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SYNOPSIS 

The study of flow problems of electrically conducting fluids is currently receiving 

considerable interest. Such studies have been made for many years in connection 

with astrophysical and geophysical problems. Recently various engineering and 

industrial problems need studies of the flow of an electrically conducting fluid. 

The phenomenon generated in the electrically conducting fluid due to the interaction 

of electromagnetic field with the velocity field is known as Magnetohydrodynamics 

(MHD) . In MHD , the flow of conducting fluid in presence of an applied magnetic 

field is considered. The magnetic field induces a current due to the qotion of the 

conducting fluids which in turn modifies the applied magnetic field. The modified 

magnetic field with current produces an electromagnetic Lorentz force that resists the 

fluid motion. This interaction between mass motion and electro-magnetic field sets 

up magneto-hydrodynamic phenomenon . 

For a fluid in motion, the energy balance is considered by the internal energy , 

conduction and convection of heat with the stream, the generation of heat through 

the friction and the Joule heat due the presence of magnetic field. In compressible 

fluids, there is an additional term due to the expansion or compression when volume 

changes . In these cases , generally the effect of radiation is assumed to be negligible 

For the motion of conducting fluid the Fourier's law gives that the heat flux 

{( J / m2 ) per unit area and time) is proportional to the temperature gradient , 



{ ( 1 / A ). dQ /dt = - q = -k dT / d11 }, k being the them~al conductivity of the fluid . 

The change of total energy is the change in the sum of internal and kinetic energy . 

The work done per unit time is determined from the contribution of components of 

normal and shearing stresses. 

In recent years, MHD problems under different geometries have been given special 

attentions because of their practical importances in different industrial and scientific 

activities. Therefore, our objective in this research work is to discuss MHD 

problems in various geometries for pure and impure ( i.e., Newtonian and non- 

Newtonian) fluids .under the action of uniform magnetic field. These results have 

practical applications in different engineering and industrial fields. 

A few problems of MHD flow and heat transfer in various geometries have been 

discussed in this thesis. The primary objective of this study is to know the nature of 

flow and heat transfer due to the effects of different physical properties and 

par"ameters of fluid motion , and field, such as (i) effect of variable ( temperature 

dependent) viscosity in MHD flow , (ii) effects of induced magnetic field on steady 

and unsteady MHD flow of Newtonian and non-Newtonian fluids , (iii) effect of an 

exponentially decay source in MHD flow, (iv)heat and mass transfer of an unsteady 

MHD flow, (v) mass and thermal diffusion in MHD flow, etc. 

The problems we have studied, have various engineering and industrial applications 

such as in oil industry, paper industry, rubber industry, nuclear reactor , power 

transformation etc. The influence of dust particles on visco-elastic fluid flow has its 

importance in many applications such as extrusion of plastics, in the manufacture of 

Rayon and Nylon , purification of Crude oil , pulp , paper industry , textile industry 

and in different geo-physical situations etc. 



The thesis consist of seven chapters. Chapter I deals with the introduction of the 

thesis. The outline of the subject Magnetohydrodynamics , its development and 

applications , fundamental equations of flow and heat transfer in 

Magnetohydrodynamics has been discussed in this chapter. The mass transfer 

processes which are sometimes accompanied by other processes like heat transfer , 

rotation of fluids , electromagnetic forces etc. have also been discussed briefly in this 

chapter. During the past two decades, a number of significant experiments have 

been carried out revealing non-Newtonian characteristics of liquids where a 

number of new phenomena have been observed in a large number of liquids, of great 

technological and industrial importances. A brief description of these liquids is also 

given in this chapter. The shooting method for solution of simultaneous non-linear 

higher order differential equations which is gaining popularity , has also been stated 

in this chapter. Lastly, a brief review of earlier workers and scope of this work 

have also been explained in this chapter. 

In chapter I1 , the flow of a viscous incompressible electrically conducting fluid on a 

moving flat plate in presence of uniform transverse magnetic field has been 

discussed. The flat plate which is continuously moving in its own plane with a 

constant speed is considered to be isothermally heated . Assuming the fluid 

viscosity as an inverse linear function of temperature velocity and temperature 

distribution under the field are plotted for different layers of the medium for various 

constant values of viscosity parameter . Numerical solutions are obtained by using 

Runga-Kutta and Shooting method . The coefficient of friction and the rate of heat 



transfer are calculated . The theory of Shooting method , for the solution non-linear 

higher order simultaneous differential equations has also been stated in this chapter. 

In chapter 111, we have discussed an unsteady flow of a viscous incompressible 

electrically conducting fluid between two infinite parallel stationary disks composed 

of non-conducting material in presence of uniform magnetic field applied 

transversely to the direction of flow. The flow is due to the source whose strength 

decays exponentially. The aim of this study is to investigate the effect of Hartmann 

number and the decay factor on the laminar radial flow due to the source for different 

values of reduced Reynolds number. Solutions are obtained for the radial velocity 

and pressure distribution . The skin frictions at the boundary layer flow are calculated 

and their variations with Hartmann number and ( decay factor x time ) are shown 

graphically. 

The problem of steady laminar flow of a viscous incompressible fluid between two 

parallel plates in presence of a uniform magnetic field applied in the direction making 

angle 0 with the vertical axis has been discussed in chapter IV. Assuming that the 

two plates are maintained at a constant temperature gradient, the expressions for the 

velocity components , induced magnetic field , temperature distribution , skin 

hct ion and the rate of heat transfer has been obtained and calculated numerically. 

Their natures are shown graphically for different values of Hartmann number and the 

inclination of the field 0 . Perturbation method is used to solve the problem. 



An unsteady free convection and niass transfer flow of an incompressible electrically 

conducting viscous fluid past a steadily moving infinite vertical porous plate under 

the action of uniform magnetic field has been discussed in chapter V. The 

magnetic field which is applied transversely to the fluid motion, induces a 

magnetic field along the line of motion that varies perpendicularly to it. Similarity 

equations are derived for fluxes of momentum , magnetic field, energy and mass 

considering thermal diffusion effect ( Soret effect ), by introducing time dependent 

length scale. The equation for mass concentration and energy, are solved analytically 

but due to the complexities, the momentum equation and magnetic field equation 

are solved numerically using Runga - Kutta method . To find the initial missing 

values of the boundary conditions of the problem shooting method is used. The 

effects of various magnetic field parameters, mass diffusion and thermal diffusion 

parameter on flow are discussed graphically. 

In chapter VI , we have discussed a viscous incompressible free convective flow of 

an electrically conducting fluid between two heated vertical parallel plates in porous 

medium in presence of a uniform magnetic field, applied transversely to the flow. 

Maintaining the plates at two different temperatures and considering the dissipation 

of energy due to flow and porous medium, the numerical values of skin friction and 

the rate of heat transfer are calculated and figures are plotted for fluid velocity and 

the temperature distribution for different values of physical parameters. To solve the 

equations Runga-Kutta and Shootoing method are used 

The unsteady laminar flow of an incompressible electrically conducting second order 

Rivlin-Ericksen fluid in porous medium down a parallel plate channel inclined at an 



angle 8 to the horizontal surface in presence of uniform magnetic field has been 

discussed in chapter VII. The magnetic field applies transversely to the flow 

direction, in turn , induces a magnetic field along the line of flow. Assuming the 

plates are maintained at constant temperature the exact solutions for fluid velocity , 

particle velocity , induced field distribution and the temperature distribution within 

the channel have been obtained and are plotted graphically for different magnetic 

field parameters. Expressions for flow flux of fluid and particle , viscous drag and 

the rate of heat transfer have been derived. 



CHAPTER I 

INTRODUCTION 



MAGNETQHVDRODYNAMICS ( MHD ) 

The phenomenon generated in the electrically conducting fluid due to the interaction of 

electromagnetic field with the velocity field is known as Magneto-hydrodynamics 

(MHD). The term "Hydro" implies that the subject pertains to applications in water, or 

at best , in incompressible fluid ( i.e. the medium in which the compressibility effect'is 

negligible ). Therefore, MHD is the electromagnetic phenomenon in the flow of an 

incompressible electrically conducting fluid. 

The term " MHD " originally came from the field of fusion. Since most liquids and 

gases are poor conductors of electricity, their motions can be normally be treated by 

the principles of fluid dynamics. Ho\vever, it is possible to make some gases very highly 

conducting by ionizing them, called Plasma. When studies were made on different 

plasma phenomena , the equations of motion were found very similar to those which 

were used in studying hydrodynaniic phenomena for many years. The study of plasma 

or hydrodynamics were carried out under the action of magnetic field using 

hydrodynamic equations, and is now used to describe the whole field of plasma studies 

i.e. the study of microscopic interaction of electrically conducting liquids and gases with 

magnetic field. The subject can further be divided into two branches ; Magneto- 

hydrodynamics and Mapeto-gasdynamics. 

Faraday and his contemporaries observed that a solid or fluid material moving in a 

magnetic field experiences an emf when the material is electrically conducting , and if 

the current path is available an electric current develops. Alternately an electrical 



current may be induced when magnetic field changes with time. There may be two basic 

effects. 

(I) An induced magnetic field is assoc~ated w ~ t h  the currents perturbing the 

original magnetic field. 

(IT) The current interacts wit11 the magnetic field to produce an electromagnetic 

body force known as pondermotive force or Lorentz force, perturbing the 

original fluid motion. Moreover the induced current which has its own magnetic 

field, also added on to the electromagnetic body force perturbing the fluid 

motion largely. 

Thus the interlocking between the mass motion ( i.e., the motion of conductor ) and the 

electromagnetic fields, is the Magneto-hydrodynamic phenomenon. It is the science of 

motion of electrically conduction fluids , and essentially the mutual interaction between 

the fluid velocity field and the electromagnetic field. Therefore, the flow behaviour in 

MHD may be examined by combining the electronlagnetic field equations with those of 

fluid dynamics. The mutual interactions occur in MHD between the mass motion with 

the electromagnetic fields are more pronounced manner in liquids and gases than in 

solids. This is due to the freedom of movement of the molecules in the former types of 

the conductors enjoy. 

The idea of MHD in fact was pre-Maxwellian. The electrical pioneers of the 1830's 

perceived that MHD niight explain certain natural phenomena . Faraday thought that 

motions of the sea might account for the observed perturbation of the earth's magnetic 

field ( by effect (I)) , an idea that has rece~ltly gained new support among the geo- 



physicists. Ritchie speculated whether ocean movements might be propelled by effect 

(11), the electric current being of unknown origin. Within the nineteenth century various 

minor artifacts depending on MHD principles were invented. For example Leduc's 

magnetometer in 1887, Ritchie's electromagnetic pump in 1832. The applications of 

MHD to natural events received a belated stimulus when astrophysicist came to realize 

how prevalent throughout the universe are conducting ionized gases (plasmas ) and 

significantly strong magnetic fields. Bigelow in 1889 supposed that there were magnetic 

fields on the sun which later on confirmed by Hale and Babcocks. They were of the 

view that MHD processes must dominate most areas of astrophysics. Larmor in 1918 

suggested that the magnetic fields of the sun and the other heavenly bodies might be due 

to dynamo-action where the conducting materials of the star acted as the armature and 

stator of a self exciting dynamo. Williams and Hartmann performed various simple 

experiments on the flow of conducting liquids in the laboratory. Hartmann in 1937, 

designed a magnetic pump to put mercury in motion for his experiments on the behaviour 

of conducting fluids in the presence of a magnetic field. 

At last the joint consequence of the effects (I) and (11) was clearly realized when 

engineer -astrophysicist Alfve'n in 1942 published thc classic papcr which marks thc 

emergence of full fledged MHD. According to this idea if a highly conducting fluid 

moves in a magnetic field, the induced current will tend, which means interaction 

between relative motion of the fluid with the electromagnetic field so that the field is 

convected by the fluid motion. Alfven describe it as freezing of the field with the fluid 

motion. The field is deformed to follow the fluid motion ( effect (I)) while the relative 



motion is opposed by the electromagnetic forces (effect (11) ), which Alfven thought of 

in terms of the Faraday tensions in the field lines. This idea now known as Alfven 

waves or Magnetohydrodynamics waves and is confirnled by mathematical analysis. 

The magnetic lines of forces, under apparent tension and inertia of the fluid, frozen 

together which undergoes a transverse oscillations, and transmit waves just like elastic 

strings. Alfven successfully applied his ideas into cosmic and astrophysical problems. 

Thereafter, there has been many important applications of MHD in various fields both 

experimental as well as theoretical. 

Applicatiorts : 

The study of flow problems of electrically conducting fluids is currently receiving 

considerable attentions. Such studies have been made for many years in connection with 

astrophysical and geophysical problems such as Sun spot theory, motion of the 

interstellar gas , origin of earth magnetism etc. Only recently some engineering 

problems for instance, in controlled fusion research , reentry problenl of intercontinenta 

ballistic missiles, Plasma jet, Power generation ( magnetohydrodynamic generator ) etc 

need the studies of  the MHD flow. Because of the engineering applications, in recen 

years many engineers and aerodynamicists with the astrophysicists have studiec 

extensively this subject. The applications of the phenomena of MHD have beer 

concerned with the problems such as stirring of molten metals in eddy currents, stinini 

and levitation in metallurgical industry, the motion of liquid metal brushes in high curren 

electrical machinery, the design and operation of electromagnetic pumps 

electromagnetically pumping of liquid metals, coolant in nuclear reactors an( 

electrolnagnetically operatcd ran~jet. The Induction flow mcter, which depends on thc 



potential difference in the fluid in the direction perpendicular to the motion and the 

magnetic field. All these devices utilize the electromagnetic body force ( Lorentz force, 

pe (J x H) per unit volume ) which ariscs due to the flow of elcctric currcnt J in prcscnce 

of magnetic field H, where p, represents permeability of the medium. 

One important application of MHD is in the problems of controlled thermo-nuclear 

reactors for large scale power generation. The cooling of a thermo-nuclear reactor is 

generally carried out by MHD flow of liquid sodium. The thermo-nuclear fusion could 

be achieved in controlled manner by confining hot ionized deuterium away from all walls 

by MHD forces. This led intensive research on MHD in this branch. It is also important 

to investigate the effects of electromotive forces arising in MHD flow problems on the 

phenomenon of transition the steady state to turbulence. Post ( 1956) and Bishop(1958) 

studied the use of MHD principles in controlled fusion research. The study of MHD 

has also importance in the field o f  aeronautics especially missile aerodynamics, since the 

temperature generated in such high speed flights are sufficient to ionize the air 

appreciably. In such flights, Joule-heating ( i.e., the heating due to the flow of electric 

current) plays a very important role. For example, when a high speed missile re-enters 

the earth's atmosphere, a very large amount of heat is generated due to the friction of the 

air n~olecules. This viscous heating may sometimes be so considerable as to ionize the 

air near the forward stagnation region which is electrically conducting. A magnetic field 

may be applied to it so as to induce electromagnetic body forces in the air which in turn 

will be retarded. As a result the velocity gradient decreases near the wall implying a 

reduction of skin friction which automatically implies reduction in heat transfer. A 



related application is the use of MHD acceleration to shoot plasma into fusion device or 

to produce high energy wind tunnels for simulating hypersonic flight. MHD effects can 

also arise from the passage of bodies or waves through the ionosphere in the presence of 

the earth's magnetic field. 

The various applications of MHD in engineering and technical problems have been 

investigated by Karman(l950) . The feasibility of MHD power generation has been 

studied theoretically and experimentally by Sutton ( 1959), Curgen et al. (1960) and 

Mannaland Mather (1962). The old idea of MHD generation from ionized gas streams has 

been revived and developed intensively. It offers the prospect of improved power-station 

efficiency and also cheap, lightweight sources of power for space vehicles. Other 

potential applications of MHD include electromagnets with fluid conductors , various 

energy conversion or storage devices, magnetically-controlled lubrication by conducting 

fluids etc. 

1.2 FUNDAMENTAL EQUATIONS OF 
MAGNETOHYDRODYNAMICS : 

In order to derived equations for MHD flow following postulates are considered. 

Hvdro&llnlnic a ~ t d  Electro~~~nair etic coitside~.atio~is : 

(i)The fluid is treated as continuous and describable in tern~s of local properties, such as, 

pressure, velocity, temperature, density, viscosity etc. 

(ii) The system under our investigation is considered strictly large compared to the 

microscopic structure of matter but small enough compared to the n~acroscopic 

phenomenon to permit the use of differential equations to describe them. 



(iii) A relatively collusion free situations are considered. 

(iv) All velocities are much smaller than C, the velocity of light ( 3 x lo8 m / sec 

approx.), hence non-relativistic electromagnetic theory is considered in MHD and 

relativistic corrections are not necessary. 

(v) A purely local view is meaningless, this means that the charges at rest or in motion, 

and the magnetic materials are act one upon another at a distance. 

(vi) The electrical field which may be characterized by a value E is of the same order of 

magnitude as the induced electric field p, (v x H) . In other words, the non -dimensional 

parameter RE = E / { p, (v x H)) is of the order of unity or smaller, where H is the 

characteristic magnetic field strength. Therefore, it may be shown that the displacement 
I 

current co (dE / a )  and the excess electric charge are negligible in our fundamental 

equations and that the energy in the electric field is much smaller than that in the 

magnetic field. As a result, all the electromagnetic variables may be expressed in terms 

of magnetic field. 

Lotv fieqzter~cv annr~osirnntlor~s : 

(i) The charge distribution appears unimportant in low-frequency electromagnetism and 

MHD. The Arnpkre-Maxwell law relating magnetic field to the electric field due to 

moving charges is 

Curl ( B / p, ) = J + E~ (3E l a )  1.01 

where J is called current density due to the net flow of chargcs frcc or bound, and the 

last term is known as Maxwell's contribution. The magn~tude of ratio 



[Curl B / p, / (E, dE/at)] is of the order of h2 / d2 where, d is the length scale and h is 

the wavelength ( C/ f )  of electromagnetic radiation of frequency f . This means that the 

Maxwell term E, (aE /at) is negligible unless frequency is high enough . Thus under low 

frequency, the Amptre-Maxwell law becomes 

Curl B = p, J 1.02 

Thus no contribution of Maxwell term to J . 

(ii)The polarization current (aP/ a )  of the same order as E, (dE / a )  and hence no 

contribution to J . 

(iii) The ratio of magnitude of convection current to the total current 

i.e., [E, ( B $ /d ) / ( B / p d) ] = v2 / C2 , which is very small unless frequency is very 

high. Therefore, under low frequency the convection current is negligible and conduction 

current is taken as the total current. So that neglecting the convection current ( qv ) and 

the polarization current (aP/ at), the current density is written as 

J = o (  E + v x B )  1.03 

(iv) The ratio of magnitude of electric and magnetic part of the body force is 

[ { (  E, E2 d) or ( E, B~ v2d )) 1 {B2 / (pd) } ]  = v2 1 C' , 1.04 

which is very small unless frequency is very high. This means that electric body force 

( q E ) is negligible in MHD. 

From these comparisons, it appears that the charge distribution in MHD has no 

importance under low frequency approxin~ation. 

Under above considerations, the fundamental equations governing the flow field and the 

temperature in MHD can be obtained from the corresponding equations in ordinary 



hydrodynamics with suitable modifications by using Maxwell's equations and Ohm's 

law. 

(a) MAXWELL'S ELECTROA4AGNETIC EOUATIONS: 

In MHD, we are mainly concerned with conducting fluids in motion and hence it is 

necessary to consider the electrodynamics equations of moving media. When charges are 

in motion, the electric and magnetic fields will be associated with this motion which will 
- 

have space and time variation. The phenomenon is called electromagnetism and we study 

the electromagnetic wave motion. The study will involve time dependent properties of 

the electric and magnetic fields. The behaviour of wliich will be described by a set of 

equations called Maxwell's equations. These equations under non-relativistic 

assumptions are : 

Curl E = - (a B /a t), 

Curl H= J + (a D la t), 

div B = 0 1.07 

div D = p, 1.08 

where E, B, H, J, D, p,, E and p, are respectively the electric field intensity, the 

magnetic flux density, the magnetic field intensity, the current density , the electric 

displacement , the magnetic permeability, the die-electric constant and the electric charge 

density. In addition to these equations, we have current conservation equations , which 



is also referred to as the equation of continuity in MHD. This current conservation 

equation derived from ( 1.06 ) and (1.08 ), is 

div J + (ap, /at) = 0 1.1 1 

In electromagetism and MHD , the displacement current d D l a  is neglected as 

compared to J in a good conductor. Because the fluid is in motion with a velocity very 

small compared to that of the velocity of light. Also for fluids which are almost neutral 

i.e., in case of stationary currents, the charge density p, at any point within the region 

remains constant. Therefore p, is negligible, which implies that dp, / 13 must be omitted 

from (1.1 1). 

Now the Maxwell 's equations under MHD approximation take the form 

Curl E = - (dB I&), 

Curl H= J 

div B = 0 

div J = 0 

B = p , H  

D = E E  

(b) OHM'S LA W : 

For electromagnetic problems, an equation, namely the law of conduction, is added to 

the Maxwell's equation. The conduction current density J in stationary conductor is 

formulated mathematically as J = o E , \\/here E is the electric field intensity and o is 

the electrical conductivity of the medium. If a charged particle moves with velocity v in 



a magnetic field B , it suffers a magnetic force v x B per unit of its charge. That is the 

induced electric field is given by v x B . This force is perpendicular to v and B . 

Again the Lorentz force for a unit charge moving locally in the medium with velocity 

v i.e., the total electric field is = E + ( v x B ). 

Hence under a non-relativistic approximation the current density is written as 

This equation is known as Ohm's law. 

(c) HALL CURRENT ; 

We know that the Lorentz force on a particle ( in a conductor ) per unit of its charge due 

to its motion with the velocity v in presence of a transverse magnetic field B is 

E + ( v x B ) ( see, Shercliff, 1965 ). Let free charges of negligible inertia be drifting 

through it under the action of this Lorentz force . The right conclusions emerge if it is 

supposed that each drifting particle also suffers a drag force due to collisions equal on the 

average Kv , where K is a constant for each particle. This represents the dissipate 

phenomenon of resistivity. Neglecting the inertia of the free charge , we have 

o ( E + v x B ) = K v  1.19 

Summing over the free charges in the element of conductor, we get 

pe" E + ( J, x B ) = C( k v 1 G ) per unit volume 

i.e., E +  ( J , x B ) / p , " = Z  { k v / ( G p , " ) )  



where, J, is the conduction current X( p v / 6 ), due to the drift of free charges and p," 

is the net free charges per unit volume. The experiments show that the right hand side is 

proportional to J, . Hence we have 

E +  ( J , X B ) / ~ , "  = J , / O  1.21 

where o is the electrical conductivity. The extra term ( J, x B ) / p," due to B is 

known as Hall effect. If the free charges are electrons, of charge - e , and number 

density is n then, E -  ( J , x B ) / p , "  = J , / o  1.22 

Hall effect is due merely to the sideways magnetic force on the drifting free charges. In 

liquid conductors, Hall effects are negligible being the nunlber of free charges infinite. 

. When the conductor is moving at a velocity u locally, the velocity of a charge is u + v 

if v is its velocity relative to the conductor . Summing over all charges, free or bound, 

we have total current 

J =  C { e ( u + v ) / 6 )  

= p , u +  C { e v /  6 )  1.23 

in which the term p, u is the convection current , a non-dissipative effect. The term 

C {e v / 6 ) can be split into, (i) the conduction current J, due to the motion of free 

charges relative to fluid which is a dissipative effect, and (ii) the polarization current due 

to the motion of bound charges relative to fluid. The balance of forces on a free charge 

is : 



1 his leacls to tne result tnat unnl's law is 

( E + u x B ) = J c / o  

if the Hall term due to C {e v x B ) is neglected . 

