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Chapter 1

GENERAL INTRODUCTION

1.1 Introduction

Ecology is the branch of science that deals with the relationships of life forms with
each other and with their surroundings. The basic unit in ecology is the ccosystem
which is a fairly self contained system of plants and animals living in a particular kind

of environment. Everyv ecosystem has four components:

1. The nonliving environment: This includes sunlight, water, oxygen, minerals, and

dead plant and animal matter.

2. Producers: These are green plants which range in size from the microscopic
phytoplankton to giant redwood trees. They have the unique ability to absorb

the sun’s energy and use it to produce foods.

3. Consumers: These are animals: both herbivores, which feed on plants and carni-

vores, which eat other animals.

7

4. Decomposers: These include bacteria. fungi, and insccts that break down dead
plants and animals. In the process they release energy into the environment and
return matter to the soil. The matter provides nourishiment that is absorbed by

green plants and started through the cycle again.



In theory the ecosystem is a closed cycle. But in practice ecosystems are seldom
in a state of balance. Natural changes, which gradually shift the composition of the
ecosystem, occur continuously. An ecosystem that supports many kinds of green plants
and animals is not likely to be disrupted by such changes. If one species is lost, many
others remain to continue the cycling of materials and energy. On the other hand, an
ecosystem with only a few species may collapse if the environment changes suddenly,
killing one or two species. Throughout the biosphere same principle applies; wherever

diversity is lacking, ecosystems tend to be unstable and fragile.

Air pollution has been a problem ever since fire was discovered by cave dwellers. With
the Industrial Revolution, the intensive burning of coal and oil in centralized locations
began. The problem was compounded because the population of the Earth had also
been rapidly growing. The addition of motor vechicles caused more and more serious
problems, until finally a series of dangerous air pollution episodes occurred. The three
most notorious episodes were all associated with light winds and reduced vertical mixing
that persisted for several days. Many deaths were recorded in 1930 in the Meuse Valley

in Belgium, in 1948 in Donora, Pennsylvania, and in 1952 in London.

One of the important problems that society faces today is the pollution of our environ-
ment affecting the quality of life in the form of diseascs, epidemics etc. The abnormal
level of green house gases in the atmosphere is affecting the climate, which has already
changed to a considerable extent due to deforestation and manmade projects, bringing
prolonged drought, abnormal temperature in one region and occurrence of floods in the
other (Treshow, 1968; Woodwell, 1970; Davis, 1972; Maugh, 1979; Smith, 1981; Reish
et al., 1982; Reish et al., 1983; Kormondy, 198G; Parry and Carter, 1988; Veeman,
1988; Woodman and Cowling, 1987; Sahani, 1998).

The depletion of resources such as forestry, fisheries, fertile topsoil, crude oil, minerals,
etc. is causing great concern for the mankind. These resources are being depleted
due to rapid industrialization, fast urbanization and rising population. These factors
have deteriorated our ecology and environment to such an extent that if concrete steps

are not taken soon to conserve these resources, many undesirable cffects will occur



leading to disastrous consequences for the mankind (Frevert et al., 1962; Detwyler,
1971; Smith, 1972; Pimental et al., 1976; Annon, 1977; Das, 1977; Gadgil and Prasad,
1978; Karamchandani, 1980; Brown, 1981; Gadgil et al., 1983; Larson et al., 1983;
Repetto and Holmes, 1983; Brown and Wolf, 1984; Haigh, 1984; Gadgil, 1985; Waring
and Schiessinger 1985; Biswas and Biswas, 1986; Khoshoo, 1986; Munn and Fedorov,
1986; Shukla et al., 1987; Gadgil, 1987; Shukla et al., 1988; Gadgil and Chandran,
1989; Shukla et al., 1989; Banerjee and Banerjee, 1997).

Forests play a very important role in maintaining the environment and in supplying
the essential requirements of people. But forests are suffering rapid depletion due to
diversion of forest lands to other uses such as industrialization and cultivation, the
inadequacy of protection measures and the attitude of our people to look upon forests
as revenue earning resource {Singh, 1993). There are many ecl;)logically unstable regions
around the world and the Doon Valley in the northern part of Uttar Pradesh in India
is one such example where the main reasons for the depletion of f{orest biomass are
limestone quarrying; growth of wood based industries and associated pollution, growth
of human and livestock populations, etc. (Munn and Fedorov, 1986; Shuklé et al.,
1989). Other ecologically unstable areas include uplands of Western Amazonia, the

Atlantic Coast of Brazil, the Madagascar Islands, the Malaysian rain forest zones etc.,
(Wilson, 1989).

It is, therefore, absolutely essential to study the effects of various factors such as
industrialization, pollution and population responsible for the depletion of resources
so that appropriate measures for conservation are taken and the desired level of the
resource biomass can be maintained without harming our ecology and environment
(Ghosh and Lohani, 1972; Pathak, 1974; Das, 1977; Karamchandani, 1980; Martino,
1983; Khoshvo, 1986; Lamberson, 1986; Munn and Fedorov, 1986; Shukla ct al., 1987,
1088, 1989). ‘

In the following an account of the literature related to pollutant diffusion and migration

of the species and its effects on their evolution and co-existence is presented.



1.2 Effect of Diffusion

Air pollutants, such as sulphur dioxide, carbon dioxide, etc., are dispersed in the envi-
ronment by the process of molecular diffusion which arises due to changes in concen-
tration and depends upon various factors such as types and number of sources, stack
‘heights, meteorological conditions and the topography of the terrain. A great deal of
attention has been devoted to study the molecular diffusion process by using the well
known Fick’s law of diffusion and thesc have been well documented by Sutton (1953),
Pasquill (1962), Scorer (1968), Stern (1968), Deininger (1974) and Crank (1975). Due
to environmental factors such as overcrowding, anticlimate, predator chasing prey and
more importantly due to resource limitation in the habitat and other related effects
biological species living in a habitat has a tendency to migrate to better suited regions

for their survival and existence (Rosen, 1974, 1975; Verma, 1980).

The evolution and existence of species has been the subject of scientific investigation
since the days of Darwin. Earlier studies were mainly concerned with experimental
observations and it is only in the beginning of twentieth century that attempts have
been made to predict the evolution and existence of species mathematically. The first
major attempt in this direction is due to Volterra and Lotka which constitute the main
basis of the deterministic theory of population dynamics in theoretical Biology cven
today. Over the last fifty years, many complex models for lt‘wo or more interacting
species have been proposed on the basis of Lotka and Volterr‘a models by taking into
accourit the effects of crowding, age structure, time delay, functional response, switching
etc. (Holling, 1965; Rescigno, 1968; Rosen, 1970; May, 1971; Maynard Smith, 1974;
Gomatam, 1974; Freedman, 1976; Cushing, 1976; Brauer, 1977; Harada and Fukao,
1978; Tansky, 1978; Freedman, 1979; Gopalsamy, 1980, 1981).

It may be noted that Lotka-Volterra model focuses on population interactions at a
point in space ignoring movement (migration/diffusion) which means a perfect mixing
of the species in a given region. Mathematically, this is equivalent to assuming that the

dispersal rates are sufficiently high and the population in the habitat are well mixed.



Without assuming so, one ignores the essential aspects of specics response to environ-
mental and ecological changes it encounters in the habitat. Thus, Lotka-Volterra type
models describe the situations which correspond to only laboratory conditions rather
than real situations arising in natural environment. It may be noted here that even

in the laboratory spatial variations may be essential for the coexistence of the species

(Huffaker, 1958, 1963).

In recent years many researchers have studied the effect of diffusion in ecological mod-
els. The classical Volterra model for the evolution of two interacting species ignores the
effects of migration which may arise due to environmental and ecological gradients in
the habitat. These may be studied by taking into account the dispersive and convective
migration terms in population models. Skellam (1951) was probably the first to study
the effects of dispersive migration on the growth of populations. Later, several inves-
tigators studied this effect by considering various models (Landahl, 1959; Scgal and
Jackson, 1972; Levin, 1974; Hadeler et al., 1974; Comins and Blatt, 1974; Hadeler ari}]
Rothe, 1975; Chow and Tam, 1976; Freedman and Waltman, 1977; Gopalsamy, 1977;
Rosen, 1977; McMurtrie, 1978; Caisson, 1978; Fife, 1979; Okubo, 1980; Cohen and
Murray, 1981; Nallaswamy and Shukla, 1982; Cosner and Laser, 1984; Bergerud et al.,
1984; Anderson and Arthur, 1983; Freedman et al., 1986; Takeuchi, 1986; Bergerud
and Page, 1987; Freedman, 1987; Cantrell and Cosner, 1987, 1989; Frcedman and
Shukla, 1989; Shukla et al., 1989; Freedman and Wu, 1992; Angulo and Linares, 1995).
It has been pointed out that an unstable equilibrium state may become stable with
dispersion under certain conditions (Levins and Culver, 1971, Slﬁith, 1972; Gopalsamy,
1977). The importance of density dependent dispersal coefficients in the case of single

species model has also been studied (Gurney and Nisbet, 1975).

The evolution of interacting species in a certain environment depends on the nature
of their interactions, the age structure, the size of the habitat and the environmental
gradients which might induce the convective and dispersive migrations in the specics.
In recent years, the effects of environmental gradients on the interacting species have

been studied by taking dispersion into account (Levins and Culver, 1971; Vandermeer,



1973; May, 1974; Roff, 1974; Chewning, 1975; Gurtin and MacCamy, 1977). McMur-
tric (1978) surveyed the effects of diffusion on some prey-predator systems, and it has
been noted that diffusion of interacting species stabilized the otherwise unstable equi-
* librium states (Levins and Culver, 1971; Smith, 1972; Vandermeer, 1973; May, 1974;
Roff, 1974). However this is not always true, and in certain cases diffusion can make
a stable cquilibrium state into an unstable one (Segel and Jackson, 1972; Levin, 1974;
Chewning, 1975). This case is known as diffusive instability which may not be a rare
event specially in prey-predator systems (Levin, 1976; Casten and Holland 1978; Wol-
lkind et al., 1991; Timm and Okubo, 1992; Chattopadhyay et al., 1996; Raichaudhury
et al., 1996). But, this analysis is applicable only to systems with unbounded domain.
In fact, the boundedness of the domain and the nonlinearity cannot be negligible. In
mode] with reservoir type boundary condition proposed by Gopalsamy (1977), bound-
edness of the domain is necessary for the coexistence of competing species, which is
unstable without diffusion. Moreover, Levin (1974) showed boundedness of the domain

and nonlincarity are requisite for the coexistence of the competing species.

In this thesis we have noted the stabilizing effect of diffusion on the system. It has
been shown that an unstable equilibrium can be made stable by increasing diffusion

coefficients to sufficiently large values.

1.3 Objectives of the Thesis

The main objective of this thesis is to study the survival of biological species dependent
on resource, which is being depleted due to industrialization and pollution, using math-

ematical modelling. Specifically the following types of problems have been proposed

and analysed in this thesis using mathematical models.

1. Allelopathic effect on two competing plant species.
2. Survival of species dependent on resource in industrial and polluted environments.
3. Effect of time delay on the depletion of forestry resources and their conscrvation.
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4. Effect of pollutants formed by precursors in the atmosphere on population.

In the following we give an overview of the relevant literature so that the research work
carried out in the thesis related to above mentioned problems can be seen in its proper

perspective.

1.3.1 Allelopathic effect on competing plant species

The discovery that many plants and some animals contain or secrete chemicals injuri-
ous to competitors or natural enemies has led to development of the study of allelopa-
thy; the chemicals are called allelochemics or allelochemicals. This phenomenon - the
suppression of some higher plants by chemicals released by another higher plant has
been extended to include chemical defenses of plants against herbivores, phytophagous

insects against predators, and the resistance of hosts to parasitoids.

Two types of allelopathy are distinguished: (1) the production and release of an alle-
lochemical by one species inhibiting the growth of only other adjacent species, which
may confer competitive advantage for the allelopathic specics; and (2) autoallelopa-

thy, in which both the species producing the allelochemical and unrelated specics are

indiscriminately affected.

Examples of plant-to-plant antibiosis based on allelochemicals include the chaparral
plants, whose toxic phenolic secretions are washed by rains into the soil, where they
inhibit the germination and growth of herb sceds close enough to provide competi-
tion. The black walnut tree (Juglans nigra) produces a potent allelochemical, juglone
(5-hydroxynaphthoquinone) that inhibits many annual herbs. Tomato and alfalfa un-
der or near black walnut trees wilt and die. For plants growing in habitats with
extreme climates, such as a desert, competition for the limited resources is critical,
and allelopathy may have survival value. Desert shrubs are often surrounded by a
bare zone; thus, all the moisture of that zone remains available to the shrub and is
not shared with other plants. In the Mojave Desert of California incienso (Encelia

farinosa) inhibits the growth of desert annuals. From the decomnposing leaf litter, 5-
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acetyl-1-2-methoxybenzaldehyde is released and persists in the desert soil, functioning
as an allelochemical. Incienso is apparently not affected by its own toxin (Rice, 1984,

Thompson, 1985; Putnam and Tang, 1986; Waller, 1987).

To study such type of interactions among biological species using mathematical mod-
elling, Maynard Smith (1974) proposed a mathematical model in which he considered
two competing species and assumed that each species produces a substance toxic to
the other, but only when the other is present. Then Chattopadhyay (1996) analysed
the above model under the same assumptions. He considered lincar growth rates of
the two competing species and their carrying capacities as constants. He showed that

stability of the system depends upon the ratio of the two toxicants.

In view of the above in chapter 2, we have proposed and analysed a mathematical
model to study the allelopathic effect on two competing plant species. The growth

rates and carrying capacities of the competing species are taken as nonlinear functions.

Further, the effect of diffusion is also incorporated in the model.

1.3.2 Survival of species dependent on resource in industrial

and polluted environments

The rapid industrialization, rising population and increasing energy requirements have
caused a great concern to mankind. The depletion of various resources such as forestry
biomass, oil and natural gas, fisheries, fertile topsoil, minerals etc. due to their over
exploitation at an alarming rate has caused a great concern in both developed and de-
veloping countrices. [t is, therefore, important to study the cffects of industrialization
and environmental pollution on ecosystem so that appropriate measures for conserva-
tion of resources and to control the environmental pollution are taken and the desired

level of the resource biomass can be maintained.

Some investigation have been made to study the effect of pollutants on biological species
using mathematical models (Hallam and Clark, 1982; Hallam et. al., 1983; Hallam and
De Luna, 1984; De Luna and Hallam, 1987; Freedman and Shukla, 1991; Huaping

S



and Ma, 1991). In particular, Hallam et. al. (1983b) studied'the effects of toxicant
on a dircctly exposed population using mathematical modelling. Hallam and De Luna
(1984) further proposed a model and discussed the effects of a toxicant on a population
when exposed via environmental and food chain pathways. They focused mainly on
effects of the toxicant on a population and found persistence and extinction criteria.
De Luna and Hallam (1987) also proposed and analysed a mathematical model to
study the effect of a toxicant on population and showed that if the population exhibits
a potential for growth and if there is a input of resource, then the population will
persist. Shukla et. al. (1989) proposed a mathematical model to study the cumulative
effect of industrialization and pollution on depletion of resources and have shown that if
the pressures of industrialization and population increase without control, the resource
will not last long. However, if appropriate measures for conservation are taken, the
resources can be maintained at a desired level even under the sustained pressure of
industrialization and population. Huaping and Ma (1991) proposed a mathematical
model to study the effects of toxicants on naturally stable two species communitics.
They studied the persistence-extinction thresholds for populations in toxicant stressed
Lotka-Volterra model of two interacting species. In the above investigations, the growth
rate of population density depends lincarly upon the concentration of toxicant in the
population and the effect of environmental concentration of toxicant on the carrying

capacity of the population has not been considered.

It may be noted here that in the above studies the concentration of toxicant was defined
with respect to the biomass of the total population. Freedman and Shukla (1991),
however, felt that if the biomass of the population, toxicant uptaken by the population
and toxicant in the environment are defined with respect to mass or volume of the total
environment in which the population lives, the model becomes more visible. Keeping
this in view, Freedman and Shukla (1991) proposed models to study the effect of a single
toxicant on single-species and predator-prey systems. In case of single species growth
they found conditions for local as well as global stability and in case of predator-
prey systems, they determined the existence of steady states for a small éonstant

influx of toxicant. Chattopadhyay (1996) proposed a model to study the effect of toxic



substances on a two-species competitive system. He considered the linear growth rate
of the competing species and their carrying capacities as constants. Shukla and Dubey
(1996a) studied the effect of two toxicants, when one is more toxic than the other,
on the growth and survival of a biological species. Shukla and Dubey (1997) studied
the depletion of resources in a forest habitat due to the increase of both population
and pollution. Dubey (1997a) proposed a mathematical model to study the depletion
and conservation of forestry resources which is affected by a toxicant. Dubey (1997b)
investigated a mathematical model in which two species share a common resource,
and one of the species is itself an alternative food for the other. But in the above
investigation the survival of the species population dependent on resource which is

affected by a toxicant has not been considered.

Keeping in view the above literature survey, in Chapter 3, we have proposed and
analysed a mathematical model to study the survival of a single species population
dependent on resource which is affected by a pollutant present in the environment.

It is assumed that the population depends partially or wholly on the resource or just

predating on the resource.

Chapter 4 of this thesis is devoted to study the survival of two biological species com-

peting for a single resource under industrialization pressure with and without diffusion.

Chapter 5 of this thesis deals with the interaction of two biological species in a polluted
environment. Three types of interaction between the two species have been considered,

namely, competition, cooperation and predator-prey. The effect of diffusion on the

system is also studied.

Chapter 6 of this thesis is devoted to study the effects of industrialization and pollution

on forestry resources in a diffusive system.
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1.3.3 Effect of time delay on the depletion of forestry re-

sources and their conservation

Time delay systems are those systems in which time delays exist between the appli-
cation of input or control to the system and their resulting ef‘fect on it. They arise
either as a result of inherent delays in the components of the system or as a deliberate
introduction of time delay into the systein for control purposes. Time delays occur
in various systems including biological and chemical systems. The mathematical for-
mulation of a time delay system results in a system of delay-differential equations. A
particular class of these equations, the integro-differential equations, was first stud-
ied by Volterra (1959) who developed a theory for them and investigated time delay
phenomena in different systems. Others have made significant contributions to the
development of the general theory of functional differential equations of Volterra type

(Krasovskii, 1957; Driver, 1961, 1962; Hale, 1961, 1962, 1963, 1964; Lakshmikantham,
1962, 1964, 1987).

Several investigations related to ecological models with delay effects can be found in
the literature (Wangersky and Cunningham, 1957; Caswell, 1972; May, 1973; Cushing,
1976; McDonald, 1976, 1977, 1978; Brauer, 1978; Leung, 1979; Burton, 1983; Frecedinan
and Rao, 1983; Erbe et al., 1986; Freedman and Gopalsamy, 1986; Stepan, 1986; Leung
and Zhou, 1988; Rao and Sivasundaram, 1988; Gyori and ladas, 1991; Gopalsamy, 1992;
Rao and Pal, 1992; Murakami and Hamaya, 1995; Cavani and Avis, 1995; Wang and
Yi, 1995; Dubey, 1997c). In particular, Rao and Pal (1992) proposcd and analysed
a general model for grazing a grassland on the pattern of a prey-predator system
by considering the effect of delay in the growth rate of a cattle population. They
discussed linear and nonlinear systems and found sufficient conditions for asymptotic
stability of a positive equilibrium of these systems. Wang and Yi (1995) studied the
global asymptotic stability of Volterra-Lotka systems with infinite delay together with
global exponential stability of Volterra-Lotka systems with bounded delay. Criteria for
stability are also obtained. Dubey (1997¢) proposed a mathematical model with delay

to study the cumulative effect of industrialization and population on the degradation

11



of forestry resources. He obtained criteria for local stability, instability and global
stability of the system and showed that it is worthwhile to incorporate the time delay

factor for the friendly technology of industrialization dependent on forestry resources.

The effect of time delay on depletion of forestry resources in a polluted environment
does not appear in the above investigations. In chapter 7, we therefore, propose and
analyse a mathematical model to study the effect of environmental pollution on forestry

resource biomass with time delay in a diffusive system.

1.3.4 Effect of pollutants formed by precursors in the atmo-

sphere on population

The menace of environmental pollution is well known. As pointed out in section 1.3.2,
some investigations have been conducted to study the cffect of environmental poliution
on biological species using mathematical modelling. But in these studies, the role
of a precursor pollutant has not been taken into account. However, some attempts
have been made to study the effect of a precursor pollutant (Rescigno and Richardson,
19G67; Forrester, 1971; Meadows, 1972; Borsillino and Torre, 1974; Resigno, 1977). In
particular, Rescigno (1977) studied the gencral properties of the equations describing a .
single species living in a limited environment in the presence of its own pollutant. The
effect of pollutants formed by precursors in the atmosphere on population with diffusion
does not appear in the above investigations. In chapter 8, therefore, we propose and
analyse a mathematical model to study the effect of a pollutant on a population which

is living in an environment polluted by its own activities. Effect of diffusion is also

incorporated in the model.

1.4 Mathematical tools used in the Thesis

In this thesis the following two methods have been used to analyse the mathematical

models.
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he method of Characteristic roots

The conclusion regarding asymptotic stability of the systems depend on the eigenvalucs
of the variational matrix, a Jacobian matrix of first order derivatives of interaction-
functions. As this Jacobian is determined by Taylor expansion of the interaction-
functions and neglecting nonlinear higher order terms, this method studies only the
local stability of the system in the neighbourhood of its equilibrium state. Routh-
Hurwitz criterion (Sanchetz, 1968) and Gershgorin’s theorem (Lancaster and Tisman-
etsky, 1985) are very useful to study the local stability of wide range of systems in
homogeneous environments. This method establishes stability only relative to small
perturbations of the initial state. Hence it is called local stability. An eigenvalue analy-

sis is only a small initial step in understanding the dynamical behavior of an ccosystem

model.

1.4.2 Liapunov’s Direct Method

In the previous section, we have described methods which are mainly related to the
study the linearized version of nonlinecar models. But to get the recal insight of problems,
the nonlinear system as a whole must be investigated. In the real world ecosystems
arc subjected to large perturbations of the initial state and systein dynamics. The
most powerful analytical method for studying stability relative to finite perturbations
of the initial state of an ecosystem model is the direct method of Liapunov (LaSalle
and Lefschetz, 1961; Rao, 1981). This method requires the construction of certain
functions called Liapunov functions. For a physical system the direct method of Li-
apunov generalizes the principle that a system, which continuously dissipates encrgy
until it attains an equilibrium, is stable. The two basic theorems on stability can be
found in La Salle and Lefschetz (1961). This method has also been used even to study

the linear stability of the equilibrium state of interacting systems (Gatto and Rinaldi,
1977).

In population dynamics, to study the nonlinear stability o égﬁﬁﬂ}}{}ﬂ;g}&@ﬁ&?‘ke Li-
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apunov’s second method has been used by several investigators (Gilpin, 1974; Goh,
1976, 1977; Jorne, 1977; Jorne and Carmi, 1977; Goh, 1978; Hastings, 1978; Hsu,
197.8; Takeuchi et al., 1978; Harrison 1979; Goh, 1980; Shukla et al., 1981). In par-
ticular, the nonlinear stability of diffusive Lotka Volterra system has been carried out
by Jorne and Carmi (1977), Gopalsamy and Aggarwalla (1980) and it has been shown
that the otherwise stable system remains stable with positive dispersion coefficients
under zero flux boundary conditions. Harrison (1979) has given a Liapunov function
which generalizes the functions used by Goh (1976, 1977) and Hsu (1978) and can be

used to study the nonlinear stability of various types of models even with functional

response.

1.5 Summary of the Thesis

The thesis consists of eight chapters.

Chapter 1 contains a general introduction with relevant literature which provides a

necessary background required for the forthcoming chapters.

In chapter 2, a mathematical model has been proposed and analysed to study the
interaction of two plant species competing for nutrients. It has been assumed that
each plant species produces a toxicant, which reaches to the other through diffusive

process and affects its growth.

In the case of no diffusion, it has been shown that the two competing plant species
settle down to their respective equiliBrium levels, the magnitude of which are lower
than their corresponding initial density independent carrying capacitics. In the case
when the two plant species do not produce any toxicant, it has been shown that the two
plant species again settle down to their respective equilibrium levels, the magnitudes
of which are higher than their corresponding values in the case when they produce
toxicant. To illustrate the above facts a numerical example has also been presented in

this chapter. It has also been found that the rate of decrease in the growth rates of
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plant species is faster in the case when each plant species produces a substance toxic

to the other.

By incorporating diffusion in the system it has been shown that diffusion is playing the
general role of stabilizing the system. It has been shown that if the interior equilibrium
of the system with no diffusion is globally asymptotically stable, then the corresponding
uniform steady state of the system with diffusion must be globally asymptotically
stable. Further, an unstable steady state in the absence of diffusion can be madec stable
by increasing diffusion coefficients sufficiently large. In a particular case of rectangular

habitat it has been shown that stability is more plausible in the case of diffusion.

In chapter 3, a mathematical model for the survival of a single-species population
dependent on resource biomass which is aflected by a pollutant present in the environ-
ment has been proposed and analysed. The rate of introduction of pollutant into the
cnvironment has been considered to be constant, instantancous or periodic. It has been
assumed that the population depends partially or wholly on the resource or just pre-
dating on the resource. It has also been assumed that the growth rate of the population
increases as the density of the resource biomass increases while its carrying capacity
increases with the increase in the density of the resource biomass, and decreases with
the increase in the environmental concentration of the pollutant. It has been {urther
assumed that the growth rate of the resource biomass decreases as the uptake concen-
tration of the pollutant and the density of the population incﬂrease while its carrying

capacity decreases as the environmental concentration of the pollutant increases.

In the case of no diffusion the model has been analysed using stability theory of or-
dinary differential equations. When the population depends partially on the resource,
it has been shown that in the case of constant introduction of pollutant into the envi-
ronment, both the population and the resource biomass settle down to their respective
steady states. The magnitude of the equilibrium level of the population decrcases as
the equilibrium level of the resource biomass density decreases and the environmental
concentration of the pollutant increases. The magnitude of the equilibrium level of the

resource biomass decreases as the equilibrium levels of the population, the pollutant



present in the environment and in the body increase. It has also been noted that the
resource biomass may tend to zero for large influx of the pollutant ;nto the environ-
ment affecting the survival of the species. In the case of instantaneous introduction
of toxicant into the environment similar results have been found. In particular, it has
been noted that the population and the resource biomass after initial decrease in their
densities will settle down to their respective steady states but after a long time if the
washout rate of the pollutant is small. In this case magnitudes of densities of the
population and the resource biomass are larger than their respective densities in the
case of constant introduction of pollutant. In the case of the periodic emission of the
pollutant into the environment it has been found that a periodic bchavior occurs in

the system for a small amplitude of the influx of the pollutant.

The equilibrium levels of the population and the resource biomass have been compared
in three different cases: (1) when the p'opulation partially depends upon the resource,
(2) when the population wholly depends upon the resource, and (3) when the popula-
tion is predating on the resource. It has been noted that the density of the population
is maximum in the partially dependent case and minimum in the predating case, con-
sequently the density of the resource biomass is minimum in the partially dependent
casc and maximum in the predating case, keeping other paramecters same in the sys-
tem. Thus, an increase in the density of the population will also lead to decrease in
the densit); of the resource biomass. It has also been noted that the survival of the
population will be threatened even in the partially dependent case if the continuous
emission of pollutant into the environment is not controlled. In the wholly dependent
case the population will doom to extinction if the environmentdl concentration of pol-
lutant reaches at a threshold value. In case of predation it has been noted that the

survival of the population is highly threatened.

In the case of diffusion, a complete analvsis of the model has been carried out. It
has been shown that if the positive equilibrium of the system with no diffusion is
globally asymptotically stable, then it remains globally asymptotically stable in the

casc of diffusion. Further, if the positive equilibrium of the system with no diffusion
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is unstable, then the unstable equilibrium can be stabilized by increasing diffusion
coefficients to sufficiently large values. Thus, it has been concluded that in the case of

diffusion, solutions of the éystem approaches to the equilibrium state faster than the

case of no diffusion.

A model to conserve the resource biomass and to control the undesired level of envi-
ronmental pollutants has also been proposed and analysed. It has been shown that if

suitable efforts are made, an appropriate level of the resource biomass can be main-

tained.

In chapter 4, a mathematical model has been proposed and analysed to study the sur-
vival of two biological species competing for a single resource under industrialization
pressure with and without diffusion. The competing species are assumed to be either
partially dependent, wholly dependent or predating on the resource. In the partially
dependent case, criteria for survival and extinction of competing species have been de-
rived. It has also been shown that the resource biomass settles down to its equilibrium
level, the magnitude of which depends upon the equilibrium levels of the competing
species and the industrialization pressure. This magnitude decreases as the densities
of the competing species and the pressure due to industrialization increase and may
driven to extinction if these factors increase without control. It has also been noted
that the competing species may coexist even in the absence of the resource biomass in
the partially dependent case, whercas in the wholly dependent case the two specics will
die out in the absence of the resource biomass. In the case when the competing species
are predating on the resource, similar results have been found. It has been noted that
the damage of the resource biomass density is maximum in partially dependent casc,

and is minimum in the predation case. This has also been established by numerical

examples.

A model to study the effect of diffusion on the system under consideration has also

been proposed and analysed. It has been found that diffusion has stabilizing effect on

the system.



By analysing the conservation model it has been shown that if suitable efforts are made
to conserve the resource biomass and to control the undesired level of the industrial-
ization pressure, a desired level of the resource biomass can be maintained and the

survival of the competing species may be ensured.

In chapter 5, a mathematical model has been proposed and analysed to study the
survival of two interacting species in a polluted environment, the mode of interaction
being competition, cooperation and predation. The model has been analysed with and
without diffusion. When there is no diffusion it has been shown that in the case of
constant introduction of pollutant into the environment the competing species settle
down to their respective equilibrium levels, the magnitude of which depends upon the
equilibrium levels of washout and uptake rates of pollutant. It has also been noted
that if the concentration of pollutant increase unabatedly, then the survival of the
species would be threatened. In the case of instantaneous introduction of pollutant into
the environment, it has been found that the competing species again settle down to
their respective equilibrium levels whose magnitude is higher than the case of constant
introduction of pollutant into the cﬁvironment. In case of periodic emission of pollutant
into the environment, it has been found that a periodic influx of pollutant with small

amplitude causes a periodic behaviour in the system.

‘The effect of diffusion on the-interior equilibrium state of the system has also been
investigated. It has been shown that if the positive equilibrium of the system without
diffusion is globally asymptotically stable, then the corresponding uniform steady state
of the system with diffusion is also globally asymptotically stable. It has further becn
noted that if the positive equilibrium of the system with no diffusion is unstable, then
the corresponding uniform steady state of the'system with diffusion can be made stable

by increasing diffusion coeflicients to sufhiciently large values.

A model to control the undesired level of environmental pollutants has been proposed
and analysed. It has been shown that the existence of the two interacting biological
species can be ensured if the undesired level of the environmental concentration of

pollutant is controlled by some mechanism.
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In chapter 6, a mathematical model has been proposed and analysed to study the
effects of industrialization and pollution on forestry resources with diffusion. The rate
of introduction of pollutant into the environment is considered to be industrialization

dependent, constant, zero or periodic. The model has been analysed with and without

diffusion.

When there is no diffusion in the system, it has been shown that in the case of in-
dustrialization dependent introduction of pollutant into the environment the resource
biomass scttles down to its equilibrium level, whose magnitude depends upon the equi-
librium level of industrialization, influx and washout rates of pollutant prescnt in the
environment. The magnitude of the resource biomass density decreases as the density
of industrialization and influx rate of pollutant increase, and even it may tend to zero
if these factors increase without control. In the case of constant introduction of pol-
lutant, similar results have been found. In the case of instantaneous spill of pollutant
into the environment, it has been noted that the pollutant may be washed out conm-
peletely and the resource biomass may settle down to a lower equilibrium level than its
original carrying capacity whose magnitude depends only upon the cquilibrium level
of the industrialization pressure. Even in this case the resource biomass may vanish if
industrialization pressure increase unabatedly. In the case of periodic emission of pol-
lutant into the environment it has been found that a small periodic influx of pollutant

causes a periodic behaviour in the system.

Analysing the model with diffusion it has been shown that diffusion has a stabilizing
effect on the system. It has been concluded that solutions of the system with diffusion

converge towards its equilibrium state faster than the case of no diffusion.

