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ABSTRACT 

A paradigm shift from continuous-time to discrete-time signals and systems 

studies originated during sixties employing shift operator in the time domain analysis & 

design, while z-transformation in its complex domain counterparts. Despite the fact that 

real world physical signals and processes remain continuous in time, but due to certain 

limitations of continuous-time analysis, synthesis and design tools there have been rapid 

proliferation of digital techniques due to low hardware and software cost and hassle free 

implementation. The advent of very high speed digital computers and rapid development 

of VLSI technology have led fast sampling to avoid loss of information. 

Unfortunately, the traditional shift-operator model becomes uninformative at fast 

sampling rates. An alternative parameterization based on signal differencing has been 

advocated by Middleton and Goodwin to overcome these difficulties. The delta operator 

parameterization has a close connection with continuous-time and in fact converges to the 

continuous-time description as the sampling period tends to zero. It therefore provides a 

unified framework for system studies, where continuous-time results can be achieved 

from the discrete-time description of the system. 

In the present work classical control design methods in the complex delta domain 

using the concept of model matching in the Truxal framework is attempted. These 

controller design techniques consist of designing a controller to compensate a given plant 

in the complex delta domain, so that the controlled system follows the reference model. 

The reference model structure, which satisfies the classical time, frequency and complex 

domain specifications in the complex delta domain, is developed. Discrete-time modeling 

of the control systems in complex delta domain and development of low order controller 

based on performancs specifications are the main objective of the work undertaken. Two 

methods are developed to design controllers in the frequency domain,-Optimal 

Generalised Delta Time Moments (OGDTMs) and Optimal frequency fitting (OFF). 

These methods are applied to design rational, discrete-time controller for single-input, 

single-output (SISO), multi-input, multi-output (MIMO) systems and systems with time 

delay. 

Reference Model: Apart from the time and frequency domain specifications such as 

percentage overshoot, peak time, rise time, delay time, settling time, gain margin, phase 



margin, resonant frequency and resonant peak, complex domain specifications are 

frequently associated with damping ratio (5) and frequency of natural oscillation (o,). 

~ o r ' a  discrete time higher order system, relations between the specifications in the 

time, frequency and complex delta domain are complicated. In many cases, however, the 

dynamic characteristics of higher order control systems are well represented by those of a 

second order system or model for which the relationships between specifications are 

simpler. Hence the second order reference model transfer function of a closed loop model 

based on performance specification in discrete delta domain is chosen for this work. 

For a pole-zero form of transfer function in z-domain, expression has been derived 

in terms of a set of complex z- domain specifications. Time domain specifications in delta 

domain has also been derived however no study has been made so far to relate frequency 

domain specifications in the complex delta domain. An attempt is however made to 

address these issues in this work. 

Optimal GDTM: In the present work, the concept of model matching method in the 

complex delta domain discussed above has been developed replacing successive 

derivative operations of the function with forward difference operations and evaluating 

them at finite values close to zero. These values of the delta function are defined as 

generalised delta time moments (GDTM). Therefore the efficacy of the controller design 

scheme based on GDTM greatly relies on the selection of real frequency points and 

normally trial and error method is resorted to seek compromise. In the present work, 

genetic algorithms (GA) are used as an optimisation tool to find the optimal frequency 

point and hence Optimal GDTM (OGDTM). 

Optimal Frequency Fitting: In  this work another algorithm of controller design is 

developed based on selection of optimal complex frequency points using GA. In this 

method two transfer functions are matched at a number of frequency points in the low 

frequency range and the controller parameters are computed after evaluating a set of 

linear algebraic equations at these complex frequency points adopting the method of least 

square. Therefore the efficacy of the controller design scheme in this method greatly 

relies on the selection of complex frequency points in the complex delta domain and 

normally trial and error method is resorted to seek compromise. Genetic algorithm is used 

as an optimisation tool to find the optimal complex frequency point in this Optimal 

Frequency Fitting (OFF) method. The computational algorithm of both the design 

methods are numerically stable at high sampling frequency and yields a continuous-time 



like controller, which depicts the advantage of delta operator modelling in control system 

design. 

Genetic Algorithms: Genetic algorithms (GA) have been widely used in many 

applications to produce a global optimal solution. GA accommodates all facets of soft 

computing, namely, uncertainty, imperfection, non-linearity and robustness. It is domain 

independent adaptive and inherently parallel and can handle multiple objectives with no 

explicit mixing required to define a composite objective function. 

In the controller design problems, in order to compute the optimal frequency 

points, both real and complex, a fitness function is developed which is the difference 

between the step response of the reference model and the designed controlled system in 

which GA was entrusted to find the optimal frequency points in the given search space 

and therefore to find OGDTM and OFF. A fitness function is computed using roulette- 

wheel /tournament selection method. 

In the proposed methods GA is used as a global search tool to optimally locate the 

real and complex frequency points based on a scalar cost function developed between the 

error of the reference model and closed loop controlled systems. Hence these algebraic 

methods are a once-through design method without resort to any trial-and-error 

procedure. Therefore with minimum amount of effort, this method gives practically 

realizable PI, PID and other higher order controllers conforming to desired industrial 

specifications. 

Biomedical digital filters: Digital filter is another important field in signal processing 

and biomedical is an essential area of its application. By using the delta operator based 

technique, digital filter has been designed for high performance inverter application. 

Exhaustive study has already been made in modeling and analysis of biomedical digital 

filters in complex z-domain. In the present work, application of delta operator 

parameterization has been extended to design of biomedical digital filter to remove high 

frequency, low frequency and 60 Hz power line interference from the ECG. 

Hence, the delta domain methods developed and presented highlights the benefits 

of using delta operator in system theory and signal processing. To illustrate each method, 

several simulation results are provided with some practical plant models taken from the 

literature. The results clearly illustrate the usefulness of the methods developed in the 

thesis for practical problems and demonstrate that the proposed methods offer a viable 

and often attractive alternative to some prevalent methods. 
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Chapter 1 

1 Introduction: 

1.1 Motivation: 

A paradigm shift from continuous-time to discrete-time signals and system 

studies originated during sixties employing the techniques of the shift operator in the 

time domain analysis and design, while z-transformation in its complex domain 

counterparts. Despite the fact that most real world physical signals and processes 

remain continuous in time, but due to certain limitations of continuous-time analysis, 

synthesis and design tools, there have been rapid proliferation of digital techniques 

with wide acceptability mainly due to low hardware and software cost and easy 

implementation. Discrete-time signal processing and discrete-time control popularly 

known as digital control or sample-data control have emerged out as a separate field 

of study and offer many conveniences such as: 

Stability of control 

Flexibility 

Lower cost 

Greater reliability and equipment life 

Human factors favouring Digital Interface 

Ease in implementation 

Extremely high accuracy and negligible drift with time 

Standard hardware modules across a wide range of applications 

Ability to self-check 

Greater range of control algorithms 

Digital algorithms are mostly algebraic that avoid calculus 

Inspite of the fact that discrete-time signals and systems offer many 

.advantages but, its major drawback is that the resultant signal or system as obtained 

after sampling of continuous-time counterpart is largely dependent on the selection of 

sampling frequency. While the choice of Nyquist frequency as the sampling 

frequency is the minimum requirement to retain the bandwidth in the corresponding 

discrete-time there is no fixed criteria what shall be the maximum sampling 

frequency. It largely depends on the intuition of the designer looking into the stability 
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of the overall systems, implementation issues and availability of the hardwares etc. 

However, in order to implement a continuous-time system in the corresponding 

discrete-time it can be institutively assumed that one should take the sampling 

frequency as large as possible, thereby making sampling time very near to zero. 

Unfortunately, the traditional shift-operator or z-transformation representation of the 

discrete-time systems becomes uninformative at fast sampling rates and resultant 

numerical algorithms become numerically ill-conditioned. 

An alternative to the shift operator in time domain called delta operator and 

gamma transform in place of z-transform has been advocated by Middleton and 

Goodwin [1],[2] to overcome the above difficulties. Discrete-time signals and systems 

representation using the above technique not only ensure greater range of stability and 

numerical conditioning but also allows continuous-time results to be obtained as a 

special case from the resultant discrete-time system when the sampling period is zero. 

In recent years, the delta operator has been widely used to many areas in control and 

signal processing as an alternative to shift operator. The delta operator establishes a 

special rapprochement between analog and discrete dynamic models and allows for 

investigating the asymptotic behaviour of discrete time models as the sampling period 

converges to zero. Moreover, it has certain numerical advantages compared to the 

shift operator parameterization. It, therefore, provides a unified framework for system 

studies, where continuous-time results can be achieved from the discrete-time 

description of the system. 

The term delta operator used in this thesis is to model a time domain signal or 

system in discrete-time and denoted by '6' while, the term &domain is the 

corresponding complex transformed domain denoted by the complex variable t'. 

Therefore, the notation ' 6  'is to be used as a time domain operator while the notation 

' y  ' is to be used as a complex domain operator for the analysis, design and 

simulation studies presented In this thesis. 

1.2 Objective ofbthe thesis: 

The'aim of the first part of the thesis is to develop a unified framework for 

representation of dynamic discrete-time systems in the complex delta domain such 
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that the resultant systems converge to its analog counterparts at fast sampling limit. In 

the sequel, we utilize the properties of the delta operator to develop the reference 

model parameters which satisfy the given classical time, frequency and complex 

domain specifications with a view to employ these reference models for controller 

design in a model matching framework. 

The aim of the second part of the thesis is to develop methods for controller 

design in the complex delta domain using a variant of time moment in which Genetic 

algorithms (GA) have been used to optimally select either the real or complex 

frequency points. The controller design methods developed in the complex delta 

domain mainly use the transfer function description and are applicable to single-input 

single-output (SISO), multi-input multi-output systems (MIMO) and system with time 

delays. All methods included in the thesis are, however, directly applicable even if the 

original description of the system is given in state-space. 

Finally, the third part of the thesis deals with filter design in the complex delta 

domain for biomedical applications. 

1.3 Contribution of the thesis: 

The properties of the delta operator are utilized to design reference model 

system in the complex delta domain denoted by the complex variable y. The 

coefficients of this reference model are computed from the given time, frequency and 

transformed domain specifications so that the overall controlled system match the 

reference model approximately in a model matching framework. A newly defined set 

of parameters called the Optimal Generalized Delta Time Moments (OGDTM) is 

introduced. This OGDTM is a new variant developed from the concept of traditional 

time moment so far used for continuous-time signals and systems. The discrete-time 

time moment in the delta domain is called Delta time moment (DTM). A more 

general version of DTM is Generalised delta time moment (GDTM). The proposed 

OGDTM is developed by invoking GAS, an artificial intelligence tool to find a set of 

real frequency poirits after minimising a scalar cost function. This newly introduced 

set of parameters i.e. (OGDTM) has been successfully used for controller design in 

the complex delta domain. 

A new method called the optimal frequency fitting (OFF) technique has also 

been introduced. The proposed OFF selects a set of complex frequency points after 
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minimising a scalar cost function by using GA. The OFF technique has been 

successfully applied for controller design of SISO, MIMO and system with time 

delays. The design method as proposed either using OGDTM or OFF is a 

comprehensive linear algebraic framework based on approximate model matching and 

are applicable to systems that are stable / unstable, minimum phase / non-minimum- 

phase. The proposed design methods as developed in the complex delta domain 

provide a unified framework for the design of a digital controller which converges to 

its corresponding analog controller when the sampling time approaches zero. Both of 

these properties have been well exploited in analysis, design and simulation studies. 

The concept of delta domain technique has also been used for biomedical signal 

processing in which design of digital filters has been attempted to remove artifacts of 

Electrocardiogram (ECG) signals. 

In the context of the above, we now include a brief .review of the related 

literature. 

1.4 Historical Overview: 

In this section, we present a brief historical overview of the evolution of delta 

operator, time moment, Genetic algorithms and biomedical digital signal processing 

with a view to its' eventual applications in control system design and biomedical 

digital filter design problems. The discourse is mainly focused on issues that are 

relevant to this research and is by no means an exhaustive exposition of all the 

available contributions to these theories. We start with an introduction to the 

development of delta operator modelling and control followed by a brief discussion 

on time moment, Genetic algorithms and their present state of the art and application 

in control system focusing on model matching based controller design methodologies 

and biomedical filter design applications. 

1.4.1 Delta operator : 

There have been a large volume of works accumulated since sixties on 

discrete-time system studies using the shifi-operator in time domain and z- 

transformation in the complex domain [3], [4], [5], [6]. The development of delta 

operator formulation by Middleton and Goodwin [ I ]  in 1986 makes it possible to 

understand both continuous-time and discrete-time control and identification theory 
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within a unified framework, while substantially improving the numerical robustness 

with respect to the traditional shift-operator representation of discrete-time systems. 

The deFa operator theory of modelling of discrete-time is based on discrete 

differential or 'finite difference' operator. The calculus of finite differences has been 

in use in numerical analysis for several centuries and a good account of it is described 

in Middleton and Goodwin [7]. Although Gupta [8] in sixties has introduced {- 

transform which is nothing but the complex domain version of the delta operator 

called y- domain. Similarly, Neuman C.P. [9] has defined the delta operator as the 

discrete approximation of the differential operator, the application of which converts 

all the relationships of sample-data systems to their continuous-time counterparts at 

the fast sampling limit. However, the actual benefits of it's use in control system 

analysis and , design was fully explored by Middleton and Goodwin [lo]. 

Subsequently, Mukhopadhyay el. al. have shown that delta operator formulation is a 

sub-class of a more general operator called y-operator [ I  I]. Since its inception, delta 

operator has been extensively used in controlled, system design and implementation. 

To highlight the important applications of delta operator in systems and control, 

following areas may be mentioned such as literature on classical and modern control 

[12- 141, predictive control [I 51, adaptive control [ I  6-1 71, robust, H, and optimal 

control [ I  8-28], Linear Quadratic Gaussian (LQG) Control of Networked control [29], 

signal processing [30 - 421 and identification [43-481 etc. 

1.4.2 Time moment: 

Time moment, a traditional tool, has been extensively used in the reduced 

order modelling literatures [49-521. Time moments are evaluated from a time 

dependent function about a point by the method of integration. A set of time 

functions of the high-order system are matched with those of the reduced model 

and the number of time-moments matched depends on the desired order of the 

reduced model. In the frequency domain, many variants of the time moments based 

methods [52] have been reported for control system design and implementation 

mostly with industrial settings. The classical techniques of control system design for 

continuous-time systems using frequency response plots of Bode and Nichols, root 

locus diagrams of Evans or the Nyquist plots are well documented in the literature. 

The methods are graphical and of a trial-and-error nature and are normally limited to 

SISO systems. These neo-classical design techniques have been further refined by 
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Rosenbrock [53], MacFarlane [54], Mayne [55], Hung and Anderson [56]  and others 

[571. 

The development of state variable techniques during sixties has witnessed a 

radical change from the frequency domain to time domain because of its several 

advantages over the classical transfer function approach. However, state-space design 

technique requires information about all the states while measuring the output in order 

to design an elegant controller. This can be achieved either through multitude of 

sensors or an asymptotic observer. For higher order systems, this mandates an 

implementation, which is highly complicated. Such sophisticated controllers may be 

reasonable in aerospace applications but in an industrial setting long-term reliability 

and economics prevent such sophistication. Optimal control approach requires the 

solution of higher order nonlinear differential equations and, moreover, it is often 

difficult to translate industrial specifications into the weighting matrices of the 

performance index and vice versa. 

One of the important aspects of controller design and implementation is the 

order of the resultant controller and the subsequent hardware complexity. Practicing 

engineers prefer implementable controllers of low complexity. The problem of 

designing control systems via model matching approach may be stated as follows: 

Given a process whose performance is unsatisfactory and a closed-loop reference 

model having the desired performance, derive a controller such that the performance 

of the augmented process matches that of the model. Work on controller design for 

model matching dates back several decades, e.g., the Guillemin-Truxal design 

procedure yields a controller TF which matches a reference model in a unity-feedback 

configuration [58]. In sampled-data theory most of the techniques for control system 

analysis and synthesis were originally developed for continuous-time systems and 

were subsequently converted to or adopted for discrete-time systems. Problems of 

sample-rate selection, quantization effects, frequency warping, computational time- 

delay etc. that are particular to digital control systems have been addressed in 

Tzafestas [59]. The other problems in the implementation of digital controllers due to 

finite speed memory limitations, acquisition and processing time-delay are summed 

up in Hanselmann [60]. 

Design of digital controllers employing the technique of frequency response 

matching has been of interest of several investigators. Rattan et al. [61] has exhibited 
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a design technique in which frequency response of the closed-loop system was 

matched with that of a reference model. The method required the evaluation of 

complex integrals and the final design and stability of the system were sensitive to the 

chosen frequency band [62]. Shieh et al. [63] has presented a method in which the 

discrete open-loop frequency response was matched at a number of important 

frequency points known as the dominant data set. The controller transfer function 

coefficients were obtained as a solution of a set of non-linear equations based on the 

dominant data set. In the method of Shi and Gibbard [63] a discrete transfer function 

was selected as the reference model from which an equivalent open-loop transfer 

function was obtained. The controller parameters were obtained such that the 

frequency response of the discrete open-loop system matches that of the discrete 

open-loop reference model. A constrained minimization technique involving a 

simplex algorithm was employed to restrict the poles and zeros of the controllers to 

desirable regions in the unit circle disc. 

Janiszowski [64] proposed controller algorithms for minimizing a quadratic 

performance index by appropriate weighting of controller outputs and errors. Zafiriou 

and Morari [65] provided a review of several digital control algorithms. A rule based 

algorithm has been suggested for the design of controllers which is applicable for 

large sampling times and the resultant system is free from inter sample ripples. A 

design method has been proposed by Houpis [66] where a sampled-data system is 

approximated by a pseudo-continuous-time (PCT) control system. This approach is a 

valuable technique when the sampling time is small. Whitbeck and Hofmann [67] 

have detailed the analogies between system formulations in the s and w3 domains. It is 

established that direct digital control (DDC) law synthesis in the wodomain is a viable 

and practical alternative to design by emulation of a continuous system. A 
a 

comprehensive and computationally simple DDC design technique has been given by 

Knowles [68]. A digital controller design method based on series expansion of the 

pulse transfer function has been proposed by Inooka et al. [69]. Inooka has extended 

his series expansion method for the design of double loop systems [70]. This method 

leads to a controller of higher order. Another technique based on the minimization of 

output error has been proposed by Porat and Friedlander 1711. This leads to a non- 

linear problem and the calculation of the parameters involves non-linear 

computational techniquks. This drawback has been removed by Obinata et al. [72] by 
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minimizing an equation error of the closed-loop system. Forsythe [73, 741 has 

proposed a simple design method based on Taylor series expansion technique. Design 

techniques for exact and approximate model matching have been proposed in Kucera 

et al. [75] and Pal [76] #among many others for continuous-time systems. 

In the recent literature on delta operator modelling and control, Young et al. 

[12], have promoted the concepts of true digital control (TDC), which rejects the idea 

that a digital control system should be initially designed in continuous-time terms. 

Rather it was suggested that the designer should consider the design from a digital- 

sample data standpoint, even when rapidly sampled, near continuous time operation is 

required. The design of simple but powerful digital controllers for rapidly sampled 

system that can function in a near continuous-time fashion is one particular aspect of 

the general TDC approach which can be achieved using delta operator modelling of 

discrete-time systems. The explicit methods for proportional plus integral control of 

the delta operator systems are the outcome of such a strategy. Based on delta 

representation, Collins et al. [77] have derived a set of discrete-time H, design 

equations. Erwin et al. [18], [19] have addressed the H2 and mixed H2/ H a  controller 

synthesis problems, while Katab et.al. [78], have worked on robust stability. 

Suchomski [23] designed robust PI & PID controller using delta operator. In the area 

of generalized predictive control, the works of Lauritsen et al. [15] are worth 

mentioning. Works on adaptive control of delta operator systems are also reported by 

Masaru et al. [17]. Tadjine et al. [20] and Linbo et al. [29] have reformulated 

LQGILTR control design by using delta operator. The problems of robust stability for 

linear time varying uncertain systems were investigated by Alexander et. al. [79] and 

Kai-yu Wu [26]. Hui-Guang Li et al. [24] has derived Robot based optimal control 

law. In this direction the work of Bengt Lennartson 1251 on low order sampled data 

I%, control using delta operator and LMIs is worth mentioning. Wang Qing et al. [27] 

have described the delta operator based system with external disturbances. They have 

discussed the robust stabilization problem and H ,  control problem based on the 

conception of quadratic stability and quadratic stabilization by applying linear matrix 

inequality method to design robust stabilizers, and robust H ,  controllers. Qiu Jiqing 

et al. [28] investigated the problem of state feedback control for a class of time-delay 

systems with linear factional uncertainties using delta operator. Linbo Xie et al. [29] 

have addressed the stochastic control problem of networked control systems. They 
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designed networked control system for state feedback and output feedback control 

laws in delta operator by using a dynamic programming approach. 

Modern control system design techniques like Linear Quadratic Gaussian 

(LQG) synthesis and H, robust optimal control law normally result in higher order 

controllers that are difficult to use for simulation, analysis and controller synthesis and 

the complexity of such controllers makes practical implementation very difficult as 

well as uneconomical specially for industrial process control. On the other hand, need 

also exists for a design method to provide simple low order implementable controllers 

that can adequately control plants or processes regardless of their complexity or order. 

Design techniques for exact and approximate model matching have been 

proposed in Kucera et al. [75] and Pal [76] among many others for continuous-time 

and discrete time systems. A unified controller design method in the complex delta 

domain is proposed by Sarkar et al [13-141 which is a sub-class of Pade' 
, 

approximation technique, where the concept of time moments is developed in the 

delta domain namely - D elta Time Moments taking successive derivative of the 

fbnction and evaluating their values about zero. 

In the present work, classical control design methods in the complex delta 

domain using the concept of model matching in the Truxal framework is attempted. 

These controller design techniques involve designing a controller to compensate a 

given plant in the complex delta domain, so that the controlled system follows the 

reference model. The reference model structure, which satisfies the classical time, 

frequency and complex domain specifications in the complex delta domain, is 

developed. Discrete-time modelling of the control systems in complex delta domain 

and development of low order controller based on performance specifications are the 

main objective of the work undertaken. Two methods are developed to design 

controllers in the frequency domain i.e. Optimal Generalised Delta Time Moments 

(OGDTMs) and Optimal frequency fitting (OFF). These methods are applied to 

design rational, discrete-time controller for single-input, single-output (SISO), multi- 

input, multi-output (MIMO) systems and system with time delay. 

1.4.3 Genetic algorithms: 

Now a days genetic algorithms (GA) [80],[81] have been in wide use in many 

applications in systems and control studies to produce a global optimal 
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solution. GA accommodates all facets of soft computing, namely, uncertainty, 

imperfection, non-linearity and robustness. It can handle all search spaces, including 

non-smooth, multimodal and discontinuous spaces. GA works with a coding of the 

parameters set with finite length string of an optimisation problem. The traditional 

practice is to use binary bit strings, but it can also take real or integer string. It 

searches from a population of strings (chromosomes) made up of sub strings (encoded 

elements of parameter set). It uses the objective or fitness function to achieve the 

desired solution. It typically employs three operations, namely selection, 

recombination and mutation. Each of this operation is applied to the population once 

per generation, and several generations are required to achieve satisfactory results. 

There have been a good number of applications of GA reported in control 

system design and implementation in recent time. Versak et al. [82] have used GA for 

auto tuning of inverted pendulum systems and experimentally verified the result 

against given robustness margin and reliability. In the work of Porter et.al [83],[84], 

an unconstrained digital PID controller was taken up to design a model following 

flight control system for F- 16 aircraft. Jones et al. [85] have proposed GA as a means 

of auto tuning PID controller. The technique involves firstly using online data and the 

genetic algorithms to identify a model of the process. Then the identified model, the 

genetic algorithm and simulation methods are used to offline tune the PID controller 

so as to minimize a time domain based cost function. Genetic algorithms for H;?/H, 

optimum PID control have been proposed by Chen et al. [86] for robust performance 

design for systems under parameter perturbation and uncertain disturbance. Jones et 

al. [87] have employed on-line frequency domain identification scheme for auto 

tuning of PID controller to provide prescribed gain and phase margin. While Kundu et 

al. [88] have used GA for optimal feedback controller design. The application of 

genetic. algorithms for gain scheduling controls has been reported by Gray et al. [89] 

in which GA is used to optimised the activation point of the individual controllers. An 

exhaustive search to establish the optimum number controller coupled with 

optimization of the corresponding activation point by GA shows the relationship 

between controller performance and complexity. Application of GA for controller 

design in power system has been reported by Reformat et al. [90] in which a new 

method of designing control system which relies on a combination of advanced 

system simulator and genetic computations. The combination of electromagnetic 
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transients program and genetic algorithms resulted in a tool for optimal control design 

in the area of power system. Output feed back controller design is a difficult area 

when the system models are in transfer matrix form. Badran et al. [91] has proposed 

an optimal output feed back method using GA. C A ~  et al. [92] have used GA for 

optimisation of control parameter using a stochastic approach. In the latest works on 

controllers based on GA, Nasri et al. [93] has also addressed on application of PID 

control for brushless DC motor. Design of fractional order controller is a relatively 

challenging area in system theory with emerging application areas in nano technology 

and micro electromechanical systems. GA applications have also been reported in 

fractional PLD controller design by Arman Kiani et al. [94]. Optimization of 

decentralized PYPID controller based on genetic algorithm has been reported Li et al. 

[95]. Mohsan Sayed has used GA in designing Optimal PID Controller with genetic 

algorithms in view of controller location in the plant [96]. 

1.4.4 Biomedical signal processing: 

In the literature on signal processing, Markku et al. [31],[33] has demonstrated 

that delta operator has superior roundoff noise performance leads to significantly 

lower implementation complexity and up to 50% savings in hardware. Tenali Harju et 

al. [32] has shown that the digital filters that use the delta operator are less sensitive to 

filter coefficient quantization than filters using the shift operator when the poles and 

zeroes lie near the point z = f 1 and through other fixed-point neighbours of the 

floating point coefficients besides the one obtained by direct rounding is very likely to 

yield better sets of coefficients in terms of magnitude response characteristics. Juha 

Kauraniemi et al. [37-381 have worked on efficient direct form structures and shown 

that excellent roundoff noise performance is achieved at the cost of only a minor 

additional implementation complexity when compared with the corresponding delay 

realization. They have also performed detailed analysis of the computationally 

efficient transposed direct form-I1 delta structure focusing on the roundoff noise 

minimization in fixed-point implementations. Bauer et al. [97] addressed the zero 

input behaviour of digital filters in delta operator representation. Qiang Li [98] has 

studied the properties of information matrices of the delta operator-based algorithms 

for adaptive signal processing. Hong Shim [99] has studied the design of Kalman 

filter with the singularly perturbation technique using the delta operator approach. 

Ngai Wong et al. [ loo] addressed the problem of optimization of the free parameter of 



chapt;r 1: Introduction 

the delta operator, with scaling of the structure to prevent arithmetic overflow with 

modified direct form-I1 second-order section in which the As and filter coefficients at 

different branches are separately scaled to achieve improved roundoff noise gain 

minimization. The work of Mehmet Hendekli et al. [ lo l l  on a multi channel form of 

the two-dimensional delta domain lattice filter is worth mentioning. Newman and 

Holmes [I021 have presented a practical overview describing the use of the delta 

operator for IIR digital filters, and shown how the operator can be used in power 

electronic inverter applications to achieve substantial performance benefit compared 

to equivalent shift-based implementations. The design methods of Hao Liu [I031 

employ LMI approach for guaranteed cost filtering of delta operator polytype 

uncertain linear systems with time delay. 

Tompkin [I041 and Rangayan [I051 have extensively studied the biomedical 

signal processing and illustrated results of different type digital filters used for 

biomedical signal processing. Mc Sharry et al. [I061 have presented a dynamical 

model based on three coupled ordinary differential equations which is capable of 

generating realistic synthetic electrocardiogram (ECG) signals specifying the mean 

and standard deviation of the heart rate and the morphology of the PQRST cycle to 

access biomedical signal processing techniques which are used to compute clinical 

statistics from the ECG. Ramli et al. [I071 have investigated the use of signal analysis 

technique to extract the important features from the 12 lead ECG signal using the 

cross-correlation analysis technique. Ju-Won Lee et al. [I081 have designed optimal 

adaptive filter with a dynamic structure which can adjust the filter coefficient and 

produce a suitable order in different environments for ECG signals. Sameni et al. 

[I091 proposed a nonlinear Bayesian filtering framework for the filtering of single 

channel noisy ECG recordings. Garces Correa et al. [110] have proposed a cascade of 

three adaptive filters based on a least mean squares (LMS) algorithm, the first one 

eliminates line interference, the second adaptive filter removes the ECG artifacts and 

the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) 

filter, which adjusts its coefficients to produce an output similar to the artifacts 

present in the signals obtained. 

From the above literature survey it is established that modelling, control and 

biomedical signal processing of dynamical systems in the complex delta domain are 

an important area in the system theory where a lot of scope is there for investigation. 
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1.5 Modelling of discrete-time systems using delta operator 

In this section we discuss some aspects of linear discrete-time modelling using 

delta operator and its transform domain complex variable y. We look into how 

discrete-time models can be derived by sampling of continuous-time systems and how 

input-output descriptions relate to state-space models. We consider both the discrete- 

time domain and transformed domain representations using delta operator and 

complex domain gamma transform. In conventional shift-operator representations of 

discrete-time systems, it is not possible to develop dynamic systems models which 

can support very high sampling rates. Further, such representations do not converge to 

its continuous-time counterparts. Therefore, in discrete-time representations it is not 

possible to implement a continuous-time system by making sampling period near to 

zero or sampling frequency very high. To avoid such difficulties, delta operator can 

be used for modelling signals and systems. These delta operator representations show 

a close agreement to continuous-time representations, and as a matter of fact, they 

meet to the expected continuous-time equivalents as the sampling period tend to zero. 

output y(t) 

A/D 

Figure 1 .I : Digital control of a continuous time plant 

1.6 Sampled-data systems 

The use of digital computers in implementation of control systems has become 

very widespread. The discrete nature of digital computers makes it convenient to use 

discrete-time models of the controlled systems whereas the process itself evolves in 

continuous time. Let us consider a sampled data system with input u(kA), where A is 

the sampling period and k is an indexing discrete-time parameter, which is processed 

by a digital to analog (D/A) converter to give the continuous-time input u(t). Usually, 

the D/A-converter is designed in such a way, that the value of u(t)  is held constant 

between samples, known as zero-order hold (ZOH). The continuous-time output y( t )  
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is then sampled with a period A using an analog to digital (AID) converter to give the 

sampled output y(kA). A typical scheme is shown in Figure 1.1. In practice one must 

prefilter the continuous-time output to avoid aliasing problems. The prefilter should 

be of low-pass nature with a break frequency around the Nyquist-frequency KIA . In 

the following we will neglect the effect of this pre-filter. 

The notation 't' used in this thesis as the independent time-variable in both 

continuous-time and in discrete-time. In discrete-time, the independent variable 't '  

can only assume values, that are multiples of the sampling period A, i.e. t = kA. 

Wherever required specifically, the notation t = k A  is also used for discrete-time. The 

distinction should be clear from the context. The class of system under consideration 

in this thesis is limited to linear finite-dimensional time-invariant systems. When 

worlung with digital control systems it is convenient to find an equivalent discrete- 

time description of the composite system consisting of DIA-converter, continuous- 

time system and AID converter, i.e. to find a direct relation between the sampled 

signals u(kA) and y(kA) as illustrated in Figure 1 .l .  In this thesis, we consider the case 

of deterministic systems only. 

1.6.1 Sampling of continuous-time systems 

Let us consider a linear continuous time SISO model represented by state and 

output equations 

Where X E  3" is the state, u E 3"' is the control input, y E 3"s the output variable 

and A,, B,,  C,,  Dc are normal notations of state space representation. An equivalent 

complex s-domain transfer matrix representation is of the form 

For the sake of clarity, it is suitable to introduce the realization set S ,  noted as 

Where, G,(s)  is the transfer function matrix. Then, 
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Y ( s )  = (CC (sI - A, ) - I  Bc + D' } U(s )  

adJ (sI  - A, ) 
det (sI - A,) 

where I is the identity matrix of appropriate dimension and adJ (.) is the 
adjoint matrix. Y(s) and U(s) are the Laplace transforms of the input and output s~gnal 
vectors and 

Dc(s) = det(sI-Ac)  (1.5) 

Nc(s )  = C,adJ(sI-A,)B, (1.6) 

where in general N~(s)  is numerator polynomial matrix and DC(s) is a nfh order 

denominator polynomial. For strictly proper rational systems, the degree of 

denominator polynomial and numerator polynomial are 

deg Dc(s) = n 
deg Nc(s) = m_<n - 1 

We now consider sampling with a zero-order hold, i.e. the input signal is held 

constant between the sampling instants. This is commonly done in digital control and 

is easily implemented by using a D/A converter, which latches the signal between the 

sampling instants. Given a state value x(kA) at some sampling time t = kA, where k is 

an integer, the states can be computed for t 2 kA from the exact solution of eqn ( 1  . I )  

given as [ I  01, 

where 
1 1 

eAc' = I + Act + - ( ~ , t ) ~  + - ( ~ ' t ) ~  + ................ 
2! 3! 

and 

where we have assumed right continuity of the control signal. Hence, at the next 

sampling instant the state is given by 

from this we have a discrete-time state-space description as 
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where 

= A,-' [eAcA - I ]  if A, is nonsingular 

C ,  = Cc 

0, = D, 

and t is a multiple of the sampling period A such that kA I t < (k + l)A [lo]. The 

operator q is called the forward shift operator, that is, qx(kA) = x((k+l)A). It is 

interesting to observe that if the actual continuous-time signal u(t) is in fact constant 

between the sampling instants then the sampling involves no approximation. In this 

case, the difference equation (1.8) gives the exact value of the state and the output at 

the sampling instants. 

We now investigate more closely the limiting properties of the discrete-time 

shift operator state-space model in eqn.(l.8). As the sampling period tends to zero, the 

limit values of the system matrices follow from eqn.(l.9) 

Lirn A, = I  
A-0 

Lirn B, = 0 
A-+O 

(1 . I  2) 

The above results show that the shift-operator model is unstable at very high 

sampling frequencies. At very high sampling frequencies the sample periods are very 

small, and therefore there is no appreciable change in the successive samples of state, 

that is x(t + A) =x(t). The effect of the input from one sample to the next will also 

cease at fast sampling rate. In the complex z-domain, an equivalent z transfer matrix 

realization set are 

where G4(z) is the z- transfer function matrix. Then, 
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where I is the unity matrix of appropriate dimension, adj(.) is the adjoint matrix and 

Y(z) and U(z) are the z-transforms of input and output signal vectors. Also, 

Dq(z) = det(zI-Aq) (1.15) 

where in general Nq(z) is a polynomial matrix and Dy(z) is an nth order polynomial. 

For proper rational systems, the degree of denominator polynomial and numerator 

polynomial are 

deg Dq(z) = n 

deg N,(z) = d n  - I 

In the limit of high sampling rate, the transfer matrix representation in the z- 

domain follow from eqns.(l . l  1 )  and (1.12) : 

It is easy to see that the transfer matrix representation in the z-domain is 

uninformative at very high sampling rate. 

1.7 Delta operator parameterization 

We discuss here an alternative formulation of discrete-time systems, the so 

called delta operator parameterization. One of the most important work on such 

parameterization is due to Middleton and Goodwin [lo], where the following points 

of motivation for this alternative discrete-time operator are given: 

It highlights the similarities between discrete-time and continuous-time 

systems. This allows physical continuous-time insights in the discrete-time 

case. 

It allows a unified system theory in which discrete-time and continuous-time 

results can be derived simultaneously. 

Most continuous-time results can be obtained as a limiting case (when the 

sampling period tends to zero) of the discrete-time results. 
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It is possible to use short sampling periods without incurring numerical 

difficulties such as a high sensitivity to round-off errors in coefficient 

representation. 

The coefficients of the discrete-time transfer function are similar to the 

continuous-time and it becomes easier to tune controller parameters for 

improved dynamic performance. 

The frequency and transient responses of the continuous-time system can be 

accurately estimated from the discretized system. 

It offers substantial numerical advantages at high sampling rates. 

1.7.1 Definition 

The delta operator is defined in the time-domain as 

where A is the sampling period and q is the forward shift operator. Operating 6 on a 

differentialable signal x(t) gives 

In the limiting case we can see that 

d 
lim 6 x ( t )  = -x(t) 
b-10 dt 

which demonstrates the close relationship between the discrete-time delta operator 

and the continuous-time differential operator d at high sampling rates. It is to be 
dt 

noted that equation (1.18) is a simple linear transformation and thus system modeling 

using delta operator parameterization offers exactly the same flexibility as q-operator 

parameterization, i.e. the class of describ'able systems is not changed. Similar relation 

exists in the complex domain as well. The delta transform operator y is defined as 

where z is the complex domain transform operator for discrete-time system, like the 

Laplace transform operator for continuous-time system. Since eqn.(l.21) is a linear 
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transform relation which and scales the complex z-domain by (I) and shifts the 
A 

origin by (-' ) to the complex delta domain in y-plane, therefore all the linear system 
A 

properties and representations of the complex z-domain can be transformed to the 

delta domain with equal flexibility as offered by the z-domain. 

1.7.2 State space representation 

Using the delta operator, the discrete-time representation of the shift operator 

(q) model is given by 

The connection between the delta operator (6) state-space representation to. 

that of the shift operator (q) follows directly by inspection 

The above equations (1.24 -1.26) provide a direct connection between the 

state-space matrices of the q-operator and the delta operator. Although this is 

mathematically correct, it is not advisable to determine the delta operator realization 

in this way as the poor numerical properties of the q-operator representation, 

especially at fast sampling rates, is then carried over to the delta operator. A better 
I 

procedure is to directly derive the delta operator matrices as suggested in [lo]. 
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(1.27) 

The &-operator representations result in more reasonable limiting properties of 

the discrete-time. We have from eqn~(1.27)  and (1.28) 

Lim A, = A, 
A-+O 

Lim B, = B, 
A+O 

(1.30) 

The results above show that the continuous-time state-space matrices are 

recovered as a limit case at high sampling rate. 

1.7.3 Transfer function representation 

For continuous-time systems we have the complex domain Laplace transform 

variable s, which is closely related to the derivative operator d/dt and for discrete time 

systems, the complex domain transform variable z is associated with the forward shift 

operator q. Similarly the complex variable y is associated with the forward difference 

operator 6 by the relation called delta transformation. The delta transform of the 

discrete signal f ( t )  in the complex &-domain is defined by [ lo]  

where the generalized integration operator S is defined as: 
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and 

In the continuous time i.e. when A = 0, the delta transform defined above 

converges to the Laplace transform (with s replaced by y). In discrete time, the delta 

transform defined above is related to z-transform as follows: 

where k is the indexing discrete-time parameter and t = k A  are discrete time instants 

for k E [0,m]. 

Therefore, for zero initial conditions, operating on a function by delta operator 

is equivalent to multiplying the function's transform by y. By operating on delta 

operator state space model in eqn. (1.22), we obtain the &-transfer matrix 

representation as : 

where Gs(y) is the transfer function matrix in the delta domain. If Y ( y )  and U(y)  are 

the delta transform of input and output signal vectors, 

Y ( Y )  = (c, (yZ-A,)-l B,+ D,}u(Y) 

a d ~ ( ~ z - A 8 ) B , + D ,  
det (y l -A , )  

where I is the unity matrix of appropriate'dimension and adj (.) is the adjoint matrix 

from where we identify 

where in general Nj(y) is a polynomial matrix and D,(y) is an nth order polynomial. For 

proper rational systems, the degree of denominator polynomial and numerator 

polynomial matrix are 

deg Ns(y) = m l n  - I 
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When the sampling period decreases and approaches near to zero, the resulting 

complex domain delta transfer matrix converges to the corresponding continuous-time 

transfer matrix model. This follow from eqns. (1.29) and (1.30) 

lim G, (y) = G, (s) 
A - t O  

(1.38) 

This emphasizes the relationship between continuous-time descriptions and 

delta operator descriptions. For small sampling intervals, the continuous-time 

parameters can be recovered from the discrete-time 6-description. Similar 

relationships between the transfer function polynomial coefficients parameters in 

continuous and discrete-time do not exist for description in the z: domain. 

1.7.4 Poles and zeros of sampled systems 

We consider here the pole and zero locations of a sampled transfer function. 

Considering the continuous-time systemJ 

where z, and p, denote the zeros and poles of the transfer function, respectively, and 

n > m. The input and output signals of the system are now sampled directly with a 

zero order hold to give both delta domain and z-domain descriptions. 

1.7.5 Pole locations 

In the z-domain the poles of the sampled transfer function are obtained by 

mapping of the continuous-time poles [lo] 

It can be seen that at fast sampling, 

lim p,,, = 1, 
A+O 

That is,- at fast sampling, the poles of the z-domain representation cluster 

around the point (1, 0) in the complex plane. It seems reasonable, that a.much better 

numerical precision could be obtained by shifting the origin from (1, 0) to (0, 0) in the 

complex plane. This is exactly what is achieved by using the variable y. In delta 

domain, the poles become [lo] 
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(1.40) 

and the continuous-time poles are recovered in the limit as A + 0 

1.7.6 Zero locations 

The zero locations of the sampled system, in general can not be determined by 

a simple mapping of the continuous-time zeros.[lO] In addition, some extra zeros are 

introduced by the sampling process if the relative degree of the continuous time 

transfer function is greater than 1. This follows from the fact that the orders of Ns(y) 

and Nq(z), in general, are n-1, while the order of Nc(s) is rn. It is possible to divide the 

zeros of the sampled system into two categories; zeros that originate from the 

continuous-time zeros and that introduced by the sampling process. The later category 

is referred to as sampling zeros. In the z-domain we may write, as A 3 0 

Nq(2) = K(z - I)'" Nq, n-m(~) 

where Nq.n-m(z) is a polynomial of degree n - rn - I .  The sampling zeros can be found 

as the zeros of Nq, n-m(~). Note that these zeros depend only on the relative degree of 

the continuous-time transfer function. As shown in [ I l l ] ,  the zeros of Nq.n-m(~) are 

located at fixed locations in the left half plane. At least one zero of Nq, n-m will be non- 

minimum phase (outside the unit circle) if the relative degree of the continuous-time 

system is greater than 2, i.e. n - rn > 2. Hence, with sufficiently fast sampling, the 

sampled transfer function will be non-minimum phase if n - rn > 2 even if the 

continuous-time system is minimum-phase. This is a highly undesirable discrepancy 

between the continuous-time and the sampled system descriptions. The remaining rn 

zeros, which can be thought of as mapped continuous-time zeros, will tend to 1 as 

e Z i A .  The result in the delta domain can be obtained by transforming the q-domain 

results. It can be shown that if 

then 

n- l  

N,(Y) = ~ l - I ( y - z , , , )  
,=I 
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and 

where Nsn-m(y) = Nq,n-m(l + Ay) is a polynomial of degree (n - m - 1). Again the 

limiting sampling zeros are found as the zeros of a fixed polynomial Ns,n-m (y) and at 

least one zero gives non-minimum-phase if n - m ) 2. Moreover 

lim z,,, = -a, 
A + O  

The mapped continuous-time zeros are recovered from the discrete-time 

description. The sampling zeros are associated with highest order terms of the 

numerator polynomial NS(y). As mentioned, this opens a possibility of discarding 

these higher order terms in control system then the design will not fail because of the 

presence of non-minimum phase zeros introduced by the sampling process [lo]. A 

more detailed analysis of this property of delta domain parameterizaFion can be found 

in [I 121. 

1.8 Mapping between s-domain and delta domain 

Analysis and design of continuous-time control system relies upon the pole- 

zero configurations in the s-plane. Similarly, the locations of the poles and zeros of 

discrete delta transfer function determine the response of the discrete-time system at 

the sampling instants. In parallel with the mapping of the s-plane into the z-plane, we 

highlight the mapping of the s-plane into the y-plane (delta domain) by using the delta 

transformation. 

We divide the s-plane (s = 6 + jo) into an infinite number of parallel periodic 

-W +W 27t . strips. The primary strip extends from w = -> to w = -, where w, = - 1s the 
2 2 A 

to radian sampling frequency. The complementary strips extend from w =- 
2 

- 3w, - 3 0 ,  - 5 0 ,  
w=- , w=- to w=- for negative frequencies and from w = % to 

2 2 2 2 

3w fJ)=-- w = - -  5 0  
3w to o = 2 for positive frequencies etc. 

2 2 2 

The primary strip in the left half of the analog s-plane is mapped into the 

sampling disc in the y-plane by the appropriate transformation. The poles in the s- 
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plane are mapped into the y-plane by eqn.(l.40) above. Since, for n = -2, -1, 1 ,  2, all 

the complementary strips in the left half of the s-plane are also mapped into the same 

sampling circle in the y-plane. All points in the left half of the s-plane are mapped into 

the interior of the sampling circle in the y-plane. All points along the imaginary axis 

of the s-plane are mapped onto the sampling circle in the y-plane. All points in the 

right-half of the s-plane are mapped into the exterior of the sampling circle in the y- 

plane. In the fast sampling limit, the sampling circle opens to envelop the entire left of 

the s-plane.[l13] 

y-plane t I ~ ( Y )  z-plane Im(z) t 

Figure 1.2: Hunvitz stability region for the poles in the complex z and y-plane 

s-plane 

4 

From eqn. (1.21) we can relate complex s, z and y as 

*~m(s )  

0 b 

Re(s) 

* 

Considering eqn.(1.46), it may be noted that mapping between the s and y- 

planes is irrespective of the type of hold circuit used for the discrete-time system. This 

is so because the poles of a system describe the natural response of a system when the 

input forcing signal is zero . Obviously, the input hold circuit cannot affect the natural 

response of the system and therefore has no effect on the poles of the system. Such a 

simple situation does not hold for the zeros of a system which describe non-zero input 
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forcing signals which cause zero output from the system. Obviously these zeros are 

intimately related to the type of input hold circuit used for the discrete-time system, 

and hence, there will exist no simple mapping from continuous-time zeros to discrete- 

time as is the case continuous-time poles. Following are the mapping details: 

For s = 0 3 y = 0 and s +a along the real axis, y ,  Z! along the real axis. This 
A 

mapping is shown in Figure 1.3. Therefore, pb~es in the y-plane near the real axis 

between the origin and the point ,2 coincide with a well damped system 

response, with the response becoming quicker as the poles move to the left, 

analogous to the continuous-time case. Furthermore, this mapping highlights the 

fact that there is a finite limit as to how fast a sampled data system can respond; 

that is, it is obvious that it can respond no quicker than the sampling interval A. 

Figure 1.3: Mapping of negative real axis of the s-plane to the y-plane 

Assuming a continuous time pole s = o + jo, and substituting this in eqn.(1.46), we 

have; 

1 + A ~  = e ( - a + ~ ~ ) A  = e -d (coswA+jsinwA) 

Im(y) 

0 b 

Re(?,) 

v 

s-plane A 

4 

Now suppose that y is a complex number given by y = x + jy 

Im(s) y-plane 
A 

e'" - 1  y  = - 
A 

0 
b 4 1 

T 

Re(s) (- l/A. 0) 

v 

in this case 
coswA= ed(l+hx)  

sin wA = e d ( ~ y )  

and 
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Therefore, the straight line locus s = -a + ju (where o = 50, and 

= U , J ~ )  with o constant in the s-domain maps to a circle with centre at d a n d  
A 

radius 1 in the y-plane. This is shown in Figure 1.4. This is also called the constant 
Ae" A 

damping factor, or the constant settling time loci in the s-plane and the corresponding 

contour in the y-plane. This highlights the interesting result that poles near the real 

axis in the y-plane can represent a very poorly damped system response if the poles 

are to the left of - l/A. 

y-plane 
1 

Figure 1.4: Mapping the loci of poles with constant real part in the s-plane to 
the y-plane 

Furthermore, it is interesting to note how the loci of poles with a fixed damping 

ratio in the s-plane maps to the y-plane. The locus of poles with a constant 

damping ratio (5) is given by the equation: 

where, 5 = cos +. Poles defined by this equation are mapped to the poles in the y- 

plane defined by 

This is an exponentially decaying spiral as shown in Figure 1.5. 

The contours of constant damped natural frequency in the analog s-plane map into 

radial lines emanating at an angle o A  from -1/A in the y-plane as shown in Figure 

1.6.   in all^, by substituting o = 0 into eqn.(1'.46) the s-plane stability boundary is 

seen to map to the circle shown in Figure 1.2. 
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s-plane 
A 

Im(s) 

4 
0 

9 

Re(s) 

V 

y-plane 

Figure 1.5: Mapping the loci of poles with constant damping ratio in the s-plane 
and the loci they map into the y-plane 

1.9 Stability region in the y-plane 

s-plane 

The stability region of the delta operator is obtained by a mapping of the 

stability region of the q-operator. From Figure 1.2 it is clear that the stability region of 

the &-operator is enclosed by a circle with radius llA and centre (- 1/A, 0). It may be 

noted that the stability regions in the &-domain i.e., in complex y- plane vary with the 

sampling period, as A -+ 0 the stability region converges to the open left-half of y- 

plane, which coincides with the stability region for the continuous-time system in the 

s-plane. Mutual relationship in between complex s, z and y domain is shown in figure 

1.7. 

w s )  
y-plane 

4 

4 

4 

M Y )  

b a d  

0 w 4 9 

Re(s) R ~ ( Y )  

b -m,A 

v v 

Figure 1.6: Mapping the loci of poles with constant damped natural frequency in the 
s-plane and the loci they map into the y-plane 
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Figure 1.7: Mutual relationships between time and complex s, z and delta domain 

1.10 Tables of Delta Transform 

In terms of the complex variable y, we define Discrete delta Transform pair as 

and discrete delta transform is related to the z-transform as 

where Fy(z )  = Z [ f  (kA>l.  

conversely 

Equations (1.5 1) and (1.52) allow us to derive a table of delta transforms from 

the corresponding z-transforms as shown in Appendix-1.1 and its properties in 

Appendix 1.2. As we have seen earlier and from Appendix 1 . 1  that &transform 

converge to the associated Laplace transform as A+0 that is, 
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1.11 Optimization using Genetic Algorithms. 

Genetic Algorithms are general search techniques based on the mechanisms of 

natural selection and natural genetics. This class of methods is based on the notion of 

survival of the fittest. In GA search points are represented by genetic strings. The 

search process starts at a number of points-called populations of points. The 

acceptability of a search point is judged by the value of its fitness function, Genetic 

operators called reproduction, crossover and mutation are applied on these genetic 

strings to generate new search points in order to find the optimum solution. Despite 

the apparent simplicity of the procedure, GA exhibit substantial computational power 

in the search of arbitrary spaces. Numerous applications have illustrated the robust 

search ability of GA. 

In the present work, the author has applied the Genetic algorithms to find the 

optimum frequency points for controller design for different methods. 

1.1 1.1 Biological Background 

Chromosome: 

All living organisms consist of cells. In each cell there is the same set of 

chromosomes which consists of genes and DNA and serves as a model for the whole 

organism. Each gene encodes a particular protein and each gene encodes a trait, for 

example colour of eyes. Possible settings for a trait (e.g. blue, brown) are called 

alleles. Each gene has its own position in the chromosome called locus. All the 

chromosomes in a complete set of genetic material is called genome. Particular set of 

genes in genome is called genotype. 

Reproduction: 

During reproduction, f r s t  occurs recombination (or crossover) when genes 

from parents form in some way the whole new chromosome. The new created 

offspring can then be mutated by which elements of DNA are a bit changed. These 

changes are mainly caused by errors in copying genes from parents. The fitness of an 

organism is measured by success of the organism in its life. 

Search Space': 

When we solve some problem, we usually look for some solution, which will 

be the best among others. The space of all feasible solutions is called search space, 
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each point represent one feasible solution. Each feasible solution can be "marked" by 

its value or fitness for the problem. 

One does not know where to look for the solution and where to start. There are 

many methods, how to find some suitable solution, for example hill climbing, tabu 

search, simulated annealing and genetic algorithms. 

