changed.

The four cases given above are depicted in Figure 7.2 for 2D illustration where o =
4. The incDGC algorithm starts with a newly inserted gene g, and finds its regula-
tion pattern. Each of the clusters obtained by a call to the DGC _cluster _creation()
(given in previous chapter) over the old database has a cluster MMRP. The up-
dated database D,,q contains genes from both the old database D¢g and incre-
mental database Dy, 1.e., Dyps = DU D; and | Dypy |= G + y, where, G is
the total number of genes and y is the total number of genes in the incremental
dataset, D;.

The steps of incDGC are given below.

1. Call DGC to create the clusters on Dg.
2. Represent each cluster by the cluster MMRPs.
3. For each of the unclassified genes, g,, in the updated database, Dpq

(a) Find the regulation pattern of g,.

(b) g, is matched with each of the cluster MMRPs obtained from
Dg. N

(c) If g, matches with the MMRP of exactly one cluster C, then
incDGC proceeds with the gene g, (and can be a viable case
either for case 1, 2 or 4 above). In the #-neighborhood of
g,, only those genes which belong to C, or arc unclassificd

become the seeds for cluster expansion.
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(d) If g, matches more than one cluster, then, the seeds for cluster
expansion arc genes in these clusters as well as unclassified
genes belonging to §-neighborhood of g, (Case 3)

(e) If g, matches none of the clusters, then, either case 2 or 4

may occur

4 Step 3 1s repeated till all genes in D, are classified

For a gene expression database of G genes and y inserted genes, we derive the

following theorems and lemmas

Theorem 1 mcDGC has time complexity O(G + y) in the worst case

Proof Assume m clusters have been detected by DGC 1n the database Dg of
size G For an msertion of y genes, the cardinality of the updated database Dypq
becomes (G + y) For finding matclung profile(s), incDGC comparcs the newly
mserted genes with m profiles where m << G This results in a complexity of
O(m) Once matching profile(s) 1s 1dentified, neighborhood processing starts
Let, = be the number of genes in a cluster Let g, € {Dyya — Dg} be an inserted
gene Assume ¢, matches k clusters (k < m) Then the neighborhood query
searches ((z x k) + 2) genes where (z x k) << G and 2 1s the sct of unclassified
genes € Dypy This gives a complexity of O((z x k) +z) Once the neighborhood
of g, 15 1dentified, the four cases discussed above are checked Out of the four,

the merging case 1s more costly taking at most O(z X k) time Therefore,
total tvme complexity = O(m) + O((z x k) + z) + O(z x k)

= O((z x k) + 2)

In the worst case, k = m,

total time complexity = O((z x m) + 2) = O(G + y)

Observation 1 Clustering obtained by mncDGC 1s the same as the clustering
obtained by DGC
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Lemma 7.1. Let g, be an inserted gene. Let there be two other genes g, € C}
and g, € Cy where Cy,C, are two clusters. If g, becomes core and both g, and

gy are reachable from g,, then C) and C; are merged.

Proof. Suppose g, € C and g, € C; and the inserted gene g, is a core gene. Also,
let g, and g, be reachable from g,. Then g, is density connected to g,. Thus, as
per Definition 6.9, g, and g, belong to the same cluster, i.e., clusters C; and Cs

should be merged. Hence the proof. a

Lemma 7.2. Let g, be an inserted gene and genes g, € C) and g, € C, where
C1, C, are two clusters. If g, is not core and g, is reachable from both g, and gy,

then g, belongs to either Cy or Cj.

Proof. Let, g, be an inserted gene and assume g, is not core. Also, let g, be
reachable from both the clusters g, € C; and g, € C;. Then according to
Definition 6.9, g, € Cy and g, € C,. However, as per Lemma 7.1, C;, C, cannot
be merged as g, is not core. Therefore g, can be included in any of C; or Cs.

Hence the proof. ]

A sigmficant advantage of incDGC 1s that genes in the Ny(g,) having MMRP
different from that of g, are not considered for cluster expansion. This in turn

reduces the computational cost of the algorithm significantly.

7.5 Performance Evaluation

We have implemented incDGC using Java in Windows environment and tested

it on the real-life datasets given in Table 3.5.