A mathematical model to conserve the resource biomass by plantation, irrigation, fenc-
ing, fertilization etc., and to contro! the undesired levels of industrialization pressure
and concentration of pollutant in the environment by some mechanisms has also been
proposed. By analysing this model it has been shown that if suitable efforts are made,

an appropriate level of resource biomass density can be maintained.
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In chapter 7, a mathematical model has been proposed and analysed to study the
effect of environmental pollution on forestry resource biomass with time delay. It has
been considered that the environmental pollutant does not affect the forestry resource
biomass directly, but the pollutant after entering into the biomass gets converted to a
substance that is toxic to resource biomass, and consequently the growth rate of the
resource biomass decreases. This conversion causes a time delay in the deplction of
forest biomass. The model has been analysed with and without diffusion. When there
is no diffusion it ‘has been shown that in the case of constant emission of pollutant
into the environment the resource biomass settles down to its equilibrium level, the
magnitude of which depends upon the washout and uptake rates of pollutant. It has
further been noted that if the concentration of pollutant increases unabatedly, the
density of the resourée biomass may tend to zero. The effect of time delay due to the
formation of the chemical pollutants on decreasing the equilibrium level of resource
biomass is determined bj- the rate of formation of the chemical pollutants and the
depletion of the resource biomass. If the delay in formation of the pollutant is large,

then this may help in reducing over all effect of the pollutant provided other parameters

remain same.

By analysing the diffusion model it has been shown that an unstable steady state can
be made stable by increasing diffusion coefficients to sufficiently large values. It has
been noted that in the case of diffusion the resource biomass converges towards its

- carrying capacity faster than the case of no diffusion.

A conservation model has also been proposed and analysed. It .has been shown that if
suitable cfforts are adopted to conserve the resource biomass and to control the unde-

sired level of environmental concentration of pollutant, the forestry resource biomass

can be maintained at an appropriate level.

In chapter 8, a mathematical model is proposed and analysed to study the effect of
a pollutant on a population which is living in an environment polluted by its own,
activities. It has been assumed that the pollutant enters into the environment not

directly, but by a precursor produced by the population itself. It has been considered
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that the larger the population, the faster the precursor is produced, and the larger
the precursor, the faster the pollutant is produced. The model has been studied with
and without diffusion. In case of no diffusion it has been shown that population
density settles down to its equilibrium level, the magnitude of which depends upon
the equilibrium levels of emission and washout rates of environmental pollutant as well
as on the rate of precursor formation and its depletion. It has been noted that the
rate of precursor formation is crucial in affecting the population. It has further been

noted that if the concentration of pollutant increase unabatedly, the survival of the

population would be threatened.

The effect of diffusion on the interior cquilibrium of the system has also been investi-
gated. It has been found that global stability is more plausible in the case of diffusion

than the case of no diffusion.

By analysing conservation model it has been shown that if the formation of the pre-

cursor pollutant is controlled by some external means, its affect on the population can

be minimised.

It is hoped that the models investigated in this thesis will be fruitful in developing
environment friendly technology for industrialization, methods for control of pollution
and conservation of resources. The work carried out here will also scrve as a basis for

further study of a very important problem of pollution and its effect on ecosystem.
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Chapter 2

A MODEL FOR THE
ALLELOPATHIC EFFECT ON
TWO COMPETING SPECIES

2.1 Introduction

The decline in the growth rate of biological species is a major cause of concern in
both developed and developing countries due to rapid pace of industrialization and
associated pollution. In recent decades, some investigations have been made to study
the effect of toxicant on biological species using mathematical models (Hallam et. al.,
1983; Hallam and De Luna, 1984; De Luna and Hallam, 1987; Freedman and Shukla,
1991; Huaping and Ma, 1991; Shukla and Dubey, 1996a; Chattopadhyay, 1996; Dubey,
1997a; Shukla and Dubey, 1997). In particular, Freedman and Shukla (1991) studied
the effect of toxicant in a single-species and predator-prey system. In the case of single
species growth they obtained local and global dynamics of theﬁ system, and in the case
of predator-prey system, they investigated the existence of stcady states for a small
influx of toxicant. Huaping and Ma (1991) studied the effects of toxicant on naturally

stable two-species communities and obtained persistence-extinction thresholds for the
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species. Shukla and Dubey (1996a) studied the effect of two toxicants, one being more
toxic than the other, on the growth and survival of a biological species. Chattopad-
hyay (1996) proposed a model to study the effect of toxic substances on a two-species
competitive system. He considered the linear growth rate of the competing species
and their carrying capacities as constants. Dubey (1997a) proposed a mathematical
model to study the depletion and conservation of forestry resources which is affected
by a toxicant. Shukla and Dubey (1997) investigated the depletion of resources in
a forest habitat due to the increase of both population and pollution. In the above
studies the allelopathic effect of toxicant with diffusion on two plant species has not
been considered. Keeping the above in view in this chapter we propose a mathematical
model to study the allelopathic effect on two competing plant species in which growth
rates and carrying capacities of the competing species are taken as nonlinear functions.
Further, the effect of diffusion is also incorporated in the model. In the case of diffusion
our results agree with those in Shukla and Verma (1981), Hastings (1982), Shukla and
Shukla (1982), Freedman and Shukla (1989), Dubey and Das (1999). Stability theory

of differential equations is used to analvse the model (La Salle and Lefschetz, 1961).

We assume that all the functions utilized in the model are sufficiently smooth so that
solutions to the initial-boundary value problems exist uniquely and are continuous for

all positive time. Where there is no confusion, the prime denotes the derivative of a

function with respect to its arguments.

2.2 Mathematical Model

Consider an ecosystem where we wish to model the interaction of two plant species
competing for survival in a closed region D with smooth boundary 9D. We also
consider the allelopathic effect on the model where each species produces a different
toxicant, the concentration of which is a function of its own density. In particular, it
may be taken as proportional to its own density. It is further assumed that the toxicant

produced by one species decreases the growth rate of the other. The dynamics of the
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system may be governed by the following autonomous differential equations:

aN, r|0.N,2

-— = N V) — - N T s

En (A7) Ko (N2) BT,

dN, r201\722

—=2 = Noro(Ny) — - NTy, 2.1
En Nora(INy) - Ko(N1) B N T, (2.1)
_at—l = o N, —aoTy + DiV?T,,

% = ﬁll\i - ﬁ0T2 + D2V2T2.

We impose the following initial and boundary conditions on the system:

Ni(z,v,0) = é(z,y) 2 0, No(z,y,0) = ¥(z,y) >0,
Ti(z,y,0) = &(z,y) 2 0, To(z,y,0) = x(z,y) 20, (z,y)eD (2.2)
aT, 9T,

—_— = = = >
an an 0! (Ity) € aDt’ pall Ov

where n is the unit outvward normal to dD.

In model (2.1), V2 = ;%77 + (%7; is the Laplacian diffusion operator. N;(z,y,t) and
Ny(z,y,t) are the densities of the two species at coordinates (z,y)eD and time t > 0.
T\(z,y,t) is the concentration of the toxicant produced by the species Ny, which is
toxic to the species Np. Ty(z,y,t) is the concentration of the toxicant produced by

the species /Ny, which is toxic to the species N;. D, and D, arc the diffusion rate

cocfficients of T} and T3 respectively in D.

The functions r(/V2) and 7,(/V,) are the specific growth rates of the species of densitics
Ny and N, respectively. Since the two species are competing with each other, hence

T1(N7) and r3(V;) are decreasing functions of their arguments, i.c.,

r(0) = r >0, ri(Ny) < 0 for Ny 20,
and (2.3)
72(0) = rop > 0, r5(Ny) < 0 for Ny > 0.

The functions K (V7) and K,(#V;) are the maximum densities of N, and N, respectively

which the environment can support. K(N,) and K,(N,) are decreasing functions of
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N, and N, respectively, i.e.,

Ky (0) = Ky9 > 0, K{(N2) <0 for Ny > 0, K (Ny) =0 for some Ny = Ny > 0,
and (2.4)
1(2(0) = Ky > 0, I(;(IV\) <0 for Ny 20, 1\/2(1\710) =0 for some Ny =Ny, > 0.

In model (2.1), Bi2 and B, are the depletion rate coefficients of Ny and N, respectively
due to toxicant produced by N, and N, respectively. ay and , are the growth rate

coefficients of T} and T, respectively and ag and By are their respective natural depletion

rate cocflicients.

2.3 Model Without Diffusion

In this case we take D, = D, = 0 in model (2.1). Then the model reduces to

% = Nir () - ]:»ll(zjj\\i) = BTy,

(1(11\:2 = Nory(N) - 1’\’220(’1\\7’2?) = Oa N Th, (25)
%1;—‘ =a Ny — 00Ty,

‘_{5_;2 = Ny — BoTh.

N(0) 2 0, Np(0) 20, T1(0) > 0, T»(0)> 0,

It can be checked that model (2.5) has six non negative cquilibria, namely, F4(0,0,0,0),

El ([\/(0, 0, 0, 0)1 E?(O) [\,207 0. 0): E3(1{l0: 03 QJQL(;LQ’ 0): E‘i(O’ ]\,20) 0) QLI_;‘E’ZQ_) and

E*(N{,N;,T;,T;). The equilibria Eq— £y obviously exist. We shall show the existence

of E* as follows.

Existence of (N, N5, Ty, 17) -

Here N{, N;, T and T, are the positive solutions of the following algebraic cquations:
riolNy = K (No){r(Ny) — 5127, (2.6)
raoNg = Ko(N))]ra(Ny) — By Th), (2.7)
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T, = — Ny, (2.8)
Qg

I, = &1\’2- (2.9)
Bo

It can be checked that E* exists, provided

1{10 < 1\’10 and 1(20 < Nga (210)
or
1(10 > 1\’10 and 1(20 > IVQQ (211)

hold, otherwise E* does not exist and if it exists, then it is not in the positive orthant.

By computing the variational matrices corresponding to cach cquilibrium it can be
checked that Ej is a saddle point with unstable manifold loc’ally in the N, — N, plane
and stable manifold locally in the T, — T plane. E; is also a saddle point with stable
manifold locally in the N, — T, — T5 space and unstable manifold along the /N, direction.
E; is also a saddle point with stable manifold locally in the N, — T — T5 space and
unstable manifold locally along the NN, direction. Ej is also a saddle point with stable
manifold locally in the Ny — T} — T, space and unstable manifold locally along the IV,
direction (Here ro(K)o) — ﬁglﬁtﬁom is taken to be positive). Ey is also a saddle point
with stable manifold locally in the N, — T} — 75 space and unstable manifold locally

along the N, direction (Here 7, (/Kq) — ﬁlgﬁ%(o—’ﬂ is taken to be positive).

In the following theorem it is shown that E* is locally asymptotically stable.

Theorem 2.3.1 Let the following inequalities hold

(F1N3) + o V7) + R KGNG) + RGN )
< gmr(]fovg) Al (2.12)
B < za0 O S (2.13)
:23 250 I,lr(lg,.) (2.14)
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where

10‘0 Ti0
= T Tt S areN)
' 3ol K\ (N;)

180 120
C2

T 36 Ka(Np)
Then E* is locally asymptotically stable.

Proof: We first linearize system (2.3) by taking the transformations,
Nl = IV; + 14, Ny, = 1\‘—2' + no, Tl = T; + T, T2 = Tnz‘ + 9.

Then taking the following positive definite function in the linearized form of model

(2.5),
1 n?2  n?
V(n,ng,m,m) = ~{—- + =2
( 1 2; 71, 2) 9 !\{‘. 1\7’2‘
it can be checked that the derivative of V with respect to t is negative definite under

conditions (2.12), (2.13) and (2.14), proving the theorem.

2, .2

To investigate the global stability behaviour of E* we need the following lemma which

establishes a region of attraction for system (2.5). The proof of this lemma is easy

hence is omitted.

Lemma 2.3.1 The set

Q= (N, Noy T, T3) 10 S Ny € Ko, 0 Ny € K0 € Ty < 20000

—_ }

Qg

OSTzs@—[‘—zﬂ}
Bo

is a region of attraction for all solutions tnitiating in the interior of the positive orthant.
In the following theorem global stability behaviour of E* is studied.

Theorem 2.3.2 In addition to assumptions (2.3) and (2.4), let 7{(Ny), r2(Ny), I; (N7)
and Ko(N,) satisfy the following conditions in

0 < —m(N2) € p1, 0L —r(Vy) < 92,0 < —K((N2) € ki, 0 € —KG(V1) < ko,

1(,,,1 S I(l(IVQ) S 1\,|0 and 1\,,,,2 S 1\"2(1’\']) S 1(20, (215)
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for some positive constants py, p2, ki, k2, Ky and Kpma. Let the following inequalities

hold:

rioKiokr  r20K20k2,, 4 Tio T20
< = , 2.16
R < B My e W R V7 vy bty
2 T929
—_ 2.17
:B'Zl < Bcl 01/ (!\Il- ( )
2 Tio
2 < =cfo—cr 2.18
B2 < 302,30 (N;) ( )
where
10’0 "0
€= -5 ———,
. 3 O.? 1(1(]\72')
LG 120
C2 =

3/32 ]\Z(Nl)

Then E* is globally asymptotically stable with respect to all solutions initiating in the

interior of the positive orthant.

Proof: We define the following positive definite function around E*,

N
ViNy, Ny, T Ty) = Ny— NP = N ln(]\ )+ Ny = Ni = N3 In(52)
+§{C1(T| - T;)? + CQ(T’) - TQ. )2} (219)

Differentiating V) with respect to t along the solutions of system (2.5), a little algebraic

manipulation yields

dV) 710 12
_ = = _— 1 f \7
dt 1\'1(1\/;)( 2 1<2(;\f )(’ 2

+{M(N2) + 1(N1) = TioN1 &1 (V) — rogNo&o (N1 H(Ny = NT)(Np — N;)
+cio (Ny — NPY Ty = TV) = Bra(Ny — N T - T3)

- /‘\/2')2 - C]O'Q(T} - Tl.)2 - Czﬂo(Tz - 71)_.)2

—B21(N2 — N3 )T\ = TY) + 281 (Ny ~ N3 (T = T3), (2.20)
where
B Ny
Th(Nz) =
1 (N3), Ny = N,



ra(N1)—ra(V]) N, # Nl.

Ny—=N7 ’
2 (N,) =
Té(jvl‘): Ny = Nl.
{Kx(lNz) - K;(lN;)}/(Nz — Nz'), Ny # N,
fl(N2) = ﬁ
Lm0, Ny = N3
.
{7atmn — ey H/ (N = M), Ny # N,
52(N1) = 4
\ _T(_ﬁl—ml{é(l\l;)a Nl = Nl'

From (2.15) and the mean value theorem, we note that

(N2 1< o1, (7N 1< o 160(Na) 1< — and [&(N))

<22 2.21
KT, <2, 2

Now Eq. (2.20) can be written as the sum of the quadratics

dV 1 . « * 1 Y
Fti = ———2-an(N| ~ N7)? +app(Ny = NJ)(N2 — N;) — 5“22([\,2 ~ N;)?

1 - - L 4 1 *
—50“(1\[1 - f\rl )2 + (],13(!V1 - A’l )(T] - Tl ) - 50.33(T1 - Tl )2

1 . . N .
—ia“(l\’, — ‘A\,l )2 + 014(!\“ - !\ll )(T2 bt T2) - E(L,M(TQ - T2 )2

1 L] » L4 1 *
—§a22(1\’ - 1\;2 )2 + 023(!\7 — 1\72)(T1 - Tl ) - -2-0.33(T1 - Tl )2

1 . c. * 1 *
—5022(1\7 — 1\72)2 + 024(!\’ — !\72)(T2 - TZ) - 5&44(T2 — T2 )2,

where

2 T 2 r
a, = __,_—IO'_, Ay = ——"‘—22~', (133 = C1Qp, Ayq = C'lﬂ())
3 K\ (V3) 3 Ko(N7)

a2 = M(Ny) + (Vi) = 1N & (Ng) — 120 N262(Ny),

a3 = cay, @y = —fh2, ax = ~Pyn, and an = 20



Sufficient conditions for £ to be ncgative definite are that the following conditions
hold:

a3, < apnag, (2.22)
al; < anas, (2.23)
a?, < anas, (2.24)
0«33 < Q220Q33, (2.25)
a3, < azaq. (2.26)

By choosing

we note that Eqs. (2.23) and (2.26) are satisfied automatica‘ily. We also note that
(2.16) = (2.22), (2.17) = (2.24) and (2.18) = (2.25). Hence V; is a Liapunov function
(La Salle and Lefschetz, 1961) with respect to E* whose domain contains the region of

attraction €2, proving the theorem.

It is interesting to note here that after linearizing the conditions (2.22), (2.24) and
(2.25), we get conditions (2.12), (2.13) and (2.14) respectively, as expected.

The above analysis shows that in the absence of diffusion the compcting specics scttle
down to their respective equilibrium levels under conditions (2.16)-(2.18). The mag-
nitude of each species depends upon the equilibrium level of other species and on the
concentration of toxicant produced by the other species, and it is lower than its initial
density independent carrying capacity. It may be noted here that if the competing
species of density NN, reaches to critical level N; = N,,, then the other competitor
becomes extinct, and if the competing species of density N, reaches to a critical level
N, = Ny, then the first competitor becomes extinct. Further, both competing species

survive under parametric condition (2.10) or (2.11).
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2.4 Special Case: When the plant species do not

produce any toxicant

In this case, model (2.5) reduces to

d}\'l T]QN;Z
e = No) — ————
dt Nlrl(l 2) I{I(Nz)’
dl\’g T20N22
—= = Nory(N}) — ,
dt 2r2(M) Ky(Ny)’ (2.27)

Ni(0) 2 0, N2(0) 2 0.

It can be checked that model (2.27) has four nonnegative equilibria, namely, E4(0,0),
E\(K)0,0), E5(0, K2) and E(Ny, Ny). The equilibria Ey, E; and E, obviously exist.
In E, we note that N, and N, are the positive solutions of the following algebraic

equations:

Tlol\rl =T (/Vg)](] (NQ), (228)
7-20]\f2 = T2(1\71)1<2(N1). (229)

It can be checked that £ exists, provided condition (2.10) or (2.11) is satisfied, otherwise

F does not exist and if it exists, then it is not in the positive quadrant.

By computing the variational matrix corresponding to each equilibrium it can be
checked that Ej is locally unstable in the N; — N, plane. E, is a saddle point with
stable manifold locally in the N)-direction and unstable manifold locally in the Ny-
direction. F, is also a saddle point with unstable manifold locally in the N;-direction

and stable manifold locally in the N,-direction.

In the following theorem it is shown that E is locally asymptotically stable. The proof

of this theorem follows from Routh-Hurwitz criteria and hence is omitted.

Theorem 2.4.1 Let the following inequality holds:

7‘101\71 Iy ey TzoNz Iy T10720
—_— N N+ ———K. (N = —. 2.
I{%(N2)I{l( 2}{r2(' ‘) 1(%(1\’) 2( ‘)} < 1{1 (Nz)I{g(Nl) ( 30)

Then E is locally asymptotically stable. Also E is unstable if inequality (2.30) is re-

{ri(N2) +

versed.
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To investigate the global stability behaviour of E we need the following leinina which
cstablishes a region of attraction for the system under consideration. The proof of this

lemma is easy and hence is omitted.

Lemma 2.4.1 The set
Qp = {(N}, N3) : 0 < N, < Ky, 0< Ny < K}

attracts all solutions initialing in the interior of the positive quadrant.

In the following theorem global stability behaviour of E is studied, the proof of which

is simmilar to the proof of Theorem 2.3.2 and hence is omitted.

Theorem 2.4.2 [n addition to assumplions (2.3) and (2.4), let r1(Ny), r2o(Ny), IS (Ny)
and K3(N,) satisfy the following conditions in Q,

0< —r(N2) € p1, 0 —rp(N1) < o, 0 < —K[(N2) < ki, 0< —K5(Ny) < ko,

Ky < K(Vy) € Ko and Kpg < IK(Ny) € Ky, (2.31)
for some positive constants py, pa, ki, ko, Ky and Kng. If the following condition
holds

{pr+ P2+

"lo{\/noi’l T20 K 20ks 2 4710720
K2, K2, I(I(Ng)l{g(Nl)’
then E is globally asymptotically stable with respect to all solutions initiating in the

(2.32)

positive quadrant.

2.5 Model With Diffusion

In this section we consider the complete model (2.1)-(2.2) and state the main results

in the form of the following theorem.

Theorem 2.5.1 (i) If the equilibrium E* is globally asymptotically stable, then the
corresponding uniform steady state of the initial-boundary value problems (2.1)-(2.2)

is also globally asymptotically stable.
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(i) If the equilibrium E* is unstable, then the uniform steady state of the initial-
boundary value problems (2.1)-(2.2) can be made stable by increasing difjusion coeffi-

cients appropriately.

Proof: Let us consider the following positive definite function

VoM, Na(e), Ti(0), Ta(0)) = [ [ Vi (8), Na(0), Ta (1), To(0))dA

where V] is given in equation (2.19).

We have,
d‘/g _ ‘/ 61\’ 8\/1 a]\fz BV, 8T1 3\/1 8T2
dt / / aN ot aN2 ot 0T, ot 9T, Ot yaA
= I, + I,
where
dV, I o, 1 oV, 1«2
// dA and I, = //D{D, 57 VT + Doz VTh)dA. (2.33)

We note the following properties of V), namely,
81/',] _ 8\/’,} ~0
aTv,, 9T2),p
and for all points of D,
9%V, 9, _ v, o, _ 0%\ W
ONION; — ON\@T, ~ ON\OT, 0N, 0Ty~ dN,0T, ~ 9T\OT,

9%V, 9*v, oV, 0y,
- — — d — .
IN? > 0, ON3 > 0, IT? > Oan T > 0

=0,

We now consider [, and determine the sign of each term. We utilize the following

formula known as Green’s first identity in the plane,

//D FV2G dA = F%%ds - //D(VF.VG) dA

where -g—f is the directional derivative in the direction of the unit outward normal to

dD and s is the arc length.
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Then with F = Q—Vl and G = T, we get

[/ {Qﬁva}dA - f ML, _ //{v %) v} da

D 8T1 on
Vi . on
= -// {V(aTl ).VT 1} dA, since o = 0.
Now )
av 9V, 0T, . O*VV, 0T -
VGr) = et ot oy
Hence ,
Vi, 6 V BT, BT,
= A<
[ Grv T da == [ [ Grl(G )+ () dA< o
similarly
oV,
//{——vu}cm < 0.
ie.,

I, < 0. (2.34)
Thus we note that if I, < 0, i.e., if the interior equilibrium E* of model (2.5) is globally

asymptotically stable in the absence of diffusion, then the uniform steady state of the

initial-boundary value problems (2.1)-(2.2) also must be globally asymptotically stable.

This proves the first part of Theorem 2.5.1.

We further note that if ‘%} >0, 1.e.,if I} >0, then E* will be unstable in the absence
of diffusion. But Egs. (2.33) and (2.34) show that by increasing diffusion coefficients

D, and D, sufficiently large, £2 can be made negative even if /; > 0. This proves the

second part of Theorem 2.5.1.
We shall explain the above theorem for a rectangular habitat D defined by
D={(zy):0<z<a 0<y<b) (2.35)

in the form of the following theorem.

Theorem 2.5.2 In addition to the assumptions (2.3) and (2.4) let r1(N3), To(Ny),
K{(N,) and K,(N}) satisfy the inequalities in (2.15). If the following inequalities hold:

rigfioky fzol\’zokz}g SRAL T20
K2, K2, 9 K1 (N3) Ko(Ny)'

{pr+p2+ (2.36)
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Dyn*(a? + V)

By < 3 1<2(N){“ aw
Dyn?(a? + b?)
Bz < 3621\’,(\5){[3 * a2b? }j
where
c l—l_ Tio { , 13171'2(0.2 + bz)}
' 3l (V) alp?
and
_ 11 T20 D27r2(a2+b2)
2= 33 (N]) {Bo + a2b? b

(2.37)

(2.38)

then the uniform steady state of the initial boundary value problems (2.1)-(2.2) is glob-

ally asymptotically stable with respect to all solutions initiating in the interior of the

positive orthant.

Proof: Let us consider the rectangular region D given by Eq. (2.35). In this case I,

can be written as

o [y 4 By an- f | D
From Eq. (2.19) we get
9’V
BTF = Gy,
and
d*v,
W = ¢,.
Hence
=-chl//{aT‘ aT‘ }d4—D2C2//{8T2 +(
Now
I on = [P
= / / (AD = Ti) g2 g,

Let 2 = %, then

[

dA = - //l{am e goay
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Now utilizing the inequality (Denn (1973), pp. 225)

v o1, 2 [V oo
pdull} > :
/O(ax)dz:_n/oT,d'c

we get
oT
[ = —/ [, @ - 1y
- / / (T) - T*)2dzdy
= ?17/ /D(Tl“
Similarly,
BT w2
[ en = 5[],
Thus,
Dicym?(a? + b?) 2 Dycpm?(a? + b?)
< - -
s RO [ [0 - Tias - S [ Jom =T
Now from (2.20) and (2.33) we get
de T10 2 T20 ; 2
— N?
//{K (N2 Vi) - Ko(N; )(A"’ 2)

Diey7{a +b2 .
1¢1 a§b2 )](T) __Tl )'Z

Dacoi?(a? + b2
—C2[ﬂo+ 202 agbz )

+{n (V2) + (V) — rioN & (N2) — 129 No&o(N1) } (V) — Ny ) (N2 — N3)
+cio(Ny — N )Ty = T7) = Bra(Ny — Ny (T2 - T5)

—c1[00 +

(T2 - T3)

~Ba1 (Ny = NyYTy = 1) + 281 (Na — Ny ) (T — Ty)} dA, - (2.39)
where 7, (N2), 72(V}), 5l(1v2) and &(iV,) are defined in Eq. (2.20).

Now Eq. (2.39) can be written as the sum of the quadratics

%:2 < //D{—%b“(m — N7)2 4 bia(Ny = NP (N — Nj) — %bn(NQ — N3)?
—-;—b“(z\’, — N 4 bys(Ny, = N T - T - %bn(T] ~T7)?
--;-b”(N, —~ N2+ b(Ny = N (T = T;) — %bM(Tz ~T3)?
—-;—bm(N — N3 4 by (Ny = Ny )Ty = 1Y) — %1;33(T1 - T7)?

1 sa * » 1 »
—‘2'b22(N2 — N3)? + byy(Ny = No)(T, — T5) ":,51)44('112 —T5)%}dA,
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where

bn = 2T 22 = g—ﬂ)—,
3K, (N3’ 3 15 (IN])
bis = afae+ DlT?(a +bz)} bag = c2{fo + Dﬂzc(:z:- bz)},
bz = m(N2) + 772(1\'1) — r1gN1&1(N2) — rg N2&2 (1),
bis = ciay, by = =2, bz = =P and by = c253:.

Sufficient conditions for €2

dt
hold:

By choosing
4]
and

Cy =

11 Tio
= ST (et

to be negative definite are that the following conditions

bllb22)
bllb331
b]lb44s

b22b33,

ba2b4y.

K (N3)

11 20
3 62 K,(N}) {Bo + Tt

NN
_ O
— N

»o
SN
o

—_~ e~~~ o~ o~
™ X
BN =N
E=N no

we note that conditions (2.41) and (2.44) arc satisfied automatically. We also note that

(2.36) =

(2.40), (2.37) = (2.42) and (2.38) =

(2.43). Hence V;, is a Liapunov function

with respect to E* whose domain contains the region of attraction §2;, proving the

theorem.

It may be noted here that if D,

= Dy = 0, then Theorem 2.5.2 reduces to Theorem

2.3.2. We further note that inequalities (2.37) and (2.38) may be satisficd by increasing

D, and D, to sufficiently large values. This implies that stability is more plausible in

the case of diffusion.



2.6 Numerical Examples

In this scction we present numerical examples to illustrate the results obtained in
sections 2.3 and 2.4 by choosing the following particular form of functions in model
(2.5):
r(Np) =10 — TN,
ra(N) = 190 — T21 N1,
1(1(]\’2) = 1(10 - I\,“]\,Q, (245)
I(g(l\ll) = ]{20 - 1{2]]\7],
where all coefficients are positive. We now choose the following values of the parameters
in cquation (2.45):
T = 100, m = 003, T2 = 120, T = 004,
1\"10 = 300, I<ll = 005, 1(20 = 320, ]\,2) = 008 (246)

Example 1 In this example we consider system (2.5). In addition to the values of

parameters given by Eq. (2.46), we choose the following values of the parameters in
model (2.5):

ﬁl? = 010, nB'Zl = 013, ) = 080,
6, = 0.90, ag = 0.60, fo = 0.70. (2.47)

With the above values of the parameters, it can be checked that condition (2.10) for

the existence of E* is satisfied, i.c.,

Kig = 30.00 < Ny, = 400.00 and Ky = 32.00 < N,, = 600.00.

Thus, the interior equilibrium E* exists and is given by
N? =20.00705, N; = 19.58694, T; = 26.67606, T; = 25.18320. (2.48)

It can also be checked that conditions (2.12)-(2.14) in Theorem 2.3.1 are satisfied,

which shows that E* is locally asymptotically stable.
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Further, by choosing K, = 15.0 and K2 = 20.0 in Theorem 2.3.2, it can be veri-
fied that conditions (2.16)-(2.18) are satisfied and hence E* is globally asymptotically
stable.

Example 2 In this example we consider the model when the plant species do not
produce any toxicant. We take the same set of functions as given in Eq. (2.45) and

the same set of values of the parameters as given in Eq. (2.46).

It can be checked that £ exists and is given by
N, = 26.29291, N, = 27.27633. (2.49)

It can also be checked that condition (2.30) in Theorem 2.4.1 is satisfied, which shows

that F is locally asymptotically stable.

By choosing K,,; = 15.0 and K, = 20.0 in Theorem 2.4.2, it can be verified that

condition (2.32) is satisfied showing global stability character of £.

Comparing Egs. (2.48) and (2.49) we note that the values of N, and NV, are considerably
higher than their previous values N7 and N;. This shows that the equilibrium levels

of the plant species, when they produce toxicant, are lower than the case when they

do not produce toxicants.

2.7 Conclusions

In this chapter, a mathematical model has been proposed and analysed to study the
interaction of two plant species competing for nutrients. It has been assumed that cach
plant species produces toxicant, which reaches to the other through diffusive process

and affects its growth.

In the case of no diffusion, it has been shown that the two competing plant specics
settle down to their respective equilibrium levels, the magnitude of which are lower
than their corresponding initial density independent carrying capacitics. In the case

when the two plant species do not produce any toxicant, it has been shown that the two

39



plant species again scttle down to their respective equilibrium levels, the magnitudes
of which are higher than their corresponding values in the case when they produce
toxicant. To illustrate the above facts a numerical example has also been presented in
this chapter. It has also been found that the rate of decrcase in the growth rates of

plant species is faster in the case when each plant species produces a substance toxic

to the other.

By incorporating diffusion in the system it has been shown that diffusion is playing the
general role of stabilizing the system. It has been shown that if the interior equilibrium
of the system with no diffusion is globally asymptotically stable, then the corresponding
uniform steady state of the system with diffusion must be globally asymptotically
stable. Further, an unstable steady state in the absence of diffusion can be made stable
by increasing diffusion coefficients sufficiently large. In a particular case of rectangular

habitat it has been shown that stability is more plausible in the case of diffusion.
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Chapter 3

MODELLING THE SURVIVAL

OF SPECIES DEPENDENT ON
RESOURCE IN A POLLUTED

"ENVIRONMENT

3.1 Introduction

Various kinds of industrial discharges and chemical spills in the form of smokes, poi-
sonous gas fumes, hazardous wastes have polluted the air and contaminated the stread')s,
rivers, lakes and oceans with varieties of chemicals and toxicants such as arsenic, cad-
mium, lead, zinc, copper, iron, mercury ctc. causing damage to both terrestrial and

aquatic environment (Jensen and Marshall, 1982; Nelson, 1970).