1.11.2 Historical Background of the Genetic Algorithms: 

Idea of evolutionary computing was introduced in the 1960s by I. Rechenberg 

in his work "Evolution strategies". His idea was then developed by other researchers. 

Genetic Algorithms were invented by John Holland [80] and developed by him and 

his students and colleagues. This lead to Holland's book "Adaption in Natural and 

Artificial Systems" published in 1975. In 1992 John Koza has used genetic algorithm 

to evolve programs to perform certain tasks. He called his method "genetic 

programming" (GP). Simulating evolution for useful purposes has been proposed and 

evaluated in different ways. Genetic algorithms, as practiced today, come in different 

flavours: genetic algorithms; evolutionary strategies; and evolutionary programming. 

An offshoot of genetic algorithms is the concept of genetic programming. GA 

derive their strengths by simulating the natural search and selection process associated 

with natural genetics. GA accommodate all the facets of soft computing, namely 

uncertainty, imprecision, non-linearity, and robustness. GA can be used as advanced 

operators which include techniques for discovering multiple solutions, combinations 

of Neural, Fuzzy, and chaos theory, and multiple objective optimizations. 

GA is characterized by the mechanism of natural selection and natural 

Genetics. Genetic algorithms is a multiple point probabilistic search technique, 

consists of three basic operations, namely reproduction, crossover and mutation. The 

search is started from a randomly selected population of points. Each of the points is 

represented by a genetic string called chromosome. The strength of a GA string is 

measured by its 'fitness value'. Based on the fitness values of the population strings, 

two parent strings are then generated from the parent strings by using the mechanism 

of crossover where one half of the first parent string is combined with the other half of 

the second parent. Mutation is then applied on the child strings by complementing the 

child strings at selected bit positions, thus introducing variety in the child population. 
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The algorithm consists of the following steps and corresponding flowchart of simple 

GA approach is shown in Figure 1.8: 

Generate a population of solution stings; 

set generation count = 1 ; 

repeat, { while the number of generation # maximum generation 

set p = 1 ; 

repeat, {while p # number of population I2 

repeat, { select two parent strings; 

Generate two child strings using crossover and mutation; 

p = p + l  1 
generation count = generation count + 1 ; ) 

Initial chromosomes o f  populat~on are coded 
representing different frequency polnts 

Gen = I a 
b 

P =  l 

i 1  
Reproduction 

Strlngs are copled In palr as 
parent strings 

\ 

Mutation Gen = Gen + I 

Perform comparison and 
calculate fitness functlon 

P > populat~on size 12 

No 

Figure 1 8: Flowchart of simple Genetic algorithm approach to find optimal 
frequency point 
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1.1 1.3 Principles of Genetic Algorithms: 

Unlike many methods, GA use probabilistic transition rules to guide their 

search. The method is not a simple random search or is not a decision making tool 

depending on the simple probability act just like a toss of a coin. GA use random 

choice as a tool to guide a search toward region of the search space with likely 

improvement. 

To demonstrate the working principle of GA, the following maximization 

problem is considered [8 11, where x is a vector with L lower and U upper bound. 

Maximaze f (x), x,( L )  5 x, 5 x," , i = I, 2,. . . . . . . .N 

Although a maximization problem is considered here, a minimization problem 

can also be handled using GA. The working of GA is completed by performing the 

following tasks: 

Coding: 

To implement GA in the solution of the above maximization problem, variable 

x, S are first coded in some string structures. Variable x, S are coded by binary 

representation having 0's and 1 's. The length of the coded string is usually determined 

according to the desired solution accuracy. For example, if four bits are used to code 

each variable in a two variable function optimization problem, the strings (0000, 

0000) and (1 11 1, 1 1  11) would represent the points ( x , ' ~ ' , x ~ ~ ' )  and (x{"),xf") , 

respectively, because the substring (0000) and (1 1 1  1) have the minimum and 

maximum decoded values. Any other eight bit string can be found to represent a point 

in the search space according to a fixed mapping rule. Usually, the following linear 

mapping rule is used [81] 

x, = x , ( ~ )  + 4") - x Y  
ZL, - 1 decoded value ( S ,  ) 

In the above equation, the variable x, is coded in a substring S, of length I,. The 

decoded value of a binary substring S, is calculated as 
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Where SE (0, 1) and has a decoded value equal ( s1.1 S L ~ . .  . . . .... S2 SI SO). For 

example, a four bit string (01 l I) has decoded value equal to ((1) 2' + (1) 2' +(I) 22 

+(0) 23) or 7. It is worthwhile to mention here that with four bits to code each 

variable, there are only 24 or 16 distinct substrings possible, because each bit position 

can take a value either 0 or 1 .  The accuracy that can be obtained with a four bit coding 

is only approximately 1116'~ of the search space.'But as the string length is increased 

by one, the obtainable accuracy increases exponentially to 1132'~ of the search space. 

Initialization: 

Referring to the maximization problem a set of binary strings representing the 

variable x, are generated at random to make the initial population. The string in GA 

corresponds to 'chromosome' and bits in a string refer 'genes' in natural genetics. 

Fitness Function: 

Every member string in a population is judged by the functional value of the 

fitness function. As GA follow the rule of survival of the fittest principle of nature to 

make a search process therefore, the algorithms are naturally suitable for solving 

maximization problems by some suitable transformation. In general, a fitness function 

F(x) is first derived from the objective function and used in successive genetic 

operations. 

Genetic Operators: 

With an initial population of individuals of various fitness values, the 

operators.of GA begin to generate a new and improved population from the old one. 

A simple genetic algorithm consists of three operations: reproduction, crossover and 

mutation. Through these operations a new population of points is evaluated. The 

population is iteratively operated by the above three operators and evaluated until the 

goal or termination criterion is met. One cycle of these operations and subsequent 

evaluation procedure is known as a generation in GA. 

Reproduction: 

Reproduction is usually the first operator applied on a population. 

Reproduction selects strings according to the fitness values in a population and forms 

a mating pool. Selecting strings according to their fitness values means that string 

with a higher value have a higher probability of contributing one or more off-springs 
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to the next generation. The f h  string in the population is selected with a probability 

proportional to fitness functional value F,. Since the population size is usually kept 

fixed in a simple GA, the sum of the probability of each string being selected for the 

mating pool must be one. Therefore, the probabiliv for selecting the lfh string is 

where n is the population size. There are many methods how to select the best 

chromosomes, i.e. Roulette-wheel selection, Boltzman selection, Tournament 

selection, Rank selection and Steady state selection etc. 

Let us imagine the selection scheme is roulette-wheel with its circumference 

marked for each string proportionate to the string's fitness. The roulette-wheel is spun 

n times, each time selecting an instance of the string chosen by the roulette-wheel 

pointer. Since the circumference of the wheel is marked according to a string's fitness, 

F, the roulette-wheel mechanism is expected to make copies of the ih string in the 
F 

mating pool. The average fitness of the population is calculated as, 

Table 1.1 shows individual fitness values of five frequency points and Figure 

1.9 shows a roulette-wheel for said five individual frequency points having different 

fitness values. Since the fifth individual has a higher fitness value than any other, it is 

expected that the roulette-wheel selection will choose the fifth individual more than 

any other individual. This roulette-wheel selection scheme can be simulated easily. 

Table 1.1: Five individual fitness values 

Frequency Point 

1 

2 

3 

4 

5 

Fitness 

5.0 

10.0 

20.0 

25.0 

40.0 
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Roulette-Wheel 

Frequency 
Point, 1 

I Frequency I 

I I 
I Figure 1.9: Roulette-Wheel marked for five frequency points I according to their fitness value 

Using the fitness value F, of all strings, the probability of selecting a string P, 

can be calculated. Therefore, the cumulative probability (P,) of each string being 

copied can be calculated by adding the individual  roba abilities from the top of the list. 

Crossover: 

Crossover probability says how often W I ) ~  be crossover performed. If there is 

no crossover, offspring is exact copy of parents. If there is a crossover, offspring is 

made from parts of parents' chromosome. If crbssover probability is loo%, then all 

offspring is made by crossover. Crossover is made in hope that new chromosomes 

will have good parts of old chromosomes and maybe the new chromosomes will be 

better 

In reproduction, good strlngs in a populhtion are probabilistically assigned a 

larger number of copies and a mating pool is foqmed. But no new string is formed in 

the reproduction phase. In the crossover opehtion, new strings are created by 

exchanging information among strings of the mating pool. Many crossover operators 

exist in the GA literature. In most crossover opeyator, two strings are picked from the 

mating pool randomly and some portions of the strings are exchanged between the 

strlngs. A single point crossover operator is performed by randomly choosing a 

crossing site along the string and by exchanging all blts on the right side of the 

crossing site as shown. 
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0 0 0 1  1 0 0  0 0 0 ~ 1 0 1  

The two strings participating in the crossover operation are known as parent 

strings and the resulting strings are known as children strings. It can be expected that 

good substrings from parent strings can be combined to form a better child string, if 

an appropriate site is chosen. Since the knowledge of an appropriate site is usually not 

known beforehand, a random site is often chosen. With a random site, the children 

strings produced may or may not have a combination of good substrings from parent 

strings, depending on the position of crossover point. 

Mutation: 

, Mutation probability defines how ofien will be parts of chromosome mutated. 

If there is no mutation, offspring is taken afte'r crossover without any change. If 

mutation is performed, part of chromosome is changed. If mutation probability is 

loo%, whole chromosome is changed Mutation is made to prevent falling GA into 

local extreme, but it should not occur very often, because then GA will in fact change 

to random search. 

A crossover operator is mainly responsible for the search of new strings, even 

though a mutation operator is also used for this purpose. The mutation operator 

changes 1 to 0 and vice versa in a bit position with a small mutation probability, p,,. 

Changing bit with probability p,, can be simulated by choosing a number between 0 to 

1 randomly. If the random number is smaller than p,,, the randomly selected bit is 

altered; otherwise the bit is kept unchanged. The need for mutation is to create a point 

in the neighbourhood of the current point, thereby achieving a local search around the 

current solution. The mutation is also used to maintain diversity in the population. For 

example, consider the following population having four eight-bit strings: 
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It can be seen that all four strings have a 0 in the left-most position. If the true 

optimum solution requires 1 in that position, then neither reproduction nor crossover 

operator described above will be able to create 1 in that position. The inclusion of 

mutation introduces some probability of turning 0 to 1 .  

These three operators are simple and straightforward. A large vol ume of 

research works have so far been conducted to improve the efficiency of GA. Some 

variations have been introduced in GA operators. In most cases, the variants are 

developed to suit particular problems. 

Other Parameters of GA: 

There are also some other parameters of GA such as population size. 

Population size defines how many chromosomes are present in population of one 

generation. If there are too few chromosomes, GA have a few possibilities to perform 

crossover and only a small part of search space is explored. On the other hand, if there 

are too many chromosomes, GA slows down. Research shows that after some limit, 

which depends mainly on encoding and the problem, it is not useful to increase 

population size, because it does not make solving the problem faster. 

While finding optimal frequency points, we got the best results considering the 

following GA parameters i.e. the crossover probability 77% - 85%, Mutation 

probability 0.77% - 0.85%, population size 30 - 35, number of generation for 

evolution 30 - 50 and selection method either Roulette wheel or tournament selection 

method. 

1.1 1.4 Advantages of GA: 

As seen from the above description of the working principles of GA, they are 

radically different from most of the traditional optimization methods. General 

advantages are described in the following paragraphs. 

GA work with as string coding of variables instead of the variables. The 

advantage of working with a coding of variables is that the coding discretizes the 

search space, even though the function may be continuous. On the other hand, since 

GA require only function values at various discrete points a discrete or discontinuous 

function can be handled with no extra cost. This allows GA to be applied to a wide 



Chapter 1 : Introduction 

variety of problems. Another advantage is that the GA operators exploit the 

similarities in string-structures to make an effective search. 

The most striking difference of GA is that it works with a population of points 

instead of a single point. Because there is more than one string being processed 

simultaneously, it is very likely that the expected GA solution may be a global 

solution. Even though some traditional algorithms are population-based, like Box's 

evolutionary optimization and complex search methods, those methods do not use 

previously obtained information efficiently. In GA, previously found good 

information is emphasized using reproduction bperator and propagated adaptively 

through crossover an mutation operators. Another advantage with a population based 

search algorithm is that multiple optimal solutions can be captured in the population 

easily, thereby reducing the effort to use the same algorithm many times. 

In discussing GA operators or their working principles in the previous section, 

nothing bas been mentioned about the gradient or any other auxiliary problem 

information. In fact, GA do not require any auxiliary information except the objective 

function values. Although the direct search methods used in traditional optimization 

methods do not explicitly require the gradient information, some of those methods use 

search directions that are similar in concept to the gradient of the function. Moreover, 

some direct search methods work under the assumption that the function to be 

optimized is unimodal and continuous. In GA, no such assumption is necessary. 

Another difference in the operation of GA is the use of probabilities in their 

operators. None of the genetic operators work deterministically. The basic problem 

with most of the traditional methods is that they use fixed transition rules to move 

from one point to another. For instance, in the steepest descent method, the search 

direction is always calculated as the negative of the gradient at any point, because in 

that direction the reduction in the function value is maximum. In trying to solve a 

multimodal problem with many local optimum points, search procedures may easily 

get trapped in one of the local optimum points. But in GA, an initial random 

population is used, to start with, the search can proceed in any direction and no major 

decisions are made in the beginning. Later on, when the population begins to 

converge in some bit positions, the search direction narrows and a near optimal 

solution is achieved. This nature of narrowing the search space as the search 

progresses is adaptive and is a unique characteristic of Genetic Algorithms. 
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1.12 Organization of the thesis 

Including this introductory chapter, the thesis has been divided into seven 

chapters. A brief description of the contents of each chapter is given below. In 

Chapter-1, a short historical perspective of the state of the art of control theory is 

followed by a brief survey of the existing literature on discrete-time systems including 

brief details of Genetic Algorithms which is used for optimization. Reference model 

selection based on performance specification in delta domain has been presented in 

Chapter-2. Two frequency domain methods for controller design of SISO system are 

presented in Chapter-3. The controller design techniques of Chapter-3 are extended to 

MIMO systems in Chapter-4 and to time delay systems in Chapter-5. In Chapter-6 

biomedical digital filters design methods have been presented in delta domain to 

remove artifacts from Electrocardiogram (ECG) signals. The main contributions of 

the thesis and scope of hrther work are included in Chapter-7. An algebraic 

framework for application of delta operator time moments for system parameter 

identification is also presented in Appendix-A which will constitute the scope of 

further work. 
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Chapter 2 

Reference Model: 

2.1 Introduction: 

Model matching type of controller design greatly depends on the development of 

a reference model incorporating all of the time, frequency and complex domain design 

specifications. The desired open or closed loop system performance should be clearly 

defined for the model. In this chapter we discuss the discrete-time systems in delta 

operator representation in details. 

2.2 Classical Control View Points: 

Specification for the transient performance of closed loop control systems are 

generally formulated in time, frequency or complex s or z domains. The time-domain 

specifications are percentage overshoot (M,), rise time (t,) and settling time (tJ for step 

response. In the frequency domain, specifications such as gain margin (GM) and phase 

margin (Pm are used with the open loop response, while resonant frequency (a+) and 

the peak value at resonance (M,) are employed for the closed loop response. 

Specifications frequently associated with the complex domain are damping ratio (4 and 

frequency of undamped oscillation (wJ. [3] 

Analog control systems design is based on the pole-zero configuration of 

Laplace transform form of transfer function in the s-plane. Similarly, the poles and 

zeros of the delta transfer functions determine the response of discrete-time systems at 

the sampling instants. Since the 8-operator scales and shifts the origin by I/A of thk z- 

plane unit circle, hence the same methodology translates into the delta operator 

fiamework. These translations of control systems characteristics are now discussed. The 

stability region of the y-plane is the interior I(l+Ay ) I<  1 of the sampling circle. The 

location of the underdamped poles (for 0 < t < 1) of 2" order characteristic equation in 

s-plane are given as: [3] 

In equation (2.1), w, is the undamped natural frequency i.e. the radial distance 

from the poles to the origin of the s-plane and t is the dimensionless damping ratio i.e. 

the cosine of the angle between the radial lines to the poles and the negative real axis. In 
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turn, the location of the poles in (2.1) lead naturally to rules-of-thumb for the design of 

analog control system. The relationship among various classical control parameters are: 

1.8 
1.  Rise time ( t r )  z - 

4.5 
2. Settling time ( t , )  z -, where o = 5 on is the damping factor (the real part 

0- 

of the poles). 
7r 

3.  Peak time (r,) = - where o, =on,/= is the damped natural frequency 
W 

(the imaginary part of the poles). 

4. Peak overshoot (M,) = exp - [is) 
Each of these transient response specifications in s-domain is a function of a 

single parameter. The mapping of the salient s-plane contour such as the contours of 

constant settling time, peak overshoot and peak time etc into the y-plane according to 

(e" - 1) 
the transformation y = is already illustrated in Chapter I 

A 

To visualize the mapping of the foregoing control system characteristics, we 

(' to scale and shift the z- plane [6] .  may apply Y = 7 

The mapping of s-plane contour into y-plane contour can be summarised as: 

In the analog s-plane, the contour of constant settling time (the contour of 

constant damping factor) for stable systems are vertical lines passing through 

s = -o along the negative real axis. These contours of constant attenuation map 

into the scaled and shifted circles y = 
(1 - e-" ) 

in the y-plane ( Figure 1.4) 
A 

The contours of constant peak overshoot (the contour of constant damping ratio 

C) map into scaled and shifted spiral in the y-plane ( Figure 1.5). 

The contours of constant peak time (the contour of constant damping natural 

frequency w,) in the analog s-plane map into radial lines emanating (at the angle 

o n A  from -1lA ) in the y-plane (Figure 1.6). And in the fast sampling limit, these 

y-plane contours revert to their respective analog s-plane contours. 
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2.3 Parameterization of Control system specifications in Delta domain: 

For higher order discrete system, relations between the specifications in the 

time, frequency and complex delta domain may be very complicated. In many cases, 

however, the dynamic characteristics of high order control systems are well represented 

by those of a second order system or model for which the relationships between 

specifications are simpler. The second order transfer function of the closed loop model 

in discrete delta domain is chosen as: 

For a pole-zero form of transfer function in z-domain, Kuo [3] has derived 

expression, in terms of a set of complex z-domain specification for the time domain 

specifications. Jury, [I  141 has developed relationship between the system frequency 

response and it's time response; however Shi and Gibbard [63] has related both time 

and frequency domain specifications with the complex z-domain specifications. In 6- 

domain specifications however no study has been made so far to relate time and 

frequency domain specifications with the complex delta domain specifications. In the 

following sections, an attempt has been made to address these issues. 

2.4 Second order reference model in delta domain: 

Let us consider a second order reference model in delta domain. The location of 

the complex conjugate poles ( ps, P * ~ )  and the real zero - Zdl of the delta transfer 

funct~on M8(y) given in equation (2.2) are shown in the Figure-2.1. 

Flg-2 I Poles and Zeros locatlon of the reference model 
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The zero is arbitrarily assigned along the real axis by the angle p a s  shown in the 

Figure-2.1. It has been assumed that the specifications for the closed loop system 

performance are expressed in the complex y-plane in terms of the damping ratio 5; the 

undamped natural frequency on and the anglep. The purpose is to express numerator 

and denominator coefficients A, B, C and D of closed loop transfer function of equation 

(2.2) in terms of these parameters. For our analysis, a second order discrete system with 

unity feedback is considered. Let us assume the open loop transfer function is F6(y) 

hence the closed loop transfer function can be expressed in terms of open loop transfer 

function as: 

where cod (radlsec) is the damped natural frequency of the reference model and is related 

to w n  ( natural frequency in rad/sec) by 

A is the sampling period, and is related to the sampling frequency w, (radlsec) by 

If we denote the real and imaginary part o fpg  as -R and I respectively, the poles may be 

expressed as 

p, = -R + j l  and p*s = -R - jI (2.8) 

where 



and 
e-* sin OA 

I = 
A 

from geometry of Figure-:!. 1, we can write 

Where 

8, = tan-' - [ zblz- R 1 
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(2.10) 

from eqn (2.11), tan(p-90")  =tan(0, -8 , )  (2.14) 

Expanding the right hand side and expanding for tan(@ - ) from eqn (2.12) and (2.13) 

we obtain the real zero as 

It is to be noted that Z,, is permitted to lie in the range ( -m, 0) on the real axis and p 

will vary from a lower limit p, to + 4 2  . The lower limit of p is 

p = lirn (p )  = lim 
Z61+0 Z61-r- 

Substituting the eqns. (2.12) and (2.13) gives: 

From eqn (2.2) and (2.5) we get: 
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The gain in eqn (2.4) affects only the steady state response of the closed loop 

system. It is assumed that under steady state conditions the difference between the 

output and input signals is zero. Hence from eqn (2.2) and (2.4) we can write 

and 

B 
AZ,,  = B or A = - 

2, 1 

Finally the open loop Transfer function is obtained as: 

The A, B, C and D coefficients, together with the zero Z,, , can all be expressed in terms 

of the complex delta domain specification (r, a,, and p) using eqns (2.6) to (2.23). 

2.5 Conversion of complex domain specifications: 

2.5.1 Conversion to time domain. 

The analysis of conversion of complex domain specifications is based on the 

discrete time response y(kd) of the closed loop system in eqn (2.4) to a unit step input 

signal. When a closed loop system is subjected to a unit step input, the output sequence 

is obtained by applying the Cauchy's inversion integral theorem as 

, where I- is the closed contour encloses all the singularities of the integrand. Applying 

the residue theorem of the complex variables to eqn (2.25)' y(kA) is written as: 

where 
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From eqns (2.11) and (2.28), we see that @is related to p through 

0 = p - ~  (2.29) 

Also, we can readily show that the following relationship holds between p and the 

closed loop poles & zero locations: 

where A is given in the eqn. (2.22), Substituting eqns (2.29) and (2.30) into output 

sequence is written as: 

y ( k ~ )  = l+lsecpll(l+APa)lk cos (k@+p-n )  (2.3 1) 

Equations (2.26) and (2.31) give the response to y,(t) only at the sampling instants, 

therefore y(kA) can be approximated as y,(t) that passes all the points of y(kA). 

let t = k 4  then: 

and 4 = COA= ~ 0 ~ d 1 - r ' ~  (2.33) 

therefore, a continuous time function that passes through the points of y(kA) is 

yc ( l )  = I + 1 sec p 1 e-(wn' cos(u,, d-t + p - Z) (2.34) 

where p is in radians. The time for this response to reach its first peak value is: 

Let us assume that the maximum value of y,(t) occurs at its first peak. The associated 

maximum overshoot in the response is thus 

A4 P = yc (t)ll=,p - 1 

The settling time t,, is defined as the time for the envelope, which bounds the oscillatory 

response to the unit step input, to reach 5% of the final value. 

Setting y,(t) /, = ,, = 1 +0.05 and cos(.) =1 in the equation (2.34) we find 
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The three parameters M,,, t, and t, are functions of the complex domain parameters 6 I% 

and p only. Therefore they are not only a convenient set of parameters for specifying the 

time domain performance of the closed loop system, but are also linked by relatively 

simple expressions to the complex 6-domain. 

2.5.2 Conversion to frequency domain: 

2.5.2.1 Open loop specifications 

Based on eqn (2.24), the open loop frequency response is 

There are two specifications commonly used with open loop frequency responses, 

namely the phase margin (PM) and the gain margin (GM). The phase margin (in 

degrees) is defined as: 

PM = yf ( @ l r = q  - (-1 80.1 (2.39) 

where t,q(w) is the phase angle of F, and 0, is the gain crossover frequency at 

which the magnitude of F, - equals unity, or 0 dB (eJ:-l) 
It can be shown that these quantities (PM and Gain crossover frequency) are related to 

system coefficients A, B, C and D as: 

where the parameters a,, bl and c, are given by: 

and 



Chapter - 2: Reference Model 

- b: + (C  - A)02)- (Aa,  + B)(Za,b, + b, (C  - A))  
and PM = tan-' 1 +I g o o  + b, (C - A) + (Aa,  + ~ ) ( a :  - b: + (C - A)a,] 

(2.44) 

where a2 and b:! are given as follows: 

1 
b, = -sin (@,A) 

A 

The Gain Margin (GM) is defined in decibels as: 

Where qw) is the magnitude of F, and q is the phase crossover frequency at 

which yfis -180". The phase crossover frequency and the Gain Margin are related to the 

system coefficients as: 

X 
a - - s m [  . - I  BA2 ( A  - ) is Phase crossover frequency (2.48) 

f - ~  4 (A  - BA) 

' and 

2.5.2.2 Closed loop Specifications: 

The closed loop transfer function in &domain is obtained from eqn.(2.3) as: 

A y + B  eJ* - 1  

M a ( y ) =  + c ~ + D  
where y=- 

A 

The specifications, most frequently used to define the properties of a closed loop system 

are Bandwidth (a), Resonant Frequency (a&) and Peak Resonance (M,). 

The Bandwidth (a) is defined as the frequency at which the magnitude I M6(9 I 

drops to 70.7% of its zero frequency value, or 3 dB. Bandwidth (a) measures the 

transient response properties and given by: 
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Where 

J= ~{(cD - Z A B ) ~  + (2A2 - 2C2 - 2D)A2 + 4CA - 4) (2.52) 

K= 4 - CA + (4A2 - c2 - 30)A2 + 2(CD - 2AB)A3 - 2D2A4 (2.53) 

G = ~ ( D A *  + 1 - CA) (2.54) 

The resonant frequency (a) is defined as the frequency at which the peak resonance M, 

occurs. The resonant frequency (w) for the closed loop transfer function of the eqn 

(2.50) is given by 

The peak resonance M, is defined as maximum value of I M d ~ I  at w = w. In general, 

peak resonance gives the indication of the relative stability of a stable feedback control 

system. The M, is found to be : 

N + 0 cos(w,A) 
M,  = 

( 2 ~  cos2 (@,A))+ (Q cos (@,A)) + (P - R)  

where 

2.6 Derivation of A, B, C and D coefficients and conversion of specification by 

tabular form. 

Equations (2.35) to (2.56) provide for discrete systems a set of mathematical 

relations for conversion from the complex delta- domain parameters 5; q,, and a; to the 

time response specifications M,, t, and t, and to the frequency response specifications 

PM, GM, w,, 4,  w ,  a& and Mr. These conversions are rather complicated even in the 

simple second order case. Moreover they do not provide direct conversion in the reverse 
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sense i.e from either the frequency domain or the time domain to the complex delta 

domain or between the frequency and time domain. In order to provide flexibility of 

conversion between domains and in particular, to relate specifications to the A, B, C and 

D coefficients or to the pole / zero locations of the discrete transfer function, a tabular 

form of presentation is convenient as shown in Table 2.1 to Table 2.3 

2.7 Simulation results: 

A plant taken from Shi and Gibbard [63] to analyse the discrete second order 

transfer function in the 6- domain given the closed loop specifications: 

w,, = 0.84 rad.1 sec. 5 = 0.7and t ,  = 5 sec 

Let us consider the sampling period as 0.5 sec. The above are a convenient set of 

specifications drawn from both complex domain (a,, 5) and the time domain (t,). From 

eqn (2.6), wd = 0.6 rad./sec. With odd and 5 known, the positions of the closed loop 

poles can be found eqn (2.8) to (2.10) asps, p*s= - 0.5759 f 0.4404 i. However they do 

not characterize the system performance completely as zero has strong influence on the 

system transient response. It can be seen from figure 2.2 and 2.3 and also from Table- 

2.1 that as p varies from f 10" to f SO0, then tplA and M, changes significantly. The 

corresponding coefficients of the closed loop model may be selected from the 

quantitative values of the time domain specifications as per Table-2.2 & Table-2.3. 

Such as with tp/A = 10, p is found to be -40°.~hk required transfer function with 5=0.7, 

p = -40°, a, = 0.84 and A=0.5 sec is 

The responses to Step and Impulse inputs, pole zero plots, Bode, Nyquist and Nichols 

plots are shown in figure (2.2 - 2.7) for the transfer function of the reference model 

given in eqn (2.65). 
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Udelta 

Step Response of Reference Model 
1 4  

Figure 2.2: Step response of the reference model with p = -40" 

1 2 -  

Damping Ratio : 0.7 
wn : 0.84 rad I sec 
Angle roh : - 40 degree 
Sampling time : 0.5 sec 

Figure 2.3: Impulse response of the reference model with p = -40" 
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Pole Zero plot of Reference Model 
~ a m ~ i n ~ l r a t i o  10.7 ' 

I 1 

'wn : 0.84 rad , ,  1 1 1 9 1  I 
Sampling time: 0.5 3e.6 

-Angle roh : - 40 degree 

X : 
- 0 5760 - J 0 4404-- 

. Legend 
x --- Pole ' . 
o --- Zero . , 

I I ,  - 0  

- 4 5  -4 -35  -3 - 2 5  -2 -15  -1 - 0 5  0 0 5  
Real Part 

Figure 2.4 . Pole Zero plot of the Reference Model with p = - 40' 
in delta domain 

Magn~tude and Phase plot of Reference Model 
40 1 t 1 

F~gure 2 5 Magnitude and Phase plot of the reference model w~th p = - 40' 
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Nyqu~st Plot of Reference Model 

Flgure 2 6 Nyquist plot of the reference model with p = - 40' 

I I I I I 

Damping ratio : 0.7 
wn : 0.84 rad 

- sampling time : 0.5 sec 
Angle roh : - 40 degree 
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Figure 2 7 : Nichols plot of the reference model with p = - 40' 
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Table -2.1 

Table -2.2 

P 

I 

10 

20 

30 

40 

50 

60 

70 

80 

-1 

- 10 

-20 

-30 

-40 

-50 

-60 

-70 

-80 

P 

1 

10 

20 

30 

40 

50 

60 

70 

80 

Close 

6lA 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

0.2999 

response 

t AA 

10.1900 

10.2416 

10.401 1 

10.6788 

1 1.0960 

1 1.6927 

12.5472 

13.8388 

16.1444 

10.1901 

10.2416 

10.40 1 1 

10.6788 

11.0961 

1 1.6927 

12.5472 

13.8388 

16.1444 

Close 

tdA 

7.8307 

7.3070 

6:725 1 

6.1432 

5.5613 

4.9794 

4.3975 

3.8156 

3.2337 

7.9471 

8.4707 

9.0526 

9.6345 . 

10.2164 

10.7983 

1 1.3802 

11.9621 

12.5441 

loop step 

%Mp 

7.145 1 

8.4616 

10.5225 

13.5479 

18.1738 

25.6998 

39.2036 

68.005 1 

158.9355 

6.9047 

6.0098 

5.3079 

4.8538 

4.6245 

4.6446 . 

5.0321 

6.1997 

10.291 1 

loop System in y plane 

Poles 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 I 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 I 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

-0.5759+0.4404 i 

Close loop Frequency response 

Zeros 

-0.9007 

-0.8042 

-0.7140 

-0.6332 

-0.5560 

-0.4775 

-0.3926 

-0.2943 

-0.1710 

-0.9251 

- 1.0549 

-1.2646 

-1.6341 

-2.5464 

-10.2796 

+2.8 142 

+0.8292 

+0.2735 

%A 

0.5438 

0.5872 

0.6461 

0.7217 

0.8242 

0.9753 

1.2304 

1.8099 

3.1416-1.72551 

Open loop Frequency response 

PM 

61.575 

60.74 

59.463 

57.679 

55.186 

51.661 

46.536 

38.695 

25.626 

&A 

0.2136 

0.2404 

0.2684 

0.2953 

0.3214 

0.3468 

0.3714 

0.3945 

0.4138 

M A W  

0.2986 

-0.4880 

-0.7829 

-1.1978 

-1.7861 

-2.6433 

-3.9592 

-6.1803 

-10.774 , 

GM (dB) 

4.9664 

2:1117 

-1.1294 

-4.928 

-10.388 

-24.289 

-15.208 

-7.6129 

-3.303 

u,A 

0.437 1 

0.4744 

0.5167 

0.561 1 

0.6095 . 

0.6649 

0.7326 

0.8222 

0.9564 
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Table -2.2 (continued) 

Table - 2.3 

P 

- 1 

-10 

-20 

-30 

-40 

-50 

-60 

-70 

-80 

Close loop Frequency response 

%A 

0.5352 

0.5004 

0.4673 

0.4413 

0.4242 

0.4246 

0.1650 

0.2085 

3.1416-0.91 391 

Open loop Frequency response 

PM 

61.728 

62.309 

62.777 

63.043 

62.967 

62.248 

43.70 1 

-22.492 

55.843 

WA 

0.2074 

0.1782 

0.1423 

0.1018 

0.0592 

0.0607 

0.4572+ 1.02491 

0.4041+ 0.5475i 

0.3633 

Mr(dB) 

-0.2646 

-0.1424 

-0.0575 

-0.0 150 

-0.0017 

-0.00 19 

14.94 1+5.55071 

6.6354+1.8064i 

- 1.4782 

GM (dB) 

5.6249 

8.8679 

13.656 

22.987 

24.486 

14.319 

6.6343 

-4.7682 

-9.06 1 

QA 

0.4289 

0.3918 

0.3507 

0.3101 

0.2704 

0.2318 

0.2538 

0.3861 

0.7 180 
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Step Response of Reference Model 
3 

2 5 +70,+60,+50,+40,+30,+20,+10,0 degree 
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Figure 2.8 Step responses of the reference model with different +p 

Step Response of Reference Model 
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Figure 2.9 Step responses of the reference model with different - p 
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Step Response of Reference Model 

-1 51 I I I 
I I I I I I I 

0 10 20 30 40 50 60 70 80 90 100 
tldelta 

Figure 2.10 Step responses of the reference model with 
Different ranges of - p to + p 

Pole Zero Plot of Reference Model In Delta doma~n 
' ~ a m ~ [ ~ n ~  t ~ m e  0 5'sec ' 
' Damplng Facto! !3,7~.. '"" ' '* . . .  

Undampedplafuial Frequency 0.84 " S .  

. Angle rqh .+80,+60,+40,+20,+1 ,-10,-20:->o.-40,-45 %eg - 
. . . .  . . . . - .  7 .  

-0 58+jO 44 '-. I . . 
X 'i 

-40 deg -30 deg + 8 ~ d e g  
.!Q ................. 0. ........... Q...0.WQ00.+,$ .....- 
345 deg -20 deg 

X .? 

-0 58+jO 44 i . .  , . 
. .  . .  

Sampllng C~rc le  

I,.. 

I . ,:' Legend i . . 
s ~ ~ . . . . , , , , I I .  I .  x --- pole: 

o --- Zero: 

-4 -3 5 -3 -2 5 -2 -1 5 -1 -0 5 0 0 5 
Real Part 

Figure 2.11 Pole Zero Plot of the reference model with 
p = + 80" to - 45" in delta domain 
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Typical design spec~fications for closed loop control systems with different ranges of 

wA from 0 1 to 1.5 for p = + 60" and - 45" is given in Table 2.4 and corresponding pole 

zero plot and step responses is shown in figure (2.12 - 2.14) 

Table - 2.4 

Sampling Tlme: 0.5 sec , Damping Ratio : 0.7 

+ 60 

+ 60 

+60 

+60 

+ 60 

+ 60 

+60 

+ 60 

+60 

- 4 5  

- 45 

- 45 

- 4 5  

- 4 5  

- 4 5  

- 45 

- 4 5  

-45  

P a %  

0 1 

0 2 

0 3  

0 6  

O 7 

0 9 

1 1  

1 3 

1 5  

0 1  

0 2 

0 3 

0 6  

0 7  

0 9  

1 1 

1 3 

1 5 

02801 

0 5601 

08402 

16803 

I 9604 

2 5205 

30806 

3 6407 

42008 

02801 

0 5601 

0 8402 

16803 

19604 

25205 

3 0806 

3 6407 

4 2008 

zero 

-0 3123 

-0 5776 

-08044 

-13124 

-1 4382 

-1 6421 

-17953 

-1 9093 

-19925 

-48135 

-4 1450 

-3 8772 

-34353 

-33273 

-31384 

-2 9755 

-2 8322 

-2 7048 

Poles 

-0 1958kO 18101 

-0 3888 f O 32661 

-0576111.044051 

-1083311.062721 

- 1  2298 11.1) 64871 

- 1  4855 -j-0 64841 

-1691411.060641 

- 1  8504 f 0 53891 

-19675f04586, 

.01958+018101 

-0 3888 11. 0 326b1 

-05761 +04405~  

.10833*06272~ 

.12298f0@87~ 

-14855*0@84~ 

- 1  6914 f 0 6064~ 

- 1  8504 5 0 ~ 3 8 9 ~  

- 1  9675 f04586, 

tp /A 

21 9166 

10 9583 

73055 

36528 

3 1309 

2 4352 

19924 

1 6859 

14611 

315159 

15 7580 

I0 5053 

52527 

45023 

35018 

2 8651 

24243 

2 101 1 

ts/A 

307188 

15 3594 

102396 

51198 

4 3884 

3 4132 

27926 

2 3630 

20479 

340983 

17 0492 

1 1  3661 

56831 

48712 

37887 

3 0998 

2 6229 

2 2732 

B 

00711 

0 2578 

05259 

15668 

I 9332 

2 6270 

32284 

3 7144 

40813 

00711 

0 2578 

0 5259 

15668 

19332 

26270 

3 2284 

3 7144 

4 0813 

C 

0 3916 

0 7776 

11522 

21665 

2 4596 

2 9709 

33827 

3 7008 

39350 

03916 

0 7776 

1 1522 

21665 

24596 

29709 

3 3827 

3 7008 

3 9350 

Mp% 

8 4617 

8 4617 

84617 

84617 

8 4617 

8 4617 

84617 

8 4617 

84617 

45992 

4 5992 

4 5992 

45992 

45992 

45992 

4 5992 

4 5992 

4 5992 

A 

02277 

0 4464 

06538 

11939 

1 3442 

1 5998 

17983 

1 9454 

20483 

00148 

0 0622 

0 1356 

04561 

05810 

08370 

1 0850 

1 3115 

1 5089 
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-4 5  -4 -3 5  -3 -2 5  -2 -1 5  -1 -0 5  0 0  5  
Real Part 

Pole Zero Plot of Reference Model In Delta doma~n 

Figure 2.12 Pole Zero Plot of the reference model with p = + 60' and 
different range of oA in delta domain 
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Figure 2.13 Pole Zero Plot of the reference model with p = -45" and 
different range of oA in delta domain 
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Step Response of Reference Model 
1 4  

1 2  

1 

0 
0 5 10 15 20 25 30 35 40 45 50 

t/delta 

Figure 2.14 Step response of the reference model with different range 
of oA in delta domain 

wd x delta 0 9  

wd x delta . 0 7 Sampling time : 0.1 sec 
wd x delta : 0.1 - 0.9 

wd x delta 0 2 

Design specifications for closed loop control systems with different damping ratio 

6 = 0.3- 0.9 for p =- 20" is shown in Table -2.5 and corresponding pole zero plot is 

shown in figure (2.15) 

Table -2.5 

Sampling 

P 

(deg) 

-20 

-20 

-20 

-20 

-20 

-20 

-20 

'ime: 0.5 sec, Angle p = -20 degree 

5 

0.3 

0 4 

0 5 

0.6 

0.7 

0.8 

0.9 

zero tp /A d Poles 
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Pole Zero Plot of Reference Model In Delta doma~n 
I I 

,,, . . 0 3 0 # , , ,  

Legend : 
2 - w n  084 . . . , x --- Pole ! 

Angle roh - 20 degreg." '.. . o --- Zero 1 
1 5  -Damping Ratlo 03: '04.05,06,07,08,09 ' . .  

-4 5 -4 -3 5 -3 -2 5 -2 -1 5 -1 -0 5 0 0 5 
Real Part 

Figure 2.1 5 Pole Zero Plot of the reference model with p = - 20' 
and damping ratio 6 in the range of 0.3 to 0.9 

2.8 Conclusion: 

The table 2.1 to 2.5 shows the extensive numerical data which relates the time 

and frequency domain specifications to the complex delta domain parameters. For 

convenience, normalized variables are shown in the tables such as tdA etc, which is the 

approximate number of samples needed for the system output to reach its first peak 

value. Furthermore, all frequency variables are presented as oh so that the primary 

frequency range 0 to oJ2 is normalized to 0 - n. 

The step responses vary with the change of zero locations chosen arbitrarily by 

changing the angle p. From step responses and pole zero plots shown in figure 2.8 - 

2.15 it is clear that as the parameters like angle p, oA , 5 are varying, for some values of 

these parameters, the reference model poles shifted towards the sampling circle and the 

zero crosses the boundary of sampling circle and hence the model becomes unstable. 
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Chapter 3 

Controller Design for SISO Systems 

3.1 Introduction: 

The configuration shown in Figure 3.1 is the basic standard controller with 

negative feed back. Let us consider Ps(y) is the delta domain equivalent of the 

continuous-time plant with a zero-order hold (ZOH) and Cs(y) the transfer function 

(TF) of a rational cascade-controller, the parameters of which are to be determined. 

Figure 3.1 The standard unity negative feedback sampled data configuration 

Figure 3.2 The &domain representation of the system in figure 3.1 

Con troller 
CS(Y) 

Figure 3.3 The Reference Model of Closed loop system in,&domain 

, 

R(Y) * 

Figure 3.4 Equivalent open loop model of figure 3.3 

The delta domain representation of the system is shown in Figure 3.2 .  The 

Plant with ZOH 
p6(~) 

Reference model 
Mdr> 

design method is based on the frequency domain approximate model matching 

Y(y) , 

Y(Y) 
b 
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concept described in the later part of this chapter. The design requirements i.e. the 

desired time and frequency domain specifications are translated into a rational transfer 

function model. The controller parameters are then determined such that the closed- 

loop system with the above controller (Figure 3.2) approximates to the specification 

of the model in some sense. 

Specifications for the desired performance of the closed-loop systems are 

formulated in the time domain (percentage overshoot, rise-time), frequency domain 

(gain margin, phase margin, resonant frequency etc.) or complex domain (damping 

ratio, frequency of damped oscillation) as discussed in chapter 2. The closed loop 

reference model that satisfies a given set of desired performance specifications is 

shown in Figure 3.3 In the design method we use an open loop-equivalent 

specification model F8(y) as in Figure 3.4 of the closed-loop reference model (Figure 

3.3), such that Fs(y) with unity-negative feedback equals Ms(y). Therefore the system 

in Figure 3.4 is equivalent to the given closed-loop specification model in Figure 3.3 

we have 

Solving for Fs(y), we have 

Hence for the desired specification model Ms(y), the open-loop equivalent 

specification model Fs(y) may be obtained from equation (3.2). We choose a 

realizable discrete-time controller transfer function Cs(y) of order q << n. 

We have proposed two methods for controller design of SISO systems in delta 

domain. The method is an extension of the continuous-time Classical Pade 

Approximation (CPA) technique in the delta domain defined as Optimal Generalized 

Delta Time Moment (OGDTM) technique and the second is the complex Optimal 

Frequency Fitting (OFF) technique. The OGDTM technique is computationally 

simpler and the OFF technique accommodates both the real and imaginary parts of the 

frequency response of the process plant and reference model while computing the 

coefficients of the controller. To get the optimal frequency points, genetic algorithm is 

used as a tool for optimization. The orders of the controller discussed are assumed 

known a-priori and the output of the controlled process matches that of the reference 

model. 
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3.2 Time Moment: 

In this section we discuss the concepts of time moment for continuous-time 

systems, the discrete-time moments for discrete-time systems with shift operator 

parameterization and in the sequel, define the delta time moments (DTM) for discrete- 

time systems with delta operator parameterization. 

Time moments are important parameters and we briefly discuss the concepts 

of time moment for continuous and discrete-time systems. 

3.2.1 Continuous-time systems: 

The I!* moment of a continuous real hnction f(t) of independent variable t 

about the point t = a is defined by [52] 

T, = p ( t  - a ) ' f  (t)dt 
cn (3.3) 

If the function is defined for t E [0 ; co] then the moments become : 

T, = r ( t  - a)I f  (t)dt (3.4) 

and if a = 0, then the moments are called the time moments about the origin : 

T, = r t ' f ( t ) d t  (3.5) 

A time-invariant, asymptotically-stable dynamic system with n state variables, 

m input and p output variables as described in state space form ( 1  . I )  and its transfer 

matrix description as in (1.2) in the complex s-domain is considered here. 

Let us consider an non-reducible SISO system i.e. with p = 1 , m = 1 and 

assuming that the numerator and denominator polynomials of the transfer function are 

co-prime. Expanding the transfer function in eqn.(l.2) into a Maclaurian series about s 

= 0, yields: 

Assuming A, to be nonsingular, the quantities 

= (- l)'l! C, A,-'"" B, , I E [O,a3] (3.7) 

where, T,'s are called the time moments of the system. By definition, the impulse- 

response g( t )  = C, exp (Act) B, is the inverse Laplace transform of the transfer 

function, or equivalently, 
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Using power series expansion of e-"' of (3.8) we get: 

From equations (3.6) and (3.7) we get: 

d'G, (s) q = (-1)' - 
ds' I ,=o 

3.2.2 Time moment in discrete-shift operator systems: 

Let us consider the independent discrete-time variable t k ,  such that a discrete- 

time function f(td be defined over t k ,  where k E {positive integers}. The ith moment 

about t k  = a is then: [52] 

Similarly, the iLh moment about the origin is given by: 

For a discrete-time system, let us consider the impulse response g(t) of the 

continuous time system G, (s) which is sampled with a constant sampling period A. 

Then the i' time moment of the discrete-time function g(kA) is given by 

By definition, the z-transform denoted by G,(z) is given by 

The (impulse) sampled version of G,(s), that is denoted by ~ f ( s )  is obtained by 

substituting z = esA in the above relation : 

The expansion of the exponential term gives : 
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Using the definition of T,, as stated in eqn. (3.13), the above relation becomes : 

The discrete time moments may then be expressed as 

The similarity and difference between the expressions for T;, and TI may be noted. 

Now, changing the variable s to z (where, z = esA, or, s = In z/A ) SO that 

the expression for T,, becomes 

Defining the power series expansion of Gq(z) about z = 1 as, 

one may derive the time moments T,, from the above coefficients dl as : 

i!A1 T,, =- 
(- I), 

d, 

For the sake of computational ease, the coefficients dl may be obtained by 

substituting z = (p +1) in Gq(z) and by using the continued division process These 

coefficients dl are called the modified proportional time moments of G,(z) . 

3.2.3 Time moment in discrete-delta operator systems: 

With the concepts of time moments of continuous as well as discrete-time 

system with shift operator parameterization, now we introduce the time moments for 

discrete-delta operator parameterizations. The major contributions of the thesis in the 

areas of modeling and controller design for SISO and MIMO systems rely on these 
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newly introduced concepts of Delta Time Moments (DTM) in the delta domain; and 

their generalizations that follow in the sequel and called the Optimal Generalized 

Delta Time moments (OGDTM). 

Using delta transformation definition, if g(kA) is the impulse response of a 

linear discrete-time system then its transfer function in the complex delta domain can 

be written as:[lO] 

From the definition of y given in eqn.(1.46), with the limit z 3 1 ,  y = 0 as: 

Expanding G,(y) into its power series expansion about y = 0 as: 

Now successive differentiation of eqn.(3.24) is performed and evaluating them at y = 

0, we can get 

where Trl is defined as the ith ~ i m e  Moment in the delta domain i.e. the ith ~ e l t a  Time 

Moment (DTM). It easily follows that: 

On successive differentiation of eqn.(3.26) and evaluating them at y = 0, we get 
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G,(Y) 0 Co 

Gk"(y) I,, = CI 

( y )  , = 2!c, 

GF'(y) 1 ,, = 3 ! c2 

G:)(Y) = i! c, 

while from eqn. (3.27) and eqn. (3.28), it follows that 

Here c, may conveniently be called the proportional delta time moment, and is 

normally used in all calculations in place of the actual DTM T,, . Now let us consider 

the time domain linear state-space delta operator model of eqn. (1.22) and the 

corresponding frequency domain transfer function in eqn.(1.34), assuming p = 1 and 

m = I for a SISO system. Expansion of eqm(l.34) about y = 0 and assuming that the 

system matrix A, is non-singular, we obtain: 

The delta time moment series is T,, then given by 

T,, = (-1)' i!C, A,'"" B, 

Where i E [0 ; a] 

3.3 Generalised Delta Time Moments: 

Let us consider a real function f(x) with derivativesf)(x), i~ [ I ,  a] in some 

region around the point xo. The values of f(x) be given for the real numbers xo, XI, xz, 

. . ... x, of the variable x; where x, = xo + h,, I E [ I ;  n] and h > 0. By-using the 

notation of the calculus of divided differences we have 

fCxol - f(x0) 
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Let us suppose in the interval (a, b )  bounded by the greatest and least of xo, 

X I ,  .... x ,  the function f(x) of the real variable x, and its first ( n  - 1) derivatives are finite 

and continuous and thatfn)(x) exists. It may then be shown that [ I  151 

" (-I)"-' 
f [ x 0 , x I , x 2  .... x,,] = h - " x  f ( X I )  = , f '"'(7) (3.33) 

1 

,=o i! ( n - i ) !  n .  

where q lies in the interval xo I 7  t x o  + nh. Now let y(x) be a second real 

function with finite and continuous derivatives J')(x) around the point x = xo , such 

that 

y ( x l >  = f ( x , ) ,  i = l , 2 , 3  , .........., n (3.34) 

Then from equation (3.33), 

w'"' (0 = f '"'(7) 

where Jlies in the interval xo I J I x o  +nh. Now if the parameter h takes a 

very small non-negative value; we have 

~ ' " ( X ~ ) ~ Y ' ~ ' ( X , ) ,  i ~ [ O , n ]  (3.35) 

Thus, for a suitably small value of the parameter h,  for a given f(x) another real 

valued function y(x) may always be constructed using (3.34) so that the approximate 

relations in (3.35) are satisfied. 

Now by approximating the differential operators G:'( y) I ,=, by the divided 

difference equivalents, a new set of parameters called generalized delta time moments 

(GDTM) are obtained. 

Let G,(y) be the nth order transfer function of a SISO linear discrete time 

invariant system described by 
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where m < n. It is assumed that G,(y) is irreducible i.e N,(y) and D,(y) 

have no zeros in common. The delta time moments T,, , i E [0, oo] of N,(y)) are 

defined as 

and T,, are proportional to cl , where 

If we replace (y) with a small suitable positive real number (frequency) (pl) 

such that pl, = i . f i  and define (m+n) distinct values of a functionfl, fi, . . . . . . . A,,,, such 

that 

Then f, are defined as the Generalized delta time moments (GDTMs). 

3.4 Optimal Generalised Delta Time Moment: 

The concept of optimal generalised delta time moment (OGDTM) is 

presented here. It may be seen from section 3.3 that the GDTMs are computed from a 

set of real frequency points with trial and error methods only with no emphasis on 

how such parameters can be computed and what shall be the overall performance of 

the resultant system. The success of such methods largely depends on the intuition of 

the designer and after choosing a particular set of GDTM the performance of the 

overall system is determined as an end result. In order to get rid of such situation GA 

is applied to minimize a apriori performance index to compute these parameters 

called Optimal Generalised Delta Time Moments (OGDTM). In the controller design 

problem presented in the next section these parameters set is computed by minimizing 

the cost function developed between the step response of the reference model and the 

overall controlled system. The algorithms for computing OGDTM using GA is 

presented in figure 3.5 : 
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Initialize number of frequency points for OGDTM 

Initialize Number of Population 

Initialize Crossover Probability 

Initialize Mutation Probability 

I 
Gen = 1 

P = l  

4 
Reproduction 

I 
Strings are copied in pair as 

parent strings 

I 
P=P+ 1 1 Mutation Gen = Gen + 1 

Perform comparison and 
calculate fitness function 

[End] 
Figure 3.5: Flow chart of steps to compute OGDTM 



Chapter - 3: Controller Design for SISO Systems 

3.5 Controller design by OGDTM matching method: 

In the present work we propose a unified controller design method in the 

complex delta domain by using OGDTM. The proposed method of controller design 

based on OGDTM is developed using a computational framework which is a variant 

of classical pad; approximation technique. The design method is computationally 

simple and requires only the solution of a set of linear algebraic equations. The 

computational algorithms invoke GA to determine optimal real frequency points after 

minimizing a cost function and are numerically stable and yield a continuous-time 

like controller at very fast sampling rate. The proposed method is based on model 

matching framework which requires brief discussion on exact model matching 

(EMM) and approximate model matching (AMM). 