7.5.1 Cluster Quality

To assess the quality of incDGC, we need an objective external criterion. We per-
form a statistical rating of the relative gene-expression activity in each cluster. In
order to validate our clustering result, we use z-score [GR02] as the measure of
agreement. A higher value of z indicates that genes are better clustered by func-

tion, indicating a more biologically relevant clustering result. Z-score [GRO2]
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1s calculated by investigating the relation between a clustering result and the
functional annotation of the genes in the cluster We have used Gibbons Cluster-
Judge [GRO2] tool to calculate z-score To test the performance of the clustering
algonithm, we compare the clusters 1dentified by our method with the results
from k-means, UPGMA, SOM, DCCA and CLICK We average the z-score value
over 50 repeated expertments The result of applying the z-score on the reduced
form of Dataset 3 1s shown 1n Table 71 In this table DGC 1s compared with the
well known k-means and agglomerative hierarchical algorithm, UPGMA Table
7 1 clearly shows that our method outperforms both k-means and UPGMA wr t
the cluster quality The z-score values obtained from clustering the full Dataset 3
1s given 1n Table 72 We observe from the table that our method performs better
than k-means and hierarchical clustering We note here that unlike k-means, our
method does not requare the number of clusters as an input parameter It detects
the clusters present in the dataset automatically and identifies the rest as noise
Also, UPGMA requires the parameter cutoff as input to the algorithm From
both tables we see that DGC gives better cluster set at § = 2 for Dataset 3 The
z-score for DGC and incDGC are shown mn Table 7 1 and Table 7 2, respectively
We see from the tables that incDGC discovers all the clusters as DGC Table 7 3
and Table 7 4 demonstrate that the clusters detected by DGC and imnecDGC for

Dataset 2 and Dataset 7 are same respectively

We do not report the homogeneity and silhouette index values for incDGC
since they are the same as for DGC We thus conclude that the clusters detected
by incDGC are same as those detected by DGC

7.5.2 Execution Time Performance

We compare the execution times of DGC and incDGC by increasing the size of
the dataset with updates of 500 genes for each 1teration The execution time for
both algorithms 1s illustrated in Figure 73 We see that incDGC 1s much more
cficient than DGC We also scc that with mcrease 1n the size of the updated
database, the performance of DGC degrades unlike incDGC
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Table 7.1: z-scores for incDGC, k-means at k=16 and 46 and UPGMA using
average linkage at cutoff = 16 and 46 for the reduced form of Dataset 3

Method Applied || No. of Clusters || z-score || Total no. of genes
UPGMA 16 0.285 614
k-means 16 -0.366 614
UPGMA 46 1.69 614

DCCA 2 -0.995 614
k-means 46 0.193 614
DGC at 6 =0.7 46 5.38 614
DGCat =1 44 6.55 614
DGCat =15 44 6.41 614
DGCat § =2 44 7.07 614

DGCat 8 =27 44 6.58 614

incDGC 44 7.07 614

Table 7.2: z-scores for incDGC, and UPGMA using average linkage at cutoff =
176 for the full Dataset 3

Method Applied || No. of Clusters || z-score || Total no. of genes
UPGMA 119 9.7 6089
k-means 119 8.6 6089

DCCA 4 12.1 6089

DGC at 6 =0.7 176 9.12 6089

DGCatfd=1 128 7.02 6089
DGCat =15 120 11.2 6089
| DGC at § =2 119 12 6089

DGC at § = 2.7 121 11.2 6089

incDGC 119 12 6089
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Table 7.3: z-scores for DCCA, k-means, SOM, DGC and incDGC for Dataset 2

Method Applied || No. of Clusters || z-score || Total no. of genes
DCCA 15 441 384
k-means 15 4.48 384
k-means 17 | 4.56 384

SOM 15 4.66 384
SOM 18 5.11 384
DGC at 6 =2 17 5.51 384
incDGC 17 5.51 384

Table 7.4: z-scores for DCCA, k-means, CLICK, SOM, DGC and incDGC for
the Dataset 7