In recent years some investigations have been made to study the effect of toxicants on
biological species (Chattopadhyay, 1996; De Luna and Hallam, 1987; Dubcy, 1997a;
Freedman and Shukla, 1991; Hallam and Clark, 1982; Hallam et. al., 1983; Hallam
and De Luna, 1984; Huaping and Ma, 1991; Shukla and Dubey, 1996a; Shukla and

Dubey, 1997). In particular, Freediman and Shukla (1991) studied the effect of toxicant
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on a single-species population and predator-prey systems. They showed that if the
emission rate of the toxicant into the environment increases, the equilibrium level of
the population decreases, the magnitude of which depends upon tjge influx and washout
rates of the toxicant. Huaping and Ma (1991) also studicd the effect of toxicant on
naturally stable two species communities and found the persistence and extinction
criteria for populations. Shukla and Dubey (1996a) studied the effects of two toxicants
when one is more toxic than the other, on a single species population. Chattopadhyay
(1996) studied the effect of toxic substances on a two-specics competitive system and
showed that toxic substances have some stabilizing effect on a two-species competitive
system. Dubey (1997a) proposed a model for control of toxicant and conservation of
forestry resources. The survival (growth and existence) of resource biomass dependent
species in a forested habitat, which is being depleted due to industrialization pressure,
has also been studied (Shukla et al., 1996). Shukla and Dubey (1997) studied the
depletion of a forestry resource in a habitat, which is caused by increasc in population
density and pollutant emission into the environment. The pollutant cmission rate
is either population dependent, constant, periodic or instantaneous. But in the above
investigations the survival of species population dependent on resource which is affected
by pollutant has not been considered. Further, in the above studies the cffect of
diffusion has not been considered. Recently, Dubey and Das (1999) studied the survival
of wildlife species dependent on resource in an industrial environment with diffusion.
They showed that the increasing industrialization may lead to decrease in the density
of resource biomass and consequently the survival of the species may be threatened,

but diffusive migration may prevent extinction of the species.

Keeping the above in view, in this chapter, a mathematical model is proposed and
analysed to study the survival of a single-species population dependent on resource
which is affected by a toxicant present in the environment with diffusion. It is assumed
that the population depends partially or wholly on the resource or just predating on
the resource. Stability theory of ordinary differential equations (La Salle and Lefchetz,
1961) is used for the model analysis to study the equilibrium levels of the species

population and the resource biomass density by taking into account the constant,
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instantaneous or periodic emission of toxicant into the environment.

3.2 Mathematical Model

We consider an ecosystem where we wish to model the survival of a biological species
dependent on resource which is affected by a pollutant present in the environment in
a closed region D with smooth boundary dD. It is assumed that the growth rate
of the biological species increases as the density of the resource biomass increascs
while the carrying capacity increases as the resource biomass density increases and
decreases as the concentration of the environmental pollutant increases. It is further
assumed that the growth rate of the resource biomass decrcases as the density of
the species population and the uptake concentration of the pollutant increase but its
carrying capacity decrcases only with the increase in environmental concentration of
the pollutant. Following Freedinan and Shukla (1991), Huaping and Ma (1991) and
Dubey (1997a), the system is assumed to be governed by the following differential

equations:

ON Tol\ﬂ
—— =r(B)N - ’N
E)B 7'[}032
- NYB — 2
BT, 7[)(U,f )B ]{-B(T) + D2v B)
aT
57 = Q) = &T — aBT +6:6,U + mvBU + D;V°T, (3.1)
U

5 = 0B +068T — §,U +aBT ~ vBU,

0 < b, 0, 7 < 1.
We impose the following initial and boundary conditions on the system:

N(z,y,0) = ¢(z,y) >0, B(z,y,0) = ¥(z,y) > 0,

T(z,y,0) =&(z,y) 20, U(z,y,0) = x(z,y) >0, (z,y)eD (3.2)
oN 9B OT
_871-_57;—5_":_0’ (I,y)EaD,tZO,

where n 1s the unit outward normal to dD.
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In model (3.1), V2 = 5‘%—%— :—} is the Laplacian diffusion operator. N(z,y,t) is the den-
sity of the biological species, B(z, y,t) the density of the resource biomass, T(z, y, t) the
concentration of pollutant present in the environment and U(z, y,t) the concentration
of pollutant uptaken by the population at coordinates (z,y)eD and time t > 0. Q(t)
is the rate of introduction of pollutant into the environment which may be constant,
zero or periodic. &g is the depletion rate coefficient of pollutant from the environment,
perhaps from biological transformation, chemical hydrolysis, volatilization, microbial
degradation or photosynthetic degradation, and a fraction 8, of it may reenter into
the resource biomass with the uptake of pollutant. 4, is the natural depletion rate
coefficient of U(t) due to ingestion and depuration of pollutant, and a fraction 8; of it
may reenter into the environment due to recycling. Also the uptake concentration of
the pollutant may decrease with the rate coefficient v due'to resource biomass and a
fraction m of which may reenter into the environment. « is the depletion rate coefficient
of the pollutant present in the environment due to its uptake by the resource biomass.
B is the net intake of the pollutant by the resource biomass via food chain. D;, D,

and Dj are the diffusion rate coefficients of N, B and T respectively in D.

In model (3.1), the function r(B) denotes the specific growth rate of the biological

species which increases as the density of the resource biomass increases. The function

T(B) may satisfy the following conditions:
r(0) >0, (B) >0 forB > 0. (3.3)

In this case the species depends partially on the resource biomass i.e., B(x,y,t) may be

thought of as an alternative resource for the population N(x,y,t).

r(0)=0, r(B) >0 forB > 0. (3.4)
In this case the species depends wholly on the resource.

(0) <0, r'(B) >0 forB > 0,

and there exists a B = B, such that r(B,) = 0. (3.5)
In this case NV(z,vy,t) acts as a predator on the resource.
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The function K(B,T) denotes the maximum density of the species population which
the environment can support in the presence of the resource biomass and the environ-
mental pollutant. It increases as the density of the resource biomass increases, and

decreases as the environmental concentration of pollutant increases, i.e.,

oK oK ’
— d bl > > 0. .
K(0,0) = Ko >0, =5 >0, 2= <0, for B>0,T 20 (3.6)

The function 75(U, N) denotes the specific growth rate of the resource biomass which
decreases as the uptake concentration of the pollutant and the density of the population

increase, i.c.,

Org(U,N) <0 Org(U, N)

TB(0,0)=T'30 >0, U anN

<0, forU>0, N>0. (3.7

The function Kg(T) denotes the maximum density of the resource biomass which
the environment can support in the presence of the pollutant and it decreases as the

environmental concentration of the pollutant increases, i.e.,

Kp(0) = Kpo >0, K45(T) <0 for T >0,

and there ezists a T = T, such that Kg(T,) = 0. (3.8)

We analyse model (3.1) for three different values of Q(t), namely, Q(t) = Q, >
0, Q(t) =0, and Q(t) is periodic in three different cases (3.3), (3.4) and (3.5). |

3.3 Model Without Diffusion

In this section we take Dy, = D, = D3 = 0 in model (3.1). Then the model reduces to

d/\, T01\72

2~ (B)N - 0

a = TN - m T

dB rpoB?

— =rg(U,N)B - -2°

g = reNIB - s,

dT

qr = Q(t) — 6T — aBT + 6,6,U + v BU, (3.9)
dU

s = BB + 6y60T — 6,U + aBT — vBU,

N(0) > 0,B(0) > 0,T(0) > 0,U(0) > 0.
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Case I: When the species partially depends on the resource

In this case the function 7(B) satisfies (3.3). We first analyse this case when the
rate of introduction of pollutant into the environment is constant i.e., Q(t) = Qo
is a positive constant. It is noted here that model (3.9) has four nonnegative equi-
libria, namely, £11(0,0, z5%m, sien)s Bre(Ve 0,1, Ue), Eia(0, B,T,U), and
E4(N*,B*,T*,U*). It may be noted that in equilibrium E,;, N., T and U, are

given by

Qo 6o Qo
N.=K@OT), T.= —2 — and U, = —20
(0. 7c) So(1 — Bo01) 5.(1 - 6001)

Here we shall show the existence of F4 only, and the existence of Fi3 can be concluded

form the existence of E\4.

To establish the existence of E)4, we note that N*, B*, T* and U* are the positive

solutions of the system of following algebraic equations:

N = h,(B), (3:10)
rpoB = r5(g9(B), hy(B)) K 5(h(B)), (3.11)
T = h(B), (3.12)
U =g(B), (3.13)
where
b (B) = r(B)K (B, h(B))
To
h(B) = Qo + (9;?:;;3)9(3),
4(B) = BB(d + aB) J(rB%o(()odo + a’B),
F(B) = 866,(1 = 000,) + 81a(1 — 04) B + véo(1 — 0p7) B + ve(1 — m) B2,
Taking
F(B) =rgoB — m5(9(B), 1 (B)) K p(h(B)), (3.14)

we note that F'(0) < 0, F(Kpo) > 0. This shows that there exists a B* in the interval
0 < B* < Kpgg such that F(B*) = 0. For B* to be unique, we must have

ar B dg 8r,3 dh] a](g dh

rpo — Kp(h(B)) (5 5048 T av 4B’ rp(g(B), h(B))—7= 57 a8 > © (3.15)
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Thus knowing the value of B*, the values of N*, T* and U* can be computed from

(3.10), (3.12) and (3.13) respectively.

It may be noted here that if —9— > 0, gg > 0 and €& d" > 0, then inequality (3.15) is

automatically satisfied.

By computing the variational matrices (Freedman, 1987b) corresponding to each equi-
librium it can be seen that Ey; is a saddle point whose unstable manifold is locally in
the N — B plane and whose stable manifold is locally in the T — U plane. E}, is also
a saddle point with stable manifold locally in the N — T — U space and with unstable

manifold locally in the B-direction. E,; is unstable in the N-direction.

In the following theorem the local stability behavior of E)4 is studied. First we write

the following notations:

. N* OK(B".T")
r(B*) + RNB-T) 58

C = — Sra(U-.N- > 0,
L
2 roN*?  OK(B*,T*) .,
= >0,
“ = reB BT ar )
3rB!U',N'!

= —— 80 > 0.

B+aT* + vU"

Theorem 3.3.1 Let the following inequalities hold

o 108" Ko (T")
KT or

4
+ co(aT" + 7vU")}? < 300

9 (60 + aB"* ) (316)

B
(T )
{c2(8,61 + TvB*) + c3(0odo + aB*)}? < §c2c3(60 +aB*)(8, +vB*). (3.17)

Then E\4 1s locally asymptotically stable.

Proof: Linearizing system (3.9) by substituting
N=N'4n, B=B"+b,T=T"+7,U=U"+u,

and using the following positive definite function

.1 i
V = ‘é{ N- + Cl-B—' + CQT2 + C3u'2}) (318)
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it can be checked that the derivative of V with respect to t along the solutions of (3.9)

is negative definite under conditions (3.16)-(3.17), proving the theorem.

The following lemma establishes a region of attraction for all solutions initiating in the
interior of the positive orthant. The proof of this lemma is similar to Hsu (1978a),

Shukla and Dubey (1997) and hence is omitted.

Lemma 3.3.1 The set
G ={(N,B,T,U): 0SS NN, 0<B<Kpy,, 0<T+U <Q.}

is a region of attraction for all solutions initiating in the interior of the positive orthant,

where

(K o) K (I po, 0)

N, ,
Tg
Q. = Qo + B o

6 ]
8 = min{éy(1 - 0p),6,(1 — 0,)}.

In the following theorem global stability behaviour of E\4 is studied.

Theorem 3.3.2 In addition to the assumptions (3.3), (3.6)-(3.8) let r(B), K(B,T),
r8(U, N) and Kg(T) satisfy the following conditions in 0,

, drg(U, N) drs(U, N)
0<r(B)<p,0< L8N o _9rs(U,N)
<r(B) < p,0< U <P, 0L N < p3,

Kn £ K(B,T) < K(Kpo,0), Kmp < Kp(T) < Kp, (3.19)
dK(B,T) 0K(B,T) ,
0< E R Sk, 0< 1 < Kg, 0 < —K5(T) < ks,
for some positive constants P P2 3, Koy Kia Ky kg and k3. Then if the following

inequalities hold:

Tol\,cfi.l 2 2 o TBo
ot o+ T =Y < 3R T R (ry (3.20)
ToNcK2 5 2 ro .
TV < SRy @ + aB) (3.21)
ToK poK3 , 4 rpo .
R L e+ m)Q) < - : ,
{ e (a+7v)Q.} 3 (T (80 + aB*), (3.22)
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2 TBo
3Kp(T*)

{2+ B+ (a+v)Q )} < (6, + vB*), (3.23)

2
{90(50 + 9161 + (0’ + 7TI/)B‘}2 < '3-(60 + CYB')((Sl + I/B‘), (324)

E\4 is globally asymptotically stable with respect to all solutions initiating in the interior

of the positive orthant.

Proof: Consider the following positive definite function around E)4,

N
Vi=N-N"=N° ln(;j\T.—) +B-B -B ln(§)+ %{(T—T‘)2+ (U -U")?}. (3.25)

Differentiating V| with respect to t along the solutions of system:(3.9), a little algebraic
manipulation yiclds
d‘/l To ren2 T'Bo 2
— = —————(N-N")" - B-DB
dt I\’(B',T‘)( ) KB(T‘)( )
—(8o + aB* )T = T°)? — (6, + vB*)(U — U*)?

+m(B) + m(U*, N) = roN&(B, T)|(N — N*)(B - B*)
+[~roN&E(B*, T)(N = N*)(T = T*)

+[~rpoBE&(T) = oT + avU)(B — B )T - T*)

+[B + m(U, N) + oT = vU)(B - B*)(U = U")

+(6660 + 018, + (o + 7)) B*|(T = T*)(U — U*), (3.26)

where

771(3) =
(B'), B=B8B
rop(UN)=-rg(U° N .
n( J_Un.( ), U#U
772(U1 IV) =
org(U° N _
e, U=U



rn(U'.l\"\Z:rl'\,l;.(U"N-), N#N'
773(U,)1V) =
8rp(U N* e
e, N =N
{zxwm ~ wa /(B = B, B # B
él(B)T) =
_Ki(ll?',T)g—g(B‘)T)) B =B
{xmm — e/ (T—T7), T#T
&(B°,T) =
—Kz(Bl"’I")aa—i](‘(B.)T‘)) T=T"
{rom ~ wpr /(T =T°), T#T"
&(T) =
Kp(T) e
~RE@y T=T

From (3.19) and the mean value theorem, we note that

* v
|171(B) |S Pl lTh(U)N) IS P2, I773(U ’N) I_<_ P3, l&l(B)T) IS 1;\/-21 )
“ml
. K2 K3
< —_— -

Now %’tl can further be written as the sum of the quadratics

%/l = —%a“(N — N2 +a,(N - N*)(B-B*) - —;-agg(B - B')?
—-;—au(N ~ N + a3 (N-NYT =T - %am(T —T°)?
—%agg(B _ B*) +ag(B - BY(T -T") - %agg(T _ Ty
—%an(s — B} 4 agy(B — B')(U — U*) — %aM(U —uy?

1

1
"EGJJ(T —TV +ay(T-T)U-U") - §GM(U -U*’,



where

. To Qo = 2 TBo
T K(B*T*) T 3Kg(T*)
Q44 = (51 + I/B., Qi = 7)1(B) +T]3(U‘,N) - ToNfl(B,T), a3 = —T‘QNfQ(B‘,T),

2
ay a3z = 5(50 + aB*),

Qg3 = —TBOB£3(T) —al + vl ay = B+ 772(U, N) +aT - vU,
azq = 0050 + 91(51 + (CX + Tl'l/)B'.

Sufficient conditions for £ to be negative definite are that the following corditions
hold:

afz < 11092, (3.27)
a'fs < 11433, (328)
033 < ag2033, (329)
a%,, < Q99044, (330)
a3, < 33044 (3.31)

It is noted here that (3.20) = (3.27), (3.21) = (3.28), (3.22) = (3.29), (3.23) = (3.30),
and (3.24) = (3.31). Hence V, is a Liapunov function with respect to E}4 whose domain

contains the region of attraction §2,, proving the theorem.

The above analysis shows that when the pollutant is emitted into the environment
with a constant rate, the biological species and the resource biomass scttle down to
their respective equilibrium levels. The magnitude of the species depends upon the
equilibrium level of the resource biomass and the concentration of environmental pol-
lutant, which decreases as the equilibrium level of the resource biomass decreases and
the concentration of environmental pollutant increases. The magnitude of the resource
biomass depends upon the equilibrium level of the species, the environmental and the
uptake concentrations of the pollutant which decreases as these factors increase, and
even may tend to zero if the environmental concentration of pollutant becomes very
high. It may be noted here that the survival of the species will be threatened if the en-
vironmental concentration of the pollutant is very high and the density of the resource

biomass is very small.
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Remark 1 When Q(t) = 0, i.e., in the case of instantaneous emission of pollutant into
the environment, the corresponding results can be obtained {rom case I by substituting
Qo = 0. In particular it is noted that the resource biomass and the population settle
down to their respective equilibrium levels under certain conditions whose magnitudes

arc greater than their respective magnitudes in case I.

3.4 Periodic introduction of pollutant into the en-

vironment, i.e., Q(t) = Qo + €¢(t), o(t +w) = ¢(t).

In this case, model (3.9) can be written in the vector matrix form as

dz
pri Az) +eC(t), z(0) = z9 (3.32)
where ) i )
[z, (N [ N(0) [0 |
T B B(0 0
T = 2 = , Tg = ( ) , C(t) = ,
I3 T T(0) é(t)
| Ty ] L U ] | U(O) ] L O ]
r(22)T) — i '
Alz) = rp(zy, )z — {-’;—?%

Qo — doz3 — aTrT3 + 0,8,T4 + TUITT,

| Bz2 — 09bgz3 — 6124 — QT9T3 — VT2 ]

Let M* be the variational matrix corresponding to the positive equilibrium

E\y(N*, B*,T*,U*). Then under an analvsis similar to Freedman and Shukla (1991),

we can state the following two theorems.

Theorem 3.4.1 [f M* has no eigenvalues with zero real parts, then system (3.9) unth
Q(t) = Qo + €9(t), ¢(t + w) = &(t) has a periodic solution of period w,

(B(t,e), T(t,e), U(t,€), W(t,e)) such that (B(t,0), T(t,0), U(t,0), W(t,0))
= (N*, B, T*, U").



Theorem 3.4.2 If M* has no eigenvalues with zero real parts, then for sufficiently

small €, the stability behaviour of system (3.9) is same as that of E*.

Moreover, a periodic solution up to order € can be computed as
t 3 - w -
(€ €) = a,-°+e“"[/ eM 3 C(s)ds — (€M 1) "M w/ M 3C(s)dsle+O(e) (3.33)
) b} 0 0
where [ is the identity matrix.

The above results imply that a small periodic influx of pollutant causes a periodic

behaviour in the system.
Case II: When the species wholly depends on the resource.

In this case, the function r(B) satisfies condition (3.4). In the case of constant emission
of pollutant into the environment it can be seen that model (3.9) has three nonnegative
cquilibria, namely, F5,(0,0, Sl 000') 6-(? 000.)) E5,(0, B,T, U) and Em(N, B, T, U)

The equilibrium FE,3 exists under the same condition (3.15) as discussed in casc I

by replacing £14 by Eq3. The model can be analysed in the similar way as in case I
and the corresponding theorems can be deduced. In particular, it may be noted here
that if the environmental concentration of the pollutant approaches to a critical level

T =T,, then the density of the resource biomass may tend to zero and thus the species

will be driven to extinction.
Case III: When the species is predating on the resource.

In this case, the function r(B) satisfies condition (3.5). Here model (3.9) has again

three nonnegative equilibria, namely, E3,(0,0, + Bol 1ngo,) 5,(%’5001)) E3,(0, B, T,U) and
Ly3(N, B, T,U). The cquilibrium Ej3 exists under the same condition (3.15) as dis-
cussed in case I by replacing £y by E33. The analysis can be carried out in the similar
fashion as in case [. In particular, it is noted here that the survival of the species in

this case is highly threatened.

remark 2 If N}, N}, and N}; be the equilibrium levels of the population in casc I, case

II and case III respectively, then from (3.10) it follows that N}, > Ny, > Ny;. Further
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in case III, it is also noted that the species population will survive only if B > B,,, where
B, is defined in (3.5). Now if B},, B}, and Bj; be the equilibrium levels of the resource
biomass in case I, case II and case III respectively, then from (3.11) it follows that
under same environmental and uptake concentration of the toxicant, B}, < B}, < B

Thus if the density of the population increases, the density of the resource biomass

decreases.

3.5 Model With Diffusion

In this section we consider the compelete model (3.1)-(3.2) and state the main results

in the form of the following theorem.

Theorem 3.5.1 (i) If the equilibrium E\4 is globally asymptotically, then the corre-
sponding uniform steady state of the initial-boundary value problems (8.1)-(8.2) is also
globally asymptotically stable.

(i) If the equilibrium Ey4 is unstable, then the uniform steady state of the initial-

boundary value problems (3.1)-(3.2) can be made stable by increasing diffusion coeffi-

cients appropriately.

Proof: Let us consider the following positive definite function

Va(N(2), B(2), T(2), U(t)) ://D Vi(N, B, T, U)dA

where V) is given in equation (3.18).

We have,
dVs av, N E)V, oB oV, 0T d8v,oU
n //{aN 5 ta5a tor o T au o)A
= I+ Iy, (3.34)
where



L=/ {Dla“VQN p,Yv2p 1 p, 2

2
9B sor v 114

We note the following properties of Vi, namely,

5’"’1} _Q‘_’L] _3_‘2} =0
ON|,, 9Blyp, 0T |4,

and for all points of D,

PV, oV, &V, PV, PV PV

= = = = =0
ONOB ONOT ONoOU 9BoT 0BoU ~ 9ToU ’
9%V, 9V, 0%V, 0*V;
W > 0, W > 0, W > 0and 02 > 0.

We now consider I; and determine the sign of each term.

Under an analysis similar to Chapter 2, it can be seen that

// {&v?z\' dA = - //D 62‘/ N 2+(8_]\_7)2} dA < 0,

PE ay
Vi, ~ A aB 0B,
//{ 9N 928Y 44 = // ) +(ay)}dA<0 (3.35)
vy _, _ Ay ,
[[(GEvTyaa=- [ [ (G5 (—é)—g)}dAso,
i.e., 12 S_ 0.

Thus we note that if J; < 0, i.e., if the positive equilibrium E)4 of model (3.9) is
globally asymptotically stable, then the uniform steady state of the initial-boundary

value problems (3.1)-(3.2) also must be globally asymptotically stable. This proves the

first part of Theorem 3.5.1.

We further note that if %:l > 0,1.e., if I} > 0, then E,4; will be unstable in the absence
of diffusion. But Eqs. (3.34) and (3.35) show that Ly incrcasing diffusion cocflicients
D,, Dy and Dj sufficiently large, ‘i‘l can be made negative even if I; > 0. This proves

the second part of Theorem 3.5.1.
We shall explain the above theorem for a rectangular habitat D defined by
D={(z,y): 0<z<a 0<y<b} (3.36)
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in the form of the following theorem.

Theorem 3.5.2 In addition to assumptions (3.3), (3.6)-(3.8) let 7(B), K(B,T), rg(U, N)
and Kg(T') satisfy the inequalities in (3.19). If the following inequalities hold:

ToNeX1 42 2 o Dy N*7?(a? + b?)
{pl +ﬂ3 -+ I '2"1 } 3{ ((B',T') + a2b2N§ } X
r D,B*7%(a? + b?
{Z ?;‘ 9 2 a2b2(1<,230 h, (3:37)
Tol\fc,\g 2 2 ‘D]]\/"ITQ(G,2 + 02)
b < {KB T T amn
{60 + aB* + D3ﬁ2(2a;+ o) h (3.38)
a
TBOI{BOXS 2 il_ T Bo 132[3‘7'1'2(0.2 + b'Z)
{ I{an +(a+7TU)QC} < 9 1\’3(T') azbzl(%o } X
(6 +aB + 2 3”20(;;; ol (3.39)
2 r D B‘wz(;ﬁ + b?)
2 2 BO 2 (e
{2+ 0+ (a+v)Q.} < 3{/(B(T') R } x
(6, +vB’), (3.40)
20,2 4 12
{0000 + 0,6, + (a + 7v)B"}? < %{60 +aB* + Dym (2b2+ b )} X
o
(6 +vB), (3.41)

then the uniform steady state of the initial boundary value problemns (3.1)-(3.2) is glob-

ally asymptotically stable with respect to all solutions initiating in the interior of the

positive orthant.

Proof: Let us consider the rectangular region D given by Eq. (3.36). In this case I,

which is defined in Eq. (3.34), can be written as

OV, ON (? I, 63 as.,
Dl//(aNg){(E'I—)z }d4_D2// 032 (—a_,;) }

- oo [ [T (o aa (3.42)




From Eq. (3.25) we get

0*V, _ N*
N2 N?
A _ B*
8B  B?
and
o*V, 1
o1?

Hence
D,N* 61\ ON
— —_ dA —
I < v [ LG+ G

ar
- D3 //D{(%-)?'f(‘a—g)?} dA.

1%0 //D{ 8:5

Now

[ ran = [[Eg 0l

-k {l-a—z—’\f—-}? dady

Letting z = Z, it can be scen under an analysis similar to chapter 2 that

// 01\')2d4> _// (N = N*)?
// (aN JA 1;2 //D(N _ N*)2dA

Thus,

V2 2
I < D! (@®+b

a?b? K%,

D3m?(a? + b?) "o
- o [ (8- B)dA.

(2]
~I

y)}dA

B 2
ah2N? )//D(N— N*)2dA ~ DB m (e + ) // (B - B")



Now from (3.26) and (3.34) we get

czv2 L Divai(a? + ) 2
N-N
< [fF S B' ") aRNe )

{ 'Bo + DQB./ (0 +b2)
Kg(T*) a?b? K},
D3772(a +b2)
a?b?

—(6, + vB)(U = U")?

HB - B*)?

— {80 + aB" + T - T°)?

+{m(B) + ns(U", N) = roN&(B, T)HN — N*)(B - B7)

+{-roN&(B . T)}(N = N*)(T - T")

+{~1poB&(T) — aT + U} (B - B*)(T = T")
{d—@ + (U, N) +aT - vU}(B - B*)(U - U*)

+{9050 + 0,6, + aB +7uB )T -~ T)U - U*)|dA,  (3.43)

where 7,(B), m(U,N), n3(U*, N), §(B,T) &(B*,T) and &(T) are defined in Eq.
(3.26).

Now Eq. (3.43) can be written as the sum of the quadratics

dv. ] . . NS i
_dt_i’ < //D{—Eb“(z\’ — N*)2 4 byy(N = N)(B = B*) = Sbn(B - B°)’

1 1
—é-b“(;v — N2 4+ b3(N=NYT =T - 5bas(T = T°)?
1 1

‘—5522(3 —B*)? +b3(B-B )T -T") - §b33(T ~-T")?
1 1
—§b22(3 - B*)? +b(B - B ) U -U") - 5544((] - Uy
1 1
—ibss(T - T")2 +bi3(T -T°)(U-U") - '2‘1744((] - U‘)Q}dA,
where
b _ I'o + le\’ 2((1 + b2)
"TK(B, T a?p?N2
;N DQB'WQ(Q2 +b2)
b?? = T . 212 102 )
Kg(T*) a?b? K,
Dyw2(a? + b?
b33_—‘60+OB'+ 3 ‘521)2 ),

byg =0, +vB*, bia = m(B) + m(U", N) — roN& (B, T),
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biz = —1oN&(B*,T), by = —1poB&(T) — oT + wvU,
by = B+ m(U,N)+ oT — vU,

b34 = 0060 + 9161 +aB* + wvB*.

Sufficient conditions for ‘%:1 to be negative definite are that the following conditions
hold:

b2, < biibay, (3.44)
b2, < byibas, (3.45)
b3, < babas, (3.46)
b2, < banbys, (3.47)
b3, < bagbys- (3.48)

We note that (3.37) = (3.44), (3.38) = (3.45), (3.39) = (3.46), (3.40) = (3.47) and
(3.41) = (3.47). Hence V; is a Liapunov function with rcspec£ to Ey4 whose domain

contains the region of attraction ), proving the theorem.

Iromn the above theorem we note that inequalities (3.37)-(3.41) may be satisfied by
increasing D), D, and Dj; to sufficiently large values. This implies that in the case of
diffusion stability is more plausible than the case of no diffusion. Thus in the case
of diffusion the resource biomass converges towards its carrying capacity faster than

the case of no diffusion, and hence the survival of resource dependent species may be

ensured.

3.6 Conservation Model

It has been noted that uncontrolled environmental pollution may lead to the extinction
of resource biomass. Therefore, some kind of effort must be adopted to conserve the
resource (Munn and Fedorov, 1986; Huttl and Wisniewski, 1987; Lamberson, 1986;
Shukla et al., 1989; Reed and Heras, 1992; Shukla and Dubey, 1997; Dubey, 1997a). In

this section a mathematical model is proposed to conserve the resource biomass by some
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efforts and by controlling environmental pollution by some mechanism. It is assumed
that the effort applied to conserve the resource is proportional to the depleted level of
the resource from its carrving capacity, and effort applied to control the environmental
pollution is proportional to its undesired level. Following Shukla ct al. (1989), Dubey
(1997a) and Shukla and Dubey (1997), differential equations governing the system may
be written as

N To N2

= N — ——— + D, V2N,

a ~ BN g TV

oB . rpoB? 2

= = N)B - R+ D,V*B,

% rg(U, N)B Kp(T) + i+ 0,

?a—’lt: = Q(t) - (50T - aBT + 01(51U + avBU - r'IF'Z + D_’;VZT,

%% = BB + 868T ~ 6,U + aBT — vBU, (3.49)
aF,

B
— = ~ —) = nh,
5 (1 1(80) nry,
aFy

ot = po(T — TYH(T - T¢) — 1 P2,

OS 90,¢9l,ﬁ S 1.
The following initial and boundary conditions are imposed on the system:

N(z,y,0) = é(z.y) > 0, B(z.y,0) = ¥(z,y) >0,
T(x,y,0) = &(x,y) 2 0, U(zx,y,0) = x(z,y) > 0,
Fl(Ii Y, 0) = X!(Izy) Z O: FZ(Ix 3/»0) = X?(Isy) 2 O) (I\ y)éD (350)

aN gB T

5}]—:—87]:51—1:0: (I:y)€aD’tZO’

where n is the unit outward normal to 9D.

In model (3.49), Fi(z,y,t) is the density of eflort applied to conserve the resource
biomass and Fy(z,y,t) the density of effort applied to control the undesired level of
environmental pollutants. ry is the growth rate coefficient of the resource biomass due
to effort £} and rj is the depletion rate coefficient of T'(z, y,1) due to cflort 3. u; and
(o are the growth rate coefficients of Fy and F; respectively and v, and v, are their
respective depreciation rate coefficients. T, is the critical level of the environmental

pollutant which is assumed to be harmless to the resource biomass. H(t) denotes the
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unit step function which takes into account the case when T < T,. We shall analysc the
conservation model (3.49) only for the case when the rate of introduction of pollutant

into the environment is constant.

3.7 Conservation Model Without Diffusion

In this case we take D, = D = D3 = 0 in the model (3.49). Then the model (3.49)
has only interior equilibrium E‘(N’,B,'I_’,U,F;,Fg), where N B, T, U, F, and F, are

the positive solutions of the following algebraic equations:

N = r(B)K(B. [i(B)) = fo(B), (say)
rooB = (ra(/s(B), r(B) + "L Kn(/1(B))

"T _ Qol/g((); + UB) +,BI/2B(9}(S] + ’ITIIB) + 7‘2;1,2(61 -+ I/B)TC
- UQ{(SO(S[(I - 000]) + 601/3(1 - 0071') + Od]B(l - 01) -+ 7TI/B2(1 - 71')} + TQ/JQ((S] ~+- vi3
= fu(B),(say)

BB+ (6bdo + aB) /(B) _

U = 6[ ¥ UB - f3(B),(say)
_ M B

ko= Ul(l 1\’130)’

{'!.:_:(T“Tc)a T>Tc
F, = %—z—(T—Tc)H(T—Tc):
2

0, T<T,
It may be noted here that for F} to be positive we must have

Kpgg > B.

It is easy to check that E exists if and only if the following incquality holds at &,

ree — {ra(fs(B), fz(B))—Lﬂ—‘l—_}f (B)

- (e T ) - ”““}Ka(f,( B)>0. (35

In the following theorem it is shown that £ is locally asymptotically stable, the proof

of which is similar to Theorem 3.3.1 and hence is omitted.
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Theorem 3.7.1 Let the following inequalities hold:

TBo ' Ci1C2 TBo T1F1
{ 11{2( )I(B(T) + CQ(MUU + QT)} < 4 {I(B(T) + B2 } X
(6o + aB), (3.52)

_ _ 1 " _
{C2(0[61 + Tl'l/B) + C3(0060 + OB)}2 < §C2C3(60 + OB)((S] + I/B), (353)

where

Cy = — orn > 0,
aN
3 roN? 0K
S L >0,
= 5 aB K(B.T) o
orp
- _ S ou
= T8y aT + 00 > 0.

Then equilibrium E is locally asymptotically stable.

