
I c r 1'\1 TR .i.!.i,,, lIERp ~

T f ZJ·· u R i..i r~ ~ V E R~ ~ ~

'\(I..,~iOP 'NV. ---r:2- S"

CENTRAL L;SRARY

rEZPUR UN~VE;~S'''·~· ,

ccession No. -r Q-S"
If};yte ~ I l~"-'='~~_ ----

Secure Production and Storage
of

Digital Documents
• In an

Office Environmpnt

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Smriti Kumar Sinha

Under the Supervision of

Indian Institute of Technology, Guwahati

to the

Department Of Computer Science

School of Science and Technology

TEZPUR UNIVERSITY

2001

Certificate

Certified that the work contained in the thesis, entitled Secure Production

and Storage of Digital Documents in an Office Environment, carried out by

Smrzti Kumar Sinha, has been done under my supervision and that this work

has not been submitted elsewhere for a degree.

~
(Gautam Barua)

Professor,

Department of Computer Science and Engineering,

Indian Institute of Technology, Guwahati,

India.

October, 2001

Acknowledgments

It is a pleasure to thank my thesis supervisor Prof. Gautam Barua for his con

stant help, encouragement and support throughout the course of this work.

Prof. Barua first introduced me to this interesting problem and motivated

me to work on it, for which I am grateful to him. Many other people have

helped me in this work from time to time. I would specially like to thank

Prof. K. M. Pathak, former Vice-Chancellor of Tezpur University and Prof.

D. N. Buragohain, Director of IIT, Guwahati for specially permitting me to

carry out the research work. I am grateful to them too. I also thank Prof.

M. Dutta and Prof. D. K. Saikia, who constantly encouraged me during the

work and awaited eagerly, along with me, for the completion of the work.

I thank my friends and colleagues in Tezpur University for their help and

encouragement. I remember with gratitude, the help rendered by staff of

Computer Centre and Library of IIT, Guwahati. I would like to thank my

family members for bearing with my whims and for shouldering my social

responsibilities during the tenure, to make me free. Finally, even-though do

not know how to, but I would like to express my thanks and gratitude to my

personal computer, my closest companion during the tenure of this work, for

rendering trouble-free service.

Smriti K. Sinha

11

Abstract

An office is termed as an information processing centre of an organization.

The objectives of an office are to store and provide timely, accurate and

relevant information for effective decision making. In a conventional office,

information is captured in paper documents. But paper-based offices are fail

ing to realize these objectives. With the advent of information technology,

a paradigm shift has occurred in office automation. As a result, a trans

formation from a paper-based office to a paper-less office or an e-office is

being observed. In an e-office, digital documents capture organizational in

formation. Document production, storage and retrieval is a common work

in almost all offices. The scope of the thesis is limited to this common work

within an office. Inter-office document flow is beyond the scope of this work.

Document production in an office is based on a request-reaction-response

paradigm. When a document containing a request is received in an office,

the office reacts to the request. The reactions are recorded in the form of

comments on the document and finally a response document is dispatched.

We can term the process as Document Production Work-flow(DPW). The

resultant document of a DPW is termed as a Multi-Part Multi-Signature

Document(MPMSD). Therefore, a MPMSD is a case of the DPW. The first

part of a MPMSD is the request document and the last part is the response

document and the other parts in between are the comments of other review-

III

ers, that means, the reactions. Each part of a MPMSD is signed by the

corresponding reviewer. The first reviewer is also termed as the originator.

MPMSD is a generic framework. Parts belonging to different cases may also

form a MPMSD. Moreover, multiple versions of a document may also be de

fined as a MPMSD. A reviewer creates a part of a MPMSD in the context of a

set of existing documents constituted of rules, precedents and other support

documents, which in turn may be MPMSDs. Rules, precedents and support

documents constitute a reference space of an office.

A reviewer navigates through a subspace of the reference space before

producing a new document and draws citations wherever necessary to sub

stantiate the rules position, the precedent position etc. of the new document.

This subspace is called the context of the DPW. The process of navigation

through the context is called the case exammatzon. The context of a DPW

changes with time. As soon a new document, relevant to a DPW, is created

or a new part is added to a document of the context, it is to be incorpo

rated automatically. During case examination, when a part of a precedent

is perused, the context of creation of the part, is to be recreated. Security,

production and storage are the three aspects of the DPW problem, which are

studied. Different issues of DPW are identified and solutions for addressing

those issues are proposed.

The main objective of storage of information in an office is to keep track

of the hzstory of who did what, when, why and how. Thus storage in an office

serves as the organizational memory, where the documents are the neurons.

Therefore, the central issue is to store the documents in such a way that they

can be identified, located and retrieved in an efficient way. Moreover, from

a document thus retrieved, all the related documents, including the context,

should be reachable in a simple and straight forward way. An office docu-

IV

ment has three aspects: profile, content and a presentatzon. The profile is

the bzo-data of the office document. It contains meta-data of the document

which provides a detailed description of the document. The profile comprises

of a set of keywords and three types of records: productzon record, storage

record and flow record. Most existing text retrieval techniques rely on in

dexing keywords or indexing terms. There are standard models for keyword

based retrieval, like vector space model. We excluded keywords from the

discussion of our model but it can be e$ily incorporated. Unfortunately,

keywords alone cannot adequately capture the contents of office documents.

We need other attributes, like record attributes to complement the keyword

description of an office document. The production record consists of produc

tion related attributes, like class, type, topzc, date of productzon etc., of an

office document. The storage record consists of storage related attributes,
I ,

like address, szze, authorzzatzon, state etc. of a document. The flow record

pertains to the flow of a document from one point to the other. The content

of a document may be multimedia information. But, for the present work,

we assume that it contains only text. The content may be unstructured,

structured or semi-structured. The content of a document is presented for

display or for printing in a layout framework. The layout framework provides

the get up of a document. For storage and retrieval of office documents, the

focus of our discussion is on the profiles of the documents. Therefore, content

encoding and presentation aspects of a document is excluded from the rest

of our discussion.

A model for storage and retrieval of documents in an e-office during doc

ument production workflow with the context as the main binding element is

proposed. The office documents are considered here as pages. The model is

termed as Page Cube (PC). A PC is a collection of registered pages of an

v

office. Here pages are the main entities. A page has a profile, which describes

the page and is defined by a set of attribute-value pairs. Registration of a

page means adding and recording a new page to the page cube and assign

ing a unique pageId to the new page. PC has two components: page space

and page graphs. The page space is an n-dimensional space defined by n

orthogonal dimensions. Each dimension represents a theme and is defined

by an attribute. An attribute may have attributes and further attributes.

Thus, attributes of a dimension form a dimensional hierarchy. Therefore,

we can say that the page space is defined by n orthogonal hierarchies. A

page is represented in this space as a point, whose coordinate is an n-tuple.

The dimensions, for example are, type, topic, time, class, category, state etc.

The pages of a PC are linked to a given page either implicitly or explicitly.

Implicitly linked pages are those pages which satisfy a predicate defined over

the dimensional values of the pages. Explicitly linked pages are those pages

which are linked by explicit hyper links. Thus, the pages, which are explic

itly linked, form a directed graph, where the pages are the vertices and the

hyper links are the edges. In addition to the implicit links provided by the

attributes of the dimensional hierarchy, the pages belonging to a dimension

may be explicitly linked forming a dimensional graph(DG) of the concerned

dimension. Thus the page graph component of PC is a set of DGs. The edges

of DGs may be weighted. The construction of the DGs of dimension category

is a mandatory one for a DPW and is discussed in detail. The algorithms

for production of the DPW Context of a DPW and the Case Context of a

precedent case are also proposed.

Next, the mechanism of querying a page cube is discussed. Two equivalent

query languages are proposed. The first language is called Page Algebra

(PA), an algebraic language which uses specialized operators on the sets of

Vl

pages to specify queries. The second one is called Page Structured Query

Language (PSQL), a user-friendly pseudo-natural language with a simple

means for expressing queries using a natural language form. The languages

are similar to Relational Algebra and SQL respectively.

A framework for secure production and storage of digital documents is

presented. DPW is a group work. Therefore, a distributed protocol without

any central authority, like the SMTP of standard e-mail service, may prop

up as a natural choice. In such a distributed approach, the digital document

flows from mailbox to mailbox and the reviewers add their comments to the

document. This mimics the flow of paper documents in manual offices. But

this approach, fails to address the security issues pertaining to MPMSD,

like part integrity, reuse of parts, non-repudiation of sending as well as re

ceiving the document etc. To address these issues an in-line Trusted Third

Party(TTP), called an arbiter is mandatory. The arbiter serves as the trusted

intermediate agent in between the current reviewer and the next. To make

a protocol as general as possible, researchers attempt to avoid the use of

an arbiter. However, to provide non-repudiation with time information, an

in-line TTP is necessary. To provide non-repudiation of a digital signature,

time of the signature is essential as the key used in the signature may become

public at a later time. In our environment, documents are persistent and so

non-repudiation of a digital signature is essential. So an in-line TTP will be

required. Further, to prevent the reuse of parts, an in-line TTP will evidently

be required as immediate detection of such reuse will be necessary to prevent

the taking of wrong decisions. Since an in-line TTP is mandatory for ad

dressing issues like repudiation of sending and receiving documents, we can

address other issues on MPMSD as well, with an arbiter as an in-line TTP.

A protocol for production of MPMSD with an arbiter is proposed, where

Vll

a reviewer submits a comment(part) for a MPMSD to the arbiter and the

arbiter adds the part to the MPMSD. This protocol addresses the security

issues of MPMSD. A three-tier conceptual architecture with split logic is also

developed.

In most of the office solutions, public-key based digital signatures are

used. Commonly, the RSA algorithm is used. The computational complexity

of the algorithm is high. Therefore, digital signatures based on RSA are slow.

In an e-office a reviewer may have to sign many documents per day. This

may lead to performance degradation of an e-office system. In our scheme,

we have a novel idea of using signed session keys for the digital signatures of

the reviewers on a MPMSD. Actually, this idea makes our protocols efficient.

During a session, each reviewer has a session key, and a signed copy of the

same, signed by the reviewer and certified and time-stamped by the arbiter,

is available to only the reviewer and the arbiter. Now, since the session key is

known only to the reviewer and the arbiter and the arbiter is trusted and will

not cheat as per our assumption, any message encrypted with this session

key during the session can be treated as the digital signature of the reviewer

on the message.

Authorization is an important security aspect of DPW. All users of an

office are not authorized to access all pages of the page cube. Authorization in

DPW environment is dynamic in nature. Synchronization of authorization

flow with the workflow is a fundamental security requirement in workflow

environment. Other essential requirements include role based security policy,

separation of duties and negative authorization etc. An event-based dynamic

DPW Authorization Model (DPWAM)is proposed as an extension of the page

cube model.

Finally, we tried to answer the question, where does our research work

Vlll

stand in the space populated by the current academic as well as commercial

solutions for office automation, like POLITeam project, Lotus Notes etc. fol

lowed by a discussion on implementation issues of the page cube in relational

database as well as in XML document database models. Some conclusive

remarks and future directions of work are also given.

IX

Contents

1 Introduction 1

1.1 Document Production 2

1.2 Document Storage and Retrieval . 3

1.3 Data Warehousing and Data Mining 5

1.4 CSCW and Groupware 6

1.5 Workflow 7

1.6 Security 8

1.6.1 Digital Signature 10

1.6.2 Multi-Signature 12

1.7 The Problem ... 13

1.7.1 A Scenario. 14

1.7.2 The Components of the Problem 15

1.8 The Security Issues 17

1.8.1 Principal Authentication Issues 18

1.8.2 The Production Security Issues of a Part 18

1.8.3 The Production Security issues of the Whole MPMSD 20

1.8.4 The Storage Security Issues 21

1.9 The Management Issues 23

1.9.1 The Context Management Issues 23

x

1.9.2 Storage Management Issues 24

1.10 Scopes and Goals ... , . , 26

2 The Production and Storage Frameworks and an Architec-

ture 29

2.1 The Production Framework 29

2,2 The Storage Framework 34

2.2.1 Life-Cycle . , . 34

2.2.2 Representation 36

2.2.3 Organization 38

2.2.4 Identification 39

2.2.5 Relationship . 39

2.3 The DPW Architecture. 40

2.4 The View 43

2.4.1 The Production Interface . 43

2.4,2 The Workflow Interface. 44

2.4.3 The User Interface 45

2.5 The Client Logic 45

2,5,1 Crypto .. 45

2.5.2 Production Agent . 45

2.5.3 User Agent ... 46

2,5.4 Workflow Agent, 47

2.6 The Arbiter Logic . 47

2.6.1 Crypto , . , 47

2,6.2 Production Manager 47

2.6.3 User Manager , . 48

2.6.4 Storage Manager 49

2.} The Data Storage 49

xi

2.7.1 Active Storage ..

2.7.2 Reference Storage.

2.7.3 Archive

2.8 The Protocols

2.9 Discussion ..

3 The Page Cube Model

3.1 The Page Space .

3.2 The Page Graphs

3.2.1 Pages .,

3.2.2 The Category Graph

3.2.3 Revision of a Page

3.2.4 Retrieval of a Page

3.2.5 An Example.

3.3 Query Languages . .

3.3.1 Path Expression.

3.3.2 Page Algebra ..

3.3.3 Page Structured Query Language

3.3.4 PSQL Grammar

3.4 Closure ..

3.5 Discussion

4 Security

4.1 The Security Framework

4.2 A Protocol for Secure Production of Cases

4.2.1 The Central Arbiter

4.2.2 Signed Session Keys

4.2.3 Production of Cases

xii

50

50

50

50

52

53

53

56

57

59

62

67

71

72

72

73

76

80

81

82

83

83

90

90

91

96

4.3 Discussion..........

5 Production of Context Pages

5.1 Production of DPW Context.

· 102

103

· 103

5.1.1 An Algorithm for DPW Context Maintenance. . 105

5.1.2 Retrieval of a DPW context . 110

5.2 Production of Case Context

5.3 Discussion .

6 Authorization

6.1 The Authorization Policy.

6.2 General Authorization Models

6.3 The Workflow Authorization Models

6.4 The Authorization Model for DPWs

6.5

6.4.1 User-Role Graph

6.4.2 Role-DPW Graph.

6.4.3 Rule-Base.....

6.4.4 Authorization-Base

6.4.5 Authorization Audit Trails .

Discussion . .

7 Implementation

7.1 An Outline of an Implementation

7.2 Implementation of Page Cube ..

7.2.1 Relational Datab_ase Approach.

7.2.2 XML Database Approach

7.3 Discussion

xiii

· 112

· 113

114

· 114

· 116

· 118

· 119

· 120

· 121

· 122

· 123

· 123

· 123

125

126

130

· 130

· 133

· 136

8 Locus Standi of the Work 138

8.1 OMAIL .. · 138

8.2 POLITeam. · 139

8.3 Lotus Notes · 140

8.4 Signcryption . · 142

8.5 Semi-Structured Data. · 143

8.6 Workflow Authorization · 144

8.7 Discussion . ~ · 145

9 Conclusions 146

xiv

List of Figures

1.1 Travel Plan DPW .. 15

2.1 Life Cycle of a MPMSD 35

2.2 The Conceptual Architecture for DPW 42

3.1 Page Cube 56

3.2 Portion of Category Graph for Travel Plan Workflow 71

4.1 Protocol for Sigued Session Key 95

4.2 Protocol for Case Production 99

xv

Chapter 1

Introduction

In today's fast moving and competitive world, information is considered as

an important and vital resource of an organization. Timely, accurate and

relevant information is important for effective decision making to achieve

the objectives of an organization. To ensure that, every organization has

a set of centres for processing organizational information and such centres

are called offices. Therefore, an office can be viewed as an information pro

cessing centre. An office receives, stores, structures, processes and provides

information. Information is thus the basic commodity of an office. Like any

other commodity, it is produced, stored and distributed. In a conventional

office, information is captured in documents. Thus a document is one of the

most essential objects present in an office. Therefore, production, storage

and distribution of documents occupy a major portion of office activities.

With the increase of complexity and competition in the world, modern

offices have to deal with a huge volume of information. Paper-based offices

are failing to serve the basic purpose of ensuring timely, accurate and relevant

information. Moreover, paper-based documents consume a large amount of

storage space. It also takes longer to retrieve a document and process it.

1

1.1 Document Production

Document production is a major activity in an office. Development of word

processors is an important event in office productivity. A digital document

has two aspects to look into: the content and the presentation. The content

is captured as normal text encoded with some markup elements for process

ing and presentation. The markup is an encoding for making a particular

interpretation of structure, layout etc. of the body of a text clear and ex

plicit during processing and presentation. There are two types of markup

languages: procedural and descriptive. Procedural markup languages are

not human readable and also not application independent. The descriptive

markup languages on the other hand are both human and computer read

able and application independent. The Standard Generalized Markup Lan

guage (SGML) is an international standard for the formal definition of device,

system, and application independent digital text using descriptive markup.

Hyper-Text Markup Language (HTML) is a derivative of SGML. HTML is

about describing content with annotations for presentation. It lags in its

ability to describe the semantics of a document. Recently developed markup

language, which is said to define the content of the future Web, is Extensi

ble Markup Language (XML). The tags of XML are user defined and hence

flexible. Thus content of a page can be organized more semantically using

XML tags. Detailed specifications and standards of these markup languages

are available in the web site www. w3c. org.

Compound document is another concept increasingly becoming popular.

It is a component based software concept. Component software is based

on the notion of a component, a reusable object, which can be plugged into

other components from other vendors with relatively little effort. When com

ponents are used in content-centric documents, the resulting document con-

2

tains components or parts pertaining to different applications and is termed

a compound document. A compound document is a multi-part document. A

simple example of a compound document is a Microsoft WORD document

consisting of a part belonging to a graphic package, another that is a spread

sheet and another containing a paragraph belonging to the word processor.

The compound document model with different parts that pertain to various

applications has important implications for groupware systems. Perhaps the

most important of these is that the individual parts could actually be located

on physically distributed sites in a network. Thus the components or parts

can inter-operate and be located not only in different geographical site in a

network, but also on different operating systems. The two leading proposals

for compound document interoperability are OLE2 (Object Linking and Em

bedding) standard from Microsoft and OpenDoc from Component Integration

Laboratory(CILabs) [25].

1.2 Document Storage and Retrieval

During the last two decades significant development has occurred in storage

technology. In hardware, the development of high capacity storage devices

like Microfilm, Microfiche, hard disks, optical disk etc. are the milestones for

storing both operational as well as analytical data. In the software side, a

milestone in storage and retrieval of information is the development of the

concept of databases. The evolution of database systems is marked by three

generations. First generation database systems included the hierarchical and

network database systems . These systems are implementation dependent.

Second generation database systems included the Relational Database Man

agement System (RDBMS). RDBMS introduced the concept of data inde-

3

pendence. Third generation database systems, consisting of Object-Oriented

Database Management System (OODBMS) and Object-Relational Database

Systems (ORDBMS), accommodate complex structures in the data model,

thus improving the expressive power of the model. However the increased ex

pressive power also implied an increased complexity of the query languages

[35J. In addition to these three generations, consisting mainly of generic

databases, emergence of domain specific database systems in recent years

pave the way for fourth generation systems. This generation includes docu

ment, active, spatial, temporal, multi-media database systems. Out of them

document or text database systems are of special interest for office automa

tion. Document databases are deserving more and more attention, due to

their diverse applications: World Wide Web, paper-less offices, digital li

braries etc. Research on document database models emphasize for efficient

storage and retrieval. The pertinent problem is to extract relevant infor

mation from these documents. Documents may be unstructured or semi

structured.

1. Unstructured: Unstructured documents are the plain texts or ASCII

texts without any form of tagging or structural information. The un

structured document is assumed as a sequences of words or phrases

including keywords and stop words - often referred as terms. In con

ventional Information Retrieval(IR) methods, documents are retrieved

against a query by matching keywords belonging to the document with

those belonging to the query, defined as a Boolean combination of key

words. Vector space model [16], signature file model, inverted file model

[l1J etc. are the standard works based on this approach.

2. Semi-Structured: Researchers have found semi-structured data to be

different from fully structured data, like relational or object oriented

4

data. It is defined as irregular or incomplete data and whose structure

change rapidly and unpredictably. The Lore project, started in Stan

ford University around 1995, (http://www-db.stanford.edu/lore), is a pi

oneering work in this direction. The major contributions of the project

are: a complete database management system for semi-structured data,

a schema-less self-describing data model, called Object Exchange Model

(OEM) and a query language, called Lorel. The first public release of

XML version of Lore was made in May 1999. Recent works, like SGML

document databases[35] and XML document databases[40], also belong

to this approach.

1.3 Data Warehousing and Data Mining

Another significant development is a conjugate pair of concepts: data ware

housing and data mining. A data warehouse is a wider perspective of a

database. Data warehousing is the process of integrating enterprise-wide

corporate data into a single repository from which end-users can easily run

queries, make reports and perform analysis. The basic criterion is that a

data warehouse holds read-only data where as a normal database holds op

erational data. A data warehouse is important for heterogeneous database

integration. Many organizations typically collect diverse kinds of data and

maintain large databases from multiple, heterogeneous, autonomous, and

distributed sources. To integrate such data, and provide easy and efficient

access to it is sought to be done through Data Warehouses[28].

The term data mining refers to the finding of relevant and useful infor

mation from databases. Data mining in databases or data warehouses is a

new interdisciplinary field with the merging of ideas from statistics, machine

5

learning, databases and parallel computing. The fundamental goals of data

mining are prediction and description. Prediction makes use of existing vari

ables in the databases to predict unknown or future values of interest and

description focuses on finding patterns describing the data and the subse

quent presentation for user interpretation.

1.4 CSCW and Groupware

In the next phase, we observe automation of group work. As a result, a

new field of identifiable research in computer science has emerged, where

role of computer in group work is focused. The new field is called Computer

Supported Cooperative Work (CSCW). CSCW [17] is defined as computer

assisted coordinated activity, such as problem solving and communication

carried out by a group of collaborating individuals. CSCW addresses the

organizational issues in collaborative work done by a group of individuals

and the multi-user software supporting such collaborative work is termed

as groupware [6]. Groupware represent a paradigm shift for computer sci

ence, one in which human-human rather then human-machine communica

tions and problem solving are emphasized. The paradigm shift has resulted

from a number of converging phenomena, like, pervasive computer network

ing, workgroup computing, increasing interest in telecommuting, electronic

mail etc. Groupware is distinguished from normal software by the basic as

sumption it makes: groupware makes the user aware that he or she is a part

of a group, while most other software seeks to hide and protect users from

each other. ,The major group work supported by groupware are coauthor

ing of documents, conferencing, meeting scheduling etc. The majority of

CSCW applications are fundamentally distributed and are dependent on the

6

facilities provided by the existing distributed computing platforms. People

cooperate synchronously and asynchronously. Synchronous cooperation re

quires the presence of all cooperating users, while asynchronous cooperation

occurs over a longer period of time and does not require the simultaneous in

teraction of all users. A traditional problem with cooperation in distributed

systems is the need to recognize the autonomy of individual sites in a net

work. Indeed, full cooperation and full autonomy are actually two extremes

in a spectrum of possibilities. Increasing autonomy of a system decreases the

support for cooperation and vice-versa [7].

1.5 Workflow

We have seen that the initial stage of automation of office work is to use

computers for word processing. The next stage is to use a database to store

information. The current trend is to move towards what is termed work

processing. One of the major component of work processing is workflow

automation. It is a major component of CSCW. An office work comprises of a

set of tasks. The genesis of workflow automation is in accomplishing the tasks

of an office work in a predefined order by routing the objects of work in the

predefined routes following predefined rules by some roles. Rules define both

the conditions, the workflow must meet to traverse to the next step and how

to handle exceptions. Roles define job functions independent of the people

who do it. A Workflow Management System (WJMS) is a software system

that supports the specification, execution and management of workflows. A

job in a workflow system is known as a case. Workflow coordinates user and

system participants together with appropriate data resources, which may be

held on- or off-line to achieve defined objectives. The coordination involves

7

passing tasks from participants to participants in correct sequence, ensuring

that all fulfill their required contributions and take default actions when

necessary [20].