Method Applied || No. of Clusters || z-score || Total no. of genes
DCCA 43 7.06 698
k-means 7 10.8 698
CLICK 5 11.3 698
SOM 4 11.9 698
SOM 6 11.7 698
SOM 9 10.7 698
DGC at 6 =4.5 7 11.747 698
DGC at =5 7 16.55 698
incDGC 7 16.55 698
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Figure 7.3:. Execution Times of DGC and incDGC with increase in the size of

dataset
7.6 Discussion

This chapter presents an incremental clustering algorithm (incDGC) based on
DGC. incDGC does not require the number of clusters as input. The clusters
obtained by incDGC are superior to those obtained by k-means, UPGMA, DCCA,
SOM and CLICK based on z-score for three real datasets. The regulation based
cluster expansion that we use also helps in maintaining the pattern information by
using a simple pattern matching approach. The incDGC algorithm brings down
the cost of performing DGC on the whole database after insertions are carried
out. The number of neighborhood queries are scaled down very effectively than
if DGC were allowed to run on the whole updated data. Moreover, the incDGC
always gives the same result as DGC run on the whole updated database and is
also much faster than DGC.
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Chapter 8

Conclusions and Future work

8.1 Conclusions

In this thesis, we have developed four clustering algorithms for identification of
coherent patterns in gene expression data. Clustering algorithms are dependent
on the proximity measure used. Gene expression data are usually either up- or
down- regulated across conditions. For gene expression data, capturing this reg-
ulation information is important. Moreover, the measure should also be robust
in the presence of noise. We have developed an effective dissimilarity measure
which addresses the above mentioned issues. Since gene expression data have a
non-Gaussian distribution we have developed a graph based clustering algorithm
which detects the clusters in non-Gaussian gene space. Our main objective is
the detection of quality clusters. To this end we have developed a frequent item-
set nearest neighbor based algorithm which gives finer clustering of the dataset.
Finer clusters contain highly coherent genes. Density based clustering algorithms
are known to detect quality clusters. We have developed a density based gene
clustering technique that finds superior cluster sets than those obtained by k-
means, UPGMA, DCCA, SOM, and CLICK based on cluster quality metrics
such as z-score and coherence computation. With the increase in the size of gene
databases and due to continuous updations of gene data, it is highly desirable if
the newly inserted genes can be clustered incrementally. We have developed an

incremental density based clustering approach which can handle such updations
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in the gene dataset incrementally. All the clustering algorithms presented have

been validated over several real-life datasets and found to be satisfactory.

8.2 Future Work

The work reported in this thesis can be expanded and improved in many different

ways. Below, we list some ideas for future work.

o Clustering samples via genes as features is one of the key issues in problems
such as class discovery, normal and tumor tissue classification and drug
treatment evaluation [THC*99]. In this thesis, we have used gene-based
clustering and it is desirable to experiment with sample based clustering in

future.

e Since DGC finds clusters in subsets of conditions, one may be able to ex-
ploit a biclustering approach to make it more useful. Standard clustering
algorithms group genes whose expression levels are similar across all con-
ditions. However, a group of genes involved in the same biological process
might only be co-expressed in a small subset of experimental conditions. In
this sense, methods that can pull out subsets of genes associated with small
subsets of experiments are likely to be useful. Much research has focused
on biclustering approaches although they are still mainly focused on finding
sets of related genes based only on expression data. Biological knowledge
is still incorporated as a subsequent step to expression data analysis. In
our future work, we plan to incorporate biological knowledge into gene ex-
pression data to detect the presence of sets of genes that share a similar
expression pattern and common biological properties, such as function or

regulatory mechanism.

e The use of external information is a helpful strategy in any data mining
task. In association analysis of gene expression data, we may be able to use
prior biological knowledge in many phases. The use of external information,
such as gene annotations, is a useful strategy in any data mining task and

may be incorporated into the data mining techniques such as clustering or
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association mining In future work, a method for the integrative analysis of
microarray data based on the association rules discovery technique might
be used to automatically extract intrinsic associations among gene anno-
tations and expression patterns These relationships will provide valuable

mformation for the analysis and interpretation of gene expression datasets

Furthermore, 1t will be useful to investigate how biological information can
be imntegrated 1n the gene expression database duiing the clustering process
A lot of research to analyze microarray data 1s frequently based on the ap-
phication of clustering algorithms to estabhsh sets of co-expressed genes
However, these algorithms do not incorporate available information about
genes and gene products, they just take into account experimental measure-
ments Therefore, each set of co-clustered genes has to be further examined
with the aim of discovering common biological connections among them In
this way, biological information 1s incorporated as a subsequent process to
the analysis of expression data However, simultaneously expressed genes
may not always share the same function o1 regulatory mechamsm FEven
when similar expression patterns are related to similar biological roles, dis-
covering these biological connections among co-expressed genes 1s not a
trivial task and requires substantial additional work A future direction
of work could be to integrate the analysis of gene expression dataset with
biological information about the different functions performed by the genes
from sources such as Gene Ontology (GO) and finally usc a secrmi-supervised