In the following lemma, a region of attraction for system (3.49) without diffusion is

established. The proof of this lemma is similar to Lemma 3.3.1 and hence is omitted. '

Lemma 3.7.1 The set

Q= {(N,B,T,U,F,F) : 05;\r<1\’r_ 0<B<K,0<T+UZ<Q,,

0SF < 0<F2<“_2Q}
1

is a region of attraction for all solutions initiating in the interior of the positive orthant,

where

r(K.)K(K.,0)

f\-rc': 1
To
_ K 4r
Kc= \130{l+ 1+ 73/'1 ,
2 n K porog
- + BK
(2c — QO ﬁ \c,

)
d = min{dp(1 — 6y),6,(1 — 0,)}.

The following theorem gives criteria for E to be globally asymptotically stable, whose

proof is similar to Theorem 3.3.2 and hence is omitted.

62



Theorem 3.7.2 In addition to the assumptions (3.3), (3.6)-(3.8) let v(B), K(B,T),
rp(U, N) and Kg(T) satisfy the following conditions in {1z
org(U.N) _ . o _9rs(UN)
oU S P2, 0 = ON
< OK(B,T) 0K(B,T)
- 0B or

for some positive constants A1y P2s 32 Kmty Kima2, R1, Ko and Rz, Then if the following

0<r(B)< /0L~ < Ps,

Skl) OS - SR‘Q) OS —\I<IB(T) S.R':})

inequalities hold:

TN Ry 1 7o T80

_ ~ ! 2 1 0 __ 3.9
{[)l +p3+ 1(,2,11 } < 21{(B)T) 1(13(T) ( )
{roj\_fcl_cg 2 2ro(8o + aB) (3.56)
K2, K(B*,T*) '
7'1}0[;/cf_{3 = 3 12 "0 5 , B 3.57
{—-——-—R,'?n2 +(Q+/|I/)Czc} <'_I\,B(T)( 0ot )) ( ’ )
- 1 =
(72 +0 + (o + 1)Q)? < 572 (61 + D), (3.58)
{6060 + 0.6, + (a + ) B)}? < 2(69 + aB) (61 + vB), (3:59)

then E is globally asymptotically stable with respect to all solutions initiating in the

interior of the positive orthant.

Theorems 3.7.1 and 3.7.2 show that if suitable efforts are made to conserve the resource
biomass andeto control undesired level of environmental pollution, an appropriate level
of the resource biomass density can be maintained and consequently the survival of the

species may be ensured.

3.8 Conservation Model With Diffusion

We now consider the case when D; > 0(i = 1, 2, 3) in model (3.49). We shall show that
the uniform steady state N(z,y,t) = N*, B(z,y,t) = B, T(z,y,t) = T*,U(z,y,t) =
U*, Fi(z,y,t) = F{ and Fy(z,y,t) = F; is globally asymptotically stable. For this, we

consider the following positive definite function

V(N (), B, T(), U, Fi0), Fe() = [ [ Va(N.B,T,U, Fi, Fo) da,
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where

N B
Vo(N,B,T,U, F\,F;) = N —N*—N'In !—;— +B-B - Bl

1 .
T-TP+ LU U+ LR~ B 2 - B

and
To
y C2 = —
mB M2

ri K po
G = =

Then as earlier, it can be checked that if "7‘1’1 < 0, then ‘3/% < 0. This implies that if
E* is globally asymptotically stable for system (3.49) without diffusion, then\ the cor-
responding uniform steady state of system (3.49)-(3.50) is also globally asymptotically
stable with respect to solutions such that é(z,y) > 0, ¥(z,y) > 0,€&(z,y) > 0,{(z,y) >
0,¢i(z,y) > 0,C(z,y) >0, (z,¥) e D.

3.9 Numerical Examples

In this section we present a numerical example to explain the applicability of the

results discussed in section (3.3) and (3.7). We take the following particular form of

the functions in model (3.9):
r(B) =r(0)+nB,
K(B,T)= Ky + K)B - K,T,
rp(U,N) =rpo —rgU — 3N, (3.60)
}(B(T) = 1(130 - ]{BIT-
We take the following values of the various parameters in model (3.9) and in equation
(3.60):
rg = 20, Tpe — 1.51, I(o = 600, Qo = 20, (50 = 021,
a=0.01, §; =0.03, §; =3.50, = =0.03,» = 0.039,
8 =0.01, 6, =03, rh =0.09, K, =0.02, I, =0.03, (3.61)
rg; = 0.04, rpo =0.01, Ky = 3.0, K5, = 0.05,
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Example 1 In this example we consider the case I, i.e., when the species depends
partially on the resource. In this case we take r(0) = 2.0. Then with the above set of
parameters given in (3.61) it can be verified that the interior equilibrium

E} (N3, By, T, Ury) exists, and is given by
N{, = 63.68792, B, = 1.46093, Ty, = 8.99959, U;, = 0.20047. (3.62)

It can be checked that conditions (3.16) and (3.17) in Theorem 3.3.1 are satisfied. This

shows that Ej}, is locally asymptotically stable.

By choosing K, = 50.0 and K2 = 2.0 in Theorern 3.3.2 it can be checked that
conditions (3.20)-(3.24) are satisfied showing the global stability character of £Y,.

Example 2 In this example, we consider the case 11, i.e., when the species wholly
depends upon the resource and we take r(0) = 0. Then with the sct of values of

parameters in (3.61), it can be seen that the interior equilibrium £}, (Ny,, By, 115, UL)

exists, and is given by
N;, = 6.57022, B}, = 2.44197, T, = 8.63140, U;, = 0.21667. (3.63)

It can also be verified that £}, is globally asymptotically stable.

Example 3 In this example, we consider the case III, i.e., when the species is predating
on the resource and we take r(0)=-0.15. Then with the same set of values of parametcrs

in (3.61), it can be checked that the interior equilibrium E};(Ny;, Bis, 113, Us;) exists,

and is given by
Ny = 2.28523, Bjy = 2.51599, T} = 8.60484, U, = 0.21783. (3.64)
It can also be seen that E;, is globally asymptotically stable. -

Comparing (3.62), (3.63) and (3.64), we note that Nj, > N, > N{; and B}, < By, <

B4, which supports our result in Remark 2.

Example 4 In this example, we consider the conservation model without diffusion.

Here we have considered only one case, namely, when the species depends partially on
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the resource. In addition to the values of parameters given in (3.61), we choosc the

following values of parameters in model (3.49) with no diffusion:

T = .10, 70 = 0.03, py = 3.14, v; = 0.06,

po = 3.30, v, =0.06, T, = 1.5. (3.65)

Then it can be checked that condition (3.51) for the existence of the interior equilibrium

E is satisfied, and E is given by

N = 66.49411, B = 2.41469, T = 2.37838, U = 0.05767,
Fy, =10.21035, F, = 48.31092. (3.66)

It can easily be verified that conditions (3.52)-(3.53) in Theorem 3.7.1 are satisfied

which shows that £ is locally asymptotically stable.

Further, by choosing K,,; = 50.0 and K, = 2.0 in Theorem 3.7.2, it can be checked

that conditions (3.55)-(3.59) are satisfied. This shows that E is globally asymptotically
stable.

By comparing equilibrium levels E;}, and E in Egs. (3.62) and (3.66) respcctively, we
note that due to efforts F} and F;, the equilibrium level of the resource biomass has
increased whereas equilibrium levels of the concentration of pollutant in the environ-
ment and in the resource biomass have decreased. As a consequence of increase in the
resource biomass, the equilibrium level of the species has also increased, ensuring the

survival of the species.

3.10 Conclusions

In this chapter, a mathematical model for the survival of a single species population
dependent on resource biomass which is affected by a pollutant present in the envi-
ronment has been proposed and analvsed. It has been assumed that the population
depends partially or wholly on the resource or just predating on the resource. It has

also been assumed that the growth rate of the population increases as the density of the
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resource biomass increases while its carrying capacity increases with the increase in the
density of the resource biomass, and decreases with the increase in the environmental
concentration of the pollutant. It has been further assumed that the growth rate of the
resource biomass decreases as the uptake concentration of the pollutant and density

of the population increase while its carrying capacity decreases as the environmental

concentration of the pollutant increases.

In the casc of no diffusion the model has been completely analysed using stability the-
ory of ordinary differential equations. When the population depends partially on the
resource, it has been shown that in the case of constant introduction of pollutant into
the environment, both the population and the resource biomass settle down to their
respective steady states. The magnitude of the equilibriuin level of the population
decreases as the equilibrium level of the resource biomass density decreases and the
environmental concentration of the pollutant increcases. The magnitude of the equilib-
rium level of the resource biomass decreases as the cquilibrium levels of the population,
the pollutant present in the environment and in the body increase. It has also been
noted that the resource biomass may tend to zero for large influx of the pollutant
into the environment affecting the survival of the species. In the case of instantaneous
introduction of pollutant into the environment similar results have been found. In
particular, it has been noted that the population and the resource biomass after initial
decrease in their densities settle down to their respective steady states but after a long
time if the washout rate of the pollutant is small. In this case magnitudes of densities
of the population and the resource biomass are larger than their respective densitics in
the case of constant introduction of pollutant. In the case of the periodic emission of
the pollutant into the environment it has been found that a periodic behavior occurs

in the system for a small amplitude of the influx of the pollutant.

The cquilibrium levels of the population and the resource biomass has been compared in
three different cases: (i) when the population partially depends upon the resource, (ii)
when the population wholly depends upon the resource, and (iii) when the population

is predating on the resource. It has been noted that the density of the population



is maximum in the partially dependent case and minimum in the predating casc and
consequently the density of the resource biomass is minimum in the partially dependent
case and maximum in the predation case, keeping other parameters same in the system.
Thus an increase in the density of the population will also lead to decrease in the density
of the resource biomass. It has also been noted that the survival of the population
will be threatened even in the partially dependent case if the continuous emission of
pollutant into the environment is not controlled. In the wholly dependent case the
population will doom to extinction if the environmental concentration of pollutant
reaches at a critical value, T' = T,. In the case of predation it has been noted that the

survival of the population is highly threatened.

In the case of diffusion, a complete analysis of the model has been carried out. It
has been shown that if the positive equilibrium of the system with no diffusion is
globally asymptotically stable, then it remain globally asymptotically stable in the
casc of diffusion. Further, if the positive equilibrium of the system with no diffusion
is unstable, then it can be stabilized by increasing diffusion coefficients to sufficiently
large values. Thus it has been concluded that in the casc of diffusion, solutions of the

system approaches to the equilibrium level faster than the case of no diffusion.

A model to conserve the resource biomass and to control the undesired level of en-
vironmental pollution is proposed and analysed. It has been shown that if suitable

efforts are made an appropriate level of the resource biomass can be maintained and

the survival of the species may be ensured.
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Chapter 4

SURVIVAL OF TWO
COMPETING SPECIES
DEPENDENT ON RESOURCE IN
INDUSTRIAL ENVIRONMENTS:
A MATHEMATICAL MODEL

4.1 Introduction

In recent yecars there has been considerable interest in the study of competition be-
tween two or more species using mathematical models (Gomatam, 1974; Hsu, 1978a;
Hsu and Hubbell, 1979; Gopalsamy and Aggarwalla, 1980; Hsu, 1981b; Butler ct al.,
1983; Hsu and Huang, 1995). During the last two decades increasing interest has
been shown to study the consumer-resource interactions, with the aim to construct
more theories of interspecies competition. The question of two or more competitors |
living on a single resource has received much attention and has helped to understand

competitive processes. Many authors have tried to answer this question using mathe-
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matical models. All these focus mainly on the coexistence of the species with respect
to their resource utilization (Armstrong and McGehee, 1976; De Jong, 1976; Miller,
1966, 1976; Armstrong and McGehee, 1980; Hsu, 1981a; Gopalsamy, 1986; Mitra et
al., 1992; Shukla et al., 1996). In particular, Goh (1976) found sufficient conditions
for the global stability of two species. This result was extended for nonlinear two
species model by Hastings (1978b). Hallam et al. (1979) derived sufficient conditions
for persistence and extinction of three species in a competitive system. But in these
studies the effect of resource was not included in the model. In this regard Hsu (1981a)
developed a resource based competition model with interference. Gopalsamy (1935)
proposed a resource based competition model and found sufficient conditions for the
convergence of three-species system to an equilibrium point. Shukla et al. (1989) pro-
posed a dynamical model to assess the effects of industrialization on the degradation of
forestry biomass with diffusion. Mukherjee and Roy (1990) obtained persistence condi-
tions of a two prey-predator system linked by competition. Mitra ct al. (1992) studied
the permanent coexistence and global stability of a single Lotka-Volterra type mathe-
matical model of a living resource supporting two competing predators. Shukla et al.
(199G) proposed a mathematical model to study the growth and existence of resource
dependent species in a forested habitat which is being depleted due to the pressure
of industrialization. Dubey (1997b) investigated a mathematical model in which two
species share a common resource, and one of the species is itself an alternative food
for'the other. Recently, Dubey and Das (1999) investigated the survival of wildlife
species dependent on resource in an industrial environment with diffusion. However, in
the above investigations the survival of two competing species dependent on resource

under industrialization pressure in a diffusive system has not been considered.

In this chapter we consider a dynamical model in which two species compete with cach
other and depend on a common resource either partially, wholly or predating on the
resource and the growth of industrialization pressure depends wholly on the resource.
The effect of diffusion on the stability of the system is also studied. In presence of
diffusion our results agree with those in Hastings (1978a), Shukla and Verma (1981),

Shukla and Shukla (1982), Shukla et al. (1989), Freedman and Shukla (1989). The
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stability theory of ordinary differential equations (La Salle and Lefchetz, 1961) is used

to analyse the model.

4.2 Mathematical Model

Consider an ecosystem where two biological species are competing for a single resource
in an industrial environment in a closed region D with smooth boundary ¢D. It is
assumed that the dynamics of the resource biomass and the competing species are
governed by the generalized logistic type equations. It is also assumed that the growth
rate of the resource biomass and the corresponding carrying capacity decrease with the
increase in industrialization pressure. The two competing s‘pecics are assumed to be
cither partially dependent, wholly dependent or just predating on the resource. The
growth rate of industrialization pressure is assumed to be wholly dependent on the
resource and its dynamics is of predator-prey type. In view of these arguments, the

system is assumed to be governed by the following differential equations:

B B?
5 =B - ——;3(1) ~ §,BN, — §,BN; + D, V2B,
N N2
aatl =1 (B)N, — rl;(j L — ag N1 Ny + D, V2N, (4.1)
1
N N2
aa: = 12(B)Ny — TQ;\’! 2 — 012N\ Ny + D3V Ny,
2
al

;= ol = B+ B:IB + DyV*L.

We impose the following initial and boundary conditions on system (4.1):

B(z,v,0) = é(z,y) =2 0, Ny(z,y,0) =(z,y) >0,

No(z,y,0) = &(z,y) 20, I(z,y,0) = x(z,y) 2 0, (z,y)eD (4.2)
8B 8N, 3N, 9l _

an =5 -= 5= =0 £ >
on dn an on 0, (z,y) e dD,t >0,

where n is the unit outward normal to 8D.
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In model (4.1), V? = 5‘% + aa—;, is the Laplacian diffusion operator. B(z,y,t) is the
density of the resource biomass, N, (z, y,t) and N;(z, y,t) arc deunsities of the competing
species 1 and 2 respectively and I(z,y,t) the density of industrialization pressure at
coordinates (z,y) € D and at time t > 0. D,(i = 1,2,3,4) are the diffusion rate
coefficients of B(z,y,t), Ni(z,y,t), No(z,y,t) and I(z,y,t) respectively in D. a,, is
the interference coceflicient measuring the damage effect of species i on species j. g is the
natural depletion rate coefficient of the industrialization pressure, f; the intraspecific
interfercnce coefficient of industrialization pressure and 3, the growth rate cocfficient
of industrialization pressure due to resource biomass. K, is the carrying capacity of
the species i. §; and §, are the depletion rate coefficients of the resource biomass due

to the species 1 and 2 respectively.

The cocfficients Gy, 8y, B2, K, and §, arc strictly positive and as; and a5 are nonneg-

ative.

In model (4.1), the function 7(I) denotes the specific growth rate of resource biomass

which decreases as I increases, i.e.

r(0)=19>0, r'(/) <0 for I >0. (4.3)

The function K (/) is the maximum density of resource biomass which the environment

can support and it also decreases as I increases, i.e.
K@0)=Ky>0, K'(I)<0 for I >0. (4.4)

The function 7,(B) denotes the growth rate coefficient of the species i, which increases

as biomass density increases. We consider the following three types of conditions

satisfied by 7,(B).

(i) ,(0) >0, ri(B) >0 for B>0, i=1,2. (4.5)
In this case, the resource biomass is an alternative resource for the species i.

(1) ,(0) =0, ri(B)>0 for B>0, i=1,2. (4.6)
In this case, the species i wholly depends upon the resource.
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(122) 7,(0) <0, 7/(B) >0 for B >0, (4.7)

and there exists a B = B, such that r,(B,) =0,i=1,2.
In this case, the species i is predating on the resource.

In the next section we analyse system (4.1)-(4.2) without diffusion.

4.3 Model Without diffusion

In the case of no diffusion (i.e., when D, = 0, i=1,2,3,4), model (4.1) reduces to

%?. =r(I)B - ;("(B;) — 61BN, = 6,BN,,

gg{i =r(B)N; — % — a2 Vi N, (4.8)
% =r2(B)Ny — rz;\’i:,zz — a2 N Ny,

% = —fol — Bi1* + 3,1 B,

B(0) >0, N,(0) >0, N,(0) >0, I(0) > 0.

Now we shall analyse the above model in three different cascs, namely, when the com-

peting species are partially dependent, wholly dependent or predating on the resource.
Case I: When the competing species partially depend on the resource

In this case the function r,(B) satisfies condition (4.5) and we take r,(0) = 7,0 > 0,2 =
1,2. We note that model (4.8) has twelve nonnegative equilibria, namely, (0, 0,0, 0),
E\(I,0,0,0), E5(0, K1,0,0), E3(0,0, K2,0), E4(B, Ny,0,0), E5(B,0, Ny, 0),
E¢(B,0,0,1), E7(0, Nip, Nop, 0), Es(Bg, Nig, Nog, 0), Eo(By, N1+, 0,1,), E1o(Bs, 0, Nay, )
and E(B*, N;,N;,I*).

I3

The equilibria Ey — E3 obviously exist. \We shall show the existence of other equilibria

as follows.



Existence of E4(B, N,,0,0):
Here B and N; are the positive solutions of the following algebraic equations:

TQB = T()I(Q - (5‘1<QN1, (49)

7'101\’1 = 1{17'1(3). (410)

It is easy to check that the isoclines (4.9) and (4.10) intersect at a unique point (B, V;)
iff

ro > 6, K. (4.11)

The inequality (4.11) gives the necessary and sufficient condition for the survival of

species 1 dependent on resource in the absence of the species 2 and the industrialization

pressure.
Existence of ES(B,O, 1\72,0):

Here B and N, are the positive solutions of the following algebraic equations:

ToB = ro.[{o - (52[{0]\72, (412)

rogNy = ]\"27’2(3). (413)

Again it can be verified that isoclines (4.12) and (4.13) intersect at a unique point
(B, Np) iff

ro > 0205, (4.14)

The inequality (4.14) gives the necessary and sufficient condition for the survival of
species 2 dependent on resource in the absence of the species 1 and the industrialization

pressure.
Existence of Eg(B,0,0, [):

Here B and [ are the positive solutions of the following algebraic equations:

roB = r(1)K(I), (4.15)
BB = o+ Bl (4.16)



It is easy to check that the two isoclines (4.15) and (4.16) intersect at a unique poiat
(B, 1) iff
BoKo > Bo. (4.17)

The inequality (4.17) gives the necessary and sufficient condition for the survival of the

resource dependent industrialization in absence of the competing species.
Existence of E7(0, NV,p, N2p, 0):
Here

Kiro0(r10 — 021 K3)
TioT20 — 0120001 K1 Ko
Korio(rao — 012K)y)
and Ny, = } 4.1S

% T10T20 — Q1201 K1 K3 ( )

pr = (418)

The necessary and sufficient conditions for the survival of the two competing species

are
T > 0211<2 and To0 > 0121{1. (420)

It may be noted here that the two competing species will survive even if both the

inequalities are reversed in Eq. (4.20).
Existence of Eg(By, Nig, Voq,0):

Here B,, Ny, and Ny, are the positive solutions of the following algebraic equations:

'I"oB = (To - (511\71 — (521\’2)1{0, (421)
1{1 {Tl (B)T‘go — T'z(B)Q’gll{g} \

N, = = fL(B), 4.22

1 P 0y fH(B), (say) (4.22)

N, = KalrsBhro = Bl ol _ iy (o) (4.23)

T1T20 — 012021 K1 K

Substituting the values of N} and N, in Eq. (4.21) we get

TQB = {7‘0 - (51]1(3) - 52_[2(3)}](0, (424)

Taking
F(B) =1oB — {ro — 61 f1(B) — 82./2(B) } o, (4.25)

-
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we note that

F(0) = —{ro — 61 /1(0) — 82f2(0)} Ko < O,
F(Ko) = {61 fi(Ko) + d2f2(Ko) } o > 0.

Thus there exists a By in the interval 0 < B, < Kj such that F(B;) = 0.

For B, to be unique we must have

F'(B) = ro + {81f{(B) + 6:£5(B)} Ko > 0. \ (4.26)

Thus, knowing the value of By, the values of N, and Ny, can then be computed from

Eq. (4.22) and (4.23) respectively. It may be noted here that for Ny and N, to be

positive either

Tl(B)T'zo > T2(B)O.'2]1<2, TQ(B)TH) > T\(B)Q\QI{‘ (427)
or
Tl(B)TQO < T2(B)O.211(2, T2(B)T10 < Tl(B)an]{’l (428)

must be satisfied.

Thus Ej exists if condition (4.26) and either (4.27) or (4.28) hold.

Existence of Eq(B,, Ny,,0,1,):

Here B,, N, and I, are the positive solutions of the system of algcbraic equations:

roB = {r(I) = 8, N\ }YIC(I), (4.29)

N =5mB) _ o B), (say) (4.30)
Ti0

I = ‘_ﬁ"—;’Tﬁ—?? = hi(B). (say) (4.31)

As in the existence of Ejy, it can be shown that Eg exists iff

ro — %Ilih’l(B){r(hl(B)) - &6q1(B)} - K(ln(B)){%h’,(B) —619:(B)} > 0. (4.32)



Existence of Eo(Bs, 0, Nog, I5):

Here B,, N, and I, are the positive solutions of the systemn of algebraic equations:

roB = r(I) — 62N K (1), (4.33)

Ny = LLB—’ = 0a(B), (say) (4.34)

I = :@%ﬁﬁ = hy(B). (say) (4.35)
1

As in the existence of Ey, it can be shown that Fg exists iff

ro — %Ifih;(B){r(hz(B» ~ 8202(B)} — K(hz(B)){%h'z(B) ~ 8205(B)} > 0. (4.36)

Existence of E*(B*, N;,N;,I*):

Here B*, N7, Ny and I* are the positive solutions of the following algebraic equations:

roB = (v(f) = §| Ny, — 6, N,) K (1), (4.37)
I(l {Tl(B)T20 -— T'Z(B)Q!Q]](Q}
N, = = .
M T1oT20 — Cr1202 1 K J(B), (say) (4.38)
I(Q{TQ(B)TIO - Tl(B)Q’nI(l}
Ny = = 39
i TioTa0 — Q1202 K1 K 9(B), (say) (4.39)
[= 2P EBB gy (say) (4.40)
£
It can be checked that E* exists iff
oK or , ‘ '
7‘0'—‘6—[—}1 (B){r(h(B))—6,f(B)—6,9(B)} - K (h(B)) ;9_1}1 (B)—6,f'(B)-624'(B)} > 0.
(4.41)

and any one of the conditions (4.27) and (4.28) are satisfied.

To study the local stability behaviour of equilibria, we first compute the variational

matrices (Freedman, 1987b) corresponding to these equilibria. From these matrices we

conclude the following.

Ey is a saddle point whose stable manifold is locally in the /-direction and unstable
manifold locally in the B— N, — N; space. E| is also a saddle point with stable manifold
locally in the B-direction and unstable manifold locally in the Ny — N, — I space. £y

is also a saddle point with stable manifold locally in the N, — I planc and unstable
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manifold locally in the B — N, plane (here 790 — a2/ is taken to be positive). Ej
is also a saddle point with stable manifold locally in the N, — I plane and unstable
manifold locally in the B — N, plane (here rjg — o, /(7 is taken to be positive). Ej
is also a saddle point with stable manifold locally in the B — /N, plane and unstable
manifold locally in the Ny — I plane. Ej is also a saddle point with stable manifold
locally in the B — NV, plane and with unstable manifold locally in the Ny — I plane. Ej
is also a saddle point with stable manifold locally in the B — I plane and with unstable
manifold locally in the N} — N, plane. E; is a saddle point with unstable manifold
locally in the D-direction and with stable manifold locally in the Ny — Ny — [ space.

Es is locally unstable in the I-direction, Ey is locally unstable in the N,-direction and

E)p is locally unstable in the N,-direction.

In the following theorem we show that E* is locally asymptotically stable.

Theorem 4.3.1 Let the following inequality holds

TioT
{c1021 + C2a12}2 < C1C2 [é?]?;’ (4.42)
where
4,
= 4.4
o ATy (443)
02
C2 = — . 4.44

Then E* is locally asymptotically stable.

Proof: By using the transformations
B=B"+b Ny=N;+n, Ng=N; +ny, I =141

we first linearize the system (4.8). Then we consider the following positive definite

function in the lincarized form of model (4.8),

1. b2 n2 n2 22
V= —{— ! 2 — 4.45
g rag: voy; terh (4.45)



where cy, ¢, are given by Eqgs. (4.43) and (4.44) and

1 ff1e T013' I(1e
_B;{T (I') + K2(I')K (I°)} > 0.

It can easily be verified that the derivative of V with respect t along the solutions of

model (4.8) is negative definite under condition (4.42), proving the theorem.

In order to show that E* is globally asymptotically stable, we nced the following lemma

which establishes a region of attraction for system (4.8). The proof of this lemma is

casy and hence is omitted.

Lemma 4.3.1 The set

I(lrl(l{o)
Ti0 '
1(27’2(1(0) <J< —Bo + ﬁzKo}
20 - B

attracts all solutions initiating in the positive orthant.

Q={(B,N),Ns,]):0< B< Ky, 0< N, <

0< N, <

In the following theorem global stability behaviour of E* is studied.

Theorem 4.3.2 In addition to assumptions (4.3)-(4.5) let (1), K(I), r(B) and
To(B) satisfy the following conditions in

0< ~r'(I) < po, 0<T(B) < pr, 0<15(B) < pg, 0 -K'"(1) < p3
and K., < K(I) < Ko, (4.46)

for some positive constants pg, p1, P2, p3 and K,,. If the following inequalities hold:

70 Ko
{po + 01,2 + 0} < éﬁl K( % (4.47)
r
{p2b1021 + pr162012}? < % 012,0 P1P206102, (4.48)

then E* is globally asymptotically stable with respect to all solutions initiating in the

interior of the positive orthant.



Proof: We consider the following positive definite function around E*,

B
V(B,Ni,Na,I) = B =B =B In(5) +ai(Ny = Nj = N} In(
]

N,
+ax(Ny — Nj — Nj In(

N,) THy G LR ln(—). (4.49)

where a, and a, are positive constants to be chosen suitably.

Differentiating V; with respect to t along the solutions of system (4.8), we get

vy ] roB

o = (B=B)r()- X0 — 01Ny = 63N,

. 10V
+0.‘(1Vl - 1\’1)[7'1(.8) - 110,{ L - a’ZlN'Zl

1

N.
+ay(Ny — N;3)[r2(B) — TQIO{ 2 — apNV)]

2

+(I = I")[Bo — B + B B).
Using (4.37)-(4.40), a little algebraic manipulation yiclds

v, DYV
dt 1’(1)(8 B')* a‘Kl(A“N‘)

—021< (N2 = N;)? = B (I = I")?
+a&i(B) = 61))(B — B*)(N, — N7)
+[a262(B) — 6:))(B — B*)(N; — ;)
+mI) = reBm(I) + Bo)(B - B*)(I - I')

+[ajagr + azap)(N; — Ni) (N2 - Nzt); (4.50)

where

-1 ’
m(l) = 9 )
o, =T
(R -7 =T), 14T
n(l) = K ,
L (), =1
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Why is it preferred?

Minimally invasive surgery and hence short stay ensures smaller incision, greater precision,
faster recovery since it lessens the post-operative complications.

Benefits of Short Stay Surgery

It brings down post-surgery complications like chances of chest and breathing problems,
infections, disfigurement of the abdominal wall and incisional hernia @ It reduces blood loss
and trauma @ It allows quicker recovery ® The patient can get back home the same day or the
next morning. It is a nearly scar-less procedure and yields excellent cosmetic result

Short Stay Surgery (Laparoscopy)

The advancement in technology have made recovery faster. The stay in the hospital has been
reduced to 24-72 hours. Your surgery can occur in the morning and you can recover in the
comfort and convenience of your own home later the same day. The goal of our team of
professionals is for you to have and excellent experience with the best possible outcome which
is why our facility will be the first choice if, in the future, you find yourself in need of
hospital services.

Narayana Superspeciality Hospital

H
w7
NHNarayana
Superspeciality Hospital

Unit of Narayana Health

Short Stay
sSurgery

Minimal Incision e Better Precision
Faster Recovery e Short Hospital Stay

S —

Whole spectrum of Minimal Invasive Surgery under One Roof
Conventional Laparoscopy Surgery @ Mini Laparoscopy Surgery (suture less)
® Single Incision Surgery @ Reduced Port Surgery

MAKING MINIMALLY INVASIVE SURGERY EVEN LESS INVASIVE

Services
Laparoscopic Upper Gl Surgery

Laparoscopic Hepatobilliary Surgery

Pancreatic Surgery

Laparoscopic Colorectal Surgery

Laparoscopic Bariatric & Metabolic
Surgery

Near Tularam Bafna Civil Hospital, Amingoan, Guwahati — 781031, ASSAM

Infrastructure

State-of-the-art dedicated
Laparoscopic Surgical suite

High definition Laparoscopic
Equipments

Full time team of Laparoscopic &
Gl surgeons, Gastroenterologist
& Dietetics

NHHelpline
83 11 88 88 88
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gl(B) = )

ri(B), B =D
r2( B -T2 * -
ool p g
§(B) =

75(B), B = B*

From (4.46) and the mean value theorem, we note that

I () 1< po, 1(T) 1< 22, 16(B) |< py and |&(B) |< po.

Now 42 can further be written as

dV; 1 ) ! .
-Et—l- = —-2-0.“(3 - B')2 - 012(3 - B )(N1 - ]\71) - 5@22(1\[1 - Nl )2
1 o 1 .
'—-2-(1“(3 - B.)2 + alg(B - B‘)(]\rz — NQ) — 50,33(]\/2 - N2)2

1 1
——2'0.11(3 - B.)2 + 0-14(B b B‘)(I - I') - 5&44(1 - I‘)z

1 . . oo 1 .
“—2'a22(N1 - I\Il )2 + a23(N1 - ]\rl)(Ng - NZ) - 5033(1\’2 - N2)2,

where
a=g ro a=ama=ama=2ﬁ
11 3[((1‘)) 22 l[(l, 33 2[(2’ 44 1,
a2 = 6;£1(B) — 8y, a3 = a63(B) — 02,
arqg = () — 1oBp(I) + B2, a2z = —(a1aa1 + aza13).

Sufficient conditions for d—;-} to be negative definite are that the following conditions

hold:

ay, < ayag, (4.51)
al; < anag, (4.52)
al, < anau, : (4.53)
a2, < apas;. (4.54)
By choosing a; = %f and a, = f—nl, we note that inequalities (4.51) and (4.52) are

automatically satisfied. Further we note that (4.47) = (4.53) and (4.48) = (4.54).
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Thus, V) is a Liapunov function with respect to E*, whose domain contains the region

§1, proving the theorem.

The above theorems imply that the resource biomass settles down to its equilibrium
level, the magnitude of which decreases as the equilibrium levels of competing specics
and the industrialization pressure increase, and even may tend to zero if these factors
increase unabatedly. It may be noted here that if the interference coefficients a;, and
a9, are zero, then inequalities (4.42) and (4.48) are automatically satisfied. This implies

that if there is no interference between the two species, then the stability of the system

increases.

Case II: When the competing species depend wholly on the resource.

In this case, r,(B) satisfies condition (4.6). It may be noted that there exist nine non-
negative equilibria, namely, £4(0,0,0,0), E,(K,,0,0,0), Ey(B, N,,0,0), E3(3,0, Ny, 0),
E«(B,0,0,1), Es(By, Nip, 0, 1), Es(B,,0, Nog, I), E+(B;, Ny, Noy, 0) and

E*(B*,N;,N;, I').