With the Hall term , the Ohm's law can be written as 

J c =  o[E+ ( u x B ) ] -  [o / ( n e ) (  J, x B ) ]  

(d) MASS CONSERVATION EQUATION : 

This equation is developed by writing a mass balance over a stationary volume element 

Vx Vy Vz through which the fluid is flowing. 

i.e., (Rate of mass accumulation ) = ( Rate of mass in ) - ( Rate of mass out ) 

Let us consider a fluid of density p, moving with a velocity v. ~ h e n ' t h e  hydrodynamic 

equation of conservation of mass is written as 

( d p / & ) + d i v ( p v ) = O  1.27 

The vestor quantity p v means the mass flux and its divergence ( i.e., div (pv ) ) is the 

net rate of mass efflux per unit volume . Equation 1.27 may be abbreviated as 

D p l  Dt = - p ( V . v )  1.28 

where D / Dt is the substantial time derivative. The equation 1.27 describe the rate of 

change of density as seen by an observer " floating along " with the fluid. The 

equation remains unchanged for a conducting medium also . 

For an incompressible fluid, the density of any particle is invariable with time, so that 

( a p ~ a t )  = o 



Therefore, for an incompressible fluid , the equation 1.27 reduces to the form, 

div v = 0 

(e) MOMENTUM CONSER VA TIOA' EOUA TION : 

In M H D  , the fluid is electrically conducting, therefore, the magnetic field affects 

mass motion not because of its mere presence but only by virtue of electric current with 

a velocity u in presence of  a magnetic field B , then the force per unit voIume can be 

written as ( see Shercliff, 1965 ) 

The ratio of electric and magnetic parts is this body force is of the order (u I C)* where 

u is the characteristic velocity and C is the velocity of light. Thus p, E can be omitted, 

so that the magnetic body force is ( J s B). Introducing this, we write for a volun~e 

element Vx Vy Vz the momentum balance for steady magnetohydrodynamics flow in 

this form : 

(Rate of  momentum accumulation ) = ( Rate of momentum in ) - ( Rate of momentum 

out ) + ( magnetic body force ) + ( sun1 of forces acting on the system) 

In a single vector equation it takes the f o m ~  : 

{ a / a t ( p v ) ) =  - v . ( ~ v I ~  - v p  - ( v . r )  + ( J S B )  + pg + x 1.30 

where p is the fluid density , is the fluid velocity, B is the magnetic field , p is 

the hydrostatic pressure i.e., fluid pressure. v = p 1 p , is the kinematic shear 

viscosity, p is the coefficient of viscosity. 



The first term in the equation 1.30 means the rate of increase of momentum per unit 

volume . Second term means the rate of momentum gain by convection per unit volume . 

Third term means the pressurc force on elcment per unit volunlc . Fourth tcrm is the 

rate of momentum gain by viscous transfer per unit volunle i.e., the viscous force on 

element per unit volume. Fifth term is the magnetic body force as given in 1.13. The 

sixth term represents the gravitational force on element per unit volume, while the last 

term represents the sum of all other forces acting on the system. Considering the mass 

conservation equation, we get, 

p { D  v /  D t )  = - ( V . p )  - ( V . T )  + ( J x B )  + pg + X 1.3 1 

The expressions for the various stresses in terms of velocity gradients and fluid 

properties for Newtonian fluids are 

r ,  = - 2 p ( a v , / a x )  + ( 2 / 3 )  ~ ( v . v ) ;  r,?, = - 2 p ( a v y / a y )  + ( ~ / ~ ) P ( v . v )  

4 ~ , = - 2 p ( a ~ , / a z )  + ( 2 / 3 )  ~ ( v . v ) ;  T , , -  T,, = - p ( a v , / a y )  + ( a v , / a ~ )  

- 
T ~ =  T ~ , =  - p ( a v , / a z )  + ( a v Z / a y ) ;  T,- r,,  = - p ( a v Z / a x )  + ( a v , / a z )  

In case of electrically conducting , inconlpressible and viscous fluid, the equation 1.41 

may be simplified by means of the equation of continuity [ ( V. v) = 0 ] to give 

p { D  v /  D t )  = - ( V . p )  - V . ( p V . v )  + ( J x B )  + p g + X  1.32 

The equation 1.32 except the term ( J x B ) , is celebrated Navier -Stokes equation, 

first developed by Navier in France in 1822. 

For an invisid fluid, (V. T ) = 0 , hence the equation 1.32 reduces to 

p {D V /  D t )  = - ( V . p )  + ( J x B )  + p g + X  



(0 MA GNETIC DIFFUSION EOUA TION : 

Combining the equations 1.13 8: 1 ;18 , we obtained that 

V x H = o [ E + v x B ]  1.34 

Eliminating the electric field E by Curl operation on equation 1.17 and using 1.12, 

we obtain for a fluid of uniform electrical conductivity o and constant magnetic 

permeability p , 

( a B / a t ) = v x  ( V X B ) -  v ( V X B ) / ( D ~ , )  

which is the induction equation of the magnetic field. 

Since div v = 0 , the equation 1.35 will become 

( a B / & ) = V x  ( v x B )  + v, ( v ~ B )  1.36 

w h e ~ e  V, = 1 / ( o p e )  1.37 

v,, is called magnetic diffusivity or the magnetic viscosity. The equation 1.36 is called 

the magnetohydrodynaniic diffusion equation. 

When the magnetic Reynolds number { & = ( v d / v, ) ) is very small compared with 

unity, then neglecting the term V x ( v x B ) , the equation 1.36 written as 

( a ~ / a t ) =  V, ( v ' B )  1.38 

This is the equation of diffusion of a magnetic field in a stationary conductor, resulting 

in decay of the field. 

When the magnetic Reynolds number R,,, is large compared with unity, the equation 

1.36 reduces approximatcly to 

( d B / & ) = V x  ( v x B )  1.39 



(g) EQUATION OF ENERGY: 

The charge within a material moves under the action of electromagnetic forces 

colliding and exchanging energy with the rest of the material. This fact means that 

electric work is done on or by the material. It has been found that the electromagnetic 

field puts energy into the material at the rate E.J per unit volume and time ( see 

Shercliff, 1966 ). The current density J can have three possible forms - conduction, 

convection, and polarization. The contribution of convection and polarization on the 

work done is negligible in MHD, only that of the conduction current plays a significant 

role. 

Ohm's law, without Hall current , is given by equation 1.25, hence 

E . J  = ~ ' / o - ~ . ( v x B )  1.40 

The first term on the right hand side represents the Ohmic dissipation while the second 

term can be written as 

- J . ( v x B ) =  v . ( J x B )  1.41 

This describes the phenomenon of electromechanical energy conversion. The term 

{ v . ( J x B )] is the rate at which the magnetic force J x B does work on the 

conduction as a whole. The term { v. ( Jx B )) pushes the fluid - either creat~ng kinetic 

energy or helping it to overcome other forces or the reverse if the term is negative. The 

term{JZ/o) is positive and the dissipated part in the fornl of heat. The principle of 

conservation of energy states that the total time rate of change of kinetic and internal 

energies is equal to the sum of the work done by the external forces per unit time and the 



sum of other energies supplied per unit time. Therefore, the equation of energy in 

MHD is written as ( Shercliff, 1965 ). 

p ( D l ~ , / D t ) = ( d p / a t ) + V . ( v . r ) + V . ( K V T )  

+ ( l / p , ) ( V x B ) . ( v ,  ( V s B ) - ( v x B ) +  W 1.42 

where, h,  = C, T + v2 1 2 , stagnation enthalpy ; C, is the specific heat at constant 

pressure. k , is the thernial conductivity of the fluid. 

r is the stress tensor and (V. 7 ) '  = ( a r '' / a xj ) 1.43 

The equation 1.42 enjoys general validity, but in most practical cases it is possible to 

simplify it still further. In doing so, it is necessary to distinguish between the perfect 

gas and that of an incompressible fluid. The thermodynamical properties of the latter do 

not constitute a limiting case of the properties of the former. In fact, the variation in the 

internal energy of a perfect gas is de = C, dT, whereas that of its enthalpy is 

dh, = C, dT. The corresponding variations for an incompressible fluid are de = C, dT 

and dh, = C, dT + ( 11 p ) dp. 

Thus for an incompressible fluid the equation of energy in MHD is 

p C , ( D T / D t ) =  k V 2 T +  p $  + ( J 2  / o ) + W  

Here 4 represents the dissipation function given by 



1.3 NON-DIMENSIONAL PARAMETERS IN MHD 
FLOW : 

For a steady flow of incompressible, viscous, electrically conducting fluid the 

equations of momentum, magnetic diffusion and energy are as follows. 

p ( D u / D t ) = -  Vp + V ( ( p ) V v ) + ( J x B )  + ( O W )  1.46 

( d B / i 3 t ) = V x  ( v x B )  + v, ( V 2 B )  1.47 

~ C , @ T I D ~ ) = ~ V ~ T +  I J . ~  + ( J ~  1 0 )  1.48 

where, y is the gravitational potential. 

Let us introduce the non-dimensional quantities represented with an asterisk mark in the 

following way. 

x,*= x , / L , v * = v / u , ,  t*=u,  t / L , T * = T / T , , V * = V L ,  p * = p l ( p , u ~ ) ,  

v * = v / u , , J * = J / J , , B * = B / B , = H / H , = H * ,  D / D t = u , / L ,  y * = y / ( g L )  

1.49 

where, i = 1 , 2  , 3 ; and the subscript o refers to a characteristic value. 

Substituting 1.49 in 1.46 - 1.48, we get - 

{D*/Dt* (u*)}  = - V * @ * )  + { ( l / ~ e ) V * '  (u)} - {(lip: ) H * x ( v * x ~ * ) )  

- (  v *  ( W  *) 1.50 

( d B * / & * ) = V * x  ( v * x B * )  + (11%)  V * 2 ( B * )  1.51 

{D*/Dt*(T*))=  { l / ( P r R e ) )  V * * ( T * ) +  ( E / R ) $ *  + ( M 2 E / R e ) J * 2  1.52 

The dimensionless parameters which are appeared as 

Re = u, L / v , Reynolds number ; R,,, = u, L / v, , Magnetic Reynolds number 

Pr = C, JL / k , Prandtl number, Pm = v / v, , Magnetic Prandtl number, 



M = B, L d (o / pv ) , Hartmann number, F, = u: / ( g L ) , Froyde number. 

Ma = u, 1 v, , Magnetic Mach number ; v, = p, u,? I p , is the Alfven velocity. 

The magnetic diffusion equation 1.36 has an analogy with the equation govenii~ig the 

diffusion of vorticity w of an incompressible non-conducting viscous fluid given by 

d o ) / d t = V x ( v x  o ) ) +  v V 2  o 1.53 

where v is the kinematic viscosity. The imperfection in the analogy is that o is 

intimately related to v ( i.c., o = V x v ) in a way that B is not , but it turns out that this 

does not prevent the use of the analogy to suggest results concerning B. From the 

equation 1.36 and 1.53 , we can make the same kind of statement namely that the local 

rate of change of B or o results from the net effect of (i) convection ( i.e., the tern,  

{ V x ( v x B ) } ) and (ii) diffusion ( i.e., the tern1 v,, ( V B ) ). 

(a) Lcrrne ~ ~ l n . ~ t ~ e t i c  Reytlolcls r~lo?lhet- : 

In any region of length scale 6 , where convection and diffi~sion are equally important , 

the two tenns on the right hand side of the equation 1.36 must be co~iiparable . Thus 

{ V x ( v x  B ) )  1 { v , ,  ( V ' B ) )  % (u ,6 /v , , , )=R, , ,  1.54 

Therefore, 6 must be of order v, / u, . If the whole field of interest has a length scale 

L such that R,,, >> 1 then L >> 6 , R,,, being based on L . Only within a limited region 

of length 6 , where B changes significantly, gradients can be high enough for diffusion 

and only dissipation matters much ; elsewhere i t  can be neglected . Thus for large R,,, 

convection dominates and magnetic boundary layer approximations are expected to work 



near sources of field and elsewhere the approximations of perfect infinite conductivity 

would be valid , the diffusivity being zero. So E + v x B = 0 and convection alone 

holds away. Again, if the characteristic time is t, then the equation ( neglecting the 

diffusion ternl) is : 

( a ~ / a t )  = o x  ( V X B )  1.55 

Wehave, ( a B / d t )  r ( B ,  / t ) r  ( u , B , / L )  1.56 

i.e., t z L / u, 1.57 

Thus the characteristic time in the flow problem, is the transit time ( L /u, ) during which 

a field disturbance diffuses a distance of order 4 (v,, L / u, ) which is much less than L 

if R,,, >> 1. Hence diffusion is negligible. 

(b) Snznll tltnattetic Revllolris ttlrluber : 

This is the other extreme case which occurs when the diffusion is dominant and any 

imposed field B, is hardly affected by the fluid motion. It diffuses as if the fluld is 

stationary where there is no induced current. In absence of Induced currents, the field is 

equal to the imposed field. Due to the absence of these currents , from equations 1.13 

and 1.15 we get Curl B, = 0 . From Ohm's law, we get that the induced current J, is of 

order ( o  u, B, ) . The induced field B, is detennined by 

p, J, = Curl B, 1.58 

and therefore of order ( p, o u, L ) , 

thus I B , / B ,  I r p , o u o ~  (=R,,,) 1.59 



When R,,, is low,  the induced field can be neglected entirely to replace B by the known 

imposed field B, in all the magnetodydrodynamic equations . In this case p, J = Curl B 

can be ignored but div J = 0 must still be retained however. As the magnetic Prandtl 

number v /v,, is equal to R,,, / Re , one can amve at a better appreciation of dissipation 

phenomena, in actually the ratio of heat generated by viscous effects to the heat 

gcneration due to joule heat. When i t  is small as it is in liquid matels and low- 

temperature plasmas, magnetic field diffuses much more rapidly than vorticity and 

magnetic boundary layers are much thicker than viscous ones . This makes for 

simplification such as the neglect of viscosity in the magnetic boundary layer. Thus 

when R,,, is small , the magnetic field decays by Ohmic dissipation . Omitting the term 

{ V x ( v x B ) ) which is small, the induction equation becomes 

d B / a t =  p, ( V ' B )  1.60 

From the above equation, i t  has been seen that since the magnetic field B always decays, 

it tends to vanish in a characteristic time t which is given by 

2 t z L  /p,. 1.61 

In mathematical treatments , i t  is convenient frequently to assume k, -, 0. This 

approximation gives the idea of some real situations and in this we have solved a few 

problems with this approximation. 



1.4 HEAT TRANSFER IN FLUID MOTION : 

Heat transfer in a medium takes place according to three processes which are known as 

conduction, convection and radiation. In conduction, the flow of heat is the result of the 

transfer of internal energy from one molecule to another. The flow of heat in solids takes 

place exclusively by the processes of conduction, convection and radiation which occur 

simultaneously. In cases of liquid and gases, where heat exchange by convection is 

prevented and that by radiation is minimized, the principles of heat conduction can be 

applied to liquids and gases as well . In these substances, however, each molecule no 

longer confined to certain point but constantly changes its relative position even if the 

substance is in state of rest. The heat transfer by convection has been seen generally in 

liquids and gases. By this process , heat may be transported from one point to another by 

the movement of the macroparticles of the substance in space from a region of one 

temperature to that of another. Thus the heat is being canied along as internal energy 

with the flowing medium . Hence the velocity field and the temperature field mutually 

interact. This ineans that the temperature distribution depends on the velocity 

distribution, and conversely, the velocity distribution depends on the temperature 

distribution. If enthalpy ( J I (rn2 s ) ) is transported together with the fluid of mass per 

unit time p v ( kg I (m' s ) ) where v is the velocity of flow and p is the density 

of the fluid , so that the heat convection is 

Qconv = P 1.62 

The heat convection is always accompanied by conduction. When a gas or liquid is in 

motion individual particles which are at different temperatures come inevitably into 



contact with one another. As a result , heat transfer by convection is described by 

equation 

Q = Qcolld + Qcoll\. = - k AT -I- P v, 1.63 

In special cases, when buoyancy forces are disregarded and the fluid properties are 

independent of temperature , the velocity field does not depend on the temperature field 

while the dependence of temperature field on the velocity field persists. Such flows are 

termed as forced flow and the process of heat transfer in such flows is described as 

forced convection. Flows in which buoyancy forces are dominant are called natural flow 

and corresponding heat transfer is known as natural convection. If the natural convection 

is not constrained to a finite region by boundaries, it is called free convection. 

The third mode of heat transfer is that of radiation. Solid bodies as well as liquids and 

gases, are capable of radiating thermal energy in the form of electromagnetic waves and 

of picking up such energy by absorption. All heat transfer processes are , therefore , more 

or less accompanied by a heat exchange by radiation. In this thesis we have not 

considered the radiation effects. 

For constant fluid properties , under free convection flow , the equation of motion can be 

expressed as ( i.e., the equation 1.44 after considering of fluid buoyancy ) 

p { D  V /  D t )  = - ( V . p ) -  V . ( p V . v )  + ( J x B )  + ( p O p g , ) + X  1.64 

where p is the fluid density, P is the coefficient of buoyancy and 8 = T -To is 

the temperature difference behveen the fluid medium to the reference temperature. 

The law of conservation of energy requires that the difference in the rate of supply of 

energy to a volume V fixed in space with a surface S and the rate at which energy goes 



out through S must be equal to the net rate of increase of energy in this volume . Thus 

the law of conservation of energy gives the following equatlon where the summation 

convention is used with i , j = l , 2 ,  and 3. 

L u , ( r , n ,  ) d s - I , E ,  p u ,  n, ds  + I v  F, u ,dv + I , k ( ~ / a x , ) n J d s = a / a t l v p ~ , d v  

1.65 

where, p is the fluid of density , E, ( = 1 / 2 u, u, + p, + E ) , u, are 

respectively the total energy per unit mass ( i.e., sum of kinetic energy, potential 

energy and internal energy ) and the ith component of the velocity ; r, and n , 
are the ijth components of the viscous stress and jth component of the outer 

normal of the surfaces respectively ; F, is the ith component of the external 

conservative force and k is the coefficient of heat conductivity. 

The first term on the left hand side of the equation 1.65 is the rate of heat produced 

by viscous stresses in contact with outside; the second tern1 represents the energy loss 

by convection; the third term is the work done by the external forces and the fourth term 

is the energy loss by the heat conduction. The loss due to radiations assumed to be 

negligible. The right hand side is the net rate of change of energy in the volume V. 

Transforming the surface integration to volume integratlon and the volume V being 

arbitrary , we get 

a / a x ,  ( u , ~ , , ) - a / a x , ( p ~ ,  u,) + F , u ,  - t - a m J  ( k a ~ / d x , ) - a / a t ( ~ ,  P I - o  

1.66 

Using the equation of continuity 1.28 and simplifying , we get the equation 1.66 as 

p { D E I D t  + p  D l D t ( 1 l p ) )  = { d l a x ,  ( k a T I d x , ) )  + + 1.67 



Using the equation of continuity 1.28 and simplifying , we get the equation 1.66 as 

p { D E / D t  + p  D / D t ( l / p ) ) =  (31% ( k a T / a x j ) ) +  $ 1.67 

where the dissipation function 4 can be written as 

4 = [ p ( a u l / a x J  + a u , / a x ,  1 -213 p ( a u , i a ~ , ) s , ~ ~ a u , / ~ ~  1.68 

For perfect gas, DE / Dt = C, DT / Dt , Dh / Dt = C, DT / Dt = enthalpy 

where h is the internal energy of the system. 

and C, DT / Dt = C, DT / Dt + D / Dt ( p /p ) , which reduce the equation 1.67 to 

p D / D t (  C , T  ) = D p / D t + a / a x i  ( k d T l d x , ) + +  1.69 

For incompressible fluid , the above equation simplifies to 

p D / D t (  C, T ) =  k ( d / a x ,  ( a T / d x i ) )  +I+ 

Equafion o f  state : 

In solving a hydrodynamic problem, together with the equations of continuity, motion 

and energy, we should consider an equation of state 

P = P ( P , T )  1.71 

A few problems in this thesis have been considered with Boussinesq approximations 

( Chandraskekhar , 1961 ). It suggests that p is constant in all terms in the equation of 

motion except that one in the external force; therefore, wc have 

P=Po  ( 1  - a ( T - T o  ) I  1.72 

where, a is the volumetric expansion coefficient of the fluid and the subscript o denotes 

the unheated no flow state. 



Non-dinzensiorzal DaralTzeter in )?eat tl-artsfer : 

In order to understand the phenomenon of heat transfer , we should discuss the non- 

dimensional parameters which govern the process. For simplicity we take Cartesian 

coordinates x , ( j = 1, 2, 3 ) and suppose that the fluid properties are independent of 

temperature. The momentum equation and energy equations in Cartesian tensors with 

usual summation conventions are : 

where 8=(i3u,/L?xJ ) ( ~ U , / & ~ + ~ U , / & , )  - 2 1 3  ( a u , / d x ,  )2 

We make the quantities non-dimensional as follows 

where 8 = T - T o  , d is the characteristic dimension of lcngtli, u, dcnotcs a unique 

velocity that characterizes the flow and the subscript w denotes the wall conditions. 

Substituting 1.76 in the equations 1.73 and 1.74, we get - 

{(a U, */ a t*) + U, * (a U, */ axj *)} = ( Gr / Re2 )B* - (ap* / &, * ) 

-(~/~e)[[a/a~*(a~,*/ax,*)+(a~~*~ax,*) - 2 / 3 { a 1 a x , * ( a ~ , * / a x , * ) ) 1  

1.77 

(a 8 */ a t* ) + u,*(a 0.1 a X, * ) = 1 / ( Re Pr )( ti 8*/ x,* &,* ) + E u,* ( ap* / &,* ) 

( E / R e ) [ ( a u , * / & , * )  { ( a ~ , * / & , * ) + ( a ~ , * / & , * ) }  - 2 1 3  ( d ~ , * / & , * ) ~ ]  

1.78 



Apart from the dimensionless terms and dimensionless coordinates , composed of 

homogeneous physical quantities as stated above , the convection equations contain 

dimensionless terms with dissimilar physical parameters . These terms referred to as the 

criteria of the development of hydrodynamics and heat transfer. These are as follows. 

Re = u, d / v ,Reynolds number ; Gr = ( g, P 0, d3 ) / v2 ,Grashof number ; 

Pr = C, p / k , Prandtl number ; E = u t  / ( C, 8, ) , Eckert number . 

Ar = { g, (p, - p) d3 )) / (pv2 ) , Archimedean number; 

where, v = p / p , the kinematic viscosity. 

Reynolds number characterizes the relation behveen the forces of inertia and 

viscosity. It is the ratio of inertia force to the frictional force. Reynolds number is a very 

important characteristic of both isothermal and non-isothermal processes of fluid flow. 

Grashof number is the ratio of the buoyancy force to viscous force. It characterizes the 

buoyancy force appearing in the fluid due to differences in density. If we assume the 

flow such that p 8, = (p, - p) 1 p , the Grashof number Gr may be replaced with 

its general modification which is known as Archimedean number ( Ar ). It is identical 

with the Grashof number on condition that P = constant. The Prandtl number (Pr) 

depends only on the properties of the medium. It is possible to conclude from the Eckert 

number (E) that frictional heat and heat due to compression are important for calculation 

of the temperature field when the free stream velocity v is quite large that the adiabatic 

temperature increases is of the same order of magnitude as that of the prescribed 

temperature difference between the body and the stream. The product Pr R = Pe is called 

Peclet number. We obtain the Peclet number when we divide the convection term by 



the conduction term of the energy equation. The ratio R2 / Gr is called Froude 

number, it compares the inertia and the body force. 