3.5.1 Exact Model Matching (EMM): 

Let us consider the delta-operator representation of discrete-time unity 

feedback system, shown in Figure 3.2. In the system, P, (y) and C, (y) are the plant 

and controller transfer function respectively and are given by: 

The subscripts (m, n) and (p, q) in equations (3.40) and (3.41) represent the 

order of the numerator and denominator of the plant and controller respectively. The 

closed-loop transfer function G, (y) is then given by 

The denominator of equation (3.42) represents the characteristic polynomial of 

the closed-loop system and is of order (n + q). The unknowns of equation (3.41) are 



Chapter - 3: Controller Design for SISO Systems 

the p1s  and a l s  corresponding to the compensator C,(y). In the exact model 

matching problem, it is desired to find the unknown parameters PI s and als of C,(y) 

such that the closed-loop transfer function, G,(y)exactly matches a general 

specification transfer function, M, (y) , given by 

Therefore, for exact model matching, we have 

Solving for C, (y) , we have 

and substituting for P, (y) and M,(y) from equations (3.40) and (3.43), we finally get 

The equation (3.47) is called "Synthesis equation" or Truxalls method which is 

extended here for delta-operator systems for designing C,(y). Though computation of 

the design based on exact model matching method is simple but it may often lead to 

higher order controller, sometimes the order of which is higher than the plant, the 

implementation of which in hardware may in many cases is not cost effective. The 

controller may also be unstable and unrealizable. Further, the structure and order of 

the controller cannot be fixed a priori as has been done in equation (3.41). 

3.5.2 Approximate Model Matching (AMM): 

In approximate model matching (AMM) concept for controller design of delta- 

operator systems, the equation (3.44) is only approximately satisfied, i.e. 

GdY) MdY) (3.48) 
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Therefore the problems encountered in exact model matching method can be 

effectively resolved. It is further possible to design compensator of chosen order and 

with a structure that approximately satisfies the various specifications embodied in the 

desired transfer function, M,(y) . The method provides added flexibility of making a 

trade-off between the order complexity of the controller and the extent to which the 

desired specifications are met. Therefore for C,(y) to be physically realizable, 

following condition should satisfy with the degrees 

( m + l ) > ( k + n )  or ( I -k)2(n-m)  (3.49) 

i.e M,(y) must be selected so that the excess of finite poles over finite zeros for the 

closed-loop function is at least equal to the pole-zero excess of the plant transfer 

function, P,(y). Hence to make both the exact model matching and approximate 

model matching methods to be feasible, the above degree constraint on the choice of 

M,(y) must be imposed. In the time moment matching technique, few proportional 

time moments of the respective models are made identical, i.e. 

dlG,(y) dlM,(y) I ,.=o = ~ Y = O  for i = 0,1,2,...,(k +1+ 1) 
dy' 4 '  

equivalently, 

g61 = rn,l (3.51) 

where g,, and m,, are the coefficients of the power series expansion about y = 0 i.e. 

a 

and M,(Y) = x m , ~ '  (3.53) 
0 

3.5.3 Optimal Generalised Delta Moment Matching (OGDTM) 

In the case of optimal generalised delta moment matching (OGDTM), the 

divided difference equivalents are 

= ~E[O,  k + l + l l  (3.54) 

where p, is a very small positive number such that 0 < p,  << 1 computed using GA. 

The $+1+2) distinct values, G, (p,,) and M,(p,,) of the function G, (y) and M,(y) 

evaluated at different values of p,, are defined as OGDTMs of the functions G,(y) 
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and Ms(y) respectively. The two functions G,(y) and M,(y), then have identical 

initial (k+1+2) OGDTMs. 

3.5.4. Steps for Controller Design by OGDTM Matching: 

The following are the steps for controller design problem using the concepts of 

OGDTM matching. Here we consider for a SISO system. 

Step 1: We choose a closed-loop reference model TF, M,(y) that satisfies the 

desired specifications. 

Step 2: The controller TF is now chosen as 

n 

Step 3: The performance index (fitness function) PI = C(Y:~,-, - y:/,) is set, 
1=0 

where y,,, and y, are the step responses of the reference model and the 

closed loop over all controlled system. 

Step 4: Setting the parameters of GA ( number of parameters, number of 

population, crossover probability, Mutation probability etc. ) and GA is 

run to compute p,, 

Step 5: Now we compute G, (y)l y=M,, 4 M, (y)l y=pb for i E [l,(p + q + 2)1(3.56) 

Step 6: The equivalent open loop model F,(y) as 

Step 7: We find the open-loop equivalent expression as 

From which we can write 
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Now by putting y = p,, where p,, i.p, , where p, is the point of expansion about 

the origin in equation (3.60) and from equation (3.57) with a, = 1 we have 

for i E [I, (p + q + I)] 
In the above equation, a , ,  b , ,c ,  and d l  are known parameters i.e the coefficients 

in the plant and reference model transfer function and the terms in the parentheses [.] 

will be known constants, hence the unknown controller parameters PI and a, can be 

computed with a set of (p+q+l) linear simultaneous algebraic equations. The 

controller C,(y) is of PI, PID or any other form with an integral term, and a, = 0 .  

Letting a, = I , equation (3.61) gets modified as 

for i E [I, (p + q)l 

In the case of a PI controller, P, gives the proportional gain and Po gives the 

gain associated with the integral term, where P o , P , ,  and P2 are respectively the 

proportional, integral and derivative gains in the case of a PID controller. The 

controller parameters can be determined by solving the (p+q+l) linear equations. 

Step 8: If the closed-loop system approximately satisfies the desired 

specifications, then STOP otherwise GO TO STEP 4 after changing GA 

parameters if not satisfactory. 

3.5.6. Simulation results: 

For illustrating the methodology of the OGDTM scheme, described above, we 

consider the following plants with unsatisfactory step responses 
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3.5.6.1 Simple open loop plant: 

The OGDTM technique has been tested on the following simple plant model 

[76] with transfer function given as: 

To exhibit the properties of the delta operator representation in the complex delta 

domain, the above continuous-time plant transfer function is discretised incorporating 

a sampler and zero order hold (ZOH) with sampling periods A = 0.1, 0.01; 0.001 

seconds respectively. It may be seen that the discrete models converges to the 

corresponding continuous-time model as the sampling frequency is increased, in other 

words when the sampling time is reduced. In this particular example at A = 0.00 1 sec. 

the discrete model at eqn. (3.66) whose coefficients are very near to that of the 

continuous-time plant model at eqn. (3.63) validate the uniqueness of delta operator to 

represent dynamic model in a unified framework. 

Sampling time ( A ) = 0.1 seconds 

0.13153y+2.4664 
Plant transfer function in delta domain is P,(y) = (3.64) 

y2 + 3.5434 y + 2.4664 

Sampling time ( A ) = 0.01 seconds 

0.014802 y + 2.9407 
Plant transfer function in delta domain is P,(y) = , (3.65) 

y + 3.9505 y + 2.9407 

Sampling time ( A )  = 0.001 seconds 

Plant transfer function in delta domain is P,(y) = 
0.001498y + 2.994 

(3.66) 
Y 2  + 3.995 y + 2.994 

It is to be noted that in a continuous-time transfer function model with no 

finite zeros when discretised, the order of the numerator polynomial becomes the 

same as the order of the denominator polynomial thereby a strictly proper transfer 

function after discretisation becomes biproper., These additional zeros are called 

sampling zeros which has been discussed in chapter-1. Therefore, in discrete-time 

controller design adequate attention has to be paid to these zeros in the design 
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technique. As presented in the chapter-2, a set of 2nd order reference models has been 

developed in the complex delta domain for a given set of time, frequency and 

complex domain specifications and for zero placing, a geometric criteria is developed 

in which real zeros can be placed arbitrarily by varying the angle (p). 

Following GA parameters are used to compute the OGDTMs to design a PID 

k controller c,( y )  = k ,  + k ,  y+  - , where k,, kd and k, are proportional, deriirative and 
Y 

integral constants. 

Method of selection : Tournament selection method 

Number of tournaments: 2 

Number of generation for evolution: 30 

Population size : 31 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 

In Table 3.1, the parameters of the reference model with on = 0.85 radlsec. and 

damping ratio 5 =0.7 and PID controller transfer functions are shown for different 

sampling time A=0.1 sec., 0.01 sec. and 0.001 sec. corresponding to the plant models 

obtained at these sampling frequencies. The reference models zeros are placed by 

varying the angle p and the controller parameters are computed from OGDTMs. In 

Table 3.2 a comparison of the pole zero locations of the reference model and the 

closed loop system for the same A, p and p, are presented. From the table it may be 

seen that the pole zero are appropriately matched. Table 3.3 shows the time domain 

specifications of the reference model and the closed loop system while Table 3.4 

shows the frequency domain part of the same. It may be seen from both the tables (3.3 

& 3.4) that time and frequency domain specifications of the reference model and the 

closed loop system with PID controller closely match. Comparison of the step 

responses, pole zero plot and the frequency domain Nyquist plot of the reference 

model and the closed loop system with the above PID setting are presented in figure 

3.6 - 3.17 which match the response characteristics closely. This depicts the efficacy 

of the proposed OGDTM for classical control design in the complex delta domain. 
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Table - 3.1 

Table -3.2 

A 

0.1 

0.1 

0.1 

0.1 

0.0 1 

0.001 

p 

+SO0 

+20° 

-20" 

-40" 

-40" 

-40" 

OGDTM 

(kt) 

0.8768 

0.7 168 

0.3314 

0.4572 

0.3471 

0.3471 

A 

0.1 

O.' 

O.O1 

O.Ool 

Reference Model 

MB(Y) 

1.2617 y+ 0.6653 

f +1.176y+0.6653 

0.7937 y + 0.6653 

j? +1.176y+0.6653 

0.38226 y+ 0.6653 

j?+1.176y+0.6653 

P 

+50° 

+200 

-200 

Controller 

CS(Y) 

4.041 
1.173+0.46936~+- 

Y 

1 SO06 
1.1094+ 0 . 2 4 3 3 6 ~ +  - 

Y 

0.83282 
0.61987+0.12309~+- 

Y 

Closed Loop System : Gs(y) 

0.061735 y3 + 1.3124 y2 + 3.4327 y+ 9.9668 

1.0617 y3 + 4.8558 j! + 5.8992 y+ 9.9668 

0.032009 y' +0.74615 y2 + 2.9336 y+3.7013 
1.032 "/ 4.2896 j! + 5.4001 y+ 3.7013 

0 .01619f  +0.38513 yZ +1.6384 y+2.0541 
1.01 62 y3 + 3.9286 y2 + 4.1049 y+ 2.054 1 

0.002424 f + 0.09441 j! + 1.0009 y+ 1.5501 

1.0024 y) + 3.6379 f + 3.4674 y+ 1.5501 

0.0003148 f + 0.0676 $ + 1.0143 y+ 1.899 
1.0003 f' + 4.0181 f + 3.955 y+ 1.8995 

0.000324 f + 0.06536f + 1.0138 y+ 1.9336 

y3 + 4.0604 f + 4.0078 y + 1.9396 

0.11368 y+ 0.6653 

f +1.176 y+0.6653 

0.08877 y + 0.701 5 

f +1.176 y+0.7015 

0.0849 y + 0.7052 

f +1.176 y+0.7052 

0.62846 
0.3723+ 0.018427~+ - 

Y 

0.6459 
0.3417+0.02127~+- 

Y 

0.6478 
0.3383+ 0 . 0 2 1 6 6 ~ +  - 

Y 

Zeros 

-18.7519 

2531 6532i 

-18.7519 

-2.2793+_ 0.9854i 

-18.7519 

-2.5 179 & 0.65271 

-18.7519 

-18.3451 . -1.8591 

-138.7, -2.19 

-lgS8.' 

-3.4 , -2.2 

Poles 

-3.7598 

-0.4069 i 1.52681 

-2.7 162 
-0.720 1 + 0 8954i 

-2.6179 

-0.5701 5 0.54431 

-2.4889 

-0.3807 * 0.38541 
-0.0287 

-0.1387N.00581 

-0.0029 

-0.0006 +0.0006i 
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Table -3.3 

Status 

Stable 

Stable 

Stable 

Stable 

Stable 

Stable 

A 

0.1 

0.1 

0.1 

0.1 

0.01 

0.001 

A 

0.1 

0.1 

0.1 

0.1 

0.01 

0.001 

Mp% 

P 

+50° 

+40° 

-20° 

40"  

-40" 

40"  

Pt 

0.8768 

0.7168 

0.3314 

0.4572 

0.3471 

0.3471 

P 

+50° 

+20° 

-20" 

-40" 

-40" 

-40' 

C-L 
system 

40.06 

10.39 

5.3159 

4.74 

4.68 

4.88 

plant 

1.88 

1.88 

1.88 

1.88 

1.88 

1.88 

Ref. 
Model 

25.69 

10.52 

5.31 

4.62 

4.62 

4.83 

Gain Margin 

t,, /A 

plant 

28.64 

28.64 

28.64 

28.63 

268.4 

2668 

Phase Margin 

&/A 
plant 

22 

22 

22 

22 

221 

2221 

Ref. Model 

m 

00 

03 

796.4 

a3 

co 

C-L System 

27.08 

62.27 

67.49 

65.65 

66.19 

66.25 

plant 

m 

00 

m 

00 

a 

w 

C-L 
system 

123 

46 

63 

72 

714 

7256 

plant 

15 

15 

15 

15 

158 

1588 

Ref. 
Model 

26 

3 5 

46 

52 

51 

51092 

C-L System 

00 

m 

m 

m 

00 

00 

Ref. Model 

60.22 

67.07 

68.14 

65.68 

66.14 

66.19 

Ref. 
Model 

58 

61 

66 

70 

700 

7126 

C-L 
system 

21 

29 

45 

53 

518 

5173 
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Pole Zero plot of Given Plant in delta domain 

-20 -1 5 -1 0 -5 0 
Real Part 

Figure 3.6: Pole zero plot of given plant in delta domain with sampling time A=0.1 sec 

Pole Zero plot of Closed loop system in delta domain 

- 20 -15 -10 - 5 0 
Real Part 

Figure 3.7 : Pole zero plot of closed loop system in delta domain with A=0.1, 
a,=0.84 radlsec, 5=0.7, p=+50° & optimal frequency point p,=0.8768 
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Step Response of SISO Plant, Reference Model and Designed Closed loop System 
1.5 

.......... :\, Plant 

: : - Reference Model 
----- Closed Loop systen 
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u 
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s 
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r" 
......................... ......................................................................................... 

0 ,  
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tldelta 

Figure 3.8: Step responses of reference model, open loop and closed loop plant 
with PID controller with A=0.1 sec, m,=0.84 radlsec, 5=0.7, p=+50° & optimal 

frequency point p,=0.8768 

Pole Zero plot of Closed loop system In delta domain 

-20 -1 5 -1 0 -5 0 
Real Part 

Figure 3.9 : Pole zero plot of closed loop system in delta domain with A=0.1, 
a,=0.84 radlsec, 5=0.7, p=+20° & optimal frequency point p,=0.7168 



Chapter - 3: Controller Design for SISO Systems 

Step Response of SISO Plant, Reference Model and Designed Closed loop System 

Figure 3.10 : Step responses of reference model, open loop and closed loop plant 
with PID controller with A=0.1 sec, co,=0.84 radlsec, 5=0.7, p=+20° & optimal 

frequency point ~ , = 0 . 7  168 

1.4 

Pole Zero plot of Closed loop system in delta doma~n 

1.2 

Real Part 

Figure 3.1 1 : Pole zero plot of closed loop system in delta domain with A=0.1, 
co,=0.84 radlsec, 5=0.7, p= -20" & optimal frequency point p,=0.3314 

.......... Plant 

- - Reference Model - ----- Closed Loop systen 

- 

............................................................................................................ 

0 
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Figure 3.12 : Step responses of reference model, open loop and closed loop plant 
with PID controller with A=0.1 sec, con=0.84 radlsec, 5=0.7, p=-20" & optimal 

frequency point pt=0.33 14 

Step Response of SISO Plant, Reference Model and Designed Closed loop System 
1.4 - 

Pole Zero plot of Closed loop system rn delta domain 

1.2 

-20 -15 -1 0 -5 0 
Real Part 

.......... Plant - - Reference Model - ----- Closed Loop systen 

Figure 3.13 : Pole zero plot of closed loop system in delta domain with A=0.1, 
con=0.84 radlsec, 5=0.7, p= -40" & optimal frequency point p,=0.4572 

............................................................................................................. 

0 50 100 150 200 250 
tidelta 
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Figure 3.14 : Step responses of reference model, open loop and closed loop plant 
with PID controller with A=0.1 sec, a,=0.84 radlsec, 5=0.7, p=-40" & optimal 

frequency point pt=0.4572 

Step Response of SlSO Plant, Reference Model and Designed Closed loop System 
1.4 

1.2- 

Figure 3.15 : Step responses of reference model, open loop and closed loop plant 
with P I .  controller with A=0.01 sec, a,=0.84 radlsec, 5=0.7, p=- 40" & optimal 

frequency point pt=0.347 1 
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1 - 
aI 
1) 0.8 - 
3 - .- 
c 

................................................................................. 

Sampling time : 0.W1 sec 
Angle (roh) : - 40 degree 
Controller : PID 

5 6 7 8 9 10 

. Step Response of SISO Plant, Reference Model and Designed Closed loop System 

Figure 3.16 : Step responses of reference model, open loop and closed loop plant 
with PID controller with A=0.001 sec, con=0.84, \=0.7, p=- 40" & optimal 

freauencv noint u.,=0.347 1 

1.4 

1.2 

Nyquist plot of plant,Ref Model & Closed loop System in delta domain 

0 0.2 0.4 0.6 0.8 
Real(H) 

.......... Plant - Reference Model - ----- Closed Loop syslen 

Figure 3.17 : Nyquist plots of reference model, open loop and closed loop plant 
with P D  controller with A=0.1 sec, wnz0.84 radlsec, 5=0.7, p=-40" & optimal 

frequency point p,=0.4572 
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3.5.6.2 Higher order plant: 

For testing the robustness of the OGDTM technique, mow we consider a sixth 

order transfer function of a typical open loop helicopter engine given by [116] 

The open loop step response of the helicopter engine transfer function given in 

eqan. (3.67) is found to be oscillatory in nature. To compensate the engine, a 

controller is required to be designed. In this example also the OGDTM mothedology 

will be used to design a digital PID controller in the delta domain. 

The helicopter engine transfer function is therefore discretised incorporating a 

sampler and ZOH with sampling periods A = 0.01 & 0.1 seconds respectively and 

corresponding to these sampling periods, the coefficients of second order reference 

model in delta domain is computed for o, = 0.84 radlsec and 5 = 0.7 by varying the 

- position of zero locations at different angle (p). 

For computation of the OGDTMs, the following GA parameters are 

considered 

Method of selection : Roulette wheel 

Number of generation for evolution: 35 

Population size : 31 

Crossover probability: 0.8 

Number of crossover : 2 

Mutaion probability: 0.008 

The plant transfer function and subsequent reference model sampled with 

different sampling time are given as under: 

Sampling time ( A ) = 0.01 seconds and angle (p) = - 40 degree 

Applying GA, the Optimal GDTM Point (p,) is found to be 0.6303 and at this optimal 

frequency point the parameters of required PID controller is computed as: 
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C6(y) = 0.0037587 - 0.00067514 y +  
0.548 18 (3.70) 

Y 

Sampling time ( A ) = 0.01 seconds and angle (p) = +20 degree 

Since sampling time is same hencep,(y) will also be same as in (3.68) 

however the parameters of reference model will vary since the location of zero has 

been changed due to change in angle (p) 

Using GA, the Optimum GDTM Point (p, ) is found to be 0.8820 and 

parameters of the desired PID controller is computed as 

The unit step responses of the reference model and closed-loop system in delta 

domain are shown in Figure 3.18 &3.19 respectively. 

Figure 3.18: Step responses of reference model, open loop and closed loop plant 

Step Response of SISO Reference Model and Designed System 

with PID controller with A=0.01 sec, o,=0.84 radlsec, 5=0.7, p=- 40" & optimal 

- Reference Model ----- Closed Loop systen 

Sampllng tlme : 0.01 sec 
Angle (roh) . - 40 degree 
Controller ' PID 

I 

0 2 4 6 8 10 12 14 16 18 

frequency point p,=0.6303 

20 
Time in sec 
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frequency point p,=0.8820 

Step Respons of SlSO Reference Model and Designed System 
1.4 

Sampling time (A) = 0.1 seconds and angle (p) = - 40 degree 

, 1.2 

(3.73) 

Corresponding reference model is 

- Reference Model ----- Closed Loop systen - 

Setting the above parameters of GA, the Optimum GDTM Point (pt) is found to be 

0.591 0 and we obtain the parameters of desired PID controller as 

The unit step responses of the reference model and closed-loop system in delta 

domain are shown in Figure 3.20. 

Sampling time: 0.01 sec 
Angle ( roh) : + 20 degree 
Controller : PID 

0 - 
0 2 4 6 8 10 12 14 16 18 20 

Time in sec 

Figure 3.19: Step responses of reference model, open loop and closed loop plant 

with PID controller with A=0.01 sec, a,=0.84 radlsec, 5=0.7, p=+20° & optimal 
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-0.2 1 I 
0 5 10 ' 15 20 

Tme in sec 

Figure 3.20 : Step responses of reference model, open loop and closed loop plant 

with PID controller with A=0.1 sec, o,=0.84 radtsec, <=0.7, p=- 40" & optimal 

frequency point pt=0.591 0 

Sampling time ( A ) = 0.1 seconds and angle (p) = +20 degree 

Since sampling time is the same, hencep,(y) will also be the same as in 

(3.73) however the parameters of reference model will change due to change in 

location of zero. The referemce model transfer function is given as: 

Using GA for given set of parameters, the Optimum GDTM Point (p,) is found to be 

0.7640 and corresponding PID controller transfer function is given as 

The unit step responses of the reference model and closed-loop system in delta 

domain are shown in Figure 3.2 1. 

The various time and frequency domain performance specifications for the 

controller parameters at different sampling time and different angle (p) are given in 

Table 3.5. 
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Time in sec 

Step Response of SISO Reference Model and Designed System 

Figure 3.21 : Step responses of reference model, open loop and closed loop 

plant with PID controller with A=0.1 sec, m,=0.84 radlsec, 5=0.7, p= +20° & 

20 

1.4 

optimal frequency point p,=0.7640 

1.2 

Table 3.5: 

- 

Sampling time: 0.1 sec 
Angle (roh): + 20 degree 
Controller : PID 

0 2 4 6 8 10 12 14 16 18 

3.5.6.3 Closed loop oscillatory plant : 

To illustrate the methodology of the OGDTM scheme described above, 

another simple continuous time plant J.Pal [76] is taken as 

A (Sec.) 

0.0 1 

0.0 1 

0. I 

0.1 

The Closed loop step response of the transfer function is oscillatory and 

therefore to compensate the plant it is desired to design a digital PID controller in the 

delta domain. The plant TFs is therefore discretised incorporating a sampler and zero 

Angle (p) 

- 40" 

+ 20" 

- 40" 

+ 20" 

OGDTM (hi) 

0.6306 

0.8820 

0.59 10 

0.7640 

%ME' 

0.0 

0.0 

42.16 

30.92 

t , lA 

737 

712 

21 

84 

tdA 

456 

421 

19 

37 

&/A 

940 

898 

44 

95 

GM 

249.9 

30.47 

03.94 

03.77 

PM 

66.49 

83.14 

38.82 

22.53 
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order hold (ZOH) with sampling periods A = 0.lsec. and corresponding plant transfer 

function in delta domain is given in eqan. (3.79). The parameters of the reference 

model for on = 0.84 rad/sec and 5 = 0.7 & 0.5 is computed for different zero locations 

i.e at different angle (p) in delta domain. 

. The following GA parameters are considered to compute OGDTM (b,) values 

Method of selection : Roulette wheel 

Number of generation for evolution: 30 

Population size : 3 1 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 

Applying GA with above parameters and by varying the zero locations of 

reference model i.e. by changing the angel p, different OGDTMs are computed. The 

resulting discrete-time plant and 2nd order reference model, PID controller and Closed 

loop control system TFs, pole zero locations of closed loop system, time and 

frequency domain specifications are shown in Table 3.6 - 3.9 as under: 

Plant transfer function in delta domain: 
4.0926 y + 75.4824 

''(') = +7.7088 y+ 37.7412 
(3.79) 

Table - 3.6 

0, = 0.84 and 5 = 0.7 

b 

0.1 

0.1 

0.1 

0.1 

p 

+30° 

+lo0 

-200 

-40" 

C ~ Y )  

0.7645 
0.06163+ 0 .02804~+ - 

Y 

0.5338, 
0.01957-0.01639~+- 

Y 

0.3596 
0.03068- 0 .01273~+ - 

Y 

0.2773 
0.07185 - 0.01620 y+ - 

Y 

OGM"r(k)  

0.9857 

0.9528 

0.9 135 

0.7404 

on = 0.84 and 5 = 0.5 

M ~ ( Y )  

0.91437 y+0.6653 
f +1.176y+0.6653 

0.6877 y+ 0.6653 
f +1.176 y+0.6653 

0.3823 y+0.6653 

f +1.176 y+0.6653 

0.1 137 y + 0.6653 
f + 1.176 y+ 0.6653 

0.1 -400 0.1641 - 0.08324 + 0.02657 y+ - 
Y 

0.465 1 0.06084 y +  0.2414 
f +0.7002 y+0.2414 
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Table -3.7 

on = 0.84 and t =  0.7 

on = 0.84 and 5 = 0.7 

A 

0.1 

O.' 

O. 

P 

+30° 

+300 

-200 

-400 

Closed Loop System : Gs(y) 

0.1 148y3 +1.8644y2 -1.5232~+57.7031 

1 .  I148 y3 + 9.5732y2 + 36.218y+57.7031 

0.067 ly3  + 1.1576y2 + 0 . 7 0 7 1 ~  + 40.294 
1.067 ly3 + 8.866Q2 + 38.4483y + 40.294 

0.05208y3 +0.8349? -0.8447y+27.1427 
1.052 1 y3 +8.5438y2 + 36.8965y+ 27.1428 

0.0663 1 y3 + 0.9289 - 4.2883~ + 20.930 1 

1.0663 y3 + 8.6377 y2  + 33.4529 y + 20.9301 

A 

0.1 

0.1 

0.1 

0.1 

a, = 0.84 and t =  0.5 

P 

+30° 

+lo0 

-20" 

-40" 

Pt 

0.9857 

0.9528 

0.9135 

0.7404 

Zero Location 

-18.4436 

1.0989 +5.10431 

-18.4436 

0.5969 -+ 5.6743i 

-18.4436 

1.2058 -+ 5.17721 

-18.4436 

2.2173 -+ 3.49261 

on = 0.84 and 5 = 0.5 

Pole Locations 

-3.5406 

-2.5235 & 2.8725 

- 1.4465 

-3.4312 f 3.78561 

-0.9037 

-3.6086 -+ 3.9403i 

-0.7612 

-3.6697 -+ 3.50991 

O . l  -400 0.10873y3 + 1.6647 9 -5 .6166~ + 12.3835 
1.1087 y3 + 9.3735 y2  + 32.1295~ + 12.3835 

t,, /A 

0.1 

plant 

4 

4 

4 

4 

-40" 

1.5666 -+ 1.92901 

ts/a 

0.4651 

-0.4386 
-4.0078 f 3.0659i 

Ref .  
Model 

32 

38 

46 

52 . 

plant 

156 

156 

156 

156 

4 87 

Status 

Stable 

Stable 

Stable 

Stable 

C-L 
system 

15 

23 

25 

25 

Mp% 
plant 

88.86 

88.86 

88.86 

88.86 

Ref.  
Model 

60 

62 

66 

70 

25 

C-L 
system 

18 

28 

45 

55 

Ref .  
Model 

13.54 

8.45 

5.31 

4.62 

C-L 
system 

7.24 

0 

0 

0 

156 4.62 88.86 118 0 95 Stable 
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Table-3.9 

The unit step responses of the uncompensated plant, reference model and 

A 

0.1 

0.1 

0.1 

0.1 

closed-loop system in delta domain for different values of 'p' are shown in Figure 

P 

+30° 

+40° 

-20" 

-40" 

on = 0.84 and 5 = 0.5 

Step Response of SISO Plant, Reference Model and Designed Closed loop System 

0.1 

.......... Plant - Reference Model ----- Closed Loop systen 

........................ :'.<-..:'...:'..*-'-". :'.."........"........ 

0 5 0 100 150 200 

Gain Margin 

250 

Phase Margin 

plant 

1.14 

1.14 

1.14 

1.14 

-40" 

tldelta 

Figure 3.22 : Step responses of reference model, open loop and closed loop plant 
with PID controller with A=0.1, p=+30° & optimal frequency point p,=0.9857 

plant 

4.53 

4.53 

4.53 

4.53 

Ref. 
Model 

a3 

a3 

a3 

796.41 

1.14 

Ref.  
Model 

65.58 

68.02 

68.14 

65.68 

C-L 
System 

2.65 

4.59 

5.47 

4.23 

C-L 
System 

64.66 

75.34 

78.16 

75.26 

a3 4.66 4.53 65.89 76.60 
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Step Response of SISO Plant, Reference Model and Designed Closed loop System 
1.4 

.......... Plant - 
1.2: i Reference Model ----- Closed Loop systen 

.................................................. ..;:.. . .  ,.. 

0 5 0 100 150 200 250 
tldelta 

Figure 3.23 : Step responses of reference model, open loop and closed loop plant with 
PID controller with A=0.1, p=+lOO & optimal frequency point p,=0.9528 

Step Response of SISO Plant, Reference Model and Designed Closed loop System 

.......... Plant - Reference Model - ----- Closed Loop systen 

:'*.:',.'::::...'. .......................................... 

0 50 100 150 200 250 
tldelta 

Figure 3.24 : Step responses of reference model, open loop and closed loop plant 
with PlD controller with A=0.1. D=-20" & outimal freauencv uoint u,=0.9135 
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Step Response of SlSO Plant, Reference Model and Des~gned Closed loop System 

.......... Plant - Reference Model ----- Closed Loop systen 

................................................... 

200 250 
tldelta 

Figure 3.25 : Step responses of reference model, open loop and closed loop plant with 
PID controller with A=0.1, p=-40' & optimal frequency point p,=0.7404 

Step Response of SlSO Plant, Reference Model and Des~gned Closed loop System 
1.4 

1.2f 

........... Plant - Reference Model - 
- ,  - . .  .... ----- .. # . Closed Loop systen 

..... I.'...'.... ........................................... 

-0.2 
0 50 100 150 200 250 

tldelta 
Figure 3.26 : Step responses of reference model, open loop and closed loop 

plant with PID controller with A=0.1, p=-40°, \=0.5 & optimal frequency point 
UFO .465 1 
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The Nyquist plot of uncompensated plant, reference model and closed-loop 

system and pole zero plot in delta domain are shown in Figure 3.27 

Nyquist plot of plant,Ref Model & Closed loop System in delta domain 

-1.5 -1 -0.5 0 0.5 1 1.5 2 
Real(H) 

Figure 3.27 : Nyquist plot of plant, Reference model and plant with PID 
controller for A=O.l, p=-40°, 5=0.7 & optimal frequency point p,=0.7404 

3.6 Optimal Frequency Fitting method 

In Optimal frequency fitting method, two transfer functions are matched at a 

number of frequency points in the low frequency range and the resultant linear 

algebraic equations are solved to arrive at a optimal frequency point. This method is 

based on approximate frequency fitting and the efficacy of the controller design 

greatly relies on the selection of complex frequency points in the complex delta 

domain and normally trial and error method is resorted to seek compromise. In the 

present work, genetic algorithm is used as an optimisation tool to find the optimal 

complex frequency points and hence Optimal Frequency Fitting. The computational 

algorithm of the design method is numerically stable at high sampling frequency and 

yields a continuous-time like controller, which depicts the advantage of delta operator 

modelling in control system design. 
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3.6.1 Frequency response in delta domain 

The frequency response of the delta transfer function of equation 3.24 is 

defined as 

Where 

o is the frequency in rad Isec of the input sinusoidal signal 

I y I and 8 are the magnihde and phase of the transformed variable y 

I Gs I and are magnitude and phase of the transfer function Gs(y) 

( e  Jd - 1) 
If the value of oA is very small, G jw which shows that for large 

A 

sampling frequency we get back the frequency response of the original continuous 

time system. This property of the delta operator unifies both discrete and continuous 

time systems. 

3.6.2 Controller design : 

The computation of controller parameters C,(y) using optimal frequency 

fitting is not straight forward. First of all the frequency response of the open loop 

reference model F,(y)is computed at optimum frequency points depending upon the 

number of controller parameters that are to be evaluated. Since the plant P,(y) is 

known, its frequency response is also known and may be computed at the same 

frequency points as those of the open loop reference model. The frequency response 

of the controller may therefore be computed from those of the plant P,(y) and the 

open loop reference model F,(y) at those optimum frequency points. The frequency 

points of interest are computed using genetic algorithm so that the augmented system 

with controller matches the steady state frequency response of the chosen reference 

model closely. The computational procedure is now depicted in the following steps: 

Step 1: We choose a closed-loop reference model TF, M,(y) that satisfies the 

desired specifications and also select a controller transfer function as 
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The unknown parameters P, & cl, of the controller are to be determined and in 

general p I q. 

a Step 2: Let the performance index PI = z(y:eL - yc2,,), where yreJ and y ,  are 
r=O 

the step responses of the reference model and the closed loop over all 

controlled system. 

a Step 3: Setting the parameters of GA (number of parameters , number of 

population, crossover probability, Mutation probability etc.) and run the 

GA and compute p,, 

Step 4 : Referring to the Figure 3.2, the closed-loop TF, may be written as 

The closed-loop system is to satisfy the reference model specifications, so 

G,(y) should be equivalent to M,(y) in some sense. In the proposed method 

we find C,(y) such that G,(y) and M, (y) have identical (p+q+2) Optimum 

frequency points. i.e., 

G,(Y)~ ,.=,,,, LM, (Y)/ y=u,, for i E [I, (P + 4 + 2)1 

Step 5: From M,(y) we find the equivalent open loop model F,(y) using 

equation (3.84). Then F,(y) along with a unity negative feedback would equal 

M, (y) . Thus 

Step 6: Now the open-loop equivalent expression given in (3.85) is to be 

computed as 
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Where X,(y) is known, as both F,(y) and P,(y) are completely specified. In the 

above relation, X,(y) cannot, in general, be used as the required controller. This 

is because X,(y) may not be realizable and even if it is realizable, its order may 

be too high to be practically implemented. 

Step 7: Approximating the known X,(y)  and computing 

and substituting equation (3.82) in (3.87) with a, = 1 ,  we get, 

Where 

Y =  I Y I ~ ' ~  and X 6 ( y )  = ) X, ) e jP  

Let us define the normalised frequency variable y = oA, where o is the 

angular frequency in radlsec, therefore 8 and 4 are functions of y. Finally separately 

equating the real and the imaginary parts of equation (3.88) we get 

where, 

Ui (v) = 1 y1' sin Bi 

WCV) = I x, 11 ~ I ~ s i n ( @ + g ) )  

The left hand side expressions of eqns. (3.89) and (3.90) are real function of y 

with unknown coefficients pi and mi and ~ ( y ) a n d  W ( y )  are two real known functions 
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of W .  Hence designating the 1.h.s functions of equations (3.89) and (3.90) as 

@,(y/) and @,(y)  respectively, relations may be written for convenience as: 

*R(W) T(W) (3.91) 

@I  (Y) W(V) (3.92) 

In order to force two real functions @,(v) and @ I  (\y) to be equivalent to 

' their approximates -T(I,K) and W(W) respectively, one may equate approximate 

number of initial few terms of the corresponding Taylor series expansions about 

U/ = 0 .  Thus, to accomplish appropriate matching of the 1.h.s. functions in eqns. (3.82) 

and (3.83) with the corresponding functions on the r.h.s, the initial N derivatives 

(where N is at least equal to (p+q+l)) of the corresponding functions are equated at 

U/ = 0 to get: 

Using the results of Pal, [76] the derivative operations @,(I,K) approximately matches 

T(V) if 

@ R ( ~ ) I V = Y ,  = T ( Y ) I ~ . ~ ~  ; k~ [O,N-1] (3.95) 

where ~k are small positive values around w = 0 .  Similarly, 

k ~ [ o , N - l ]  
Y'Yt ' (3.96) 

The relations in eqns. (3.95) and (3.96) may be written in a matrix form as 

Ax = b (3.97) 

Here A is a 2(N) x (p +q +1) matrix given by 
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where 

R,,, = I Y' I cos@ 

$1 = I XJ 1 Y 1' cOs(ek + fl 
sin 8~ U,.,=IyJI . 

Y k  =/X,/Iy( 's in(8k+4) 

T = I X s l l ~ l r c o s ( 4 + 8 9 )  

W ,  = 1x8 (1 ylr sin(@+ 4); and ic [ I ,  N ] ;  j E [ I ,  p ] ;  k E [ I ,  q -  l ]  

It is clear from eqn.(3.99) that N values of y give 2N linear algebraic equations in 

the unknown parameters of the controller. For (p+q+l) number of unknowns, N is at 

leas equal to (p+q+1)/2. In the case when 2N > (p+q+l), the parameters of the 

controller may be determined by the least squares solution of (3.99) as: 

x = (ATA)-' Arb (3.100) 

The optimal frequency point searched by using genetic algorithm with the parameter 

set in step-3, lie around the point o = 0 or yr =O (yr = oA). For various systems, the 

sampling period A may be different and so will be the sampling frequencyo,. But 

0,A / 2 is always a constant and equals 7c. Therefore, for matching purpose the initial 

frequency points are chosen as yrk = kq ; k E [1,N] where q is small positive number 

and q c < l  so that y = [O, XI. for k E [I, N] . 

Step 8: If the closed-loop system approximately satisfies the desired 

specifications, then STOP otherwise GO TO STEP 3 and by changing GA 

parameters simulation is to be done again. 

In the case of a PI controller, P I  gives the proportional gain and Po gives the 

gain associated with the integral term, where Po,P,,  and P2 are respectively the 

proportional, integral and derivative gains in the case of a PID controller. 

3.6.4 Simulation results: 

To illustrate the methodology of optimal frequency fitting technique we 

consider a 3rd order continuous time plant transfer function [117] given as: 
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Pc(s)  = 
( s  + 2 )  (3.101) 

( s + l ) ( s + 3 ) ( s + 4 )  

The open loop step response of the transfer function given in (3.101) is not 

satisfactory therefore to satisfy the required time and frequency domain specifications 

it is desired to design a digital PID controller in the delta domain. The plant TFs is 

therefore discretised incorporating a sampler and zero order hold with sampling 

periods A = 0.01 & 0.1 sec. respectively and corresponding 2"* order reference model 
$ 

in delta domain are also developed for different angles (p) considering on =0.5 

radlsec, 0.84 radlsec and 5 = 0.707. 

The obtain the Optimum frequency points, the following GA parameters have 

been considered 

Method of selection : Tournament selection method 

Number of tournaments: 2 

Number of generation for evolution: 30 

Population size : 31 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 

Applying genetic algorithm with above parameters the desired PID controller 

are obtained for different zero locations. Details of optimal frequency points obtained 

for different angles (p) and sampling frequency (A) are given in Table 3.10. 

The continuous time plant given in equation (3.101) is discretized with 

sampler and ZOH and given in equation (3.102). It is obserbed that the continuous 

time transfer function (3.101) has only on zero however after sampling in delta 

domain one more zero is inducted which is known as sampling zero. Care must be 

taken while considering sampling zero which may lead the system towards non 

minimum phase system. The desired reference models for the given specification 

parameters stated above are computed at different sampling periods. The plant and 

corresponding controller transfer functions are given as under: 

For sampling time ( A ) = 0.01 sec the plant transfer function in delta domain is 
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For Angle (p) = + 20 degree, w, = 0.5 radlsec and 5 = 0.707. the ref. model TF is 

and desired PID controller 

4.9434 
C,(y) = 2.1268 - 0.3423 1 y +- (3.1 04) 

Y 

The unit step responses of the reference model and closed-loop system in delta 

domain are shown in Figure- 3.28. 

For Angle (p) = - 40 degree, on = 0.5 radlsec and 5 = 0.707 the ref. model TF is 

and desired PID controller 

The unit step responses of the reference model and closed-loop system in delta 

domain are shown in Figure - 3.29 . 

For Angle (p) = - 40 degree, w, = 0.84 radlsec and 5 = 0.707 the ref. model TF is 

and desired PID controller 

The unit step responses of the reference model and closed-loop system in delta 

domain are shown in Fig.- 3.30. 

Angle (p) = +40 degree, on = 0.84 radlsec and 6 = 0.707 the ref. model TF is 

and desired PID controller 

The unit step responses of the reference model and closed-loop system in delta 

domain are shown in Figure 3.3 1.  The unit step responses of other values of 'p' and 

a,, have also shown in figure 3.32- 3.35. 
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The various time and frequency domain performance measures with these 

controllers are given in Table 3.10. From the above it is seen that the synthesised 

controllers with Optimum frequency fitting yield very good low and high frequency 

matching. It may further be seen that the controller gain in this design is smaller than 

the critical value and hence enough stability margin is assured. 

Reference Model 

Figure 3.28: Step responses with A = 0.01 sec, p = +20° and m=0.5 radlsec 

Step Response of SISO Plant, Reference Model and Designed System 

-.-.-.- plant without control 
- Reference Model 
-----, Closed Loop systen 

. - . - . - . - . - . - . - . - . - . - . - . - . - . -. - . - . - .- . - . - . - . -- 

Time in sec 

Figure 3.29: Step responses of plant, reference model and closed loop plant with A 
= 0.01 sec, p = -40" and &=0.5 radlsec 



Chapter - 3: Controller Design for SISO Systems 

Figure 3.30: Step responses of plant, reference model and closed loop plant 

with A = 0.01 sec, p = -40" & a,=0.84 radlsec 

Figure 3.3 1: Step responses of plant, reference model and closed loop plant with A = 

Step Response of SlSO Plant, Reference Model and Designed System 
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Figure 3.32: Step responses of plant, reference model and closed loop plant 

Step Response of SISO Plant, Reference Model and Designed System 
1.4 - 

-.-.-.- plant without control 
- Reference Model 
-----. Closed Loop systen 

'O ; f 

with A = 0.01 sec, p = +50° & &=0.84 radlsec 

.92 
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I m 

0.4 
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-1.2 
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: 

Figure 3.33 : Step responses of plant, reference model and closed loop plant with 

A = 0.01 sec, p = -50" & &=0.5 radlsec 
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Step Response of SlSO Plant, Reference Model and Designed System 

-....-.- plant without control - Reference Model ----- Closed Loop systen 

........................................ 
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Figure 3.34: Step responses of plant, reference model and closed loop plant with A 

= 0.1 sec, p = -20" & &=0.5 radlsec 

= 0.1 sec, p = +40° & a,=0.5 radlsec 

Step Response of SlSO Plant, Reference Model and Designed System 

-.-.-.- plant without control - Reference Model ----- Closed Loop systen 
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Figure 3.35: Step responses of plant, reference model and closed loop plant with A 
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Table 3.10: Comparison of performance System with PID controllers 

3.7 Conclusions: 

Two new algebraic methods for design of linear time invariant discrete-time 

systems in delta-operator parameterisation are reported in this chapter. These 

frequency domain methods are based on the principle of approximate frequency 

fitting which is a sub class of approximate model matching and uses a viable 

alternative of the classical Pade' approximation. The desired performance is converted 

into a transfer function model, which is matched with the augmented system to have 

identical optimal frequency point. This method is effectively applied to different SISO 

processes. This is a once-through design method without any trial-and-error 

procedure. With a minimum amount of effort, this method gives practically realizable 

controllers conforming to desired industrial specifications. The methods optimal 

generalized delta time moment matching and optimum frequency fitting are used to 

obtain PI, PID or higher order controller structures. This ensures that the steady state 

values of the output of the closed-loop system and the reference model are close to 

each other. On completion of one design-simulation run, the designer understanding 

of the possible improvement of system dynamics works and the available trade-offs 

between the desired specifications and controller complexity become more apparent. 

The computational work consists of solving only linear equations to determine the 

controller parameters and obtaining system responses to a unit step input. 
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Chapter 4 

Controller Design for MIMO Systems 

4.1 Introduction: 

In recent years, considerable research efforts have been concentrated on 

development of time domain methods for controller design based on state-space 

descript~on. Although the state-space methods are computationally elegant, they 

require measurement of all the states leading to increased cost for control system 

design. In addition, if all the states are not available for measurement, an observer is 

also required to be designed to estimate the states. This complicates the structure of 

the control system and reduces the reliability of the overall system. In an alternative 

approach in this chapter, delta operator formulated simple lower-order dynamic 

controller design methods are developed that use only the available outputs for 

feedback purpose. 

From a practical point of view, methods using only output feedback are 

normally preferred. A drawback of pole-placement techniques is that no zero- 

placement is done explicitly, while the transient response of a system depends very 

much on the positions of the poles as well as the zeros. 

Figure: 4.1 Standard unity negative feedback system 

Ms(y) 

Figure: 4.2 Reference Model for desired closed-loop control system 



Chapter - 4: Controller Design for MIMO Systems 

In model-matching type of controller design technique, a controller is designed 

such that the closed loop system behaviour follows that of a reference model. The 

reference model is chosen to exhibit the desired transient and steady state responses. 

Methods based on exact model matching often yield good matching at the cost of 

controller complexity. The resultant controllers may be of hlgher order and may 

sometimes be unrealizable. 

In this chapter two methods are proposed for designing cascade rational 

controllers for linear discrete-time multivariable industrial systems in delta domain 

using output feedback. The methods are based on the principle of approximate model- 

matching as opposed to exact model-matching design procedures. In this chapter 

SISO design methods of chapter-3 are extended to multivariable systems. The design 

methods are applicable to unstablelor non-minimum phase systems. 

The objective of the MIMO controller design methods based on the concept of 

Aproximate Model Matching (AMM), is to find the controller transfer function Cs(y) 

as shown in Figure 4.1, such that the closed loop system has satisfactory stability 

properties and the transient response to a specified demand vector r(t) follows closely 

that of the reference model transfer function matrix Ms(y) of Figure 4.2. The precise 

design objectives and the degree of interaction permissible will, however, vary from 

application to application. The important general properties considered in the present 

work are 

Stability 

Closed-loop transient performance 

Steady-state response and steady-state errors 

Interaction minimization between various input-output loops 

To achieve the above objectives in controller design, the methodology 

developed in chapter-3 and extensively used for SISO controller design is extended 

here to MIMO systems. In the design methods developed in this chapter we adopt 

similar procedures. 

4.2 Problem definition: 

Considering the standard MIMO unity negative feedback configuration of the 

multivariable system given in Figure 4.1, let the multi-input multi-output transfer 

function model of the plant to be controlled be P,(y),, and the cascade controller be 

C,(y),,, . The closed-loop transfer function G,(y) is then given by 



Chapter - 4:  Controller Design for MIMO Systems 

GAY) = [ I  + p,(y)c,(y)l-' P,(Y)c,(Y) (4.1) 

Let the desired plant specifications be satisfied by a closed-loop reference 

model transfer function matrix Ms(y). Usually a low interaction level is desired in 

multivariable control systems such that the response of y,(t) to the demand 

q ( t )  = y-'Rl (7) should satisfy the standard classical requirements of suitable rise time, 

overshoot, settling time etc., and y,(t), j # i should remain small. The off-diagonal 

terms in Ms(y) are therefore assumed to have negligible contribution to the time and 

frequency responses and are ideally chosen as zero. Hence we assume 

M,(Y) = diag( Ma,{{ ( y )  I ; i [ 1, P I (4.2) 

such that Md.l,(y) = 0 for i # j. The diagonal entries in Ms(y) are chosen to satisfy 

specifications like damping factor {, peak overshoot Mp, time for peak overshoot tp, 

gain margin, phase margin etc. The AMM problem is mathematically equivalent to 

G,(Y) = M,(Y) (4.3) 

The problem is now to find the controller transfer function C,(y)p,, , such that 

the outputs of the system in Figure 4.1 i.e. the cascaded controller with plant under 

unity feedback match those of the reference closed-loop model. Let the plant and the 

desired controller be square transfer function matrices with same number of inputs 

and outputs i.e. p = m, such that 

G,(Y) = [G,,,, ( ~ 1 1 ;  i , j c  [ 1, P I (4.4) 

A cascade controller transfer function matrix Cs(y) is assumed of the form [13] 

C,(Y) = LC,,, , ( ~ 1 1 ;  i , j  [ 1, P I (4.5) 

where 

where r is the order of each scalar transfer function of Cs(y) and p's and a's are the 

(2r + I )  unknown parameters of each entry (SISO transfer function) in the transfer 

function matrix Cs(y). 

In the design method we use an equivalent open-loop reference model 

specification transfer function model Fs(y) that is derived from the given desired 

closed-loop reference model Ms(y) so that 

F,(Y) = [ I - M A Y )  I-' M A Y )  (4.7) 
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therefore the approximate model matching problem is now reduced to 

[P*(Y)I (, x,, [C,(Y)I (,X,, [ FAY) I (, x,, (4.8) 

We now extend the SISO methods of Optimal GDTM and Optimal frequency 

fitting method developed in Chapter-3 to obtain the unknown parameters of the 

transfer function model Cs(y), for multivariable systems. 

4.3 Optimal GDTM matching method: 

The Optimal GDTM technique has been discussed in chapter-3 for controller 

design of SISO systems. In this section we discuss controller design of MIMO 

systems using the Optimal GDTM technique. The design methodology is based on 

Delta Time Moment (DTM) technique however it is further generalized and optimized 

by using this proposed method. The DTM technique referred by P.Sarkar et.a1.[13-141 

does not permit easy computation of the DTM series of Fs(y), which is obtained 

recursively from Ms(y). On the contrary, the Optimal GDTM method is straight 

forward and avoids the problems encountered in computation of DTMs. The concept 

of OGDTM introduced in chapter-3 is directly used to compute the coefficients of the 

element transfer functions of the controller. As discuss in Section 4.2, the aproximate 

model matching technique using OGDTM is mathematically equivalent to 

where pt, = p.i, i E [ 0, cu ] and pt is a small positive number such that pt << 1. The 

above relation can be written as 

Now defining the following structures for MIMO representation, we can write 
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Q J Y )  = [ Ps(Y)l-' FdY) I,.,,, (4.13) 

and 

and the (j, k)'h elements of Cs(y) is 

We assume a square plant transfer function P6(y) and Controller transfer 

function Cs(y) such that p = m. Further we consider that the denominator polynomials 

of the elements of the controller transfer function are monic (ar = 1). In order to 

satisfy the relation in equation (4.10), from equations (4.14) and (4.15) we can write, 

Equation (4.17) has (2r+l) unknowns for each (j, k). Therefore, substituting y = hi, 

i E [ I ,  2r + 11 for p, << 1, a real' positive number (frequency), we obtain (2r+l) linear 

algebraic equations, whlch can be written in closed form as under 

Defining, 
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(4.2 1 ) 

we can now write from equations (4.19),(4.20) and (4.21) 

w : . l k Z l k  = (4.22) 

then for i = 1 ,2 ,  3, . . . . . ..., 2r + 1 we can write, 

z* = [ W ] k  1 - I  V,k 

where 

and 

thus equation (4.24 & 4.25) gives the parameters of (j, k)'h transfer function of the 

controller transfer function. Complete transfer function can be obtained for j E [ l ,  p] 

and k E [ I ,  m]. The advantage of this method is evident from equation (4.13), where 

the polynomial matrix inversion is avoided by substituting y = pt, . where pt is a small 

positive number less than one, which ensures better low frequency matching. 

Therefore, the steady-state responses of the closed-loop system are better matched 

with those of the reference model. 