A WfMS is a client/server application where the client is called a work

flow client and the server is called the workflow engine. The workflow client

contains a workflow description tool for designing a workflow template and

a workflow activation tool for activating the workflow template. Handshak

ing between the client and the workflow engine when starting a workflow,

terminating a workflow and suspending a workflow, is done by the activa

tion tool. The workflow tracking tool displays the status of various active

workflows including the time taken to complete various tasks. The workflow

engine provides workflow management services like interpretation of workflow

templates, route management, rule management, workflow tracking manage

ment, user and role management etc. It interacts with workflow databases

through interfaces and uses persistence and concurrency control capabilities

of relational DBMS or object-oriented DBMS to allow workflow objects to be

defined, created, searched and updated [20]. Workflow is today considered

as the heart of E-Business. Some of the common workflow software are Of

fice.IQ, WorkMAN, Visual WorkFlo, CabinetNG etc. Lotus Notes/ Domino

and Oracle contain a WfMS as an important component. Standardization of

WfMSs is done by the Workflow Management Coalition (WMC) formed in

1993. It is a field of active research now.

1.6 Security

Security is a major concern in an office environment in which the computing is

usually distributed. The security aspects in an office are not limited to secure

8

transmission and reception of documents. Documents have to be signed and

they have to be stored securely. The proof of receipt and the proof of sending

documents have also to be stored securely. With documents having a long

life time, the issue of repudiation of signatures has to be handled. There are

significant advancements made in cryptography during the last few decades

and office software today uses these cryptographic concepts. Office related

security concepts are discussed below. The security in a digital office can be

discussed under the following heads:

• User Authentication: User authentication establishes a level of con

fidence about the user's identity. The main objective of authentication

mechanism, in general, is to identify an entity uniquely and unforge

ably.

• Document Security: Once a user has been authenticated, how does

a recipient of a document know that it originated where it says it?

How to ensure that the content of the document has not been tam

pered with? How to resolve the cases of repudiation of signing, sending

and receiving the documents? How to authenticate the time of sign

ing? How to maintain the confidentiality of the document? Document

security addresses these issues.

• Storage Security:The office documents normally have a long life time.

The security of the persistent office document and the evidences of

occurrence of events on office documents like signing, sending, receiving

etc. during storage is provided by storage security using encryption and

proper authorization mechanisms.

• Transport Security: Since documents will be transported from one

point to other geographically distant place through computer networks,

9

it should be resilient to network attacks. Hence we need a secure chan

nel for document flow across a network.

1.6.1 Digital Signature

In case of paper documents, hand written signatures on the document re

solve the issues of document security to a legally acceptable level. From

the difference of handwriting, ink used etc., forgery cases can be detected.

Confidentiality can also be provided using sealed envelopes. Handwritten

signatures provide only an imperfect solution to these requirements. It has

several weaknesses. The weaknesses are: forged signatures are very hard to

detect without genuine samples to compare with; it does little to prevent

the alteration of a document: that is, it cannot maintain content integrity.

Witness signatures are often added to a document to authenticate the main

signature, but they suffer from similar weaknesses. Despite these imperfec

tions, handwritten signatures are widely used as an authentication technique

for paper documents. Equivalently, for digital documents we have several

digital signature schemes [34, 39, 26, 22]. Digital signatures are analogs of

handwritten signatures. The ability to provide a digital signature depends

on there being something that the principal, who is the original signatory

can do that others cannot. Confidentiality can also be provided by using a

sealed digital envelope, created by encrypting the document using suitable

encryption keys. A digital signature of a message is a number, dependent on

some secret, known only to the signer, and, additionally, on the content of

the message being signed. Signatures must be verifiable. If a dispute arises as

to whether a party signed a document, caused by a lying signer trying to re

pudiate a signature it did create, or a fraudulent claimant, an unbiased third

party should be able to resolve the matter equitably, without requiring access

10

to the signer's secret information. Digital signatures addresses the issues of

user authentication, content integrity, non-repudiation and certification.

Public-Key cryptography is generally used for digital signatures. Each

user has.a pair of conjugate keys: a secret key and a public key. The secret

key is known only to the user concerned and the public key is public, that

is, known to all. A message encrypted with the secret key can be decrypted

with the conjugate public key or vice-versa. Let A and B be the two commu

nicating users. SA and PA are the secret key and public key of A respectively.

Similarly, SB and PB are the pair of keys of B. B knows PA of A and A

knows PB of B. Also, {mh denotes message m is encrypted with a key k

and {{m}sAhA = {{m}PA}SA = m. A can send the signed message to B by

transmitting {m} SA' On receipt B can verify the signature of A by decrypt

ing the signed message with PA to get m = {{ m hA }PA' Confidentiality can

also be incorporated with the signed message by transmitting { {m} SA }PB so

that only B can read the message. Since SB is known only to B, B can de

crypt the transmitted message with BB and then verify the signature. Now,

so far as efficiency is concerned, encryption in public key cryptography is

much slower than the encryption of symmetric cryptography. Therefore, in

stead of the entire message m, a digest 15m is encrypted with the secret key

of SA of A. This serves both the purposes of origin and content integrity of

the message. A message digest is a fixed-length bit string computed from

the arbitrarily long message using a one-way hash function. It is discussed

in detail.in [34, 22].

Let 15m = h{m) be the digest of message m , where hO is a one-way

hash function. A can now transmit the signed message {m, {6m }SAh, {khB'

where k is a randomly generated symmetric key. B first gets k = {{khB}SA

and then decrypts {m, {6m }SAh with k. B can then verify the signature

11

of A and the content integrity of the message. Content integrity is verified

by recomputing a digest 6~ = h(m) and then checking the equality 6~ =
6m . In principle, any public-key cryptographic scheme can used for digital

signatures. More details on digital signatures can be found in [39]

1.6.2 Multi-Signature

In addition to the originator's signature on the digital document, supervisors

are often required to sign office documents for verifying and approving an

originator's message. In such cases several persons sign the same document.

This is referred to as a multi-signature. Proprietary digital signature schemes

cannot resolve the issues related to such multi-signature documents. As a

result, the literature contain different multi-signature schemes. Signature

schemes originally developed for single signatures, are also extendable to the
I

multi-signature case. However, because of the increase in signature length,

tJey are not satisfactory for use. Itakura and Nakamura [19] proposed a so

lution based on extended RSA scheme and resolved the problem of signature

length. But their schemes needs to predetermine a hierarchical relationship

among users. In some offices the hierarchical relationship either does not

exist or cannot be predetermined in advance. Okamoto proposed a scheme

[24] that overcomes these problems. In this scheme the signature length of a

multi-signature in nearly equal to that for a single signature and the order of

signing is not restricted. But it introduces the problem of key distribution.

All the persons who are communicating among themselves should know one

another's public key. This leads to the distribution on n2 keys, which keeps

on increasing exponentially. It puts a lot of processing overhead on the users.

A user who is nth on the list of persons reviewing the document then slhe

will have to decrypt the document n - 1 times with the public key of all

12

the previous persons. The verification process is time consuming because

a recipient must check the multi-signature by the reverse order of signing.

Similarly Ham and Kaisler [18] also proposed a scheme of multi-signature.

The issues addressed in the above schemes are mainly related to the length

and order of signatures.

1.7 The Problem

From the above discussion, it is evident that, with the development of in

formation technology different directions of office automation have received

considerable attention. The technological infrastructure for a paper-less of

fice is almost ready and there is rapid progress in both software as well as

hardware aspects. But a vital and central problem, common to almost all

offices, is missing from the research agenda on office automation. The prob

lem is the production of Multi-Part Multi-Signature Documents(MPMSD):

It is different from the multi-signature problem and the multi-part compound

document problem discussed in the literature. In case of multi-signature or

group-signature, a group of users can sign a single message. Here, content

of the same message is authenticated by multiple people. For example, the

minutes of a meeting is signed by all the participants present in the meeting.

But in case of multi-part multi-signature each member of the group of signa

tories contributes a different message which is authenticated by the member

by signing the message.

In this section an o~t1ine of the problem for the present research work is

provided. The issues of the problem to be addressed are also identified and

discussed. It is not simple to describe all the work performed in an office

in a common framework without referring to the specific organization. But

13
~-I

.\;"'L ucit{AR~, i. d.\

Ace. No .. ····6.·~··s:·1

document production and storage is a common work in almost all offices.

The scope of our discussion is limited to this common work within an office.

Document production in an office is based on a request-reactwn-response

paradigm. When a document containing a request is received in an office,

the office reacts to the request. The reactions are recorded in the form of

comments on the document and finally a response document is dispatched.

We can term the process as Document Production Workfiow(DPW) [37].

The resultant document of a DPW is termed as a Multi-Part Multi-Signature

Document(MPMSD) [36]. Therefore, a MPMSD is a case of the DPW. The

first part of a MPMSD is the request document and the last part is the

response document and the other parts in between are the comments of other

reviewers, that means, the reactions. Each part of a MPMSD is signed by the

corresponding reviewer. The first reviewer is also termed as the originator of

the request.

1.7.1 A Scenario

To understand the salient features of a DPW in an office let us consider the

following scenario of a DPW in a University. An employee, A submits an

application, mA regarding her travel plans for approval to the head, B of the

department. B verifies the travel plans in the context of previous cases of

employees from the department already in travel, type of leave to be granted

for A during travel, resolutions on travel taken in departmental advisory

committee, standing rules, etc. and adds her comment, mE and forwards it

to the finance officer, C. C also examines the case by verifying the budget

allocation status under the head of account for travel, TA/DA rules in such

cases, circulars from University Grants Commission on travel expenditure,

and adds her comment, me on the amount that may be granted and forwards

14

it to the director, D. D also justifies the previous comments, approves the

travel plans and adds the note of approval, may be in the form of office order,

mD. A copy of the whole multi-part document or only the office order mD

may finally go back to the originator, A and the original multi-part document

is stored in a folder. The flow of the document is recorded in log-books. This

is a case of the travel plan workflow. It is shown in figure 1.1

G
mAllmBlimC

Figure 1.1: Travel Plan DPW

1.7.2 The Components of the Problem

The DPW has three components to study:

• MPMSD: It is the major component of a DPW. Since in our frame

work, an office document is produced as a case of a DPW, therefore,

all documents are MPMSDs. It is a generic framework. Different parts

belonging to different cases of different DPWs may also be integrated

15

to form a MPMSD subject to satisfaction of certain criteria. For ex

ample, office orders, circulars, meeting resolutions produced as parts

of cases of different DPWs but containing rules on a certain topic may

form a MPMSD. Moreover, a document may have multiple versions

produced at different points of time. Such multi-version documents are

also MPMSDs. In a paper document system, it is the same paper doc

ument that is passed around and the proof that it has come through

the proper channel is the series of comments followed by the signatures

of the reviewers. In a digital system, there are several issues to be

addressed for secure production and storage of MPMSDs. The issues

to be addressed are identified and discussed in detail in the following

sections. A single part document is a special MPMSD, where the total

number of parts in the document is equal to one. Henceforth, in the

rest of the discussion, a document means a MPMSD .

• Context: Just as a human being can develop amnesia and forget past

experiences, an office can also experience loss of memory unless there

is a proper framework to maintain organizational memory[15]. Huge

collection of documents in an office is the major constituent of its or

ganizational memory. Contemporary offices have only a weak ability

to remember and learn from the past. What is missing from orga

nizational. memory is the context or rationale that lay behind these

documents when they were created. In an office a new document is

produced in the context of a set of existing documents constituted of

rules, precedents and other support documents. In a formal office rules

are framed almost on all topics to prevent the possibility of arbitrary

decisions. Rules are generally well defined. When rules are either not

defined or not well-defined we look for similar cases handled earlier,

16

that is, precedents. Here, rules include regulations, office orders, meet

ing proceedings etc. and the precedents are the already produced cases

following concerned rules. Certain decisions require support documents.

For example, a purchase indent to sanction a purchase. Rules, prece

dents and support documents constitute a reference space. A reviewer

navigates through a subspace of the reference space before producing

a new document and draws citations wherever necessary to substanti

ate the rules position, the precedent position etc of the new document.

This subspace is called the context of the document. The process of

navigation through the context is called the case examination.

• Linking: Links establish relationships among different documents as

well as different parts of a document. As soon as a document is created

in an office, the new document may be implicitly linked to many doc

uments. Moreover, a document may also be explicitly linked to many

more documents at a future point of time. For example, documents on

the same topic or of the same type or created within a certain period

are implicitly linked, where as document cited in another document are

explicitly linked. Therefore, linking is an important component to be

studied in an e-office.

1.8 The Security Issues

There are several security issues related to secure production and storage of

digital documents. Some of the issues are general in nature and some are

specific to DPW system. The security issues are discussed below.

17

1.8.1 Principal Authentication Issues

A fundamental concern for a secure office system is the authentication of

the principals involved in the system. Authentications of the principals are

usually done by using their credentials. A credential is a piece of information

that is used to prove the identity of a principal. Passwords, digital certifi

cates, secret keys etc. of the entities are the important credentials. In the

office system the principals are the users and the processes. Therefore, the

issues are:

1. User A uthentication: All the office workers (users) ofthe system need to

be authenticated through standard challenge-response protocols during

session set up using the credentials of the users.

2. Process Authentication: Processes are the entities who speak for users

during run-time[21]. A set of processes who speaks for a user may share

the credentials of the user. Processes are to be authenticated when they

try to access any object.

1.8.2 The Production Security Issues of a Part

For every individual part of a MPMSD, the security issues are as follows:

Let A and B be legitimate principals and let A send a signed message rnA to

B. The issues are-

1. Proof of Origin: It should be verifiable by B or any third party that

the message rnA was really signed by A and not forged by an intruder.

2. Content Integrity: It should be verifiable by B or any third party that

the content of the message rnA was not illegally modified by a intruder.

Even the originator of the document, A, is not allowed to modify its

18

content after it is dispatched to B. The first part of this issue can be

taken care of by digital signatures using fixed length message digests

generated by one-way hash functions. The second part is the more

interesting point to look into in office automation.

3. Confidentiality: It is required that the message mA be accessible for

reading only to the authorized principal B, to whom it is addressed,

and not to any eavesdropper.

4. Repudiation of Signing: The success of a digital signature scheme using

public-key cryptography pivotally depends on the secrecy of the secret

key. Even if the message mA is signed by the secret key of A and

successfully verified as in issue 1, A can repudiate the signature with

the pretext of compromise of the secret key of A and can thus disown

the responsibility for mAo

5. Repudiation of sending and receiving: If A or B repudiates the sending

or receiving respectively of the message mA, then it should be verifiable

by any third party from the stored evidences of the flow of the message.

The evidences may be the proof of sending and the proof of receipt.

The evidences should be acceptable as legal and irrefutable proofs. The

repudiation may be on the time of sending or of receiving the message.

Moreover, A and B may collude to remove the evidences oftransmission

of the message. Therefore, the records should also be tamper-proof.

6. Signature Replacement: If another principal X, with the cooperation of

B, tries to replace the digital signature of A on mA by its own signature

and claim the ownership of mA then such an issue should be resolvable.

In digital signature schemes, based on public-key cryptography with

19

one-way hash functions, this issue is not addressed. In online commu

nication this can be taken care of by a digital envelope which ensures

the secured transmission and reception of message mA and digital sig

nature a A on it but in the problem domain with persistent storage, it

is not sufficient. Even the recipient B can replace the signature with

its own since there is no certification of association of mA and OA. The

message digest rnA of mA included in a A can be created by anybody

having mA since the digest function is public.

1.8.3 The Production Security issues of the Whole MPMSD

Apart from the security issues of each individual parts of a MPMSD as

mentioned in section 1.8.2, the following special security issues related to a

MPMSD as a whole are to be addressed additionally.

1. Part integrity of a MPMSD : Apart from the content integrity of each

part, we also need the total part integrity of the whole document. The

content integrity of all parts individually does not necessarily imply

the integrity of the whole document. All parts must remain in order in

which they were added to the document. Removal of some parts and

reordering of parts should not be allowed.

2. Reuse of Parts: Reuse of parts should not be allowed. Suppose, the

ordered list of reviewers of a MPMSD is (A, B, C, D) as in the example

given in section 1. 7.1. If D does not like what C has written on the

document (me) then D may cooperate with B to have B mark the

document directly to D, bypassing C. B can do this by using the

document mAl 1mB passed to it by A and reusing it.

20

1.8.4 The Storage Security Issues

1. Authorization Flow: During the production of MPMSDs, the autho

rization also flows synchronously with the document flow. Only the

latest reviewer of a document can add a part to the document and

only she can read the previous parts but cannot modify or reorder the

previous parts. After signing and forwarding the document to the next

reviewer of the document the current reviewer loses the privileges of

being the latest reviewer. The author of a part is not allowed to mod

ify her previous parts, if any, even if she is marked again as the latest

reviewer. Moreover, a user has privileges as long as he/she is assigned

to the role of a reviewer of the DPW.

2. Authorization Constraints: During case examination, a reviewer ac

cesses the documents belonging to the context. But the accesses are

subject to some authorization constraints. A reviewer may be allowed

to read the precedent cases but may not be allowed to read all the

parts of it. For example, the originator, that means, A in the scenario

given may be allowed to see only the last part, the office order mD

and her application, mA, but not the intermediate comments. Some

reviewers may not be allowed to see all the comments given by the

higher authorities. Similarly, all rules and other support documents

may not be accessible to all reviewers. It depends on the security pol

icy of the office concerned. But the system should have provisions for

such authorization mechanism.

3. Secure storage of session keys: Session keys play an important role in

our system both for digital signatures and secure transport of MPMSDs.

Generation of a session key should be unique for a particular user, be-

21

cause a session key speaks for a user both during the session and in fu

ture for persistent documents. Signed copies of the session keys should

be stored securely.

4. Secure storage of document flow records: The records of the flow of doc

uments along with the evidences of non-repudiation are to be protected

from unauthorized access. The records need to be well structured to

enable efficient tracing of a document with its latest state, that is, at

a particular time where the document is lying and at what state. The

tracing of documents is to be allowed only to authorized users.

5. Security of program codes: The program codes designed to implement

the system are to be stored securely in storage. They are to be authen

ticated using the credentials during loading.

6. System administrator threat: The system is on top of the OS of a host

system. Even though the operating system of the host system is as

sumed to be trusted the administrator of the host system should not

be allowed to access the objects of the system without proper autho

rizations.

7. Validation of Old Documents: If the principal A feels that her secret

key has been compromised and the key is consequently changed then all

the documents signed by A using the earlier key will be invalid. Now,

the issue is how to validate such old documents and how to disallow

the use of the old key of A.

8. Archival of Old Documents: The documents no longer active and not

referred frequently are to be archived as normally done in the record

rooms of an office. The archived documents will have life tags attached

22

signifying the permanence of the information stored in the document.

After the expiry of the life, the documents may be deleted from the

system. Only archived documents may be deleted from an office.

1.9 The Management Issues

Apart from the security issues there are important management issues to be

addressed.

1.9.1 The Context Management Issues

1. DPW Context: With every DPW, a default initial context is attached.

A reviewer can add more items to it during case examination, but

cannot remove any item from the existing context. As a result, the

context may grow as the document flows from the current reviewer to

the next. Moreover, during case examination, a new relevant rule or

a new version of the existing rule, a new case or a support document

may come up, which should be automatically added to the concerned

contexts. Therefore, a DPW context consists of all the documents

relevant to the DPW in general.

2. Drawing Citations: During composing a part, a reviewer should be able

to draw citations directly from the context, so that a hyper linked ad

dress of the cited document is automatically included in the comment.

3. Case Context: The DPW context provides the documents relevant to all

the cases of the DPW. The DPW context attached to a DPW changes

with time. The context of a case is the context specific to the case. It

consists of the DPW context and some more documents relevant to the

23

specific case. Moreover, a case is a MPMSD. Different parts of the case

may be produced at different points of time. Therefore, the context of

a part of a case consists of the state of the DPW context and the other

documents included in the case context at the time of production of

the part. During case examination, when a reviewer peruses a part of

a precedent case, he/she should be able to retrieve the state of the case

context at the time of creation of the part of the case. The state of the

case context is defined by which rules and which versions of the rules,

which precedents and support documents were available at the time of

production of the part.

1.9.2 Storage Management Issues

Apart from the security issues of stored documents there are a few more

management issues to be addressed.

1. Orgamzatwn of Documents: An office has a huge volume of documents.

Tracing a particular document and then retrieving it for perusal in an

efficient way is a major issue in any office. Therefore organization of

documents is a very important aspect. In a paper-based system office

documents are organized in folders and folders in cabinets etc .. Within

a folder documents are organized either as a stack or as a queue. As

a result we get a linear organizational structure. Related documents

are stored in the same folder. But, as the relations among the office

documents are non-linear and complex in nature we find unnecessary

duplication of documents and inefficient retrieval of documents. For

efficiency, the organizational issue is to be addressed.

24

2. Invariant Document Address: During the life-cycle of an office docu

ment, it has certain degrees of mobility. The mobility may be atttibuted

to the documents due to document flow, archival activities and system

management. Therefore, address of the document may change from

time to time. Since many documents may be hyper linked to a partic

ular document, change of all such hyperlinks as soon as the location of

the document changes, will be an inefficient proposition, if not impos

sible. Therefore, an invariant document address is required for mobile

office documents.

3. Performance: In course of time, the volume of office documents will

be large which may lead to performance degradation of document stor

age and retrieval. Therefore, measures are to be taken for enhancing

efficiency.

4. Reliability: The reliability of the storage system is a pivotal issue. The

entire system depends on it.

5. Reverse Linking: An explicit link comprises of a conjugate pair of di

rected links: one forward and one reverse. As soon as a forward link

is established, the reverse link is to be established automatically. For

example, an office document may be cited in many different documents

at different points of time. If we want to study the effects or the reac

tions on the office order within the office then such reverse linking is a

fundamental requirement.

25

1.10 Scopes and Goals

Almost all the work done in different directions of office automation discussed

above have failed to address the DPW problem. With the advent of workflow

solutions, similar problems are coming to focus. But the genesis of workflow

automation is on the automatic routing of documents and the automatic

execution of the tasks based of the rules and roles defined in the workflow

design. It is rigid in nature. As a result we see success of workflow systems

in practical application areas like manufacturing, where the flow of work is

almost static. But what is required in a real life office today is a flexible,

co-operative workflow tool which assists the office workers in reviewing the

documents by providing facilities for secure production, storage, case exami

nation and flexible routing. Our study aims towards incorporation of such a

tool in future office automation software. A similar problem was studied in

the POLITeam project [27] . It addressed the problem of multiple versions

during the production of a speech in a German ministry. We found that

this multi-version speech production workflow is a special case of our more

generic framework of MPMSD where each part is a version of the speech.

Single-part documents discussed in the literature for office automation are

special cases of multi-part documents. Secure production and storage of per

sistent multi-part document constitute the major part of office work. But

almost no effort has been made to solve this problem.

As the above discussion shows, digital signature schemes developed for

general digital documents addresses the security issues of single-part docu

ments but do not address the security issues of multi-part documents. The

multi-signature schemes developed till date also do not address even the ba

sic issues of MPMSD. Most successful, widely used, and a robust groupware

product Lotus Notes/Domino also does not address the issues of MPMSD.

26

Therefore, there is sufficient scope for further research in this field.

The main goal of our research is to identify the issues of persistent multi

part digital documents in an office environment during production and stor

age and provide solutions to address the issues. The output of our research

may be the input to future commercial software for paper-less office. We

provide a design framework for multi-part document system and protocols

to address the issues of multi-part documents using a trusted third party,

called an arbiter. We also provide a storage model for automatic generation

of context of a workflow. The present work does not provide a complete

solution to a paper-less office. The study is limited only to the problem of

persistent multi-part office documents, their production and storage within

a single office and under a single arbiter. Moreover, by document in this

work, we mean, text only documents, excluding multimedia documents and

compound documents.