Coefficient o f  heat trnlzsfer : 

According to Fourier's law the heat flow per unit area is proportional to the 

temperature decrease in the distance d is given as 

Q / A = - k ( V T ) / d = q  1.79 

where q represents the flux of thermal energy relative to the local fluid velocity. 

Engineers have often to deal with heat transfer from a wall to the surroundings or from 

the latter to a wall. Therefore, the transport of heat by convection inside the fluid 

medium which affects local heat transfer , i.e., heat transfer from a wall to a medium or 

vice versa, may be of indirect interest. 

In a flow system with the fluid may be flowing either in or around a solid boundary. If 

the solid surface is warmer than the fluid, heat is transferred from the solid to the fluid. 

Then the rate of heat flow across the solid-fluid interface would be expected to depend 

on the area of the outface -and the temperature difference between fluid and solid. 

Practical calculations are based on Newton's law , Q = a A VT 

According to this relation, the amount of heat Q transferred from the fluid to an 

element of area A of the wall exposed to the fluid ( or from the surface element A to the 

fluid ) is directly proportional to A and the temperature difference AT , where 

AT = ( t, - t, ) , t, is the surface temperature of the wall and t, is the temperature of 

the surrounding liquid or gaseous medium. The temperature difference is also referred 



to as the tcrnperature drop. The proportionality factor a is known as the heat-transfer 

coefficient. If the wall-temperature distribution is initially unknown or the fluid 

properties change appreciably along the pipe , it is difficult to predict the heat transfer 

coefficients defined as above. Under these conditions , it is customary to rewrite the 

equation 1.79 in the differential form ( see " Transport phenomenon", 

Bird et al. (1960)): 

dQ = a,, ( D dz ( To - Tb ) 

Here dQ is the heat added to the fluid in the distance dz along the pipe , ( To - T ) is the 

local temperature difference . a,, is the local heat transfer coefficient (measured in 

W I (m2 K) ), it accounts for the condition under which a practical process of heat 

transfer occurs, affecting its intensity. This equation is widely used in engineering 

design. 

Thus the coefficient of heat transfer ( a ) expresses the quantity of heat exchange 

between the body and the stream . It is defined either as a local quantity or as a mean 

quantity over the surface of the body under consideration , and referred to the difference 

between the temperature of the wall and that of the fluid. , the latter being taken at a large 

distance fiom the wall. If q (r) denotes the quantity of heat exchanged per unit area 

and time at a distance r , then according to Newton's law of cooling, i t  is assumed that 

Q (r) = a (r ( Tw - To = a ( 0  ow 1.81 

At boundary between a solid body and a fluid , the transfer of heat is solely due to 

conduction. In accordance with Fourier's law , the.absolute value of the heat flux is 

given as Q ( r ) = - k ( a T 1 a q )  ,,,, 1.82 



Nusselt ~ttrnlber ( N )  : The dimensionless term denoted as 

Nu(r)= a ( r ) d / k  1.83 

is called the Nusselt number, or criterion of heat transfer . It characterizes the process of 

heat transfer at the "wall-fluid " boundary . 

i.e., N u ( r ) = - d / 8 , ( d T / a q ) , = ,  1.84 

It is usually an unknown in the problems of convection, since it includes the heat transfer 

coefficient a which is being determined. 

The heat flux in terms of Nusslet number is 

Q ( r ) =  - ( k / d ) N u 8 ,  

1.5 MASS DIFFUSION IN FLUID MOTION : 

Many processes of heat transfer encountered in nature are accompanied by processes of 

mass transfer of one component into the other ; for instance, the condensation of 

vapour - gas from a vapour - gas mixture and the evaporation of liquid into a vapour- 

gas flow . The evaporated liquid is distributed throughout the vapour gas flow by 

diffusion ; the process accompanied by a change in the nature of flow and a variation in 

heat transfer intensity, and this, in turn, influences the process of diffusion. 

Difhsion means the spontaneous process of spreading or scattering of matter in binary 

medium or two component system under the influence of concentration. In a mixture 

homogeneous in respect of temperature and pressure , diffusion is directed towards 

equalizing the concentration in the system and is acconipanied by transfer of mass from 



the region of higher concentration to the region of lower concentration. By analogy with 

heat transfer, mass diffusion may be either molecular ( microscopic ) or molar 

(macroscopic). In gases molecular diffusion is due to the thermal motion of molecules. 

Diffision is characterized by the flow of the mass of a component , i.e., by the quantity 

of mass passing through the given surface per unit time in a direction normal to the 

surface . 

In a multicompent system, the concentrations of the various species may be expressed in 

various ways ( also see chapter V ). 

With stationary macroscopic two-component system, homogeneous as regards 

temperature and pressure , the rate of mass flow of one of the components , due to 

molecular diffusion, is determined by Fick's law, given as : 

J , = - D ( d p , l d n  ) 1.86 

= - p D ( a w , / d n )  1.87 

where p, is the local concentration of the given substance or component , equal to the 

ratio of the mass of the component to the volume of the mixture, p is the mixture density; 

w, = p, 1 p is the relative mass concentration of the ith component; 

D is called coefficient of molecular diffusion of one component in respect to the other 

(usually in short, the coefficient of diffusion). n is the nornlal direction to the surface 

of a similar concentration of the compenent; (3  p, 1 3 n ) is the concentration gradient 

which is always directed to the rise of concentration in the normal direction. The 

concentration gradient is the motive force determining the transfer of matter. In heat 

conduction, it is the temperature gradient which is the motive force equivalent to this . 



The minus sign of equation 1.86 indicates that the mass is being transferred , in 

accordance with Fick's law , in the direction of diminishing concentration. The 

process described by Fick's law is known as concentration diffusion. 

For a two component system with level of the species A & B and DAB = D = D 

the Fick's law of difhsion written in vector form as 

This equation states that species A diffuses in the direction of decreasing mole fraction 

of A ,just as heat flows by conduction in the direction of decreasing temperature. 

For a muticomponent systems under the assumption of constant p and D , the Fick's 

law 1.86 is written as 

where RA is the molar rate of production of A per unit volume. 

Using the continuity equation { ( V . v ) = 0 ) and dividing the equation by MA we get 

The equation is usually used for diffusion in dilute solutions at constant temperature 

and pressure. 

For RA = 0 the equation becomes 

This equation is similar to the energy equation for a fluid motion when p is 

independent of T ; this similarity is the basis for the analogies that are frequently 

drawn between heat and mass transport in flowing fluids with constant p . 



Non dinzensional mass diffusion eauatiolz : 

Let us consider a isothermal binary fluid mixture of constant viscosity p and constant 

diffusitivity D . In addition we assume the range of composition to be small enough 

that both mass density p and molar density c are essentially constant. Writing the mass 

diffusion equation 1.91 

D C , I D ~ = D ( V * C , , )  

We now consider the following non-dimensional parameters 

v * = ( v / u o ) ,  p* = {( p - Po ) /  (p u,Z 1) , t* = (uo t dl, 

C A * =  { ( C A  - C A O ) / C A ,  - C A O  ) 1; 1.93 

Substituting 1.93 in 1.92 the non-dimensional mass diffusion equation is 

where, Re = (d u, p / p) , the Reynolds number 

Sc = p 1 (p D, ) , is the Schmidt number. 

For isothermal mass transfer, the Schmidth number plays a role analogous to that of the 

Prandtl number in heat transfer. 

Proceeding fiom the analogy between the processes of heat and mass transfer we can 

write : 

ND = p d 1 D, , called Nusselt number for diffusion or sometimes simply as 

Sherwood number, and Pr, = v / DAB , called Prandtl number for diffusion. 

These numbers are analogous to the numbers Nu ( Nusslet number ) and Pr ( Prandtl 

number ) of heat transfer . With the analogy between heat and mass if the like reference 

dimensionless terms are equivalent, Nu and ND may also be considered equivalent. 



For instance, it is possible to conduct investigations of heat transfer and from this using 

the derived dimensionless formulae one can investigate the mass transfer, replacing 

Nu and Pr by N, and Pr, respectively . If mass transfer proceeds at a low rate , its 

effect on heat transfer can often be ignored with the accuracy sufficient for practical 

applications. 

1.6 NON-NEWTONIAN FLUIDS : 

The physical property that characterizes the flow resistance of simple fluids is the 

viscosity . All real fluids are viscous ; a force of internal friction , offering resistance to 

the flow that always arises between the layers of a fluid moving at different velocities 

in relation to one another. According to Newtonian law , the tangential force acting at 

any point of the flow in the plane orientcd in the direction of flow is proportional to the 

negative of the local velocity gradient. 

r . =  u - p ( 3 v i I 3 x , )  1.95 

p is known as the dynamic viscosity or simple viscosity. Kinds of fluids that behave 

in this fashion are termed Newtonian fluids. There is no obvious reason why real fluids 

should obey equation 1.G. All gases and most simple liqulds are this types of fluid . 

The three most abundant fluids air, water and petroleun~ obey 1.95 quite closely. 

Equation 1.95 which defines a Newtonian fluid can be applied unidirectional flows 

only. However, the definition of Newtonian fluid in which the stress depends linearly 

on the rate of deformation may be generalized to three dimensional flows using the rate 

of deformation tensor 



E, = 1 / 2  ( a q , i & ,  + a q , i & ,  ) 1.96 

where, q is the local velocity of the fluid particle . We can redefine Newtonian fluid as 

one that satisfies 

T 'J = - p 6 ,  +2€, 1.97 

where the kronecker delta 6 ,  = 1 for i = j  and 6, = 0 for i # 0 

There are quite a few industrially important fluids which don't obey the Newton's law. 

The properties of these fluids are not only function of its state of the substance but also 

depends on the process parameters, the variation of velocity and temperature; they 

are known as non-Newtonian fluid. The relation between z ,  and E, are non-linear 

for non-Newtonian fluid. Such fluids are primarily pastes , Slurries, high polymers , 

Blood , Jellies and similar food product, Polymeric melts etc. 

According to the Newtonian law of viscosity , the plot of r, versus - ( d v, 1 d x , ) 
for a given fluid shows a straight line through the origin, and the slope of this line 

represents the viscosity of the fluid at a given temperature and pressure. Experiments 

have shown that T,, indeed proportional to - ( d v, 1 d x , ) for all gases and for 

i 
homogenous non-polymeric liquids. 

The non-Newtonian flow of fluids is the " science of deformation and flow " which 

includes the study of the mechanical properties of gases liquids plastics and crystalline 

materials. Thus the non-Newtonian flow is the part of science of rheology where both 

Newtonian fluid mechanics and Hookean elasticity are considered. The steady state 

rheological behaviour of most fluids can be generalized as 



where p ,p, is the apparent viscosity , is not a constant, it may be expressed as a 

function of either ( d v, / d x ,  ) or r,, 

In order to explain the steady state relation for Newtonian and non-Newtonian fluid 

between r ,  and ( - d v, / d x ,  ) at constant temperature and pressure several models were 

proposed , such as Power law model, Bingham model ,Prandtl Erying model, Reiner- 

Philippoff model etc. 

Under unsteady state conditions a number of additional types of non-Newtonian 

behavior are possible , for example thixotropic , rheopectic , visco-elsatic , etc. 

(i) , Time independent fluid that are where the rate of shear at a given point solely 

dependent upon the instantaneous shear stress at that point. Time independent non- 

Newtonian fluids are also called non-Newtonian viscous fluid or purely viscous fluid. 

(ii) Time dependent fluids are those for which the shear rate is function of both the 

magnitude and the duration of shear. Time dependent non-Newtonian fluid classified 

into two groups Thixotropic fluid and Rheopectic fluids dcpcnding upon whether the 

shear stress decreases or increases with time at given shear rate at constant temperature. 

Fluids that shows limited decrease in p with time under a suddenly applied constant 

stress r i j  called Thxotropic. The thixotropic properties have been found in the material 

such as some solutions or melts of high polymers , oil well drilling muds , greases 

printing inks , many food materials , paints, etc. 

The fluids that shows limited increase of p with time under a suddenly applied stress 

T,, called Rheopectic fluid. Rheopectic fluids are antithxotyropic fluids that exhibit a 

reversible increase in shear stress with time at a constant rate of shear under isothermal 



conditions . Examples of these types are bentonite clay , suspension , vanadium 

pentoxide suspension, gypsum suspension and certain solutions in many pipe problem 

etc. 

(iii) Visco-elastic fluids are those which show partial elastic recovery upon the 

removal of a deforming shear stress , such materials posses properties of both fluids 

and elastic solids. These material exhibit both viscous and elastic properties . In a 

purely Hookean elastic solid the stress corresponding to a given strain is independent of 

time whereas for visco-elastic substances the stress will gradually dissipate with time . 

A part of the deformation of the visco-elastic fluids flow when subjected to stress, 

gradually recovered on removal of the stress . Examples of this type are Bitumen , 

flour dough , Naplam and similar jellies , Polymersand, Polymeric melts such as Nylon 

and many Polymeric solutions. 

In order to take account of the mechanism of non-Newton~an fluids number of 

mathematical models were proposed at diffcrcnt tinlc by different mathematicians . In 

our research work, we have discussed a problem of flow and heat transfer on Rivlin- 

Ericksen second order visco-elastic fluid. A brief description of Rivlin-Ericksen 

second order fluid is mentioned below. 

Rivlirz-Ericksen fluid : 

Rivlin and Ericksen in 1955 considered the theory of isotropic fluid for which the stress 

depends upon the spatial gradients of velocity and acceleration upto any order n. 

Using the invariant requirements, they showed that the stress must be given by an 

isotropic function of the tensor A(, , , as : 



r, = f { A (  ,,,, ,A( , , , ,  , - - - - - - - - - - - - - - -  A ( ~ ) k ~  1 

where, f obeys an identity 

Q f;) 
, A ( , ) k l  , - - - - - - - - - - - - - - -  A ( N ) L I  I Q r  

= f l J { Q ~ , , , , , Q T  , Q A ( ~ ) ~ I Q ~ , - - - - - - - - - - - Q A ( N ) A I Q ~ )  1 . lo1 

The term A ( ,  , , called nth order Rivlin-Ericksen tensor. A ( ,  , , is related to the 

velocity gradient tensor V, by the formula 

where, A(,  , , ,  = 2 e , , and e , = 1 I 2 { V ,  + Vjl ) 1.103 

The bar denotes material derivative defined as 

The fluid govern by the constitutive equation 1.99 is called Rivlin-Erucksen fluid of 

complexity N 

For isotropic fluids , r  may be considered as a function of A,, , and A(, , only 

i.e.> TIJ= f { A ( l ) 9  4 2 )  } 1.105 

So the equations 1.99 and 1.100 with the help of 1.105 , give 



where,p, , m = O ,  1 ,  2 , 3 ,  - - - - - - - -  8. are scalar functions of the nine invariance of 

tensors [ A( , , ] and [ A(,  , 1. The fluid govern by the equation 1.85 is called 

Rivlin-Ericksen fluid of complexity two. For viscometric flows , all tensors 

[ A( ) ] except. [ A( , , ] and [ A(,  , ] vanish. Markoviz observed that pm , 

m = 4,5,- - - 8 may be omitted without affecting the solutions . So then the reduced 

constitutive equation takes the form, 

Tu = - P  611 + PI A ( ~ ) l j  + P2 + P3 A(,)Iln A(,), 1.107 

where, p = n - p, , is the indeterminate isotropic pressure. 

p ,  = Coefficient of ordinary viscosity ; p 2  = Coefficient of visco-elasticity. 

p = Coefficient of cross viscosity. 

A fluid govern by the equation 1.107 is called an incompressible second order Rivlin - 

Ericksen fluid. We can also write the constitutive equations of higher orders in this 

way. All the three material constants can be determined from the viscometric equation 

of state for any material behaving as a second order fluid. Markovite and Coleman 

proved that p is negative ( experimentally also, it has been found negative under 

thermodynamical considerations) . 

Although the general Rivlin-Ericksen fluid accounts for shear dependent viscosity and 

normal stress effects; yet it shares the Newtonian fluid as its special case. The effect of 

changes in shear rate with time upon the stresses in a visco-elastic fluid were 

incorporated into the constitutive equations by Rivlin and Ericksen . Rivlin has solved 

some special problems using the theory stated above. 



1.7 SHOOTING METHOD FOR SOLUTION OF 
ORDINARY DIFFERENTIAL EQUATION : 

For an ordinary differential equation ( ODE ), we need n conditions. For an initial value 

problem ( IVP), all n conditions are specified at one point ( say, x, ). In the shooting 

method, we solve BVP as an IVP by guessing the missing the conditions at x,. The 

correctiless of the guess is judgcd by sccing how closcly the solution satisfies the final 

condition at x, . Obviously, for an arbitrary guess, the boundary condition at x, will 

never be satisfied. Thus a root finding algorithm to converge to the correct guess is used. 

To solve a BVP by shooting method we adopt the following strategy 

(i) We develop an IVP solver for the same ODE for the initial conditions are 

f ( x ,  )=a,, f ' ( x , ) = P ,  and f L ' ( x o  ) = y o  . 

(ii) We then use the bisection method to converge to the correct f " ( x, ) value 

which yields f ' ( x, ) = a , in the solution. 

The bisection method is as follows. 

Using IVP solver we find two values of f "  ( x,), say S, & S2 , which yield values of 

f ' ( x, ) as r, & r, respectively, such that r, < 1 and r, > 1.  Now as f ' ( x, ) 

depends directly on the chosen value of f "( x, ), we expect that f ' ( x, ) = a 

condition will be satisfied by some value of f "( xo ) which lies between S, & S, . So 

we guess a new value of f "( x, ) as {S (S, ,+ S, ) 1 2  ) which yields on f ' ( x, ) a 

value of say r , if r < I then we replace the old value of S ,  by S otherwise if r > 1 

, the old value of S, is replaced by S . Once again S, and S, will be such that the 

correct value of f "( xo ) will lie bct~vcen them. This process is repeated and at each 



step the interval between S,  and S, is reduced by half and the correct f "( x,) is 

squeezed into this interval . When f ' ( x, ) is close enough to a for any S value , 

the process is stopped. 

{ Tlre shooti1zg method for sir?zultarleozis drlfereirlial eqnatioirs of 11th order is stuted 

in chapter I l l .  

1.8 SOME WORKS RELATED TO MHD FLOW 
AND HEAT TRANSFER : 

The steady Poissueille flow of mercury between two parallel walls in presence of an 

applied cross magnetic field , was considered by Hartn~ann ( 1937). MHD flow between 

two parallel plates under a transverse magnetic field , called Hartmann flow, has been 

studied by many authors under various conditions e.g., Shercliff (1966) and 

Cowling (1957). Ospal (1955) has outlined the general principles of the analysis of two- 

dimensional and three-dimensional ground water flow by electrical analogy and described 

the practical applications of that method \\/it11 a new conductive material consisting of 

gelatin , glycerin , water and salt. Srivastava and Shamla (1961) have discussed the 

effect of a transverse magnetic field on the flow between two infinite disks, one rotating 

and the other at rest . The above problcm has been extcnded afterwards by Stephenson 

(1969). He has obtained asymptotic solutions for R << h4 and numerical solution for 

couette flow when one of the plates moves in~pulsively and the other is at rest. The effect 

of induced magnetic field on the same problem has been discussed by Gobundarajuly 

(1970) . The problem of steady flow of an electrically conducting fluid through 

unifornlly porous infinite parallel plates channel in the presence of a transverse nlagnetic 



field has been investigated by Rao ( 1961) , Terril and Shrestha ( 1963 , 1964) and ~ e r r i l  

(1964). Shanna (1962) has discussed the MHD couette flow between non-conducting 

walls in the presence of an electric field. Aganval (1 962) has discussed the generalized 

MHD couette flow between two parallel plates with or without porosity . The effect of 

suction or injection and magnetic field on the MHD flow in a straight channel has been 

studied by Slzrestha (1967) , Reddy and Jain (1967) . Chandrasekhar and Redraiah 

(1970) have discussed the problem of a two dimensional conducting flow between two 

porous disks for R << 1 where there is uniform suction or injection. This two 

dimensional problem has been extended to three dimensional flow by the same authors 

( 1971) under the assumption that one of the plate is at rest and the other is rotating . 

Chang and Yen (1962) have studied the heat transfer aspect between the walls. 

Srivastava and Shanna (1964) have discussed the heat transfer due to the flow between 

two infinite plates, one rotating and other at rest , under a transverse magnetic field . 

Chang and Yen's problem has been extended by Soundalgekar (1969a) . In another 

paper, Soundalgekar (1969b) has studied the heat transfer aspects in MHD couette flow 

between conducting walls in the presence of an electric field . Gupta (1969) has studied 

the effect of combined free and forced convection on the flow of an electrically 

conducting liquid under a transverse magnetic field a horizontal parallel plates channel 

subjected to a linear axial temperature variation. Vitazhin (1965) has investigated the 

hydromagnetic viscous compressible flow with Hall currents, past an infinite wall started 

impulsively from rest. Pope (1971) has discussed the effect of Hall currents in the flow 

of an incompressible, viscous and electrically conducting fluid past an accelerated 

motion of an infinite flat plate in the presence of a transverse magnetic field . Here he has 



considered that the electric circuit as short i.e., E = 0 . Hall effects in steady flows of a 

partially ionized gas between two stationary parallel plates has been studied by Sato 

(1961), Kusukawa (1962) and Sutton and Sherman (1962) . Nayak (1976) have 

investigated the flow through a channel whose walls were Iined with non-erodible 

material using Beavers and Joseph (1967) slip boundary condition. It was shown that 

the effect of porous lining is to increase the mass flow rate and the effect of porous 

lining is to increase the mass flow rate and to decrease the friction factor. Singh et al. 

(1986) has considered the un&eady two dimensional free convection flow through a 

porous medium bounded by an infinite vertical plate when the temperature of the plate 

was oscillating with time about a constant non-zero mean . Fand and Phan (1987) have 
> 

reported the results of an experimental study of heat transfer by combined forced and 

natural convection from a horizontal cylinder embedded in a porous medium composed 

of randomly packed glass spheres saturated with water. Srivastava and Sharma (1991; 

have considered the flow of a second-order fluid through a circular pipe and it: 

surrounding porous medium when (i) the surrounding region extends to a large distanct 

and (ii) it is bounded by an impervious co-axial circular cylinder. Padmavathi et a1 

(1 993) have considered a general non-axisymmetric Stokes flow past stationary ' porou! 

sphere ( using Brinkman's model) in a viscous, incompressible fluid. They proposed i 

representation of the velocity and the pressure fields for the Brinkman's equation 

similar to one suggested by Plalaniappan et al. (1990) for Stokes flow . Narasimha Rat 

(1994) has studied the steady buoyancy induced boundary layer flow of a non 

Newtonian fluid over a non-isothermal horizontal flat plate immersed in a porou 

medium by employing the general similarity transformation procedure and the powr 



law model to characterize the non-Newtonian fluid behavior . Temperature profiles and 

the heat transfer rate at the wall were presented for different values of the non- 

Newtonian power law index and the exponent associated with the wall temperature 

distribution. Chandana and Oku Ukpong (1995) have discussed an unsteady second 

grade aligned MHD fluid flow which undergoes isochoric motion. Shapakidze (1995) 

has studied the flow of a viscous electrically conducting fluid between two rotating 

permeable cylinders in the presence of a magnetic field . Kalis (1995) has shown the 

development and application of special numerical method for the solution of problems in 

mathematical Physics, hydrodynamics and magnetohydrodynamics. Pukhnachev (1995) 

has proposed a model of convective motion under small force of gravity. Vajravelu 

(1995) has discussed about free convection flow of and electrically conducting fluid at 

a stretching sheet. Meir (1995) has discussed the thermally coupled MHD flow. He has 

shown that a steady state may be achieved when the sum of viscous force, convective 

inertial force, thermal pressure, electromagnetic force and buoyant force vanishes. The 

buoyancy induced flow adjacent to a periodically heated and cooled horizontal surface in 

porous media have been discussed by Bradean et al. ( 1996). A MHD flow of an equal 

kinematics and magnetic viscosity through parallel porous plates have been studied 

by Manato and Kuiry ( 1997). The transient MHD free convection flow past an 

infinite vertical plate embedded in a porous mediunl with temperature dependent 

heat source have studied by Das et al. (1997). 