4.4 Simulation results: 

The OGDTM method deveIoped was tested on the systems as described 

below: 
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4.4.1 Simple multivariable plant: 

We consider hkre an example to demonstrate the application of OGDTM 

method for controller design [53]. The Optimal frequency points considered are h, = 

b.i ,  i E [ I ,  21. 

Now the continuous plant transfer function is sampled with ZOH with 

sampling period A = 0.1 second and corresponding plant TF in delta domain with 

common denominator is given as: 

The 2nd order reference model with on= 0.84 radlsec, damping factor E,=0.7 

and angle (p) = - 40' is 

Following GA parameters are used to compute the OGDTMs for a PI 

k controller c,(Y) = k p  +- , where k, and k, are proportional and integral constants. 
Y 

Method of selection : Tournament selection method 

Number of tournaments: 2 

Number of generation for evolution: 35 

Population size : 32 

Crossover probability: 0.85 

Number of crossover : 2 

Mutaion probability: 0.0085 
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Using above GA parameters the optimal frequency point p, is computed for 

different locations of zeros of reference model by changing the values of angle 'p'. 

The proposed design method yields the following PI controller for OGDTM point (p,, 

0.1269 . 

The unit step responses of the uncontrolled plant, reference model and the 

augmented plant with controller are given in figures 4.3 to 4.6 and corresponding 

control efforts are shown in figure 4.7. It may be seen from the figures that the unit 

step responses of the closed-loop system are close to those of the reference model. It 

may also be seen that the off diagonal elements of the designed multivariable PI 

controller are not zeros, this is because of the plant transfer function including 

interaction terms has been taken into consideration in the design process. 

Figure 4.3: Step responses of uncontrolled plant, reference model and closed loop system 
with PI controller using OGTM, output y l l ,  A = 0.1 sec and p = - 40" 
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Figure 4.4: Step responses of uncontrolled plant, reference model and closed loop system 
with PI controller using OGTM, output y12, A = 0.1 sec and p = - 40" 
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Figure 4.5: Step responses of uncontrolled plant, reference model and closed loop system 
with PI controller using OGTM, output y21, A = 0.1 sec and p = - 40" 
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Step Response of MIMO Systion w ~ t h  Plcontroller (Y22) 
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Figure 4.6: Step responses of uncontrolled plant, reference model and closed loop system 
with PI controller using OGTM, output y22, A = 0.1 sec and p = - 40" 
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The 2nd order reference model with on= 0.84 radlsec, damping factor 5=0.7 

and angle (p) = +40° is 

Using GA with the parameter stated above, the OGDTM Point (pt, ) is found to be 

0.4258 and we obtain the desired PI controller as 

The unit step responses of the reference model and the augmented plant with 

controller are given in figures 4.8 to 4.10 and control efforts are shown in figure 4.1 1 

In this case also the unit step responses Y11 and Y22 of the designed closed-loop 

system are close to those of the reference model with initial oscillation. It may also be 

seen that the off diagonal elements of the designed multivariable PI controller are not 

zeros, this is because of the plant transfer function including interaction terms has 

been taken into consideration in the design process. 

Step Response of MlMO Systion with Plcontroller (Y11) 
1 6  

. . . . . . . . . . Plant 
1.4- fi -.-.-.- 

I I Plant with Unity feed back - Reference Model ----- Designed Closed-Loop System 

-0.4 
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Figure 4.8: Step responses of uncontrolled plant, reference model and closed loop 
system with PI controller using OGTM, output yl  1, A = 0.1 sec and p = +40° 
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Step Response of MlMO Systion with PI controller (Y12) 

Figure 4.9: Step responses of uncontrolled plant, reference model and closed loop 
system with PI controller using OGTM, output y12, y2 1, A = 0.1 sec and p = +40° 
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Step Response of MIMO Systion with PI controller (Y22) 

.......... Plant 
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Figure 4.10: Step responses of uncontrolled plant, reference model and closed loop 
system with PI controller using OGTM, output y22, A = 0.1 sec and p = +40° 
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4.4.2 Pressurized flow box: 

To test the robustness of the OGDTM technique developed, we consider the 

following open loop transfer function matrix of a pressurised flow box [56] to 

demonstrate controller design. 

Now sampling the above plant with sampler with sampling period A = 0.1 second and 

ZOH, we get the corresponding plant TF in delta domain with common denominator 

The 2nd order reference model with an= 0.84 radlsec, damping factor 5=0.7 and angle 

Following GA parameters are used to compute the OGDTMs for a PI 

controller 

Method of selection : Roulette wheel 

Number of generation for evolution: 30 

Population size : 3 1 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 
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the OGDTM point pt is computed for angle p =-40" with above GA parameters and 

found to be 0.561 and corresponding PI controller is obtained as: 

The unit step responses of the reference model and the augmented plant with 

controller are given in figures 4.12 to 4.15 and corresponding control efforts are 

shown in figure 4.16. It may be seen from the figures that the unit step responses of 

the closed-loop system are close to those of the reference model. It may also be seen 

that the off diagonal elements of the designed multivariable PI controller are not 

zeros, this is because of the plant transfer function including interaction terms has 

been taken into consideration in the design process. 

Figure 4.12: Step responses of uncontrolled plant, reference model and closed loop 
system with PI controller using OGTM, output y l l ,  A = 0.1 sec and p = -40" 
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Figure 4.13: Step responses of uncontrolled plant, reference model and closed loop 
system with PI controller using OGTM, output y12, A = 0.1 sec and p = -40" 
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Figure 4.14: Step responses of uncontrolled plant, reference model and closed loop 
system with PI controller using OGTM, output y21, A = 0.1 sec and p = -40" 
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Step Response of MIMO Systion with PI controller (Y22) 

, 5 ~  

Figure 4.15: Step responses of uncontrolled plant, reference model and closed loop 
system with PI controller using OGTM, output y22, A = 0.1 sec and p = -40" 
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Figure 4.16: Control Efforts U11, U12, U21, U22 with PI controller using OGTM, A = 0.1 sec 
and p = -40" 
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4.4.3 Gas fired furnace: 

Now we consider another MIMO plant of a gas fired furnace [I181 to test the 

OGDTM methodology. The four input and four output furnace is described by the 

following transfer function matrix. 

the furnace transfer function is now discritized w ~ t h  sampler ZOH with sarnpl~ng 

period A = 0.1 second and corresponding plant TF in delta domain with common 

denominator is obtained as: 

The reference model with a,= 0.84 radlsec, 5=0.7 and angle (p) = - 40" is obtained as: 

To obtain the OGDTM Point (pt, ), following GA parameters are considered 

Method of selection : Tournament selection method 

Number of tournaments: 2 

Number of generation for evolution: 30 

Population size : 3 1 

Crossover probability: 0.80 

Number of crossover : 2 

Mutaion probability: 0.0080 
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and after simulation we got the OGDTM point 0.1505 and corresponding PI controller 

coefficients as: 

The unit step responses of the reference model and the augmented plant with 

controller are given in figures 4.17 to 4.18. As in earlier cases, it may be seen from the 

figures 4.17 & 4.18 that the unit step responses of the closed-loop system are close to 

those of the reference model which proves the robustness of the OGDTM 

methodology. The off diagonal elements of the designed multivariable PI controller 

are not zeros initially, this is because of the plant transfer function including 

interaction terms has been taken into consideration in the design process however its 

effect becomes zero as time is increased. 
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4.5 Optimal Frequency Fitting method: 

The optimal frequency fitting design method of SISO systems described in 

Chapter 3 has already been successfully tested. Here, in this section the same 

methodology is applies for controller design of MIMO processes. Let us assume the 

transfer function matrices of the plant and cascaded controller be Ps(y) and Cs(y) 

respectively. Therefore the closed-loop transfer function matrix Gs(y) can is given in 

terms of Ps(y) and Cs(y) as: 

The performance specifications of the closed-loop control system are translated into a 

reference transfer matrix Ms(y), which is of the form 

Here p is the number of inputs or outputs and the off-diagonal entries Ms(y), are 

chosen as 0 (zero) i.e. we try to enforce zero coupling. The equivalent open loop 

reference model transfer function matrix is Fs(y), such that Fs(y), with unity negative 

feedback becomes equal to Ms(y). Thus, 

M, (Y) = [I + F,(y)l-' F, ( y) 

hence F,(Y) = MJ(Y) [I-  M,(y)l-' 

For the closed-loop system Gs(y) to match the time and frequency responses of 

the closed-loop reference model Ms(y), they are to be equivalent in some sense. 

Alternatively, it may be said that the open-loop system Ps(y) Cs(y) should be 

equivalent to open-loop reference model Fs(y) i.e., 

P ~ Y )  C,(Y) = F,(Y) (4.30) 

or C,(Y) 2 P,(Y)-'F,(Y) 

or C J Y )  = X,(Y) 

then [C,,l, (Y)] =[XJ,~, (Y)]. i, j E [I, p] 

where Xs(y), is an entirely known transfer function matrix, as both Ps(y), and Fs(y), 

are completely specified. For SISO controller design problem discussed in section 3.6 

of chapter-3, it was seen that the problem of designing the controller Cs(y), where 
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Cs(y), with pre-specified order and structure (Equation 3.91) was made to 

approximate the known Xs(y). Here for MIMO controller design we assume the 

structure of each element of the transfer function model Cs(y), as a scalar controller 

transfer function of order r given by: 

where p's and a's are the (2r+l)  unknown parameters of each scalar transfer function 

of Cs(y) Then, using the AFF technique which is mathematically equivalent to 

From eqn.(4.32); we have, 

where 

Y = l y l e J 8  and X J , l J ( ~ ) = I x 6 , 1 1 ( e J 4  

Let us define y, = oA; therefore, 8 and $ are functions of y. Finally equating the real 

and imaginary parts of eqn.(4.33) separately, we get 

I=O I=O 

Where 

Rl,l,(Y) =J  yl1c0se1 

S,,., (V) =/X, , . ,  1 yl'cos(@1+@) 

Y1(v)=I~,,,,/I~lrsin(@q+@ 

The left hand side (1.h.s) expressions of (4.34) and (4.35) are real functions of y, with 

unknown coefficients PI,,, and , Tu(y,) and W~j(y) are also two real (known) 
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functions of y ~ .  Hence designating the 1.h.s. functions as OR,,,(~J) and Ol,,,(\y) 

respectively, relations (4.34) and (4.35) may be written for convenience as : 

@R,, I (w) % T J  (v)  (4.36) 

@ i , , , ( ~ )  J Y J ( ~ )  (4.37) 

In order to force two real fhnctions O R , ,  , (cy) and Q,,, (cy) to be equivalent with their 

approximates T,, (cy) and W,, (cy) respectively, one may equate approximate number 

of initial few terms of the corresponding Taylor series expansions about y~ = 0 .  Thus, 

to accomplish appropriate matching of the 1.h.s. functions in eqns. (4.36) and (4.37) 

with the corresponding functions on the r.h.s, the initial N derivatives (where N is at 

least equal to r) of the corresponding functions are equated at y~ = 0 to give 

Using the results of Pal [76] and Milne-Thompson [115], the derivative operations 

(cy) approximately matches TJ(cy)  if 

where y ~ k  are small positive values around y~ = 0 .  Similarly, 

The relations in eqns. (4.39) and (4.40) may be written in a matrix form as 

Here A,, is a 2(N) x (2r + 1)  matrix given by 
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bi, = [ ~ . j , l ~ ~ , , 2 ~ . . l ; j , k . . . ~ I , N  , y.,,l...~.,,2...W,j,k..~N]T (4.47) 

where 

I 
R1 j , , , ,  = 1 Y I C O S ~ ~  

Si j,,,m = 1 ' 8  11 Y J" cos(em + o 
ui jVk, ,  = / y[  sin ez 

V ' j , k , r n  = I '6 11 Y 1" sin(e + $1 

T j ,  = I 11 ylrcos($+er) 

y j , k  = I '6 11 ylr sin($+ 

and i E [l, p]; j E [l, p]; are inputs and outputs; k E [ I ,  N] are the number f 

expansion points; 1 E [0, r] and m E [0, 2r+1]. It is clear from eqn.(4.45) that N 

values of y/ give 2N linear algebraic equations in the unknown parameters of the 

controller. For (2r + I )  number of unknowns.. In the case when 2N > (2r + I ) ,  the 

parameters of the controller may be determined by the least squares solution of (4.45) 

as : 

xij =(A,T,A,l)-lALb,, (4.48) 

The optimal frequency points searched by using genetic algorithms are 

confined to lie in a small zone around the point o =,O or y =O ( y  = oA). In effect, the 

matching is done for the effective range of the frequency response in discrete domain 

i.e., 0 = [O, o, 121 or y = [O, n]. For various systems, the sampling period A may be 

different and so will be the sampling frequency o, . But o,A 1 2  is always a constant 

and equals n .  Therefore, for matching purpose the frequency points are chosen as 

y/, = k q  ; k E [I, N] where'q is small positive number and q << 1 SO that y/, = [O,K]. 

for k E [l, N] . ' 

4.6 'Simulation results: 

The optimal frequency fitting method as tested on plants as described in the 

following sections. 
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4.6.1 Simple multivariable plant: 

We consider here the multivariable plant given in section 4.4.1 to demonstrate 

the application of optimal frequency fitting method of controller design. The 

plant c ( s )  and corresponding plant TF with common denominator in delta domain 

with sampling period A = 0.1 second is same as given in section 4.4.1. 

The 2nd order reference model with on= 0.84 radlsec, 5=0.7 and angle (p) = - 45" is 

To methodology was tested with the following GA parameters 

Method of selection : Roulette wheel 

Number of generation for evolution: 30 

Population size : 31 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 

and using above GA parameters, the real and imaginary parts of optimal frequency 

point found to be -0.0220+j0.6623 at p,, = 0.3314 and we obtain the following PI 

controller transfer function matrix. 

The unit step responses of the reference model and the augmented plant with 

controller are given in figures 4.19 to 4.22 and corresponding control efforts are 

shown in figure 4.23. It may be seen from the figures that the unit step responses of 

the closed-loop system are close to those of the reference model and the off diagonal 

elements of the designed multivariable PI controller are not zeros, this is because of 

the plant transfer function including interaction terms has been taken into 

consideration in the design process. 
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Figure 4.19: Step responses of plant, reference model and closed loop system with PI 
controller using OFF method, output yl 1, A = 0.1 sec and p = -45" 
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Figure 4.21: Step responses of plant, reference model and closed loop system with PI 
controller using OFF method, output y21, A = 0.1 sec and p = -45" 
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4.6.2 Gas turbine: 

Next we consider a gas turbine [ I  191 to test the controller design using optimal 

frequency fitting method. The uncontrolled plant is described by the transfer function 

matrix as : 

The plant is sampled with sampler and zero order hold with sampling period A = 0.1 

second and corresponding plant TF in delta domain with common denominator is 
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The reference model with on= 0.84 radlsec, 5=0.7 and angle p = - 40" is 

Following GA parameters are considered to design PI controller using OFF method 

Method of selection : Tournament selection method 

Number of tournaments: 2 

Number of generation for evolution: 35 

Population size : 3 1 

Crossover probability: 0.85 

Number of crossover : 2 

Mutaion probability: 0.0085 

Using above GA parameters, the real and imaginary frequency point are found to be 

-0.031 1+j0.7878 and pt, 0.3943 and we obtain the following PI controller controller 

transfer function matrix. 

The unit step responses of uncontrolled plant is given in figure 4.24 and 

corresponding step responses of the reference model and the augmented plant with 

controller are given in figures 4.25 to 4.28 along with the control effort in figure 4.29 . 

The unit step responses of the closed-loop system are close to those of the reference 

model. 
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Figure 4.26: Step responses of reference model and closed loop system with PI controller using 
OFF method, output y12, A = 0.1 sec and p = -40" 
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Figure 4.27: Step responses of reference model and closed loop system with PI controller using 
OFF method, output y21, A = 0.1 sec and p = -40" 
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Figure 4.28: Step responses of reference model and closed loop system with PI controller using 
OFF method, output y22, A = 0.1 sec and p = -40" 
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4.6.3 Multivariable gas fired furnace: 

The four-input four-output gas fired furnace given in section 4.5.3 is revisited 

to test the robustness of optimal frequency fitting method. We chose here the 

sampling period A = 0.1 second, therefore corresponding furnace TF matrix in delta 

domain with common denominator will be same as shown in section 4.5.3 

The 2"* order reference model with on= 0.84 radtsec, 5=0.7 and angle (p) = - 40" is 

Following GA parameters are considered to design PI controller using OFF method 

Method of selection : Tournament selection method 

Number of tournaments: 2 

Number of generation for evolution: 30 

Population size : 3 1 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 

Using genetic algorithm the real and imaginary parts of frequency point is found to be 

-0.0036+j 0.2694 and h, =0.1347 and we obtain the following PI controller transfer 

function matrix. 

The unit step responses of the reference model and the augmented plant with 

controller are shown in figures 4.30 to 4.31 and control efforts are shown in figures 
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4.32. It may be seen from the figures that the unit step responses of the closed-loop 

system are close to those of the reference model. 
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4.7 Conclusion: 

Two computationally simple design approaches to practical controller design for 

multivariable systems in &domain are presented in this chapter. The linear algebraic 

frameworks developed in the Chapter 3 for controller design of SISO systems have 

been extended for MIMO systems. Optimal GDTM and Optimal frequency fitting of 

the closed loop TFM with those of the reference TFM model have led to close 

matching of the step responses on each individual input output channel and 

simultaneous suppression of the interaction between various input-output loops. The 

methods have been applied to some practical plants. The effectiveness of the design 

methods in providing adequate control according to a predetermined design objective 

has been demonstrated. Salient features of the proposed methods are: 

To determine the controller parameters, only linear equations are required to 

be solved. 

Design does not require the controller to be confined to any particular 

structure. 

Plant may be described in transfer function or state space form hence 

polynomial matrix operations are not required. 

Complexity and structure of Cs(y) may be changed at designer's will to make a 

compromise between controller complexity and achievable performance. 

The increase in the computational effort is minimal with an increase in number 

of inputs and outputs. 

The methods can be extended to the design of digital controllers for 

multivariable systems with multiple time delays also which is discussed in the 

later chapters. 

The design procedures are goal-oriented. The end result is made to meet a 

predetermined objective i.e., to satisfy the given industrial specifications and is 

not a by-product of the design procedure. 

The algorithms are numerically robust and at high sampling limit converges to 

the corresponding continuous-time results leading to a unified treatment of 

both discrete-time and continuous-time systems. 

The approach adopted in the proposed methods suppress interaction and also 

the desired main diagonal response requirements are simultaneously accomplished, 

i.e., in a single step rather than in two steps. The individual scalar controller TFs of 
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the controller TFM may be chosen to have a different order or structure. The solution 

of equations for a given individual controller TF is independent of the solution of 

equations of the other scalar TFs in the controller TFM. This offers flexibility to the 

designer to change the complexity or structure of any individual entry in the controller 

TFM. The designer, therefore, has freedom to make tradeoffs between the controller 

complexity and the performance requirement on each main diagonal. Higher-order 

plants do not require any special computational problem. Design for unstable MIMO 

system has been carried out by stabilizing the system in the first step using an inner 

loop. Unity rank output feedback, though known to be restrictive, has been used in 

order to illustrate the suitability of the method in designing controllers for unstable 

MIMO systems. 
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Chapter 
Time Delay & Uncertain System Controllers 

5.1 Controller Design for Systems with Time Delay ' 

5.1.1 Introduction: 

An important class of systems whose dynamic characteristics possess dead time 

or transportation lag is called system with time delay. Typical examples include heat 

flow, material transportation, hydraulic and pneumatic transmission, chemical reactors, 

distillation columns and several others in the process industries. Continuous-time systems 

with time delay do not have rational transfer function in s-domain. The presence of dead 

time in the continuous time process gives rise to a non-rational term e-ST in the plant 

transfer function and hence greatly complicates the design of a controller for the 

continuous-time process. The characteristic equation of such a system does not have a 

finite order. In fact, there are an infinite number of characteristic roots for a system with 

dead time. However, the presence of time delay in discrete-time systems does not lead to 

an irrational transfer function either in the shift operator or in the delta operator 

parameterization. The time delay in the case of discrete-time system may be considered 

as either an integer multiple or a non-integer multiple of the sampling time. 

The problems posed by the time delay are degradation in performance on one 

hand, and complicated analytical aspect on the other. From the performance point of 

view, the closed-loop system will not perform as well as when T = 0. This is mainly 

because delay introduces a large phase lag and thus tends to destabilize the closed-loop 

system. To counteract this, the gain of the controller must be reduced below the value 

which could be used in the no-delay case, i.e. T = 0. As a consequence, the system will 

respond slow to set point changes or other kinds of command inputs and the 

achievable performance will thus be limited. 

5.1.2 Time delay in s-domain: 

The time domain model for a system with time delay 'T' in the measurement of 

output may be formulated in state-space form as 
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Alternatively, in some systems the time delay may be associated with the input signal, 

and the appropriate model is then 

Note that the states have a different interpretation in the equivalent models given above. 

With zero initial conditions, including y(t) = 0 for t < 0, and taking the transform of 

equation (5.1) 

sX ( s )  = AcX ( s )  + BcX ( s )  (5.3) 

and e-"Y ( s )  = Cc X ( s )  (5.4) 

The same result is obtained for the input delay model of equation (5.2). It may be 

seen that the frequency response of a pure delay of z seconds is given by 

Thus the magnitude is unity and the phase increases linearly with frequency. 

5.1.3 Time delay in &domain: 

In discrete-time, the equivalent state-space representation can be written as 

Alternatively, in some systems the time delay may be associated with the input signal, 

and the appropriate model is then 

In the delta domain, we get 

f i  ( Y )  = A,X ( Y )  + B,X ( Y )  

and E(Y, z )  Y ( Y )  = C ,  X ( Y )  
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where 

The transfer function relating Y(y) to U(y) is thus 

G,(y) = E(Y ,  - Cs [YI - A,]-' B, (5.10) 

In discrete time, whenever we talk about delaying a sequence, y(t), by z , it is 

taken as an integral number of samples; that is, z = NA where N is a positive integer. In 

this case, the transfer function of the delay term reduces to [lo] 

G,(y) = E ( ~ ,  -z )  = (1+ y ~ ) - ~  (5.11) 

Thus, in discrete-time, a time delay gives rise to a rational transfer function. It 

should be noted that, unless the sampling rate is low compared with the delay, the order 

of the transfer function may be quite large. 

5.1.4 Sampling in time delay systems: 

In this section we now consider the mathematical modelling of a discrete-time 

system in delta operator parameterization with time delay which is a non-integer multiple 

of the sampling time. Let us consider the sampling of a continuous-time system with a 

zero-order hold and having a time delay either with the input or output signal [as in 

equations 5.1 or 5.21 and let z = N A + q  (5.12) 

where N E Z C  u 0 and 0 2 q I A. Then proceeding as in Chapter 1, we have 

From equation (5.14), it follows that 
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This equation has the form 

& ' ( ~ A ) = A , X ' ( ~ A ) + B , U ( ( ~ - N - ~ ) A ) + B , ~ ( ( ~ - N ) A )  (5.16) 

and y(kA) = c,xt(kA) (5.17) 

Taking transforms of equations (5.16) and (5.17) with zero initial conditions we have, 

y X ( y )  = A,X(y)  + Bl(l + ~ y ) - ' ~ " ' U ( y )  + Bo(l + A ~ ) - ~  U ( y )  (5.18) 

And Y ( Y )  = C*X(Y)  (5.19) 

S o Y ( y )  = C,[y I - A,]-'(B, + Bo(l + Ay))( l  + A ~ ) - ' ~ " '  U ( y )  (5.20) 

5.1.5 SISO Systems: 

Let P8(y) be the delta domain equivalent of the continuous-time plant Pc(s) with a 

ZOH and Cs(y) be a digital cascade controller, the parameters of which are to be 

determined. Let the n-th order stable discrete-time SISO transfer function Ps(y) be given 

where n = p + N, and N is an integer such that N times A is the dead time T present in the 

process ( A  is the sampling period). In case T/A is a fraction, the same is dealt with in the 

above section. 

For a meaningful choice of the reference model, it should contain the same 

amount of time delay as the plant, otherwise if the delay of the reference model is less 

than that of the plant then the controller will be non-causal and in the reverse case, there 

will be extra amount of dead time in the system. From a given set of specifications a 

delay-free proper rational transfer function Ms(y) is chosen. Then this Ms(y) combined 

with the delay term ( 1  + A ~ ) - ~ ,  gives the required reference model, Ms(y) [ l o ] .  thus, 

The equivalent open-loop model Fdd is defined as: 
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Thus FG(y) alongwith unity negative feedback becomes equal to Ms(y). The two 

proposed SISO controller design methods of Sections 3.5 & 3.6 are used to design 

cascade controllers using the above Fs(y). Design results are given in the example 

sections. 

Reference model transfer functions and its performance specifications for time 

delay system for different angles (p) with undamped natural frequency o,=10 radsec, 

damping ratio 6=0.5, sampling time A=0.5 sect and delay time td=l sec has been 

computed and shown in table 5.1 and table 5.2 and corresponding step responses for 

sampling time A=0.5 sec and A=0.1 sec are shown in figure 5.1 8~5.2.  Step response of 

reference model with o,=0.84 radsec, {=0.7, sampling time A=0.1 sec and delay time 

td=l sec is given in figure 5.3. 

o,=10 radlsec, 5=0.5, A=0.5 sec and delay time td=l sec , 

Angle 

P 

-80" 

-60" 

-40" 

-20" 

+20° 

+40° 

+60° 

+80° 

Reference Model without 

time delay M ~ ( Y )  

1.1974y+4.2719 

y 2  +4.1225y+4.2719 

1 .7974~  + 4.27 19 
y2  +4.1225y+4.2719 

1 .9334~  + 4.271 9 

y2  +4.1225y+4.2719 

2 .0058~  + 4.271 9 

y2  +4.1225y+4.2719 

2.1 167y+4.2719 
y2 +4.1225y+4.2719 

2.1891y+4.2719 
y 2  +4.1225y+4.2719 

2 . 3 2 5 1 ~ +  4.2719 
y2  +4.1225y+4.2719 

2 . 9 2 5 1 ~  + 4.2719 
y2 +4.1225y+4.2719 

Reference Model with time delay 

M G ( Y ) ~ ~  

4.7895y2 + 2 6 . 6 6 6 7 ~  +34.1753 

y5  + 1 0 . 1 2 2 5 ~ ~  +41.0068y3 + 8 3 . 1 0 1 2 ~ ~  +84.2427y+34.1753 

7.1896y2 +31.4669y+34.1753 
y5  + 10.1225y4 +41 .0068y3 +83.1012y2 + 84 .2427~  +34.1753 

7.7337y2 +32.555y +34.1753 

y5  +10.1225y4 +41.0068y3 +83.1012y2 +84.2427y+34.1753 

8.0232y2 +33.134y +34.1753 

y5  +10.1225y4 +41.0068y3 +83.1012y2 +84.2427~+34.1753 

8.4667y2 + 34.021 l y  +34.1753 
y 5  +10.1225y4 +41.0068y3 +83.1012y2 +84.2427~+34.1753 

8.7562y2 + 34.67 + 34.1753 

y 5  +10.1225y4 +41.0068y3 +83.1012y2 +84.2427y+34.1753 

9.3003y2 +35.6882y +34.1753 
y 5  +10.1225y4 +41.0068y3 +83.1012y2 +84.2427y+34.1753 

11.7004y2 +40.4884y +34.1753 

y5  +10.1225y4 +41.0068y3 +83.1012y2 +84.2427y+34.1753 
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Table-5.2 

Step Response of SlSO Reference Model with without delay 

---- Ref Model w/o delay 
- Ref Model with delay 

delta: 0.5 sec 
delay: 1 sec. 

-0.2 I I I I I I 
0 1 2 3 4 5 6 

tldelta 

Figure 5.1: Step responses of Reference model with and without time delay with 
o,=10 radlsec, 5=0.5, Sampling time 0.5 sec and time delay 1 sec 
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Step Response of SlSO Reference Model with & without time delay 

- 80 deg delta: 0.1 sec 

---- Ref Model wlo delay 
Ref Model with delay 

Figure 5.2: Step responses of Reference model with and without time delay 
radlsec, 5=0.5, Sampling time 0.1 sec and time delay 1 sec 

Step Response of SlSO Reference Model with without delay 

wn: 0.84 radlsec 

delta: 0.1 sec 

0 50 100 150 
Ndelta 

with on=10 

Figure 5.3: Step responses of Reference model with and without time delay with on=0.84 
radlsec, 5=0.7, Sampling time 0.1 sec and time delay 1 sec 
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5.1.6 Testing on SISO using OGDTM method: 

OGDTM method is also tested on the following time delay systems 

5.1.6.1 Simple time delay plant: 

Here we consider a second order plant [76] given by 

where on = 10 radlsec, 5 = 0.5, K = 200, z = 1 sec. Let us choose a PID controller as 

C,(y)=K,  1 + r , y  + -Y [ r2 ' I  
Discretizing the plant in delta domain incorporating a sampler and ZOH with sampling 

period A = 0.2, 0.5, 1 sec respectively and resulting discrete time models of the plant and 

reference model in delta domain for different value of angle p are given as under: 

The following GA parameters are considered to compute OGDTM (p,,) values for the 

time delay systems 

Method of selection : Roulette wheel 

Number of generation for evolution: 30 

Population size : 3 1 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 
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Using above GA parameters, the OGDTM point pt is found to be 0.4179 and we obtain 

the desired PID controller as 

Closed loop system transfer function cascaded with controller and plant with unity feed 

back is found as 

The Unit step responses of the reference model and closed loop system are shown in 

figure 5.4. 

wn: 10 
Zita: 0.5 
Delta: 0.2 sec. 
Delay: 1 sec 
Angle (roh): -40 degree 

Step Response of SlSO Reference Model and CL-Designed System 

Figure 5.4: Step responses of Ref. model and closed loop plant with PID 
Controller for p= - 40°, o,=10 radlsec, 5=0.5, A= 0.2 sec and time delay 1 sec 
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Using the same parameters of GA stated above, the OGDTM point pt is found to be 

0.4258 and we obtain the desired PID controller as 

Closed loop system transfer function cascaded with controller and plant with unity feed 

back is found as 

The Unit step responses of the reference model and closed loop system are shown in 

figure 5.5. 

Step Response of SlSO Reference Model and CL-Designed System 

Figure 5.5: Step responses of Ref. model and closed loop plant with PID Controller 
for p= + 40°, o,=10 radlsec, 5=0.5, A= 0.2 sec and time delay 1 sec 
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A = 0.5 sec, r, = - 40°, o,=10 rad /sec, e=0.5 and delay 1 sec. 

Using genetic algorithms with the same parameters stated above, the OGDTM point p, is 

found to be 0.2134 and we obtain the desired PID controller as 

C,(y) = 0.32127 + 0.034025 y+ 0.33001 

Y 

Closed loop system transfer function cascaded with controller and plant with unity feed 

back is found as 

The Unit step responses of the reference model and closed loop system are shown in 

figure 5.6. 

Step Response of SlSO Reference Model and CL-Designed System 

Figure 5.6: Step responses of Ref. model and closed loop plant with PID Controller 
for p= - 40°, o,=10 radlsec, 5=0.5, A= 0.5 sec and time delay 1 sec 
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A = 0.5 sec, p = + 40". o,=10 rad Isec, t=0.5 and delav 1 sec. 

Since sampling frequency is same so plant transfer function with 1 sec is same as above. 

However reference model for p =+ 40" is computed as 

Using same parameters of genetic algorithms, the OGDTM point pt is found to be 0.1898 

and we obtain the desired PID controller as 

C,(y) = 0.34064 + O.O42161y+ 
0.34376 

Y 

Closed loop system transfer function cascaded with controller and plant with unity feed 

back is found as 

The Unit step responses of the reference model and closed loop system are shown in 

figure 5.7. 

Figure 5.7: Step responses of Ref. model and closed loop plant with PID Controller 
for p= + 40°, w,=10 radlsec, (=0.5, A= 0.5 sec and time delay 1 sec 
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A = 1 sec, p = - 40'. o,=10 - rad Isec, E = 0.5 and time delay 1 sec. 

Using genetic algorithms with same parameters stated above, the OGDTM point p, is 

found 0.0325 and we obtain the desired PID controller as 

C,(y) = 0.37502 + 0.056641 y+ 
0.25012 

Y 

The Unit step responses of the reference model and closed loop system are shown in 

figure 5.8. 

Figure 5.8: Step responses of Ref. model and closed loop plant with PID Controller 
for p= - 40°, o,=10 radlsec, 5=0.5, A= 1 sec and time delay 1 sec 
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A = 1 sec, p = + SO0, a, = 10  rad /sec, E = 0.5 and time delay 1 sec. 

Since sampling frequency is same so plant transfer function with 1 sec is same as above. 

However reference model for p =+50° is computed as 

Using genetic algorithms with same parameters, the OGDTM p, is found to be 0.0246 

and we obtain the desired PID controller as 

Closed loop system transfer function cascaded with controller and plant with unity feed 

back is found as 

The Unit step responses of the reference model and closed loop system are shown in 

figure 5.9. 

Step Response of SlSO Reference Model and CL-Designed System 
1.2 1 

Figure 5.9: Step responses of Ref. model and closed loop plant with PID Controller 
for p= + 50°, o,=10 radlsec, 5=0.5, A= 1 sec and time delay 1 sec 
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0.84 rad Isec, E = 0.7 and time delay 1 sec. 

Using genetic algorithm with same parameters, the OGDTM p., is found 0.4072 and the 

desired PID controller is obtained as 

0.1795 
C,(y) = 0.049553 - 0.001329~+ - 

Y 

Closed loop system transfer function cascaded with controller and plant with unity feed 

back is given as 

For same GA parameters, the OGDTM point p., for PI controller is found to be 0.9873 

and controller transfer function is 

C,(y) = 0.04852 + 0.17964 

Y 

Closed loop system transfer function cascaded with PI controller and plant with unity 

feed back is given as 

The Unit step responses of the reference model and closed loop system cascaded with 

PID & PI controllers are shown in figure 5.10 & 5.11 respectively. 

A = 0.5 sec, p = + 40". con - = 0.84 rad Isec, = 0.7 and time delay 1 sec. 

Since sampling frequency is same so plant transfer function with 1 sec is same as above. 

However reference model for p =+ 40" is computes as 

Using GA with same parameters, the OGDTM point p., is found to be 0.9786 and desired 

PID controller is obtained as 
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Closed loop system transfer function cascaded with controller and plant with unity feed 

back is given as 

The Unit step responses of the reference model and closed loop system are shown in 

figure 5.12. Comparision of closed loop system with different controlles are given in 

table 5.4. 

Comparison of performance of various closed loop systems cascaded with the desired 
controller 

Con 

trol 

ler 

PID 

PID 

PID 

PID 

PID 

PID 

PID 

PID 

PI 
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-40" 

40" 
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40"  
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set 

0 2  

0 2  

0 5  

0 5  

1 

1 

0 5  

0 5  

0 5  
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0 5  

0 5  

0 5  

0 5  

0 5  

0 5  

0 7  

0 7  

0 7  
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10 

10 

10 

10 

10 
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084  

0 8 4  
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Step Response of SlSO Reference Model and CL-Designed System 

Figure 5.10: Step responses of Ref. model and closed loop plant with PID Controller 
for p= - 40°, an=0.84 radlsec, 5=0.7, A= 0.5 sec using OGDTM 
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Figure 5.1 1 : Step responses of Ref. model and closed loop plant with PID Controller 
for p= + 40°, wn=0.84 radlsec, 5=0.7, A= 0.5 sec using OGDTM 
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Step Response of SlSO Reference Model and CL-Designed System 

- Reference Model 
----- Closed Loop systen 

wn: 0.84 
Zjta: 0.7 
Delta: 0.5 sec. 
Delay: 1 sec 
Angle (roh): -40 degree 
Controller : PI 

Figure 5.12: Step responses of Ref. model and closed loop plant with PI Controller 
for p= - 40°, m,=0.84 rad/sec, 5=0.7, A= 0.5 sec using OGDTM 

5.1.6.2 Stirred chemical reactor plant: 

In the following example, we consider the time delay transfer function of 

continuous stirred chemical reactor plant [96]. 

Where kp=  1.39, TI = 10.1, T2= 4.1 

Three values of z are used to study how the performance of the controller is effected by 

the relative magnitude of the dead time z when compared with the plant time constants T I  

and T2 

1. Reactor 1 has z = TI = 0.8 min., lower than both time constants. 

2. Reactor 2 has z = T ~ =  5.0 min., comparable to the smaller time constant. 

3. Reactor 3 has z = z,= 10.0 min., comparable to the larger time constant. 

The continuous time transfer functions are given as : 
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Model of reactor 1 

Model of reactor 2 

Model of reactor 3 

The OGDTM method is applied here to all the reactors individually for design of the 

controller. 

Reactor 1 

For reference model in &domain, undamped natural frequency on is chosen 0.2 

radlsec, damping ratio 6 is 0.8 and sampling period A is 0.1 sec. The plant is now 

discretized in the &domain after incorporating the sampler and ZOH with the A = 0.1 sec. 

Very fast sampling is avoided to restrict the order of the resultant system. The resultant 

discrete rational transfer functions are given as under 

A = 0.1 sec, p = - 40°, 0,=0.2 - rad Isec, E=0.8 

PI Controller: 

Following GA parameters are used to compute the OGDTMs to design a PI 

controller 

Method of selection : Tournament selection method 
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Number of tournaments: 2 

Number of generation for evolution: 30 

Population size : 3 1 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 

Using GA, the OGDTM points pt is found to be 0.0089 and we obtain the following PI 

controller. 

C,, ( y )  = 1.2439 + 0.09735 

Y 

and corresponding closed loop transfer function cascaded with PI controller is given as 

PID Controller: 

Using same GA parameters, the OGDTM point pt for PID controller is found to be 

0.0403. The transfer function of PID controller and closed loop system cascaded with the 

controller are given as: 

The unit step responses of the reference model and the closed loop plant with the PI & 

PID controllers using OGDTM are shown in Figure 5.13 & 5.14 respectively. 
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Step Response of SlSO Reference Model and CL-Designed System 
1.4 m.................. ..--.----.- ....... ....... ..... 
1.2. 

---I------ 

.......... Plant - Reference Model - -- - - Closed Loop systen 

wn: 0.2 radlsec 
Zita: 0.8 
Delta: 0.1 sec 
Angle (roh): -40 deg 
Controller: PI 

-0.2 
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Figure 5.13: Step responses of Reference model and closed loop plant with PI 
Controller for p= - 40°, 0,=0.2 radlsec, 5=0.8, A= 0.1 sec using OGDTM 

Figure 5.14: Step responses of Reference model and closed loop plant with PID 
Controller for p= - 40°, 0,=0.2 radlsec, {=0.8, A= 0.1 sec using OGDTM 
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Reactor 2: 

For reactor 2, reference model in &domain is computed with undamped natural 

frequency on = 0.2 radlsec, damping ratio 5 =0.8 and sampling period A = 0.5 sec. The 

plant is discretized in the &-domain after incorporating the sampler and ZOH with the 

sampling period A = 0.5 sec. Very fast sampling is avoided to restrict the order of the 

resultant system. The resultant discrete rational transfer functions are given as under 

A = 0.5 sec, p = - 40". 0,=0.2 rad /set, Ez0.8 

+52075.67? +56602.97f + 42990.98y4 + 21671.34f + 6626.95 y2 + 1059.46 y+  75.64 

PI Controller: 

Using same GA parameters, the OGDTM point pt is found to be 0.0001 and we obtain 

the following PI controller. 

C,, ( y )  = 0.88245 + 0.061 126 

Y  

And corresponding closed loop transfer function cascaded with PI controller is given as 

PID Controller: 

Using GA with same parameters, the OGDTM point pt for PID controller is found to be 

0.0403. The transfer function of PID controller and closed loop system cascaded with the 

controller are given as: 
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A = 0.5 sec, p = + 40°, 0,=0.2 rad Isec, E=0.8 

Plant transfer function in delta domain will be same as above because sampling period is 

considered 0.5 sec in this case also. However with the change of angle p i. e. +40°, the 

reference model in delta domain is computed as 

Using GA, the OGDTM point pt for PID controller is found to be 0.1 190. The transfer 

function of PID controller and closed loop system cascaded with the controller are given 

The unit step responses of the reference model and the closed loop plant with the PI & 

PID controllers using OGDTM are shown in Figure 5.15, 5.16 & 5.17 respectively 

Step Response of SlSO Reference Model and CL-Designed System - 
1.4 .:....... .---**'- 

............ 

_----__ 
\\ 4#'- .......... '--* Plant - Reference Model . ----- Closed Loop systen 

wn: 0.2 radlsec 
Zita: 0.8 
Delta: 0.5 sec 
Angle (roh): -40 deg 
Controller: PI 

-0.2 I I I I I 
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tldelta 

Figure 5.15: Step responses of Reference model and closed loop plant with PI 
Controller for p= - 40°, 0,=0.2 radlsec, 5=0.8, A= 0.5 sec using OGDTM 
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p Response of SlSO Reference Model and CL-Designed System 
.'. ,....... - - -  ..----- .... ..... .... 

.......... Plant - Reference Model - ----- Closed Loop systen 

wn: 0.2 radlsec 
Zita: 0.8 
Delta: 0.5 sec 
Angle (roh): -40 deg 
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tldelta 

Figure 5.16: Step responses of Reference model and closed loop plant with PID 
Controller for p= - 40°, 0,=0.2 radlsec, 5=0.8, A= 0.5 sec using OGDTM 
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Figure 5.17: Step responses of Reference model and closed loop plant with PID 
Controller for p= + 40°, 0,=0.2 radlsec, 5=0.8, A= 0.5 sec using OGDTM 
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Reactor 3: 

For reactor 3, reference model in 8-domain with undamped natural frequency on = 

0.1 rad/sec& 0.05 radlsec, damping ratio 5 =0.8 and sampling period A = 0.5 sec is 

computed. However with this sampling period the order of resusltant system in delta 

domain increased a lot and to restrict the order one shouls avoid fast sampling. The plant 

is discretized in the &-domain after incorporating the sampler and ZOH with the sampling 

period A = 0.5 sec. The resultant discrete rational transfer functions are given as under 

A = 0.5 sec, p = - 40". on=O.l rad /set, EdJ.8 

PI Controller: 

Using GA with same parameters, the OGDTM point pt is found to be 0.0001 and 

corresponding PI controller transfer function is obtained as: 

PID Controller: 

The OGDTM point pt.for PID controller is found to be 0.0001 using same parameters of 

GA and the transfer function of PID controller is found as: 

The unit step responses of the reference model and the closed loop plant with the PI & 

PID controllers using OGDTM are shown'in Figure 5.18 & 5.19 respectively. 
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Figure 5.18: Step responses of Reference model and closed loop plant with PI 
Controller for p= - 40°, o,=0.1 radlsec, E,=0.8, A= 0.5 sec using OGDTM 

Step Response of SlSO Reference Model and CL-Designed System 
1.4 .....----.-- 

1.2- 

Figure 5.19: Step responses of Reference model and closed loop plant with PID 
Controller for p= - 40°, o,=0.1 radlsec, 5=0.8, A= 0.5 sec using OGDTM 
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A = 0.5 sec, p = + 40°, o,=0.1 rad Isec, k=0.8, 

Plant transfer function in delta domain will be same as above because sampling 

period is considered 0.5 sec in this case also. However with the change of angle i.e. 

p=+40°, the reference model in delta domain is computed as 

Controller: 

Using GA with same parameters, the OGDTM point pt for PI and PID controller is found 

to be 0.0002 and 0.008 respectively and corresponding controller transfer functions are 

found as: 

PI controller 

PID controller 

The unit step responses of the reference model and the closed loop plant with the PI & 

PID controllers using OGDTM are shown in Figure 5.20 & 5.21 respectively. 

Step Response of SlSO Reference Model and CL-Designed System 

-0.2 1 I 
0 50 100 150 200 

tldelta 

Figure 5.20: Step responses of Ref. model and closed loop plant with PI Controller 
for p= + 40°, w,=O. 1 rad/sec, 5=0.8, A= 0.5 sec using OGDTM 
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p Response of SlSO Reference Model and CL-Designed System 

..... ' ....*..". 

........... Plant - Reference Model 
----- Closed Loop systen 
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Figure 5.21: Step responses of Reference model and closed loop plant with PID 
Controller for p= + 40°, w,=0.1 radlsec, 5=0.8, A= 0.5 sec using OGDTM 

A = 1 sec, p = - 40°, o,=0.1 - rad Isec, E=0.8 

Controller: 

Using GA with same parameters, the OGDTM point pt for PI and PID controller is found 

to be 0.0002 and 0.008 respectively and corresponding controller transfer functions are 

found as: 

PI controller C,, ( y )  = 0.56392 + 0.02742 

Y  

PID controller C,, ( y) = 0.44198 + 1.08 13 y  + 0.03056 

Y  
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And corresponding closed loop transfer function cascaded with PI and PID controller are 

found as: 

PI: 

The unit step responses of the reference model and the closed loop plant with the PI & 

PID controllers using OGDTM are shown in Figure 5.22 & 5.23 respectively. 

Comparision of closed loop system with different controlles are given in table 5.4. 

Step Response of SlSO Reference Model and CL-Designed System 

Figure 5.22: Step responses of Reference model and closed loop plant with PI 
Controller for p= - 40°, on= 0.1 radlsec, 5=0.8, A= 1 sec using OGDTM 
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Step Response of SlSO Reference Model and CL-Designed System 

Figure 5.23: Step responses of Reference model and closed loop plant with 
PID Controller for p= - 40°, on= 0.1 radlsec, 5=0.8, A= 1 sec using OGDTM 
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5.1.7 Testing on SISO System using OFF method: 

The methodology of optimal frequency fitting method is tested on following SISO 

system. 

5.1.7.1 Simulation results: 

Here we consider as system for which the time delay is twice the dominant time 

constant of the process [116]. The continuous-time plant is given by 

From the desired specifications the reference model in &-domain is computed with 

undamped natural frequency on= 0.3 radlsec, damping ratio 6 0.7 and sampling period A 

0.5 sec. The plant is discretized in the &-domain after incorporating the sampler and ZOH 

with the A = 0.5 sec. Very fast sampling is avoided to restrict the order of the resultant 

system. The resultant discrete rational transfer functions are given as under . 

A = 0.5 sec, p = +40°. a,=0.3 rad Isec, E=0.7 

Plant Transfer Function in delta Domain 

Reference Model Transfer Function in delta Domain 

For computation of the optimal frequency point, the following GA parameters are 

considered 

Method of selection : Roulette wheel 

Number of generation for evolution: 35 

Population size : 3 1 

Crossover probability: 0.8 

Number of crossover : 2 

Mutaion probability: 0.008 
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Using OFF method the optimal frequency point is found to be 0.2999 with -0.1990 + 
0.86971 as real and imaginary part and corresponding PID controller and system transfer 

/ 

function in delta domain are found to be 

The unit step responses of the reference model and the closed loop plant with the 

controller using Optimal Frequency fitting is shown in Figure 5.24. 

A = 0.5 sec, r, = +20°, m,=0.3 rad Isec, E=0.7 

Step Response of SlSO Plant, Reference Model and Designed System 
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Figure 5.24: Step responses of Reference model and closed loop plant with PID 
Controller for p= + 40°, on= 0.3 radlsec, 5=0.7, A= 0.5 sec using OFF method 
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Using same GA parameters, optimal frequency point is found to be 0.3156 with -0.2200 

+ 0.9120i as real and imaginary part. Corresponding PID controller and system transfer 

function in delta domain are found to be 

The unit step responses of the reference model and the closed loop plant with the 

controller using Optimal Frequency fitting is shown in Figure 5.25 

Response of SlSO Plant, Reference Model and Designed System 
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wn: 0.3 radlsec 
Zita: 0.7 
Delta: 0.5 sec. 
Angle (roh): + 20 degree 
Controller: PID 

I I 
100 200 300 400 500 

t Idelta 

Figure 5.25: Step responses of Ref. model and closed loop plant with PID 
Controller for p= + 20°, w,= 0.3 radlsec, 5=0.7, A= 0.5 sec using OFF method 

A = 0.5 sec, P = - 20". m,=0.3 rad Isec, E=0.7 

Plant Transfer Function in delta Domain is same because sampling period is same i.e 0.5 

sec. hence the reference Model Transfer Function in delta Domain for above 

specifications are 



Chapter - 5: Time Delay and Uncertain System Controllers 

Using GA, the optimal frequency point is found to be 0.3156 with -0.2200 + 0.9120i as 

real and imaginary part. The desired PID controller and systme transfer function in delta 

domain are found to be 

The unit step responses of the reference model and the closed loop plant with the 

controller using Optimal Frequency fitting is shown in Figure 5.26. 

Figure 5.26: Step responses of Ref. model and closed loop plant with PID 
Controller for p= - 20°, on= 0.3 radlsec, (=0.7, A= 0.5 sec using OFF method 

Step Response of SlSO Plant, Reference Model and Designed System 

A = 0.5 sec, D = - 40°, a,=0.3 rad Isec, &0.7 

Plant Transfer Function in delta Domain is same because sampling period is same i.e 0.5 

500 

1.4 - Reference Model 
-----. Closed Loop systen - 

wn: 0.3 radlsec 
Q) 
u Zita: 0.7 

sec. hence the reference Model Transfer Function in delta Domain 

tlde lta 

a 
C .z 0.6 
m 
m 

0.4 

0.2 

0 

-0.2 
0 100 200 300 400 

- 
- 

- 

Delta: 0.5 sec. 
Angle (roh): - 20 degree 
Controller: PID 
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Using GA, the optimal frequency point is found to be 0.7090 and -1.0282 + 1.74811 as 

real and imaginary part. The PID controller and system transfer function in delta domain 

are found to be 

The unit step responses of the reference model and the closed loop plant with the 

controller in Figure 5.27. Comparision of closed loop system with different controlles are 

shown in table 5.5 

Step Response of SlSO Plant, Reference Model and Designed System 
1.2 I 

- Reference Model 
----- Closed Loop systen 

wn: 0.3 radtsec 
Zita: 0.7 
Delta: 0.5 sec. . 
Angle (roh): - 40 degree 
Controller: PID 

Figure 5.27: Step responses of Ref. model and closed loop plant with PID Controller 
for p= - 40°, con= 0.3 radlsec, 5=0.7, A= 0.5 sec using OFF method 

Comparison of performance of various closed loop systems cascaded with the desired 
controller 

Con 

trol 

ler 

PID 

PID 

PID 

PID 

p 

+40° 

+20° 

- 20" 

-40" 

A 

.sec 

0.5 

0.5 

.0.5 

0.5 

a, 

rad/ 

sec 

0.3 

0.3 

0.3 

0.3 

6 

0.7 

0.7 

0.7 

0.7 

Reference Model with delay of 1 sec Closed loop system with controller 

M, % 

30.65 

54.55 

21.44 

5.47 

M, % 

18.14 

10.51 

5.30 

4.61 

&/A 

27 

27 

26 

19 

tdA 

17 

20 

25 

28 

GM 

2.63 

3.01 

3.59 

3.25 

PM 

34.83 

36.02 

45.42 

61.56 

tdA 

25 

27 

32 

34 

PM 

48.13 

32.61 

60.50 

61.15 

&/A 

59 

63 

67 

37 

GM 

2.53 

2.94 

3.87 

3.26 
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5.1.8 Uncertainty in process model 

. Uncertainty is an inherent and inevitable characteristic of process models. The 

models that are used in the process industry are only approximations of the actual 

physical process. Usually the model uncertainty are due to process nonlinearity and 

process parameter variations, simplifying assumptions made during the modeling 

process, finite order or reduced order models obtained from identification/estimation 

procedures and errors introduced in experimental identification/ curve-fitting procedures, 

etc.[l20] 

Detailed analysis of a large scale process is often difficult and typically involves 

several approximations. Linearizing of the process model around different operating 

points results in different transfer function models. Even if the model is accurate, 

variations of real parameters affect the plant operation and the true model deviates 

considerably from the nominal model. For example, ambient temperature and pressure 

may vary about the nominal values. In the following, an uncertain plant is considered. It 

is shown that stabilitylrobustness can be maintained in the face of plant uncertainties if 

the reference model chosen for the nominal plant has sufficient robustness embedded in 

5.1.8.1 Simulation results: 

We consider the following uncertain process [120]. 

