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ABSTRACT

A paradigm shift from continuous-time to discrete-time signals and systems
studies originated during sixties employing shift operator in the time domain analysis &
design, while z-transformation in its complex domain counterparts. Despite the fact that
real world physical signals and processes remain continuous in time, but due to certain
limitations of continuous-time analysis, synthesis and design tools there have been rapid
proliferation of digital techniques due to low hardware and software cost and hassle free
implementation. The advent of very high speed digital computers and rapid development
of VLSI technology have led fast sampling to avoid loss of information.

Unfortunately, the traditional shift-operator model becomes uninformative at fast
sampling rates. An alternative parameterization based on signal differencing has been
advocated by Middleton and Goodwin to overcome these difficulties. The delta operator
parameterization has a close connection with continuous-time and in fact converges to the
continuous-time description as the sampling period tends to zero. It therefore provides a
unified framework for system studies, where continuous-time results can be achieved
from the discrete-time description of the system.

In the present work classical control design methods in the complex delta domain
using the concept of model matching in the Truxal framework is attempted. These
controller design techniques consist of designing a controller to compensate a given plant
in the complex delta domain, so that the controlled system follows the reference model.
The reference model structure, which satisfies the classical time, frequency and complex
domain specifications in the complex delta domain, is developed. Discrete-time modeling
of the control systems in complex delta domain and development of low order controller
based on performance specifications are the main objective of the work undertaken. Two
methods are developed to design controllers in the frequency domain,-Optimal
Generalised Delta Time Moments (OGDTMs) and Optimal frequency fitting (OFF).
These methods are applied to design rational, discrete-time controller for single-input,
single-output (SISO), multi-input, multi-output (MIMO) systems and systems with time
delay.

Reference Model: Apart from the time and frequency domain specifications such as

percentage overshoot, peak time, rise time, delay time, settling time, gain margin, phase



margin, resonant frequency and resonant peak, complex domain specifications are
frequently associated with damping ratio (£) and frequency of natural oscillation ().

For a discrete time higher order system, relations between the specifications in the
time, frequency and complex delta domain are complicated. In many cases, however, the
dynamic characteristics of higher order control systems are well represented by those of a
second order system or model for which the relationships between specifications are
simpler. Hence the second order reference model transfer function of a closed loop model
based on performance specification in discrete delta domain is chosen for this work.

For a pole-zero form of transfer function in z-domain, expression has been derived
in terms of a set of complex z- domain specifications. Time domain specifications in delta
domain has also been derived however no study has been made so far to relate frequency
domain specifications in the complex delta domain. An attempt is however made to

address these issues in this work.

Optimal GDTM: In the present work, the concept of model matching method in the
complex delta domain discussed above has been developed replacing éuccessive
derivative operations of the function with forward difference operations and evaluating
them at finite values close to zero. These values of the delta function are defined as
genéralised delta time moments (GDTM). Therefore the efficacy of the controller design
scheme based on GDTM greatly relies on the selection of real frequency points and
normallyAtrial and error method is resorted to seek compromise. In the present work,
genetic algorithms (GA) are used as an optimisation tool to find the oﬁtimal frequency
point and hence Optimal GDTM (OGDTM).

Optimal Frequency Fitting: In this work another algorithm of controller design is
developed based on selection of optimal complex frequency points using GA. In this
method two transfer functions are matched at a number of frequency points in the low
frequency range and the controller parameters are computed after evaluating a set of
linear algebraic equations at these complex frequency points adopting the method of least
square. Therefore the efficacy of the controller design scheme in this method greatly
relies on the selection of complex frequency points in the complex delta domain and
normally trial and error method is resorted to seek compromise. Genetic algorithm is used
as an optimisation tool to find the optimal complex frequency point in this Optimal
Frequency Fitting (OFF) method. The computational algorithm of both the design

methods are numerically stable at high sampling frequency and yields a continuous-time



like controller, which depicts the advantage of delta operator modelling in control system
design.

Genetic Algorithms: Genetic algorithms (GA) have been widely used in many
applications to produce a global optimal solution. GA accommodates all facets of soft
computing, namely, uncertainty, imperfection, non-linearity and robustness. It is domain
independent adaptive and inherently parallel and can handle multiple objectives with no
explicit mixing required to define a composite objective function.

In the controller design problems, in order to compute the optimal frequency
points, both real and complex, a fitness function is developed which is the difference
between the step response of the reference model and the designed controlled system in
which GA was entrusted to find the optimal frequency points in the given search space
and therefore to find OGDTM and OFF. A fitness function is computed using roulette-
wheel /tournament selection method.

In the proposed methods GA is used as a z<’global search tool to optimally locate the
real and complex frequency points based on a scalar cost function developed between the
error of the reference model and closed loop controlled systems. Hence these algebraic
methods are a once-through design method without resort to any trial-and-error
procedure. Therefore with minimum amount of effort, this method gives practically
realizable PI, PID and other higher order controllers conforming to desired industrial

specifications.

Biomedical digital filters: Digital filter is another important field in signal processing
and biomedical is an essential area of its application. By using the delta operator based
technique, digital filter has been designed for high performance inverter application.
Exhaustive study has already been made in modeling and analysis of biomedical digital
filters in complex z-domain. In the present work, application of delta operator
parameterization has been extended to design of biomedical digital filter to remove high
frequency, low frequency and 60 Hz power line interference from the ECG.

Hence, the delta domain methods developed and presented highlights the benefits
of using delta operator in system theory and signal processing. To illustrate each method,
several simulation results are provided with some practical plant models taken from the
literature. The results clearly illustrate the usefulness of the methods developed in the
thesis for practical problems and demonstrate that the proposed methods offer a viable

and often attractive alternative to some prevalent methods.
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Figure 5.9: Step responses of Ref. model and closed loop plant with PID Controller
for p= + 50°, w,=10 rad/sec, §=0.5, A= 1 sec and time delay 1 sec
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Step responses of Ref. model and closed loop plant with PID Controller
for p= + 40°, ®,=0.2 rad/sec, £=0.8, A= 0.5 sec using OGDTM

: Step responses of Ref. model and closed loop plant with PI Controller
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Figure 5.19: Step responses of Ref. model and closed loop plant with PID Controller
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for p= + 40°, ®,=0.1 rad/sec, £=0.8, A= 0.5 sec using OGDTM

: Step responses of Ref. model and closed loop plant with PI Controller
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Step responses of Ref. model and closed loop plant with PID Controller
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Figure 5.27: Step responses of Ref. model and closed loop plant with PID Controller
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for p= - 40°, ©,= 0.3 rad/sec, £=0.7, A=0.5 sec using OFF method
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Figure 5.34:
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Step responses of Ref. model and CL nominal & extreme plants with -
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Chapter 1

1 Introduction:

1.1 Motivation:

A paradigm shift from continuous-time to discrete-time signals and system
studies originated during sixties employing the techniques of the shift operator in the
time domain analysis and design, while z-transformation in its complex domain
counterparts. Despite the fact that most real world physical signals and processes
remain continuous in time, but due to certain limitations of continuous-time analysis,
synthesis and design tools, there have been rapid proliferation of digital techniques
with wide acceptability mainly due to low hardware and software cost and easy
implementation. Discrete-time signal processing and discrete-time control popularly
known as digital control or sample-data control have emerged out as a separate field
of study and offer many conveniences such as:

. Stability of control

o Flexibility

. Lower cost

o Greater reliability and equipment life

o Human factors favouring Digital Interface
. Ease in implementation

. Extremely high accuracy and negligible drift with time

° Standard hardware modules across a wide range of applications
) Ability to self-check

. Greater range of control algorithms

o Digital algorithms are mostly algebraic that avoid calculus

Inspite of the fact that discrete-time signals and systems offer many
.advantages but, its major drawback is that the resultant signal or system as obtained
after sampling of continuous-time counterpart is largely dependent on the selection of
sampling frequency. While the choice of Nyquist frequency as the sampling
frequency is the minimum requirement to retain the bandwidth in the corresponding
discrete-time there is no fixed criteria what shall be the maximum sampling

frequency. It largely depends on the intuition of the designer looking into the stability
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of the overall systems, implementation issues and availability of the hardwares etc.
However, in order to implement a continuous-time system in the corresponding
discrete-time it can be institutively assumed that one should take the sampling
frequency as large as possible, thereby making sampling time very near to zero.
Unfortunately, the traditional shift-operator or z-transformation representation of the
discrete-time systems becomes uninformative at fast sampling rates and resultant

numerical algorithms become numerically ill-conditioned.

An alternative to the shift operator in time domain called delta operator and
gamma transform in place of z-transform has been advocated by Middleton and
Goodwin [1],[2] to overcome the above difficulties. Discrete-time signals and systems
representation using the above technique not only ensure greater range of stability and
numerical conditioning but also allows continuous-time results to be obtained as a
special case from the resultant discrete-time system when the sampling period is zero.
In recent years, the delta operator has been widely used to many areas in control and
signal processing as an alternative to shift operator. The delta operator establishes a
special rapprochement between analog and discrete dynamic models and allows for
investigating the asymptotic behaviour of discrete time models as the sampling period
converges to zero. Moreover, it has certain numerical advantages compared to the
shift operator parameterization. It, therefore, provides a unified framework for system
studies, where continuous-time results can be achieved from the discrete-time

description of the system.

The term delta operator used in this thesis is to model a time domain signal or
system in discrete-time and denoted by ‘0’ while, the term Jé-domain is the
corresponding complex transformed domain denoted by the complex variable %y’
Therefore, the notation ‘S 'is to be used as a time domain operator while the notation

vy’ is to be used as a complex domain operator for the analysis, design and

simulation studies presented in this thesis.

1.2 Objective of‘the thesis:

The aim of the first part of the thesis is to develop a unified framework for

representation of dynamic discrete-time systems in the complex delta domain such
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that the resultant systems converge to its analog counterparts at fast sampling limit. In
the sequel, we utilize the properties of the delta operator to develop the reference
model parameters which satisfy the given classical time, frequency and complex
domain specifications with a view to employ these reference models for controller

design in a model matching framework.

The aim of the second part of the thesis is to develop methods for controller
design in the complex delta domain using a variant of time moment in which Genetic
algorithms (GA) have been used to optimally select either the real or complex
frequency points. The controller design methods developed in the complex delta
domain mainly use the transfer function description and are applicable to single-input
single-output (SISO), multi-input multi-output systems (MIMO) and system with time
delays. All methods included in the thesis are, however, directly applicable even if the

original description of the system is given in state-space.

Finally, the third part of the thesis deals with filter design in the complex delta

domain for biomedical applications.
1.3 Contribution of the thesis:

The properties of the delta operator are utilized to design reference model
system in the complex delta domain denoted by the complex variable y. The
coefficients of this reference model are computed from the given time, frequency and
transformed domain specifications so that the overall controlled system match the
reference model approximately in a model matching framework. A newly defined set
of parameters called the Optimal Generalized Delta Time Moments (OGDTM) is
introduced. This OGDTM is a new variant developed from the concept of traditional
time moment so far used for continuous-time signals and systems. The discrete-time
time moment in the delta domain is called Delta time moment (DTM). A more
general version of DTM is Generalised delta time moment (GDTM). The proposed
OGDTM is developed by invoking GAs, an artificial intelligence tool to find a set of
real frequency points after minimising a scalar cost function. This newly introduced
set of parameters i.e. (OGDTM) has been successfully used for controller design in

the complex delta domain.

A new method called the optimal frequency fitting (OFF) technique has also

been introduced. The proposed OFF selects a set of complex frequency points after
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minimising a scalar cost function by using GA. The OFF technique has been
successfully applied for controller design of SISO, MIMO and syStem with time
delays. The design method as proposed either using OGDTM or OFF is a
comprehensive linear algebraic framework based on approximate model matching and
are applicable to systems that are stable / unstable, minimum phase / non-minimum-
phase. The proposed design methods as developed in the complex delta domain
provide a unified framework for the design of a digital controller which converges to
its corresponding analog controller when the sampling time approaches zero. Both of
these properties have been well exploited in analysis, design and simulation studies.
The concept of delta domain technique has also been used for biomedical signal
processing in which design of digital filters has been attempted to remove artifacts of

Electrocardiogram (ECG) signals.

In the context of the above, we now include a brief review of the related

literature.
1.4 Historical Overview:

In this section, we present a brief historical overview of the evolution of delta
operator, time moment, Genetic algorithms and biomedical digital signal processing
with a view to its eventual applications in control system design and biomedical
digital filter design problems. The discourse is mainly focused on issues that are
relevant to this research and is by no means an exhaustive exposition of all the
available contributions to these theories. We start with an introduction to the
development of delta operator modelling and control followed by a brief discussion
on time moment, Genetic algorithms and their present state of the art and application
in control system focusing on model matching based controller design methodologies

and biomedical filter design applications.
1.4.1 Delta operator :

There have been a large volume of works accumulated since sixties on
discrete-time system studies using the shift-operator in time domain and z-
transformation in the complex domain [3], [4], [5], [6]. The development of delta
operator formulation by Middleton and Goodwin [1] in 1986 makes it possible to

understand both continuous-time and discrete-time control and identification theory
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within a unified framework, while substantially improving the numerical robustness

with respect to the traditional shift-operator representation of discrete-time systems.

The delta operator theory of modelling of discrete-time is based on discrete
differential or ‘finite difference’ operator. The calculus of finite differences has been
in use in numerical analysis for several centuries and a good account of it is described
in Middleton and Goodwin [7]. Although Gupta [8] in sixties has introduced ¢-
transform which is nothing but the complex domain version of the delta operatdr
called y- domain. Similarly, Neuman C.P. [9] has defined the delta operator as the
discrete approximation of the differential operator, the application of which converts
all the relationships of sample-data systems to their continuous-time counterparts at
the fast sampling limit. However, the actual benefits of it's use in control system
analysis and - design was fully explored by Middleton and Goodwin [10].
Subsequently, Mukhopadhyay et. al. have shown that delta operator formulation is a
sub-class of a more general operator called y-operator [11]. Since its inception, delta
operator has been extensively used in controlled system design and implementation.
To highlight the important applications of delta operator in systems and control,
following areas may be mentioned such as literature on classical and modern control
[12-14], predictive control [15], adaptive control [16-17], robust, He, and optimal
control [18-28], Linear Quadratic Gaussian (LQG) Control of Networked control [29],
signal processing [30 - 42] and identification [43-48] etc.

1.4.2 Time moment:

Time moment, a traditional tool, has been extensively used in the reduced
order modelling literatures [49-52]. Time moments are evaluated from a time
dependent function about a point by the method of integration. A set of time
functions of the high-order system are matched with those of the reduced model
and the number of time-moments matched depends on the desired order of the
reduced model. In the frequency domain, many variants of the time moments based
me’thods [52] have been reported for control system design and implementation
mostly with industrial settings. The classical techniques of control system design for
continuous-time systems using frequency response plots of Bode and Nichols, root
locus diagrams of Evans or the Nyquist plots are well documented in the literature.
The methods are graphical and of a trial-and-error nature and are normally limited to

SISO systems. These neo-classical design techniques have been further refined by
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Rosenbrock [S3], MacFarlane [54], Mayne [55], Hung and Anderson [56] and others
[571.

The development of state variable techniques during sixties has witnessed a
radical change from the frequency domain to time domain because of its several
advantages over the classical transfer function approach. However, state-space design
technique requires information about all the states while measuring the output in order
to design an elegant controller. This can be achieved either through multitude of
sensors or an asymptotic observer. For higher order systems, this mandates an
implementation, which is highly complicated. Such sophisticated controllers may be
reasonable in aerospace applications but in an industrial setting long-term reliability
and economics prevent such sophistication. Optimal control approach requires the
solution of higher order nonlinear differential equations and, moreover, it is often
difficult to translate industrial specifications into the weighting matrices of the

performance index and vice versa.

One of the important aspects of controller design and implementation is the
order of the resultant controller and the subsequent hardware complexity. Practicing
engineers prefer implementable controllers of low complexity. The problem of
designing control systems via model matching approach may be stated as follows:
Given a process whose performance is unsatisfactory and a closed-loop reference
model having the desired performance, derive a controller such that the performance
of the augmented process matches that of the model. Work on controller design for
model matching dates back several decades, e.g., the Guillemin-Truxal design
procedure yields a controller TF which matches a reference model in a unity-feedback
configuration [58]. In sampled-data theory most of the techniques for control system
analysis and synthesis were originally developed for continuous-time systems and
were subsequently converted to or adopted for discrete-time systems. Problems of
sample-rate selection, quantization effects, frequency warping, computational time-
delay etc. that are particular to digital control systems have been addressed in
Tzafestas [59]. The other problems in the implementation of digital controllers due to
finite speed memory limitations, acquisition and processing time-delay are summed

up in Hanselmann [60].

Design of digital controllers employing the technique of frequency response

matching has been of interest of several investigators. Rattan et al. [61] has exhibited
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a design technique in which frequency response of the closed-loop system was
matched with that of a reference model. The method required the evaluation of
complex integrals and the final design and stability of the system were sensitive to the
chosen frequency band [62]. Shieh et al. [63] has presented a method in which the
discrete open-loop frequency response was matched at a number of important
frequency points known as the dominant data set. The controller transfer function
coefficients were obtained as a solution of a set of non-linear equations based on the
dominant data set. In the method of Shi and Gibbard [63] a discrete transfer function
was selected as the reference model from which an equivalent open-loop transfer
function was obtained. The controller parameters were obtained such that the
frequency response of the discrete open-loop system matches that of the discrete
open-loop reference model. A constrained minimization technique involving a
simplex algorithm was employed to restrict the poles and zeros of the controllers to

desirable regions in the unit circle disc.

Janiszowski [64] proposed controller algorithms for minimizing a quadratic
performance index by appropriate weighting of controller outputs and errors. Zafiriou
and Morari [65] provided a review of several digital control algorithms. A rule based
algorithm has been suggested for the design of controllers which is applicable for
large sampling times and the resultant system is free from inter sample ripples. A
design method has been proposed by Houpis [66] where a sampled-data system is
approximated by a pseudo-continuous-time (PCT) control system. This approach is a
valuable technique when the sampling time is small. Whitbeck and Hofmann [67]
have detailed the analogies between system formulations in the s and w* domains. It is
established that direct digital control (DDC) law synthesis in the w'domain is a viable
and practical alternative to design by emulation of a continuous system. A
comprehensive and computationally simple D.DC design technique has been given by
Knowles [68]. A digital controller design method based on series expansion of the
pulse transfer functi;)n has been proposed by Inooka et al. [69]. Inooka has extended
his series expansion method for the design of double loop systems [70]. This method
leads to a controller of higher order. Another technique based on the minimization of
output error has been proposed by Porat and Friedlander |[71]. This leads to a non-
linear problem and the calculation of the parameters involves non-linear

computational techniques. This drawback has been removed by Obinata et al. [72] by
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minimizing an equation error of the closed-loop system. Forsythe [73, 74] has
proposed a simple design method based on Taylor series expansion technique. Design
techniques for exact and approximate model matching have been proposed in Kucera
et al. [75] and Pal {76]).among many others for continuous-time systems.

In the recent literature on delta operator modelling and control, Young et al.
[12], have promoted the concepts of true digital control (TDC), which rejects the idea
that a digital control system should be initially designed in continuous-time terms.
Rather it was suggested that the designer should consider the design from a digital-
sample data standpoint, even when rapidly sampled, near continuous time operation is
required. The design of simple but powerful digital controllers for rapidly sampled
system that can function in a near continuous-time fashion is one particular aspect of
the general TDC approach which can be achieved using delta operator modelling of
discrete-time systems. The explicit methods for proportional plus integral control of
the delta operator systems are the outcome of such a strategy. Based on delta
representation, Collins et al. [77] have derived a set of discrete-time H,, design
equations. Erwin et al. (18], [19] have addressed the H2 and mixed H2/ Hoo controller
synthesis problems, while Katab etal. [78], have worked on robust stability.
Suchomski [23] designed robust PI & PID controller using delta operator. In the area
of generalized predictive control, the works of Lauritsen et al. [15] are worth
mentioning. Works on adaptive control of delta operator systems are also reported by
Masaru et al. [17]. Tadjine et al. [20] and Linbo et al. [29] have reformulated
LQG/LTR control design by using delta operator. The problems of robust stability for
linear time varying uncertain systems were investigated by Alexander et. al. [79] and
Kai-yu Wu [26]. Hui-Guang Li et al. [24] has derived Robot based optimal control
law. In this direction the work of Bengt Lennartson [25] on low order sampled data
H.,, control using delta operator and LMIs is worth mentioning. Wang Qing et al. [27]
have described the delta operator based system with external disturbances. They have
discussed the robust stabilization problem and H.. control problem based on the
conception of quadratic stability and quadratic stabilization by applying linear matrix
inequality method to design robust stabilizers, and robust H... controllers. Qiu Jiqing
et al. [28] investigated the problem of state feedback control for a class of time-delay
systems with linear factional uncertainties using delta operator. Linbo Xie et al. [29]

have addressed the stochastic control problem of networked control systems. They
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designed networked control system for state feedback and output feedback control

laws in delta operator by using a dynamic programming approach.

Modern control system design techniques like Linear Quadratic Gaussian
(LQG) synthesis and H,, robust optimal control law normally result in higher order
controllers that are difficult to use for simulation, analysis and controller synthesis and
the complexity of such controllers makes practical implementation very difficult as
well as uneconomical specially for industrial process control. On the other hand, need
also exists for a design method to provide simple low order implementable controllers

that can adequately control plants or processes regardless of their complexity or order.

Design techniques for exact and approximate model matching have been
proposed in Kucera et al. [75] and Pal [76] among many others for continuous-time
and discrete time systems. A unified controller design method in the complex delta
domain is proposed by Sarkar et al [\13-14] which is a sub-class of Pade’
approximation technique, where the concebt of time moments is developed in the
delta domain namely - Delta Time Moments taking successive derivative of the

function and evaluating their values about zero.

In the present work, classical control design methods in the complex delta
domain using the’concept of model matching in the Truxal framework is attempted.
These controller design techniques involve designing a controller to compensate a
given plant in the complex delta domain, so that the controlled system follows the
reference model. The reference model structure, which satisfies the classical time,
frequency and complex domain specifications in the complex delta domain, is
developed. Discrete-time modelling of the control systems in complex delta domain
and development of low order controller based on performance specifications are the
main objective of the work undertaken. Two methods are developed to design
controllers in the frequency domain i.e. Optimal Generalised Delta Time Moments
(OGDTMs) and Optimal frequency fitting (OFF). These methods are applied to
design rational, discrete-time controller for single-input, single-output (SISO), multi-

input, multi-output (MIMO) systems and system with time delay.
1.4.3 Genetic algorithms:

Now a days genetic algorithms (GA) [80],[81] have been in wide use in many

applications in systems and control studies to produce a global optimal
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solution. GA accommodates all facets of soft computing, namely, uncertainty,
imperfection, non-linearity and robustness. It can handle all search spaces, including
non-smooth, multimodal and discontinuous spaces. GA works with a coding of the
parameters set with finite length string of an optimisation problem. The traditional
practice is to use binary bit strings, but it can also take real or integer string. It
searches from a population of strings (chromosomes) made up of sub strings (encoded
elements of parameter set). It uses the objective or fitness function to achieve the
desired solution. It typically employs three operations, namely selection,
recombination and mutation. Each of this operation is applied to the population once

per generation, and several generations are required to achieve satisfactory results.

There have been a good number of applications of GA reported in control
system design and implementation in recent time. Versak et al. [82] have used GA for
auto tuning of inverted pendulum systems and experimentally verified the result
against given robustness margin and reliability. In the work of Porter et.al {83],[84],
an unconstrained digital PID controller was taken up to design a model following
flight control system for F-16 aircraft. Jones et al. {85] have proposed GA as a means
of auto tuning PID controller. The technique involves firstly using online data and the
genetic algorithms to identify a model of the process. Then the identified model, the
genetic algorithm and simulation methods are used to offline tune the PID controller
so as to minimize a time domain based cost function. Genetic algorithms for Hy/He.
optimum PID control have been proposed by Chen et al. [86] for robust performance
design for systems under parameter perturbation and uncertain disturbance. Jones et
al. [87] have employed on-line frequency domain identification scheme for auto
tuning of PID controller to provide prescribed gain and phase margin. While Kundu et
al. [88] have used GA for optimal feedback controller design. The application of
genetic_algorithms for gain scheduling controls has been reported by Gray et al. [89]
in which GA is used to optimised the activation point of the individual controllers. An
exhaustive search to establish the optimum number controller coupled with
optimization of the corresponding activation point by GA shows the relationship
between controller performance and complexity. Application of GA for controller
design in power system has been reported by Reformat et al. {90] in which a new
method of designing control system which relies on a combination of advanced

system simulator and genetic computations. The combination of electromagnetic
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transients program and genetic algorithms resulted in a tool for optimal control design
in the area of power system. Output feed back controller design is a difficult area
when the system models are in transfer matrix form. Badran et al. [91] has proposed
an optimal output feed back method using GA. Cao et al. [92] have used GA for
optimisation of control parameter using a stochastic approach. In the latest works on
controllers based on GA, Nasri et al. [93] has also addressed on application of PID
control for brushless DC motor. Design of fractional order controller is a relatively
challenging area in system theory with emerging application areas in nano technology
and micro electromechanical systems. GA applications have also been reported in
fractional PID controller design by Arman Kiani et al. [94]. Optimization of
decentralized PI/PID controller based on genetic algorithm has been reported Li et al.
[95]. Mohsan Sayed has used GA in designing Optimal PID Controller with genetic

algorithms in view of controller location in the plant [96].

1.4.4 Biomedical signal processing:

In the literature on signal processing, Markku et al. [31],[33] has demonstrated
that delta operator has superior roundoff noise performance leads to significantly
lower implementation complexity and up to 50% savings in hardware. Tenali Harju et
al. [32] has shown that the digital filters that use the delta operator are less sensitive to
filter coefficient quantization than filters using the shift operator when the poles and
zeroes lie near the point z = + | and through other fixed-point neighbours of the
floating point coefficients besides the one obtained by direct rounding is very likely to
yield better sets of coefficients in terms of magnitude response characteristics. Juha
Kauraniemi et al. [37-38] have worked on efficient direct form structures and shown
that excellent roundoff noise performance is achieved at the cost of only a minor
additional implementation complexity when compared with the corresponding delay
realization. They have also performed detailed analysis of the computationally
efficient transposed direct form-II delta structure focusing on the roundoff noise
minimization in fixed-point implementations. Bauer et al. [97] addressed the zero
input behaviour of digital filters in delta operator representation. Qiang Li [98] has
studied the properties of information matrices of the delta operator-based algorithms
for adaptive signal processing. Hong Shim [99] fxas studied the design of Kalman
filter with the singularly perturbation technique using the delta operator approach.

Ngai Wong et al. [100] addressed the problem of optimization of the free parameter of

11
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the delta operator, with scaling of the structure to prevent arithmetic overflow with
modified direct form-II second-order section in which the As and filter coefficients at
different branches are separately scaled to achieve improved roundoff noise gain
minimization. The work of Mehmet Hendekli et al. [101] on a multi channel form of
the two-dimensional delta domain lattice filter is worth mentioning. Newman and
Holmes [102] have presented a practical overview describing the use of the delta
operator for IIR digital filters, and shown how the operator can be used in power
electronic inverter applications to achieve substantial performance benefit compared
to equivalent shift-based implementations. The design methods of Hao Liu [103]
employ LMI approach for guaranteed cost filtering of delta operator polytype
uncertain linear systems with time delay.

Tompkin [104] and Rangayan [105] have extensively studied the biomedical
signal processing and illustrated results of different type digital filters used for
biomedical signal processing. Mc Sharry et al. [106] have presented a dynamical
model based on three coupled ordinary differential equations which is capable of
generating realistic synthetic electrocardiogram (ECG) signals specifying the mean
and standard deviation of the heart rate and the morphology of the PQRST cycle to
access biomedical signal processing techniques which are used to compute clinical
statistics from the ECG. Ramli et al. [107] have investigated the use of signal analysis
technique to extract the important features from the 12 lead ECG signal using the
cross-correlation analysis technique. Ju-Won Lee et al. [108] have designed optimal
adaptive filter with a dynamic structure which can adjust the filter coefficient and
produce a suitable order in different environments for ECG signals. Sameni et al.
[109] proposed a nonlinear Bayesian filtering framework for the filtering of single
channel noisy ECG recordings. Garcés Correa et al. [110] have proposed a cascade of
three adaptive filters based on a [east mean squares (LMS) algorithm, the first one
eliminates line interference, the second adaptive filter removes the ECG artifacts and
the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR)
filter, which adjusts its coefficients to produce an output similar to the artifacts

present in the signals obtained.

From the above literature survey it is established that modelling, control and
biomedical signal processing of dynamical systems in the complex deita domain are

an important area in the system theory where a lot of scope is there for investigation.

12
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1.5  Modelling of discrete-time systems using delta operator

In this section we discuss some aspects of linear discrete-time modelling using
delta operator and its transform domain complex variable y. We look into how
discrete-time models can be derived by sampling of continuous-time systems and how
input-output descriptions relate to state-space models. We consider both the discrete-
time domain and transformed domain representations using delta operator and
complex domain gamma transform. In conventional shift-operator representations of
discrete-time systems, it is not possible to develop dynamic systems models which
can support very high sampling rates. Further, such representations do not converge to
its continuous-time counterparts. Therefore, in discrete-time representations it is not
possible to implement a continuous-time system by making sampling period near to
zero or sampling frequency very high. To avoid such difficulties, delta operator can
be used for modelling signals and systems. These delta operator representations show
a close agreement to continuous-time representations, and as a matter of fact, they

meet to the expected continuous-time equivalents as the sampling period tend to zero.

input u(t) - output y(t)

Plant

Digital
controller

Figure 1.1: Digital control of a continuous time plant

1.6  Sampled-data systems

The use of digital computers in implementation of control systems has become
very widespread. The discrete nature of digital computers makes it convenient to use
discrete-time models of the controlled systems whereas the process itself evolves in
continuous time. Let us consider a sampled data system with input u(k4), where 4 is
the sampling period and % is an indexing discrete-time parameter, which is processed
by a digital to analog (ID/A) converter to give the continuous-time input u(t). Usually,
the D/A-converter is designed in such a way, that the value of u(t) is held constant

between samples, known as zero-order hold (ZOH). The continuous-time output y(¢)

13



Chapter 1: Introduction

is then sampled with a period A using an analog to digital (A/D) converter to give the
sampled output y(k4). A typical scheme is shown in Figure 1.1. In practice one must
prefilter the continuous-time output to avoid aliasing problems. The prefilter should
be of low-pass nature with a break frequency around the Nyquist-frequency m/A . In

the following we will neglect the effect of this pre-filter.

The notation ‘¢’ used in this thesis as the independent time-variable in both
continuous-time and in discrete-time. In discrete-time, the independent variable ‘t’
can only assume values, that are multiples of the sampling period 4, i.e. t = k4
Wherever required specifically, the notation ¢t = k4 is also used for discrete-time. The
distinction should be clear from the context. The class of system under consideration
in this thesis is limited to linear finite-dimensional time-invariant systems. When
working with digital control systems it is convenient to find an equivalent discrete-
time description of the composite system consisting of D/A-converter, continuous-
time system and A/D converter, i.e. to find a direct relation between the sampled
signals u(k4) and y(kA4) as illustrated in Figure 1.1. In this thesis, we consider the case

of deterministic systems only.
1.6.1 Sampling of continuous-time systems

Let us consider a linear continuous time SISO model represented by state and
output equations
dx(t)

dt
y() =C_x(t)+ D u(t)

=A x(t)+B, u() (1.1)

Where xe R" is the state, ue R™ is the control input, ye R’ is the output variable
and A, B,, C_,D_ are normal notations of state space representation. An equivalent

complex s-domain transfer matrix representation is of the form
G.(s)=C.(sI-A)"'B,+D, (1.2)
For the sake of clarity, it is suitable to introduce the realization set S, noted as
def
S, ={(A.,B,,C..D): G(s)=C.(sI-A)"B,+D,} (1.3)

Where, G.(s) is the transfer function matrix. Then,
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Y(s) = {C.(sSI-A)" B, +D, }U(s)

¢ det(sI-A.)

BC+DL} U(s) 14

where I is the identity matrix of appropriate dimension and ad; () is the
adjoint matrix. Y(s) and U(s) are the Laplace transforms of the input and output signal
vectors and

D.(s) = det(sI-A) (1.5)
N.(s) = C,adi(sI-A)B, (1.6)

k- order

where in general N.(s) is numerator polynomial matrix and D.(s) is a n'
denominator polynomial. For strictly proper rational systems, the degree of
denominator polynomial and numerator polynomial are

deg D.(s) =n
deg N(s) =msn-1

We now consider sampling with a zero-order hold, i.e. the input signal is held
constant between the sampling instants. This is commonly done in digital control and
is easily implemented by using a D/A converter, which latches the signal between the
sampling instants. Given a state value x(kA) at some sampling time t = kA, where k is
an integer, the states can be computed for t > kA from the exact solution of eqn (1.1)

given as [10],

x(t) = ™ x(ka) + [ e* M OB u(z)dr (1.7)
where e’ =1+ At +%(Act)2 + %(A‘t)3 R SOOI
and L Ae* =e™' 4,

dt

where we have assumed right continuity of the control signal. Hence, at the next

sampling instant the state is given by

(ke +D8) = e k) +| [ @0 0B, de ucka)

A

(1.8)
= e™ x(kn) + f e B u(kA)dr
from this we have a discrete-time state-space description as
gx(t) = A,x()+ B u()
! ! (1.9)

Y0 = Cx()+ Du(t)
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0 k
where A=e’t = Z(ACA)
o K

B, = ‘fe”‘m”) B dr

q

:AC-I[eA:A - 1) if A_is nonsingular (1.10)
c,=c.
D, =D,

and ¢ is a multiple of the sampling period A such that kA <t < (k+1)A [10]. The

operator g is called the forward shift operator, that is, qx(kA) = x((k+1)A). It is
interesting to observe that if the actual continuous-time signal u(?) is in fact constant
between the sampling instants then the sampling involves no approximation. In this
case, the difference equation (1.8) gives the exact value of the state and the output at
the sampling instants.

We now investigate more closely the limiting properties of the discrete-time
shift operator state-space model in eqn.(1.8). As the sampling period tends to zero, the

limit values of the system matrices follow from eqn.(1.9)

%%qul (1.1
%i’ﬁ’ Bq=0 (1.12)

The above results show that the shift-operator model is unstable at very high
sampling frequencies. At very high sampling frequencies the sample periods are very
small, and therefore there is no appreciable change in the successive samples of state,
that is x(z + 4) ~x(t). The effect of the input from one sample to the next will also
cease at fast sampling rate. In the complex z-domain, an equivalent z transfer matrix

realization set are

def
S,={(4,,B,,C,,D,): G,(2)=C,(zI-A,)"B,+D,} (1.13)

where Gg(z) is the z- transfer function matrix. Then,

Y(z)= {Cy (@ ~A4,)" B,+D,}U(z)

adj(zI-A)
det(zI-A))

(1.14)

Y(z)= {Cq B, + Dq} U(2)
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where I is the unity matrix of appropriate dimension, adj(-) is the adjoint matrix and

Y(z) and U(z) are the z-transforms of input and output signal vectors. Also,

Dq(z) = det(zI-A,) (1.15)

No(z) = Cqadj(zI—-Aq) By (1.16)

where in general Ny(z) is a polynomial matrix and Dy(z) is an n™ order polynomial.
For proper rational systems, the degree of denominator polynomial and numerator

polynomial are
deg Dy(z) = n
deg Ny(z) =m<n-1

In the limit of high sampling rate, the transfer matrix representation in the z-

domain follow from eqns.(1.11) and (1.12) :
limG (z)=0 (1.17)
A—0
It is easy to see that the transfer matrix representation in the z-domain is
uninformative at very high sampling rate.
1.7 Delta operator parameterization

We discuss here an alternative formulation of discrete-time systems, the so
called delta operator parameterization. One of the most important work on such
parameterization is due to Middleton and Goodwin [10], where the following points

of motivation for this alternative discrete-time operator are given:

e It highlights the similarities between discrete-time and continuous-time
systems. This allows physical continuous-time insights in the discrete-time

case.

e [t allows a unified system theory in which discrete-time and continuous-time

results can be derived simultaneously.

¢ Most continuous-time results can be obtained as a limiting case (when the

sampling period tends to zero) of the discrete-time results.
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e It is possible to use short sampling periods without incurring numerical
difficulties such as a high sensitivity to round-off errors in coefficient

representation.

e The coefficients of the discrete-time transfer function are similar to the
continuous-time and it becomes easier to tune controller parameters for

improved dynamic performance.

* The frequency and transient responses of the continuous-time system can be

accurately estimated from the discretized system.
e It offers substantial numerical advantages at high sampling rates.
1.7.1 Definition

The delta operator is defined in the time-domain as

-1
=9 1.18
A (1.18)

where A is the sampling period and q is the forward shift operator. Operating & on a

differentialabie signal x(z) gives

x(t+A)—x(1)

Ox(t) = 1.19
(0 A (1.19)
In the limiting case we can see that
: d
lim 0 x(¢t) = —x(1) (1.20)
A0 dt

which demonstrates the close relationship between the discrete-time delta operator

and the continuous-time differential operator 4 at high sampling rates. It is to be

dt
noted that equation (1.18) is a simple linear transformation and thus system modeling
using delta operator parameterization offers exactly the same flexibility as g-operator
parameterization, i.e. the class of describable systems is not changed. Similar relation

exists in the complex domain as well. The delta transform operator y is defined as
z-1
== 1.21
r== ( ’ )

where z is the complex domain transform operator for discrete-time system, like the

Laplace transform operator for continuous-time system. Since eqn.(1.21) is a linear
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transform relation which and scales the complex z-domain by (1) and shifts the
A

1

origin by (-~ ) to the complex delta domain in y-plane, therefore all the linear system
A

properties and representations of the complex z-domain can be transformed to the

delta domain with equal flexibility as offered by the z-domain.
1.7.2 State space representation

Using the delta operator, the discrete-time representation of the shift operator

(q) model is given by

ox(t) = Ax(t) + Byu(t)

y(t) =Cx(t)+ Dyu(r) (1.22)
x(t+A)—x(2) . A%0
where () = A
M : A=0
dt
A —1
A, =—1
A
B
B{5 =1
A

The connection between the delta operator (3) state-space representation to.

that of the shift operator (q) follows directly by inspection

Ag=1+ AA, (1.23)
By= AB, (1.24)
Cs=C;s (1.25)
D=D; (1.26)

The above equations (1.24 -1.26) provide a direct connection between the
state-space matrices of the g-operator and the delta operator. Although this is
mathematically correct, it is not advisable to determine the delta operator realization
in this way as the poor numerical properties of the q-operator representation,
especially at fast sampling rates, is then carried over to the delta operator. A better

(

procedure is to directly derive the delta operator matrices as suggested in [10].

A»= QAC

19



Chapter 1: Introduction

Bs= QB
Cs=Cc (1.27)
Ds=D,

where Ac and Bc are continuous-time matrices and

% fe""df

= J+—=—4+—=—+ ... (1.28)

Q

]

The &-operator representations result in more reasonable limiting properties of

the discrete-time. We have from eqns.(1.27) and (1.28)

Lim A; = A, (1.29)
A0
Lim B; =B, (1.30)
A—0

The results above show that the continuous-time state-space matrices are

recovered as a limit case at high sampling rate.
1.7.3 Transfer function representation

For continuous-time systems we have the complex domain Laplace transform
variable s, which is closely related to the derivative operator d/dt and for discrete time
systems, the complex domain transform variable z is associated with the forward shift
operator g. Similarly the complex variable y is associated with the forward difference
operator 0 by the relation called delta transformation. The delta transform of the

discrete signal f(¢) in the complex d-domain is defined by [10]
Fs(n) =S5 fOE®.—1) (1.31)
where the generalized integration operator S is defined as:
fi2f(z)dr L A=0
SPf(dr =< it

A D fkA) : A0

=it
a
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e’ : A=0
and E(y~t)= - (1.32)
(I+Ap)* :A%£0
In the continuous time i.e. when 4 = 0, the delta transform defined above
converges to the Laplace transform (with s replaced by y). In discrete time, the delta

transform defined above is related to z-transform as follows:
Fs(P) = AF(2)|,.100 =AY fAY A+ AP (1.33)
k=0

where k is the indexing discrete-time parameter and ¢ = kA are discrete time instants

for k e [0,%].

Therefore, for zero initial conditions, operating on a function by delta operator
is equivalent to multiplying the function's transform by y. By operating on delta
operator state space model in eqn. (1.22), we obtain the §-transfer matrix

representation as :
Gs(7)=C,(y1 - A,)" B, (1.34)

where G;(y) is the transfer function matrix in the delta domain. If Y(y) and U(y) are

the delta transform of input and output signal vectors,

Y(p) = {C, (-4, By+D,}U)
- adj(yI - A,)
Y(» = {C, Gt - AJ)Ba+DJ}U<n (1.35)

where I is the unity matrix of appropriate’dimension and adj (-) is the adjoint matrix

from where we identify
D;(y) = det(yI-Ay) (1.36)
Ny;(p) = Csadj(yl -A;) B, (1.37)

where in general Ny(y) is a polynomial matrix and Dy(y) is an n" order polynomial. For
proper rational systems, the degree of denominator polynomial and numerator

polynomial matrix are
deg Ds(y) =n

deg Ns(y) =m<n-1
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When the sampling period decreases and approaches near to zero, the resulting
complex domain delta transfer matrix converges to the corresponding continuous-time

transfer matrix model. This follow from eqns. (1.29) and (1.30)

lim G;(7) = G, (s) (1.38)

This emphasizes the relationship between continuous-time descriptions and
delta operator descriptions. For small sampling intervals, the continuous-time
parameters can be recovered from the discrete-time O-description. Similar
relationships between the transfer function polynomial coefficients parameters in

continuous and discrete-time do not exist for description in the z- domain.
1.7.4 Poles and zeros of sampled systems

We consider here the pole and zero locations of a sampled transfer function.

Considering the continuous-time system

N TTLG—2)
D,(s) H’":I(s -p)

G, (s) (1.39)
where z, and p, denote the zeros and poles of the transfer function, respectively, and
n > m. The input and output signals of the system are now sampled directly with a

zero order hold to give both delta domain and z-domain descriptions.
1.7.5 Pole locations

In the z-domain the poles of the sampled transfer function are obtained by

mapping of the continuous-time poles [10]

— pPb P —
pq,l_e , 1_1’.....:...”1

It can be seen that at fast sampling,

!\I_IH) pq,’ = 1’ i = 1’ ......... ]

That is,- at fast sampling, the poles of the z-domain representation cluster
around the point (1, 0) in the complex plane. It seems reasonable, that a' much better
numerical precision could be obtained by shifting the origin from (1, 0) to (0, 0) in the
complex plane. This is exactly what is achieved by using the variable y. In delta

domain, the poles become [10]
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p‘;" — , 1= 1’ ......... ,n (140)

and the continuous-time poles are recovered in the limitas A — 0
hm — , l = 1’ ......... Jh
A—0 pa" p'

1.7.6 Zero locations

The zero locations of the sampled system, in general can not be determined by
a simple mapping of the continuous-time zeros.[10] In addition, some extra zeros are
introduced by the sampling process if the relative degree of the continuous time
transfer function is greater than 1. This follows from the fact that the orders of Ny(y)
and Ny(z), in general, are n-1, while the order of N¢(s) is m. It is possible to divide the
zeros of the sampled system into two categories; zeros that originate from the
continuous-time zeros and that introduced by the sampling process. The later category

is referred to as sampling zeros. In the z-domain we may write, as A — 0
Ny(z) = K(z - 1)" Ny, n-m(z)

where Ng.n-m(z) is a polynomial of degree n - m - 1. The sampling zeros can be found
as the zeros of Ng, n-m(z). Note that these zeros depend only on the relative degree of
the continuous-time transfer function. As shown in {111), the zeros of Ngnr-m(z) are
located at fixed locations in the left half plane. At least one zero of Ny, n-m will be non-
minimum phase (outside the unit circle) if the relative degree of the continuous-time
system is greater than 2, i.e. n - m > 2. Hence, with sufficiently fast sampling, the
sampled transfer function will be non-minimum phase if n - m > 2 even if the
continuous-time system is minimum-phase. This is a highly undesirable discrepancy
between the continuous-time and the sampled system descriptions. The remaining m
zeros, which can be thought of as mapped continuous-time zeros, will tend to | as
e“® . The result in the delta domain can be obtained by transforming the q-domain

results. It can be shown that if

n-l
Nsn=K[J(r-z) (1.41)
=1
then lim 25,72, HES IERRIRy ,m
A—=0 '

23



Chapter 1: Introduction

n-l
and lim [T~ 25,) = Ny n(?) (1.42)

r=m+1

where Nsn-m(y) = Ngn-m(1 + Ay) is a polynomial of degree (n - m - 1). Again the
limiting sampling zeros are found as the zeros of a fixed polynomial Nsn-m (y) and at

least one zero gives non-minimum-phase if n - m > 2. Moreover

limZ‘s,:—oo, lzm:], ......... ,n_l
A0 ’

The mapped continuous-time zeros are recovered from the discrete-time
description. The sampling zeros are associated with highest order terms of the
numerator polynomial Ny(y). As mentioned, this opens a possibility of discarding
these higher order terms in control system then the design will not fail because of the
presence of non-minimum phase zeros introduced by the sampling process [10]. A
more detailed analysis of this property of delta domain parameterization can be found
in [112].

1.8  Mapping between s-domain and delta domain

Analysis and design of continuous-time control system relies upon the pole-
zero configurations in the s-plane. Similarly, the locations of the poles and zeros of
discrete delta transfer function determine the response of the discrete-time system at
the sampling instants. In parallel with the mapping of the s-plane into the z-plane, we
highlight the mapping of the s-plane into the y-plane (delta domain) by using the delta

transformation.

We divide the s-plane (s = 8 + jw) into an infinite number of parallel periodic

strips. The primary strip extends from @ = daz) to w= +_a2)" where @, =—2A£ is the

radian sampling frequency. The complementary strips extend from w:% to

»=— 30, , =— 39, ¢ o= 239, gor negative frequencies and from w= 2 1o
2 2 2 2
w= 2;—)- , 0= 3% to w= 5% for positive frequencies etc.

The primary strip in the left half of the analog s-plane is mapped into the

sampling disc in the p-plane by the appropriate transformation. The poles in the s-
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plane are mapped into the y-plane by eqn.(1.40) above. Since, for n = -2, -1, 1, 2, all
the complementary strips in the left half of the s-plane are also mapped into the same
sampling circle in the y-plane. All points in the left half of the s-plane are mapped into
the interior of the sampling circle in the y-plane. All points along the imaginary axis
of the s-plane are mapped onto the sampling circle in the y-plane. All points in the
right-half of the s-plane are mapped into the extérior of the sampling circle in the y-
plane. In the fast sampling limit, the sampling circle opens to envelop the entire left of

the s-plane.[113]

y-plane 1‘ Im(y) ' z-plane 1‘ Im(z) s-plane ?lm(s)
1/A
< 105 < 0 L, o« 0 —+
(-1/A.0) Re(y) Re(z) Re(s)
' v '

Figure 1.2: Hurwitz stability region for the poles in the complex z and y-plane

From eqn. (1.21) we can relate complex s, z and y as

- ZT‘I (1.43)
y :i‘ieflzﬁ (1.45)
y = e(‘A)A“ (1.46)

Considering eqn.(1.46), it may be noted that mapping between the s and y-
planes is irrespective of the type of hold circuit used for the discrete-time system. This
is so because the poles of a system describe the natural response of a system when the
input forcing signal is zero . Obviously, the input hold circuit cannot affect the natural
response of the system and therefore has no effect on the poles of the system. Such a

simple situation does not hold for the zeros of a system which describe non-zero input
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forcing signals which cause zero output from the system. Obviously these zeros are
intimately related to the type of input hold circuit used for the discrete-time system,
and hence, there will exist no simple mapping from continuous-time zeros to discrete-

time as is the case continuous-time poles. Following are the mapping details:

e For s=0=y =0 and s —o along the real axis, 7_)‘_' along the real axis. This
A

mapping is shown in Figure 1.3. Therefore, pé)les in the y-plane near the real axis

between the origin and the point 7_,_‘_1 coincide with a well damped system
A

response, with the response becoming quicker as the poles move to the left,
analogous to the continuous-time case. Furthermore, this mapping highlights the
fact that there is a finite limit as to how fast a sampled data system can respond;

that is, it is obvious that it can respond no quicker than the sampling interval A.

s-plane ? Im(s) y-plane ? Im(y)
et -]
A
- 0 R 3 ¢ 0 .
Re(s) (-1/A. 0) Re(y)

v VL

Figure 1.3: Mapping of negative real axis of the s-plane to the y-plane

e Assuming a continuous time pole s = ¢ + jw, and substituting this in eqn.(1.46), we

have;

Coriels - e (coswA + Jsin wA)

I+Ay=e
Now suppose that y is a complex number given by y=x +jy

coswA = e”™ (1 + Ax)
sinwA = e™(Ay)

in this case

1 1
and |
(X AJ Y ey
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Therefore, the straight line locus s=-o0+ jo (where ¢ = Ew, and

w = w,~/1~¢&* ) with 6 constant in the s-domain maps to a circle with centre at *X'and

radius _! _in the y-plane. This is shown in Figure 1.4. This is also called the constant
Ae”?

damping factor, or the constant settling time loci in the s-plane and the corresponding
contour in the y-plane. This highlights the interesting result that poles near the real
axis in the y-plane can represent a very poorly damped system response if the poles

are to the left of -1/A.

A A
s-plane 4 Im(s) Y-plane t imm

A

Re(y)

]
Q
)
[¢]
)
v
A
G-

v v

Figure 1.4: Mapping the loci of poles with constant real part in the s-plane to
the y-plane

o Furthermore, it is interesting to note how the loci of poles with a fixed damping
ratio in the s-plane maps to the y-plane. The locus of poles with a constant

damping ratio () is given by the equation:

=-ocot+jm (1.47)
where, £ = cos ¢. Poles defined by this equation are mapped to the poles in the y-
plane defined by

e—chos¢eja)A -1

y=t—— (1.48)

This is an exponentially decaying spiral as shown in Figure 1.5.

o The contours of constant damped natural frequency in the analog s-plane map into
radial lines emanating at an angle oA from -1/A in the y-plane as shown in Figure
1.6. Finally, by substituting o = 0 into eqn.(1.46) the s-plane stability boundary is

seen to map to the circle shown in Figure 1.2.
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splane | Im(s) y-plane P ime)

0 0

L

R N\ ] Rew

v

4;

v v

Figure 1.5: Mapping the loci of poles with constant damping ratio in the s-plane
and the loci they map into the y-plane

splane % Im(s) v-plane 4 Im(y)
<— > |A
j 0 R ) (O]} A O .
Re(s) Re(y)
< > -mA
v

Figure 1.6: Mapping the loci of poles with constant damped natural frequency in the
s-plane and the loci they map into the y-plane

1.9  Stability region in the y-plane

The stability region of the delta operator is obtained by a mapping of the
stability region of the g-operator. From Figure 1.2 it is clear that the stability region of
the 8-operator is enclosed by a circle with radius 1/A and centre (- 1/A, 0). It may be
noted that the stability regions in the §-domain i.e., in complex y- plane vary with the
sampling period, as A — 0 the stability region converges to the open left-half of y-
plane, which coincides with the stability region for the continuous-time system in the
s-plane. Mutual relationship in between complex s, z and Y domain is shown in figure

1.7.
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x(t)

te®*

Fl)
Delta Transform

£11
Laplace transform

=kA
X(s) k=1.2,... Xs(v)
ol
z-transform
ozt
z=¢% Y 4
Xq(2)

Figure 1.7: Mutual relationships between time and complex s, z and delta domain

1.10 Tables of Delta Transform

In terms of the complex variable y, we define Discrete delta Transform pair as

TU M) 2Fy(r) =83 (14 A7) £ (kD) (1.49)
T F ()] = £ (k) ==+ 7)) dy (1.50)
27

and discrete delta transform is related to the z-transform as

Fs(7) = AF (2),2144, (1.51)
where F(2)=Z[f(kb)].
conversely F(2)= —l—FJ(y) ea (1.52)

Equations (1.51) and (1.52) allow us to derive a table of delta transforms from
the corresponding z-transforms as shown in Appendix-1.1 and its properties in
Appendix 1.2. As we have seen earlier and from Appendix 1.1 that §-transform

converge to the associated Laplace transform as A—0 that is,

lim £ (y) = F(5).., (1.53)
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1.11 Optimization using Genetic Algorithms.

Genetic Algorithms are general search techniques based on the mechanisms of
natural selection and natural genetics. This class of methods is based on the notion of
survival of the fittest. In GA search points are represented by genetic strings. The
search process starts at a number of points-called populations of points. The
acceptability of a search point is judged by the value of its fitness function, Genetic
operators called reproduction, crossover and mutation are applied on these genetic
strings to generate new search points in order to find the optimum solution. Despite
the apparent simplicity of the procedure, GA exhibit substantial computational power
in the search of arbitrary spaces. Numerous applications have illustrated the robust

search ability of GA.

In the present work, the author has applied the Genetic algorithms to find the

optimum frequency points for controller design for different methods.
1.11.1 Biological Background
Chromosome:

All living organisms consist of cells. In each cell there is the same set of
chromosomes which consists of genes and DNA and serves as a model for the whole
organism. Each gene encodes a particular protein and each gene encodes a trait, for
example colour of eyes. Possible settings for a trait (e.g. blue, brown) are called
alleles. Each gene has its own position in the chromosome called locus. All the
chromosomes in a complete set of genetic material is called genome. Particular set of

genes in genome is called genotype.
Reproduction:

During reproduction, first occurs recombination (or crossover) when genes
from parents form in some way the whole new chromosome. The new created
offspring can then be mutated by which elements of DNA are a bit changed. These
changes are mainly caused by errors in copying genes from parents. The fitness of an

organism is measured by success of the organism in its life.
Search Space:

When we solve some problem, we usually look for some solution, which will

be the best among others. The space of all feasible solutions is called search space,
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each point represent one feasible solution. Each feasible solution can be "marked" by

its value or fitness for the problem.

One does not know where to look for the solution and where to start. There are
many methods, how to find some suitable solution, for example hill climbing, tabu

search, simulated annealing and genetic algorithms.
1.11.2 Historical Background of the Genetic Algorithms:

Idea of evolutionary computing was introduced in the 1960s by I. Rechenberg
in his work "Evolution strategies". His idea was then developed by other researchers.
Genetic Algorithms were invented by John Holland [80] and developed by him and
his students and colleagues. This lead to Holland's book "Adaption in Natural and
Artificial Systems" published in 1975. In 1992 John Koza has used genetic algorithm
to evolve programs to perform certain tasks. He called his method "genetic
programming " (GP). Simulating evolution for useful purposes has been proposed and
evaluated in different ways. Genetic algorithms, as practiced today, come in different

flavours: genetic algorithms; evolutionary strategies; and evolutionary programming.

An offshoot of genetic algorithms is the concept of genetic programming. GA
derive their strengths by simulating the natural search and selection process associated
with natural genetics. GA accommodate all the facets of soft computing, namely
uncertainty, imprecision, non-linearity, and robustness. GA can be used as advanced
operators which include techniques for discovering multiple solutions, combinations

of Neural, Fuzzy, and chaos theory, and multiple objective optimizations.