MOTIVATION AND SCOPE OF THIS THESIS : 

The motivation of this thesis is to study a few aspects of the free and forced convective 

flow of incompressible, viscous, electrically conducting Newtonian and non- 

Newtonian fluids in presence of uniform magnetic field. 

Viscosity (p ) is the fluid property depends on the nature of the fluid and to a great 

extent on its temperature. In case of liquid, the viscosity is nearly independent of 

pressure but decreases at a high rate with increasing of temperature. In case of gas, the 

viscosity can be taken to be independent of pressure to a first approximation, but it 

increases with temperature. For liquids , the type of dependence of the kinematics 

viscosity on temperature is same as that of p , because the density p changes only 

slightly with temperature. Therefore, to know the fluid behavior properly in 

hydrodymamical problems applied in various engineering problems, it is necessary to 

consider the temperature dependent viscosity of the fluid. Lai and Kulachi (1990) have 

stated an inverse relation with the temperature for the viscosity of incompressible 

fluid. Pop , Goula , and Rashidi (1992) have used this relation to determine flow and 

heat transfer nature in an quiescent fluid , over a flat plate. In chapter I1 we have 

discussed a problem with a temperature dependent viscosity in presence of a uniform 

magnetic field. The magnetic field is applied transversely to the flow. We have 

discussed the first degree of magnetic field interaction, that is, the solutions are 

obtained for the coefficients of m ( up to second order ), the magnetic interaction 

parameter in the expansion of ascending power of m . There are scopes to study the 

coefficients of different higher powers of m to know the exact effect of magnetic 



field on the fluid motion under the variable viscosity. We have neglected viscous 

dissipation due to the fluid motion, effect of porous medium, induced magnetic field. 

But in certain cases , these effects play significant role. Hence the problem may be 

extended including all these effects. 

In chapter 111 , we have studied the problem with small Reynolds number ( Re < 1 ,  

Creeping motion ) due to an exponentially decay source placed between two parallel 

plates. Gourla (1994) have done the problem without considering the action of 

magnetic field, on the other hand, while we have extended it in presence of the 

magnetic filed. The problem may be extended for larger values of Re by successive 

approximations. Further , the problem may be extended for a sinusoidal source 

instead of the exponential source. The problem may also be extended for higher value 

of magnetic field which generates an induced field and the Joule effect. In addition 

to these, one may also consider the porous n~edium in motion. 

We have discussed the effects of an inclined magnetic field on a laminar convective 

forced flow in chapter IV. The magnetic field is supposed to be high enough to induce 

another field. The energy dissipation due to mapet ic  field and fluid viscosity are also 

considered simultaneously. It has been observed that the effect of inclination of 

magnetic field fiom vertical axis are significant on flow and heat transfer. The 

problem may be extended for porous medium. The fluid properties for example density, 

viscosity , thermal diffusivity , etc. are supposed to be constant in our discussion. But 

in actual practice, especially the fluid viscosity and density vary with temperature. 



Therefore, there are opportunities to extend the discussion considering fluid density 

and viscosity as variable with temperature. 

Simultaneous heat and mass transfer in a binary mixture due to unifomly moving 

vertical porous plate has been discussed in chapter V. The problem has been discussed 

by Sattar (1995) ignoring the thermal diffusion effcct as well as the effect of induced 

magnetic field, which we have included in this chapter. In many engineering 

problems, it has been observed that heat transfer is accon~panied by mass and thermal 

diffusion ; hence our study may be usehl in this regard. Using this method , similar 

problems may be studied in various geometries. The consideration of temperature 

dependent density and viscosity in this type of problems are useful for practical 

problems. The thermal effusion effect which has been neglected in this chapter , may 

also be included to make i t  more perfect. 

In recent years, considerable interest has been evinced in the study of flow past a 

porous medium because of its natural occurrence and importance in engineering 

problems . In chapter VI, we have discussed the effects of porosity and kinematic 

viscosity in a free convection flow in presence of transverse magnetic field . The 

results conclude that the effect of porosity depends upon the strength of the magnetic 

field . The magnetic field when sufficiently high , it generates an induced field . 

Therefore, we can extend the problem with induced field. In many situations, there are 

impurities in the fluid, for example, muddy water , Crude oil etc. One may extend the 



problem by incorporating such an impure fluid whose behavior may be discussed as 

suggested by Coleman and No11 ( 1959). 

Lastly , the flow of a dusty electrically conducting fluid in presence of a transversed 

magnetic field in an inclined channel has been discussed in chapter VIII. We have 

calculated velocities of the fluid and the dust particles, ,rate of heat transfer and skin 

friction at the plates for fluid and dust particle , and fluid and particle flux within the 

channel. Their variations with the magnetic field parameter are shown graphically . It 

has been observed from the velocity profile that the velocities of fluid and particle 

decrease with the increase of magnetic field strength. The flow of dusty visco-elastic 

fluids in porous medium plays an important role in hydrodynamics. Therefore, our 

discussion in chapter VIII can be extended by taking into account the porosity of the 

medium. Moreover, when tqe fluid density and viscosity are variable , the stratification 

effect becomes prominent . The discussion may further be useful while considering 

the stratification effect under variable viscosity on the fluid as well as the dust 

particle. 
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2.1 INTRODUCTION : 

The physical property that characterizes the flow resistance of simple fluid is the 

viscosity. All real fluids are viscous; a force of internal friction, offering resistance to 

the flow that always arises between the layers of the fluid moving at different velocities 

relative to one another. The ratio of viscosity p to density p of a fluid motion is 

known as kinematics viscosity and is denoted by v ( = p / p m2 / s ). The two 

viscosity coefficients p and v are physical parameters which govern the fluid motion and 

are functions of temperature. The viscosity of liquid is almost independent of pressure 

but declines significantly with rising of temperature . On the other hand the viscosity 

(p) of gases increases with the rise of temperature. Most of the studies in fluid 

mechanics are based on constant physical' properties, say thermal conductivity 

specific heat , density , thermal diffusivity and viscosity. However Poiseuille 

Helmholtz (1860) and Reynolds (1886) practically examined the variation of fluid 

viscosity p and kinematic viscosity v with the rise of temperature. They showed that 

for all liquids viscosity diminishes rapidly at the rise of temperature. Helmohtz showed 

the water viscosity is 

p, = [ 0.01779 / { 1 + 0.033688 + 0.000220998~ } ] 2.1 

On the other hand for gases, the value of p is found to be sensibly independent of the 

pressure within very wide limits, but to increase somewhat with the rise of temperature. 

A n  empirical formula for the case of air was with its density p = 0.00129 and at 

atmospheric pressure was given by Hyde (1 9 19), as 



where 0 i s  the temperature in the centigrade scale. 

Koch (1881) gave the results for mercury as p = 0.01697 at oOc while 

p = 0.01 633 at 10°c. Borthel ( 1956) measured the static flow resistance through porous 

materials. The theory of laminar boundary laycr flow of a viscous fluid causcd by the 

motion of a rigid surface originates from the work by Sakiadis (1961) . Similar type of 

problems were studied by Grief et al. ( 1971) and Gupta et al. ( 1974). Later on many 

authors and researchers studied this kind of flow , for instance, Revenkar ( 1989), Igham 

and Pop( 1990) and so on. Lorentz (1881) has discussed the heat transfer fiom a hot 

vertical plate under the assumption that the temperature and velocity at any point depend 

only on the distance fiom the plate. Schmidt and Beckmann (1930) have done the 

experimental works on the same problem and have showed that the assumption was 

' invalid and have indicated an alternative method of solution. The problem of 

simultaneous heat and mass transfer in free convection about a vertical flat plate with 

uniform surface temperature and concentration has been considered by Bottemanne 

( 1970). He has taken the bvo buoyancy effects originating from temperature and mass 

concentration differences as mutually independent and has given a numerical solutions 

for the system of boundary layer equations for the steady case . Bottemanne ( 1971) has 

also experimentally verified his theoretical results . The experimental results concerning 

stationary heat and mass transfer in the laminar boundary laycr of a vertical cylinder 

placed in air have been given by Bottemanne ( 1972). Singh and Gupta ( 1971a) have 

solved the problem of a flow past a porous sphere considering the full Navier-Stokes 



equations outside the sphere and have obtained an expression for the drag on the sphere. 

Rudraiah and Veerabhadraiah (1974) have investigated the laminar steady plane 

coquette flow having one permeable boundary wall. They have found that the mass 

flow rate increased and the fiction factor decreased as a result of greater heat addition . 

Bejan (1983) studied the natural convection in a rectangular porous layer heated and 

cooled with uniform heat flux along the vertical side wall . He reported that in the 

boundary layer region, the boundary layer thickness was constant and the core region 

was motionless while the vertical temperature gradient was maintained constant 

throughout the medium. 

All the above problems have been studied on the basis of constant physical properties of 

the ambient fluid. But the fluid properties especially viscosity varies with the rise of 

temperature, therefore, to predict accurately the nature and mechanism of a fluid flow 

and heat transfer, it is necessary to take account into the variation of fluid viscosity with 

the change of temperature. For liquids as the viscosity varies linearly and inversely 

with the temperature, the results are distinctly different from those studied at constant 

viscosity. 

Nahme (1940) extended the hydrodynamic theory of lubrications to include the effect 

of the variation of viscosity with the temperature. Hausenblas ( 1950), extended the 

Poiseuille flow through a channel with flat walls to the case of temperature-dependent 

viscosity. The corresponding solution for a circular pipe was given by Girgull ( 1955). In 

more recent time Pop et al. (1990), have studies the flow bchaviour and heat transfer 

rates on a continuous moving flat plate considering the variation of fluid viscosity as 



isothermally heated plate. They analyzed a more accurate picture of the momentum and 

thermal transfer of the fluid motion over the plate. The results obtained by them are 

distinctly different for different values of Prandtl number from those obtained by 

Soundalgekar (1980) and Ingham et al. (1990) considering constant fluid viscosity. The 

results for fluid drag and heat transfer were in good agreement with those of 

experimental values at various temperatures. 

In this chapter we analyze the nature and behavior of a viscous , incompressible, 

electrically conducting fluid over a flat plate which is moving with a uniform speed in a 

quiescent fluid, in presence of a uniform magnetic field . The fluid viscosity is 

considered to be a function of temperature and varies inversely with it . The uniform 

magnetic field applied externally in a direction transverse to the fluid motion. 

Perturbation technique is used to show the effects of magnetic field on the mass 

motion, while the solutions of the equations of the problem are carried out by 

similarity transformation. Equations are solved up to secdnd order of the magnetic 

parameter, they are solved numerically using Runga-Kutta and Shooting methods. The 

numerical values of skin friction factor at the plate and local heat transfer are calculated. 

The distribution of fluid velocity and temperature at different values of magnetic field 

parameter and viscosity-temperature coefficient are shown graphically for different 

values of Prandtl number. The result obtained here are meant for the temperature 

dependent fluid viscosity in presence of uniform magnetic field. 



2.2 FORMULATION OF THE PROBLEM : 

We consider laminar flow of a viscous incompressible electrically conducting fluid on a 

continuous moving flat plate along x axis . The plate is moving in its own plane with a 

constant speed Uo in a quiescent fluid . A uniform magnetic field Bo IS applied 

transversely i.e. , along ylaxis. The fluid properties except fluid viscosity ( p ) are 

assumed to be isotropic and constant, and the viscosity is inverse linear function of 

temperature as considered by Lai and Kulachi (1990) : 

11 P = [(I/ P ,I {1 + Y ( T  - T, ))I 2.3 

= [ ( I 4  ( T -  T , ) ]  2.4 

where a = ( p ,  1y )and  y = l / ( T , - T ,  ) , a n d  T,= ( T ,  - 1 l y  ) 2.5 

p,, p, and T , are the fluid viscosity density and temperature away from the plate. 

Both a and T, being constant .Their values depend in the reference state and the 

. thermal property of the fluid ( i.e; y ) . In genera1 , a > 0 for liquid and a 2 0 for 

gasses . In order to derive the governing equations of the problem the following 

assumptions are made. 

(i) The fluid is finitely conducting and the viscous dissipation and the Joule heat 

are neglected. 

(ii) Hall effect and polarization effect are neglected. 



(iii) The flat plate which is maintained at a constant temperature (T, ) is moving 

with uniform velocity and the fluid viscosity varies with temperature only ; 

therefore , all the physical variables are assumed to be time independent. 

(iv) The perturbation technique which is used for small values of the magnetic 

parameter (m) depending upon the degrees of magnetic field interaction, shows 

the effect due to the magnetic field by the second order term ( i.e. the term 

containing m ). 

(v) The value of magnetic Reynolds number is so small that the effect of induced 

magnetic field is negligible. 

Considering u and v as the fluid velocities along x , y axes respectively the fluid 

velocity and magnetic field components of the problem are V= [ u , v , 0 ] and 

B = [ 0 , Bo , 0 ] respectively. The magnetic body force using 1.29 and omitting the 

electric part is written as 
' 

f = J x B  2.6 

where J = o ( V x B )  2.7 

This gives J , = O ,  J , = 0 ,  J, = o ( B o u )  2.8 

and hence from 2.6, f , = -  ( o B O 2 u ) ,  f,,=O , f ,=O 2.9 

where o is the electrical conductivity. 

Now the equation of continuity using equation 1.28, is : 

( a u l d  x) + (a  v / a y )  = o 



The boundary layer equation, from 1.32, is written as : 

The energy equation of our problem, using 1.44 and 1.45 , is 

where a = { k / (p C, )), known as thermal diffusivity of the fluid ; k and C, are the 

thermal conductivity and specific heat at constant pressure of the fluid respectively. 

The boundary conditions of the problem , are as 

2.3 SOLUTION OF THE GOVERNING EQUATIONS : 

In view of the boundary conditions 2.13 , we consider the following similarity 

transformations for the velocity components and temperature equat~ons 2.11 & 2.12, 

We introduce the stream function w as : 

u = ( d y l d y )  and v = - ( a y / a x )  2.14 

Substituting 2.14 , in the equations, 2.1 1 & 2.12, we get - 



where {(o B,' ) / p, ) = mu,, and m is the magnetic parameter showing the 

strength of the magnetic field applied. 

Substituting 2.14, in 2.13, the boundary conditions of the problem are : 

y ~ = 0  , ( a \ y / d y ) = u o ,  T = T, a1 y = 0 
2.17 

and ( a ~ / a y ) - +  0 ,  T -+ T, as y - + w  

We consider the stream function y~ (x, y) = v, ( Re )' " F ( q, x ) 2.18 

where q = ( y / x) (Re ) ' I 2  , 2.19 

Re = (u, x / v, ) , Reynolds number. 

Substituting the stream function relations 2.18 & 2.19 , equations 2.15 & 2.16 can be 

written as 

[ I  (8-8r)2~(8r)){~(a~/aq)(a2~/a~a1))]-(i I ~ ) F ( ~ ~ F / % ' )  

+ ( a e / % ) ( a ~ / a x ) ) -  { ( a / ( y m ~ ) ( a z 8 / % ' ) }  = o  
1 

where Q(q, x ) = { ( T - T ,  ) ( T .  - T, ) } , 

and 0, = {(T, -T , ) /  ( T ,  - T,) 1 



We define 8, as Viscosity parameter for temperature variation or viscosity- 

temperature coefficient. 

Using 2.18 & 2.19 in 2.17 , the boundary conditions are now 

( d F / Z h l ) = l  F ( q , x )  = O  0 ( q , x ) = 1  at q =  0 

( d F l % ) + O  0 ( q , x ) + O  as q + m  

In order to define the different degrees of magnetic interaction, on velocity field and the 

temperature, we express the velocity factor F (q , x ) and temperature factor 0 ( q , x ) 

in ascending powers of m, where m is the magnetic field parameter representing the 

strength of applied magnetic field, so that the following expansions for F (q,  x ) and 

8 (q, x ) are assumed : 

These expansions are valid for small values of magnetic parameter (m ) , which show 

the degree of magnetic field interactions to the flow and the temperature of the fluid. The 

first term of these expansions ( i.e., the coefficients of lowest power of n~ ) express the 

absence of  the magnetic field while the terms containing n~ ( i.e., the coefficients of 

second luwest power of m ) first degree interaction of magnetic field on velocity and 

temperature. The terms for higher orders of n~ are the magnetic field interactions due to 

other physical parameters which affect flow and the ternpcrature of the system. The 

magnitudes of these terms are very small and we are neglecting here. 



Substituting the expansions 2.25 & 2.26 and equating the coefficients of like powers 

of m on both side of equations 2.20 and 2.21, we have different set of non-linear 

equations according to the degree of magnetic parameter ( n~ ) as given below . 

System ( I ) : ( in abse~rce o f  nragnetic field actiolr 1 

The first pair of equations which is independent of m , gives the velocity and 

temperature distribution in absence of magnetic field . These equations are 

f0"Y T) -(( 90 - 0.1 I( 2 e.11 fo(fl) fo"(q) - (1 (00(?) - 0.) 1 fi '(rll= 0 

00'" (TI - (Pr 12) fob 1 @o'(q 1 = 0 

where Pr = v I a , Prandtl number 

Here the prime denotes differentiation with respect to q .  

The corresponding boundary conditions are : 

fo(q) = 0, fo' = 1, at q = 0  

90(q 1 = 1 , at q = o  

System (11): ( effect o f  uran~retic field i.e., tlre first deeree o f  nra.c~retic field 

i~zleractiotf ) 

The second pair of equations for the first degree of magnetic interaction are 

f2'"(q) + {92(~) /  ('o(q) - o r  1 } fi"(q) + {('o(q) - o r  1 1 'o(q)} {fi(q) fza(q) 



where the prime denotes differentiation with respect to q .  

The corresponding boundary conditions are 

f2(q ) = 0, f2' = 0 at q= 0 

QAq = 0, at q =  O 

Skiiz Frictioiz arzd Rate o f  Heat t?-ailsfer : 

The physical quantities of our interest in this problem are the Skin friction coefficient 

(C,) and the Nusselt number ( Nu ). Using 1.95 , Skin friction which is proportional to 

the local velocity gradient is defined at the plate as: 

r w =  ~ , ( a  u l a y )  ,=,. 2.33 

substituting stream function given in 2.14 in 2.33 then using 2.18 & 2.19 the non- 

dimensional form of skin fict ion coefficient is written as 

C, = 2 r , /  ( p u,') 2.34 

Again using 1.79 the rate of heat transfer which is proportional to the local 

temperature gradient , given as 

q,,, = - k ( a T l a y ) , = ,  2.35 

Using the relation 2.19 and 2.22 the non-dimensional fonn of rate of heat transfer in 

terms of the Nusselt number is written as 

Nu = x q ,  / ( k ( T\\, - T, 1) 



Using relations 2.5 , 2.18 ,2.19 and 2.22 , Cr and Nu are written as 

C, = (Re) . ' "  [ 2 Q ,  I ( @ ,  - l ) { ( f i S  +(n1x)f2" + - - - - - ) I  

= [C, . ,  + c,., + - - - - - - I  

and 

Here in 2.37 and 2.38 , the coefficients of lowest power of m i.e., the terms C,,, , Nu 

, I are meant for coefficient Skin friction and the rate of heat transfer in absence of 

magnetic field respectively while the coefficients of next higher power of m i.e., the 

terms C,, , and Nu ,, are meant the same in the presence of the field. 

2.4 SHOOTING METHOD FOR NUMERICAL 
SOLUTION OF SIMULTANEOUS DIFFERENTIAL 
EQUATIONS : 

Shooting method for system of equations with two or more initial missing conditions is 

described below. 

Let us consider a system of four equations in four unknowns : 

P' = f l (  x , p , q , r , s )  q' = f,( x , p , q , r , s )  

r' = f,( x , p , q , r , s )  sn = f,( x , p , q , r , s )  

with two conditions given at x = a ( say ) 



and two conditions at x = b ( say ) 

r(a) = r', and s( b) = s , 2.41 

To determine the missing initial conditions viz. r (a) and s(a) , let us assume a, , Po as 

the initial values of r & s at x = a respectively. Wit11 these assumptions, the values of 

r and s are obtained at x = b. Let the values be r (a, , Po , b ) and s (a,  , Po ,b ). 

Considering the correct initial values of r(a) and s(a) as a ,  P respectively, r and s at 

x = b are functions of a and p ; so r ( a  , p , b ) and s ( a  , p , b ) can be expanded in 

Taylor's series: 

Now r ( a  , p , b ) and s ( a  , p , b ) may be set to their prescribed values r, and s, . 

To solve the equations 2.42 for corrections a - a, and P - Po , we must obtain the 

partial derivatives 2.42. Since the functions r and s are not known, their derivatives 

cannot be found analytically. However approximate numerical values can be found for 

them . To do so , we would integrate equations 2.39 once with initial condition 

p,, qa , a, , Po and once with the condition pa, q,, a, + Aa,, Po and then with 

pa , q, , a , ,  Po + APo where Aa, and Ap, are small- increments to a, and Po . 

Omitting the variables p, , q, which remains fixed, the difference quotients are formed 

as: 



as/ a p ( a,, Po,  b ) = 11 Ap, [ s ( a, , p + Ap, , b ) - s ( a , ,  p, , b ) ] 2.43d 

After replacing r ( a ,  P , b ) by r, and s ( a  , P , b ) by s, , equations 2.42 can be 

solved for aa, = a - a, and'@, = p - p, to obtain new estimates a, = a, + a a, and 

PI  = Po + a p, for the parameters a , p. The entire process is now repeated with pa , 

q, , a, , p, as initial conditions . The process is stopped when a, , P, for some k 

agrees with r, , s, respectively to desired degree of accuracy. If there are n missing 

conditions, each iteration will require ( n + 1 ) integration of the original equation. 

Convergence in this case is not guaranteed unless very good initial approximations are 

available . These techniques can be applied to problen~s where the boundary conditions 

are of different nature. 

2.5 RESULTS AND DISCUSSION : 

The physical quantities of our interest are f, and 8, which are the factor representing 

first degree magnetic field interaction on velocity and temperature, and f," and el' 

which are the first degree magnetic interaction to the factors representing skin friction 

and the heat transfer ( i.e., C,, , and Nu ., ) respectively. Due to the complexities of the 

equations 2.27 & 2.28 and 2.30 & 2.31 of system I & I1 respectively, numerical 



solutions under the boundary conditions 2.29, are obtained using the Runga-Kutta 

method for simultaneous solutions of non-linear differential equations for two different 

values of Prandtl number ( Pr = 0.71 & 10.0 ). To find the missing initial conditions of 

the equations of system ( I & I1 ), we have used Shooting method, as stated in above. 