The existence of the equilibria can be checked in a similar way as in case 1. Further,

the stability behaviour of the equilibria are similar to the corresponding cquilibria of

case [.

Case III: When the competing species are predating on the resource.

In this case, 7,(B) satisfies condition (4.7). It can be checked that there exist nine
equilibria which are similar to those obtained in case II. Further, the existence and the

stability behaviour of the equilibria are similar to the corresponding cquilibria of case
L.

In the above three cases it has been noted that the cquilibrium level of the resource

biomass is minimum in case I, and is maximum in case 111
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4.4 Model With Diffusion

In this section we consider the complete model (4.1)-(4.2) and we state the main results

of this section in the form of the following theorem.

Theorem 4.4.1 (i) If the equilibrium E* of system (4.8) is globally asymptotically sta-
ble, then the corresponding uniform steady state of the initial-boundary value problems

(4.1)-(4.2) must also be globally asymptotically stable.

(i1) If the equilibrium E* of system (4.8) is unstable, even then the uniform steady
state of the initial-boundary value problems (4.1)-(4.2) can be made stable by increasing

diffusion coefficients to sufficiently large values.

Proof: Let us consider the following positive definite function

Va(B(t), Ni(2), Na(2), 1(2)) =//D Vi(B, Ny, Ny, I)dA, (4.55)

where V] is given in equation (4.49).

We have,
dVp oV, aB oV, ON, 6V, ON, 81/'1 ol
rra //{aB ot Y an, o tam, o tar ot
= L+ I, (456)
where

I = / / ﬂ—‘dA N
1

i
L= [ {Dlahsz ng\,‘ VN, + DagV N2+D4%—1V21}d/1

We note the following properties of V;, namely,

il _av) _ o] _av]
OB |,, ONl,p ONaj,, OI)sp

and for all points of D,

R A T A A T - A T A 4
8BAN, ~ 9BAN, ~ 9BAI = ON,ON,  AN,0I = ON,81

=0,
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2V, - 8V, oV, 82V,
o'V d
o > % o > O e 7 Ve gp

We now consider I, and determine the sign of each.term. Analysing in a similar fashion

as done in chapter 2, we get

[ Zavrpyan=-[[ TE2 +(9§)2} dA< 0,

a5
//{g‘v'lv“’l}d‘*‘ // Zi\‘,; 61\‘)2 (a]\‘ 2} dA < 0,
/D{gj‘\év?z\ pdA=- //(32/\‘721 0N2) + 0N2 )2} dA < 0,
// {3\1v I} da=- // %2,‘: a] (a—y)z} dA < 0. (4.57)

Hence, I, < 0.

Thus, we note that if I} <0, i.e., if E* is globally asymptotically stable in the abscnce

of diffusion, then the uniform steady state of the initial-boundary value problems (4.1)-

(4.2) also must be globally asymptotically stable. This proves the first part of Theorem
44.1.

We further note that if %1 > 0, te.,if I, > 0, then E* will be unstable in the absence
of diffusion. But Eqs. (4.56) and (4.57) show that by incrcasing diffusion coefficients

D, sufhciently large, %2 can be made negative even if I} > 0. This proves the second

part of Theorem 4.4.1.

The above theorem shows that the stability in the diffusive system is more plausible

than that of the no diffusion casc.

We shall explain the above theorem for a rectangular habitat D defined by
D={(z,y): 0<z<a, 0<y<b} (4.58)

in the form of the following theorem.
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Theorem 4.4.2 In addition to assumptions (4.3)-(4.5), let v(I), K(I),
r2(B) satisfy the inequalities in (4.46).

m(B) and
If the following inequalities hold:

{po + 5%;—;& +0) < ﬂl{l{((} 5 DlB;ZZEC;:ng )y
2 .
4 ggngﬁl;(ia_;:)z)} (4.59)
?TZ Dsi\%ﬁg%{:)bz) Yorpadiby,  (460)

then E*

interior of the positive orthant.

Proof: Let us consider the rectangul

15 globally asymptotically stable with respect to all solutions initiating in the

ar region D given by Eq. (4.58). In this case I,

which is defined in Eq. (4.56), can be written as

n = o[y
2.
o],

o[58

From Eq. (4.49) we get

and

8"’\/ B 2 B,
— A

ETTIA )} d
62V é)Nl )2 (_0_]\1,_)2}
61\’2 61: Oy

%V, ., ON. ON.
al\,2){ 2 +( 2) }dA
8211 81 9

812 (517) } dA (4.61)
9%V, _ B

oB? B2’

*Vi Ny
"ONZ T NP’

o’y N3

ON} — N2’

vy I'

o1z ¥



Hence

aB 2 DQ(L)N rlO ON,
-——1q //{ (53)}W* K23 (K,) //{ 2y ) A
DgaQIVQT 81\2 01\2 _ D4] 52
ST oW A - e | 1o )}dA

Now

b re (B -DB"),,
= ———}* dzd
/o /0 { Oz )" dedy
Under an analysis similar to chapter 2 and using the well known incquality (Denn,
1975, pp. 225)
1 1
/ OB > 7r2/ B? dx,
0

we note that

Y]

;/LGLJN%A

7T2 2
E/Dw-B)m

[ a
//{)(%_15)2 dA

and

v

Thus,

hos DI [ o

Dza,i\,:lo // (Ny = N?)
Klrl(Ko

D N
3Qy! QTQO// 2_1\] dA
K3r3(K,)

D,I" 82
(mho—&y/yhj"] (4.62)
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Now from (4.50), (4.56) and (4.62) we get

"
dV r D\ B*7%(a? + b?) .
—2 //[ {1(0 a2b2[(2 }(B_B)2
ro . Dy Njrl
_al{—/:/T+ Kl’l(](o) GO
roo | D3a2Ng Tzo “wa
20 _______ N, — N.
ﬁ? 2
-60(1l4+ ———=YI-1TI"
3 %m—mﬁ( )

+{a,&(B) = 6, }(B — B*)(N; — Ny)
+{az63(B) — 6 }(B — B")(N2 — V)
+{m(I) = reBm(I) + B}(B - B*)(I - I')
+{a a9 + a2} (N — NJ)(No — Nj)] dA,

whete n (1), 1.(I), &(B) and &(B) are defined in Eq. (4.50).

Now "7“2 can be written as the sum of the quadratics

dV. 1 . . . 1 .
=2 < //D[—~-2-b“(B = B+ bia(B = BN = Nj) = (N — V)2
1 . 1 .
"‘51)[1(8 - B.)2 + b|3(B - B )(1\f2 - ]\72) - 51)33(1\’2 - N2)2
1 1
—5bu(B ~ B') + bu(B - B')(I - I') - Sbua(l - I')?
1
bz (N, - N2 4 bog(Ny — N7 YN, — Nj) — 51;33(1\7 1)?)dA,
where
To D, B*n*(a? + b?) rio  DaaN;iriy
b = b = _—_ _—c - Y
TR a??KZ “‘{1{1 T REII) b
T20 Dgﬂ’zl\ rQO D4] ﬂ?
Z572° 72 20 ] 4 ——27
o =elie T o) P A s

biz = a §i(B) — 4y, biz = 0252(3) — 4y,

bm = 7]1(1) — I‘OBI)Q(I) + ,62, b23 = —((11021 + (12012)
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Sufficient conditions for %‘:1 to be negative definite are that the following conditions

hold:

b2, < byibo, (4.63)
b2y < byibas, (4.64)
b < bibay, (4.65)
b3, < bogbsa. (4.66)

By choosing a; = %f and a; = %, we note that inequalities (4.63) and (4.64) are
automatically satisfied. Further we note that (4.59) = (4.65) and (4.60) = (4.66).
Thus V; is a Liapunov function with respect to E*, whose domain contains the region

€2, proving the theorem.

4.5 Conservation Model

It has been noted that uncontrolled growth of industrialization may lead to extinction
of forestry resources. Therefore, some kind of efforts must be adopted to conserve the
resource biomass. In this section a mathematical model is proposed and analysed to
conserve the forestry resources and by controlling the undesired level of industrialization
by some mechanism. It is assumed that the effort applied to conserve the resource
is proportional to the depleted level of resource biomass from its carrying capacity,
and effort applied to control industrialization pressure is proportional to its undesired

level. Following Shukla et al. (1989), Dubey (1997a) and Shukla and Dubey (1997)

differential equations governing the system may be written as
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8B 7'0‘82

9B _ ~ D2 _§,BN, = BN, + 0, Fy + D\ VB,
50 r([)B 0 18BNy = 050N, + 015 + LA
72
% =7 (B)N — roly an NNz + D VAN,
dN, . TolNj 2
-2 - — a12N Nz + D3;V* Ny,
Y 72(B)N K, 02N Ny + L3 2
% = —Bol = B 1% + (ol B — 0, Fy] + D4V, (4.67)
0F B
el - ZY_uF
at /‘I‘l(]‘ I(O) bty
oF
6_t2 = ua(I = LYH(I — 1) = o F5.

We impose the following initial and boundary conditions on the system (4.67):

B(z,y,0) = ¢(z,y) >0, Ni(z,y,0) = ¥(z,y) >0,
No(z,v,0) = &(z,y) 2 0, I(z,y,0) = x(z,y) >0,

Fl(xxyv 0) = Xl(x)y) 2 0, FQ(I,y,O) = Xz(r,y) Z 0 (z,y)CD (468)
aB aIVl .61\r2 a[

2= 22 e ¥l S

= on = an o =0 (my)edDt 20,

where n is the unit outward normal to 8D.

In model (4.67), Fi(z,y,t) is the density of effort applied to conserve the resource
biomass and Fy(z,y,t) the density of cffort applied to control the undesired level of
industrialization pressure. 8, is the growth rate coefficient of the resource biomass due
to effort £ and 6, is the depletion rate coefficient of I(z,y,t) due to effort F,. u; and
uo are the growth rate coefficients of Fy and F, respectively and v; and v, are their
respective depreciation rate coefficients. I, is the critical level of the industrialization
pressurc which is assumed to be harmless to the resource biomass. H(t) denotes the
unit step function which takes into account the case when I < I.. We shall analyse the

conservation model (4.67) only for the case when the rate of introduction of pollutant

into the environment is constant.
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4.6 Conservation Model Without Diffusion

In this case we take D, = Dy = D3 = Dy = 0 in the model (4.67). Then the model

(4.67) has only onc interior equilibrium £(B, Ny, Ny, 1, Fy, ), where B Ny, Ny, I, Fy

and F, are the positive solutions of the following algebraic cquations:

6y

roB = {r(f3(B)) — 6L [L1(B) = 62f2(B) + (1 - —)}IK(I) (4.69)
nB 1(0
m, = B —carsl DG} _ ) (o) (4.70)
TioT20 — Q101201 K2
{. B - K
N, = Kelre@hno — el B _ gy (s (@.71)
Tior20 — a21012K Ko
(2B = Bo)va + 2111,
[ = = [+(B), (sa 4.72
a1 6o f3(B), (say) (4.72)
Hi B
= —(1 — — 4.73
R=20-2), (473
(e -1), I>1,
Fy=22 -1 )H(U-1,) = . (4.74)

2

0, 1 <1,

It may be noted here that for F| to be positive we must have
Ky > B.

It is easy to check that £ exists, provided the following incquality holds at £,
g
o — {r(fa(B) = 6:/i(B) = 82/2(B) + !

91#1

7= 0)}K'(f)fé(B) —{r'(1f3(B)

53 1 K(f3(B)) (4.75)

— 81 fi(B) = 62f5(B) —

In the following theorem it is shown that E is locally asymptotically stable, the proof

of which is similar to Theorem 4.3.1 and hence is omitted.

Theorem 4.6.1 Let the following inequality holds:

(5](527‘107'207"] (B)Té(B)

{8100175(B) + 201211(B)}? < K, K,

(4.76)

Then equilibriumn E 1is locally asymptotically stable.
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In the following lemma, a region of attraction for system (4.67) without diffusion is

established. The proof of this lemma is similar to Lemma 4.3.1 and hence is omitted.

Lemma 4.6.1 The set

I K
Q, = {(B,AflyNQ,I,Fl,FQ) : 0<B< K, 0<N; < \1T7}( ),
10
0< N,  oralie), OSISM}
T20 J5p)

s a region of attraction for all solutions initiating in the interior of the positive orthant,

where

40,
K. =—{1 1+ ——
2 { + + 1111(07‘0

The following theorem gives criteria for E to be globally asymptotically stable, whose

proof is similar to Theorem 4.3.2 and hence is omitted.

Theorem 4.6.2 In addition to assumptions (4.3)-(4.5) let v(I), K(I), (B) and
T2(B) satisfy the following conditions in ),

0< —r"(I) < po, 0ST(B) < pr, 0S1p(B) < P2, 0 -K'(I) < 33
and K, < K(I) < K, (4.77)

for some positive constants pg, pr, P2, p3 and Kn. Then if the following inequalities

hold:

_, ToKqp
{Po + OKQ 2+ B2 < iﬂll{( Ty’ (4.78)
5,6
(8102152 + 6201201 }° < - 2/?1,P2florzo, (4.79)
]\]]\2

then E is globally asymptotically stable with respect to all solutrons initiating in the

interior of the positive orthant.

Theorems 4.6.1 and 4.6.2 show that if suitable efforts are made to conserve the resource
biomass and to control undesired level of industrialization pressure, an appropriate level

of the resource biomass density can be maintained.
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4.7 Conservation Model With Diffusion

We now consider the case when D; > 0(z = 1,2, 3) in model (4.67). We shall show that
the uniform steady state B(z,y,t) = B*,T(z,y,t) = T*,U(z,y,t) = U*,W(z,y,t) =
W* Fi(z,y,t) = Fy and Fy(z,y,t) = F, is globally asymptotically stable. For this,

we consider the following positive definite function

V3(B(t),T(t),U(t), ”/(t)x Fl(t)1F2(t)) = //D V2(B3Ta Ua M/) FlaFZ) dA)

where
hd * B L] » N‘
VQ(B,NI,IVQ,[,F“FQ) = B-B"-B lnﬁ—i-cl(Nl—Nl-—Nl]nN;)
1
N. I
4+ca(Ny = Ny = NjIn =2) 4 ¢c3(/ = I* = I"In =)
N; . I
c c
+5 (R = B + (R - ),

where ¢;s are positive constants to be chosen suitably.

Then as earlier, it can be checked that if ‘%:1 < 0, then "d—‘? < 0. This implies that if

E* is globally asymptotically stable for system (4.67) without diffusion, then the cor-
responding uniform steady state of system (4.67)-(4.68) is also globally asymptotically
stable with respect to solutions such that ¢(z,y) > 0,¥(z,y) > 0,€(z,y) > 0,((z,y) >
0,61(z,y) > 0,G(z,y) > 0, (z,y) e D.

4.8 Numerical Examples

In this section we present numerical examples to illustrate the applicability of the
results obtained. We take the following form of the functions r(7), K(/), r;(B) and
T9(B) in model (4.8):

r(l)=ro—n1,

K(I)= Koy —q1,

r(B) = gio + gu B, (4.80)

r2(B) = 920 + g1 B,
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where the coefficients are assumed to be positive.
We choose the following values of the parameters in model (4.8) and in Eq. (4.80):

ro = 13.0, r, = 0.01, K, = 50.0,
g1 = 0.02, g;; = 0.5, g2 = 0.48,
5, = 0.3, 6 = 0.4, 10 = 7.0, | (4.81)
K, =6.0, ay; = 0.2, 790 =10.0, K; = 8.0,
a2 =01, fo=1.0, §, =4.0, B, = 0.45.
Example 1. In this example we have considered the case when the two species partially
depend on the resource. We take r1(0) = g0 = 7.0 and 75(0) = go0 = 10.0. It can be

checked that under the above set of parameters, conditions for the existence of interior

equilibrium E7,(By,, Ny, Vs, I}, ) are satisfied and E7, is given by
B}, = 19.05048, N7, = 11.69945, N}, = 14.37943, I, = 1.89318. (4.82)

Again with the set of parameters given in Eq. (4.81) it can be verified that condition

(4.42) in Theorem 4.3.1 is satisfied which shows that E;, is locally asymptotically

stable.

By choosing K, = 20.0 in Theorem 4.3.2, it can also be checked that conditions (4.46)

and (4.47) arc satisfied which shows that E}, is globally asymptotically stable.

Example 2. In this example we consider the case when the tw;) species wholly depend
on resource. We take r(0) = gj0 = 0.0 and r,(0) = gy = 0.0. It can be checked -

that under the same set of parameters given in Eq. (4.81) the interior equilibrium

El,(B1,, Nia, Ny, I,) exists and is given by
B}, = 27.09852, N;, = 9.96648, N, = 9.60851, I}, = 2.79858. (4.83)

It can be seen that conditions corresponding to (4.46) and (4.47) for cquilibrium £},

to be globally asymptotically stable are also satisfied.

Example 3. In this example we assume that the two species are predating on the

resource. We take ry(0) = g0 = —7.0 and r2(0) = goo = ~10.0. With the same
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set of parameters given in Eq. (4.81) it can be checked that the interior equilibrium

E34(Bis, N3, Nas, I13) exists and is given by
B}; = 35.14338, Nj; = 8.23234, Nj; = 4.83647, Ij; = 3.70363. (4.84)
It can bc'vcriﬁed that E;, is also globally asymptotically stable.

From Egs. (4.82), (4.83) and (4.84) it may be noted that B}, < Bj, < Bis, Ni, >

Ni, > Niy, Nji > N3, > Njyand Iy < I}, < Ij; as expected.

Example 4 In addition to the values of parameters given in (4.81), we choose the

following values of parameters in model (4.67) with no diffusion:

0| =13.0, 92 = 002, Hy = 160, = 003,

gy = 180, 1, = 0.04, T, = 0.12. (4.85)

Then it can be checked that condition (4.73) for the existence of the interior equilibrium

E is satisfied, and E is given by

B =~ 45.27252, N, =~ 21.34357, N, ~ 23.67716, [ =~ 1.57328,
F\ =~ 50.42648, F» ~ 653.97580. (4.86)

It can easily be verified that condition (4.76) in Theorem 4.6.1 is satisfied which shows

that £ is locally asymptotically stable.

Further, by choosing K,, = 50.0 in Theorem 4.6.2, it can be checked that conditions

(4.78)-(4.79) are satisfied. This shows that E is globally asymptotically stable.

By comparing equilibrium levels E;, and E in Eqgs. (4.82) and (3.66) respcctively, we
note that duc to efforts F|, and F3, the equilibrium level of the resource biomass has

increased whereas equilibrium level of the industrialization pressure has decreased.

4.9 Conclusions

In this chapter, a mathematical model has been proposed and analysed to study the

survival of two biological species competing for a single resource under industrialization
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pressure with and without diffusion. The competing specics are assumed to be either
partially dependent, wholly dependent or predating on the resource. In the partially
dependent case criteria for survival and extinction of competing species and industrial-
ization pressure have been derived. It has been shown that the resource biomass settles
down to its equilibrium level, the magnitude of which depends upon the equilibrium
levels of the competing species and the industrialization pressure. This magnitude de-
creases as the densitics of the competing species and pressure due to industrialization
increase and may driven to extinction if these factors increase without control. It has
also been noted that the competing species may coexist even in the absence of the
resource biomass in the partially dependent case, whereas in the wholly dependent
case the two species will die out in the absence of the resource biomass. In the case
when the competing species are predating on the resource, similar results have been
found. It has also been found that if the interference coefficient measuring the damage
effect of each species on the other is zero (i.e., aj2 = az = 0), then stability of the
system increases. It has been noted that the damage of the resource biomass density
is maximum in partially dependent case, and is minimum in the predation case. This

has also been established by numerical examples in section 4.8.

A modecl to study the effect of diffusion on the system under. consideration has also
been proposed. By analysing the diffusion model it has been shown that stability of the
system with diffusion is more plausible than that of without diffusion. It has also been
shown that an unstable steady state in the absence of diffusion can be made stable by
incrcasing diffusion coefficients sufficiently large. This implies that solutions approach

to the uniform steady state more rapidly as the diffusion coefficients increase.

A model to conserve the resource biomass and to control the undesired level of indus-
trialization pressure is proposed and analysed. It has been noted that if suitable efforts

are made, a desired level of resource biomass can be maintained.



Chapter 5

MODELLING THE
INTERACTION OF TWO
BIOLOGICAL SPECIES IN A
POLLUTED ENVIRONMENT

5.1 Introduction

A large amount of pollutants and contaminants released {rom various industrics, mo-
tor vehicles and other manmade projects enter into the environment affecting human
population and other biological specics seriously. In recent years some investigations
have been carried out to study the effect of pollution on a single-species population
(De Luna and Hallam, 1987; Dubey, 1997a; Freedman and Shukla, 1991; Hallam ct al.,
1983; Hallam and De Luna, 1984; Hallam and Ma, 1986; Shukla and Dubey, 1996a). In
particular, Hallam et al. (1983b) studied the effect of toxicant present in the environ-
ment on a single-species population by assuming that its growth rate density decreases
lincarly with concentration of toxicant but the corresponding carrying capacity docs

not depend upon the concentration of toxicant present in the environment. Consider-
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ing this aspect Freedman and Shukla (1991) studied the eflect of toxicant on a single
species and predator-prey system by taking into account the introduction of toxicant
from an external source. Shukla and Dubey (1996a) studied thle simultaneous effect
of two toxicants, one being more toxic than the other, on a biological species. Dubey
(1997a) proposed a model to study the depletion and conservation of forestry resources

in a polluted environment.

We know that species do not exist alone in nature. They interact with other species
in their surrounding for their survival. So it is of more biological significance to study
two-species systems exposed to a pollutant. In recent decades some investigations have
been made to study the system of two biological species in a polluted environment (Ma.
and Hallam, 1987; Huaping and Ma, 1991; Chattopadhyay, 1996; Shukla and Dubcy,
1997). In particular, Ma and Hallam (1987) studicd two-dimensional nonautonomous
Lotka-Volterra models by the average method and obtained sufficient conditions for
persistence and extinction of the populations. Huaping and Ma (1991) investigated the
effects of toxicants on naturally stable two-species communities and derived persistence-
extinction criteria for each population. But in modelling the system they assumed that
the individuals of the two species have identical organismal toxicant concentration,
which nced not be true always in nature. Chattopadhyay (1996) studied the effect of
toxic substances on a two-species competitive system. He assumed that each of the
competing species produces a substance toxic to the other, but only when the other
is present. Shukla and Dubey (1997) studied the effects of population and pollution
on the depletion and conservation of forestry resources. It may be pointed out here
that the recycle effect of toxicant and the effect of diffusion on the stability of the

equilibrium state of the system do not appear in the above literature.

In view of the above, in this chapter we propose a mathematical model to study the
cffect of cnvironmental pollution on two interacting biological species having different
organismal pollutant concentration. Three types of interaction between the two species
have been considered, namely, competition, cooperation and prey-predator. The effect

of diffusion on the stability of the system is also studied. In the absence of diffusion



our model is more general than Huaping and Ma (1991). In the presence of diffusion
our results agree with those in Hastings (1978a), Shukla and Verma (1981), Shukla
and Shukla (1982), Shukla et al. (1989) and Freedman and Shukla (1989), Dubey and
. Das (1999). In this chapter, we have also included numerical examples to illustrate the

applicability of the results obtained.

5.2 Mathematical Model

Consider a polluted environment where two biological specics are interacting with
cach other in a closed region D with smooth boundary dD. The variables of the
model are z, = z,(z,y,t) and 2, = z(x, y,t), the densitics of the species 1 and 2
respectively; T = T'(z,v,t), the concentration of pollutant present in the environment;
U, = Ui(z,y,t) and Uy = Us(z,y,t), the concentration of pollutant in the species 1
- and 2 respectively at coordinates (z,y) ¢ D and time t > 0. In modelling the system
we assume that carrying capacities of the species are constants. Then following Huap-

ing and Ma (1991) and Dubey (1997a) the Lotka-Volterra model of two species with

pollutant effect and diffusion can be written as,

a_gtl =r110z) — rnn Uy — anz? - appzyzp + D, V32,

%‘% = TopT2 — T TUz — a2 7139 ~ anpz? + Dy Viay,

%T? = Qt) = 6T + 6:6,Us + 626,Us — Mt T — Moo + D3V2T, (5.1
%[_il =~ Uy + 0060T + M1 T + By,

'aa% = —8,Uy + 8)80T + oxoT + Brzs,

0<60y+0,<1, 00,0, <1.

We impose the following initial and boundary conditions on the systein (5.1):
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$1($,y,0) = ¢($1y) Z 0) 332(113,1/,0) = ¢(Iay) Z 0)
T(z,y,0) = &(z,v) 2 0, Ui(z,y,0) = x(z,9) 2 0,

U2($)y10) = 77(1:1 y) 2 0 (I,y)GD, (52)
6‘:51 3:52 _ arT

puindl S ot A D, t>0,
on on on 0, (z,y) e 0D, 2

where n is the unit outward normal to 9D.

In model (5.1), V2 = (%27 + 56?2 is the Laplacian diffusion operator. D,(i = 1,2,3) are
the diffusion rate coefficients of z,(z,y,t), z2(z,y,t) and T(z,y,t) respectively in D.
70, 71 and a;; (1,j=1,2) in the first two equations of model (5.1) are constants. 7 is
the intrinsic growth rate of the species i in the absence of pollutant; r,; the depletion
rate coefficient of species i due to organismal pollutant concentration. a;; and ap
are the interspecific interference coefficients and a,;, ag; are intraspecific interference
coefficients of the species 1 and 2 respectively. Q(t) represents the rate of introduction
of pollutant into the environment beyond the initial concentration, which is assumed
to be positive, zero or periodic. It is assumed that the pollutant in the environment
is washed out or broken down with rate §y, and fractions 8, and 6; of it may again
reenter into the species 1 and 2 respectively with the uptake of pollutant. A; and A,
are the depletion rate coefficients of the pollutant in the environment due to its intake
by species 1 and 2 respectively. 4, and 4, are natural depletion rate coefficients of U,
and U, respectively due to ingestion and depuration of pollutant and fractions #; and

0, of these may again reenter into the environment. 83, and B, are the net uptake of

pollutant from resource by species 1 and 2 respectively.

It is assumed that the parameters dg, 4y and §, are strictly positive and 0,, 6,, Ay, A,

B, and (; are nonnegative constants.

The following three cases will be dealt with:
(i) Competition (110 > 0,720 > 0,a;2 > 0 and a,, > 0)
(i1) Cooperation (rig > 0,720 > 0,a12 < 0 and ay < 0)

(iil) Prey-predator (rig > 0,19 < 0,a)2 > 0 and ay < 0), assuming z, as prey and z,
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as predator.

5.3 Competition Model Without Diffusion

We first analyse model (5.1) without diffusion (i.e., Dy = D; = D3 = 0). In such a

case model (5.1) reduces to

i

f(:tl = rygTy — rnIlUl - (L“IIJ(;’ — 2T T2,

dz, . 2

_dt— = TopIo — T2]$202 — Q21127 — (1221:2,

dT

= = QUt) = 86T + 0:6,Us + 02620z = Myi T = pzaT, (5.3)
g .

—-—-—C[ljt'l = —-(SIU] + 0060T + )\]IE]T + ﬂ‘I]’

dU, _

= 02Uz + 6680T + Aoz T + Bz,

OSOO+%S110S01192S13

z:(0) > 0, T(0) > 0, Ui(0) > 0,i =1,2.

It can be secn that in the case of constant introduction (Q(t) = @y > 0) of pol-

lutant into the environment, model (5.3) has four nonnegative equilibria, namely,

Q 89 Q¢ 0,Qo (= ™ 1T T ; A T T
E0(010160(1_000(:_0602)1 61(1—030.0—0302)’ 67(l—0§0|—0’002) )s E(I1, 0) Ta U], U2)a E(O, Iz, 1 ) Uh U?)

and E(Z,, Ty, T, Uy, U,). The equilibrium E, exists if

1 — 806, — 6,02 > 0. (5.4)
We shall show the existence of other three equilibria as follows.
Existence of E(%,,0,T, U, (3’2):
Here z,, T, U, and U, are the positive solutions of the followiﬁg algebraic equations:

anzxy =ry — U,

0T + My T = Qo + 616,Uy + 6,0,U4,
OUy = 60T + it T + Bz,

02Uy = 0460 T.
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A little algebraic manipulation yields

a) ) =Ty ~— Tng(Il),

Qo + 01811

T= So(1 — 608, — 840) + A (1 — 61)zy =J(@). (sey)
U 8odo f(z1) + /\}xlf(fl) thn g(z1), (say)
U, = g.,od%;—(le_). = h(z,). (say)

Taking,
F(z;) = anzy — ro + rug(z)

we note that F(0) < 0 if

T1100Q0 < 71001 (1 — 6061 — 6362), (5.5)

i

and F(J2) > 0, showing the existence of , in the interval 0 < Z; < 2. For £, to be

unique the following condition must be satisfied at E,
QoM (1 — 8)) < 0,8:180(1 — G, — 6p6,). (5.6)

Thus from the above analysis we note that the equilibrium E‘exists under conditions
(5.5) and (5.6).

Existence of E(O,i‘),T,U),UQ):

As in the existence of £, it can be scen that the equilibrium £ exists if the following

inequalities hold:
T9100Q0 < ra0da{1l — 6oby ~ 6,6,), (5.7)

QoA2(1 ~ 82) < 028260(1 — 006y — 9(’){72)- (6.8)

Existence of £(z,,%,, T, Uy, Up):

Here, Z\, 3, 1, U, and U; are the positive solutions of the following system of algebraic

cquations:
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anzy + ayaT2 + ru gz, T2) = o,
an zy + a2%y + 12 h(z1, T2) = T20,
T = f(z),12),
Uy = g(z1, 12),
Uy = h(z,, z2),

where

Fxy29) = Qo + 6,012y + 025,
=2 50(1 —9091 —'96&2)-{-/\1(1 “91)33] +)\2(1 —02)51?2’
Bodo f(z1, Z2) + Mz (21, 22) + Bim)
& ’
0080 f(z1, 22) + Aoz f (2, 22) + B2
by '

g(IhI?) =

hizy,z2) =

It can be checked that £ exists if in addition to conditions (5.5) and (5.7), the following

conditions hold:

1l

b+ Vb — dac S -4 + V% - 4a'cd

2a 2a’ (5.9)
~B+ VB —4AC _ -B + /B?—3AC 5.10)
24 2A' ' '
ayg + 2L
=2 Uom 5 g (5.11)

F)
an + s

. O
ax + rai 55

> 0, (5.12)
az + rmgazh;

where

a=M{and (1= 6y)+r, b},

b= 0a11000,(1 — g8, — 6502) + 116051 (1 — 6p62) + 111 M Qo — M0 (1 — 6y),
¢ = 1118000Q0 — dod1r10(l — 6oy — G6,),

a' = Aazda(l - 6,),

b' = a2,0002(1 — 660\ — Gy0,) + 1r2,05606, 5y — A 6ara0(1 — 8)),

¢’ = 1210500Q0 — 00b2r20(1 — 0oy — 6;6,),
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A = da{agda(l — ;) + rafa},

B = a226p62(1 — 050, — 0p05) + 12180 82(1 — 050;) + 121 A2Q0 — A262720(1 — 03),
C = 1910560Q0 — d02120(1 — 6061 — 68),

A' = X128, (1 = 67),

B’ = a12606, (1 — 000, — 0402) + 71160806282 — A261710(1 — 02),

C' = 1110060Q0 — 6601710(1 — 890y — 6462).

It may be noted here that E exists even when the inequalities (5.9) and (5.10) arc

reversed.

To study the local stability behaviour of the equilibria, we first compute the variational

matrices corresponding to each equilibrium point. From these matrices we conclude

the following:

Ey is a saddle point with unstable manifold locally in the z, — z, plane and stable

manifold locally in the T — U, — U, space. E and E are locally unstable in the z, and

z, directions respectively.

In the following theorem we have shown that £ is locally asymptotically stable.

Theorem 5.3.1 Let the following inequalities hold:

4
(@12 +an)* < zanan, (5.13)
U ' —_ 1 ! ! —_ —_
{619161 + 62(00(50 + /\11131)}2 < §C1CQ(51(50 4+ Mz + )\2552), (514)
U ! 7 - 1 (N P —
{619262 + C3(00(50 + /\212)}2 < —2-C1C3(52((50 + MNE + )\2.’132), (515)
where
o o= min{a“(éo + /\13:'_1 + M) ag(do + MZ; + /\2-'732)}
: 4NIT? : ANT? ’
R N
EUNT+ 6
o= — 12
ST NT 4+ 6,

Then E is locally asymptotically stable.
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Proof: By using the transformations

Ty = X1 + Iy, T2 = X2 + Iy, T=T+T, U1=u1+U1, U2=UQ+02,

we first linearize system (5.3). Then taking the following positive definite function,
1. X2 X3 |
V=L + 22+t + ul + dyul}, (5.16)
2 I, T
it can be scen that the derivative of V' with respect t is negative definite under condi-

tions (5.13)-(5.15), proving the theorem.