GA is characterized by the mechanism of natural selection and natural
Genetics. Genetic algorithms is a multiple point probabilistic search technique,
consists of three basic operations, namely reproduction, crossover and mutation. The
search is started from a randomly selected population of points. Each of the points is
represented by a genetic string called chromosome. The strength of a GA string is
measured by its ‘fitness value’. Based on the fitness values of the population strings,
two parent strings are then generated from the parent strings by using the mechanism
of crossover where one half of the first parent string is combined with the other half of
the second palrent. Mutation is then applied on the child strings by complementing the

child strings at selected bit positions, thus introducing variety in the child population.
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The algorithm consists of the following steps and corresponding flowchart of simple

GA approach is shown in Figure 1.8:

Generate a population of solution stings;
set generation count = 1;

repeat, { while the number of generation # maximum generation
setp=1;

repeat, {while p # number of population /2
repeat, { select two parent strings;
Generate two child strings using crossover and mutation;
p=ptl}

generation count = generation count + 1; }

Initial chromosomes of population are coded
representing different frequency points

Reproduction

I

Strings are copied in pair as
parent strings
Ay

l

P=P+1 Mutation Gen=Gen + |

[

Perform companison and
calculate fitness function

P > population size /2

Gen > max generation

Figure 1 8: Flowchart of simple Genetic algorithm approach to find optimal
frequency point
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1.11.3 Principles of Genetic Algorithms:

Unlike many methods, GA use probabilistic transition rules to guide their
search. The method is not a simple random search or is not a decision making tool
depending on the simple probability act just like a toss of a coin. GA use random
choice as a tool to guide a search toward region of the search space with likely

improvement.

To demonstrate the working principle of GA, the following maximization

problem is considered [81], where x is a vector with L lower and U upper bound.
Maximaze f(x), x,(") <x <xY, i=1, 2. N

Although a maximization problem is considered here, a minimization problem
can also be handled using GA. The working of GA is completed by performing the

following tasks:
Coding:

To implement GA in the solution of the above maximization problem, variable
x,’s are first coded in some string structures. Variable x,’s are coded by binary
representation having 0’s and 1°s. The length of the coded string is usually determined
according to the desired solution accuracy. For example, if four bits are used to code
each variable in a two variable function optimization problem, the strings (0000,
0000) and (1111, 1111) would represent the points (x“,x{”) and (xV,x{"’),
respectively, because the substring (0000) and (1111) have the minimum and
maximum decoded values. Any other eight bit string can be found to represent a point
in the search space according to a fixed mapping rule. Usually, the following linear

mapping rule is used [81]

xW) ()
x, = x") + =—"— decoded value (S,)
27 -1

In the above equation, the variable x, is coded in a substring S, of length I,. The

decoded value of a binary substring S, is calculated as
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Where Se (0, 1) and has a decoded value edual (S Si2.........82 Sy Sp). For
example, a four bit string (0111) has decoded value equal to ((1) 2° + (1) 2" +(1) 22
+0) 23) or 7. It is worthwhile to mention here that with four bits to code each
variable, there are only 2* or 16 distinct substrings possible, because each bit position
can take a value either 0 or 1. The accuracy that can be obtained with a four bit coding
is only approximately 1/16™ of the search space.’But as the string length is increased

by one, the obtainable accuracy increases exponentially to 1/32" of the search space.
Initialization:

Referring to the maximization problem a set of binary strings representing the
variable x, are generated at random to make the initial population. The string in GA

corresponds to ‘chromosome’ and bits in a string refer ‘genes’ in natural genetics.
Fitness Function:

Every member string in a population is judged by the functional value of the
fitness function. As GA follow the rule of survival of the fittest principle of nature to
make a search process therefore, the algorithms are naturally suitable for solving
maximization problems by some suitable transformation. In general, a fitness function
F(x) is first derived from the objective function and used in successive genetic

operations.
Genetic Operators:

With an initial population of individuals of various fitness values, the
operators of GA begin to generate a new and improved population from the old one.
A simple genetic algorithm consists of three operations: reproduction, crossover and
mutation. Through these operations a new population of points is evaluated. The
population is iteratively operated by the above three operators and evaluated until the
goal or termination criterion is met. One cycle of these operations and subsequent

evaluation procedure is known as a generation in GA.
Reproduction:

Reproduction is wusually the first operator applied on a population.
Reproduction selects strings according to the fitness values in a population and forms
a mating pool. Selecting strings according to their fitness values means that string

with a higher value have a higher probability of contributing one or more off-springs
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to the next generation. The /' string in the population is selected with a probability
proportional to fitness functional value F,. Since the population size is usually kept
fixed in a simple GA, the sum of the probability of each string being selected for the

mating pool must be one. Therefore, the probability for selecting the " string is

where n is the population size. There are many methods how to select the best
chromosomes, i.e. Roulette-wheel selection, Boltzman selection, Tournament

selection, Rank selection and Steady state selection etc.

Let us imagine the selection scheme is roulette-wheel with its circumference
marked for each string proportionate to the string’s fitness. The roulette-wheel is spun
n times, each time selecting an instance of the string chosen by the roulette-wheel
pointer. Since the circumference of the wheel is marked according to a string’s fitness,

L F . o
the roulette-wheel mechanism is expected to make —- copies of the i string in the
F

mating pool. The average fitness of the population is calculated as,

— n F 1 n
F=Y2 =-NF
2w Tax”

Table 1.1 shows individual fitness values of five frequency points and Figure
1.9 shows a roulette-wheel for said five individual frequency points having different
fitness values. Since the fifth individual has a higher fitness value than any other, it is
expected that the roulette-wheel selection will choose the fifth individual more than

any other individual. This roulette-wheel selection scheme can be simulated easily.

Table 1.1: Five individual fitness values

Frequency Point Fitness
1 5.0
2 10.0
3 20.0
4 25.0
5 40.0
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Roulette-Wheel

Frequency
( Paoint, 1

Frequency
Point, 5 A

Frequency
. Pont, 2

Frequency
Point, 3

Frequency
Point, 4

Figure 1.9: Roulette-Wheel marked lfor five frequency points
according to their fitness value

Using the fitness value F, of all strings, the probability of selecting a string P,
can be calculated. Therefore, the cumulative probability (P) of each string being

copied can be calculated by adding the individual orobabilities from the top of the list.

Crossover:

Crossover probability says how often will be crossover performed. If there is
no crossover, offspring is exact copy of parents. If there is a crossover, offspring is
made from parts of parents' chromosome. If crossover probability is 100%, then all
offspring is made by crossover. Crossover is made in hope that new chromosomes
will have good parts of old chromosomes and maybe the new chromosomes will be

better

In reproduction, good strings in a population are probabilistically assigned a
larger number of copies and a mating pool is formed. But no new string is formed in
the reproduction phase. In the crossover operation, new strings are created by
exchanging information among strings of the mating pool. Many crossover operators
exist in the GA literature. In most crossover operator, two strings are picked from the
mating pool randomly and some portions of thé strings are exchanged between the
strings. A single point crossover operator is performed by randomly choosing a
crossing site along the string and by exchanging all bits on the right side of the

crossing site as shown.
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000100 000|101
l = |
111[101 " 111(100

The two strings participating in the crossover operation are known as parent
strings and the resulting strings are known as children strings. It can be expected that
good substrings from parent strings can be combined to form a better child string, if
an appropriate site is chosen. Since the knowledge of an appropriate site is usually not
known beforehand, a random site is often chosen. With a random site, the children
strings produced may or may not have a combination of good substrings from parent

strings, depending on the position of crossover point.
Mutation:

Mutation probability defines how often will be parts of chromosome mutated.
If there is no mutation, offspring is taken after crossover without any change. If
mutation is performed, part of chromosome is changed. If mutation probability is
100%, whole chromosome is changed Mutation is made to prevent falling GA into
local extreme, but it should not occur very often, because then GA will in fact change

to random search.

A crossover operator is mainly responsible for the search of new strings, even
though a mutation operator is also used for this purpose. The mutation operator
changes 1 to 0 and vice versa in a bit position with a small mutation probability, pp.
Changing bit with probability p,, can be simulated by choosing a number between 0 to
1 randomly. If the random number is smaller than p,, the randomly selected bit is
altered; otherwise the bit is kept unchanged. The need for mutation is to create a point
in the neighbourhood of the current point, thereby achieving a local search around the
current solution. The mutation is also used to maintain diversity in the population. For

example, consider the following population having four eight-bit strings:
01101100
00100011
01011111

01110000
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It can be seen that all four strings have a 0 in the left-most position. If the true
optimum solution requires 1 in that position, then neither reproduction nor crossover
operator described above will be able to create 1 in that position. The inclusion of

mutation introduces some probability of turning 0 to 1.

These three operators are simple and straightforward. A large vol ume of
research works have so far been conducted to improve the efficiency of GA. Some
variations have been introduced in GA operators. In most cases, the variants are

developed to suit particular problems.
Other Parameters of GA:

There are also some other parameters of GA such as population size.
Population size defines how many chromosomes are present in population of one
generation. If there are too few chromosomes, GA have a few possibilities to perform
crossover and only a small part of search space is explored. On the other hand, if there
are too many chromosomes, GA slows down. Research shows that after some limit,
which depends mainly on encoding and the problem, it is not useful to increase

population size, because it does not make solving the problem faster.

While finding optimal frequency points, we got the best results considering the
following GA parameters i.e. the crossover probability 77% - 85%, Mutation
probability 0.77% - 0.85%, population size 30 - 35, number of generation for
evolution 30 - 50 and selection method either Roulette wheel or tournament selection

method.
1.11.4 Advantages of GA:

As seen from the above description of the working principles of GA, they are
radically different from most of the traditional optimization methods. General

advantages are described in the following paragraphs.

GA work with as string coding of variables instead of the variables. The
advantage of working with a coding of variables is that the coding discretizes the
search space, even though the function may be continuous. On the other hand, since
GA require only function values at various discrete points a discrete or discontinuous

function can be handled with no extra cost. This allows GA to be applied to a wide
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variety of problems. Another advantage is that the GA operators exploit the

similarities in string-structures to make an effective search.

The most striking difference of GA is that it works with a population of points
instead of a single point. Because there is more than one string being processed
simultaneously, it is very likely that the expected GA solution may be a global
solution. Even though some traditional algorithms are population-based, like Box’s
evolutionary optimization and complex search methods, those methods do not use
previously obtained information efficiently. In GA, previously found good
information is emphasized using reproduction 6perator and propagated adaptively
through crossover an mutation operators. Another advantage with a population based
search algorithm is that multiple optimal solutions can be captured in the population

easily, thereby reducing the effort to use the same algorithm many times.

In discussing GA operators or their working principles in the previous section,
nothing bas been mentioned about the gradient or any other auxiliary problem
information. In fact, GA do not require any auxiliary information except the objective
function values. Although the direct search methods used in traditional optimization
methods do not explicitly require the gradient information, some of those methods use
search directions that are similar in concept to the gradient of the function. Moreover,
some direct search methods work under the assumption that the function to be

optimized is unimodal and continuous. In GA, no such assumption is necessary.

Another difference in the operation of GA is the use of probabilities in their
operators. None of the genetic operators work deterministically. The basic problem
with most of the traditional methods is that they use fixed transition rules to move
from one point to another. For instance, in the steepest descent method, the search
direction is always calculated as the negative of the gradient at any point, because in
that direction the reduction in the function value is maximum. In trying to solve a
multimodal problem with many local optimum points, search procedures may easily
get trapped in one of the local optimum points. But in GA, an initial random
population is used, to start with, the search can proceed in any direction and no major
decisions are made in the beginning. Later on, when the population begins to
converge in some bit positions, the search direction narrows and a near optimal
solution is achieved. This nature of narrowing the search space as the search

progresses is adaptive and is a unique characteristic of Genetic Algorithms.
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1.12  Organization of the thesis

Including this introductory chapter, the thesis has been divided into seven
chapters. A brief description of the contents of each chapter is given below. In
Chapter-1, a short historical perspective of the state of the art of control theory is
followed by a brief survey of the existing literature on discrete-time systems including
brief details of Genetic Algorithms which is used for optimization. Reference model
selection based on performance specification in delta domain has been presented in
Chapter-2. Two frequency domain methods for controller design of SISO system are
presented in Chapter-3. The controller design techniques of Chapter-3 are extended to
MIMO systems in Chapter-4 and to time delay systems in Chapter-5. In Chapter-6
biomedical digital filters design methods have been presented in delta domain to
remove artifacts from Electrocardiogram (ECG) signals. The main contributions of
the thesis and scope of further work are included in Chapter-7. An algebraic
framework for application of delta operator time moments for system parameter
identification is also presented in Appendix-A which will constitute the scope of

further work.
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Chapter — 2: Reference Model
Chapter 2

Reference Model:

2.1 Introduction:

Model matching type of controller design greatly depends on the development of
a reference model incorporating all of the time, frequency and complex domain design
specifications. The desired open or closed loop system performance should be clearly
defined for the model. In this chapter we discuss the discrete-time systems in delta

operator representation in details.
2.2 Classical Control View Points:

Specification for the transient performance of closed loop control systems are
generally formulated in time, frequency or complex s or z domains. The time-domain
specifications are percentage overshoot (M), rise time (7,) and settling time (z;) for step
response. Invthe frequency domain, specifications such as gain margin (GM) and phase
margin (PM) are used with the open loop response, while resonant frequency (w,) and
the peak value at resonance (M,) are employed for the closed loop response.
Specifications frequently associated with the complex domain are damping ratio () and

frequency of undamped oscillation (@,).[3]

Analog control systems design is based on the pole-zero configuration of
Laplace transform form of transfer function in the s-plane. Similarly, the poles and
zeros of the delta transfer functions determine the response of discrete-time systems at
the sampling instants. Since the d-operator scales and shifts the origin by /A of the z-
plane unit circle, hence the same methodology translates into the delta operator
framework. These translations of control systems characteristics are now discussed. The
stability region of the y-plane is the interior |(/+Ay )|< I of the sampling circle. The
location of the underdamped poles (for 0 < ¢ < [) of 2" order characteristic equation in

s-plane are gi;/cn as: [3]
s2+2E@ns + @p° = 0 (2.1)

In equation (2.1), w, is the undamped natural frequency i.e. the radial distance
from the poles to the origin of the s-plane and ¢ is the dimensionless damping ratio i.e.

the cosine of the angle between the radial lines to the poles and the negative real axis. In
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turn, the location of the poles in (2.1) lead naturally to rules-of-thumb for the design of

analog control system. The relationship among various classical control parameters are:
L 1.8
1. Rise time (t)=—
1)

2. Settling time (¢,) = ﬂ, where 6 = & @, is the damping factor (the real part
c

of the poles).
3. Peak time (1,) = 2 where w, = w,1-&* is the damped natural frequency
0

(the imaginary part of the poles).

4. Peak overshoot (M) = exp( 7 ]

J1=-&°
Each of these transient response specifications in s-domain is a function of a

single parameter. The mapping of the salient s-plane contour such as the contours of

constant settling time, peak overshoot and peak time etc into the y-plane according to

(e ~1)
A

the transformation y = is already illustrated in Chapter 1.

To visualize the mapping of the foregoing control system characteristics, we

may apply y = £Z—A—L) to scale and shift the z- plane [6].

The mapping of s-plane contour into y-plane contour can be summarised as:

e In the analog s-plane, the contour of constant settling time (the contour of
constant damping factor) for stable systems are vertical lines passing through

s =—o along the negative real axis. These contours of constant attenuation map

_ pod
into the scaled and shifted circles y = (L—Z——) in the y-plane ( Figure 1.4)

e The contours of constant peak overshoot (the contour of constant damping ratio

¢ ) map into scaled and shifted spiral in the y-plane ( Figure 1.5).

o The contours of constant peak time (the contour of constant damping natural
frequency w,) in the analog s—plane map into radial lines emanating (at the angle
wnA from -1/A') in the y-plane (Figure 1.6). And in the fast sampling limit, these

y-plane contours revert to their respective analog s-plane contours.
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2.3 Parameterization of Control system specifications in Delta domain:

For higher order discrete system, relations between the specifications in the
time, frequency and complex delta domain may be very complicated. In many cases,
however, the dynamic characteristics of high order control systems are well represented
by those of a second order system or model for which the relationships between
specifications are simpler. The second order transfer function of the closed loop model
in discrete delta domain is chosen as:

Ay+B

M = 22
J(y) }/2+C}’+D ( )

For a pole-zero form of transfer function in z-domain, Kuo [3] has derived
expression, in terms of a set of complex z-domain specification for the time domain
specifications. Jury, [114] has developed relationship between the system frequency
response and it’s time response; however Shi and Gibbard [63] has related both time
and frequency domain specifications with the complex z-domain specifications. In J-
domain specifications however no study has been made so far to relate time and
frequency domain specifications with the complex delta domain specifications. In the

following sections, an attempt has been made to address these issues.
2.4 Second order reference model in delta domain:

Let us consider a second order reference model in delta domain. The location of
the complex conjugate poles ( ps, p*s) and the real zero - Zs of the delta transfer

function Ms(y) given in equation (2.2) are shown in the Figure-2.1.

v plane Im[r]
Ps +g/
- o AN
Re[y]
-4

Sampling Circle

Fig-2 1 Poles and Zeros location of the reference model
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The zero is arbitrarily assigned along the real axis by the angle p as shown in the
Figure-2.1. It has been assumed that the specifications for the closed loop system
performance are expressed in the complex y-plane in terms of the damping ratio ¢, the
undamped natural frequency w, and the angle ‘p. The purpose is to express numerator
and denominator coefficients 4, B, C and D of closed loop transfer function of equation
(2.2) in terms of these parameters. For our analysis, a second order discrete system with
unity feedback is considered. Let us assume the open loop transfer function is Fs(y)

hence the closed loop transfer function can be expressed in terms of open loop transfer

function as:
_ Fs(y)
My(y) = T E0) (2.3)
Ay +25)
3 M,(y) = _ 2.4
> ” (7= p:)r — ps) -
Ay +25) 2.5)

or Ms(y) =7
[ 1 _ e—oA+jm(,A [ 1 _ e—aA-jw‘,A
A

where wy (rad/sec) is the damped natural frequency of the reference model and is related

to w, ( natural frequency in rad/sec) by

w,=w1-& & o=fo, (2.6)

A is the sampling period, and is related to the sampling frequency w; (rad/sec) by
A=—"— 2.7

[f we denote the real and imaginary part of psas -R and [ respectively, the poles may be
expressed as
ps=-R+jI and p's =~R-jI (2.8)

where

.9)
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e ® sin WA
A

and I =

from geometry of Figure-2.1, we can write

T
,0=92—9|+E

6, = tan™ !
Z5l - R

from eqn (2.11), tan (p—90°) =tan (6, - 6,)

1
Where 6, = tan "(——)

Chapter — 2: Reference Model

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Expanding the right hand side and expanding for tan(6; - 6, ) from eqn (2.12) and (2.13)

we obtain the real zero as
/4
tan(p—;)(Rz +17)

==y

Zs =

(2.15)

It is to be noted that Zj is permitted to lie in the range ( -eo, 0) on the real axis and p

will vary from a lower limit p, to + /2 . The lower limit of p is

p= lim (p):Z}silr_lL(Hz -6, +§) (2.16)

Z81-0

Substituting the eqns. (2.12) and (2.13) gives:

—z—tan"(—l
P 5 _R

From eqn (2.2) and (2.5) we get:

1-e®coswA
A

c=2

- \2 -on
D:(l e Acosa)AJ +(e

.17
(2.18)

sin aA ’
_—A_] (2.19)

45



Chapter — 2: Reference Model

The gain in eqn (2.4) affects only the steady state response of the closed loop
system. It is assumed that under steady state conditions the difference between the

output and input signals is zero. Hence from egn (2.2) and (2.4) we can write

Yo _Ar+B -2 (2.20)
Uly) y +Cy+Dlaty=0 D
ie. B=D Q.21
Z
and A IS (2.22)
PspP s
B
AZ, =B or A=— (2.23)

Jl
Finally the open loop Transfer function is obtained as:
Ay + B
rlr+(C-4);

The 4,B,Cand D coefficients, together with the zeroZ, , can all be expressed in terms

Fy(y)= (2.24)

of the complex delta domain specification (&, w, and p) using eqns (2.6) to (2.23).
2.5  Conversion of complex domain specifications:

2.5.1 Conversion to time domain.

The analysis of conversion of complex domain specifications is based on the
discrete time response y(k4) of the closed loop system in eqn (2.4) to a unit step input
signal. When a closed loop system is subjected to a unit step input, the output sequence
is obtained by applying the Cauchy’s inversion integral theorem as

_1_4 A(y +2,) (L + Ap)t d(pD)
27 y(y = ps)(y - p3)

Y(kA) = (2.25)

where I is the closed contour encloses all the singularities of the integrand. Applying

the residue theorem of the complex variables to'eqn (2.25), y(kA) is written as:

y(kA)=1+2 i(—pﬁj——z‘s—.')— (a+ Ap§)|k cos(kg + ) (2.26)
Ps(ps—Ps)
where ¢ =20+ Apg) (2.27)

. /3
0=2(ps+z5)—(ps ‘p(s)"i

or 6=6,-6, —% (2.28)
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From eqns (2.11) and (2.28), we see that &is related to p through
=p-=x (2.29)
Also, we can readily show that the following relationship holds between p and the
closed loop poles & zero locations:

A (ps+zs)

1 (2.30)
ps(ps—ps)

|sec p|=2

where A is given in the eqn. (2.22), Substituting eqns (2.29) and (2.30) into output

sequence is written as:

(k) =1+|sec p||(1 + Ap;)|* cos (kg + p - 7) 2.31)
Equations (2.26) and (2.31) give the response to y(t) only at the sampling instants,
therefore y(kA) can be approximated as y.(z) that passes all the points of y(kA4).

let ¢t = kA4, then:
A+ Ap,)|" =1+ ap s = (2.32)

and 4 = 0A=w1-EA (2.33)
therefore, a continuous time function that passes through the points of y(k4) is

y.(t)=1+]|secp | cos(a),nll -&t+p- 7z) (2.34)

where p is in radians. The time for this response to reach its first peak value is:

SRS S POV Bt S0 (235)
?, a)n\/l—fz{t (‘/1_¢2J P+7z}

Let us assume that the maximum value of y.(t) occurs at its first peak. The associated

maximum overshoot in the response is thus

MP = yC(t),mrp _1

Mp=|sccp|\/l—§zexp{ —¢ [tan‘l - —p+7z]} (2.36)

J1-&2 N

The settling time £, is defined as the time for the envelope, which bounds the oscillatory
response to the unit step input, to reach 5% of the final value.

Setting y.(t) /i =s = 1+0.05 and cos(-) =1 in the equation (2.34) we find

t, = —In(0.05 |cos p|)——--‘fl_f2 (2.37)
73
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The three parameters M, ¢, and ¢ are functions of the complex domain parameters & @,
and p only. Therefore they are not only a convenient set of parameters for specifying the
time domain performance of the closed loop system, but are also linked by relatively

simple expressions to the complex 8-domain.

2.5.2 Conversion to frequency domain:
2.5.2.1 Open loop specifications

Based on eqn (2.24), the open loop frequency response is

e -1
T

A (e/w _1]+ B
or Fy(7) = A (2.38)

e’m—l2 e’ ~1
) el

There are two specifications commonly used with open loop frequency responses,

namely the phase margin (PM) and the gain margin (GM). The phase margin (in
degrees) is defined as:
PM =y, (®),_, —(-180") (2.39)

™ —1

where 7 (@) is the phase angle of FJ( j and @ is the gain crossover frequency at

e’ —-1

which the magnitude of F‘,( ) equals unity, or 0 dB

It can be shown that these quantities (PM and Gain crossover frequency) are related to
system coefficients A,B,C and D as:

[, 2 2
W = %sin"[—b'i b _4a'c')J (2.40)

¢ 2a

1

where the parameters a;, b, and ¢; are given by:

16 16
a, :E(C—A)—E (2.41)
4AB 4
b, =—A——E(c2 —-2A0) (2.42)
and ¢, =B? (2.43)

48



Chapter — 2: Reference Model

2 _ K2 _ _ _ .
and PM:[an”'l:bzA(aT b2+(C A)az) (Aa2+B)(2a2b2+b2(C A))]+180

lb,A(2a,b, +b,(C — A)+ (Aa, + B)(a> —b% +(C - A)a,]

(2.44)
where a; and b, are given as follows:
a,=—-sin"} —4— 245
A ( 2 j (245)
b, = lsin(wcA) (2.46)
A
The Gain Margin (GM) is defined in decibels as:
GM =-2010g,,|7, ()] .y, | (2.47)
e’ -1

Where 7{ @) is the magnitude of FJ( ) and ¢ is the phase crossover frequency at

which y;is -180°. The phase crossover frequency and the Gain Margin are related to the

system coefficients as:

)
2 . 24—y
w, = ~sm"(M] is Phasecrossover frequency  (2.48)

A 4(A - BA)
"“and
(:Z—Asmz(—w;—A)+ B]+ J (%sin(a)/A)
M = ~20logn w,8) AC-A w, A 4 (o C-A
[f;sm‘(#]—;sinz(w,m— ( A_ )smz[#]]+j[;—zsmz( ; ]sm(w/A)—( — )sm(w/A):l
(2.49)
2.5.2.2 Closed loop Specifications:
The closed loop transfer function in 8-domain is obtained from eqn.(2.3) as:
Ay+B e -1
M = where ¥ = 2.50)

The specifications, most frequently used to define the properties of a closed loop system
are Bandwidth (@), Resonant Frequency (&) and Peak Resonance (M,).

The Bandwidth (@,) is defined as the frequency at which the magnitude | M &) |
drops to 70.7% of its zero frequency value, or 3 dB. Bandwidth (@,) measures the

transient response properties and given by:

- J+ N 2 _ )
a}b:%cos_l[ Tt J 4KGJ (251)

2G
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Where
1=2{(CD - 2AB)A + (24> - 2C* - 2D)A +4CA - 4} (2.52)
K=4-CA+(4A*=C?*-3D)A* +2(CD - 2AB)A’ - 2D*A° (2.53)
G=4(DA? +1-CA) (2.54)

The resonant frequency (@) is defined as the frequency at which the peak resonance M,

occurs. The resonant frequency (@) for the closed loop transfer function of the eqn

(2.50) is given by

@

r

_T+ N 2 _ ’
:%cos"[ T2\ 4SU] (2.55)

28

The peak resonance M, is defined as maximum value of IM& ¥l at @ = @. In general,
peak resonance gives the indication of the relative stability of a stable feedback control

system. The M, is found to be :

N + 0 cos(w.A)

M, = i 2.56

g (2—Rcosz(a),A))+ (Q cos(@w,A))+ (P - R) (2.:56)

where
A 2

N= (Z) +(BA? - AAY (2.57)
0=24A(BA” - AA) (2.58)
P=1+(cA-2)* +(DA? +1-CA) (2.59)
Q=2(CA-2)1+ 1+ DA - CA)) (2.60)
R=2(1+ DA* —CA) (2.61)
S=2RO (2.62)
T=4RN (2.63)
U=QN+RO-PO (2.64)

2.6 Derivation of A, B, C and D coefficients and conversion of specification by
tabular form.

Equations (2.35) to (2.56) provide for discrete systems a set of mathematical
relations for conversion from the complex delta- domain parameters & @, and ¢ to the
time response specifications M, ¢, and ¢, and to the frequency response specifications
PM, GM, @, &, @, @, and M,. These conversions are rather complicated even in the

simple second order case. Moreover they do not provide direct conversion in the reverse
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sense i.e from either the frequency domain or the time domain to the complex delta
domain or between the frequency and time domain. In order to provide flexibility of
conversion between domains and in particular, to relate specifications to the 4, B, C and
D coefficients or to the pole / zero locations of the discrete transfer function, a tabular

form of presentation is convenient as shown in Table 2.1 to Table 2.3

2.7  Simulation results:
A plant taken from Shi and Gibbard [63] to analyse the discrete second order
transfer function in the 8- domain given the closed loop specifications:

w,=0.84 rad./sec. £=0.7andt, ~5sec

Let us consider the sampling period as 0.5 sec. The above are a convenient set of
specifications drawn from both complex domain (w,, &) and the time domain (t,). From
eqn (2.6), wy = 0.6 rad./sec. With o4A and & known, the positions of the closed loop
poles can be found eqn (2.8) to (2.10) as ps, p’ s=- 0.5759 + 0.4404 i. However they do
not characterize the system performance completely as zero has strong influence on the
system transient response. It can be seen from figure 2.2 and 2.3 and also from Table-
2.1 that as p varies from + 10° to + 80°, then tp/A and M, changes significantly. The
corresponding coefficients of the closed loop model may be selected from the
quantitative values of the time domain specifications as per Table-2.2 & Table-2.3.
Such as with tp/A = 10, p is found to be -40°.The required transfer function with £=0.7,
p =-40°, ®, = 0.84 and A=0.5 sec is

0.2064y +0.5257
y2 +1.1519y +0.5257

My (y) = (2.65)

The responses to Step and Impulse inputs, pole zero plots, Bode, Nyquist and Nichols
plots are shown in figure (2.2 — 2.7) for the transfer function of the reference model

given in eqn (2.65).
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Step Response of Reference Model

14 Y — —_ — -
Damping Ratio : 0.7
wn : 0.84 rad / sec
12}F Angle roh : - 40 degree
Sampling time : 0.5 sec
1 -
Sos L W
3
a
0.20645 y + 0.52572
Sosf ) Y ]
TF=
¥+ 1.152 y + 0.52572
04t 4
02t / J
0 / ~L 1 L 1 i
0 5 10 15 2 25 30
t/delta

Figure 2.2: Step response of the reference model with p = -40°

Impulse Response of Reference Model

04 r r T T -—
BDamping ratio : 0.7
035} wn : 0.84 rad 7
sampling time : 0.5 sec
a3t Angle roh : - 40 degree
025 .
S
E 02+ .
s
E 015F §
<
o1} \ |
005 L \ 1
OF
005 1 s 1 ( 1
0 5 10 15 20 25 30
t/delta

Figure 2.3: Impulse response of the reference model with p = -40°

52



Chapter — 2* Reference Model

Pole Zero plot of Reference Model

Damping ratio : 0.7
2F wn : 0.84 rad
Sampling time: 0.5 set
1 5F Angle roh : - 40 degree

1F
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15F Legend
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Figure 2.4 . Pole Zero plot of the Reference Model with p = - 40°
1n delta domain

Magnitude and Phase plot of Reference Model

Frequency(rad)
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201 h\ ‘ wg = 05156 i
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Figure 2 5 Magmtude and Phase plot of the reference model with p = - 40°
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Model

Damping ratio :0.7 T
whn :0.84 rad

| sampling time :0.5 sec
Angle roh : - 40 degree

14

-16

1 i 1 | 1 1 1

T T T

-0 -8 -6 4 .2 0
Real(H)

10

Figure 2 6 Nyquist plot of the reference model with p = - 40°

Nicholas Plot of Reference Model

Zita : 0.7 ’ ) ' ’
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Figure 2 7 : Nichols plot of the reference

-100 50

model with p = - 40°
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Table -2.1
Close loop System in y plane Close loop step response

p ®A Poles_ Zeros (/A %Mp tJ/A
1 V 0.2999 -0.5759+0.4404 i -0.9007 7.8307 7.1451 10.1900
10 0.2999 -0.5759+0.4404 i -0.8042 7.3070 8.4616 10.2416
20 0.2999 -0.5759+0.4404 i -0.7140 6:7251 10.5225 10.4011
30 0.2999 -0.5759+0.4404 i -0.6332 6.1432 13.5479 10.6788
40 0.2999 -0.5759+0.4404 1 -0.5560 5.5613 18.1738 11.0960
50 0.2999 -0.5759+0.4404 i -0.4775 4.9794 25.6998 11.6927
60 0.2999 -0.5759+0.4404 i -0.3926 4.3975 39.2036 12.5472
70 0.2999 -0.5759+0.4404 i -0.2943 3.8156 68.0051 13.8388
80 0.2999 -0.5759+0.4404 i -0.1710 3.2337 158.9355 16.1444
-1 0.2999 -0.5759+0.4404 i -0.9251 7.9471 - 6.9047 10.1901
-10 | 0.2999 -0.5759+0.4404 i -1.0549 8.4707 6.0098 10.2416
220 | 0.2999 | -0.5759+0.4404 1 -1.2646 9.0526 5.3079 10.4011
-30 | 0.2999 -0.5759+0.4404 i -1.6341 9.6345 - 4.8538 10.6788
-40 | 0.2999 -0.5759+0.4404 i -2.5464 10.2164 4.6245 11.0961
-50 | 0.2999 -0.5759+0.4404 i -10.2796 10.7983 4.6446 11.6927
-60 | 0.2999 -0.5759+0.4404 i +2.8142 11.3802 5.0321 12.5472
-70 | 0.2999 -0.5759+0.4404 i +0.8292 11.9621 6.1997 13.8388
80 | 0.2999 -0.5759+0.4404 i +0.2735 12.5441 10.2911 16.1444

Table -2.2
Close loop Frequency response Open loop Frequency response

P WA oA M,(dB) PM GM (dB) oA

1 0.5438 0.2136 0.2986 61.575 4.9664 0.4371

10 0.5872 0.2404 -0.4880 60.74 2.1117 0.4744

20 0.6461 0.2684 -0.7829 59.463 -1.1294 0.5167

30 0.7217 0.2953 -1.1978 57.679 -4.928 0.5611

40 0.8242 0.3214 -1.7861 55.186 -10.388 0.6095

50 0.9753 0.3468 -2.6433 51.661 -24.289 0.6649

60 1.2304 0.3714 -3.9592 46.536 -15.208 0.7326

70 1.8099 0.3945 -6.1803 38.695 -7.6129 0.8222

80 3.1416-1.72551 | 0.4138 -10.774 ] 25.626 -3.303 0.9564
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Table -2.2 (continued)

Close loop Frequency response Open loop Frequency response
P A oA M,(dB) PM GM (dB) oA
-1 0.5352 0.2074 -0.2646 61.728 5.6249 0.4289
-10 0.5004 0.1782 -0.1424 62.309 8.8679 0.3918
-20 0.4673 0.1423 -0.0575 62.777 13.656 0.3507
-30 0.4413 0.1018 -0.0150 63.043 22.987 0.3101
-40 0.4242 0.0592 -0.0017 62.967 24.486 0.2704
-50 0.4246 0.0607 -0.0019 62.248 14.319 0.2318
-60 0.1650 0.4572+1.024%1 | 14.941+5.55071 | 43.701 6.6343 0.2538
-70 0.2085 0.4041+0.5475i | 6.6354+1.80641 -22.492 -4.7682 0.3861
-80 3.1416-0.91391 | 0.3633 -1.4782 55.843 -9.061 0.7180
Table - 2.3
p System Parameters
A B C D

1 0.5837 0.52572 1.152 0.5257

10 0.6536 0.52572 1.152 0.5257

20 0.7362 0.52572 1.152 0.5257

30 0.8303 0.52572 1.152 0.5257

40 0.9455 0.52572 1.152 0.5257

50 1.1008 0.52572 1.152 0.5257

60 1.3388 0.52572 1.152 0.5257

70 1.786 0.52572 1.152 0.5257

80 3.0736 0.52572 1.152 0.5257

-1 0.5683 0.52572 1.152 0.5257

-10 0.4983 0.52572 1.152 0.5257

-20 0.4157 0.52572 1.152 0.5257

-30 0.3217 0.52572 1.152 0.5257

-40 0.2064 0.52572 1.152 0.5257

-50 0.0511 0.52572 1.152 0.5257

-60 0.1868 -0.52572 1.152 0.5257

-70 0.634 -0.52572 1.152 0.5257

-80 1.9217 -0.52572 1.152 0.5257
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Step Response of Reference Model
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Figure 2.8 Step responses of the reference model with different +p
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Figure 2.9 Step responses of the reference model with different - p
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Step Response of Reference Model
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Figure 2.10 Step responses of the reference model with
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Pole Zero Plot of Reference Model 1n Delta domain
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Figure 2.11 Pole Zero Plot of the reference model with
p =+ 80° to - 45° in delta domain
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Typical design specifications for closed loop control systems with different ranges of

®A from 0 1 to 1.5 for p = + 60° and - 45° 15 given 1n Table 2.4 and corresponding pole

zero plot and step responses 1s shown in figure (2.12 — 2.14)

Sampling Time: 0.5 sec , Damping Ratio : 0.7

Table — 2.4

p ©A ©, Poles zero tp /A ts/A | Mp% A B C
+ 60 01 02801 | -01958+0 1810 -03123 219166 | 307188 | 84617 | 02277 | 00711 | 03916
+ 60 02 05601 | -03888 + 0 3266t -0 5776 109583 | 153594 | 84617 | 04464 | 02578 | 07776
+ 60 03 08402 | -05761 + 0 44051 -0 8044 73055 | 102396 | 84617 [ 06538 | 05259 | I 1522
+ 60 06 1 6803 | .10833+06272 -1 3124 36528 51198 | 84617 | 11939 | 15668 | 2 1665
+ 60 07 19604 | .12298 + 06487 -1 4382 31309 43884 | 84617 | 13442 | 19332 | 24596
+ 60 09 2 5205 | -1 4855 + 0 64841 -1 6421 2 4352 34132 | 84617 | 1598 | 26270 | 29709
+ 60 11 30806 | -1 6914 + 0 60641 -1 7953 19924 27926 | 84617 | 17983 | 32284 | 33827
+ 60 13 3 6407 | -18504 £ 0 538% -1 9093 1 6859 23630 | 84617 | 19454 | 37144 | 37008
+ 60 15 42008 | -1 9675 + 0 45861 -1 9925 14611 20479 (84617 | 20483 | 40813 | 39350
-45 01 02801 | .01958+0 18101 -4 8135 315159 | 340983 [45992 (00148 | 00711 | 03916
-45 02 05601 | .0 3888 + 0 3266: -4 1450 157580 | 170492 | 45992 | 00622 | 02578 | 07776
- 45 03 08402 | 05761 + 0 44051 -3 8772 105053 | 113661 | 45992 | 01356 | 05259 | 1 1522
-45 06 16803 | .1 0833+06272 -3 4353 52527 5 6831 45992 [ 04561 | 15668 | 2 1665
-45 07 19604 | .1 2298 + 0 64871 -33273 45023 48712 | 45992 | 05810 | 19332 | 24596
-45 09 25205 | .1 4855 + 0 6484 -3 1384 35018 37887 | 45992 | 08370 | 26270 | 29709
- 45 11 30806 | .1 6914 +0 60641 -2 9755 2 8651 30998 | 45992 | 10850 | 32284 | 33827
-45 13 36407 | .1 8504 + 05389 -2 8322 24243 26229 | 45992 | 13115} 37144 | 37008
-45 15 42008 | . 9675 +0 45861 -2 7048 2 1011 22732 | 45992 | 15089 | 40813 | 39350
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Pole Zero Plot of Reference Model in Delta domain
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Figure 2.12 Pole Zero Plot of the reference model with p = + 60° and
different range of ®A in delta domain
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Figure 2.13 Pole Zero Plot of the reference model with p = -45° and
different range of WA in delta domain
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Step Response of Reference Model
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Figure 2.14 Step response of the reference model with different range

Design specifications for closed loop control systems with different damping ratio

€ = 0.3- 0.9 for p =- 20° is shown in Table -2.5 and corresponding pole zero plot is

shown in figure (2.15)

Table -2.5

Sampling Time: 0.5 sec, Angle p =-20 degree

p £ ®A Poles zero tp /A ts/A | Mp% A B C
(deg)
-20 0.3 0.4007 -03764 £ 0687 -4 8737 7.9519 24.269 | 37.27 01261 | 0.6146 | 07528
-20 04 03849 -04330+0634% -29243 79991 18202 | 25.44 0.2019 | 0.5905 | 0.8660
-20 05 0.3637 | -04849 05768 -2.0648 8.1573 14.561 | 16.61 0.2750 | 05678 | 0.9698
-20 0.6 0.3360 -05324£ 05125 -1.5791 8.4737 12 134 | 1006 0.3459 | 0.5462 | 1.0649
-20 0.7 02999 -0 5760 + 0.44041 -1.2647 9.0527 10.401 | 5.31 0.4157 | 0.5257 | 11520
-20 0.8 0.2520 -06159 + 03564i -1.0414 10.1721 9.101 | 2.09 0.4862 | 05063 | 1.2318
-20 0.9 01831 -0 6524 + 02495 -0.8688 12 9505 8089 ) 034 0.5616 | 0.4879 | 1.3049
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Pole Zero Plot of Reference Model in Deita domain
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Figure 2.15 Pole Zero Plot of the reference model with p =-20°
and damping ratio & in the range of 0.3 t0 0.9

2.8 Conclusion:

The table 2.1 to 2.5 shows the extensive numerical data which relates the time
and frequency domain specifications to the complex delta domain parameters. For
convenience, normalized variables are shown in the tables such as t/A etc, which is the
approximate number of samples needed for the system output to reach its first peak
value. Furthermore, all frequency variables are presented as ®A so that the primary
frequency range O to wy/2 is normalized to 0 - w.

The step responses vary with the change of zero locations chosen arbitrarily by
changing the angle p. From step responses and pole zero plots shown in figure 2.8 —
2.15 it is clear that as the parameters like angle p, A , € are varying, for some values of
these parameters, the reference model poles shifted towards the sampling circle and the

zero crosses the boundary of sampling circle and hence the model becomes unstable.
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Chapter 3
Controller Design for SISO Systems

3.1 Introduction:

The configuration shown in Figure 3.1 is the basic standard controller with
negative feed back. Let us consider Ps(y) is the delta domain equivalent of the
continuous-time plant with a zero-order hold (ZOH) and Cs(y) the transfer function

(TF) of a rational cascade-controller, the parameters of which are to be determined.

R(Y) . Controller / ZOH Plant Y(Y)=
+ 0 Cs(y) Ps(y)

Figure 3.1 The standard unity negative feedback sampled data configuration

R(Y) Controller | PlantwithZOH | Y _
+ Cs() Ps(Y)

Figure 3.2 The 8-domain representation of the system in figure 3.1

R(v) Reference model Y()
M;(y)

Figure 3.3 The Reference Model of Closed loop system in-6-domain

Y(y)

M;(y)

Figure 3.4 Equivalent open loop model of figure 3.3

The delta domain representation of the system is shown in Figure 3.2. The

design method is based on the frequency domain approximate model matching
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concept described in the later part of this chapter. The design requirements i.e. the
desired time and frequency domain specifications are translated into a rational transfer
function model. The controller parameters are then determined such that the closed-
loop system with the above controller (Figure 3.2) approximates to the specification
of the model in some sense.

Specifications for the desired performance of the closed-loop systems are
formulated in the time domain (percentage overshoot, rise-time), frequency domain
(gain margin, phase margin, resonant frequency etc.) or complex domain (damping
ratio, frequency of damped oscillation) as discussed in chapter 2. The closed loop
reference model that satisfies a given set of desired performance specifications is
shown in Figure 3.3 In the design method we use an open loop-equivalent
specification model Fs(y) as in Figure 3.4 of the closed-loop reference model (Figure
3.3), such that F5(y) with unity-negative feedback equals Ms(y). Therefore the system

in Figure 3.4 is equivalent to the given closed-loop specification model in Figure 3.3

we have
_ )
Ms(y) = T EG) (3.1
Solving for Fs(y), we have
_ M)
Fs(n) = - 7,0 (3.2)

Hence for the desired specification model Ms(y), the open-loop equivalent
specification model Fs(y) may be obtained from equation (3.2). We choose a
realizable discrete-time controller transfer function Cs(y) of order q <<n.

We have proposed two methods for controller design of SISO systems in delta
domain. The method is an extension of the continuous-time Classical Pade
Approximation (CPA) technique in the delta domain defined as Optimal Generalized
Delta Time Moment (OGDTM) technique and the second is the complex Optimal
Frequency Fitting (OFF) technique. The OGDTM technique is computationally
simpler and the OFF technique accommodates both the real and imaginary parts of the
frequency response of the process plant and reference model while computing the
coefficients of the controller. To get the optimal frequency points, genetic algorithm is
used as a tool for optimization. The orders of the controller discussed are assumed
known a-priori and the output of the controlled process matches that of the reference

model.
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3.2 Time Moment:

In this section we discuss the concepts of time moment for continuous-time
systems, the discrete-time moments for discret'e-time systems with shift operator
parameterization and in the sequel, define the delta time moments (DTM) for discrete-
time systems with delta operator parameterization.

Time moments are important parameters and we briefly discuss the concepts

of time moment for continuous and discrete-time systems.

3.2.1 Continuous-time systems:

The * moment of a continuous real function f{#) of independent variable ¢

about the point ¢ = a is defined by [52]

7= [ t-ay () (3.3)
If the function is defined for t € [0 ; o] then the moments become :

T,=["(t-ay f(0)ds (3.4)
and if a = 0, then the moments are called the time moments about the origin :

T,=["rfa 3.5)

A time-invariant, asymptotically-stable dynamic system with »n state variables,
m input and p output variables as described in state space form (1.1) and its transfer
matrix description as in (1.2) in the complex s-domain is considered here.

Let us consider an non-reducible SISO system i.e. with p =1, m = ] and
assuming that the numerator and denominator polynomials of the transfer function are
co-prime. Expanding the transfer function in eqn.(1.2) into a Maclaurian series about s

= (), yields:
G.(s)=-2.C.4"""B.¢ (3.6)
-0

Assuming A, to be nonsingular, the quantities
T =(-1)11C. 47" B, 1€[0,0] (3.7)
where, T,’s are called the time moments of the system. By definition, the impulse-

response g(¢)=C exp(A4.)B,  is the inverse Laplace transform of the transfer

function, or equivalently,
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G.(s) = f e g(1)dt (3.8)
Using power series expansion of e of (3.8) we get:
0 . Sl
G.(s) =D, (-T, ) (3.9)
=0 .
From equations (3.6) and (3.7) we get:
L d'G.(8)
T =(-1) ———=
=D = (3.10)

=(-1)iC, 4" B,

3.2.2 Time moment in discrete-shift operator systems:

Let us consider the independent discrete-time variable #, such that a discrete-
time function f{,) be defined over f, where k e {positive integers}. The i" moment

about #; = g is then: [52]

=3 -0 @) @.11)
Similarly, the i'"" moment about the origin is given by:

=300 G12)

For a discrete-time system, let us consider the impulse response g(?) of the

continuous time system G, (s) which is sampled with a constant sampling period A.

Then the i™ time moment of the discrete-time function g(k4) is given by
T, =Y (kA) g(kA) (.13)
k=0
By definition, the z-transform denoted by G, (z) is given by
G,(z)=) glka)z™* (3.14)
k=0

The (impulse) sampled version of G, (s), that is denoted by G.(s) is obtained by

substituting z = ¢ in the above relation :
Gl (s)=) g(kh)e™ (3.15)
k=0

The expansion of the exponential term gives :
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G:(s)zgg(kA){l—ksA+gfs2A!)2——(kg3—?)3+ ------ } (3.16)

Using the definition of 7, as stated in eqn. (3.13), the above relation becomes :

N T,s" Ts’
G‘(s)—é{Tzo—Tz,s+T—T+ ------ (3.17)
The discrete time moments may then be expressed as
L d'Gl(s
T, =(-1) —(—)]0 (3.18)
ds

The similarity and difference between the expressions for 7., and T, may be noted.

Now, changing the variable s to z (where, z = e**, or, s = In z/A ) so that

dz
ds =— 3.19
s== (3.19)
the expression for T,, becomes
PN
T, =(-1)(2z2—)'G,(2) |l (3.20)
dz
i U d’
T, = (1) Al—=G,(2)]|.-, (3.21)
dz
Defining the power series expansion of Gg(z) about z =1 as,
G(z)=).d (z-1) (3.22)
1=0
one may derive the time moments 7, from the above coefficients d as :
A
T, =12 4 (3.23)
=D

For the sake of computational ease, the coefficients di may be obtained by

substituting z = (p +1) in G,(z) and by using the continued division process These

coefficients diare called the modified proportional time moments of G (z).

3.2.3 Time moment in discrete-delta operator systems:

With the concepts of time moments of continuous as well as discrete-time
system with shift operator parameterization, now we introduce the time moments for
discrete-delta operator parameterizations. The major contributions of the thesis in the

areas of modeling and controller design for SISO and MIMO systems rely on these
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newly introduced concepts of Delta Time Moments (DTM) in the delta domain; and
their generalizations that follow in the sequel and called the Optimal Generalized
Delta Time moments (OGDTM).

Using delta transformation definition, if g(k4) is the impulse response of a
linear discrete-time system then its transfer function in the complex delta domain can

be written as:[10]
Gs;() =4 glkd) 1+Ap™ (3.24)
k=0
From the definition of y given in eqn.(1.46), with the limit z =1, y = 0 as:

y=tim < L=0 (3.25)

Gs(P)=co+e y+c, P+ =Yy (3.26)

Now successive differentiation of eqn.(3.24) is performed and evaluating them at y =

0, we can get

Gs(»)

o =4 Zg(kA) =T,
k=0

GP(P) |y = —A D (kA g(kA) =T,
k=0

GP) |y = A k(k+DA g(kA) =T,
k=0

G5 (¥) |yo = —A ik(k +1)(k +2)A g(kd) =-T,,
=0

GS'(7)

0 =(=D'A ik(k +Dk+2) . (k+i-DA gkd) =(-1)'T,, (3.27)
k=0

where T, is defined as the i Time Moment in the delta domain i.e. the i Delta Time

Moment (DTM). It easily follows that:

7, = (-ya S &0 n (3.28)
& -y

On successive differentiation of eqn.(3.26) and evaluating them at y = 0, we get
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Gs(1) |o=
G:g‘l)(}/) |y=0 = ¢,
GO |0 = 2!

G‘(SB)(Y) lr:O 3 ?2

G () |, = ile,
while from eqn. (3.27) and eqn. (3.28), it follows that
_ 1 d'Gs(y)

)
- i' d r=0 = ° ];I
! ¥ it

(2.29)

i

Here ¢, may conveniently be called the proportional delta time moment, and is
normally used in all calculations in place of the actual DTM T, . Now let us consider
the time domain linear state-space delta operator model of eqn. (1.22) and the
corresponding frequency domain transfer function in eqn.(1.34), assuming p = | and
m =1 for a SISO system. Expansion of eqn.(1.34) about y = 0 and assuming that the
system matrix A, is non-singular, we obtain:

Gs(r) = (1) D2 C. 4" By’ (3.30)

1=0

The delta time moment series is 7,, then given by

T, = (=)' i'C, 4;“*" B, (3.31)

Where ie[0;om]

3.3 Generalised Delta Time Moments:

Let us consider a real function f{x) with derivatives ), ie 1, o] in some
region around the point xy. The values of f{x) be given for the real numbers x, x,, x,,
. ... xp of the variable x; where x, =xp + h, 1 € [I; n] and h > 0. By-using the
notation of the calculus of divided differences we have
SIx) = f(x)
= lx]-/Ix]

e
flx, x,x,] = (fTx,>x 1~ flx,,x,]
(xo—xz)
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(flxo 1= flx, %]

(xo - xz)

Flxg,x,x,] =

- (flx X 1= flx xpeox ]

(xp— %)

(3.32)

Let us suppose in the interval (a, b) bounded by the greatest and least of xo,
x1,....x, the function f{x) of the real variable x, and its first (n - 1) derivatives are finite

and continuous and that f(x) exists. It may then be shown that [115]

flxg, x,%..x,] = B iﬁ)-—f(x,) = %f(")(ﬂ) (3.33)

o il (n=10)!
where 1 lies in the interval xo <77 <x9 + nh. Now let yfx) be a second real
function with finite and continuous derivatives ¥”(x) around the point x = x,, such
that
Y(x)=f(x), i=1,2,3 ... N (3.34)
Then from equation (3.33),
v (=70
where (lies in the interval xo < ¢ <xp +nh. Now if the parameter h takes a
very small non-negative value; we have
) =¥V (x,), i€l0,n] (3.35)
Thus, for a suitably small value of the parameter A, for a given f{x) another real

valued function yfx) may always be constructed using (3.34) so that the approximate

relations in (3.35) are satisfied.

Now by approximating the differential operators G’ (y) ’)’=0 by the divided
difference equivalents, a new set of parameters called generalized delta time moments
(GDTM) are obtained.

Let Gs(y)be the n™ order transfer function of a SISO linear discrete time

invariant system described by

Ns(¥) _ k1+b,}’+b2yl+b3;r"+ ...... +b, " (336)
Ds(7) 1+al}/+a272+a3y“+ ...... +a Y

Gs(y) =
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where m < n. It is assumed that G,z(y) is irreducible i.e Nz(y)and Dy(y)

have no zeros in common. The delta time moments T, , i€ [0, o] of Ny(y)) are

defined as
,d'Gg(p)
T, = (~1) ——;j;—|,=0 (3.37)
and T,, are proportional to c,, where
Gs(1) = 2¢7 (3.38)
=0
If we replace (y) with a small suitable positive real number (frequency) (1)
such that £4, = i.44 and define (m+n) distinct values of a function f, f5, ....... Sinsn such
that
fi = Gs(u,), ie(l, m+n)] (3.39)

Then f, are defined as the Generalized delta time moments (GDTMs).

34 Optimal Generalised Delta Time Moment:

The concept of optimal generalised delta time moment (OGDTM) is
presented here. It may be seen from section 3.3 that the GDTMs are computed from a
set of real frequency points with trial and error methods only with no emphasis on
how such parameters can be computed and what shall be the overall performance of
the resultant éystem. The success of such methods largely depends on the intuition of
the designer and after choosing a particular set of GDTM the performance of the
overall system is determined as an end result. In order to get rid of such situation GA
is applied to minimize a apriori performance index to compute these parameters
called Optimal Generalised Delta Time Moments (OGDTM). In the controller design
problem presented in the next section these parameters set is computed by minimizing
the cost function developed between the step respbnse of the reference model and the
overall controlled system. The algorithms for computing OGDTM using GA is

presented in figure 3.5:
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Start

Initialize number of frequency points for OGDTM
Initialize Number of Population
Initialize Crossover Probabiljty

Initialize Mutation Probability

Gen=1

P=1

-
>

Reproduction

Strings are copied in pair as
parent strings

P+1

Mutation Gen=Gen + 1

Perform comparison and
calculate fitness function

P > population size /2

Gen > max. generation

End

Figure 3.5: Flow chart of steps to compute OGDTM
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35 Controller design by OGDTM matching method:

In the present work we propose a unified controller design method in the
complex delta domain by using OGDTM. The proposed method of controller design
based on OGDTM is developed using a computational framework which is a variant
of classical Pade approximation technique. The design method is computationally
simple and requires only the solution of a set of linéar algebraic equations. The
computational algorithms invoke GA to determine optimal real frequency points after
minimizing a cost function and are numerically stable and yield a continuous-time
like controller at very fast sampling rate. The proposed method is based on model
matching framework which requires brief discussion on exact model matching

(EMM) and approximate model matching (AMM).