The nominal process model is given by 

- 
P C  ( s )  = 

12.5 e-'O" 

1 + 10s 

the uncertainty ranges of various parameters are K E [ l l ,  141; z E [9, 111; T E [7, 131 

The following six extreme plants have been considered. 
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The above plant are discretized incorporating system delays with sampler and ZOH. The 

sampling time A = 2 sec. is considered. The resulting nominal plant, perturbed plants 

obtained in the &domain are given as under: 

The reference model in delta domain with o,=0.11 rad Isec, damping ratio 5=0.8, time 

delay of 10 sec and sampling period A=2 sec for different values of angle angle (p) are 

computed for the nominal system and given as: 
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Using GA with the following parameters, the OGDTM pl ,s found to be 0.0089 and 

corresponding PI controller and system transfer function for the nominal plant is obtained 

as : 

Method of selection : Tournament selection method 

Number of tournaments: 2 

Number of generation for evolution: 30 

Population size : 3 1 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 

PI controller C,(y) = 0.040128 + 0.0034992 

Y 

Figures 5.28 show the reference and closed-loop unit step responses for the nominal plant 

with the PI controller. Unit step responses for various extreme plants with nominal 

controller are shown in figure 5.29. 

Step Response of Ref. Model and Nominal Plant wlth PI Controller 

"2 2 
- Reference Model 
----- Closed Loop systen 

wn= 0.11 rad Isec  
zlta= 0.8 
delta=2 sec 
Angle roh= - 40 degree 
Controller: PI 
Nominal Plant 

I 
1 10 20 30 40 50 60 70 80 90 100 

Vdelta 

Figure 5.28: Step responses of Reference model and closed loop nominal plant with PI 
Controller for p= - 40°, on= 0.1 1 radlsec, 5=0.8, A= 2 sec using OGDTM method 
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Step Response 01 Ret Model and Perturbed Plant wl lh Nominal PI Controller Step R e ~ o n s e  ot Ref Model and Perturbed Plant wllh Nominal PI Controller 

___----- __-- _.-- - Reterence Model - ----- Relerence Model 
Closed Loop syslen ----- Closed Loop systen 

w n = O l l r a d l s e c  wn= 0 11 rad I sec 
zlta= 0 8 zits. 0 8 
delta.2 see della.2 m c  
Angle rohm - 40 degree Angle rohn - 40 degree 
Controller PI Controller PI 
Perturbed plant - 1 Perlurbed plant - 2 

0 2 0 2 
0 10 20 30 40 50 60 70 80 90 1W 0 10 20 30 40 50 60 70 80 90 

Vdelta Vdalta 

Step Response ot Ref Modal and Perturbed Plant wi lh Nominal PI Controller 
1 2  1 

Slep Response ot Ret Model and Perturbed Plant with Nominal PI Controller 

- Rekmnce Model ----- Closed LOOP syden 

wn= 0 11 rad 1 sec 
zlta; 0 8 
delta=2 sec 
Angle roh= - 40 degree 
Controller PI 
Perturbed plant - 4 

- Reference Model ----- Closed Loop sysien 

wn= 0 11 rad 1 sec 
zlta= 0 8 
della.2 see 
Angle rob. -40 degree 
Controller PI 
Perturbed plant - 3 

0 10 20 30 40 50 €4 70 80 90 
4 2 

0 10 20 30 40 50 60 70 80 90 1W 
Vdelta 

100 
Vdelta 

Figure 5.29: Step responses of various extreme plants P61(~), Psz(y), Ps3(y), Ps4(y), Pss(y), Ps6(y)P 
with nominal PI Controller using OGDTM 

Step Response ot Ret Model and Perturbed Plant with Nomlnal PI Controller Step Response of Ret Model and Perturbed Plant wl lh Nomlnal PI Controller 
1 2  

.------_____ 
- Reference Model ----- Closed Loop systen 

wn -011  rad l sec  
z iB= 0 8 
della=2 sec 
Angle rob- - 40 degree 
Controller PI 
Perturbed plant - 5 

-0 2 
0 10 20 30 40 50 60 70 80 90 

Vdelta VdelIa 

1 2  

-------- 

- Reference Model 
----- Closed Loop sfsten . 

wnr  0 11 rad I sec 
zlta= 0 8  
delta-2 n c  
Angle mh= - 40 degree 
Controller PI 
Perturbed planl- 6 

1W 
Q 2 

0 10 20 30 40 50 60 70 80 90 100 
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A n ~ l e  r>= -20' 

Since sampling period is same i.e. 2 sec, hence the nominal and perturbed plants in delta 

domain will be same as for angle p= -40" , but the reference model transfer function is 

computed for the nominal system and given as: 

Now using GA with same parameters, the OGDTM point is found to be 0.0167 and we 

obtain the following PI controller and system transfer function for the nominal plant as: 

PI controller C, ( y) = 0.05096 + 0.003920 

Y 

Angle D= +20° 

Since sampling period is same i.e. 2 sec, hence the nominal and perturbed plants in delta 

domain will be same as above, the reference model transfer function is computed for the 

nominal system and given as: 

Using GA with same parameters, the OGDTM point is found to be 0.0089 and we obtain 

the following PI controller and system transfer function for the nominal plant as: 

PI controller C, ( y) = 0.06509 + 0.004883 

Y 
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Since sampling period is same i.e. 2 sec, hence the nominal and perturbed plants in delta 

domain will be same as for angle p= -40" , but the reference model transfer function is 

computed for the nominal system and given as: 

Using GA with same parameters, the OGDTM point is found to be 0.0089 and we obtain 

the following PI controller and system transfer function for the nominal plant as: 

PI controller C s ( y )  = 0.073258 + 0.0057926 

Y  

Figures 5.30 to 5.33 show the reference model and closed-loop unit step responses for the 

nominal and various extreme plants with the nominal PI controller for angle p = - 40°, - 

20" , +20° and +40° respectively. Robustness is checked in terms of step responses and 

various time and frequency domain specifications are given in table 5.6 

Step Response of Ref. Model and Perturbed Plant with Nominal PI Controller 
1.2 I 4 , I , I , 

1 

Perturbed plant 6 
0.8 

Perturbed plant 5 

g 0.6 Norn~nal & Ref Model 
z 
C .- Perturbed plant 3 &4 
C 
CI) 

0.4 

0.2 
wn= 0.1 1 rad I sec 
zits= 0.8 
delta=2 sec 

0 Angle roh= - 40 degree 
Controller: PI Nominal 

4 .2  I I I I I 1 I I I I 
0 10 20 30 40 50 60 70 80 90 100 

Wdelta 

Figure 5.30: Step responses of Reference model and closed loop nominal & extreme plants 
with PI Controller for p= - 40°, on= 0.1 1 radlsec, 5=0.8, A= 2 sec using OGDTM 
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Step Response of Ref. Model and Perturbed Plant with Nominal PI Controller 
1.2 r t t c t t I ! I 

wn= 0.11 rad I sec 
zits= 0.8 
deltaz2 sec 
Angle roh= - 20 degree 

0 Controller: PI Nominal 

Figure 5.3 1 : Step responses of Reference model and closed loop nominal & extreme plants 
with PI Controller for p= - 20°, on= 0.1 1 radlsec, 5=0.8, A= 2 sec using OGDTM 

Step Response of Ref. Model and Perturbed Plant with Nominal PI Controller 

wn= 0.1 1 rad I sec 
zits= 0.8 
delta=2 sec 
Angle roh= + 20 degree 
Controller: PI Nominal 

Figure 5.32: Step responses of Reference model and closed loop nominal & extreme plants 
with PI Controller for p= +20°, on= 0.1 1 radlsec, 5=0.8, A= 2 sec using OGDTM 
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Step Response of Ref. Model and Perturbed Plant with Nominal PI Controller 
1.6 

1.4 Perturbed plant 2 

1.2 

1 

Q 
-0 0.8 
3 
C .- 
c 
m g 0.6 

0.4 

zits= 0.8 
0.2 delta=2 sec 

Angle roh= +40 degree 

0 Controller: PI Nominal 

Figure 5.33: Step responses of Reference model and closed loop nominal & extreme plants 
with PI Controller for p= +40°, on= 0.1 1 radlsec, 5=0.8, A= 2 sec using OGDTM 

The nominal controller parameters are randomly varied to the extent of &lo%, &20% and 

+30% and corresponding time and frequency domain performance measures are 

computed and are given in table 5.7. Step responses of Reference model and closed loop 

nominal & extreme plants with varied parameter nominal PI Controller for p= -40°, on= 

0.11 radlsec, 5=0.8, Sampling time A= 2 sec using genetic algorithm for OGDTM method 

optimum frequency point is found to be 0.0089 for different parameter variation in the 

nominal controller are shown in figure 3.34 to 3.39. The Nominal controller transfer 

function is given as 
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Table 5.6 

Time and frequency response specifications due to Plant uncertainty for different angles 
with on= 0.1 1 radlsec, E,=0.8, Sampling time A= 2 sec & PI controller 

Plant 

Nominal 

Ps,(y) 

Ps2(y) 

Ps3(y) 

Ps4(y) 

PSS(y) 

Ps6(y) 

Nominal 

Psl(y) 

Ps2(y) 

Ps~(Y) 

P2(y) 

Ps5(y) 

PS6(y) 

Nominal 

Psl(y) 

PS2(y) 

Ps3(y) 

PS~(Y) 

Ps~(Y) 

Ps6(y) 

Nominal 

Psl(y) 

Ps2(y) 

Ps~(Y) 

Pa(y) 

Ps5(y) 

ps6(~) 

P 

- 40" 

-40" 

- 40" 

- 40° 

-40" 

-40" 

- 40" 

- 20" 

- 20" 

- 20" 

- 20" 

- 20" 

- 20" 

- 20" 

+20° 

+20" 

+20° 

+20° 

+20° 

+20° 

+20" 

+40" 

+40° 

+40° 

+40° 

+40" 

+40° 

Reference Model Closed loop system with nominal PI 

M,% 

1.61 

1.61 

1.61 

6 

1.61 

1.61 

1.61 

2.08 

2.08 

2.08 

2.08 

2.08 

2.08 

2.08 

5.31 

5.31 

5.31 

5.31 

5.31 

5.31 

5.31 

10.31 

10.31 

10.3 1 

10.31 

10.31 

+40"0.31 

10.31 

tJA 

28 

28 

28 

28 

28 

28 

28 

25 

25 

25 

25 

25 

25 

25 

20 

20 

20 

20 

20 

20 

20 

18 

18 

18 

18 

18 

18 

18 

GM 

3.19 

3.51 

2.75 

2.37 

2.37 

3.71 

4.57 

2.67 

2.87 

2.26 

1.96 

1.96 

3.17 

3.85 

2.1 1 

2.26 

1.78 

1.55 

1.55 

2.51 

3.05 

1.83 

1.98 

1.56 

1.35 

1.35 

2.17 

2.64 

Controller 

tJA 

19 

32 

16 

20 

20 

39 

24 

16 

31 

28 

32 . 
32 

34 

21 

32 

28 

27 

50 

50 

32 

28 

35 

28 

43 

73 

73 

43 

28 

M,% 

2.07 

0 

0 

5.25 

5.25 

5.95 

2,72 

4.04 

0 

2.72 

14.01 

14.01 

6.67 

2.20 

17.47 

1.51 

20.86 

35.27 

35.27 

15.82 

7.39 

30.55 

13.51 

35.63 

51.25 

51.25 

26.77 

15.65 

PM 

63.11 

74.15 

68.68 

62.68 

62.68 

59.96 

64.21 

62.08 

74.37 

67.41 

60.22 

60.22 

59.04 

63.89 

54.25 

68.59 

57.21 

47.50 

47.50 

52.38 

58.43 

45.60 

60.81 

46.18 

34.50 

34.50 

45.03 

5.2.04 

tJA 

19 

19 

19 

19 

19 

19 

19 

17 

17 

17 

17 

17 

17 

17 

21 

21 

21 

21 

21 

21 

21 

24 

24 

24 

24 

24 

24 

24 

tJA 

28 

-- 

-- 

20 

20 ' 

34 

37 

22 

-- 

16 

17 

17 

29 

32 

18 

16 

14 

16 

16 

24 

23 

17 

15 

14 

16 

16 

22 

21 

GM 

3.09 

3.09 

3.09 

3.09 

3.09 

3.09 

3.09 

3.02 

3.02 

3.02 

3.02 

3.02 

3.02 

3.02 

2.61 

2.61 

2.61 

2.61 

2.61 

2.61 

2.61 

2.37 

2.37 

2.37 

2.37 

2.37 

2.37 

2.37 

PM 

63.26 

63.26 

63.26 

63.26 

63.26 

63.26 

63.26 

62.62' 

62.62 

62.62 

62.62 

62.62 

62.62 

62.62 

58.64 

58.64 

58.64 

58.64 

58.64 

58.64 

58.64 

53.98 

53.98 

53.98 

53.98 

53.98 

53.98 

53.98 
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Table 5.7 

Time and frequency domain specification due to variation in controller parameters with 
p= - -40°, on= 0.1 1 rad/sec, 5=0.8, Sampling time A= 2 sec & PI controller 

Plant 

Nominal 

Psr (Y) 

Ps~(Y) 

p63 (Y) 

M Y )  

PSS(Y 

p ~ 6 ( ~ )  

Nominal 

PSI (Y) 

ps2(~) 

ps3(~) 

Ps~(Y) 

PSS(Y) 

Ps~(Y) 

Nominal 

PSI(Y) 

P62(~) 

p63(y) 

Ps4(Y) 

P~s(Y> 

P66(~) 

PI Controller Transfer function 

-30% Parameter Variation 

0.002449 
C 6 ( y )  = 0.02809 + 

Y 

-20% Parameter Variation 

0.002799 C,(y) = 0.03210+ 
Y 

-10% Parameter Variation 

C,(y) = 0.03612+ 
0.003 149 

Y 

Closed loop system with nominal PI 

M,% 

-- 

-- 

-- 

-- 

-- 

0.47 

0.05 

-- 

-- 

-- 

-- 

-- 

1.74 

0.5264 

0.09 

-- 

-- 

-- 

-- 

3.60 

1.44 

t,jA 

-- 

-- 

-- 

-- 

-- 

61 

77 

-- 

-- 

-- 

-- 

-- 

47 

55 

3 7 

-- 

-- 

-- 

-- 

39 

44 

Controller 

A 

3 5 

48 

3 7 

34 

34 

37 

40 

28 

42 

3 2 

26 

26 

3 1 

3 3 

23 

3 6 

2 8 

17 

17 

26 

2 8 

GM 

4.56 

5.01 

3.94 

3.39 

3.39 

5.31 

6.53 

3.99 

4.38 

3.44 

2.97 

2.97 

4.64 

5.71 

3.55 

3.90 

3.06 

2.64 

2.64 

4.12 

5.08 

PM 

71.31 

79.43 

76.15 

72.09 

72.09 

68.35 

71.38 

68.59 

77.75 

73.81 

69.1 1 

69.11 

65.48 

68.93 

65.87 

75.99 

71.32 

65.98 

65.98 

62.68 

66.54 
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Table 5.7 (continued) 

Time and frequency domain specification due to variation in controller parameters with 
p= - -40°, on= 0.1 1 radlsec, 5=0.8, Sampling time A= 2 sec & PI controller 

Closed loop system with nominal PI Controller Plant PI Controller Transfer function 

Nomlnal 

PSI(Y) 

PSZ(Y) 

P'3(~) 

P&l(Y) 

PSS(Y) 

p66(~) 

Nominal 

PSI(V) 

P 6 2 ( ~ )  

Ps3(Y) 

P ~ Y )  

PSS(Y) 

p66(~) 

Nominal 

PSI(Y) 

P62(y) 

P63(~) 

PM(Y) 

PSS(Y) 

Ps~(Y) 

+lo% Parameter Variation 

0.003849 
Ca(y )  = 0.0441 4 + 

Y 

+20% Parameter Variation 

0.004199 
Cg(y)=0.04815+ 

Y 

+30% Parameter Variation 

0.004549 
c 6 ( y )  = 0.05217 + 

Y 

M,% 

5.29 

-- 

1.04 

11.69 

11.69 

8.68 

4.31 

9.15 

1.61 

6.43 

18.36 

18.36 

11.75 

6.17 

13.40 

-- 

12.01 

24.93 

24.93 

8.30 

tdA 

24 

-- 

17 

19 

19 

3 1 

22 

22 

25 

16 

18 

18 

29 

30 

21 

-- 

16 

18 

18 

27 

t&A 

25 

29 

13 

23 

23 

40 

23 

27 

26 

26 

3 3 

3 3 

3 9 

34 

27 

15 

28 

34 

34 

34 

GM 

2.91 

3.19 

2.50 

2.16 

2.16 

3.37 

4.15 

2.66 

2.92 

2.29 

1.98 

1.98 

3.09 

3.81 

2.46 

2.70 

2.12 

1.82 

1.82 

3.51 

PM 

60.35 

72.23 

65.87 

59.19 

59.19 

57.29 

61.94 

57.58 

70.21 

62.89 

55.50 

55.50 

54.68 

59.74 

54.80 

68.09 

59.73 

5 1.62 

5 1.62 

57.58 
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Step Response of Ref. Model and NorninallPerturbed Plant with PI Controller 

1.2 
withJO% parameter variatoation , , I I , , I , 

Reference Model 

Nominal 
Perturbed plant 3 8 4 \" 

Perturbed plant 2 

wn= 0.11 rad I sec 
0.2 zits= 0.8 

delta=2 sec 
Angle roh= - 40 degree 

0 Controller: PI 

Controller variation - 30% 

Figure 5.34: Step responses of Reference model and closed loop nominal & extreme plants 
with -30% varied parameter nominal PI Controller for p= -40°, on= 0.1 1 radlsec, 5=0.8, 

Sampling time A= 2 sec using OGDTM 

Step Response of Ref. Model and NorninallPerturbed Plant with PI Controller 

1.2, 
with- 20% parameter variatoation , , I I , , I 

I Reference Model I 

Perturbed plant 6 

Perturbed plant 1 
Nominal -I 

Perturbed plant 3 8 4 

Perturbed plant 2 \' ' 
Perturbed plant 5 

wn= 0.11 rad I sec 
zits= 0.8 
deltaz2 sec 
Angle roh= - 40 degree 
Controller: PI 
Controller variation - 20% 

Figure 5.35: Step responses of Ref. model and closed loop nominal & extreme plants with - 
20% varied parameter nominal PI Controller for p= -40°, an= 0.1 1 radlsec, 5=0.8, A= 2 sec 

using OGDTM 
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Step Response of Ref. Model and NominallPerturbed Plant with PI Controller 
with-lO0/~parameter variatoatlon 

1.2 
Reference Model 

\ 

Perturbed plant 3 & 4 

Perturbed plant 2 
\'% 

Perturbed plant 5 

wn= 0.11 rad I sec 
0.2 zits= 0.8 

delta=2 sec 
Angle roh= - 40 degree 

0 Controller: PI 

Controller variation - 10% 

-0.2 1 I 1 I I I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

Vdelta 

Figure 5.36: Step responses of Ref. model and closed loop nominal & extreme plants with - 
10% varied parameter nominal PI Controller for p= -40°, on= 0.1 1 radlsec, 5=0.8, A= 2 sec 

using OGDTM 

Step Response of Ref. Model and NominallPerturbed Plant with PI Controller 
with+lO%parameter variatoation 

1.2, I 

I -Perturbed plant 5 I 

Perturbed plant 6 

Perturbed plant 3 & 4 

Perturbed plant 2 

Reference Model 

wn= 0.11 rad I sec 
zits= 0.8 
deltaz2 sec 
Angle roh= - 40 degree 
Controller: PI 
Controller variation + 10% 

I 
-0.2 1 I I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 100 
Vdelta 

Figure 5.37: Step responses of Ref. model and closed loop nominal & extreme plants with 
+lo% varied parameter nominal PI Controller for p= -40°, on= 0.1 1 rad/sec, 5=0.8, A= 2 sec 

using OGDTM 
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Figure 5.38: Step responses of Reference model and closed loop nominal & extreme plants 
with +20% varied parameter nominal PI Controller for p= -40°, a,= 0.11 radlsec, 5=0.8, 

Sampling time A= 2 sec using OGDTM 
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Figure 5.39: Step responses of Reference model and closed loop nominal & extreme plants 
with +30% varied parameter nominal PI Controller for p= -40°, a,= 0.1 1 radlsec, E,=0.8, 

Sampling time A= 2 sec using OGDTM 
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5.1.9 MIMO Systems: 

We consider here the problem of controller design for a multivariable system with 

dead time. There is a great variety of processes whose dynamics are represented by 

multivariable transfer functions having multiple time delays. Some of the more important 

processes in this category are distillation columns, extraction and absorption processes, 

heat exchangers etc. These processes are multi-input multi-output systems with multiple 

time delays and strong interaction effects between various inputs and outputs. Let the 

transfer function model of the plant is 

For square plant transfer function model, p = m. The individual scalar transfers function 

in the above may be expressed in a general form as 

The reference model TFM with multiple time delay is considered as 

M,(Y) = d i a g { ~ ~ ~ ( y )  (1 + A Y ) ~ ~ ~ } ;  i E [I, p ] ;  p = m  (5.26) 

The purpose is to design a multivariable controller Cs(y) that results in good set point 

traclung, low interaction and desired time response characteristics like settling time, rise 

time, allowable overshoot etc., for the main diagonal responses. 

In this section we extend the MIMO controller design methods of Chapter-4 

OGDTM and Optimal frequency fitting to design a controller TFM Cs(y) for MIMO 

systems with multiple delays. Design results are given in the example sections. The 

mathematical expressions for the controller design procedure follow closely those of 

Chapter-4, and are not included for brevity. 

5.1.10 Simulation results with OGDTM method: 

The OGDTM method is tested here on following MIMO system with time delay. 
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5.1.10.1 Distillation column with time delay: 

We consider here the distillation column studied by Wood and Berry [121]. The 

plant transfer function is given by 

The continuous plant models is discritized in &domain incorporating the sampler and 

ZOH at sampling period A=l  sec. Very fast sampling is avoided to restrict the order of 

the resultant system. The discrete transfer function in &domain is obtained as : 

The reference model for undamped natural frequency a,=0.28 rad/sec and 0.3 rad /sec, 

damping factor 5=0.8 and angle p = -40" are computed and given as: 

A=l  sec, P= -40°,a=0.28 rad/sec & E=0.8 

Reference model 

The following GA parameters are considered to compute OGDTM (p,) value 

Method of selection : Roulette wheel 

Number of generation for evolution: 35 

Population size : 32 

Crossover probability: 0.85 
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Number of crossover : 2 

Mutaion probability: 0.0085 

Using above GA parameters, the optimal frequency point pt is found to be 0.0718 and 

corresponding PI controller is obtained as: 

A=1 sec, o= - 4 0 ° , ~ = 0 . 3  radlsec & E=0.8 

For the specifications given above, the reference model transfer functions are 

and using GA with same parameters, OGDTM point is found to be 0.0954 and the PI 

controller obtained are given as: 

I 
0.03 12 

0.1559 + - -0.02834 - 
0.02101 

C,(Y) = 
Y 

-0.00154+ 
0.01277 

- 0.0825 1 - 
0.01429 

Y Y I 
The unit step responses of the reference model and closed-loop plant are shown in 

Figures 5.40 and 5.41 respectively, while the corresponding control efforts are shown in 

Figures 5.42 825.43 

5.1.11 Simulation results with Optimal frequency fitting method: 

The optimal frequency fitting method is tested on following MIMO system with 

time delay 

5.1.11.1 Distillation column (revisited): 

We considered the plant in section 5.1.10.1 for controller design using the optimal 

frequency fitting method. Since the sampling period is kept same i.e. 1 sec to restrict the 

order of resultant transfer function, the plant transfer function in delta domain will be 

same as section 5.1.10.1. The reference model is computed for different values of 
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undamped natural frequencies and using genetic algorithm the optimal frequency points 

resultant PI controller obtained the Optimal frequency points considered are y, = y/.i, 

A = 1 sec, p = - 40'. on - = 0.2 rad / sec & = 0.8 

Reference model transfer functions are 

GA parmeters are selected as 

The following GA parameters are considered to compute OGDTM (p,) 

value 

Method of selection : Roulette wheel 

Number of generation for evolution: 30 

Population size : 3 1 

Crossover probability: 0.77 

Number of crossover : 2 

Mutaion probability: 0.0077 

Using above parameters for GA, the optimal frequency point is found to be 0.0089 and 

-0.0002+0.0177i as the real and imaginary parts and corresponding PI controller is 

obtained as: 

Reference model transfer functions are 



Chapter - 5: Time Delay and Uncertain System Controllers 

Using the same GA parameters , the optimal frequency point is found to be 0.1269 and 

the real and imaginary parts are -0.0329+0.2510i. The PI controller transfer function is 

obtained as: 

The unit step responses of the reference model and closed-loop plant are shown in 

Figures 5.44 and 5.45 respectively, while the corresponding control efforts are shown in 

Figures 5.46 & 5.47. 
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Control Efforts (U21) 
0.04 I 

Zta = 0.8 
Angle roh = - 40deQ 1 

\ I Conlroller: P I  I 

Control Efforts (U121 

-0.081 J 
0 50 100 150 

Udelta 

Control Efforts (U22) 

1 . 2 1  

Angle roh = - 40deg 
Controller: PI 

-0.21 I 
0 50 100 150 

Udelta 

Figure 5.41 : Step responses of Control effort using OGDTM, u 1 1,u 12,u21 ,u22, A = 1 sec, p = - 40°, 
on= 0.2 rad/sec & 5 = 0.8 



Chapter - 5: Time Delay and Uncertain System Controllers 
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Step Response of MlMO Systlon with PI controller (Y11) Step Response of MlMO Systlon wlth PI controller (Y12) 

Figure 5.44: Step responses of the reference model and closed loop plant with PI controller using OFF 
method, output y11 ,y12,y21 ,y22, A=lsec, p=-40°, 0,=0.2 radsec & 5=0.8 
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Figure 5.45: Step responses of Control effort using OFF method, u11 ,u12,u21 ,u22, A = 1 sec, p = - 40°, 
on= 0.2 radlsec & 5 = 0.8 
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S t e ~  Res~onse of MlMO Swtlon with PI controller (Y21) 
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Step Response of MlMO Systlon with PI controller (Y22) 

2 

150 

"..& 

0.1 

0.08. 

0.06. 

4 0.04. - - 
C 
2 0.02 
s 

-0.02 

- Reference Model 
-.-.-.- Deslgned Closed loop System 

- - 
C ! 

wn 10.28 rad.sec 
m de1ta:l sec 

0.4 - Zlta : 0.7 

Pngle roh = - 40deg 
Controller: PI 

-0.2 
0 50 100 

Vdelta 

Udelta Udella 

- Reference Model 
-.-.-.- 

. ;%I, 

Deslgned Closed loop System . 
; ! 
; I. . i \ 
! i. :: Ii 

i ..-. -._._._.-.-.-. 
! ; 
! i  
. \ i wn = 0.28 rad.sec 
i !  i ! delta=l sec 
. I Zta : 0.7 

. i j Angle roh I - 40deg 
I !  
i Controller: PI 

li 
1 

0 50 100 

1.2 

.-.-.-._. 

, - Reference Model 0.8. ,! -.-.-.- I Designed Closed loop System 
I 

wn = 0.28 rad.sec 
delta=l sec 
Zta 0.7 

0.2 i Angle roh : - 40deg 
Controller: PI 

0 

-0.2 
0 50 100 

ii - Reference Model 
. i i -.-.-.- 

! ! Deslgned Closed loop System ' 
! ! 
! ! 
! ! wn : 0.28 rad.sec 
! ! delta=l sec 
I Zlta : 0.7 
! ! Angle roh = - 40deg 

; : Controller: PI 
! ! 
! ! 

. 1 ! . ! 
! ! ._.-.-.-.-._. -.-.-._._._, 

0 :  : 
i i  ! 

r' 
.i i; ; ,.,.' 

i! ! ,. 

Figure 5.46: Step responses of the reference model and closed loop plant with PI controller using OFF 
method, output y11 ,y12,y2 1 ,y22, A=l  sec, p=-40°, a,=0.28 radlsec & 5=0.7 
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5.2 Conclusion: 

Two new methods for designing controllers for systems with time delay have 

been proposed. The methods use the concept of approximate model matchlng approach to 

obtain the parameters of a cascade controller Cs(y) in the standard unity-feedback 

configuration. The design results in a closed-loop step response that closely matches the 

desired response. 

We presented two methods namely the OGDTMs matching and the method of 

Optimal Frequency Fitting. In these methods we use the concept of matching the Optimal 

GDTMs and Optimal frequency fitting for obtaining the controller. The use of OGDTM 

and Optimal Frequency Fitting concepts have thus been effectively extended to processes 

involving time delay. The important features of the proposed method and the results are 

the following : 

Only output feedback is used. 

These provide low-order, practically implementable controllers. 

The methods are conceptually elegant and computationally simple, requiring 

the solutions of sets of linear algebraic equations. The merit of the methods in 

terms of computational ease becomes even more important when the plant is of 

high-order. 

The controlled system responses match very closely those of the desired model. 

Responses due to interactions are kept to acceptably low levels. 

The methods are easy to use and give good results. 

On completion of one design-simulation run, the designer's understanding of the 

possible betterment of system dynamics improves and the available trade off 

between the desired specifications and controller complexity become more 

apparent. It may be noted that the main computational work involved in each trial 

toward an acceptable compromise consists of solving only linear equations to 

determine the controller parameters and obtaining system responses to a unit step 

input. 

Implementation does not call for softwarelhardware modeling of the time-delay 

term (as in the smith's predictor method). 
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Chapter 6 

Biomedical Digital Filters in Delta Domain: 

6.1 Introduction: 

Traditional digital signal processing algorithms, developed during the past five 

decades, employ the technique of the shift operator to represent the dynamics of sampled 

data systems. However, the shift operator does not overcome the gap between the high 

sampling rates of widely available digital signal processing chips, and relative slow 

dynamics of the continuous time processes. In such situations of processing and control 

data, often in real time at very high speeds, a more suitable mathematical operator is 

necessary. As discussed in chapter-1, Middleton and Goodwin [7],[10] developed a 

unified description of continuous time and discrete-time systems. It allows continuous- 

time results to be obtained as a particular special case of discrete-time ones, by setting the 

sampling period to zero. 

The new approach is based on the introduction of the so-called delta (6) operator 

as an alternative to the shift operator. In recent years, the delta operator methodology has 

been widely accepted as an effective tool for high-speed digital signal processing, and 

fast sampled data representation. 

The delta operator establishes a special rapprochement between analog and 

discrete dynamic models and allows for investigating the asymptotic behaviour of 

discrete time models as the sampling period converges to zero. Numerous advantages, for 

using the delta operator have already been listed in chapter-1. As already discussed, in the 

shift form, as the sampling rate increases, the poles and zeros cluster around the point 

(1, jO) in the z-plane and the solution algorithms are better conditioned in delta than in 

shift form. From then on, the delta operator became more attractive, and interesting links 

between continuous-time and discrete-time signals and systems analysis had been 

established [122], [123]. On the other hand, some limitations of the delta domain setting 

have been also reported, e.g. it is a common opinion that the relevant delta operator based 

computations become more complicated [I231 and sampling zeros are inducted during 

sampling which is to be taken care of. 
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The delta operator methodology promoted by Middleton and Goodwin [I] had 

been tested in a teaching environment at the University of Newcastle, Australia for years. 

Moreover, this encouraged professor Middleton to write the software and documentation 

for the Delta Toolbox [124] which can be downloaded from his personal site. 

The use of the delta operator in the realizations of digital filters has recently 

gained interest due to its good finite-word-length performance under fast sampling. Juha 

Kauraniemi et.al [37] [38] have studied efficient direct form structures and analysed round 

off noise and found delta structure has the lower quantization noise level as its output. 

P.Tanelz Harp et.al, have worked on magnitude response optimization of delta operator 

filters" [32] and an algorithm to test for various symmetries in the magnitude response of 

two dimensional complex-coefficient delta operator formulated discrete-time systems 

have been developed by Hari c.Reddy [125]. Markku Eraluoto and Iiro Hartimo [31], 

[33] have worked on reducing implementation complexity of fast sampled digital IIR 

filters. The work of Newman et.al [I021 on delta operator based IIR digital filter for high 

performance power electronic inverter applications is worth mentioning. A considerable 

amount of work has been done in delta operator based digital filters in different field and 

in continuation we have also tried to contribute our effort by designing digital filters in 

delta domain to filter out high frequency 1 low frequency noises as well as 5060 Hz 

power line interference from ECG signal. 

6.2 Preliminary: 

6.2.1 Analog and Digital filter: 

The processing of signals is called filtering. When applied to continuous time 

signals, this processing is called analog filtering and while the applied to discrete time 

signals, it is known as digital filtering. An analog filter uses analog electronic circuits 

made up from components such as resistors, capacitors and op-amps to produce the 

required filtering effect. Such filter circuits are widely used in the applications as noise 

reduction, video signal enhancement, graphic equalizers in hi-fi systems, and many other 

areas. 'There are well-established standard techniques for designing an analog filter circuit 

for a given requirement. At all stages, the signal being filtered is an electrical voltage or 

current. 
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Digital filters are fundamental to digital signal processing. A digital filter uses a 

digital processor to perform numerical calculations on sampled values of the signal. The 

processor may be a general-purpose computer such as a PC, or a specialized DSP (Digital 

Signal Processor) chip. 

The analog input signal must first be simpled and digitized using an ADC (analog 

to digital converter). The resulting binary numbers, representing successive sampled 

values of the input signal, are transferred to the processor, which carries out numerical 

calculations on them. These calculations typically involve multiplying the input values by 

constants and adding the products together. If necessary, the results of these calculations, 

which now represent sampled values of the filtered signal, are output through a DAC 

(digital to analog converter) to convert the signal back to analog form. In a digital filter, 

the signal is represented by.a sequence of numbers, rather than a voltage or current. 

Digital filters are defined by their impulse response, h[n], or the filter output 

given unit sample impulse input signal. The frequency response,of a digital filter can be 

found by taking the DFT or FFT of the filter impulse response. The frequency response 

of a filter consists of its magnitude and phase responses. The magnitude response 

indicates the ratio of a filtered sine wave's output amplitude to its input amplitude. The 

phase response describes the phase offset or time delay experienced by a sine wave 

passing through a filter. However the digital filters are often best described in terms of 

their frequency response i.e. how is a sinusoidal signal of a given frequency affected by 

the filter. 

6.2.2 Advantages of digital filters: 

The following list gives some of the main advantages of digital over analog filters. 

A digital filter is programmable, i.e. its operation is determined by a program 

stored in the processor's memory. This means the digital filter can easily be 

changed without affecting the circuitry (hardware). An analog filter can only be 

changed by redesigning the filter circuit. 

Digital filters are easily designed, tested and implemented on a general-purpose 

computer. 
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The characteristics of analog filter circuits are subject to drift and are dependent 

on temperature. Digital filters do not suffer from these problems, and therefore 

they extremely stable with respect both to time and temperature. 

Digital filters can handle low frequency signals accurately. As the speed of DSP 

technology continues to increase, digital filters are being applied to high 

frequency signals in the RF (radio frequency) domain, which in the past was the 

exclusive preserve of analog technology. 

Digital filters are very much more versatile in their ability to process signals in a 

variety of ways; this includes the ability of some types of digital filter to adapt 

to changes in the characteristics of the signal. 

Fast DSP processors can handle complex combinations of filters in parallel or 

cascade, malung the hardware requirements relatively simple and compact in 

comparison with the equivalent analog circuitry. 

6.2.3 Operation of digital filters: 

Suppose the signal which is to be digitally filtered is described by the function 

V = x (t), Where t is time. This signal is sampled at time intervals A. The sampled value 

at time t = M is xk = x(kA) 

Thus the digital values transferred from the ADC corresponding to t = 0, A, 2A, 

3A, . .. to the processor can be represented by the sequence xo, X I ,  x2, x3, ... x,, and are 

stored in memory. In this case the sampled values x,+,, x,+z etc. are not available as they 

haven't happened yet. The digital output from the processor to the DAC consists of the 

sequence of values yo, y ~ ,  y2, y3, ... , y, In general, the value of y, is calculated from the 

values xo, X I ,  X*, xj, ... , x,. The way in which the y's are calculated from the x's determines 

the filtering action of the digital filter. 

The following are few digital filters and their essential features: 

i. Simple gain filter: yn = Kx, (K = constant) 

K > 1 makes the filter an amplifier, while 0 < K < 1 makes it an attenuator. K < 0 

corresponds to an inverting amplifier. 

ii. Pure delay filter: Yn = xn-I 
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The output value at time t = nA is simply the input at time t = (n-l)A, i.e. the 

signal is delayed by time A. 
. . . 
111. Two-term difference filter: yn = xn - Xn-I  

The output value at t = nA is equal to the difference between the current input x, 

and the previous input xnSl. The output is the change in the input over the most 

recent sampling interval A. The effect of this filter is similar to that of an analog 

differentiator circuit. 

iv. Two-term average filter: y, = (x, + x,.~) I 2  

The output is the average (arithmetic mean) of the current and previous input. 

This is a simple type of low pass filter as it tends to smooth out high-frequency 

variations in a signal. 

v. Three-term average filter: yn = (xn + xn-l + xn-2) / 3 

This is similar to the previous example, with the average being taken of the 

current and two previous inputs. As before, x . ~  and x-2 are taken to be zero. 

vi. Central difference filter: y, = (x, - x,-~) / 2 

This is similar in its effect to example (3). The output is equal to half the change 

in the input signal over the previous two sampling intervals: 

6.2.4 Order of a digital filter: 

The order of a digital filter can be defined as the number of previous inputs stored 

in the processor memory is used to calculate the current output. 

1. zero order filter: yn = xn or yn = K x ~  

Here the current output y, depends only on the current input x, and not on any 

previous inputs. 
, . 
11. First order filter Yn = xn- I or y, = X, - Xn- I 

In a first order filter, one previous sample (x,.~) is required to calculate y,. 

Therefore the order of a digital filter may be any positive integer. 

All of the digital filter examples given in section 6.2.3 can be written in the 

following general forms: 

Zero order: yn = a %  

First order: Yn = a x n  + alxn-I 

Second order: y, = a x ,  + alx,-l + a2xn-2 
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Similar expressions can be developed for filters of any order. 

6.2.5 Recursive and non-recursive filters: 

For all the examples of digital filters discussed so far, the current output (y,) is 

calculated solely from the current and previous input values (x,, x,.,, x,.2 ...). These are 

called as non-recursive filters. 

A recursive filter is one which in addition to input values also uses previous 

output values. The expression for a recursive filter therefore contains not only terms 

involving the input values (x,, x,-1, x , ~ ,  ...) but also terms in y,-l, y,-2, ... . 
Recursive filters require more calculations to be performed, since there are 

previous output terms in the filter expression as well as input terms. To achieve a given 

frequency response characteristic using a recursive filter generally requires a much lower 

order filter, and therefore fewer terms to be evaluated by the processor, than the 

equivalent non-recursive filter. 

6.2.6 FIR and IIR filters: 

A non-recursive filter is known as an FIR (Finite Impulse Response) filter, and a 

recursive filter as an IIR (Infinite Impulse Response) filter. These terms refer to the 

differing "impulse responses" of the two types of filter. An FIR filter is one whose 

impulse response is of finite duration. An IIR filter is one whose impulse response 

(theoretically) continues for ever, because the previous output terms are feed back energy 

into the filter input and keep it going. But actual impulse responses of nearly all IIR 

filters reduce virtually to zero in a finite time. 

6.2.7 The unit delay operator 

The delay operators in z and delta domain are represented by the symbol z-' & j'. 

When applied to a sequence of digital values, this operator gives the previous value in the 

sequence. It therefore in effect introduces a delay of one sampling interval. The relations 

between z and 6 domain unit delays are shown in Figure 6.1 
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Figure 6.1: Construction of delay in delta domain 

6.2.8 Steady State a n d  Transient Response: 

Since digital filters are linear systems, a sinusoidal input will produce a sinusoidal 

output of the same frequency assuming before a signal is applied to the input of a digital 

filter; the filter's internal state is equal to zero. However, when a sinusoidal signal is first 

applied to the input of a digital filter, the output initially exhibits a region of transition 

which is referred to transient response. For FIR filters, this transition region has duration 

in samples equal to the filter order. But for IIR filters, the length of the transition region is 

dependent on the filter order and the feedback coefficient values. 

Assuming a continued application of the sinusoidal input, the filter will eventually 

settle into its steady-state region. If the input frequency changes or shows a discontinuity 

of any sort, another transient region will occur in the filter output. The frequency 

response of a digital filter is understood to represent its steady-state behaviour. 

6.2.9 Signal conversion 

The concept of converting a continuous time signal to discrete samples leads to 

the fact that to represent a continuous time signal can be done by its instantaneous 

amplitude values taken at periodic points in time. Simply to say, any continuous signal 

can be reconstructed perfectly with its sampled points without any loss of information as 

stated in the sampling theorem initially developed by Shannon [126]. 

The Sampling Theorem states that for band limited signals with maximum 

frequency f,,, the equally spaced sampling frequency fs must be greater than twice of the 

maximum frequency fmU, i.e., fs > 2.f,,,. The frequency 2.fm,, is called the Nyquist 

sampling rate and half of this value f,,,, is sometimes called the,Nyquist frequency. For 

any filter to recover the original signal it must satisfy the condition in sampling theorem, 

if fs is equal to or less than the twice of the maximum frequency adjacent samples get 
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overlapped and results to an effect called aliasing also explained as the higher frequencies 

are reflected in to the lower frequency range. 

6.2.10 Shift operator based IIR digital filters 

The shift operator q and its associated z-transform are synonymous as the way of 

implementing IIR digital filters. The application of the shift operator to a given input 

discrete-time sample x[k] is simply the future sample as in 

or equivalently x[k + 11 = z  x[k] (6.1) 

If initial conditions are ignored, the shift operator q can simply be replaced by 'z' 

[117]. In a practical sense this is obviously not causal, but the inverse shift operator can 

be applied. as a causal alternative 

z-' [k] = x [k - I] (6.2) 

Any linear discrete-time system (2nd order in this case) can be described by a 

linear difference equation [122] 

y[k] + a, y[k - 11 + a, [k - 21 = box[k] + b,x[k - 11 + b,x[k - 21 (6.3) 

It is to be noted that only a second order transfer function has been considered, as 

higher order transfer functions are preferably implemented as a cascade of first and 

second order functions, to minimize rounding and truncation effects [123]. Applying 

(6.2) results in the general form for the output of a second order infinite impulse response 

(IIR) filter, of 

y[k] = box[k] + b, z-'x[k] + b, z-,x[k] - a, z-Iy[k] + a, z-,[k] (6.4) 

Finally, rearrangement of (6.4) provides the canonical form of the shift-based IIR filter, 

H,(z), which gives an output of Y(z) when applied to an input sequence X(z) 

With the above structure if we have the knowledge of the filter coefficients, ai & 

bi , the shift-based 2nd order IIR filter can easily be realized and implemented. There are 

many methods for acquisition of these coefficients [122], the bilinear (Tustin) 
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transformation is the more popular choice, as it will always provide a stable digital filter 

as long as the analog filter is stable. This method involves the substitution of 

into the desired s-domain transfer function, and rearranging the result into the form of 

(6.5) to obtain the associated coefficient values. The transformation from the continuous 

Laplace s-domain into the discrete-time z-domain, maps the infinite frequency range 

[0, M] to the finite range [0, x] [127],[128]. Thls mapping is nonlinear and the frequency 

axis is compressed, with the effect becoming particularly significant for higher sampling 

frequencies. The importance of this compression for shift-based IIR filters is that as the 

sampling frequency increases, the poles of the filter converge toward 1 on the z-plane. 

This clustering makes very small changes in the pole locations (i.e., because of 

coefficient rounding) cause very large deviations from the intended transfer function. 

To illustrate this effect let us consider a 3rd order butterworth filter [129] whose 

transfer function in s-domain is given as: 

The transfer function (6.7) is discretized for various sampling time A = 1 sec to 

0.01 sec using bilinear transformation and the pole zero plot in z-plane is shown in Figure 

6.2. For stability, the poles must lie within the unit circle on the z-plane whereas the zeros 

can lie anywhere and therefore as the sampling time decreases or sampling frequency 

increases, the poles also move closer to the point [I, 0] as shown in Figure. 6.2. 

6.2.11 Delta operator based IIR digital filters: 

The delta operator was named and actively promoted in digital control by 

Middleton and Goodwin in 1986 [1],[7],[122]. However, the technique was known in the 

numerical analysis field some decades before as the "difference operator." A complete 

history of the origins of the delta operator is contained in [7]. For discrete systems the 

delta operator is a Euler approximation to a derivative [122]. The definition of delta 

operator has already been given in equation (1.19 - 1.21). 
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Figure 6.2: Pole clustering of 3rd order butterworth IIR digital filter in z-domain 
( Sampling Time A = 1 sec to 0.01 sec) 

Just as the continuous time derivative operator dldt has a s-domain equivalent "s " 

(ignoring initial conditions) using Laplace transforms, the Delta transform can be used to 

convert the discrete time operator to its equivalent; " y". From [l] the Delta transform can 

be derived from the Laplace transform to illustrate the relationship between the two, and 

is summarized as follows. 

If the Laplace transformation (single sided) formula 

is discretized by the substitution of ka, where A is sampling the time, for time and an 

infinite summation for the integral, we obtain 
- 

With substitution of e" = 1 + @ the result is the single sided Delta transform 
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Equation (6.10) can now be used to find the Delta transform of the derivative 

approximation [I]. 

~ ( 6  f [k]]= Y 4 (Y) - (1 + AY)f [Ol (6.11) 

Comparison of (6.1 1) to the Laplace transform of the derivative operator in (6.12) shows 

that if A=O then "y" becomes interchangeable with "s " 

Therefore, the delta operator has the particular property that as the sample time, A, 

approaches zero, it converges toward its continuous counterpart, the Laplace transform 

variable. In fact, it can be said that the continuous domain is actually a subset of the 

discrete-time delta representation. This property gives the delta operator its superior 

performance at high sample rates compared to the shift operator which does not 

converge. It is to be noted, e'A is a time shift of A, and is equivalent to z. Therefore, from 

the same substitution used to create (6.10), the shift and delta operators are found to be 

related by 

z = l + A y  (6.13) 

It has been already discussed in details in chapter-1 with the mapping s, z and 

delta plane and it has been shown that the delta operator is associated with the y- 

transform in exactly the same way that the shift operator q is associated with the z- 

transform, so it follows from (6.13) that 

q = l + S A  (6.14) 

This illustrates how the forward shift is made up of the present sample plus the difference 

(which is the derivative, multiplied by the time step A). We discretize the transfer 

function given in equation (6.7) for various sampling time A = 1 sec to 0.01 sec to find 

the transfer function in delta domain, and the pole-zero plot in delta domain is shown in 

figure 6.2. For stability, the poles must lie within the sampling circle on the y-plane. In 

the case of delta parameterization it is clear from the figure 6.2 that on decreasing the 

sampling time or increasing sampling frequency, the poles remain with in the sampling 

circle however the zeros move towards left of the sampling circle as shown in Figure. 6.3. 
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Pole Zero Plot of 3rd Order Digital Butterworth Filter in Delta domain 
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Figure 6.3: Pole-zero plot of 3rd order butterworth IIR digital filter in delta domain 
( Sampling Time A = 1 sec to 0.01 sec) 
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For comparison the location of poles and zeros for different sampling time are 

shown in table 6.1 

For discrete implementation of analog prototypes using delta-operator based IIR 

digital filters there are two possibilities, first we define an analog prototype transfer 

function in s-domain. ~ 0 . r  convenience we consider a second order transfer function with 

coefficients as given in equation (6.15). 

Then Equation (6.16) can be formed where the coefficients are equal to those in (6.15) 

for, A = 0, and diverge as A increases. The coefficients a, and P, defined in equation 

(6.16) could be found directly by applying the delta transform eqn. (6.10) to the sampled 

prototype system h[n] shown in equation (6.15). 
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Table 6.1 

Poles & zeros of 3rd order Butterworth digital filter in z and 6 domain. 

Sampling 

time A in 

I sec 

0.9 sec 

0.8 sec 

0.7 sec 

0.6 sec 

0.5 sec 

0.3 sec 

0.1 sec 

0.05 sec 

0.01 sec 

0.001 sec 

0.0001 sec 

Poles & zeros in 

Poles 

-0.6071 + 0.46201 
-0.6071 - 0.46201 
-0.6321 

-0.6072 + 0.49801 
-0.6072 - 0.49801 
-0.6594 

-0.6053 + 0.5352i 
-0.6053 - 0.53521 
-0.6883 

-0.6013 + 0.5736i 
-0.6013 - 0.57361 
-0.7 192 

-0.5949 + 0.6131i 
-0.5949 - 0.61311 
-0.7520 

-0.5862 + 0.65361 
-0.5862 - 0.65361 
-0.7869 

-0.5606 + 0.73701 
-0.5606 - 0.73701 
-0.8639 

-0.95 16 
-0.5234 + 0.82281 
-0.5234 -0.82281 

-0.9754 
-0.5121 + 0.8444i 
-0.5121 - 0.84441 

-0.9950 
-0.5025 + 0.861 71 
-0.5025 - 0.86171 

-0.9995 
-0.5002 + 0.86561 
-0.5002 - 0.86561 
-1.0000 
-0.5000 + 0.86601 . 
-0.5000 - 0.86601 

delta domain 

Zeros 

-3.1951 
-1.1676 

-- 

-3.6909 
-1.3057 

-4.3175 
-1.4789 

-5.1312 
- 1.7023 

-6.2259 
-2.0010 

-7.7706 
-2.4204 

-14.0127 
-4.1041 

-45.4901 
-12.5495 

-92.7929 
-25.2270 

-47 1.3426 
-126.6614 

-4.73020e+003 
-1.26780e+003 

-4.73 190e+004 
-1.26790e+004 

Poles & zeros 

Poles 

0.4286 + 0.49491 
0.4286 - 0.49491 
0.3333 

0.4826 + 0.47171 
0.4826 - 0.471 7i 
0.3793 

0.5385 + 0.44411 
0.5385 - 0.44411 
0.4286 

0.5959 + 0.41 171 
0.5959 - 0.41 17i 
0.4815 

0.6547 + 0.37381 
0.6547 - 0.37381 
0.5385 

0.7143 + 0.32991 
0.7143 - 0.32991 
0.6000 

0.8337 + 0.22161 
0.8337 - 0.22161 
0.7391 

0.9477 + 0.08231 
0.9477 - 0.0823i 
0.9048 

0.9744 + 0.04221 
0.9744 - 0.0422i 
0.9512 

0.9950 + 0.0086i 
0.9950 - 0.0086i 
0.9900 

0.9995 + 0.00091 
0.9995 - 0.0009i 
0.9990 
1 .OOOO + 0.0001i 
1 .OOOO - 0.00011 
0.9999 

in z-domain 

Zeros 

- 1 .OOOO + 0.00001 
-1 .OOOO - 0.OOOOi 
- 1 .OOOO 

- 1 .OOOO + 0.OOOOi 
- 1 .OOOO - 0.0OOOi 
- 1 .OOOO 

- 1 .OOOO + 0.OOOOi 
- 1 .OOOO - 0.00001 
- 1 .OOOO 

-1 .OOOO + 0.OOOOi 
-1 .OOOO - 0.00001 
-1 .OOOO 

-1 .OOOO + 0.OOOOi 
- 1 .OOOO - 0.00001 
- 1 .OOOO 

- 1 .OOOO + 0.OOOOi 
-1 .OOOO - 0.OOOOi 
-1 .OOOO 

-1.0001 + 0.00011 
-1.0001 - 0.00011 
-0.9999 

- 1 .OOOO + 0.00001 
-1 .OOOO - 0.00001 
-0.9996 

-1.0005 + 0.00081 
-1.0005 - 0.0008i 
-0.9991 

-1.0016 + 0.0027i 
-1.0016 - 0.0027i 
-0.9969 

-1.0133 + 0.02361 
-1.0133 - 0.02361 
-0.9733 
-1.3918 
-0.8103 + 0.2613i 
-0.8103 - 0.26131 
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But this is a less straightforward approach than desired, The second possible method is to 

use the relationship between the shift and delta domains in (6.12) & (6.13) to utilize the 

coefficients developed using the bilinear transformation. However, it is an 

implementation method and not the design method that provides the delta its performance 

advantages over the shift at high sample rates [122]. Applying equation (6.5) and 

substituting in (6.17) we get simple derivation of the delta filter coefficients. 