clustering on the integrated dataset to identify the co-regulated genes

It 1s also of utmost importance to vahdate 1f the final association rules gen-
erated are significant from a biological point of view Therefore significant
biological vahidation methods must be used in order to vahdate the results

obtained aic biologically significant and will be of usc to biologists

As a future direction of our work, we plan to incorporate annotation infor-

mation along with gene expression data while mining for coherent patterns

186



Bibliography

[ABB+00)

[ABN*99]

[ADRB+09]

[AMS94]

[ANS06]

[ATS93]

M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J.M.
Cherry, A.P. Davis, K. Dolinski, and S.S. Dwight. Gene ontol-
ogy- tool for the umfication of biology. Nature Genetics, 25:25-29,
2000.

U. Alon, N. Barkai, Notterman, D. A., K. Gish, S. Ybarra, D. Mack,
and A. J. Levine. Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed by
oligonucleotide array. In Proceedings of Natwonal Academy of Sci-
ences, volume 96(12), pages 6745-6750, USA, 1999.

R. Alves, S. Domingo, Rodriguez-Baena, S. Jesus, and Aguilar-
Ruiz. Gene association analysis: a survey of frequent pattern min-

ing from gene expression data. Briefings in Biownformatics, 2009.

R. Agarwal, H. Mannila, and R. Shrikant. Fast algorithms for min-
ing association rules in large databases. In Proceedings of 20" In-
ternational Conference on Very Large Databases, pages 487-499,
Chile, 1994.

S. Asharaf, M. Narasimha, and S.K. Shevade. Rough set based
incremental clustering of interval data. Pattern Recognition Letters,
27:515-519, 2006.

R. Agrawal, Imielinski T., and A. Swami. Mining association rules
between set of items in large databases. In Proceedings of ACM SIG-
MOD Conference on Management of Data, pages 207-216, 1993.

187



[B*03]

[BDOS]

[BDCKY02]

[BDSY99)

[Bez81a]

[Bez81b]

[BGO3]

[Bic01]

[BMMO07

F. G. Berriz et al. Characterizing gene sets with funcassociate.
Buownformatics, 19:2502-2504, 2003.

A. Bhattacharya and R. De. Divisive correlation clustering algo-
rithm (dcca) for grouping of genes: detecting varying patterns in
expression profiles. Biownformatics, 24(11):1359-1366, 2008.

A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local
structure in gene expression data: The order-preserving submatrix
problem. In Proc. Of the 6th Annual Int. Conf. on Computational
Buology, pages 49-57, New York, USA, 2002. ACM Press.

A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression
patterns. Journal of Computational Biology, 6(3-4):281-297, 1999.

J. C. Bezdek. Pattern Recognition with Fuzzy Objectie Function
Algorithms. Plenum Press, New York, 1981.

J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York, 1981.

M.J. Beal and Z. Ghahramani. The variational bayesian em al-
gorithm for incomplete data: with application to scoring graphi-
cal model structures. In Proceedings of the 7th Valencia Interna-
tronal Meeting on Bayesian Statistics, volume 63(4), pages 453-464,
Spain, 2003.

D.R Bickel. Robust cluster analysis of dna microarray data: An
application of nonparametric correlation dissimilarity. In Proceed-
ings of the Jownt Statistical Meetings of the American Statistical

Association (Biometrics Section), 2001.

S. Bandyopadhyay, A. Mukhopadhyay, and U. Maulik. An im-
proved algorithm for clustering gene expression data. Biownformat-
ics, 23(21):2859-2865, 2007.

188



[BPC02]

[Can93]

[CCFMY7)

[CCW+98]

[CDE*98]

[CHO3)

[CHNWO6]

[CIM04]

[CSCR+06)

A. Bellaachia, D. Portnoy, and A. G. Chen, Y.and Elkahloun. E-
cast: A data mining algorithm for gene expression data. In Pro-
ceedings of the BIOKDD02: Workshop on Data Mining wn Bioin-
formatics (unth SIGKDD02 Conference), page 49, 2002.