The quantity 8, may be called as viscosity parameter for temperature or viscosity- 

temperature coefficient . The variation of 8, means the variation of fluid viscosity with 

respect to the fluid temperature, and our aim is to show the nature of fluid velocity and 

temperature in the presence of uniform magnetic field under the action of variable 

viscosity. Figures (i-iv ) are plotted for f, and 8, against 8, and f," and 8," against 

8, in figures ( v & vi) . Further -ve values of viscosity parameter 8, make (T, - T,) 

-ve , and ( T, - T,) is always -ve for an incompressible fluid. Therefore, we have 

calculated f2" and 8," for -ve values of 8, varying from ( -10.0 to -0.10 ) and are 

given in the tables ( I & I1 ). 

Following are the results obtained from the figures and the tables: 

(l)(i) Figures ( i & ii ) show the variation of f, with the increase of 8, for the 

dilferent values of q. It is observed that f2 decreascs slowly with the increase of 

8, (= -10.0 to -0.1 ) and f, is minimum at 8, = -1.0, after which it increases when 

8, changes from = ( -1.0 to 0.0 ). At constant 8, , f2 increases with the 

increase of q.  

(ii) Figure (iii) shows variation of f, with the increase of q at constant 0,. It is 

observed that when 8, remains unchanged f2 increases with the increases of q and 



almost vanishes for q= 0 ( i.e. at the ground layer ). For all values of q, the 

magnitude of f2 decreases with the increase of 8, 

(2) Figure (iv) shows the variation of 8, with q at constant values of 8, . It is seen 

that 8, rises fiom a minimum value ( G 0) with the increase of q, attains 

maximum value and then gradually decreases to minimum . 

(3) In figure (v) we have shown the variation of f," which is the factor representing 

the skin friction at the plate with the viscosity-temperature coefficient 8, , the 

figure represents that for negative 0, with the increase of 8, , f," increases .' 
gradually but it decreases sharply as 8, E -1 to 8, E 2 and than again increases for 

the higher values of 0, , for all values of Pr ( = 0.71 & 10.0 ). 

(ii) Figure ( vi) shows the variation of 8,' which is the factor representing the rate 

of heat transfer in terms of Nusslet number ( Nu) with 8,. As 8, increases from -10 

to -1.0 (approx.) it increases very slowly but for 8, g -1 to 8, 2 0 (approx.) it 

increases sharply and then for 8, z 0 to 8, z 2 (approx.) it decreases sharply. For 

8, z 2 to 8, = 10 ,8, '  increases again slowly for all values of Pr ( = 0.71 & 10.0 ). 

(4) The tables (I) & (11) show the values of f," and 8,' which are the factors for skin 

friction and rate of heat transfer respectively, for Pr = 0.71 & 10.0 . It has been 

observed that f," increases with the increase of 8, ; on the other hand, 8,' decreases 

for Pr = 0.71 and increases for Pr = 10.0 as 8, changes from -10.0 to -0.1 . The 

variation in the values of 8,' is negligibly small as Pr changes from 0.71 to 

10.0 when 8, is small (8, g-10.0 ) 











2.6 CONCLUSIONS : 

From the above discussions Ive can draw the follo~ving conclusions . 

0 For all -ve values of the viscosity parameter ( i.e. for incompressible fluid ) both the 

fluid velocity and ten~perature gradually decrease \\/it11 the increase of viscosity 

parameter . 

o The ski11 friction increases with the increase of viscosity parameter while the heat 

transfer decreases with the.increase of viscosity parameter at slilall value of Prandlt 

number and increases at high value of Prandtl number. At small values of the 

viscosity parameter, the heat transfer is less dependent on Prandlt number. 

0 The magnitude of fluid velocities at the lowers layers at constant viscosity are 

comparatively small to those for variable viscosity parameter. 

0 The variation (increase or decrease )of magnitude of skin friction and heat transfer 

for the values of viscosity parameter ~vithin -1.0 to 2.0 ( approx. ) are more sharp. 

For the variation of values of viscosity parameter, magnitude of skin friction and the 

rate of heat transfer increase slo\vly for viscosity parameter varying from -1 0.0 to ,:I 

-1.0 (approx. ), and from 2.0 to 10.0 (approx. ). 
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3.1 INTRODUCTION : 

In a system of flow of viscous fluid, the inertia forces acting, are proportional to the 

square of the velocity, whcreas the viscous forces are only proportional to its first power. 

Therefore, when the viscous forces are considerably greater than the inertia forces, the 

popularly used Navier-stokes equations ( 1.32 ) are limited under some approximations. 

It is clear that-a flow, for which viscous forces are dominant, is obtained when the 

velocity is small . This kind of flow is common when the Reynolds number is very small 

( Re = u d / v and Re < 1 ), where the inertia terms may be omitted from the equation of 

motion. The flow sometimes called creeping motion . Although this flow doesn't occur 

too often in practical applications but sometime occurs in nature ; for example in case of 

sphere falling in air ,  the Reynolds number may be smaller than one. 

The oldest known problem on creeping motion was studied by Stokes (1851), who 

investigated the case of parallel flow past a sphere. Later on Prandtl ( 1935) has 

discussed the motion in details. An improvement of Stoke's idea was given by Oseen 

( 1910) who took the inertia terms in the Navier-Stokes equation ( 1.32) p a r t l ~  into 

account . He assumed that the velocity components can be represented as the sum of 

constants and perturbation term i.e., u = u, + u', v = v', w = w'; where u' , v' , w' are 

the perturbation terms which are small with respect to the free stream velocity u, . 

Oseen's theory was successful up to Re = 5.0 ( approx. ) . Stroke's problem on a sliding 



surface with respect to the direction of motion was carried out by ~ e y n o l d s  ( 1886). ~e 

also considered the problem of motion between two parallel flat wall with a pressure 

gradient. He showed that the inertia forces can be neglected with respect to the viscous 

forces if the reduced Reynolds number Re* = ( u d / v ) ( h / d ) ' ) < 1 . The 

occurrence of high pressure in slow viscous motion is a peculiar property of the type of 

flow which generally encounter in lubrication. Froessel (1942) calculated the pressure 

distribution and thrust supported by a slipper of finite width as well as by a spherical and 

confirmed these calculations by experiments. In many cases when the width of the 

slipper is finitc thc assumption ntadc carlicr that thc flow is one dimcnsional, is 

insufficient and the existence of a component w in the z-direction must be taken into 

account. The relevant theory has on exact two-dimensional theory was developed in great 

detail by Sommerfield ( 1904), Guembel ( 1925) and Vogelpohi (1949). It has also 

been extended by Bauer ( 1943) and Michael ( 1905). Most theoretical calculations 

have been conducted under the assumptions of constant viscosity. In reality heat is 

evolved through friction and the temperature of the fluid ( e.g., lubricating oil ) is 

increased. Since the viscosity of oil decreases rapidly with the increasing temperature 

( see also Chaptcr I1 ), tlic viscous thrust also dccrcascs. In  rcccnt timc Nahnie (1 940) 

extended the hydrodynamic theory of lubrications to include the effect of the variation 

of viscosity with the temperature. 

This kind of problems where Reynolds number is small enough ( Re < 1 ) has been 

studied by many authors and researchers. The incompressible radial flow between two 

parallel stationary disks using the integral approach and the assumption of a parabolic 



velocity profile was discussed by Livesey ( 1962). Savage ( 1964) has obtained the 

solution by expanding velocity components and pressure in terms of the downstream 

coordinate , by omitting the no slip condition on the disk. Similar problems were 

discussed by Peube ( 1963) , Chen and Peube ( 1964), Gieger et al. ( 1964). Elkouh 

( 1975 ) has given an analysis for a system in which the flow rate varies sinusoidal about 

a zero mean value. His solution is valid for small values of the reduced Reynolds number 

and all values of the frequency Reynolds number. 

Among the many practical applications , one of the important application is the 

phenomena which takes place in oil lubricated bearing . At high velocities the 

clearance between two machine elements which are in relative motion is filled by an oil 

stream in which extremely large pressure differences are created. Another example of 

this type of motion is the slide block or slipper moving on a plane guide surface . 

Another remarkable type of slow motion or creeping motion is the Hele-Show flow. If 

a cylindrical body of arbitrary cross-section is inserted between the iwo plates at right 

angles so that it completely fills the space between them , the resulting pattern of 

streamlines is identical with that in potcntial flow about the same shape. Hele-Show 

( 1898 ), used this method to obtain experimental patterns of stream lines in potential 

flow about arbitrary bodies. He has proved that the solution for creeping motion posses 

the same streamlines as the corresponding potential flow. 

Gourla and Mehta (1994), studied for laminar flow due to an exponential source 

between two parallel stationary infinite disks . They obtained solutions for the motion of 

liquid in form of an infinite series expanded in tern.1~ of reduced Reynolds number Re*. 



lnelr resulLs at: vuu SIIIL1l l  values of Re*. They discussed the significance of 

convective inertia over the viscous motion and concludcd that thc cffccts of non linear- 

inertia is significant over the motion for small values of the decay factor of the source, 

while for higher values of the decay factor the effect is less significant. 

All these above mentioned problems are limited to the creeping motion and are 

inherently restricted to very small values of Reynolds number. In principle it is possible 

to extend the field of application to larger Re by successive approximation. In these 

cases the calculations are so complicated that i t  is not practically possible to cany out 

more than a few steps in the approximation. To these situations of region for which 

Reynolds number is moderate where inertial and viscous forces are comparable in 

magnitude throughout the field of flow, has not been investigated by the 

mathematician. 

The motion of a viscous incompressible fluid when the effects of inertia are insensible 

can be treated in a very general manner in terms of harmonic functions {Lamb( 1932)). 

In this chapter, we have discussed laminar flow of a viscous incompressible fluid due to 

an exponentially decay source between two parallcl stationcry disks in prcsencc of 

uniform magnetic field. The source we mean a sin~ple source ( Lamb , 1932), a point 

from which fluid is imagined to flow out uniformly in all directions . The total flux 

outwards across a small closed surface surrounding the point be Q called strength of the 

source. We have considered the source whose flux ( Q) decays with time exponentially. 

Assuming creeping motion between the parallel infinite disks, solutions are obtained for 

small values of reduced Reynolds number and large values of r (distance from the 



source line ) which give the effects of linear and non-linear convective inertia on the 

flow and the pressure under the action of a uniform magnetic field applied transversely 

to the direction of flow . Considering cylindrical coordinate, the distribution of radial 

velocities at different Re* are shown graphically for different values of magnetic . 
Hartmann number. The results obtained are meant for simultaneous effect of inertia and 

magnetic field on fluid velocity, skin friction and the pressure, whose variations with 

respect to the magnetic field and decay factor of the source are presented graphically 

.The results observed here are i n  some cases significantly different from those in absence 

of the magnetic field {Gourla and Mehta ( 1994)), which in turn provides an 

understanding of the effects of decay factor and reduced Reynolds number on a viscous 

incompressible flow between two parallel disks under uniform transverse magnetic field, 

3.2 FORMULATION OF THE PROBLEM : 

We have considered an unsteady axially symmetric flow of a viscous incompressible 

fluid between two parallel stationary infinite disks . A cylindrical polar coordinate 

system is considered such that the disks are situated at z = i- h . The line source of the 

fluid is situated on the z axis at r = 0 whose strength varies according to 

Q(t) = Qo e -" 3.1 

A transverse magnetic field Bo is imposed perpendicular to the disks. u and v are the 

velocity components along radial and z directions respectively. The unifonn magnetic 



field of strength B, is applied along z axis. In order to derive the governing equations of 

the problem the following assumptions are made. 

(i) The fluid is finitely conducting and the viscous dissipation and the Joule heat 

are neglected. 

(ii) Hall effect and polarization effect are neglected. 

(w) The value of magnetic Reynolds number is so small that the effect of induced 

magnetic field is negligible. 

Imposing axial symmetry , and using Curl E = 0 , from the Maxwell's equation, we get 

E, = 0 . everywhere . Therefore, the magnetic body force using 1.29 and omitting the 

electric part is written as 

f = J x B  

where J = o ( V x B )  3.3 

thisgives J , = O , J , = - o ( B , u ) , J , = o ( B , u )  

and hence from 3.1, 

Goverrziiz~ eqztntiorzs : 

The equation of continuity 1.28 and Navier-Stokes equation 1.32 in cylindrical polar 

coordinate r , 8  , z for this problem are 

Wdr + (u / r) + &/az = 0 3.6 



The boundary conditions of the problem are 

where n is the decay factor of the source . 

Introducing the following non-dimensional quantities 

Substituting 3.1 1 in equations ( 3.6- 3.8 ) and then removing the primes , we get 

where { h Bo2 o / (pv) ) = M is the magnetic field parameter known as 

Magnetic Hartmann number . 



Using 3.11 in 3.9 & 3.10 , the corresponding boundary conditions are 

u = O  , v = O ,  at z = t l  

where {Q, / ( 4n vh )) = Re 

Re, which is the Reynolds number of the fluid motion also means the controlling factor 

of the source . 

3.3 SOLUTION OF THE EQUATIONS : 

In order solve the equations 3.12 -3.14 under the boundary conditions 3.15 & 3.16, we 

consider the following expansions : 

u = ( R e / r ) [  f O 8 ( z ,  t ) + ~ e * ( f , ' ( z ,  t ) ) + ( ~ e * ) *  ( f 2 ' ( z ,  t ) )  + - - - - - -  ] 

3.17 

where Re* = ( Re / 13 ) , reduced Reynolds number . 

These expansions are valid for small values of Re* and large values of r i.e.; at a 

large distance from the source line and satisfy the equation of continuity. The primes 

denote partial differentiation with respect to z only . 



Using the expansions 3.17 - 3.19, corresponding boundary conditions in tenns 

of f ( z , t ) and f '( z , t ), are given as : 

( ( - + I  , t  ) = O  where i = 1 , 2  

( ' ( + I  , t  ) = O  where i =  0 ,1 , 2  3.21 

and f o ( l , t )  - f o ( - l , t ) = 2 e - " '  3.22 

Now for streamline flow , we can consider 3.22 as : 

and f , ( - l , t ) = - e - " '  

so that they satisfy 3.22 . 

Using the expansions 3.17 & 3.18 and equating the coefficients of like powers of r , 

we have from equations 3.13 & 3.14 

(dk , l az )  = O  

Also, (ak / dz ) = 0 ; 

This implies that k( z, t ) = k ( t ) 

The relations 3.23 & 3.24 suggest that : 

f , ( z , t ) = C , ( z ) e ~ " " ' " '  

and k, = p, - ("1)n' 

where i = O , l  



Substituting 3.29 and 3.30, equations 3.25 & 3.26 reduce to 

C,' ' ' (z) + a C,' (z) = Po 3.3 1 

and C," ' ( Z) + PC,' (z) = - { 2PI + ( fog (z) )* } 3.32 

where a = (  n - M 2 )  and p = ( 2 n - M Z )  3.33 

The corresponding boundary conditions of the equations 3.31 & 3.32, from 3.20 & 3.21 

are given as : 

C o ( f )  = + 1  , C o ' ( + l ) = O  3.34 

C,( 51 ) = 0 , C,' (*I) = 0 3.35 

and the solutions of equations 3.25 - 3.28, subject to the boundary conditions 

3.34 & 3.35 , are obtained as : 

f, ( z , t ) = {( z a cos da - sindaz ) /A } e -"' 3.36 

~ , ( t ) =  ( (  a 3 n c o s d a  ) / A }  e-"' 3.37 

f,( z , t ) = [G sin (dbz) - (~P , /P )z  -(a / (zA'P)) ( 2cos2 Ja +I  ) z 

+ ( s i d d a z  )I( 4da(p - 4 a  1) - ( 2 cos Ja sjndaz ) / ( Ja (p  - a)) 1 e -'"' 

3.38 

k, ( t ) = [p 1 ( 2A2 ) ( 1/ B){( 3 (5a -p)dordp cosdp sin2Ja ) 1(4 ( P- 4a)(P-a)) 

- ( c o d a  /( 2 ((P-4a) ) - 2cos2da /(P-a) ) a sindp) 

- a / (4 A~ )( 2cos2 da + l  )le-*"' 3.39 



where B =(sinJp - Jp cosJp ) , A = ( \la c o d a  - sinda ) 

G = I /  sindp { a  / ( 2PA2 ) ( 2cos2 Ja +I  ) + Ja/ A' ( 3 (Sa 

-3 ) sin2da ) / (4 (p- 4 a  )( p - a ) ) + 2P, / P} 

3.4 RESULTS AND DISCUSSION : 

We define the Radial velocity ( u* ) and pressure ( p* ) as 

u*= [ f O o ( z , t ) + R e *  { f , ' ( z , t ) }  + ( R e * ) ' { f , ' ( z , t ) }  + - - - -  ] 3.42 

P* = [ K o ( t ) l o g ( r )  1- ( R e * )  K , ( t )  + - -  - ] 3.43 

where 

u * = u ( r / R e )  and p * = { p ( r , t ) - p ( R , t ) ) / R e  3.44 

Here we assume that ( p ( R , t) } is a known pressure at some cross-section in the 

flow domain at r = R 
0 

The shear stresses ( i.e. the Skin friction ) at the disks are defined as 

Substituting the non-dimensional parameters given in 3.11, the shear stresses are give11 



where T* I ( c L Q o ) / ( ~ x ~ ~ ~ )  ) , = * I  1 

From the relations 3.17- 3.19, it is clear that we have only linear effect of convective 

inertia on the flow and the pressure at Re* z 0 , while the non-linear effects of 

convective inertia are observed for finite values of Re* . Therefore, we have calculated 

u* , T* and p* for the values of reduced Reynolds number Re* = 0.001 to 0.75 . 

Their variations with magnetic field parameter ( M = 0.0 to 4.0 ) and the decay factor 

of the source ( n = 0.0 to 10.0 ) are shown graphically in the figures (1-7 ) . The results 

obtained here are in presence of unifom~ transverse magnetic field which we in some 

cases significantly different from the results obtained by Gourla et al. (1994) in absence 

of the field. As the perturbation technique is used for small values of Re* (= Re / ? ), 

therefore the results are valid for at a large distance from the source from z-axis while 

M = 0 in the ordinate axis means in absence of the magnetic field. Following are the 

observations drawn from the figs. (1-7 ) 

Radial velocity ( u* ) : 

Effcct of Rc*: With thc incrcasc of Rc*, radial vclocity u* (i) incrcascs 

near the middle of the channel{i.e. z -+ 0 in figs. (1&2)}, and (ii) 

decreases near the disks ( z+ +1 ; figs.l& 2 )) at constant M and n. 

Results are similar in nature to those of Gourla (1994), in absence of the 

field. 
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Fig (7),Variation of Pressure with n at z = 0.0 for Re* =0.001 & 0.75 ; r = 5.0 and t = 1.0 



. Effect of M : For constant n and Re* , u* first decreases slowly with the increase of 

M, then increases with the increase of M { figs.(3) ). The value of M 

from where u* increases also increases with the rise of n. 

Effect of n : The variations of u* with n at constant values of Re* and M are 

almost opposite to those of Gourla (1994) in absence of the field . At 

constant Re* and M , u* decreases appreciably with the increase of 

n { figs. (3) ). 

Skin friction (s* ) : 

(a) Results at the upper plate { z = + 1 , figs. ( 4 & 5) ) : 

Effect of Re* : The effect of Re* on r*  is significant only for small values of n 

( 5 2.0) where z* decreases with the increase of Re* at constant values 

of n and M 

Effect of M : At constant n & Re* with the increase of M , r' first increases 

slowly then decreases steadily. The value of M from where T* 

decreases also increases with the rise of n. At higher n the rate of 

increase of T* is high. 

Effect of n : T* decreases with the increase of n at constant Re* and M . 

The effects of Re* & n on r* are similar in nature to those of Gourla (1 994). 

(b) Results at the lower plate for T* at constant values of Re* , M and nt , are opposite 

to those obtained in (a). 



Pressure ( p*) , {Figs. (6 &7 ) } : 

Effect of Re* : The effect of Re* on p* for all values of M & n, is negligibly small. 

whereas p* decreases with the increase of Re* for all values of M & n in 

Gourla (1994). 

Effect of M : p* first decreases slowly and then increases steadily with the increase of 

M at constant ,n  for all values of Re* . The value of M from where it 

increases also increases with the rise of n . 

Effect of n : At lower value of M ( z 0.1), p* with the increase of n first increases 

then decreases slowly to minimum (z  0.0 ). At higher value of M (z 2.5 ), 

p* decreases with the increase of n and becomes negligibly small (G 0.0 ) 

as n + 10.0 (approx.) . On the other hand in Gourla (1994), p* decreases 

appreciably with the increase of n , for all values of n & Re*. 

CONCLUSIONS : 

Under the uniform magnetic field, with the Increase of reduced Reynolds 

number, the magnitude of radial velocity increases near the central line of the 

chamel but decreases near the disks. 

The variation ( increases 1 decrease ) of radial velocity , skin friction and 

pressure with the increase of magnetic field, depends upon the decay factor . 



The skin friction varies inversely with the rise of decay factor and at 

high values of the decay factor ( n s 6.0 approx. ), it almost vanishes. 

Effect of reduced Reynolds number on radial velocity and skin Eriction 

and pressure under uniform magnetic field are comparatively distinct for 

small values of decay factor ( n < 1.0 approx. ) whereas it is clearly distinct for 

all values of n in Gourla (1994). 

With the increase of magnetic field, pressure decreases for smaller range 

of magnetic field , but increases for the higher range of it depending upon the 

decay factor . 

The effect of reduced Reynolds number on the velocity and skin friction 

are similar, whereas the effect of decay parameter are significantly different to 

those in Gourla (1994). 

The effect of reduced Reynolds number on the pressure are negligibly 

small while it is reasonable in Gourla (1994). 

Non-linear effects of convective inertia on all the physical quantities 

( radial velocity , skin friction and the pressure ) become significant only when 

the decay factor (n) is small ( n I 1 approx. ), whereas they are significant 

at high values of n in Gourla (1994). 



CHAPTER IV 

LAMINAR CONVECTION 
FLOW BETWEEN TWO. 

HEATED PARALLEL PLATES I N  
PRESENCE OF A UNIFORM 

INCLINED MAGNETIC .FIELD 



INTRODUCTION : 

The science of fluid motion, very often has to deal with the problem of heat and 

mass transfer between a solid body and the fluid flow. On the physical fluid motion, 

two fields interact, where the fluid flow superimposed by the heat flow. Generally 

speaking, the combined flow of mass motion, heat conduction and convection. If a 

solid body which is in touch with the fluid is heated so that its temperature is 

maintained above the surrounding fluid, the temperature of the stream will increase 

over the layers in the neighborhood of the body. The major part of the transition of 

temperature of the hot body to that of the colder surrounding, takes place in a thin 

layer in the immediate neighborhood of the body and over a narrow wake behind it. 

Thus the flow phenomena interacts with the thermal phenomena to a high degree. 

This is the reason why in a flow system energy balance for the fluid element in 

motion has to be considered. In an incompressible fluid, the energy balance is 

determined by the internal energy, conduction and convection of heat with the 

stream and the gencration of hcat through friction. I11 casc of compressible fluid, 

there is an additional term due to the change of volume change. Although the heat 

radiation is always there, its contribution is very small at moderate temperature and 

therefore, we can neglect it in most of our practical problems. 

By internal energy, we understand the energy associated with random translation 

and intemal motions of the molecule plus the energy of interaction between the 

molecules. The internal energy depends on the local temperature and density of the 

fluid. The potential energy of the fluid as a whole does not appear explicitly. In case 



of an incompressible fluid the frictional heat plays an important role when the free 

stream velocity is so large that the adiabatic temperature increase is of the same 

order of magnitude as the temperature difference between the body and the stream. 