For the delta operator to be useful in digital filter applications, a causal form must also be 

available. This is the inverse delta operator i.e delay element in delta domain is 

equivalent to 

or equivalent to 

The construction of equation (6.18) is shown in figure 6.1. 

The 2nd, 3rd and 41h order digital filters with delay element in z domain are represented as 

By using equation (6.18), corresponding transfer functions of (6.19), (6.20) & (6.21) in 

delta domain are given as 
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The coefficients a, & PI of (6.22), (6.23) and (6.24) in terms of a, and b, are given in table 

6.2,6.3 & 6.4 respectively. 

Table 6.2 

Table 6.3 

Conversion table of 2nd order Delta & Shift coefficients 

Po = bo 

2b0 + b, 
PI= A 

bo + b, + b2 
P 2  = ,2 

Table 6.4 

a. = 1 

2 +a ,  a, =- 
A 

1 + a, + a, 
a2 = A2 

Conversion table of 3"d order Delta & Shift coefficients 

Po = 60 

3b0 + b, 
PI = A 

3b0 + 2b, + b2 
P 2  = A2 

bo + b, + b, + b, 
P3 = 

a,, = I  

3+a,  a, =- 
A 

3 + 2a, + a, 
a;= A2 

1 + a, + a, + a, 
a, = A3 

Conversion table of 4th order Delta & Shift coefficients 

P" = bo 

4b0 + b, 
PI = A 

6b0 + 3b, + b2 
P 2  = 

4b0 +3b, +2b2 +b, 
P3 = A3 

bo + b, + b2 + b, + b, 
P 4  = A4 

a. =1 

4 + a ,  a, =- 
A 

6+3a, +a ,  
a; = A2 

4 + 3a, + 2a2 + a, 
a, = A3 

1 + a,  + a, + a, + a, 
a, = A4 
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From this the IIR canonical form of the delta domain transfer functions given in 

(6.22) to (6.24) is found which has the same form as its shift counterpart in (6.19) to 

(6.21). Therefore implementation of delta operator based IIR filters can be performed in 

the same manner as for the shift, except with y- l  replacing the z-I, and different 

coefficients. 

The discrete stability regions for the s, z and 6 domain has already been shown in 

figure 1.2 in chapter-1. The stability region of shift implementation is fixed, causing the 

clustering as shown in figure 6.2 however it can be seen that as A approaches zero, the 

stability region for the delta implementation will once again grow to approach that of the 

laplace domain or s-domain i.e. whole left half plane. 

For shift-based filters, the spread of the coefficient values are fixed, and if this 

spread is too large then the coefficients reach a point where they cannot be implemented 

on a 16 bit fixed-point system. However for delta operator based digital filters, despite 

the variable being initially defined as the sample period, is free to be varied to optimize 

the numerical properties of the design [45]. Therefore, since the coefficients are a 

function as given in Table 6.2 to 6.4, the spread of the coefficients can be optimized to 

allow lower percentage rounding errors. In general, the choice of A determines the 

coefficient rounding and sensitivity, as well as the maximum variable size of the delta 

filter [42]. 

IIR digital'filters can be implemented using either direct form I (DFI) or direct 

form I1 (DFII) structures, or their transposed versions DFIt and DFIIt as shown in Figure 

(6.4). The DFI form can be seen to be simply a diagrammatic version of (6.4), illustrating 

the order in which the additions and subtractions should take place. The DFIt, DFII, and 

DFIIt forms are rearrangements developed to achieve different numerical quantization 

responses. 

While most shift-based digital filters can be implemented with any of these forms, 

this is not necessarily the case for fixed-point delta-based digital filters [44]. For the DFI 

form [Fig. 6.4(a)] the unstable pole at of the formula in (6.18) is not cancelled prior to the 

inverse delta operation, and it is therefore unstable. This causes the output of the 

operation to overflow. For the DFIt form Fig. 6.4(b) the unstable poles of (6.8) are 

cancelled prior to the inverse, but require double precision to function properly [38]. 



Chapter - 6: Biomedical Digital Filters in Delta Domain 

Mostly, these problems are avoided by use of the DFII and DFIIt forms Fig. 6.4(c) and 

( 4 .  1421 

Figure 6.4: Direct form digital filter implementation structures:(a) DFI (b) DFIt (c) DFII (d) 
DFIIt 

In this chapter, few biomedical time and frequency domain digital filters in delta 

domain is presented to remove low frequency, high frequency noises and 50160 Hz power 

line interference in ECG signal. 

6.3 Biomedical signals 

6.3.1 The Nature of Biomedical signals : 

The human body includes the nervous system, the cardiovascular system, and the 

muscular skeletal system etc. Each system is made up of several sub-systems that carry 

on many physiological processes. For example, the cardiac system performs the 

important task of rhythmic pumping of blood throughout the body to facilitate the 

delivery of nutrients, as well as pumping blood through the pulmonary system for 

oxygenation of the blood itself. [lo51 

Physiological processes are complex phenomena, including nervous or hormonal 

stimulation and control; inputs and outputs that could be the form of physical material, 

neurotransmitters, or  information and action that could be mechanical, electrical, or 

biochemical. Most physiological processes are accompanied by or manifest themselves as 

signals that reflect their nature and activities. Such signals could be of many types, 

including biochemical in the form of hormones and neuro transmitters, electrical in the 

form of potential or current and physical in the form of pressure or temperature. 
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Disease or defects in a biological system cause alterations in its normal 

physiological processes, leading to pathological processes that affect the performance, 

health and general well being of the system. A pathological process is typically 

associated with signals that are different in some respects from the corresponding normal 

slgnals. If we possess a good understanding of a system of interest, it becomes possible to 

observe the corresponding signals and assess the state of the system. The task is not very 

difficult when the signal is simple and appears at the other surface of the body. For 

example, most infections cause a rise in the temperature of the body, which may be 

sensed very easily. Objectives or quantitative measurement of temperature requires an 

instrument, such as a simple thermometer. Electrical activity of the hearth is an important 

physiological signal. 

6.3.2 The electrocardiogram (ECG): 

The ECG is the electrical manifestation of the contractile activity of the heart, and 

can be recorded fairly easily with surface electrodes on the limbs or chest. The ECG is 

perhaps the most commonly known, recognized and used biomedical signal. The rhythm 

of the heart in terms of beats per minutes (bpm) may be easily estimated by counting the 

readily identifiable waves. More important is the fact the ECG waveshape is altered by 

cardiovascular disease and abnormalities such as myocardial ischemia and infarction, 

ventricular hypertrophy and condition problems. 

6.3.2.1 Generation of ECG: 

The heart is a four chambered pump with two atria for collection of blood and two 

ventricles for pumping out of blood. Figure 6.4 shows a schematic representation of the 

our chambers and the major vessels connecting to the heart. The resting or filling phase 

of a cardiac chamber is called diastole; the contracting or  pumping phase is called systole. 

The right atrium (RA) collects impure blood from the superior and inferior vena cavae. 

During atrial contraction, blood is passed from the right atrium to the right ventricle (RV) 

through the tricuspid valve. During ventricular systole, the impure blood in the right 

ventricle is pumped out through the pulmonary valve to the lungs for purification 

(oxygenation). 
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Figure 6.4: Schematic representation of the chambers, valves, vessels and conduction 
system of the heart 

The left atrium (LA) receives purified blood from the lungs, which is passed on 

during atrial contraction to the left ventricle (LV) via the mitral valve. The left ventricle 

is the largest and most important cardiac chamber. The left ventricle contracts the 

strongest among the cardiac chambers. As it has to pump out the oxygenated blood 

through the aortic valve and the aorta against the pressure of the rest of the vascular 

system of the body. Due to the higher level of importance of contraction of the ventricles, 

the terms systole and diastole are applied to the ventricles by default. 

The heart rate (HR) or cardiac rhythm is controlled by specialized pacemaker 

cells that form the sino-atrial (SA) node located at the junction of the superior vena cava 

and the right atrium [125]. The firing rate of the SA node is controlled by impulses from 

the autonomous and central nervous systems leading to the delivery of the 

neurotransmitters acetylcholine or epinephrine. The normal (resting) heart rate is about 
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70 bpm. The heart rate is lower during sleep, but abnormally low heart rates below 60 

bpm during activity could indicate a disorder called bradycardia. The instantaneous heart 

rate could reach values as high as 200 bpm during vigorous exercise or athletic activity: a 

high resting heart rate could be due to illness, disease or  cardiac abnormalities and is 

termed tachycardia. 

The coordinated electrical events and a specialized conduction system intrinsic and 

unique to the heart play major roles in the rhythmic contractile activity of the heart. The 

SA mode is the basic, natural cardiac pacemaker that triggers its own train of action 

potentials. The action potential of the SA node propagates through the rest of the heart, 

causing a particular pattern of excitation and contraction The sequence of events and 

waves in a cardiac cycle is as follows [130]: 

1. The SA node fires. 

2. Electrical activity is propagated through the atrial musculature at comparatively 

low rates, causing slow moving depolarization (contraction) of the atria. This 

results in the P wave in the ECG as shown in Figure 6.5 (a) & (b) . Due to the 

slow contraction of the atria and their small size, the P wave is a slow, low 

amplitude wave, with an amplitude of about 0.1 - 0.2 mV and a duration of about 

60-80 ms. 

3. The excitation wave faces a propagation delay at the atrio ventricular (AV) node, 

which results in a normally iso-electric segment of about 60 - 80 ms after the P 

wave in the ECG. Known as the PQ segment. The pause assists in the completion 

of the transfer of blood from the atria to the ventricles. 

4. The His bundle, the bundles branches, and the Purkinje system of specialized 

conduction fibres propagate the stimulus to the ventricles at a high rate. 

5. The wave of stimulus spreads rapidly from the apex of the heart upwards, causing 

rapid depolarization (contraction) of the ventricles. This results in the QRS wave 

of the ECG. A sharp biphasic or triphasic wave of about 1 mV amplitude and 80 

ms duration as shown in figure 6.5. 

6. Ventricular muscle cells possess a relatively long action potential duration of 

300-350 ms. The plateau portion of the action potential causes a normally iso- 

electric segment of about 100 - 120 ms after the QRS. Known as the ST Segment. 
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7. Re-polarization (relaxation) of the ventricles causes the slow T wave, with an 

amplitude of 0.1 - 0.3 mV and duration of 120 - 160 ms as shown in the figure 

6.4 

Figure 6.5(a): A typical QRS wave of ECG signal 

Figure 6.5(b): A typical QRS wave of ECG signal 
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Any disturbance in the regular rhythmic activity of the heart is termed arrhythmia. 

Cardiac arrhythmia may be caused by irregular firing patterns from the SA node, or by 

abnormal and additional pacing activity from other parts of the hearts. Many parts of the 

heart possess inherent rhythmicity and pacemaker properties: for examples, the SA node, 

the AV node, the Purkinje fibres, artial tissue and ventricular tissue. If the SA node is 

depressed or inactive, any one of the above tissue may take over the role of the 

pacemaker or introduce ectopic beats. Different types of abnormal rhythm (arrhythmia) 

result from variations in the site and frequency of impulse formation. Premature 

ventricular contractions (PVCs) caused by ectopic foci on the ventricles upset the regular 

rhythm and may lead to ventricular dissociation and fibrillation i.e a state of disorganized 

contraction of the ventricles independents of the artria, resulting in no effective pumping 

of blood and possibly death. The waveshapes of PVCs are usually very different 

conduction paths of the ectopic impulses and the associated abnormal contraction events. 

Figure 6.6 shows ventricular conduction. 

v1 VI 

Right Ventricuiar PVC Left Ventricular PVC 

I -  > 

Ventricular Conduction 
" - 

Figure 6.6: Ventricular conduction 
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6.3.2.2. ECG Signal acquisition: 

In clinical practices, the standard 12 channel ECG is obtained using four limbs 

leads and chest leads in six position [104],[105],[130]. The right leg is used to place the 

reference electrode. The left arms, right arm, and left leg are used to get leads I, I1 and III. 

A combined reference known as Wilson's central terminal is formed by combining the 

left arm, right arm and left leg leads, and is used as the reference for chest leads. The 

augmented limb (aV) leads known as aVR (for right arm), aVL (for left arm), and aVF 

(for left foot) are obtained by using the exploring electrode on the limb indicated by the 

leads name, with the references being Wilson's central terminal without the exploring 

limbs lead. Fig. 6.7 shows the directions of the axes formed by the six limb leads. The 

hypothetical equilateral triangle formed by leads I, I1 and 111 is known as Einthoven's 

triangle. The center of the triangle represents Wilson's central terminal. Schematically, 

the heart is assumed to be placed at the center of the triangle. The six leads measure 

projections of the three dimensional (3D) cardiac electrical vector onto the axes 

illustrated in Fig 6.7 The six axes sample the 0' - 180' range in steps of approximately 

30' . The projections facilitate viewing and analysis of the electrical activity of the heart 

and from different perspective in the frontal plane. 

Right Arm - Lead I + Left Arm 

Right 
~eference Left Leg 

Wilson's 
central 

terminal 

Figure 6.7: Einthoven's triangle and the axes of the six ECG leads formed by'using four 
limb leads. 
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The six chest leads V1 to V6 are obtained from six standardized positions on the 

chest [I251 with Wilson's central terminal as the reference. The positions for placement 

of the chest leads are indicated in figure 6.8. The V1 & V2 leads are placed at the fourth 

intercostals space just to the right and left of the sternum respectively. V4 is recorded at 

the fifth intercostals space at the midclavicular line. The V3 lead is placed half way 

between the V2 & V4 leads. The V5 and V6 leads are located at the same level as the V4 

lead, but at the anterior axillary line and the midaxillary line respectively. The six chest 

leads permit viewing the cardiac electrical vector from different orientations I a cross 

sectional plane i.e. V5 and V6 most sensitive to left ventricular activity, V3 and V4 

depicts septa1 activity best, V l  and V2 reflect well activity in the right half of the heart. 

Caratid pulse area 

Jugular pulse area 

Aortic area 

I Pulmonory area 

Midclavicular line 

Antirior axillay line 

lvllaacluary m e  

t 

V1 V2 V3 V4 V5 V6 

Figure 6.8: Positions for placement of the chest leads V1 - V6 for acquisition of ECG 
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Some of the important features of the standard clinical ECG are: 

A rectangular calibration pulse of 1 mV amplitude and 200 ms duration is applied 

to produce a pulse of 1 cm height on the paper plot. 

The paper speed used is 25 mmls, resulting in a graphical scale of 0.04 slmm or 

40 mslmm. The calibration pulse width will then be 5 mm. 

The ECG signal peak value is normally about 1 mV. 

The amplifier gain used is 1,000. 

Clinical ECG is usually filtered to a bandwidth of about 0.05 - 100 Hz, with a 

recommended sampling rate of 500 Hz for diagnostic ECG. Distortions in the 

shape of the calibration pulse may indicate improper filter settings or a poor signal 

acquisition system. 

ECG for heart rate monitoring could use a reduced bandwidth 0.05 - 500 Hz. 

6.3.3 Filtering for removal of artifacts: 

Most biomedical signals appear as weak signals in an environment that is teeming 

with many other signals of various origins. Any signal other than that of interest could be 

termed as an interference, artifact or simply noise. The source of noise could be 

physiological, the instrumentation used, or the environment of the experiment. The 

problems caused by artifacts in biomedical signals are vast in scope and variety; their 

potential for degrading the performance of the most sophisticated signal processing 

algorithms is high. 

Our environment is full of stray EM waves, both natural and man-made. EM 

waves broadcast by radio and television (TV) stations and those radiated by florescent 

lighting devices, computer monitors, and other systems used in the laboratory or work 

environment are picked up the cables, devices and connectors. The 50  Hz or 60 Hz power 

supply waveform is notorious for the may ways in which it can get mixed with and 

corrupt the signal of interest. Such interference may be termed as being duet to the 

environment of the experiment. Simple EM shielding of cables and grounding of the 

chassis of equipment reduce EM and power supply interference in most cases. 

The ECG is a relatively strong signal with a readily identifiable waveform. Most 

types of interference that affect ECG signal may be removed by band pass filters. 
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6.3.3.1 High frequency noise in the ECG: 

Fig. 6.9 shows a segment of an ECG signal with high-frequency noise. The noise 

could be due to the instrumentation amplifiers, the recording system, pickup of ambient 

EM signals by the cables, and so on. The signal illustrated has also been corrupted by 

power-line interference at 60 Hz and its harmonics, which may also be considered as a 

part of high frequency noise relative to low frequency nature of the ECG signal. 

6.3.3.2 Motion artifact in the ECG: 

Low frequency artifacts and base line drift may be caused in chest lead ECG 

signals by coughing or breathing with large movement of the chest or when an arm or leg 

is moved in the case of limb lead ECG acquisition. The EEG is a common source of 

artifact in chest lead ECG. Poor contact and polarization of the electrodes may also cause 

low frequency artifacts. Base line drift may sometimes be caused by variations in 

temperature and bias in the instrumentation and amplifiers as well; Fig. 6.10 shows an 

ECG signal with low frequency artifact. Base line drift makes analysis of isoelectricity of 

the ST segment difficult. A large base line drift may cause the positive or negative peaks 

in the ECG to be clipped by the amplifiers or the ADC. 

ECG Signal with High Frequency Noise 

1 2 3 4 5 6 7 8 
Time in seconds 

Figure 6.9: ECG signal with high frequency noise 
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ECG Signal with Low Frequency Artifact 

1 2 3 4 5 6 7 8 9 
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Figure 6.10: ECG signal with low frequency artifact 

6.3.3.3 Power Line interference in ECG signals: 

The most commonly encountered periodic artifact in biomedical signals is the 

power line interference at 50 Hz or 60 Hz. If the power-line waveform is not a pure 

sinusoid due to distortions or clipping, harmonics of the fundamental frequency could 

also appear. Harmonics will also appear if the interference is a periodic waveform that is 

not a sinusoid such as rectangular pulses. In the recent work of Yue-Der Lin [131] has 

developed method to detect and remove powerline interference from ECG. 

Power-line interference is easily visible if present on well defined ECG signal 

waveforms. The power spectrum of the signal provides a clear indication of the presence 

of power line interference as an impulse or splke at 50 Hz or 60 Hz harmonics, if present, 

will appear as additional spikes at integral multiples of the fundamental frequency. Fig. 

6.11 shows a segment of an ECG signal with 60 Hz interference. It is clear that the 

regular or periodic structure of the interference rides on top of the ECG waves. Figure 

6.12 shows the FFT of the ECG signal with 60 Hz power line interference. If third and 

fifth harmonics are present, periodic interference is will also appear as a spike at 180 Hz 

and 300 Hz. The recommended sampling rate for ECG signals is 500 Hz; the higher rate 
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of 1,000 Hz was used in this case as the ECG was recorded as a reference signal with the 

PCG. The larger bandwidth also permits better illustration of artifacts and filtering. 

ECG Signal with 60 Hz Power Line Interference 

Time in seconds 

Figure 6.11 : ECG signal with 60 Hz power line interference 
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Figure 6.12: FFT of ECG signal 

The bandwidth of interest of the ECG signal, which is usually in the range 0.05 - 

100 Hz, includes the 60 Hz components; therefore lowpass filtering will not be 
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appropriate for removal of power-line interference. Lowpass filtering of the ECG to a 

bandwidth lower than 60  Hz could smooth and blur the QRS complex as well as affect 

the PQ and ST segments. 

6.3.4 Time domain filters : 

Certain types of noise may be filtered directly in the time domain using signal 

processing techniques or digital filters. An advantage of time-domain filtering is that 

spectral characterization of the signal and noise may not be required. Time-domain 

processing may also be faster in most cases than frequency filtering. 

6.3.4.1 Moving average filters : 

When an ensemble of several realizations of an event is not available we are then 

forced to consider temporal averaging for noise removal. As temporal statistics are 

computed using a few samples of the signal along the time points of time, such a filtering 

procedure is called a moving average (MA) filter. 

The general form of an MA filter is: 

where x and y are the input and output of the filter, respectively. The bk values are 

the filter coefficients or tap weights, k = 0,1,2, .......... N. where N is the order of the 

filter. The effect of division by the number of samples used (N+l) is included in the 

values of the filter coefficients. A simple moving average filter for filtering noise is the 

von Hann of Hanning filter [104][105] given by 

Applying the delta transform, and using equation (6.18) we get the transfer 

function Hs(y) of the filter in delta domain is 
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Where X(y) and Y(y) are the &transform of x(n) and y(n) respectively. The 

signal-flow diagram and pole zero plot of the Hanning filter in delta domain are shown in 

Figure 6.13 & 6.14 respectively. 

Pole Zero Plot of Hanning Filter in delta domain 

Figure 6.14: Pole zero plot of Hanning filter in delta domain 
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ej* - 1 
The frequency response of a filter is obtained by substituting y =  or in 

A 

the expression for Hs(y), where A is the sampling interval in seconds and o is the radian 

frequency o = 2nf, where f is the frequency in Hz . We may set A = 1 sec and deal with 

normalized frequency in the range 0 I o < 2n, or 0 0 I f < 1, then f = 1 or o = 27c 

represent the sampling frequency, with lower frequency values being represented as a 

normalized fraction of the sampling frequency. 

The frequency response of the Hanning filter is given as : 

A 2-' 
From equation 6.18 we have y-' = - - 1  -jwA and we know z = e 

1 - 2-' 

Substituting in equation (6.27) we have 

1 e - j d  e - j 2 ~  

let e-'" = cos w- j sin w and setting A = 1 in equation (6.29) 

1 
H ,  (w) = - [{2 + 2 cos(w)}e-'"1 

4 - 

The magnitude and phase response are given as 

and LH,(y) = -o (6.33) 

the magnitude and phase responses of the Hanning filter are shown in figure 6.15. It is 

clear that the filter is a lowpass filter with linear phase 
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Magnitude Response of Hanning Filter in delta domain 
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Figure 6.15: Magnitude and phase response of the Hanning filter in delta domain 

Although we started with description of the Hanning filter in the time domain, 

subsequent analysis of the filter was performed in the frequency domain using the delta 

transform and the frequency response. System analysis is easier to perform in the delta 

domain in terms of the poles and zeros of the transfer function and in the frequency 

domain in terms of the magnitude and phase responses. The magnitude and phase 

responses assist in understanding the effect of the filter on the frequency components of 

the signal and noise. 

It is seen from the magnitude response of the Hanning filter (Figure 6.15) that 

components beyond about 20% of the sampling frequency of 1,000 Hz are reduced in 

amplitude by more than 3 dB, that is, to less than half of their levels in the input. High 

frequency components beyond 40% of the sampling frequency are suppressed to Iess than 

20 dB below their input levels. Figure 6.16 shows the filtering of ECG signal with high 

frequency noise using Hanning filter and figure 6.17 shows its FFT of filtered signal. It 

can be seen from the FFT that the high frequency noise is filtered using hanning filter in 

delta domain. 
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Figure 6.16: Filtering of ECG signal with high frequency noise using 
Hanning filter 
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Figure 6.17: FFT of ECG and filtered signal with Hanning filter 
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It can be seen from the results of figure 6.16, the smoothness is less hence 

increased smoothing may be achieved by averaging signal samples over longer time 

windows, at the expense of increased filter delay [105]. If the signal samples over a 

window of eight samples are averaged, we get the output as: 

The impulse response of the filter is 

The transfer function in delta domain is given as 

eJ* -1 
The frequency response by substituting y = in equation (6.35) 

A 

1 
Setting A =1, H,(w) =-[l+e-J4"{1+2cos(w)+ 2cos(2w)+2cos(3))] (6.37) 

8 

The pole zero plot and frequency response of the 8-point MA filter is shown in Flgure 

6.18 and 6.19 respectively. It can be seen from pole zero plot that the filter has zeros at 

3fs  - fs  = 250 HZ, - - 3-75 HZ and fl = 500 Hz. Comparing the frequency f l = 1 2 5  Hz, - 
8 4 8 2 

response of the &point MA filter with that of the Hanning filter in Figure 6.15, we see 

that the former provides increased attenuation in the range 90 - 400 Hz over the latter. 

Note that the attenuation provided by the filter after about 100 Hz is non uniform, which 

may not be desirable in certain applications. Furthermore, the phase response of the filter 

is not linear, although it is piece-wise linear. 
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Pole Zero Plot of 8 point MA Filter in delta domain 
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Figure 6.18: Pole zero plot of 8 point MA filter in delta domain with 
sampling frequency 1000 Hz 
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Figure 6.19: Magnitude and phase response of 8 point MA filter in delta domain 
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Figure 6.20 & 6.21 shows $the filtering of ECG signal with high frequency noise 

and its FFT of filtered signal using 8 point MA filter. 
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Figure 6.20: Filtering of ECG with high frequency noise using 8 point MA filter in delta 
domain 
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Figure 6.21: FFT of ECG and filtered signal with 8 point MA filter in delta domian 
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Comparing figures 6.16 with 6.20 and figure 6.17 with 6.21, it is seen that the 

output of 8 point MA average filter is smoother than that of Hanning filter in delta 

domain. 

6.3.5 Derivative operator based filters: 

The derivative operator in time domain removes the parts of the input that are 

constant. Large changes in the input lead to high magnitudes in the output of the 

derivative operator. Improved knowledge on the derivative operation may be obtained by 

studying its transform in the frequency domain. [lo51 

In digitaI signal processing, the basic derivative is obtained by f ~ s t  order 

difference operator [I041 given as: 

The scale factor including the sampling interval A is required in order to obtain 

the rate of change of the signal with respect to the true time [105]. The transfer function 

in 'z' domain is 

1 
H(z )  =-(1 - z-') 

A 
(6.39) 

Using equation (6.13), corresponding transfer function in delta domain is 

A - ' W A  
- 1  - The frequency response of (6.40) can be obtained using Y - 

1 - e - l W A  
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From equation (6.42) 

H ~ ( ~ ) I  = ' 1 sin (:) I 
A 

The magnitude and phase response of the first order difference operator with 

sampling frequency of 1000 Hz are plotted in figure 6.22. Since delta transform itself is 

derivative type, hence the gain of the filter increases for higher frequencies up to folding 

frequency fJ2 i.e half of the sampling frequency. Hence any high frequency noise present 

in the signal will be amplified significantly hence the result will be noisy. 

Magnitude Response of Derivative based filter in delda domain 

Frequency in Hz 
Phase Response of derivative based filter in Delta domain 

Frequency in Hz 

Figure 6.22: Magnitude and phase response of derivative based filter in delta domain 

The noise amplification problem with the first order difference operator given in 

equation (6.38) may be controlled by talung the average of two successive output values 
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1 
or y3 ( n )  = - [ {x (n)  - x(n - I ) }  + {x (n  - 1 )  - x(n - 2 ) } ]  (6.46) 

26, 

The transfer function in delta domain given as 

From equation (6.48) it is clear that the three point central difference operator is 

the product of the transfer functions of the simple first order difference operator and a 

two point Moving Average filter. 

Magnitude and phase responses with sampling frequency 1000 Hz are plotted in 

figure 6.23. In this case also noise amplification is not improved hence in delta domain 

derivative type filters are not suitable. 
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Figure 6.23: Magnitude and phase response of modified derivative based filter 
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The drawback of the first order difference and the three point central difference 

operator based filters lies in the fact that their magnitude responses remain low for the 

significant range of frequencies well beyond the band related to base-line wander. We 

would like to maintain the levels of the components present in the signal beyond about 

0.5-1 Hz, that is, we would like the gain of the filter to be close to unity after about 0.5 

Hz. [I041 

The gain of a filter at specific frequencies may be improved by placing poles at 

related locations around the sampling circle in the gamma plane. For the sake of stability 

of the filter, the poles should be placed within the sampling circle. Since we are interested 

in maintaining a high gain at very low frequencies, we could place a pole on the real axis 

near the zero location. The transfer function in z-domain has been given in with zero 

located at 0.995 [104]. i.e 

or equivalently H(z)=h ' I z-0.995 - I  1 
Using equation (6.13), corresponding transfer function in delta domain is 

The time domain input-output relationship is given as 

The frequency response of a system is obtained by evaluating its transfer function 

at various points on the sampling circle in the complex gamma plane i.e by putting 

eJ* - 1 

Y =  A 
and evaluating Ha(y) for various values of the frequency variable w of 
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interest. In general, the magnitude transfer function of a system for a particular value of y 

is given by the product of the distances from the corresponding point in the complex 

gamma plane to all the zeros of the system's transfer function, divided by the product of 

the distances to its poles. The phase response is given by the sum of the angles of the 

vectors joining the point to all the zeros, minus the sum of the angles to the poles [126]. 

It is obvious that the magnitude response of the filter in Equations (6.52) and 

(6.53) is zero at y =0, due to the presence of a zero at that point. Furthermore, for values 

of y away from y =0, the distances to the zero at y =O and the pole at y = 0.0995xA will be 

almost equal; therefore, the gain of the filter will be close to unity for frequencies greater 

than about 1 Hz. The magnitude and phase responses of the filter shown in Figure 6.24 

confirm these observations; the filter is a highpass filter with nonlinear phase. 

The result of application of the filter to the ECG signal with low frequency noise 

shown in Figure 6.25. It is evident that low frequency base line wandering has been 

removed without any significant distortion of the ECG. Close inspection, however, 

reveals that the S wave has been enhanced (made deeper) and that a negative undershoot 

has been introduced after the T wave. Removal of the low-frequency base-line artifact 

has been achieved at the cost of a slight distortion of ECG waves due to the use of a 

derivative based filter and its nonlinear phase response. . 
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Figure 6.24: Normalized magnitude and phase responses of modified derivative 
filter in delta domain . 
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Figure 6.25: Results of modfied derivative filter in delta domain to remove 
base line wander 

6.3.6 Frequency Domain Filters : 

The filters described in the previous section performed relatively simple 

operations in the time domain: although their frequency-domain characteristics were 

explored, the operators were not specifically designed to process any particular frequency 

response at the outset. The frequent$ response of the MA filter, in particular, was seen to 

be most attractive. The attenuation in the stop band was not uniform, with the gain falling 

below - 20 dB only around the zeros of the transfer function. 

Filters may be designed in the frequency domain to provide specific lowpass, 

highpass, bandpass, or band-reject (notch) characteristics. Frequency domain filters may 

be implemented in software after obtaining the Fourier transform of the input signal, or 

converted into equivalent time-domain filters and applied directly upon the signal 

samples. 

Many design procedures are available in the literature to design various types of 

filters: the most commonly used designs are the Butterworth, Chebyshev, elliptic and 

Bessel filters [132-1361. Since these filters have been well established in the analog-filter 
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domain, it is common to commence with an analog design and apply the delta 

transformation to obtain a digital filter in the delta domain. It is also common to design a 

lowpass filter with the desired pass-band, transition, and stop-band characteristics on a 

normalized-frequency axis, and then transformed it to the desired lowpass, highpass, 

bandpass, or band-reject characteristics [137]. Frequency-domain filters may also be 

specified directly in terms of the values of the desired frequency response at certain 

frequency samples only, and then transformed into the equivalent time-domain filters 

coefficients via the inverse Fourier transform. In the present work we will consider only 

the design of low pass butterworth and notch filter in delta domain. ECG signal will be 

processed with both the filters to remove low frequency noise and 50160 Hz power line 

interference. 

6.3.6.1 Butterworth lowpass filters : 

The butterworth design is popular because of its simplicity, a monotonically 

decreasing magnitude response, and a maximally flat magnitude response in the pass- 

band. In order to design a Butterworth lowpass filter, we need to specify two parameters; 

o, and N where w, is the cutoff frequency in radianlsec and N is the order of the filter. 

The two parameters may be specified based on a knowledge of the characteristics of the 

filter as well as those of the signal and noise. [lo51 

Let us now design a Butterworth lowpass filter with f, = 40 Hz,f, = 200 Hz, and N 

f ' = 4. We have W' = 27~- = 0 . 4 n  radianslsec . The prewarped s-domain cutoff frequency 
f 

is Q,=1.453085 radians lsec. [lo51 

The poles of H,(s)H,(-s) are placed around a circle of radius 1.453085 with an 

7C 7C 5 
angular separation of - = -radians. The poles of interest are located at angles - 7 ~  and 

N 4 8 

7 
-n and the corresponding conjugate positions. The coordinates of the poles of interest 
8 

are (-0.556072,f j1.342475) and (-1.342475 k j0.556072). The transfer function of the 

filter found as :, 
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Applying the bilinear transformation, we get 

Using equation (6.13), the transfer function in delta domain obtained as 

The filter has four poles at (-1.546 e+02 + j 1.288 e+02), (-1.671 e+02 f j 0.387 e+02) 

and four zeros at (-400, -399.9, 399.9 _+ j 0.115). Magnitude and phase response with 

sampling frequency 200 Hz is computed and shown in figure 6.26 and 6.27. Pole zero 

plot is shown in figure 6.28 and processing of ECG signal with lowpass butterworth filter 

and FFT of filtered signal are shown in figure 6.29 & 6.30 respectively. The pole-zero 

plot and the frequency response displays the excepted monotonic decrease in gain and -3 

dB power point or 0.707 gain at 40 Hz. 

Magnitude response of Butterworth low pass filter in delta domain 

1 

0.8 - 

0.6 . .- m 
0 

0.4 - 

0.2 - 

0 
0 10 20 30 40 50 60 70 80 90 100 

Frequency in Hz 

Figure 6.26: Magnitude response of butterworth low pass filter in delta 
domain with f, =40 Hz, fs=200 Hz and N=4 
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Phase response of Butterworth low pass filter in delta domain 

Frequency in Hz 

Figure 6.27: Phase response of butterworth low pass filter in delta domain 
with fc =40 Hz,f,=200 Hz and N=4 

Pole Zero plot of Butterworth low pass filter in delta domain 
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Figure 6.28: Pole zero plot of butterworth low pass filter in delta domain 
with fc =40 Hz, fs=200 Hz and N=4 
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Figure 6.29: Processing of ECG signal with low frequency noise with 
butterworth low pass filter in delta domain with f, =40 Hz,J=200 Hz and 

N=4 
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Figure 6.30: FFT of ECG and filtered signal with butterworth low pass 
filter in delta domain with f, =40 Hz, f ~ 2 0 0  Hz and N=4 
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Figure 6.31 compares the magnitude responses of three Butterworth lowpass 

filters in delta domain with f, = 40 Hz, 5, = 200 Hz with order increasing from N=4, N=8, 

N=12. All three filters have their gain =0.707 a 40 Hz, but the transition band becomes 

sharper as the order N is increased. 

The main disadvantages of Butterworth filter are a slow transition from the pass 

band to stop band and a nonlinear phase response. The nonlinear phase may be corrected 

for by passing the filter output again through the same filter but after a reversal in time 

[136] . 

Frequency in Hz 

Figure 6.31: Magnitude responses of butterworth low pass filter in delta domain with 
f, =40 Hz, f ~ 2 0 0  Hz and N=4,8,12 

6.3.6.2 Notch filters : 

The nature of the influence of pole and zero locations on the frequency response 

is similar to that observed in continuous time systems with a minor difference. In place of 

the imaginary axis of the continuous time system, we have a sampling circle with the 

radius 1/A and cantered at - l /A  in the complex delta domain. The nearer to the point 

eJ* -1 
Y= A 

representing some frequency o and poles and zeros located at this point 

amplitude of magnitude response at that frequency. 
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Therefore to sacrifice the amplitude response at a frequency o, we should place a 

eJ* -1 
pole as close as possible to the point y = representing frequency o .  Similarly to 

A 

suppress the amplitude response at a frequency o, we should place a zero as close as 

eJ* -1 
possible to the point y = on the sampling circle. Placing repeated poles or zeros 

A 

will further enhance their influence. 

Total suppression of signal transmission at any frequency can be achieved by 

placing a zero on the sampling circle at a point corresponding to that frequency. This is 

the principle of the notch filter. 

Placing a pole or zero at the center ( -1lA) does not influence the amplitude 

response because length of the vector connecting the (-l/A) to any point on the sampling 

circle is l/A. However, a pole or zero at the center of sampling circle will generate an 

s"" ) in LH((eJ:l)) 
sin " ) or ( t a n  cos - 

cosaki-1 

Notch filter is also a frequency-domain filter and require to remove periodic 

artifacts such as power line interference from the ECG signals. If fo is the interference 

fo frequency, the angles of the (complex conjugate) zeros required will be f -(2n) ; the 
f c 

radius of the zeros will be l/A. If harmonics are also present, multiple zeros are required 

fo to be placed at f -(2n) , where n representing the orders of all of the harmonics 
fc 

present. 

Let us consider a signal with power line interference at fo = 60 Hz and sampling 

frequency is 1000 Hz. Since we need zero transmission at fo, we must place zeros at 

f w = f A ( 2 n )  i.e f 0.377 radians or 21.6" from the center of sampling circle as shown in 
f' 

figure 6.32. We also require a sharp recovery of gain on both sides of frequency i.e. 60 

Hz which can be accomplished by placing two poles close to two zeros in order to cancel 

out the effect of the zeros as we move away from this point corresponding to frequency 

60 Hz. 
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Figure 6.32: Location of zeros for notch filter to remove 60 Hz artifacts from ECG 

fo Let y, & y; are the zeros located at w = ?-(21t) then the location of poles 
fc 

must be a y, & a y; with a < 1/A for stability. Where ( is complex conjugate of y, . 

The resulting transfer function is 

eJ* -1 e - ~ *  - 1 
Using equation (6.13) , y, = & { =  & selecting K = a2 for unity dc 

A A 

gain, the filter transfer function is 

2 
y-' +-(1-cos~A) y-' 

H(Y) = 
6 I 

1 
(6.59) 

2 a2 

[I + 
(1 - cos wA) y-I + (1 - cos d )  y-' 

Where 
2 (cos a A  - 1) 

(Y, +Y2)= A 

Where the bandwith of the notch is considered 4 Hz. Magnitude and phase 

responses for the filter given in equation (6.59) with sampling frequency 1000 Hz, Notch 
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frequency fo = 60 Hz and band width 4 Hz are shown in figure 6.33. Figure 3.34 and 3.35 

shows filtering process of 60 Hz power line interference in ECG signal and FFT of the 

ECG signals. From FFT plot it is noticed that 60 Hz power line interference which is 

present in the original ECG is removed using notch filter in delta domain. 

Notch Filter.Magnitude Response in delta domain 

Frequency [Hz] 
Notch Filter Phase Response in delta domain 

100 1 

Frequency [Hz] 

Figure 6.33 Magnitude and phase response of Notch filter with sampling 
frequency 1000 Hz, notch frequency 60 Hz and bandwidth 4 Hz 

Original ECG signal 

Normalized time 
Filtered ECG signal with Notch filter In delta domain 

Normalized time 

Figure 6.34: ECG signal filtered with Notch filter in delta domain with fo =60 Hz, 
fi= 1000 Hz and delF = 4 Hz 
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Figure 6.35: FFT of ECG signal filtered with Notch filter 

6.4 Conclusion: 

In this chapter we have investigated problems posed by artifacts, noise and 

interference of various forms in the acquisition and analysis of ECG signals. Different 

types of time and frequency domain digital filters in delta domain have been developed. 

Simulation results show that the filters designed in delta domain is as good as the filter 

designed in other domain. However number of adder and multiplier required for delay 

element in delta domain is more. Since sampling zeros are inducted, care must be taken 

while considering these sampling zeros otherwise the filter may be unstable and will 

show unsatisfactory performance. 

Different filters may be suitable for different problems of biomedical signal 

analysis. It is unlikely that a single filter will address all of the problems hence the 

requirements are wide as per practical situations and applications. Attempts must be made 

at the outset to acquire artifact free signals to the extent possible. 
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Chapter 7 

Conclusions and Future Recommendations: 

7.1 Summary 

The primary objective of this thesis is to present a unified framework for 

modelling of dynamical systems in discrete-time domain using the properties of delta 

operator and complex delta domain by using the properties of gamma transform. To 

develop systematic design procedure for a control system that retains the stability and 

performance characteristics of the classical designs, two methods of controller design 

have been discussed by capitalizing the computational capabilities of delta operator 

time moments and Genetic Algorithms. The result is a unified framework for control 

system that unify both discrete-time and continuous-time control together. The 

proposed design philosophy consists of constructing a reference model in the complex 

delta domain from the given time, frequency and complex domain specifications. 

First, the reference model parameters are determined from the initial specification of 

the control law. Secondly, a variant of time moments are developed in the complex 

delta domain called OGDTM and OFF in which Genetic algorithms, the artificial 

intelligence tools are used to search a set of either real or complex frequency points 

after minimising a scalar cost function. The cost function is developed between the 

step responses of the reference model and the controlled systems cascading controller 

with plant. Finally, OGDTM and OFF are used to obtain t he parameters of the 

controller using a sub class of Pade method. The computational framework developed 

is algebraic in nature and require solution of a set of linear equations only. 

The design philosophy based on model matching control is a well-known 

procedure for applying in linear control theory that is widely applicable, especially in 

the aerospace and chemical processes industry. The model matching approach 

allows the formulation of the problem in such a way that the design specifications, 

both in time and frequency domains, are selected at the outset. This is in 

contrast to many design techniques in which the closed-loop model of the 

controlled system is not known until late in the design process. This unified 

approach for controller design for delta operator parameterized discrete-time 

systems has been shown to work well for SISO and MIMO systems and system 
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with time delays and as the sampling time (A) is decreased, the results approach 

the continuous-time results in the limit A+ 0. Thus the proposed methods of the 

thesis are viable general in nature and may replace prevalent z-domain methods 

for model reduction and controller design. The thesis also deals with design of 

digital filter for biomedical signal processing utilising the properties of delta 

operator in which the technique developed is utilised to design digital filters which 

are fundamental to digital signal processing. Several time and frequency domain 
I 

filters have been discussed and tested to reduce ECG artifacts. 

7.2 Conclusions 

The foundations have been laid for a novel approach to designing control 

systems that make the most of prior knowledge and experience, while capitalizing on 

the broader capabilities of model matching control theory and computational genetic 

algorithms. The principles introduced can be applied to SISO, MIMO and systems 

with time delays. Genetic algorithms are used for selection of a set of frequency 

points. These frequency points are GA parameters. These GA parameters are coded 

into binary strings called chromosome. A cost function is developed between the step 

response of the reference model and the overall controlled system. During evaluation 

of GA, thls cost function is minimised to obtain the optimal frequency points based on 

which OGDTM and OFF are computed. GA is a global optimal search technique and 

therefore by intuitively selecting the search space, number of parameters, population 

size, crossover and mutation probability and selection methods like tournament or 

Roulette wheel it is possible to achieve global optimal solution. 

7.3 Recommendations 

The main recommendation for future work is to expand upon the findings of 

this thesis to investigate OGDTM and OFF for system identification and adaptive 

control system. Since the approach is iterative and relies heavily on computation, a 

rigorous analysis of the algorithms presented can be related to the first objective. In 

particular, it would be relevant to determine the worst-case computation times and 

error bounds with respect to the dimensions of the systems and control, as well as the 

number of stages. The algebraic techniques developed, together with existing theories 

on delta operator, time moment and GA show particular promise in this direction. 

Alternatively, other classical designs could be used in association with GA or other 
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artificial intelligence tools for minimisation of the performance index. The 

investigation using GA should remain a key ingredient in the process, as the GAS 

determine the class of control and cost functionals that can be approximated and, 

therefore, the optimal control problems that can be solved. One of the most desirable 

features of this approach is its flexibility. Not only is it unrestricted by the form of the 

governing dynamic equation, but it allows for extensions that can deal with system 

identification, stochastic processes and disturbances to name a few. The range of 

possibilities is at least as diverse as are the GA applications that already exist today in 

the literature. In particular, designs that can benefit both from a-priori and a-  

posteriori knowledge of the system would be ideal. Finally, there is considerable 

interest in the field for high-dimensional problems, where the system and control have 

many variables. Hence, the study of computation complexity should be a major focus 

of any solution method pursued hereon. 

Biomedical signal processing is the area in which very less work is done in 

delta domain framework. There is ample scope in this field for modelling and problem 

specific digital filter design using the robust characteristics of delta operator. 
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Appendix - A: Discrete Data System Identification in Delta Domain 

Appendix-A 

Discrete Data System Identification in Delta Domain: 

A.l Introduction: 

Time moment matching methods are traditional tools widely used for parameter 

identification, particularly of chemical and flow processes. [138]. A major problem of 

parameter identification is that the higher moments are unreliable due to magnification 

of the signal tails. ~ i c h e l s e n  [I39 ] have applied weighted moment methods for 

parameter identification of axial dispersion model, in which moments of the signals 

were suitably modifiy by a damped exponential fitting. There are ample of literatures 

available on system identification in continuous and discrete z domain. Details of delta 

operator, delta time moment have already given in chapter-] & chapter-3. Therefore we 

will discuss here the theory which is developed in delta operator framework for system 

identification using time moment matching method. 

A.2 Ordinary delta time moments: 

The ith ordinary moments of the distribution f (kA) is defined as 

~ ' F ( Y )  
u 

- = ( - I ) ' A ~  kA(kA + A). . . (kA + iA - A)(l + A y)-k-2 
d7' k = O  

Ordinary Delta time moment about y = 0 is defined as 

The Remann sum of equation (A.l) can be considered as the area of the distribution 

f ( kh )  by the weight 

It can be noticed that as t = kA is large the weight also becomes large, and so 

increased emphasis is placed on the tails of the distribution. A better weight is one 
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which would approach zero for large value o f t  = kA. A  weight which could meet this 

requirement is 

where y is the real positive constant weighting factor. 

A.3 Weighted time moments: 

The weighting moments of the distribution f  ( k A )  are defined as 

a ( k + i - I ) !  . 
M i  ( Y )  = AX A'f (kA)(l  + ~ y ) - ( ~ - ' )  

k=,,  ( k - l ) !  

Setting y = 0 gives the ordinary moments, i.e. 

Mi ( 0 )  = Pi ( A . 6 )  

As y increases, the weighting factor gves  lesser emphasis to values of the signal 

when time is large. The zeroth weighted moments of f (kA)  is is therefore the delta 

transform of the distribution i.e. 

a 

M , ( Y )  = ~ C f ( k ~ ) ( l +  A Y ) - ~  04.7) 
k =O 

if y is taken as the delta transform variable, i.e 

M ,  ( y )  = ~ [ f  ( k ~ ) ]  = f ( Y )  ( A . 8 )  

Where T is the delta transform of the distribution f  ( k A ) .  Since y is chosen to be 

real, the delta transform strictly only applies along the real axis. 

A.4 Properties of Delta Weighted Moments: 

By using the properties of delta transform, simple derivation of the recurrence 

and linkage relations of the weighted moments is obtained as: 

A.4.1 The Recurrence Relation: 

From the properties of the delta transform [ l o ]  

Therefore from equation ( A S )  it is seen that 

( A .  1 0 )  

27 6 



Appendix - A: Discrete Data System Identification in Delta Domain 

and corresponding recurrence relation can be written as as 

d 
M,+I(Y) = --(M1(y)) 

d y  
(A. 1 1) 

These recurrence relations are utilized for determinations of the relationship 

between the weighted moments and model parameters. 

A.4.2 The Linkage Relation: 

The application of the conservation laws to a linear time invariant systems 

allows to establish relationships between input signal to the system x(kA), the output 

of the system y(kA) and h(kA), the impulse response of the system are linked by the 

convolution integral, i.e. 

kA 

y(kA) = AX h(nA)x(kA - nA) (A. 12) 
n=O 

Taking delta transforms 

RY) = ?(Y) .~(Y)  (A. 13) 

Hence from relation (14) 

Mo(Y)oUtpur = MO (Y) 7ysrem.Mo (Y)8npur (A. 14) 

This gives a relation linking zeroth weighted moments of the input, output and 

system. Taking derivatives with respect to y and dividing by relation (A. 14)) 

Hence the general ith derivatives of (A.15) is ( 

Equaion (A.16) is the general linkage relation, relating the ith order weighted moments 

of the input, output and the system. 

A.5 Parameter Identification algorithm: 

Let us consider a linear nth order discrete time SISO system in transfer matrix 

representation in delta domain. 
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The objective of the system identification is to determine the coefficients, a, and 

b, of eqn. (A.17) from the input-output data. Here we discuss the procedure to obtain 

the weighted moments from the delta transfer model and thereafter from input-output 

data to obtain an ARMA model. The order of the system is to be known a priori. 

A.5.1 Weighted Moments from the Delta Transfer Function 

The weighted delta time moments can directly be obtained from the delta 

transfer function of the impulse response h(kA). From the definition of the delta 

transform we have 

G , ( ~ A )  = AC h ( k ~ ) ( i  + AY)-' (A. 18) 
h =o 

using the recurrence relation in (A. 1 I), from eqn.(A. 17) the delta transfer function 

can be written as 

DJ(Y)G~(Y) = NAY) (A.19) 

differentiating both sides of eqn.(A.19) with respect to y gives 

where 

Equation (A.20) in rnatrlx for can be represented as: 

where 
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The weighted time moments M i  ( y )  can be easily obtained from eqn.(A.21). 

A.5.2 Weighted moments from input output data 

We can directly obtain the weighted time moments from the time-domain 

input-output data using e q n ~ ( A . 5 )  and (A.21). Rearranging eqn.(A.21), we have 

another form 

and 

The equation (A.24) is now substituted in equation (A.23) and hence we can obtain a 

matrix equation which can be easily solved to obtain the system parameters ai and bi 

for optimal weighted parameter value y . 

- 
M,(Y) o o o ... 

-M,(y) M,(Y) 0 0 ... 0 

M ~ ( Y )  - ~ M ( ( Y )  M,(Y) 0 .-.. 0 

- M ~ ( Y )  ~ M , ( Y )  -3Ml(y) Mo(y) ... 0 

. . . . . . . . .  ... ... ... 
- - 

From eqn. (A.22) the relations between ~ y ' ( y ) a n d a , ,  and Nl,"(y) and bi are known. 

The matrix forms are written as 

= 

o - - D ~ ( Y ) -  

D;'(Y) 

D ~ ) ( Y )  
. . . - - 

- 
- N?' ( Y) 

N;)(y) 

~ f ) ( y )  

~ f ' ( y )  
. . . - - 

(A.23) 
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A 5.3 Discussion: 

The method of parameter identification of discrete-data system in delta domain 

is developed matching optimal weighted moments. The simulation results using genetic 

algorithm for the optimum value of weighted moment are amplified in the later part i.e. 

as time is increased. Hence this algorithm is included in this appendix to constitute the 

scope of further work. 
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Table of delta transforms and its region of convergence 

Region of 

Convergence 

I T I < "  

1 

Y+;.n 

I y I -  

1 
IY+$I>, 

1 
IY+;l>i 

e* 

(Y+;l>T 

e* 
J y + # T  

1 

/ Y + + / > a  

1 

J y + i / > n  

Delta Transforms 

T [f(k)l 

1 

1+Ay 

Y 

- 1 
A 

I + Ay 

A f  

(1 + A Y ) ( ~  + AY) 

A2 f 
1+Ay 

eah-1 
Y - 4  

(1 + A y)e* 

A y------ 

(1 + Ay)wsin c(uA) 

[ e*:ll 
f +A@(U,  A ) Y + @ ( ~  A) 

sin (&A) 
Where sin c (A) = 

A 

2(1- cos (wA)) 
and @(a, A) = 

(1 + Ay)(y + 0.5 b@(w, A)) 
y2 + A @ ( a  A) Y +  @(a A) 

Function qk] 

(k 2 0) 

1 
- 8, [kl 
A 

1 

~ [ k l -  P [ k  - 11 

k 

k2 

ea a ,  c 

kedA a€  C 

sin (&A) 

cos(ukA) 

Description 

Impulse 

U n ~ t  Step 

Ramp 

Parabola 

Exponential 

- do - 

Sin wave 

Cosine wave 
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Properties of delta transform 

Note: Here F,(y) = T[J (k )]  and ~ [ k ]  den0 tes a unit step. 