F. Can. Incremental clustering for dynamic information processing.
ACM Transactions on Information Systems, 11(2):143-164, 1993.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental
clustering and dynamic information retrieval. In STOC ’97: Pro-
ceedings of the twenty-manth annual ACM symposium on Theory of
computing, pages 626635, New York, NY, USA, 1997. ACM.

R. J. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Con-
way, L. Wodicka, T. Wolfsberg, A. Gabrielian, D. Landsman, and
D. Lockart. A genome-wide transcriptional analysis of the mitotic
cell cycle. Molecular Cell, 2(1):65-73, 1998.

S. Chu, J. DeRisi, M. Eisen, J. Nulholand, D. Botstein, P. Brown,
and 1. Herskowitz. The transcriptional program of sporulation in
budding yeast. Science, 282:699-705, 1998.

C. Creighton and S. Hanash. Mining gene expression databases for

association rules. Browmnformatics, 19:79-86, 2003.

D.W. Cheung, J. Han, V.T. Ng, and Y. Wong. Maintenance of dis-
covered association rules in large databases: An incremental tech-
nique. In Proceedings of 12" International Conference on Data
Engineering, pages 106-114, New Orleans, USA, 1996.

S. Chung, J. Jun, and D. McLeod. Mining gene expression datasets
using density based clustering. Technical Report IMSC-04-002,
USC/IMSC, University of Southern California, 2004.

P. Carmona-Saez, M. Chagoyen, A. Rodriguez, Oswaldo. Trelles,

J. M. Carazo, and A. Pascual-Montano. Integrated analysis of

189



[DCY7]

[D197]

[DLR77]

[EKS*98]

[EKSX96]

[ESBB9S]

[FAAM97)

gene expression by association rules discovery BMC Biownformat-
wcs, 7(54), 2006

J Dopazo and JM Carazo Phylogenetic reconstruction using an
unsupervised neural network that adopts the topology of a phylo-
genetic tree  Journal of Molecular Evolution, 44 226~-233, 1997

J L DeRisiand PO Iyer, V R and Brown Exploring the metabolic
and genetic control of gene expression on a genomuc scale Science,
278 680-686, 1997

A Dempster, N Laird, and D Rubin Maximum likelihood from
incomplete data via the EM algonthm Journal of the Royal Sta-
tistical Society, 39 (1) 1-38, 1977

M Ester, H P Knegel, J Sander, M Wimmer, and X Xu An
incremental clustering for mining 1n a data warehousing environ-
ment In Proceedings of the 24*h VLDB Conference, New York,
USA, 1998

M Ester, H P Kriegel, J Sander, and X Xu A density-based
algonithm for discovering clusters 1n large spatial databases with
noise In Proceedings of International Conference on Knowledge
Drscovery wn Databases and Data Mwning (KDD-96), pages 226—
231, Portland, Oregon, 1996

M Eisen, P Spellman, P Brown, and D Botstein Cluster analysis
and display of genome-wide expression patterns In Proceedings
of National Academy of Sciences, volume 95, pages 14863-14868,
1998

R Feldman, Y Aumann, A Amur, and H Manmla Efficient al-
gorithms for discovering frequent sets in incremental databases In
Proceedings of ACM SIGMOD Workshop on Research Issues on

Data Mining and Knowledge Discovery, pages 59-66, Tucson, AZ,
1997

190



[FPSV07a)

[FPSVO7b]

[Gae02]

[GROZ]

[GWBO*07

[HCMLOS]

[HDRT04]

[HKO04]

P. Foggia, G. Percannella, C. Sansone, and M. Vento. Assessing
the performance of a graph-based clustering algorithm. In Proceed-
wngs of Swth IAPR-TC-15 International Workshop on Graph-based
representations mn Pattern Recognition, pages 215-227, Alicante,
Spain, 2007.

P. Foggia, G. Percannella, C. Sansone, and M. Vento. A graph-
based clustering method and its applications. In Lecture Notes
. Computer Science, Advances wn Brain, Vision, and Artifictal
Intelligence, volume 4729/2007, pages 277-287, Springer, Berlin,
2007.

M. Gaertler. Clustering with spectral methods. Master’s thesis,

Universitat Konstanz, Germany, 2002.