3.5.1 Exact Model Matching (EMM):
Let us consider the delta-operator representation of discrete-time unity
feedback system, shown in Figure 3.2. In the system, P;(y) and C;(y) are the plant

and controller transfer function respectively and are given by:

Sby

Prmmy(7) =" ym < (3.40)

n

(341)

and Csp (1) =2

The subscripts (m, n) and (p, q) in equations (3.40) and (3.41) represent the
order of the numerator and denominator of the plant and controller respectively. The

closed-loop transfer function G (y) is then given by

& 1 L 1

207 Y By ]

1=0 1=0
Yar Yoy +Zb.v‘iﬁ.v']
1=0 1=0 1=0 1=0

The denominator of equation (3.42) represents the characteristic polynomial of

(3.42)

GS(m+p,n+q) (Y) = li

the closed-loop system and is of order (n + g). The unknowns of equation (3.41) are
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the B,s and a,s corresponding to the compensator C;(y). In the exact model
matching problem, it is desired to find the unknown parameters B, s and a, s of C,(y)
such that the closed-loop transfer function, G,(y)exactly matches a general
specification transfer function, M;(y), given by

k

2.4

M6(k ;)(Y) =2 k<l (3.43)

1
2.0

1=0

Therefore, for exact model matching, we have

Gy (v) =M, (1) (3.44)
P, (1)C;(v) -M 3.45
o i rmc,m e G4
Solving for C4(y), we have
M;(7)

Cs(1) = (3.46)

Py (y)(1- M, (v)]

and substituting for P;(y)and M,(y) from equations (3.40) and (3.43), we finally get
k n
2dryay
1=0 1=0
m } m [N
Zblylzclyl _Zblylzd|y‘]
=0 1=0 1=0 =0

The equation (3.47) is called “Synthesis equation” or Truxal's method which is

(3.47)

Cs(y)= CS(k+n miy (V) = [

extended here for delta-operator systems for designing C,(y). Though computation of
the design based on exact model matching method is simple but it may often lead to
higher order controller, sometimes the order of which is higher than the plant, the
implementation of which in hardware may in many cases is not cost effective. The
controller may also be unstable and unrealizable. Further, the structure and order of

the controller cannot be fixed a priori as has been done in equation (3.41).

3.5.2 Approximate Model Matching (AMM):

In approximate model matching (AMM) concept for controller design of delta-

operator systems, the equation (3.44) is only approximately satisfied, i.e.

G, (v) = My (y) (3.48)
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Therefore the problems encountered in exact model matching method can be
effectively resolved. It is further possible to design compensator of chosen order and
with a structure that approximately satisfies the various specifications embodied in the
desired transfer function, M, (y) . The method provides added flexibility of making a
trade-off between the order complexity of the controller and the extent to which the
desired specifications are met. Therefore for C,(y) to be physically realizable,
following condition should satisfy with the degrees
(m+D)2(k+n) or (I-k)z(n-m) (3.49)
i.e M, (y) must be selected so that the excess of finite poles over finite zeros for the
closed-loop function is at least equal to the pole-zero excess of the plant transfer
function, P,(y). Hence to make both the exact model matching and approximate
model matching methods to be feasible, the above degree constraint on the choice of
M, (y) must be imposed. In the time moment matching technique, few proportional

time moments of the respective models are made identical, i.e.

] dl
d Gs(y)‘y=0= M5(7)| . for 1=0,1,2,,(k+1+1) (3.50)
d'Y‘ dyl Y
equivalently,
g, =m, 3.51)

where g, and my are the coefficients of the power series expansion about y =0 i.e.

Gy = g5 (3.52)
and M, (1) =3 m,y' (3.53)

3.5.3 Optimal Generalised Delta Moment Matching (OGDTM)

In the case of optimal generalised delta moment matching (OGDTM), the

divided difference equivalents are

Gs(u,)=M,(1,), 1€[0, k+1+1] (3.54)
where 4, is a very small positive number such that 0 <, <<1computed using GA.
The (k+I+2) distinct values, G,(1,) and M, (n, ) of the function G4(y) and M;(y)

evaluated at different values of p, are defined as OGDTMs of the functions G;(y)
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and M,(y) respectively. The two functions G;(y) and M,(y), then have identical
initial (k+/+2) OGDTMs.

3.5.4. Steps for Controller Design by OGDTM Matching:
The following are the steps for controller design problem using the concepts of
OGDTM matching. Here we consider for a SISO system.
o Step 1: We choose a closed-loop reference model TF, M (y) that satisfies the
desired specifications.

e Step 2: The controller TF is now chosen as

Bo +BIY+"'+prp
g toy+o oy

Con) = REET)

e Step 3: The performance index (fitness function) PI=(yi, ~y;) is set,
1=0

where y,  and y, are the step responses of the reference model and the

closed loop over all controlled system.
e Step 4: Setting the parameters of GA ( number of parameters, number of
population, crossover probability, Mutation probability etc. ) and GA is

run to compute L4,
e Step 5: Now we compute Ga(Y)‘Fuu éMa(y)' y=n, for ie[L(p+q+2)]J(3.56)

o Step 6: The equivalent open loop model F;(y) as

k
2.y

M -
Ey(y) = 1_;4(7()): i (3.57)
o chyl —Zdjyj
=0 =0
o Step 7: We find the open-loop equivalent expression as
Py(Y)Cs(v) AF(y) (3.58)
m P [N ,
2,572 BY 2.4y
=0 =0 pr
; : A———p (3.59)
ayqy oy ¢y ->.dy
=0 1=0 =0 =0

From which we can write
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14 m { 3 q n A
MBI by ey -2dy [|Ad ey |darydy | (3.60)
;=0 =0 =0 J=0 =0 =0 =0
Now by putting y=p, where pu, Aip , where p, is the point of expansion about

the origin in equation (3.60) and from equation (3.57) with o, =1we have

ZB,(»,){ib,(uu>J[Zc,<uu>l —Zd,(uu)lﬂ
=0 )=0 1=0

=0

—Zocjmu>’{iu1(uu>’2d,<uu>1]=[Za,(ut.y‘;d,mu))}
3=l =0 =0

10 50

(3.61)

for ie[l,(p+q+1)]

In the above equation, a ,b ,c, and d, are known parameters i.e the coefficients
in the plant and reference model transfer function and the terms in the parentheses [-]
will be known constants, hence the unknown controller parameters §, and «, can be
computed with a set of (p+g+1/) linear simultaneous algebraic equations. The
controller C;(7)is of PI, PID or any other form with an integral term, and o, =0.
Letting o, =1, equation (3.61) gets modified as

iﬁ,(u‘.)’{ib,(uu){zc,(uu)’ -Zd,(uurﬂ

=0 =0

(3.62)

q n k n k
—Za,(uu)’[za,(m)’Zd,(uu)’} =(u, ){Za,(uu)’zd,(u(.)’}
=2 =0 =0

=0 =0
for ie [1,(p+q)]

In the case of a PI controller, 3, gives the proportional gain and B, gives the
gain associated with the integral term, where B,,B,, and B, are respectively the

proportional, integral and derivative gains in the case of a PID controller. The

controller parameters can be determined by solving the (p+q+1) linear equations.

e Step 8: If the closed-loop system approximately satisfies the desired
specifications, then STOP otherwise GO TO STEP 4 after changing GA

parameters if not satisfactory.

3.5.6. Simulation results:

For illustrating the methodology of the OGDTM scheme, described above, we

consider the following plants with unsatisfactory step responses
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3.5.6.1 Simple open loop plant:

The OGDTM technique has been tested on the following simple plant model

[76] with transfer function given as:

3
T3 (3.63)
To exhibit the properties of the delta operator representation in the complex delta
domain, the above continuous-time plant transfer function is discretised incorporating
a sampler and zero order hold (ZOH) with sampling periods A = 0.1, 0.01, 0.00]
seconds respectively. It may be seen that the discrete models converges to the
corresponding continuous-time model as the sampling frequency is increased, in other
words when the sampling time is reduced. In this particular example at A = 0.001 sec.
the discrete model at eqn. (3.66) whose coefficients are very near to that of the

continuous-time plant model at eqn. (3.63) validate the uniqueness of delta operator to

represent dynamic model in a unified framework.
e Sampling time ( A) = 0.1 seconds

0.13153y +2.4664

Plant transfer function in delta domain is Py (y) = — (3.64)
y°+3.5434 y +2.4664

e Sampling time ( A) =0.01 seconds

Plant transfer function in delta domain is P;(y) = ?'014802}/ +2.9407 (3.65)
¥~ +3.9505 y +2.9407

e Sampling time ( A) = 0.001 seconds

Plant transfer function in delta domain is P;(y) = 0.001498 +2.994 (3.66)

y2 +3.995y +2.994

It is to be noted that in a continuous-time transfer function model with no
finite zeros when discretised, the order of the numerator polynomial becomes the
same as the order of the denominator polynomial thereby a strictly proper transfer
function after discretisation becomes biproper.r These additional zeros are called
sampling zeros which has been discussed in chapter-1. Therefore, in discrete-time

controller design adequate attention has to be paid to these zeros in the design
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technique. As presented in the chapter-2, a set of 2™ order reference models has been
developed in the complex delta domain for a given set of time, frequency and
complex domain specifications and for zero placing, a geometric criteria is developed

in which real zeros can be placed arbitrarily by varying the angle (p).

Following GA parameters are used to compute the OGDTMs to design a PID

controller Cs(P) =k, +k, },+ﬁ, where k,, ks and k, are proportional, derivative and
/4

integral constants.
o  Method of selection : Tournament selection method
¢ Number of tournaments: 2
e Number of generation for evolution: 30
* Population size : 31
e Crossover probability: 0.77
e Number of crossover : 2

e Mutaion probability: 0.0077

In Table 3.1, the parameters of the reference model with @, = 0.85 rad/sec. and
damping ratio & =0.7 and PID controller transfer functions are shown for different
sampling time A=0.1 sec., 0.01sec. and 0.001 sec. corresponding to the plant models
obtained at these sampling frequencies. The reference models zeros are placed by
varying the angle p and the controller parameters are computed from OGDTMs. In
Table 3.2 a comparison of the pole zero locations of the reference model and the
closed loop system for the same A, p and 4 are presented. From the table it may be
seen that the pole zero are appropriately matched. Table 3.3 shows the time domain
specifications of the reference model and the closed loop system while Table 3.4
shows the frequency domain part of the same. It may be seen from both the tables (3.3
& 3.4) that time and frequency domain specifications of the reference model and the
closed loop system with PID controller closely match. Comparison of the step
responses, pole zero plot and the frequency domain Nyquist plot of the reference
model and the closed loop system with the above PID setting are presented in figure
3.6 — 3.17 which match the response characteristics closely. This depicts the efficacy

of the proposed OGDTM for classical control design in the complex delta domain.
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Table -3.1
A p OGDTM Reference Model Controller
(1) Ma(y) Cs(v)
0.1 | +50°| 0.8768 1.2617 ¥ +0.6653 117340469367 + 4.041
Y +1.176 7 +0.6653 ' '
0.1 | +20°| 0.7168 0.7937y +0.6653 11094 +024336 7+ 1.5006
7 +1.176 7 +0.6653 ‘ '
0.1 | -20° 0.38226 ¥ + 0.6653 0.61987+0.123097 + 0.83282
03314 | 4* +1.176 7 +0.6653 '
0.1 | -40° | 0.4572 0.11368 ¥ +0.6653 0372340018427 7+ 0.62846
Y +1.176 y +0.6653 ' '
0.01 | -40° | 0.3471 0.08877y +0.7015 03417+0.02127 7 + 0.6459
¥ +1.176 ¥ +0.7015 ' '
0.001 | -40° | 0.3471 0.0849 y +0.7052 033834 0.021667 + 0.6478
7 +1.176 ¥ +0.7052 ' ' Y
Table —3.2
A p Closed Loop System : Gs(y) Zeros Poles
0.1 +50° 5 ) -18.7519 -3.7598
0.061735y° +13124 7" +34327y+9.9668 | . . o 04069 + 15268
1.0617 * + 4.8558 * +5.8992 y + 9.9668 - R
0.1 1 +20° | 0.032009 7* +0.74615 > +2.9336 y+3.7013 | -18.7519 62'77210 612+ 058954
1.032 9’ +4.2896 * +5.4001 ¥ +3.7013 -2.2793% 0.9854i ST
0L 1 -20° | 0.01619y° +0.38513 5" +1.6384 y +2.0541 | "187519 26179
1.0162 7 +3.9286 ¥* + 4.1049 y + 2.0541 -2.5179 £ 0.65271 | -0.5701 £ 0.5443;
011 -40° | 0.002424 * +0.09441 %> +1.0009 y+1.5501 | -18.7519 24889
1.0024 y° +3.6379 7 +3.4674 y+1.5501 | -18.3451,-1.8591 | -0.3807 £ 0.38541
0.01 | -40° | 0.0003148 y° +0.0676 * +1.0143 y+1.899 | -198.6 0.0287
1.0003 7 + 4.0181 * +3.955 y + 1.8995 -138.7,-2.19 -0.1387+0.0058
0.001 | -40° | 0,000324 5 +0.06536)> +1.0138 y +1.9336 | -18581 -0.0029
¥® +4.0604 y* +4.0078 y +1.9396 34,22 -0.0006 0.0006i
__
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Table -3.3
A p [TH t, /A t/A Mp % Status
plant | Ref. C-L | plant | Ref. C-L plant | Ref. C-L
Model | system Model | system Model | system
0.1 | +50° | 0.8768 | 22 26 21 15 58 123 1.88 | 25.69 | 40.06 Stable
0.1 | +20° | 0.7168 | 22 35 29 15 61 46 1.88 | 10.52 | 10.39 Stable
0.1 -20° 0.33_ 14 | 22 46 45 15 66 63 1.88 | 5.31 | 5.3159 | Stable
0.1 -40° | 0.4572 | 22 52 53 15 70 72 1.88 4.62 4.74 Stable
0.01 | 40° | 0.3471 | 221 51 518 158 700 714 1.88 4.62 4.68 Stable
0.001 | -40° | 0.3471 | 2221 ) 51092 | 5173 | 1588 | 7126 | 7256 | 1.88 4.83 4.88 Stable
Table-3.4
A P Gain Margin Phase Margin
plant Ref . Model C-L System plant Ref. Model | C-L System
0.1 +50° 28.64 o 0 o0 60.22 27.08
0.1 +40° 28.64 © 0 0 67.07 62.27
0.1 -20° 28.64 o o] ® 68.14 67.49
0.1 -40° 28.63 796.4 5] 0 65.68 65.65
0.01 -40° 268.4 ) © 0 66.14 66.19
0.001 | -40° 2668 e LY ] 66.19 66.25
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Pole Zero plot of Given Plant in delta domain
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Figure 3.6: Pole zero plot of given plant in delta domain with sampling time A=0.1 sec

Pole Zero plot of Closed loop system in delta domain
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Figure 3.7 : Pole zero plot of closed loop system in delta domain with A=0.1,
©,=0.84 rad/sec, £=0.7, p=+50° & optimal frequency point 1=0.8768
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esigned Closed loop System

Step Response of SISO Plant, Reference Model and D
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Figure 3.8: Step responses of reference model, open loop and closed loop plant
with PID controller with A=0.1 sec, ©,=0.84 rad/sec, £=0.7, p=+50° & optimal

frequency point p,=0.876

Pole Zero plot of Closed loop system in delta domain
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Figure 3.9 : Pole zero plot of closed loop system in delta domain with A=0.1,
®,=0.84 rad/sec, £E=0.7, p=+20° & optimal frequency point j1,=0.7168
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Step Response of SISO Plant, Reference Model and Designed Closed loop System
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Figure 3.10 : Step responses of reference model, open loop and closed loop plant
with PID controller with A=0.1 sec, ©,=0.84 rad/sec, £=0.7, p=+20° & optimal
frequency point p,=0.7168

Pole Zero plot of Closed loop system in delta domain
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Figure 3.11 : Pole zero plot of closed loop system in delta domain with A=0.1,
©,=0.84 rad/sec, £=0.7, p=-20° & optimal frequency point pu,=0.3314
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Step Response of SISO Plant, Reference Model and Designed Closed loop System
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Figure 3.12 : Step responses of reference model, open loop and closed loop plant

with PID controller with A=0.1 sec, ©,=0.84 rad/sec, £&=0.7, p=-20° & optimal
frequency point w,=0.3314

Pole Zero plot of Closed loop system in delta domain
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Figure 3.13 : Pole zero plot of closed loop system in delta domain with A=0.1,
©,=0.84 rad/sec, £=0.7, p=-40° & optimal frequency point p,=0.4572
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Step Response of SISO Plant, Reference Model and Designed Closed loop System

1.4 v
.......... Plant R
1o} Reference Model
----- Closed Loop systen
1 5
3 08} .
2
=
g
s 06} 8
04} 1
02} ;
O A A A L
0 50 100 150 200 250

t/delta

Figure 3.14 : Step responses of reference model, open loop and closed loop plant
with PID controller with A=0.1 sec, ©,=0.84 rad/sec, {=0.7, p=-40° & optimal
frequency point W,=0.4572

Step Response of SISO Plant, Reference Model and Designed Closed loop System
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Figure 3.15 : Step responses of reference model, open loop and closed loop plant

with PID controller with A=0.01 sec, ®,=0.84 rad/sec, £&=0.7, p=- 40° & optimal
frequency point u,=0.3471
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Step Response of SISO Plant, Reference Model and Designed Closed loop System
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Figure 3.16 : Step responses of reference model, open loop and closed loop plant
with PID controller with A=0.001 sec, ©,=0.84, £=0.7, p=- 40° & optimal
freauencv noint u,=0.3471

Nyquist plot of plant,Ref Model & Closed loop System in delta domain
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Figure 3.17 : Nyquist plots of reference model, open loop and closed loop plant
with PID controller with A=0.1 sec, ®,=0.84 rad/sec, £&=0.7, p=-40° & optimal
frequency point 1,=0.4572
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3.5.6.2 Higher order plant:
For testing the robustness of the OGDTM technique, mow we consider a sixth
order transfer function of a typical open loop helicopter engine given by [116]

P (s) = 248.04 s* +1483.339 5° +91930.803 s + 468732 .64 5 + 634950 .95 (3.67)
¢ 58 +26.24015° +1363.07 s* + 26802 .8 5" +326900 s + 859173 5 + 528055

The open loop step response of the helicopter engine transfer function given in
eqan. (3.67) is found to be oscillatory in nature. To compensate the engine, a
controller is required to be designed. In this example also the OGDTM mothedology

will be used to design a digital PID controller in the delta domain.

The helicopter engine transfer function is therefore discretised incorporating a
sampler and ZOH with sampling periods A = 0.01 & 0.1 seconds respectively and
corresponding to these sampling periods, the coefficients of second order reference
model in delta domain is computed for @, = 0.84 rad/sec and § = 0.7 by varying the

position of zero locations at different angle (p).

For computation of the OGDTMs, the following GA parameters are
considered
¢ Method of selection : Roulette wheel
e Number of generation for evolution: 35
¢ Population size : 31
* Crossover probability: 0.8
* Number of crossover : 2
e Mutaion probability: 0.008
The plant transfer function and subsequent reference model sampled with

different sampling time are given as under:

e Sampling time ( A ) = 0.01 seconds and angle (p) = - 40 degree

1.152 * +233.837 " +2559.328 %" +88308.615y" +421544.924 ¥ + 552166.985

P.(y) =
5(7) 78 +36.2 ¥° +1574.684 * +29215.76 ¥* +303273.399 2 + 761032.006 ¥ + 459207.971
(3.68)
0.087658 y+0.70146
M, (y) = Y (3.69)

¥ +1.1761 ¥+ 0.70146
Applying GA, the Optimal GDTM Point (p) is found to be 0.6303 and at this optimal

frequency point the parameters of required PID controller is computed as:
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0.54818 (3.70)

Cs(y) =0.0037587 - 0.00067514 ¥ +

e Sampling time ( A ) = 0.01 seconds and angle (p) = +20 degree
Since sampling time is same hence ps(y) will also be same as in (3.68)

however the parameters of reference model will vary since the location of zero has
been changed due to change in angle (p)

0.80512 ¥ +0.70146

. (3.71)
7> +1.1761 ¥+ 0.70146

M(y)=

Using GA, the Optimum GDTM Point (U, ) is found to be 0.8820 and
parameters of the desired PID controller is computed as

C() = 0.2899+0.0010384 y + 22

(3.72)

The unit step responses of the reference model and closed-loop system in delta

domain are shown in Figure 3.18 &3.19 respectively.

Step Response of SISO Reference Model and Designed System
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Figure 3.18: Step responses of reference model, open loop and closed loop plant
with PID controller with A=0.01 sec, ®,=0.84 rad/sec, £=0.7, p=- 40° & optimal

frequency point p=0.6303
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Step Response of SISO Reference Model and Designed System
1.4 v v r v — ~— v v
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Figure 3.19: Step responses of reference model, open loop and closed loop plant
with PID controller with A=0.01 sec, ©,=0.84 rad/sec, E=0.7, p=+20° & optimal
frequency point }1,=0.8820

¢ Sampling time (A) = 0.1 seconds and angle (p) = - 40 degree

3.035 ¥° +147.94 %" +2715.6 ° +22616.18 7% + 68142.71 y + 67413.16

P.(y) =
5(7) * +59.03 ¥° +1295.98 »* +13131.16 3 +61840.89 * +109345.43 y + 56063.95
(3.73)
Corresponding reference model is
0.11368 ¥+ 0.6653
M,(y) = 4 (3.74)

¥ +1.1761 y + 0.6653

Setting the above parameters of GA, the Optimum GDTM Point (W,) is found to be
0.5910 and we obtain the parameters of desired PID controller as

0.53276

Cs(¥)=0.037179-0.003178 y + (3.75)

The unit step responses of the reference model and closed-loop system in delta

domain are shown in Figure 3.20.

90



Chapter — 3: Controller Design for SISO Systems

Step Response of SISO Reference Model and Designed System
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Figure 3.20 : Step responses of reference model, open loop and closed loop plant
with PID controller with A=0.1 sec, ©,=0.84 rad/sec, £=0.7, p=- 40° & optimal

frequency point 1,=0.5910

e Sampling time ( A) = 0.1 seconds and angle (p) = +20 degree
Since sampling time is the same, hence p;(y) will also be the same as in

(3.73) however the parameters of reference model will change due to change in

Jocation of zero. The referemce model transfer function is given as:

0.79375 ¥ + 0.6653
y? +1.1761 y + 0.6653

M (y)= (3.76)

Using GA for given set of parameters, the Optimum GDTM Point (p,) is found to be
0.7640 and corresponding PID controller transfer function is given as

C, () = 03272 +0.0049804 y + 2248

(3.77)

The unit step responses of the reference model and closed-loop system in delta
domain are shown in Figure 3.21.

The various time and frequency domain performance specifications for the
controller parameters at different sampling time and different angle (p) are given in

Table 3.5.
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Step Response of SISO Reference Model and Designed System
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Controller : PID

Magnitude

I P e, — A B —
8 10 12 14 16 18 20
Time in sec .

Figure 3.21 : Step responses of reference model, open loop and closed loop
plant with PID controller with A=0.1 sec, ®,=0.84 rad/sec, §=0.7, p= +20° &
optimal frequency point w=0.7640

Table 3.5:

A(Sec) | Angle(p) | OGDTM () | %MP | tyA | t./A | tJA GM PM
0.01 - 40° 0.6306 0.0 456 737 940 249.9 66.49
0.01 +20° 0.8820 0.0 421 712 898 30.47 83.14
0.1 . 40° 0.5910 42.16 19 21 44 03.94 38.82
0.1 +20° 0.7640 30.92 37 84 95 03.77 22.53

3.5.6.3 Closed loop oscillatory plant :
To illustrate the methodology of the OGDTM scheme described above,
another simple continuous time plant J.Pal [76] is taken as

200

G=-+——— 3.78
¢ 25 +10s+100 (378)

The Closed loop step response of the transfer function is oscillatory and
therefore to compensate the plant it is desired to design a digital PID controller in the

delta domain. The plant TFs is therefore discretised incorporating a sampler and zero
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order hold (ZOH) with sampling periods A = 0.1sec. and corresponding plant transfer
function in delta domain is given in eqan. (3.79). The parameters of the reference
model for @, = 0.84 rad/sec and § = 0.7 & 0.5 is computed for different zero locations

i.e at different angle (p) in delta domain.

. The following GA parameters are considered to compute OGDTM (y,,) values
e Method of selection : Roulette wheel
e Number of generation for evolution: 30
* Population size : 31
¢ Crossover probability: 0.77
¢ Number of crossover : 2

e Mutaion probability: 0.0077

Applying GA with above parameters and by varying the zero locations of
reference model i.e. by changing the angel p, different OGDTMs are computed. The
resulting discrete-time plant and 2™ order reference model, PID controller and Closed
loop control system TFs, pole zero locations of closed loop system, time and

frequency domain specifications are shown in Table 3.6 - 3.9 as under:

. +75.4824
Plant transfer function in delta domain: F;(y) = 4.0926y +75.482 (3.79)
: ¥’ +7.7088 y+37.7412
Table - 3.6
®,=0.84 and £ =0.7
A P OGDTM () M;(y) Cs(y)
0.1 30° 0.9857
+ 0.91437y+0.6653 0.06163+0.028047 + 0.7645
¥ +1.176y+0.6653
0.1 | +10° 0.9528 0.6877y+0.6653 0.5338

0.01957-0.01639y +
¥’ +1.176y+0.6653

\

01 | 20° 0.9135
0.3823y+0.6653 0.03068—0.01273y + 0.3596
¥’ +1.176 y +0.6653

0.1 -40° 0.7404
0.1137 y+0.6653 0.07185 -0.01620 7+ 0.2773
¥ +1.176 Y +0.6653

@,=0.84 and £=0.5

01 | 40° 0.4651 060847402414 ,
0.06084 7 +0.241 ~0.08324+0.02657 y+ 21641
¥*+0.7002 y+0.2414
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Table -3.7

@, =0.84 and £ =0.7

Al p Closed Loop System : G;(y) Zero Location | Pole Locations
0.1 | +30° -18.4436 -3.5406
0.1148y* +1.8644y> —1.5232y+57.7031 | 0989 5. 1043i 5 5935 42,8725
. *). 1 -L. * 2. 1
1.1148y’ +9.5732y* +36.218 y + 57.7031
0.1 430° | 0.0671y® +1.1576y% +0.7071y+40.294 | -18.4436 -1.4465
1.0671y" +8.86657” +38.4483y +40.294 | 0.5969+5.67431 | -3.4312 +3.78561
0.1 -20° | 0.05208y +0.8349 9% —0.8447y +27.1427 | -18.4436 -0.9037
1.0521y" +8.5438y +36.8965y +27.1428 | 1.2058 £5.1772i | -3.6086 + 3.9403i
0.1 -40° | 0.06631y® +0.9289 4* —4.2883y+20.9301 | -18.4436 -0.7612
1.0663y* +8.6377y? +33.4529y+20.9301 | 2.2173+3.49261 | -3.6697 +3.5099i
®,=0.84 and £ = 0.5
0.1} -40° 1 0.10873y* +1.6647 > —5.6166y +12.3835 | -18.4436 .| 04386 ,
3 ; 1.5666 + 1.9290i | -4.0078 + 3.0659i
1.1087 y* +9.3735y2 +32.1295y +12.3835
Table-3.8
®, =0.84and £ =0.7
Al p e t, /A t/A Mp % Status
plant | Ref. C-L | plant} Ref. C-L plant | Ref. C-L
Model | system Model | system Model | system
0.1 +30°|09857| 4 32 15 [ 156 | 60 18 | 88.86| 1354 | 7.24 | Stable
0.1 | +10° [ 09528 4 38 23 | 156 | 62 28 | 8886 845 | 0 Stable
0.1 -20° | 09135 | 4 46 25 | 156 | 66 45 | 88.86| 531 0 Stable
0.1 ] -40° | 0.7404 4 52 25 156 70 55 88.86 | 4.62 0 Stable
®,=084and =05
0.1 -40° | 0.4651 4 87 25 156 118 95 88.86 | 4.62 0 Stable
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Table-3.9
A p Gain Margin Phase Margin
plant Ref . C-L plant Ref . C-L
Model System Model System
0.1 | +30° 1.14 0 2.65 4.53 65.58 64.66
0.1 | +40° 1.14 © 4.59 4.53 68.02 75.34
0.1 | -20° 1.14 0 5.47 4.53 68.14 78.16
0.1 | -40° 1.14 796.41 423 4.53 65.68 75.26
©,=084and £E=0.5
0.1 | -40° 1.14 0 4.66 4.53 65.89 76.60

The unit step responses of the uncompensated plant, reference model and
closed-loop system in delta domain for different values of ‘p’ are shown in Figure

3.22 to 3.26.

Step Response of SISO Plant, Reference Model and Designed Closed loop System
1.4

1.2»!5

Reference Model i
----- Closed Loop systen

©
o)

<
>

Magnitude

©
A

0.2

150 200 250
t/delta
Figure 3.22 : Step responses of reference model, open loop and closed loop plant

with PID controller with A=0.1, p=+30° & optimal frequency point j,,=0.9857
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Step Response of SISO Plant, Reference Model and Designed Closed loop System

14 v —
.......... Plant
12 i ' Reference Model |
CEE, T Closed Loop systen
NI HY S
308 .
=
c -, - .“
SN § : :
S 0.6}
0.4 1
0.2 4
O L 1 ' I 92
0 50 100 150 200 250
t/delta

Figure 3.23 : Step responses of reference model, open loop and closed loop plant with
PID controller with A=0.1, p=+10° & optimal frequency point p,=0.9528

Step Response of SISO Plant, Reference Model and Designed Closed loop System
1.4 v v . .

Reference Model

1.2 L :
i, == Closed Loop systen
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2

£ . .
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s 0.6 J
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]
I
1
O L Il L L
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t/delta

Figure 3.24 : Step responses of reference model, open loop and closed loop plant
with PID controller with A=0.1, p=-20° & optimal frequency point n,=0.9135
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Step Response of SISO Plant, Reference Model and Designed Closed loop System
14 v v

e P'ant
1.2E Reference Model -
: g i - Closed Loop systen
J
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3 0w .
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02 L : ; L
0 50 100 150 200 250

t/delta

Figure 3.25 : Step responses of reference model, open loop and closed loop plant with
PID controller with A=0.1, p=-40° & optimal frequency point u=0.7404

Step Response of SISO Plant, Reference Model and Designed Closed loop System
1.4 v v

Reference Mode! 4
Closed Loop systen

Magnitude

0 50 100 150 200 250
t/delta

Figure 3.26 : Step responses of reference model, open loop and closed loop
plant with PID controller with A=0.1, p=-40°, £=0.5 & optimal frequency point
Ur:O.465 1
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The Nyquist plot of uncompensated plant, reference model and closed-loop

system and pole zero plot in delta domain are shown in Figure 3.27

3.6

Imag(H)

R N

b - - - -y - - ==
'
)
'
P
'
1
'
1
1
1
!
'
'
'
[
'
i

e Mogel™ ™ ]

L
13

Figure 3.27 : Nyquist plot of plant, Reference model and plant with PID
controller for A=0.1, p=-40°,&=0.7 & optimal frequency point y,=0.7404

Optimal Frequency Fitting method

In Optimal frequency fitting method, two transfer functions are matched at a

number of frequency points in the low frequency range and the resultant linear

algebraic equations are solved to arrive at a optimal frequency point. This method is

based on approximate frequency fitting and the efficacy of the controller design

greatly relies on the selection of complex frequency points in the complex delta

domain and normally trial and error method is resorted to seek compromise. In the

present work, genetic algorithm is used as an optimisation tool to find the optimal

complex frequency points and hence Optimal Frequency Fitting. The computational

algorithm of the design method is numerically stable at high sampling frequency and

yields a continuous-time like controller, which depicts the advantage of delta operator

modelling in control system design.
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3.6.1 Frequency response in delta domain

The frequency response of the delta transfer function of equation 3.24 is

defined as
Gs(N| m_, = |Gsle” (3.80)
=3
e’ —1
- = [yl 3.81
¥ A | 7] (3.81)
Where

o is the frequency in rad /sec of the input sinusoidal signal
Iyl and 8 are the magnitude and phase of the transformed variable y

I Gs | and O are magnitude and phase of the transfer function Gs(y)

(e" - 1)
A

If the value of @A is very small, = jo which shows that for large

sampling frequency we get back the frequency response of the original continuous
time system. This property of the delta operator unifies both discrete and continuous

time systems.

3.6.2 Controller design :

The computation of controller parameters C;(y) using optimal frequency

fitting is not straight forward. First of all the frequency response of the open loop

reference model F;(y)is computed at optimum frequency points depending upon the
number of controller parameters that are to be evaluated. Since the plant P(y) is

known, its frequency response is also known and may be computed at the same
frequency points as those of the open loop reference model. The frequency response
of the controller may therefore be computed from those of the plant P;(y) and the

open loop reference model F;(y) at those optimum frequency points. The frequency

points of interest are computed using genetic algorithm so that the augmented system
with controller matches the steady state frequency response of the chosen reference
model closely. The computational procedure is now depicted in the following steps:

Step 1: We choose a closed-loop reference model TF, M;(y) that satisfies the

desired specifications and also select a controller transfer function as
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Bo +Biy+-+ByY’

(3.82)
Qg + 0y + -+, Y8

Cs(y) =

The unknown parameters B, & o, of the controller are to be determined and in

general p < q.
Step 2: Let the performance index PI = Z(yfef, —yfl,), where y, . and y, are
1=0

the step responses of the reference model and the closed loop over all
controlled system.

Step 3: Setting the parameters of GA (number of parameters , number of
population, crossover probability, Mutation probability etc.) and run the

GA and compute g,

Step 4 : Referring to the Figure 3.2, the closed-loop TF, may be written as

Py (v)Cy (v)
1+ Py (v)Cs (v)

The closed-loop system is to satisfy the reference model specifications, so

Gs(y) =

G;(y) should be equivalent to M;(y) in some sense. In the proposed method

we find C;(y) such that G;(y) and M;(y) have identical (p+g+2) Optimum

frequency points. i.e.,
G5 (M) yms, AM(¥)] oy, For i €[L(p+q+2)] (3.83)
Step S5: From M;(y) we find the equivalent open loop model F;(y) using

equation (3.84). Then Fy(y) along with a unity negative feedback would equal

M;(y). Thus
>
dy'
Foye M) =" (3.84)
J(y) l—'Al ( ) ! k
7 cjy'—Zdj}"
J=0 j=0

Step 6: Now the open-loop equivalent expression given in (3.85) is to be

computed as

PBOC,(NAEG) o Cyy)ate?) (3.85)

Pa(?’)
Cs(n) A X5(7) (3.86)
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Where X ;(y) is known, as both F;(y) and P;(y) are completely specified. In the
above relation, X 4(¥) cannot, in general; be used as the required controller. This
is because X 4(») may not be realizable and even if it is realizable, its order may

be too high to be practically implemented.

e Step 7: Approximating the known X () and computing

(3.87)

CsN| ey A X1

A

e o)

A

r= r=

and substituting equation (3.82) in (3.87) with o, = 1, we get,
p ; “ . . _l i . .
S Blrf e - x, e Syl |7 X, | sy
i=0 i=l
Where
Y= l}/le’e and X(;(}’):)X(;lem
Let us define the normalised frequency variable y = ®A, where © is the

angular frequency in rad/sec, therefore 8 and ¢ are functions of y. Finally separately

equating the real and the imaginary parts of equation (3.88) we get

iﬁﬂ, W) - qZ:aS W) =T(y) (3.89)

2&&@/) —42:04‘/. W) =W(y) (3.90)
where,

R ) =|7| coséi

S, =|X ;|| 7] cos(li+¢)
Uwy=|y|sin6

V.(w) =|Xs| 7| cos(éi+9)
TW) =|Xs| 7| cos(@g+¢)

W) =|X;| 7| sin(6g+9¢)
The left hand side expressions of eqns. (3.89) and (3.90) are real function of y

with unknown coefficients §; and & and T(w)and W(y) are two real known functions
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of y. Hence designating the Lh.s functions of equations (3.89) and (3.90) as

® . (v)and P,(y) respectively, relations may be written for convenience as:

@, ) =T W) (3.91)

Py(y) = W(y) (3.92)
In order to force two real functions ®,(y) and ®;(y) to be equivalent to
" their approximates -7(y) and W(y) respectively, one may equate approximate
nurﬁber of initial few terms of the corresponding Taylor series expansions about
y =0. Thus, to accomplish appropriate matching of the L.h.s. functions in eqns. (3.82)
and (3.83). with the corresponding functions on the r.h.s, the initial N derivatives

(where N is at least equal to (p+g+1)) of the corresponding functions are equated at

Y =0 to get:
dk dk
Pl W{T(w)}l,,:o (3.93)
d* d* '
W[q)’(W)] yeo =W[W(a//)]]w=0 . kelo,N-1] (3.94)

Using the results of Pal, [76] the derivative operations & () approximately matches
T(y) if

O W)ywy, = TW)|yeyps  ke[ON-1] (3.95)
where W are small positive values around ¥ =0. Similarly,

®,(Wymy = WW)pops  keON-1] (3.96)

The relations in eqns. (3.95) and (3.96) may be written in a matrix form as
Ax=b 3.97)
Here A is a 2(N) X (p +q +1) matrix given by

[ Rl.l Rl.2 Rn,,m Su Sl,q
U, U(,z U),,,+x Vu vl.q
A = R/.l Ri,z Ri.p+l S,.n Si‘q
Ul | Ul',Z Ui.p+l VI,I \/i,q
RN 1 RN.Z RN‘,H»I SN.I SN,q
LUNJ UN.2 UN.,,+| VN.! VN,,,_
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X = [ﬁo,ﬂ.,ﬂz“'ﬁ,ﬂ %,(Z.,az,'“aq-l]r (3.98)

b = [TJU'TZ'“TJ'”TN, W."'Wz"'Wk"'WN]T (3.99)
where

R, =|7|cosg

S, =| X5| 7] cos(6k +9)

U,,=|7|sing

V., =| X;s| 7| sin(ék +9)
T, =|Xs|7| cos(g+6y)
W, =|X; || sin(p+8g); and ic{l, N};jell plike(l q-1]

It is clear from eqn.(3.99) that N values of i give 2N linear algebraic equations in

the unknown parameters of the controller. For (p+q+1) number of unknowns, N is at
leas equal to (p+q+1)/2. In the case when 2N > (p+q+1), the parameters of the
controller may be determined by the least squares solution of (3.99) as:
x=(ATA)"'ATD (3.100)
The optimal frequency point searched by using genetic algorithm with the parameter
set in step-3, lie around the point ® = 0 or y =0 (y = ®A). For various systems, the

sampling period A may be different and so will be the sampling frequency ®_. But
® A /2 is always a constant and equals 7. Therefore, for matching purpose the initial
frequency points are chosen as Wy, =kmn; ke [l,N] where 1 is small positive number
and n<<1 so that y =[0,n]. for ke [1,N].

e Step 8: If the closed-loop system approximately satisfies the desired
specifications, then STOP otherwise GO TO STEP 3 and by changing GA

parameters simulation is to be done again.

In the case of a PI controller, B, gives the proportional gain and 3, gives the
gain associated with the integral term, where B,,,, and B, are respectively the

proportional, integral and derivative gains in the case of a PID controller.
3.6.4 Simulation results:

To illustrate the methodology of optimal frequency fitting technique we

consider a 3rd order continuous time plant transfer function [117] given as:
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P.(s) = (s+2) (3.101)
(s+D(+3)(s+4)

The open loop step response of the transfer function given in (3.101) is not
satisfactory therefore to satisfy the required time and frequency domain specifications
it is desired to design a digital PID controller in the delta domain. The plant TFs is
therefore discretised incorporating a sampler and zero order hold with sampling
periods A = 0.01 & 0.1 sec. respectively and corresponding 2" order reference model
in delta domain are also developed for different angles (p) considering,o)n =0.5
rad/sec, 0.84 rad/sec and & = 0.707.

The obtain the Optimum frequency points, the following GA parameters have
been considered

® Method of selection : Tournament selection method
¢ Number of tournaments: 2

* Number of generation for evolution: 30

¢ Population size : 31

¢ Crossover probability: 0.77

e Number of crossover : 2

* Mautaion probability: 0.0077

Applying genetic algorithm with above parameters the desired PID controller
are obtained for different zero locations. Details of optimal frequency points obtained
for different angles (p) and sampling frequency (A) are given in Table 3.10.

The continuous time plant given in equation (3.101) is discretized with
sampler and ZOH and given in equation (3.102). It is obserbed that the continuous
time transfer function (3.101) has only on zero however after sampling in delta
domain one more zero is inducted which is known as sampling zero. Care must be
taken while considering sampling zero which may lead the system towards non
minimum phase system. The desired reference models for the given specification
parameters stated above are computed at different sampling periods. The plant and
corresponding controller transfer functions are given as under:

For sampling time ( A ) = 0.01 sec the plant transfer function in delta domain is

0.0049 7> +0.9803 7 +1.9218
¥’ +7.8715 ¥* +18.4308 ¥ +11.5307

Ps(y)= (3.102)
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e For Angle (p) = + 20 degree, o, = 0.5 rad/sec and £ = 0.707. the ref. model TF is
0.48175 y +0.24912

M = 3.103
s(7) 72 +0.707 ¥ + 0.24912 ( )
and desired PID controller
Cy(7)=2.1268-0.34231 y + 22434 (3.104)

The unit step responses of the reference model and closed-loop system in delta

domain are shown in Figure- 3.28.

e For Angle (p) = - 40 degree, ®, = 0.5 rad/sec and £ = 0.707 the ref. model TF is

0.05784 v +(0.24912
M (y) = — 4 (3.105)
y°+0.707 y + 0.24912
and desired PID controller
Cy(7)=0.31734-0.2069 y + 2122 (3.106)

/4
The unit step responses of the reference model and closed-loop system in deita

domain are shown in Figure - 3.29 .

e For Angle (p) = - 40 degree, ®, = 0.84 rad/sec and & = 0.707 the ref. model TF is
0.09835y +0.70142

Ms(y)= 3.117
)= 18777+ 070142 (3.117)

and desired PID controller
Cy(y) = —125-3.4661e” y + 3632627 (3.118)

The unit step responses of the reference model and closed-loop system in delta

domain are shown in Fig.- 3.30.

¢ Angle (p) = +40 degree, ©, = 0.84 rad/sec and & = 0.707 the ref. model TF is
1.0894 y +0.70142

M (y)= 3.119
s(7) ¥2 +1.1877y + 0.70142 (3.119)

and desired PID controller
Cy(7)=10.9039-1.9312 y + 11713 (3.120)

The unit step responses of the reference model and closed-loop system in delta
domain are shown in Figure 3.31. The unit step responses of other values of ‘p’ and

wy, have also shown in figure 3.32-3.35.
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The various time and frequency domain performance measures with these
controllers are given in Table 3.10. From the above it is seen that the synthesised
controllers with Optimum frequency fitting yield very good low and high frequency
matching. It may further be seen that the controller gain in this design is smaller than

the critical value and hence enough stability margin is assured.

Step Response of SISO Plant, Reference Model and Designed System
1.2 v v v v v

8f 1
0 mrme- plant without control
o Reference Model
g o6r y  |----- Closed Loop systen | ]
5
g o4r 1
0 2 e e
0 -
0.2 — y . ’ y
0 5 10 15 20 25 30

Time in sec

Figure 3.28: Step responses with A = 0.01 sec, p = +20° and w,=0.5 rad/sec

Step Response of SISO Plant, Reference Model and Designed System
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Figure 3.29: Step responses of plant, reference model and closed loop plant with A
= 0.01 sec, p = -40° and ®,=0.5 rad/sec

106



Chapter — 3: Controller Design for SISO Systems

Step Response of SISO Plant, Reference Model and Designed System
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12 N T Closed Loop systen
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Figure 3.30: Step responses of plant, reference model and closed loop plant

with A =0.01 sec, p =-40° & ®,=0.84 rad/sec

Step Response of SISO Plant, Reference Model and Designed System
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Figure 3.31: Step responses of plant, reference model and closed loop plant with A =

0.01 sec, p=+40° & ,=0.84 rad/sec
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Step Response of SISO Plant, Reference Model and Designed System
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Figure 3.32: Step responses of plant, reference model and closed loop plant

with A = 0.01 sec, p =+50° & ®,=0.84 rad/sec
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Figure 3.33 : Step responses of plant, reference model and closed loop plant with

A=0.01 sec, p=-50°& ®,=0.5 rad/sec
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Step Response of SISO Plant, Reference Model and Designhed System
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Figure 3.34: Step responses of plant, reference model and closed loop plant with A

=0.1sec, p=-20° & 0,=0.5 rad/sec
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Figure 3.35: Step responses of plant, reference model and closed loop plant with A

=0.1 sec, p=+40° & ®,=0.5 rad/sec
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Table 3.10: Comparison of performance System with PID controllers

A Sec. | o, Angle (p) | Opt. Real and Imaginary | %MP /A t/A GM PM
rad/sec | in degree | freq values
points
0.01 0.5 - 40 0.1033 | -0.0005+0.3098i - 1567 | 2752 111 ©
0.01 0.5 -30 0.0482 | -0.0008+0.4042i - 1356 | 2391 | 40.4 0
0.01 0.5 +20 0.0875 | -0.0003+0.2626i - 1398 | 2464 | 75.8 0
0.01 0.5 +30 0.11 11 -0.0006+0.3334i - 1376 | 2424 543 ©
0.01 0.5 +40 0.1347 [ -0.0008+0.4042i - 1356 | 2391 40.4 o0
0.01 0.84 -40 0.0001 | -0.0000+0.0003i - 1421 | 2600 | 29.1 s
0.01 0.84 +40 0.1347 | -0.0008+0.4042i - 849 1463 18.8 | 87.1
0.1 0.84 -40 0.0246 | -0.0003+0.0738i 54.72 66 284 1.45 | 1847
0.1 0.84 +40 0.1269 | -0.0072+0.3805i 74.68 25 287 1.34 1.54
0.1 0.5 -40 0.0875 | -0.0034+0.2626i 16.31 - 114 4.04 | 5171
0.1 0.5 +20 0.0792 | -0.0029+0.2391i 38.77 48 143 279 | 3274
0.1 0.5 +40 0.1190 | -0.0064+0.3569i | 36.38 41 92 2.77 | 35.12

3.7  Conclusions:

Two new algebraic methods for design of linear time invariant discrete-time
systems in delta-operator parameterisation are reported in this chapter. These
frequency domain methods are based on the principle of approximate frequency
fitting which is a sub class of approximate model matching and uses a viable
alternative of the classical Pade’ approximation. The desired performance is converted
into a transfer function model, which is matched with the augmented system to have
identical optimal frequency point. This method is effectively applied to different SISO
processes. This is a once-through design method without any trial-and-error
procedure. With a minimum amount of effort, this method gives practically realizable
controllers conforming to desired industrial specifications. The methods optimal
generalized delta time moment matching and optimum frequency fitting are used to
obtain PI, PID or higher order controller structures. This ensures that the steady state
values of the output of the closed-loop system and the reference model are close to
each other. On completion of one design—simulation run, the designer understanding
of the possible improvement of system dynamics works and the available trade-offs
between the desired specifications and controller complexity become more apparent.
The computational work consists of solving only linear equations to determine the

controller parameters and obtaining system responses to a unit step input.
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Chapter 4
Controller Design for MIMO Systems

4.1  Introduction:

In recent years, considerable research efforts have been concentrated on
development of time domain methods for controller design based on state-space
description. Although the state-space methods are computationally elegant, they
require measurement of all the states leading to increased cost for control system
design. In addition, if all the states are not available for measurement, an observer is
also required to be designed to estimate the states. This complicates the structure of
the control system and reduces the reliability of the overall system. In an alternative
approach in this chapter, delta operator formulated simple lower-order dynamic
controller design methods are developed that use only the available outputs for
feedback purpose.

From a practical point of view, methods using only output feedback are
normally preferred. A drawback of pole-placement techniques is that no zero-
placement is done explicitly, while the transient response of a system depends very

much on the positions of the poles as well as the zeros.

R(y) Controller Plant Y(y)
> Cs(y) > Ps(y) >

Figure: 4.1 Standard unity negative feedback system

R(¥) Y(¥)

Figure: 4.2 Reference Model for desired closed-loop control system
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In model-matching type of controller design technique, a controller is designed
such that the closed loop system behaviour follows that of a reference model. The
reference model is chosen to exhibit the desired transient and steady state responses.
Methods based on exact model matching often yield good matching at the cost of
controller complexity. The resultant controllers may be of higher order and may
sometimes be unrealizable.

In this chapter two methods are proposed for designing cascade rational
controllers for linear discrete-time multivariable industrial systems in delta domain
using output feedback. The methods are based on the principle of approximate model-
matching as opposed to exact model-matching design procedures. In this chapter
SISO design methods of chapter-3 are extended to multivariable systems. The design
methods are applicable to unstable/or non-minimum phase systems.

The objective of the MIMO controller design methods based on the concept of
Aproximate Model Matching (AMM), is to find the controller transfer function Cs(y)
as shown in Figure 4.1, such that the closed loop system has satisfactory stability
properties and the transient response to a specified demand vector r(t) follows closely
that of the reference model transfer function matrix M;(y) of Figure 4.2. The precise
design objectives and the degree of interaction permissible will, however, vary from
application to application. The important general properties considered in the present
work are i

e  Stability

*  Closed-loop transient performance

e  Steady-state response and steady-state errors

¢ Interaction minimization between various input-output loops

To achieve the above objectives in controller design, the methodology
developed in chapter-3 and extensively used for SISO controller design is extended
here to MIMO systems. In the design methods developed in this chapter we adopt

similar procedures.

4.2  Problem definition:
Considering the standard MIMO unity negative feedback configuration of the
multivariable system given in Figure 4.1, let the multi-input multi-output transfer

function model of the plant to be controlled be P;(y),., and the cascade controller be

pxm

Cs5(?) pun - The closed-loop transfer function G;(y) is then given by
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Gs(7) =1 + Ps(1)Cs(N] P5(1)C5(¥) 4.1
Let the desired plant specifications be satisfied by a closed-loop reference
model transfer function matrix Ms(y). Usually a low interaction level is desired in

multivariable control systems such that the response of y(t) to the demand

r.(t) = ¥"'R () should satisfy the standard classical requirements of suitable rise time,

overshoot, settling time etc., and y,(z), j # i should remain small. The off-diagonal
terms in Mj;(y) are therefore assumed to have negligible contribution to the time and
frequency responses and are ideally chosen as zero. Hence we assume

Ms(y) = diag{ M;,,(y)}; i€ [l p] (4.2)
such that Msy(y) = O for i #j. The diagonal entries in Ms(y) are chosen to satisfy
specifications like damping factor & peak overshoot Mp, time for peak overshoot #,

gain margin, phase margin etc. The AMM problem is mathematically equivalent to
Gs(y) = Ms(7) (4.3)

The problem is now to find the controller transfer function Cs(y),., . such that

pm?
the outputs of the system in Figure 4.1 i.e. the cascaded controller with plant under
unity feedback match those of the reference closed-loop model. Let the plant and the
desired controller be square transfer function matrices with same number of inputs

and outputs i.e. p = m, such that

Gs;(») = [Gs,, (V] Ljell, p] (4.4)
A cascade controller transfer function matrix Cs(y) is assumed of the form [13]
Cs() = [Cs,,, (N i,jell pl 4.5)

where

ﬂ0_11+ﬂl,;/ y+”'+ﬂr,u 7,
(24

(4.6)
0|J+allj?/+..'+yq

Cs,, (N =

where r is the order of each scalar transfer function of Cs(y) and £'s and a's are the
(2r +1) unknown parameters of each entry (SISO transfer function) in the transfer
function matrix Cs(y).

In the design method we use an equivalent open-loop reference model
specification transfer function model Fs(y) that is derived from the given desired

closed-loop reference model M;(y) so that

Fs(0) =1 =M1 Ms() 4.7)
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therefore the approximate model matching problem is now reduced to
L5 (oo LCsNY oy SLFND 14wy (4.8)
We now extend the SISO methods of Optimal GDTM and Optimal frequency

fitting method developed in Chapter-3 to obtain the unknown parameters of the

transfer function model Cs(y), for multivariable systems.

43 Optimal GDTM matching method:

The Optimal GDTM technique has been discussed in chapter-3 for controller
design of SISO systems. In this section we discuss controller design of MIMO
systems using the Optimal GDTM technique. The design methodology is based on
Delta Time Moment (DTM) technique however it is further generalized and optimized
by using this proposed method. The DTM technique referred by P.Sarkar et.al.[13-14]
does not permit easy computation of the DTM series of F3(y), which is obtained
recursively from M;(y). On the contrary, the Optimal GDTM method is straight
forward and avoids the problems encountered in computation of DTMs. The concept
of OGDTM introduced in chapter-3 is directly used to compute the coefficients of the
element transfer functions of the controller. As discuss in Section 4.2, the aproximate

model matching technique using OGDTM is mathematically equivalent to

Bs(NCs(p)

yeun = F5(¥) (4.9)

Y=H

where p, = pi, 1€ [0, o ]and p is a small positive number such that p, << 1. The

above relation can be written as

CsPop =B Fs(D,-., (4.10)
Now defining the following structures for MIMO representation, we can write
S fe s fa e Fom
FEYR R T CYRN fom
F=F5(y)‘y=ﬂ“= S : (4.11)
_f;;l for fos fpa e f;m~
P P Pl Pl Pin
Py Pn Py Pa e P2m
P=P5(7)|7=M,: oo 5 (4.12)
_p;" p"172 p;ﬂ p’p4 ...... p;m_
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051 =[BT Fs(D) |, (4.13)
and
qlil 9, qu3 Q:a ------ %im
g @ @ G e Dom
Q=0;(;y=| ¢ + i : (4.14)
(T Gy s e oo Ty |
[y M M M
dll dl2 dl3 dl4 dlm
Py By My M Pam.
le d22 d23 24 d2m
C,(py=| ¢+ ¢+ i : (4.15)
Mo o2 My My Mo
.dpll de dpl3 dp4 dpm

and the (j, k)™ elements of Cs(y) is

ﬂo‘j,\. +181,jk }/+"'+ﬂr,1k 7r 3 njk(y)

Ay, O Yty d, (7))

(4.16)

We assume a square plant transfer function Pg(y) and Controller transfer
function Cs(y) such that p = m. Further we consider that the denominator polynomials
of the elements of the controller transfer function are monic (or = 1). In order to
satisfy the relation in equation (4.10), from equations (4.14) and (4.15) we can write,

' n,k(y)
d,

Equation (4.17) has (2r+1) unknowns for each (j, k). Therefore, substituting y = w;,

i

|y=p,, =q_/k ' (417)

ie [1,2r+ 1] for p<< 1, areal positive number (frequency), we obtain (2r+1) linear

algebraic equations, which can be written in closed form as under

{[ IBO,jk +ﬁ|,,k 7+"'+:Br-|,jk 7,_1 +18r,jk7' ]= Qj'k[ aO,jk +a|',k v+t ar-l_jk 7,_1 + }/]} y=t,
(4.18)
Defining,

W=l #o PV~ — ¥ = =a s (@19)

115



Chapter — 4: Controller Design for MIMO Systems
o
V=97 ‘7= . (4.20)

Zy =B o By By Bon s G Oy 7., (42D

we can now write from equations (4.19),(4.20) and (4.21)

WLy = Vi (4.22)
thenfori=1,2,3,........ ,2r + 1 we can write,
Z, =W, 1"V, (4.23)
where
"]
Jk
w2
%
W =1 (4.24)
2r+l.
T it 2ren)
and
v,
2
v, =| "
kT 4.25)
2r
LYk

Jrsixp

thus equation (4.24 & 4.25) gives the parameters of (j, k)™ transfer function of the
controller transfer function. Complete transfer function can be obtained for j € [1, p]
and k € [1, m]. The advantage of this method is evident from equation (4.13), where
the polynomial matrix inversion is avoided by substituting y = p,, . where i, is a small
positive number less than one, which ensures better low frequency matching.
Therefore, the steady-state responses of the closed-loop system are better matched

with those of the reference model.
4.4 Simulation results:

The OGDTM method developed was tested on the systems as described

below:
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plant:

We consider here an example to demonstrate the application of OGDTM

method for controller design [53]. The Optimal frequency points considered are p, =

wed, i1, 2).