In the present chapter, we reviewed the directions of office automation,

outlined the problem of DPW and identified the different issues of the prob

lem. The rest of the thesis is organized as follows. In Chapter 2 we discuss a

production and storage framework and a conceptual architecture for DPW. In

Chapter 3 a model, named Page Cube, for storage and retrieval of documents

is presented. In Chapter 4, we discuss the security framework and propose a

protocol for secure production of MPMSD using a neutral arbiter as an in

line TTP. In Chapter 5, we discuss production of contexts. In Chapter 6, we

discuss the aspects of authorization of pages in a page cube. Some implemen

tation issues in relational as well as in XML database models are discussed

in Chapter 7. In Chapter 8, we try to answer the question, where does our

research work stand in the space populated by the current academic as well

as commercial solutions for office automation, like the POLITeam project,

27

Lotus Notes etc. Some conclusive remarks and scope for further work are

presented in Chapter 9.

28

Chapter 2

The Production and Storage

Frameworks and an

Architecture

In this Chapter, frameworks for production and storage of digital documents

in an office are studied. Based on the frameworks, a conceptual architecture

is also designed. The problem of production and storage of digital documents

in an e-office can be studied under the following frameworks. These are not

formal, but design frameworks.

2.1 The Production Framework

Document production in an office can be studied under a generic framework

comprising of three concepts: Document Production Workflow (DPW), Con

text and Multi-Part Multi-Signature Document (MPMSD).

An office document is an output of an office task. The office task, con

cerned with a DPW is termed, in general, as review. The review task com-

29

prises of a set of operations: case examination, composition, signing, filing,

linking and flowing. A review task may have specific names at different po

sitions of the workflow. For example, in the travel plan workflow discussed

in Chapter 1, the different review tasks may be termed as travel request,

departmental approval, financial approval and final approval.

Definition 2.1 An office task Wt is defined as {OPt, TINt' TOUTJ, where

OPz is the set of operations to be performed in Wi, TINt ~ TO is the set of

object types allowed as inputs, TOUTt ~ TO is the set of object types expected

as outputs. TO is the finite set of object types.

An office work comprises of an ordered set of tasks. Various tasks are

usually carried out by several office workers in accordance with the orga

nizational rules relevant to the office concerned. The output object of one

task may be the input of the next task. As a result, work objects flow from

one task to another. Therefore, office work can be ideally represented by a

workflow model. When the work object is a document, we term it Document

Production Workflow (DPW) and the output document thus formed from a

DPW is termed as a case.

Definition 2.2 A Document Production Workflow can be represented

as a directed graph W (T, E), whose vertices T represent the set of tasks, T =
{tWl' tW2, tW3, .. " twn } in the workflow and the edges E = {(twz, tWj)ltWi, tWj E

T} represent the stages of the flow of the case under review. Both the ver

tices and the edges are labelled. In the edge twz -+k twJ , k signifies that the

case under review is in the kth stage. This signifies that the ordinal number

of the latest comment, added to the flowing case so far, is k, assuming the

ordinal number of the original request as 1. The label on a vertex signifies

the reviewer associated with the task.

30

All documents in an office constitute a document space and a subspace of

it constitute a reference space. The documents in the reference space are

referred or cited while producing a new document or a part of it. Only a

subset of the reference space may be relevant to a particular DPW. This

relevant set of documents constitutes the context. Thus every DPW has a

context associated with it. The context comprises of the rules, precedents

and other support documents relevant to the DPW.

Definition 2.3 A Document Space 'D is the universal set of uniquely

identifiable documents in an office.

Definition 2.4 A Reference Space R ~ 'D is a collection of documents of

types rules(R), precedents(P) and other support documents(S), which can be

consulted and referred to while generating other documents. Rules are the the

documents containing formal guiding principles, policies etc. on all topics

of concern in an office. Precedents are the cases handled earlier. Support

documents are the documents which are neither rules nor precedents but are

consulted or referred to while generating other documents.

Definition 2.5 A DPW Context Cw ~ R, of a DPW W, is a collection

of documents relevant to W. The relevance is defined as a predicate based on

the different attributes of the documents in R.

During composition of a document, a reviewer of W navigates through the

context, peruses documents belonging to Cw and draws relevant citations to

the document under composition, from the context, in order to provide rules

position, precedent position and other supporting documents to complement

the position of the document. This process is termed as case examination.

31

Definition 2.6 Case Examination is the process of navigation and perusal

of the documents belonging to the context Cw of a DPWW done by a reviewer

, of W as an operation of the task twz E T of WeT, E).

A reviewer of W can add new documents from n to Cw but cannot remove

any document from Cw . Moreover, as soon as a document is added to V, if it

satisfies any relevance predicate of Cw then the document will automatically

be included in Cwo Only the designer of the DPW, who is authorized to

modify the DPW can redefine the predicates and thereby remove documents

from the context.

Once the document is generated, it is registered in a proper way and

related documents are linked for immediate pick up. The document then

flows from its point of origin to the target.

If we consider the output of an office task as an elementary document,

then the output of a DPW is a composite document, composed of mul

tiple elementary documents, each containing comments of the correspond

ing reviewer. Such a composite document is termed as a Multi-Part Multi

Signature Document(MPMSD), where each part is an elementary document.

Definition 2.7 A Multi-Part Multi-Signature Document (MPMSD),

Dw , produced in a DPW W, is an n-tuple, n 2 1, such that

Dw = (d!, d2 , d3 ,"', dn).

Each part dz in turn is defined as a 4-tuple (mil Ci , ai, Si), where mi is the

comment of the reviewer Si, Ci is the context of mi, based on which the com

ment m t is produced, and ai is the signature of St.

A case is a MPMSD. Since, the parts of a case are produced at different points

of time, the context of the DPW may be at different states at different points

of time. As a result, the context of creation of any two parts of the same

32

case may not be the same. Moreover, during case examination, a reviewer

may cite another document, not in Cw , as a support for his comments. This

document is specific to the case and may not be relevant to other cases of

the DPW. Therefore, this document need not be included in the context Cw

of the DPW W but it needs to be included in the context of the case.

Definition 2.8 A case context CDw of a case Dw consists of the context Cw

of the DPW Wand a set documents, ODw, specific to Dw , added to CDw at

different points of time by the reviewers of Dw·

Therefore, the context Ci of a comment ffi2 of a part di of a case Dw is defined

by the state of CDw at time t i , where ti is the time of production of di . The

state of CDw in turn is defined by the states of Cw and ODw at k

For example, let us consider the travel plan workflow discussed in Chapter

1. The workflow has a context comprising of documents containing rules

on travel permission, on leave to be granted during travel, on TA/DA and

precedent cases of travels granted or rejected. It also contains documents

on budget provisions etc. as support documents. Each of the documents in

the context is a MPMSD. An employee A composes her application citing

some of these documents. A also wants to cite her leave account report on

the date of application in support of her application. Since this report is

specific to her case only, so she adds the report in the context of the case

and submits an application ffiA to B with a request to allow her travel to

an organization. This is the first part part of a new case. Before forwarding

the case to C, B wants to peruse her forwarding note on a similar case

forwarded earlier. When B retrieves the concerned part d2 = (ffi2' C2, 0"2,82)

from the precedent case, the context C2 prevailing at the time of creation of

the forwarding note ffi2 is regenerated. C2 is defined by all the documents and

their parts available to the context of the case, of which d2 is a part. B then

33

appends her forwarding note mB to the application and sends the same to C.

C finds that a resolution taken in a recently concluded Finance Committee

Meeting is relevant not only to the case in hand but also to all future cases of

the workflow. Therefore, she registers the document containing proceedings

of the meeting, of which she is the convenor, in the document space of the

office first as a rule, which automatically qualifies for a member of reference

space. C then adds it to the context of the workflow. Now, the comment

me is created, citing the newly added document from the context, and is

forwarded to the director D and D approves the case.

2.2 The Storage Framework

The main objective of storage of information in an office is to keep track of

the history of who did what, when, why and how. Thus storage in an office

serve as the organizational memory, where the documents are the neurons.

Therefore, the central issue is to store the documents in such a way that they

can be identified, located and retrieved in an efficient way. Moreover, from

a document thus retrieved, all the related documents should be reachable in

a simple and straight forward way. The framework of storage and retrieval

of office documents comprises of the following concepts: life-cycle, represen

tation, identification, organization, relationship, efficiency and reliability of

office documents.

2.2.1 Life-Cycle

Normally, an office document has a long life time and during its lifetime it

passes through different states. The life-cycle of a MPMSD can be repre

sented by a state transition diagram. A state transition diagram is a digraph

34

LC(S,O), where S is a finite set of states represented as vertices and 0 is

the finite set of operations on MPMSDs represented as labels on the arcs.

S = {born, active, reference, archived, expired}

o = {registration, addpart, close, reopen, archive, de-archive, burn}

The states and the arcs of LC(S, 0) are labelled and the labels are the cor

responding elements of S or O. On execution of an operation on a MPMSD,

a transition occurs from a state to the next state of the life-cycle. The life

cycle is shown in figure 2.1. When a new MPMSD is created, it is in the

close

reopen dearchive

addpart

Figure 2.1: Life Cycle of a MPMSD

born state. On registration it transits to the active state. Registration of a

new document means inclusion of a document in the document space V with

a unique document identifier. Multiple parts can be added to a MPMSD in

the active state. On execution of the addpart operation, the MPMSD re-

35

mains in the same state. The addpart operation links a part to the MPMSD.

If the part is a new one, the add part operation also includes registration

of the new part and it precedes the linking. On closing a MPMSD in the

active state it transits to the reference state. Parts cannot be added to the

MPMSD in the reference state. On reopening a MPMSD in the reference

state it transits back to the active state again. On execution of an archive

operation on a MPMSD in the reference state it transits to the archived state.

Archival may include compression of the document. The reverse transition

occurs on the operation de-archive. On execution of the burn operation, an

archived document transits to the expired state, which is the final, and no

return state. The burn operation physically deletes the document from the

system. An archived document may be associated with a life-tag. A life-tag

signifies the life of an archived document based on the values: permanent,

semi-permanent, temporary, immediate etc. of the information contained

in the document. On the expiry of the life in the tag the document will

be automatically burned. Therefore, the de-archive operation is applicable

only before the expiry of the period mentioned in the life-tag of an archived

document. The main characteristic that differentiates these states is the ac

cessibility. Archive objects have no access privilege for the reviewers. The

reference objects are read only and the active objects may have privileges

like read, write, modify etc.

2.2.2 Representation

An office document has three aspects: profile, content and a presentation.

The profile represents a document.

Profile

A profile is the bio-data of the office document. It contains meta-data of the

36

document which provides a detailed description of the document. The profile

comprises of a set of keywords and three types of records: production record,

storage record and flow record.

• keywords: This is a limited collection of representative terms from the

vocabulary of the office concerned, which represent the content of the

document. Most existing text retrieval techniques rely on indexing key

words or indexing terms. There are standard models for keyword based

retrieval, like the vector space model [16]. We excluded keywords from

the discussion of our model but it can be easily incorporated. Unfortu

nately, keywords alone cannot adequately capture the office document

contents, resulting in poor retrieval performance. We need other at

tributes, like record attributes to complement the keyword description

of an office document. The record attributes can be categorized as

follows:

• productzon record: This record consists of production related attributes

like, class, type, topic, date of production etc., of an office document. A

document may belong to one of the classes like rule, case, support doc

ument etc. A document may be created using some templates, called

types or forms. For example, office order, notice, casual leave appli

catzon etc. are different types of documents. Moreover, a document

may be on one or more topics. The attributes are used in designing

multi-dimensional Page Cube model, discussed in Chapter 3.

• storage record: This record consists of storage related attributes like

address, size, authorization, state etc. of a document.

• flow record: It is a record pertaining to the flow of a document from

one point to the other. The attributes may be senderld, receiverld,

37

time of sending, time of receiving the document.

Content

The content of a document may be multimedia information. But, for the

present work, we assume that it contains only text. The simplest type of

digital document is plain text, which contains only the natural language text

of the document with not much restricted formatting and structural informa

tion. The advent of word processing and text formatting systems introduced

"tagged" or "marked up" documents to substitute for plain text documents.

Presentation

The content of a document is presented for display or for printing in a layout

framework. The layout framework associates the contents with a hierarchy

of layout objects such as pages, columns etc. The layout structure is also hi

erarchical in nature. It also includes presentation rules, like a chapter should

be in a new page, the content should be justified both left and right etc.

HTML is now a de-facto layout framework for digital pages. Thus the layout

framework provides the get up of a document. For storage and retrieval of

office documents, the focus of our discussion is on the profiles of the docu

ments. Therefore, content encoding and presentation aspects of a document

are excluded from the rest of our discussion.

2.2.3 Organization

There are different states of office documents as described in section 2.2.l.

For persistent documents we are concerned with the active, reference and

archived states. The documents can be organized in such a way that all

documents in a particular state will be stored in the same data-storage.

Accordingly, we can have three types of storages: actzve storage, reference

38

storage and archive storage. A document may be stored in the respective

category of storage based on the state in which it belongs. Categorization of

storages provides a level of access control. For example, any attempt to access

an archived document directly by a reviewer other than some authorized users

like the storage manager will be denied straight away.

State transition of a document may induce migration of the document

as well as other related objects like digital certificates etc from one storage

to the other. The migration of objects from one storage to the other are

recorded in the migration table maintained in the respective storages.

2.2.4 Identification

A document may be represented by the attributes of the profile but for

identification of a document during storage and retrieval a unique address is

required. In a paper-based system such a unique string is generated manually

combining some of the attributes of the profile, which serves as the unique

document identifier. In an e-office an equivalent identifier is to be generated

automatically. In our framework, a document may migrate from one storage

to the other as soon as it changes its state and accordingly the physical

address of the document may change from time to time. But at a particular

time a document will have one and only one physical address. Therefore,

each document in the document space will have a pair of addresses: a time

varying physical address and an invariant logical address.

2.2.5 Relati~nship

As soon as a document is produced in an office, the document is implicitly

related with a set of documents belonging to the document space D. The

implicit relations are set up by virtue of production of the documents in the

39

office concerned. For example, a newly produced document of a particular

type on a particular topic will be closely related to other documents of the

same type and/or on the same topic. Again, the types are hierarchically

linked to each other. Thus, the documents are related further as siblings,

ancestors and successors etc. Similar is the case with topics. On the other

hand, a document may be explicitly related with other documents. For

example, when a document is cited as reference in another document, then

these two documents are explicitly related. In our framework, the relations

among documents are set up with. links. In DPW, links are of two types:

implicit link and explicit link.

Definition 2.9 Implicit links are the the links which are set up among doc

uments implicitly based on the attributes of the profiles of the documents.

For example, key-word links, type links, topic links etc. are the implicit links.

Definition 2.10 Explicit links are the links which are set up explicitly among

documents by the reviewers or by other entities of the system

For example, citation links, part link etc. are explicit links. The links in

our framework are bidirectional. Every link is a conjugate pair of directed

hyperlinks: one forward and one reverse.

2.3 The DPW Architecture

A software architecture can be viewed as a style or a method of design and

construc~ion or strategic policies and patterns that shape a system. It pro

vides a common definition in abstraction for different components involved

in a system [23J. In this section, we present a conceptual architecture for

40

production and storage of digital office documents. A preliminary version of

the architecture was published in (36].

A common method in software architecture design is based on the multi

layering principle. Layers are popularly termed as tiers in software archi

tectures. Each tier is an abstract representation of a perspective of the

application. In the present architecture, different tiers, and different compo

nents in each tier, are identified and discussed. Common business application

architecture of today comprises of three tiers, based on three perspectives:

corporate data representation, business logic to manipulate the data and pre

sentation of input output data or information. The architecture we propose

here is also a three tier architecture consisting of the following tiers: view,

logic and data storage. The view consists of user interfaces, the logic consists

of processes to manipulate data and data storage stores data. These three

tiers are again grouped into Client and Arbiter with split logic. The logic is

split into client logic and arbiter logic, because the data manipulation will

be done by the client and the arbiter cooperatively. The client contains the

view and the client logic and the arbiter contains the arbiter logic and data

storage. The client and the arbiter will communicate over a network using

some protocols. This architecture is based on a centralized arbitration mech

anism, where all the documents must be routed through the arbiter. The

architecture is shown in figure 2.2.

The components of the architecture are described in the following sec

tions.

41

WORKFLOW

INTERFACE

[;J

WORKFLOW

MANAGER

1

PRODUCTION

INTERFACE

PRODUCTION

AGENT

CRYPTO

2 3

CRYPTO

PRODUCTION

MANAGER

STORAGE

MANAGER

ACTIVE

REFERENCE

ARCHIVE

USER

INTERFACE

USER
AGENT

U -0
0
...l
f-;
Z
~
...l
U

J. WORKFOW PROTOCOL

2. PRODUCTION PROTOCOL

3. USER-ARBITER PROTOCO

U
0

USER
0
...l

MANAGER ~
~
f-;
ill
~
<:

Figure 2.2: The Conceptual Architecture for DPW

42

L

2.4 The View

This tier gives us basically the Graphical User Interfaces (GUIs) of the sys

tem. The physical metaphor conceived here, for this architecture, is the office

desktop. View comprises of three interfaces: Production Interface, User In

terface, and Workflow Interface. A user interacts with the system through

these interfaces. The interfaces are discussed in brief below:

2.4.1 The Production Interface

Through this interface a reviewer interacts with the production agent of the

client logic module to review a case received. The reviewer examines the

case in the context of existing rules, precedents and other support docu

ments, composes his own comments, cites references from the context into

the comment to establish the rules position, precedent position etc. of the

comment, and forwards the case to the next reviewer. The main elements of

this interface are:

• Workspace: It is the area where a document under creation or a

document retrieved from the arbiter, will be displayed.

• Inlog and Outlog: These are the indices of documents incoming to

and outgoing from this desktop respectively. The indices include the

time of receiving / sending and the user jds of from whom received or

to whom sent etc. Thus the Inlog and the Outlog of a reviewer keeps

the record of flow of documents.

• Context: It is the dynamic context attached to the workflow. It is ba

sically a document which contains a list of hyperlinks to the documents

referenced: rules, precedents and support documents. It also contains

43

templates based on the predicates defined on the profiles of documents

to enable the reviewer to search for documents to be included in the

context) if required.

2.4.2 The Workflow Interface

Through this interface a user interacts with the workflow agent of the client

logic module. The interaction may be different for different roles. A reviewer

interacts to find out the status of an active case of the workflow. The status

includes the reviewer with whom the case is lying and for how long) the

time taken to complete a particular task etc. A work manager inherits a

reviewer and additionally can create a new DPW and can modify an existing

workflow in different aspects. For example, a manager can change the route

of the DPW, can temporarily reassign a task to another office worker of the

same role in case one in the review line is absent) can create and modify the

context template and the default context as need arises. The main elements

of this interface are:

• DPW design: Through this a work manager interacts with the work

flow agent to create a new DPW or to modify an existing DPW.

• Case status: Through this a user interacts with the workflow agent

to find out the status of a case.

• Load balancing: Through this a work manager interacts with the

workflow agent to find out the load of an office worker. The load may

be calculated based on the number of DPWs the user is participating

as a reviewer, the number of cases flowing into and the number of cases

flowing out from the desk of the user, average time of completion of

the tasks for the cases handled etc.

44

2.4.3 The User Interface

This is a standard interface through which a user interacts with the user

agent for mutual authentication of the user and the arbiter and also to set

up a signed session key.

2.5 The Client Logic

This module is populated by client side processes. The processes in this

module are termed as agents. Main agents are: user agent, production agent,

workflow agent and crypto

2.5.1 Crypto

This component is responsible for all security activities in the client side. The

responsibilities include: encryption and decryption of messages, verification

of origin, confidentiality, content integrity of the messages.

2.5.2 Production Agent

This agent is responsible for client activities during production of digital

documents. It interacts with the production manager of the arbiter using the

production protocol, discussed later. The responsibilities of the production

agent include:

• create original request documents using a template, submit it to the

arbiter via crypto .

• receive the document sent by the arbiter and verified by the crypto and

forward it to the view module for display.

45

• get the context of the DPW from the production manager,

• get the reference document selected out of the context by the user from

the production manager,

• update the context by inclusion of reference items in the context during

review

• submit the updated context, basically the new inclusions, to the refer

ence manager

• draw citations from the context to the comments and thus form a part

and submit it to the arbiter via crypto.

• receive the evidence of submission from the arbiter and update the

inlog and outlog indices.

2.5.3 User Agent

This agent is responsible for client activities during user authentication and

session setup. It interacts with the user manager of the arbiter logic using

the authentication protocol described later. The responsibilities of the agent

include:

• request the user manager for registration of a new user

• speak for the user during mutual authentication of the user and the

arbiter

• collect session key(s) from the user manager during a login session

• return signed session key(s) to the user manager via crypto.

46

2.5.4 Workflow Agent

This agent is responsible for client activities regarding design and manage

ment of document production workflows. The responsibilities include:

• interact with the authorized user through the workflow interface to get

the required parameters to create a new DPW or to modify an existing

DPW. Modification includes reassignment of tasks, change of rules etc.

• get the request for workflow status from the user and display the status

info received from the arbiter.

2.6 The Arbiter Logic

The arbiter is the central hub of of the architecture. It certifies subjects

and objects, authenticates subjects and objects, manages storage and re

trieval of objects, manages authorizations of subjects on objects, handles

time-stamping etc. Since it is the arbiter, the resolutions of disputes based

on evidences stored in the data storage of the arbiter will be final and bind

ing. The services of the arbiter are provided by the following components

called managers.

2.6.1 Crypto

It performs the same function as the crypto component of the client logic in

the arbiter side.

2.6.2 Production Manager

This is an important component of the arbiter. The services provided by this

manager include:

47

• forwarding a document to the next reviewer (client)

• addition of the part submitted by the client to the MPMSD under

production,

• sending evidence of submission (NRS) of parts to the client

• recording document flow in the log books

• time-stamping the evidences of occurrences of events in the communi

cation (sending, receiving, authoring etc.)

• authorization flow management (access control) during production

• rendering context and the reference documents to a client when re

quested for

• communication with other components

2.6.3 User Manager

This component provides the user management services. The services in

clude:

• registration of a new user,

• de-registration of users (employees transferred, terminated, retired,

suspended etc)

• generation of conjugate pair of private-public keys per user

• issuance of credentials (digital certificates) to users

• revocation of digital certificates

48

• maintenance of multi-version digital certificates

• generation and collection of signed session keys from users during a

login session

• communication with other components

2.6.4 Storage Manager

The services of the component include:

• encryption of documents with a master key known only to the stor

age manager while storing in the data storage and decryption after

retrieving.

• storing and retrieving objects from different storages of the data stor

age.

• migrating objects from one storage type to the other as soon as criteria

are satisfied.

• maintenance of migration tables in the storages

• archiving and removal of reference objects

• deletion of archived objects after the expiry of the life of the objects

2.7 The Data Storage

This tier is basically a repository of office objects. There are three storage

types - active, reference and archive.

49

2.7.1 Active Storage

Here, all the active objects are stored. Active objects are basically oper

ational data. MPMSDs which are under production are the main objects

stored here. Apart from MPMSDs, workflow documents, context documents,

user credentials, log books, session keys, program codes, program credentials,

migration tables are also active.

2.7.2 Reference Storage

Here all the reference documents are stored. An active MPMSD becomes

a reference document as soon as it is closed and it is migrated to the ref

erence storage. Other reference documents are: older versions of workflow

documents, and program codes, rules, precedents, revoked user credentials,

log book entries related to the flow of the closed MPMSDs and the signed

session keys of closed MPMSDs that are not associated with any other active

document. The objects stored here are read only to authorized users.

2.7.3 Archive

The reference objects which are not accessed for a long time are archived

and are migrated to the archive storage. The objects stored in the archive

cannot be read even. The objects are stored in compressed form.

2.8 The Protocols

There are three main protocols by which client agents interact with the cor

responding managers in the arbiter. The protocols are:

50

• Workflow Protocol:This is a protocol used by the workflow agent and

the workflow manager during interaction. The interaction is mainly

during design, modification and maintenance of DPWs.

• Production Protocol:This is the major protocol. It is used by the

production agent and the production manager during production of

MPMSDs. The protocol will be discussed in detail in Chapter 4.