F. Gibbons and F. Roth. Judging the quality of gene expression
based clustering methods using gene annotation. Genome Research,
12:1574-1581, 2002.

A. Gyenesei, U. Wagner, S. Barkow-Oesterreicher, E. Stolte, and
R Schlapbach Miing co-regulated gene profiles for the detection
of functional associations in gene expression data. Biownformatics,
23(15):1927-1935, 2007.

D. Huang, W Chow, E. Ma, and J L1 Efficient selection of discrim-
inant genes from microarray gene expression data for cancer diagno-
sis. IEEE Transactions on Circuits and Systems, 52(9):1909-1918,
2005.

F. V. D. Heijden, R. Duin, D. Ridder, and D. M. J. Tax. Classifica-
tion, Parameter Estimation and State Estimation: An Engineering
Approach Using MATLAB. John Wiley and Sons, 2004.

J Han and M Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers, San Fransisco, USA, 2004.

191



[HK'Y99)]

[HPYOO]

[HS78]

[HSL*99)

[HVDO1]

[IER*+99]

[JP73]

[JPZ03a)

L J Heyer, S Kruglyak, and S Yooseph Exploring expression data
identication and analysis of co-expressed genes Genome Research,
9(11) 11061115, 1999

E H Han, J Pei, and J Yin Mining frequent patterns without can-
didate generation In Proceedings of the 2000 ACM-SIGMOD In-
ternational Conference on Management of Data, pages 1-12, Texas,
USA, 2000

E Horowitz and S Sahm1 Fundamentals of Computer Algorithms

Computer Science Press, 1978

E Hartuv, A Schmitt, J Lange, S Meier-Ewert, H Lehrach, and
R Shamir An algorithm for clustering cDNAs for gene expression
analysis using short ohigonucleotide fingerprints In Proceedings of

3rd International Symposium on Computational Molecular Biology
(RECOMB 99), pages 188-197 ACM Press, 1999

J Herrero, A Valencia, and J Dopazo A hierarchical unsuper-
vised growing neural network for clustering gene expression pat-
terns Brownformatics, 17 126136, 2001

VR Iyer, MB Eisen, DT Ross, G Schuler, T Moore, J Lee,
JM Trent, LM Staudt, JJ Hudson, M S Boguski, D Lashkari,
D Shalon, D Botstein, and PO Brown The transcriptional pro-

gram 1n the response of the human fibroblasts to serum Science,
283 83-87, 1999

R A Jarvisand E A Patrick Clustering using a similanty measure
based on shared nearest neighbors IEEE Transactions on Comput-
ers, 11, 1973

D Jiang, J Pel, and A Zhang DHC a density-based hierarchical
clustering method for time series gene expression data In Proceed-
wngs of BIBE2008 3rd IEEE International Symposium on Biown-
formatics and Bioengineering, page 393, Bethesda, Maryland, USA,
2003

192



[JPZ03b)]

[JPZ03¢]

[JPZ04]

(JTZ03)

[Jus06]

[JW98]

[KM99)]

[Koh95]

[Kra75]

[KVV00]

D Jang, J Pei, and A Zhang Interactive exploration of coher-
ent patterns in time-series gene expression data In Proceedings of
Nunth ACM SIGKDD International Conference on KnowledgeDis-
covery and Data Mwang (SIGKDDO03), pages 24-27, Washington,
DC, USA, 2003

D Jiang, J Pel, and A Zhang Towards interactive exploration of
gene expression patterns SIGKDD Ezplorations, 5(2) 79-90, 2003

D Jiang, J Pei, and A Zhang GPX Interactive mining of gene
expression data In VLDB, pages 1249-1252, 2004

D Jang, C Tang, and A Zhang Cluster analysis for gene ex-
pression data A survey available at www cse buffalo edu/ DB-
GROUP/bioinformatics/ papers/survey pdf , 2003

P Juszczak Learning to recognise, a study on one-class classifica-
tron and actwe learning PhD thesis, Delft University of Technology,
Netherlands, 2006 Isbn 978-90-9020684-4

R A Johnson and D W Wichern Applied Multivarate Statistical
Analysis Prentice Hall, NJ, USA, 1998