F.(s)=

1-s 2-s

(1+s5)?  (A+9)°

1-3s -5
13(1+5)°  (+s)°

Now the continuous plant transfer function is sampled with ZOH with

sampling period A = 0.1 second and corresponding plant TF in delta domain with

common denominator is given as:

~0.8580% +0.9056

-0.8113y+1.8112

7’ +1.9033¥+0.9056  ¥* +1.9033y+0.9056

Ps(y) =

~0.88927+0.3019

-0.85807+0.9056

¥’ +1.90337+0.9056 * +1.9033y+0.9056

The 2™ order reference model with w,= 0.84 rad/sec, damping factor £=0.7

and angle (p) = - 40° is

0.11368 ¥+ 0.6653

¥ +1.176 ¥+ 0.6653

M (y)=

0

0.11368 ¥ +0.6653

¥’ +1.176 ¥+ 0.6653

Following GA parameters are used to compute the OGDTMs for a PI

controller ¢ (y)= k, +ﬁ, where K; and k; are proportional and integral constants.
/4

e Method of selection : Tournament selection method

¢ Number of generation for evolution: 35

Number of tournaments: 2

¢ Population size : 32

e Crossover probability: 0.85

e Number of crossover : 2

¢ Mutaion probability: 0.0085
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Using above GA parameters the optimal frequency point p; is computed for

different locations of zeros of reference model by changing the values of angle ‘p’.

The proposed design method yields the following PI controller for OGDTM point (uy
0.1269 .

i ]
—1.5444 + 1.8945 1.0646 — 377170
: Y
Cs(n) =
1.8642 - 0.6396 —1.5444 + 1.8945
L Vo

The unit step responses of the uncontrolled plant, reference model and the
augmented plant with controller are given in figures 4.3 to 4.6 and corresponding
control efforts are shown in figure 4.7. It may be seen from the figures that the unit
step responses of the closed-loop system are close to those of the reference model. It
may also be seen that the off diagonal elements of the designed multivariable Pl
controller are not zeros, this is because of the plant transfer function including

interaction terms has been taken into consideration in the design process.

Step Response of MIMO Systion with Plcontroller (Y11)

o S o ¢ 5 o 5 S 5 4 8 R > 8 4 ¢ ®

Magnitude

mrmeme Plant with Unity feed back
Reference Model
----- Designed Closed-Loop System

50 100 150 200 250 300
t/delta

Figure 4.3: Step responses of uncontrolled plant, reference model and closed loop system
with PI controller using OGTM, output y11, A=0.1 sec and p = - 40°
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N
.......... Plant
15¢ .- Plant with Unity feed back .
Reference Model
---- Designed Closed-Loop System
o 1f 1
© :
= :
o :
g i
= 05 h : 4
AN
: i M = = et s -
H ]
Podeey
0 \;r’_v. _______
X
!
[
N
_0.5 A A L L L
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t/delta

Figure 4.4: Step responses of uncontrolled plant, reference model and closed loop system
with PI controller using OGTM, output y12, A =0.1 sec and p = - 40°

Step Response of MIMO Systion with Pl controller (Y21)

1.2 v
.......... Plant
1} '!'\.‘ mememe Plant with Unity feed back .
i Reference Model
osb iy = Designed Closed-Loop System -
!.' l'\_ I’ "\' PRL L S, T e O o ¢
¥i -
o 0BF i N .
o " N
2 !
e 04! 1
)] I sesersessesseiserssstesitesnta et R e e VR e e e s ra e e e at e sentre et
g i e
0.2} ; |
i
?‘\ : Y
o ==
l' ‘:‘.\-’/
02f § :
_0'4 'l ' I A L
50 100 150 200 250 300
t/delta

Figure 4.5: Step responses of uncontrolled plant, reference model and closed loop system
with PI controller using OGTM, output y21, A = 0.1 sec and p = - 40°
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Figure 4.6: Step responses of uncontrolled plant, reference model and closed loop system
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1.2

Step Response of MIMO Systion with Plcontroller (Y22)

Plant with Unity feed back
Reference Model
Designed Closed-Loop System

100

150 200 250
t/delta

300

with PI controller using OGTM, output y22, A =0.1 sec and p = - 40°

Control Effort ut 1

Control Effort 112

4 2
3 15
1
2
3 8 05
2 2
c 1 c
g g o
= =
[
-05
-1 R
2 . s . . s 15 A " s N s
0 50 100 150 200 250 300 0 50 100 150 200 250 300
t/delta Vdelta
Control Effort u21 Control Effort u22
2 v v v 4 v -
3
- 2
@ @
T . -
2 2
€ c 1
=] [=:]
[ (]
b3 =
- ot
-1 e
R . . . : . 2 - " s N N
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vdelta vdelta

Figure 4.7: Control Efforts Ul1, U12, U21, U22 with PI controller using OGTM, A = 0.1 sec

and p =-40°
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The 2™ order reference model with w,= 0.84 rad/sec, damping factor £=0.7
and angle (p) = +40° is

1.0623 ¥+ 0.6653
+1.176 ¥+0.6653
My (y)= 72 4
0 1.0623y +0.6653
¥ +1.176 y+0.6653

Using GA with the parameter stated above, the OGDTM Point (W, ) is found to be

0.4258 and we obtain the desired PI controller as

~83160+ 27221 77996175386
y y
Cs(n) =
s 7060 29611 oo 87921

The unit step responses of the reference model and the augmented plant with
controller are given in figures 4.8 to 4.10 and control efforts are shown in figure 4.11
In this case also the unit step responses Y11 and Y22 of the designed closed-loop
system are close to those of the reference model with initial oscillation. It may also be
seen that the off diagonal elements of the designed multivariable PI controller are not
zeros, this is because of the plant transfer function including interaction terms has

been taken into consideration in the design process.

Step Response of MIMO Systion with Plcontroller (Y1)

Rkt Plant with Unity feed back
Reference Model |
----- Designed Closed-Loop System

Magnitude

100 150 200 250 300
vdelta

Figure 4.8: Step responses of uncontrolled plant, reference model and closed loop
system with PI controller using OGTM, output y11, A= 0.1 sec and p = +40°
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Figure 4.9: Step responses of uncontrolled plant, reference model and closed loop
system with PI controller using OGTM, output y12, y21, A= 0.1 sec and p = +40°
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Step Response of MIMO Systion with Pl controller (Y22)
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Figure 4.10: Step responses of uncontrolled plant, reference model and closed loop
system with PI controller using OGTM, output y22, A = 0.1 sec and p = +40°
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Figure 4.11: Control Efforts U11, U12, U21, U22 with PI controller using OGTM, A =0.1 sec
and p = +40°

123



Chapter — 4: Controller Design for MIMO Systems

4.4.2 Pressurized flow box:
To test the robustness of the OGDTM technique developed, we consider the
following open loop transfer function matrix of a pressurised flow box [56] to

demonstrate controller design.

0.0336 1.03s
s+0.395 s> +0.3955 +1.26¢ — 04
F.(s)=
9.66e~045+0.117¢-04 -0.01141

s2+0.3955+1.26¢-04 s2+0.39s+1.26e—04

Now sampling the above plant with sampler with sampling period A = 0.1 second and

ZOH, we get the corresponding plant TF in delta domain with common denominator

as:

0.0329 9* +0.0128y + 4 07E — 06 0.0009 7> +0.0004% + 4.4431¢ — 06
¥ +0.7746 > +0.1501y+4.7849E ~05 5> +0.7746 %% +0.1501y + 4.7849E — 05
P(y)=

7(1.0099y + 0.3911) —0.0006 7* —0.0114y —0.0043
¥ +0.7746 > +0.1501y + 4.7849E ~05 5> +0.7746 9> +0.1501y + 4.7849E — 05

The 2™ order reference model with ©,= 0.84 rad/sec, damping factor £=0.7 and angle
p = -40° is

0.1137 y+0.6653

¥* +1.176 ¥+0.6653
Ms(y)=

0.1137 ¥+0.6653
¥ +1.176 y+0.6653

0

Following GA parameters are used to compute the OGDTMs for a PI

controller
¢ Method of selection : Roulette wheel
e Number of generation for evolution: 30
e Population size : 31
e Crossover probability: 0.77
¢ Number of crossover : 2

¢ Mutaion probability: 0.0077
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the OGDTM point , is computed for angle p =-40° with above GA parameters and

found to be 0.561 and corresponding PI controller is obtained as:

-4.3779+ 7.1192 571.7276 + 2.6673
Y Y
Cs(n) =
0.0098
0.5317+ )
¥ ~18.6362— 0.0935
L Yoo

The unit step responses of the reference model and the augmented plant with
controller are given in figures 4.12 to 4.15 and corresponding control efforts are
shown in figure 4.16. It may be seen from the figures that the unit step responses of
the closed-loop system are close to those of the reference model. It may also be seen
that the off diagonal elements of the designed multivariable PI controller are not
zeros, this is because of the plant transfer function including interaction terms has

been taken into consideration in the design process.

Step Response of MIMO Systion with Pl controller (Y11)

1.4

m—- Plant with Unity feed back i
Reference Model
----- Designed Closed-Loop System

1.2}

o
©

Magnitude
o
2]

e
»

0.2

200 300 400 500
tdelta

Figure 4.12: Step responses of uncontrolled plant, reference model and closed loop
system with PI controller using OGTM, output y11, A = 0.1 sec and p = -40°
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Figure 4.13: Step responses of uncontrolled plant, reference model and closed loop
system with PI controller using OGTM, output y12, A = 0.1 sec and p = -40°

Step Response of MIMO Systion with Plcontroller (Y21)
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Figure 4.14: Step responses of uncontrolled plant, reference model and closed loop
system with PI controller using OGTM, output y21, A= 0.1 sec and p = -40°
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Step Response of MIMO Systion with Pl controller (Y22)
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Figure 4.15: Step responses of uncontrolled plant, reference model and closed loop
system with PI controller using OGTM, output y22, A = 0.1 sec and p = -40°
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Figure 4.16: Control Efforts U11, U12, U21, U22 with PI controller using OGTM, A= 0.1 sec
and p = -40°
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4.4.3 Gas fired furnace:

Now we consider another MIMO plant of a gas fired furnace [118] to test the
OGDTM methodology. The four input and four output furnace 1s described by the

following transfer function matrix.

1 07 03 0.2 |
4s+1 Ss+1 Ss+1  Ss+1
0.6 1 04 0.35
Ss+1 4s+1 S5s+1  Ss+1
0.35 04 1 0.6
Ss+1 S5s+1 4s+1  Ss+1
02 0.3 0.7 0.1
LSs+! Ss+1 Ss+1  4s+1]

P(s)=

the furnace transfer function is now discritized with sampler ZOH with sampling
period A = 0.1 second and corresponding plant TF in delta domain with common

denominator 1s obtained as:

[ 02469y +0 0489 01386y + 0 0342 00594y +0 0147 0 0396y + 0 0098

7' + 044497 +0 0489 ¥ +04449y+0 0489 ¥ + 044497+ 00489 5 +0 4449y +0 0489
0 1188y + 00293 0 2469y + 0 0489 00792y +0 0196 00693y +00171

¥ +04449y+ 00489 ¥ +04449y+00489 ¥ +04449y+0 0489 5 +0 4449y +0 0489
00693y +00171 007927+ 00196 02469y + 0 0489 0 1188y +0 0293

7 +044497+00489 ¥ +04449y+0 0489 »* +04449y+0 0489 »° +0 4449y + 0 0489
00396y + 0 0098 00594y +0 0147 0 1386y + 0 0342 02469y + 0 0489

| 7° +04449y+ 00489 »* +04449y+00489 »* +04449y+00489 »* +0 4449y +0 0489 |

Fi(y)=

The reference model with @,= 0.84 rad/sec, £=0.7 and angle (p) = - 40° 1s obtained as:

0.3234 y+0.2179 ]

M =dia
s(N=d g{yz +0.88817+0.2179

To obtain the OGDTM Point (W, ), following GA parameters are considered
e Method of selection : Tournament selection method
¢ Number of tournaments: 2
¢ Number of generation for evolution: 30
e  Population size : 31
e  Crossover probability: 0.80
e  Number of crossover : 2

e Mutaion probability: 0.0080
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and after simulation we got the OGDTM point 0.1505 and corresponding PI controller

coefficients as:

1840942695 (047 043 g 559 D05 55y, 00562
4 14 ¥

_07690- 03594 | gogg . 07057 0974400906 .. 01182

Cs(n) = ! 4 4 y
)=
Y Y 4
00332+ 2062 1539 00984 g4y 04443 g9, 06595
L Y 14 y y

The unit step responses of the reference model and the augmented plant with
controller are given in figures 4.17 to 4.18. As in earlier cases, it may be seen from the
figures 4.17 & 4.18 that the unit step responses of the closed-loop system are close to
those of the reference model which proves the robustness of the OGDTM
methodology. The off diagonal elements of the designed multivariable PI controller
are not zeros initially, this is because of the plant transfer function including
interaction terms has been taken into consideration in the design process however its

effect becomes zero as time 1s increased.
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4.5  Optimal Frequency Fitting method:

The optimal frequency fitting design method of SISO systems described in
Chapter 3 has already been successfully tested. Here, in this section the same
methodology is applies for controller design of MIMO processes. Let us assume the
transfer function matrices of the plant and cascaded controller be Ps(y) and Cs(y)
respectively. Therefore the closed-loop transfer function matrix Gs(y) can is given in

terms of P5(y) and Cs(Y) as:

Gs(y)=[I + Ps(¥) Cs(NY" Ps(¥) C5(p) (4.26)

The performance specifications of the closed-loop control system are translated into a

reference transfer matrix Ms(y), which is of the form
Ms(y) = diag{ M, (»)};  ie [l p] (4.27)

Here p is the number of inputs or outputs and the off-diagonal entries Ms(y), are
chosen as 0 (zero) i.e. we try to enforce zero coupling. The equivalent open loop
reference model transfer function matrix is Fs(Y), such that F(y), with unity negative

feedback becomes equal to M5(y). Thus,

Ms(7) =01+ F(N1 Fs(7) (4.28)

hence Fs(7) = M) 1= M ()] (4.29)

For the closed-loop system Gs(7y) to match the time and frequency responses of
the closed-loop reference model Mj(y), they are to be equivalent in some sense.
Alternatively, it may be said that the open-loop system Ps(y) Cs(y) should be

equivalent to open-loop reference model Fs(Y) i.e.,

Fs(7) Cs() = F5(7) (4.30)
or Cs(1) = BN F5(y)
or CsN=Xs(7)
then [Cs,, (M =[X5, (D], i,jell, p]

where X3(Y), is an entirely known transfer function matrix, as both Ps(y), and Fs(Y),
are completely specified. For SISO controller design problem discussed in section 3.6

of chapter-3, it was seen that the problem of designing the controller Cs(y), where

132



Chapter — 4: Controller Design for MIMO Systems
Cs(y), with pre-specified order and structure (Equation 3.91) was made to
approximate the known Xj;(y). Here for MIMO controller design we assume the
structure of each element of the transfer function model Cs(Y), as a scalar controller
transfer function of order r given by:

ﬂ0,11+ﬂ|,1j}/+“.+ r,lj?/r

Cs(y) =
d A Y+

431)

where #'s and a's are the (2r+/) unknown parameters of each scalar transfer function

of Cs(y). Then, using the AFF technique which is mathematically equivalent to

Cs,, (¥ (4.32)

P é X5.u(}/) e/ ]
= ye=——

A

From eqn.(4.32); we have,

-1
S B e =X, | Sa, |7l e 2| X, | 7] €0 @33)
1=0 1=0

where
Y= |7|e’0 " and X&,j(}’)=|X&,jle”’

Let us define y = A, therefore, 6 and ¢ are functions of y. Finally equating the real

and imaginary parts of eqn.(4.33) separately, we get

Zﬂ:..,R/.,,(W)—ia,,.,S,,,,(l//) =T ,(¥) (4.34)
1=0 =0
r r=1
2B, =YV, e =W, @) (4.35)
=0 =0

Where
R, )= }’|’ cos@l
Si, W) =|X5,, | 7| cos(@1+9)
U,,,w) =]y|sin61
V., =X 7}' cos(81 + @)
T, ) =|X;,,| 7| cos(@q+9)

W, W) =|X;s,,| 7| sin(6g+9)
The left hand side (1.h.s) expressions of (4.34) and (4.35) are real functions of y with

unknown coefficients £, and a,; , Ty(y) and Wy(y) are also two real (known)
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functions of y. Hence designating the Lh.s. functions as ®g,(y) and <D[.,.J(\|/)

respectively, relations (4.34) and (4.35) may be written for convenience as :
q)/e,:,('l/) = T,, (w) (4.36)
®,, W) =W, ) (4.37)

In order to force two real functions @, (v) and @, () to be equivalent with their

1y
approximates T, (w) and W, () respectively, one may equate approximate number

of initial few terms of the corresponding Taylor series expansions about y = 0. Thus,
to accomplish appropriate matching of the L.h.s. functions in eqns. (4.36) and (4.37)
with the corresponding functions on the r.h.s, the initial N derivatives (where N is at
least equal to r) of the corresponding functions are equated at y =0 to give

k

d
- = d—wk[T,,(w)]lw (4.38)

dk
E/'k_[q)k,lj (W)]

d*
d_wT[(DI,,,(W)]

dk
w=o=d—wr[w,<w>]lw=o ; kelo,N-1]

Using the results of Pal [76] and Milne-Thompson [115], the derivative operations

@, ,,(w) approximately matches T, (y)if
O,y = T, W)yes  kelON-1] (4.39)
where ) are small positive values around y =0. Similarly,

(Dl,,,(‘//)

v = W,,(z//)}wwk; kel[0,N-1] (4.40)
The refations in eqns. (4.39) and (4.40) may be written in a matrix form as

/%, =b, ' (4.45)
Here A4, is a 2(N) x (2r + 1) matrix given by

.
le,l,l le,l,q+l _Sl/,l,l —-Slj,l,q
Ul_/,l,l U:j,l,q+| - Vlj,l,] - I/1j,l,q
. M. . .
. [ . . .
A _ K/,k,l le,k,q+| _Srj,k,l _Sl_/,k,q
1) :
Ulj,k,l Ul/,k,q+| - l'/r‘/,k,l _[/l/,k,q
R:j,N,l le,N,q+I _Slj,N,l —S’I,N-‘I
_Ulj 1 Ulj,N,qH _V:_/ N _I/l/,N,q_
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%, =L6,j,o, B Biia B Cisor @ Gyt |7 (446)
[Ul T T Ton W.'j,n"'ij,z"‘Wj,k“'WN]T (4.47)
where '
R =|}'|’ cos@l
S em =| X 5| 7|" cos(@m+)
U,ji=]7[ sin6l
Viiew =| Xs| 7| sin(@m+g)
T,j',‘ =|X5||7|'cos(¢+8r)
W, =| X | 7[ sin(g + &);
and ie[l, pl;je[l, p]; are inputs and outputs; k € [1, N] are the number f
expansion points; 1 € [0, r] and m € [0, 2r+1]. It is clear from eqn.(4.45) that N

values of i give 2N linear algebraic equations in the unknown parameters of the

controller. For (2r + 1) number of unknowns.. In the case when 2N > (2r + 1), the
parameters of the controller may be determined by the least squares solution of (4.45)
as:

= (A, A,)" AT b, (4.48)

The optimal frequency points searched by using genetic algorithms are
confined to lie in a small zone around the point ® = 0 or y =0 (¢ = wA). In effect, the
matching is done for the effective range of the frequency response in discrete domain
1e.,w=[0,w /2] or y=[0,n]. For various systems, the sampling period A may be
different and so will be the sampling frequency ®,. But wsA/2 is always a constant
and equals 7. Therefore, for matching purpose the frequency points are chosen as
v, =kn; ke[l,N] where 1 is small positive number and 1 << 1 so that ¥, =[0, 7).

for ke [I,N].
4.6 Simulation results:

The optimal frequency fitting method as tested on plants as described in the

following sections.
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4.6.1 Simple multivariable plant:
We consider here the multivariable plant given in section 4.4.1 to demonstrate
the application of optimal frequency fitting method of controller design. The

plant P.(s) and corresponding plant TF with common denominator in delta domain
with sampling period A = 0.1 second is same as given in section 4.4.1.

The 2™ order reference model with ©,= 0.84 rad/sec, £=0.7 and angle (p)=-45°is

0.0227y +0.6653
¥’ +1.176 ¥ +0.6653

M =
+(7) 0.0227y +0.6653

0
7 +1.176 +0.6653

To methodology was tested with the following GA parameters

¢ Method of selection : Roulette wheel

e Number of generation for evolution: 30

¢ Population size : 31

¢ Crossover probability: 0.77

¢ Number of crossover : 2

¢ Mutaion probability: 0.0077
and using above GA parameters, the real and imaginary parts of optimal frequency
point found to be -0.0220+j0.6623 at b, = 0.3314 and we obtain the following PI

controller transfer function matrix.

—1.4868+ 18507 1.1701- 3.6399
/4
Cs(n=
1.6980 — 0.6579 —1.4868 + 18507
14 14

The unit step responses of the reference model and the augmented plant with
controller are given in figures 4.19 to 4.22 and corresponding control efforts are
shown in figure 4.23. It may be seen from the figures that the unit step responses of
the closed-loop system are close to those of the reference model and the off diagonal
elements of the designed multivariable PI controller are not zeros, this is because of
the plant transfer function including interaction terms has been taken into

consideration in the design process.
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Figure 4.19: Step responses of plant, reference model and closed loop system with PI
controller using OFF method, output y11, A=0.1 sec and p =-45°
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Figure 4.20: Step responses of plant, reference model and closed loop system with
PI controller using OFF method, output y12, A = 0.1 sec and p = -45°
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Step Response of MIMO Systion with Pl controller (Y21)
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Figure 4.21: Step responses of plant, reference model and closed loop system with PI
controller using OFF method, output y21, A = 0.1 sec and p = -45°
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Step Response of MIMO Systion with Pl controller (Y22)
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Figure 4.22: Step responses of plant, reference model and closed loop system with
PI controller using OFF method, output y22, A= 0.1 sec and p =-45°
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Figure 4.23: Control Efforts U11, U12, U21, U22 with PI controller using OFF method, A = 0.1
sec and p = -45°

4.6.2 Gas turbine:

Next we consider a gas turbine [119] to test the controller design using optimal
frequency fitting method. The uncontrolled plant is described by the transfer function
matrix as :

14.965° +1521.4325 +2543.2 95150s® +1132094.75 + 1805947

s*+113.2255° +1357.275s52 +3502.755 + 2525 5% +113.2255> +1357.275s> +3502.755 + 2525
P.(s)=

85.25> +8642.668s +12268.8 12400s* +1492588s + 2525880
s*+113.2255" +1357.2755% +3502.755 + 2525  s* +113.2255° +1357.2755% +3502.755 + 2525

The plant is sampled with sampler and zero order hold with sampling period A = 0.1

second and corresponding plant TF in delta domain with common denominator is
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109% +111y+140 810y +15400 7* + 80540y + 97370
7 419299 +113.879% +223.01y+136 14  »* +19.29%° +113.879* +223 01y +136.14

PJ(7)=
807" + 600y + 660 10607 +20320%* + 107760 +136190
Y 419297 +113.877° +223.01y+136 14 y* +19.29%° +113.87y +223.01y+136.14

The reference model with w,= 0.84 rad/sec, £=0.7 and angle p =-40°is

0.1137 y+0.6653
¥ +1.176 y+0.6653

M =
s 0.1137 7+0.6653

0
¥ +1.176 ¥ +0.6653

Following GA parameters are considered to design PI controller using OFF method

e  Method of selection : Tournament selection method

e  Number of tournaments: 2

*  Number of generation for evolution: 35

*  Population size : 31

¢  Crossover probability: 0.85

e Number of crossover : 2

e  Mutaion probability: 0.0085
Using above GA parameters, the real and imaginary frequency point are found to be
-0.0311+j0.7878 and w,, 0.3943 and we obtain the following PI controller controller

transfer function matrix.

0.0120— 0.2339 —0.0034 + 0.1685
/4 14
Cs()=
0.0001+ 0.0012 0.0001- 0.0002
i Y r

The unit step responses of uncontrolled plant is given in figure 4.24 and
corresponding step responses of the reference model and the augmented plant with
controller are given in figures 4.25 to 4.28 along with the control effort in figure 4.29 .

The unit step responses of the closed-loop system are close to those of the reference

model.
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Figure 4.24: Step responses of pll, pl12, p21, p22, A= 0.1 sec and p = -40°
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Figure 4.25: Step responses of reference model and closed loop system with PI controller
using OFF method, output y11, A= 0.1 sec and p = -40°
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Step Response of MIMO Systion with Pl controller (Y12)
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Flgure 4.26: Step responses of reference model and closed loop system with PI controller using

OFF method, output y12, A =0.1 sec and p = -40°
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Figure 4.27: Step responses of reference model and closed loop system with PI controller using

OFF method, output y21, A =0.1 sec and p = -40°
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Step Response of MIMO Systion with Pi controller (Y22)
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Figure 4.28: Step responses of reference model and closed loop system with PI controller using
OFF method, output y22, A= 0.1 sec and p = -40°
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4.6.3 Multivariable gas fired furnace:

The four-input four-output gas fired furnace given in section 4.5.3 is revisited
to test the robustness of optimal frequency fitting method. We chose here the
sampling period A = 0.1 second, therefore corresponding furnace TF matrix in delta
domain with common denominator will be same as shown in section 4.5.3

The 2™ order reference model with w,= 0.84 rad/sec, £=0.7 and angle (p)=-40°is

,0.3234 ¥+0.2179 0 0 0 A
y' +0.8881y+ 02179
0 Sowons 0
+ +
M= 4 4
0 0.3234 ¥+0.2179 0
¥ +0.8881y+0.2179

0 0 0.3234 y+0.2179

L

¥ +08881y+02179

Following GA parameters are considered to design PI controller using OFF method

Method of selection : Tournament selection method
Number of tournaments: 2

Number of generation for evolution: 30

Population size : 31

Crossover probability: 0.77

Number of crossover : 2

Mutaion probability: 0.0077

Using genetic algorithm the real and imaginary parts of frequency point is found to be

-0.0036+j 0.2694 and p,, =0.1347 and we obtain the following PI controller transfer

function matrix.

-

18440+ 28960 0004804250 159600562 154, 00489
y ” ”
_07373- 03938 1 9967, 009029514 0013 567, 01133
Cs() = Y 4 vy o 4
—02672- 2133 09514200 9967, 00902 537, 03438
y y .
00124+ 20989 (152600562 _ 904504250 | 04444, 0046
L 14 Y ¥ 7

The unit step responses of the reference model and the augmented plant with

controller are shown in figures 4.30 to 4.31 and control efforts are shown in figures
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4.32. It may be seen from the figures that the unit step responses of the closed-loop

system are close to those of the reference model.
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4.7 Conclusion:

Two computationally simple design approaches to practical controller design for
multivariable systems in 8-domain are presented in this chapter. The linear algebraic
frameworks developed in the Chapter 3 for controller design of SISO systems have
been extended for MIMO systems. Optimal GDTM and Optimal frequency fitting of
the closed loop TFM with those of the reference TFM model have led to close
matching of the step responses on each individual input output channel and
simultaneous suppression of the interaction between various input-output loops. The
methods have been applied to some practical plants. The effectiveness of the design
methods in providing adequate control according to a predetermined design objective
has been demonstrated. Salient features of the proposed methods are:

e To determine the controller parameters, only linear equations are required to

be solved.

e Design does not require the controller to be confined to any particular
structure.

e Plant may be described in transfer function or state space form hence
polynomial matrix operations are not required.

e Complexity and structure of Cs(y) may be changed at designer's will to make a
compromise between controller complexity and achievable performance.

e The increase in the computational effort is minimal with an increase in number
of inputs and outputs.

e The methods can be extended to the design of digital controllers for
multivariable systems with multiple time delays also which is discussed in the
later chapters.

e The design procedures are goal-oriented. The end result is made to meet a
predetermined objective i.e., to satisfy the given industrial specifications and is
not a by-product of the design procedure.

e The algorithms are numerically robust and at high sampling limit converges to
the corresponding continuous-time results leading to a unified treatment of
both discrete-time and continuous-time systems.

The approach adopted in the proposed methods suppress interaction and also
the desired main diagonal response requirements are simultaneously accomplished,

i.€., in a single step rather than in two steps. The individual scalar controller TFs of
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the controller TFM may be chosen to have a different order or structure. The solution
of equations for a given individual controller TF is independent of the solution of
equations of the other scalar TFs in the controller TFM. This offers flexibility to the
designer to change the complexity or structure of any individual entry in the controller
TFM. The designer, therefore, has freedom to make tradeoffs between the controller
complexity and the performance requirement on each main diagonal. Higher-order
plants do not require any special computational problem. Design for unstable MIMO
system has been carried out by stabilizing the system in the first step using an inner
loop. Unity rank output feedback, though known to be restrictive, has been used in
order to illustrate the suitability of the method in designing controllers for unstable

MIMO systems.
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Chapter 5

Time Delay & Uncertain Systein Controllers
5.1 Controller Design for Systems with Time Delay

5.1.1 Introduction:

An important class of systems whose dynamic characteristics possess dead time
or transportation lag is called system with time delay. Typical examples include heat
flow, material transportation, hydraulic and pneumatic transmission, chemical reactors,
distillation columns and several others in the process industries. Continuous-time systems
with time delay do not have rational transfer function in s-domain. The presence of dead
time in the continuous time process gives rise to a non-rational term e in the plant
transfer function and hence greatly complicates the design of a controller for the
continuous-time process. The characteristic equation of such a system does not have a
finite order. In fact, there are an infinite number of characteristic roots for a system with
dead time. However, the presence of time delay in discrete-time systems does not lead to
an irrational transfer function either in the shift operator or in the delta operator
parameterization. The time delay in the case of discrete-time system may be considered
as either an integer multiple or a non-integer multiple of the sampling time.

The problems posed by the time delay are degradation in performance on one
hand, and complicated analytical aspect on the other. From the performance point of
view, the closed-loop system will not perform as well as when T = 0. This is mainly
because delay introduces a large phase lag and thus tends to destabilize the closed-loop
system. To counteract this, the gain of the controller must be reduced below the value
which could be used in the no-delay case, i.e. T = 0. As a consequence, the system will
respond slow to set point changes or other kinds of command inputs and the

achievable performance will thus be limited.
5.1.2 Time delay in s-domain:

The time domain model for a system with time delay ‘T’ in the measurement of

output may be formulated in state-space form as
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dx(t) _
== A x(t) + B.u(t) (5.1)

y(E+7)=Cx(t)
Alternatively, in some systems the time delay may be associated with the input signal,
and the appropriate model is then
dx (1)
dt
y(0)=Cx ()

Note that the states have a different interpretation in the equivalent models given above.

= Acx'(t) +Bu(t—1) (5.2)

With zero initial conditions, including y(t) = 0 for t < 0, and taking the transform of
equation (5.1)
sX(s)=AX(s)+B.X(s) (5.3)
and e’ Y(s)=C.X(s) (5.4)
The same result is obtained for the input delay model of equation (5.2). It may be
seen that the frequency response of a pure delay of T seconds is given by

e’ =eV (5.5)

5= @

Thus the magnitude is unity and the phase increases linearly with frequency.
5.1.3 Time delay in 6-domain:

In discrete-time, the equivalent state-space representation can be written as
O x(t) = A;x(t) + Bsu(t
(£) = Asx(t) + Bsu(?) (5.6)
y(+17)=Csx(t)
Alternatively, in some systems the time delay may be associated with the input signal,

and the appropriate model is then

S x (t) = Asx (t) + Bsu(t — 1)

. (5.7)
y(1)=Csx (1)
In the delta domain, we get
K (y)=AX(y)+Bs;X(¥) (5.8)
and E(y, DY) =Cs X(7) (5.9)
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where

e” :A=0
(1+Ap)* A#0

The transfer function relating Y(y) to U(y) is thus
GJ(}/):E(}/,—r)Cs[}/I—A&]" By (5.10)
In discrete time, whenever we talk about delaying a sequence, y(t), by T, it is

taken as an integral number of samples; that is, T = NA where N is a positive integer. In
this case, the transfer function of the delay term reduces to [10]
G5(N = E(y,-7) = (+yA)™ (5.11)
Thus, in discrete-time, a time delay gives rise to a rational transfer function. It

should be noted that, unless the sampling rate is low compared with the delay, the order

of the transfer function may be quite large.
5.1.4 Sampling in time delay systems:

In this section we now consider the mathematical modelling of a discrete-time
system in delta operator parameterization with time delay which is a non-integer multiple
of the sampling time. Let us consider the sampling of a continuous-time system with a
zero-order hold and having a time delay either with the input or output signal [as in

equations 5.1 or 5.2] and let T=NA+7 (5.12)

where N € Z* U 0and 0 <m < A. Then proceeding as in Chapter 1, we have

X(kA + A) = eAcA x'(kA) + J‘(k‘H)A

kA

e (k+DA~D) B, u(t—17) dt (5.13)

=e™* x (kb)) +{i jA A B dv} ut—17) dt
A

) (5.14)
R YOS _N—
+ {A j: e Bcdv} w((k—N—-DA
From equation (5.14), it follows that
. e’ 1) . 1 ra
O (kA) = x (kA) + {— j et B dv}u ((k = N)A)
A (5.15)

1 v
+{—A- [eve ’dev}u((k—N—l)A)
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This equation has the form
8 (kA)=A,x (kA) + Biu((k— N =1)A) + Byu((k - N)A)  (5.16)
and Y(kA) = Cyx (kA) (5.17)
Taking transforms of equations (5.16) and (5.17) with zero initial conditions we have,
¥ X(7)= 4:X () + B(1+ Ay VU + Bi(1+ Ay)-"U(y) (5.18)
And Y(»)=C,X () (5.19)

So Y(7) = Csly 1 = 4,17 (B, + By(1+ Ap)) (L + Ap) P U(y) (5.20)
5.1.5 SISO Systems:

Let Ps(y) be the delta domain equivalent of the continuous-time plant Pe(s) with a
ZOH and Cj(y) be a digital cascade controller, the parameters of which are to be

determined. Let the n-th order stable discrete-time SISO transfer function Ps(y) be given

by+by+byt ... +by

by 5= S(1+ap)™ (.21)

2
a,+tay+ay’ ... +ay

where n =p + N, and N is an integer such that N times A is the dead time T present in the
process (A is the sampling period). In case 1/A is a fraction, the same is dealt with in the
above section.

For a meaningful choice of the reference model, it should contain the same
amount of time delay as the plant, otherwise if the delay of the reference model is less
than that of the plant then the controller will be nqn—causal and in the reverse case, there
will be extra amount of dead time in the system. From a given set of specifications a
delay-free proper rational transfer function Ms(y) is chosen. Then this Ms(y) combined

with the delay term (1 + Ay)™, gives the required reference model, Ms(y) [10]. thus,

Ms(y)=M@p)1+ap)™ (5.22)
The equivalent open-loop model Fs(%) is defined as:
M
Fy(y)= @) (5.23)
1-M(y)
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Thus Fs(y) alongwith unity negative feedback becomes equal to Ms(y). The two
proposed SISO controller design methods of Sections 3.5 & 3.6 are used to design
cascade controllers using the above Fg(y). Design results are given in the example
sections.

Reference model transfer functions and its performance specifications for time
delay system for different angles (p) with undamped natural frequency w,=10 rad/sec,
damping ratio £=0.5, sampling time A=0.5 sec and delay time t;=1 sec has been
computed and shown in table 5.1 and table 5.2 and corresponding step responses for
sampling time A=0.5 sec and A=0.1 sec are shown in figure 5.1 &5.2. Step response of
reference model with ©,=0.84 rad/sec, £&=0.7, sampling time A=0.1 sec and delay time
te=1 sec is given in figure 5.3.

Table-5.1
®,=10 rad/sec, £=0.5, A=0.5 sec and delay time t4=1 sec

Angle | Reference Model without Reference Model with time delay
p time delay Mj(y) Mz(Y)a

-80° 1.1974y +4.2719 4.7895y% +26.6667y +34.1753

y’ +4.1225y +4.2719 y® +10.1225y° +41.0068y° +83.1012y7 +84.2427y +34.1753
-60° 1.7974y +4.2719 7.1896y7 +31.4669y +34.1753

y? +4.1225y +4.2719 7 +10.12257° +41.0068y° +83.1012y% +84.2427y +34.1753
-40° 1.9334y +4.2719 7.7337y% +32.555y +34.1753

y*+4.1225y +4.2719 y® +10.1225y* +41.0068y° +83.1012y% +84.2427y +34.1753
-20° 2.0058y +4.2719 8.0232y* +33.134y +34.1753

¥’ +4.12257 +4.2719 y® +10.1225y" +41.0068y° +83.1012y% +84.2427y +34.1753
+20° 2.1167y +4.2719 8.4667y* +34.0211y +34.1753

y? +4.1225y +4.2719 y® +10.1225y° +41.0068y° +83.1012y* + 84.2427y +34.1753
+40° 2.1891y +4.2719 8.7562y +34.6y +34.1753

r +4.1225y +4.2719 7® +10.1225y* +41.0068y° +83.1012y° +84.2427y +34.1753
+60° 2.3251y.+4.2719 9.3003y% +35.6882y +34.1753

y® +4.12257 +4.2719 7° +10.1225y* +41.0068y° +83.1012)* +84.2427y +34.1753
+80° 29251y +4.2719 11.7004y% +40.4884y +34.1753

y? +4.1225y +4.2719 y® +10.1225y +41.0068y° +83.1012y% +84.2427y +34.1753
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Table-5.2
p Reference Model without delay Reference Model with delay of-1 sec
M, % | t/A | t/A | GM PM M, % | t/A | tJA GM PM
-80° | 3.1312 3 2 o | 63.3606 | 3.1581 5 4 | 2.0833 | 60.5405
-60° | 1.2941 3 2 oo | 61.8485 | 1.3023 5 4 | 2.0328 | 60.2145 V
-40° | 0.8776 3 1 o | 60.4506 | 0.8817 5 3 2.0075 | 60.0350
-20° | 0.6561 3 1 oo | 59.4604 | 0.6579 5 3 1.9922 | 59.9201
+20° | 5.8340 2 2 o | 57.6065 | 5.8324 4 4 1.9669 | 59.7156
+40° | 9.4526 2 2 o | 56.1913 | 9.4486 4 4 1.9493 | 59.5624
+60° | 16.2534 | 2 2 o | 53.1179 | 16.2444 | 4 4 1.9144 | 59.2295
+80° | 46.2548 | 2 2 o | 38.4639 | 46.2173 | 4 4 1.7549 | 56.9343

Step Response of SISO Reference Model with without delay

1.6 v
+80 deg
1.4} i, +60 deg )
: +40 deg
i 20
1.2} +20 deg
o F A
s 08F  i&
[y 0-6 " ':Q': .."‘
= 5\ - 60 de ---- Ref Model w/o delay
04} i§ = 9 ___Ref Model with delay.
gs 3 wn:10
0.2 5 rad/sec l
S Zita: 0.5
0 delta:0.5sec ]
delay: 1 sec.
_0.2 - 'l L 1 N
0 1 2 3 4 5 6
t/delta

Figure 5.1: Step responses of Reference model with and without time delay with
®,=10 rad/sec, £=0.5, Sampling time 0.5 sec and time delay 1 sec
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Step Response of SISO Reference Model with & without time delay

3.5 —
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delta: 0.1 sec
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Magnitude
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Figure 5.2: Step responses of Reference model with and without time delay with 0,=10
rad/sec, £=0.5, Sampling time 0.1 sec and time delay 1 sec

Step Response of SISO Reference Model with without delay
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Figure 5.3: Step responses of Reference model with and without time delay with ©,=0.84
rad/sec, £=0.7, Sampling time 0.1 sec and time delay 1 sec
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5.1.6 Testing on SISO using OGDTM method:
OGDTM method is also tested on the following time delay systems

5.1.6.1 Simple time delay plant:

Here we consider a second order plant [76] given by

Ke™*
2 2
s’ +28ws +

P.(s)=
where ®, = 10 rad/sec, £ =0.5, K =200, 1= 1 sec. Let us choose a PID controller as

1
C&(}’):Kc[l + 5y + T_},J

2
Discretizing the plant in delta domain incorporating a sampler and ZOH with sampling
period A =0.2, 0.5, 1 sec respectively and resulting discrete time models of the plant and

reference model in delta domain for different value of angle p are given as under:

A =0.2 sec, p = - 40°, ®,= 10 rad /sec, £=0.5 and time delay 1 sec.

26544.55y" +328576.85y +979270.46

P.(7) =
() Y*+40.59y" +724.06%° + 7411.59)° + 47602.887* +196379.02%°
+507980.915 + 753041.25y + 489635.23
11787.23y% +156863.19y + 489635.23
Ms(y)= z 4

Y* +40.5997 +724.067° +7411.59%° + 47602.88%* +196379.02%°
+507980.91y° +753041.25y + 489635.23

The following GA parameters are considered to compute OGDTM (W,) values for the

time delay systems

. Method of selection : Roulette wheel
o Number of generation for evolution: 30
° Population size : 31

o Crossover probability: 0.77
. Number of crossover : 2

. Mutaion probability: 0.0077

157



Chapter — 5: Time Delay and Uncertain System Controllers

Using above GA parameters, the OGDTM point y, is found to be 0.4179 and we obtain

the desired PID controller as
0.40826

Cs(y)=0.29402 +0.032446y +

Closed loop system transfer function cascaded with controller and plant with unity feed

back is found as

G.(y) = 861.26%" +18465.587° +139218.69%° + 422070.61y + 399796.84
T 1405998 +724.0677 +7411.599° + 47602.887° +197240.28%*

+526446.49)° +892259.94%* +911705.84y + 399796.84

The Unit step responses of the reference model and closed loop system are shown in

figure 5.4.
Step Response of SISO Reference Model and CL-Designed System
1.2 T v v v r v v v v
[
\i\\
o
1} R Y -
! “ﬁl”
]
! Reference Model
o8t ||  =e=e- Closed Loop systen
]
i
2 osf wn: 10
2 Zita: 0.5
= | Delta: 0.2 sec.
S 04 Delay: 1 sec
Angle (roh): -40 degree
0.2F ¢
1
¥
4
0
_0.2 A L A AL -l 'l A - A
0 5 10 15 20 25 30 35 40 45 50

Vdelta

Figure 5.4: Step responses of Ref. model and closed loop plant with PID
Controller for p= - 40°, »,=10 rad/sec, £=0.5, A= 0.2 sec and time delay 1 sec

A =0.2sec, p=+40°, ®,= 10 rad /sec, £=0.5 and time delay 1 sec.

Since sampling frequency is same so plant transfer function with 1 sec is same as above.

However reference model for p =+40° is computed as
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21308.56%> + 204469.88y + 489635.23
M,;(}’) = 7 4
Y +40.59y7 +724.06%° +7411.599° + 47602.88%* +196379.02%°

+507980.91%° + 753041.25y + 489635.23

Using the same parameters of GA stated above, the OGDTM point p, is found to be

0.4258 and we obtain the desired PID controller as
0.44419

Cs(y)=0.33587+0.053892y +

Closed loop system transfer function cascaded with controller and plant with unity feed

back is found as

G.(y) = 1430.557" +26623.41)° +174926.12%* + 474860.12y + 434979.36
d ¥° +40.599* +724.06y + 7411.59%° + 47602.88%° +197809.57*

+534604.32)” +927967.377> + 96449536y + 434979.35

The Unit step responses of the reference model and closed loop system are shown in

figure 5.5.
Step Response of SISO Reference Model and CL-Designed System
1.4 v v ' v
Reference Model
1.2} AN T Closed Loop systen -
n"“‘\
1t —
o wn: 10
08} | Zita: 0.5 |
g ] Delta: 0.2 sec.
2 Delay: 1 sec
c 06 Angle (roh): +40 degree |
g
= 04} ]
[
i
i
0.2} ¢
: 1
1
o i
-0.2 L L H 1
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t/delta

Figure 5.5: Step responses of Ref. model and closed loop plant with PID Controller
for p= + 40°, ®,=10 rad/sec, £=0.5, A= 0.2 sec and time delay 1 sec
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A =0.5 sec, p = - 40°, ®,=10 rad /sec, E=0.5 and delay 1 sec.

17.19349° + 68.5622y + 68.3505
¥’ +10.1225%* +41.0068)° +83.1012) +84.2427y +34.1753

Ps(y)=

7.7337y% +32.555y7 +34.1753
¥’ +10.1225y* +41.0068)° +83.1012y° +84.2427y +34.1753

Ms(y)=

Using genetic algorithms with the same parameters stated above, the OGDTM point p, is
found to be 0.2134 and we obtain the desired PID controller as
0.33001

Cs(y)=0.32127 +0.034025y +

Closed loop system transfer function cascaded with controller and plant with unity feed

back is found as

Go() = 0.58501y" + 7.85667%" +30.0269% + 44.5858y + 22.5567
d ¥* +10.12259° + 41.5918%" + 90.9578% +114.2696%* + 78.761y + 22.5567

The Unit step responses of the reference model and closed loop system are shown in

figure 5.6.

Step Response of SISO Reference Model and CL-Designed System

1.2
’
i
1y .
T
:' Reference Model
ogbtd 7= Closed Loop systen _
° wn: 10
B 0.6} 4ta: 0.5
= . Delta: 0.5 sec.
> 4 Delay: 1 sec
s O Angle (roh): -40 degree
0.2}
o
_0'2 A L L
0 5 10 15 20
t/deita

Figure 5.6: Step responses of Ref. model and closed loop plant with PID Controller
for p= - 40°, 0,=10 rad/sec, £&=0.5, A=0.5 sec and time delay 1 sec
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A =0.5 sec, p = + 40°, ®,=10 rad /sec, E=0.5 and delay 1 sec.

Since sampling frequency is same so plant transfer function with 1 sec is same as above.

However reference model for p =+ 40° is computed as

8.7562%" +34.6y +34.1753
Y’ +10.12257* + 41.00687° +83.1012)° +84.2427 ¥ + 34.1753

Ms(y)=

Using same parameters of genetic algorithms, the OGDTM point , is found to be 0.1898
and we obtain the desired PID controller as

0.34376
4

Closed loop system transfer function cascaded with controller and plant with unity feed

C;(¥) = 0.34064 +0.042161y +

back is found as

0.72489y* +8.7474y° +32.1471y" + 46.852y + 23.4963
7° +10.12259° + 41.5918%" +91.84867° +116.3898%” +81.0272y + 23.4963

Gs(n) =

The Unit step responses of the reference model and closed loop system are shown in

figure 5.7.

Step Response of SISO Reference Model and CL-Designed System

1.2 \ T L4
)
hL
1r : W4
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2 Delta: 0.5 sec.
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g 0.4f Angle (roh): +40 degree
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q
I
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Figure 5.7: Step responses of Ref. model and closed loop plant with PID Controller
for p=+ 40°, ©,=10 rad/sec, £=0.5, A= 0.5 sec and time delay 1 sec
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A =1 sec, p =-40° ®,=10 rad /sec, & =0.5 and time delay 1 sec.

P.(y) = 2.0043y* +4.0239y + 2.0195
° 7' +4.0097y° +6.0292)” +4.0293y +1.0098
1.0009y° +2.0107y +1.0098
M(y) = r !

¥ +4.00979° +6.02929” + 4.02937 +1.0098
Using genetic algorithms with same parameters stated above, the OGDTM point y is

found 0.0325 and we obtain the desired PID controller as
0.25012

C5(¥) =0.37502 +0.056641y +

0.11353y* +0.979599° + 2.1248%” +1.7638y + 0.50512
¥’ +4.1233%% +7.00887° + 6.154)> + 2.7736y +0.50512

Gs(y) =

The Unit step responses of the reference model and closed loop system are shown in

figure 5.8.

Step Response of SISO Reference Model and CL-Designed System

1.2 . . —e e
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= Damping ration: 0.5
0.2 1
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Figure 5.8: Step responses of Ref. model and closed loop plant with PID Controller
for p= - 40°, ©,=10 rad/sec, £=0.5, A= 1 sec and time delay 1 sec
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A =1sec, p =+ 50°, ®,= 10 rad /sec, £ =10.5 and time delay 1 sec.

Since sampling frequency is same so plant transfer function with 1 sec is same as above.

However reference model for p =+50° is computed as

1.01295% +2.0227y +1.0098
¥ +4.00977° +6.02929° + 4.0293y +1.0098

M s(y) =

Using genetic algorithms with same parameters, the OGDTM p, is found to be 0.0246
and we obtain the desired PID controller as

0.25162

Cs(y)=0.37787+0.059015y +

Closed loop system transfer function cascaded with controller and plant with unity feed

back is found as

0.11829%* +0.994867° + 2.144y* +1.7756y +0.50815
¥ +4.1287* +7.02417° + 6.1733%> + 2.7854y + 0.50815

Gs(y) =

The Unit step responses of the reference model and closed loop system are shown in

figure 5.9.

Step Response of SISO Reference Model and CL-Designed System
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Figure 5.9: Step responses of Ref. model and closed loop plant with PID Controller
for p= + 50°, w,=10 rad/sec, £=0.5, A=1 sec and time delay 1 sec

163



Chapter — 5: Time Delay and Uncertain System Controllers

A =0.5 sec, p = -40°, ®, = 0.84 rad /sec, &€ = 0.7 and time delay 1 sec.

17.1934y* +68.5622y + 68.3505
¥ +10.12257" + 41.0068)° + 83.1012)” +84.2427y +34.1753

P(y) =

0.82581y” +3.7545y + 4.2058
¥ +7.152y* +19.4377y° +24.9782)” +15.5246y + 4.2058

Ms(p)=

Using genetic algorithm with same parameters, the OGDTM , is found 0.4072 and the
desired PID controller is obtained as

0.1795

Cs(y) =0.049553-0.001329y +

Closed loop system transfer function cascaded with controller and plant with unity feed

back is given as

—0.022851y* +0.760879° + 6.3928% +15.6936y + 12.2686
¥° +10.1225)° + 40.9839y* +83.862)° +90.6355)7 + 49.8689y +12.2686

Gs(y) =

For same GA parameters, the OGDTM point y, for PI controller is found to be 0.9873
and controller transfer function is

0.17964
/4

Closed loop system transfer function cascaded with PI controller and plant with unity

C,() =0.04852 +

feed back is given as

0.834237" +6.41529” +15.6326y +12.2782
¥* +10.12259° + 41.00687" + 83.9354)° + 90.6579)° + 49.8078y +12.2782

Gs(y) =

The Unit step responses of the reference model and closed loop system cascaded with

PID & PI controllers are shown in figure 5.10 & 5.11 respectively.

A =0.5 sec, p = + 40°, »,=0.84 rad /sec, £ = 0.7 and time delay 1 sec.

Since sampling frequency is same so plant transfer function with 1 sec is same as above.

However reference model for p =+ 40° is computes as

3.7821)% +9.6672y +4.2058
v’ +7.152%* +19.43779° + 249782y +15.5246y + 4.2058

Ms(y) =

Using GA with same parameters, the OGDTM point g, is found to be 0.9786 and desired

PID controller is obtained as
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C;(%) = 0.20903 +0.0024468y + L2202

Closed loop system transfer function cascaded with controller and plant with unity feed

back is given as

0.042068%* +3.76179° +20.0061%* + 36.2493y +21.8943
¥® +10.1225° + 41.0068)" +86.8628)° +104.2488)> +70.4245y + 21.8943

Gs(n)=

The Unit step responses of the reference model and closed loop system are shown in
figure 5.12. Comparision of closed loop system with different controlles are given in

table 5.4.

Table-5.3
Comparison of performance of various closed loop systems cascaded with the desired
' controller
Con P A o, E Reference Model with delay of 1 sec Closed loop system with controller
trol sec | s M, [tATt/A] GM | PM | M, [tA]t/A] GM | PM
ler % %
sec
PID | -40° | 02 | 10 | 05 | 164 | &8 8 | 1948 | 5498 | 164 | 11 | 21 853 627
PID | +40° | 02 | 10 | 05 | 363 | 7 9 | 1523 | 3261 | 204 | 10 | 19 | 822 730
PID | 40°| 05 | 10 | 05 | 087 | 5 3 | 2007 | 6003 | 149 | 6 10 | 3024 | 3780
PID | +40° | 05 | 10 | 05 | 945 | 4 4 | 1949 | 5956 | 166 | 6 10 | 2956 | 3826
PID | -40° | 1 to | os [009 | 3 2 | 1999 | 5999 [ 994 | 5 5 | 1332 | 6145
PID | +50° | | 10 [ os [ 129 3 2 | 1987 | 598 | 994 | 5 5 | 1327 | 6143
PID | -40° [ 05 | 084 | 07 | 460 | 13 | 9 | 2917 | 6085 | 505 | 14 | 14 | 3474 | 3851
PID | +40° | 05 | 084 | 07 | 179 [ 9 | 13 | 2353 | 4811 | 234 | 8 10 | 2449 | 486!
Pl |-40°] 05 | 084 | 07 [ 460 | 13 | 9 | 2917 | 6085 | 527 | 14 | 14 | 3067 | 6035
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Step Response of SISO Reference Model and CL-Designed System
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t/delta

Figure 5.10: Step responses of Ref. model and closed loop plant with PID Controller
for p= - 40°, ©,=0.84 rad/sec, &=0.7, A=0.5 sec using OGDTM
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Figure 5.11: Step responses of Ref. model and closed loop plant with PID Controller
for p= + 40°, ®,=0.84 rad/sec, £=0.7, A= 0.5 sec using OGDTM
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Step Response of SISO Reference Model and CL-Designed System
1.2 v _— v
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_g Zita: 0.7
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Figure 5.12: Step responses of Ref. model and closed loop plant with PI Controller
for p= - 40°, ®,=0.84 rad/sec, E=0.7, A= 0.5 sec using OGDTM

5.1.6.2 Stirred chemical reactor plant:

In the following example, we consider the time delay transfer function of
continuous stirred chemical reactor plant [96].
k,e™

T A+ LA+, s)

P.(s)

Where kp=1.39, T1=10.1,T2=4.1
Three values of T are used to study how the performance of the controller is effected by
the relative magnitude of the dead time 1 when compared with the plant time constants T)
and T2

1. Reactor 1 has 1 = 1, = 0.8 min., lower than both time constants.

2. Reactor 2 has 1 = t,= 5.0 min., comparable to the smaller time constant.

3. Reactor 3 has t = 1;= 10.0 min., comparable to the larger time constant.

The continuous time transfer functions are given as :
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Model of reactor 1

-08s
P(s)= 1.39¢
1+ 10.15)Q +4.1s)
Model of reactor 2
=55
P(s)= 1.39¢
1+10.1s)(1+4.1s)
Model of reactor 3
-10s
P(s) 1.39¢

T A +1015)(1+415)

The OGDTM method is applied here to all the reactors individually for design of the
controller.
Reactor 1

For reference model in 6-domain, undamped natural frequency w, is chosen 0.2
rad/sec, damping ratio § is 0.8 and sampling period A is 0.1 sec. The plant is now
discretized in the 8-domain after incorporating the sampler and ZOH with the A = 0.1 sec.
Very fast sampling 1s avoided to restrict the order of the resultant system. The resultant
discrete rational transfer functions are given as under

A =0.1 sec, p = - 40°, ®,=0.2 rad /sec, £=0.8

165928.45y* +4958995.16 ¥ + 32997106.73
7' +90.349"° +3630.587° + 85224.24)* +1288601.23%" +13029730.58%°
+88307276.157° +388814877.847* +1024204501.39%° +1314072092.33%°
+360838454.33y + 23738925.71

P(¥) =

6034403.63 %> + 64280582.31y +39365460.22
7' +90.324" +3628.74)° + 85151.48)* +1286926.85y" +13005083.81y°
+88067371.61° +387281145.72%* +1018100159.749° +1301155218.38%7
+354299639.42y + 39365460.21

M61(7)=

PI Controller:

Following GA parameters are used to compute the OGDTMs to design a PI

controller

o Method of selection : Tournament selection method
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¢ Number of tournaments: 2
e Number of generation for evolution: 30
¢ Population size : 31
¢ Crossover probability: 0.77
¢ Number of crossover : 2

e Mutaion probability: 0.0077

Using GA, the OGDTM points p is found to be 0.0089 and we obtain the following PI

controller.