• User-Arbiter Protocol: This is a standard protocol used for authenti

cation of entities. Here the user and the arbiter will be authenticated

through this protocol. The protocol provides peer authentication of

the user and the arbiter.

There are standard solution for workflow design. Even graphical workflow

design tools are available. Example products are Lotus Notes, Office.IQ, Or

acle Workflow, WorkMAN, Visual WorkFlow, FlowMark etc. In the present

work we assume that standard workflow design tools, suitable for DPW

are available. Therefore, no further discussion on the components of work

flow design, like workflow interface, workflow agent, workflow manager and

workflow protocol has been done in this work. There are standard solu

tions for user authentication, like Smart Card technologies. Moreover, in

depth theoretical study in user authentication, including peer authentication

and secure protocols, are done in [10, 21]. Therefore, we also assume existing

user authentication components are sufficient for entity authentication. Only

additional concept which needs to be added to peer authentication is the es

tablishment of a signed session key, which is a prerequisite for production

protocol to start. It is discussed in Chapter 4.

51

2.9 Discussion

In this chapter production and storage framework for DPW is presented.

The frameworks are design frameworks. The objective of the frameworks

is to provide a clear perimeter of the production and storage perspective

of the DPW problem. A conceptual architecture is also provided in the

present chapter. While the frameworks provide vertical perspectives, the

architecture provides a horizontal broad perspective across all the vertical

perspectives. The architecture is based on a central arbiter. The need for

central arbitration comes from security perspective of the problem, which is

the subject matter of Chapter 4.

52

Chapter 3

The Page Cube Model

In this chapter, we discuss a model for storage and retrieval of documents

in an e-office during document production workflow with the context as the

main binding element. This is a conceptual multi-dimensional model. The

notion of a dimension provides a lot of semantic information, especially about

the hierarchical relationship among its elements. The office documents are

considered here as pages. We term the model as Page Cube (PC). A PC is a

collection of registered pages of an office. Here pages are the main entities.

A page has a profile, which describes the page and is defined by a set of

attribute-value pairs. Registration of a page means adding and recording a

new page to the page cube and assigning a unique page identifier, pid, to

the new page. PC has two components: page space and page graphs. A

preliminary version of the model appeared in [38].

3.1 The Page Space

The page space is an n-dimensional space defined by n orthogonal dimen

sions. Each dimension represents a theme and is defined by an attribute. An

53

attribute may have attributes and these in turn may have further attributes.

Thus, the attributes of a dimension form a dimensional hierarchy. Therefore,

we can say that the page space is defined by n orthogonal hierarchies. A

page is represented in this space as a point, whose coordinate is an n-tuple.

The main dimensions include the following but are not limited to:

• Time: It is a hierarchical dimension. The hierarchy is

year. month. day. hour. min. sec. The time dimension provides the time of

creation of a page. It is a hierarchy with fixed depth.

• Topic: A page may be in one or more topics. A topic may have

subtopics and a subtopic may be further classified. Thus it forms a

topic hierarchy. Topic is a growing hierarchy.

• Type: A page may be of a type. A type may have subtypes and thus

type forms a growing hierarchy. In time, a new type may be created

under an existing leaf type. Generic to specific and to more specific

types of pages in an office forms this hierarchy. For example, let the

most general type of a page be note. A note may have subtypes office

order, report, comment etc. Again, office order may have subtypes

appointment letter, termination letter, sanction order, circular, notice

etc. Similarly, report may have subtypes inquiry, meeting minutes, field

report etc. and comment in turn may have subtypes advice, remark,

suggestion, ascent, descent etc.

• Category: A page may belong to one of the three categories: context,

document or part. The pages of category part are the elementary pages.

A page of category document contains a set of links to the pages of

category part. The links are ordered on the time of creation of the

parts. The pages of category documents are the MPMSDs. A page of

54

category context contains a set of links to pages of category document.

A DPW will have a context page associated with it.

• Class: Pages may be classified based on the themes of the content of

the pages. The classes are rule, case, support, result-set and query. A

page may contain rules on some topics, may be a part of a case of a

workflow or may be a support page. A page may belong to more than

one class. Content of a part of a case may be rules on some topics. For

example, resolutions of the Board of Management (BoM) is the last

part of a case of the BoM meeting workflow, while at the same time, it

is a rule of concerned topics. The result of a query will also be a page

containing links to the pages satisfying the query and such a page will

be of class result-set. Finally, the queries are also stored in the page

cube as pages, therefore query is another class.

• User: In DPW, user is an important dimension. A user belonging to

an office may be the reviewer of some cases and therefore the author

of some pages. For some cases, like the pages of category document or

context, the author is the arbiter itself.

• Domain: The users of an office may belong to different domains of the

office. Therefore, a page may be originated from a domain of an office.

An office may have many domains and subdomains.

• DPW: In our model a page is produced in a DPW. This dimension

gives the concerned workflow of a page.

• State: The pages in a DPW will be in one of the four states: active,

reference, archived or burned.

55

This set of dimensions, common for all DPWs, is only a representative one.

An office can identify more useful dimensions specific to the office concerned.

Figure 3.1: Page Cube

3.2 The Page Graphs

The pages of a PC are linked to a given page either implicitly or explicitly.

Implicitly linked pages are those pages which satisfy a predicate defined over

the dimensional values of the pages. Explicitly linked pages are those pages

which are linked by explicit hyperlinks. Thus, the pages, which are explic

itly linked, form a directed graph, where the pages are the vertices and the

hyperlinks are the edges. In addition to the implicit links provided by the

56

attributes of the dimensional hierarchy, the pages belonging to a dimension

may be explicitly linked forming a dimensional graph(DG) of the concerned

dimension. Each dimension will have one DG. Thus the page graph compo

nent of PC is a set of DGs.

Let P be a PC, G the set of all graphs in P, V the set of all pages in P

and E the set of all the directed edges of the graphs in G. In a dimension

graph, pages are the vertices.

Let Gd(Vd, Ed) be a digraph representing a dimension graph of dimension d,

where Vd C V, E c V.

The vertices and the edges of Gd(Vd, Ed) can be further classified into different

kinds, based on the value of the dimension d.

Let Td and T! be the set of all different kinds of vertices and edges of

Gd(Vd,Ed). Then VdQ is a set of vertices of dimension d and of kind a.

Similarly E~ is the set of edges of graph Gd(Vd, Ed), of kind (3. Again the

edges may be classified based on the direction forward or reverse.

Accordingly, E~ = E~+ U E~-, E~+ c E~ is a set of forward edges and

E~- C E~ is a set of reverse edges. Moreover, the edges in Ed may be

weighted, making Gd(Vd, Ed) a weighted graph. The weight may be defined

differently in different DGs. Linking of different kinds of pages by different

kinds of edges in Gd(Vd, Ed) is subject to the satisfaction of a set of constraints

Cd' The act of linking two pages by creating a pair of conjugate edges is

termed as plugging.

3.2.1 Pages

Pages are the main entities to deal with in a PC. Therefore, we should have

a clear understanding of a page and its constituent elements in the context

of the page space and page graph components of PC. To define a page, we

57

first define a few sets as follows:

Let S be a count ably infinite set of strings,

A c S be a set of variables called attributes,

e c S be a set of allowed values for the attributes in A,

From the preceding discussion, we define an edge as follows:

Definition 3.1 An edge e E E is a 6 - tuple, (source, target, graph, kind,

direction, weight), where source is the source page, target is the target page,

graph EGis the concerned dimensional graph, kind is the kind of the edge,

direction is the the direction of the edge: either f orward(+) or backward(-)}

and weight is the weght of the edge.

With these definitions let us now define a page as follows:

Definition 3.2 A page p E V is defined as a quadruple p = (B, X, L+, L_),

B is the profile, XeS is a set of strings defining the content of the page,

L+ c E is the set of forward edges, L_ C E is the set of reverse edges, where

for every edge e E L+ U L_, e.source = p.

e.source = p in the definition 3.2 is a format of writing the value of the

source attribute of tuple e is p

Definition 3.3 A profile B is defined as a 2-tuple, an attribute and a list of

values, B ={(a,{vl,v2"",vn })la E A,vz E e,i = l,2,3,···,n}

A page is a point in the multi-dimensional page space of a PC. Its co

ordinates are defined in the profile of the page. The profile of a page con

tains the values of the attributes of the page. The attributes of a page

may be dimensional and non-dimensional attributes. A dimensional at

tribute contains the values of the page for a dimension of the PC. A non

dimensional attribute contains the values other than the dimensional val

ues. For example, type, topic, category etc. are the dimensional, whereas

58

pagel d, signature, S2ze etc. are the non-dimensional attributes of a page.

The kind of a vertex (which is a page) of a DG is stored in a page as a

dimensional attribute. Similarly graph, kind and direction of an edge of a

DG are stored as attributes of an edge.

A page of a particular type may be on more than one topic. In that case,

a page may have multiple n-tuple coordinates. That is the reason, a distinct

pageId is chosen as the logical address of a page. Otherwise, the n-tuple

coordinate would have been an ideal logical address of a page. Without any

loss of generality, we can use the time of creation of a page as the unique

pageId, since in our scheme the timestamp will be given by a central arbiter

[37].

3.2.2 The Category Graph

Among the different common dimensions discussed in section 3.1, the dimen

sion category is a very important dimension. For a DPW, the construction

of the dimensional graphs for category is mandatory. Therefore, we shall

discuss the category graphs in detail in this section.

A page may belong to one of the three categories: part, document and

context, as discussed earlier. A part may cite other parts during production

of the part. Similarly a part may be cited in many parts. Therefore, pages

of category part are linked by cite kind of edges. Moreover, a part itself

may consist of multiple parts due to revision of the part from time to time,

as discussed in detail in section 3.2.3. Therefore, a part may be linked by

splitPart or revisePart kinds of edges. A document may plug many parts

and a part may be plugged in many documents. Therefore, pages of category

document and part are linked by docPart kind of edges. A context may

plug many documents and a document may be plugged in many contexts.

59

Therefore, pages of category cOI1(.e,xt and document are linked by conDoc

kind of edges. It certain cases, a context may be plugged to another context

by conCon kind of edges. For example, in addition to the documents specific

to a case, the context of a case includes the context of the DPW. So, the

context page of a case plugs the context page of the corresponding DPW.

Let Gcategory(Vcategory, Ecategory) be the dimensional graph for the dimen

sion category. Let Tc~tegory = {part, document, context} be the set of kinds of

vertices, Tc~tegory = {cite, splitPart, revisePart, docPart, conDoc, conCon}

the set of kinds of edges,

Vcategory = {Vpart' Vdocv.ment, Vcontext} , where Vpart is a set of vertices of kind

part, Vdocument is a set of vertices of kind document and Vcontext is a set of

vertices of kind context.

Ecategory = {Eczte , EsplitPart, ErevzsePart, EdocPart, EconDoc} , where E cite is a set

of edges of kind cite, EsplitPart is a set of edges of kind splitPart, ErevisePart

is a set of edges of kind revisePart, EdocPart is a set of edges of kind docPart,

EconDoc is a set of edges of kind conDoc and Econcon is a set of edges of kind

conCon.

A page may be plugged to another page at some time and may be unplugged

at some other time. The weight of an edge is a 2-tuple (t+, L), where t+

is the time of plugging and L is the time of unplugging. The significance

of the temporal weight is that an edge remains active from the moment it

is plugged till it is unplugged, that is, during the period defined by t+ and

L. Therefore, edges in. Gcategory (V, E) are persistent in nature. Unplugging

does not delete the conjugate pair of edges, it only modifies their weights.

The temporal weights of edges keep the history of the plugging of pages and

are used in the retrieval of a stage of a page at a particular time. It will

be discussed later. Since there is a possibility of plugging as well as unplug-

60

ging more than once between the same pair of vertices, parallel edges with

different weights may exist.

The graph Gcategory(Vcategory, Ecategory) is constructed by plugging the pages

subject to the satisfaction of the following constraints:

• Citation Constraints: A page P~ cites another page PJ iff the follow

ing conformability conditions on operands are satisfied:

(i) P~ E Y;art and PJ E Vpart U Vdocument

(ii) P~, PJ E P.

The significance of the first restrictions is that a page of category part

can cite another page of category either part or document. According

to the second restriction, actual plugging takes place only after regis

tration of the new page in the page cube.

• DocumentPart Constraints: A page PJ is plugged to page P~ iff the

following conformability conditions are satisfied:

(i) P~ E Vdocument and PJ E Y;art

(ii) P~ is in active state.

(iii) Pt, PJ E P.

A page of category part can be plugged to a page of category document

in active state only. When a new page of category document is to be

created, first a null document is created then other pages are plugged.

• Context Document Constraints: A page PJ is plugged to page pz iff

the following conformability conditions are satisfied:

(i) Pt E Vcontext and PJ E Vdocument

(ii) pz is in active state

(iii) Pt, PJ E P

61

• PartPart Constraints: A page PJ is plugged to page Pt iff the follow

ing conformability conditions are satisfied:

(i) Pz,PJ E Vpart

(ii) pz is in active state

(iii) Pz,PJ E P

• Context Context Constraints: A page PJ is plugged to page Pt iff

the following conformability conditions are satisfied:

(i) Pz, PJ E Vcontext

(ii) pz is in active state

(iii) Pz, PJ E P

3.2.3 Revision of a Page

Revision of a page is applicable only to the pages of category part. For certain

classes of pages of category part, splitting of a part may be necessary. For

example, let us consider a page of category part and class rule, containing

rules on some topics. These rules may be revised from time to time. Due to

revision only a certain portion of the content of the page may be changed in

the revised version and the remaining portions of the content is intact. There

are two ways to take care of such time varying parts. In the first approach, a

new version of the part is created in a new page. This page is plugged to the

document page and the page containing the old version is unplugged. The

disadvantage of this approach is that for a minor revision in the content of

the page, which is very common in an office, a major unrevised portion of the

content is replicated in the new version of the page. In the second approach,

62

an authorized user selects a page to be revised and marks a portion to be

replaced by a new portion. The page is split into a number of portions and

placed in separate newly created pages. One of these pages contains the

revised portion, while the other pages (there can be 0 to 2 more such pages

depending on whether the revised portion covers the entire original page, is

in the middle of the page, or is at one end of the page), contain unrevised

portions. All these pages are plugged to the original page and become its

children, so to speak. The original page now has no content in it. Instead,

its contents is to be recovered from the contents in its child pages based on

the given time of recovery. A page of category part which has child pages

may be considered to be a compound part. We shall refer to the parts in

in these child pages as portions to ease the discussion. The algorithm to

revise a part is given below as algorithm RevisePart. One aspect that needs

to to be pointed out is that, as a result of this scheme, there is a need to

distinguish between the time of creation of a page and the time of creation

of the content of a page. The former is represented by the pageId, while the

later is stored as the dimensional attribute time in the profile of a page. A

newly created child page may have in it very old content.

ALGORITHM RevisePart{pid, begin, end, new_portion)

Algorithm to revise a page p of category part

INPUT:

pid : pageld of p to be revised

begin : beginning position of the portion in p

end: ending position of the portion in p

new _portion : content of new revised portion

OUTPUT:

status: 1 if successfully revised, 0 otherwise

63

ASSUMPTIONS;

status = 0 initially, when the algorithm is called

NOTATIONS:

tp : time of creation of the content of p

null: a constant with value 0

now is also a timestamp, which represents the present time

timeStampO : a function which returns the present time

endO f Page; end position of a page, taking beginning position as a
BEGIN

Begin Case

step 1: case 1: begin = a and end = endO f Page

/ / full page is to be replaced

step 1.2: Register a new page with pageld pido1d and category part

Copy the content of pid to pido1d ;

Set X of pid to null / / content of pid is removed

Set the time of creation of content of pido1d to tp

step 1.3: Register a new page of category part with pageld pidnew

containing new_portion

step 1.4: Set now = timeStampO;

Plug pid to pido1d with a pair of edges of kind revisePart,

where plugtime = tp and then unplug it with unplugtime = now;

Plug pid to pidnew with a pair of edges of kind revisePart,

where plugtime = now and unplugtime = null;

Set the time of creation of content of pidnew = now

step 1.5: return(status = 1)

step 2: case 2: begin = a and end < endO f Page

/ /top portion of the page is to be replaced

64

step 2.1: Split pid into two portions PI and P2 at position end

Register Pl and P2, as new pages of category part

with pagelds pidl and pid2 respectively

step 2.2 Copy the portion from begin to end to pid l and

from end + 1 to en dO f Page to pid2

Set X of pid to null / / content of pid is removed

Set the time of creation of content of pidl and pid2 to tp

step 2.3: Plug pid to pid l with a pair of edges of kind splitPart,

where plugtime = tp and unplug time = null

step 2.4: Plug pid to pid2 with a pair of edges of kind splitPart,

where plugtime = tp and unplugtime = null

step 2.5: RevisePart(pid l , begin = 0, end = endO f Page, new_portion)

step 3: case 3: begin> 0 and end = endO f Page

/ /bottom portion of the page is to be replaced

step 3.1: split pid into two portions PI and P2 at position begin

Register PI and P2, as new pages of category part

with pagelds pidl and pid2 respectively

step 3.2 Copy the portion from 0 to begin - 1 to pid l and

from begin to endO f Page to pid2

Set X of pid to null / /content of pid is removed

Set the time of creation of content of pidl and pid2 to tp

step 3.3: Plug pid to pid l with a pair of edges of kind splitPart,

where plugtime = tp and unplugtime = null

step 3.4: Plug pid to pid2 with a pair of edges of kind splitPart,

where plugtime = tp and unplugtime = null

step 3.5: RevisePart{pid2 , begin = 0, end = endO f Page, new_portion)

step 4: case 4: begin> 0 and end < endO f Page

65

/ /middle portion of the page is to be replaced

step 4.1 Split pid into three portions PI, P2 and P3 at positions begin and end

Register PI, P2 and P3, as new pages of category part

with pageIds pidl , pid2 and pid3 respectively

step 4.2 Copy the portion from 0 to begin - 1 to pid1 ,

from begin to end to pid2 and from end + 1 to en dO f Page to pid3

Set X of pid to null / / content of pid is removed

Set the time of creation of content of pidl , pid2 and pid3 to tp

step 4.3 Plug pid to pid1 with a pair of edges of kind splztPart,

where plugtime = tp and unplugtime = null

step 4.4 Plug pid to pid2 with a pair of edges of kind splitPart,

where plugtime = tp and unplugtime = null

step 4.5 Plug pid to pid3 with a pair of edges of kind splitPart,

where plugtime = tp and unplug time = null

step 4.6 RevisePart(pid2 , begin = 0, end = endO f Page, new_portion)

End Case

END

All the four possible cases of revision of a part are taken care of in the

algorithm RevisePartO. In case 1 (step 1), entire part is revised by a new

part. In case 2 (step 2), case 3 (step 3) and case 4 (step 4) revision of top,

bottom and middle portions of a part are taken care of. A page is created

first, and then may be plugged to one or more pages. Therefore the time of

creation of a page is always less than or equal to the time of plugging the

page to other pages. When a page is split to multiple portions, the portions

of a page collectively contain the content of the split page. Therefore, the

time of creation of the contents of the portions are equal to the time of

creation of the original part. When a state of the page at a particular time

66

is retrieved, the portions of the page not revised are to be included intact.

The portions are to be retrieved with respect to the time of plugging and

unplugging. Therefore, if the plug time of the portions, that are unrevised

and the old versions of the revised portions, are set to the t p , the time of

creation of the content of the part to be revised, then the retrieval will be

correct. The retrieval of a state of a page at a particular time is discussed in

the next section.

3.2.4 Retrieval of a Page

Let us first discuss how to retrieve a page of category part, which may have

multiple portions, and some portions may be revised. We discuss below

an algorithm GetPartO to retrieve the state of a page of category part at

time t. The algorithm returns a list of pagelds, and the concatenation of the

contents of these pagelds gives the state of the part at time t. Since a portion

is registered as a page with a unique pageld and the portions are registered in

order, therefore pagelds of children nodes of a parent node gives the order. A

portion may have further portions as children. A part may have three types

of edges: cite! splitPart and revisePart. A leaf node is identified as a node

having no splitpart as well as revisePart kinds of edges. An internal node

will have either splitPart or revisepart kind of edges. The leaf nodes which

satisfy the temporal conditions on time t, given in the algorithm GetPart(),

constitute the state of a part at time t from the tree. When t = now, we get

the current state of a part.

ALGORITHM GetPart(pid, t)

Algorithm to retrieve the state pt of a page p of category part, at time t

INPUT:

pid : pageld of part p to be retrieved

67

t : time which defines the state of pid

OUTPUT:

pidListt : list of pageids, in order, which constitute the part pid at time t

ASSUMPTIONS:

pidL~stt is intially null

NOTATIONS:

pid11lpid2 : concatenation of pid1 and pid2

null: a constant with value 0

now is a timestamp, which signifies the present time

element. attribute = value: the structure is a short form of writing the value

of the attribute of an element

BEGIN

step 1: Retrieve page p with pageld = pid

step 2: From p, form a set of forward edges of kind splitPart

L~ = {eSles.source = pid and eS.kind = splitPart

and eS.dir = + and eS.t+ <= t and (es.L > t or eS.L = nUll) }

step 2.1: Form pidListS of pagelds of pages of category part from L~

pidListS = {Psi eS.target = Ps, where eS E L~}

step 2.2: if pidListS is not null then sort pagelds in pidListS

step 3:

in ascending order of pagelds

From p, form a set of forward edges of kind revisePart

L~ = {erler.source = pid and er.kind = revisePart

and er.dir = + and er.t+ <= t and (er.L > t or er.L = nUll) }

step 3.1: Form pidListr of pagelds pages of category part from L~

pidListr = {Prl er.target = Pr and er E L~}

step 3.2: if pidListr is not null then sort pagelds in pidListr

in ascending order of pagelds

68

step 4: if pidListS = null and pidListr = null then

pidListt = p~dlistt lipid

step 4.1: else if pidListS i= null then

for each Ps E pidListS

pidListt = pidListtll GetPart(ps, t)

step 4.2: else if pidListr i= null then

for each Pr E pidListr

pidListt = pidListtl1 GetPart (Pr, t)

endif

step 5: return(pidListt)

END

The algorithm GetPartO gives the state of a part pid at time t. Once we

take care of pages of category part retrieval of a page of category document is

a simple one, similar to GetPartO. The algorithm GetDocumentO is given

below:

ALGORITHM GetDocument(pid, t)

Algorithm to retrieve the state pt of a page p of category document, at time

t

INPUT:

pid : pageld of document p to be retrieved

t : time which defines the state of pid

OUTPUT:

pidListt : list of pageids, in order, which constitute the document pid at time

t

ASSUMPTIONS:

pidListt is intially null

69

NOTATIONS:

pid11lpid2 : concatenation of pid1 and pid2

null : a constant with value 0

now is also a timestamp, which signifies the present time

element. attribute = value: the structure is a short form of writing the value

of the attribute of an element

BEGIN

step 1: Retrieve page p with pageld = pid

step 2: From p, form a set of forward edges of kind docPart

L~ = {eSle.source = pid and eS.kind = dosPart

and eS.dir = + and eS.t+ <= t and (es.L > t or eS.L = nUll) }

step 2.1: Form pidListS of pagelds of pages of category part from L~

pidListS = {Psi eS.target = Ps, where eS E L~}

step 2.2: if pidListS 1= null then

sort pagelds in pidListS in ascending order of pagelds

for each Ps E pidListS

pidListt = pidListtll GetPart(ps, t)

endif

step 3: return{pidListt)

END

Retrieval of a page of category context is similar to GetDocument().

Since, production of context is the subject matter of Chapter 4, it is discussed

in detail there.

70

dp

Edges:

cc: conCon

cd: conDoc

dp: docPart

ct : cite

sp : spIitPart

rp : revisePart

cc

~c Contexts

cd

8 Documents

dp

ct

Figure 3.2: Portion of Category Graph for Travel Plan Workflow

3.2.5 An Example

Let us consider again the travel plan workflow discussed in Chapter 1 and 2.