K Knshnaand M Murty Genetic k-means algorithm IEEE Trans-
actions on Systems, Man and Cybernetics - Part B Cybernetics,
29 433-439, 1999

T Kohonen Self-organizing maps Springer-Verlag, Heidelberg,
Germany, 1995

E F Krause Tazicab geometry An adventure in non-Euchdean

geometry Dover, New York, 1975

R Kannan, S Vampala, and A Vetta On clustering Good, bad

and spectral In Foundations of Computer Science, pages 367-378,
2000

193



[KW02]

[LAAOS)

[LL91)

[LLF+04a

[LLF+04b)

[LWN+09]

(McQ67]

[MMBO9)

(Per01]

S A Krawetz and D D Womble I[ntroduction to Biownformatics
A Theoretical and Practical Approach Humana Press, Totowa, NJ,
USA, 2002

X L, Knishnan A | and Mondry A An entropy-based gene selec-
tion method for cancer classification using microarray data BMC
Brownformatics, 6, 2005

G S Lennon and H Lehrach Hybridization and analysis of arrayed
cDNA lhbraries Trends wn genetics, 7(10) 314-317, 1991

Y Lu, S Lu, F Fotouhi, Y Deng, and SJ Brown FGKA A fast
genetic k-means algorithm In Proc ACM Symposium on Applied
Computing, 2004

Y Lu, S Ly, F Fotouhi, Y Deng, and SJ Brown Incremental
genetic k-means algorithm and 1ts application 1in gene expression
data analysis BMC Biownformatics, 5(172), 2004

G Ly, Z Wang, Q Ni, X Wang, B Qiang, and H Qing-juan
Application of a new similarity measure 1n clustering gene expres-
sion data Downloaded from http //ieeexplore 1eee org/stamp/
stamp jsp?arnumber=05162382, 2009

JB McQueen Some methods for classification and analysis of
multivariate observations In L. M Le Cam and J Neyman, edi-
tors, Proceedings of the Fufth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281-297 University of
Califormia Press, 1967

U Maulik, A Mukhopadhyay, and S Bandyopadhyay Combining
pareto-optimal clusters using supervised learning for 1dentifying co-
expressed genes BMC Biownformatics, 10(27), 2009

W Pernizo Peano count tree technology Techmical report, NDSU-
CSOR-TR-01-1, North Dakota State Umiversity, Fargo, North
Dakota, United States, 2001

194



[Rou87]

[RRAROS)

[RWDF00]

[SAPOS]

[SAS99)]

[SMKS03)

(SS00]

[SSI+98]

[Ste06]

P Rousseeuw Silhouettes a graphical aid to the interpretation
and vahdation of cluster analysis Journal of computational and
applied mathematics, 20 153-65, 1987

R Ruz, JC Riquelme, and JS Aguwlar-Rwz  Incremental
wrapper-based gene selection from microarray data for cancer clas-
sification Pattern Recognation, 39 23832392, 2006

P Reymonda, H Webera, M Damonda, and EE Farmera Daf-
ferential gene expression 1n response to mechanical wounding and
mnsect feeding in arabidopsis  Plant Cell, 12 707-720, 2000

R Syamala, T Abidin, and W Pernzo Clustering microarray
data based on density and shared nearest neighbor measure In

Computers and Thewr Applications, pages 360-365, 2006

SAS Institute Inc Cary, NC SAS/STAT User Guide, Version 8 0,
1999

R Sharan, A Maron-Katz, and R Shamir Click and expander a
system for clustering and visualizing gene expression data Biown-
formatics, 19(14) 1787-1799, 2003

R Sharan and R Shamir Click A clustering algorithm with ap-
plications to gene expression analysis In Proceedings of 8th Inter-
national Conference on Intelligent Systems for Molecular Biology,
pages 307-316 AAAI Press, 2000

P T Spellman, M Q Sherlock, G andZhang, V R Iyer, K Anders,
M B Eisen, PO Brown, D Botstein, and B Futcher Comprehen-
sive 1dentification of cell cycleregulated genes of the yeastsac-

charomycescerevisiaebymicroarrayhybridization  MolecularBiology
of theCell, 9(12) 32733297, 1998

D Stekel Maicroarray Biownformatics Cambridge University Press,
Cambndge, UK , 2006

195



SZCS03)

[TAO2]

[THO9)

[THC*99]

[THHKO0?]