0.09735

C5(7)=12439 +

and corresponding closed loop transfer function cascaded with PI controller is given as
206397.55y + 6184621.98 ¥* + 41527692.85y +3212281.19

72 +90.32%"" +3630.57° +85224.24%° +1288601.22%* +13029730.58)’

+88307276.157° +388814877.84%° +1024204501.39%* +1314278489.88%°

+367023076.31y* + 65266618.55y +3212281.19

Gal ()=

PID Controller:

Using same GA parameters, the OGDTM point we for PID controller is found to be
0.0403. The transfer function of PID controller and closed loop system cascaded with the

controller are given as:

C,(7)=1201+1.8028y + 2077436

299129.12%* +9139157.65)° + 65457808.32 > + 40113118.67 y + 3216748.09
72 +90.32" +3630.579° +85224.247° +1288601.22* +13029730.58%

+88307276.159° +388814877.84)° +1024503630.51%* +132321129.97%°
+426296262.657” + 638520044.37 7 +3216748.09

G&l (7) =

The unit step responses of the reference model and the closed loop plant with the PI &

PID controllers using OGDTM are shown in Figure 5.13 & 5.14 respectively.
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Step Response of SISO Reference Model and CL-Designed System

1.4 — —— .

1.2} |
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wn: 0.2 rad/sec
Zita: 0.8 1
Delta: 0.1 sec
Angle (roh): -40 deg
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Figure 5.13: Step responses of Reference model and closed loop plant with PI
Controller for p= - 40°, ®,=0.2 rad/sec, £=0.8, A= 0.1 sec using OGDTM
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Figure 5.14: Step responses of Reference model and closed loop plant with PID
Controller for p= - 40°, ®,=0.2 rad/sec, £=0.8, A= 0.1 sec using OGDTM
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Reactor 2:

For reactor 2, reference model in §-domain is computed with undamped natural
frequency o, = 0.2 rad/sec, damping ratio & =0.8 and sampling period A = 0.5 sec. The
plant is discretized in the 6-domain after incorporating the sampler and ZOH with the
sampling period A = 0.5 sec. Very fast sampling is avoided to restrict the order of the
resultant system. The resultant discrete rational transfer functions are given as under

A =0.5 sec, p = - 40°, »,=0.2 rad /sec, £€=0.8

8.1297 +47.82y+63.14
Y2 +22.339'2 +227.199" +1392.264° +5715.489° +16535.695* +34507.89%"

+52213.479° +56675.21° +42876.28¥%* +21387.16%° + 6347.11)> +917.93y+45.42

Pzﬂ(?’):

65.749% +169.29 ¥ +75.64
¥"? +22.3177 +226.95¢" +1389.939° + 5702.84)° +16491.629" +34407.83y
+52075.677° +56602.97y° +42990.98%* +21671.34)° + 6626.95y° + 1059.46y+ 75.64
PI Controller:

M=

Using same GA parameters, the OGDTM point W is found to be 0.0001 and we obtain
the following PI controller.

0.061126
/4

And corresponding closed loop transfer function cascaded with PI controller is given as

C5 (%) =0.88245 +

7.1647° +42.6844 7* + 58.6426 ¥ + 3.8597
Y4 +22.339° +227.1992 +1392.269"" +5715.495"° +16535.697° +34507.89%* + 52213.48}

+56675.21y° +42876.28)° +21387.15¥* +6354.279° +960.62y* +104.07y +3.86

Gm n=

PID Controller:

Using GA with same parameters, the OGDTM point w for PID controller is found to be
0.0403. The transfer function of PID controller and closed loop system cascaded with the
controller are given as:

Cy(7) = 0.87525 + 2.4019y + 2001131

19.49%* +121.94 %" +194.019* +58.197+3.86
7' +22.3377 +227.197 +1392 26" +5715.499'° +16535.69%° + 34507.89%° +52213.48y"

+56675.21y° +42876.287° +21406.66%* +6469.047° +1111.93%* +103.61y +3.86

Gy =
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A =0.5 sec, p = + 40°, ®,=0.2 rad /sec, £=0.8

Plant transfer function in delta domain will be same as above because sampling period is
considered 0.5 sec in this case also. However with the change of angle p i. e. +40°, the
reference model in delta domain is computed as

255.9897 +549.78 y +75.64
¥? +22.319'7 +226.957" +1389.939'° +5702.84)° +16491.62%" + 34407.83y’

+52075.67%° +56602.97y° +42990.98%* +21671.34y" + 6626.95%* +1059.46y +75.64

Mg (3)=

Using GA, the OGDTM point pt for PID controller is found to be 0.1190. The transfer
function of PID controller and closed loop system cascaded with the controller are given
as:
1
C, (7) =1.3999 +6.2811y+ 211

50.99%* +311.64 7 + 464.43 y* + 93,75y +7.07
¥ 4223397 +227.1977 +1392.269" +5715.499" +16535.69%° +34507.89%* +52213.48%"

+56675 219° +42876.28)° + 21438.157* + 6658.75%° +1382.379* +139.18y+ 7.07

651(7) =

The unit step responses of the reference model and the closed loop plant with the PI &

PID controllers using OGDTM are shown in Figure 5.15, 5.16 & 5.17 respectively

Step Response of SISO Reference Model and CL-Designed System
1.4 T . STTTIC A N ) w

1.2
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0.4 Delta: 0.5 sec T
Angle (roh): -40 deg
0.2 Controller: PI .
0 J
'0.2 - 1 L 1 1
0 10 20 30 40 50 60

t/delta

Figure 5.15: Step responses of Reference model and closed loop plant with PI
Controller for p= - 40°, ®,=0.2 rad/sec, £=0.8, A= 0.5 sec using OGDTM
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Step Response of SISO Reference Model and CL-Designed System
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Figure 5.16: Step responses of Reference model and closed loop plant with PID
Controller for p= - 40°, ®,=0.2 rad/sec, £=0.8, A= 0.5 sec using OGDTM
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Figure 5.17: Step responses of Reference model and closed loop plant with PID
Controller for p= + 40°, ©,=0.2 rad/sec, £=0.8, A= 0.5 sec using OGDTM
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Reactor 3:
For reactor 3, reference model in §-domain with undamped natural frequency ®, =
0.1 rad/sec& 0.05 rad/sec, damping ratio & =0.8 and sampling period A = 0.5 sec is
computed. However with this sampling period the order of resusltant system in delta
domain increased a lot and to restrict the order one shouls avoid fast sampling. The plant
is discretized in the 3-domain after incorporating the sampler and ZOH with the sampling
period A = 0.5 sec. The resultant discrete rational transfer functions are given as under

A = 0.5 sec, p = -40° 0,=0.1 rad /sec, E=0.8

8313.13y% +48955.21 ¥+ 64657.91

P =
5 (7) P2 +42.33)7 +853.725 +10914.957%° +99249.57 " + 682642.45y"° + 3687441.46y" +16031197.7'¢

+57025818.48%" +167816009.527™ +411429609.73y" +845523487.94%" +1447594733.75y"
+2075756263.997" +2475634652.47y° +2435682311.129* +1955901494.17" +1258945167.61%°
+634136986.23y° +241236260.417* +65670000.85° +11722575.28) +1172547.64y + 46516.48

32423.169* +74921.52y+20150.39
¥ +42.15y7 +846.67y* +10773.607™ +97455.27y"° +666455.04y" +3577072.81"7 +15440799.17°
+54486962.517" +158895707.437" +385545494.23y" + 781081419y +132195378241y"
+1864841048.387" +2181036672.34%° +2096239579.89" +1633857087.92y" +1013020672.49%"
+4858559244.04y° +172924192.01y* +4282828900.48)° + 6646807.91y +544127.71y+20150.39

M:Sl(}/):

PI Controller:

Using GA with same parameters, the OGDTM point pt is found to be 0.0001 and
corresponding PI controller transfer function is obtained as:

0.030894

C5,(7) = 04381+ ”

PID Controller:

The OGDTM point p.for PID controller is found to be 0.0001 using same parameters of
GA and the transfer function of PID controller is found as:

0.030896
/4

The unit step responses of the reference model and the closed loop plant with the PI &

Cs5,(1)=0.43475+1.1152y +

PID controllers using OGDTM are shown in Figure 5.18 & 5.19 respectively.
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Figure 5.18: Step responses of Reference model and closed loop plant with PI

Controller for p= - 40°, ,=0.1 rad/sec, £=0.8, A= 0.5 sec using OGDTM

Magnitude

Figure 5.19: Step responses of Reference model and closed loop plant with PID
Controller for p= - 40°, 0,=0.1 rad/sec, £=0.8, A= 0.5 sec using OGDTM
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A =0.5 sec, p = + 40°, ©,=0.1 rad /sec, £=0.8

Plant transfer function in delta domain will be same as above because sampling

period is considered 0.5 sec in this case also. However with the change of angle ie.

=+40°, the reference model in delta domain is computed as
Y p

Mo (9= 133851.14 %> +277777.468 ¥+ 20150.39
alt ¥ +42.1577 +846.67y% +10773.60y™ +97455.279"° + 666455.04y" +3577072.81y"7 +15440799.17*¢

+54486962.517'% +158895707.437™ +385545494.239"> +781081419y'% +1321953782.41y"
+1864841048.38)' +2181036672.345° +2096239579.89* +1633857087.927" +1013020672.49%*
+4858559244.04%° +172924192.01%* + 428282890048 + 6646807.91y* +544127.71y+20150.39

Controller:

Using GA with same parameters, the OGDTM point w for PI and PID controller is found

to be 0.0002 and 0.008 respectively and corresponding controller transfer functions are

found as:
PI controller C,,(7)=0.76302 + 0.054419
4
PID controller Cyr(7) = 075669 +3.9592y + 2024381

The unit step responses of the reference model and the closed loop plant with the PI &

PID controllers using OGDTM are shown in Figure 5.20 & 5.21 respectively.

Step Response of SISO Reference Model and CL-Designed System
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Figure 5.20: Step responses of Ref. model and closed loop plant with PI Controller
for p= + 40°, w,=0.1 rad/sec, £&=0.8, A= 0.5 sec using OGDTM
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Figure 5.21: Step responses of Reference model and closed loop plant with PID
Controller for p= + 40°, ®,=0.1 rad/sec, £=0.8, A= 0.5 sec using OGDTM

A =1 sec, p = -40°, ®,=0.1 rad /sec, E=0.8

0.014989 7* +0.043349 ¥+ 0.02836
72 +11.3197 +58.439" +182.319'° +382.399° +567.89)* +612.27y" +482.979°

+276.95%° +112.997* +31.46)° +5.543" +0.5351y + 0.020403

Py(n)=

0.032097 y* +0.041331y+0.0092333
Y2 +11.1507 +56.73p" +173.74)"° +356.42)° +515.367® + 537 627" + 406.84)°

+221.117° +83.979" +21.16%° +3.237* +0.2586y +0.00923

Ms(y)=

Controller:

Using GA with same parameters, the OGDTM point p: for PI and PID controller is found
to be 0.0002 and 0.008 respectively and corresponding controller transfer functions are
found as:

0.02742
/4

PI controller C () =0.56392 +

PID controller Cy,(7)=0.44198+1.0813y + 0.03056
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And corresponding closed loop transfer function cascaded with PI and PID controller are
found as:
PL:

0.00845y° +0.024856) +0.017181y +0.00077
P +11.319° +58.43)% +182.31)" +382.38)'° +567.89)° +612.27) + 48297y

+276.95/° +112.99%° +31.45¢* +5.54)” +0.5599)” +0.03758y +0.00077

G&l(?’) =

PID

0.0162%* +0.0535%° + 0.0503 % + 0.0139y+ 0.00087
¥ +11.319"° +58.435'2 +182.31" +382.38)'° + 567.89y° +612.274* + 482.97%’

+276.95%° +112.99° +31.47%* +5.597 +0.58547> +0.034267 + 0.00087

Gs(n) =

The unit step responses of the reference model and the closed loop plant with the PI &
PID controllers using OGDTM are shown in Figure 522 & 5.23 respectively.

Comparision of closed loop system with different controlles are given in table 5.4.

Step Response of SISO Reference Model and CL-Designed System
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Figure 5.22: Step responses of Reference model and closed loop plant with PI
Controller for p= - 40°, w,= 0.1 rad/sec, £=0.8, A= 1 sec using OGDTM
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Figure 5.23: Step responses of Reference model and closed loop plant with
PID Controller for p= - 40°, w,= 0.1 rad/sec, £=0.8, A= 1 sec using OGDTM

Table 5.4

Comparison of performance of various closed lodp systems cascaded with the desired
controller

Model Controller A p o, E | M,% | tJ/A tJ/A GM PM

sec. (radisec) (5%)

Reactor 1 PI 0.1 -40° 0.2 08 | 741 193 231 7.77 | 59.62

PID 0.1 -40° 0.2 08 | 1.87 118 159 12.32 | 63.03

Reactor 2 Pl 05 | -40° 0.2 0.8 | 21.97 55 113 220 | 4929

PID 0.5 | -40° 0.2 0.8 | 231 42 61 049 | 41.44

PID 0.5 | +40° 0.2 0.8 | 1248 31 72 0.38 | 80.56

Reactor 3 PI 05| -40° 0.1 08 | 7.70 98 114 2.56 | 60.46

PID 0.5 | -40° 0.1 0.8 | 191 34 49 0.53 | 49.02

PI 0.5 | +40° 0.1 0.8 | 51.89 76 314 146 | 31.03

PID 0.5 | +40° 0.1 08 | 9.82 63 106 0.41 | 54.03

PI 1 -40° 0.1 0.8 | 2.65 42 83 2.28 | 69.23

PID 1 -40° 0.1 08| 212 41 58 0.23 63.7
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5.1.7 Testing on SISO System using OFF method:

The methodology of optimal frequency fitting method is tested on following SISO

system.

5.1.7.1 Simulation results:
Here we consider as system for which the time delay is twice the dominant time
constant of the process [116]. The continuous-time plant is given by

1 =25

P.(s)= e
1+s)1+0.55)

From the desired specifications the reference model in §-domain is computed with
undamped natural frequency w,= 0.3 rad/sec, damping ratio § 0.7 and sampling period A
0.5 sec. The plant is discretized in the 6-domain after incorporating the sampler and ZOH
with the A = 0.5 sec. Very fast sampling is avoided to restrict the order of the resultant

system. The resultant discrete rational transfer functions are given as under

A =0.5 sec, p = +40°, ©,=0.3 rad /sec, £=0.7

Plant Transfer Function in delta Domain
4.95429" +25.82467 +31.8362
Pﬁ(}/) = 7 4
¥’ +12.059° + 61.519° +171.99%* + 283.889° + 275.68)* +145.22y + 31.84

Reference Model Transfer Function in delta Domain
7.4225)” +16.8675y + 4.0451
Ms(y)=— 4
¥’ +10.53y° +45.43)° +102.48%* +127.48)° + 84.53” + 27.08y + 4.05

For computation of the optimal frequency point, the following GA parameters are
considered
e Method of selection : Roulette wheel
¢ Number of generation for evolution: 35
e Population size : 31
¢ Crossover probability: 0.8
* Number of crossover : 2

* Mutaion probability: 0.008
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Using OFF method the optimal frequency point is found to be 0.2999 with -0.1990 +
0.8697i as real and imaginary part and corresponding PID controller and system transfer

function in delta domain are found to be

C;(7) = 0.28861+0.6421y + 2020440

3.1811y* +18.0137° +28.3438%% +11.524y +2.8794
¥* +12.059" +61.509° +171.999° +287.07* +293.69y° +173.57y* +43.36y +2.88

Gu(y)=

The unit step responses of the reference model and the closed loop plant with the

controller using Optimal Frequency fitting is shown in Figure 5.24.

Step Response of SISO Plant, Reference Model and Designed System
1.4 v v ' '
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Figure 5.24: Step responses of Reference model and closed loop plant with PID
Controller for p= + 40°, w,= 0.3 rad/sec, £=0.7, A= 0.5 sec using OFF method

A = 0.5 sec, p = +20°, ©,=0.3 rad /sec, £=0.7

Plant Transfer Function in delta Domain is same because sampling period is same i.e 0.5
sec. hence the reference Model Transfer Function in delta domain for the above
specifications is

5.62197 +13.2664y + 4.0451

M =
o(7) ¥ +10.53)5 +45.43)° +102.43)" +127.48)° + 84.53% + 27.08y + 4.05
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Using same GA parameters, optimal frequency point is found to be 0.3156 with -0.2200
+0.9120i as real and imaginary part. Corresponding PID controller and system transfer
function in delta domain are found to be

C,(7) = 0248324055520y + L0715402

2.7519* +15.5713 9 + 24.4799%* +9.9305y + 2.496
Y2 +12.0597 +61.509° +171.99)° +286.64%" +291.25)° +169.71y" +41.76y +2.49

Gs(n) =

The unit step responses of the reference model and the closed loop plant with the

controller using Optimal Frequency fitting is shown in Figure 5.25.

Step Response of SISO Plant, Reference Mode! and Designed System
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Figure 5.25: Step responses of Ref. model and closed loop plant with PID
Controller for p= + 20°, w,= 0.3 rad/sec, £=0.7, A= 0.5 sec using OFF method

A =0.5 sec, p = - 20° ©,=0.3 rad /sec, £=0.7

Plant Transfer Function in delta Domain is same because sampling period is same i.e 0.5
sec. hence the reference Model Transfer Function in delta Domain for above

specifications are

5.6219%° +13.2664y +4.0451
¥’ +10.537° +45.43)° +102.48%" +127.48% +84.535° + 27.08y + 4.05

M(y) =
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Using GA, the optimal frequency point is found to be 0.3156 with -0.2200 + 0.9120i as
real and imaginary part. The desired PID controller and systme transfer function in delta
domain are found to be

C;,(7) = 024832 +0.55529y + 12402

2.751p* +15.5713 7" +24.4799%* +9.9305y + 2.496
72 +12.0577 +61.507° +171.99%° +286.64%" +291.259° +169.71y* +41.767 +2.49

G,;.(?’) =

The unit step responses of the reference model and the closed loop plant with the

controller using Optimal Frequency fitting is shown in Figure 5.26.

Step Response of SISO Plant, Reference Model and Designed System
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Figure 5.26: Step responses of Ref. model and closed loop plant with PID
Controller for p= - 20°, ®,= 0.3 rad/sec, £=0.7, A= 0.5 sec using OFF method

A = 0.5 sec, p = - 40°, ©,=0.3 rad /sec, £=0.7

Plant Transfer Function in delta Domain is same because sampling period is same i.e 0.5

sec. hence the reference Model Transfer Function in delta Domain

1.0628%" +4.1481y +4.0451

M () =
) = 10535 + 454377 +102.487 +127.48,° + 845377 27087 + 4.0
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Using GA, the optimal frequency point is found to be 0.7090 and -1.0282 + 1.7481i as
real and imaginary part. The PID controller and system transfer function in delta domain

are found to be

Cy1(7)=023804+039707y + 2222283

1.96727" +11.4343 5 +18.9989)” +8.6728y +1.3493
7 +12.057" +61.509° +171.995° +285.86%" +287.127° +164.237” +40.51y+1.34

G (N=

The unit step responses of the reference model and the closed loop plant with the
controller in Figure 5.27. Comparision of closed loop system with different controlles are

shown in table 5.5

Step Response of SISO Plant, Reference Model and Designed System
1.2 T T T T
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Figure 5.27: Step responses of Ref. model and closed loop plant with PID Controller
for p= - 40°, w,= 0.3 rad/sec, £=0.7, A= 0.5 sec using OFF method

Table-5.5
Comparison of performance of various closed loop systems cascaded with the desired
controller
Con p A o, 3 Reference Model with delay of 1 sec Closed loop system with controller
trol sec | raar M,% | t/A [ t/A] GM [ PM | M, % [ t/A[t/A | GM [ PM
ler
sec
PID | +40° | 0.5 | 03 | 07 | 1814 | 17 | 27 | 263 | 4813 | 3065 | 25 | 59 | 253 | 34.83
PID | +20° [ 05 | 03 | 07 | 1051 | 20 | 27 | 301 | 3261 | 5455 | 27 | 63 | 294 | 3602
PD | -20°[ 705 | 03 [ 07 | 530 | 25 | 26 | 3.59 | 6050 | 2144 | 32 | 67 | 387 | 4542
PID | 40° [ 05 [ 03 [ 07 | 461 | 28 | 19 | 325 | 6L.1S | 547 | 34 | 37 | 3.26 | 6156
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5.1.8 Uncertainty in process model

. Uncertainty is an inherent and inevitable characteristic of process models. The
models that are used in the process industry are only approximations of the actual
physical process. Usually the model uncertainty are due to process nonlinearity and
process parameter variations, simplifying assumptions made during the modeling
process, finite order or reduced order models obtained from identification/estimation
procedures and errors introduced in experimental identification/ curve-fitting procedures,
etc.[120]

Detailed analysis of a large scale process is often difficult and typically involves
several approximations. Linearizing of the process model around different operating
points results in different transfer function models. Even if the model is accurate,
variations of real parameters affect the plant operation and the true model deviates
considerably from the nominal model. For example, ambient temperature and pressure
may vary about the nominal values. In the following, an 'uncertain plant is considered. It
is shown that stability'robustness can be maintained in the face of plant uncertainties if
the reference model chosen for the nominal plant has sufficient robustness embedded in
it.
5.1.8.1 Simulation results:

We consider the following uncertain process [120].

K e—‘l’.\
P(s)=
() 1+Ts
The nominal process model is given by
-~ -10s
Pu(s) = 125e
1+10s

the uncertainty ranges of various parameters are K € {11, 14]; 1€ [9,11); T € [7, 13]

The following six extreme plants have been considered.

11e7°° 14¢7°°
P.(s)= P._(s)=
a1 (5) 1+7s e2(8) 1+7s
14 ¢7'" 14 710
P.(s)= P =
=)= T3 () =T33
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11" 11e7°°
¢ P(s)=
1+13s 1+13s

P (s)=

The above plant are discretized incorporating system delays with sampler and ZOH. The
sampling time A = 2 sec. is considered. The resulting nominal plant, perturbed plants

obtained in the d-domain are given as under:

Ps(y) = 0.03547+0.0177
¥’ +3.09067° +4.0219%° +2.8399%* +1.1641y° +0.2725%* + 0.0326 ¥+ 0.0014

P, (3) = 0.0458y +0.0427

o ¥* +2.6243)° + 2.8107¢* +1.5607)° +0.4678% +0.0701y + 0.0039
P (y)= 0.0582y +0.0544

o2 ¥® +2.62439° +2.81079* +1.5607)° +0.4678%* + 0.0701y + 0.0039
P, ()= 0.0582y +0.0544

> Y° +2.6243Y° +2.8107" +1.5607y° +0.4678%” +0.0701y + 0.0039
P..(y) = 0.02912y +0.0272

5 ¥’ +3.12487° +4.1228)° +2.9660%* +1.2482%° +0.3040% + 0.0389y + 0.0019
P,(y) = 0.0127y +0.0272

i ¥’ +3.0713)° +3.9639%° + 2.7674%* +1.11579° +0.2543* + 0.0290y + 0.0011

0.0225y +0.0245

P&a(}') = 4

¥ +2.57137° +2.6782%" +1.4282% +0.4016%” + 0.05357 + 0.0022

The reference model in delta domain with ®,=0.11 rad /sec, damping ratio £=0.8, time

delay of 10 sec and sampling period A=2 sec for different values of angle angle (p) are

computed for the nominal system and given as:

Angle p= -40°
0.00118%* +0.00091y + 0.00016
M (y)= 4 4

7P +3.16)" +4.26%° +3.16)° +1.39%* +0.372)° + 0.057%” +0.0045y + 00016
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Using GA with the following parameters, the OGDTM s found to be 0.0089 and

corresponding PI controller and system transfer function for the nominal plant is obtained

as:
® Method of selection : Tournament selection method
¢ Number of tournaments: 2
e Number of generation for evolution: 30
¢ Population size : 31
e Crossover probability: 0.77
e Number of crossover : 2
e Mutaion probability: 0.0077
. 2
PI controller Cs(y)=0.040128 + 00034992
/4
0.00142y + 0.000834y + 0.000062
Gs(n = ! A

¥  +3.099" +4.02y° +2.84y° +1.16¥* +0.279° +0.034)* +0.0023y + 000062

Figures 5.28 show the reference and closed-loop unit step responses for the nominal plant
with the PI controller. Unit step responses for various extreme plants with nominal
controller are shown in figure 5.29.

Step Response of Ref. Model and Nominal Plant with Pl Controller
1.2 v v v v v v v v v

Reference Model
----- Closed Loop systen

wn= 0.11 rad / sec
zita= 0.8

delta=2 sec

Angle roh= - 40 degree
Controller: Pl

Nominal Plant

Magnitude

10 20 30 40 50 60 70 80 90 100
tYdelta

Figure 5.28: Step responses of Reference model and closed loop nominal plant with PI
Controller for p= - 40°, w,= 0.11 rad/sec, £=0.8, A= 2 sec using OGDTM method
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Step Response of Ref Model and Perturbed Plant with Nominal Pl Controfler
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Figure 5.29: Step responses of various extreme plants Psi(y), Psa(y), Ps3(y), Psa(y), Pss(y), Pss(Y)P
with nominal PI Controller using OGDTM
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Angle p= -20°
Since sampling period is same i.e. 2 sec, hence the nominal and perturbed plants in delta

domain will be same as for angle p= -40° , but the reference model transfer function is

computed for the nominal system and given as:

0.00207% +0.00132y+0.000158
543169 +4.26%° +3.169° +1.39%* +0.371%° +0.057y” +0.00457 + 00016
/4 .

M (y)=

Now using GA with same parameters, the OGDTM point is found to be 0.0167 and we
obtain the following PI controller and system transfer function for the nominal plant as:
0.003920

Y

0.0018y* +0.00104y + 0.000069
7P +3.09y" +4.029° +2.84%° +1.16y* +0.27y° +0.034)> + 0.0025y + 000069

PI controller C4(y)=0.05096 +

Gs(N=

Angle p= +20°

Since sampling period is same i.e. 2 sec, hence the nominal and perturbed plants in delta
domain will be same as above, the reference model transfer function is computed for the

nominal system and given as:

0.003267* +0.001195y + 0.000158
¥  +3.1677 +4.26¥° +3.16)° +1.399* + 03719 +0.057y* + 0.0045y + 00016

M; ()=

Using GA with same parameters, the OGDTM point is found to be 0.0089 and we obtain
the following PI controller and system transfer function for the nominal plant as:
0.004883

4

0.00237* +0.001133y + 0.000086

PI controller Cs(y) =0.06509 +

G =
s 7) 78 +3.099" +4.02¢° +2.84)° +1.16¥* +0.275° +0.034y* + 0.0027y + 000086
Angle p= +40°
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Since sampling period is same i.e. 2 sec, hence the nominal and perturbed plants in delta
domain will be same as for angle p= -40° , but the reference model transfer function is
computed for the nominal system and given as:

0.0040872 +0.00235y + 0.000158
¥ +3.16¢" +4.26%° +3.169° +1.39%* +0.3719° +0.057y* +0.0045y + 00016

M (y)=

Using GA with same parameters, the OGDTM point is found to be 0.0089 and we obtain
the following PI controller and system transfer function for the nominal plant as:
0.0057926

/4

0.00259% +0.00150% + 0.000103
¥ +3.0977 +4.029° +2.84y° +1.16%* +0.277° +0.0355 +0.0029y + 000103

PI controller Cz(y)=0.073258 +

Gs(n) =

Figures 5.30 to 5.33 show the reference model and closed-loop unit step responses for the
nominal and various extreme plants with the nominal PI controller for angle p = - 40°, -
20°, +20° and +40° respectively. Robustness is checked in terms of step responses and

various time and frequency domain specifications are given in table 5.6

Step Response of Ref. Model and Perturbed Plant with Nominal Pl Controller

1-2 T T T T T T T T T
1 -
Perturbed plant 6
08 Perturbed plant 5 7
Perturbed plant 1
3 06r Nominal & Ref Mode! i
2 Perturbed plant 3 &4
é Perturbed plant 2
E 0.4 ~
0.2 wn=0.11rad / sec ]
’ zita= 0.8
deita=2 sec
0 Angle roh= - 40 degree |
Controller: Pl Nominal
0.2 L 1 1 1 [ i L [ L

0 10 20 30 40 50 60 70 80 90 100
t/delta

Figure 5.30: Step responses of Reference model and closed loop nominal & extreme plants

with PI Controller for p= - 40° w,= 0.11 rad/sec, £=0.8, A= 2 sec using OGDTM

190



Chapter — 5: Time Delay and Uncertain System Controllers

Step Response of Ref. Model and Perturbed Plant with Nominal! Pl Controller
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Figure 5.31: Step responses of Reference model and closed loop nominal & extreme plants
with PI Controller for p= - 20°, w,= 0.11 rad/sec, £=0.8, A= 2 sec using OGDTM
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Figure 5.32: Step responses of Reference model and closed loop nominal & extreme plants
with PI Controller for p= +20°, w,= 0.11 rad/sec, £=0.8, A= 2 sec using OGDTM
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Step Response of Ref. Model and Perturbed Plant with Nominal Pl Controller
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Figure 5.33: Step responses of Reference model and closed loop nominal & extreme plants
with PI Controller for p= +40°, w,= 0.11 rad/sec, £=0.8, A= 2 sec using OGDTM

The nominal controller parameters are randomly varied to the extent of +10%, +20% and
+30% and corresponding time and frequency domain performance measures are
computed and are given in table 5.7. Step responses of Reference model and closed loop
nominal & extreme plants with varied parameter nominal PI Controller for p= -40° w.=
0.11 rad/sec, £=0.8, Sampling time A= 2 sec using genetic algorithm for OGDTM method
optimum frequency point is found to be 0.0089 for different parameter variation in the
nominal controller are shown in figure 3.34 to 3.39. The Nominal controller transfer
function is given as

0.003499

/4

C,. (¥)=0.040128+
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Table 5.6

Time and frequency response specifications due to Plant uncertainty for different angles
with @,= 0.11 rad/sec, £=0.8, Sampling time A= 2 sec & PI controller

Plant p Reference Model Closed loop system with nominal P1
' Controller
M, % | t/A t/A | GM | PM [ M,% | t/A t/A | GM | PM
Nominal - 40° 1.61 28 19 3.09 | 63.26 | 2.07 28 19 3.19 | 63.11
P5i(Y) -40° | 161 | 28 19 | 309 | 6326 | 0 - 32 | 351 | 74.15
Psa(y) - 40° 1.61 28 19 3.09 | 63.26 0 -- 16 2.75 | 68.68
Ps3(y) -40° | 1.6l 28 19 3.09 | 63.26 | 5.25 20 20 2.37 | 62.68
Psi(y) - 40° 1.61 28 19 3.09 | 6326 | 5.25 20° 20 2.37 | 62.68
Pss(y) - 40° 1.61 28 19 309 |63.26 | 595 34 39 371 | 59.96
Pse(y) - 40° 1.61 28 19 3.09 | 63.26 | 2,72 37 24 4,57 | 64.21
Nominal - 20° 2.08 25 17 3.02 | 62.62°| 4.04 22 16 2.67 | 62.08
P51 (y) - 20° 2.08 25 17 3.02 | 62.62 'O -- 31 2.87 | 74.37
Ps(Y) -20° 2.08 25 17 302 § 6262 | 2.72 16 28 226 | 67.41
Ps(Y) -20° 2.08 25 17 3.02 | 62.62 | 14.01 17 32 | 196 | 60.22
Psa(y) -20° 2.08 25 17 3.02 | 62.62 | 14.01 17 32 1.96 | 60.22
Pss(y) -20° 2.08 25 17 3.02 | 62.62 | 6.67 29 34 3.17 | 59.04
Pss(Y) - 20° 2.08 25 17 302 | 6262 | 2.20 32 21 385 | 63.89
Nominal +20° 5.31 20 21 2.61J 58.64 | 1747 18 32 2.11 | 5425
Ps1(y) +20° 5.31 20 21 2.61 | 58.64 | 1.51 16 28 2.26 | 68.59
Ps(y) +20° 5.31 20 21 2.61 | 58.64 | 20.86 14 27 1.78 | 57.21
Pss(y) +20° 5.31 20 21 2.61 | 58.64 | 35.27 16 50 1.55 | 47.50
Psa(y) +20° 5.31 20 21 261 | 58.64 | 35.27 16 50 1.55 | 47.50
Pss(y) +20‘i 5.31 20 21 2.61 | 58.64 | 15.82 24 32 2.51 | 52.38
Pss(v) +20° 53t | 20 21 2.61 | 58.64 | 7.39 23 28 3.05 | 5843
Nominal +40° | 10.31 18 24 237 | 53.98 | 30.55 17 35 1.83 | 45.60
Ps (y) +40° | 10.31 18 24 2.37 | 5398 | 13.51 15 28 1.98 | 60.81
Ps(Y) +40° | 10.31 18 24 237 | 5398 | 35.63 14 43 1.56 | 46.18
Pss(y) +40° | 10.31 18 24 237 | 5398 | 51.25 16 73 1.35 | 34.50
Psa(y) +40° | 10.31 18 24 2.37 | 53.98 | 51.25 16 73 1.35 | 34.50
Pss(y) +40° | 10.31 18 24 237 | 5398 | 26.77 22 43 2.17 | 45.03
Pse(Y) +40° 10.31' 18 24 2.37 | 5398 | 15.65 21 28 2.64 | 52.04
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Table 5.7

Time and frequency domain specification due to variation in controller parameters with
p= - -40°, w,= 0.11 rad/sec, £=0.8, Sampling time A= 2 sec & PI controller

Plant PI Controller Transfer function Closed loop system with nominal PI
Controller
M, % t/A t/A GM PM
-30% Parameter Variation
Nominal -- -- 35 4.56 71.31
Psi(y) - -- 48 501 | 79.43
Pa(y) 0. - - 37 394 | 76.15
papy | G217 =0.02809+ 00;449 | = | e | 339 | 7200
Psa(y) - -- 34 3.39 72.09
Pss(y) 0.47 61 37 5.31 68.35
Pss(y) 0.05 77 40 6.53 71.38
-20% Parameter Variation
Nominal -- -- 28 3.99 68.59
Psi(y) - -- 42 4.38 71.75
Ps(y) - - 32 3.44 73.81
Ps3(v) C,(3)=003210+ 0.002799 - -- 26 2.97 69.11
Paa(y) ¥ - - 26 2.97 69.11
Pss(y) 1.74 47 31 4.64 65.48
Pse(y) 0.5264 55 33 5.71 68.93
-10% Parameter Variation
Nominal 0.09 37 23 3.55 65.87
Psi(y) -- -- 36 3.90 75.99
Psa(y) -- - 28 3.06 71.32
Pur) | C,(p)=003612+ 2003149 | ~ | 17 | 264 | 6598
Ps(y) 4 - - 17 264 | 6598
Pss(y) 3.60 39 26 4.12 62.68
Pse(y) 1.44 44 28 5.08 66.54
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Table 5.7 (continued)

Time and frequency domain specification due to variation in controller parameters with

p= - -40°, @,= 0.11 rad/sec, £&=0.8, Sampling time A= 2 sec & PI controller

Plant PI Controller Transfer function Closed loop system with nominal PI Controller
M% | t/A | t/o [ GM PM
+10% Parameter Variation

Nominal 5.29 24 25 2.91 60.35
Pai(y) - - 29 3.19 7223
Psa(y) 1.04 17 13 2.50 65.87
P | C,(7)= 004814+ 200384 1 1neo | 10 |23 | 2a6 59.19
Ps(y) 11.69 19 23 2.16 59.19
Pss(y) 8.68 31 40 3.37 57.29
Pss(Y) 431 22 23 4.15 61.94

+20% Parameter Variation

Nominal 9.15 22 27 2.66 57.58
Psi(y) 1.61 25 26 2.92 70.21
Psa(y) C,(y) =0.04815 + 0.004199 6.43 16 26 2.29 62.89
Ps3(y) 18.36 18 33 1.98 55.50
Py (y) 18.36 18 33 1.98 55.50
Pss(v) 11.75 29 39 3.09 54.68
Pss(y) 6.17 30 34 3.81 59.74

+30% Parameter Variation

Nominal 1340 | 21 | 27 | 246 54.80
Psi(y) -- -- 15 2.70 68.09
P | Cy(p)=0.05217+ 20088 | 201 | 16 | 28 | 212 59.73
Ps3(Y) 24.93 18 34 1.82 51.62
Psa(y) 24.93 18 34 1.82 51.62
Pss(Y) 8.30 27 34 3.51 57.58
Pss(v)
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Figure 5.34: Step responses of Reference model and closed loop nominal & extreme plants
with -30% varied parameter nominal PI Controller for p= -40°, w,= 0.11 rad/sec, £=0.8,

Sampling time A= 2 sec using OGDTM
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Figure 5.35: Step responses of Ref. model and closed loop nominal & extreme plants with -
20% varied parameter nominal PI Controller for p= -40°, w,= 0.11 rad/sec, £&=0.8, A= 2 sec

using OGDTM
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Step Response of Ref. Model and Nominal/Perturbed Plant with P Controller
with-10% parameter variatoation
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Figure 5.36: Step responses of Ref. model and closed loop nominal & extreme plants with -
10% varied parameter nominal PI Controller for p= -40°, w,= 0.11 rad/sec, £=0.8, A=2 sec
using OGDTM
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Figure 5.37: Step responses of Ref. model and closed loop nominal & extreme plants with
+10% varied parameter nominal PI Controller for p= -40° w,=0.11 rad/sec, £=0.8, A= 2 sec
using OGDTM
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Step Response of Ref. Model and Nominal/Perturbed Plant with Pl Controller
with +20% parameter variatoation :
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Figure 5.38: Step responses of Reference model and closed loop nominal & extreme plants
with +20% varied parameter nominal PI Controller for p= -40°, @w,= 0.11 rad/sec, £=0.8,

Sampling time A= 2 sec using OGDTM
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Figure 5.39: Step responses of Reference model and closed loop nominal & extreme plants
with +30% varied parameter nominal PI Controller for p= -40°, w,= 0.11 rad/sec, £=0.8,

Sampling time A= 2 sec using OGDTM
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5.1.9 MIMO Systems:

We consider here the problem of controller design for a multivariable system with
dead time. There is a great variety of processes whose dynamics are represented by
multivariable transfer functions having multiple time delays. Some of the more important
processes in this category are distillation columns, extraction and absorption processes,
heat exchangers etc. These processes are multi-input multi-output systems with multiple
time delays and strong interaction effects between various inputs and outputs. Let the

transfer function model of the plant is

Fpa,n (7 Psi(¥) oo Psim(¥) ]
P(y) = p5;2|(7) pd:,22(7) p&,:zm(7’) (5.24)
_ptf,pl(}/) p&,pZ(}/) """ p&,pm(?’)_

For square plant transfer function model, p = m. The individual scalar transfers function

in the above may be expressed in a general form as

by, +b,7+b,, v +b,, 7

1+ap™ 5.25
ao + al,y },+ az’u 72 ...... + a[),xj }/P ( }/) ( )

Ps(y) =

The reference model TFM with multiple time delay is considered as
M(7)=diagi¥, (» (+ap)" ) icll, pl; p=m (5.26)

The purpose is to design a multivariable controller Cs(y) that results in good set point
tracking, low interaction and desired time response characteristics like settling time, rise
time, allowable overshoot etc., for the main diagonal responses.

In this section we extend the MIMO controller design methods of Chapter-4
OGDTM and Optimal frequency fitting to design a controller TFM Cs(y) for MIMO
systems with multiple delays. Design results are given in the example sections. The
mathematical expressions for the controller design procedure follow closely those of

Chapter-4, and are not included for brevity.

5.1.10 Simulation results with OGDTM method:

The OGDTM method is tested here on following MIMO system with time delay.
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5.1.10.1 Distillation column with time delay:
We consider here the distillation column studied by Wood and Berry [121]. The

plant transfer function is given by

128 e*s _189 e_h
P.(y) = 1+16.7s 1+21s
Y g 194
1+109s 1+14.45

The continuous plant models is discritized in d-domain incorporating the sampler and
ZOH at sampling period A=1 sec. Very fast sampling is avoided to restrict the order of
the resultant system. The discrete transfer function in d-domain is obtained as :

0.74397y +0.74397
¥ +2.05819% +1.1162y+0.058123
~0.87891y-0.87891
Y’ +4.04657" +6.168)° +4.2797” +1.186 7+ 0.046503
0.57856y +0.57856
Y’ +8.08)" +28.70y" +58.45)° +74.917° + 62.14y* +32.91%° +10.46)* +1.70y +0.087
-1.3015y-1.3015
¥ +4.0677" +6.268%° +4.402%* +1.268y+0.0671

P (1) =

Fs,(7) =

Pypy() =

P (1) =

The reference model for undamped natural frequency ®,=0.28 rad/sec and 0.3 rad /sec,
damping factor £=0.8 and angle p = -40° are computed and given as:

A=1 sec, p= -40°,0,=0.28 rad/sec & £=0.8

Reference model

0.0.06847* +0.1025y +0.03412
y* +2.3087° +1.6501%* +0.3762y +0.03412
0.0.06847* +0.1025y +0.03412
Y’ +431° +727y* +5.987° +2.44%" +0.44y +0.034

0
Ma(}’) =
0-

The following GA parameters are considered to compute OGDTM (W) value
* Method of selection : Roulette wheel
¢ Number of generation for evolution: 35
e Population size : 32

* Crossover probability: 0.85

200



Chapter - 5: Time Delay and Uncertain System Controllers
e Number of crossover : 2
e Mutaion probability: 0.0085
Using above GA parameters, the optimal frequency point ju is found to be 0.0718 and

corresponding PI controller is obtained as:

0.10091 + 0.02206 ~0.01652 — 0.01583
4 y
Cy(y) =
0.00078 + 0‘0(;85 ! _0.05453 2011114
%

A=1 sec, p= -40°,0,=0.3 rad/sec & E=0.8

For the specifications given above, the reference model transfer functions are

0.10791y* +0.1788y +0.0709
¥ +2.45229° +1.97539% +0.5941y +0.0709
0.10791y* +0.1788y +0.0709
¥ +4.45)° +7.88%" +6.997° +3.23y> +0.74y+0.071

0

Ms(y) =

0

and using GA with same parameters, OGDTM point is found to be 0.0954 and the PI

controller obtained are given as:

01559 + 20312 ~0.02834 - 202101
y y
Cs(n) =
~0.00154+ 0'01?,277 ~0.08251- 20142
y

The unit step responses of the reference model and closed-loop plant are shown in
Figures 5.40 and 5.41 respectively, while the corresponding control efforts are shown in
Figures 5.42 &5.43

5.1.11 Simulation results with Optimal frequency fitting method:

The optimal frequency fitting method is tested on following MIMO system with

time delay

5.1.11.1 Distillation column (revisited):

We considered the plant in section 5.1.10.1 for controller design using the optimal
frequency fitting method. Since the sampling period is kept same i.e. 1 sec to restrict the
order of resultant transfer function, the plant transfer function in delta domain will be

same as section 5.1.10.1. The reference model is computed for different values of
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undamped natural frequencies and using genetic algorithm the optimal frequency points
resultant PI controller obtained the Optimal frequency points considered are y, = y.i,
ie [1,2].

A=1sec, p=-40° @, =0.2 rad /sec & E=10.8

Reference model transfer functions are

0.05736%* +0.1218y +0.0644

0
7' +2.3897° +1.8429% +0.518y+0.064

M(y) =
¢ 0.05737% +0.1218y + 0.0644

¥ +4.3897° +7.6199" +6.590% +2.941% +0.646y +0.064

0

GA parmeters are selected as

The following GA parameters are considered to compute OGDTM (W)

value

® Method of selection : Roulette wheel

* Number of generation for evolution: 30

® Population size : 31

® Crossover probability: 0.77

® Number of crossover : 2

¢ Mutaion probability: 0.0077
Using above parameters for GA, the optimal frequency point is found to be 0.0089 and
-0.0002+0.01771 as the real and imaginary parts and corresponding PI controller is

obtained as:

0.22586 +9£7~;ﬂ _0.03050 001861
Cs(n =
0.071927 +0—'Q% ~0.09688 -%lfjﬂ

A=1sec,p=-40° ©,=0.28 rad /sec & £ =0.7

Reference model transfer functions are

0.06839y” +0.1025y +0.03411

0
7' +2.308)° +1.6509% +0.376y +0.034

Ms(y)=
0.06839y* +0.1025y+0.03411

0
¥* +4.308Y° +7.2667" +5.984)° +2.436)* +0.444y+0.034
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Using the same GA parameters , the optimal frequency point is found to be 0.1269 and

the real and imaginary parts are -0.0329+0.2510i. The PI controller transfer function is
obtained as:

0.08388+

Cs(y) =

-0.01041+

0.02775

/4

0.0

1274

/4

—0.01779—2%5—5
/4
~0.04733- 201118
/4

The unit step responses of the reference model and closed-loop plant are shown in

Figures 5.44 and 5.45 respectively, while the corresponding control efforts are shown in
Figures 5.46 & 5.47.
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Figure 5.40: Step responses of the reference model and closed loop plant with PI controller using
OGDTM, output y11,y12,y21,y22, A=1sec, p=-40°, ©,=0.2 rad/sec & £=0.8
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Control Efforts (U11) Control Efforts (U12)
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Figure 5.41: Step responses of Control effort using OGDTM, ul1l,ul2,u21,u22, A = isec, p = - 40°,
0n=0.2 rad/sec & £ = 0.8
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Step Response of MIMO Systion with Pl controller (y11)
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Figure 5.42: Step responses of the reference model and closed loop plant with PI controller using
OGDTM, output y11,y12,y21,y22, A=1sec, p=-40°, ©,=0.3 rad/sec & £=0.8

205



Chapter — 5: Time Delay and Uncertain System Controllers

Control Efforts (U11) Control Efforts (U12)
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Figure 5.43: Step responses of Control effort using OGDTM, ull,ul2,u21,u22, A = Isec, p = - 40°,
®,= 0.3 rad/sec & & = 0.8
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Figure 5.44: Step responses of the reference model and closed loop plant with PI controller using OFF
method, output y11,y12,y21,y22, A=1sec, p=-40°, 0,=0.2 rad/sec & £=0.8
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Figure 5.45: Step responses of Control effort using OFF method, ull,ul2,u21,u22, A = Isec, p = - 40°,
o= 0.2 rad/sec & £ = 0.8
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Step Response of MIMO Systion with Pl controller (Y11)
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Figure 5.46: Step responses of the reference model and closed loop plant with PI controller using OFF
method, output y11,y12,y21,y22, A=1sec, p=-40°, ©,=0.28 rad/sec & £=0.7
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Figure 5.47: Step responses of Control effort using OFF method, ul1,ul2,u21,u22, A = 1sec, p = - 40°,
.= 0.28 rad/sec & £ = 0.7
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5.2 Conclusion:

Two new methods for designing controllers for systems with time delay have
been proposed. The methods use the concept of approximate model matching approach to
obtain the parameters of a cascade controller Cs(y) in the standard unity-feedback
configuration. The design results in a closed-loop step response that closely matches the
desired response.

We presented two methods namely the OGDTMs matching and the method of
Optimal Frequency Fitting. In these methods we use the concept of matching the Optimal
GDTMs and Optimal frequency fitting for obtaining the controller. The use of OGDTM
and Optimal Frequency Fitting concepts have thus been effectively extended to processes
involving time delay. The important features of the proposed method and the results are
the following :

* Only output feedback is used.
e These provide low-order, practically implementable controllers.
* The methods are conceptually elegant and computationally simple, requiring

the solutions of sets of linear algebraic equations. The merit of the methods in

terms of computational ease becomes even more important when the plant is of

high-order.

The controlled system responses match very closely those of the desired model.

* Responses due to interactions are kept to acceptably low levels.

® The methods are easy to use and give good results.

® On completion of one design-simulation run, the designer's understanding of the
possible betterment of system dynamics improves and the available trade off
between the desired specifications and controller complexity become more
apparent. It may be noted that the main computational work involved in each trial
toward an acceptable compromise consists of solving only linear equations to
determine the controller parameters and obtaining system responses to a unit step
input.

* Implementation does not call for software/hardware modeling of the time-delay

term (as in the smith's predictor method).
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Chapter 6
Biomedical Digital Filters in Delta Domain:

6.1 Introduction:

Traditional digital signal processing algorithms, developed during the past five
decades, employ the technique of the shift operator to represent the dynamics of sampled
data systems. However, the shift operator does not overcome the gap between the high
sampling rates of widely available digital signal processing chips, and relative slow
dynamics of the continuous time processes. In such situations of processing and control
data, often in real time at very high speeds, a more suitable mathematical operator 1s
necessary. As discussed in chapter-1, Middleton and Goodwin [7],[10] developed a
unified description of continuous time and discrete-time systems. It allows continuous-
time results to be obtained as a particular special case of discrete-time ones, by setting the
sampling period to zero.

The new approach is based on the introduction of the so-called delta (8) operator
as an alternative to the shift operator. In recent years, the delta operator methodology has
been widely accepted as an effective tool for high-speed digital signal processing, and
fast sampled data representation.

The delta operator establishes a special rapprochement between analog and
discrete dynamic models and allows for investigating the asymptotic behaviour of
discrete time models as the sampling period converges to zero. Numerous advantages, for
using the delta operator have already been listed in chapter-1. As already discussed, in the
shift form, as the sampling rate increases, the poles and zeros cluster around the point
(1, jO) in the z-plane and the solution algorithms are better conditioned in delta than in
shift form. From then on, the delta operator became more attractive, and interesting links
between continuous-time and discrete-time signals and systems analysis had been
established [122], [123]. On the other hand, some limitations of the delta domain setting
have been also reported, e.g. it is a common opinion that the relevant delta operator based
computations become more complicated [123] and sampling zeros are inducted during

sampling which is to be taken care of.
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The delta operator methodology promoted by Middleton and Goodwin [1] had
been tested in a teaching environment at the University of Newcastle, Australia for years.
Moreover, this encouraged professor Middleton to write the software and documentation
for the Delta Toolbox [124] which can be downloaded from his personal site.

The use of the delta operator in the realizations of digital filters has recently
gained interest due to its good finite-word-length performance under fast sampling. Juha
Kauraniemi et.al [37] [38] have studied efficient direct form structures and analysed round
off noise and found delta structure has the lower quantization noise level as its output.
P.Tanelz Harp et.al, have worked on magnitude re.:sponse optimization of delta operator
filters” [32] and an algorithm to test for various symmetries in the magnitude response of
two dimensional complex-coefficient delta operator formulated discrete-time systems
have been developed by Hari c.Reddy [125]. Markku Eraluoto and liro Hartimo [31],
[33] have worked on reducing implementation complexity of fast sampled digital IR
filters. The work of Newman et.al [102] on delta operator based IIR digital filter for high
performance power electronic inverter applications is worth mentioning. A considerable
amount of work has been done in delta operator based digital filters in different field and
in continuation we have also tried to contribute our effort by designing digital filters in
delta domain to filter out high frequency / low frequency noises as well as 50/60 Hz

power line interference from ECG signal.

6.2  Preliminary:

6.2.1 Analog and Digital filter:

The processing of signals is called filtering When applied to continuous time
signals, this processing is called analog filtering and while the applied to discrete time
signals, it 1s known as digital filtering. An analog filter uses analog electronic circuits
made up from components such as resistors, capacitors and op-amps to produce the
required filtering effect. Such filter circuits are widely used in the applications as noise
reduction, video signal enhancement, graphic equalizers in hi-fi systems, and many other
areas. There are well-established standard techniques for designing an analog filter circuit
for a given requirement. At all stages, the signal being filtered is an electrical voltage or

current.
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Digital filters are fundamental to digital signal processing. A digital filter uses a
digital processor to perform numerical calculations on sampled values of the signal. The
processor may be a general-purpose computer such as a PC, or a specialized DSP (Digital
Signal Processor) chip.

The analog input signal must first be sampled and digitized using an ADC (analog
to digital converter). The resulting binary numbers, representing successive sampled
values of the input signal, are transferred to the processor, which carries out numerical
calculations on them. These calculations typically involve multiplying the input values by
constants and adding the products together. If necessary, the results of these calculations,
which now represent sampled values of the filtered signal, are output through a DAC
(digital to analog converter) to convert the signal back to analog form. In a digital filter,
the signal is represented by.a sequence of numbers, rather than a voltage or current.

Digital filters are defined by their impulse response, A{n], or the filter output
given unit sample impulse input signal. The frequency response of a digital filter can be
found by taking the DFT or FFT of the filter impulse response. The frequency response
of a filter consists of its magnitude and phase responses. The magnitude response
indicates the ratio of a filtered sine wave's output amplitude to its input amplitude. The
phase response describes the phase offset or time delay experienced by a sine wave
passing through a filter. However the digital filters are often best described in terms of
their frequency response i.e. how is a sinusoidal signal of a given frequency affected by

the filter.

6.2.2 Advantages of digital filters:

The following list gives some of the main advantages of digital over analog filters.

e A digital filter is programmable, i.e. its operation is determined by a program
stored in the processor's memory. This means the digital filter can easily be
changed without affecting the circuitry (hardware). An analog filter can only be
changed by redesigning the filter circuit.

e Digital filters are easily designed, tested and implemented on a general-purpose

computer.

214



Chapter —~ 6: Biomedical Digital Filters in Delta Domain

e The characteristics of analog filter circuits are subject to drift and are dependent
on temperature. Digital filters do not suffer from these problems, and therefore
they extremely stable with respect both to time and temperature.