Portion of a category graph for such a workflow is shown in figure 3.2. The

node e is the document that is under examination. This document has four

parts, i, j, k and l corresponding to employee A's application, reviewers B, C

and D's comments respectively. The document e has a case context and this

is node a. Node a points to document d, which is being used by A as it is her

leave account. The context a also points to the DPW context b. The context

b includes document f, which is an earlier case acting as a precedent for this

DPW and it has a case context c. The context b also includes document 9,

which is the set of leave rules. This rules were originally in node q, but a

portion got revised. As a result, nodes ql, q2 and q3 were created. ql and

q2 contains the first and the last part of the rules while q2 points to q21 and

71

q22. q21 contains the pre-revised portion and q22 the revised portion of the

rules. q21 was unplugged when q22 was plugged. The rules corrently are

therefore contained in q1, q22 and q3. A link emanating from node z to q22

is a citation of the rules in q22 by applicant A. There is another citation link

from node n to q shown. Here the entire set of rules are being cited.

3.3 Query Languages

A query is an expression denoting a set of pages described by a formula ¢

of the form {p\¢(p)}. A query language provides a user with a means of

expressing questions in the form that can be handled by the model enabling

the model to answer the questions asked in a reasonable time. In this sec

tion we describe two equivalent query languages: The first language is Page

Algebra (PA), a procedural language which uses specialized operators on

the sets of pages to specify queries and a Page Structured Query Language

(PSQL), a user-friendly pseudo-natural language with a simple means for

expressing queries using a natural language form. The languages are similar

to Relational Algebra and SQL respectively.

3.3.1 Path Expression

A Path Expression(PE) defines a path from one node in the graph to another

in terms of intermediate node and edge labels. PEs in graphs are used in

navigation oriented queries. In our model, navigation in the dimensional

graphs is a common feature for the queries. Moreover, the dimensions of the

PC are also hierarchical. Therefore, values of the attributes can be expressed

as PEs. Details of use of path expressions in document databases is given

in [14]. We follow the simplified PE discussed in [35]. The standard wildcat

72

character" *" is used in a path expression to signify all successors of a node in

the dimension hierarchy as well as in the dimensional graph. The standard"."

operator, commonly used to denote attributes of a relation in the relational

model can now be cascaded to express a listed path. In addition a " .. "

operator is introduced, which is used to construct an abbreviated path from

a listed path. For example, a fully listed path expression is Pl·P2,P3·P4,P6,P7,

where Pt, i = 1,7 is a pageId. An abbreviated path Pl"P7 means that there

is a path between PI and P7, but the actual path itself is not of significance.

FQrmally, the above expression evaluates to :

3xPATH{x) n P1.X,P7

" .. " and" *" takes care of the don't care conditions in a PE. Details of PEs

is available in[35].

3.3.2 Page Algebra

Page Algebra(PA) is an operator based query language for querying pages

from a PC. It is an extension of relational algebra. PA is defined in terms

of a special set operators that map one or more sets of pages to a new set of

pages. Every PA expression E represents a set of pages. The main operators

are as follows:

• Selection (0'): The selection operation O'-yE extracts a subset of pages

from an input set E that satisfies the selection condition I

O'-yE = {pip E E .1\ ,}

• Plug (x): Given two PA expressions E1 and E2, the expression E1 x E2

reproduces the pages belonging to El with forward edges to the pages

belonging to E2 and the pages belonging to E2 with backward edges to

pages belonging to E1 .

73

Let El = {PI, P2} and E2 = {P3, P4}· El X E2 produces the pages

with forward (+) and backward (-) edges. For example, for the cate

gory graph, with graph id 9 has context to document(cd), document

to part(dp), part to part(pp) kinds of edges. Accordingly, the forward

and backward edges may be qualified. If El contains pages of cate

gory document and E2 contains parts, then the qualified edges due to

El x E2 will be

PI = (PI, {(P3, g, (t+,), dp, +), (P4, g, (t+,), dp, +)})

P2 = (P2,{(P3,g,(t+,),dp,+), (P4,g, (t+,),dp,+)})

P3 = (P3, {(PI, g, (t+,), dp, -), (P2, g, (t+,), dp, -)})

P4 = (P4, {(PI, g, (t+,), dp, -), (P2, g, (t+,), dp, -)})

• Unplug (-;-): This is the reverse operation of plug. Given two PA

expressions El and E2, the expression El -;- E2 reproduces the pages

belonging to El deactivating forward edges to the pages belonging to

E2 and also reproduces the pages belonging to E2 deactivating the

backward edges to pages belonging to E1 . Unplug does not necessar

ily remove the edges physically. It simply modifies the weights of the

edges by incorporating the time of unplugging (L). After unplugging

the pages of El and E2 change to the following:

PI = (PI, {(P3,g, (t+,L),dp,+), (p4,g,(t+,L),dp,+)})

P2 = (P2, {(P3, g, (t+, L), dp, +), (P4, g, (t+, L), dp, +)})

P3 = (P3, {(PI, g, (t+, L), dp, -), (P2, g, (t+, L), dp, -)})

P4 = (P4, {(PI, g, (t+, L), dp, -), (P2, g, (t+, L), dp, -)})

74

• Path Selection (0): This is basically a navigational operation, where

o E {., .. }. Given a PA expression E and a PE P, EoP returns the set

of pages obtained after traversing the path P from each of the pages in

E [35].

• Union (U): Union is the normal set union operation. Given two PA

expression El and E2. The result of El U E2 is a set of pages defined

as

• Intersection (n): Intersection is the normal set intersection opera

tion. Given two PA expression El and E2. The result of El n E2 is a

set of pages defined as

El n E2 = {pip E El !\ P E E2}

• Difference (-): is the normal set difference operation. Given two PA

expression El and E2. The result of El - E2 is a set of pages defined

as

Examples

Let us look at some examples to illustrate the different operators of PA.

1. Find from the page cube P, all the documents containing rules on

special casual leave and include them in the context of the dpw w. In

PA it can be expressed as

a category=" context" /\dpw="w" (P)

75

x

a category=" doc:ment" I\c!ass=" rules" I\topic=" leave.casual.special" (P)

2. Find from the page cube P, all the documents containing rules on

special casual leave and exclude them from the context of the dpw w.

a category=" context" I\dpw="w" (P)

a category=" document" I\class=" rules" I\tOPlC=" leave.casual.speclal" (P)

3. Find from page cube P, all the parts included in the context of the

dpw wand signed by user u.

(a category=" context" I\dpw="w" (P)) 0 (a category="part" I\user="u" (P))

This expression returns all parts signed by u if there exists a path from

the context of w to the part.

4. Find from the page cube P all office orders on leave which are neither

sanction orders nor the circulars.

(atype=" .. 0/ /ice....order.*" I\tOPlC=" .. leave.*" (P))

(atype=" .. 0/ /ice....order.sanction.*" I\topic=" .. leave.*" (P)

u

atype=" .. 0/ /ice....order.notice.*" I\topic=" .. leave.*" (P))

3.3.3 Page Structured Query Language

Here we present a language, called PSQL, for interactively processing queries

on pages. PSQL is an extended version of SQL. The primary motivation

behind such a language is to provide users of database systems with a simple

76

means for expressing queries using a natural language form. Standard SQL

deals with flat tables and the result set of an SQL query is also a table. In SQL

the main retrieval operation is the SELECT operation. To accommodate this

feature in PSQL the SELECT clause will have the mechanism to allow the

creation of composite page from the constituent pages. The resultant page

of a query is basically a multi-part page which contains hyperlinks(edges) to

the constituent pages.

Examples

Let us consider some queries expressed in PSQL.

1. Find all the precedents of the workflow w from the page cube P.

SELECT page q

FROM cube P

WHERE q.profile.dimension.category = document

and q.profile.dimension.class = case

and q.profile.dimension.dpw = w

and q.profile.dimension.state = reference

2. Find all the parts of the precedents of the workflow w from the page

cube P.

SELECT page q

FROM cube P, P.graph.category g

WHERE q.profile.category = part

77

and g.dpw = w

and g.edge.target= q

and g.edge.kind = docpart

and g.edge.dir = +

and g.edge.source IN

(SELECT page p

FROM cube P

WHERE p.profile.dimension.category=document

and p.profile.dimension.class=case

and p.profile.dimension.dpw=w

and p.profile.dimension.state=reference)

3. Find all documents from a page cube P containing rules on casual leave

or on travel abroad produced after August, 1990.

SELECT page q

FROM cube P

WHERE q.profile.dimension.category = document

and q.profile.dimension.class = rules

and q.profile.dimension.topic

IN {leave.casual.*, travel .. abroad.*}

and q.profile.dimension.time BETWEEN {1990.08.*, now}

ORDER BY dimension.topic, dimension. time

The query produces a resultant page from a page cube P containing

links to all the pages containing rules on casual leave, or on travel.abroad,

78

or on any subtopics, produced between August 1990 and now. The

value of the special variable now is defined by the arbiter with the

current time stamp. The values included in the IN list are generally

values of dimensional attributes of cube P. It is a shorter form of ex

pressing ORs of attribute-value based predicates. The range of values

in BETWEEN clause is a more general expression of IN list.

4. Find all documents from a page cube P containing rules on special

casual leave and include them in the context of the workflow w.

(SELECT page q

FROM cube P

WHERE q.profile.dimension.category = context

and q.profile.dimension.dpw = w)

PLUG (SELECT P

FROM P

WHERE p.profile.dimension.category = document

and p.profile.dimension.class = rule

and p.profile.dimension.topic = leave.casual.special)

5. Find all parts of the dpw w from a page cube P where the page with

pageld 112000.08.12.13.25.31)1 is cited.

SELECT page p

FROM cube P, P.graph.category g

WHERE p.category = part

and g.dpw = w

79

and g.edge.source = 2000.08.12.13.25.31

and g.edge.target = p

and g.edge.kind = cite

and g.edge.dir = -

3.3.4 PSQL Grammar

In this section the core of the Context-Free Grammar of PSQL in BNF

notations is given. Since PSQL is a an extension of SQL, therefore, some

of the productions are from standard SQL, some are from Active Rule [41].

Some productions are similar to DSQL [35] and Lorel[31]. Others are specific

to PSQL.

<query-exp>

<query_term>

<rule_spec>

<event>

<query_spec>

<if_clause>

<query_body>

- <query_term> <query-exp> I <query_term>

- <rule_spec> I <query_spec>

- WHEN <event> [IF <cond_exp> THEN] <query_spec>

- request I response

- SELECT [ALL I DISTINCT] <query_body>

[{PLUG I UNPLUG I UNION I INTERSECTION

DIFFERENCE} <query_spec>]

IF <cond_exp> THEN {<if_clause> I <query_spec>}

<from_clause> [<where_clasuse>] [<order_clause>]

<order_clause> ::= ORDER BY (path_list)

<from_clause>

<where_clause>

<cond_exp>

<cond_term>

<cond_factor>

- FROM <path_exp> <identifier>]

[, <path_exp> <identifier>] *
WHERE <cond_exp>

<cond_factor> I <cond_term> AND <cond_factor>

[NOT] <cond_test>

80

<cond_test>

<cond_primary>

<simple_cond>

<between_cond>

<in-cond>

<range_exp>

<path_exp>

<path_list>

<path>

<identifier>

<character>

<letter>

- <cond_primary> [IS [NOT] { TRUE 1 FALSE}]

- <simple_cond> 1 (cond_exp)

.. = <comp_cond> 1 <between_cond> 1 <in_cond>

- <path_exp> = <path_exp>

- <path_exp> [NOT] BETWEEN «range_exp»

- <path_exp> [NOT] IN «path_list»

- <path_exp> - <path_exp>

- <path>[. I .. <path>]*

- <path>[,<path>]*

- <identifier>[.<identifier>]*

- <identifier><character>l<character>

- <letter> 1 <digit> 1 I_I-I+I<I>I=I! 1*1.

- AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITI

UIVIWIXIYIZ

lalblclcidielflglhliljlkillminiolplqlri

sltlulvlwlxlylz

<digit> - 0111213141516171819

3.4 Closure

Page Cube is a closed model. Simply put, this means that input to a query

are pages belonging to PC and the result-set, that is, the output of a query,

is also a page having hyperlinks to the pages satisfying the query. Closure is

prominent in a relational database model, as tables are both input to queries

and output from queries. In addition using the QBE query language, queries

are formulated also using tables. Similarly, in page cube, queries can also be

pages. The advantages of a closed model are discussed in [35]

81

3.5 Discussion

In this Chapter a model, called Page Cube, for storage and retrieval of

documents in an office environment is presented. The model is a multi

dimensional model. Multi-dimensional modelling is a new paradigm of mod

elling data. Data Cube model of OLAP is the most common application

of multi-dimensional modelling that influenced the data warehouse architec

ture. In data cube, numeric measures, like sales, inventory, population etc.,

are the main subject of the analysis. Unlike ER modelling, which describes

entities and relationships, dimension modelling deals with numeric measures

and the dimensions. It is for the first time, in the Page Cube model, dimen

sion modelling is extended in modelling office documents. The Page Cube

deals with dimensions and pages and their inter-connectivity. The genesis

of Page Cube model is the formation of page graphs with temporal labelling

scheme of the edges. Query languages like Relational Algebra and SQL are

very rich in constructs. But for querying pages from a Page Cube only a

small and simple set of constructs are necessary. Moreover, some constructs

are specific to Page Cube. Therefore, two query languages, in the line of RA

and SQL, namely PA and PSQL are proposed to query Page Cubes. The

model can be extended by incorporating document to document linking by

corresponding kinds of edges if such a need arises in a particular office.

82

Chapter 4

Security

An office document handling system requires security during production,

storage and transport of documents. Therefore, security is an important

aspect of the DPW problem. In the present chapter we discuss the security

of DPW under a security framework and we propose a secure protocol for

production of cases of a DPW.

4.1 The Security Framework

The security of a DPW can be studied in a framework formed by the following

standard fundamental security concepts: authentication, access control, au

thorization, authorization flow, integrity, confidentiality and non-repudiation.

All these concepts are well known. We are giving a review of these basic con

cepts in this framework.

Only a set of legitimate users, called the office workers are allowed to

handle documents in a particular office. Therefore, authentication of users is

a very important security requirement in an office system.

Definition 4.1 The authentication process is the aggregation of two P'T"O-

83

cesses: identification and verification. Identification is the process whereby

an entity claims a certain identity, while verification is the process whereby

the claim is checked. When two communicating entities authenticate each

other simultaneously it is referred to as mutual or peer authentication.

There are three primary methods of authentication of an entity:

K. authentication by knowledge: An entity is authenticated by the veri

fication of some secret knowledge, for example, authentication by the

knowledge of a password.

o. authentication by ownership: An entity is authenticated by the posses

sion of some devices. Possession of an identity card is an example of

this method.

C. authentication by characteristic: An entity can be authenticated by the

characteristics unique to the entity. Characteristics like finger print,

retinal pattern, DNA patterns etc in case of human being and message

digests in case of digital messages can be used as characteristics for

authentication.

Let A = {K, 0, C} be the set of primary methods of authentication. All the

authentication protocols availa.ble today use some combinations of these three

methods. The set of all possible combination is the power set of S excluding

the null set. The traditional password based method, {K} c A, is vulnerable

because it is easy to grab the password from the network [39]. A substantially

better method is the smart card method, which is used in electronic commerce

etc.. Basically it uses the ownership of a card which contains a secret-key,

which in turn is always encrypted by a password and stored in a chip of the

card along with other information. It is the combination {K,O} c A. This

84

method is also not perfect, because loss of the card and the leakage of the

password may lead to forgery. Perfect authentication is an open problem

and if a solution for that evolves, it will obviously be of the combination

{K,O,C} ~ A.

Access control and authorization are generally defined in terms of subjects

and objects. Subjects are sometimes called the principals.

Definition 4.2 A subject is an active entity of the system} which accesses

objects. These accesses must be controlled to ensure that they match the

security requirements.

Definition 4.3 An object is a passive entity of the system} which contain

information to be protected from unauthorized accesses.

If a user is properly authenticated in an office, it does not necessarily mean

that the user can access all the objects in the office. Some types of objects

may be accessible to only office workers of a certain role. Moreover, a worker

of a role may not be authorized to access a particular object even though the

role(s) he belongs to may have authorization to access that particular type

of objects. How to ensure that access to information resources and hardware

resources is available only to the authorized user is the subject matter of

access control.

Definition 4.4 Access control is the act of determining whether a subject is

allowed to perform a given operation on an object.

Authorization is typically determined based on three access control policies:

Mandatory Access Control (MAC), Discretionary Access Control (DAC) and

Role-Based Access Control(RBAC).

85

• MAC: Under MAC, a security level is assigned to each subject reflect

ing the degree to which it is trusted to not disclose sensitive information

and to each object in accordance with the sensitivity of the informa

tion that it contains. The set of security levels is partially ordered in

a lattice-structured hierarchy so that each level dominates itself and

the ones below it. If finer granularity is required, a set of categories

can also be assigned to each subject specifying the areas in which it

operates and to each object describing the areas to which the contained

information pertains. Detail of MAC is available in [32J.

• DAC : The main idea behind DAC is that of enforcing the rules spec

ified by an access matrix describing the modes in which each subject

is allowed to access each object. Since the access matrix is usually

sparse, typical implementations adopt either a column-wise represen

tation called Access Control Lists(ACL) or a row-wise representation

called Capability Lists(CL). Detail of DAC is available in [32].

• RBAC : In RBAC, accesses by a user to an object is determined on the

basis of the role(s) that the user plays at the time of access. A role is

a representation of a set of responsibilities associated with a particular

activity. There are two kinds of authorizations in RBAC:

- The ACL for each object indicates the modes of access permitted

for each role.

- Each user is authorized to adopt a certain predetermined set of

roles.

If a user's responsibility changes then new roles can be assigned. It is

not necessary to go through the ACLs of all the objects one by one to

86

remove entries pertaining to the user in her previous capacity and add

entries pertaining to the new role(s).

Definition 4.5 Authorization is defined as a 4-tuple A = {s, o,pr, [t+, L]),

where subject s is granted access on object ° with privilege pr at time t+ and

is revoked at time L.

The time interval [t+, L 1 signifies that the subject s has privilege pr to access

object ° only during this time interval. In a workflow the authorization is

non-monotonic in nature. A suitable authorization model for workflows must

ensure that authorization is granted only when the task starts and revoked as

soon as the task finishes. Otherwise a sUbjec't may possess authorization for

time periods longer that required, which may compromise security. There

fore, authorization flow need to be tightly coupled to the workflow in order

to ensure subjects possess authorization only when required.

Apart from authorization, the system must ensure to the users that the

content of an object has not been tampered during transmission or while

being stored. When an office object is stored or transported over a network

from one point to the other, the confidentiality of the information contained

in the object may need to be maintained. That means the information con

tained in the object be accessible only to the authorized subject. The type of

access includes printing, displaying and revealing the existence of an object.

In common practice, confidentiality of digital information is maintained by

cryptographic encryption.

Definition 4.6 Confidentiality of an object is concerned with the protection

of d~sclosure of information to unauthorized users.

In the production process of a document three main events are involved

authoring a document, sending a document to the next reviewer, and receiving

87

a document from the previous reviewer of the document. These events have

binary possibilities: whether an entity has authored or has not authored a

document, whether a document has been sent or has not been sent, whether

a document has been received or has not been received, whether a document

has been sent / received at a given time or has not been sent /received at

that time. If two possibilities of an event cannot be distinguished, a party

related to the event could make the denials.

Definition 4.7 Repudiation is defined as denial by one of the entities in

volved in a communication of having participated in all or part of the com

munication. Non-repudiation is concerned with preventing such a denial

Digital signatures address the non-repudiation of authorship of a document,

whereas non-repudiation of sending and receiving are addressed by non

,repudiation protocols using evidence of sending (NRS) and ofreceiving (NRR)

with a certified time stamp. It is shown in [44] that to address the non

repudiation of sending or of receiving a document at a given time, involve

ment of an trusted third party (TTP) is mandatory. The TTP must be in-line.

In the protocol for production of MPMSD also an in-line is mandatory. This

will be discussed in 4.2.

Definition 4.8 A trusted third party (TTP) is a security authority or

its agent, trusted by other entities with respect to security related activities

[22}.

From a communication viewpoint, three categories of TTPs can be distin

guished based on the relative location to, and interaction with, the commu

nicating parties. The three categories are in-line, on-line and off-line.

Definition 4.9 A TTP is in-line if it is the intermediary, serving as the

real-time means of communication between two entities A and B.

88

Definition 4.10 A TTP is on-line if it is involved in real-time during each

protocol instance (communicating with A or B or both), but A and B com

municate directly rather than through the TTP.

Definition 4.11 An TTP is off-line if it is not involved in the protocol in

real-time, but prepares information a priori, which is available to A or B or

both is and used during protocol execution.

Definition 4.12 A security policy is a set of rules that define the security

subjects, security objects and relationship among them. Security policies

define the principles on which access is granted or denied (without limiting

legitimate access).

The definition of security policies lead to the explicit formulation of security

strategies, thus giving security its rightful relevance instead of the fragmen

tary and approximate consideration it is often given [32]. In the perspective

of security we can consider an office as a single trust domain.

Definition 4.13 A trust domain is a logical administrative structure within

which a single, consistent security policy holds. Put another way a trust

domain is a collection of both subjects and objects governed by single admin

istration and a single security policy.

The scope of our discussion is limited to a single trust domain. Inter domain

security is beyond the scope of this discussion.

There are standard user authentication schemes, like Smart cards. During

run-time a process represents the user. Process authentication is discussed

in [21]. Standard digital signature schemes address the fundamental issues,

like proof of origin, content integrity (sec 1.8.2). The issue of confidentiality

can also be addressed by standard encryption schemes. There are standard

89

non-repudiation protocols [1, 2, 3], which address the repudiation issues. But

for persistent documents, the issue of signature replacement and the content

integrity issue, where even the original author of a part of a MPMSD is not

allowed to modify the content after it is dispatched to the next reviewer, are

not addressed by standard digital signature schemes.

4.2 A Protocol for Secure Production of Cases

Based on the security framework discussed, we propose in the present section

a protocol for secure production of MPMSDs, which are the cases of a DPW.

The protocol addresses the issues particular to MPMSD. The protocol is

based on a central arbitration mechanism. A preliminary version of the

protocol appeared in [37].

4.2.1 The Central Arbiter

To make a protocol as general as possible, researchers attempt to avoid the

use of an arbiter. However, to provide non-repudiation with time information,

an in-line TTP is necessary. To provide non-repudiation of a digital signature,

time of the signature is essential as the key used in the signature may become

public at a later time. In our environment, documents are persistent and so

non-repudiation of a digital signature is essential. So an in-line TTP will

be required. Further, to prevent the reuse of parts (Sec. 1.8.3, item 2), an

in-line TTP will evidently be required as immediate detection of such reuse

will be necessary to prevent the taking of wrong decisions. When Band D

collude to bypass C, C will not be aware of this till much later if no in-line

TTP is present. Since an in-line TTP is mandatory for addressing issues like

repudiation of sending and receiving documents as evident from [44], we can

90

address other issues on MPMSD as well, with an arbiter as an in-line TTP.

Therefore, the production of cases in the DPW system is based on a central

arbitration mechanism. It is basically a client/server computing paradigm,

where the arbiter is the server. All the cases flowing from one client(reviewer)

to another are routed through the arbiter. In case of dispute, the decision of

the arbiter, based of the stored evidences, is final and binding.

A light weight TTP is usually favoured as this reduces the overhead of

communication. However, in our case, the TTP has to perform more tasks.

With our assumption of an organization as a single trust domain, within

which the documents flow, an 'in-house' TTP can be implemented and this

can therefore be made heavyweight.

4.2.2 Signed Session Keys

In most of the office solutions, public-key based digital signatures are used.