If this temperature difference is of the same order of magnitude as the absolute 

temperature of the free stream , Eckert number (E) becomes equivalent to the Mach 

number ( Ma), which is , the case for a rocket at very high altitude. This means the 

work done due to fluid friction becomes important when the free stream velocity is 

comparable to that of sound, this occurs in the flight of rockets at very high 

altitudes. The temperature'field, hence the coefficient of heat transfer depends on 

the Eckert number only when the. temperature difference is large ( 50°c to 100°c 

or 100°c to 200°c ), and when simultaneously the velocities are also very large ( i.e., 

of the order of the velocity of sound ). With moderate velocities , the temperature 

and velocity fields depends on the Eckert number when temperature differences are 

small ( several degrees ). Further, even with the moderate velocities, the buoyancy 

forces caused by temperature differences, are small compared with the inertia and 

friction forces. In such cases, the flow is less dependent on the Grashof number (Gr). 

Such flows are called forced flows. On the other hand if velocities of flow is very 

small particularly when the motion is caused by buoyancy forces, such as the 

stream rise along a heated vertical plate, the Grashof number (Gr) becomes 

important. Such flows are called natural convective flow. In such a flow Reynolds 

number ( Re) is less important. The frictional term, commonly known as viscous 

dissipation arises due to the mechanical energy generates by the friction which is 

steadily degraded into thermal energy. It has the magnitude proportional to the local 

velocity gradient and is important only when E z 1 Forccd flows can be 



subdivided into two groups with moderate and high velocities depending on 

whether the heat due to.friction ( viscous dissipation ) need or need not be taken 

into account. In both cases the temperature field depends on the field of flow. At 

moderate velocity, when the heat due to hction is neglected , the dependence of the 

temperature field on the velocity is governed solely by the Prandtl number. At high 

velocity, work done due to friction must be included. In other words the work done 

due to friction must be taken into account when the temperature increase due to 

friction is comparable with the temperature difference between the body and the 

fluid. If this temperature difference is of the order the mean absolute temperature 

and flow velocity is comparable with that of sound, the work done due to friction 

becomes important. 

When the hydrodynamic system is brought under a uniform magnetic field, if the 

fluid is conducting, a number of new phenomena arises. An e.m.f is generated and 

acts in to the fluid materials. The charges developed within the fluid material move 

under the action of this e.m.f, colliding and exchanging energy with the rest of the 

material. This means that electrical work is done on or by the material (i.e., the 

exchange of electrical energy between the material and the electromagnetic fields). 

It can be shown that the electromagnetic fields puts energy into the material at a rate 

of E.J per unit volume and time, where, E.J = J * /a - J ( V x B ), ( see also equation 

1.40 ). The first term is the ohmic dissipation and equivalent to 12R as in 

electrical case. The second term is the electronlechanical energy conversion and has 

importances in electrotechnology. The term - J(Vx B) = V.( JxB), is the rate at 

which thc magnetic force J x B docs work on the co~iductor as a whole. Thc 



action of this term is that it pushes the fluid eithcr creating kinetic energy or 

helping to overcome the other forces or reverse if the term is negative. The term 

J 10 is the wasted part of E.J. The application of this elcctromccl~anical encrgy 

conversion was successfully demonstrated by William (1925). 

Thus in a hydrodynamic system under the action of magnetic field ( MHD), the 

electromechanical conversion commonly known as Joule heat should be considered 

in addition to the viscous dissipation. 

The study of fluid flow problems taking into account of the simultaneous effects of 

hydromagnetic and coriollis forces is important because of their applications in 

many geophysical and astrophysical problems. It is generally accepted that the 

hydromagnetic flow in the earth's liquid core is responsible for the main 

geomagnetic field. In this chapter, we discuss the effect of heat transfer and 

magnetic field on the hydromagnetic flow with viscous dissipation and the Joule 

heat. 

It is well known that the magnetohydrodynamic flow between two parallel plates 

in the presence of an applied transverse magnetic field is one of a few exact 

solutions of the equations of motion. This problem was first studied by Hartmann( 

1937). Subsequently, Schercliff ( 1953), Aganval (1 962), Soundalgekar (1 967), Yen 

(1961), Srivastava (1958 & 1961), Stephenson (1967) have studied the effect of 

transverse magnetic field in the fluid flows under various geometries. 

Gupta ( A.S.) ( 1969) has studied the simultaneous effect of free and forced 

, convection on the flow of an electrically conducting liquid under transverse magnetic 



field ill a parallel plates channel subjected to a linear axial temperature variation. 

Gupta (P.S.) (1973) has discussed the effect of combined free and forced convection 

on the flow of a viscous liquid in a parallel plates channel rotating with a uniform 

angular velocity Q about an axis perpendicular to the plates where the plates are 

subjected to a linear temperature variation. Following Chandrasekhar (1961), he 

has ignored the effect of density variations on the centrifugal force. Such 

assumptions are justified if the angular velocity of rotation is not too large. The 

steady flow in a parallel plates channel rotating with an angular velocity Q and 

subjected to a constant transverse magnetic field has been analyzed by Nanda and 

Mohanty (1970). Vitazhin (1965) has investigated the hydromagnetic viscous 

compressible flow with Hall currents , past an infinite wall started impulsively fiom 

the rest. Pop (1971), has discussed the effect of Hall currents on the flow of an 

incompressible, viscous and electrically conducting fluid past an accelerated motion 

of an infinite flat plates in the presence of a transverse magnetic field. Gupta ( A.S.) 

(1972), has studied the flow and heat transfer in hydromagnetic coquette flow of a 

conducting incompressible fluid between two infinite parallel plates, where very 

strong magnetic field acts transverse to the plates so as to make the Hall effect 

important. Borkakati and Srivastiava (1976), have discussed the heat transfer in a 

rotating channel with Hall current under the action of an transverse uniform 

magnetic field. 

Grief et al. (1971 ) and Soundalgekar and Bhatt (1980) have discussed the laminar 

convection flow through a-porous medium between two vertical plates . Pop et. a1 

(1992) have discussed the laminar boundary layer flow due to a continuously 

moving flat plate . Recently Das and Sanyal (1995) have studied the laminar 



convection flow of a conducting incompressible fluid between two vertical porous 

plates in presence of a uniform transverse magnetic field under different 

permeabilities of the medium. 

In this chapter, we have discussed the laminar convection flow of a viscous 

electrically conducting incompressible fluid between two parallel plates in presence 

of a uniform inclined magnetic field. The plates are maintained at constant 

temperature gradient. A uniform magnetic field is applied in a direction making an 

angle 8 with the vertical axis. The field is consider to be strong enough so that it 

induces a magnetic field along the flow direction, The analytical expressions for 

velocity , induced field and the temperature, skin friction and rate of heat transfer 

at the plates are obtained and their variations are shown graphically for different 

values of magnetic field parameters and h ( = cose ). The fluid viscosity is 

considered to be remain constant. The problem shows the influence of applied 

magnetic field and the induced magnetic field. This kind of situation often arises in 

different practical MHD problems in the laboratory. The problem has its 

importances in many applications such as extrusion of plastics in the manufacture 

of Rayon and Nylon, purification of Crude oil, pulp, paper industry, textile industry 

and in different geophysical situations. 

4.2 FORMULATION OF THE PROBLEM : 

We consider the laminar convection flow of a viscous incompressible and 

electrically conducting fluid between two parallel plates. Let the x-axis be the 

central line of the channel along the motion of the fluid and y-axis be 



perpendicular to it . Lct a uniform rnagnctic field B, is applied in the direction 

making angle ( 8 ) to the vertical line . It induces another magnetic field B along the 

line of motion. It is assumed that the plates are maintained at a constant temperature 

gradient ( 1 h ) , where 2h is the width of the channel, so that the plate 

temperature T, may be considered as 

T, = To + ( T / h ) x  

where To is the temperature at the origin of the channel. The fluid temperature is 

assume to vary along both horizontal and vertical direction of the channel while all 

other physical quantities vary along vertical direction only ( i.e. along y- 

direction). 

The fluid velocity and magnetic field distributions are 

MY),  VOY 0) 

and ( ~ ~ $ 1 -  h2 ), B, h, 0) , 4.2 

and the induced magnetic field is { B(y), 0, 0 )  

where h = cos 8, B, and B are applied and induced magnetic field respectively. 

In order to derive the governing equations of the problem the following 

assumptions are made. 

(i) Hall effect and polarization effect are neglected. 

(ii) The fluid within the channel, moves with uniform velocity so that all the 

physical variables are assumed to be time independent. 

The magnetic body force (using 1.29 and omitting the electric part) is written as 

f = J x B  

where J = ( V x B ) 



This gives , 

= -{a/i?y ( B +B0d(1- h2 )) 4.6 

hence from 4.3, f, = [B, h { d / d y  ( B +B0d(1- h2 ) ) I ,  4.7 

fy= [ - ( (B +B,d(l- h2) )h(a /@ ( B  +B,d(l- h2))], 4.8 

f, = 0 4.9 

Under these conditions, the governing equations are as follows : 

d u / d x =  0 4.10 

v(d2 Ujdf ) - V, (duldy) + (B, Upp, ) (dBIdy) - k, = 0 
' 

4.1 1 

v, (d2 B/df ) - v, (dB/dy) + B,h(du/dy) = 0 4.12 

a ( d2 ~ I d f  ) + v / Cp ( d d d y  )2 + [ 1 / (p a Cp p2,)](dBldy )2 

- u (dT/dx) - v, (dT/dy) = 0 4.13 

where k, constant, ; T, the temperature ; cx , the themla1 diffusivity (m2/sec); 

v , the kinematics viscosity ; p , density of the fluid medium ; Cp , specific 

heat at constant pressure ; o , electrical conductivity, p, the magnetic 

permeability ; v,= 11 ( a p,) , the magnetic diffusivity . 

The boundary conditions of the problem are 



We consider now introduce the following dimensionless quantities 

Substituting 4.15 in equations 4.10 - 4.13 , and then dropping asterisks , the 

equations 4.1 1 - 4.13, are as follows . 

(d2bldf ) - R,,, (dbldy) + (A R,,, ) (du Idy) = 0 4.17 

(d2$ ldf ) - Pr [ Re (d$ Idy) + E {(duldy )' + (M2/ R,,,2 ) ( dbldy )' ) I  + u = 0 

4.18 

where v = p I p, kinematic viscosity ; M = B,h d(olvp ), Hartmann 

number ; R,,, = (ape  o ) , the magnetic Reynolds number ; 

v, = I/( ope  ), the magnetic dffusivity; Re = ( v,h / v ) , the Reynolds 

number ; Pr = (v la ) , the Prandtl number; 

E = a2 I ( I- C, h2) , the Eckert number . 

Substituting 4.15 in equations 4.14, the non-dimensional boundary conditions are 



4.3 SOLUTION OF GOVERNING EQUATIONS : 

To solutions of the non-linear equations 4.16 -4.1 8 under the boundary 

conditions 4.19, are given as 

whereS=(ReRm - h 2 M 2  ) ;  & = ( ] I S )  [ R m  ( R e + R m ) / S  -1 1 ;  

m, & m2 = [( Re + Rm ) + d { (  Re + Rm)2 - 4 S )I I 2 ; A, =(Rm / S ) ; 

A, = (h M )/ ( S Rm) ; A, = ( Re A, -1 ) ; A, = ( Rc A, - A, ); 

A, = [A, ( Re- m2 ) - A, ] ; A, = [A, ( Re- m2 ) - A, ] ; 

A7 = [A, ( R e -  In, - A, 1 ; A , = [ A ,  ( R e - m , ) - A , ] ;  

A, = [(A, coth(m1)) - A51 ; A,, = [ (A, coth(m2 1) - A7 I ; 

A,,  = ( k32 mI2  ) { 1- ( Re - m, )' / (h2 M~ )); 

A,, = ( k: n12' ) {  1- ( ~e - m2 )2 / (h2 M' )); 



A , , = ( 2 k 3 k 4 m , m 2  ){l-(Re-m,)(Re-m2)/(h2M2)); 

A,,= k, [2 k ,m,  {A, + A 3  ( R e  - m, ) / (A2 M 2 ) )  + l / ( E P r ) ]  ; 

A,, = k, [2 m2 {A, + A, ( Re - m, ) / (h2 M2 )) + 1/( E Pr) ] ; 

A16= IAl I(O I ( Pr )I; 

A17= [ k2 { Al + A ~ *  1 (h2 M, ) }+ { (  k, A,, + A, k,  + A2k2 ) /( E Pr))] ; 

A,, = [E Pr {A25 + A,, cosh ( m, ) + A,, cosh ( m,)) - A,, cosh ( m, + m,) 

- A,, C O S ~ (  2m2 ) - A,,cosh( 2m, ) + A,, / ( Re ~ r ) ,  } 

- A,, cosh ( Re Pr )] 

A,, = {E Pr 1 sinh( Rc Pr ) } [ A,,- A,,sinh ( 2m, ) - A,, sinh( 2m,) 

- A,, sinh ( m, + m,) + A,, sinh( m, ) + A,, sinh( m, ) ] ; 

A,, = [All  1 ( 4mI2 - 2 Re Pr m, )] ; A,, = [A,, / ( 4m: - 2 Re Pr m,)] ; 

A,, = [A,, 1 {( m, + m, ) - Re Pr (m, + m, ))] ; 

= [Al4/  ( mI2 - Re Pr m,)]; 

A,,'= [A,, / ( mZ2 - Re Pr m,)]; A,, = [A,, ( 2 Re Pr)] ; 

= [A,, f ( Re Pr)2 + A,, / ( Re Pr)] ; 

SKIN FRICTION AND HEA T TRANSFER : 

The physical quantities of our interest in this problem are the Skin friction 

coefficient r and the rate of heat transfer Q at the plates. 

Using 1.95, the Skin friction coefficient r at the plates which is proportional to 

the local velocity gradient is give as: 

T=(- pdu/dy)  ,,,, 4.23 



Again using 1.79 the rate of heat transfer which is proportional to the local 

temperature gradient, given as: 

Q = ( - k d T / d y ) , = + ,  4.24 

where p , k are viscosity and thermal conductivity of the fluid medium . 

Using 4.15, and introducing r*  and Q* as non-dimensional parameters for skin 

friction and rate of heat transfer, and then dropping the asterisks, we get 

r = [ - d u / d y ] y , i ,  4.25 

[ r I Y = i ~ = - [ k 3 m ~ e x p ( + m , ) + k , m 2 e x p ( f m 2 y ) - ( * A , k o  )I 4.26 

and 

Q = [ d V d y  I F + ,  4.27 

[Q] = *  I = ( Pr Re AI9)exp( Pr Re y)+ E Pr [2m, A,, exp( 2 m, y) 

- 2m2 A,,exp(2m2 Y + ( m, + m2 )A22 exp {( m, + m2 ) y I 

- A23 m l e x ~ (  m l  y ) - n 1 2 e x ~  (n12~ ) - 2A25 y - ] 

4.28- 

4.4 RESULTS AND DISCUSSION : 

Numerical values for velocity component (u), induced field (b), fluid temperature 

($), skin friction coefficient (T) and rate of heat transfer (Q) are calculated for 

different constant values of magnetic Hartmann number (M), magnetic Reynolds 

number (Rrn), and at constant values of Reynolds number (Re), Prandlt number 

(Pr), Eckert number (E). The distributions of u , b and I+ within the channel are 8 

shown in figure (i) while the variations of r and Q with h, and M are shown 

in figures {(ii) 6r (iii)) respectively for constant value of Rm 
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(where h = cos0 , 0 is the field inclination from the vertical axis ). The viscosity 

of the fluid is assumed to be constant for all values of temperatures . The numerical 

values are calculated for Re = 10.0, Pr = 0.71, E = 1.0, k, = 1.0, while M & R,,, 

vary from ( 1.5 to 3.5 ). Following results are obtained from the figures . 

(i) It is observed from fig{(i),a) that for all values of h, fluid velocity (u) 

gradually decreases from upper to lower plate and when h increases ( i.e. 

when 0 decreases ), velocity gradually decreases. 

(ii) For all values of h , the induced field ( b) decreases significantly within 

the channel. It is minimum near the central line of the channel (y G 0 ) and 

increases gradually towards the plates . With the rise of h ( i.e. decrease of 

0 ), the values of b decrease appreciably and at very small values of h 

( i.e. when the field inclination is maximum 0 -+ On,,, ), the induced field is 

negligibly small ( see fig. {(i),b}). 

(iii) For all values of h , 4 decreases rapidly from upper to lower plate and 

when h increases ( i.e. when 8 decreases ), 4 increases slowly (see 

fig. {(i),c) 1. 

(iv) For all values of M & Rm , r increases with the increase of h , and 

with the increase of M ( at constant Rrn ), r increases for all values of h. 

Keeping M constant, r decreases with the increase of Rrn for all values of 

h (see figs {(ii),a&b}). 

(v) For all values of M and Rnl , Q decreases steadily with the increase of 

h . With the increase of M or Rrn , Q decreases appreciably for all values 

of h ( see figs {(ii),c&d)). 



(vi) In figs { (iii) , a & b ) variations of r and Q with M are shown for 

different values of h ( = 0.2 , 0.5, 0.75 & 1.0 ) and constant value of 

Rm(= 2.5). It is seen that with the increase of M, T rises up to a certain 

value of M depending up011 value of h after which it declines rapidly 

and at higher value of M (depending upon value of h ), r becomes 

unsteady . On the other hand with the increase of M, Q first gradually 

decreases for smaller values of M after which it increases rapidly for 

higher values of M . The nature of increase and decrease of Q with M 

are different at different values of h . 

4.5 CONCLUSIONS : 

As the inclination of the applied magnetic field to the vertical axis 

increases the fluid velocity and induced magnetic field increase while 

the fluid temperature decreases . 

0 More the inclination of the applied field less is the skin friction acting 

at the boundary layers of the fluid . 

For the rise of applied field , skin fnction increases and the nature of 

increase largely depends upon the inclination of the field . 

When the applied field increases the rate of heat transfer decreases 

steadily for smaller values of applied field but increases sharply for 

higher values of applied field . 

When the applied field remains unchanged, the heat transfer rises up 

with the rise of inclination of the field to the vertical axis. 



The nature of decrease of heat transfer with the increase of applied . 

field largely depends upon the inclination of the applied field. The 

decrease of heat transfer with the increase of applied field, is more 

with the increase of field inclination from the vertical axis. 



CHAPTER V. 

MASS TRANSFER AND 
THERMAL DIFFUSION 
EFFECT I N  A B INARY 

MIXTURE PAST AN 
I N F I N I T E  VERTICAL 

POROUS PLATE I N  
PRESENCE OF A UNIFORM 

MAGNETIC FIELD 



5.1 INTRODUCTION : 

In a moving single-component medium heat is transferred by conduction and 

convection ; the process is known as convective heat transfer. By analogy, the process 

of simultaneous molecular and molar transport of matter in a moving multi- 

component medium is called convective mass transfer. In many processes of flow and 

heat transfer encountered in nature and engineering are accompanied by the transfer 

of mass from one component into the other. For instance, the case of condensation of 

vapour from a vapour-gas mixture and the evaporation of liquid into a vapour gas flow. 

The process is accompanied by a change in the nature of flow and a variation in heat 

transfer intensity which in turn influences the process of diffusion. The mass diffusion 

already we have mentioned in chapter I, is for a binary mixture . 

It has been seen in many engineering problems, especially in chemical engineering, 

the mass transfer processes which are sometimes accompanied by many other process, 

such as, heat transfer, rotation of fluids, electromagnetic forces etc. The heat 

conduction in a gas is caused by the random nlovement of the molecules to equalize 

existing differences in the energy. By the same movement, local differences in 

concentration of a gas mixture diminish in time even if no macroscopic mixing occurs. 

This process is known as diffusion. By diffusion or convection, in a mixture of local 

concentration differences, a component is transported from one location to another. In 

a mixture, diffusion is directed towards equalizing the concentration in the system and 

is accompanied by transfer of mass fi-om the region of higher concentration to the 



lower concentration. By analogy with the heat transfer, diffusion ( mass transfer ) may 

be either molecular ( microscopic ) or molar ( macroscopic). In gases molecular 

diffusion is due to the thermal motion of molecules. In general the diffusion of a binary 

gas or liquid mixture are considered from a molecular point of view. Fick's law 

(equation 1.86) defining the diffusion of binary system has already been explained in 

chapter I. The mass transport through an interface between various phases of the same 

medium is found to be of special importance in engineering sciences. 

Forced or free mass movement occur in mass transfer. It has also been seen that forced 

or natural convection also contributes to the mass exchange. Hence, in engineering 

applications, mass transfer is very complex. When the mass transfer is considered to be 

from a solid surface into a fluid stream, the transfer process is essentially concentrated 

in the boundary layer. In most the problems, the heat transfer process is connected with 

the mass transfer. When we consider the evaporation vapour from a wet surface or 

condensation on the surface, heat is absorbed or released at the surface by the change of 

phase, and this process usually creates temperature diffcrenccs in the fluid. Hence we 

can consider it to be heat transfer. 

A diffusion is characterized by the flow of the mass con~ponent i.e., the quantity of 

mass passing per unit time through the given surface in a direction normal to the 

surface. In a rnulticomponent system, the concentration of the various species may be 

expressed in different ways . For example, the mass concentration p, , is the mass of 

species A per unit volume of the mixture ; the molar concentration cA = p, / MA , is 



the number of moles of species A divided by the total mass density of the solution ; 

and the mole fraction x, = c, 1 c , is the molar concentration of species A divided by 

the total molar density of the mixture ( Bird, et al. 1956 ). 

In a mixture, the velocities of the individual species are different and there are 

several useful ways of averaging the velocities of the species to get a local velocity 

for the mixture. It is necessary to choose such a local velocity before the rates of 

diffusion can be defined. B; velocity we don't mean the velocity of an individual 

molecule of species A, but the sum of the velocities of the molecules of the species 

divided by the number of molecules within a small volume. 

In a mixture, various species are moving at different velocities. If v, is the velocity of 

the species A with respect to a stationary coordinates axes, the local mass average 

velocity for a mixture of n species is defined as 

V =  C PAV, C PA 

where p, v, is the local rate at which mass of species A passes through a unit cross 

section placed perpendicular to the velocity v, . Another way of defining the local 

molar average velocity v* is: 

v* = C C, v, / C C, 

where c, v, is the local rate at which moles of species A pass through a unit cross 

section placed perpendicular to the velocity v, . 

In addition to these definitions , some other average velocities are also sometimes 

used , such as, the volume average velocity. 



Diffusion is more complicated than viscous flow or heat conduction and convection 

because here one has to deal with a mixture. In this chapter , we consider the 

concentration gradient, that is the motive force determining the diffusion process and 

the Fick's law ( 1.86 ), the law for concentration diffusion. In a mixture, if the 

temperature is variable, the thermal diffusion ( generally known as Soret effect ) sets in. 

In a two component system, thermal diffusion causes the heavier molecule to pass to 

the colder region. The direction of thermal diffusion may change under definite 

condition. For example, in an ionized gas, the heavier molecules tend to pass to the 

hotter region. Thus, the thermal diffusion results the formation of concentration 

gradient. The steady state is set when the opposing effects of thermal diffusion and 

concentration diffusion are balanced. 