¢ Dagital filters can handle low frequency signals accurately. As the speed of DSP
technology continues to increase, digital filters are being applied to high
frequency signals in the RF (radio frequency) domain, which in the past was the
exclusive preserve of analog technology.

e Digital filters are very much more versatile in their ability to process signals in a
variety of ways; this includes the ability of some types of digital filter to adapt
to changes in the characteristics of the signal.

e Fast DSP processors can handle complex combinations of filters in parallel or
cascade, making the hardware requirements relatively simple and compact in

comparison with the equivalent analog circuitry.

6.2.3 Operation of digital filters:

Suppose the signal which is to be digitally filtered is described by the function
V =x (t), Where ¢ is time. This signal is sampled at time intervals A. The sampled value
at time ¢ = kA is x¢ = x(kA)

Thus the digital values transferred from the ADC corresponding to t = 0, A, 2A,
3A, ... to the processor can be represented by the sequence Xxg, X, X;, X3, ... X, and are
stored in memory. In this case the sampled values x,.;, x,.2 €tc. are not available as they
haven't happened yet. The digital output from the processor to the DAC consists of the
sequence of values yo, y1, y2, ¥3, ... » Yo In general, the value of y, is calculated from the
values xg, x;, x2, x3, ..., x,. The way in which the y's are calculated from the x's determines
the filtering action of the digital filter.

The following are few digital filters and their essential features:
1. Simple gain filter: yn = KX, (K = constant)

K > 1 makes the filter an amplifier, while 0 < K < 1 makes it an attenuator. K <0

corresponds to an inverting amplifier.

ii. Pure delay filter: Yn = Xpo1
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The output value at time t = nA is simply the input at time t = (n-1)A, i.e. the
signal is delayed by time A.

Two-term difference filter: Yo = Xp - Xnei
The output value at t = nA is equal to the difference between the current input X,
and the previous input x,.;. The output is the change in the input over the most
recent sampling interval A. The effect of this filter is similar to that of an analog
differentiator circuit.

Two-term average filter: y, = (Xp + Xp.1) / 2
The output is the average (arithmetic mean) of the current and previous input.
This is a simple type of low pass filter as it tends to smooth out high-frequency
variations in a signal.

Three-term average filter: Vo= (Xo + Xpot + Xp2) /3
This is similar to the previous example, with the average being taken of the
current and two previous inputs. As before, x.; and x., are taken to be zero.

Central difference filter: y, = (Xp - Xp-2) /2
This is similar in its effect to example (3). The output is equal to half the change
in the input signal over the previous two sampling intervals:
Order of a digital filter:

The order of a digital filter can be defined as the number of previous inputs stored

in the processor memory is used to calculate the current output.

1. zero order filter: Yn=Xn OF Yn=KXx,

Here the current output y, depends only on the current input x, and not on any
previous inputs.

il. First order filter Yn = Xn-1 OF ¥n = Xp = Xn.|

In a first order filter, one previous sample (X,.;) is required to calculate y,.
Therefore the order of a digital filter may be any positive integer.

All of the digital filter examples given in section 6.2.3 can be written in the

following general forms:

Zero order: Yn = apXp
First order: Yn = @0Xn + a1Xp.|
Second order: . ¥Yn = apXy + A1Xp1 + 22Xp2
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Similar expressions can be developed for filters of any order.
6.2.5 Recursive and non-recursive filters:

For all the examples of digital filters discussed so far, the current output (yn) is
calculated solely from the current and previous input values (Xa, Xn-1, Xn2 ...). These are
called as non-recursive filters.

A recursive filter is one which in addition to input values also uses previous
output values. The expression for a recursive filter therefore contains not only terms
involving the input values (X,, Xp-1, Xn-2, ...) but also terms in yy.1, ¥Yn-2, ... .

Recursive filters require more calculations to be performed, since there are
previous output terms in the filter expression as well as input terms. To achieve a given
frequency response characteristic using a recursive filter generally requires a much lower
order filter, and therefore fewer terms to be evaluated by the processor, than the

equivalent non-recursive filter.

6.2.6 FIR and IIR filters:

A non-recursive filter is known as an FIR (Finite Impulse Response) filter, and a
recursive filter as an IIR (Infinite Impulse Response) filter. These terms refer to the
differing "impulse responses” of the two types of filter. An FIR filter is one whose
impulse response is of finite duration. An IIR filter is one whose impulse response
(theoretically) continues for ever, because the previous output terms are feed back energy
into the filter input and keep it going. But actual impulse responses of nearly all IIR

filters reduce virtually to zero in a finite time.

6.2.7 The unit delay operator

The delay operators in z and delta domain are represented by the symbol z' & y'.
When applied to a sequence of digital values, this operator gives the previous value in the
sequence. It therefore in effect introduces a delay of one sampling interval. The relations

between z and 6 domain unit delays are shown in Figure 6.1
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Figure 6.1: Construction of delay in delta domain

6.2.8 Steady State and Transient Response:

Since digital filters are linear systems, a sinusoidal input will produce a sinusoidal
output of the same frequency assuming before a signal is applied to the input of a digital
filter; the filter's internal state is equal to zero. However, when a sinusoidal signal is first
applied to the input of a digital filter, the output initially exhibits a region of transition
which is referred to transient response. For FIR filters, this transition region has duration
in samples equal to the filter order. But for IIR filters, the length of the transition region is
dependent on the filter order and the feedback coefficient values.

Assuming a continued application of the sinusoidal input, the filter will eventually
settle into its steady-state region. If the input frequency changes or shows a discontinuity
of any sort, another transient region will occur in the filter output. The frequency

response of a digital filter is understood to represent its steady-state behaviour.

6.2.9 Signal conversion

The concept of converting a continuous time signal to discrete samples leads to
the fact that to represent a continuous time signal can be done by its instantaneous
amplitude values taken at periodic points in time. Simply to say, any continuous signal
can be reconstructed perfectly with its sampled points without any loss of information as
stated in the sampling theorem initially developed by Shannon [126].

The Sampling Theorem states that for band limited signals with maximum
frequency fmax the equally spaced sampling frequency fs must be greater than twice of the
maximum frequency fuax i.€., f§ > 2:fma The frequency 2.fn.. is called the Nyquist
sampling rate and half of this value f,.,, is sometimes called the Nyquist frequency. For
any filter to recover the original signal it must satisfy the condition in sampling theorem,

if fs is equal to or less than the twice of the maximum frequency adjacent samples get
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overlapped and results to an effect called aliasing also explained as the higher frequencies

are reflected in to the lower frequency range.

6.2.10 Shift operator based IIR digital filters

The shift operator q and its associated z-transform are synonymous as the way of
implementing IIR digital filters. The application of the shift operator to a given input

discrete-time sample x[k] is simply the future sample as in
x[k +1)=qx[k]
or equivalently x[k+1] =z x[k] 6.1)

If initial conditions are ignored, the shift operator q can simply be replaced by ‘z’
[117]. In a practical sense this is obviously not causal, but the inverse shift operator can

be applied. as a causal alternative
7' [k]=x[k-1] (6.2)

Any linear discrete-time system (2nd order in this case) can be described by a
linear difference equation [122]

ylk]+a, ylk =11+ a,[k — 2] = byx[k]+ bx{k ~ 1]+ b,x[k — 2] (6.3)

It is to be noted that only a second order transfer function has been considered, as
higher order transfer functions are preferably implemented as a cascade of first and
second order functions, to minimize rounding and truncation effects [123]. Applying
(6.2) results in the general form for the output of a second order infinite impulse response
(IIR) filter, of

ylkl= bxlk]+ b, 27 'x[k]+ b, 22 x[k]—a, 2" y[k] + a, 2 [k] (6.4)

Finally, rearrangement of (6.4) provides the canonical form of the shift-based IIR filter,
Hy(z), which gives an output of Y(z) when applied to an input sequence X(z)

-1 -2
by+b 7 +b,z
2

H, (2)= (6.5)

l+a,7z"'+a,7"
With the above structure if we have the knowledge of the filter coefficients, a; &

b; , the shift-based 2nd order IIR filter can easily be realized and implemented. There are

many methods for acquisition of these coefficients [122], the bilinear (Tustin)
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transformation is the more popular choice, as it will always provide a stable digital filter
as long as the analog filter is stable. This method involves the substitution of

_2(z-]
s=2

6
T (z+1) (6.0)

into the desired s-domain transfer function, and rearranging the result into the form of
(6.5) to obtain the associated coefficient values. The transformation from the continuous
Laplace s-domain into the discrete-time z-domain, maps the infinite frequency range
[0, o] to the finite range [0, 7] [127],{128]. This mapping is nonlinear and the frequency
axis is compressed, with the effect becoming particularly significant for higher sampling
frequencies. The importance of this compression for shift-based IIR filters is that as the
sampling frequency increases, the poles of the filter converge toward 1 on the z-plane.
This clustering makes very small changes in the pole locations (i.e., because of
coefficient rounding) cause very large deviations from the intended transfer function.

To illustrate this effect let us consider a 3 order butterworth filter [129] whose
transfer function in s-domain is given as:

1

H (s)= >
(s+D(s"+s+1)

(6.7)

The transfer function (6.7) is discretized for various sampling time A = 1 sec to
0.01 sec using bilinear transformation and the pole zero plot in z-plane is shown in Figure
6.2. For stability, the poles must lie within the unit circle on the z-plane whereas the zeros
can lie anywhere and therefore as the sampling time decreases or sampling frequency

increases, the poles also move closer to the point [1, 0] as shown in Figure. 6.2.

6.2.11 Delta operator based IIR digital filters:

The delta operator was named and actively promoted in digital control by
Middleton and Goodwin in 1986 (1],{7],{122]. However, the technique was known in the
numerical analysis field some decades before as the “difference operator.” A complete
history of the origins of the delta operator is contained in [7]. For discrete systems the
delta operator is a Euler approximation to a derivative [122]. The definition of delta

operator has already been given in equation (1.19 — 1.21).
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Pole Zero Plot of 3rd Order Digital Butterworth Filter in z-domain
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Figure 6.2: Pole clustering of 3" order butterworth IIR digital filter in z-domain
( Sampling Time A = 1 sec to 0.01 sec)

Just as the continuous time derivative operator d/dt has a s-domain equivalent *s

{(ignoring initial conditions) using Laplace transforms, the Delta transform can be used to

(13 Iy

convert the discrete time operator to its equivalent; “ y”. From [1] the Delta transform can
be derived from the Laplace transform to illustrate the relationship between the two, and
is summarized as follows.

If the Laplace transformation (single sided) formula
F(s)=L{f )= [ e f()ar (6.8)

is discretized by the substitution of kA, where A is sampling the time, for time and an

infinite summation for the integral, we obtain
F'(s)=Y Ae™ f (kD) (6.9)
k=0
With substitution of €™ =1+ A the result is the single sided Delta transform

Fy(y)= DTN =3 AL+ Ap)™ 1K) (6.10)
k=0
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Equation (6.10) can now be used to find the Delta transform of the derivative
approximation [1].
D{s /1Kl =7 F5 ()~ (1+ A7) f10) (6.11)
Comparison of (6.11) to the Laplace transform of the derivative operator in (6.12) shows

that if A=0 then “y” becomes interchangeable with “s
d
L{EE AU )} =sF(s)- f(0) (6.12)

Therefore, the delta operator has the particular property that as the sample time, A,
approaches zero, it converges toward its continuous counterpart, the Laplace transform
variable. In fact, it can be said that the continuous domain is actually a subset of the
discrete-time delta representation. This property gives the delta operator its superior

performance at high sample rates compared to the shift operator which does not

converge. It is to be noted, e is a time shift of A, and is equivalent to z. Therefore, from
the same substitution used to create (6.10), the shift and delta operators are found to be
related by

z=1+Ay (6.13)

It has been already discussed in details in chapter-1 with the mapping s, z and
delta plane and it has been shown that the delta operator is associated with the vy-
transform in exactly the same way that the shift operator q is associated with the z-
transform, so it follows from (6.13) that

g=1+56A (6.14)
This illustrates how the forward shift is made up of the present sample plus the difference
(which is the derivative, multiplied by the time step A). We discretize the transfer
function given in equation (6.7) for various sampling time A = 1 sec to 0.01 sec to find
the transfer function in delta domain, and the pole-zero plot in delta domain is shown in
figure 6.2. For stability, the poles must lie within the sampling circle on the y-plane. In
the case of delta parameterization it is clear from the figure 6.2 that on decreasing the
sampling time or increasing sampling frequency, the poles remain with in the sampling

circle however the zeros move towards left of the sampling circle as shown in Figure. 6.3.
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Figure 6.3: Pole-zero plot of 3" order butterworth IIR digital filter in delta domain
( Sampling Time A = 1 sec to 0.01 sec)

For comparison the location of poles and zeros for different sampling time are
shown in table 6.1

For discrete implementation of analog prototypes using delta-operator based IIR
digital filters there are two possibilities, first we define an analog prototype transfer
function in s-domain. For convenience we consider a second order transfer function with
coefficients as given in equation (6.15).

Bis” + Bs + B,

s’ +ajs+a

H_(s)= (6.15)

Then Equation (6.16) can be formed where the coefficients are equal to those in (6.15)
for, A = 0, and diverge as A increases. The coefficients o, and B, defined in equation
(6.16) could be found directly by applying the delta transform eqn. (6.10) to the sampled
prototype system h/n] shown in equation (6.15).

By’ + By + B,

r+ay+a,

Hy(y)= (6.16)
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Table 6.1

Poles & zeros of 3 order Butterworth digital filter in z and 8 domain.

Sampling Poles & zeros in z-domain Poles & zeros in delta domain
time A in Poles Zeros Poles Zeros
1 sec 0.4286 + 0.4949i -1.0000 + 0.0000i -0.6071 + 0.4620i1 -3.1951
0.4286 - 0.4949i -1.0000 - 0.0000i -0.6071 - 0.4620i -1.1676
0.3333 -1.0000 -0.6321 --
0.9 sec 0.4826 + 0.4717i -1.0000 + 0.00001 -0.6072 + 0.4980i1 -3.6909
0.4826-047171 -1.0000 - 0.0000i -0.6072 - 0.4980i -1.3057
0.3793 -1.0000 -0.6594
0.8 sec 0.5385 + 0.4441i -1.0000 + 0.00001 -0.6053 + 0.5352i -4.3175
0.5385 - 0.4441i -1.0000 - 0.0000: -0.6053 - 0.53521 -1.4789
0.4286 -1.0000 -0.6883
0.7 sec 0.5959 + 0.4117i -1.0000 + 0.0000i -0.6013 + 0.57361 -5.1312
0.5959 - 0.4117i -1.0000 - 0.0000i -0.6013 - 0.5736i -1.7023
0.4815 -1.0000 -0.7192
0.6 sec 0.6547 + 0.3738i -1.0000 + 0.00001 -0.5949 + 0.61311 -6.2259
0.6547 - 0.3738i -1.0000 - 0.0000i -0.5949 - 0.61311 -2.0010
0.5385 -1.0000 -0.7520
0.5 sec 0.7143 + 0.3299i -1.0000 + 0.0000i -0.5862 + 0.6536i -7.7706
0.7143 - 0.3299i -1.0000 - 0.0000i -0.5862 - 0.6536i -2.4204
0.6000 -1.0000 -0.7869
0.3 sec 0.8337 + 0.2216i -1.0001 + 0.00011 -0.5606 + 0.7370i -14.0127
0.8337-0.2216i -1.0001 - 0.00011 -0.5606 - 0.7370i -4.1041
0.7391 -0.9999 -0.8639
0.1 sec 0.9477 + 0.0823i -1.0000 + 0.0000i -0.9516 -45.4901
0.9477 - 0.0823i -1.0000 - 0.0000i -0.5234 + 0.8228i -12.5495
0.9048 -0.9996 -0.5234 -0.8228i
0.05 sec 0.9744 + 0.0422i -1.0005 + 0.0008i -0.9754 -92.7929
0.9744 - 0.0422i -1.0005 - 0.0008i -0.5121 + 0.8444i -25.2270
0.9512 -0.9991 -0.5121 - 0.8444i
0.01 sec 0.9950 + 0.00861 -1.0016 + 0.00271 -0.9950 -471.3426
0.9950 - 0.0086i -1.0016 - 0.0027i -0.5025 + 0.8617 -126.6614
0.9900 -0.9969 -0.5025 - 0.86171
0.001 sec 0.9995 + 0.00091 -1.0133 + 0.0236i1 -0.9995 -4.73020e+003
0.9995 - 0.0009i -1.0133 - 0.0236i -0.5002 + 0.8656i -1.26780e+003
0.9990 -0.9733 -0.5002 - 0.8656i
0.0001 sec 1.0000 + 0.0001i -1.3918 -1.0000 -4.73190e+004
1.0000 - 0.00011 -0.8103 + 0.2613i -0.5000 + 0.8660i -1.26790e+004

0.9999

-0.8103 - 0.2613i

-0.5000 - 0.8660i
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But this is a less straightforward approach than desired, The second possible method is to
use the relationship between the shift and delta domains in (6.12) & (6.13) to utilize the
coefficients developed using the bilinear transformation. However, it is an
implementation method and not the design method that provides the delta its performance
advantages over the shift at high sample rates [122]. Applying equation (6.5) and

substituting in (6.17) we get simple derivation of the delta filter coefficients.

H;(y)=H, (2)

- (6.17)

For the delta operator to be useful in digital filter applications, a causal form must also be
available. This is the inverse delta operator i.e delay element in delta domain is
equivalent to

Agq™
1 -4

6 =

-1

or equivalent to Y= (6.18)

The construction of equation (6.18) is shown in figure 6.1.

The 2nd, 3™ and 4™ order digital filters with delay element in z domain are represented as

by+b 7z +b77

H = 6.19
«(2) l1+a,7" +a,z7 (6.19)
by+b 7' +b, 272 +b,z7
H, (=222 2L ThZ (6.20)
l+a z7 +a,27" +a,z
-1 -2 -3 -4
H,(2)= by+b 7z +b,z7" +bz7 +bz 4 6.21)

-1 -2 -3 -
l+a z7 +a,z7" +a,27" +a,z

By using equation (6.18), corresponding transfer functions of (6.19), (6.20) & (6.21) in

delta domain are given as

BBy + By
H;(y) = 1te T (6.22)
-1 -2 -3

Ity +a,y+a,y”

+ -y -2 = -4
Hyp =Pt BL DYDY 25T (60
Lo y” o,y +ony” + By
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The coefficients a, & B, of (6.22), (6.23) and (6.24) in terms of a, and b, are given in table
6.2, 6.3 & 6.4 respectively.

Table 6.2
Conversion table of 2™ order Delta & Shift coefficients
ﬂo = b, a, =1
2b, +b, 2+a,
= —_— o, =
ﬂl A 1 A
b,+b +b l+a +a
p=2l @ = At
Table 6.3
Conversion table of 3" order Delta & Shift coefficients
ﬁo = bo o, =1
3b, + b 3+
ﬁl = _% al — Aal
3b,+2b, +b 3+2a, +a,
,62 — 0 Azl 2 az - A; a._
b +b +b +5b l+a +a, +a
’33: 0 |A32 3 a, = |A32 3
Table 6.4
Conversion table of 4th order Delta & Shift coefficients
B, = b, o =1
4b, + b 4+a
ﬁ] = OA ] al — A 1
6b, +3b, +b 6+3a, +
132: 0 AZI 2 a, = Z; a,
B _ 4by +3b, +2b, +b, « _4+3a,+2a, +a,
3 A3 3 A3
B :b0+b,+b2+b3+b4 « =1+al+a2+a3+a4
4 A 4 A
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From this the IIR canonical form of the delta domain transfer functions given in
(6.22) to (6.24) is found which has the same form as its shift counterpart in (6.19) to
(6.21). Therefore implementation of delta operator based IIR filters can be performed in
the same manner as for the shift, except with y' replacing the z', and different
coefficients.

The discrete stability regions for the s, z and 6 domain has already been shown in
figure 1.2 in chapter-1. The stability region of shift implementation is fixed, causing the
clustering as shown in figure 6.2 however it can be seen that as A approaches zero, the
stability region for the delta implementation will once again grow to approach that of the
laplace domain or s-domain i.e. whole left half plane.

For shift-based filters, the spread of the coefficient values are fixed, and if this
spread is too large then the coefficients reach a point where they cannot be implemented
on a 16 bit fixed-point system. However for delta operator based digital filters, despite
the variable being initially defined as the sample period, is free to be varied to optimize
the numerical properties of the design [45]. Therefore, since the coefficients are a
function as given in Table 6.2 to 6.4, the spread of the coefficients can be optimized to
allow lower percentage rounding errors. In general, the choice of A determines the
coefficient rounding and sensitivity, as well as the maximum variable size of the delta
filter [42].

IIR digital ‘filters can be implemented using either direct form I (DFI) or direct
form II (DFII) structures, or their transposed versions DFIt and DFIIt as shown in Figure
(6.4). The DFI form can be seen to be simply a diagrammatic version of (6.4), illustrating
the order in which the additions and subtractions should take place. The DFIt, DFII, and
DFIIt forms are rearrangements developed to achieve different numerical quantization
Iesponses.

While most shift-based digital filters can be implemented with any of these forms,
this is not necessarily the case for fixed-point delta-based digital filters [44]. For the DFI
form [Fig. 6.4(a)] the unstable pole at of the formula in (6.18) is not cancelled prior to the
inverse delta operation, and it is therefore unstable. This causes the output of the
operation to overflow. For the DFIt form Fig. 6.4(b) the unstable poles of (6.8) are

cancelled prior to the inverse, but require double precision to function properly [38].
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Mostly, these problems are avoided by use of the DFII and DFIIt forms Fig. 6.4(c) and
(d). [42]

ulk] Bo  ylkl ulkl Bo
o @ @O—o0 0

Figure 6.4: Direct form digital filter implementation structures:(a) DFI (b) DFIt (c) DFII (d)

DFIIt

In this chapter, few biomedical time and frequency domain digital filters in delta
domain is presented to remove low frequency, high frequency noises and 50/60 Hz power

line interference in ECG signal.
6.3  Biomedical signals

6.3.1 The Nature of Biomedical signals :

The human body includes the nervous system, the cardiovascular system, and the
muscular skeletal system etc. Each system is made up of several sub-systems that carry
on many physiological processes. For example, the cardiac system performs the
important task of rhythmic pumping of blood throughout the body to facilitate the
delivery of nutrients, as well as pumping blood through the pulmonary system for

oxygenation of the blood itself. [105]

Physiological processes are complex phenomena, including nervous or hormonal
stimulation and control; inputs and outputs that could be the form of physical material,
neurotransmitters, or information and action that could be mechanical, electrical, or
biochemical. Most physiological processes are accompanied by or manifest themselves as
signals that reflect their nature and activities. Such signals could be of many types,
including biochemical in the form of hormones and neuro transmitters, electrical in the

form of potential or current and physical in the form of pressure or temperature.
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Disease or defects in a biological system cause alterations in its normal
physiological processes, leading to pathological processes that affect the performance,
health and general well being of the system. A pathological process is typically
associated with signals that are different in some respects from the corresponding normal
signals. If we possess a good understanding of a system of interest, it becomes possible to
observe the corresponding signals and assess the state of the system. The task is not very
difficult when the signal is simple and appears at the other surface of the body. For
example, most infections cause a rise in the temperature of the body, which may be
sensed very easily. Objectives or quantitative measurement of temperature requires an
instrument, such as a simple thermometer. Electrical activity of the hearth is an important

physiological signal.

6.3.2 The electrocardiogram (ECG):

The ECQG is the electrical manifestation of the contractile activity of the heart, and
can be recorded fairly easily with surface electrodes on the limbs or chest. The ECG is
perhaps the most commonly known, recognized and used biomedical signal. The rhythm
of the heart in terms of beats per minutes (bpm) may be easily estimated by counting the
readily identifiable waves. More important is the fact the ECG waveshape is altered by
cardiovascular disease and abnormalities such as myocardial ischemia and infarction,

ventricular hypertrophy and condition problems.
6.3.2.1 Generation of ECG:

The heart 1s a four chambered pump with two atria for collection of blood and two
ventricles for pumping out of blood. Figure 6.4 shows a schematic representation of the
our chambers and the major vessels connecting to the heart. The resting or filling phase
of a cardiac chamber is called diastole; the contracting or pumping phase is called systole.
The right atrium (RA) collects impure blood from the superior and inferior vena cavae.
During atrial contraction, blood is passed from the right atrium to the right ventricle (RV)
through the tricuspid valve. During ventricular systole, the impure blood in the right
ventricle is pumped out through the pulmonary valve to the lungs for purification

(oxygenation).
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Figure 6.4: Schematic representation of the chambers, valves, vessels and conduction
system of the heart

The left atrium (LA) receives purified blood from the lungs, which is passed on
during atrial contraction to the left ventricle (LV) via the mitral valve. The left ventricle
is the largest and most important cardiac chamber. The left ventricle contracts the
strongest among the cardiac chambers. As it has to pump out the oxygenated blood
through the aortic valve and the aorta against the pressure of the rest of the vascular
system of the body. Due to the higher level of importance of contraction of the ventricles,
the terms systole and diastole are applied to the ventricles by default.

The heart rate (HR) or cardiac rhythm is controlled by specialized pacemaker
cells that form the sino-atrial (SA) node located at the junction of the superior vena cava
and the right atrium [125]. The firing rate of the SA node is controlled by impulses from
the autonomous and central nervous systems leading to the delivery of the

neurotransmitters acetylcholine or epinephrine. The normal (resting) heart rate is about
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70 bpm. The heart rate is lower during sleep, but abnormally low heart rates below 60
bpm during activity could indicate a disorder called bradycardia. The instantaneous heart
rate could reach values as high as 200 bpm during vigorous exercise or athletic activity: a
high resting heart rate could be due to illness, disease or cardiac abnormalities and is
termed tachycardia.

The coordinated electrical events and a specialized conduction system intrinsic and
unique to the heart play major roles in the rhythmic contractile activity of the heart. The
SA mode is the basic, natural cardiac pacemaker that triggers its own train of action
potentials. The action potential of the SA node propagates through the rest of the heart,
causing a particular pattern of excitation and contraction The sequence of events and
waves in a cardiac cycle is as follows [130]:

1. The SA node fires.

2. Electrical activity is propagated through the atrial musculature at comparatively
low rates, causing slow moving depolarization (contraction) of the atria. This
results in the P wave in the ECG as shown in Figure 6.5 (a) & (b) . Due to the
slow contraction of the atria and their small size, the P wave is a slow, low
amplitude wave, with an amplitude of about 0.1 — 0.2 mV and a duration of about
60-80 ms.

3. The excitation wave faces a propagation delay at the atrio ventricular (AV) node,
which results in a normally iso-electric segment of about 60 - 80 ms after the P
wave in the ECG. Known as the PQ segment. The pause assists in the completion
of the transfer of blood from the atria to the ventricles.

4. The His bundle, the bundles branches, and the Purkinje system of specialized
conduction fibres propagate the stimulus to the ventricles at a high rate.

5. The wave of stimulus spreads rapidly from the apex of the heart upwards, causing
rapid depolarization (contraction) of the ventricles. This results in the QRS wave
of the ECG. A sharp biphasic or triphasic wave of about 1 mV amplitude and 80
ms duration as shown in figure 6.5.

6. Ventricular muscle cells possess a relatively long action potential duration of
300-350 ms. The plateau portion of the action potential causes a normally iso-

electric segment of about 100 — 120 ms after the QRS. Known as the ST Segment.
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7. Re-polarization (relaxation) of the ventricles causes the slow T wave, with an

amplitude of 0.1 — 0.3 mV and duration of 120 — 160 ms as shown in the figure
6.4
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Figure 6.5(a): A typical QRS wave of ECG signal
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Figure 6.5(b): A typical QRS wave of ECG signal
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Any disturbance in the regular rhythmic activity of the heart is termed arrhythmia.
Cardiac arrhythmia may be caused by irregular firing patterns from the SA node, or by
abnormal and additional pacing activity from other parts of the hearts. Many parts of the
heart possess inherent rhythmicity and pacemaker properties: for examples, the SA node,
the AV node, the Purkinje fibres, artial tissue and ventricular tissue. If the SA node is
depressed or inactive, any one of the above tissue may take over the role of the
pacemaker or introduce ectopic beats. Different types of abnormal rhythm (arrhythmia)
result from variations in the site and frequency of impulse formation. Premature
ventricular contractions (PVCs) caused by ectopic foci on the ventricles upset the regular
rhythm and may lead to ventricular dissociation and fibrillation i.e a state of disorganized
contraction of the ventricles independents of the artria, resulting in no effective pumping
of blood and possibly death. The waveshapes of PVCs are usually very different
conduction paths of the ectopic impulses and the associated abnormal contraction events.

Figure 6.6 shows ventricular conduction.

Right Ventricular PVC Left Ventricular PVC

Ventricular Conduction .

Figure 6.6: Ventricular conduction
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6.3.2.2. ECG Signal acquisition:

In clinical practices, the standard 12 channel ECG is obtained using four limbs
leads and chest leads in six position [104],{105],[130]. The right leg is used to place the
reference electrode. The left arms, right arm, and left leg are used to get leads I, II and III.
A combined reference known as Wilson’s central terminal is formed by combining the
left arm, right arm and left leg leads, and is used as the reference for chest leads. The
augmented limb (aV) leads known as aVR (for right arm), aVL (for left arm), and aVF
(for left foot) are obtained by using the exploring electrode on the limb indicated by the
leads name, with the references being Wilson’s central terminal without the exploring
limbs lead. Fig. 6.7 shows the directions of the axes formed by the six limb leads. The
hypothetical equilateral triangle formed by leads I, II and IIl is known as Einthoven’s
triangle. The center of the triangle represents Wilson’s central terminal. Schematically,
the heart is assumed to be placed at the center of the triangle. The six leads measure
projections of the three dimensional (3D) cardiac electrical vector onto the axes
illustrated in Fig 6.7 The six axes sample the 0° — 180° range in steps of approximately
30° . The projections facilitate viewing and analysis of the electrical activity of the heart

and from different perspective in the frontal plane.

Right Arm - Lead I + Left Arm

+ +
aVR aVL

Wilson’s
central
terminal

Lead 11 Lead II1

+

Right Leg :
Reference Left Leg

Figure 6.7: Einthoven’s triangle and the axes of the six ECG leads formed by using four
limb leads.
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The six chest leads V1 to V6 are obtained from six standardized positions on the

chest [125] with Wilson’s central terminal as the reference. The positions for placement
of the chest leads are indicated in figure 6.8. The V1 & V2 leads are placed at the fourth
intercostals space just to the right and left of the sternum respectively. V4 is recorded at
the fifth intercostals space at the midclavicular line. The V3 lead is placed half way
between the V2 & V4 leads. The V5 and V6 leads are located at the same level as the V4
lead, but at the anterior axillary line and the midaxillary line respectively. The six chest
leads permit viewing the cardiac electrical vector from different orientations I a cross
sectional plane i.e. V5 and V6 most sensitive to left ventricular activity, V3 and V4

depicts septal activity best, V1 and V2 reflect well activity in the right half of the heart.

Caratid pulse area

Pulmonory area

Midclavicular line
Jugular pulse area

Antirior axillay line

Aortic area viiaacuiary nne

Midacillary line

V1 V2 V3 V4V5Ve

Figure 6.8: Positions for placement of the chest leads V1 — V6 for acquisition of ECG
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Some of the important features of the standard clinical ECG are:

* A rectangular calibration pulse of 1 mV amplitude and 200 ms duration is applied
to produce a pulse of 1 cm height on the paper plot.

» The paper speed used is 25 mm/s, resulting in a graphical scale of 0.04 s/mm or
40 ms/mm. The calibration pulsei width will then be 5 mm.

= The ECG signal peak value is normally about 1 mV.

* The amplifier gain used is 1,000.

= Clinical ECG is usually filtered to a bandwidth of about 0.05 — 100 Hz, with a
recommended sampling rate of 500 Hz for diagnostic ECG. Distortions in the
shape of the calibration pulse may indicate improper filter settings or a poor signal
acquisition system.

» ECG for heart rate monitoring could use a reduced bandwidth 0.05 — 500 Hz.

6.3.3 Filtering for removal of artifacts:

Most biomedical signals appear as weak signals in an environment that 1s teeming
with many other signals of various origins. Any signal other than that of interest could be
termed as an interference, artifact or simply noise. The source of noise could be
physiological, the instrumentation used, or the environment of the experiment. The
problems caused by artifacts in biomedical signals are vast in scope and variety; their
potential for degrading the performance of the most sophisticated signal processing
algorithms is high. ‘

Our environment is full of stray EM waves, both natural and man-made. EM
waves broadcast by radio and television (TV) stations and those radiated by florescent
lighting devices, computer monitors, and other systems used in the laboratory or work
environment are picked up the cables, devices and connectors. The 50 Hz or 60 Hz power
supply waveform is notorious for the may ways in which it can get mixed with and
corrupt the signal of interest. Such interference may be termed as being duet to the
environment of the experiment. Simple EM shielding of cables and grounding of the
chassis of equipment reduce EM and power supply interference in most cases.

The ECG is a relatively strong signal with a readily identifiable waveform. Most

types of interference that affect ECG signal may be removed by band pass filters.
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6.3.3.1 High frequency noise in the ECG:

Fig. 6.9 shows a segment of an ECG signal with high-frequency noise. The noise
could be due to the instrumentation amplifiers, the recording system, pickup of ambient
EM signals by the cables, and so on. The signal illustrated has also been corrupted by
power-line interference at 60 Hz and its harmonics, which may also be considered as a

part of high frequency noise relative to low frequency nature of the ECG signal.
6.3.3.2 Motion artifact in the ECG:

Low frequency artifacts and base line drift may be caused in chest lead ECG
signals by coughing or breathing with large movement of the chest or when an arm or leg
is moved in the case of limb lead ECG acquisition. The EEG is a common source of
artifact in chest lead ECG. Poor contact and polarization of the electrodes may also cause
low frequency artifacts. Base line drift may sometimes be caused by variations in
temperature and bias in the instrumentation and amplifiers as well; Fig. 6.10 shows an
ECG signal with low frequency artifact. Base line drift makes analysis of isoelectricity of
the ST segment difficult. A large base line drift may cause the positive or negative peaks

in the ECG to be clipped by the amplifiers or the ADC.

ECG Signal with High Frequency Noise

T T T T { T

ECG

5 6 7 8
Time in seconds

Figure 6.9: ECG signal with high frequency noise
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ECG Signal with Low Frequency Artifact
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Figure 6.10: ECG signal with low frequency artifact

6.3.3.3 Power Line interference in ECG signals:

The most commonly encountered periodic artifact in biomedical signals is the
power line interference at 50 Hz or 60 Hz. If the power-line waveform is not a pure
sinusoid due to distortions or clipping, harmonics of the fundamental frequency could
also appear. Harmonics will also appear if the interference is a periodic waveform that is
not a sinusoid such as rectangular pulses. In the recent work of Yue-Der Lin [131] has

developed method to detect and remove powerline interference from ECG.

Power-line interference is easily visible if present on well defined ECG signal
waveforms. The power spectrum of the signal provides a clear indication of the presence
of power line interference as an impulse or spike at 50 Hz or 60 Hz harmonics, if present,
will appear as additional spikes at integral multiples of the fundamental frequency. Fig.
6.11 shows a segment of an ECG signal with 60 Hz interference. It is clear that the
regular or periodic structure of the interference rides on top of the ECG waves. Figure
6.12 shows the FFT of the ECG signal with 60 Hz power line interference. If third and
fifth harmonics are present, periodic interference is will also appear as a spike at 180 Hz

and 300 Hz. The recommended sampling rate for ECG signals is 500 Hz; the higher rate

238



Chapter — 6: Biomedical Digital Filters in Delta Domain

of 1,000 Hz was used in this case as the ECG was recorded as a reference signal with the

PCG. The larger bandwidth also permits better illustration of artifacts and filtering.

ECG Signal with 60 Hz Power Line interference
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Figure 6.11: ECG signal with 60 Hz power line interference
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Figure 6.12: FFT of ECG signal

The bandwidth of interest of the ECG signal, which is usually in the range 0.05 —

100 Hz, includes the 60 Hz components; therefore lowpass filtering will not be
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appropriate for removal of power-line interference. Lowpass filtering of the ECG to a
bandwidth lower than 60 Hz could smooth and blur the QRS complex as well as affect
the PQ and ST segments.

6.3.4 Time domain filters :

Certain types of noise may be filtered directly in the time domain using signal
processing techniques or digital filters. An advantage of time-domain filtering is that
spectral characterization of the signal and noise may not be required. Time-domain

processing may also be faster in most cases than frequency filtering.

6.3.4.1 Moving average filters :

When an ensemble of several realizations of an event is not available we are then
forced to consider temporal averaging for noise removal. As temporal statistics are
computed using a few samples of the signal along the time points of time, such a filtefing
procedure is called a moving average (MA) filter.

The general form of an MA filter is:
N
y(n)=Y b, x(n—k) (6.25)
k=0

where x and y eire the input and output of the filter, respectively. The by values are
the filter coefficients or tap weights, k = 0,1,2, .......... N. where N is the order of the
filter. The effect of division by the number of samples used (N+1) is included in the
values of the filter coefficients. A simple moving average filter for filtering noise is the

von Hann of Hanning filter [104][105] given by
y(n) = i [x(n) + 2x(n—1) + x(n—-2)] (6.26)

Applying the delta transform, and using equation (6.18) we get the transfer
function Hj(y) of the filter in delta domain is

l + l}/" + _1-}/'2
2
H5(7)=4 ZA A

1
1+ =7 + — 7
A}/ Azy

(6.27)
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Where X(y) and Y(y) are the 8-transform of x(n) and y(n) respectively. The
signal-flow diagram and pole zero plot of the Hanning filter in delta domain are shown in

Figure 6.13 & 6.14 respectively.

x(n)
__ 5 1/4 +
\ 4
Y-l
1/A
——— +
,Y‘l
1/A°
>

Figure 6.13: Signal flow diagram of Hanning filter in delta domain

Pole Zero Plot of Hanning Filter in delta domain
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Figure 6.14: Pole zero plot of Hanning filter in delta domain
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joh

or in

The frequency response of a filter is obtained by substituting ¥ =

the expression for Hs(y), where A is the sampling interval in seconds and o is the radian
frequency w = 2nf, where f is the frequency in Hz . We may set A = 1 sec and deal with

normalized frequency in the range 0 S @ < 2w, or 00 < f< 1, then f=1or o = 2%
represent the sampling frequency, with lower frequency values being represented as a

normalized fraction of the sampling frequency.

The frequency response of the Hanning filter is given as :

-1
1 S
and we know  z' =e’*?

From equation 6.18 we have ™' = —

o Ae™ ™ o Ale /?™
Ve Y S e (6:28)
Substituting in equation (6.27) we have
1 e ™ e /2
=+ —— + . ‘
4 (I-e™) (1-2e™ +e7/2)
Hy(w) = e T (6.29)
1+ R . .
A(l—e @) A (1-2e7™ +e72®)
let 7 =cos@— jsin @ and setting A = 1 in equation (6.29)
1 -jw -jlw
H{s(a))zz[1+2e Oy e (6.30)
1 -je
H () :Z[{2 + 2cos(w)}e™’”] (6.31)
The magnitude and phase response are given as
1
|H s (w)| = IE{l + cos(w) }’ (6.32)
and ZH;(p)=-w (6.33)

the magnitude and phase responses of the Hanning filter are shown in figure 6.15. It is

clear that the filter is a lowpass filter with linear phase
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Magnitude Response of Hanning Filter in delta domain
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Figure 6.15: Magnitude and phase response of the Hanning filter in delta domain

Although we started with description of the Hanning filter in the time domain,
subsequent analysis of the filter was performed in the frequency domain using the delta
transform and the frequency response. System analysis is easier to perform in the delta
domain in terms of the poles and zeros of the transfer function and in the frequency
domain in terms of the magnitude and phase responses. The magnitude and phase
responses assist in understanding the effect of the filter on the frequency components of

the signal and noise.

It is seen from the magnitude response of the Hanning filter (Figure 6.15) that
components beyond about 20% of the sampling frequency of 1,000 Hz are reduced in
amplitude by more than 3 dB, that is, to less than half of their levels in the input. High
frequency components beyond 40% of the sampling frequency are suppressed to less than
20 dB below their input levels. Figure 6.16 shows the filtering of ECG signal with high
frequency noise using Hanning filter and figure 6.17 shows its FFT of filtered signal. It
can be seen from the FFT that the high frequency noise is filtered using hanning filter in

delta domain.
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Original ECG Signal
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Figure 6.16: Filtering of ECG signal with high frequency noise using
Hanning filter
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Figure 6.17: FFT of ECG and filtered signal with Hanning filter
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It can be seen from the results of figure 6.16, the smoothness is less hence
increased smoothing may be achieved by averaging signal samples over longer time
windows, at the expense of increased filter delay [105]. If the signal samples over a

window of eight samples are averaged, we get the output as:

3 xn k) (6.34)

k=0

o0 | =

y(n) =
The impulse response of the filter is
h(n) :é[5(n)+5(n-—1)+5(n—2)+5(n—3)+5(n—4)+5(n—5)+5(n—6)+5(n—7)
The transfer function in delta domain is given as

1< .
f&@h§Za+ﬁr (6.35)
k=0

jab

The frequency response by substituting ¥ = 1 in equation (6.35)

e -1

A

H(@ =2 200+ A

o (6.36)
Hy(@) ==Y e
k=0

Setting A =1, H ;(w) =%[1+ e *°{1+ 2cos(w) +2cos(2w) +2cos(3)}]  (6.37)

The pole zero plot and frequency response of the 8-point MA filter is shown in Figure

6.18 and 6.19 respectively. It can be seen from pole zero plot that the filter has zeros at

%:125 Hz, %:250 Hz, 3? =375 Hz and %:500 Hz. Comparing the frequency

response of the 8-pomt MA filter with that of the Hanning filter in Figure 6.15, we see
that the former provides increased attenuation in the range 90 — 400 Hz over the latter.
Note that the attenuation provided by the filter after about 100 Hz is non uniform, which
may not be desirable in certain applications. Furthermore, the phase response of the filter

1s not linear, although it is piece-wise linear.

245



Chapter — 6: Biomedical Digital Filters in Delta Domain

Pole Zero Plot of 8 point MA Filter in delta domain
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Figure 6.18: Pole zero plot of 8 point MA filter in delta domain with
sampling frequency 1000 Hz

Magnitude Response of 8 point MA filter in delta domain
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Figure 6.19: Magnitude and phase response of 8 point MA filter in delta domain
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Figure 6.20 & 6.21 shows the filtering of ECG signal with high frequency noise
and its FFT of filtered signal using 8 point MA filter.
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Figure 6.20: Filtering of ECG with high frequency noise using 8 point MA filter in delta
domain
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Figure 6.21: FFT of ECG and filtered signal with 8 point MA filter in delta domian
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Comparing figures 6.16 with 6.20 and figure 6.17 with 6.21, it is seen that the

output of 8 point MA average filter is smoother than that of Hanning filter in delta

domain.
6.3.5 Derivative operator based filters:

The derivative operator in time domain removes the parts of the input that are
constant. Large changes in the input lead to high magnitudes in the output of the
derivative operator. Improved knowledge on the derivative operation may be obtained by

studying its transform in the frequency domain. [105]

In digital signal processing, the basic derivative is obtained by first order

difference operator [104] given as:
1
y(n)=—<x(n) = x(n-1) (6.38)

The scale factor including the sampling interval A is required in order to obtain
the rate of change of the signal with respect to the true time [105]. The transfer function
in ‘2’ domain is

1 -
H(z) :Z(l ~-77) (6.39)

Using equation (6.13), corresponding transfer function in delta domain is

4
H (%) =
sV ey
or =57 (6.40)
Ae™ '8

-1
The frequency response of (6.40) can be obtained using 7 =

1 ! ;
H‘;((L))=W— =—A—(1—€ /aA) (641)
A+1_e_ij
1 - @
or H,(w)=—e ? {2]sin| — 6.42
s(w) Ae { J m(zj:l ( )
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From equation (6.42)

2
|H 5(w)] = A

. w
sin (E) ‘ (6.43)

ZH ; () :% - % (6.44)

The magnitude and phase response of the first order difference operator with
sampling frequency of 1000 Hz are plotted in figure 6.22. Since delta transform itself is
derivative type, hence the gain of the filter increases for higher frequencies up to folding
frequency fi/2 i.e half of the sampling frequency. Hence any high frequency noise present

in the signal will be amplified significantly hence the result will be noisy.

Magnitude Response of Derivative based filter in delda domain
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Figure 6.22: Magnitude and phase response of derivative based filter in delta domain
The noise amplification problem with the first order difference operator given in

equation (6.38) may be controlled by taking the average of two successive output values

(105]: y;(n) = %[y(n) +y(n—1)] (6.45)
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or ¥;(n) =i[{x(n)—X(n—l)}+{X(n—1)—X(n—2)}] (6.46)

1
y;(n) = EYN [x(n) = x(n~2)] (6.47)

The transfer function in delta domain given as

Ha(y)=2iA{1—<1+m)*z} - E{l—amr'}} B{H(Hm)"}} (6.48)

o2
2 A , (6.49)

- |
1+=7"+ E}/z}

H;(y)=
I

From equation (6.48) it is clear that the three point central difference operator is
the product of the transfer functions of the simple first order difference operator and a

two point Moving Average filter.

Magnitude and phase responses with sampling frequency 1000 Hz are plotted in
figure 6.23. In this case also noise amplification is not improved hence in delta domain

derivative type filters are not suitable.
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Figure 6.23: Magnitude and phase response of modified derivative based filter
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The drawback of the first order difference and the three point central difference

operator based filters lies in the fact that their magnitude responses remain low for the

significant range of frequencies well beyond the band related to base-line wander. We

would like to maintain the levels of the components present in the signal beyond about

0.5-1 Hz, that is, we would like the gain of the filter to be close to unity after about 0.5
Hz. [104]

The gain of a filter at specific frequencies may be improved by placing poles at
related locations around the sampling circle in the gamma plane. For the sake of stability
of the filter, the poles should be placed within the sampling circle. Since we are interested
in maintaining a high gain at very low frequencies, we could place a pole on the real axis
near the zero location. The transfer function in z-domain has been given in with zero

located at 0.995 [104]. i.e

1] 1-z"
H(7)=—|——— 6.50
@ =% 110995 z“} (60
or equivalent] H(z) —l ———ZL (6.51)
1 y A |z-0995 |

Using equation (6.13), corresponding transfer function in delta domain is

H(},):l 1-(1+90)" _1 A+t (6.52)
d A11-09951+7)" | A | 1+91)-0.995 ‘

/4

. 1
or equivalently Hs(y) = X W (6.53)
A
The time domain input-output relationship is given as
1
y(n) = X[x(n) —x(n—=1) + 0.995 y(n—-1)] (6.54)

The frequency response of a system is obtained by evaluating its transfer function

at various points on the sampling circle in the complex gamma plane i.e by putting

e’ —1

Y= and evaluating Hy(y) for various values of the frequency variable w of
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interest. In general, the magnitude transfer function of a system for a particular value of y
is given by the product of the distances from the corresponding point in the complex
gamma plane to all the zeros of the system’s transfer function, divided by the product of
the distances to its poles. The phase response is given by the sum of the angles of the

vectors joining the point to all the zeros, minus the sum of the angles to the poles [126].

It is obvious that the magnitude response of the filter in Equations (6.52) and
(6.53) is zero at y =0, due to the presence of a zero at that point. Furthermore, for values
of y away from y =0, the distances to the zero at y =0 and the pole at y = 0.0995xA will be
almost equal; therefore, the gain of the filter will be close to unity for frequencies greater
than about 1 Hz. The magnitude and phase responses of the filter shown in Figure 6.24
confirm these observations; the filter is a highpass filter with nonlinear phase.

The result of application of the filter to the ECG signal with low frequency noise
shown in Figure 6.25. It is evident that low frequency base line wandering has been
removed without any significant distortion of the ECG. Close inspection, however,
reveals that the S wave has been enhanced (made deeper) and that a negative undershoot
has been introduced after the T wave. Removal of the low-frequency base-line artifact
has been achieved at the cost of a slight distortion of ECG waves due to the use of a

derivative based filter and its nonlinear phase response. -
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Figure 6.24: Normalized magnitude and phase responses of modified derivative
filter in delta domain
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Figure 6.25: Results of modified derivative filter in delta domain to remove
base line wander

6.3.6 Frequency Domain Filters :

The filters described in the previous section performed relatively simple
operations in the time domain: although their frequency-domain characteristics were
explored, the operators were not specifically designed to process any particular frequency
response at the outset. The frequency response of the MA filter, in particular, was seen to
be most attractive. The attenuation in the stop band was not uniform, with the gain falling

below — 20 dB only around the zeros of the transfer function.

Filters may be designed in the frequency domain to provide specific lowpass,
highpass, bandpass, or band-reject (notch) characteristics. Frequency domain filters may
be implemented in software after obtaining the Fourier transform of the input signal, or
converted into equivalent time-domain filters and applied directly upon the signal

samples.

Many design procedures are available in the literature to design various types of
filters: the most commonly used designs are the Butterworth, Chebyshev, elliptic and

Bessel filters [132-136]. Since these filters have been well established in the analog—filter
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domain, it is common to commence with an analog design and apply the delta
transformation to obtain a digital filter in the delta domain. It is also common to design a
lowpass filter with the desired pass-band, transition, and stop-band characteristics on a
normalized-frequency axis, and then transformed it to the desired lowpass, highpass,
bandpass, or band-reject characteristics [137]. Frequency-domain filters may also be
specified directly in terms of the values of the desired frequency response at certain
frequency samples only, and then transformed into the equivalent time-domain filters
coefficients via the inverse Fourier transform. In the present work we will consider only
the design of low pass butterworth and notch filter in delta domain. ECG signal will be
processed with both the filters to remove low frequency noise and 50/60 Hz power line

interference.
6.3.6.1 Butterworth lowpass filters :

The butterworth design is popular because of its simplicity, a monotonically
decreasing magnitude response, and a maximally flat magnitude response in the pass-
band. In order to design a Butterworth Iowﬁ)ass filter, we need to specify two parameters;
. and N where w, is the cutoff frequency in radian/sec and N is the order of the filter.
The two parameters may be specified based on a knowledge of the characteristics of the

filter as well as those of the signal and noise. [105]

Let us now design a Butterworth lowpass filter with f, = 40 Hz, f, = 200 Hz and N
f.

3

1s Q.=1.453085 radians /sec. [105]

=4. We have @ =27 =~ = 0.4z radians/sec . The prewarped s-domain cutoff frequency
The poles of H,(s)Ha(-s) are placed around a circle of radius 1.453085 with an

angular separation of % = %radians. The poles of interest are located at angles %7[ and

7 : . . : .
—8—7r and the corresponding conjugate positions. The coordinates of the poles of interest

are (-0.556072 t j1.342475) and (-1.342475 £ j0.556072). The transfer function of the
filter found as :

4.458247
(s> +1.112143 5+ 2.111456) (s* +2.684951s + 2.111456)

H_(s)= (6.55)
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Applying the bilinear transformation, we get

0.0465583(1+ z™")*

H(Z) = ) -2 -1 -2
(1-0.447765z7 +0.460815z7°) (1-0.328976 77 +0.064588 z7°)

(6.56)

Using equation (6.13), the transfer function in delta domain obtained as

0.046583+74.53 77" +44719.59y7 +11925224.09y° +1192522409.9y™*
1+643.58 " +173347.72y7% + 22647966.09y > +1192522409.99™*

H;(y) =

(6.57)
The filter has four poles at (-1.546 e+02 + j 1.288 e+02), (-1.671 e+02 % j 0.387 e+02)
and four zeros at (-400, -399.9, 399.9 £ j 0.115). Magnitude and phase response with
sampling frequency 200 Hz is computed and shown in figure 6.26 and 6.27. Pole zero
plot is shown in figure 6.28 and processing of ECG signal with lowpass butterworth filter
and FFT of filtered signal are shown in figure 6.29 & 6.30 respectively. The pole-zero
plot and the frequency response displays the excepted monotonic decrease in gain and -3

dB power point or 0.707 gain at 40 Hz.

Magnitude response of Butterworth low pass filter in delta domain

Gain

i

0 10 20 30 40 50 60 70 80 90 100
Frequency in Hz

0

Figure 6.26: Magnitude response of butterworth low pass filter in delta
domain with f, =40 Hz, f=200 Hz and N=4
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Phase response of Butterworth low pass filter in delta domain
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Figure 6.29: Processing of ECG signal with low frequency noise with
butterworth low pass filter in delta domain with f, =40 Hz, =200 Hz and
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Figure 6.30: FFT of ECG and filtered signal with butterworth low pass

filter in delta domain with f, =40 Hz, f=200 Hz and N=4
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Figure 6.31 compares the magnitude responses of three Butterworth lowpass

filters in delta domain with f, = 40 Hz, f, =200 Hz with order increasing from N=4, N=8,
N=12. All three filters have their gain =0.707 a 40 Hz, but the transition band becomes

sharper as the order N is increased.

The main disadvantages of Butterworth filter are a slow transition from the pass
band to stop band and a nonlinear phase response. The nonlinear phase may be corrected
for by passing the filter output again through the same filter but after a reversal in time

[136] .

Magnitude response of Butterworth low pass filter In delta domain

0.8}

0.6}F

Gain

0.4}

0.2}

0 N 1 2 " h -
0 10 20 30 40 50 60 70 80 90
Frequency in Hz

Figure 6.31: Magnitude responses of butterworth low pass filter in delta domain with
f. =40 Hz, f=200 Hz and N=4, 8, 12

6.3.6.2 Notch filters :

The nature of the influence of pole and zero locations on the frequency response
is similar to that observed in continuous time systems with a minor difference. In place of
the imaginary axis of the continuous time system, we have a sampling circle with the

radius 1/A and cantered at -1/A in the complex delta domain. The nearer to the point

[2.3
e!

Y= representing some frequency ® and poles and zeros located at this point

amplitude of magnitude response at that frequency.
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Therefore to sacrifice the amplitude response at a frequency ®, we should place a

jan

pole as close as possible to the point ¥ = representing frequency . Similarly to

suppress the amplitude response at a frequency o, we should place a zero as close as

Jah

possible to the point ¥ = ¢ on the sampling circle. Placing repeated poles or zeros

will further enhance their influence.

Total suppression of signal transmission at any frequency can be achieved by
placing a zero on the sampling circle at a point corresponding to that frequency. This is
the principle of the notch filter.

Placing a pole or zero at the center ( -1/A) does not influence the amplitude
response because length of the vector connecting the (-1/A) to any point on the sampling
circle is 1/A. However, a pole or zero at the center of sampling circle will generate an

) , jan
angle | —tan™ _sinoh | tan"M in «g| =D
cosawA -1 coswA -1 A

Notch filter is also a frequency-domain filter and require to remove periodic
artifacts such as power line interference from the ECG signals. If fj is the interference

frequency, the angles of the (complex conjugate) zeros required will be iE(Zn‘); the

c

radius of the zeros will be 1/A. If harmonics are also present, multiple zeros are required

to be placed at in—f"-(27r) , where n representing the orders of all of the harmonics

present.
Let us consider a signal with power line interference at fy = 60 Hz and sampling
frequency is 1000 Hz. Since we need zero transmission at fp, we must place zeros at

W = i‘E(Zﬂ') i.e £ 0.377 radians or 21.6° from the center of sampling circle as shown in

figure 6.32. We also require a sharp recovery of gain on both sides of frequency i.e. 60
Hz which can be accomplished by placing two poles close to two zeros in order to cancel

out the effect of the zeros as we move away from this point corresponding to frequency
60 Hz.
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Figure 6.32: Location of zeros for notch filter to remove 60 Hz artifacts from ECG

Let ¥, & 7 are the zeros located at @ = i&(Zﬂ) then the location of poles

c

must be ay, & ay, with a < 1/A for stability. Where ¥ is complex conjugate of ¥,.