To show that E is globally asymptotically stable, we need the following lemma which

establishes a region of attraction for system (5.3). The proof of this lemma is easy and

hence is omitted.

Lemma 5.3.1 The set

U = {(z1,22, T, U, Up) : 0< 3, < ;—]2, 0<z, < %}9> 0<T+U,+U; <Ly}
n 22

attracts all solutions tnitiating in the positive orthant, where
1 r r ’
Li=3{Q+ 6= +52),
ayy a2

6= 771271{(50(1 - 90 - 06),(51(1 - 01),(52(1 - 02)}
In the following theorem global stability behaviour of E is stuaicd.

Theorem 5.3.2 Let the following inequalities hold:

2 4
(@12 +a21)” < zanaz, (5.17)
1
{16161 + c2(006p + M %)) }? < 5016251(50 + ME) 4+ ATy), (5.18)
_ 1
{C19252 + C3(966o + /\2.'122)}2 < §C1C3(52(6Q + /\;521 - )\2522), (519)
where
o = mm{an(éo + ANZ + /\2-7:‘2)’ a{do + )\!5;1' + )\2932)}
4/\%11% ,}AﬁlJf ’
_ i
C2 - /\[L] +.6| 3 (520)
O = T2
TN+ 6

104



Then E is globally asymptotically stable with respect to all solutions initiating in the

interior of the positive orthant.

Proof: Consider the following positive definite function around £,

T
“UVzy — Ty — B () +
I )

+%(U1 - U+ %(Uz — Uy)* (5.21)

Ty Cy =

Vi(zy, 22, T, U, Us) = z1—Z1 — % In(

where ¢, ¢, and ¢3 are positive constants as defined in (5.20).

Differentiating V; with respect to t along the solutions of system (5.3), we get

dvi
dt

(z, — Z)[ro — rull — anzy — ay219]

+(z2 — T2)[r20 — ralz — a1 Ty — az1)) .

+e(T ~ T) Qo — 60T + 6,6,Uy + 026:U; — Ay T — Ayz,T)

+c3(Uy — U))[=6,U, + 0060 + Mz, T + Bz

+c3(Uy = Up)[—82Us + 6560T + AozoT + Boy). (5.22)

After some algebraic manipulations, Eq. (5.22) can be written as

d_V_1 = _lA (z, — % )2 4 T 7 IA = \2
a 5 nlzy — 21)° + Apln —351)(232-332)—5 2(T2 — Z))
1 _ - 1 _
—§A“(1'1 —_ 1:1)2 + Am(.’l:l - .’i:l)(T —_ T) — '2~A33(T - T)2
1 _ _ - 1 _
—§A11(~’El - 11)2 + Az — 20U, - Uy) - §A44(U1 - U1)2
1 - ) -1 B}
—§A22(12 — %) + Ana(z — 2)(T - T) - ‘2‘A33(T -T)?
1 N _ - 1 B}
—-2-A22(12 — £9) 4+ Ags(zg — Z2)(Uy — Up) —~ §A55(U2 — Uy)?
1 - - _ 1 -
—§A33(T — T)2 + .434(T - T)(Ul - U]) — —2‘A44(U1 - U1)2
1 1

"5‘433(T - T)2 + A35(T - T)(U2 - U’Z) - §A55(U - 02)2'

where

2 2 1
Any = Sau, A = 5022; Azz = §Cl(60 + My + AqZo),

Ay = by, Ass = 0352; Ap = ‘-(012 + 021), A = ‘"Clle,
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Au = C2()‘1T + ﬂl) — Ty, A= ~CoA T, Ags = Cs(/\zT + 52) — T21,

A34 = c19161 + C2(90(50 -+ /\1531), A35 = 019252 + C3(96(50 + /\2(722).

Sufficient conditions for d—‘;:i to be negative definite are that the following conditions

hold:

A%, < A Ag, (5.23)
A%, < A Am, (5.24)
A, < AnAug, (5.25)
A2, < ApnAs, (5.26)
AL < AgAss, (5.27)
A3, < AsAg, (5.28)
Ao < AgpAss. (5.29)

Under the suitable choice of constants ¢,, ¢; and c3 as defined in Eq. (5.20). We note
that inequalities (5.24)-(5.27) are automatically satisfied and (5.17) = (5.23), (5.18)
= (5.28), (5.19) = (5.29). Thus V, is a Liapunov function with respect to £, whose

domain contains the region €, proving the theorem.

Remark 1 In the case of instantaneous introduction of pollutant (i.e., Qo = 0) into
the environment, it can be verified that there are four nonney .ve cquilibria, namely,
E0(0,0,0,0,0), E(z,,0,T,0,,0,), E©,%,, T,U,,0p) and E(5, ,,T,U;,0). E, exists
obviously and the existence of the remaining three equilibria can be seen in the similar
fashion as discussed earlier. In particular, it may be noted that in this case inequlities
(5.5)-(5.8) are satisfied. Further the stability behaviour of the equilibria is similar to
the corresponding equilibria as given in the case of constant introduction of pollutant
into the environment. It has been noted here that equilibrium levels of the competing
species in the case of constant introduction of pollutant into the environment is lower

than the case of instantaneous introduction, keeping other parameters and functions

same in the model.

Remark 2 When Q(t) = Qo+¢d(t), ¢(t+w) = ¢(t), i.e., in the case of periodic emission

of pollutant into the environment, it can be verified that the results corresponding to
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Theorem 3.4.1 and 3.4.2 in chapter 3 remain valid. In particular, it has been found that

a small periodic influx of pollutant into the environment induces a periodic behaviour

in the system.

5.4 Competition Model With Diffusion

In this section we consider the complete model (5.1)-(5.2) with Q(t) = Qp > 0 and we

state the main results of this section in the form of the following theorem.

Theorem 5.4.1 (i) If the equilibrium E of system (5.3) is globally asymptotically sta-
ble, then the corresponding uniform steady state of the initial-boundary value problems

(5.1)-(5.2) must also be globally asymptotically stable.

(i) If the equilibrium E of system (5.3) is unstable, even then the unijo: in steady state
of the initial-boundary value problems (5.1)-(5.2) can be made stable ny increasing

diffusion coefficients to sufficiently large values.

Proof: Consider the following positive definite function

Va(@1(8),22(0), T(2), Un(0), Ualt) = [ [ Vilwr, 2T, Us, Un)da, (5.30)

where V] is defined by Equation (5.21).

We have,
dV2 _ OV 87:1 (9V, 8x2 6V1 BT 8\/1 6U1' 6\/1 6U2
it // 5.2t tom oo Tor e Tou, o oy, At
= IL+1, (5.31)

where

L= [ [ W

1%
and 12 // {Dla lvzx, ng——v2’122 Dg%‘%va}dA

We note the following properties of V), namely,
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anl v _av,] _Q‘_i} _Q_I:}_} _ 0
81;1 E)D— 81:2 BD—- oT BD_ 3U1 aD 8U2 5D

and for all points of D,

R A (o U - (A i 4
8z,0z, 0z,0T 0z1,0U, 0z:0U, 02,07  0z,0U,
02V, 0%V, 92V, o2V,
bt = = = = O CLTLd
0z,0U, 98TdU, 9ToU, 0U,0U,
9V, 9?2V, 9V, 9?2V, 92V,
-5;,%— > 0, “a—xg- > 0, —a-ﬁ' > 0, '—0712‘ > 0, -éaz— 0.

Under an analysis similar to chapter 2, we note that

axl 2 a ‘/ a:El 32:1
//D Bz V Tidd = //,) o2 {( +( ) 1dA <0, (5.32)

//Dahv?x?d‘*— // 8‘1 ax2 24 ( a352)}dA<0 (5.33)

// AvTda = - // a;jiz] aT +(55)2}dA§0. (5.34)

This shows that I, <0.

Thus, we note that if I; < 0, i.e., if E is globally asymptotically stable in the absence
of diffusion, then the uniform steady state of the initial-boundary valuc problems (5.1)-

(5.2) also must be globally asymptotically stable. This proves the first part of theorem.

We further note that if L‘)'} > 0, te., if 1 > 0, then D) may be unstable in the
absence of diffusion. But Eqs. (5.31) and (8.25)-(5.34) show that by increasing diffusion
coefficients D, to sufficiently large values, d—‘—z can be made negative even if I} > 0. This

proves the second part of the theorem.

The above thecorem shows that the stability in the diffusive systcm is more plausible

than that of the no diffusion case.

We shall explain the above theorem for a rectangular habitat D defined by
D={(z,y): 0<r<a 0<y <0} (5.35)

m the form of the following theorem.
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Theorem 5.4.2 Let the following inequalities hold
D,.’Elaz 71_?'((1,2 + bg) Dgfzaz 71'2(67,2 + b2)
2 < = L 11 22 36
(a12 + ag) g{an 72 a2h Han + 12,202 }, (5.36)
D37r2(a2 + b?)
20 b, (5.37)

1
{610 o + C2(€0(50 + /\1521)}2 < 561C261{(50 + AT + Ao,
D 2(,2 b2
(@ + V) (5.38)

1
{6102(52 + C3(9650 + /\21_:2)}2 < 56163(52{(50 + M Z + A2, 2

then E s globally asymptotically stable with respect to all solutions initiating in the

interior of the positive octant
Proof: Let us consider the rectangular region D given by Eq. (5.35). In this case /o,
which is defined in Eq. (5.31), can be written as
82‘ [ Bxl 31:, 82‘/ 6’172 a.'l:z
= -D. [ [ ( 2 da-Dx [ [ ( 24 (22
I all 52 T )*} 2 ax2 {(57) (ay) }
0%V, T
_Ds //( Ly (_) } dA. (5.39)
From Eq. (5.21) we get
821/‘ E 02",1 _ 'i'_ a 02‘/1 c
012  z¥’ 01}  x} or? !
Hence
L < 11[(1“ //{ 87:1 Bt, }cH D2L2a22 //{ 8:1:2 Q)Q}dA
T30
—Dgcl//{ ’——)2 }14
Now
E):c,
d4 = // 2 dA
//D( 0z ) S }
}2 dzdy

iy

Substituting z = Z, it can be seen under similar analysis to chapter 2 that

[[Gar sz [ fm -
and
[lton s % [l
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Thus,

D\ 2,02, 7%(a? + b?)
]2 < - 1210 T // Il—.'ll

- 'rma?b2
Dgfoazg 1 0. + b2
- T20a2b2 /./ T = 5)’
D3c17r (l -+ b2
- a?b? // (T-17y

Now from (5.22) and (5.31) £2 can be written as the sum of the quadratics

de < [[1=3Buiz =22+ Bulm — 552~ ) — 2 Balas — 22’
~%B“(xl —£)% + Biy(z1 - 5)(T - T) — %ng(T ~ Ty
—éB,,(:f:l — )2+ Bz — %) (U, = Ty) - %BM(U, - 0))?
——;—ng(:zzg — %)’ + Bys(z2 — 2)(T - T) ~ %1333(:/“ _ Ty
—%ng(xg — £2)2 + Bos(s — 22)(Us — T) — %B55(U2 ~ )
) —%1333(:1‘—7'“)%33,(:/“4‘“)((11 -0+ %BM(Ul - 0)?
1

_ - _ 1 _
—5333(’]—’ —T)2 + By (T ~ TYWU, — Un) - 5355((]2 — Up)?*)dA,

where

2 Dz 1a? 7% (a® + b?) 2 DyZya2,m2(a? + b?)
B“ = 5{011 + T?()a?b? }, B22 = §{a22 + lezoazbz })
D37T2((L2 -+ bz)
a?h? b

1
333 = §C1 {50 -+ 1\11_31 + /\Qfg +
Byy = ¢201, Bss = 302, Bz = ~(a12 + an1), Biz = —¢16,7,
By = co(MT + 81) — iy Baz = —c AT, Bas = c3( AT + B2) — 71,

B;M = C|9|<Sl + Cg(Oo(so + /\].’f]), Big = (319252 + C3(9660 -+ /\2.’1_,‘2).

Sufficient conditions for d—‘l to be negative definite are that the following conditions

hold:
8122 < B]]Bzz, (540)
B?, < B Bas, (5.41)
B2, < DB B, (5.42)
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%
\
B, < BynBjs,

(@]
N
w

B3, < By Bss,
B§4 < Bs3Bug,

(@2} (2]
NS s
K s>

B§5 < Bj3Bss. 546)

We note that inequalities (5.41)-(5.44) are satisfied automatically and (5.36) = (5.40),
(5.37) = (5.45), and (5.38) = (5.46). Thus V, is a Liapunov function with respect to

E, whose domain contains the region €, proving the thcorem.

It may be noted here that inequalities (5.36)-(5.38) will be satisfied if we increase
Dy, D,, and Dj; to sufficiently large values. This implies that for a given rectangular
region, by increasing diffusion coefficients sufficiently large, an unstable steady state in
the absence of diffusion can be made stable. Thus, we conclude that in the presence of

diffusion the competing species converge towards their respective carrying capacitics

faster than the case of no diffusion.

5.5 Cooperation Model

In this case we have 79 > 0, 799 > 0, a)2 < 0 and ay; < 0. There exist four nonnegative

Qo 80Q0 05Q0 )
? 60(1—0001—0601)’ 61(1—9001—0692)’ 62(1—0001—0602) )

Ec(ilc) 0) Tc, Ulc; U?c)y EC(O, i2c: Tca Ulc; 02::) and Ec(ilcy i?c, Tca Ulz:a U2c)-

equilibria, namely, E4(0,0

Ly exists if 1 — 0p0, — 030, > 0. Existence of Ec, EC and £, can be checked as in

competition model in section 3.3.

Local stability behaviour of Ej, E. and E. are similar to the torresponding equilibria
of section 5.3. The following theorem shows the local stability character of E, the

proof of which is similar to Theorem 5.3.1 and hence is omitted.
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Theorem 5.5.1 Let the following inequalities hold:

4
(a2 + 021)2 < 5011022, (5.47)

, , 1, _ _
{k’lélél + k2(9060 + /\1$1c)}2 < §k1k261 ((50 + MZie + )\QIZC), (548)

[ { - 1 {1t — -
(k16282 + K5(6000 + AaZ2c)}? < §k1k352(5o + M Zic + AaZae), (5.49)

where
. mm{an(éo + /\1551_c + AaZac) an(do + M I + /\23—:'2c)}
: 40112 ’ 4)\§TC2 ’
k; = —-—-Ql——',
/\ch + ﬁl
kl _ T?l
3 /\ZTC + 5‘2‘

then E. 1s locally asymptotically stable.

In order to show the global stability of E., we need the following lemma whose proof

is easy and hence is omitted.

Lemma 5.5.1 The set
Q= {(z1,22, T, U, U2) @ 0< 1, <Z10 <00, 0 <2y < Too < 00,
0<T+U +U;, < Ly)
attracts all solutions mnitiating in the positive orthant, where

L, = %{Qo + B1%10 + BoT200 }

6 = mzn{50(1 - 00 - 06),(51(1 - 9)),52(1 - 02)}

The following theorem shows the global stability of E. whose proof is similar to Theo-

rem 9.3.2 and hence is omitted.

Theorem 5.5.2 Let the following inequalities hold:

4
(a2 +an)? < gana; (5.50)

1
{k1016. -+ }\'2(0060 + /\|fi|c)}2 < -2-1\?1}\‘.2(51(60 + /\1.’I_J|c + A'z.’f'zc),

——~
(@]
[S2}
—

o

) 1
(k10235 + k3(8p80 + Aaiac)}? < §k1k362(6o + M+ AaZoe), (5.52)
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where

n’n{a”(éo + MZie + A2Zae) a22(do + AMiZyc + AaZac)

k= NI L2 : % b
ky = 7,

MLy, +
hy= — 2

)\2L2 + ﬁz

Then E. is globally asymptotically stable with respect to all solutions initiating in the

interior of the positive orthant.

[t may be noted here that conditions in Theorem 5.5.1 are similar to Theorem 5.3.1,
and conditions in Theorem 5.5.2 are similar to Theorem 5.3.2 where the equilibrium £

has been replaced by £..

L]

Remark 3 Effect of diffusion in the case of cooperation model can be studied in a
similar way as that of competition model given in section 5.4. It may be noted here

that the results of Theorem 5.4.1 are also valid in the case of cooperation.

5.6 Prey-Predator Model

We consider z, and z; to be prey and predator respectively. Then in this case we have

710 > 0, 799 < 0, @12 > 0 and a,, < 0.
We take, az; = —b21, and ryg = —15, where by > 0, ry > 0.

In this case there exist three nonnegative equilibria, namely, E4(0,0

90Q 09Qo > (= o7 T P = T [
61(1—030‘()_0607)’ ‘57(“0‘%‘71"060?))’ Ep(fE]p,O, Tp) Ulp)U2p)a and Ep(a:lp):eran) Ulp)U'Zp)-

— Qo
180(1-000y —0602) !

Ey exists if 1 — 6q8, — 636, > 0. Existence of E‘p, and E‘p can be established in a similar

way as in the competition model.

Local stability behaviour of Ey, and E,, can also be studied in a similar way as in the

competition model.

The following theorem shows that E, is locally asymptotically stable. The proof of
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this theorem is similar to Theorem 5.3.1 and hence is omitted.

Theorem 5.6.1 Let the following inequalities hold:
- - 1- -
{k16:6, + ka(8060 + M1 Z1,)}? < §k,k251 (80 + A1y + AaZap), (5.53)
_ _ 1- -
{k19252 + k3(9‘l)§0 + Agfzp)}z < iklkgdg(do + ’\ljlp + /\2.’pr), (554)
where

Cl”((S() + /\lilp 4+ /\Qizp) 0220,]2((50 + A]J_Z]p + /\2.’22;,)

ky = min ! , 3 ,
‘ { AN3T? ANGb T2 )
= ™
kp = ————
TN, + B
Fy= 2 Tmt
by ATy, + Bo

Then E’p is locally asymptotically stable.

In order to show the global stability of E,, we need the following lemma whose proof

is easy and hence is omitted.

Lemma 5.6.1 The set

b
Q5 = {(z1,22, T, U, U3) : 0 < Sm, 0<z, < Al 2, 0<T+U +U, < L3}
a a11Q22

attracts all solutions initiating in the positive orthant, where

1rio by

L= ~—{83 il
: 5011{' l+022'62}’

0= 771il'l{(50(1 - 00 - 06),61(1 - 01),62(1 - 02)}

In the following theorem we are able to write down conditions for E, to be globally

asymptotically stable. The proof of this theorem is similar to to Thcorem 5.3.2 and

hence is omitted.
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Theorem 5.6.2 Let the following inequalities hold:

{l‘\;‘lgldl + /:”2(90(50 -+ /\1521,,)}2 < ky 20, ((50 + )\111—211, + /\211_72;,), (555)

{k19252 + i»'a(%fso + A2i2p)}2 < -k 2302(00 + MiZ1p + AoZ2p), (5.56)

where

; - can(0o + MZip + AaZap) @20a12(80 + M Zip + AT
ki = min{ 11(80 + MZ1p + AaZgp) @22a12(60 + A1 Z1p + AaTyp)

AN L2 ' 473by, L2 h
by = T
2 MLy + 06y
: a1272)
/Cg = .
b (A2Ls + Bo)

Then E, is globally asymptotically stable with respect to all solutions initiating in the

intertior of the positive orthant.

Remark 4 Effect of diffusion in the case of prey-predator model is found to be similar

to the competition model given in section 5.3. In particular, the results of Theorem

5.4.1 remain valid in this case.

5.7 Conservation Model

In the previous sections it has been noted that if the environmental pollution increascs
without control, then the survival (growth and existence) of the two interacting bio-
logical speciecs may be threatened. Therefore, some kind of efforts must be adopted
to control the undesired level of the pollutant present in the environment so that the
survival of the species may be ensured. Keeping this in mind, in this scction a matlic-
matical model is proposed and analysed to control the undesired level of the pollutant
present in the environment. It is assumed that the cffort applied to control pollutant is
proportional to its undesired level. Following Shukla et al. (1989), Dubey (1997a) and

Shukla and Dubey (1997) differential equations governing the system may be written

as



6z1

ot
a.’EQ

ot

ot

ou,

ot
ol,

ot
oF

ot

1071 — ruziUr — anzi — appzize + D1 Vi,

T90T2 — TaZ2Us — A ZT1T9 — a9s + DyVix,,

Q(t) — 8T + 0,6,Uy + 020:U — A\ T — Xz, T

~aF + D3V?T, (5.57)
~6 Uy + 606T + M\ T + Bz,

—8Us + 0460T + AazoT + Box2,

pw(T = T)H(T - Tc) - vF,

0_<_90+96S1, 0<6,,0, <1.

We impose the following initial and boundary conditions on the system (5.57):

z\(z,y,0) = ¢(z,y) 2 0, z2(z,y,0) = ¥(z,y) =2 0,

T(z,y,0) = &(z,y) 2 0, Ui(z,y,0) = Gi(z,y) 20,

Ua(2,9,0) = Ga(z,y) 2 0, F(z,4,0) = x(z,y) 2 0 (z,y)eD (5.58)

81‘1

aZL‘Q oT _

n dn

0, (z,y) e dD,t >0,

where n is the unit outward normal to 9D.

In model (5.57), F(z,y,t) is the density of effort applied to control the undesired level

of environmental pollutant. o is the depletion rate coefficient of T'(z,y,t) due to the

effort F'. pis the growth rate coefficients of F' and v is its depreciation rate coefficient.

T, is the critical level of the environmental pollutants, which is assumed to be harmless

to the species. H(t) denotes the unit step function which takes into account the case

when T < T,.

We shall analyse the conservation model (5.57) assuming that the interaction between

the two species is of competition type and the introduction of pollutant into the envi-

ronment being constant, i.c., Q(t) = Qo > 0.
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5.8 Conservation Model Without Diffusion

In this case we take D; = D, = D3 = 0 in the model (5.57). Then the model (5.57)
has only interior equilibrium E*(z{,z5,T",U;,U,, F*). Existence of E* can be shown
in a similar fashion as £. In the following theorem it is shown that E* is locally

asymptotically stable, the proof of which is similar to Theorem 5.3.1 and hence is

omitted.

Theorem 5.8.1 Let the following tnequalities hold:

4
(a12 +an)? < g&11922, (5.59)
! 4 * 2 s * *
U 4 . 2 [ - x

where

. {(1“((50 + /\11‘; + AQ:L;) 0,22(60 + /\113; + )\2175)

d, = min 5(nT*)? ’ 5(0T)? b
d'2 _ T
AT+ 6y
dy = S .
: AT+ 5,

Then equilibrium E* 1s locally asymptotically stable.

In the following lemma, a region of attraction for system (5.57) without diffusion is

established. The proof of this lemma is similar to Lemma 5.3.1 and hence is omitted.

Lemma 5.8.1 The set

Q= {(z1,22, T, U, U) : 0< 1y < gg, 0<z, < ?, 0<T+U,+U, L1y,
11 22

o< F<fL)
174

attracts all solutions initiating in the positive orthant, where

1 r T
L.=SU%+ﬁrﬂ+ﬂrﬂ,
1y a2

0= 772.1:71{(50(1 — 6 — 96),61(1 - 91),52(1 -~ 92)}
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The following theorem gives criteria for E* to be globally asymptotically stable, whose

proof is similar to Theorem 5.3.2 and hence is omitted.

Theorem 5.8.2 Let the following inequalities hold:

4
(a2 +a2)? < gdde (5.62)
2
{dlf)lé, + dg(go(so + /\11;)}2 < 5d1d26l(60 + )\11‘; + /\21?5), (563)
/ . 2 * *
{d19262 + d3(90(50 + /\2:52)}2 < gdldg(sg(éo + )\12}1 + )\21132), (564)
where
. (1“(60 + )\lI; + /\2113;) a'z'z((So + )\1.’5; + /\2.’135)
d, =
TP W/ - P
dy = — 1
ML+ By
dy = — 2
MLy + B

Then equilibrium E* 1s globally asymptotically stable.

Theorems 5.8.1 and 5.8.2 show that if suitable effort is made to control the undesired

level of environmental pollutants, then the survival of the two competing specics may

be ensured.

5.9 Conservation Model With Diffusion

We now consider the case when D; > 0(i = 1, 2, 3) in model (5.57). We shall show that
the uniform steady state z,(z,y,t) = z}, z2(z, 9, t) = 25, T(z,y,t) = T*, Uy (z,y,t) =
U, Uy(z,y,t) = U; and F(z,y,t) = F* is globally asymptotically stable. For this, we

consider the following positive definite function

Va(21(2), 22(8), T(2), U (), Ua(2), F(2)) =//D V21, 22,1, Uy, Uy, F) dA,

where
Vo(zy, 20, T, U0, Ug, F) = :cl—:t:;—1;]11§l;—i—c,(2:2—rc§—:zaln%)-i-%(T—T')2
) 2
+2(U = Ui+ S Ua = U3) + S (F = F)
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The constants ¢,s are to be chosen suitably.

Then as earlier, it can be checked that if %:1 < 0, then ‘%{1 < 0. This implies that if
E* is globally asymptotically stable for system (4.67) without diffusion, then the cor-
responding uniform steady state of system (4.67)-(4.68) is also globally asymptotically
stable with respect to solutions such that ¢(z,y) > 0,¢¥(z,y) > 0,&(z,y) > 0,{(z,y) >
0,¢(z,y) > 0,C(z,y) >0, (z,y) e D.

5.10 Numerical Examples

In this section we present numerical examples to explain the applicability of the results
discussed in sections 5.3, 5.5, 5.6 and 5.8. We choose the following values of the

parameters in model (5.3).

™m = 005, Ty = 0.04, ayy = 022, Qo9 = 026,
Qo =15.0, 6o = 6.7, 6, = 15.5, 4, = 10.4;
0, = 0.02, 0, = 0.03, 6, = 0.01, 6, = 0.04, (5.65)

/\1 = 006, /\2 = 009, ﬁl = 025, and 62 = 0.3.

Example 1 In this example, we consider the case when the two speccics are competing
with each other. In addition to the values of the parameters given in Eq. (5.65), we

choose the following parameters in model (5.3):
Tio = 50, T = 30, A = 0.07 and ag) = 0.08.

With the above values of the parameters, it can be checked that the interior equilibrium

E cxists, and is given by,
7, = 21.01420, Z, = 5.03089, T = 1.81106, U, = 0.49409, U, = 0.27064.  (5.66)
It can also be checked that conditions (5.13)-(5.15) in Theorem 5.3.1 are satisfied which

shows that £ is locally asymptotically stable.
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Further, we note that conditions (5.17)-(5.19) in Theorem 5.3.2 are also satisfied which
shows that £ is globally asymptotically stable.

Example 2 Here we consider the case when the two species are cooperating with each
other. In addition to the values of the parameters given in Eq. (5.65), we choose the

following parameters in model (5.3):
Tio = 50, Tog = 30, a2 = —0.07 and Qg = —0.08.

With the above values of the parameters, it can be verified that the interior equilibrium

E. exists, and is given by,

It can also be veriffed that conditions (5.47)-(5.49) in Theorem 5.5.1 are satisfied,

showing the local stability character of E..

Further, it is easy to verify that conditions (5.50)-(5.52) in Theorem 5.5.2 arc satisfied,

showing the global stability character of E,.

Example 3 In this example, we consider the case when z, is predating on z;. In

addition to the values of the parameters given in Eq. (5.65), we choose the following

parameters in model (5.3):
Tig = 50, Too = —0.5, a)jp = 0.2 and a9 = —-0.1.

With the above values of the parameters, it can be verified that the interior equilibrium

L, exists, and is given by,
Z1, = 18.09059, Z,, = 4.99304, T, = 1.84798, U,, = 0.42918, U, = 0.27150. (5.68)

It can also be verified that conditions (5.53) and (5.54) in Theorem 5.6.1 are satisfied.

This shows that £ is locally asymptotically stable.

Further, it can also be checked that conditions (5.55) and (5.56) in Theorem 5.6.2 are

satisfied. This shows that £, is globally asymptotically stable.
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Example 4 Here we present a numerical example for the model with conservation.
In this example we consider the case when the two species are competing with each
other. In addition to the values of the parameters given in Eq. (5.65), we choose the

-following parameters in model (5.57) without diffusion:
Tio = 3.0, 120 = 3.0, a;2 = 0.07, az; = 0.08,

a =220, p=20.0, v=001, T. = 0.15.

With the above values of the parameters, it can be checked that the interior equilibrium

E exists, and is given by,
T, = 21.04420, %, = 5.03897, T = 0.15032, U, = 0.35232, U, = 0.15578.  (5.69)

It can also be checked that conditions (5.59)-(5.61) in Theorem 5.8.1 are satisfied which

shows that £ is locally asymptotically stable.

Further, we note that conditions (5.62)-(5.64) in Theorem 5.8.2 arc also satisfied which

shows that £ is globally asymptotically stable.

5.11 Conclusions

In this chapter, a mathematical model has been proposed and analysed to study the
survival of two interacting'spccies in a polluted environment, the mode of interaction
being competition, cooperation and predation. The model has been analysed with and
without diffusion. When there is no diffusion it has been shown that in the case of
constant introduction of pollutant into the environment the competing species settle
down to their respective equilibrium levels, the magnitude of which depends upon the
equilibrium levels of washout and uptake rates of pollutant. It has also been noted
that if the concentration of pollutant increase unabatedly, then the survival of the
species would be threatened. In the case of instantaneous introduction of pollutant into
the environment, it has been found that the competing species again settle down to

their respective equilibrium levels whose magnitude is higher than the case of constant
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introduction of pollutant into the environment. In the case of periodic emission of
pollutant into the environment, it has been found that a periodic influx of pollutant

with small amplitude causes a periodic behaviour in the system.

The effect of diffusion on the interior equilibrium state of thg system has also becn
investigated. It has been shown that if the positive equilibrium of the system without
diffusion is globally asymptotically stable, then the corresponding uniform stecady state
of the system with diffusion is also globally asymptotically stable. It has further been
noted that if the positive equilibrium of the system with no diffusion is unstable, then
the corresponding uniform steady state of the system with diffusion can be made stable
by increasing diffusion coefficients appropriately. From the proof of Theorem 5.4.1, it
should be noted that %ﬁ contains some extra negative terms implying that the global
stability is more feasible in the case of diffusion than the case of no diffusion. In
case of cooperation and prey-predator, similar results have been found. In each case, a
numerical example has been given to tllustrate the results obtained. A modecl to control
the undesired level of the pollutant present in the environment has also been proposed.
By analysing this model it has been shown that if suitable cfforts are made to control

the undesired level of the environmental pollutant, the survival of the species may be

ensured.
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Chapter 6

MODELS FOR EFFECTS OF
INDUSTRIALIZATION AND
POLLUTION ON RESOURCES
IN A DIFFUSIVE SYSTEM

6.1 Introduction

A rapid pace of industrialization and its by-products has started changing the environ-
ment by emanating hazardous waste discharge and poisonous gas fumes and smokes
into the environment (Nelson, 1970; Patin, 1982). All these by-products adversely af-
fect the ecosystems- water, air, vegetation, forestry resources and other forms of life. It

is therefore absolutely essential to study the effects of industrialization and pollution

on forestry resources.

In recent decades, some investigations have been made to study the cffects of pollutants
on various eccosystems utilizing mathematical models (Hallam and Clark, 1982; Hallam
ct al., 1983; Hallam and De Luna, 1984; De Luna and Hallam, 1987; Yreedinan and

Shukla, 1991: Huaping and Ma, 1991). As pointed out in the previous chapter, the
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above studies include the effects of pollutants on a single or two species community.
Shukla et al. (1989) proposed and analysed a mathematical model to assess the effects
of industrialization on the degradation of forestry biomass together with a reforestation
cffort. Dubey (1997a) studied the effects of toxicant on depletion and conservation of
forestry resources. Shukla and Dubey (1997) also proposed and analysed a mathemat-
ical model to study the effects of population and pollution on resources. But in the

above studies effects of industrialization and pollution on the biological species in a

diffusive system do not appear.