Lorentz ( 1881) has discussed the heat transfer from a hot vertical plate under the 

assumption that the temperature and the velocity at any point depend only on the 

distance from the plate. Schmidt and Beckmann (1930) have done the experimental 

works on the same problem and have showed that this assumption is invalid and have 

indicated an alternative method of solution. Ostrach (1953b) has reformulated the 

theoretical problem in a more general and formal manner starting directly from the 

basic equations for a compressible, viscous and heat conducting fluid ; but the final 

equations are same with those of Schmidt and Beckmann (1930). 

In practice, mass transfer is mostly coupled with heat transfer. Nusselt ( 1916) has 

stated that there exists an analogy behveen heat and mass transfer. The results of 

Wilkes, Tobias and Eisenberg ( 1953) show the best agrcemcnt with the boundary layer 



theory. Their measurements are only valid for large Schmidt number, so that 

comparison with heat transfer is not possible. The problem of simultaneous heat and 

mass transfer by free convection about a vertical flat plate with uniform surface 

temperature and concentration has been considered by Bottemanne ( 1971). He has 

taken the two buoyancy effects originating from temperature and mass concentration 

differences as mutually independent and has given a numerical solution for the system 

of boundary layer equations for the steady case. Bottemame ( 1970) has also 

experimentally verified his theoretical results . The experimental results concerning 

stationary heat and mass transfer in the laminar boundary layer of a vertical cylinder 

placed in still air have been given by Bottemanne (1972) . He has also discussed the 

combined as well as separate effects of heat and mass transfer. 

Several authors have discussed different types of convective mass transfer MHD flow. 

Gebhart et. a1 (1971) has studied such an combined heat and mass transfer flow after 

which many authors like Debnath et al. (1972), Kafoussias et al. (1979), Nanousis et 

al. (1980), Singh (1982), Raptis et al. (1983), Jha et. a1 (1 990) have also studied the 

same kind of problem. 

These kind of problems become more complicated when discussed under the action of 

strong magnetic field that induces another magnetic field. The problems have 

special importance in dealing with astrophysical and geophysical problems where one 

has to take into account simultaneously both induced field and thermal diffusion 

( Soret effect ), such as those occur in staler region and in the interior part of the 

Earth. Recently, Sattar et al. (1995) have discussed the heat and mass transfer on 



MHD fiee convection flow past an impulsively started vertical porous plate in a 

rotating fluid neglecting the induced magnetic field. 

In this chapter , we are trying to study the effect of a strong magnetic field that 

applied normal to the fluid motion which induces a magnetic field when the 

fluid concentration is changing. We consider a MHD free convection flow of an 

electrically conducting fluid past an infinite porous plate. The induced magnetic field 

which is along the line of the motion, varies transversely. The vertical plate is 

maintained at a constant temperature. The temperature gradient that creates thermal 

diffusion in the medium results in the formation of concentration gradient which tends 

to produce movement of the fluid matter with respect to the mean fluid motion . As a 

result of which a steady state may set in, that is, the opposing effects of thermal 

diffusion and concentration diffusion will be balanced. The aim of our study is to 

know how the fluid motion is affected by the mass transfer and thermal diffusion 

effect ( i.e. the Soret effect ) in presence of the induced magnetic field . To solve the 

governing equations, Runga-Kutta and Shooting method are used. 

5.2 FORMULATION OF THE PROBLEM : 

We have considered an unsteady flow of an electrically conducting incompressible 

viscous fluid past an infinite porous plate under the action of transverse magnetic field 

.The flow is assumed to be in the x-direction which is along the plate and y-axis is 

normal to it . The plate which is vertical and porous, is assumed to be moving steadily 



in the vertically upward direction along the x -axis. In this discussion, the following 

considerations are made. 

(i) The diffusion is characterized by the flow of mass of component i.e., the 

quantity of mass passing per unit time through the given surface in a direction 

normal to the surface. The concentration gradient is the motive force 

determining the diffusion process and Fick's law. 

(ii) The binary mixture system is homogeneous with respect to temperature and 

pressure so that the variation of coefficient of diffusion with temperature and 

pressure, is very small and is negligible. 

(iii) The coefficient of diffusion is identical for the two mutually diffusing 

components of a hvo component mixture. 

(iv) The thermal effusion effect, commonly known as Dufour effect which is 

the resultant effect of temperature difference in the mixing the two components, 

is neglected . 

(v) The component of the mixture don't react chemically with one another. 

(vi) The mixture is initially at the same temperature and the transfer of heat 

resulting from the inter-diffusion of the various species is negligible. 

(vii) The fluid is finitely conducting and the viscous dissipation and the Joule 

heat are neglected. 

(viii) Hall effect and polarization effect are neglected. 



(ix) The plate temperature and the fluid concentration are maintained at 

constant T, and C, respectively while T, and C, are the same at a large 

distance from the plate. 

The uniform magnetic field B, is applied along y-axis which induces a magnetic field 

[ B(y)] that varies perpendicular to it. So the fluid velocity and magnetic field 

COmpOnenf~ are v = [ u(y, t ) , v, , 0  ] and B = [ B(y, t ), B, , 0 ] respectively 

The magnetic body force using 1.29 and omitting the electric part is written as 

where J = o ( V x B )  

This gives J , = 0 ,  J,.=O, J, = o ( B o u )  5.4 

and hence from 5.3, f ,=-  ( ~ B , ~ u ) ,  f y = O ,  f i=O 5.5 

where o is the electrical conductivity. 

Under these assumptions, the basic equations of combined free and forced convective 

flow under Boussinesq's approximation, are given as follows : 



Boundary conditions of thc problem arc 

u = u ,  ; B =  0 ;  T = T , ;  C = C , ;  at y = O :  

where T and C are the fluid temperature and concentration respectively 

and p is the fluid density ; p, = Permeability of the medium ; p = Fluid 

density; cr = Thermal diffusivity ; p = Coefficient of viscosity; h = EIectricaI 

conductivity; v = (N I p ) ,  Kinematic viscosity ; v, = {I/ (h p, )'),Magnetic 

diffusivity ( viscosity); D = Molecular diffusivity; P = Volumetric coefficient of 

- 
thermal expansion ; P =Volumetric coefficient of mass transfer ; 

Introducing the non-dimensional parameters as 

where, q = {y / o(t)) ; o (t) is measured in length scale . 

Substituting (6) in (1- 4), we have the non-dimensional equations as follows. 

{ d 2 f ( r 7 ) / d r 1 2 ) + [ { ( f l o / v ) ( d o ( t ) / d t ) )  d f ( f l ) / d f l l - R e  { d f ( r l ) / d r l )  

+ [{M 1 ( Pe Rm )) dg(q ) d q ] + Gr 8(q ) + GIII $ (q ) = 0 

5.12 



where Re = ( v, o / v ) , Reynolds number ; M = {B, o d( h / (vp ))), 

Magnetic Hartmann number. Rrn = {p, h a ) ,  Magnetic Reynolds number. 

Pr ={v / a )  , Prandlt number ; Gr = {go P ( T, - T, ) 02 / ( v v, ) ), Grashof 

number. Pe = ( Pr Re ), Peclet number. 

Gm = { go p ( C, - C, ) o2 / ( v v, ) }, Modified Grashof number. 

Sc = (v / D ), Schmidth number ; So = { a  p / ( DP)) , Soret number. 

Now for equal kinematics and magnetic viscosity, the term {( o /v ) (d o(t)/ d t )) 

where t appears explicitly, becomes common to all equations 5.12 - 5.15. From 

similarity condition, following the work of Sattar (1995), we can consider i t  as a 

constant. 

i.e. {( o /v ) (d o(t) / d t )) = k , ( constant ) 5.16 

The equations 5.12 - 5.15. are now rewritten as follows . 



{ d 2 0 ( q ) / d q 2 } + [ P r  ( q k  - R e ) { d  e ( q ) / d q } ] = O  

The non- dimensional boundary conditions are now as follows. 

f 1 g (q )=O;  ( q )  cp(q)=  1;  at q =  0 ; 

5.21 

f ( q ) = O ;  g ( q ) = O ;  Q ( q ) = O ;  cp(q)=  0; at q + m ;  

5.3 SOLUTION OF GOVERNING EQUATIONS : 

The solutions of the equations 5.19 and 5.20 are simple and they are as follows. 



where Co=exp { P r R e N - N 2 P r ( k / 2 ) ) / ( R e - ~ k ) ;  

N, being a large number. 

C , = { P r R e / ( l - C o R e ) ) ;  C , = { l  - C , / ( P r R e ) ) ;  

C, = [ { S , G m / G r )  S, P rC ,  / ( P r - S c ) ]  ; C 4 = ( R e -  N 2 k / 2 ) ;  

C,=[(C, /Pr)exp(C,Pr)-{l+C,/(RePr))(Re-Nk)]/[exp(C,Sc) 

- {  ( R e  - N  k) /Re]  ; 

C,= { l + C , / ( R e P r ) - C ,  / R e ) ;  

Substituting 5.22 & 5.23 into the equation 5.17 and then numerical solutions of 

equations 5.17 and 5.18 are obtained using Runga-Kutta method. In order to find 

the missing initial conditions, we have used the Shooting method. 

5.4 RESULTS AND DISCUSSION : 

Numerical solutions of equations 5.17 and 5.18 are obtained for different values of 

Magnetic field parameter M & Rrn , the mass transfer factor Sc , and the thermal 

diffusion factor So . The values of physical parameters except M & Rrn are taken as 

those of Sattar et al. (1995). The magnetic field parameter M ( Magnetic Hartrmann 

number) is varied as M = 0.5 to 4.5 , and the induced field parameter Rm ( Magnetic 

Reynolds number ) changes as Rm = 0.5 to 2.0. Figures (1 (i & ii)) show nature 

of fluid velocity for the variation of mass diffusion parameter Sc ; while the 

figures { 1 ( iii & iv )) show the nature of fluid velocity for the variation of thermal 

diffusivity factor So. In figures {2(i - iv )) the distribution of induced magnetic 



field are shown for variation of Sc & So. The numerical values of , the factor 

- (3 cp / *) ,=, proportional to Nusslet number for mass transfer, commonly known as 

Shenvood number (Sh) are given in the table (I) , and the factor - (d f / Q) , , 

representing the shear stress acting at the plate are shown in the table (11) for 

different values of M , Rm, Sc , & So ; the vales are compared with those obtained 

by Sattar(1995). 

Following are the results drawn from the figures ( 1& 2 ) and the tables ( I & I1 ). 

(i) At constant M & Rm , the rate of mass transfer ( Sh ) , decreases with the 

increase of Sc same as those of Sattar (1995), but increases with the increase 

of thennal diffusivity So . 

(ii) The shear stress at the plate increases with the increase of Sc at constant M, 

Rrn & So , but decreases with the increase of So when M , Rm , Sc are remain 

constant. 

(iii) With the increase of magnetic field the shear stress at the plate increases 

for constant Sc & So. 

(iv) The effect of change of magnetic field ( i. e. M & Rm ) on the fluid 

velocity is very small at constant Sc & So. 

(v) The induced magnetic field varies inversely with the increase of Sc but 

varies directly with the increase of So. 

(vi) The results obtained in (i) ,(ii) & (iii) are opposite in nature to those of 

Sattar et al. (1995). The reason of this may be due to the non-consideration of 

induced magnetic field by Sattar et al. (1995). 
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TABLE (1) 

I 

TABLE (11) 

J Gr = 10.0, Gm = 4.0,  Re = 10.0, Pr = 0.71 , k = 2.0 1 



CHAPTER VI 

FREE CONVECTION FLOW I N  
POROUS MEDIUM BETWEEN 

TWO HEATED VERTICAL 
PARALLEL PLATES I N  

PRESENCE OF A UNIFORM 
MAGNETIC FIELD 

* 



The flow of fluids through porous media plays important roles in hydrology, petroleum 

engineering, chemical engineering , bio-chemical engineering, medicines, ceramics and 

paper technology. The production of petroleum and natural gases , well drilling and 

logging are studied in petroleum engineering. The filtering of gases in liquids, 

chromatography and gel permeation chromatography etc. are the subjects of study in 

chemical engineering . The medicine and bio-chemical engineering, biological 

membranes and filters, the flbw of blood and other body fluids and electro-osmosis are a 

few examples where the role played by porous media is critical. 

Flow through porous media has attracted considerable attention in research activity in 

recent years because of its several important applications, notably in the extraction of 

energy from the geo-thermal regions. 

Porous medium is literally a solid body containing a very large number of pores. It is 

however much more difficult to give an exact geon~etrical definition of what is meant by 

the notion of the pore. Pores are void spaces imbedded in a material . These may be 

either connected or non-connected, distributed more or less frequently in either a regular 

or random manner in the material . Interconnected pores are called the effective pores 

while the non-interconnected are ineffective pores. By ineffective pores, we mean the 

one through which the fluid can not pass. This ]nay be citlicr due to the surface tension 

caused by fine holes or the holes may not be interconnected, so that they do no affect the 

flow directly but affect the compressibility of the medium. 



Porous medium may be visualized as an ordinary unconsolidatcd body in which 

innumerable voids of varying sizes and shapes comprising pores spaces are present. 

Moreover, each pore connected by channels to other pores forming a completely 

interconnected network of openings. This forms the channel through which the fluid 

may flow. 

The voids in a porous medium may be classified according to the behavior of the fluid 

within these spaces. The small void space in which molecular forces between the solid 

and the fluid are significant, are classified as interstices or capillaries. The large void 

spaces in which the motion of a liquid is partially affected by the walls of the voids are 

referred to as caverns. Thus void spaces which are intermediate in size between 

capillaries and caverns are referred to as pores. Thus the void spaces partially or 

completely affect the motion of the fluid flowing through these spaces . It is this effect of 

the minute openings that definitely differentiates this subject from that of the usual 

hydrodynamics. 

A porous medium is not restricted to have the pores belonging to one class. One porous 

medium may be embedded with the pores of different sizes and shapes. According to 

this description the term porous medium may encompass a very wide variety of 

substances. Some of the examples of porous media sand , soil granules, limestone, 

cement, brick, paper cloth, filter paper etc. 

The location, size, shape and the manner in which the pores are interconnected give the 

nature of the porous media. The behavior of fluid flow through porous media can be 

determined by two approaches viz. (i) Microscopic and (ii)  Macroscopic. The 

microscopic theory is statistical in nature and largely concerns with the basic physical 



processes within the porous media, and is obtained when the molecular structure of the 

fluid is taken into account. In macroscopic theory, the flow is fully determined by 

specifying the motion of every material point of fluid at any instant. This approach is 

meaningful only when there are relatively large number of pores. In the present work, we 

have discussed only from macroscopic point of view. It is worthwhile to characterize 

porous media by two of its static properties namely porosity and permeability. 

The porosity is a quantitative property defined as the fraction of the voids to the total 

volume. This is a dimensionless quantity expressed either as a fraction of one or in 

percentage, and is usually define as 

Volume of the voids of the porous material 
k, = ....................................................... 

Bulk volume of the porous material 

where 0 < k, < 1 6.2 

Porosity which is essentially a static property. It can be classified into groups ; absolute 

or total porosity and effective porosity. Absolute porosity is the fractional void space 

with respect to the total volume regardless of pore connection. Effective porosity is that 

fraction of the total volume constituted by interconnecting pores. Many naturally 

occumng rocks, such as lava and other igneous rocks, have a high total porosity but 

essentially no effective porosity. A fluid can flow only through the effective pores and 

therefore, in our work we have considered the effective porosity. Porosity lies between 

0 to 1. In homogeneous isotropic materials porosity is a pure constant but in a non- 

homogeneous material, it may depends upon position. 



Brinkmann ( 1947) has proposcd that , if the pcr~ncablc mcdium is a swarm of 

homogeneous particles which are small spheres and are kept in position by external 

forces, as in the bed of closely packed particles which support each other by contact, the 

damping force F, acting on a volume element is : 

FD = ( c L / ~ ,  ) V  6.3 

There has been numerous studies by hydrologists, petroleum geologists, chemical 

engineers, geologists and geophysicists of flow in a porous medium. Wyllie and 

Gregory (1955) has determined experimentally the porosities of various aggregates 

using spheres, cubes and prisms. They have showed that the Kozeny- Carman ( 1972a) 

constant depends on porosity and particle shape, but the shape factor can be empirically 

assumed from those the experimental data. The surface areas of consolidated porous 

media can be calculated when the pores were of reasonably uniform shape and size . 

Borthel ( 1956) has measured the static flow resistance and porosity of common porous 

building materials. Jones ( 1973) has proposed a boundary condition for curved interfaces 

and has used this condition to solve the problem of slow viscous flow past a spherical 

porous chell under several limiting conditions. Verma and Bhatt ( 1976) have 

investigated the flow past a heterogeneous porous sphere using matched asymptotic 

expansion procedure as developed by Proudman and Person ( 1957). Gupta (1980) has 

solved the problem of two dimensional flow , past a porous circular cylinder, with initial 

pressure gradient using the method of matched asynlptotic expansions. He has shown 

that drag experienced by the cylinder increases due to initial gradient; although it 

remains smaller than the drag force experienced by the identical impervious body. Prasad 



et al. (1984) have reported the numerical studies for steady free-convection in a vertical 

annulus filled with saturated porous medium whose vertical walls are at constant 

temperatures while the horizontal wall being insulated. Fand and Phan (1987) have 

reported the results of an experimental study of heat transfer by combined forced and 

natural convection from a horizontal cylinder embedded in a porous medium composed 

of randomly packed glass spheres saturated with water. It has been suggested that the 

correlation procedure adopted there may yield usehl results if applied to other geometries 

such as for example, forced convection heat transfer in ducks packed with porous 

media. Srivastava and Sharma (1992) have discussed the flow and heat transfer of an 

incompressible viscous fluid due to rotating disk at a small distance from the porous 

medium of finite thickness when the disk and the boundary of the porous medium are 

maintained at constant temperatures. It has been assumed that the porous medium is fully 

saturated with the fluid. Mehta and Sood (1994) have analyzed the problem of free 

convective heat transfer from a non-isothermal axisyrnmetric body immersed in an 

inhomogenous porous medium on the basis of boundary layer approximations. 

Soundalgekar and Bhatt (1990) have considered the laminar convection flow through a 

porous medium between two vertical plates. 

The internal friction in a flowing viscous liquid or gas brings about a process of 

dissipation of energy. This consists in a fraction of the kinetic energy of the fluid being 

converted into thermal energy and heating it . The heating, however, may be significant 

, depending upon the viscosity of the fluid and the flow velocity. This results the 

increase of heat transfer and the reduction of skin friction. This kind of situation 



generally arise in various engineering applications such as nuclear reactor, power 

transformation etc. 

In this chapter, we have considered the fully developed free convection laminar flow 

of an incompressible viscous electrically conducting fluid between two vertical 

parallel plates in porous medium under the action of a uniform magnetic field applied 

transversely to the flow . The aim of our study is to know the nature of the flow, and the 

heat transfer while taking into account the dissipation of energy due to flow and 

porous medium, under the action of uniform magnetic field. Figures are plotted to 

show the distribution of fluid velocity and temperature, and numerical values for skin 

friction and rate of heat transfer are calculated for different values of physical 

parameters. To solve the equations Runga-Kutta method is used and to find the missing 

initial conditions Shootoing method is used. 

6.2 FORMULATION OF THE PROBLEM : 

We are considering laminar connective flow of a viscous incompressible electrically 

conducting fluid between hvo vertical parallel plates. Let x - axis be taken along 

vertically upward direction through the central line of the channel and y - axis is 

perpendicular to the x- axis . The plates of the channel are at y = 4 b . A uniform 

magnetic field B, is applied parallel to y - axis. The velocity and magnetic field 

distributions are V = [ u(y) , 0 , 0 ] and B = [0 , B,, 0] rcspcctivcly In order to derive the 

governing equations of the problem the following assumptions are made . 



(i)Hall effect and polarization effect and the Joule's effect are negligible . 

(ii) The value of magnetic Reynolds number is so small that the induced 

magnetic field is negligible. 

(iii) The plates are maintained at bvo different temperatures T, & T, while 

the central plane of the channel is at temperature To. 

(iv)The plates are considered to be infinite and all the physical quantities are 

functions of y only . 

The equation of continuity is : 

V . V = O  

Using 6.3 in 1.32, the momentum equation is written as : 

vV2V - ( v / k , ) V +  l / p ( J x B )  + Z l p  = O  6.5 

Using 1.44 and 1.45 , and introducing the term for dissipation due to porous medium, 

the energy equation of our problem is 

where the third term in the right hand side of equation 6.5, is the magnetic body force 

and J is the current density due to the magnetic field defined as 

J = o ( V  x B )  

and Z =  p g ( T  - T o  ) 

where Z is the force due to buoyancy 



The magnetic body force using 1.29 and omitting the electric part is written as 

f = J x B  6.9 

This gives J x = O ,  J y = O ,  J , =  o ( B o u )  6.10 

Hence from 6.4, fx = -  ( o B o 2 u ) , h  f y = O ,  f z=O 6.1 1 

where o is the electrical conductivity. 

Using velocity and magnetic field distributions as stated above and the relations 6.8 

and 6.1 1, the equations ( 6.5- 6.6 ) are as follows: 

where o = Electrical conductivity ; p = Fluid density ; 

p = Coefficient of viscosity; v = p / p , Kinematic viscosity ; 

p = Volumetric coefficient of thermal expansion ; 

k, = Coefficient of permeability of the porous medium. 

The boundary conditions are : 

Consider the non- dimensional terms 

y * = ( y / b ) ,  u * = ( u / u o )  €I*= { ( T - T o ) / ( T I  - T 2  )) 

where uo ={pg b2 ( TI- T2)) /  vo). 



Substituting 6.15 and then removing the asterisks , the non-dimensional forms of 

the equations ( 6.12 & 6.13 ) are as follows : 

where E = b2 / {C, ( TI - T, ) ) , Eckert number ; 

M = ( v / v, ), Viscosity parameter ; Da = ( k / b2 ), porosity parameter 

MI, = d [ ( ~ t  b 2o ) I (p.vo )] , Magnetic Hartrnann number ; 

K= Thermal conductivity ; a,  = k /(PC,) , Thermal diffusivity ; 

Pr = (v / a,  ) , Prandtl number ; 

Using 6.15, the boundary conditions 6.14 reduce to 

8 =  8, at y = -  1 and 8 =  l +  8 ,  at y = + l ;  

SKIN FRICTION AND HEAT TRANSFER : 

From Newton's law of viscosity, the Shear stress force per unit area proportional to 

the local velocity gradient is 

r* = -  ~ ( d u / d y ) ~ = , ~  6.20 

using 6.15, and dropping the asterisks, the non-dimensional skin friction is written as 



Again using 1.79 the rate of heat transfer which is proportional to the local 

temperature gradient, is given as : 

Q * = - k ( d T / d ~ ) , = , ~  6.22 

where p , k are viscosity and thermal conductivity of the fluid medium . 

Using 6.15, and dropping asterisks, the non-dimensional rate of heat flow is written as 

6.3 RESULTS AND DISCUSSION : 

Numerical solutions of equations 6.17 & 6.18 are obtained for different values of 

M, Da, Pr & MH. Figures (1 & 2 ) are drawn for fluid velocity and temperature 

distribution while the numerical values of the skin friction {(r ) , = . , )and the rate of 

heat transfer { (Q ) , , - , ) are given in the table (I) and table (11), respectively. The 

values magnetic field parameter M, is varied from 0.5 to 1.5 ; the viscosity parameter 

M from 0.1 to 10.0; and the porosity parameter Da from 0.1 to 1 .O. 