The resulting transfer function is

(Y—ay)(y—an)

_ s _
A le y = X L selecting K =a’for unity dc

Using equation (6.13) , 7, = €
gain, the filter transfer function is

a’ [1+%(1—cosa)A) 7! +%(1—coswA) 7’2}

H(y)= [ (6.59)

24a°

e (1-cosmA) y~°

I+Za—(1—cosa)A) v+

2 (cosaA—1)

Where (7, +7,)= -

2
7, }/zz—Az—(l—cosa)A)

Where the bandwith of the notch is considered 4 Hz. Magnitude and phase

responses for the filter given in equation (6.59) with sampling frequency 1000 Hz, Notch
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frequency f, = 60 Hz and band width 4 Hz are shown in figure 6.33. Figure 3.34 and 3.35

shows filtering process of 60 Hz power line interference in ECG signal and FFT of the

ECG signals. From FFT plot it is noticed that 60 Hz power line interference which is

present in the original ECG is removed using notch filter in delta domain.

Magnitude in dB

Angle in degree

Notch Filter-Magnitude Response in delta domain

0
-100 4
-200 k
_300 A L 1 1 -
0 20 40 60 80 100 120
Frequency [Hz]
Notch Filter Phase Response in delta domain
100 v T
*r k -
0 3
-50 E
-100 —L L . A
0 20 40 60 80 100 120

Frequency [Hz]

Figure 6.33 Magnitude and phase response of Notch filter with sampling
frequency 1000 Hz, notch frequency 60 Hz and bandwidth 4 Hz
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Normalized time

Figure 6.34: ECG signal filtered with Notch filter in delta domain with f, =60 Hz,

f=1000 Hz and delF =4 Hz
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Figure 6.35: FFT of ECG signal filtered with Notch filter

6.4 Conclusion:

In this chapter we have investigated problems posed by artifacts, noise and
interference of various forms in the acquisition and analysis of ECG signals. Different
types of time and frequency domain digital filters in delta domain have been developed.
Simulation results show that the filters designed in delta domain is as good as the filter
designed in other domain. However number of adder and multiplier required for delay
element in delta domain is more. Since sampling zeros are inducted, care must be taken
while considering these sampling zeros otherwise the filter may be unstable and will

show unsatisfactory performance.

Different filters may be suitable for different problems of biomedical signal
analysis. It is unlikely that a single filter will address all of the problems hence the
requirements are wide as per practical situations and applications. Attempts must be made

at the outset to acquire artifact free signals to the extent possible.
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Chapter 7

Conclusions and Future Recommendations:
7.1 Summary

The primary objective of this thesis is to present a unified framework for
modelling of dynamical systems in discrete-time domain using the properties of delta
operator and complex delta domain by using the properties of gamma transform. To
develop systematic design procedure for a control system that retains the stability and
performance characteristics of the classical designs, two methods of controller design
have been discussed by capitalizing the computational capabilities of delta operator
time moments and Genetic Algorithms. The result is a unified framework for control
system that unify both discrete-time and continuous-time control together. The
proposed design philosophy consists of construct{ng a reference model in the complex
delta domain from the given time, frequency and complex domain specifications.
First, the reference model parameters are determined from the initial specification of
the control law. Secondly, a variant of time moments are developed in the complex
delta domain called OGDTM and OFF in which Genetic algorithms, the artificial
intelligence tools are used to search a set of either real or complex frequency points
after minimising a scalar cost function. The cost function is developed between the
step responses of the reference model and the controlled systems cascading controller
with plant. Finally, OGDTM and OFF are used to obtaint he parameters of the
controller using a sub class of Pade method. The computational framework developed

is algebraic in nature and require solution of a set of linear equations only.

The design philosophy based on model matching control is a well-known
procedure for applying in linear control theory that is widely applicable, especially in
the aerospace and chemical processes industry. The model matching approach
allows the formulation of the problem in such a way that the design specifications,
both in time and frequency domains, are selected at the outset. This is in
contrast to many design techniques in which the closed-loop model of the
controlled system is not known until late in the design process. This unified
approach for controller design for delta operator parameterized discrete-time

systems has been shown to work well for SISO and MIMO systems and system
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with time delays and as the sampling time (A) is decreased, the results approach
the continuous-time results in the limit A— 0. Thus the proposed methods of the
thesis are viable general in nature and may replace prevalent z-domain methods
for model reduction and controller design. The thesis also deals with design of
digital filter for biomedical signal processing utilising the properties of delta
operator in which the technique developed is utilised to design digital filters which
are fundamental to digital signal processing. Several time and frequency (?omain

filters have been discussed and tested to reduce ECG artifacts.

7.2 Conclusions

The foundations have been laid for a novel approach to designing control
systems that make the most of prior knowledge and experience, while capitalizing on
the broader capabilities of model matching control theory and computational genetic
algorithms. The principles introduced can be applied to SISO, MIMO and systems
with time delays. Genetic algorithms are used for selection of a set of frequency
points. These frequency points are GA parameters. These GA parameters are coded
into binary strings called chromosome. A cost function is developed between the step
response of the reference model and the overall controlled system. During evaluation
of GA, this cost function is minimised to obtain the optimal frequency points based on
which OGDTM and OFF are computed. GA is a global optimal search technique and
therefore by intuitively selecting the search space, number of parameters, population
size, crossover and mutation probability and selection methods like tournament or

Roulette wheel it is possible to achieve global optimal solution.

7.3 Recommendations

The main recommendation for future work is to expand upon the findings of
this thesis to investigate OGDTM and OFF for system identification and adaptive
control system. Since the approach is iterative and relies heavily on computation, a
rigorous analysis of the algorithms presented can be related to the first objective. In
particular, it would be relevant to determine the worst-case computation times and
error bounds with respect to the dimensions of the systems and control, as well as the
number of stages. The algebraic techniques developed, together with existing theories
on delta operator, time moment and GA show particular promise in this direction.

Alternatively, other classical designs could be used in association with GA or other
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artificial intelligence tools for minimisation of the performance index. The
investigation using GA should remain a key ingredient in the process, as the GAs
determine the class of control and cost functionals that can be approximated and,
therefore, the optimal control problems that can be solved. One-of the most desirable
features of this approach is its flexibility. Not only is it unrestricted by the form of the
governing dynamic equation, but it allows for extensions that can deal with system
identification, stochastic processes and disturbances to name a few. The range of
possibilities is at least as diverse as are the GA applications that already exist today in
the literature. In particular, designs that can benefit both from a-priori and a-
posteriori knowledge of the system would be ideal. Finally, there is considerable
interest in the field for high-dimensional problems, where the system and control have
many variables. Hence, the study of computation complexity should be a major focus
of any solution method pursued hereon.

Biomedical signal processing is the area in which very less work is done in
delta domain framework. There is ample scope in this field for modelling and problem

specific digital filter design using the robust characteristics of delta operator.
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Appendix — A: Discrete Data System Identification in Delta Domain

Appendix-A

Discrete Data System Identification in Delta Domain:

A.l Introduction:

Time moment matching methods are traditional tools widely used for parameter
identification, particularly of chemical and flow processes. [138]. A major problem of
parameter identification is that the higher moments are unreliable due to magnification
of the signal tails. Michelsen [139] have applied weighted moment methods for
parameter identification of axial dispersion model, in which moments of the signals
were suitably modifiy by a damped exponential fitting. There are ample of literatures
available on system identification in continuous and discrete z domain. Details of delta
operator, delta time moment have already given in chapter-1 & chapter-3. Therefore we
will discuss here the theory which is developed in delta operator framework for system

identification using time moment matching method.

A.2 Ordinary delta time moments:

The i™ ordinary moments of the distribution f(kA) is defined as

F(y)= Ai FUA)(1+Ap)

dF(y) _ "
a Akz;kA f(kA)(l+Ay) o
}/ k=0

Ordinary Delta time moment about y =0 is defined as

(k+i- )
M =A A f(kA) A2
G 2
The Remann sum of equation (A.1) can be considered as the area of the distribution
f(kA) by the weight
—1)!
(k+i-1)! A
(k-1

It can be noticed that as ¢ = kA is large the weight also becomes large, and so

(A.3)

increased emphasis is placed on the tails of the distribution. A better weight is one
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which would approach zero for large value of ¢ = kA. A weight which could meet this

requirement is

(k+i- )

T +9) "¢ (A4)

w,(kA) =
where v is the real positive constant weighting factor.

A.3 Weighted time moments:

The weighting moments of the distribution f(kA)are defined as

M,()=2 i CE D w pa)a+ ap (A5)
k=0

Setting ¥ =0 gives the ordinary moments, 1.e.

M, (0)=p, (A.6)
As ¥ increases, the weighting factor gives lesser emphasis to values of the signal
when time is large. The zeroth weighted moments of f(kA) is is therefore the delta

transform of the distribution i.e.

My(7) =AY FkA)1+AP)™ (A7)

k=0

if 7 is taken as the delta transform variable, i.e

M,(y) =T[f (k&)= F () (A.8)
Where T is the delta transform of the distribution f(kA). Since ¥ is chosen to be

real, the delta transform strictly only applies along the real axis.

A.4 Properties of Delta Weighted Moments:

By using the properties of delta transform, simple derivation of the recurrence

and linkage relations of the weighted moments is obtained as:

A.4.1 The Recurrence Relation:

From the properties of the delta transform [10]

(‘C l i

Therefore from equation (A.S) it is seen that

M=) LG (A.10)
dy
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and corresponding recurrence relation can be written as as
d
M () =——=M () (A.11)
dy

These recurrence relations are utilized for determinations of the relationship

between the weighted moments and model parameters.

A.4.2 The Linkage Relation:
The application of the conservation laws to a linear time invariant systems

allows to establish relationships between input signal to the system x(kA), the output
of the system y(kA) and h(kA), the impulse response of the system are linked by the

convolution integral, i.e.

kA
y(kA) =AY h(nA)x(kA - nA) (A.12)
n=0
Taking delta transforms
(1) =X(Nh(7) (A.13)
Hence from relation (14)
MO(}/)output = M()(y) v)’smm'MO(y)mpul (Al4)

This gives a relation linking zeroth weighted moments of the input, output and

system. Taking derivatives with respect to ¥ and dividing by relation (A.14))

[M‘mJ =(M,mj {M,(y)) (A15)
MO(}/) output MQ(}’) system MO(}/) input

Hence the general i derivatives of (A.15) is |

(M,m} z'z(i](M,-mj (M,(y)J A16)
Mo(}/) output =0 l Mo(}/) system Mo(y) input

Equaion (A.16) is the general linkage relation, relating the i order weighted moments

of the input, output and the system.

A.5 Parameter Identification algorithm:
Let us consider a linear n' order discrete time SISO system in transfer matrix

representation in delta domain.

Ny () _ b+byy+-eeee +b"}”'"
D;(p) a+ay+-+ay " +y

Gs(p) = (A.17)
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The objective of the system identification is to determine the coefficients, a, and

b, of eqn. (A.17) from the input-output data. Here we discuss the procedure to obtain

the weighted moments from the delta transfer model and thereafter from input-output

data to obtain an ARMA model. The order of the system is to be known a priori.

A.5.1 Weighted Moments from the Delta Transfer Function

The weighted delta time moments can directly be obtained from the delta
transfer function of the impulse response A(kA). From the definition of the delta
transform we have

Gs(kA) =AY h(kA)(1+Ay)™ (A.18)
k=0

using the recurrence relation in (A.11), from eqn.(A.17) the delta transfer function
can be written as

Ds(NG5(¥) = Ns(») (A.19)

differentiating both sides of eqn.(A.19) with respect to ¥ gives

;(—IY(LJM,,W)D,‘;"”(V) =Ny, i=0123 (A.20)
where (f ) i
p) pli-p)!
DY () = d'(dD;m)
NO() = d'(;v;(r))

Equation {A.20) in matrix for can be represented as:

-D‘(so)(}’) 0 0 0 o[ M ] [N®)
DP(y) DY () 0 0 01|-M®© N ()
DY) 209 DP(r) 0 o | |-Myp|=| N2 | @a2n
DY () 3DP(p) 3DP( DY) - 0 || My» | | NP
where
. o (k—1)! ‘
Df;’(}/):; ?/;T—)l)akyu  and a,,_, i=0L2-- n
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NG () = Z": (k(lil ! T by =012 (n—1) (A.22)
k=1

The weighted time moments M;(») can be easily obtained from eqn.(A.21).

A.5.2 Weighted moments from input output data
We can directly obtain the weighted time moments from the time-domain

input-output data using eqns.(A.5) and (A.21). Rearranging eqn.(A.21), we have

another form

[ M) 0 0 0 0] [pex] [NO]
—M\(7) M) 0 0 011 DPM| | NS
M,(y) =-2M(y) M, 0 0| D2 |=| N? ) (A23)
—My(y) 3M,(») -3M(y) M) ol b2 | |NO
L A IREREEE N T

From eqn. (A.22) the relations between D’ (y)andq,, and N{’(y) and b, are known.

The matrix forms are written as

DOy |V v ¥ Y 7 (a,]
p| [0 1 2 37 .
DP(y| |0 0 1 6y - n(n-1)y"? a,
D“"(y) 000 0 . —M poll,
: (n—i-2)! i
D] Jo oo 0 0 n R
and
"Nc(sm(},) 1 [ ¥ 72 y’ 7‘"") i "b‘l'l
NPy | (0L e b,
N® 001 y - p7? b
- 7 |- AN ; (A24)
' ] . n! n-i .
NT"] looo 0 - (-t [ L6

The equation (A.24) is now substituted in equation (A.23) and hence we can obtain a

matrix equation which can be easily solved to obtain the system parameters g, and b,

for optimal weighted parameter value .
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A 5.3 Discussion:

The method of parameter identification of discrete-data system in delta domain
is developed matching optimal weighted moments. The simulation results using genetic
algorithm for the optimum value of weighted moment are amplified in the later part i.e.
as time is increased. Hence this algorithm is included in this appendix to constitute the

scope of further work.
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Table of delta transforms and its region of convergence

Appendix-1.1

Function f{k] Description Delta Transforms Region of
k=20 T [f(k)] Convergence
—1—5k[k] Impulse 1 | y , < oo
A

1 Unit Step 1+ Ay 1 1
Y+—|>—
4 Al A
I - k1] T [7]<e
A
k Ramp 1+ Ay 1
+—|>—
AY r A
k2 Parabola A+ A2 +Ay) 1
+—|>—
Xy TR
e* geC Exponential 1+ Ay . 1 S ﬁ
y- e™ -1 LN E
A
ke™® aeC - do - (1+Ay)e™ 1| e®
” 5 Y+—|>—
A e” —~1 Al A
v A
sin (wkA) Sin wave (1+ Ay) wsin c(wA) N 1 S 1
7 +A¢(@ D)y +p(@, A) A
Where sinc(@A) = sin (@A)
WA
wd gl 2= 207E05 @)
cos(akA) | Cosine wave A+ Ay)(y+0.5A¢(w, A)) N 1 S 1
7V +80(@, 8) 7+ 9w, A) " a7 a
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Properties of delta transform

Function f{k] Description Delta Transforms
k=0)] T [f(k)]
! Partial fractions !
>a, £ 1K) 2.4, 7]
1=t =1
Flk+1] Forward shift A+AN(F (- f10D
flk+11- fIk] Scaled difference vyEF(y)—(1+Ay) f[0]
A
k- Reimann sum 1
fi1A —F(y)
=0 7
flk-1] Backward shift A+AN ' (F) - fI-1D
flle=1] pulk—=1] A+Ay) " (F(p)
k flk] _(+4y) dF(y)
A dy
1 F(g)
= flk d
- flk) ragt
lim f[k] Final value theorem lim y F(y)
k—eo y-0
}\i_rf}) flk] Irutial value theorem lim Yy F(y)
roe 14+ Ay
Convolution FEW) F,(p)

S £ fylk—11A

filk]f, (k]

Complex

convolution

1 Y—¢ | d¢
— dF(OF, | L——2 |2
2.§1(§) 2( ]

(1+ad) flk]

1+Ag' 1+Ag
l( J
1+ aA

Note: Here F,(y) = T(f, (k)] and k] denotes a unit step.
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Appendix B
Matlab Programs

% The following Matlab programs and sub routines are used to generated different

% parameters, plot step/ impulse resoponses and locate poles — zeros in gamma plane.

% For delta domain parameterisation, Delta tool box[124] and for optimization, FlexGA tool
% box is used. The values of w,, £, Sampling timé A and angle p can be changed to get

% different responses and other parameters.

%Authors: N.C.Sarcar, M. Bhuyan & P. Sarkar

%Date of revision: 01/02/2004 to 21/01/09

% o e

Chapter 2 (Reference Model) Programs:

%$This program plots figure 2.2 to 2.7 and computes table 2.1, 2.2 & 2.3
$of reference model parameters

clear all;

cle;

format short;

wn=0.84; % Given natural frequency for reference model

zita=0.7; % Given damping ratio

wd=wn*sqrt (l-zita"2);

delta=0.5;

s=-zita*wn+wd*i; % Calculation of poles in s domain

g=s2del (s,delta); % Calculation of poles in delta domain
cong=conj (g) ; % Calculation of conjugate pole in delta domain
p=[g;cong];

rden=conv ([(1l,-g], {1,-cong}); % Denominator polynomial in delta domain
wdt=wd*delta;

rohl=-40;

roh=(p1/180) *rohl;

alpha=roh;

z=((tan(roh-(pi/2))*(abs(g))"2))/ (abs(real(g))*tan(roh-(pi/2)).
-abs (imag(g))); '
tpl=(1/{wn*sqgrt(l-zita~2)))*(atan((-zita/sqgrt(l-z1ta"2)))-alpha+pi);
tp=tpl/delta; ‘
A=rden(3)/abs(real(z));

rnum=A*{1 z];

B=rnum(2) ;

C=rden(2);

num=[A B} % Numerator of Open Loop Transfer Function.
den=[1 (C-A) 0]; % Denominator of Open Loop Transfer Function.
printsys (rnum, rden, 'y');

figure(l);

t=0:delta:15;

ts=t/delta;

y=delstep(rnum, rden, t,delta);

plot (ts,y); '

xlabel ('t/delta’', 'Fontsize',12);
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ylabel ('Amplitude', 'Fontsize',12);
title('Step Response of Reference Model', 'Fontsize',12)
figure(2);
[mag, pha, w] =delbode (num, den, delta);
[Gm, Pm, Wcg, Wep]=margin (mag, pha,w);
title({'Magnitude and Phase plot of Reference Model', 'Fontsize',12);
figure(3);
[RE, IM,W)} = DELNYQ(num,den,delta);
title('Nyquist Plot of Reference Model', 'Fontsize',12);
figure(4);
y=delimp (rnum, rden, t,delta);
plot (ts,y):
xlabel ('t/delta’, 'Fontsize',12);ylabel ('Amplitude', 'Fontsize',12);
title('Impulse Response of Reference Model', 'Fontsize',6 12);
figure(5);
[RE, IM,W] = delnic(num,den,delta);
title('Nicholas Plot of Reference Model', 'Fontsize’',12);
figure(6);
delplane(-z,p,delta);
ax1s([-4.9,0.5,-2.3,2.3)):
title('Pole Zero plot of of Reference Model', 'Fontsize',12);
disp('Angle');disp(rohl);disp('wd*delta') ;disp(wdt);
disp('Ploes');disp(g) ;disp('zeros') ;disp(-2);
disp('tp/delta'’);disp(tp) ;dasp('A');dasp(A);
disp('B');disp(B);disp('C');disp(C);
disp('Gain Cross Over Frequency'):;disp(Wcp):;
disp('Gain Margin');disp(Gm);
disp('Pnase Cross over Frequncy');disp(Wcg);
disp('Phase Margan');disp(Pm);

%——.—

% This program 1s for figure 2.8 to 2.9

$For Positive angles +80 to 0 and for negative angles -80 to 0 degree

clear all;
clc;
format short
wn=0.84;zta=0.7;delta=0.1;gain=1;
wd=wn*sgrt(l-zta*zta);
s=-zta*wn+{(wn*sqrt{l-zta~2))*1 ; % pole 1n s-domain
g=s2del (s,delta); % pole in delta-domain
cong=conj(qg);
rden=conv([1l,-g]},[1,~cong]);
p=I[g:cong];
for ro =-80:10:80
roh=(p1/180) *ro;

alpa=roh;
z= ({tan(roh-(p1/2))*(abs(g))"2))/(abs(reall(g))*tan(roh-(p1/2))
-abs (amag(g)));
tp=(1/({wn*sgrt (l-zta*zta)))*(atan((-zta/sqrt(l-zta*zta)))-alpa+tpi);

tp=tp/delta;

wdT=wd*delta;

mp=abs (sec{alpa) ) *sqrt{l-zta*zta)*...
exp((-zta/sqrt(l-zta*zta))*(atan((-zta/sqrt(l-zta*zta)))-alpa+pi));
mp=mp*100;

ts=(-log(0.05*abs(cos(alpa))) *{sgrt{l-zta*zta)))/(wd*zta);
ts=ts/delta;
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A=gain* (rden(3)/abs(real(z)));
rnum=A*[1 z];

end

printsys (rnum, rden, 'y');
t=0:delta:15;
y=delstep{rnum, rden, t,delta);
plot(t,y);
%axis([{0,15,-1.25,1.75]);
hold on;

pause;

title('Step Response of Reference Model', 'Fontsize',12);
xlabel ('Time in seconds', 'Fontsize',12);

ylabel ('Amplitude', 'Fontsize',12);

hold off;

[
T

% This program plots figure 2.10

clear all;

clc;

format short

wn=0.84;zta=0.7;delta=0.1;gain=1;

wd=wn*sqrt (l-zta*zta);

s=-zta*wn+ (wn*sqgrt (l-zta"2))*i ; % pole in s-domain
g=s2del (s,delta); ' % pole in delta-domain
cong=conj (g) ;

rden=conv({l,~gl], {1,-congl);

for

ro=-80:10:80

roh=(pi/180) *ro;

alpa=roh;

z=((tan(;oh—(pi/Z))*(abs(g))AZ))/ (abs(real (g))* tan(roh-(pi/2))..
- abs(imag(g)));

tp=(1/(wn*sqrt(l-zta*zta)))*(atan((-zta/sqrt(l-zta*zta)))-alpa+pi);

tp=tp/delta;

wdT=wd*delta;

mp=abs (sec({alpa))*sqgrt(l-zta*zta)*...

exp((-zta/sqgrt(l-zta*zta))* (atan((-zta/sqrt(l-zta*zta)))-alpa+pi));
mp=np*100;

gmp=[mp;mpl]; :
ts=(-log(0.05*abs(cos(alpa)))*(sqrt(l-zta*zta)))/(wd*zta);

" ts=ts/delta;

end

oP

A=gain* (rden(3) /abs(real(z)));
rnum=A*[1 z];
disp('Angle');disp(roh);
printsys(rnum, rden, 'y');
t=0:delta:10;
tp=t/delta;
y=delstep (rnum, rden, t, delta);
plot (tp, vy}’
hold on;
pause;

title('Step Response of Reference Model', 'Fontsize',12);
xlabel('t/delta', 'Fontsize',12);ylabel ('Anplitude', 'Fontsize', 12)
hold off;
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$ This program computes location of poles and zeros of reference model
% and plots figure 2.11 in delta domain.

clear all;
clc;
format short
wn=0.84;zta=0.7;delta=0.5;gain=1;
ro=[80,60,40,20,1,-10,-20,-30,-40,-45];
wd=wn*sqgrt (l-zta*zta);
s=-zta*wn+ (wn*sqrt (l-zta"2))*1 ; % pole 1n s-domain
g=s2del (s,delta); % pole 1n delta-domain
cong=conj (g) ;
rden=conv([1l,-g}, [1,-cong]);
p=[(g/congl;
for k=1:10
roh=(p1/180) *ro (k) ;
alpa=roh;
z=((tan(roh-(p1/2))*(abs(g))"2))/(-abs(real(g))*tan(roh-(p1/2))
+ abs(imag(g)));
zl=num2str(z);
z2=num2str(conj(z));
tpl=(1/(wn*sqrt(l-zta*zta)))*(atan((-zta/sqrt(l-zta*zta)))-alpat+pi);
tp=tpl/delta;
wdT=wd*delta;
mpl=abs(sec(alpa))*sqrt(l-zta*zta)*...
exp((-zta/sqrt({l-zta*zta))* (atan((-zta/sqrt(l-zta*zta)))-alpa+pi}));
mp=mpl*100;
tsl=(-log(0.05*abs(cos{alpa)))*(sgrt(l-zta*zta)))/(wd*zta);
ts=tsl/delta;
A=gain* (rden(3)/abs(real(z)));
rnum=A* (1 z];
disp('Angle') ;daisp(ro(k));disp('Poles');disp(p):
disp('zero');disp(z);
delplane{z,p,delta);
axis([-4.1,0.5,-2.3,2.3]);

hold on;
pause;
end
hold off;
title('Pole Zero Plot of Reference Model in Delta domain',
'Fontsize',12);
%

% This program computes location of poles and zeros and parameters of
$reference model and plots figure 2.12 in delta domain for different

$values of ®w4A and plot in delta plane

clear all;
clc;
format short
zta=0.7;delta=0.5;gain=1;ro=-45;
wdt={0.1,0.2,0.3,0.6,0.7,0.9,1.1,1.3,1.51;
Roh=[];P=[];Z2=[];Tp=[(};Wdt=[]);Wn=(];Mp=[]1;Ts=(]1;A={]);B=[]};C={]},;D=[]);
for k=1:9

Wdt=[Wdt;wdt (k) ];

wd=wdt (k) /delta;

wn=wd/sqrt (l-zta*zta);
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Wn=(Wn;wnj,

s=-zta*wn+(wn*sqrt(l-zta™2))*1 ;

g=s2del (s,delta);
cong=conj (g) ;
rden=conv([1l,-g],[1l,~cong]);
p=[g;congl;

P=[P:;qg];

Roh=[Roh;ro}l;
roh={(p1/180) *ro;

alpa=roh;

% pole in s-domain
% pole 1in delta-domain

z=((tan(roh-(p1/2))*(abs(g))"~2))/(-abs(real(g)) *tan(roh-(p1/2))

+ abs(imag(g))};
Z=[2;z2);

tpl=(1/(wn*sqgrt (l-zta*zta)))*(atan((-zta/sqrt(l-zta*zta)))-alpa+pi);

tp=tpl/delta;
Tp=[Tp;tpl;

mpl=abs (sec{alpa)) *sqrt(l-zta*zta)*...
exp((-zta/sgrt(l-zta*zta))*(atan((-zta/sqrt(l-zta*zta)))-alpa+pi));

mp=mp1*100;
Mp=[Mp;mp] ;

tsl=(-log(0.05*abs (cos(alpa)))* (sqrt(l-zta*zta)))/(wd*zta);

ts=tsl/delta;
Ts=(Ts;ts]:

Al=gain* (rden(3)/abs(real(z))):

rnum=Al*[1 z];

A=[A;Al};

Bl=rnum(2) ;

B=[B;~B1l);

Cl=rden(2);

C={C;C1l];

D=[D;-Bl);
delplane(z,p,delta);
axis{[-4.9,0.5,-2.3,2.31);

title('Pole Zero Plot of Reference Model in Delta domain',

hold on;
pause;
end
hold off;
‘Fontsize',12);
% et e S e e

% This program plots figure 2.14

clear all;
clc;
format short
wn=0.84;roh=20;zta=0.7;del
wdt=(0.1,0.2,0.3,0.4,0.5,0.
for k=1-8
wd=wdt (k) /delta;
wn=wd/sqgrt{l-zta*zta);
s=-zta*wn+ (wn*sqgrt (l-zta”2))*1 ;
g=s2del (s,delta);
cong=conj (g) ;
rden=conv{([1l,-g], [1,-cong]);
roh=(p1/180) *roh;

% pole 1n s-domain
% pole in delta-domain

287



alpa=roh;

z= ((tan(roh-(pi/2))*(abs(g))"2))/

-abs (imag(g)));

A=gain* (rden(3) /abs(real(z)));

rnum=A*[1 z};

(abs(real(g))* tan{roh-(pi/2))..

£=0:0.1:5;
ts=t/delta
y=delstep(rnum, rden, t,delta);
plot(ts,vy):;
hold on;
pause;
end
title('Step Response of Reference
Model', 'FontName', 'Times', 'Fontsize', 12);
xlabel ('t/delta’, 'FontName', 'Times', 'Fontsize',12);
ylabel ('Amplitude', 'FontName', 'Times', 'Fontsize',12);
hold off;
%

% This program plots figure 2.15 and computes table 2.5 parameters

clear all;

clc;

format short .
wn=0.84;delta=0.5;gain=1;ro0=-20;

zt={0.3,0.4,0.5,0.6,0.7,0.8,0.9];
Roh=[]);P=[];2=[];Tp=(];2t=(];Wdt=[];Wn=[])

for

k=1:7

zta=zt (k) ;
Zt={7t;ztal;
wd=wn*sqrt (l-zta*zta);
wdt=wd*delta;
Wdt=[Wdt;wdt];

s=-zta*wn+{(wn*sqrt (l-zta"2))*1i ;

g=s2del (s,delta);
cong=conj (g) ;
rden=conv([1l,~g], [1,-cong]):
p=I[g;cong];

P=[P;qg];

Roh=[Roh; ro]:
roh=(pi/180) *ro;

alpa=roh;

$ pole in s-domain
% pole in delta-domain

z=((tan(roh~-(pi/2))* (abs(g))"2))/(~abs(real(g))*tan(roh-(pi/2))..

+ abs(imag(g)));
2={2;2];

tpl=(1/(wn*sqrt (l-zta*zta)))* (atan((-zta/sqrt (l-zta*zta)))-alpa+pi);

tp=tpl/delta;
Tp={Tp;tpl:

mpl=abs (sec(alpa) ) *sqrt(l-zta*zta)*...

exp((-zta/sqrt(l-zta*zta))*(atan((-zta/sqrt(l-zta*zta)))-alpatpi));

mp=mpl*100;
Mp=[Mp;mp] ;

tsl=(-1og{0.05*abs(cos(alpa))) *(sqrt{l-zta*zta)))/(wd*zta);

ts=tsl/delta;
Ts=[Ts;ts];

Al=gain* (rden(3)/abs(real(z)));

rnum=Al*[1 z];

Mp=[]:;Ts=[);A=[]};B={1;C=(];D=1(1];
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A=[A;Al]):
Bl=rnum(2) ;
B=[B;-B1];
Cl=rden(2);
C=[C;C1l];
D=[D;-B1]:
delplane(z,p,delta);
ax1s([-4.9,0.5,-2.3,2.3]);
hold on;
pause;

end
hold off;
title('Pole Zero Plot of Reference Model in Delta
domain', 'Fontsize',12);
disp('Angle');disp(ro);disp('Zita');disp(2t);
disp('Wd*Delta') ;disp(Wdt);disp('Wn');disp(Wn)
disp('Poles');disp(P);daisp('zero');displ(Z);
disp('tp/Delta');disp(Tp) ;disp('Mp%');disp (Mp);
disp{'ts/Delta');disp(Ts) ;disp('A'); ;disp(A);
disp('B');disp(B);disp('C');d1sp(C);daisp{('D"');disp(D);

op

Chapter 3 (Controller design for SISO systems) Programs:

function del=comden (den, tol) ;

% This function computes the common denominator

$ It eliminates the common roots, considering the tolerance specified.
% FILE NAME : comden.m

[n,x]=s1ze(den);
del=den(1, :};
1f n==1 return;end
$ Default tol value
1f ~exist('tol') tol=le-4;end;
r=roots(del);
for 1=2:n
s=roots(den(1, :));
lr=length(r);
ls=length(s);
for 3=1:1s
x=s(7):
for k=1l:1r
1f tol*round(x/tol)==tol*round{r(k)/tol) chk=0; break; end
chk=1;
end
1f chk r=[r;x]; end;
end
end
del=poly{r);

&= = ==== = = =

function atm=agtm(ch,dl,n,anum,bdel,c)
% This function finds the Time moment matrix.
% FILE NAME: agtm.m
1f ch ==2,
atm=c*inv{(dl*eye(size (anum))-anum) *bdel;
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else

valn={];vald=(];

for i=l:n*n
valn=[valn;polyval (anum(i, :),dl)];

end;
vald=polyval (bdel,dl);
atm=valn/vald;
atm=reshape (atm,n,n);
atm=atm';

end;

%

function [cg,cdel] = change (cnum,cden,n)
% This function forms a T.F.M. with common denominator.
% FILE NAME : change.m

cdel=mulrow(cden) ;

cg=conv(cnum(l, :),mulrow(cden(2:n*n, :)));
for i=2:n*n-1
xx=[{cden(l:i-1,:);cden(i+l:n*n, :)];
XX=mulrow (xx);
XX=conv (cnum (i, :), xx);
cg=[cg;xx};
end
xx=conv (cnum(n*n, :},mulrow(cden(l:n*n-1,:)));
cg=[cg;xx];
% ==== =

function [o0ld]=cl20l (cln,cld,n)

$This function computes the open-loop t.f.m. common denominator
$from the closed-loop t.f.m. (For diagonal t.f.m only).

$FILE NAME : clZ2o0l.m

old=[1};
In=length(cln({l, :));
ld=1length(cld);
tempn=[];
for i=0:n-1
temp=cln(l+1*(n+1), :);
temp=cld-[zeros(l,1ld-1n),tempij;
if abs(temp(ld))<le-5 % to make last term zero
temp (1d)=0;
end
tempn={tempn; temp] ;
end
old=comden (tempn, le-5) ;

%

function [tfmat,cdel]=mulnd(tfm,del,n);

% This function finds open-loop numerator and common denominator
% reference model
% FILE NAME: mulnd.m

In=length(tfm{l, :));
ld=length(del);

of
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tempn=(1];
for i=0:n-1
temp=tfm(l+i*(n+1),:);
temp=del-[zeros(1l,1d-1n), temp];
if abs(temp(ld))<le-5 % to make last term zero
temp (1d)=0;
end
tempn={tempn; temp];
end
x2=comden (tempn, 1le-5);
nnl=[];
for i=0:n-1
[idn)=rmzero(conv (tfm(l+i* (n+l),:),x2));
[idd]=rmzero(tempn (i+1l,:));
nn=deconv (idn, idd) ;
nnl=[nnl;length(nn)];
end
nn2=max (nnl); % maximum order of the polynomial matrix
nummol=zeros (n*n,nn2);
n2=[);nl=[);
for i=0:n-1
(idn]=rmzero(conv(tfm(l+i*(n+l),:),x2)); % removing leading zeros
[idd]=rmzero(tempn (i+l, :));
nl=deconv (idn, idd) ;
nl=[zeros(l, (nn2-length{(nl))),nl];
nummol (1+i* (n+l), :)=nl;
end
cdel=x2;
tfmat=nummol;

%

function product=mulrow(d) ;
% this function multiplies the rows of a t.f.m.
$FILE NAME: mulrow.m

[x,y)l=size(d);
product=[1]1;
for i=1:x
product=conv (product,d(i, :));
end;

%

function [numml,denml]=refmodcalc(angle,delta)

% This routine computes numerator and denominator coefficients of
% reference model for different values of delta

% File name: refmodelcal.m

format short;
n=1; % n==1 for SISO and 2, for MIMO systems
rohl=angle;
roh=(pi/180) *rohl;
alpa=roh;wn=0.84;zta=0.7;gain=1;
wd=wn*sqrt (l-zta*zta);
s=-zta*wn+ (wn*sqrt (1l-zta”2))*i ; % pole in s-domain
delta={2 1 0.5 0.1 0.01 0.001);
numml=[];denml=[];
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for 3=1:6
g=s2del (s,delta(j)); % pole i1in delta-domain
cong=coni (q) ;
denm=conv ([1l,-g], [1, -cong]);
z= ((tan(roh-(p1/2))*(abs(g))"2))/ (abs(real(g))* tan(roh-(pi/2))
- abs(imag(g))); .
A=gain* (denm(3) /abs (real(z})));
numm=A*[1 z];
numml=[numml; numm] ;
denml=[denml; denm] ;
end

%

function [numm,denm]=refmodel28 40 (delta)

% This routine computes numerator and denominator coefficients of
% refernce model for different values of angle roh

$F1le name: refmodel28 40.m

angle=-40;
[numml, denml]=refmodcalc(angle,delta);

1f delta==
numm=numml (1, :) ;denm=denml (1, :);

elserf delta==
numm=numml (2, : ) ;denm=denml (2, : ) ;

elseif delta==0.5
numm=numml {3, : ) ;denm=denml (3, :);

elseif delta==0.1
numm=numml (4, :) ;denm=denml (4, :);

elseif delta==0.01
numm=numnl (5, :) ;denm=denml (5, : ) ;

else
numm=numml (6, : ) ;denm=denml (6, : ) ;

end

% =

function [ng,dgl=tfsiso_con(ex no)

% This function selects the plant transfer function coefficients
% for the examples of the thesas

% FILE NAME : tfsiso con.m

% ex no=input ('Enter the Transfer function example No: ' );

1f ex no == .
% Ref. J Pal, "Control system design using approximate model
% matching", System Science (Poland), vol.19,no.3,pp.5-23
% Example 3.5.6.1

ng={0 0 3]; dg={1 4 3];

elseif ex no== 2

% Sixth-order Tf, of a typical open-loop helicopter engine including

a fuel controller

Ref: Sanathanan, C.K. and stanley B. Quinn Jr., " Controller
design via the synthesis equations” Journal of the Franklin
Institute, vol. 324, no.3, pp.431-451, 1987.

Example 3.5.6.2

g8 o o0 o0 o

ng=(248.05 1483.339 91930.803 468732.64 634950.95];



dg=[1 26.2401 1363.07 26802.8 326900 859173 528055];

elseif ex no==
% Ref. J Pal, "Control system design using approximate model
$ matching"”, System Science (Poland), vol.19,no0.3,pp.5-23
% Example 3.5.6.3

ng={0 0 200]);dg={2 10 100];

elseif ex no== 4

% Ref. H.N.Shankar, Ph.D thesis titled “Adaptive control of general
calss of finite dimensional stable LTI systems”, IISC, Bangalore,

%
% 2000.
% Example 3.6.4

ng=conv ([l 2});dg=conv{[1 11, (1 31,[(1 41);

end

%

% This program computes and plots the SISO controller by OGDTM method
% using genetic algorithms for different plants available in

% file tfsiso con.m

% FILE NAME: msisoconogdtm.m

clear all;
clc;
f name='sisoconogdtm';
siz=1;
p_max=l*ones(siz,1);
p_min=0.001*ones(siz,1);
p_res=0.0l1*ones(siz,1);
gap=fmga def (5)
ptyp=2*ones(siz,1l);
G_disp=1;
(maxp,minp, avp,bp,pil=flexga(f name,p min,p _max,p res,ptyp,gap,G disp);
form p=1;dl= bp;n=1;delta=0.1;
t=0:delta:20;
& —---- Call for plant transfer function —-----
% Choose examples given in the file tfsiso_con.m
% Change the ex no in the function sisoconogdtm.m also
ex_no=}; -
[ng,dgl=tfsiso con(ex no);
[nump denp]=c2del (ng,dg,delta);
[(numm, denm]=refmodel28 40 (delta);
opdenm=cl2ol (numm, denm, n) ;
[npo)l=zero(opdenm) ;% zero.m takes input as poly coef.and detects
% nos of zero at origin
[npor]=zero(denp) ;
cnr=2; % Choose cnr=1 for PI and 2 for PID controller
mr=cnr+1l;
u={];q={];
for i=l:mr
p=agtm(form p,i*dl, n, nump, denp);
m=agtm(form p,i*dl,n, numm,denm );
gl=inv(p)* (i*dl) "~ (npo-npor) *inv(eye(size (m))-m) *m;
gl=reshape(ql',1l,n*n);
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g=[(q;ql];
um=[1];
for j=l:cnr
um=[um, (i*dl)"~j];
end;
u=[{u;um];
end;
cnum=[];cden={];
x1l=1;
for i=l:n*n
if npo==
ul=u(l:cnr+1,1l:cnr+l};
u2={1: (x1+1) 0]'*dl.*qgq(:,1);
z=inv {ul) *u2;
else
ul=u(l:cnr+l,l:cnr+l);
u2=q(:,1i);
z=inv (ul) *u2;
end
zn=fliplr(z');
zd=(1,0];
cnum=[cnum; zn] ;
cden={cden; zd];
end
NUM=conv (cnum, nump) ;
DEN=conv (cden, denp) ;
sys=tf (NUM, DEN) ;
SYS=feedback(sys,1,-1);
[fnum, fden]=tfdata(SYS, 'v');
disp('Sampling Time');disp(delta);
% Step response of reference model and system
yf=delstep (numm, denm, t,delta);
yc=delstep (fnum, fden, t,delta);

figure(2);

plot(t,yf, "k-',t,yc, 'k--");xlabel ('Time in sec');ylabel('Magnitude');
title('Step Response of SISO Reference Model and Designed System ');
legend('Reference Model', 'Closed Loop systen', 'location', 'Best');
legend BOXOFF;

% Impulse response of reference model and system
yfl=delimp (numm, denm, t,delta);

ycl=delimp (fnum, fden, t,delta);

figure(3);

plot(t,yfl, 'k-',t,ycl, 'k--"');xlabel('Time in sec');ylabel('Magnitude');
title('Step Response of SISO Reference Model and Designed System ');
legend('Reference Model', 'Closed Loop systen’, 'location’', 'Best’');
legend BOXOFF;

{z,p,k]l=tf2zp (fnum, fden);

figure(4);

delplane(z,p,delta);

title('Pole Zero plot in delta domain’);

legend('zeros', 'poles’');

legend BOXOFF;

disp('sampling time in seconds');disp(delta); ;disp('Angle');disp(-40);

disp('Optimum Ex. Point Value');disp(dl);
disp('Plant Transfer Function in s - Domain');printsys(ng,dg, 's');
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disp('Plant Transfer Function in delta Domain’);printsys(nump,denp,’'y');
disp('Ref.Model Transfer Function in delta Domain'};
printsys (numm,denm, 'y');disp(numm);disp{'coeff."A" of Reference Model');

1f leng

end

end

end

th (numm) ==
disp{(numm(2));
else disp(numm(l)});

disp{'coefficient "B"
1f length (numm)==
disp{numm(3));

else dasp(numm(2));

disp('coefficient "C"
disp(denm(2));
disp('coefficient "D"
1f length (numm)==
disp(numm(3));

else disp(numm(2));

disp('Designed PI Controller
cdenl=[(0, cden];
printsys (cnum, cdenl, 'y');

disp('Designed system Transfer Function in delta Domain');

of Reference Model');

of Reference Model');

of Reference Model');

Transfer Function i1n delta Domain');

printsys (fnum, fden, 'y');

1f n==1

1f length(cden)< length (cnum)
cden=(conv({cdenl, [1, (0.1/delta)l));

end

[af,bf]=feedback(conv(cnum, nump), conv(cden,denp), 1,1, -

flag=ISSTABLE (roots (bf),delta);

1

f flag==0

disp ('UNSTABLE SISO FEEDBACK SYSTEM in DELTA DOMAIN')

elseirf flag==

disp('STABLE SISO FEEDBACK SYSTEM in DELTA DAMAIN')

end
dyr=delstep({af,bf,t,delta);
[mp tp tr ts]=tdspec(dyr);
disp('Max percentage overshoot');disp (mp);

disp('Peak time,
disp('Rise time,
disp('Settling time,

delta);
[gmm, pmm, wcgm, wepnm ] =margin (mag, pha, wb) ;

disp('G M and Phase crossover frequency of reference model')

disp(gmm) ;disp (wcpm) ;

disp('P M and Gain crossover frequency of reference model’)

disp(pmm) ;disp (wcgm) ;

Nos of sample');disp(tp);

Nos of sample');disp(tr);

Nos of sample');disp(ts);

[mag, db, pha, wb]=deltabode (numm, (denm-[zeros (1, (length (denm)
-length (numm))), numnm]),delta);

[magl,dbl,phal, wbl]=deltabode (conv (cnum, nump), conv{cden, denp),

[gm, pm, wcg, wep]=margin{magl, phal, wbl);

disp('G M and Phase crossover frequency of designed system')

disp(gm) ;disp{wcp):
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disp('P M and Gain crossover frequency of designed system’)
disp(pm) ;disp(wcg);
end

%

function [PI]=sisoconogdtm (x)
¢ This function computes basic SISO controller with OGDTMs and finds

% scalar fitness function.

$ Finding the number of poles at origin for open-loop t.f.m.
% FILE NAME : sisoconogdtm.m

delta=0.1;

t=0:delta:20;

% --—--- Call for plant transfer function ------

% Choose examples given in the file tfsiso con.m

% Change the ex no in the function msisoconogdtm.m also
ex_no=1;

[ng,dg]=tfsiso_con(ex no);

[nump denp]=c2del (ng,dg,delta);

[numm, denm}=refmodel28 40 (delta);

% OGDTM program starts here
form p=1;dl=x;n=1; % n=1 for SISO system
opdenm=cl2o0l (numm, denm, n) ;
[npo]l=zero(opdenm) ;% zero.m takes input as poly coef. and detects
% nos of zero at origin
[npor]=zero(denp);
cnr=2; % Choose cnr=1 for PI and 2 for PID controller
mr=cnr+1l;
=[1;q=11;
for i=l:mr
p=agtm(form p,i*dl, n,nump,denp);
m=agtm(form p,i*dl,n,numm,denm );
gl=inv(p)* (i*dl) " (npo-npor) *inv(eye(size (m))-m) *m;
gl=reshape(gl', 1,n*n);
q=[qg:;qll;
=[1];
for j=l:cnr
um={um, (i*dl)"~j]:

end;
u=(u;umj;
end;
cnun=[]};cden=[];

disp('Nos of open-loop ref model pole at origin');disp(npo)
disp('Nos of plant pole at origin');disp(npor)

x1=1;
for i=l:n*n
if npo==0
ul=u(l:cnr+l,1l:cnr+l};
u2={[1:(x1+1) 0)'*dl.*qg(:,1);
z=inv{ul) *u2;
else
ul=u{l:cnr+l,l:cnr+l);
u2=q(:,1);
z=inv (ul) *u2;
end
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zn=fliplr(z');
zd={1,0];
cnum=[cnum; zn] ; cden=[cden; zd] ;
end
% Computation of scalar fitness function
NUM=conv {cnum, nunmp) ;
DEN=conv (cden, denp) ;
sys=tf (NUM, DEN) ;
SYS=feedback(sys, 1,-1);
[fnun, fden]=tfdata(SYS, 'v');
yf=delstep (numm, denm, t,delta);
yc=delstep (fnum, fden, t,delta);
erl=yf-yc;
er=erl'*erl;
PI=er;

% - = = ===

Chapter 4 (Controller design for MIMO systems) Programs:

% = = =

function [Tfmat,Cdel]=comnd(tfm,del,p,m);

This function finds common denominator of multivariable system
in Transfer matrix form

Common denominator 1s taken out using LCM of all denominators
FILE NAME: comnd.m

tfm = numerators are arranged as nll,nl2,n21,n22

p = Nos. of output, m = Nos. of input

del = denominators dll,dl12,d21,d22

tfmat= numerators nll,nl2,n21,n22

cdel =common denominator

O° 00 OC OP Of o° ¢ o0 oo

yn=[];yd=[];
for 1=l:p*m
yn={yn;tfm(1,:)]; $nll;n21;nl12;n22
yd=[yd;del(1,:)1; % dl1;d21;d12;d22
end
x2=comden (yd) ;
nnl={};
for 1=1:p*m
1f any(yn(a,.))==1 & any(yd(1,:))==1
(1dn)=rmzero(conv{yn{i,:),x2));
[1dd]=rmzero(yd(1,:));
nn=deconv (1dn, 1dd) ;
nnl=[nnl;length(nn)];
end
end
nnZ2=max{nnl); % maximum order of the polynomial matrix
n2=[];nl=[);
for 1=1:p*m
1f any(yn(a, :))==1 & any(yd(1,:))==1
[1dn)=rmzero{conv(yn(i,:),x2)); % removing leading zeros for
division
[1dd)=rmzero(yd (1, :));
nl=deconv(idn, 1d4d) ;
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nl=[zeros(l, (nn2-length(nl))),nl);
n2=[n2;nll;

else
n2=[n2;zeros(1l,nn2)];

end

end

cdel=x2;
tfmat=n2;

%

function [numml,denml]=refmodcalcmimo (angle,delta)

% This function computes the numerator and denominator of reference
$ model for muli variable system

% n==1 for SISO and 2 for 2x2 MIMO systems

% angle=1input ('Enter any one value of angle roh == ');

format short;

n=1; rohl=angle;

roh=(pi/180)*rohl;

alpa=roh;
wn=0.84;zta=0.7;gain=1;
wd=wn*sqgrt (l-zta*zta);

s=-zta*wn+ (wn*sqgrt (l-zta"2))*i ; % pole in s-domain
delta=[2 1 0.5 0.1 0.01 0.0011};
nunmli=[1];
denml=[];
for 3=1:6
g=s2del (s,delta(j)): % pole in delta-domain

cong=conj (g) ;
denm=conv{([1l,-g],[1,-congl);
2= ((taq(roh—(pi/Z))*(abs(g))A2))/ (abs{real(g))* tan(roh-{(pi/2)) .
~ abs{imag(g)));
A=gain* (denm(3) /abs(real{z)));
numm=A*[1 z];
numm= {0 numm] ;
numml=[numml ; numm] ;
denml=(denml;denm] ;
end

%_

function [numm,denm]=refmodel5 40 (delta)
% This function computes reference model for MIMO system for different
% values of samling time given in the function refmodcalcmimo.m

angle=+40;

numml, denml]=refmodcalcmimo (angle, delta);

if delta==
numm (1, : y=numml (1, : } ; numm{2, : )=zeros (1, 3);numn (3, : )=zeros (1, 3);
numm (4, :)=nummi (1, :),;denm(1l, : )=denml (1, :);denm (2, : )=zeros (1, 3);
denm (3, :})=zeros (1, 3);denm (4, :)=denml (1, :);

elseif delta==1
numm (1, : )=numml (2, :) ;numm (2, : ) =zeros (1, 3) ;numm (3, : )=zeros (1, 3);
numm (4, : )=numml (2, : ) ;denm(1, : )=denml (2, :);denm (2, : )=zeros (1, 3);
denm({3, :)=zeros {1, 3),denm{4, : )=denml (2, : ) ;

elseif delta==0.5
numm(l, :)=numml (3, :);numm (2, : }=zeros (1, 3) ;numm (3, : )=zeros (1, 3);
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numm (4, : )=numml (3, :) ;denm (1, : )=denml (3, :) ;denm(2, : )=zeros (1, 3);

denm (3, :)=zeros (1, 3);denm (4, :)=denml (3, :);

elseif delta==0.1
numm {1, :)=numml (4, :);numm(2, : )=zeros {1, 3) ;numm (3, : )=zeros (1, 3);
numm (4, : )=numml (4, :);denm (1, : )=denml (4, :);denm (2, :)=zeros(1,3);

denm (3, :)=zeros (1, 3);denm(4, : )=denml (4, :);
elseif delta==0.01

numm (1, :)=numml (5, :);numm (2, : )=zeros (1, 3) ;numm (3, : )=zeros (1, 3);
numm (4, : )=nunmml (5, : ) ;denm (1, : )=denml (5, : ) ;denm (2, : )=zeros (1, 3);
denm(3,:)=zeros(l,3);denm(4,:)=denml(5,:);

else
numm (1, :)=numml (6, : ) ;numm(2, : ) =zeros (1, 3);numm (3, : )=zeros (1, 3);
numm {4, :)=numml (6, :);denm(l, :)=denml (6, :);denm(2, :)=zeros (1, 3);
denm (3, :)=zeros (1, 3);denm(4, : )=denml (6, :);

end '

% = =

function [colmat]=row2col (rowmat,n)
% This function converts a rowwise arranged polynomial matrix
% to columnwise arrangment.
"% FILE NAME: row2col.m
colmat={];
for i=1l:n

for 3j=0:n-1

colmat=(colmat;rowmat (i+j*n,:)];

end

end

%

function [i,idl]=zero(dl)

% This function finds the number of roots, of a polynomial at origin,
% it also returns the polynomial after removing those roots.

% FILE NAME: zero.m

dl=roots(dl) ';dl=£fliplr(dl);l=length(dl);i=0;
for j=1:1
if dl(l-(3-1)}~=0
idl=dl(1:1-i);
idl=fliplr(poly(idl));
return;
end;
i=i+1;
end;

% = =

function [ng,dg]=tfmimo_con(ex_no)

This function outputs the numerator and denominator coefficients
of multivariable plants given in the examples.

ex_no=input ('Enter Example Number : ');

FILE NAME: tfmimo con.m '

o0

o0 o0 oo

if ex no ==
% Ref. Rosenbrock, H.H," design of the multivariable control
% systems using the inverse nyquist array" Proc. IEE , vol. 116,

299



% no. 11, pp. 1929-1936, Nov. 1969.
% Thesis example no 4.4.1

ng=[-11; -1 2;-3 1; -1 1];
dg=(1 2 1; 1 2 1;3 6 3; 1 2 1);
elseif ex no ==
% The open-loop transfer function of a pressurized flow-box
% Ref. Hung, N.T. and Anderson, B.D.0O., " Triangularization
% Technique for the design of Multivariable control systems”,
% IEEE Trans. Automat. control, vol. AC-24, no. 3,
% pp. 455-460, 1979.
% Thesis example no 4.4.2
% Numerator order [nll;nl2;n2l;n22];
ng={0 0 .0336; 0 1.03 0;0 9.66e-4 0.117e-4;0 0 -0.01141);
dg={0 1 0.395;1 0.395 1.26e-4;1 0.395 1.26e-4;1 0.395 1.26e-4};
elseif ex no == 3
% Four input four output gas fired furnace problem

$ Ref: Chieh-Li Chen and Neil Munro, "Procedure to achieve diagonal
% dominance using PI/PID controller structure", International
% Journal of Control, vol.50, no. 5, pp. 1771-1792, 1989.
$ Thesis example no 4.4.3
ng={0 1;0 0.7;0 0.3;0 0.2;0 0.6;0 1.0;0 0.4;0 0.35;0 0.35;0 0.4;
0 1.0:0 0.6;0 0.2;0 0.3;0 0.7;0 1.01;
dg=(4 1;5 1;5 1;5 1;5 1;4 1;5 1;5 1;5 1;5 1;4 1;5 1;5 1;5 1;5 1;
4 1);
elseirf ex no == 4
% Four input four output gat turbine
% Ref: P.D.McMorran, S.M.,"Design of gas-turbine controller using
% 1nverse Nyquist method", Proc. IEE, vol. 117, no. 10,
% pp. 2050~2056, 1970.
% Thesis example number 4.6.2

ng
dg

end

%—-

=[0 0 14.96 1521.432 2543.2;0 0 95150 1132094.7 1805947;
0 0 85.2 8642.688 12268.8;0 0 124000 1492588 2525880];

=[1 113.225 1357.275 3502.75 2525;1 113.225 1357.275 3502.75 2525;
1 113.225 1357.275 3502.75 2525;1 113.225 1357.275 3502.75 2525];

function [PI]=mimoogdtm (x)

% This function computes basic MIMO controcller with OG
% scalar fitness function.