Commonly, the RSA [30] algorithm is used for encryption. The compu

tational complexity of the algorithm is high. Therefore, digital signatures

based on RSA are slow. In an e-office a reviewer may have to sign many

documents per day. This may lead to performance degradation of an e-office

system. In our scheme, we have a novel idea of using the signed session keys

for the digital signatures of the reviewers on a MPMSD. Actually this idea

makes our protocols efficient. During a session, each reviewer has a session

key, and a signed copy of the same, signed by the reviewer and certified and

time-stamped by the arbiter, is available to only the reviewer and the arbiter.

Now since the session key is known only to the reviewer and the arbiter and

the arbiter is trusted and will not cheat as per our assumption, any mes

sage encrypted with this session key during the session can be treated as the

digital signature of the reviewer on the message. In most practical imp le-

91

mentations, public-key cryptography is used to secure and distribute session

keys. Those session keys are used with symmetric algorithms to secure mes

sage traffic. Session key establishments are dynamic in nature, whereby the

key established by a fixed pair of entities vary on subsequent executions. A

key establishment protocol involves generation, transport and confirmation

of keys. Authentication of communicating entities is also typically needed in

a secure session key setup and is achieved by a signed session key. There are

many protocols for signed session key establishment. X.509 [22] recommen

dations define 'strong two-way' and 'strong three-way' protocols. Both pro

vides mutual entity authentication with optional key transport. Here 'strong'

distinguishes these from simple password based methods and two-way and

three-way refers to protocols with two and three message exchanges. In all

these protocols for key establishment with entity authentication, session keys

are either signed by the initiating entity and then encrypted with the public

key of the recipient, or the encryption of the session key is done first and then

the encrypted session key is signed before transport. Any standard signed

session key establishment protocol can be used. For the ease of discussion we

present here a protocol, in the line of the X.509 recommendation, integrating

entity authentication, key transport and key confirmation together.

Notations

Before discussing the protocol, we present the notations here. The notations

are also used in subsequent protocols almost unchanged.

w : a Document Production Workflow

AI, A2 , A3 , , An : reviewers of w

N : a neutral arbiter, which is an in-line TTP.

CA : an off-line certifying authority, which generates digital certificates of

92

entities like A and N, certifying the association of entity X with its public

key.

k~,N : shared session key between the ith reviewer A~ and N.

Sx and Px: secret key and public-key of a principal X; X may be a reviewer

A or N or CA.

{m h : message m is encrypted with the key k.

X -t Y : m : principal X sends a message m to principal Y and Y receives

it intact.

Certx = {CA,X,px,tV}SCA Certificate of X, where tv is the expiry time

of the certificate.

rl, r2, r3 etc : randomly generated nonces.

t l , t2, t3 etc. : timestamps to test the freshness of messages

The following flags are used in the protocols indicating the intended purpose

of the messages transferred in the protocol steps-

frsk : flag for session key request

issk : flag for shared session key

icsk : flag for confirmation of session key.

PROTOCOL 1 Signed Session Key

Summary:

A reviewer A~ requests N for a session key, N sends a session key ki,N to Ai

securely, confirms the key and collects a signed copy of k~,N from Ai, signed

by A~ using its secret key SA,.

Assumptions

-N also serves as session key generator and distributor.

-A and N have their own certificates. Additionally A~ has the certificate of

93

Nand N knows the certificate of At.

-A synchronizes its clock with that of N at the initial start up.

Protocol Steps

Protocol actions at each step

1. At -+ N : A requests N for a session key. The request is signed

by the secret key SA, of A. N can verify the origin of the request.

An adversary T cannot masquerade as At since SA, is known only to

A. The signed request is again encrypted with the public key of N,

PN. This encryption provides privacy, so that none other than N can

decrypt the request. Additionally, the request also contains a nonce

rl for later reference and a time-stamp tl so that N can verify the

freshness of the request to avoid replay attacks. For the same reason

time-stamps are also included in the next two steps.

2 N -+ At : N decrypts the request received in step 1, verifies the sig

nature of At and the freshness of the request. If it is satisfied it then

sends a session key kt,N along with other parameters. The nonce rl

is incorporated to convince At that kt,N is in response to the original

request in step 1. Another nonce r2, encrypted with kt,N is provided

for the confirmation of the key. The key and the parameters are signed

94

1

Figure 4.1: Protocol for Signed Session Key

95

by N using its secret key SN, and then encrypted with PA for proof of

origin and privacy.

3. At ---t N : At decrypts the message received in step 2, verifies the signa

ture of N and the freshness of the message and then collects the nonce

r2 by decrypting {r2h"N with kt,N. A sends a signed copy of the ses

sion key along with r2. N verifies the signed copy of kt,N. Incorporation

of plaintext r2 confirms that At received the correct key kt,N. N stores

a time-stamped and signed (by N) copy {N, {A, r2, kt,N, t3 h"N , TN} SN

for later reference. TN is the time-stamp given by N.

Result : Thus at the end of the protocol, At gets a session key kt,N and N

also gets a signed copy of kt,N signed by At. Unless N gets a signed copy

of k t N , it will not allow At to use k t N in successive transactions with N. , ,

Hence step 3 is mandatory for At to use kz,N, otherwise, it will be an invalid

key.

4.2.3 Production of Cases

In this section we discuss a protocol for production of a case, which is a

MPMSD. Production of a case involves case examination and production of

a part. The verification of membership of a page to a MPMSD as well as to

a context of a DPW is based on the existence of active paths in the Category

Graph and it is discussed in Chapter 3.

Notations

In addition to the notations used in PROTOCOL 1, the following notations

are used in the protocol for production of cases.

!rdpw : flag for request for a dpw

96

fdpw : flag for response for a dpw

frpage : flag for request for a page

fpage : flag for response of a page

fspart : flag for submission of a part

fnrs : flag for non-repudiation of submission of a part

pid : pageld of a page. Since timestamps are generated by the Arbiter, which

also serves as the storage manager, without any loss of generality, we can use

the timestamp associated with a page as unique pageld.

H(k, P) : a collision intractable one-way keyed hash function (261 which pro

duces a unique fixed length message digest of a page P using k as an input

key to the hashing function.

Pew : context page of w

Plog, : a log page containing the list of pending cases to be reviewed by A.

Px : a page of category x. x may be case, part

PROTOCOL 2 Case Production Protocol

Summary:

A reviewer selects a dpw . The arbiter sends the context page of the DPW

and the pending cases to the reviewer. The reviewer selects a case and the

arbiter sends the case. The reviewer composes a page of category part as her

own comment and submits it to the arbiter, who plugs it to the case as a

new part and to other relevant pages based on the values of the attributes of

the profile of the new part. The arbiter now plugs the case to the log page

of the next reviewer and also unplugs the case from the previous reviewer.

During the composition of the page the reviewer may peruse previous parts

of the case and several pages rooted to the context and cite some of them in

97

the page under composition at different points of references as a part of case

examination.

Assumptions :

- A and N have set up a signed session key ki,N using PROTOCOL 1.

Protocol Steps

10. N -+ A : {fnrs, N, Ai, rs, t lO , {pid}SN hi,N

Protocol actions at each step

1. Ai requests for a dpw w, to N. The proof of origin of the message,

freshness etc are verifiable as in PROTOCOL 1.

98

7 8

Figure 4.2: Protocol for Case Production

99

2. If Ai is an authorized reviewer of the dpw w then the context page Pew

of wand the log page ?tog, are sent by N to A.

3. Az requests N for a case Pease with pageId pid for review.

4. If there exists a path from Pease to P logi then Ai is a valid reviewer of

the case and Pease is sent by N to Ai'

5. Ai requests N for a part of a case Ppart with pageId pid for review.

6. If there exists a path from P part to ?tog, then Ai is a valid reviewer of

the case and P part is sent by N to A z.

7. A requests N for a reference page Pre! with pageId pid for perusal

during case examination. Pre! belongs to the context Pew obtained in

step 2.

8. If there exists a path from Pre! to Pew then Pre! is sent by N to Ai'

Steps 7 and 8 may be repeated for many times.

9. Az produces the new part P part as comments on the case. Ai may mark

Pre! as a citation in P part ' Ai generates her signature H(ki,N, P part)

after completion of composition, and marks Ai+l as the next reviewer.

If the next reviewer is not explicitly given then the default next reviewer

is automatically selected. Finally, Ai submits the new signed page to N

as a part to be plugged to the case Pease, whose pageId pid is obtained

in step 3.

10. N --t A z.: N records the time of receipt, t r . If there exists a path from

Pease, whose pageId is pid, to ?tog, and it is not unplugged and Pease

is in active state then Az is the current reviewer of the case. It then

verifies the signature of Ai on P part by recomputing H(ki,N, P part) and

100

then comparing with the value received from At in step 9. If the sig

nature matches then P part is registered with pageId pzd = t r . N plugs

P part to Pease· All citations marked in P part are also plugged by N with

tr as the time of plugging.

Issues of part integrity and the reuse of parts does not arise since the

parts are added to the case by the arbiter. Moreover the flow is con

trolled by the arbiter, hence the access right issue is also automatically

addressed. N generates the evidence of non-repudiation of submitting,

by encrypting pzd with the secret key of N, of Ppart , stores the original

copy of it and then sends a verbatim copy to At. Since N is trusted,

if a dispute arises, the original copy available with N will be accepted

as the only valid proof. The verbatim copy is available to At is for

information only.

Result: At the end of the protocol a MPMSD is produced as a case. Once it

is closed by the last reviewer, it becomes a precedent, goes into in reference

state and is automatically plugged by N to Pew.

In this protocol we have not attempted to provide mandatory proof of

receipt, as we do not think it is so important in our problem. Of course, if

required then mandatory proof of receipt can be ensured by redesigning the

protocol in the line of the fair non-repudiation protocol discussed in [44].

In the protocol, N has multiple roles of a trusted third party, an arbiter

in case of disputes, the co-ordinator of the flow of documents and the storage

agent of the signed documents. This centralization has enabled us to use

shared secret keys and this has brought in efficiency. Session keys will have

to be changed periodically to prevent security attacks. However, At presents

a signed (using a public key based scheme) version of the session key being

used to N who stores it with a time-stamp. If At's secret key of the public-

101

key scheme is later compromised, At cannot repudiate the signature on the

session key as N will certify that it was signed before the time of compromise.

In case of a dispute, N will produce all the messages received from Ai using

the shared session key and since N is trusted, this evidence will be the basis

of resolving the dispute. It is easy to see that all the security requirements

enumerated in section 1.8.2 and 1.8.3 are met. For the sake of brevity we do

not examine these requirements separately.

4.3 Discussion

In this chapter a security framework has been presented to study the security

of the DPW problem. A protocol for secure production of MPMSDs using

a central arbiter is also presented. This protocol addresses all the security

issues particular to the production of MPMSDs. Although, a formal proof is

not provided, it should be clear from the above discussion that no protocol

can be designed without a central TTP component to address the security

issues of production of MPMSDs.

102

Chapter 5

Production of Context Pages

Production of cases is discussed in Chapter 4. A case is a MPMSD, pro

duced in the context of a set of relevant documents, where each document

is again a MPMSD. The documents relevant to all the cases of a DPW, in

general, constitute the DPW context for that DPW. A case may have a set of

documents relevant specifically to itself. This set of specific documents and

the DPW context of the corresponding DPW constitute the Case Context of

the case. In this Chapter, production of both DPW Context as well as Case

Context are discussed. Moreover, production of a state of the context, or of

a part there of, based on a given time is a major issue in DPW.

5.1 Production of DPW Context

We recall that a DPW context is a collection of pages of category docu

ment, relevant to a DPW. Therefore, a page of category context has links

to a set of pages of category document. A DPW has only one context page.

Now, the issue is how to define the relevance of pages to a DPW. In con

ventional information retrieval systems, relevance is normally defined by a

103

set of keywords. There exists models, like Vector Space Model [11, 16], La

tent Semantic Indexing [11] etc., for retrieval of relevant documents based on

keywords. Keywords alone do not adequately describe an office document.

Key words are only a part of the profile of an office document. Other parts

are, record attributes, as discussed in the storage framework in Chapter 2,

section 2.2.2. These record attributes are represented in the Page Cube as

dimensions. Therefore, keyword based definitions of relevance in DPW in an

office are not adequate. The relevance of pages to a DPW can be defined by

the designer of a DPW using a set of requirement templates.

Definition 5.1 A requirement template is a predicate defined by a set of

attribute-value pairs. The attributes are dimensional attributes of the page

cube. The attribute-value pairs are in conjunctive form, whereas, the list

of values of an attribute are in disjunctive form. A range of values is an

alternative form of expressing a list of values.

Requirement templates based on keywords can also be easily designed. Since

well developed models on keyword-based document retrievals are available,

we will exclude it from our discussion. But these models can easily co-exist

with our Page Cube model.

The basis of construction of the context page of a DPW is a set of require

ment templates. Using this set of requirement templates, a query is framed

and the result set of the query is the context page of the DPW. For example,

a template

Tl = {category="document", class="rule", topic="sl, s2, s3 ", time="t1-

t2"}

signifies that documents containing rules on topics sl or on s2 or on s3, pro

duced during the time period t1 to t2 are relevant to the DPW concerned.

Sometime, a single document, relevant to the DPW, may have to be included

104

in the context of the DPW. For such a single document, the corresponding

template consists of only pageld, pagel d = pid, where pid is the pageld of

the page.

5.1.1 An Algorithm for DPW Context Maintenance

The context of a DPW can be obtained by searching the entire Page Cube for

pages maching the given requirement templates. But this will be expensive

to do for every document that is to be created. Therefore, in this section an

algorithm for maintaining the DPW context based on a set of requirement

templates is d,iscussed. The dynamic nature of the context associated with

a DPW is due to the following facts. When a new template is added to

the template list by a reviewer during case examination, the set of pages of

category document, satisfying the template are to be automatically plugged

to the context, if it is not already plugged. It is to be mentioned here, that

for the pages of category part corresponding pages of category document

need to be plugged only. When an existing template for a DPW is removed

from the set of templates, corresponding pages plugged to the context are to

be unplugged. Since the result-sets of templates are not necessarily disjoint,

some pages may belong to the result-sets of templates other than the template

to be removed. Such common pages are not to be unplugged. We recall,

that unplugging does not necessarily mean deletion of the edges from the

Category Graph. It simply means changes to the temporal label of the edges.

The history of plugging and unplugging is the basis of creation of the case

context of a precedent as discussed in the next section. When a new page

of category document is registered in the Page Cube, if it satisfies any of

the templates of a DPW, it is to be plugged to the context of the DPW

automatically. Moreover, when a page is burned, if the page is of category

105

document then if it ,satisfies any of the templates of a DPW then it is to be

unplugged. Lastly, when an existing template is modified, then consequent

changes are to be done to the context.

Let Tw ={'T;I~ is a requirement template for dpw="w"} be a set of

requirement templates for a DPW w, Ii,. be the result-set (of pages) of a query

formed by using Tz, and P be a Page Cube. The result-sets of the templates

in Tw ~re not necessarily disjoint. A result-set may contain many pages and

at the same time a page may belong to many result-sets of templates of

Tw. To take care of the relaton between pages and templates for each DPW

a separate Page Table can be maintained, where rows represent pages and

the columns represent templates. If a page Pi belongs to the result set of a

template TJ of Tw then the (i, j? element of the page table will be equal

to 1, 0 otherwise. The page table will normally be a sparse binary matrix.

Therefore, we can choose an alternative representation of the page table,

called Page List, which is a row-wise representation of the page table. With

each page a list of corresponding templates in the row with only non-zero

entries will be stored. For a DPW w, the structure of the page list is

PageListw(Page, T List)

For example, if a page P belongs to the result sets of templates TI , T5, T7 then

the tuple in the PageListw will be (p,TListp), where TListp = {Tl,T5,T7}'

With this an algorithm to maintain a DPW context is designed as follows:

ALGORITHM DpwContextMain(7i or p, P, w, Tw, PageListw)

Algorithm to maintain a DPW Context using requirement templates

INPUT:

Ti : a requirement template which is for either inclusion or exclusion from

Tw

p : a page which is either newly registered or burned

106

P : a page cube

Tw : a set of requirement templates for a DPW w

PageListw : list representation of page table for a DPW w, as described

above

OUTPUT:

status: a flag, on successful completion the algorithm returns status = 1, 0

otherwise

ASSUMPTIONS:

status = 0 initially

NOTATIONS:

include(x, X) : a function which includes x in the set X as a new member

exclude(x, X) : a function which excludes x from X

R,. : result-set of a query

(Jr, P : select pages from P satisfying the condition formed by template Tt

Pt X Pl : page Pt plugs page Pl

Pt -7- Pl : page Pt unplugs page Pl

Pew : DPW Context page for the DPW w

Tt (p) : check whether page P satisfies a condition formed by template Tt

element. attribute = value: the structure is a short form of writing the value

of the attribute of an element

BEGIN

begin case

step 1: case 1: a new template T" is submitted for inclusion in Tw

step 1.1: Tw t- include(Tt, Tw)

step 1.2: R,. t- (Jr, P

step 1.3: for every pER,.

step 1.4: if:3 a tuple t E PageListw, where t.page = P then

107

step 1.5:

step 1.6:

step 1.7:

step 1.8:

else

endif

end for

T Listp f- include(Ti, T Listp)

/ / update the template list of existing page

T Listp f- Ti / /new entry in PageListw

PageListw f- include((p, TListp), PageListw)

PCw x P / /plug the page to the context page

step 2: case 2: an existing template Ii is submitted for exclusion from Tw

step 2.1: Tw ~ exclude(Tt, Tw)

step 2.2: ~ ~ (Jr,P

step 2.3: for every p E ~

step 2.4: select (p, T Listp) from PageListw

step 2.5:

step 2.6:

step 2.7:

step 2.8:

T Listp ~ exclude(Ti' T Listp)

if T Listp = null then

endif

end for

PageListw f- exclude((p, TListp), PageListw)

Pcw -;- P / /unplug the page from the context page

step 3: case 3: a new page p of category="document" is registered

step 3.1: if :31i E Tw and Ti(p)="true" then

step 3.2: PageListw f- include((p, T Listp), PageListw)

step 3.3: PCw x P / /plug the page to the context page

endif

step 4: case 4: a document p of category=" document" is burned from P

step 4.1: if 3Ti E Tw and Tt(p) ="true" then

step 4.2: PageListw ~ exclude((p, TListp)) PageListw)

108

step 4.2: Pew -;- P / /unplug the page from the context page

endif

step 5: case 5: a template 1i is modified to T:
step 5.1: do step 2 to exclude Ti from Tw

step 5.4: do step 1 to include T: to Tw

step 6: return(l)

end case

END

This algorithm maintains the DPW context of a DPW w. All the five

cases, where the context may change, are taken care of in the algorithm.

In case 1, when a new template is added to the template list if the page P

is already plugged, then only the T Listp of P is modified by including the

template (step 1.5) otherwise a new page entry is made in the PageListw

(step 1.7), and the page is plugged to the context page (step 1.8). In case

2, when a template is excluded from the template list, the result-set of the

template is regenerated and for every page belonging to the result-set the

template is excluded from the corresponding T List. After exclusion, if the

T List of the corresponding page is not empty, it means that the page is also

common to the result-sets of other templates in the list. Hence, the page

is not unplugged. If the T List is empty then the page is not common to

any other template and hence its entry in the PageList is deleted and it is

unplugged from the context page. Case 3 and 4 are logically simple and

straight forward. But the efficiency depends on how to find out whether

the page satisfies any template of a DPW, and this depends on the data

structures that are used. Similar situations are handled in Active Databases

using rules [11]. Modification of a template is a two step process: exclusion

of a template and inclusion of a new template.

109

From the perspective of security, we can put the following restriction

on operations on a context. A reviewer cannot unplug any page from the

context page of a DPW but can plug new pages by incorporating suitable

requirement templates in the template set. Only the designer of the DPW,

who may be a higher authority in an office, not necessarily a reviewer of the

DPW, can exclude or modify an existing template from the template list of

a DPW.

5.1.2 Retrieval of a DPW context

Once a DPW context is maintained using the algorithm DpwContextM ainO

discussed in the previous section, the question arises as to how to retrieve

the current state or the state at a particular time of a DPW Context. A

GetDpwContextO algorithm can be designed, similar to the GetDocumentO

algorithm discussed in Chapter 3. A DPW context will haye only docPart

kind of edges.

ALGORITHM GetDpwContext(w, t)

Algorithm to retrieve the state of the DPW context page Pw, for the DPW

w, at time t

INPUT:

w : dpwJd of a DPW

t : time which defines the state of Pw

OUTPUT:

p~ : state of the page Pw at time t

ASSUMPTIONS:

A DPW has only one DPW Context page

NOTATIONS:

P : a page cube

110

null : a constant with value 0

now : a timestamp, which signifies the present time

element. attribute = value: the structure is a short form of writing the value

of the attribute of an element

BEGIN

step 1: Pw t- acategoTY=" context" Adpw="w" (P)) / / selects the DPW context page

step 2: From Pw, form a set of forward edges of kind conDoc

L~ = {esles.source = pid and eS.kind = conDoc

and eS.dir = + and eS.t+ <= t and (es.L > t or eS.L = null) }

step 2.2: if L~ =1= null then

sort edges in L~ in ascending order of eS.t+

end if

step 3: return(p~)

END

The algorithm GetDpwContextO returns the DPW context page Pw, with

a set of of edges to the pages of category document that were plugged but

not unplugged from the context page Pw before time t. Unlike GetPartO or

GetDocumentO algorithms, discussed in Chapter 4, there is no attemp to

concatenate the contents of all documents defining the state of Pw at time

t. It can be done logically, but normally, in practice, a such concatenated

DPW context page is likely to be huge. Therefore, we assume that on se

lection of an edge from p~ thus returned, the implementation software will

supply the pageId of the target document of the edge selected and t to the

GetDocumentO algorithm and thus the document can be retrieved.

111

5.2 Production of Case Context

We recall from the definition of Case Context (Chapter 2, definition 2.8), that

the context of a case is the set of documents specific to the case, plugged at

different times by different reviewers of the case under a DPW and also the

DPW context page for the DPW. Since a case is a MPMSD, for every part

of a case, the state of the context may be different. In the present section we

discuss the retrieval of a state of the Case Context for a case at a particular

time. Normally, at the time of creation of a particular part of the case, a

case context is automatically produced by the arbiter and it is registered as

a separate page with a pageId. Initially the case context is plugged to the

DPW context of the DPW of the case with conCan kind of edges. The case

context, in turn, is plugged to the corresponding case. Every case will have

one and only one case context page, and every case context will have one

and only one case. At the beginning of the review process of a case under

a DPW, the case context will contain only one edge to the DPW context.

As soon as a reviewer finds a relevant document specific to the case under

examination, he/she will plug the document to the case context. Thus a case

context page will have one forward edge of kind conCon to the DPW context

page and zero or more forward edges of kind conDoc to relevant documents.

The algorithm to find the state of a case context, at a particular time, say

GetCaseContextO, is similar to the GetDpwContextO, discussed in the pre

vious section. The only difference is that, it will call the GetDpwContextO

algorithm once inside GetCaseContextO to get the set of relevant documents

available in the DPW Context at time t and then find the set of documents

available in the Case Context at time t. Union of these two sets of docu

ments defines the state of the context of a case at time t. Therefore the

GetCaseContextO algorithm is not given explicitly.

112

5.3 Discussion

In this Chapter maintenance and productions of both DPW Context as well

as Case Context have been discussed. The algorithms for production of these

two types of contexts have been presented. In Chapter 3, we mentioned that

the category graph is a mandatory dimension graph for the DPW problem.

Without the category graphs it is not possible to handle the issues relating

to DPW contexts and Case Contexts. Thus the Page Cube model and the

algorithms discussed in this Chapter together provide solution of organiza

tional memory hitherto not addressed in office information systems. Here,

the page generated to represent a state of an actual page, stored in a page

cube, at a particular time is not a persistent page. Such a page is generated

on the fly during case examination and hence it need not be registered in the

Page Cube.

113

Chapter 6

Authorization

Authorization is an important security aspect of a DPW. All subjects of an

office are not authorized to access all objects. In a DPW the subjects are

the users of the office system and the objects are mainly the pages belonging

to a page cube. Authorization in a DPW environment is dynamic in nature.