Function f lk] 

(k 1 011 
I 

C a ,  f ,  [k l  
,=I 

f [k  + I ]  

f [ k  + 11 - f [ k l  
A  

E f  [ll A 
1=0 

f [ k  -11 

f [k-11 P[k-11 

k f  [ k l  

1  
-f [k l  
k  

lim f  [ k ]  
k +=- 

lim f  [ k ]  
1-0 

F f , [ l l  f , [k  - 1 1 ~  
1=0 

J; [ k l  f ,  [ k l  

(1 + a ~ ) "  f [ k l  

Description 

Partial fractions 

Forward shift 

Scaled difference 

Reimann sum 

Backward shift 

Final value theorem 

Imtial value theorem 

Convolution 

Complex 

convolution 

Delta Transforms 

T [f(k)l 

I 

z a ,  6 [YI  
r=I 

(1 + A y ) ( F  ( Y )  - f [01) 

Y F ( Y )  - (1 + A Y )  f [Ol 

1  
- F ( Y )  
Y  

(1 + ~ ~ 1 - l  ( F  ( Y )  - f [-ll) 

(1 + Ay)-l ( F  ( y )  

- ( l + A y )  d F ( y )  

A  d Y  

[%d5 

lim Y F ( Y )  
Y - 0  

Y F ( Y )  lim - 
Y+- l + A y  

&(Y> F,(Y) 

{F,  ( g )  F2 (=)A 
l + A g  l + A g  

(=) l + a A  
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Matlab Proprams 

% The following Matlab programs and sub routines are used to generated different 

% parameters, plot step/ impulse resoponses and locate poles - zeros in gamma plane. 

% For delta domain parameterisation, Delta tool box[124] and for optimization, FlexGA tool 

% box is used. The values of on, 5, Sampling time A and angle p can be changed to get 

% different responses and other parameters. 

%Authors: N.C.Sarcaf, M. Bhuyan & P. Sarkar 

%Date of revision: 01/02/2004 to 2 110 1 /09 

Chapter 2 (Reference Model) Programs: 
%This program p l o t s  f i g u r e  2.2 t o  2.7 and, computes t a b l e  2.1, 2.2 & 2.3 
%of reference  model parameters 

clear all; 
clc; 
format short; 
wn=O. 84; % Given natural frequency for reference model 
zita=0.7; % Given damping ratio 
wd=wn*sqrt(l-zitaA2); 
delta=0.5; 
s=-zita*wn+wd*i; % Calculation of poles in s domain 
g=s2del(s1delta); % Calculation of poles in delta domain 
cong=con j ( g) ; % Calculation of conjugate pole in delta domain 
p=[g;congl ; 
rden=conv([l,-g], [l,-cong]); % Denominator polynomial in delta domain 
wdt=wd*delta; 
rohl=-40; 
roh= (pl/l80) *rohl; 
alpha=roh; 
z=( (tan(roh-(pi/2) ) * (abs (g) IA2) ) / (abs(real(g)) *tan(roh- (pi121 ) .  

-abs (imag (g) ; 
tpl=(l/(wn*sqrt(l-zitaA2)))*(atan((-zita/sqrt(l-z~taA2)))-alphatpi); 
tp=tpl/delta; 
A=rden (3) /abs (real (z) ) ; 
rnum=A* [1 z] ; 
B=rnum (2 ) ; 
C=rden (2) ; 
num=[A B] ; % Numerator of Open Loop Transfer Function. 
den=[l (C-A) 01; % Denominator of Open Loop Transfer Function. 
printsys (rnum, rden, ' y' ) ; 
figure (1) ; 
t=O:delta:15; 
ts=t/delta; 
y=delstep (rnum, rden, t, delta) ; 
plot (ts, y ) ;  
xlabel('t/deltal, 'Fontsize', 12); 



ylabel( 'Amplitude' , 'Fontslze' ,l2) ; 
tltle('Step Response of Reference Model','Fontslze',l2) 
flgure (2) ; 
[mag, pha, w] =delbode (num, den , delta) ; 
[Gm, Pm, Wcg, Wcp] =margin (mag, pha, w) ; 
tltle('Magn1tude and Phase plot of Reference Mode11,'Fontslze',12); 
flgure (3) ; 
[RE, IM, W] = DELNYQ (num, den, delta) ; 
tltle('Nyqu1st Plot of Reference Model','Fontslze',l2); 
f lgure (4 ) ; 
y=dellmp (rnum, rden, t , delta) ; 
plot (ts, y) ; 
xlabel('t/delta','Fonts~ze',l2);ylabe1('Ampl~tude1, 'Fontslze',12); 
tltle('1mpulse Response of Reference Model','Fontslze',l2); 
flgure (5) ; 
[RE, IM,W] = delnlc (num, den, delta) ; 
tltle('Nlcho1as Plot of Reference Mode11,'Fontslze',12); 
f lgure (6) ; 
delplane (-z,p, delta) ; 
axls ( [-4.9,O. 5, -2.3,2.3] ) ; 
tltle('Po1e Zero plot of of Reference Model','Fontslze',l2); 

d~sp('Angle');dlsp(rohl);d~sp('wd*de1ta1);d~sp(wdt); 
d~sp('Ploes');d~sp(g);d~sp('zerosl);d~sp(-z); 
dlsp ( ' tp/deltal ) ; dlsp (tp) ; dlsp ( 'A' ) ; dlsp (A) ; 
dlsp('B1) ;dlsp(B);dlsp('C1);dlsp(C); 
dlsp('Galn Cross Over Frequency');dlsp(Wcp); 
dlsp('Galn Margln1);dlsp(Gm); 
dlsp('Pnase Cross over Frequncyl);dlsp(Wcg); 
dlsp('Phase Marglnl);dlsp(Pm); 

% Thls program 1s for flgure 2 . 8  to 2 . 9  
%For Posltlve angles +80 to  0 and for negatlve angles -80 to 0 degree 

clear all; 
clc; 
format short 
wn=O.84;zta=0.7;delta=O.l;galn=l; 
wd=wn*sqrt(l-zta*zta); 
s=-zta*wn+(wn*sqrt(l-ztaA2))*1 ; % pole In s-dornaln 
g=s2del (sf delta) ; % pole ~n delta-domaln 
cong=con] ( g) ; 
rden=conv ( [ 1, -g] , [ 1, -cong3) ; 
p= [g; congl ; 
for ro =-80:10:80 

roh= (pl/l80) *ro; 
alpa=roh; 
z= ( (tan (roh- (p1/2) ) * (abs (g) ) 2̂) ) / (abs (real (g) ) *tan (roh- (~112) ) 

-abs ( m a g  (g) ) ; 
tp=(l/(wn*sqrt(l-zta*zta)))*(atan((-zta/sqrt(l-zta*zta)))-alpa+p~); 
tp=tp/delta; 
wdT=wd*delta; 
mp=abs(sec(alpa))*sqrt(l-zta*zta)* . . .  
exp((-zta/sqrt(l-zta*zta))*(atan((-zta/sqrt(l-zta*zta)))-alpa+p~)); 
mp=mp*100; 
ts=(-log(0.05*abs(cos(alpa)))*(sqrt(l-zta*zta)))/(wd*zta); 
ts=ts/delta; 



A=gain* (rden (3) /abs (real (z) ) ) ; 
rnum=A* [ 1 z 1 ; 

printsys (rnum, rden, 'y' ) ; 
t=O:delta:15; 
y=delstep (rnum, rden, t, delta) ; 
plot(t,y); 
%axis ( [O, 15, -1.25,l. 751 ) ; 
hold on; 
pause; 

end 
title('Step Response of Reference Model','Fontsize',l2); 
xlabel('Time in seconds','Fontsize',l2); 
ylabel('Amplitude','Fontsize',l2); 
hold off; 

% Thls program plots figure 2.10 

clear all; 
clc; 
format short 
wn=0.84;zta=0.7;delta=O.l;gain=l; 
wd=wn*sqrt(l-zta*zta); 
s=-zta*wn+(wn*sqrt(l-ztaA2))*i ; % pole in s-domain 
g=s2del (sf delta) ; 8 pole in delta-domain 
cong=con j (g) ; 
rden=conv ( [ 1, -g] , [ 1 I -cong] ) ; 
for ro=-80:10:80 

roh= (pi/l80) *ro; 
alpa=roh; 
z=( (tan(roh- (pi/2)) * (abs(g)) "2) / (abs (real (g)) * tan(roh- (pi/2) I . . .  

- absl(imag(g)) ) ;  
tp=(l/(wn*sqrt(l-zta*zta)))*(atan((-zta/sqrt(l-zta*zta)))-alpatpi); 
tp=tp/delta; 
wdT=wd*delta; 
mp=abs (sec (alpa) ) *sqrt (1-zta*zta) * .  , . 
exp((-zta/sqrt(l-zta*zta))*(atan((-zta/sqrt(l-zta*zta)))-alpa+pi)); 
mp=mp*100; 
%mp= [mp;mpl] ; 
ts=(-log(0.05*abs(cos(alpa)))*(sqrt(l-zta*zta)))/(wd*zta); 

' ts=ts/delta; 
A=gain* (rden (3) /abs (real (z) ) ) ; 

rnum=A* [ 1 z] ; 
disp ( 'Angle' ) ;disp (roh) ; 
printsys (rnum, rden, ' y' ) ; 
t=O:delta:lO; 

- tp=t/delta; 
y=delstep [rnum, rden, t, delta) ; 
plot (tp, y) ; 
hold on; 

pause; 
end 

title('Step Response of Reference Model','Fontsize',l2); 
xlabel('t/delta','Fonts~ze',l2);ylabe1('Amplitude','Fontsize',l2); 
hold off; 



% Thls program computes locatlon of poles and zeros of reference model 
% and p l o t s  f lgure  2 . 1 1  In de l ta  domaln. 

clear all; 
clc; 
format short 
wn=0.84;zta=0.7;delta=0.5;galn=l; 
ro=[80,60,40,20,1, -10, -20, -30, -40, -451 ; 
wd=wn*sqrt(l-zta*zta); 
s=-zta*wn+(wntsqrt(l-ztaA2))*1 ; % pole In s-domaln 
g=s2del (sf delta) ; 8 pole ~n delta-domaln 
cong=conj (g) ; 
rden=conv ( [l, -g] , [l , -cong] ) ; 
p=[g;congl ; 
for k=1: 10 

roh=(pl/l80) *ro (k) ; 
alpa=roh; 
z=( (tan(roh- (p1/2) ) * (abs (g) ) "2) ) / (-abs (real (g) ) *tan(roh- (p1/2) ) 

+ abs(lmag(g))); 
zl=num2str (z) ; 
z2=num2str(conj (z)); 
tpl=(l/(wn*sqrt(l-zta*zta)))*(atan((-zta/sqrt(l-zta*zta)))-alpa+p~); 
tp=tpl/delta; 
wdT=wd*delta; 
mpl=abs(sec(alpa) )*sqrt(l-zta*zta)* . . .  
exp((-zta/sqrt(l-zta*zta))*(atan((-zta/sqrt(l-zta*zta)))-alpa+p~)); 
mp=mpl*100; 
tsl=(-log(0.05*abs(cos(alpa)))*(sqrt(l-zta*zta)))/(wd*zta); 
ts=tsl/delta; 

A=galnc (rden (3) /abs (real (z) ) ) ; 
rnum=A* [1 z] ; 
dlsp('Ang1e') ;d~sp(ro(k));d~sp('P01es~);d~sp(p); 
dlsp('zerol) ;dlsp(z) ; 
delplane (z, p, delta) ; 
axls ([-4.1,0.5,-2.3, 2.31); 
hold on; 
pause; 

end 
hold off; 
tltle('Po1e Zero Plot of Reference Model ln Delta domaln', 
'Fontslze' ,l2) ; 

% Thls program computes locatlon of poles and zeros and parameters of 
%reference model and p l o t s  f lgure 2 . 1 2  In de l ta  domaln f o r  different 
%values of odd and p l o t  In de l ta  plane 

clear all; 
clc; 
format short 
zta=0.7;delta=0.5;ga~n=l;ro=-45; 
wdt=[O. 1,0.2,0.3,0.6, 0.7, 0.9, 1. lI 1.3! 1.51; 
Roh=[] ;P=[] ;z=[] ;Tp=[] ;Wdt=[] ;Wn=[] ;Mp=[] ;Ts=[] ;A=[] ;B=[] ;C=[] ;D=[]; 
for k=1:9 

Wdt= [Wdt ; wdt ( k) ] ; 
wd=wdt (k) /delta; 
wn=wd/sqrt(l-zta*zta); 



Wn= [Wn; wn] ; 
s=-zta*wn+(wn*sqrt(l-ztaA2))*1 ; 8 pole In s-domaln 
g=s2del (s, delta) ; 8 pole ln delta-domaln 
cong=conj (g) ; 
rden=conv ( [1, -g] , [ 1, -tong] ) ; 
p=[g;congl; 
P=[P;gI; 
Roh= [Roh; rol ; 
roh= (pl/l80) *ro; 
alpa=roh; 
z=( (tan (roh- (p1/2) ) * (abs (g) ) "2) ) / (-abs (real (g) ) *tan (roh- (p1/2) ) 

+ abs (lmag(g) ) ; 
z= [ Z ;  z] ; 
tpl=(l/(wn*sqrt(l-zta*zta)))*(atan((-zta/sqrt(l-zta*zta)))-alpa+p~); 
tp=tpl/delta; 
Tp=ITp;tpJ; 
mpl=abs(sec(alpa))*sqrt(l-zta*zta)* . . .  
exp((-zta/sqrt(l-zta*zta))*(atan((-zta/sqrt(l-zta*zta)))-alpa+p~)); 
mp=mpl*100; 
Mp=[Mp;mpl; 
tsl=(-log(0.05*abs(cos(alpa)))*(sqrt(l-zta*zta))~/(wd*zta~; 
ts=tsl/delta; 
Ts=[Ts; ts] ; 
Al=galn* (rden (3) /abs (real ( z) ) ) ; 
rnum=Al*[l z]; 
A=[A;Al] ; 
Bl=rnum (2) ; 
B= [B; -B1] ; 
Cl=rden (2) ; 
C= [C; C l ]  ; 
D= [D; -B1] ; 
delplane ( 2 ,  p, delta) ; 
axls ( [-4.9,O. 5, -2.3, 2.33 ) ; 
hold on; 
pause; 

end 
hold off; 
tltle('Po1e Zero Plot of Reference Model In Delta domaln', 
'Fontslze',l2); 

...................................................................... 
% Thls program plots  flgure 2 . 1 4  

clear all; 
clc; 
format short 
wn=0.84;roh=2O;zta=0.7;delta=O.l;ga~n=l; 
wdt=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9]; 
for k=1-8 

wd=wdt (k) /delta; 
wn=wd/sqrt(l-zta*zta); 
s=-zta*wn+(wn*sqrt(l-ztaA2))*1 ; % pole In s-domaln 
g=s2del (s, delta) ; % pole ~n delta-domaln 
cong=conl (g) ; 
rden=conv ( [ 1, -g] , [ 1 , -cong] ) ; 
roh= (pl/l80) *roh; 



alpa=roh; 
z= ( (tan (roh- (pi/2) ) * (abs (g) ) "2) ) / (abs (real ( g )  ) * tan (roh- (pi/2) ) ... 

-abs (imag (9) ) ) ; 
A=gain* (rden(3) /abs (real (z) ) ) ; 
rnum=A* [l z] ; 
t=0:0.1:5; 
ts=t /delta 
y=delstep (rnum, rden, t, delta) ; 
plot (ts, y) ; 
hold on; 
pause; 

end 
title('Step Response of Reference 
Model', ' FontName' , 'Times', 'Fontsize', 12) ; 
xlabel('t/delta','FontName','Times','Fontsize',l2); 
ylabel('Amplitude','FontName',1Times','Fontsize'll2); 
hold off; 

...................................................................... 

% This program p lo t s  f igure 2 . 1 5  and computes table 2 . 5  parameters 

clear all; 
clc; 
format short 
wn=0.84;delta=0.5;gain=l;ro=-20; 
zt=[0.3,0.4,0.5,0.6,0.7,0.8~0.9]; 
Roh=[l ;P=[l ;Z=[] ;Tp=[l ;Zt=[] ;Wdt=[l ;~n=[]';Mp=[] ;Ts=[] ;A=[] ;B=[] ;C=[] ;D=[l; 
for k = 1 : 7  

zta=zt (k) ; 
Zt= [Zt; zta] ; 
wd=wn*sqrt(l-zta*zta); 
wdt=wd*delta; 
Wdt= [Wdt; wdt] ; 
s=-zta*wn+(wn*sqrt(l-ztaA2))*i ; % pole in s-domain 
g=s2del (st delta) ; % pole in delta-domain 
cong=conj (g) ; 
rden=conv ( [ 1, -g] , [ 1, -cong] ) ; 
p= [g; congl ; 
P=[P;gl; 
Roh= [Roh; ro] ; 
roh= (pi/l80) *ro; 
alpa=roh; 
z= ( (tan (roh- (pi/2) ) * (abs (g) ) ^2) ) / (-abs (real (g) ) *tan (roh- (pi/2) I . . .  

+ abs(irnag(g1)); 
z= [Z; z] ; 
tpl= (l/ (wn*sqrt (1-zta*zta) ) ) * (atan ( (-'zta/sqrt (1-zta*zta) ) ) -alpatpi) ; 
tp=tpl/delta; 
Tp= [Tp; tpl ; 
mpl=abs(sec(alpa))*sqrt(l-zta*zta)* . . .  
exp((-zta/sqrt(l-zta*zta))*(atan((-zta/sqrt(l-zta*zta)))-alpatpi)); 
mp=mpl*100; 
Mp= [Mp;mpl ; 
tsl=(-log(0.05*abs(cos(alpa)))*(sqrt(l-zta*zta)))/(wd*zta); 
ts=tsl/delta; 
Ts=[Ts;ts]; 
Al=gain* (rden (3) /abs (real (z) ) ) ; 
rnum=Al* [1 z] ; 



A=[A;Al] ; 
Bl=rnum (2) ; 
B= [B; -B1] ; 
Cl=rden (2 ) ; 
C= [C; Cl] ; 
D= [D; -B1] ; 
delplane ( 2 ,  p, delta) ; 
axls ( [-4.9,O. 5, -2.3, 2 - 3 1  ) ; 
hold on; 
pause; 

end 
hold off; 
tltle('Po1e Zero Plot of Reference Model In Delta 
domaln' , 'Fontslzel, 12) ; 
dlsp('Angle');d~sp(ro);d~sp('Z~tal);d~sp(Zt); 
dlsp ( 'WdfDelta' ) ;dlsp(Wdt) ;dlsp('Wnl) ;dlsp(Wn) 
dlsp('Polesl);dlsp(P) ;dlsp('zero');dlsp(Z); 
dlsp('tp/Delta');dlsp(Tp);dlsp('~p%');dlsp(~p); 
dlsp('ts/Deltal ) ;dlsp(Ts) ;dlsp('A') ;dlsp(A) ; 
dlsp('B1) ;dlsp(B) ;dlsp('C') ;dlsp(C) ;dlsp('D1) ;d~.sp(D); 

$--------------------------------------------------------------------- ....................................... 

Chapter 3 (Controller design for SISO systems) Programs: 
functlon del=comden(den,tol) ; 
% Thls functlon computes the common denominator 
8 It ellmlnates the common roots, conslderlng the tolerance speclfled. 
% FILE NAME : c0mden.m 

[n, x] =size (den) ; 
del=den(l, : ) ; 
lf n==l return;end 
8 Default to1 value 
lf -exlst('toll) tol=le-4;end; 
r=roots (del) ; 
for 1=2:n 

s=roots (den (1, : ) ) ; 
lr=length (r) ; 
ls=length (s) ; 
for ]=l:ls 

x=s(1); 
for k=l:lr 

lf tol*round (x/tol) ==tol*round(r (k) /tol) chk=O; break; end 
chk=l; 

end 
lf chk r=[r;x]; end; 

end 
end 
del=poly(r); 

functlon atm=agtm(ch,d1,n,anum,bde1,c) 
% Thls functlon flnds the Tlme moment matrlx. 
8 FILE NAME: agtm.m 
I£ ch ==2, 

atm=c*lnv (dl*eye (slze (anum) ) -anum) *bdel; 



else 
valn= [I ; vald= [I ; 
for i=l:n*n 

valn= [valn; polyval (anum (i, : ) ,dl) I ; 
end; 

vald=polyval (bdel, dl) ; 
atm=valn/vald; 
atm=reshape (atm, n, n) ; 
atm=atm8 ; 

end; 

function [cg,cdel] = change(cnum,cden,n) 
% This function forms a T.F.M. with common denominator. 
% FILE NAME : chan9e.m 

cdel=mulrow(cden); 
cg=conv (cnum ( 1, : ) , mulrow (-cden (2 : n*n,: ) ) ) ; 
for i=2:n*n-1 

xx=[cden(l:i-1, : )  ;cden(itl:n*n, : ) I ;  
xx=mulrow (xx) ; 
xx=conv (cnum ( i , : ) , xx) ; 
cg= [cg;xx] ; 

end 
xx=conv (cnum (n*n, : ) ,mulrow (cden (1 :n*n-1, : ) ) ) ; 
cg= [cg; xx] ; 

functlon [old] =cl20l (cln, cld, n) 
%This function computes the open-loop t.f.m. common denominator 
%from the closed-loop t.f.m.(For diagonal, t.f.m only). 
%FILE NAME : cl2ol.m 

old=[] ; 
ln=length (cln ( 1, : ) ) ; 

ld=length(cld); 
tempn=[] ; 
for i=O:n-1 

temp=cln(l+l* (n+l) , : ) ; 
temp=cld-[zeros(l,ld-ln),temp]; 
if abs (temp (ld) ) <le-5 % to make last term zero 

temp (ld) =O; 
end 
t empn= [ t empn ; temp] ; 

end 
old=comden (tempn, le-5) ; 

functlon [tfmat,cdel]=mulnd(tfmIdelIn) ; 

% This function finds open-loop numerator and common denominator of 
% reference model 
% FILE NAME: mu1nd.m 



t empn= [ 1 ; 
for i=O:n-1 

temp=tfm(l+i* (n+l) , : ) ; 
temp=del-[zeros(l,ld-ln),temp]; 
if abs(temp(ld))<le-5 % to make last term zero 

temp (ld) =O; 
end 
t empn= [ t empn ; temp ] ; 

end 
x2=comden(tempnfle-5); 
nnl= [I ; 

for i=O:n-1 
[idn] =rmzero (conv (tfm (1+i* (n+l) , : ) , x 2 )  ) ; 
[idd]=rrnzero(tempn(i+l, : ) ) ; 
nn=deconv (idn, idd) ; 
nnl=[nnl;length(nn)]; 

end 
nn2=max(nnl); % maximum order of the polynomial matrix 
nummol=zeros(n*n,nn2); 
n2=[] ;nl=[] ; 

for i=O:n-1 
[idn]=rmzero(conv(tfm(1ti*(n+l),:),x2)); % removing leading zeros 
[idd] =rmzero (tempn (i+l, : ) ) ; 
nl=deconv (idn, idd) ; 
nl=[zeros (1, (nn2-length(n1) ) ) , nll ; 
nummol (l+i* (n+l) , : ) =nl; 

end 
cdel=x2; 
t fmat=nummol; 

function product=mulrow(d) ; 
% this function multiplies the rows of a ,t.f.m. 
%FILE NAME: mu1row.m 

[x, yl =size ( d )  ; 
product= [l] ; 
for i=l:x 

product=conv (product,d(i, : ) ) ; 
end; 

function [numml,denml]=refmodcalc(angle,delta) 
% This routine computes numerator and denominator coefficients of 
% reference model for different values of delta 
8 File name: refmodelca1.m 

format short; 
n=l; 8 n==l for SISO and 2.for MIMO systems 
rohl=angle; 
roh= (pi/l80) *rohl; 
alpa=roh;wn=0.84;zta=0.7;gain=l; 

wd=wn*sqrt(l-zta*zta); 
s=-zta*wn+(wn*sqrt(l-ztaA2))*i ; 8 pole in s-domain 
delta=[2 1 0.5 0.1 0.01 0.0011; 
numml= [ ] ; denml= [ I  ; 



for j=1: 6 
g=s2del(srdelta(j)); % pole ln delta-domaln 
cong=con] (g) ; 
denm=conv ( [ 1, -g] , [l, -cong] ) ; 
z= ( (tan(roh- (p1/2) ) * (abs (g) ) "2) ) / (abs (real (g) ) * tan (roh- (pi/2) ) 

- abs(lmag(g1) 1 ;  
A=galn* (denm(3) /abs (real ( 2 )  ) ) ; 

numm=A*[l z]; 
numml= [ numml ; numm 1 ; 
denml= [denml ; denm] ; 

end 

functlon [numm,denm]=refmodel28-4O(delta) 
% Thls routlne computes numerator and denominator coefflclents of 
8 refernce model for different values of angle roh 
%File name: refmodel28 - 40.m 

angle=-40; 
[numml,denmll=refmodcalc(angleIdelta); 

lf delta==2 
numm=numml ( 1, : ) ; denm=denml ( 1, : ) ; 

elself delta==l 
numm=numml(2, : ) ; denm=denml(2 ,:) ; 

elself delta==0.5 
numm=numml ( 3, : ) ; denm=denml(3, : ) ; 

elself delta==0.1 
numm=numml ( 4, : ) ; denm=denml ( 4 ,:) ; 

elseif delta==0.01 
numm=numml(5,:);denm=denml(5,:); 

else 
numm=numml ( 6, : ) ; denm=denml(6, : ) ; 

end 

functlon [ng, dg] =tf slso-con (ex-no) 
% This functlon selects the plant transfer functlon coefflclents 
% for the examples of the thesls 
% FILE NAME : tfsiso c0n.m 
% ex-no=lnput ('~nter-the Transfer functlon example No: ' ) ;  

lf ex-no == 1 
% Ref. J Pal, "Control system deslgn uslng approxlmate model 
% matching", System Sclence (Poland), vol. 19, no. 3, pp. 5-23 
% Example 3.5.6.1 

elseif ex-no== 2 
% Slxth-order Tf, of a typlcal open-loop hellcopter englne lncludlng 
% a fuel controller 
% Ref: Sanathanan, C.K. and stanley B. Qulnn Jr., " Controller 
% deslgn vla the synthesis equations" Journal of the Franklln 
8 Institute, vol. 324, no.3, pp.431-451, 1987. 
% Example 3.5.6.2 



elseif ex-no== 3 
% Ref. J Pal, "Control system design using approximate model 
% matching", System Science (Poland), v01.19~no.3~pp.5-23 
% Example 3.5.6.3 

elseif ex no== 4 
8 ~ e f .  H.N.Shankar, Ph.D thesis titled "Adaptive control of general 
8 calgs of finite dimensional stable LTI systems", IISC, Bangalore, 
% 2000. 
% Example 3.6.4 

ng=conv([l 2]);dg=conv([l 1],[1 3],[1 41); 
end 

8 This program computes and plots the SISO controller by OGDTM method 
% using genetic algorithms for different plants available in 
8 file tfsiso c0n.m 
% FILE NAME : msisoconogdtm. m 

clear all; 
clc; 
f-name='sisoconogdtm'; 
siz=l; 
p - max=l*ones (siz, 1) ; 
p-min=O. 001*ones (siz, 1) ; 
p-res=O.Ol*ones(siz,1); 
gap=frnga_def(5) 
ptyp=2*ones (siz, 1) ; 
G-disp=l ; 
[maxp, minp, avp, bp, pi1 =flexga ( f - name, p-min, p-max, p-res, ptyp, gap, G-disp) ; 
form-p=l;dl= bp;n=l;delta=O.l; 
t=O:delta:20; 
% ----- Call for plant transfer function ,------ 
% Choose examples given in the file tfsiso-c0n.m 
8 Change the ex - no in the function sisoconogdtm.m also 
ex-no=l ; 

[ng, dg] =tfsiso-con (ex no) ; 
[nump denpl =c2del (ng, dg, delta) ; 
[nurnm,denm]=refmodel28 40(delta); 
opdenm=cl201 (numrn, denmFn) ; 
[npol=zero(opdenm);% zer0.m takes input as poly coef.and detects 

% nos of zero at origin 
[npor] =zero (denp) ; 

cnr=2; % Choose cnr=l for PI and 2 for PID controller 
mr=cnr+l; 
u=[l ;q=[l; 
for i=l:mr 

p=agtm (form-p, i*dl, n, nump, denp) ; 
m=agtm(form-p, i*dl, n, numrn, denm ) ; 
ql=inv (p) * (i*dl) A (npo-npor) *inv(eye (size (m) ) -m) *m; 
ql=reshape (ql ' , 1, n*n) ; 



q=[q;qll; 
um= [ 11 ; 
for j=l:cnr 

um=[um, (i*dl) ̂j ]  ; 
end; 
u= [u; um] ; 

end; 
cnum=[] ;cden=[] ; 
xl=l; 

for i=l:n*n 
if npo==O 

ul=u(l:cnr+l, l:cnr+l) ; 
u2=[1: (xl+l) OI1*dl.*q(:,i); 
z=inv (ul) *u2; 

else 
ul=u(l:cnr+l, l:cnr+l); 
u2=q(:, i) ; 
z=inv (ul) *u2; 

end 
zn=f liplr ( z ' ) ; 

zd=[l, 0] ; 
cnum= [cnum; zn] ; 
cden= [cden; zd] ; 

end 
NUM=conv (cnum, nump) ; 
DEN=conv(cden,denp); 
sys=tf (NUM, DEN) ; 
SYS=feedback (sys, 1, -1) ; 
[fnum, fden]=tfdata (SYS, 'v' ) ; 
disp('Samp1ing Timel);disp(delta); 

% Step response of reference model and system 
yf=delstep (numm, denm, t, delta) ; 
yc=delstep(fnum,fden,t,delta); 

figure (2) ; 
plot(t,yf, 'k-',t,yc, 'k--I );xlabel('Time in secl);ylabel('Magnitude'); 
title('Step Response of SISO Reference Model and Designed System ' ) ;  
legend('Reference Modell,'Closed Loop systen','location','Best'); 
legend BOXOFF; 
% Impulse response of reference model and system 
yf l=delimp (numm, denm, t, delta) ; 
ycl=delimp ( fnum, fden, t I delta) ; 

figure (3) ; 
plot (t, yfl, ' k-' , t, ycl, ' k--' ) ;xlabel ('Time in sec' ) ; ylabel ('Magnitude') ; 
title('Step Response of SISO Reference Model and Designed System ' ) ;  
legend('Reference Modell,'Closed Loop systenl,'location','Best'); 
legend BOXOFF; 
[z,p, k]=tf2zp (fnum, fden) ; 
figure (4) ; 
delplane (z, p, delta) ; 
title('Po1e Zero plot in delta domain'); 
legend('zerosl, 'poles'); 
legend BOXOFF; 
%-----------------Numerator and Denominator coefficients------------- 
disp('samp1ing time in se~onds');disp(delta);disp(~Angle~);disp(-40); 
disp('0ptimum Ex. Point Valuel);disp(dl); 
disp ( 'Plant Transfer Function in s - Domain') ;printsys (ng, dg, ' s  ' ) ; 



dlsp ( ' Plant Transfer 
dlsp('Ref.Mode1 Trans 
prlntsys (numm, denm, ' y 
lf length (numm) ==3 

Functlon In delta Doma~n');pr~ntsys(nump,denp, 'y'); 
fer Functlon In delta Domaln'); 
.');dlsp(numm);dlsp('coeff."A" of Reference Model'); 

dlsp(numm(2) ) ; 
else dlsp(numm(1) ) ;  

end 
dlsp('coefflclent "B" of Reference Model'); 
lf length (numm) ==3 
dlsp(numm(3) ) ; 
else dlsp(numm(2) ) ; 

end 
dlsp('coefflclent "C" of Reference Model'); 
dlsp(denm(2) ) ; 
dlsp('coeff1clent "D" of Reference Model'); 
lf length (numm) ==3 
dlsp(numm(3) ) ; 
else dlsp(numm(2) ) ; 

end 

dlsp('Des1gned PI Controller Transfer Functlon In delta Domaln'); 
cdenl= [O, cden] ; 

prlntsys (cnum, cden1,'y' ) ; 
dlsp('Des1gned system Transfer Functlon ln delta Domaln'); 

prlntsys (fnum, fden, 'y' ) ; 

%------------time domaln speclflcatlons------------ 
~f n==l 

~f length(cden)< length(cnum) 
cden=(conv([cdenl, [l, (O.l/delta)]) ) ;  

end 
[af, bf]=feedback(conv(cnum,nump) ,conv(cden, denp) , 1, 1, -1) ; 
flag=ISSTABLE(roots(bf),delta); 
~f flag==O 

dlsp('UNSTABLE SISO FEEDBACK SYSTEM In DELTA DOMAIN') 
elself flag==l 

dlsp('STABLE SISO FEEDBACK SYSTEM In DELTA DAMAIN') 
end 
dyr=delstep (af, bf, t, delta) ; 
[mp tp tr ts]=tdspec(dyr); 
dlsp('Max percentage overshoot');dlsp(mp); 
dlsp('Peak tlme, Nos of sample') ;dlsp(tp) ; 
dlsp ( 'Rlse tlme, Nos of sample' ) ;dlsp(tr) ; 
dlsp('Sett1lng tlme, Nos of sample');dlsp(ts); 
[mag, db, pha, wb] =deltabode (numm, (denm- [zeros (1, (length (denm) 

-length (numm) ) ) , numm] ) , delta) ; 
[magl,dbl,phal,wbl]=deltabode(conv(cnum,nump),conv(cden,denp), 
delta) ; 

[gmm, pmm, wcgm, wcpml =margin (mag, pha, wb) ; 
dlsp('G M and Phase crossover frequency of reference model') 
dlsp (gmm) ;dlsp (wcpm) ; 
dlsp('P M and Galn crossover frequency of reference model') 
dlsp(pmm);dlsp(wcgrn); 
[gm, pm, wcg, wcpl =margin (magl,phal,wbl) ; 
dlsp('G M and Phase crossover frequency of deslgned system') 
dlsp (gm) ;dlsp (wcp) ; 



disp('P M and Gain crossover frequency of designed system') 
disp (pm) ;disp (wcg) ; 

end 

.......................................................... 
function [PI] =sisoconogdtm (x)  
8 This function computes.basic SISO controller with OGDTMs and finds 
% scalar fitness function. 
% Finding the number of poles at origin for open-loop t.f.m. 
% FILE NAME : sisoconogdtm.m 

delta=O.l; 
t=O:delta:20; 
8 ----- Call for plant' transfer function ------ 
% Choose examples given in the file tfsiso-c0n.m 
% Change the ex-no in the function msisoconogdtm.m also 
ex-no=l ; 
[ng, dg] =tf siso-con (ex-no) ; 
[nump denpl=c2del(ngldgldeIta); 
[numm1denm]=refmodel28 - 40(delta); 

8 OGDTM program starts here 
form-p=l;dl=x;n=l; 8 n=l for SISO system 
opdenm=c1201(nummldenm,n); 
[npo]=zero(opdenm);% zer0.m takes input as poly coef. and detects 

% nos of zero at origin 
[npor] =zero (denp) ; 

cnr=2 ; 8 Choose cnr=l for PI and 2 for PID controller 
mr=cnr+l; 
u=[l ;q=[l; 
for i=l:mr 

P=agtm(form-p, i*dll nI numpI denp) ; 
m=agtm ( f orm-p, i*dl, nI nummI denm ) ; 
ql=inv (p) * (i*dl) A (npo-npor) *inv (eye (size (m) ) -m) *m; 

q=[q;qlI ; 
um= [l] ; 
for j=l:cnr 

um=[um, (i*dl)^j] ; 
end; 
u=[u;um] ; 

end; 

disp('Nos of open-loop ref model pole at originl);disp(npo) 
disp('Nos of plant pole at origin'),;disp(npor) 

xl=l; 
for i=l:n*n 

if npo==O 
ul=u(l:cnr+l, l:cnr+l); 
u2=[1: (xl+l) 0] '*dl. *q(:, i) ; 
z=inv (ul) *u2; 

else 
ul=u ( 1 : cnr+l, 1 : cnr+l) ; 
u2=q(:, i) ; 
z=inv (ul) *u2 ;  

end 



zn=fllplr (zV ) ; 
zd=[l, 0] ; 
cnum= [cnum; znl ; cden= [cden; zdl ; 

end 
% Computation of scalar fltness functlon 

NUM=conv(cnum,nump); 
DEN=conv(cden,denp); 
sys=tf (NUM, DEN) ; 
SYS=feedback (sys, 1, -1) ; 
[fnum, fden] =tfdata (SYS, 'vV ) ; 
yf=delstep(numrn,denmItIdelta); 
yc=delstep(fnum,fdenItIdelta); 
erl=yf-yc; 
er=erlV*erl; 
PI=er; 

Chapter 4 (Controller design for MIMO systems) Programs: 

functlon [Tfmat,Cdel]=comnd(tfmIdelIpIm) ; 

% Thls functlon flnds common denomlnator of multlvarlable system 
% In Transfer matrlx form 
% Common denomlnator 1s taken out uslng LCM of all denomlnators 
% FILE NAME: c0mnd.m 
% tfm = numerators are arranged as nll,n12,n21,n22 
% p = Nos. of output, m = Nos. of Input 
% del = denomlnators dll, d12, d21, d22 
% tfmat= numerators nll, 1112, n21, n22 
% cdel =common denomlnator 

yn=[l ;yd=[l; 
for l=l:p*m 

yn=[yn;tfm(l,:)l; %nll;n21;n12;n22 
yd=[yd;del(l,:)]; % dll;d21;d12;d22 

end 
x2=comden ( yd) ; 
nnl= [I ; 
for l=l:p*m 

lf any(yn(1, . )  )==l & any(yd(1, :))==l 
[ ~ d n ]  =rmzero (conv (yn (1, : ) , x2) ) ; 
[~dd]=rmzero(yd(l, : )  ) ;  

nn=deconv (ldn, ldd) ; 
nnl= [nnl; length (nn) ] ; 

end 
end 
nn2=max(nnl); '% maxlmum order of the polynomial matrlx 
n2= [I ; nl= [I ; 
for l=l:p*m 

lf any(yn(1, :))==l & any(yd(l,:))==l 
[1dnl=rmzero(conv(yn(~,:),x2) ) ;  % removlng leadlng zeros for 

dlvlslon 
[ lddl =rmzero ( yd (1, : ) ) ; 
nl=deconv (ldn, ldd) ; 



nl=[zeros (1, (nn2-length (nl) ) ) , nl] ; 
n2=[n2;nlI ; 

else 
n2= [n2; zeros (1, nn2) 1 ; 

end 
end 

cdel=x2 ; 
t fmat=n2; 

function [numml,denml]=refmodcalcm~mo(angleldelta) 
% Thls function computes the numerator and denominator of reference 
8 model for mull variable system 
% n==l for SISO and 2 for 2x2 MIMO systems 
% angle=lnput('Enter any one value of angle roh == I); 

format short; 
n=l; rohl=angle; . 

roh= (pi/l80) *rohl; 
alpa=roh; 

wn=0.84;zta=O.I;gain=l; 
wd=wn*sqrt(l-zta*zta); 
s=-ztacwn+(wn*sqrt(l-ztah2))*i ; % pole in s-domain 
delta=[2 1 0.5 0.1 0.01 0.0011; 
numml= [ I  ; 
denml= [ I  ; 

for j=1: 6 
g=s2del (sf delta ( j  ) ) ; 8 pole in delta-domain 
cong=conj (g) ; 
denm=conv ( [l, -g] , [l, -cong] ) ; 
z= ( (tan,(roh- (pi/2) ) * (abs (g) ) "2) ) / (abs (real (g) ) * tan (roh- (pi/2) ) .. 

- abs(imag(g))); 
A=gain* (denm(3) /abs (real (z) ) ) ; 

numm=A* [l z]; 
numm= [ O  numm] ; 
numml= [numml; numm] ; 
denml= [denml ; denm] ; 

end 

function [numm,denm]=refmodel5-4O(delta) 
% This function computes reference model for MIMO system for different 
% values of samling tlme given In the function refmodca1cmimo.m 



numm(4, : )=numml(3, : );denm(l, : )=denml(3, :);denm(2, :)=zeros(l,3); 
denm(3, :)=zeros(l,3) ;denm(4, :)=denml(3, : ) ;  

elseif delta==O.l 
numm(1, : )=numml(4, :);numm(2, : )=~eros(l,3(3~ :)=zeros(l,3); 
numm(4, :)=numml(4, :);denm(l, :)=denml(4, :);denm(2, :)=zeros(l,3); 
denm(3, :)=zeros(l, 3);denm(4, :)=denm1(4, : ) ;  

elseif delta==0.01 
numm(1, :)=numml(5, :);numm(2, :)=zeros(l,3(3, :)=zeros(lt3); 
numm(4, : )=numml(5, : );denrn(l, : )=denrnl(5, :);denm(2, :)=zeros(l, 3); 
denm(3, :)=zeros(l,3);denm(4, :)=denm1(5, : ) ;  

else 
numm(1, :)=numml(6, :);numn1(2~ : )=~eros(l,3(3~ :)=zeros(l,3); 
numm(4, :)=numml(6, :);denm(l, :)=denml(6, :);denm(2, :)=zeros(lt3); 
denm(3, :)=zeros(l,3) ;denm(4, :)=denm1(6, : ) ;  

end 

function [colmat] =row2col (rowmat, n) 
% This function converts a rowwise arranged polynomial matrix 
% to columnwise arrangment. 
8 FILE NAME: row2col.m 
colmat= [ I ; 
for i=l:n 

for j=O:n-1 
colmat=[colmat;rowrnat(i+j*n,:)]; 

end 
end 

function [if id11 =zero (dl) 
% This function finds the number of roots, of a polynomial at origin, 
% it also returns the polynomial after removing those roots. 
% FILE NAME: zero .rn 

dl=roots(dl) ';dl=fliplr(dl);l=length(dl);i=O; 
for j=l:l 

if dl (1- (1-1) ) - = O  
idl=dl (1: 1-11 ; 
idl=fliplr(poly(idl)); 
return; 

end; 
i=i+l; 

end; 

functlon [ng, dg] =tfmimo-con (ex-no) 
% This function outputs the numerator and denominator coefficients 
% of multivariable plants given in the examples. 
% ex-no=input('Enter Example Number : I); 
% FILE NAME: tfmimo c0n.m - 

if ex-no == 1 
8 Ref. Rosenbrock, H.H," design of the multivariable control 
% systems using the inverse nyquist array" Proc. IEE , vol. 116, 



% no. 11, pp. 1929-1936, Nov. 1969. 
% Thesls example no 4.4.1 

elself ex-no == 2 

% The open-loop transfer functlon of a pressurized flow-box 
% Ref. Hung, N.T. and Anderson, B.D.O., " Trlangularlzatlon 
% Technique for the deslgn of Multlvarlable control systems", 
% IEEE Trans. Automat. control, vol. AC-24, no. 3, 
% pp. 455-460, 1979. 
% Thesls example no 4.4.2 
% Numerator order [nll;n12;n21;n22]; 

elself ex-no == 3 
% Four Input four output gas flred furnace problem 
% Ref: Chleh-L1 Chen and Nell Munro, "Procedure to achleve dlagonal 
% dominance uslng PI/PID controller structure", International 
% Journal of Control, vo1.50, no. 5, pp. 1771-1792, 1989. 
% Thesls example no 4.4.3 

elself ex-no == 4 

% Four lnput four output gat turblne 
% Ref: P.D.McMorran, S.M.,"Deslgn of gas-turblne controller uslng 
% lnverse Nyqulst method", Proc. IEE, vol. 117, no. 10, 
% pp. 2050-2056, 1970. 
% Thesls example number 4.6.2 

ng=[O 0 14.96 1521.432 2543.2;O 0 95150 1132094.7 1805947; 
0 0 85.2 8642.688 12268.8;O 0 124000 1492588 25258801; 

dg=[l 113.225 1357.275 3502.75 2525;l 113.225 1357.275 3502.75 2525; 
1 113.225 1357.275 3502.75 2525;l 113.225 1357.275 3502.75 25251; 

end 

functlon [PI] =mlmoogdtm (x) 
8 Thls functlon computes baslc MIMO controller wlth OGDTMs and flnds 
% scalar fltness functlon. 
% Frndlng the number of poles at orlgln for open-loop t.f.m. 
% FILE NAME : mlmoogdtm.m 

delta=O.l;tlm=O:delta:30; 
% ----- Call for plant transfer functlon ------ 
% Choose examples glven In the flle tfmlmo c0n.m - 



% Change the ex-no in the function mmirnoogdtrn.rn also 
ex-no=l; 
[ng, dgl =t fmirno-con (ex - no) ; 
[ngl,dgl1=c2del(ng(lI : )  ,dg(l, :),delta); 
[ng2,dg2l=c2del (ng(2, : ) ,dg(2, : ) ,delta) ; 
[ng3, dg31 =c2del (ng ( 3 ,  : ) , dg (3, : ) ,delta) ; 
[ng4,dg4]=~2del(ng(4, :),dg(4, :),delta); 
%ngl=[O,ngll ;dgl=[O,dgl] ; 
nump=[ngl;ng2;ng3;ng4]; 
denp=[dgl;dg2;dg3;dg4]; ' 

[nurnp, denpl =cornnd(nump, denp, 2, 2) ; 

8 reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2 
[numm,denml=refrnodel5 40(delta); 
[nurnrn, denrn] =cornnd ( n u 6  denrn,2, 2) ; 
form-p=l ; n=2 ; 
flag=isstable(roots(denp),delta); 
if flag ==0 

disp('PLANT IS NOT STABLE') 
end 

xl=l; cnr=l; 
mr=cnr+l; 
dl =x ; 
opdenrn=cl201 (numm, denrn, n) ; 
[npol =zero (opdenrn) ; % zer0.m takes input as poly coef. 

% and detects nos of zero at origin 
[nporl =zero (denp) ; 
u=[l ;q=[l; 

for i=l:rnr 
if f arm-p==l p=agtrn ( f orrn-p, i*dl, n ,  nurnp, denp) ; 

m=agtrn (form-p, i*dl,-n, numm, denrn ) ; 
else 

p=agtm(form-p, i*dl, n,ap, bp,cp) ; 
m=agtrn(form-p, i*dl, n,am, brn,crn) ; 

end 
ql=lnv (p) * (i*dl) A (npo-npor) *inv (eye (slze (rn) ) -m) *rn; 
ql=reshape (ql ' , 1, n*n) ; 
q=[q;qll; 
urn= [1] ; 

for j=l : cnr 
urn= [urn, (i*dl) A j] ; 

end; 
u=[u;um] ; 

end; 
cnurn= [ ] ; cden= [ 1 ; 

for i=l:n*n 
if npo==O 

ul=u (1 : cnr+l, 1 : cnr+l) ; 
u2=[1: (xl+l)] '*dl.*q(:,i); 
z=inv (ul) *u2 ; 

else 
ul=u(l:cnr+l, l:cnr+l); 
u2=q(:,i); 
z=lnv (ul) *u2; 

end 
zn=f llplr (z ' ) ; 
zd=[l,O]; 



cnum= [cnum; zn] ; 
cden= [cden; zd] ; 

end 
[cnuml , cdel ] =change (cnum, cden, n) ; 
cnumll=row2col (cnuml, n) ; 8 arranging as [nll n21 n12 n22] 
[ac, bc, cc, dc]=tfm2ss (cnumll, cdel, n, n) ; 
numpl=row2col(nump,n); % arranging as [nll n21 n12 n22] 
[ap, bp, cp, dpl = tfm2ss (numpl, denp, n, n) ; 

ymm=[l ;ym=[l; 
for i=l:n*n 

ymm=[ymm,delstep(numm(1, : ) ,denm, tim,delta) ] ; 
% this will give yll, y12, y21, y22 

end 
for ]=l:n 

for l = j  :n:min(size(ymm) ) % this will give yll, y21, y12, y22 
ym=[ym,ymm(:,l)l; 

end 
end 

[acp, bcp, ccp; dcpl =series (ac, bc, cc, dc,ap, bp, cp, dp) ; 
[af, bf, cf, dfll =feedbk (acp, bcp, ccp,2) ; 

f lag=isstable (af, delta) ; 
yr= [ 1 ; yrout= [ I  ; 
dyr=delstep (af, bf, cf, df 1, 1, tim, delta) ; 

for j=l:n 
yroutl= [I ; 
for i=j:n:length(dyr) 

yroutl= [yroutl;dyr (i, : ) ] ; 
end 
yrout=[yrout,yroutl]; 

end 
for j=l:n 

for l=j:n:min(size(yrout)) 
yr=[yr,yrout(:,l)]; 

end 
end 

er=ym- yr; 
PI=er(:,l) '*er(:,l)+er(:,2)'*er(:,2)+er(:,3)'*er(:,3)+er(:,4)'*er(:,4); 

8 This program computes basic MIMO controller with OGDTMs using genetic 
% algorithms and finds optimum frequency points. 
8 FILE NAME: mmimoogdtm.m 

clear all; 
clc; 
angle=-40;wn=0.84;zita=0.7; 
fname='mimoogdtm'; 
siz=l; 
p-max=l*ones (siz, 1) ; 
p~min=0.001*ones(siz,l); 
p-res=O. 01*ones (siz, 1) ; 
gap=fmga-def(1); 
ptyp=2*ones (slz, 1) ; 
G-dlsp=l; 
gap (9)=2; 
[maxp,mlnp, avp, bpl, pi1 =flexga (fname, p - mln, p-max, p-res, ptyp,gap, G-disp) ; 
[PI]=mlmopb5ga(bpl); 



f orm-p=l; 
dl= bpl;n=2;delta=0.1; 
tim=O:delta:30; 
t=tim/delta; 
ex-no=l ; 
[ng, dg] =t fmimo-con (ex - no) ; 
[ngl,dgl]=c2del(ng(l, :),dg(l, :),delta); 
[ng2,dg2]=c2del (ng(2, : )  ,dg(2, : )  ,delta); 
[ng3,dg3]=~2del(ng(3, : )  ,dg(3, : )  ,delta); 
[ng4,dg4]=~2del(ng(4, : )  ,dg(4, :)#delta); 
%ngl=[O,ngl] ;dgl=[O,dgl] ; 
nump=[ngl;ng2;ng3;ng4]; 
denp=[dgl;dg2;dg3;dg4]; 
[nump, denp] =comnd (nump, denp, 2,2) ; 

numpf=[J ;denpf=[ J ;  
for i=l:n*n 

sysl=tf (numpl (i, : ) ,denpl (i, : ) ) ; 
SYSl=feedback(sysl, 1, -1) ; 
[numpfl,denpfl]=tfdata (SYSl, 'v') ; 

~f length (numpf 1) <3 
numpf l= [O, numpf l] ; 

end 
numpf=[numpf;numpfl]; 

if length (denpf 1) <3 
denpf l= [O, denpf l] ; 

end 
denpf= [denpf; denpf l] ; 

end 

% reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2 

[numml,denml]=refmodel5 40(delta); 
[numm, denm] =comnd (numml~denml, 2,2 ) ; 

figure (1) ; 
opdenm=cl2ol(numm,denm,n); 

[npol=zero(opdenm); % detects nos of zero at origin 
[nporl =zero (denp) ; 
cnr=l; 
mr=cnr+l; 
u=[1 ;q=[l; 
for i=l :mr 

if form-p==l p=agtm(form p,i*dl,n,nump,denp); 
m=agtm (form-p, i*dl, n , b ,  denm ) ; 

else 
p=agtm (f orm-p, i*dl, n, ap, bp, cp) ; 
m=agtm (form-p, i*dl, n, am, bm, cm) ; 

end 
ql=inv (p) * (i*dl) A (npo-npor) *inv (eye (slze (m) ) -m) *m; 
ql=reshape (ql' , 1, n*n) ; 
q=[q;qll; 
um= [1] ; 

for j=l:cnr 
um=[um, (i*dl) "j] ; 

end; 



u= [u; um] ; 
end; 
cnum= [ 3 ; cden= [I ; 
xl=l; 
for l=l:n*n 

I£ npo==O 
ul=u(l:cnr+l,l:cnr+l); 
u2= [I: (xl+l) ] ' *dl. *q ( : ,l) ; 
z=lnv (ul) *u2; 

else 
ul=u(l:cnr+l, l:cnr+l) ; 
u2=q(:,1); 
z=lnv (ul) *u2; 

end 
zn=fllplr(zl); 
zd=[l, 01; 
cnum= [cnum; zn] ; 
cden= [cden; zd] ; 

end 
dlsp('PI');dlsp(PI);disp('Angle rohr);dlsp(angle); 
dlsp('Undamped Natural frequency');dlsp(wn); 
dlsp('Damp1ng factor');dlsp(zlta);dlsp('Sampllng tlmel);dlsp(delta); 
dlsp('Ex Polnt value') ;dlsp(dl) ; 
dlsp('Numeretor Coeff.of plant [nll n12 n21 n22It);dlsp(nump); 
dlsp('Common Den.coeff. of plant [dl1 dl2 d21 d221'); dlsp(denp); 
dlsp('Numeretor Coeff.of CL-plant [nll n12 n21 n22]');dlsp(numpf); 
dlsp('Denomlnator coeff.of CL-plant [dl1 dl2 d21 d22Ir);dlsp(denpf); 
dlsp('Numerator Coeff-of Reference Model ');dlsp(numm); 
dlsp('Common Denominator Coeff.of Reference Modell);dlsp(denm); 
dlsp('Numerator Coefflclents of Controller');d~sp(cnum); 
dlsp('Denom1nator Coefflclents of Controller');dlsp(cden); 
com del=mulrow(cden); 
dlsp ( ' POLES OF CONTROLLER: ' ) ; dlsp (roots (com-del) ) ; 
dlsp('Nos of open-loop ref model pole at orlglnl);dlsp(npo) 
dlsp('Nos of plant pole at orlglnl);dlsp(npor) 

[ro, cl] =size (cden) ; 
[cnuml, cdel I =change (cnum, cden, n) ; 

cnumll=row2col(cnuml,nl; % arranging as [nll n21 n12 n22] 
[ac, bc, cc, dc]=tfm2ss (cnumll, cdel, n, n) ; 
numpl=row2col (nump, n) ; % arranging as [nll n21 n12 n22] 
Lap, bp, cp, dpl = tfm2ss (numpl, denp, n,n) ; 

lf n-=l 
[acp, bcp, ccp, dcpl =series (ac,bc, cc, dc, apt bp, cp, dp) ; 
[a£, bf, cf, dfl] =feedbk (acp, bcp, ccp, dcp, 2) ; 

flag=lsstable (af, delta) ; 
I.£ flag ==0 

dlsp('Deslgn feedback system 1s unstable'); 
else 

dlsp('Deslgn feedback system 1s stable'); 
end 

ypp=[l ;yp=[l; 
for 1=1:n*n 

ypp=[ypp,delstep(numpl(~,:),denpl(~,:),t~m,delta)]; 
% Arrange In yll, y12, y21, y22 

end 
for j=l:n 

for l=]:n:min(size(ypp)) % thls wlll glve yll,y21,y12,y22 



yp=[ypfypp(:r~)1; 
end 

end 
ypcc= [ I ; 
ypc= [ I ; 

for i=l:n*n 
ypcc=[ypcc, delstep(numpf (i,:), denpf(i, : ) , tim, delta) ] ; 

% this will give yll, y12, y21, y22 
end 
for j=l:n 

for l=j:n:min(size(ypcc)) % this will give yll,y21,y12,y22 
ypc=[ypc, ypcc(: , 1) I; 

end 
end 

p = [ I  ;ym=[l; 
for i=l:n*n 

ymm=[ymm, delstep(numrn(i, : ) , denm, tim,delta) ] ; 
% this will give yll, y12, y21, y22 

end 
for j=l:n 

for l=j:n:min(size(ymm)) % this will give yllry21,y12,y22 
ym=Cym,ymm(:,1)1; 

end 
end 

yr=[l;yrout=[l; 
dyr=delstep (a£, bf, cf , dfl, 1, tim, delta) ; 

for j=l:n 
yroutl= [I ; 
for i=j:n:length(dyr) 

yroutl=[yroutl;dyr(i,:)1; 
end 
yrout=[yrout,yroutll; 

end 
for j=l:n 

for l=j:n:min(size(yrout)) 
yr=[yr, yrout(:,l)]; 

end 
end 
for i=l:n*n 
figure (i+l) ; 
plot(t,yp(:,i), l k : ' , t f y p c ~ : f i ~ l ' k - . ' , t l y m ~ : f i ~ f  'k-',t,yr(:,i),'k--'I; 
legend('Plant','Plant with Unity feed back', 'Reference Model',.. 