TABLE ( I ), 

SKTN FRICTION AT Pr = 0.7 1 & 10.0 

( E  = 0.1, 0 ,=0.1 ) 



TABLE ( II), 

HEAT TRANSFER AT Pr = 0.71 & 10.0 

( E  = 0.1 , 8, = 0.1 ) 



Following are the observations drawn from the figs.(l& 2 )and the tables (I & 11). 

(i) The magnitude of fluid velocity u , decreases with increase of M when all 

other parameters remain unchanged. For higher value of M ( z 10.0 ), u is 

very small { see fig 1 .( i- iv ) ). 

(ii) With the increase of Da , the fluid velocity u increases slowly for all 

valuesof M , M l l ,  andPr {see fig 1.(i & i i ) ) .  

(iii) When the M, increases, the fluid velocity decreases for all values of M , 

Daand Pr {see fig 1.(i & iii) ). 

(iv) With the increase of Pr, fluid velocity increases, the rate of increase 

depends upon the value of M, for all values of M , Da and Pr. For small values 

of MI, ( z 0.5), the fluid velocity increases steadily with the increase of Pr,{see 

figl(i & v)). As Mil increases, the rate of increase of u , decreases slowly for all 

values of M and Da { see fig 1.  ( iii & vi )). 

(v) The fluid temperature ( 8 ), increases linearly within the channel for all 

values of M , MH, Da and Pr. With the increase of M , 0 decreases slowly for 

all values of M, M, , Da and Pr { see fig 2 ( i )). 

(vi) With the increase of Da, the change of 8 is very small and almost 

negligible for all values of M, M, , and Pr ( see fig 2 ( ii)). 

(vii) With the increase of M, the skin friction r , gradually decreases but the rate 

of heat transfer gradually increases for all values of M,, , M & Da { see table(1)). 



(viii) With the increase of magnetic field M,, , the skin friction T decreases at all 

values of Pr ; but the rate of heat transfer gradually increases when Pr = 0.71 

but decreases when Pr = 10.0 for all values of M & Da { see table(1)). 

(ix) With the increase of Da, for constant M,,, the skin friction T at Pr = 0.71 

increases for M r 1.0 but decreases for M 1 1. The variation is almost 

opposite at Pr = 10.0 { see table(1)). 

(x) With the rise of Pr , skin friction r decreases when MH , Da and M remain 

unchanged { see table(1)). 

(xi) With the increase of Da, for M I 1.0 , the heat transfer Q increases at 

Pr = 0.71 but decreases at Pr = 10.0. For M > 1.0 , Q increases with the increase 

of Da at Pr = 0.71 & 10.0 ( see table(I1)). 

(xii) With the increase of Pr ( = 0.7 1 to 10.0 ) , Q increases for all values of M, 

Da and MH { see table(I1)) 

(xiii) With the increase of MH , Q increases for all values of M & Da at 

Pr = 0.71 but when Pr =10.0, Q decreases with the increase of MH for all values 

of M & Da { see table(I1)). 

6.4 CONCLUSIONS : 

From the above discussion following points can be concluded . 

Fluid velocity largely depends upon kinematic viscosity, and varics inversely with i t  

when other parameters are unchanged. 



Fluid velocity rises with the increase of porosity of the medium, when othe; 

parameters are unchanged. 

Fluid velocity declines with the rise of magnetic field for all values of kinematic 

viscosit'y and porosity. 

Fluid velocity rises when Prandtl number changes from 0.71 to 10.0 when other 

parameters are unchanged. 

Fluid temperature varies inversely with the increase of kinematic viscosity when 

other parameters are unchanged. 

Fluid temperature is less dependent to the porosity of the medium. 

Skin friction at the plate decreases with the rise of kinematic viscosity. 

Variation of skin friction at the plate with the rise of porosity depends upon 

kinematic viscosity. 

Rise of magnetic field causes decrease of skin friction when other parameters are 

unchanged. 

Rate of heat transfer increases with the increase of kinemtatic viscosity. 

The variation of rate of heat transfer, when porosity rises form 0.1 to 1 .O, depends 

upon kinematic viscosity and Prandtl number. 

Rate of heat transfer increases or decreases with the rise of magnetic field depending 

upon Prandtl number. 



CHAPTER VII 

EFFECT OF INDUCED 
MAGNETIC FIELD ON MHQ 
FLOW OF A DUSTY VISCO - 
ELASTIC FLUID DOWN A N  
INCLINED CHANNEL IN 

POROUS MEDIUM 



7.1 INTRODUCTION : 

In recent years, many authors have studied the flow of immiscible viscous electrically 

conducting fluids and their different transport phenomena . These fluids also known as 

non-Newtonian fluids, they are molten plastics , pulps , emulsion etc. and large variety 

of industrial products having visco-elastic behavior in their motion . Such fluids are often 

embedded with spherical non-conducting dust particles in the form of impurities . This 

kind of fluid is then called dusty Rivlin - Ericksen second order fluid. The influence 

of dust particles on visco-elastic fluid flow has its importance in many applications such 

as extrusion of plastics in the manufacture of Rayon and Nylon , purification of Crude 

oil , pulp , paper industry , textile industry and in different Geophysical cases. 

The two-dimensional incompressible second order steady, laminar flow of visco-elastic 

liquids through parallel and uniformly porous wall of diffcrent permeabilities are of 

particular interest and have been studied for their possible applications to the case of 

cooling , gaseous difhsion etc. 

Sproull (1961), has reported that adding dust to air flowing in turbulent motion through 

a pipe can appreciably reduce the resistance coefficient. A similar report that the 

aerodynamic resistance of a dusty gas flowing through a system of pipes is less than that 

of a clean gas, has also been made by Kazakevich and Lrapivin (1958). From their 

observations, it may be concluded that the pressure difference required to maintain a 

given volume rate of flow is reduced by the addition of dust, though the increased 

density of the dusty gas should require a large pressure difference to maintain a given 



volume rate. A plausible explanation of this is that the addition of dust particles damps 

the turbulence. The turbulent intensity reduces the Reynolds stresses and the force 

required to maintain a given flow rate is likewise reduced. 

Saffrnan (1962) has formulated the governing equations of motion of the dusty fluid and 

has shown that the problem of turbulence is quite related to the stability of laminar flow. 

Saffman (9162) and Michael (1964) have discussed the stability of the dusty gas flow. 

Liu (1966) has studied the flow of an incompressible dusty gas induced by the oscillation 

of an infinite plate in its own plane. Rao (1969) has discussed the laminar flow of an 

unsteady viscous liquid with uniform distribution of dust particles, through a circular 

cylinder under the influence of exponential pressure gradient. Michael and Norey 

(1970) have given an analysis for the slow motion of a sphere in a viscous liquid with 

dust particles suspension. Nath (1970) has studied the laminar flow of an unsteady 

incompressible viscous fluid with uniform distribution of dust particles through two 

rotating coaxial cylinders under the influence of an axial pressure gradient. Reddy 

(1972) has investigated the laminar flow of an unsteady viscous liquid with uniform 

distribution of dust particles through a rectangular channel under the influence of 

exponential pressure gradient with respect to time. Dube and Srivastava (1972) have 

discussed the flow of a viscous liquid with uniform distribution of dust particles in a 

channel and a circular pipe under the influence of pressure gradient varying linearly with 

time. 

Dube (9172) has considered the problem associated with the flow of dusty Maxwell 

liquids near an oscillating plate. Dube and Singh (1972) have studied the laminar flow 



of a viscous liquid with uniform distribution of dust particles through a channel bounded 

by huo parallel plates under the influence of pressure gradient (i) varying linearly with 

time , (ii) decreasing exponentially with time. Venna and Mathur (1973) have 

investigated the unsteady motion of a dusty viscous liquid in a circular pipe. Sharma 

(1975) has discussed the unsteady flow of a dusty viscous liquid in a channel bounded 

by two parallel plates. He has found that the liquid and the dust particles which are 

nearer to the axis of the channel move with greater velocities. 

The study of dusty visco-elastic fluids under different physical conditions have been 

carried ont by several authors like Kapur et al. (1964) , Sengupta et al. (1991) , Bagchi 

(1965) and many others. Gupta and Gupta (1976) have discussed the flow of viscous 

liquid through a channel with arbitrary time varying pressure gradient. 

The study of second order fluid under different conditions in presence of a uniform 

magnetic field has also been carried out by many authors. Purkait (1984 ) has studied 

MHD transient flow of second order Rivlin-Ericksen fluid down an inclined channel. 

Sisodia and Gupta (1986) have studied an unsteady flow of a dusty viscous flow 

through a circular and coaxial circular ducts. Lahiri and Ganguli (1986) have also 

studied the same type of problem. La1 and Johri (1990) have discussed the MHD 

transient flow of second order Rivlin -Ericksen fluid through porous medium down an 

inclined channel . Recently Singh and Singh (1995) have studied MHD flow and heat 

transfer of a dusty visco-elastic liquid down an inclined channel in porous medium. 

They have shown the nature of fluid and dust particle at different values of magnetic 

parameter and of the dust particle elasticity under the action of uniform transverse 

magnetic field. 



In this chapter , p we are trying to investigate about the unsteady flow of dusty 

visco-elastic electrically conducting fluid down an inclined parallel plate channel in 

porous medium in presence of uniform magnetic field applied externally transverse to the 

direction of flow, which in turn induces a magnetic field along the line of flow. The 

expressions for fluid and dust particle velocity, induced magnetic field , temperature 

distribution , fluid and dust particle flux , heat transfer , viscous drag at the plates are 

obtained. The velocity distribution of fluid and dust particle , induced field and the 

temperature distribution are shown graphically at different magnetic field parameters . 

7.2 FORMULATION OF THE PROBLEM : 

We consider fully developed flow of an incompressible , dusty hvlin-Ericksen fluid of 

electrically conducting material through a parallel plate channel separated by 2h , 

inclined horizontally by an angle 0 . The plates are maintained at two different 

temperatures which decay exponentially with time . Let the central line of the channel as 

the x-axis while y-axis is perpendicular to it . The uniforn~ magnetic field B, is applied 

normal to the plates induces a magnetic field B along the line of the flow , which varies 

perpendicular to it , so that the velocity and magnetic field distributions are 

V = [ u , 0 , 0  ] and B = [ B , B, , 0 ] . The inertial force experienced by fluid due to 

the motion of the dust particles is equal and opposite to that experienced by the dust 

particles due to the fluid motion. 



To write down the governing equations following assumptions are made . 

(i) The plates are infinitely long , so that the fluid velocity (u ) and dust particles 

velocity (v) are hnctions of y and t only. 
0 

(ii) There is neither chemical reactions and mass transfer nor heat radiation among 

the dust particles . 

(iii) The number density of dust particles is constant and has small value throughout 

the fluid motion. 

(iv) Dust particles are solids , elastic spheres , identical and symmetrical in size , 

electrically non-conducting , and are distributed uniformly within the fluid 

motion 

(v)Hall effect , Polarization effect , and the effect due to buoyancy are neglig~ble . 

The magnetic body force (using 1.29 and omitting the electric part) is written as 

f = J x B  

where J =  ( V x B )  

This gives J x = O ,  J y = O ,  

Jz= - ( l / c l , >  ( a B , / a y >  

= - ( 11 P C )  {aB/dy 1 

Hence from 7.1, f x = ( B ,  I p , ) a B / d y  

~ , = [ B / ( c L ,  )I 

f,= 0 



Under these conditions, the governing equations for second order non-Newtonian 

visco-elastic fluid are as follows ( see chapter I ) : 

&/at  = - ( u p )  d p / a ~ + ~ , ( d ~ u / a y ~ ) + v ,  { a / a t ( a 2 / a ~ ) )  

- ( v , / k , ) u + g s i n O  + ( K N / p ) ( v - u ) + ( l  / p ) ( B , / p , ) d B / a y  

7.9 

( l / p )  + g c o s 8 +  [ ~ / ( p , p ) ] a ~ / a y  = O  7.10 

m ( a v / a t ) - K ( u - v ) = o  7.1 1 

Using 1.44 and 1.45 , and introducing the term for viscous dissipation due to fluid and 

dust particle, and the Joule heat due to the magnetic field , the energy equation is : 

a T / a t =  { a / ( p C p ) )  ( $ T / ~ $ ) + v ,  ( c ~ / * ) ~ + v ,  { a / a t ( a u ~ a y ) ~ )  

+ { 11 (V: P Cp 1) ( dB /a Y 7.12 

From 1.86, the magnetic diffusivity equation is : 

d B / &  + B , ( C h / d y ) + v , ( 8 B / d y 2 )  = 0 7.13 

where p , Fluid Pressure ; m , mass of the dust particle ; 

v, , Kinematic coefficient of fluid viscosity ; v, , Kinematic 

coefficient of visco-elasticity ; k,  , porosity of the medium ; 

N , number density of the dust particles ; a , thermal conductivity of 

the fluid ; C, , specific heat at constant pressure ; o , electrical 

conductivity of the fluid ; pe , permeability of the medium ; 



v, = 11 (o pc ) , Magnetic diffusivity ; K , Proportionality constant ; 

and T, fluid temperature 

we define the pressure p as 

where A is a constant and a is any function of time. 

Using 7.14 , the equation 7.9, is written as 

The boundary conditions of the problem are 

where To and T, are the temperatures at the plates y = + h & y = -h 

respectively and n is a real number denoting decay parameter of the plate 

temperatures. 

We consider following non-dimensional parameters 

Substituting 7.17 in equations 7.10 - 7.14 , and then removing asterisks , we get 



where R = ( u, h / v ,  ) , Reynolds number , 

q = ( -v2 / h2 ) , Visco-elastic parameter; C = (m.N/p ) , Dust particle 

concentration ; R, = {m.uo / ( K .h )), Relaxation time parameter of 

dust particles ; M = 4 {(B: h2 o ) / pv, ) , Magnetic Hartmann 

number ; P, = v, / a , Prandlt number ; R,,, = (p, o a) , Magnetic 

Reynolds number ; E= { u t  / ( C, To ) } , Eckert number : 

Using 7.17 in 7.16 , the non-dimensional boundary conditions are 

U = V = O  , ~ = ~ - 2 n l  , b = O  ; at y = - 1  

= e - n l  , v = e - " '  , T = x ,  b = O  at y = + l  

where x =( T, / To ) , is a constant temperature. 



7.3 SOLUTIONS OF GOVERNING EQUATIONS : 

In order to solve the equations 7.18 - 7.21 under the boundary conditions 7.22 , we 

consider 

u =  f(y) e-" '  , v = g(y) e - " '  , T = F (y) e -2n '  , 

- n ~  . b = G ( y ) e * " ,  , = h e  , 

Substituting 7.23 in equations 7.18 - 7.21 , we get 

d 2 f ( y ) l d J + ~ , f  ( y )  + A , ( d G ( y )  / d y ) -  A2 =O 7.24 

g ( ~ )  = { h f  ( y ) / ( l - n . h ) )  7.25 

d 2 F ( y )  / d  J + A , F ( y )  + { A , ( d f ( y ) / d y I 2  + A, ( d G ( y ) / d y I 2  1 = 0 

7.26 

d 2 G ( y )  / d y 2 - n A , G ( y )  + A , ( d f ( y ) / d y ) =  0 7.27 

where ,  A, = R / ( l + n q R )  { n - K 2 / R  + C . n / (  1 - n R , ) )  ; 

A , =  { R  a , / ( n q R + l ) } ;  A;= ( R . R , , P , ) ;  

A, = ( 2.n.R.Pr) ; A, = { E.P, ( 1+ 2.n. q .  R )  ; 

A,= { ( M 2 . ~ ) I ( R 2 k 2  P,)} ; A, =[ I / (  1 + n q  R) { M 2 / ( R .  R,,,P,)}]; 

The boundary conditions 7.22, are now 



The solutions of equations 7.24 - 7.27, subject to the boundary conditions 7.28, are 

given as 

f(y)=[CIQl e"IY + C 2 Q 2 e * Y + C 3 Q 3  e*  + C 4  Q 4 e " 4 Y  + C,]  



L3 = { Q2 LI e m 2  + Q, e m '  - Q, ( L ,  e m 2  + em3 ) ) ;- 

L4 = { Q I  ( L 2 e m 2  + e m 4  ) - Q 2 L 2 e m 2  -Q4en14 ) ;  

LS = {L, (L, en12 + em3 ) / L, + ( L2en12 + en14 ) ) ; 

L, = ( L l e m 2  + e m '  ) /L , ,  L, =(L6 . f o  ) ; 

L, = { (L , L4 /.L, + L2 )Q2 e ' " + L4 / L, Q, e  ' "I3 

+ Q 4 e - m 4  - L s Q l e ' 2 m 1  ) ; 

L, = { ( L l / . L , Q 2 e - m 2  + Q,L,e-"' - L 6  Q,e-*" '  - 1 )  Y 

L,, = { L, Q, e  -2m1 - .LI /.L, fo Qz e  - m 2  - fO I L3 Q3 e- "' ) Y 

L, ,  = [ { (L , .L4/.L3+ L2 )L9/ .L8 - L 1  /.L, ) Q 2 e  m 2  

+ { (L9.L4)/(.L3 L,) - 1/L, ) Q, e m 3  + ( L ,  / L ,  ) Q4 e m 4  

- {(L ,Ls ) /L , -L ,  }Ql+ 11 ; 



C, = l / ( s i n d ~ ,  ) { S ,  s inh (2ml )  +S , s inh (2m2)  

+ S, sinh ( 2  m, ) + S4 sinh ( 2 m 4  ) + S, sinh ( m, + m2 ) 

+S6sinh(  m, + m 3 ) + S 7 s i n h ( m 1  + m 4 ) + S , s i n h ( m , + m 2  ) 

+Sgs inh(m4  + m 2  ) + S l o s i n h ( m 3 + m 4  ) + ( x  -1) /2  ) ; 

C6 = ( l l c o s d ~ ~ ) [  X -  C, s i n d ~ ,  1- { S , e 2 " '  + S 2 e 2 m 2  +S,e2" '  

+ S 4 e 2 m 4 +  S S e  ( r n ~  + m 2 )  + S  6 e  ( r n ~  + ~ 3 )  + ~ ~ ~ ( m l  + m 4 )  

SKIN FRICTION AT THE PLATES : 

The viscous drag acting at the plates for fluid ( r ,) and for the particles ( r , ) are 

defined as 

r '  = [  { 1 m - r l  ( d / a t > }  ( ~ J / ~ Y ) I , = , ,  7.33 

= [ { 1 m - q  ( a / a t ) }  (e-"I a f l a y )  ] , = , ,  

= ( I / R + n q ) [ C , Q ,  m l e i r n l  + C 2 Q , m , e f  "' + C , Q , m , e i m 3  

+ C4Q4 m,e *"4 ] e  - " '  

and T,= [ { 1 / R - q  ( a l d t ) }  ( d v l a y ) ]  ,,,, 

= [ { i m - T  ( a ~ a t ) ~  ( e - " '  a g l a y )  I ,,,, 



FLOW FLUX FOR FLUID AND PARTICLES : 

The flux of flow for fluid ( 4, ) and the particles (4 , ) through the channel are 

represented as 

I 

4 r  = I-1 u dy 

= e-n'~. ' ,  f(y) dy 7.37 

= 2 [(C, Q, / m, )sinhrn, +(C,Q,/ m,) sinhm, + 

(C, Q, / m,) sinhm, + (C4Q, / m4 ) sinhrn, + C, ] e ' " ' 7.38 

I 

@,= I., v d y  

= e - " ' I - ,  g(y) dy 

and 

= ( 21 / A, , )  [(C, Q, / m,  )sinhm, +(C,Q,/ m,)sinhm, 

+(C,Q,/m,)sinhm, + (C,Q,/m,)sinhm, +C, ]e - " ' 7 .40  

HEAT TRANSFER : 

Using 1.79 the rate of heat transfer in terms of the Nusselt number 

( Nu ) at the plates, which is proportional to the local temperature gradient, 

written as 

Nu = [ f l / * l y = * ,  

= e ' 2 n '  [ a F / * l y = * l  



Table (1) 

TEMPERATURE DISTRIBUTION ( T ) WITH R AT M = 1.5 & 4.5 - 

M =  1.5 M = 4.5 

Y R,,,=O.l R,,, =1.0 R,,,=lO.O R,,,=100.0 R,,,=O.l R, =1.0 R,"=10.0 R,"=100.0 

-1.00 1.0000 1.0000 1.0000 1.0000 1 .oooo 1 .oooo 1 .oooo 1 .oooo 

-0.75 1.4238 1.4237 1.4235 1.4234 1.4239 1.4238 1.4235 1.4234 

-0.50 1.7843 1.7842 1.7838 1.7838 1.7841 1.7841 1.7837 1.7838 - 

0.00 2.2557 2.2556 2.2552 2.2552 2.2553 2.2552 2.2550 2.2551 

0.50 2.3322 2.3321 2.3318 2.3317 2.3321 2.3320 2.3317 2.3317 

0.75 2.2152 2.2152 2.2149 2.2149 2.2154 2.2153 2.2150 2.2149 

1.00 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 
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7.4 RESULTS AND DISCUSSION : 

The aim of our study is to investigate the effects of magnetic field parameters ( i.e., the 

magnetic Hartmann number , M and the magnetic Reynolds number , R,,, ) on velocity 

and temperature distribution for fluid and particles . Numerical results of equations 

I 
( 7.29 - 7.23 ) are obtained for constant values of R ( = 0.5 ) , n (=I.O) , Pr = 0.71, 

h=1.5 ,  q ( = 0 . 1 ) ,  E = ( 0 . 0 1 ) ,  C ( = 0 . 1 ) ,  a ,  ( = 1 . 0 ) , ~ = 2 . 0  , K ( = 0 . 5 )  and 

C, (= 0.5 ) . Figures (i- iii ) show distributions of fluid velocity , particle velocity , 

induced field and the temperature within the channel for M = 1.5 & 4.5 and magnctic 

Reynolds number R,,,= (0.1 , 1.0,  10.0, 100.0) ,  

Following results are observed from the figures and the table (I). 

1. Velocity distrzbtctlo?~ ; fig (i & ii): 

(i) For constant value of M , f & g decrease with the increase of R, but at 

the central plane of the channel (y = 0) , f & g remains same for all values of R, 

(ii) At constant R,,, , f & g increase gradually with the increase of M , but 

on the central plane of the channcl ( y = 0 ) remains same for all values 

of M &  R",. 

2. Indriced field dzstribzction: fig (iii): 

(i) At constant M , G increases with the increase of R,,, tlu-oughout the channel, 

is maximum in the central plane and decreases gradually towards the plates . 

(ii) For constant value of R,,, , G decrcascs with thc incrcasc of M . 



3. Teuzperature distribzction;[ Table (I)] 

(i) While M is constant , T decreases with the increase of R,,, and in the higher 
I 

range ( 10 1 R,,, < 100 ) rate of decrease is very small . 

(ii) At a particular value of R, and M , T is maximum in the plane (y = 0.5 

approx. ). 

(iiI) When R,,, remains constant , T decreases slowly with the increase of M 

but for higher values of R,,, , T almost remains same 

CONCLUSIONS: 

. When the applied magnetic field remains unchanged fluid velocity , particle 

velocity , and the fluid temperature decrease with the increase of magnetic 

Reynolds number, and when applied field increases they increase for constant value 

of magnetic Reynolds number . 

Induced field increases with the increase of magnetic Reynolds number when 

applied field is remain unchanged whereas induced field decreases for constant 

value of magnetic Reynolds number when applied field increases. 

. At the central plane of the channel both fluid and particle velocity are 

independent to the variations of magnetic Hartmann number and the magnetic 

Reynolds number. 

@ At higher values of magnetic Reynolds number, the temperature variation is 

almost independent to the variation of applied magnetic field. 
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