Along with the document flow, authorization also flows synchronously. The

existing authorization models for general workflow are briefly reviewed in

this context and found that they are not sufficient to address the issues of

authorization in case of a DPW. In an office environment, who accessed

which object, at what time, is also an important aspect for office security.

Therefore, an authorization audit trail is also equally important. In this

chapter, an authorization policy and an authorization model suitable for a

DPW are discussed.

6.1 The Authorization Policy

Before discussing the authorization model, we discuss here an authorization

policy which comprises of the following elements:

114

1. Authorization Administration: A centralized policy for authorization

administration is adopted. Since an in-line TTP called an arbiter is

mandatory for secure production of MPMSDs, therefore the arbiter is

also made the central authority for authorization administration. Only

the arbiter can grant or revoke authorization to or from a subject for

an object.

2. Access Protocol: A subject other than the arbiter cannot access the

objects directly. The subject, submits an access request for an object

to the arbiter. The arbiter finds out whether an authorization can be

granted by consulting the set of authorization rules. If the request is as

per rules then the arbiter grants an authorization, otherwise it denies

the access. If an authorization is granted then the arbiter performs the

access requested on the object on behalf of the subject and the result

is communicated to the subject in response to the request.

3. Authorization Flow: The authorization in document production work

flow is dynamic in nature. When a case flows from reviewer to reviewer,

authorization on the case also flows from reviewer to reviewer synchro

nized with the document flow. Authorization on an object is granted

and revoked based on the occurrence of a pair of conjugate events. For

example, authorization of a reviewer on a MPMSD for reading previ

ous parts and adding comments to the case is granted as soon as the

document is received by the reviewer and the authorization is revoked

as soon as the the case is sent to the next reviewer.

4. Object Privacy Policy: Information stored in the objects are always

encrypted with an internal encryption key and the encryption key is

known only to the arbiter. This is to enhance privacy to mitigate the

115

threat even from the system administrator of the host system.

6.2 General Authorization Models

The most general authorization model is probably the Discretionary Access

Control (DAC) using access control matrix model, introduced by Lampson,

and afterward developed by Graham and Denning and Harrison, Ruzzo and

Ulman[32]. The model is used as a security model in operating systems and

in database environments. The model represents the authorization as a ma

trix. Let A be the authorization matrix. The matrix rows correspond to the

subjects and the columns to the objects. Entry A[s,o] contains the access

modes for which subject s is authorized on object o. Since the matrix is

usually quite sparse, typical implementations adopt one of the three repre

sentations: Access Control List(ACL), Capability List(CL) and Authorization

Table(AT).

The ACL approach represents the corresponding access matrix by column.

To each object 0, a list of pairs (s, A[s, 0]) is associated indicating the subjects

and their access modes on the object o. Therefore, o~ly non-null matrix

entries are considered. In this approach all subjects granted access on an

object can be easily found; however, it is inefficient to look for all the objects

a subject can access. The CL approach represents the corresponding access

matrix A by row. To each subject s, a list of pairs (0, A[s, 0]) is associated

for each object 0 such that A[s, 0] is not null. Therefore, if a subject holds no

rights on an object, this object does not appear in the list. In this approach,

given a subject, all the objects, the subject is authorized to access can be

easily found; however, it is inefficient to find out the set of subjects granted

access on a given object. The paradigm of authorization in ACL as well as in

116

CL approaches is distributing the authorizations either object wise or subject

wise. In ACL-based operating systems and databases, in general today, the

owner of an object can grant or revoke or modify access rights. Similar is

the case with CL-based systems. Moreover, the presence of a superuser or

system admmzstrator, whose power is unlimited, can be a major threat of

security breach in office document systems.

The AT approach represents the access matrix by a central table of tuples

(s, 0, A[s, 0]). This approach has also advantages and disadvantages. The AT

is suitable for centralized authorization administration, where the authoriza

tion granting and revoking is done by a central authority. Finding a set of

authorized objects for a given subject and a set of subjects authorized to

access a given object is easier by simply querying the table. The document

production in a DPW is done under a central authority, called the arbiter.

In the document production workflow environment, where the authorization

is dynamic and propitiatory in nature, the authorizations for a reviewer are

granted for a fixed time period only and the authorization propagates to the

next reviewer, the authorization table representation is easier to manipulate.

The main disadvantage of the AT approach is related to the size of the table.

The table may contain many tuples of inactive subjects/objects making the

table size large.

Role-Based Access Control(RBAC) appears to be unavoidable in all group

ware solutions in office environments. A user is allowed to access an object

on the basis of the role(s) that the user plays at the time of access. If the re

sponsibility of a user s changes due to transfer to another department of the

office or due to promotion etc. current role of s can be reassigned to his/her

replacement, and new roles can be assigned to s as required by the new re

sponsibilities. It is not necessary to go through the ACLs of all the objects

117

one by one to remove entries pertaining to s in his/her previous capacity and

add entri~s pertaining to the new capacity. Roles greatly simplifies, the task

of security management. Moreover, this enables a user to play multiple roles

with different responsibilities, which is common in an office. RBAC also has

a disadvantage in DPW. For example, If a document is sent to a reviewer

and the authorization is granted to the role of the reviewer, then any other

employee belonging to the same role can at least read the document, which

may be a serious breach of security.

6.3 The Workflow Authorization Models

Synchronization of authorization flow with the workflow is a fundamental

security requirement in workflow environments [4]. Other essential require

ments include role based security policy and separation of duties [9]. Sep

aration of duties are imposed to reduce the risk of frauds by not allowing

any individual to have sufficient authority within the system to perpetrate a

fraud on his own. WFMSs like Lotus Notes provide role-based access control

but do not have a formal model to synchronize authorization flow with the

workflow. Recently Atluri and Huang [4, 5] proposed a Workflow Authoriza

tion Model(WAM) that provides synchronization of authorization flow with

workflow, role-based authorization and separation of duty. The WAM model

properly addresses the issue of authorization flow when there are temporal

constraints in the definition of tasks of the workflow. This means that there

is a fixed time of starting and completing a particular task and these are

defined a priori in the workflow template itself. The genesis of the model

is in automatic time-bound execution of tasks and the corresponding autho

rization flow. Our problem is slightly different. We cannot set a priori the

118

time period for a review process. We need event-based authorization flow.

Apart from temporal constraints, a DPW has other types of constraints as

discussed in section 6.l.

6.4 The Authorization Model for DPWs

In this section we propose a DPW Authorization Model (DPWAM). Autho

rizations in DPW are event-based and dynamic in nature. By dynamic we

mean that authorizations are granted to a subject, acting as a reviewer, on

some objects based on occurrence of an event and the authorizations are to

be revoked automaticaLly on occurrence of the other conjugate event. That

is, the subject will have authorizations for certain privileges only during the

time period between the occurrences of the conjugate events. The conjugate

events may vary from object type to object type. For example, a reviewer

of an active MPMSD under review, will have the authorization for the privi

lege to read the previous parts and to comment on the document as soon as

she receives the document. The authorizations will be revoked as soon she

sends the document to the next reviewer. That means the reviewer will not

be allowed to read or comment on the document after forwarding it to the

next reviewer. Here receive and send are the conjugate events. In case of

paper document, since the document itself is moved physically from the cur

rent reviewer to the next reviewer, therefore the revocation of authorizations

is automatically accomplished. In a more complex situation, the revocation

may be partial. Even after forwarding the document, the ith reviewer may be

allowed to read the document, but only up to the ith part of the document.

In a DPW, request and response for a page may also be conjugate events.

The page cube model can be extended in the following way to incorporate

119

event-based dynamic authorization model for a DPW. An office worker may

play one or more roles in a an office. Some roles may be grouped together

to form a larger role. This forms a role hierarchy. Therefore, role may be a

new dimension of the page cube. To take care of the disadvantage of gen

eral RBAC model for a DPW, discussed in section 6.2 we may assume that

the leaf nodes of the role hierarchy are atomic and the internal nodes are

non-atomic and consists of either atomic or non-atomic children roles. By

atomic, we mean that only one user can be assigned to an atomic role. Nor

mally in a DPW, atomic roles are assigned as reviewers. In an office, atomic

roles can be specified from a non-atomic role. For example in a Univer

sity there are three Assistant Registrar. AssistantRegistrar is a non-atomic

role, which consisists of three atomic roles : Assistant Registrar (Finance),

Assistant Registrar (Academic), Assistant Registrar (Administration).

So far, we discussed only intra-dimensional graphs in our Page Cube

model. Apart from the intra-dimensional graphs, limited within a dimension,

like the category graph, a Page Cube may have Inter-Dimensional Graphs

(IDG).

The DPWAM comprises of five components: User-Role Graph(URG), Role

DPW Graph (RDG), Rule-Base(RB), Authorization-Base(AB) and Autho

rization Audit Trail(AAT).

6.4.1 User-Role Graph

A user may be assigned to many roles and a role may be played by many

users, if the role is non-atomic. Therefore, it is a many to many relation.

An user may be assigned to a particular role at a particular time and the

assignment may be revoked at some other time. The history of user role

assignment may be captured as an IDG.

120

Definition 6.1 A User-Role Graph is a bipartite graph where user and role

are the two types of nodes. An assignment is represented by an edge which

connects a user node with a role node and the edge is labelled as (t+, L),

where t+ is the time of plugging (assigning) and L is the time of unplug

ging(revocation of assignment). A user remains active in a role till it is

unplugged.

In an office not only the active assignment of users to roles, but also the

record of history of assignments is equally important for security auditing

and dispute resolution. Using a page cube, this is easily accomplished

6.4.2 Role-DPW Graph

A role may have access privileges to many DPW's and a DPW may have

many roles as reviewers. Due to obvious reasons, definition of authorization

rules based on role rather than on users is easier. A role may be assigned to a

particular DPW at a particular time and the assignment may be revoked at

some other time. The history of role-DPW assignment may also be captured

as an IDG, called Role-DPW Graph.

Definition 6.2 A Role-DPW Graph is a bipartite graph where role and

DPW are the two types of nodes. An assignment is represented by an edge

which connects a role node with a DPW node and the edge is labelled as

(p, t+, L), where p is the position of the role as a reviewer in the DPW, t+ is

the time of plugging and L is the time of unplugging. A role remains active

as a reviewer of a DPW till it is unplugged.

Within a DPW, the same role may appear as reviewer more than once but at

different positions. A connected pair of nodes in both URG and RDG may

have parallel edges with different labels.

121

6.4.3 Rule-Base

Authorization constraints for a DPW can be represented as a rule. A rule

can be defined in Event-Condition-Action (ECA) paradigm. The structure

of a Rule-Base is

Rule-Base(ruleld, event, conditions, actions, privileges, t+, L)

ruleld is the unique identifier of a rule. Event may be one of the pair of

conjugate events: request, response. The conditions may be of two types: .
conditions on the subjects and the conditions on the objects. The conditions

on the subject may be defined by the predicates on user, user-role graph,

role-DPW graph etc. Whereas, conditions on objects may be defined by

page profiles, dimension hierarchies, dimensional graphs etc. For example,

path existential conditions used in the protocol for production of cases dis

cussed in Chapter 4 is an object condition. The conditions may have a partial

order. Subject conditions followed by object conditions. Within a subject

condition, the partial order may be user> user-role> role-dpw. Similar is

the case in object conditions. The actions are basically two: grant and re

voke authorizations. The privileges may be read, write, plug, unplug, close,

reopen, archive, dearchive and burn. t+ signifies the time of inclusion of a

rule in the Rule-Base and L signifies the time of exclusion of a rule from the

Rule-Base.

On occurrence of an event, a rule is triggered. If the conditions are

true, actions are taken: either to grant an authorization for certain privileges

or revoke an authorization. An active rule-based authorization constraint

modelling for general workflow is available in [12, 13].

122

6.4.4 Authorization-Base

Authorization-Base is a collection of authorizations granted and revoked dur

ing production of pages in different DPWs in an office. An authorization is

a tuple as defined in Chapter 4, (4.5). Here subject attribute is replaced by

three attributes: (user, role, dpw). The modified authorization tuple is

(user, role, dpw, object, privileges, t+, L)

6.4.5 Authorization Audit Thails

In the DPWAM model, the size of AB grows fast. The growth of AB will

have an effect on performance. Moreover, to keep AB small, we cannot simply

delete the authorization tuples from AB as soon as it is revoked. Because,

in an office audit trail of access of objects may be an important function.

For example, who accessed a particular page, during a particular time can

be found out from AAT. The access records are also persistent in nature.

Therefore, the records are to be stored securely. One simple way is to move

the revoked authorization tuples from AB to a Revoked Authorization-Base

(RAB) of similar structure. The RAB will be maintained in reference storage

and this will be accessed very rarely, only during audit. Hence its growth will

have negligible effect on overall performance. Moreover, it can be archived.

RAB will serve for audit trails for document access history in an office.

6.5 Discussion

In this Chapter authorization for DPW problem is discussed. The autho

rizations are dynamic in nature and moreover history of authorization is also

123

a security requirement of an e-office. Therefore, issues of authorization for

DPW are addressed with the help of an authorization model proposed here.

DPWAM is an extension of Page Cube model. The authorization manage

ment is a central one controlled by the arbiter. Since the arbiter is necessary

for other aspects of security, as discussed in Chapter 4, therefore, authoriza

tion management is a natural extension of the responsibility of the arbiter.

124

Chapter 7

Implementation

In the present chapter, an outline of the implementation of DPW architecture

using the state-of-the art technology is discussed. Only the outline of an

implementation is given here. No implementation has been done as a part of

the present work. Implementation of the system has not been done, because

of the following reasons:

• The system is complex. Even a prototype implementation will take

many man hours.

• Our focus is more on academic interests, mainly identification of issues

and logical solutions. Implementation is beyond our focus.

• An office automation software consists not only of DPW, it also con

sists of legacy software for financial accounting, database, e-mail, con

ferencing etc. Therefore, the DPW software is to be integrated as a

component with other commercial office automation software, like Lo

tus Notes. A DPW software itself cannot survive as an alternative to

Lotus Notes. The integration can only be done as a joint venture with

the authority of the software.

125

• Tools like workflow, XML etc. required for DPW were in a primitive

stage when the work was started. Vendors like Oracle, only recently

incorporated workflow and XML in their new products. But the tech

nology as a whole is still in a flux, and is yet to settle down as accepted

standards. In such a situation, an implementation may not be long

lasting.

• The security algorithms and protocols are proprietary in nature. There

are restrictions in using them.

• Acceptability and performance of such a system is meaningful when we

get feedback from real life offices using such a system, which again is

not possible with the present setup of ours.

In fact a part of DPW architecture was implemented in a project in lIT,

Guwahati, based on our papers [36, 37]. Here the security and context part

was not fully implemented. The prototype implementation is working fine

and the performance is reported as satisfactory [33].

7.1 An Outline of an Implementation

Java introduces a new model of client/server interaction for the Web. A

small component like program called applet can be written in Java and can

be downloaded into a browser that is Java compatible. An applet is portable,

can be executable inside a java-enabled browser on any computing platform.

Java applet provides, on its own, a secure environment within a browser.

Web and Java provides a solution for distributed computing but the solution

is not complete, particularly in workflow automation environment. HTTP is

a stateless protocol and the interaction is initiated by the client (client pull).

126

The problem lies in the basic dichotomy between the Web paradigm and the

workflow paradigm. The Web is composed of a collection of non-persistent

state objects, whereas workflow, in particular office document production

workflow, requires a degree of persistence of state among its objects to en

able the completion of the assigned task. Moreover, Workflow very often

needs server initiated interaction (server push). Of course, Netscape and Mi

crosoft have announced support for push technology for scheduled broadcast

communication. This needs to be enhanced for an event-based push.

The architecture for the DPW can be implemented using Web technol

ogy. The client environment may be a general Java enabled Web browser,

where the client is a Java applet. Agents of the client logic layer may be im

plemented as Java objects in the applet. The interfaces of the view module

can also be implemented in the applets. The protocols can be implemented

on the top of the HTTP protocol. Since server push mechanisms are not

yet matured, we can modify the protocols, where necessary, with client pull

only. The manager modules of the server logic can be implemented as Java

servelets. Of course, server push can be simulated using the Java RMI mech

anism. In DPW, server push is required in a scenario like, a reviewer is online

and a case is received by the arbiter for the reviewer, the arbiter updates the

inlog of the reviewer in the storage and the same updated inlog is to be sent

to the online reviewer. Here the communication is initiated by the arbiter.

Alternatively, the DPW architecture can be realized in a distributed ob

ject model. We have a matured de facto as well as de jury open standard

for distributed object infrastructure, that is Common Object Request Broker

Architecture (CORBA). COREA objects can exist anywhere on a network,

and their location is completely transparent. Details such as the language

in which an object is written or the operating system on which it currently

127

runs are also hidden to clients. The implementation of an object is of no

concern to an invoking object; the interface is the only consideration a client

must make when selecting a serving object. CORBA provides an open en

vironment built for integration, change and evolution, and is suitable for

office automation software. The standard CORBA objects are grouped as

CORBAservices, CORBAfacilities and CORBAdomains. The CORBA ser

vices provide system-level services which may be used to design the objects

for other groups. The CORBAservices provided in CORBA 2.0 are: Con

currency, Events, Externalization, Licencing, Lifecycles, Naming, Security,

Time, Trader, Start-up, Persistence, Properties Query, Relationship, Trans

actions, Collections etc .. CORBAfacilities, which provide horizontal and ver

tical application frameworks used by business objects, include User Interface,

Information Management, System Management, Task Management etc .. The

CORBAdomains provide object solutions to some standard domains like Fi

nancial services, Health-care, Telecommunications etc. Application objects

can be designed from these standard objects though inheritance and that

is what exactly needs to be done in realizing the DPW architecture. An

other advantage of CORBA is that legacy software can be integrated in a

CORBA-based architecture using CORBA wrappers. Details are available in

[23]. CORBA 2.0 also incorporates a binary protocol for communication be

tween ORBs, called the Internet Inter-ORB Protocol(IIOP), through which

two ORBs can talk to each other. IIOP and HTTP can coexist in the same

setup.

The DPW architecture can be implementeti within the framework of

CORBA so that it can be a component of an open system and can be inte

grated easily with existing software packages. With the CORBA object bus,

ORB, in both the client as well as server side, a Java object can directly

128

talk to the server or vice-versa. The client environment is the standard web

browser. The client is a Java Applet which will run in the browser. The

agents of client logic module and corresponding interfaces are designed as

Java objects in the applet. A Java based lightweight CORBA ORB, called

Java ORBlet, is loaded in the client side. The objects of the client applet

can communicate among themselves or with remote server objects through

the interfaces and stubs of the ORB. The applet can be initially loaded using

a HTML page and HTTP protocol. The client authentication can be imple

mented by authenticating the applet during loading, using Sun Microsystem's

applet certification scheme. Initial synchronization of clock of a client with

that of the arbiter can be done by using the CORBAservice called Time. The

Crypto Agent of the client can be designed as a derived object which in

herits the Security and Timeobjects of the system level CORBAservices. The

Security service of CORBA provides authentication, confidentiality, content

integrity, non-repudiation etc. The crypto can get time attributes for times

tamping by inheriting from Time service. The User agent also inherits some

traits from Security service. The other services like Naming and Event etc.

can be automatically used by ORB.

On the server side, the managers: Production Manager, Worflow Man

ager, Storage Manager and User Managers of the architecture can be im

plemented as CORBA server applications. CORBA server applications are

regular CORBA objects. The CORBA servers are plugged to an ORB ob

ject bus. If the HTTP server is CORBA compatible then it can be directly

plugged to ORB otherwise it can be wrapped with a CORBA wrapper to

make it CORBA compatible. Similarly a standard workflow engine can be

wrapped to make it a workflow manager. Of course, CORBA incorporated

a workflow service in its recent version. In that case, the workflow manager

129

can be implemented inheriting this service. The storage manager can be

implemented by inheriting from the Persistence and Query services of COR

BAservices. The Persistence service provides a single interface for storing

objects persistently on a variety of storages- including Object Databases,

Relational Databases and simple files. PSQL can be implemented inheriting

traits from Query services.

7.2 Implementation of Page Cube

The data storage model for the DPW is Page Cube, discussed in Chapters

3,5 and 6. The Page Cube can be implemented in different ways. One of the

following approaches can be taken.

7.2.1 Relational Database Approach

The Page Cube model can be implemented using relations. It is useful to

consider these relations as part of a multi-dimensional data cube model used

in data warehousing. The relations are then regarded as dimension tables

and the hierarchical relationship can be represented by either a star schema

or the snowflake schema [28J. In the star schema, the dimension tables are

not normalized. Where as in the snowflake schema, they are normalized.

Based on the complexity of the dimensions, we can choose one of the two

alternatives. The advantage of a star schema is that it is easy to define

hierarchies and it reduces the number of joins. It is a common practice in

multi-dimensional modelling that when the dimensions are simple in nature,

such dimensions are incorporated into the central fact tables as attributes as

there is no justification of maintaining a separate dimension table [29J. The

advantage is that expensive join operations between the central fact table

130

and those dimension tables can be avoided thereby improving the efficiency.

Of course, there is no clear rule for such justification. It is a design decision.

In the schema of the page cube, some of the dimensions can be incorporated

in the central fact tables. Time, Category, Class and Status are such di

mensions which can be incorporated in the central tables without any loss of

generality. Time is a significant dimension and needs a special treatment for

it. Once time is incorporated as an attribute of the central tables then there

is no need for a separate timeId. Since, in our scheme, the central arbiter

will provide the time, a unique time can be assigned by the arbiter to a page.

Therefore, it can also be used as a unique identifier for a page, the pageId.

According to this modification, the arbiter ensures that at a particular time

one and only one page will be created. A representative simple star schema

of PC is as follows:

Dimension Tables:

Type (typeId, typeDesc, parent)

Topic(topicId, topicDesc, parent)

User (userId, userName, address,)

Domain(domainId, domainDesc, parent ...)

Role(RoleId, RoleDesc, parent ...)

Dpw (dpwId, dpwDesc,)

Other Central Tables:

Production (pageId, topicId, typeId, category, class, userId, roleId, do-

mainId, dpwId,)

131

Storage(pageld, location, size, signature, state, pageText,)

Flow(pageld, senderId, senderRoleld, sentTime, receivedTime, ReceiverId,

Receiver Roleld)

Relations to represent graphs: DGs and IDGs

Citation(citingPageld, citedPageld, plugTime, unplugTime, citeCount)

DocumentPart (documentld, partId, plugTime, unplugTime)

ContextDocument(contextld, documentld, plugTime, unplugTime)

CaseContext(caseld, contextld, plugTime, unplugTime)

PartPortio~(partld, portionld, plugTime, unplugTime, kindOfegde)

user Role(userId, Roleld, plugTime, unplugTime)

RoleDpw(Roleld, dpwld, position, plugTime, unplugTime)

The authorization base and revoked authorization base relations are dis

cussed Chapter 6 and are not incorporated here again. The Rule-Base for

authorization discussed in Chapter 6 can be implemented as active rules of

active database systems. Authorization as active rules is also discussed in

[13] and the rule structures can be taken from this work. The names of the

relations and of the attributes are chosen in such a way that they are self

explanatory. For brevity, a data dictionary for the schema is not provided. A

page may be on more than one topic, may also belong to more than one class.

Therefore, the normalized Production relation will have more than one tuple

with the same pageld. Therefore, pageld alone cannot be the primary key of

the relation. Without any loss of generality, if we consider multiple values of

topicId as well as of class as a single atom, where values are delimited some

how, then the given denormalized relations serve the purpose. The content of

a page is considered as an attribute, pageText, in the relation Storage. But

132

in practical implementation each page can be stored as a separate file, with

pageId as the file name, and only the location of the file in the file system is

stored in the location attribute.