'Designed Closed-Loop System'); 
legend BOXOFF; 
title('Step Response of MIMO Systion with PI controller'); 
xlabel ( ' t/delta ' ) ; 
ylabel('Magnitude'); 
pause; 
end 

k=[l,n*n] ; 
for j=1:2 

i=k(j); 
[mp tp ts] =tdspecl (yp ( :  , i) ) ; 
[mpl tpl tsll=tdspecl(ym(:,i)); 
[mp2 tp2 ts21 =tdspecl (yr ( : , i) ) ; 
disp ('Mp8: Plant Model CL-system' ) ;disp( [ m p f m p 2 1 )  ; 
disp('tp/delta: Plant Model CL-system');disp([tpftp21); 



disp('ts/delta: Plant Model CL-system');disp([ts,ts21); 
end 

% PLotting of control efforts [ull u21 1,112 u22] 

[au, bur cu, dul =feedback (ac,bc, cc, dc,ap, bp, cp, dpl -1) ; 
yrl= [I ; yrout= [I ; 
dyr=delstep (au, bu, cur du, 1, timl delta) ; 

for j=l:n 
yroutl= [I ; 
for i=j:n:length(dyr) 

yroutl=[yroutl;dyr (i, : )  1 ;  
end 
yrout=[yrout,yroutl]; 

end 
forj=l:n . 

for l=j:n:min(size(yrout)) 
yrl= [yrl, yrout ( : , 1) ] ; 

end 
end 
for i=l:n*n 

figure (ii-5) ; 
plot(t,yrl(:,i), 'k-'); 
title('Contro1 Effort ' ) ;  
xlabel('t/deltaq); 
ylabel('Magnitudel); 

pause; 
end 

end 

function[PI]=mimooff(x) 
8 This function computes scalar fitness function for multivariable 
% controller design by optimum frequency fitting method. 
% Takes plant transfer function for the function tfmimo con(ex-no); - 
% FILE NAME: mimo0ff.m 

delta=0.1; 
tim=O:delta:50; 
ex-no=l; 
[ng,dgl=tfmimo~con(ex - no) ; 

[ nump, denp 1 =comnd ( nump ,denp, 2 , 2 )  ; 

% reference model zeta =O. 7, wn=O. 84, Delta =O. 0001,O. 001,O. 01,O. 1,O. 5,2 
[numrn,denml=refmodelS - 40(delta); 



[numm, denm] =comnd (numm, denm, 2 , 2) ; 
f orm-p=l ; 
n=2; 
xl=l; 

cnr=l; 
mr=cnr+l; 
dl=x; 
opdenm=cl201 (numm, denm,n) ; 
[npol=zero(opdenm); 8 detects nos of zero at origin 
[npor] =zero (denp) ; 
[nummo, denmo] =mulnd (numm, denm, n) ; 
denmo=fliplr(rmzero(f1ip1r(opdenm))); 

% Formation of Q-matrix and U-matrix using Optimal frequency Fitting 

abs - u= [I ; q= [ I  ; ang-u= [I ; 
for i=l:mr 

p=[l ;In=[]; 
for j=l:n*n 
p=[p;delfreq(nump(j, : )  (denp, i*dl,delta)]; 
m=[m;delfreq(numrno( j , : ) , denmo, i*dlI delta) ] ; 

end 
p=reshape(p,n,n);p=pl; % AFF matrix of the plant in TFM form 
m=reshape(m,n,n);m=m'; % AFF matrix of the ref.mode1 in TFM form 
ql=inv (p) *m; 
ql=reshape (ql ' , 1, n*n) ; 
q=[q;qll; 
ddl=dl*sqrt (-1) ; 
ddl=s2del(i*ddlfdelta); 

um=[l] ;uml=O; 
for jj=l:cnr 

um=[um, (abs (ddl) )"j j] ; 
uml=[uml, (angle(ddl)*jj)]; 

end 
abs - u=[abs-u;um]; % absolute values of U-matrix elements 
ang-u=[ang-u;uml]; % Angles of the U-matrix elements 

end; 
abs q=abs (q) ; % absolute values of the q-matrix elements 
angIq=angle (q) ; % angles of the q-matrix elements 
cos-u=cos (ang-u) ; 
sin-u=sin(ang-u); 
fro, cll =size (abs - u) ; 
ur=[] ;ui=[] ; 

for i=l:cl 
ur=[ur,abs-u(:,i) .*cos-u(:,i)]; 
ui=[ui,abs-u(:,i) .*sin-u(:,i)]; 

end 
wl=[ur;ui] ; 
8 Computation of numerator and denominator of the controller 

cnum=[] ;cden=[] ; 
for i=l:n*n 

ang_qu=[];w2=[];v=[];ang - ql=[]; 
for j=l:cl 

ang-qu= [ ang-qu, ang-q ( : ,i) + ang - u ( : ,, j ) ] ; 
ang-ql=[ang-ql,ang-q(:,i)l; 

end 



cos-ang-qu=cos(ang-qu); 
sin-ang-qu=sin (ang-qu) ; 
co's - ang-ql=cos (ang-ql) ; 
sin-ang-ql=sin(ang-ql); 
url= [I ; uil= [I ; ur2= [I ; ui2= [I ; 

for j=l:cl 
url=[url,abs - q(:, i) . *abs - u(:, j) .*cos-ang-qu(:, j) ] ; 
uil= [uil, abs - q ( : , i) . *abs-u ( : , j) . *sin-ang-gu ( : , j) ] ; 
% wnen npo-=0 lul*eAjtheta not required 
ur2=[ur2,abs_q(:,i) .*cos-ang-ql(:,j)]; % When there is pole at 

orlgin 
ui2= [ui2, abs - q( : , i) . *sin-ang-ql( : , j ) I ; % in open-loop reference 

model 
end 

w2=[url;uil]; % To be used for PI or PID when no pole at origin 
w3=[ur2;ui2]; % To be used for PI or PID when pole at origin 
[row, col] =size (w2) ; 
v=w2 ( :, col) ; 
if npo==O 

z(l:mr, l)=pinv(wl)*w2(:,2); 
else 

z(l:mr, l)=pinv(wl)*w3(: ,2); 
end 
zn=f liplr (z (1 : cnr+l) ' ) ; 
zd=[l 01; 
cnum= [cnum; zn] ; 
cden= [cden; zd] ; 

end 
[cnuml, cdel I =change (cnum, cden, n) ; 
cnumll=row2col (cnuml, n) ; % arranging as [nll n21 n12 n22] 
[ac, bc, cc, dc] =tfm2ss (cnumll, cdel, n, n) ; 
numpl=row2col(nump,n); % arranging as [nll n21 n12 n22] 
Lap, bp, cp, dp] = tfm2s.s (numpl, denp, n,n) ; 
w = [ l  ;ym=[l; 

for i=l:n*n 
ymm=[ymm, delstep (numm (i, : ) , denm, tim, delta) ] ; 

% this will give yll,y12,y21, y22 
end 
for j=l:n 

for l=j :n:rnin(size(ymm) ) % this will give yll, y21, y12, y22 
ym=[ym,v(:r1)1; 

end 
end 

[acp, bcp, ccp, dcpl =series (achc, cc, dc,ap, bp, cp, dp) ; 
[af, bf, cf, df 11 =feedbk (acp, bcp, ccp, dcp, 2) ; 
f lag=isstable (af, delta) ; 
yr= [ 1 ; yrout= [I ; 
dyr=delstep (air bf, cf, df 1, 1, tlm, delta) ; 

for j=l:n 
yroutl= [I ; 
for l=j:n:length(dyr) 

yroutl=[yroutl;dyr (1, : ) ] ; 
end 
yrout= [yrout, yrout l] ; 

end 
for j=l:n 

for l=]:n:min(size(yrout)) 



yr=[yr, yrout ( : ,  1) 1 ;. 
end 

end 
er=ym-yr; 

PI=er(:,l) '*er(:,l)+er(:J) '*er(:,2)+er(:,3) '*er(:,3)+er(:,4)'*er(:,4); 

% This program computes optimum frequency points for multivariable 
8 controller design by optimum frequency fitting method using genetic 
8 algorithms. It takes the value of scalar fitness function from the 
8 file mimooff.m 
8 Takes plant transfer function for the function tfmimo-con(ex-no); 
% FILE NAME: mmimooff.m 

Angle=-40;wn=0.84;zita=0.7; 
fname='mimoaff5ga'; 
siz=l; 
p max=l*ones (siz, 1) ; 
p-min=O. 001*ones (siz,l) ; 
pIres=O. 01*ones (siz,l) ; 
gap=fmga-def(1); 
ptyp=2*ones (siz, 1) ; 
G disp=l; 
gap(9)=2; 
[maxp,minp, avp, bpl,pi] =flexga (fname, p - m i  p - max,p-res,ptyp, gap, G-disp) ; 
[PI] =mimoaf f5ga (bpl) ; 

form p=l;dl= bpl;n=2;delta=0.1; 
tim=z:delta: 50; 
t=tim/delta; 
ex-no= 1 ; 
figure(1) ; 

[ng, dgl =t fmimo-con (ex-no) ; 
[ngl,dgl]=c2del(ng(l, : )  ,dg(l, :),delta); 
[ng2,dg2]=~2del(ng(2, : )  ,dg(2, :),delta); 
[ng3,dg3]=c2del (ng(3, : )  ,dg(3, :),delta); 
[ng4,dg4]=~2del(ng(4, : ),dg(4, :),delta); 
ng3=[0, ng31 ;dg3=[0, dg31; 
numpl=[ngl;ng2;ng3;ng4]; 
denpl= [dgl;dq2;dg3;dg4] ; 
[nump, denpl =comnd(numpl,denpl,2,2) ; 
numpff=[];denpff=[]; 

for i=l:n*n 
sysl=tf (numpl (if : ) , denpl (i,: ) ) ; 
SYSl=feedback(sysl, l,-l) ; 
[numpfl,denpfll=tfdata (SYS1, ' v '  ) ; 

if length (numpfl) <3 
numpf l= [Of numpf 1] ; 

end 
numpf f= [numpf f; numpf1l; 

if length (denpf 1) <3 
denpf l=[O, denpf l] ; 

end 
denpff=[denpff;denp£lI; 

end 
[numpf, denpf I =comnd (numpff , denpff , 2 , 2) ; 



% reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2 

[numm,denm]=refmodel5-40(delta); 
[numm, denm] =comnd (numm, d e n m a  2 ) ; 

form-p=l; n=2; xl=l; cnr=l; 
mr=cnr+ 1 ; 
opdenm=cl2ol(numm,denm,n); 
[npol =zero (opdenm) ; 

% zer0.m takes input as poly coef. and detects nos of zero at origin 
[npor] =zero (denp) ; 
[nummo, denmo] =mulnd (nurnm, denm, n) ; 
denmo=fliplr(rmzero(fliplr(opdenm)) ) ;  

% Formation of Q-matrix and U-matrix using AFF 

abs-u=[l ;q=[] ;ang - u=[] ; 
for i=l :mr 

p=[I ;m=[l; 
for j=l:n*n 
p=[p;delfreq(nump(j,:),denp,itdl,delta)]; 
m=[m;delfreq(nummo(j, : )  ,denmo,,i*dl,delta)]; 

end 
p=reshape(p,n,n);p=pl; % AFE matrix of the plant in TFM form 
m=reshape(m,n,n);m=ml; % AFE matrix of the ref.mode1 in TFM form 
ql=inv (p) *m; 
ql=reshape (qll , 1, n*n) ; 

q=[q;qll; 
ddl=dl*sqrt (-1) ; 
ddl=s2del (i*ddl, delta) ; 
um=[l] ;uml=O; 
for jj=l:cnr 

um= [um, (abs (ddl) ) * j j ] ; 
uml= [uml, (angle (ddl) * j j ) ] ; 

end 
abs-u=[abs-u;um]; % absolute values of U-matrix elements 
ang-u=[ang-u;uml]; 8 Angles of the U-matrix elements 

end; 
abs-q=abs ( q) ; % absolute values of the q-matrix elements 
ang-q=angle(q); % angles of the q-matrix elements 
cos-u=cos (ang-u) ; 
sin-u=sin(ang u); 
[ro,cl~=si~e(Zb~ - U) ; 
ur= [I ; ui= [I ; 

for i=l:cl 
ur=[ur,abs-u(:, i) .*cos-u(: ,i)]; 
ui=[ui,abs-u(:,i) .*sin-u(:,i)];. 

end 
wl=[ur;ui] ; 

% Computation of numerator and denominator of the controller 
cnum= [ ] ; cden= [ 3 ; 
for i=l:n*n 

ang-qu=[l ;w2=[l ;v=[l ;ang - ql=[]; 
for j=l:cl 

ang-qu=[ang-qu, ang-q(: , i )  + ang-u(: , j 1 I ; 



ang-ql= [ang-ql, ang-q ( : , 1) I ; 
end 
cos~ang~qu=cos(ang~qu); 
sln-ang-qu=sln(ang-qu); 
cos-ang-ql=cos(ang-ql); 
sin-ang-ql=sln (ang-q1) ; 
url=[] ;ull=[] ;ur2= [I ;u12= [I ; 
for j=l: cl 

url=[url,abs-q(:,1) .*abs~u(:,~).*cos~ang~qu(:,~)]; 
ull=[ull,abs-q(:,l).*abs u ( : , j ) . * s ~ n ~ a n g ~ q u ( : l ~ ~ l ;  
% wnen npo-=0 lul *e6jtheta not requlred 
ur2=[ur2,abs-q(:,1).*cos-ang-ql(:,~)]; % When there 1s pole at 

orlgln 
ul2=[ul2,abs-q(:,1) .*sin-ang-ql(:,l)]; % In open-loop reference 

model 
end 

w2=[url;ull] ; % To be used for PI or PID when no pole at orlgln 
[row, col] =size (w2) ; 
w=[wl,-wZ(:,l:col-l)]; % to be used for other controller 
v=w2(: ,col) ; 
~.f npo==O 

z(l:mr,l)=plnv(wl)*w2(:,2); 
else 

z(l:mr,l)=plnv(wl)*w3(:,2); 
end 
zn=fliplr(z(l:cnr+l) ' ) ;  
zd=[l 01; 
cnum= [cnum; zn] ; 
cden= [cden; zd] ; 

end 
d~~p('Error');dlsp(PI);dlsp(~Angle roh1);d1sp(Angle); 
dlsp('Undamped Natural frequency');dl~p(wn);dlsp(~Damp1ng factor'); 
dlsp(zlta);dlsp('Sampllng tlmel);dlsp(delta); 
dlsp ( 'Ex Polnt value In delta' ) ; dlsp (ddl) ; 
dlsp('Numeretor Coeff.of plant [nll n12 n21 n22I1);dlsp(nump); 
dlsp('Denom1nator coeff.of plant [dl1 dl2 d21 d22I1);dlsp(denp); 
dlsp('Reference Model Numerator Coefflclents');dlsp(nurnm); 
dlsp('Reference Model Denominator Coefflclentsl);dlsp(denm); 
dlsp('Numerator Coefflclents of Controller');d~sp(cnum); 
dlsp('Denom1nator Coefflclents of Controller'); dlsp(cden); 
corn del=mulrow(cden); 
com-del=mulrow (cden) ; 
 POLES OF CONTROLLER: ');dlsp(roots(com-del)); 
dlsp('Nos of open-loop ref model pole at orlglnl);dlsp(npo) 
dlsp('Nos of plant pole at orlglnl);dlsp(npor) 

[cnuml, cdel] =change (cnumI cden, n) ; 
cnumll=row2col(cnuml,n); % arranging as [nll n21 n12 n22] 
[ac, bc, cc, dc]=tfm2ss (cnumll, cdel, n, n) ; 
numpl=row2col (nump, n) ; 8 arranging as [nll n21 n12 n22] 
Lap, bp, cp, dp] = tfm2ss (numpl, denp, n, n) ; 
I£ n-=l 

[acp, bcp, ccp, dcpl =series (ac, bc, cc, dc,ap, bp, cp, dp) ; 
[af,bf, cf ,dfll=feedbk(acp, bcp, ccp, dcp, 2) ; 
flag=lsstable (a£, delta) ; 
I.£ flag ==0 

dlsp('Des1gn feedback system 1s stable'); 



else 
dlsp('Des1gn feedback system 1s stable'); 

end 
ypp=[l; yp=[I; 

for l=l:n*n 
ypp=[ypp, delstep(nump(l, : ,denp, tlm, delta) I ; 

% thls wlll glve yll, y12, y21, y22 
end 
for j=l:n 

for l=j:n:min(size(ypp)) % thls wlll glve yll,y21ry12,y22 
YP=[YP,YPP(:,~)~; 

end 
end 
ypcc= [ 1 ; 
ypc= [ 1 ; 
for l=l:n*n 

ypcc=[ypcc,delstep(numpff(l, :),denpff(l,:),tlrn,delta)]; 
% thls wlll glve yll, y12, y21, y22 

end 
for j=l:n 

for l=j :n:mln (slze (ypcc) ) % thls wlll glve yll, y21, y12, y22 
ypc=[ypc, ypcc(: ,1) I ; 

end 
end 

w=[I ;ym=[l ;yp=[l; 
for 1=1:n*n 

ymm=[ymm,delstep(numm(1, : )  ,denm, tlm,delta) I ;  
% thls wlll glve yll, y12, y21, y22 

end 
for l=l:n*n 

yp=[yp,delstep(nump(~,:),denpft~mfdelta)]; 
% thls wlll glve ypll, yp12, yp21, yp22 

end 
for j=l:n 

for l=j :n:min (size (ymm) ) 
% thls wlll glve yll, y21, y12, y22 
ym=[ym,ymm(:r1)1; 

end 
end 
yr= [ 1 ; yrout= [I ; 
dyr=delstep(af, bf, cf , dfl, 1, tlm,delta) ; 
for j=l:n 

yroutl= [I ; 
for l=j:n:length(dyr) 

yroutl=[yroutl;dyr ( 1 3  ; 
end 
yrout= [ yrout, yroutl] ; 

end 
for j=l:n 

for l=j:n:mln(slze(yrout)) 
yr=[yr,yrout(:,l)]; 

end 
end 

for l=l:n*n 



flgure (ltl) ; 
plot(t,yp(:,l),'k-.'); 
legend('Plantl,'Plant wlth Unlty feed back'); 
legend BOXOFF; 
tltle('Step Response of MIMO uncontrolled Plant'); 
xlabel('t/delta I); 
ylabel('Magn1tude'); 
pause; 
end 

for 1=1:n*n 
f lgure (l+5) ; 
plot(t,ym(:,l) , 'k-',t,yr(:,l), ' k - - I ) ;  
legend('Reference Modell,'Deslgned Closed loop System'); 
legend BOXOFF; 
tltle('Step Response of MIMO Systlon wlth PI controller'); 
xlabel ( ' t/delta ' ) ; 
ylabel('Magnitudel); 
pause; 

end 

% PLottlng of control efforts [ull u21 u12 u22] 
[au, bu, cu, du]=feedback(ac,bc, cc,dc,ap,bp, cp, dp, -1) ; 
yrl= [ 1 ;pout= [ J ; 
dyr=delstep (au, bu, cur du, 1 , tlm,delta) ; 

for j=l:n 
yrout l= [ I  ; 
for l=~:n:length(dyr) 

yroutl=[yroutl;dyr (1, : ) I ;  
end 
yrout= [yrout, yroutl] ; 

end 
for j=l:n 

for l=]:n:mln(slze(yrout)) 
yrl=[yrl, yrout ( : ,  1) ] ; 

end 
end 
for 1=1:n*n 

f lgure (1+9) ; 
plot (t, yrl(: ,l), 'k-');tltle('Control Effort ' ) ;  
xlabel('t/delta');ylabel('Magnltude'); 
pause; 

end 
end 

C h a p t e r  5 ( T i m e  D e l a y  Systems) 
8 Thls program computes optlmum frequency polnts for multlvarlable 
% controller deslgn for the systems wlth tlme delay by optlmum frequency 
% flttlng method uslng genetlc algorithms. It takes the value of scalar 
% fltness functlon from the flle m1moofftd.m 
% Takes plant transfer functlon for the functlon tfmlmo-con(ex-no); 
% FILE NAME: rnrn1moofftd.m 

clear all; 
clc; 
fname='m~moofftd'; 



siz=l; 
p-max=l*ones (siz, 1) ; 
p min=O. 001*ones (siz, 1) ; 
pIres=O. 01*ones (siz,l) ; 
gap=fmga-def (1) ; 
ptyp=2*ones (siz, 1) ; 
G-disp=l ; 
gap(9)=2; 
[maxp, minp, avp, bpl, pi1 =flexga (fname, p - m i  m a  r e  , p t p  g a p  G - disp) ; 
form p=l;dl= bpl;n=2;delta=l; 
tim=c:delta: 10; 
t=tim/delta; 
ex-no=l ; 
figure (1) ; 
tdPl=l;tdP2=3;tdP3=7; 
[ng, dgl =tfmimo-con (ex no) ; 
[ngl,dgll=c2deld(ng(l~:) ,dg(l, : ) ,  tdP1,delta); 
[ng2,dg2]=c2deld(ng(2, : )  ,dg(2, : )  ,tdP2,delta); 
[ng3, dg31=~2deld(ng(3, : ) ,dg(3, : ) , tdP3,delta) ; 
[ng4,dg41=~2deld(ng(4, : )  ,dg(4, : ) ,  tdP2,delta); 
[ml, nll=size (ngl) ; [m2,n21 =size (dgl) ; [m3, n3]=size (ng2) ; 
[m4, n4l=size (dg2) ; [m5, n5]=size (ng3) ; [m6, n6]=size (dg3) ; 

ngll(1, :)=[zeros(l,n5-nl) ,ngl(l, :)I; 
dgll(1, : )=[zeros (1,116-n2) ,dgl (l,:)1 ; 
ng21(1, :)=[zeros(l,n5-n3),ng2(1, :)I; 
dg21(1, :)=[zeros(l,n6-n4) ,dg2(1, : ) I ;  
ng31(1, : ) =ng3 (1, : ) ; 
dg31(1, : )=dg3 (1, : ) ; 
ng41(1, :)=[zeros(l,n5-n3),ng4 ( 1 4 ;  
dg41(1, :)=[zeros(l,n6-n4),dg4(1, : ) I ;  

nump=[ngll;ng2l;ng31;ng41]; 
denp=[dgll;dg2l;dg31;dg41] ; 

% reference model zeta =O. 7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2 

[numm,denm]=refmodel5 40aff(delta); 
[numm, denm] =comnd (nu6, denm,2,2) ; 

form-p=l;n=2;xl=l;cnr=l; 
mr=cnr+ 1 ; 
opdenm=cl2ol(numm,denm,n); 
[npo]=zero(opdenm); % d,etects nos of zero at origin 
[npor] =zero (denp) ; 
[nummo, denmo] =mulnd (numm,denm, n) ; 
denmo=fliplr(rmzero(fliplr(opdenm)) ) ;  

% Formation of Q-matrix and U-matrix using AFF 
abs-u=[] ;q=[] ;ang-u=[]; 
for i=l:mr 

p=[l ;m=[l; 
for j=l:n*n 
p=[p;delfreq(nump(j, : )  ,denp,i*dl,delta) 1 ; 
%m=[m;delfreq(nurnm( j ,  : ) ,denm,i'dl, delta) ] ; 
m=[m;delfreq(numrno (j, : ) ,denmo,i*dl,delta) ] ; 



end 
p=reshape(p,n,n);p=pl; % AFF matrix of the plant in TFM form 
m=reshape(m,n,n);m=ml; % AFF matrix of the ref.mode1 in TFM form 
ql=inv (p) *m; 
ql=reshape (ql ' , 1, n*n) ; 

q=[q;qll; 
ddl=dl*sqrt (-1) ; 
ddl=s2del (i*ddl, delta) ; 
um= [1] ; uml=O; 
for jj=l:cnr 

um=[um, (abs (ddl) )"j j] ; 
uml=[uml, (angle(ddl)*jj)]; 

end 
abs - u=[abs - u;um]; % absolute values of U-matrix elements 
ang-u=[ang-u;umll; % Angles of the U-matrix elements 

end; 
abs-q=abs ( q )  ; 8 absolute values of th,e q-matrix elements 
ang-q=angle(q); % angles of the q-matrix elements 
cos-u=cos (ang-u) ; 
sin-u=sin (ang-u) ; 
[ro, cl] =size (abs-u) ; 
ur=[] ;ui= [] ; 
for i=l:cl 

ur=[ur,abs-u(:,i) .*COS-u(:,i)]; 
ui=[ui,abs-u(:,i) .*sin-u(:,i)]; 

end 
wl= [ur; ui] ; 
% Computation of numerator and denominator of the controller 
cnum= [I ; cden= [I ; 
for i=l:n*n 

ang-qu=[l;w2=[];~=[3;ang - ql=[]; 
for j=l:cl 

ang qu=[ang-qu,ang-q(:,i)+ ang-u(:, j)l; 
angIql= [ ang-ql, ang-q ( : , i) I ; 

end 
cos - ang-qu=cos ( ang-qu) ; 
sin - ang-qu=sin(ang-qu); 
cos-ang-ql=cos(ang-ql); 
sin-ang-ql=sin (ang - ql) ; 
url= [I ; uil= [I ; ur2= [I ; ui2= [ ]  ; 
for j=l:cl 
url= [url, abs - q ( : , i) . *abs - u ( : , j ) . *cos-ang - qu ( : , j ) 1 ; 
uil= [uil, abs - q ( : , i) . *abs-u ( : , j ) . *sin-ang-qu ( : , j ) ] ; 

8 wnen npo-=0 lul*eAjtheta not required 
ur2=[ur2,abs - q(:,i).*cos-ang_ql(:,j)3;% When there is pole at origin 
ui2=[uiZIabs-q(:,i).*sin-ang-ql(:,j)]';% in open-loop reference model 

end 
w2=[url;uil] ; % To be used for PI or PID when no pole at origin 
w3= [ur2; ui2] ; % To be used for PI or PID when pole at origin 
[row, coll=size (w2) ; 
v=w2 ( : , col) ; 
if npo==O 

z(l:mr, l)=pinv(wl)*w2(: ,2); 
else 

z(l:mr,l)=pinv(wl)*w3(:,2); 
end 
zn=fliplr (z (1: cnr+l) ' ) ; 



zd=[l 01; 
cnum= [cnum; zn] ; 
cden= [cden; zd] ; 

end 
dlsp('Samp1lng tlmel);dlsp(delta); 
dlsp ( 'Ex Polnt value ln delta' ) ;dlsp(ddl) ; 
dlsp('P1ant transfer functlon for common dlnomlnator In delta 

domaln [pll p12 p21 p22] ' )  
for 1=1:n*n 

prlntsys (nump(1, : ) ,denp,'y') 
end 

dlsp('Reference Model transfer functlon wlth common Dlnomlnator 
In delta domaln [mll m12 m21 m221'); 

for 1=1:n*n 
prlntsys (numm(1, : )  ,denm,'y') 

end 
dlsp('Contro1ler transfer functlon ln delta domaln'); 
for l=l:n*n 

prlntsys (cnum(1, : ) , cden (1, : ) , ' y' ) 
end 

com~del=mulrow(cden); 
com~del=mulrow(cden); 
dlsp('P0LES OF CONTROLLER: ');dlsp(roots(com-del)); 
dlsp('Nos of open-loop ref model pole at orlglnl);dlsp(npo) 
dlsp('Nos of plant pole at orlgln');dlsp(npor) 

[cnuml, cdel] =change (cnum, cden, n) ; 
cnumll=row2col(cnuml,n); 8 arranging as [nll n21 n12 n22] 
[ac, bc, cc, dc]=tfm2ss (cnumll, cdel, n, n) ; 
numpl=row2col (nump, n) ; % arranging as [nll n21 n12 n221 
[apt bp, cp, dp] = tfm2ss (numpl, denp, n,n) ; 
lf n-=l 

[acp, bcp, ccp, dcpl =series (ac, bc, cc, dc, apt bp, cp, dp) ; 
[af, bf, cf, dfll =feedbk (acp, bcp, ccp, dcp, 2) ; 
flag=lsstable (a£, delta) ; 
lf flag ==0 

dlsp('Des1gn feedback system 1s unstable'); 
else 

dlsp('Des1gn feedback system 1s stable'); 
end 
ymm=[l ;ym=[l; 
for 1=1:n*n 

ymm= [ymm, delstep (numm(1, : ) , denm, tlm, delta) ] ; 
8 thls wlll glve yll, y12, y21, y22 

end 
for j=l:n 

for l=] :n:min(size (ymm) ) 
8 thls wlll glve yll, y21, y12, y22 
ym=[ym,ymm(:,1) I; 

end 
end 
yr= [I ; yrout= [I ; 
dyr=delstep(af, bf, cf, dfl, 1, tlm, delta) ; 
for ]=l:n 

yroutl= [] ; 
for l=]:n:length(dyr) 

yroutl=[yroutl;dyr(1, :)I; 



end 
yrout= [yrout, yroutl] ; 

end 
for j=l:n 

for l=j:n:mln(slze(yrout)) 
yr= [yr, yrout ( : , 1) ] ; 

end 
end 
for 1=1:n*n 

flgure (l+l) ; 
plot(t,ym(:,~), 'k-',tfyr(:,l)f 'k-.I); 
legend('Reference Modell,'Deslgned Closed loop System'); 
legend BOXOFF; 
tltle('Step Response of MIMO Systlon wlth PI controller'); 
xlabel('T1me In seconds');ylabel('Magnltude'); 
pause; 
close; 

end 

% PLottlng of control efforts [ull u21 u12 u221 
[au, bu, cu, dul =feedback (act bc, cc, dc, ap, bp, cp, dp, -1) ; 
yrl= [ J ; yrout= [I ; 
dyr=delstep (au, bu, cu, du, 1, tlm, delta) ; 
for j=l:n 

yroutl= [I ; 
for l=]:n:length(dyr) 

yroutl= [yroutl;dyr (l,:)3 ; 

end 
yrout= [yrout, yroutl] ; 

end 
for j=l:n 

for l=]:n:mln(slze(yrout)) 
yrl=[yrl, yrout ( :  ,l)]; 

end 
end 
for l=l:n*n 

flgure (l+5) ; 
plot(t,yr(:,l), 'k-');t1tle('Control Efforts'); 
xlabel('t/delta');ylabel('Magn~tude'); 
pause; 
close; 

end 
end 

functzon [PI] -7nlmooff td ( x )  
% Thls functlon deslgns multlvarlable controller for the systems wlth 
8 tlme delay by optlmum frequency flttlng uslng genetlc algorithm. 
% FILE NAME: m1moofftd.m 
%format short g 

delta=l;Angle=-40;tdP=l; 
tlm=O:delta:lO; 
ex-no=l ; 
tdPl=l;tdP2=3;tdP3=7; 
[ng, dg] =t fmlmo-con (ex-no) ; 



[ngl,dgl]=c2deld(ng(lf : )  ,dg(l, : ) ,  tdP1,delta) ; 
[ng2,dg2]=~2deld(ng(2, : ) ,dg(2, : ) ,  tdP2, delta) ; 
[ng3, dg3] =c2deld(ng (3, : ) , dg (3, : ) , tdP3, delta) ; 
[ng4,dg4]=~2deld(ng(4, : )  ,dg(4, : )  ,tdPZ,delta) ; 
[ml, nl J =size (ngl) ; [m2,n2] =size (dgl) ; [m3, n31 =size (ng2) ; 
[m4, n4]=size (dg2) ; [m5, n5]=size (1-193)~; [m6, n6]=size(dg3) ; 
ngll(1, :)=[zeros(l,n5-nl) ,ngl(l, : ) I ;  
dgll(1, : )=[zeros (l,n6-n2) ,dgl (l,:)1; 
ng21(1, : )=[zeros(l,n5-n3) ,ng2(1, : )  1; 
dg21(1, :)=[zeros(lfn6-n4) ,dg2(1, :)I; 
ng31(1, :)=ng3(1, :);dg31(1, :)=dg3(1, : ) ;  
ng41(1, : )=[zeros(lfn5-n3) ,ng4 (1,:)3; 
dg41(1, :)=[zeros(l,n6-n4) ,dg4(1, : ) I ;  
nump=[ngll;ng2l;ng31;ng41]; 
denp=[dgll;dg2l;dg31;dg41]; 

Inump, denp] =comnd (nump, denp, 2 , 2) ; 

% reference model zeta =0.7 wn=0.84 Delta =0.0001,0.001,0.01,0.1,0.5,2 
[numm,denm]=refmodel5-4Oaff(delta); 
[numm, denm] =comnd (numm, denm, 2,2) ; 
form - p=l;n=2;xl=l;cnr=l; 

mr=cnr+l; 
x=o .34 ; 
dl=x; 
opdenm=cl2ol(numm,denm,n); 

a [npo]=zero(opdenm); % zer0.m takes input as poly coef. and detects 
% nos of zero at origin 

[npor] =zero (denp) ; 
[nummo, denmo] =mulnd (numm, denm, n) ; 
denmo=fliplr(rmzero(fliplr(opdenm)) ) ;  

% Formation of Q-matrix and U-matrix using AFF 
abs-u=[l ;q=[] ;ang - u=[] ; 
for i=l:mr 

p=[l ;m=[l; 
for j=l:n*n 
p= [p;delfreq(nump (j, : ) , denp, i*dl, delta) ] ; 
%m=[m;delfreq(numm(j, : ) !denm, l*dlIdelta) ] ; 
m=[m;delfreq(nummo (j : ) denmo, i*dl,delta) ] ; 

end 
p=reshape(p,n,n);p=pl; % AFF matrix of the plant in TFM form 
m=reshape(mfn,n);m=ml; % AFF matrix of the ref.mode1 in TFM form 
ql=inv (p) *m; 
ql=reshape (qll , 1, n*n) ; 

q=[q;qll; 
ddl=dl*sqrt (-1) ; 
ddl=s2del(i*ddl,delta); 
um= [l] ; uml=O; 
for jj=l:cnr 

um=[um, (abs(ddl))^jj]; 
uml=[uml, (angle (ddl) *j j) ] ; 

end 
abs-u=[abs-u;um]; % absolute values of U-matrix elements 
ang-u=[ang--u;uml]; % Angles of the U-matrix elements 

end; 



abs - q=abs (q) ; % absolute values of the q-matrix elements 
ang-q=angle(q); % angles of the q-matrix elements 
cos~u=cos(ang~u); 
sin-u=sin (ang-u) ; 
[ro, cl] =size (abs-u) ; 
ur=[] ;ui=[] ; 
for i=l:cl 

ur=[ur,abs-u(: ,i) .*cos-u(: , i)]; 
ui= [ui, abs-u ( : , i) . *sin-u ( : , i) ] ; 

end 
%ui ( :  , l)=l; 
wl= [ur; ui] ; 
% Computation of numerator and denominator of the controller 
cnum= [ 1 ; cden= [ ] ; 
for i=l:n*n 

ang-qu=[];w2=[];v=[];ang9ql=[]; 
for j=l: cl 

ang-qu= [ ang-qu, ang-q ( : , i + ang-u ( : , j ) I ; 
ang-ql= [ang-ql, ang-q ( : , i 1 ; 

end 
cos-ang-qu=cos(ang - qu); 
sin - ang-qu=sin(ang-qu); 
cos-ang-ql=cos(ang-ql); 
sin-ang-ql=sin(ang - ql); 
url=[] ;uil=[l ;ur2=[] ;ui2=[] ; 
for j=l:cl 
url= [url, abs - q ( : , i) . *abs - u ( : , j ) . *cos-ang-qu ( : ,j) 1 ; 
uil=[uil,abs-q(:,i) .*abs-u(:, j) .*sin-ang-qu(:, j)]; 

% wnen npo-=0 lul*eAjtheta not required 
ur2=[ur2,abs-q(:,i).*cos-anggql(:,j)3; % When there is pole at origin 
ui2=[ui2,abs-q(:,i) .*sinpang - ql(:,j)l;% in open-loop reference model 

end 
w2=[url;uill; % To be used for PI or PID when no pole at origin 
w3=[ur2;ui2]; % To be used for PI or PID when pole at origin 
[row, col] =size (w2) ; 
v=w2(:,col); 
if npo==O 

z(l:mr,l)=pinv(wl)*w2(:,2); 
else 

z(l:mr,l)=pinv(wl)*w3(:,2); 
end 
zn=fliplr(z(l:cnr+l)'); 
zd=[l 01; 
cnum= [cnum; zn] ; 
cden= [cden; zd] ; 

end 
[cnuml, cdell =change (cnum, cden, n) ; 
cnumll=row2col(cnuml,n); % arranging as [nll n21 n12 n221 
[ac, bc, cc,dc]=tfm2ss (cnumll, cdel, n, n) ; 
numpl=row2col (nump, n) ; % arranging as [nll n21 n12 n22] 
Cap, bp, cp, dpl = tfm2ss (numpl, denp, n, n) ; 

ymm=[l ;ym=[l; 
for i=l:n*n 

ymm=[ymm, delstep(numm(i, : ) ,  denm, tim, delta) ] ; 
% this will give yll, y12, y21, y22 

end 



for j=l:n 
for l=j :n:min(size (ymm) ) 

% this will give yll, y21, y12, y22 
ym=[ym,ymm(:,l)l; 

end 
end 
[acp, bcp, ccp, dcpl=series (ac, bc, cc, dc, ap, bp, cp, dp) ; 
[af, bf, cf, dfll=feedbk(acp, bcp, ccp, dcp, 2) ; 
flag=isstable (a£, delta) ; 
yr= [ I  ; yrout= [I ; 
dyr=delstep (a£, bf, cf , df 1 , 1, tim, delta) ;, 
for j=l:n 

yroutl=[] ; 
for i=j:n:length(dyr) 

yroutl=[yroutl;dyr (if : ) 1 ; 
end 
yrout= [yrout, yroutl] ; 

end 
for j=l:n 

for l=j :n:min(size(yrout)) 
yr=[yr,yrout(:,l)]; 

end 
end 

er=ym- yr; 
PI=er(:,l)'*er(:,l)+er(:,2) '*er(:,2)+er(:,3)'*er(:,3)+er(:,4)'*er(:,4); 

Chapter 6 (Biomedical d i g i t a l ,  f i l t e r s )  
% This program generates ecg signal with 60 Hz power frequency 
% interference 
% FILE NAME: ecg2x60.m 

clear all % clears all active variables 
close all 
% the ECG signal in the file is sampled at 200 Hz 
ecg = load('ecg2~60.dat'); 
fs = 200; %sampling rate 
slen = length(ecg); 
t=[l:slen] /fs; 
figure 
plot (t, ecg) 
xlabel('Time in seconds'); 
ylabel ( ' ECG ' ) ; 
axis tight; 

% This program generates ecg signal with high frequency noise 
% F I L E  NAME: ecg - hfn.m 

clear all % clears all active variables 
close all 
ecg = load('ecg hfn.dat8); 
fs = 1000; %sampling rate = 1000 Hz 
slen = length(ecg); 



t=[l:slenl /fs; 
figure 
plot (t, ecg) 
axis tight; 
xlabel('Time in seconds'); 
ylabel ( 'ECG' ) ; 
title('ECG signal with high Fequency Noise'); 

% This program generates ecg signal with low frequency noise 
% FILE NAME: ecg-1fn.m 

clear all % clears all active variables 
close all 
ecg = load('ecg 1fn.datT); 
fs = 1000; %sampling rate = 1000 Hz 
slen = length(ecg); 
t= [l: slen] /fs; 
figure 
plot (t, ecg) 
axis tight; 
xlabel('Time in seconds'); 
ylabel ( ' ECG ' ) ; 
title('ECG signal with low Fequency Noise'); 

%This program is designed for butter worth low pass and high pass filter 
% in delta domain 

clear all; 
close all; 
clc; 
ecg = load ('ecg-hfn.datl ) ;  
fs = 1000; % Sampling Frequency 
delta=l/fs; 

% Design of low pass Butterworth filter 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

fc = 40; % Cutoff Frequency for LPF 
slen = length( ecg ) ;  
t = [l:slen] /fs; %Time Scale 
wl = (fc/fs)*2; %Normalised frequency 
N = 4; %Order of the filter of LPF 
[bl,al] = butter ( N,wl);%, 'low'); %Getting coefficients of filter 
[bs, as]=butter (N, wl, 's' ) ; 
[bdl, ad11 =c2del (bl, al, delta) ; 
[bzl, azl] =bilinear (bl, all fs) ; 
disp('Low pass filter T.F in-S domain'); 
printsys(bl,al, 's'); 
disp('Low pass filter T.F in Z domain'); 
printsys (bzl, azl, 'z' ) ; 
disp('Low pass filter T.F in Delta domain'); 
printsys (bdl, adl, ' y' ) ; 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% Filtering of signals 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  



Y1 = fllter (bl, al, ecg) ; %Low Fllterlng ecg slgnal In s domaln 
yzl=fllter (bzl, azl, ecg) ; %Low Fllterlng ecg slgnal In z domaln 
ydl=f llter (bdl, adl, ecg) ; %Low Fllterlng ecg slgnal In delta domaln 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
0 Dlslgn of Hlgh pass butter worth fllter 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

f cl=2; %cuttoff frequency for hlghpass fllter 
w2=(fcl/fs) *2; 8normallsed frequency for HPF 
N1=4 ; Border of HPF 
[bhfah]=butter(Nl,w2,'hlgh'); %Getting coefflclents of fllter 
[bd2, ad2l=c2del (bh, ah,delta) ; 
[bz2, a221 =blllnear (bh, ah, f s) ; 
dlsp('Low pass fllter T.F In S domalnT);prlntsys(bhrah, IS'); 
dlsp('Low pass fllter T.F In Z dornaln1);pr1ntsys(bz2,az2,'z'); 
dlsp('Low pass fllter T.F In Delta d0maln');pr~ntsys(bd2~ad2~ 'y'); 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

8 Hlgh Fllterlng ecg slgnal 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Yh=fllter (bh, ah, Yl) ; yz2=fllter (bz2, az2, yzl) ; yd2=fllter (bd2, adz, ydl) ; 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% plots of flltered slgnal In S domaln 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

figure (1) ; 
subplot (3,1,1) 
plot (t,ecg); 
xlabel('T1me In seconds');ylabel('Arnpl~tude');ax~s tlght; 
tltle('0RIGINAL ECG SIGNAL'); 
subplot (3,1,2) 
plot(t,Yl); 
xlabel('Tlrne In seconds1);ylabel('Amp1~tude');ax~s tlght; 
tltle('Low flltered ecg SIGNAL In ST); 
subplot ( 3,1, 3) 
plot (t, Yh) ; 
xlabel('T1me In seconds');ylabel('Arnpl~tudel);axls tlght; 
tltle('H1gh FILTERED SIGNAL IN St); 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! - - - - - - - - - - - - - - - - -  

% plots of flltered slgnal In Z domaln 
g---- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

flgure (2) ; 
subplot (3,1,1) 
plot (t,ecg) ; 
xlabel('T1me In secondsT);ylabel('Amplltude');axls tlght; 
tltle('0RIGINAL ECG SIGNAL'); 
subplot (3,1,2) 
plot (t, yzl) ; 
xlabel('T1rne In seconds');ylabel('Ampl~tude');ax~s tlght; 
tltle('Low flltered ecg SIGNAL In Z'); 
subplot (3,1,3) 
plot (t, yz2) ; 
xlabel('T1me ln seconds');ylabel('Amp1~tude');ax~s tlght; 
tltle('H1gh FILTERED SIGNAL IN Z'); 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% plots of flltered slgnal In delta domaln 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

flgure(3) ; 
subplot (3,1,1) 
plot (t, ecg) ; 



xlabel('T1me In seconds');ylabel('Amp1~tude1);ax~s tlght; 
tltle('0RIGINAL ECG SIGNAL'); 
subplot (3,1,2) 
plot (t, ydl) ; 
xlabel('T1me In seconds');ylabel('Amp1~tude');ax~s tlght; 
tltle('Low flltered ecg SIGNAL In Delta'); 
subplot (3,1,3) 
plot (t, yd2) ; 
xlabel('T1me In seconds');ylabel('Ampl~tudel);ax~s tlght; 
tltle('H1gh FILTERED SIGNAL IN Delta'); 

8 Thls program 1s for deslgn of band stop fllter In delta domain 

clear all; 
format long; 
~nput= load('ecg2x60.dat1); 
garnma=0.9999911; 
fs=360; %lnput('Enter the value of sarnpllng frequency = I ) ;  

delta=l/fs; 
fo=60; 
N = length (lnput) ; % Number of samples 
t len = N/fs; - % Length of lnput slgnal In seconds 
flgnum = 1; 
t = ((l:N)/fs)'; 
f=O: fs/2; 
w=2*p1*f; 
ff=(w/ (2*p1) ) ; 
fn=f f /is; 
theta=Z*pl*fo/fs; 
alpha=Z*pl*w*delta; 
blta=abs((garnrna-l)/delta); 
k=bltaA2; 
z=[ (exp(j"theta)-1) /delta; (exp(-]*theta) -1) /delta] ; 
p=[blta* (exp (]*theta) -1) /delta,blta* (exp(-]*theta) ) /delta] ; 
[numdtdend1=zp2ti(z,p, k )  ; 
Hd=delfreq (numd, dend, W, delta) ; 
rnagd=abs (Hd) ; 
phased=180/pl*unwrap(angle(Hd)); 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% Magnltude plot In delta domaln In dB 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

figure (flgnum) ; 
flgnum=flgnum+l; 
subplot (2,1,1) ; 
plot (ff, 20*log10 (abs (Hd) ) ) ; 
axls([O 125 -400 101 ) ;  
tltle('Band Stop Fllter Magnltude Response In delta'); 
xlabel('Frequency [Hz]');ylabel('Magnltude In dB'); 
subplot (2,1,2) ; 
yl=180/pl* (unwrap (angle (Hd) ' ) ) ' ; 
plot(ff,yl); 
axls([O 125 -100 4001); 
tltle('Band Stop Flltex Phase Response In delta'); 
xlabel('Frequency [Hz]');ylabel('Angle In degree'); 



% In z-domain 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

kl=(l-2*gama*cos(theta)+gamma"2)/(2-2*co's(theta)); 
numz=kl* [l -2*cos (theta) 11 ; 
denz=[l -2*gamma*cos(theta) gamaA2]; 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% Fitltering 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

outputz=filter (numz, d e n ~ ,  input) ; 
outputd=filter (numd, dend, input) ; 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% plot of outpute in z domain 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

figure ( f ignum) ; 
fignum=fignum+l; 
subplot (2,1,1) ; 
plot (t, input) ; 
axis([O 1 -2 31 ) ; 
title('0riginal ECG signal'); 
xlabel('Norrna1ized time');ylabel('Normali,sed magnitude'); 
subplot (2,1,2) ; 
plot (t , output z) ; 
axis([O 1 -2 31) ; 
title('Fi1tered ECG signal in designed z domain'); 
xlabel('Norma1ized time');ylabel('Normalised magnitude'); 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

%plot of output in delta domain 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

figure ( f ignum) ; 
fignum=fignum+l; 
subplot (2,1,1) ; 
plot (t, input) ; 
axis( [O 1 -2 33) ; 
title('0riginal ECG signa.1'); 
xlabel('Norrna1ized time');ylabel('Normalised magnitude'); 
subplot (2,1,2) ; 
plot (t, outputd) ; 
axis([O 1 -2 31 ) ;  
title('Fi1tered ECG signal in designed de,lta domain'); 
xlabel('Norma1ized time');ylabel('Normalised magnitude'); 
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