In this chapter we, therefore, consider a dynamical model to study the effects of pol-
lutant emitted by industries on biological species such as plant/trec population in a
forest stand. It is assumed that the pollutant is emitted into the environment with
a rate which is dependent on the industrialization and is de‘pleted by some natural
degradation factors. The model is analysed in two cases, namely, without diffusion
and with diffusion. In the analysis of the model, the rate of introduction of pollutant

is assumed to be (i) industrialization dependent, (ii) constant, (iii) instantancous, and

(iv) periodic.

6.2 Mathematical Model

Consider a biological species such as plant/tree population in a forest stand (i.c.
forestry resource biomass) affected by the pollutant emitted into the environment by
different types of industrial processes in a single closed region D with smooth boundary
0D. It is assumed that the growth rate of the specics decreases with the uptake of
pollutant by the species and the corresponding carrying capacity decreases with the
increase in the density of industrialization as well as the environmental concentration
of pollutant. The density of industrialization is assumed to be wholly dependent upon
the resource and the interaction is prey-predator type. Following Freedman and Shukla

(1991), Huaping and Ma (1991) and Dubey (1997a) the dynamics of the system may
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be governed by the following differential equations:

OB ro B? 2

at T(U) —m—a]]B"i'Dlv B)

61 2 2

— = —vol = I*+ ay,IB+ D,V°I,

ot

%ng—%T—aBT+mmU+m@U+DﬂWR (6.1)
%({—=ﬁB+8060T+O:BT—61U_VBU)

0 S 90,61,‘1T S 1.
The above model needs to be analysed with following initial and boundary conditions:

U(z,y,0) =((z,y) 2 0, (z,y)eD, (6.2)
8B 8l aT

-‘a-;—g’;, 5;:01 (Iay)“:aD’ tZO’

where n i1s the unit outward normal to 9D.

In model (6.1), V? = % + a%?’i is the Laplacian diffusion operator. B(z,y,t) is the
forestry resource biomass, I(z,y,t) the industrialization pressure, T(z,y,t) the con-
centration of the pollutant present in the environment and U(z,y,t) the uptake con-
centration of pollutant by the resource biomass at coordinates (z,y)eD and time ¢ > 0.
D\, D, and D, arc the diffusion rate coefficients of B(z,y,t), /(z,y,t) and T(z,y,t)
respectively in D. G is the net uptake of pollutant by the resource biomass. g is the
depletion rate of pollutant from the environment due to various processes including
biological transformation, chemical hydrolysis, volatilization or microbial degradation,
and a fraction 6y of it may again reenter into the resource biomass with the uptake
of pollutant. ¢; is the natural depletion rate coefficient of U due to ingestion and
depuration of pollutant, and a fraction 8, of it may again reenter into the environment.
a is the depletion rate coefficient of T due to its uptake by the resource biomass. v
denotes the depletion rate coefficient of U due to resource biomass and a fraction 7 of it
reentering into the environment. a, is the depletion rate cocfficient of resource biomass
due to industrialization. a, is the growth rate coefficient of industrialization due to

resource biomass. 7o is the natural depletion rate coefficient of the industrialization
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and 7, is its intraspecific interference coefficient. The parameters o, oy, a3, b, 41, G,

Y0, 71 and v are assumed to be positive constants.

In model (6.1), @ represents the rate of introduction of pollutant into the environment

which may be industrialization dependent, constant, zero or periodic.

The function r(U) denotes the specific growth rate of resource biomass which decreases

as U increases, i.e.,
(0) =79 > 0,7(U) <0 for U > 0. (6.3)
The function K(I,T) is the maximum density of resource biomass which the environ-

ment can support and it also decrease as I and T increase, i.e.,

B oK oK
K(0,0) = K¢ > 0, 0—1<0’ 5f<0f0r1>0’T>0' (6.4)

6.3 Model Without Diffusion

In this section we analyse model (6.1) without diffusion (i.e., Dy = Dy = D3 = 0) for
different values of @, namely, when @ is industrialization dependent, constant, zero or

periodic. In such a case, model (6.1) reduces to

dB 7'0B2

o =B - ra.T -~ oIB

11

(d—t = —7ol — 1I* + a,IB,

dT

T Q — 8T — oBT + 6,6,U + nvBU, (6.5)
dU

‘E‘ = ﬂB + 0060T+ O.’BT - 5]U - I/BU,

B(0) 20, 1(0) 20, T(0) 2 0, U(0) > 0.
Case I: Q=Q(I) and it satisfics the following property:
Q(0) >0,Q'(J) >0 for I >0. (6.6)

In this case, model (6.5) has three nonnegative equilibria, namely, F4(0,0,

60(?_(%%01), 512)??(533)1))1 E(B,0,T,U) and E(B,I,T,U). The equilibrium E, obviously

exists, and we shall show the existence of £ and E as follows.
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Existence of E(B,0,T,U):

Here B, T and U are the positive solutions of the following algebraic equations:

B = r(g(B)K(O, [(B)), (6.7)
T = (61 + vB)Q(0) + (6,6, + m/B),BB
- (5061(1 — 008 ) + 60VB(1 — 907T) + 61ch(1 - 91) + QUB2(1 - 7T)
= f(B),(say) (6.8)
U = s+ BT () = g(B).(sa) (6.9
Taking

F(B) = roB — r(9(B))K (0, f(B)),

we note that £7(0) < 0 and F(I{) > 0, showing the cxistence of B in the interval
0 < B < K,. For B to be unique the following condition must be satisfied at E,

ro— 2 {(B)K(0, £(B)) — r(o(B) o /'(B) > 0. (6.10)

By knowing the value of B, the values of T and U can then be computed from (6.8)
and (6.9) respectively.

Existence of F(B,I,T,U):

Here B, I, T and U are the positive solutions of the following algebraic equations:

ToB - 1{(.}1[(8),/ZQ(B)){T(II;;(B))—a’|h1(B)}, (611)
I = f’izlﬁ = hy(B), (say) (6.12)
T - (016, + =vB)BB + Q(h(B))(4, + vB)

- 5051(1 - 9091) + (SQI/B(I - 9071’) + 61053(1 - 91) + auB2(1 - 7T)
= h2(B), (say) (6.13)
ﬁB 0 (So +aB _
U=55" ‘(’51 ——5ha(B) = hs(B). (say) (6.14)

As in the existence of E, it is easy to check that E exists, provided the following

inequality holds at E:

ro = {r(ha(B) - ki (B)H e b (B) + S (B))

— K(h(B), hy(B {aU (B) — oy b, (B)} > 0. (6.15)
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By computing the variational matrices corresponding to each equilibrium, it can be
“easily checked that Ey is a saddle point with unstable manifold locally in the B direction

and stable manifold locally in the I — T — U space. E is unstable in the I direction.

In the following theorem it is shown that £ is locally asymptotically stable.

Theorem 6.3.1 Let the following inequalities hold

(AT 37 D+t < Sl 610
{ﬁ%%%!%(f,’f‘)+af‘+wu0}2 < %r—ogi—o(%—%)—é—), (6.17)
{(r"(U)+B+aT +vU})? < %3’—(1?—’(%%@, (6.18)
{QUDY < %71(60 +aB), | (6.19)
{6050 + 016, + (o + 1) B)? < %(50 +aB)(6, + D). (6.20)

Then the equilibrium E is locally asymptotically stable.

Proof: We first linearize system (6.5) around the positive equilibrium £ by taking the
transformations B= B+b, [ =I+1, T=T+7,U = U +u. Then using the following

positive definite function in the linearized system of model (6.5),

1 b2 12
V= —{— 4+ — 2 2
2{B+I+T + u’},

it can easily be checked that the derivative of ¥V with respect to t is negative definite

under conditions (6.16)-(6.20), proving the theorem.

In order to investigate the global stability behaviour of E, we first state the following
lemma, which establishes a region of attraction for system (6.5). The proof of this

lemma is easy, and hence is omitted.

Lemma 6.3.1 The set

0 ={(B,I,T,U):0 £ B < Ky 0< 11 <I,0T+U < Ly}
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attracts all solutions initiating in the interior of the positive orthant, where

[ = Yotale o %
" Qa2
L, = gL;_ﬁ.EQ, d = min{8p(1 — 6p),0,(1 — 6,)}.

In the following theorem global stability behaviour of E is studied.

Theorem 6.3.2 In addition to the assumptions (6.3) and (6.4), let r(U) and K(I,T)

satisfy the following conditions in §;,

Km S K(I,T) < Ko, 0< —r'(U) < p1,0 < Q1) < po,

JdK oK
< - <k, 0< ~—==<k .
0< a7 < L, 0L aT_kg, (6.21)

for some positive constants K., py, p2, ki, and ky. Then if the following inequalities

hold,

Tok1 Ko 12 2 1o
(Pt tea) < oo, (6.22)
Toko Ky 9 419(dp + aB)

'+ wv) L —————— .
g, tledmill < 5T R r (6.23)

219(6) +vDB)

: L,)? SO T .

i+ B+la+ )l < 3=pra (6.24)
2 _

{P2}? < (b0 + aB)m, (6.25)
(6050 + 616, + (a + 7)) B)? < 2(50 +aB)(6, + vB), (6.26)

the equilibrium E is globally asymptotically stable with respect to all solutions initiating

in the interor of the positive orthant.

Proof: Consider the following positive definite function around E,

_ _ - _ I 1 _ _
Vl(B,I,T,U,)=B—B—Blng+1—1-lln7+§(T—T)2+%(U—U)2. (6.27)

Now differentiating V| with respect to t along the solutions of (6.5), a little algebraic

manipulation yields
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C”/l To

dt K(I,T)
—{(51 +I/B}(U - 0)2 + {—ToBfl(],T) — +O.’2}(B - B)(I - f)

(B—B)? =yl =1~ {6 +aB}(T = T)?

+{=10B&(I,T) — oT + 7vU}(B — B)(T - T)

+{mU)+B+aT —vU}B - B)U -U) +n(1)I = I)(T-T)
+{6000 + 6,6, + (a + wv)B}(T - T)(U - U),

where

fl([vT)

52(1—1 T)

m(U)

(1)

i

{etrm —wram}/( =1, T#1

3 = -
_K2(11,T)3’1£(I’ T)) I=1

{K(;,T) - K(;,T)}/(T- T, T#T

—'Kz(ll7)aa'_¥(f:T)) T:T
r!U!—-r!_! &
v U#FU
MUY, U=0
QUN-Q(I 2
AR T £T
Q), I=1I

From (6.21) and the mean value theorem, we note that

1

M) < o1, 1] < o2 16T S 2 and |&(1,T)]| <

K

m

Now Eq. (6.28) can be rewritten as the sum of the quadratics
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_ _ - 1 -
Y L B-BY+auB-B)I~1T) - an(l - 1)

a2 2
~2au(B - BY + (B~ B)(T ~ T) - Jass(T ~ TV
~2an(B - B +au(B~ B)(U - U) = sau(U - 0)?
-—%an(l =)’ +an(I-IN(T~-T)- %asa(T -7y
2o = T + asu(T ~ T)(U = U) = 5au(U = O,

where

2 T 2 _ _
a) = gmﬁ—ﬂ, a» =7, Q33 = 5(50 +abB), ay =4, +vDB,
a2 = —19B&(1,T) ~ oy + g, a1y = —1oB&(,T) - ol —mvU,

a4 = 771(U) +,B+ aTl — UU, Q3 = 1”}2(1), a3q = 90(50 +- 01(51 + (Ol+ 7TI/)B.

Sufficient conditions for ‘%’l to be negative definite are that the following conditions

hold:

a?, < aj ag, (6.30)
a; < ay a3, (6.31)
a?, < aj1a4, (6.32)
a3y < axag, (6.33)
a2, < az3a44. (6.34)

We note that (6.30) = (6.22), (6.31) = (6.23), (6.32) = (6.24), (6.33) = (6.25), (6.34)
= (6.26). Thus, V; is a Liapunov function with respect to £, whose domain contains

the region of attraction ;, proving the theorem.

The above theorem shows that if inequalities (6.22)-(6.26) hold, then the resource
biomass settles down to a steady state whose magnitude depends upon the steady
state of industrialization, influx and washout rates of the pollutant present in the en-
vironment, the influx rate being dependent upon the steady state of industrialization.
The magnitude of the resource biomass decreases with the increase in density of indus-

trialization and influx rate of pollutant present in the environment. It may be noted
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here that equilibrium level of the resource biomass density may doom to extinction if

the densities of industrialization and pollution increase unabatedly.

Case II: Constant emission of pollutant into the environment, i.e., @ = Qo > 0.

In this case the analysis will be similar as that of the case I and the results corre-
sponding to Theorems 6.3.1 and 6.3.2 can be deduced. In particular, it may be noted
that condition (6.19) in Theorem 6.3.1 and condition (6.25) in Theorem 6.3.2 are au-
tomatically satisfied. In this case the results are found similar to the industrialization

dependent case.

Case III: Instantancous introduction of pollutant into the environment, i.c., = 0.

In this case the system can be analysed in a similar fashion as that of case I. In particu-
lar, it is noted that the pollutant may be washed out completely from the environment,
and then the resource biomass density may return back to a lower equilibrium level
than its original carrying capacity, the magnitude of which would depend upon the

equilibrium level of industrialization. Even in this case the resource biomass density

may tend to zero if the industrialization pressure is very high.

By comparing the equilibrium levels of resource biomass density in cases I, II and III,
we note that tlic extinction rate of the resource biomass density is maximum in casc |

and minimum in case III, keeping other parameters same.

Case IV. Periodic emission of pollutant into the environment, ie., Q(t) = Qo +

ep(t), d(t +w) = &(t).

In this case, it can be checked that the results corresponding to Theorem 3.4.1 and
Theorem 3.4.2 in chapter 3 remain valid. In particular, it 1s found that a small periodic
influx of pollutant into the environment causes a periodic behaviour in the system and

for small amplitude the stability behaviour of the system is same as that of the constant

introduction of pollutant.
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6.4  Model With Diffusion

In this section we consider the complete model (6.1)-(6.2) and state the main resujis

in the form of the following theorem.

Theorem 6.4.1 (i) If the equilibrium E of model (6.5) is globally asymptotically sta-
ble, then the corresponding uniform steady state of the initial-boundary value problems

(6.1)-(6.2) is also globally asymptotically stable.

(ii) If the equilibrium E of the model (6.5) is unstable, even then the uniform steady
state of the initial-boundary value problems (6.1)-(6.2) can be made stable by increasing

diffusion coefficients appropriately.

Proof: Let us consider the following positive definite function

Va(B(t), I(t), T(), U(t // Vi £), T(1), U(t))dA, (6.35)

where V) is defined in Eq. (6.27). We have,

dVy / / av 0B 90l  0WoT OV, OU)
dt 9B ot "l ol T aT ot T U B
= L+ (6.35)

dA

where
v, _, v _, oV,
1_// —dA and I, = // (D155 V?B + D57 Vi + Dy 5L VPT)dA (6.37)

We first note that /) has the same sign as that of %1, if ‘ﬂl does not change sign in D.

We also note the following properties of V|, namely,

ovi] _an) _aw)] _an)
oBl,, oI oo T lep OUl,p

and for all points of D,

62‘/'1 _ 02‘/1 _ 62".] . 62‘/1 _ 62‘/1 _ 82V1
9BAI ~ 9BAT ~ 9BAU  9IOT  9IOoU ~ 8TOU
82V, a2V, a2V, 2V,
W>O,W>O,6—T{>O,andauz>0.

=0,
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Under an analysis similar to chapter 2, we note that

//D TViBdA = - // Z;S ) (aB) }dA <0,  (6.38)
// 8hV2 [dAd =~ // 83221 aI (—)z}dA <0, (6.39)
[],3 a“V"’T“‘ [],50¢ ‘Zf 6T> JA<o  (6.40)

This shows that

I <0. | (6.41)

The above results shows that if [, < 0, i.e., if £ is globally asymptotically stable in
the absence of diffusion, then the uniform steady state of the initial-boundary value

problems (6.1)-(6.2) also must be globally asymptotically stable. This proves the first
part of Theorem 6.4.1.

We further note that if €& > 0, i.e., if J; > 0, then E' may be unstable in the absence
of diffusion. But, Eqgs. (6.36) and (6.41) show that by increasing diffusion coefficicnts
Dy, D, and Dj sufficiently large, d—‘):l can be made negative even if /; > 0. This proves

the second part of Theorem 6.4.1.

The above theorem implies that diffusion with reservoir boundary conditions may be
thought of as stabilizing the system. We shall explain the above theorem for a rectan-

gular habitat D defined by

D={(z,y): 0<z<aqa, 0<y<b} (6.42)

in the form of the following theorem.

Theorem 6.4.2 [n addition to assumptions (6.3) and (6.4), let v(U), K(I,T) satisfy
the inequalities in (6.21). If the following tnequalities hold: -
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7’0/\'11(0

+a +ap}? <

m

{ To /Cg I(o
K2

+ (a+wv)L,}? <

{p +B+ (a+v)L,}* <

{0050 + 9151 + (CY+ ﬁU)B}? <

2. 1o Dy Br*(a? + %)

_- - X
ke H T e )

DyIn?(a® + b?)
{nl'l + 1520,2172 }’

DlB7'l'2(CL2 + b'Z)

4

. Dym?(a® + b?)

2 o D, Bn?(a? + b?)

z ) 4 X
3 K(I,T) KZa2b? }

((51 + UB),
D,J7%(a® + 1?)
_3—{’)’1 -+ 13021)2 } X

D3m?(a? 4- 1?)

{60+O’B+ a,bez }a
2 = D37r2(a2 + 52)
5{50+C¥B+ a2b? } X

((51 + UB),

0
— — X
A RED T T e )

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

then E is globally asymptotically stable with respect to all solutions initiating wn the

interior of the positive orthant.

Proof: Let us consider the rectangular region D given by Eq. (6.42). In this casc Iy,

which is defined in Eq. (6.36), can be written as

-b1 f [ (GE
—02/ JREAK
_03// 62‘/

From Eq. (6.27) we get

Bz+(aB)}dA

8]
{37 (—~) } dA
T 2+(6T) } dA.

&’ B
oB? = B?’
?vy T
orr 1
v

=1

oT?
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Hence

Dz

< - //{ (@)2} d
—Ds//{ 3%} da.

55" 44

Now

[figr i = [
= /0/0{—8—6—3:—22}2 dzdy

Under an analysis similar to chapter 2 and using the well known inequality (Denn,

1975, pp. 225)
1 1
/(?—3—)2 dz > 772/ B? dz,
0o Oz 0

[[ronz %[5
[[,GEran 2 3 [ o 5ra

D, Br?(a® + 1?) -
< - -
2 5 KGa?%? // (B—-DB)"dA

P fu -y

Dgn (L +b2
- a?bh? //

Now from (6.28) and (6.38)-(6.40) we get
dV2 D1§ﬁ2(02 + b%) DyIn?(a? + b?) 9
//[ {K Tt rar (BT B = {m+ et ISl

D le 2 Dy (r — 1 - (6, + vB)(U - D

+{—'TQBEI(I,T) — Q) + OQ}(B - B)(I _— ]_)

we note that

and

Vv

Thus,

—{6o+aB +

+{=10B&(I,T) — oT + 7vUY(B - B)(T - T)
+{mU)+B+aT —vUYB - B)(U = U) + ()T - I)(T-T)
+{008 + 0,8, + (o + 7 )BT — TY(U - 0)} d4,
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where my (1), 72(F), &(B) and &(B) are defined in Eq. (6.28).

Now ‘%:2 can be written as

where

Do o [ [ -2mlB~ B +bu(B - BT 1) = ghall = I
~Lb(B = BY +bs(B - BYT ~ T) =~ 5ba(T - T
~1b0(B = B+ bu(B = B)U = 0) = 5bu(U - O
~gball = D+ baall = DT =T) - Sbss(T = T
—%bw(T — TP +b(T - T)U - U) - %bM(U = U)*)dA,
by 2. 1o D\ Bn?(a? + b?) DyIn?(a® + b?)

ba

b3.1 = 00(50 + 9161 + (O + ﬂ'l/)B.

=§{K(1‘,T)+ K2a2b? bibm=m+ 12g202

)}’ b44:61+1/B)

= —ToBfl(I,T) — ay 4+ Qo, b13 = —Tong(f, T) - ol — ’/TZ/U,
= T]l(U) + ,B-!“OT - I/U, b23 = 772(]),

Sufficient conditions for €2 to be negative definite arc that the following conditions

hold:

2

bi, < byibo,
b2, < byb
13 11033,
b2, < byb
14 11V44,
b2, < byb
23 22033,

b?“ < b33b44.

(6.49)
0)
)
)

>
o

1

o o
cn

(
(
(6.52
(

[#2]

53)

We note that (6.43) = (6.49), (6.44) = (6.50), (6.45) = (6.51), (6.46) = (6.52), (6.47)

= (6.53). Thus V; is a Liapunov function with respect to E*, whosc domain contains

the region §2,, proving the theorem.

From the above theorem we note that if we increase D;, D, and Dj to sufficiently large

values, then inequalities (6.43)-(6.47) may be satisfied. This implies that solutions
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of the system with diffusion approaches to its equilibrium faster than the case of no

diffusion.

6.5 Conservation Model

In the previous section it has been noted that uncontrolled growth of industrialization
and pollution may lead to the extinction of forestry resources. Therefore, some kinds of
efforts must be adopted to conserver the forestry resources (Munn and Fedorov, 1986;
Huttl and Wisniewski, 1987; Lamberson, 1986; Shukla et al., 1989; Reed and Heras,
1992; Dubey, 1997a; Shukla and Dubey, 1997). In this scction a hmthcrrmtical model is
proposed to conserve the forestry resources by some efforts like‘ plantation, irrigation,
fencing ctc. and by controlling the undesired levels of industrialization and pollution
by some mechanisms. It is assumed that the effort applied to conserve the resource
_ is proportional to the depleted level of resource biomass from its carrying capacity,
and efforts applied to control the industrialization pressure and the concentration of
pollutant are proportional to their respective undesired levels. Following Shukla et al.

(1989), Dubey (1997a) and Shukla and Dubey (1997), differential equations governing

the system may be written as

a8 roB? 2

W = T(U)B - ‘—‘—‘———1(([27.,) - 0’,113-4-7‘,0]7. +D,V B,

81 2 2

52 = —vol —nI° + a2l B — rooFo] + D, VI,

or

E = Q(]) — 60T —aBT + 0[(51U + nvBU — T30F3 + DSVZTa
oU ‘

= = BB +606T + aBT ~ ;U — vBU, (6.54)
0F, B

i (1 — -]?;) - mF,

OF:

———at2 = T2(1 _— IC)H(I - IC) - #'2F2)

OF:

2 = ry(T ~ TYH(T = T.) ~ s,

0590,91,775 1.
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We analyse the model with the following initial and boundary conditions:

B(z,y,0) = ¢(z,y) > 0,1(z,y,0) = ¢(z,y) 20,
T(z,v,0) = &(z,y) 2 0,U(z,y,0) =((z,y) > G,

Fl(Ixylo) = Cl(I)y) Z 01 F?(:ra y)O) = C’Z(Iay) Z O) (655)
F3(z,v,0) = (3(z,y) > 0,(z,y) ¢ D and
0B ol T _

— e — = — = >
on dn On 0, (z,y) e 9D, £ 20,

where n is the unit outward normal to 9D.

In model (6.54), Fi(z,y,t) is the density of eflort applied to conserve the resource
biomass, Fa(z, v, t) the density of effort applied to control the undesired level of indus-
trialization pressure and F3(z, y,t) the density of eflort applied to control the undesired
level of the concentration of pollutant in the environment. o > O represents the growth
rate coefficient of resource biomass due to effort Fy. ro9 > 0 and 739 > 0 are depletion
rate coefficients of I(z,y,t) and T(z,y,t) due to the eflorts F3 gnd F3j respectively. 7,
T, T3 are the growth rate coefficients of Fy, F3, F; respectively and u;, p, and pjz are
their respective depreciation rate coefficients. /. and T, are critical levels of industrial-
ization pressure and concentration of pollutant respectively which arc assumed to be
harmless to the resource. In the last two equations of system (6.54), H(t) denotes the
unit step function which takes into account the cases when 7 < /. and T < T.. It may
be noted that in the unusual circumstances, even in the face of industrialization, if the

forest excecds its carrying capacity, then ‘%"} will be negative, giving a decrcase in the

effort to conserve the biomass.

We analyse conservation model (6.54) only for the case when ratc of introduction of

pollutant into .he environment is industrialization dependent.

6.6 Conservation Model Without Diffusion

In this section we take, D} = Dy = D3 = 0 in model (6.54). Then the model has only

one interior equilibrium, namely, E*(B*,I*,T",U", Fy, F;, Fy), where B*, I*, T*, U,
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F}, F; and F; are positive solutions of the system of algebraic equations given below.

B = {r(U)—al+ Tmrl

(1 - )}I(([)T)>

| ol brane

M2 -+ TTo

T _ Q(hl(B))/J:;((Sl + UB) + [.13(9151 + WUB)ﬂB + T30T3TC(51 + I/B)

;1.3[6061(1 - 9091) + (50UB(1 - 71'90) + O.’(SlB(l - 91) + O:VBQ(l - 7[')] + 7‘307‘3((51 + I/B)

= hy(B), (say)
ﬁB + (0060 -+ CYB)hQ(B)

U = 61+UB :hf}(B))(Say)
- ng_B
Fl - /J'l(l I% ))

{(2(I-1), I>1.

F, = 2(U-I)HU-1,)= ,
Ha2

Fy = #(T T)H(T - T,) =

It may be noted here that for F} to be positive, we must have
Ko > B. - (6.58)

As carlier, it is casy to check that £° exists if and only if the following incquality holds
at E*,

ol 81{ BK
o — {r(ha(B)) — arhi(B) + (;Jl( - )}{ W (B) aThz(B)}
- {——h’ — ok (B) ~ rl;‘;r]‘( }K (hy(B), hao(B)) > 0. (6.57)

In the following theorem it is shown that E* is locally asymptotically stable, the proof

of which is similar to Theorem 6.3.1 and hence is omitted.
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Theorem 6.6.1 Let the following inequalities hold:

T'oB. oK R . 32 g ToY1 6.58
Uy ar UH T + o+ ) < sy (6.58)
roB* 0K . .. . ey2 _ 470(bo + aB”)
——— = 6.29
SGagnyar T+ el +mUY < g oy (6.59)
2 79(6; + vB*)
i * . 12 et olV1 660
{F'(UY+B+aT +vU'}* < 3—————————1{(1"7,‘) , (6.60)
I3 » 2 .
QUM < 5"{1(50 +aB’), (6.61)
2
{90(50 -+ (9161 + (Cl’+ TFV)B.}z < 5(60 “+ O:B')(él + I/B‘), (662)

then E* is locally asymplotically stable.

In the following lemma a region of attraction for system (6.54) without diffusion is

established. The proof of this lemma is similar to Lemma 6.3.1 and hence is omitted.

Lemma 6.6.1 The set

QZ:‘{(B)I)TIU)FHF?)FJ) : OSBSI(G)OSISIaaOST+USLa1
0<F<toch < ocr < e
H 2 M3

}

attracts all solutions initiating in the positive orthant, where

1\/0 4r|0r,
Ko=—{1+ 1+ ——},
) 2 { /hKOTO}
[ = —Yo + a2 K,

T A
Lo = %{Q([,,) + 0K}, 6 = min{do(1 - 0o),6:(1 — 6)}.

3

The following theorem gives criteria for E* to be globally asymptotically stable, whose

proof is similar to Theorem 6.3.2 and hence is omitted.

Theorem 6.6.2 [n addition to the assumptions (6.83) and (6.4), let r(U) and K(1,T)
satisfy in 5, .

. ., oK . oK .
Kn < K(I,LT) < Ko, 0< T <kj, 0< 37 < k3,

0< —r'(U) < 91,0 < Q'(J) < p3, (6.63)
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for some positive constants K, ki, k3, p} and p3. Then if the following inequaliies

hold:
{T"fgg" +ay +a}? < %Y{T"Q‘T—) (6.54)
{3’%;[2(— +(a +mv)Le)2 < %-————”’g‘(’;‘;i.), (6.65)
(P, + B+ (a+v)L.)? < %QI(—;S(‘—;-”%—) (6.66)
{0’} < %71(50 +aB), (6.67)
{6060 + 016, + (a+ 70)B")? < %(50 +aB*)(8 + vB°), (6.68)

E* is globally asymptotically stable with respect to all solutions initiating in the positive

orthant.

Theorems 6.6.1 and 6.6.2 show that if suitable efforts are made to conserve the re-

source biomass and to control undesired levels of industrialization and pollution, an

appropriate level of the resource biomass density may be maintained.

6.7 Conservation Model With Diffusion

We now consider the case when D, > 0(i = 1,2,3) in model (6.54). Then we can

show that the uniform steady state B(z,y,t) = B, I(z,y,t) = I*, T(z,y,t) = T*

)

Ulz,y,t) = U, Fi(z,y,t) = F, Falz,y,t) = I3, F3(z,y,t) = Fy is globally asyinj-

totically stable. For this, let us consider the following positive definite function:

‘/3(Bil)T)U)Fl)F2=F3) :/L‘/Q(B)]aT)UaFlaFQ)FQ')dA)

where,

%(B7I1T1U)F1)F21F3)

]
I}

B-B - B‘ln(g_—) Iy gy L I'ln(%)
170K

l _ *\2 _1_ . «\2 T »\2
+2(T T") +2(U Uu) +2rlB' (Fy = F))
Lro w2, 1730 2

Z 2Rk~ F - — )2,
_+2r2(2 2)+27,3(3 3)

142



Then as earlier, it can be shown that

dV3
832 552 W 83:)

b [ 28y rea=oa | T+

This shows that if £2 < 0, then £2 < 0. This implies that if E* is globally asymp-

// ‘”2(3 [,T,U, F\, Fy, F3)dA - D, // OV (%%)ﬂcm

totically stable for system (6.54) without diffusion, then the corresponding uniform
steady state of system (6.54)-(6.33) is also globally asymptotically stable with respect

to solutions such that ¢(z,y) > 0, ¥(z,y) > 0, £(z,y) > 0, ((z,y) > 0, (i(z,y) > 0,
C(z,y) > 0, G(z,y) > 0, (z,y)eD.

We also note that if d—d‘—ll > 0, then ‘%‘ can be made negative by increasing Dy, D,,
D3 to sufficiently large values. This implies that if system (6.54) without diffusion is
unstable, even then the corresponding uniform steady state of system (6.54)-(6.55) can
be made stable. We also note that d—d‘—:l contains some extra ncgative terms implying
that the global stability in this case is more plausible than the case of no diffusion.
This shows that solutions approach E* more rapidly as the diffusion coefficients Dy,
D, and Dj increase. So, with diffusion the biomass will converge towards its carrying

capacity at a faster rate than with no diffusion.

6.8 Numerical Examples

Example 1 Here a numerical example is presented to illustrate the results obtained in

section 6.3. We consider the following particular form of the functions in model (6.5).

T(U) =Ty — b]U,
K(I,T) = Ko — K\I - K,T, (6 59)

Q) =q +aql.

Now choose the following set of values of the parameters in Eq. (6.69) and in model
(6.5).
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ro = 20.0, by, = 0.02, Ko =100.0, K, = 0.8, I, = 0.9, qo = 10.0,
g =0.7, a1 = 0.25, ap = 0.15, 7 = 0.29, m = 6.5, & = 7.0, (6.70)
5, =6.0, a=0.04, § =0.05, 7 =0.01, »=0.1, =0.064, 6 = 0.03.

With the above values of the parameters, it can be checked that the condition (6.15)

for the existence of the interior equilibrium E is satisfied and E is given by
B =94.63914, [ =2.13936, T = 1.09066, U = 0.67348. (6.71)

It can also be checked that conditions (6.16)-(6.20) in Theorem 6.3.1 are satisfied which

shows that E is locally asymptotically stable.

By choosing K, = 60.0 in Theorem 6.3.2 it can also be verified that conditions (6.22)-
(6.26) are satisfied which shows that £ is globally asymptotically stable.

Example 2 Here we present a numerical example to illustrate the rcsults obtained
in section 6.6. In addition to the values of parameters given in {6.70), we choose the
following values of parameters in model (6.534) with no diffusion:

o = 30, oo = 50, rsp = 20, ry = 35, Ty = 40, Ty = 45,

=012, pp =0.8, u3 =0.75, I. = 0.07, T, = 0.09. (6.72)

Then it can be checked that condition (6.57) for the existence of the interior equilibrium

E* is satisfied, and E* is given by

B® =99.26837, I® = 0.12976, T" = 0.49550, U" = 0.52896,
Fy =0.21339, F; = 0.29882 and F; = 2.43301. (6.73)

It can easily be verified that conditions (6.58)-(6.62) in Thecorem 6.6.1 are satisfied

which shows that £* is locally asymptotically stable.