% Finding the number of poles at origin for open-loop
% FILE NAME : mimoogdtm.m

delta=0.1;tim=0:delta:30;
% ——--- Call for plant transfer function ------
% Choose examples given in the file tfmamo _con.m

DTMs and fands

t.f.m.
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% Change the ex_no in the function mmimoogdtm.m also
ex no=l;

[ng,dgl=tfmimo_con(ex_no);

[ngl,dgl]l=c2del (ng{l,:),dg(l,:),delta);
[ng2,dg2]=c2del (ng{2,:}),dg(2,:}),delta);
[ng3,dg3)=c2del (ng(3,:),dg(3,:),delta);
[ng4,dgd4]l=c2del(ng(4,:),dg(4,:),delta);
$ngl=[0,ngl};dgl=[0,dgl];

nump=[ngl;ng2;ng3;ng4};

denp={dgl;dg2;dg3;dg4d); '

[nump, denp] =comnd (nump, denp, 2, 2) ;

$ reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2
{numm, denm] =refmodel5 40(delta);

[numm, denm]) =comnd (nunm, denm, 2, 2) ;

form p=1;n=2;

flag=isstable(roots(denp),delta);

if flag ==
disp('PLANT IS NOT STABLE')

end
Xx1l=1;cnr=1;
mr=cnr+1;
dl=x;
opdenm=cl20l (numm, denm, n) ;
[npol=zero (opdenm) ; $ zero.m takes input as poly coef.

% and detects nos of zero at origin
[npor}=zero(denp) ;
u=[{l;qg=[1;
for i=l:mr
if form_p==1 p=agtm(form p,i*dl,n,nump,denp);
m=agtm(form p,i*dl,n, numm,denm );
else
p=agtm(form p,i*dl,n,ap,bp,cp);
m=agtm(form p,i*dl,n,am,bm,cm);
end
gl=inv(p)* (i*dl) " (npo-npor) *inv(eye(size{m))-m) *m;
ql=reshape(gl’,1,n*n);
g=[g;qll;
um=[17;
for j=l:cnr
um=(um, (i*dl)"~3];
end;
u=(u;um];
end;
cnum=[};cden={];
for i=l:n*n
if npo==
ul=u({l:cnr+l,1l:cnr+l);
u2={1: (x1+1)]'*dl.*qg(:,1i);
z=inv {(ul) *u2;

else
ul=u({l:cnr+l,1l:cnr+l);
U2=q(:,i);
z=1nv (ul) *u2;

end

zn=flaplr{z');
zd=[1,01;
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cnum=[cnhum; zn];
cden=[cden; zd];
end
[cnuml, cdel}=change (cnum, cden,n);
cnumll=row2col (cnuml,n); $ arranging as [nll n2l nl2 n22]
[ac,bc,cc,dc)=tfm2ss (cnumll, cdel,n,n);
numpl=row2col (nump, n) ; % arranging as [nll n2l1 nl2 n22]
(ap,bp,cp,dp] = tfm2ss(numpl,denp,n,n);
ymm={];ym=[];
for i=l:n*n
ymm= [ ymm, delstep (numm (1, : ) ,denm, tim,delta)];
% this will give yll,yl2,y21,y22
end
for 3=1:n
for 1=j:n:min(size(ymm)) % this will give yll,y21,y1l2,y22
ym=[ym, ymm(:,1)];
end
end
[acp, bcp, ccp,dcpl=series(ac, bc, cc,dc, ap, bp, cp, dp)
[af,bf,cf,dfl]=feedbk(acp, bcp, ccp, dcp, 2) ;
flag=isstable(af,delta);
yr=[]:yrout=[];
dyr=delstep(af,bf,cf,dfl, 1, tim,delta);
for j=1:n
yroutl=[1];
for i=j:n:length(dyr)
yroutl=[yroutl;dyr(i,:)];
end
yrout=[yrout, yroutl};
end
for j=1:n
for l=j:n:min(size(yrout))
yr=[yr,yrout(:,1)];
end
end
er=ym-yr;
PI=er(:,1)'*er(:,1)+ter{:,2) "'*er(:,2)+er(:,3) "'*er(:,3)+exr(:,4) '*er(:,4);

% = == = =

% This program computes basic MIMO controller with OGDTMs using genetic
% algorithms and finds optimum frequency points.
% FILE NAME: mmimoogdtm.m

clear all;

clc;
angle=-40;wn=0.84;zita=0.7;
fname='mimoogdtm';

siz=1;

p_max=l*ones(siz,1l);
p_min=0.001*ones (siz,1);
p_res=0.0l*ones(siz,1);
gap=fmga_def (1);
ptyp=2*ones(siz,1);
G_dasp=1;

gap(9)=2;

[maxp,minp, avp, bpl, pil=flexga(fname,p_min,p max,p_res,ptyp,gap,G_disp);
[PI]=mimopbbga (bpl):
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form p=1;

dl= bpl;n=2;delta=0.1;
tim=0:delta:30;
t=tim/delta;

ex _no=l;

) ;
[ngl,dgl]l=c2del (ng{l,:),dg(l,:),delta);
[ng2,dg2]=c2del{ng (2, :),dg(2,:),delta);
ing3,dg3)=c2del(ng(3,:),dg(3,:),delta};
ngd4,dgd4]=c2del (ng(4,:),dg(4,:),delta);

$ngl={0,ngl];dgl=(0,dgl];
nump=[{ngl;ng2;ng3;ng4]);
denp=[dgl;dg2;dg3;dg4];

[nump, denp] =comnd (nump, denp, 2, 2) ;

numpf=[);denpf=[}:
for i=l:n*n
sysl=tf (numpl (i, :),denpl(i,:)):
SYSl=feedback(sysl,1,-1};
[numpfl, denpflj=tfdata(SYS1, 'v');
1f length(numpfl)<3
numpfl={0, numpfl];
end
numpf=[numpf; numpfl];
if length(denpfl)<3
denpfl=(0,denpfl];
end
denpf=[denpf;denpfl];
end

% reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2

[(numml, denml]=refmodel5 40 (delta);
[numm, denm] =comnd {numml, dennl, 2, 2) ;

figure(l);
opdenm=cl2o0l (numm, denm, n} ;
[npo]j=zero(opdenm); % detects nos of zero at origin
[npor]=zero{denp)
cnr=1;
mr=cnr+1l;

u=[];g=[1;
for i=l:mr
if form_p==1 p=agtm{form p,i*dl,n,nump,denp);
m=agtm(form p, i*dl,n, numm,denn };
else
p=agtm(form p,i*dl,n,ap,bp,cp);
m=agtm(form p,i*dl,n,am,bm,cm);
end -
gl=inv(p) * (i*dl) ~ (npo-npor) *inv (eye{(size{m))-m) *m;
gl=reshape(ql', 1,n*n);
a=lg:;ql);
um=[1];
for j=l:cnr
um=[um, (i*dl)"j];
end;
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u={u;um];

end;
cnum=[];cden={];
x1=1;
for 1=1:n*n
1f npo==
ul=u(l:cnr+l,1l:cnr+l);
u2=[1: (x1+1)]'*dl.*qg(:,1);,
z=inv{(ul) *u2;
else
ul=u(l:cnr+l,1l:cnr+l);
uz2=q(:,1);
z=1nv (ul) *uz;
end
zn=flaiplir(z');
zd={1,01};

cnum={cnum; zn] ;
cden=[cden; zd] ;
end
disp('PI');disp(PI);disp('Angle roh');disp(angle);
disp('Undamped Natural frequency');disp(wn);
disp('Damping factor');disp(zita);disp('Sampling taime');disp(delta);
disp('Ex Poaint value');disp(dl);
disp ('Numeretor Coeff.of plant [nll nl2 n2l n22]');disp{(nump);
disp('Common Den.coeff. of plant [dll dl12 d21 d22]'); disp(denp);
disp('Numeretor Coeff.of CL-plant [nll nl2 n2l1 n22}');disp(numpf);
disp('Denominator coeff.of CL-plant [dll dl12 d21 d22]');disp(denpf);
disp('Numerator Coeff.of Reference Model ');disp(numm);
disp('Common Denominator Coeff.of Reference Model');disp(denm);
disp{'Numerator Coefficients of Controller');disp(cnum);
disp (’'Denominator Coefficients of Controller');disp(cden);
com_del=mulrow{cden);
disp('POLES OF CONTROLLER: ') ;disp(roots(com _del));
disp('Nos of open~loop ref model pole at oragin');disp(npo)
disp('Nos of plant pole at oraigain');disp(npor)
[ro,cl)=size(cden);
[cnuml, cdel]=change (cnum, cden, n);
cnumll=row2col (cnuml, n); $ arranging as [nll n2l1 nl2 n22]}
{ac,bc,cc,dc]l=tfm2ss (cnumll, cdel,n,n);
numpl=row2col (nump, n); % arranging as [nll n2l nl2 n22]j
[ap,bp,cp,dp] = tfm2ss(numpl,denp,n,n);
1f n~=1
{acp, bep, ccp, depl=series(ac,bc, cc,dc, ap, bp, cp,dp) ;
faf,bf,cf,dfl])=feedbk (acp, becp, ccp,decp, 2);
flag=1isstable(af,delta);

1f flag ==

disp('Design feedback system 1s unstable');
else

disp('Design feedback system 1s stable');
end

ypp=[1:yp=[1;
for 1=1:n*n
ypp={ypp,delstep (numpl(1,:),denpl (1, :),tim,delta)];
$ Arrange in yll,yl2,y21,y22
end
for j=1:n
for l=j:n:min(size(ypp)) % this will give yll,y21,yl2,y22
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yp=lyp,ypp(:,1)1;

end
end

ypce=[1;

ypc=(];
for i=l:n*n

ypcc=[ypcc, delstep (numpf (i, :),denpf (i, :), tim,delta)];
% this will give yll,yl2,y21,y22

end
for j=1l:n

for l=j:n:min(size(ypcc)) % this will give yll,y21,yl2,y22
ypc=[ypc,ypcc(:,1)];
end
end
ymm=[]};ym=(];
for i=l:n*n
ymm=[ ymm, delstep (numm{i, :),denm, tim,delta)]};
% this will give yll,yl2,y21,y22
end
for j4=1l:n
for l=j:n:min(size(ymm)) % this will give yll,y21,yl2,y22
yro= (ym, ymm (:, 1) ]
end
end
yr={];yrout=[};
dyr=delstep{af,bf,cf,dfl,1,tim,delta);
for j=1:n
yroutl=[];
for i=j:n:length(dyr)
yroutl=[yroutl;dyr(i,:)];
end
yrout=[yrout, yroutl];

end
for j=1:n
for 1l=j:n:min(size(yrout))
yr=[yr,yrout(:,1)];
end
end

for i=l:n*n
figure (i+l});

plot(t,yp(:, i), 'k: ', t,ypcl:, i), k=", t,ym(:, i), "k=",t,yr(:,i), "k=-=");

legend('Plant', 'Plant with Unity feed back', 'Reference Model',.
'Designed Closed-Loop System');

legend BOXOFF;

title('Step Response of MIMO Systion with PI controller');

xlabel ('t/delta');

ylabel ('Magnitude');

pause;
end
k=[1,n*n];
for j=1:2

i=k(3);
[mp tp tsl=tdspecl{yp(:,1));
[mpl tpl tsll=tdspecl{(ym(:,1i));
(mp2 tp2 ts2]j=tdspecl(yr(:,i));

disp('Mp%: Plant Model CL-system');disp((mp,mpl,mp2]);
disp('tp/delta: Plant Model CL-system');disp([tp,tpl,tp2]);



disp('ts/delta: Plant Model CL-system');disp([ts,tsl,ts2]);
end

% PLotting of control efforts [ull uv2l ul2 u22)

[au,bu, cu,du]=feedback (ac,bc, cc,dc, ap, bp, cp,dp,-1);
yrl={];yrout=[(];
dyr=delstep(au,bu,cu,du,l, tim,delta);

for j=1:n

yroutl={];
for i=j:n:length(dyr)
yroutl=[yroutl;dyr (i, :)];
end
yrout=[yrout, yroutl];
end
for j=1:n
for l1=j:n:min{(size(yrout))
yrl=[yrl, yrout(:,1)];
end

end

for i=1:n*n

figure (i+5);
plot(t,yrl(:,1),'k-");
title('Control Effort ');
xlabel ('t/delta');

ylabel ('Magnitude');
pause;

end
end

% = = =

functlon[PI]-mlmooff(x)

% This function computes scalar fitness functlon for multivariable
% controller design by optimum frequency fitting method.

% Takes plant transfer function for the function tfmimo_con{ex no);
% FILE NAME: mimooff.m

delta=0.1;

tim=0:delta:50;

ex no=1l;
(ng,dg]l=tfmimo_ con({ex no);

[ngl,dgl]=c2del(ng(1 :),dg(l,:),delta);

[ng2,dg2]=c2del (n ( :),dg(2,:),delta);

[ng3,dg3}=c2del (ng 1) ,dg(3,:),delta);

[ngd,dgd])=c2del (n ( :),dg(4,:),delta);
1:

ng3=[0,ng3] ;dg3= [O dg3

nump=[ngl;ng2;ng3;ng4];
denp={dgl;dg2;dg3;dg4];

[nump, denp] =comnd (nump, denp, 2, 2) ;

% reference model zeta =0.7,wn=0.84,Delta =0.0001,0.001,0.01,0.1,0.5,2
[numm, denm]=refmodel5 40 (delta);
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[numm, denm)] =comnd (numm, denm, 2, 2) ;
form p=1;

n=2;

x1=1;

cnr=1;

mr=cnr+1;

dl=x;

opdenm=cl2ol (numm, denm, n) ;

[npo)=zero(opdenm); % detects nos of zero at origin
[npor]=zero{denp) ;

[nummo, denmo} =mulnd (numm, denm, n) ;

denmo=fliplr (rmzero(fliplr (opdenm)));

% Formation of Q-matrix and U-matrix using Optimal frequency Fitting

abs_u=[];q=[};ang_u={];

for i=l:mr

end;

p=[01:;m=(];

for j=1l:n*n
p=[p;delfreq(nump(j,:),denp,i*dl,delta)];

m=[m;delfreq(nummo(j, :)},denmo, i*dl,delta)];
end
p=reshape(p,n,n);p=p'; % AFF matrix of the plant in TFM form
m=reshape(m,n,n);m=m’'; % AFF matrix of the ref.model in TFM form

gl=inv(p) *m;
gl=reshape(ql',1,n*n);
a=[g;ql]1;
ddl=dl*sqgrt(-1);
ddl=s2del (i*ddl, delta);

um=[1] ; um1=0;
for jj=l:cnr

um=[um, (abs (ddl))"j3];:
uml=[uml, (angle (ddl)*33)];

end
abs u=[abs_u;um]; % absolute values of U-matrix elements
ang_u=[ang u;uml}; % Angles of the U-matrix elements

abs g=abs(q); % absolute values of the g-matrix elements
ang_g=angle (q); % angles of the g-matrix elements
cos_u=cos (ang_u);

sin u=sin(ang_u);

[ro,cl]=size(abs u);

ur={};ui=[];

for i=l:cl

end

ur=[ur,abs u(:,i).*cos u(:,1i)];
vi=[ui,abs u(:,1i).*sin u(:,i)];

wl=[ur;ui];
$ Computation of numerator and denominator of the controller

cnum=[];cden=[];

for i=l:n*n

ang_qu=[]);w2=[]);v={[]);ang_ql=[];
for j=l:cl

ang_qu={ang_qu,ang g(:,1i)+ ang u(:,3)]);
ang_qgl=[ang_qgl,ang_qg(:,1i)];

end
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cos_ang_qu=cos(ang_qu) ;

sin_ang_gu=sin(ang_qu);

cos_ang_qgl=cos(ang_ql);

sin_ang_gl=sin(ang_qgl);

url=[);uil=[]);ur2=[];ui2=[);
for j=1l:cl

ur1=[url,abé_q(:,i).*abs_u(:,j).*cos_ang_qu(:,j)],
uil=[ui1,abs_q(:,i).*abs_u(:,j).*sin_ang_qu(:,j)];

% wnen npo~=0 |u|*e”jtheta not required
ur2=[ur2,abs_q(:,i).*cos_ang gl{:,3)]; % When there is pole at

origin
uiZ2=(ui2,abs _g(:,i).*sin_ang ql(:,j)}; % in open-loop reference
model
end
w2=[url;uil]; % To be used for PI or PID when no pole at origin
w3=[ur2;ui2); % To be used for PI or PID when pole at origin
[row,col]l=size(w2);
v=w2 (:,col);
if npo==0
2(l:mr,l)=pinv(wl)*w2(:,2);
else
z(l:mr,l)=pinv(wl)*w3(:,2);
end
zn=fliplr(z(l:cnr+l)');
zd={1 0);
cnum=[cnum; zn]) ;
cden={cden; zd] ;
end

[cnuml, cdel]=change (cnum, cden, n) ;

cnumll=row2col (cnuml,n); % arranging as [nll n2l nl2 n22)

fac,bc,cc,dc]=tfm2ss (cnumll,cdel,n,n);

numpl=rowZcol (nump, n); % arranging as [nll n21 nl2 n22]

fo

en

fo

en

for

end
for

lap,bp, cp,dp] = tfm2ss (numpl,denp,n,n);
ymm=[];ym={];
r i=l:n*n
ymm=[ymm, delstep (numm{i, :),denm, tim, delta)];
% this will give yll,y12,y21,y22

d
r j=l:n
for l=j:n:min(size(ymm)) % this will give yl1,y21,y12,y22
ym=[ym, ymm (:,1)];
end
d

[acp, bcp, ccp, depl =series (ac, bc, ce, dc, ap, bp, cp, dp) ;
[af,bf,cf,dfl)=feedbk (acp, bcp, ccp,dcp, 2} ;
flag=isstable(af,delta);
yr=[]);yrout=[];
dyr=delstep({af,bf,cf,dfl,1,tim,delta);
j=1l:n

yroutl={];

for 1=j:n:length(dyr)

yroutl=[(yroutl;dyr(x,:)];
end
yrout=[yrout, yroutl];

j=1:n
for 1=3:n:min(size{yrout))
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yr=[yr,yrout(:,1)];
end
end
er=ym-yr;
PI=er{:,1)'*er(:,1l)+er(:,2)"'*exr(:,2)+ex(:,3) "*er(:,3)+er{:,4)  '*exr(:,4):

This program computes optimum frequency points for multivariable
controller design by optimum frequency fitting method using genetic
algorithms. It takes the value of scalar fitness function from the
file mimooff.m

Takes plant transfer function for the function tfmimo con(ex no);
FILE NAME: mmimooff.m

o0 o0 I o° P oP

Angle=-40;wn=0.84;zita=0.7;
fname='mimoaff5ga’';

siz=1;

p max=l*ones(siz,1l);

p min=0.001*ones(siz,1);
p_res=0.01l*ones(siz,1);
gap=fmga_def (1);
ptyp=2*ones(siz, 1);
G_disp=1; '

gap(9)=2;

[maxp,minp, avp, bpl,pil=flexga(fname,p min,p_max,p_res,ptyp,gap,G_disp):
[PI]=mimocaff5ga (bpl);

form p=1;dl= bpl;n=2;delta=0.1;

tim=0:delta:50;

t=tim/delta;

ex no=1l;

figure(1l);
[ng,dgl=tfmimo_con(ex no);
[ngl,dglj=c2del({ng(l,:),dg(l,:),delta
[ng2,dg2]=c2del(ng(2, :),dg(2,:)
[ng3,dg3]=c2del(ng(3,:),dg(3,:),delta
[ngd4,dg4]=c2del (ng(4,:),dg(4,:)
ng3=[0,ng3];dg3=[0,dg3];
nunpl=[ngl;ng2;ng3;ng4];
denpl=[dgl;dg2;dg3;dgd]};
[nump, denp]=comnd {numpl, denpl, 2, 2) ;
numpff=[(};denpff=[{];

for i=1l:n*n
sysl=tf (numpl(i,:),denpl(i,:));
SYSl=feedback(sysl,1,-1);
[numpfl,denpfl]=tfdata(SYsSl, 'v');

if length(numpfl)<3
numpfl=[0, numpfl];

end
numpf f=[numpff; numpfl];

if length(denpfl)<3
denpfl={0,denpfl];

end
denpff={denpff;denpfl];

end

[numpf, denpf]=comnd (numpff, denpff, 2,2);
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$ reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2

(numm, denm) =refmodel5 40(delta);
(numm, denm] =comnd (numm, denm, 2, 2) ;

form p=1;n=2;x1i=1;cnr=1;
mr=cnr+1;
opdenm=cl2ol (numm, denm, n) ;
[npol=zero (opdenm) ;
% zero.m takes input as poly coef. and detects nos of zero at origin
[npor]=zero(denp) ;
[nummo, denmo] =mulnd (numm, denm, n) ;
denmo=fliplr (rmzero(fliplr (opdenm)));

% Formation of Q-matrix and U-matrix using AFF

abs u=[];g=[(};ang_u=[];
for i=l:mr
p={];m={];
for j=1l:n*n

p=[p:;delfreqg(nump(j,:),denp,i*dl,delta)];
m={m;delfreqg{nummo (j, :),denmo, i*dl,delta)];
end

p=reshape(p,n,n);p=p'; % AFF matrix of the plant in TFM form
m=reshape(m,n,n);m=m'; % AFF matrix of the ref.model in TFM form
ql=inv(p) *m;
ql=reshape(gl’',1,n*n);
g=[g:;qgl];
ddl=dl*sqgrt (-1);
ddl=s2del (i*ddl, delta);
um=[1];unl=0;
for jj=l:cnr
um={um, (abs(ddl))"jjl;
uml={uml, (angle(ddl)*j3j)]:

end
abs_u={abs_u;um]); % absolute values of U-matrix elements
ang_u=(ang_u;uml]; % Angles of the U-matrix elements
end;
abs g=abs(q); absolute values of the g-matrix elements

%
ang_g=angle(q); % angles of the g-matrix elements
cos_u=cos(ang_u);
sin_u=sin({ang u):
[ro,cll=size(abs_u);
ur=(];ui=(];
for i=1l:cl
ur=[ur,abs_u(:,1i).*cos u(:,1i)1];
ui=[ui,abs_u(:,i).*sin u(:,1i}}
end
wl=[ur;ui]l;
% Computation of numerator and denominator of the controller
cnum=[];cden={];
for i=l:n*n
ang_qu=[};w2=[]);v=[];ang gl=[];
for j=l:cl
ang_gu={ang_qu,ang g{(:,i)+ ang_u(:,j)};
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ang_gl=[{ang gl,ang qg(:,1)]:
end
cos_ang_qu=cos (ang_qu);
sin_ang_qu=sin{ang_qu);
cos_ang_gl=cos(ang_ql);
sin_ang gl=sain(ang qgl);
url=[];u1l=[);ur2=[);u12={];

for j=1l:cl
url={url,abs g{(:,1).*abs u(:,3J).*cos_ang qu(:,3J)];
uil=[uil,abs g(:,1).*abs u(:,3).*s1n_ang qu(:,3)1;

$ wnen npo~=0 [u[*e”jtheta not required
ur2={ur2,abs qg(:,1).*cos_ang_qgl(:,3)]; % When there 1s pole at

origin
ui2=[ui2,abs g{:,1).*sin_ang_qgl(:,3)]; % in open-loop reference
model
end
w2=[url;uil]; % To be used for PI or PID when no pole at origin
[row,col]l=s1ze(w2);
w=[{wl,-w2(:,l:col-1)]; % to be used for other controller
v=w2(:,col);
1f npo==
z{l:mx,l)=panv(wl)*w2(:,2);
else
z{l:mr,l)=panv(wl)*w3(:,2);
end
zn=fliplr(z(l:cnx+l)"');
zd=[1 0];
cnum= [cnum; znj ;
cden={cden; zd];
end
disp('Error');disp(PI);disp('Angle roh');disp(Angle};
disp('Undamped Natural frequency');disp(wn);disp('Damping factor');

(

(
disp(zita);disp('Sampling time');disp(delta);
disp('Ex Point value 1in delta');disp(ddl);
disp('Numeretor Coeff.of plant [nll nl2 n2l n22])');disp(nump);
disp('Denominator coeff.of plant (dll dl2 d21 d22]');disp(denp);
disp('Reference Model Numerator Coefficients');disp(numm):;
disp('Reference Model Denominator Coefficients');disp(denm);
disp('Numerator Coefficients of Controller');disp(cnum);
disp('Denominator Coefficients of Controller'); disp(cden);
com del=mulrow(cden);
com_del=mulrow{cden);
disp('POLES OF CONTROLLER: ') ;disp(roots({com del));
disp('Nos of open-loop ref model pole at origin');disp(npo)
disp('Nos of plant pole at origin');disp(npor)

[cnuml, cdel]=change (cnum, cden, n);
cnumll=row2col (cnuml, n); % arranging as [nll n2l nl2 n22j
[ac,bc,cc,dc]=tfm2ss (cnumll, cdel,n,n);
numpl=row2col (nump, n) ; % arranging as [nll n2l nl2 n22]
[ap,bp,cp,dp] = tfm2ss (numpl,denp,n,n);
1f n~=1
(acp, bcp, ccp,dcpl=series (ac, bc, cc,dc, ap, bp, cp, dp);
[af,bf,cf,dfl]=feedbk(acp, bcp, ccp,dcp, 2);
flag=isstable(af,delta);
1f flag ==
disp('Design feedback system 1s stable');
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else
disp('Design feedback system 1s stable');
end
ypp=[1;yp=(]);
for 1=1:n*n
ypp=[{ypp, delstep (nump (1, :),denp, tim,delta)];
% this will give yll,yl2,y21,y22
end
for 3=1:n
for 1=j:n:min(size(ypp)) % this will give yll,y21,yl2,y22
yp=lyp,ypp(:,1)];
end
end
ypce={];
ype=[]:
for 1=1:n*n
ypcc=[ypcc,delstep (numpff (1, :),denpff (1, :),t1m,delta)];
% this will gaive yll,yl2,y21,y22
end
for j=1:n

for 1=j:n:man{(size(ypcc)) % this will give yli,y21,yl2,y22

ype=lypc, ypce(:,1)1;
end
end

ymo=[];ym=[};yp=[];
for 1=1:n*n
ymm= [ ymm, delstep (numm (1, :),denm, tim,delta)];
% this will give yll,yl2,y21,y22
end
for i1=1:n*n
yp=lyp,delstep (nump (1, :),denp, tim,delta)];
% this will give ypll,ypl2,yp2l,yp22
end
for j=1:n
for l=j:n:min(size({ymm))
% this will gaive yll,y21,yl2,vy22
ym=[ym, yram(:,1)];
end
end
yr=[];yrout={];
dyr=delstep(af,bf,cf,dfl,1l,tim,delta);
for 3=1:n
yroutl={[];
for 1=3:n:length{dyr)
yroutl=[yroutl;dyr(1,:)1;
end
yrout=[yrout, yroutl];
end
for 3=1:n
for l=3:n:min(size(yrout))
yr=[yr,yrout(:,1}];
end
end

for 1=l:n*n
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figure(1t+l);
plot(t,yp{:, 1), 'k=-.");
legend('Plant', '"Plant with Unaity feed back');
legend BOXOFF;
title('Step Response of MIMO uncontrolled Plant');
xlabel ('t/delta ');
ylabel ("Magnitude');
pause;
end
for 1=1:n*n
figure (1+5);
plot(t,ym(:, 1), "k=",t,yr(:,1), 'k-=");
legend('Reference Model', 'Designed Closed loop System');
legend BOXOFF;
title('Step Response of MIMO Systion with PI controller');
xlabel ('t/delta ');
ylabel ('Magnitude');
pause;
end

% PLotting of control efforts [ull u2l ul2 u22]
fau,bu, cu,du]=feedback(ac, bc, cc,dc,ap,bp,cp,dp, -1} ;
yrl={];yrout=[];
dyr=delstep (au, bu,cu,du,l, tim,delta);

for j=1:n

yroutl={];
for 1=3:n:length(dyr)
yroutl=[yroutl;dyr(x,:)];
end
yrout=[yrout, yroutl];
end
for j=1:n
for l=3:n:min(size(yrout))
yrl=[(yrl,yrout(:,1)1;
end

end

for 1=1l:n*n
figure(1+9);

plot(t,yrl(:,1),'k~-");tatle('Control Effort ');
xlabel ('t/delta');ylabel ('Magnitude');
pause;
end
end
% =

Chapter 5 (Time Delay Systems)

This program computes optimum frequency points for multivariable
controller design for the systems with time delay by optimum frequency
fitting method using genetic algorithms. It takes the value of scalar
fitness function from the file mimoofftd.m

Takes plant transfer function for the function tfmimo con(ex_no);

FILE NAME: mmimcofftd.m

o0 o @ O o° oo

clear all;
clc;
fname="'mimoofftd’';
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siz=1;
p max=l*cnes(siz,1);
p_min=0.001*ones(siz, 1);
p_res=0.01*ones(siz,1);
gap=fmga def(1l};
ptyp=2*ones(siz, 1);
G_disp=1;
gap(9)=2;
[maxp,minp,avp,bpl,pi]=flexga(fname,p_min,p_max,p_res,ptyp,gap,G_disp);
form_p=1;dl= bpl;n=2;delta=1;
tim=0:delta:10;
t=tim/delta;
ex no=1;
figure(l);
tdP1l=1;tdP2=3;tdP3=7;
[ng,dg}=tfmimo_con{ex no);
[ngl,dgll=c2deld{ng(l, :),dg(l,:),tdPl,delta);
[ng2,dg2]=c2deld(ng(2,:),dg(2,:),tdP2,delta);
(ng3,dg3]=c2deld(ng(3,:),dg(3,:),tdP3,delta);
[ng4,dgd4)=c2deld(ng(4,:),dg(4,:),tdP2,delta);
(ml,nl)l=size(ngl); [m2,n2]=size(dgl); [m3,n3])=size(ng2);
[m4,nd)=size(dg2); [m5,n5])=size(ng3); [m6,n6)=size(dg3);
ngll(l,:)={zeros(l,n5-nl),ngl(l,:)];
dgll{(l,:)=(zeros(1l,n6-n2),dgl(l,:

’

( ( )]
ng21(1l,:)=[zeros(1,n5-n3),ng2(1,:)]:
dg21 (1, :)=[zeros(1l,n6-n4),dg2(1l,:)]1;
ng31(1,:)=ng3(1,:);
dg31 (1, :)=dg3(1,:);
ngdl (1, :)={zeros(1l,n5-n3),ngd (1, :)];
dgdl(l,:)=[zeros(l,n6-nd),dgd(1,:)]:

nump=[ngll;ng2l;ng3l;ng4l);
denp=[dgl1;dg21;dg31;dg41];

[nump, denp] =comnd (nump, denp, 2, 2) ;
% reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2

[numm, denm] =refmodel5 40aff (delta);
[numm, denm] =comnd {numm, denm, 2, 2) ;

form p=1;n=2;x1=1;cnr=1;
mr=cnr+1; ;
opdenm=clZ2ol (numm, denm, n) ;
[npo}=zero({opdenm); % dptects nos of zero at origin
[npor]=zero(denp);
[nummo, denmo} =mulnd (numm, denm, n) ;
denmo=fliplr (rmzero(fliplr (opdenm)));

% Formation of Q-matrix and U-matrix using AFF

abs_u={];g={];ang_u=(];

for i=l:mr

p=[0];m={];

for j=l:n*n
p=[p;delfreqg(nump(j, :),denp,i*dl,delta)];
$m=[{m;delfreg(numm(j, :),denm, 1*dl,delta)];
m=[m;delfreq(nummo(j, :),denmo, i*dl, delta)];
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end
p=reshape(p,n,n);p=p'; % AFF matrix of the plant in TFM form
m=reshape(m,n,n);m=m'; % AFF matrix of the ref.model in TFM form
gl=inv(p) *m;
gl=reshape(gl',1l,n*n);
g=[{q:;qll;
ddl=dl*sqrt (-1);
ddl=s2del (i*ddl, delta);
un={1];uml=0;
for jj=1l:cnr
um=[um, (abs(ddl))"331]:
uml={uml, (angle (ddl) *j
end
abs_u=[abs_u;um]; % absolute values of U-matrix elements
ang u=[ang u;uml]; % Angles of the U-matrix elements
end;
abs _g=abs(q); % absolute values of the g-matrix elements
ang_g=angle(q); % angles of the g-matrix elements
cos _u=cos (ang_u);
sin_u=sin(ang_u);
[(ro,cll]=size{abs_u);
ur=[];ui=[];
for i=1l:cl
ur={ur,abs u(:,i).*cos _u(:,1)];
ui={ui,abs u(:,i).*sin u(:,1)]
end
wl={ur;ui];
$ Computation of numerator and denominator of the controller
cnum=[];cden=[(];
for i=l:n*n
ang_qu=[];w2={);v=[];ang_ql=(};
for j=l:cl
ang_qgu={ang qu,ang g(:,i)+ ang u(:,3)];
ang gl=[ang gl,ang gl(:,1)];
end
cOs_ang_gu=cos (ang_qu);
sin_ang_qu=sin(ang_qu);
cos_ang_qgl=cos({ang qgl);
sin_ang_gl=sin(ang _ql);
url=[];uil=[];ur2=[];ui2=[];

Jji) 1

’

for j=1l:cl
url={url,abs g{(:,1).*abs u(:,3j).*cos_ang qu({ .,j)],
uil=[uil,abs g(:,1).*abs u{:,)).*sin_ang qu(: Y1

% wnen npo~=0 |ul*e”jtheta not requlred
ur2={ur2,abs g(:,i).*cos _ang_gl(:,j)];% When there is pole at origin
uiZ=(uiZ,abs_qg(:,i).*sin_ang_ql(:,j)17% in open-loop reference model
end
w2={url;uil]; $ To be used for PI or PID when no pole at origin
w3=[ur2;ui?2]; % To be used for PI or PID when pole at origin
[row,coll=size(w2);
v=w2(:,col);

if npo==
z{l:mr, l)=pinv(wl)*w2(:,2);
else
z(l:mr,l)=pinv(wl)*w3(:,2);
end

zn=fliplr(z(l:cnxr+l)");
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zd=[1 0];
cnum= [cnum; zn] ;
cden=[cden; zd] ;
end
disp('Sampling time');disp(delta);
disp('Ex Point value in delta');disp(ddl);
disp('Plant transfer function for common dinominator in delta
domain {pll pl2 p2l p22]"')
for 1=1:n*n
printsys{(nump{(i, :),denp,'y"')
end
disp('Reference Model transfer function with common Dinominator
in delta domain [mll ml2 m21 m22]');
for 1=1:n*n
printsys (numm(1, :),denm,

|yl)

end
disp('Controller transfer function in delta domain');
for 1=1:n*n

praintsys(cnum(i, :),cden(y, :),'y")

end
com_del=mulrow(cden);
com_del=mulrow (cden) ;
disp('POLES OF CONTROLLER: ")idisp(roots(com_del));
disp('Nos of open-loop ref model pole at origin'),;disp(npo)
disp{'Nos of plant pole at origin');disp(npor)

[cnuml, cdel]=change (cnum, cden,n);
cnumll=row2col (cnuml, n); % arranging as [nll n2l nl2 n22]
[ac,bc,cc,dc]l=tfm2ss(cnumll,cdel,n,n);
numpl=row2col (nump, n) ; % arranging as [nll n2l1 nl2 n22j
{ap,bp,cp,dp] = tfm2ss(numpl,denp,n,n);
1f n~=1
[acp,bcp, ccp,dcpl=series (ac,bc, cc,dc, ap, bp, cp,dp) ;
[af,bf,cf,dfl]=feedbk(acp, bcp, ccp,dcp,2);
flag=1sstable(af,delta);

1f flag ==0
disp('Design feedback system 1s unstable');
else
disp('Design feedback system 1s stable’');
end
ymm=[];ym=[];
for 1=1:n*n
ymm= [ymm, delstep (numm (1, :),denm, tam,delta)];
% this will give yll1l,y12,y21,y22
end
for j=1l:n

for l1=7:n:min(size (ymm))
% this will give yll,y21,yl2,y22
ym=[ym, ymm(:,1)];
end
end
yr=[];yrout=[];
dyr=delstep(af,bf,cf,dfl,l,tim,delta);
for jJ=1l:n
yroutl=[];
for 1=3:n:length(dyr)
yroutl=[yroutl;dyr (1, :)]};
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end
for

end
for

end

end
yrout=[yrout, yroutl];

j=1l:n

for l=j:n:min(size(yrout))
yr=[yr,yrout(:,1)];

end

1=1l:n*n

figure(1+1l);

plot(t,ym(:,1), 'k=-",¢t,yr{:, 1), 'k=-.");

legend('Reference Model', 'Designed Closed loop System');
legend BOXOFF;

title('Step Response of MIMO Systion with PI controller');
xlabel ('Tame 1n seconds');ylabel('Magnitude');

pause;

close;

% PLotting of control efforts [ull u2l ul2 u22]

au,
yrl=
dyr=

for

end
for

end
for

end
end

bu, cu,du] =feedback(ac, bc,cc,dc,ap,bp,cp,dp,-1);
(1;yrout=[];
delstep(au,bu,cu,du, 1, tim,delta);
Jj=1:n
yroutl=[];
for 1=3:n:length(dyr)
yroutl=[yroutl;dyr(y,:)];
end
yrout=[yrout, yroutl];

j=1l:n

for l=j:n:min{(size(yrout))
yrl={yrl,yrout(:,1)71;

end

1=1:n*n

figure (1+5);

plot(t,yr(:,1), 'k-"});t1tle('Control Efforts');
xlabel ('t/delta');ylabel ('Magnitude');

pause;

close;

%

function [PI]l=mimoofftd(x)

% This
% time
$ FILE

function designs multivariable controller for the systems with
delay by optimum frequency fitting using genetic algorithm.
NAME: mimoofftd.m

$format short g

delta=1;Angle=-40;tdP=1;
tim=0:delta:10;
ex_no=l;

tdP1=1;

tdP2=3; tdP3=7;

{ng,dg]=tfmimo_con(ex_no);
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[ngl,dgl]l=c2deld(ng(l,:),dg(l, :),tdPl,delta);
[ng2,dg2}=c2deld(ng(2,:),dg(2,:),tdP2,delta);
[(ng3,dg3]=c2deld(ng(3,:),dg(3,:),tdP3,delta);
[ng4,dgé4}=c2deld(ng(4,:),dg(4,:),tdP2,delta);
[ml,nl]=size(ngl); [m2,n2]=size(dgl); [m3,n3]=size(ng2);
[m4,nd4]=size(dg2); {m5,n5]= 31ze(ng3 .+ [m6,n6l=size(dg3);
ngll(1l, :)=[zexros(l,n5-nl),ngl{l, :)
dgli(l,:)={zeros(1,n6-n2),dgl (1, :)
ng2l(l,:)=(zeros(l,n5-n3), ng2(1 Y)
dg21(1l,:)=[zeros(l,n6-n4),dg2(1, :)
ng31l(1l,:)=ng3(1,:);dg31(1,:) dg3(l
) 2)
2)

)
1i
1i
]l
I:

’

P i)
}i
1;

’

ngdl (1 —[zeros(l n5-n3),ng4(
dgd4l(1l,:)={zeros(l,n6-n4),dgd (1
nump=[ngll;ng21l;ng31;ng4l];
denp={dgll;dg2l;dg31;dgdl];
[nump, denp] =comnd {nump, denp, 2, 2) ;

% reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2
‘[numm, denm] =refmodel5 40aff (delta);

[numm, denm] =comnd (numm, denm, 2, 2) ;

form p=1;n=2;x1=1;cnr=1;

mr=cnr+1;

x=0.34;

dl=x;

opdenm=cl2ol (numm, denm, n) ;

[npo]=zero(opdenm); % zero.m takes input as poly coef. and detects

% nos of zero at origin
{npor]=zero{denp) ;
[nummo, denmo ) =mulnd (numm, denm, n) ;
denmo=fliplr (rmzero(fliplr (opdenm)));

% Formation of Q-matrix and U-matrix using AFF
abs_u=[(];g=[];ang_u={];
for i=l:mr
p=[1;m={];
for j=1l:n*n
p=[p;delfreq(nump(j, :),denp,i*dl,delta)];
$m=[m;delfreq(numm(j, :),denm,1*dl,delta)];

m=[m;delfreq(nummo(j, :),denmo,i*dl,delta)];
end
p=reshape(p,n,n);p=p'; % AFF matrix of the plant in TFM form
m=reshape(m,n,n),;m=m'; % AFF matrix of the ref.model in TFM form

gl=inv(p) *m;
gl=reshape(ql’,1l,n*n);
g=[q;ql];
ddl=dl*sgrt (-1);
ddl=s2del (i*ddl, delta);
um=[1] ;uml=0;
for jj=l:cnr
um=[um, (abs(ddl))”*3jl;
uml=[uml, (angle(ddl)*jj)]:

end
abs_u=[abs u;um]; % absolute values of U-matrix elements
ang_u={ang u;uml]; % Angles of the U-matrix elements

end;
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abs g=abs(q); % absolute values of the g-matrix elements
ang g=angle(q); % angles of the g-matrix elements
cos_u=cos{ang u);

sin u=sin(ang u);

[ro,cl])=size(abs_u);

ur={];ui=[];

for i=1l:cl

ur=[ur,abs_u(:,i).*cos _u(:,1)];
ui=[ui,abs_u(:,i).*sin u(:,1)};
end
guif{:,1)=1;

wl={ur;uil;
% Computation of numerator and denominator of the controller
cnum={];cden=(];
for i=l:n*n
ang_qu=[];w2=[];v=[];ang gl=[];
for j=1l:cl
ang_qu=[ang_qu,ang g{:,i)+ ang ul(:,3j)]);
ang_ql=[ang_qgl,ang_q(:,1)];
end
cos_ang_qu=cos (ang qu);
sin_ang_qu=sin(ang_qu);
cos_ang_gl=cos(ang gl);
sin_ang_qgl=sin(ang ql);
url=[];uil={];ur2=[{];ui2=(];
for j=1l:cl
url={url,abs_qg(:,1i).*abs u(:,j).*cos_ang_qu(:,j)1;
uil={uil,abs_qg(:,i).*abs u(:,J).*sin_ang_qu(:,3j)];
% wnen npo~=0 |ul|*e”jtheta not required

ur2={ur2,abs_qg(:,1i).*cos_ang ql(:,3j)]; % When there is pole at origin
ui2=[ui2,abs_qg(:,1i).*sin ang ql(:,J)];% in open-loop reference model
end
w2=[url;uil]; % To be used for PI or PID when no pole at origin

w3=[ur2;ui2]; % To be used for PI or PID when pole at origin
[row,col]=size (w2);
v=w2 (:,col);

if npo==
z(l:mr,l)=pinv(wl)*w2(:,2);

else
z(l:mr,l)=pinv{(wl)*w3(:,2);

end

zn=fliplr(z(l:cnr+l)");

zd=[1 0];

cnum=[cnum; zn) ;
cden=[cden; zd] ;

end

[cnuml, cdel]=change {cnum, cden, n) ;
cnumll=row2col {cnuml, n); $ arranging as (nll n2l nl2 n22]
[ac,bc,cc,dc]=tfm2ss (cnumll,cdel,n,n);
numpl=row2col (nump, n) ; % arranging as [nll n2l nl2 n22]
[ap,bp,cp,dp] = tfm2ss(numpl,denp,n,n);

ymm=[];ym=[];
for i=1l:n*n
ymm= [ymm, delstep (numm (i, :),denm, tim,delta)];
% this will give yl1,yl12,y21,y22
end
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for j=1:n
for l1=j:n:min(size(ymm))
% this will give yll,y21,yl2,y22
ym=[ym, ymm (:,1)];
end
end
[acp,bcp, ccp,dcpl=series (ac,bc, cc,dc, ap, bp, cp,dp)
[af,bf,cf,dfl]=feedbk(acp, bcp, ccp,dcp, 2);
flag=isstable(af,delta);
yr={];yrout=[];
dyr=delstep(af,bf,cf,dfl,1,tim,delta);
for j=1:n
yroutl={];
for i=j:n:length{(dyr)
yroutl={[yroutl;dyr{i,:)];
end
yrout=[yrout, yroutll];
end
for j=1:n
for l=j:n:min(size({yrout))
yr=[yr,yrout(:,1)];
end
end

er=ym-yr;

PI=er(:,1l)'*er(:,1)+er(:,2) "*er(:,2)+er(:,3) '*er(:,3)+er(:,4) " *exr(:,4);

%

Chapter 6 (Biomedical digital filters)

$ This program generates ecg signal with 60 Hz power frequency
"% interference

% FILE NAME: ecg2x60.m

clear all % clears all active variables
close all

% the ECG signal in the file is sampled at 200 Hz
ecg = load('ecg2x60.dat"');

fs = 200; %sampling rate

slen = length(ecq);

t=[1l:slen])/fs;

figure

plot (t, ecgqg)

xlabel ('Time in seconds');

ylabel ('ECG');

axis tight;

%

% This program generates ecg signal with high frequency noise
% FILE NAME: ecg_hfn.m

clear all % clears all active variables
close all

ecg = load('ecg _hfn.dat');

fs = 1000; %sampling rate = 1000 Hz

slen = length{ecqg);
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t=({1l:slen]/fs;

figure

plot (t, ecqg)

axis tight;

xlabel ('Time in seconds');

ylabel ('ECG'); '

title('ECG signal with high Fequency Noise');
% ====

% This program generates ecg signal with low freguency noise
% FILE NAME: ecg lfn.m

clear all % clears all active variables
close all '

ecg = load('ecg lfn.dat');

fs = 1000; %sampling rate = 1000 Hz

slen = length(ecqg);

t=[1l:slen]/fs;

figure
plot(t, ecqg)
axis tight;

xlabel ('Time in seconds');
ylabel {'ECG'");
title('ECG signal with low Fequency Noise');

%

$This program is designed for butter worth low pass and high pass filter
% in delta domain

clear all;
close all;

clc;

ecqg = load ('ecg hfn.dat' );

fs = 1000; % Sampling Frequency

delta=1/fs;

B e e
% Design of low pass Butterworth filter

% _____________________________________________________
fc = 40; % Cutoff Frequency for LPF

slen = length( ecg );

t = [1l:slen]/fs; $Time Scale

wl = (fc/fs)*2; $Normalised frequency

N = 4; $0rder of the filter of LPF
[bl,al] = butter ( N,wl);%, 'low'); $Getting coefficients of filter

[bs,as]=butter (N,wl, 's');

[bdl, adl]l=c2del (bl, al,delta);
[bzl,azll=bilinear(bl,al, fs);

disp('Low pass filter T.F in- S domain');
printsys(bl,al, 's');

disp('Low pass filter T.F in Z domain');
printsys(bzl,azl, 'z"');

disp('Low pass filter T.F in Delta domain');
printsys (bdl,adl, 'y');
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Yl = filter(bl,al,ecq); $Low Filtering ecg signal in s domain

yzl=filter(bzl,azl,ecqg); $Low Filtering ecg signal in z domain
ydl=filter (bdl, adl, ecqg); $Low Filtering ecg signal in delta domain
% ___________________________________________________________

3 Disign of High pass butter worth filter

——m— e

fcl=2; $cuttoff frequency for highpass filter
w2=(fcl/fs)*2; gnormalised frequency for HPF

N1=4; $order of HPF

{bh, ah]=butter (N1,w2, 'high'); %Getting coefficients of filter

[bd2,ad2]=c2del (bh, ah,delta);

[bz2,az2)=bilinear (bh, ah, fs);

disp('Low pass filter T.F in S domain');praintsys(bh,ah, 's');
disp('Low pass filter T.F in Z domain');praintsys(bz2,az2,'z");
disp('Low pass filter T.F in Delta domain');printsys(bd2,ad2,'y');

% plots of filtered signal in S domain

figure(1l);

subplot (3,1,1)

plot (t,ecqg);

xlabel ('Time in seconds');ylabel ('Amplatude');axis tight;
title{'ORIGINAL ECG SIGNAL');

subplot (3,1, 2)

plot(t,Y1l);

xlabel ('Tame 1n seconds');ylabel ('Amplitude');axis taght;
title('Low filtered ecg SIGNAL in S');

subplot (3,1, 3)

plot (t, Yh);

xlabel ('Time in seconds');ylabel ('Amplitude’);axis taight;
title('High FILTERED SIGNAL IN S');

% plots of filtered signal in Z domain

figure(2);

subplot (3,1,1)

plot(t,ecqg);

xlabel ('Time 1in seconds');ylabel ('Amplitude’');axis taight;
title ('ORIGINAL ECG SIGNAL');

subplot (3,1, 2)

plot(t,yzl);

xlabel ('Time 1in seconds');ylabel ('Amplitude');axis tight;
title({'Low filtered ecqg SIGNAL in 2');

subplot (3,1, 3)

plot (t,yz2};

xlabel ('Time 1n seconds');ylabel ('Amplitude’');axis taght;
title('High FILTERED SIGNAL IN Z'};

% plots of filtered signal in delta domain
figure (3);

subplot (3,1, 1)
plot (t,ecq);
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xlabel ('Time 1n seconds');ylabel{('Amplitude’');axis tight;
title ('ORIGINAL ECG SIGNAL');

subplot (3,1,2)

plot (t,ydl):

xlabel ('Time 1n seconds');ylabel ('Amplitude');axis tight;
title('Low filtered ecg SIGNAL in Delta');

subplot (3,1, 3)

plot (t, yd2);

xlabel ('Time 1n seconds');ylabel('Amplitude’');axis tight;
title('High FILTERED SIGNAL IN Delta');

%

% This program 1s for design of band stop filter in delta domain

clear all;

format long;

input= load{'ecg2x60.dat"');

gamma=0.9999911;

£fs=360; %$input ('Enter the value of sampling frequency = ');
delta=1/fs;

fo=60;

N = length (input); % Number of samples

t_len = N/fs; % Length of input signal in seconds
fignum = 1;

t = ((1:N)/fs)';

£f=0:fs/2;

w=2*p1*f;

ff=(w/(2*p1));

fn=ff/fs;

theta=2*pi*fo/fs;

alpha=2*pi1*w*delta;

bita=abs ( (gamma-1) /delta);

k=bita"2;

z=[ (exp(j*theta)-1)/delta; (exp(-j3*theta)-1)/deltal;
p=(bita*(exp(J*theta)-1)/delta,bita* (exp(-3*theta))/delta]l;
[numd, dend}=zp2tf(z,p, k)

Hd=delfreq(numd, dend, w,delta);

magd=abs (Hd) ;

phased=180/pi*unwrap (angle (Hd)) ;

figure (fignum) ;

fignum=£fignum+l;

subplot(2,1,1);

plot (££f,20*1ogl0(abs(Hd)));

axis ([0 125 -400 10]);

title('Band Stop Filter Magnitude Response 1in delta'});
xlabel ('Frequency [Hz]');ylabel('Magnitude ain dB'});
subplot(2,1,2);

yl=180/pi* (unwrap(angle (Hd)'))';

plot (ff,yl);

axis ([0 125 -100 4007});

title('Band Stop Filter Phase Response in delta');
xlabel ('Frequency [Hz]'):;ylabel('Angle 1n degree');
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kl=(l—2*gamma*cos(theta)+gammaA2)/(2-2*coé(theta));
numz=kl*[1 -2*cos(theta) 1];
denz=[1 -2*gamma*cos(theta) gamma”2];

outputz=filter (numz,denz, input);
outputd=filter {numd, dend, input);

figure{fignum);

fignum=fignum+1;

subplot (2,1,1);

plot (t, input);

axis ([0 1 -2 31);

title('Original ECG signal'):

xlabel ('Normalized time');ylabel ('Normalised magnitude'});
subplot (2,1,2);

plot (t,outputz);

axis ([0 1 -2 3]);

title('Filtered ECG signal in designed z domain');

xlabel ('Normalized time');ylabel('Normalised magnitude');

figure(fignum) ;

fignum=fignum+1;

subplot(2,1,1);

plot (t, input);

axis([{0 1 -2 31);

title('Original ECG signal');

xlabel ('Normalized time');ylabel ('Normalised magnitude');
subplot(2,1,2);

plot (t, outputd);

axis{[0 1 =2 3]):

title('Filtered ECG signal in designed delta domain');
xlabel ('Normalized time');ylabel ('Normalised magnitude');

% === =

324



List of publications:

Journals:

(1]

(2]

N.C.Sarcar, P. Sarkar & M. Bhuyan, “Delta Operator Based Controller
Design by Optimal Frequency Fitting Method Using Genetic Algorithm”,
Paper communicated to [nternational Journal ACTA Press Canada, 2008
and reviewed paper already sent for publishing in 2009.

N.C.Sarcar, Prashant Sarkar & Manabendra Bhuyan, “Classical Control
Design in Delta Domain by Optimal Generalised Moment Matching Using
Genetic Algorithm”, Paper communicated to /nternational Journal AMSE
France, 2008. Some corrections have been suggested which is being
incorporated and will be sent soon for publication .

Conferences:

(1]

[2]

(3]

(5]

6]

(7]

N.C.Sarcar, M.Bhuyan & P.Sarkar, “Reference model selection for
controller design based on performance specifications in delta domain”,
proc. International Conference on Recent Advancements and Applications
of Computer in Electrical Engineering (RACE), vol. 1, sl-56, pp 277-282,
Engineeing College Bikaner, India, 2007.

N.C.Sarcar, M.Bhuyan & P.Sarkar, “Discrete reference model selection and
use of Generalised Moment Matching method for Controller Design in
Delta Domain”, proc. International Conference, IICT 2007, Vol. 1, pp 500-
510, DIT, DehraDoon, India, 2007.

N.C.Sarcar, M. Bhuyan & P.Sarcar, “Frequency domain specifications of
reference model in delta domain”, National Conference on Control and
Instrumentation, NIT, Kurukshetra India, 2007.

P.Sarkar & N.C.Sarcar. “Modeling and Parameter identification of discrete
data systems by matching weighted moments using delta domain
technique”, proc. National Conference on Electric Power Technology,
Management and IT application, (EPTMITA-06), pp 4-9, at MMMEC,
Gorakhpur India, 2006.

N.C.Sarcar, M.Bhuyan & P.Sarcar, “Parameterisation of biomedical digital
filters using fast sampling delta transformation”, National Conference on
notechnology (Nanotech-2004) at ITM, Gorakhpur India, 2004.

N.C.Sarcar, “Suppression of Power line interference in ECG signals using
delta domain techniqaue”, IEEE Sponsored state level Conference
organized by student chapter, UP Section at [TM, Gorakhpur India, 2008.

N.C.Sarcar, P. Sarkar & M. Bhuyan, “Controller design for time delay
systems by optimal generalised delta time moment matching using genetic
algorithm”, Paper has been accepted for the National Conference, TICE-09,
to be held on 29-30 Oct-2009 at Dept of Electronics and Comm. Engg.,
Thapar University, Patiala, Punjab ( India).

325