7.2.2 XML Database Approach

The present trend for digital document encoding and interchange is to use

descriptive markup. In the light of the state-of-the art technology, XML is

the best tool for describing contents of office documents. Therefore, it can

be a suitable tool for implementing the page cube model. An XML page

cube is a collection of XML pages. The root tag of a page is < page>. The

< page> tag contains three tags < profile >, < body> and < tail >. The

< profile> describes the dimensions of the page cube, < body> describes

the content of a page. DOs and IDGs are implemented by nesting of elements

in the < body> or with external references as links. The < tail> section

contains external reverse links of different graphs. The structure of a sample

XML page is as follows:

<?xml version="1.0" ?>

<!DOCTYPE page SYSTEM "pageCube.dtd">

<page id="2001.12. 30 .13.56.45">

<profile>

<dimension>

<type id=" "> message. officeOrder. notice </type>

<topic id= II ,,> leave.casual.special </topic>

<category> document </category>

<class> case </class>

133

</dimension>

</profile>

<body>

<olinklist>

<link> first part

<kind>docPart</kind>

<target>2001.12.30.13.50.59</target>

<ptime>2001.12.30.56.46</ptime>

</link>

<link> second part

<kind>docPart</kind>

<target>2001.12.30.14.15.10</target>

<ptime>2001.12.30. 14. 15. 12</ptime>

</link>

</olinklist>

</body>

<tail>

<olinklist>

<link>

<kind>docPart</kind>

<target>2001.11.09.13.50.59</target>

<ptime>2001.12.09.56.46</ptime>

</link>

<link>

<kind>docPart</kind>

134

<target>2001.10.30.14.15.10</target>

<ptime>2001.12.12. 14. 15. 12</ptime>

</link>

</olinklist>

</tail>

</page>

The dimension hierarchies can be implemented as nesting of tags in < profile >.

Each dimension may have a separate page with a distinct page ID or all di

mension hierarchies may be defined in a single page. In the dimension page(s)

the < body > and < tail > section may be naturally null. For checking the

validity of a page belonging to the XML page cube a Document Type Def

inition(DTD) is to be designed, which specifies the grammar of elements

(tags), attributes of tags and there relationships. A representative XML

DTD, named pageCube.dtd, is as follows:

<!DOCTYPE page [

<!ELEMENT page (profile, 'body, tail»

<!ELEMENT profile (dimension»

<!ELEMENT dimension (type?, topic?, time?, category?, class?,

user?, domain?, dpw?, state?»

<!ELEMENT type (type*, name»

<!ELEMENT topic (topic*, name»

<!ELEMENT time (year, month, day, hour, minute, second, msec»

<!ELEMENT category (#PCDATA context I document I part»

<!ELEMENT class (#PCDATA rule I case I support I »

<!ELEMENT user (name, address»

135

<!ELEMENT name (#PCDATA»

<!ELEMENT address (mail, phone*, email*»

<!ELEMENT mail (#PCDATA»

<!ELEMENT phone (#PCDATA»

<!ELEMENT email (#PCDATA»

<!ELEMENT domain (domain*, name»

<!ELEMENT role (role*, name»

<!ELEMENT dpw (name»

<!ELEMENT state (#PCDATA) bornlactivelreferencelarchivedlexpired>

<!ATTLIST (type, topic, domain, dpw) id ID #REQUIRED>

<!ELEMENT body (olinklist*, linklist*, »

<!ELEMENT olinklist (link+»

<!ELEMENT oinklist (link+»

<!ELEMENT link (#PCDATA, kind, target, ptime, uptime?»

<!ELEMENT kind (#PCDATA»

<!ELEMENT target (#PCDATA»

<!ELEMENT ptime (#PCDATA»

<!ELEMENT uptime (#PCDATA»

<!ELEMENT tail (olinklistllinklist»

J>

7.3 Discussion

In the present chapter, an outline of the implementation of a DPW system

is discussed. The integrated environment of the Web, Java and CORBA

provides a secure and reliable platform to implement a DPW system. Im

plementation of each tier of the three-tier architecture has been for DPW

136

discussed in detail. The implementation of the client as a Java applet pro

vides platform independence of the process, because a Java applet can run

in any Java enabled browser. The independence is at the cost of perfor

mance. Since Java applets are interpreter based, it is slower than compiled

programs. As a part of Java security policy an applet is not allowed to write

in the local file system of the client. This may pose a problem in real life im

plementations, because local caching may be required. Of course, this can be

handled by presently available solutions to address the problem, like Jamie's

file system. So far as the implementation of the page cube is concerned,

relational model is matured and mathematically well defined. Moreover, the

relational query languages are powerful. But this approach may be possibly

inefficient, because the representation of such irregular dynamic structure in

fiat relations is complex and retrieval of information may involve many join

operations. Performance degradation and lack of openness is obvious. On

the other hand, XML approach may be more efficient but it is too early to

say, because XML tools are less available. Platform independence of data

can be provided by XML, because an XML data file is an ASCII file with

simple encoding. But XML is verbose, as a result increase in file size is a

problem. It can be addressed in XML compression techniques. The product

XMill is an example of an XML compressor. But since there is a possibility

of a part being split, the content of a page needs to be marked up somehow.

XML may provide a meaningful markup scheme for office documents. There

are different XML query languages like Xpath, XML-QL, QUilt, Xquery etc.

It is to be seen whether PSQL can be implemented on top of one of these

existing query languages. Only a guideline of implementation is given here.

During actual implementation, new issues may prop up and the guideline

itself may need to be modified if necessary.

137

Chapter 8

Locus Standi of the Work

In the present Chapter we tried to find out where does the present research

work stand, in the space populated by current academic as well as commercial

solutions for office automation. Since, office automation is an active field of

research for a long time, a number of work are available. The work related

to document production workflow only are discussed here.

8.1 OMAIL

The Office Mail System (OMAIL) [8] , developed at Indian Institute of Tech

nology, Kanpur, addresses some ofthe issues of MPMSD. The system is based

on client-server model. In this system server is trusted. By making the server

trusted, the responsibility of ensuring integrity, protection and failures can

be handled by them. Content integrity of MPMSD is ensured by the server.

The server computes a signature of the MPMSD using its secret key when

ever a document is given out to reviewers and stores this signature along with

the length of the document on which it is computed on, in a per user record.

Later on, when the reviewer, after reviewing and adding comments on the

138

original document, resubmits the document to the server to forward it to an

other reviewer, this stored signature is used to ensure content integrity of the

document by recomputing a signature on the same length of the submitted

document and comparing with the stored one. In this system, the document

flows from one reviewer to the other via the trusted server, which acts as

the arbiter. The reviewer is allowed to append his / her signed comment to

the original MPMSD passed to him / her. This implies he/she is allowed to

edit the document. But any modification to a previous parts, even by the

creator of the parts, are detected by the server when the document is resub

mitted to the server by comparing signatures as mentioned above. Similarly,

order of parts and dropping of any part can obviously been detected. But

the issue of reuse of parts in not addressed in this system. The loophole,

in the system lies in allowing the reviewer to add comments directly to the

original document and resubmitting it to the server. Moreover, with every

review of the document, generation and verification of the signatures on the

entire document up to the point of review, overloads the server and thereby

slows down the performance. This can be avoided as shown in our schemes.

Moreover, the context component is altogether absent in the discussion.

8.2 POLITeam

The decision of the German parliament to move the capital from Bonn to

Berlin, increased the demand for a computer and telecommunication based

support of ministerial process within aI?-d between dislocated government de

partments. In this context, four projects have been launched by the German

research ministry in the framework of POLIKOM. One of the four projects is

the POLITeam. The objective of the POLITeam project is the development

139

of an adequate electronic support for workflows and the coordinated docu

ment and task processing in a ministry. A scenario of preparing a speech for

a minister is presented in [27]. The request for a speech from a minister is

issued by the minister's office to the manager of the department responsible

for the speech topic. The request along with the background information

are send to the manager in a circulation folder. The managers at the depart

mental, sub-departmental level acknowledge the receipt of the folder and

additionally provides comments or advises. Then it goes to the unit level

where the speech is prepared in a cooperative process between different peo

ple of the same unit or of different units. After creation of the draft version,

it is sequentially processed by the managers of the unit, sub-department and

department. Each manager reviews the speech and additionally annotates

the document with her own comments. During the process we get the multi

ple versions of the document. Only the final version will be presented to the

minister. Since the result of a ministerial procedure will have long lasting

political consequences, the reconstruction of the document history and the

authentication of the reviewer of the concerned version are the fundamental

requirements of the system. We observe that the multi-version workflow doc

ument in this speech preparation process is a specific case of our more general

MPMSD framework, where each part is a version of the speech. However, the

security issues are not properly spelled out and addressed in the POLITeam

solutions [27] as done in the present work.

8.3 Lotus Notes

Lotus Notes/Domino suite is a popular and commercially successful group

ware product. The workflow component of the suite is basically the document

140

production workflow. The production of MPMSD can be implemented in this

software by designing a form with multiple sections. Each section of the form

contains a comment of a reviewer. But the workflow is rigid in nature. It does

not support flexibility in rerouting a document under review. That means,

the channel of the review is determined a prori and a form with multiple sec

tions is designed accordingly. A reviewer cannot reroute a particular case of

a workflow during review unless the form is modified first in this effect. But

flexible routing is a common phenomena in document production workflow in

an office. For example, in the scenario discussed in Chapter 1, if the Directer

feels that before taking a final decision of the travel plan, the comment of

the registrar on the matter may be better to be taken for a particular case.

Therefore, the registrar may be included as a reviewer in a certain DPW, but

for some special cases only and not for all cases. Moreover, the Director may

sent back the case to previous reviewer, that means to the finance officer, for

further comment. Therefore, a priori fixed form-based solution may be suit

able for routine industrial production workflow but it becomes a bottleneck

to implement a flexible and dynamic document production workflow in an

office. Our solution is naturally flexible. The context component is also not

incorporated in Lotus Notes till date.

Lotus Notes implemented RSA crypto method for document security and

for transport security it adopted standard web security like Secured Socket

Layer(SSL). The protocols based on signed session key, discussed in Chap

ter 4 are more efficient than, the Lotus Notes protocols, because public-key

schemes, like RSA, are much slower than simple symmetric key schemes.

Moreover, security model of Lotus Notes has multi-level access control. The

access levels are server, database, document, section and field levels. Conven

tional ACLs are attached to the objects at each level. Therefore, dynamic

141

authorization is not directly implemented. Currently these authorization

constraints have to be implemented as ad hoc application code [5].

8.4 Signcryption

To enhance confidentiality, the current standard approach is to sign a mes

sage and then to encrypt it with a randomly chosen encryption key. The

encryption key would then be encrypted using a recipient's public key. This

two step approach is called signature-then-encryption [42] and is popularly

known as a digital envelope. The best example for this is Privacy Enhanced

Mail (PEM), a standard for secure e-mail on the Internet. Signature genera

tion and encryption consumes machine cycles, and also introduce 'expanded'

bits to an original message. Hence the cost of a cryptographic operation

on a message is typically measured in the message expansion rate and the

computational time invested by both the sender and the recipient. In the

signature-then-encryption, the cost for delivering a message in a secure and

authentic way is essentially the sum of the cost for the digital signature and

that for the encryption. Whether is it possible to transfer a message of ar

bitrary length in a secure and authentic way with an expense less than that

required by signature-then-encryption. To answer this question Zheng has

discovered a new cryptographic primitive termed as 'signcryption', which si

multaneously fulfills both the functions of digital signature and public-key

encryption in a logical single step, and that with a cost significantly smaller

than that required by signature-then-encryption [42, 43]. The signcryption

protocol have certain limitations on verifiability, Only the recipient can ver

ify the signature. A third party cannot verify the origin of a signcrypted

message independently. In a situation, like the one discussed in the present

142

work, where one of the two parties involved in the communication is trusted,

the digital signature based on signed session key, discussed in Chapter 4

is more efficient than Signcryption. Moreover, there there no limitation on

varifiability by a third party.

8.5 Semi-Structured Data

Research on semistructured data was in a primary stage, when the present

work was started. By now, semi-structured data has been studied from

the database perspective in different works. Prominent among them are

the Lore project at Stanford University (http://www-db.stanjord.edu/ lore),

and Sengupta's work, DocBase [35J. Both works try to build formalisms

to deal with data which are structured with some form of markups, but

the structure is irregular and incomplete, in contrast to relatonal databases.

With the advent of XML as a powerful markup language, Lore project is

implementing its Lore data base and its corresponding query language lorel

in XML. Lorel uses path expressions as the key feature [31J.

Docbase, a database environment for a structured document, structured

with SGML is a major work for semi-structured data [35J. The work provides

an in depth study on the formalisms for representing a SG ML document as

a database, where the DTD is the schema of the database. It also provides

formal query languages to query SGML encoded data using simple path

expressions. Even though this work deals with SGML document database,

without any loss of generality it can be extended to XML databases as well.

Both Lore and DocBase tries to find out a data element contained in a SGML

document using some formalism similar to data retrieval, from a relation.

Our work looks into a different aspect of document production and storage.

143

As a result, in our work, the object of retrieval is a page not an element in a

page. The content of a page, in the present work, may be unstructured ASCII

strings, or may be structured with, say XML. If we consider the content of

a page is marked up with XML, our work may be complementary to these

two works. For designing query languages for Page Cube, we derived some

concepts from both the works.

8.6 Workflow Authorization

Workflow authorization is discussed in brief in Chapter 6. Role-Based Ac

cess Control(RBAC) is a standard tool for enforcing authorizations in secu

rity policies, but separation of duty constraint is not addressed by RBAC.

Bertino el. al. [9] proposed separation of duty and proposed a language to

express both the static and dynamic authorization constraints and also mech

anisms to check constraint consistency. Atluri et.al. [5] proposed a model,

Workflow Authorization Model(WAM), which provides synchronization of

authorization flow with workflow. WAM also supports roles and separation

of duty constraints. Enforcement of workflow authorization constraints using

triggers and rules in active databases is studied in [13, 12]. In the present

work, it is shown that how a simple extension to the page cube model takes

care of basic authorization requirements for a DPW. Of course all the autho

rization constraints discussed in the literature are not taken care of in the

page cube model. It remains as a future work.

144

8.7 Discussion

In the present chapter, some of the currently available solutions for office

solutions are reviewed. But these solutions are not complete in nature. Our

findings in the present work are not alternatives but complements the exist

ing solutions. The output of the present work may be input to the future

solutions for paper-less office. Even the future versions of the existing solu

tions, like Lotus Notes, Cabinet NG (www. cabinetng. com etc. may include

the results of the present work.

145

Chapter 9

Conclusions

Secure production and storage of digital documents in an office environment

is an important problem to be studied as a major step towards realization of

paper-less offices. Security, production and storage are the three aspects of

the problem. In the present work, these aspects are studied, different issues

are identified in each aspect and solutions for them are provided.

The perimeter of the study is defined by three frameworks: production

framework, storage framework and security framework. Documents in an

office are termed as Multi-Part Multi-Signature Documents(MPMSD) and

are produced as cases of a Document Production Workflow (DPW). Based on

the frameworks, a conceptual three-tier architecture for a DPW is presented.

It is found that to address the security issues, involvement of an in-line TTP

is mandatory. A protocol for production of MPMSDs as cases of a DPW,

with an arbiter as an in-line TTP, is presented. This protocol addresses the

security issues identified in the problem. Since the arbiter is a TTP and also

in-line, therefore it is always an intermediary between two communicating

parties. A communication between a sender and a receiver via the arbiter

is an aggregation of communication between the sender and the arbiter and

146

the arbiter and the receiver. As a result the arbiter becomes one of the

two communicating parties. Therefore, a digital signature scheme based on

signed session key, suitable for such a scenario is proposed. This signature

scheme is more efficient than RSA-based signature schemes used in existing

solutions for office automation.

The context of creation of a document in an office is an important com

ponent of the organizational memory of an office. But hitherto this aspect

has not been incorporated in any of the existing solutions for office automa

tion. In the present work a study on this important component of document

production is ·done. A multi-dimensional model, named Page Cube, for stor

age and retrieval of MPMSDs in an office with the contexts as the binding

elements, is proposed. Documents are modelled in the scheme as pages or a

tree of pages. A page is a point in the space defined by a set of orthogonal

dimension hierarchies. The points are linked by bidirectional links forming

dimensional graphs as well as inter dimensional graphs. Query languages

to query pages from a Page Cube are also proposed. From the dimensional

graph for the category dimension, the context can be produced. Algorithms

to produce the dynamic context of a DPW as well as to produce a previous

state of a context are discussed. The scheme to label the edges of the graphs

with time stamps provide us the ability to recreate the previous states of a

page. A model for dynamic authorization for DPW is also proposed as an

extension of the Page Cube model. Implementation strategies of a DPW

system, using state-of-the art technology have been provided. The imple

mentation of a DPW system is meaningful if it is integrated as a subsystem

of existing office automation software. Integration is easy in the CORBA

framework. The output of the present work, which is academic in nature,

may be input to future commercial paper-less office software. Here only a

147

guideline of implementation is given. The scope of the study is limited to a

single office, where the office is considered as a single trust domain. But in

real life, document production may be across multiple domains. The study

of such inter-domain DPWs with multiple arbiters remains for the future.

148

Bibliography

[1] ISO/IEC 3rd CD 13888-1. Information Technology - Security Techniques -

Non-Repudiation, part 1: General Model. ISO/IEC JTC1/SC27 N1274. 1996.

[2] ISO /IEC 3rd CD 13888-2. Information Technology - Security Techniques

- Non-Repudiation, part 2: Using Symmetric Encipherment Algorithms.

ISO/IEC JTC1/SC27 N1276. 1996.

[3] ISO /IEC 3rd CD 13888-2. Information Technology - Security Techniques

- Non-Repudiation, part 3: Using Asymmetric Techniques. ISO/IEC

JTC1/SC27 N1379. 1996.

[4] V. Atluri and W. K. Huang. An Authorization Model for Workfiows. In

Computer Security, ESORICS96, LNCS 1148, pages 44-64. Springer Verlog,

1996.

[5] V. Atluri and W. K. Huang. A Petri Net Based Safety Analysis of Worfiow

Authorization Models. Journal of Computer Security, 8(2/3), 2000.

[6] R. Baeker, editor. Readings in Groupware and Computer-Supported Cooper

ative Work. Morgan Kaufmann, 1 edition, 1993.

[7] Bannon and Schmidt. Cscw: Four characters in search of a context. In

Computer-Supported Cooperative Work: A Book of Readings. Morgan Kauf

mann, 1988.

[8] G. Barua and M. Bora. Integrity and Security Issues in Multisignature Doc

ument Mailing Systems. In Computer Networks, Architectures and Applica

tions (C-13), pages 193-198. Elsivier Science Publishers, 1993.

149

[9] E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of

Authorization Constraints in'Workflow Management Systems. ACM Trans

actions on Information System Security, 2(1):65-104, 1999.

[10J M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. System

Research Center, Digital Equipment Corporation, 1989.

[llJ C. Zaniolo et.al., editor. Advanced Database Systems. Morgan Kaufmann, 1

edition, 1997.

[12] F. Casati, S. Castano, and M. Fugini. Enforcing Worflow Authorization

Constraints Using Triggers. Journal of Computer Security, 6(4), 1999.

[13] F. Casati, S. Castano, and M. Fugini. Managing Worflow Authorization

Constraints through Active Database Technology. Journal on Information

Systems Frontiers, Special Issue on Workflow Automation, 200l.

[14] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured

Documents to Novel Query Facilities. SIGMOD RECORD, 23(2):313-324,

1997.

[15] J. Conklin. Capturing Organizational Memory. In Readings in Groupware

and Computer-Supported Cooperative Work. Morgan Kaufmann, 1993.

[16] D. Lee et. al. Document Ranking and the ·Vector-Space Model. IEEE Soft

ware, Marchi April, 1997.

[17] 1. Greif, editor. Computer-Supported Cooperative Work: A Book of Readings.

Morgan Kaufmann, 1 edition, 1988.

[18J L. Ham and T. Keisler. New Schemes for Digital Multisignatures. Electronic

Letters, 25(15):1002-1003, July 1989.

[19] K. Itakura and K. Nakamura. A Public-key Cryptosystem Suitable for Digital

Multisignatures. NEC J. Res. and Dev. 71, pages 1-8, October 1983.

[20] S. Khoshafian and M. Buckiewicz. Introduction to Groupware, Workflow, and

Workgroup Computing. John Wiley & Sons, New York, 1 edition, 1995.

[21] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in

Distributed Systems: Theory and Practice. System Research Center, Digital

Equipment Corporation, 1992.

150

[22] A. J. MeneZes, P. V. Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1 edition, 1997.

[23] T. Mowbray and W. Ruh. Inside CORBA Distributed Objects Standards and

Applications. Addision Wesley, 1 edition, 1997.

[24] T. Okamoto. A Digital Multisignature Scheme Using Bijective Public-key

Cryptosystems. ACM Transactions on Computer Systems, 6(8):432-441,

November 1988.

[25] R. Orfali, D. Harkey, and J. Edwards. The Essential Client / Server Survival

Guide. John Wiley & Sons, New York, 2 edition, 1996.

[26] B. Pfitzmann. Digital Signature Schemes, General Framework and Fail-Stop

Signatures. LNCSllOO. Springer Verlog, 1996.

[27] W. Printz and S. Kolvenbach. Support for Workfiows in a Ministerial Environ

ment. In ACM Proc. Computer-Supported Cooperative Work, pages 199-208.

ACM, 1996.

[28] A. K. Pujari. Data Mining Technigues. University Press (India) Ltd., 1

edition, 200l.

[29] R. Agrawal, A Gupta and S. Sarawagi. Modelling Multi-Dimensional

Databases. In Research Report: IBM Almaden Research Center, CA, 1996.

[30J R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital

Signatures and Public-key Cryptosystems. Communications of the A CM,

21(2):120-126, 1978.

[31] S. Abiteboul et.al. The Lorel Query Languages for Semistructured Data.

http://www-db.stanford.edu/ '" lore;'

[32] G. M. S. Castano, M. Fugini and P. Samarati. Database Security. Addision

Wesley, 1 edition, 1994.

[33] A. S. Sairam. Design and Implementation of a Document Production Work

flow. M. Tech. Report, Indian Institute of Technology, Guwahati, 2000.

[34] B. Schneir. Applied Cryptography: Protocols, Algorithms and Source Code

in C. John Wiley & Sons Inc., 2 edition, 1993.

151

[35] A. Sengupta. DocBase - A Database Environment for Structured Documents.

Ph. D. Thesis, Indiana University, 1997.

[36] S. K. Sinha and G. Barua. An Architecture for Document Production Work

flow in an Office. In Proc. of the Int. Conf. on Information Technology

(CIT99) , India, pages 45-52, 1999.

[37] S. K. Sinha and G. Barua. Secure Flow of Persistent Multi-Part Documents

in an Office. In Proc. of the Int. Conf. on Information Technology at the Dawn

of New Millennium, Bangkok, Thailand, volume 3, pages 157-172, 2000.

[38] S. K. Sinha and G. Barua. PAGE CUBE: A Model for Storage and Retrieval

of Documents Relevant to a Document Production Workflow in an Office. In

Proc. of the 7th Int. Conf. on Database Systems for Advanced Applications

(DASFAA01), Hongkong, China, pages 74-81. IEEE Computer Society Press,

200l.

[39] W. Stallings. Network and Internetwork Security Principles and Practice.

Prentice Hall, New Jercey, 1 edition, 1995.

[40] W. Schuetzelhofer et. al. Graphical Navigation in XML-Databases. In Proc.

of the Int. Conf. on Information Technology at the Dawn of New Millennium,

Bangkok, Thiland, pages 47-59, 2000.

[41] J. Widom. The Starburst Active Database Rule System. IEEE Tran. on

Knowledge and Data Engineering, 1996.

(42] Y. Zheng. Digital Signcryption or How to Achieve Cost(Signature & Encryp

tion) « Cost(Signature) + Cost(Encryption). In CRYPTO'97, LNCS 1294,

pages 165-179. Springer-Verlag, 1997.

(43] Y. Zheng. How to Construct Efficient Signcryption Scheme on Elliptic Curves.

Information Processing Letters, 68(5):165-179, December 1997.

(44] J. Zhou and D. Gollmann. Observations on Non-repudiation Protocols. In

ASIACRYPT'96, LNCS 1163, pages 133-144. Springer-Verlag, 1996.

152