[TS08]

[TSKO09]

[TSM*99)]

(vDO0O]

G. Shu, B. Zeng, Y.P. Chen, and O.H. Smith. Performance assess-
ment of kernel density clustering for gene expression prole data.
Comparatwe and Functional Genomacs, 4:287299, 2003.

A. Tuzhilin and G. Adomavicius. Handling very large numbers
of association rules in the analysis of microarray data. In Proceed-
ings of the Eighth ACM SIGKDD International Conference on Data
Minang and Knowledge Discovery, pages 396404, 2002.

J.H. Travis and Y. Huang. Clustering of gene expression data based
on shape similarity. FURASIP Journal on Biownformatics and Sys-
tems Buology,, 2009(195712), 2009.

S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church.
Systematic determination of genetic network architecture. Nature
Genet, 22:281285, 1999.

S. Tomida, T. Hanai, H. Honda, and T. Kobayashi. Analysis of
expression profile using fuzzy adaptive resonance theory. Biownfor-
matics, 18(8):1073-83, 2002.

L. Tao and S.A. Sarabjot. HIREL: An incremental clustering algo-
rithm for relational datasets. In Proceedings of Fighth IEEE Inter-
national Conference on Data Mining, pages 887-892, 2008.

P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Pearson Education, New York, 2009.

P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan,
E. Dmitrovsky, E.S. Lander, and T.R. Golub. Interpreting pat-
terns of gene expression with self-organizing maps: Methods and
application to hematopoietic differentiation In Proceedings of Na-
tional Academy of Sciences, volume 96(6), pages 2907-2912, USA,
1999.

S.M. van Dongen. Graph Clustering by Flow Swmulation. PhD
thesis, University of Utrecht, Netherlands, 2000.

196



[WFM*98] X. Wen, S. Fuhrman, G.S. Michaels, D.B. Carr, S. Smith, J.L.
Barker, and R. Somogyi. Large-scale temporal gene expression map-

ping of central nervous system development. PNAS, 95(1):334-339,
1998.

197



List of Publications

7.

. Rosy Das, D.K. Bhattacharyya and J.K. Kalita, A Pattern Matching Ap-

proach for Clustering Gene Ezxpression Data, accepted for publication in
International Journal of Data Mining, Modeling and Management, Vol 3,
No. 2, 2011

Rosy Das, D.K. Bhattacharyya and J.K. Kalita, Clustering Gene Ezpres-
sion Data using an Effectwe Dissymilarity Measure, International Journal
of Computational BioScience (Special Issue), Vol. 1 (1), pp. 55-68, 2010.

Rosy Das, D.K. Bhattacharyya and J.K. Kalita, An Incremental Clustering
of Gene Ezpression Data, in the Proceedings of NABICO09, pp. 742 - 747,
Coimbatore, India, 2009, doi: 10.1109/NABIC.2009.5393848.

Rosy Das, D.K. Bhattacharyya and J.K. Kalita, Clustering Gene Expres-
sion Data using a Regulation Based Density Clustering, International Jour-
nal of Recent Trends in Engineering, Vol. 2, No. 1-6, pp. 76-78 2009.

. Rosy Das, J.K. Kalita and D.K. Bhattacharyya, A New Approach for Clus-

tering Gene Ezpression Twme Series Data, International Journal of Bioin-
formatics Research and Applications, Vol. 5, No. 3, pp. 310-328, 2009.

Rosy Das, Sauravjyoti Sarmah and D. K. Bhattacharyya, A Pattern Match-
wng Approach for Identifying Coherent Patterns over Gene Expression Data,
Journal of ASS, Vol.50 (1 & 2) 2009.

Rosy Das, D K Bhattacharyya and J.K. Kalita, A Frequent Itemset- Nearest
Newghbor Based Approach for Clustering Gene Ezpression Data, in the Pro-

198



ceedings of Fifth Biotechnology and Bioinformatics Symposium (BIOT’08),
pp. 73-78, Texas, 2008. -

. Rosy Das, D K Bhattacharyya and J.K. Kalita, An Effectwe Dissimlarity
Measure for Clustering Gene Ezpression Time Series Data, in the Proceed-
ings of Fourth Biotechnology and Bioinformatics Symposium (BIOT'07),
pp. 36-41, Colorado, USA, October, 2007

199