Further, by choosing K, = 60.0 in Theorem 6.6.2, it can be checked that conditions

(6.64)-(6.68) ate satisfied. This shows that E* is globally asymptotically stable.
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By comparing equilibrium levels £ and E* in Egs. (6.71) and (6.73) we note that due
to efforts F, F, and F3, the equilibrium level of the resource biomass has increased
whereas cquilibrium levels of the industrialization pressure, concentration of pollutant

in the environment and in the resource biomass have decreased.

6.9 Conclusions

In this chapter, a mathematical model has been proposed and analysed to study the
effects of industrialization and pollution on forestry resources with diffusion. The rate
of introduction of pollutant into the environment is considered to be industrialization

dependent, constant, zero or periodic. The model has been analysed with and without
diffusion.

When there is no diffusion in the system, it has been shown that in the case of in-
dustrialization dependent introduction of pollutant into the environment the resource
biomass settles down to its equilibrium level whose magnitude depends upon the equi-
librium level of industrialization, influx and washout rates of pollutant present in the
environment. The magnitude of the resource biomass density decreases as the density
of industrialization and influx rate of pollutant increase, and even it may tend to zero if
these factors increase without control. In the case of constant spill of pollutant into the
environment and without diffusion in the system the results are found similar to the
industrialization dependent case. Without diffusion and in the case of instantancous
introduction of pollutant into the environment it has been noted that the pollutant
may be washed out completely and the resource biomass may scttlec down to a lower
equilibrium level than its original carrying capacity whose magnitude depends only
upon the equilibrium level of industrialization pressure. Even in this case the resource
biomass may vanish if industrialization pressure increascs unabatedly. In the case of
periodic emission of pollutant into the environment it has been found that a small
periodic influx of pollutant causecs a periodic behaviour in the system and the stability

behaviour of the system is same as that of the constant introduction of pollutant.
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A mathematical model to conserve the resource biomass by plantation, irrigation, {enc-
ing, fertilization etc., and to control the undesired levels of industrialization pressure
and concentration of pollutant in the environment by some mechanisms has also been
proposed. By analysing this model it has been shown that if suitable efforts are made,

an appropriate level of resource biomass density can be maintained.

In the diffusive system with reservoir boundary conditions a complete analysis has
been carried out for the model. It has been shown that if the positive cquilibrium of
the system without diffusion is globally asymptotically stable, then the corresponding
uniform steady state of the system with diffusion is also globally asymptotically stable.
It has been noted that there are cases where the positive equilibrium of the system
with no diffusion is unstable, but the corresponding uniform steady state of the sysiem |
with diffusion can be made stable by increasing diffusion coefficients appropriately. It
has also been noted that the global stability is more plausible in the diffusive system
than the case with no diffusion, that is, with diffusion the resource biomass density
converges towards its carrying capacity at a faster rate than the case with no diffusion.
Thus, it has been concluded that the solutions of the system with diffusion converge

towards its equilibrium faster than the case of no diffusion.
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Chapter 7

TIME DELAY MODEL FOR
DEPLETION OF FORESTRY
RESOURCES AND THEIR
CONSERVATION

7.1 Introduction

Environmental pollution is one of the challenges that mankind is facing as a result
of industrialization. Main gaseous pollutants from various industrial units arc sul-
phur dioxide, nitrogen oxides, carbon monoxide, hydrocarbons, fluorine, fly ash, etc.
These pollutants affect the ecosystem in general and plants in particular (Gordon and
Gorham, 1963; Rao and Rao, 1989). Automobiles constitute another major source of
air-borne pollutants in the majority of cities of industrialized countrics. The main pol-
lutants which automobiles emit are carbon monoxide, nitrogen oxides, unburned hydro-
carbons, smoke and particulate matter. In developing and under developed countries
vehicles are poorly maintained and as a result, cause more air pollution. In addition to

the pollutants emitted in the gascous form, solid and liquid pollutants are also coming
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out from industries. Many of the trees stop bearing fruits due to high level of air
pollution. Plants do not blossom and even if they do the flowers are very small and
rickety. Air pollution has already led to the disappearance of much of the vegetation
including trees. Therefore, it is absolutely essential to study the effect of pollutants on

forestry resource biomass.

In recent decades some investigations have been made to study the cffect of pollution on
a single biological species (Hallam et al., 1983; Hallam and De Luna, 1984; Hallam and
Ma, 1986; De Luna and Hallam, 1987; Freedman and Shukla, 1991; Shukla and Dubey,
1996a; Dubey, 1997a). As pointed out in the previous chapter the above studies have
been conducted to study the effect of pollutant on a single or two species communitics.
In all the above investigations it has been assumed that as soon as the pollutant enters
into the body of the species it starts affecting the species without any de?ay. But
there are many other substances emitted by different industries which do not harm
the species directly but after some metabolic change these substances get converted to
toxic substances which affect the species (MacDonald, 1977). Some other pollutants
go on accumulating in the body of the species until their concentrations do not cross
the threshold value for affecting the species. This introduces a delay in the system,
which was not considered in the earlier investigations. In this chapter, therefore, we

have proposed and analysed a mathematical model where time-delay factor has been

considered.

7.2 The Model

Consider a forestry resource which is being degraded due to environmental pollution. It
is assumed that the dvnamics of the forest biomass is governed by nonlinear logistic type
equations. It'is also assumed that environmental pollutant does not affect the forestry
biomass directly, but the pollutant after entering into the biomass gets converted to a
substance which is toxic to the resource biomass and consequently the growth rate of

the biomass decieases This conversion causes a time delay in the depletion of forestry
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resource. Then the dynamics of the system may be governed by following system of

autonomous differential equations:

dB T032

98 _ (WB — 2

" r(W)B K(T) D,\V*B,

ar 2

57 = Q) = 8T — ay BT + D, V°T,

%—(Z = —&§,U + o, BT, (7.1)
v

éa!-;— = O’U —_ 00”/.

We impose the following initial and boundary conditions on the system:

B(:c,y,O) = ‘{5(1: y) 20, T(I’%O) = Eb(l’,y) > 0,

U(z,y,0) = &(z,y) 2 0, W(z,y,0) =((z,y) 20, (z,y) €D, (7.2)

OB dr
—_— I e—— = Fa >
3 = o 0, (z,v)edD, t >0,

where n is the unit outward normal to 9D.

In model (7.1), V2 = (%27 + 3%2{ is the Laplacian diffusion operator. B(z,y,t) is

the density of the forest biomass, T(z, y,t) the concentration of environmental pollu-
tants, U(z,y,t) the uptake concentration of pollutant from the environment, W (z, y, t)
the concentration of the toxic substance which has been formed by the conversion of
U(z,y,t) duc to some metabolic changes at coordinates (z,y)eD and time t > 0. D,
and D, are the diffusion rate coefficients of B(z,y,t) and T(z,y,t) respectively in D.
Q(t) is the rate of introduction of pollutant into the environment beyond initial con-
centration. dg is the natural depletion rate cocflicient of environmental pollutant. « is
the depletion rate coefficient of environmental pollutant due to the resource biomass.
d, is the natural depletion rate coefficient of U. a is the growth rate cocfficient of
W (z,y,t) which is assumed to be proportional to the concentration of U(z,y, t) apd

o is the natural depletion rate coefficient of W(z, y,t).

In model (7.1), the function r(1¥) is the specific growth rate of the forest biomass

which decreases as ¥ increasces, i.c.,

0) = ro > 0 and r'(1V) < 0 for W > 0. (7.3)
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The function K(T') is the carrying capacity of the forest biomass which satisfies the

following properties:

K(0) =Ko >0, and K'(T) < 0 for T >0,

and there exists a T =T, such that K(T,) = 0. (7.4)

The model is analysed for three differént values of Q(t), namely, positive constant, zero

or periodic. The model has also been analysed with and without diffusion.

7.3 Model Without Diffusion

In this section we analyse model (7.1) when Dy = D, = 0. Then the model reduces to

dB ToB2

= = r(WYB - 2

TR K(T)’

dT

T Q(t) = 6T ~ o, BT,

dU

— = —8U + 0BT, (7.5)
dW . .

_d—i— = aU — agl¥,

B(0) >0, T(0) > 0, U(0) >0, W(0) > 0.
Case I: Constant introduction of pollutant, i.e., Q(t) = Qo > 0.

In this case it can be checked that there exist two nonnegative equilibria, namely,

Qo

E\ (0, —
l(. (50,

0, 0) and E(B, T, U, W),
where B, T, U and W are the positive solutions of the following algebraic equations:

roB = r(W)K(T),

_ @
= m = fi(B), (say)
o

U= S%Bfl(B) = f2(B), (say)

W = Z ,(B) = f3(B). (say)
Qg

T
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It can be checked that there exists a unique B in the interval 0 < B < Kj, provided

the following inequalities hold at E:

ro— SCAKUB)) — r(5(B) S 1(B) > 0, (7.6

Qo < 6oTo. (7.7)

By computing the variational matrix corresponding to the equilibrium Fj, it can be

checked that £ is a saddle point with unstable manifold locally in the B direction and

with stable manifold in the T — U — W space.

In the following theorem, it is shown that E is locally asymptotically stable.

Theorem 7.3.1 Let the follounng tnequalities hold:

T()B

' 2 To =
(K?(T)K (T)+01T) < 31<(T)(60+a113), (7.8)
e’ < %Claoél: (7.9)
where
1 61 To 1 61 P,
7'7’1'17’1.{3(017‘)2 I((T) 5( B)2(60+Q,B)} >O,
! / _
Gy S
QqTlg

Then the equilibrium £ is locally asymptotically stable.

Proof: We first linearlze the system (7.5) around the equilibrium E by using the

following transformations:
B=B+b T=T+7, U=U+u, W=W +w.

Then in the linearized model of (7.5), taking the following positive definite function,

1 b2
V(b,7,u,w) = §{§- + 72+ cu’ +czw2}

it can be checked that the derivative of V' with respect to t is negative definite under

conditions (7.8)-(7.9), proving the theorem.

151



Remark 1 In Theorem 7.3.1 it may be noted that condition (7.9) will be satisfied
for « = 0. This shows that stability of £ is more plausible in the absence of W. In
the following theorem it is shown that the equilibrium E is globally asymptotically
stable. To prove this theorem, we need the following lemma which establishes a region

of attraction for system (7.5). The proof of this lemma is easy and hence is omitted.

Lemma 7.3.1 The set
Q= {(BT.UW):0 < B < Ko, 0 < T+U+W < 969}

s a region of attraction for all solutions initialing in the interior of the positive orthant,

where

8, > a and § = min{dy, 6; — a,ap}.

Theorem 7.3.2 [In addition to the assumptions (7.3)-(7.4), let r(W) and K(T) salisfy
in Ql,

0< —r(W) < p, Km < K(T) < Ko and 0 < —K'(T) < k, (7.10)

for some positive constants p, K,, and k. Let the following inequalities hold:

I'o[\,ok Qo 2 2 o = .
{ 1\,?71 .+Ol ; } < gm(do'FalB), (711)
2
CQO2 < 56[0’06;. (712)

Then E is globally' asymplotically stable with respect to all solutions initiating in the

positive orthant, where

_ . 1 7-0(5162 1 Ol -
) = nnn{3 (O'IQ())?I((T), 5(0:1-8)2 (60 + Q]B)}, (713)
2
p .
=2 K(T).
C2 000 (T) (714)

Proof: Consider the following positive definite function around E,

Vi(B,T,UW)=B-B-B ln—g- + %(T ~-TY + %‘-(U -U)?+ %(W — W2 (7.15)



Now differentiating V; with respect to t along the solutions of (7.5), we get

Ei_x_/g__ro B2 A Y 2
i K(T)(B B) (6o + ay BY(T - T) c161(U = U)

—c2a0(1'V - ﬁ/)Q - (ToBé(T) + O’]T)(B - B)(T - T)

+eoqB(T = TY(U - U) + coa(U = U)(W = W)

+n(W)(B — BY(W = W) + cyonT(B - B)(U - U),

where
([ r)-r 14 I
el W W
(W) = <
\ (W), W=Ww
(7 = @) /(T =T), T#T
§(T) = o
K'(T s
l et T=T
From (7.10) and mean value theorem, we note that
. k
In(W)] < pand [£(T)] < ok
Now Eq. (7.16) can be rewritten as the sum of the quadratics
dv, 1 ~ - -1 -
—Jt—‘ = —zan(B - B)Y? +ap(B-B)(T-T)- san(T - T)?
1 = - - 1 _
-5011(3 - B)* +a(B-B)(U-U) - iass(U - U)?
1 _ - - -
—50.“(13 - 8)2 + GH(B — B)("V - ‘4/) - ']:2'(7.44(‘4/ - 1"/)2
1 - - - 1 -
'—5022(T - T)? 4+ an(T -T)(U - U) - —2-0,33(U - U)?

1 - - - 1 _
—§a33(U —UY +ay,(U-0)(W - W) - 5aM(W - W)?,

where

2 To - 2
= -—=, = (5 4+ o B’ , - - 6 s
arn 31\’(T) an 0T+ o a33 3C1 1

A4y = Colyg, Ay = —(7‘oB§(T) + O‘]T), 13 = cla',T,

ayy = 1(V), az = cion B, a3 = ca.
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Sufficient conditions for 441 to be negative definite are that the following conditions
hold:

al, < anagp, (7.17)
aj; < ajag, (7.18)
aly < anag, (7.19)
az; < @033, (7.20)
a3y < asam. (7.21)

From (7.13) and (7.14) we note that the constants c¢; and ¢, are such that inequalities
(7.18)-(7.20) arc satisfied automatically. We also note that (7.11) = (7.17) and (7.12)
= (7.21). Hence V is a Liapunov function with respect to F, whose domain contains

the region of attraction Qy, proving the theorem.

It is interesting to note here that after linearizing the conditions (7.17) and (7.18) wc

get conditions (7.8) and (7.9) respectively as expected.

The above analysis shows that in the case of constant introduction of pollutant into
the environment, the resource biomass settles down to its equilibrium level, whose
magnitude depends upon the rate of formation of chemical toxicant in the resource
biomass and upon the environmental concentration of pollutant. It may be pointed
out here that if the time delay in the formation of the chemical toxicant is large, then

the over all effect on decreasing the 1esource biomass density may be reduced
Case II: Instantaneous introduction of pollutant, i.e., Q(t) =0

In this case there exists two nonnegative equilibria, namely, Ey(0,0,0,0) and

E1(K,,0,0,0). By computing the variational matrix corresponding to each equilibria it
can be checked that Fy is a saddle point with unstable manifold locally along B direction
and stable manifold locally in the T'— U — W space. E is locally asymptotically stable.

In the following theorem we have shown that I is globally asymptotically stable.

Theorem 7.3.3 If B(0) > 0, then E; is globally asymptotically stable with respect Lo

the nonnegative orthant



Proof: We have

dB ) roB? B
oy (W)B—K(T) < reB(1 1_(0)
Hence
lim B(t) < Io.
Now
dI'  dU dW
i Ik TGN O L B — A\l — oW < — /
ot 60T — (8 — a)U — aoW < =6(T + U + W)

where § = min{do, §; — @, ag} and &, > a. Then
T(t) + U(t) + W(t) < {T(0) + U(0) + W(0)}e™®
and hence the system is dissipative.

From the above analysis it follows that

lim T(t) = lim U(t) = lim W(t) = 0.

n=—=co n—co n-—o0o

In the limit B3(t) is given by the solutions of % = roB(1 — 7(3—0) Since B(0) > 0, the

theorem follows.

The above theorem shows that if the concentration of environmental pollution is not

sufficient to destroy the resource biomass, eventually the pollutant will be removed and

the resource would recover to its original level.

Case III. Periodic introduction of pollutant into the environment, i.e., @Q(t) = Qo +

ed(t), ¢t + w) = ¢().

In this case it can be checked that the results corresponding to Theorem (3.4.1) and
Theorem (3.4.2) in chapter 3 remain valid. In particular, it is found that a small

periodic influx of toxicant causes a periodic behaviour in the system.

7.4 Model With Diffusion

In this section we consider the complete model (7.1)-(7.2) and state the main results

in the form of the following theorem.



Theorem 7.4.1 (i) If the equilibrium E of model (7.5) is globally asymptotically sta-
ble, then the corresponding uniform steady state of the initial-boundary value problems

(7.1)-(7.2) is also globally asymptotically stable.

(ii) If the equilibrium £ of model (7.5) is unstable even then the uniform steady stale
of the initial-boundary value problems (7.1)-(7.2) can be made stable by increasing

diffusion coefficients to sufficiently large values. /

Proof: Let us consider the following positive definite function
Vo (B(t), T(t), U(t), W(t)) // Vi(B,T,U, W)dA
where V) is given in Eq. (7.13).

We have,

dv, // 0\’88 8\/19_1:+8V,_8£+0_V1_%
dt 9B AL 9T o U ot ' aw ot

= I+ 1, (7.22)

)dA

where

I = // i‘—ld—i

v, 1
I = // (D.a VD DQaajl 274 A.

We note the following properties of ¥}, namely,
(?V.} _ 8\/1] ~0
9B l,p 0T |4p
and for all points of D,

v, Vv 9, 0V, oMW, A2 0
OB8T ~ @BAU ~ 9BAW ~— 3aToU ~ 9ToWw ~ auow ~
a2V, . 9%V, >0 v, -0 ) oV, 50
B ~ > ar? T auzr T M awr TV
Under an analysis similar to chapter 2, we note that
oV 0%V, , aB aB
——V?Bd4 = < )
// BdA = //D 832 5,)1dA <0, (7.23)
dA = + < .
// VITdA = /] = | (5 ) }dA < 0. (7.24)
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This shows that

| I, 0. (7.25)
The above results imply that if I, < 0, i.e., if £ is globally asymptotically stable in
the absence of diffusion, then the uniform steady state of the initial-boundary valuc

problems (7.1)-(7.2) also must be globally asymptotically stable. This proves the first
part of Theotemn 7.4.1.

We further note that if €2 > 0, i.e., if [; > 0, then E may be unstable in the absence

of diffusion. But, Eqs. (7.22) and (7.25) show that by increasing diffusion coefficients

D, and D, sufficiently large, "7‘:1 can be made negative even if J; > 0. This proves the

second part of Theorem 7.4.1.

‘

H
The above theorem implies that diffusion with reservoir boundary conditions stabilizes

a system which is otherwisc unstable.
We shall explain the above theorem for a rectangular habitat D defined by
D={(z,y): 0<z<a, 0<y<b} (7.26)

in the form of the following theorem.

Theorem 7.4.2 In addition to assumptions (7.3) and (7.4), let (W), K(T), satisfy
the inequalities in (7.10). If the following inequalities hold:

7'0[\,0,‘2 O’|Q0

GRS < Sty )
o o+ Dﬂzégz_; : It (7.27)
P %CQO"°{1<7&‘)+D]BJ:-2§§1; 23} (7.28)
where
"o min{f‘il%é;?%(h”&) B DIBZ’;E:L:J bg)),
.3“6?#(60 e Dﬂzc(;i: &) (7.29)
o C?C?f'- (7.30)

i
it
-



Then the uniform steady state of the initial-boundary value problems (7.1)-(7.2) is
globally asymptotically stable with respect to all solutions initiating in the interior of

the positive orthant.

Proof: Let us consider the rectangular region D given by Eq. (7.26). In this case I,

which is defined in Theorem 7.4.1, can be written as

=0, [ [(GoNEEr+ Gl aa-0s [ [ G+ G

From Eq. (7.15) we get

PV B 0%V,

o B Mo =
Hence

SV Gy aa - Do [ [ (G0 + (T aa
Now

[y ar = [ 20 Py

= /()/(;{——Bax B)}2 dzdy

Letting z = 2, it can be seen under an analysis similar to chapter 2 that

[[C0rass T [[ (B By as
[Gor ez 5 [f s~

and

Thus,

D\ Bz%(a® + %) ~ o Dyz?(a® + b%) -5
L< — //D(B B)?dA - / (T =TV dA,

KN3a?t? a2b?

[FAN



Now from (7.16) and (7.22) we get

de 2(a +b2) =0
//[ {K(T) K2a2b? HB - B)
"{60'*‘019‘*‘ Dz7Qiab+b2)}(T T) —C151(U—0)2

—CQOO(”/ — ”/ hae {T()Bf + a]T}(B — B)(T - T)
+ca B(T = TYU ~ U) + coa(U = U)(W — W)

+n(W)B = B)(W = W) + oy T(B - B)(U - U), (7.32)

where £(T) and n(W) are defined in Eq. (7.16).

Now Eq. (7.32) can be written as the sum of the quadratics

1 -

2 < [ [ {~5ou(B =~ BY +bi(B - BT ~T) — bu(T ~ T
—%b“(B—B) +by(B - B)(U - U)—%bgg(a 0)?

—-;—b“(B — B)2 4+ by(B - B)(W — W) - 5bM(W - W)?

—blT = T + by (T = TYU = D) = Lo (U = "

1 - - . .
—§b33(U —~U)2 +bsg(U - 0)(W = W) - %bM(W - W)*}dA

where

2. 7 D, B#?(a® + b?) = Dym?(a? 4 b?)
2¢_To by = 6o +
RO YT Raw hmT el T

2
bz = 50151, biy = c2ap, bip = —(roBf(T) + a’lT),

bll =

bis = ey T, by = (W), by = cra, 3, by = 0.

Sufficient conditions for £2 to be negative definite are that the following conditions

hold:



bl < biibao, (7.33)
bl; < biibss, (7.34)
b3, < buiba, (7.35)
b33 < baabaa, (7.36)
b3, < bazbas. (7.37)

We note that inequalities (7.34), (7.36) and (7.37) are automatically satisfied for the
value of ¢; and ¢, given in (7.29) and (7.30) respectively. We further note (7.27) =
(7.33), (7.28) = (7.35). Hence V; is a Liapunov function with respect to E whose

domain contains the region of attraction €2;, proving the thcorem.

From the above theorem we note that inequalities (7.27)-(7.28) may be satisfied by
increasing D, and D, to sufficicntly large values. This implics that in the case of
diffusion stability is more plausible than the case of no diffusion. Thus, in the case of
diffusion the population converges towards its carrying capacity faster than the case of

no diffusion, and hence the survival of the population may be ensured.

7.5 Conservation Model

In the previous section it has been noted that uncontrolled level of environmental
pollution may lead to the extinction of forestry resources. Therefore, soine kind of
efforts must be adopted to conserve the forestry resources and to control the emissiém
of pollutant into the environment (Peterson et al., 1984; Huttl and Wisniewski, 1987;
Shukla et al., 1989; Shukla and Dubey, 1997). In this section a mathematical model is
proposed and analysed to conserve the forestry resources and to control the undesired
level of environmental pollution by some mechanisms. It is assumed that the effort
applied to conserve the forest biomass is proportional to the depleted level of forest
biomass from its carrying capacity and the effort applied to control the concentraticn

of pollutant is proportional to the undesired level of pollutant. The dynamics of the
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system is assumed to be governed by the following differential equations:

aB TQB2 2

— '/ — F D V B,

5 (W) K(T)+r1 1+ U

aTr 2
a— = Q(t) — (SQT - O’lBT — T2F2 =+ D'zv T,
ou

W \= —51U + Q’]BT,

oW

—a—t' =al - O‘o"V, (738)
OF; B

= — =) — po

g~ M=)~k

3_;;% = (T = TYH(T = T,) — k.

1
i

We impose the following initial and boundary conditions on system (7.38):

B(z,y,0) = ¢(z,y) 2 0,T(z,y,0) = ¥(z,y) 2 0,
U(z,y,0) = &(z,y) > 0,W(z,y,0) = {(z,y) > 0,

M(z,y,0) = ((z,y) >0, Fa(z,9,0) = Gz, y) 20, (z,y) e D (7.39)
0B oT
=5 0, (z,y)edD, t >0

In model (7.38), Fi(z,y,t) is the density of effort applied to conserve the resource
biomass and Fy(z,y,t) the density of effort applied to control the undesired level of
the concentration of pollutant in the environment. r; > 0 represents the growth rate
coefficient of resource biomass due to effort Fy. r, > 0 is depletion rate coefficient of
T(z,y,t) due to the effort F,. p; and v, are the growth rate coefficients of Fy and F
respectively and pg and vy are their respective depreciation rate coefficients. T, is the
critical level of the concentration of pollutant which is assuined to be harmless to the
resource. In the last equation of system (7.38), H(t) denotes the unit step function
which takes into account the case T < T.. It is interesting to note that in the unusual
circumstances, if the forest exceeds its carrying capacity, then &1 will be negative,

at
giving a decrease in the effort to conserve the biomass.

We analyse the conservation model (7.38) only for the case when rate of introduction

of pollutant into the environment is constant.
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7.6 Conservation Model Without Diffusion

In this section we take, D, = D, = 0 in model (7.38). Then model (7.38) has only
one interior equilibrium, namely, E*(B*,T*,U*,W*, Fy, I;), where B*,T*, U*, W* I}

and F; are the positive solutions of the system of algebraic equations given below.

T1i4 B
= {r(W 1 - —))K
roB = {r( )+B,Uo( Ko)}I\(T),
V0Q0+T2U1TC
= = B
vo(o + a1 B) + 11, 91(B), (say)

U=%&M&=m@%@w)

;vzimm=mwxmw

_mg_ B
b= ,10(1 .Ko)'
(T-T), T>T,
F=2(T-T)H(T -T) =
0

It may be noted here that for F} to be positive, we must have
B < K,.

As earlier, it is easy to check that E* exists provided the following inequality holds at
E*,

- g%gwrlﬂukww»—me»
r,;t, B IK

Bllo "X }OTJI( > 0. (7.40)

In the following theorem it is shown that E* is locally asymptotically stable, the proof

of which is similar to Theorem 7.3.1 and hence is omitted.

Theorem 7.6.1 Let the following inequalities hold:

ToB' 2 1 T() 7]F]‘
2
CQO’2 < ‘éClO'o(SI, (742)

162



where

1 (51 L) F]. 1 61
+ y=

i@ KT T B 3B

3 ((W'))2

Qo .

c1 = min{~

(60 + aIB.)})

Co =
_ro
K(T)'*'TIB2

Then E* is locally asymptotically stable.

In the following lemma a region of attraction for system (7.38) without diffusion is

cstablished. The proof of this lemma is easy and hence is omitted.

Lemma 7.6.1 The set

Q= {(B,T,UW,F,F) : 0SBLKOST+U+W < 9_0 o<k <t

/io
Qo

L 0< /<
0<F, < Voé)}

attracts all solutions initiating in the positive orthant. where

Ko Aryp, .
K.=—{1 1 = mi —a.a
¢ = 7 {1+4/1+ Toﬁlol\/o}’ 6 = min{d,d, — o, ap} and 6, > .

The following theorem gives criteria for global stability of E*, whose proof is similar
to Theorem 7.3.2 and hence is omitted.
Theorem 7.6.2 In addition to the assumptions (7.3 and (7.4), let r(W) and K(T)
satisfy in €y,

0< —r'(W)<p', K,, <K(T)< Kyand0 < -K(T) <k, (7.43)

for some positive constants p*, K, and k*. Let the following inequalities hold:

To I(C}\

2
{ K2 } BK(T )(50 + a; BY), (7.44)
2 2 '
cra” < gclaoél, (7.45)
where
1 6 62 TO 1 61 *
ol —mzn{ 100 KT’ 5(@13')2(60+Q1B )},
3 K(T*
cy = — ¥ )p'2.
Qg To
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Then E* 1s globally asymptotically stable with respect to all solutions initiating in the

positive orthant.

Theorems 7.6.1 and 7.6.2 show that if suitable efforts are made to conserve the for-
est biomass and to control the undesired level of the concentration of environmental

pollutant, an appropriate level of the resource biomass may be maintained.

7.7 Conservation Model With Diffusion

We now consider the case when D; > 0(i = 1, 2, 3) in model (7.38). We shall show that
the uniform steady state B(z,y,t) = B*,T(z,y,t) = T*,U(z,y,t) = U*, W(z,y,t) =
W+ Fi(z,y,t) = F; and Fy(z,y,t) = F; is globally asymptotically stable. For this,

we consider the following positive definite function

Va(B(1), T(1), U, W), Fu(t), B(0) = [ [ Va(B.T,UW, B, ) da,
where

Vo(B,T,U,W,F\,F,) = B-B'—B'In g + %(T —T*)? + %’—(U ~U*)?

+£23(W - W)+ %S(Fl - ) + %(Fz - I3)*

and the ¢;s are positive constants to be chosen suitably.

Then as earlier, it can be checked that if ‘—%’;1 < 0, then %‘? < 0. This implics that if
E* is globally asymptotically stable for system (7.38) without diffusion, then the cor-
responding uniform steady state of system (7.38)-(7.39) is also globally asymptotically
stable with respect to solutions such that ¢(z,y) > 0,¥(z,y) > 0,&(z,y) > 0,¢(z,y) >

0,¢i(z,y) > 0,6z, y) >0, (z,y) e D.

7.8 Numerical Examples

Example 1 Here a numerical example is presented to illustrate the results obtained in
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section 7.3. We consider the following particular form of the functions in model (7.5).

T(H/) =70 — 7'10”/,

K(T) = Ko — K\T. (7.46)

Now choose the following set of values of the parameters in Eq. (7.46) and in model

(7.5).

o = 10.00, ry = 0.08, Ky = 30.00,
K, =0.09, Qo = 15.00, o = 8.00, o, = 0.04, (7.47)
6, = 7.30, o = 1.50, ag = 0.80.

With the above values of the parameters, it can be checked that the conditions (7.6)

and (7.7) for the existence of the interior equilibrium £ are satisfied and E is given by
B =29.73716, T = 1.63230, U = 0.25888, ¥ = 0.48540. (7.48)

It can also be checked that conditions (7.8)-(7.9) in Theorem 7.3.1 are satisfied which

shows that £ is locally asymptotically stable.

By choosing K, = 20.0 in Theorem 7.3.2 it can also be verified that conditions (7.11)-

(7.12) are satisfied which shows that E is globally asymptotically stable.

Example 2 Now to illustrate the results obtained in section 7.6 we present a numerical
example. In addition to the values of parameters given in (7.47), we choose the following

values of parameters in model (7.38) with no diffusion:

r = 0.30, ry = 0.07, p; = 10.00, 1 = 0.05,
v, = 11.0, vp = 0.06, T, = 0.12. (7.49)

Then it can be checked that condition (7.40) for the existence of the interior equilibrium

E* is satisfied, and E* is given by

B® =29.89891, T* = 0.75082, U* = 0.11973, W* = 0.22449,
F; =0.67393, F; = 115.65010. (7.50)
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It can easily be verified that conditions (7.41)-(7.42) in Theorem 7.6.1 are satisfied

which shows that E* is locally asymptotically stable.

Further, by choosing K = 20.0 in Theorem 7.6.2, it can be checked that conditions

(7.44)-(7.45) are satisfied. This shows that E* is globally asymptotically stable.

By comparing equilibrium levels £ and E* in Egs. (7.48) and (7.50) we note that
due to efforts F, and F3, the equilibrium level of the resource biomass has increased
whereas equilibrium level of the concentration of pollutant in the environment and in

the resource hiomass have decreased.

7.9 Conclusions

In this chapter, a mathematical model has been proposed and analysed to study the
effect of environmental pollution on forestry resource biomass with time-delay. The
model has been analysed with and without diffusion. When there is no diffusion it has
been shown that in the case of constant introduction of pollutant into the environment
the resource biomass settles down ‘to its equilibrium level, the magnitude of which
depends upon the washout and uptake rates of pollutant. It has further been noted
that if the concentration of pollutant increases unabatedly, the survival of the spccics
would be threatened. In our model (7.1), the concentration of the environmental
pollutant T does not affect the growth of the resource biomass directly. This pollutant
when uptaken by the species is being converted into some other chemical toxicant
due to some metabolic changes, which affects the growth rate of the biomass. The
effect of time delay due to the formation of the chemical toxicants on decreasing the
equilibrium level of resource biomass is determined by the rate of formation of the
chemical toxicant and depletion of the resource biomass. If the delay in formation of
the toxicant is large, then this may help in reducing-over all effect of the pollutant
provided other parameters remain same. In the case of instantancous introduction
of pollutant into the environment, it has been found that perhaps the concentration

of pollutant was not enough to deplete the resource biomass and hence the pollutant
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will be washed out completely and the resource biomass would recover at its original
carrying capacity. It has also been noted that a small periodic introduction of pollutant

into the environment induces a periodic behaviour in the system.

By analysing the conservation model it has been shown that if suitahle efforts are made
to conserve the resource biomass and to control the undesired level of pollutant in the
environment, then the desired level of resource biomass may be maintained. The cffect
of diffusion’on the interior equilibrium state of the system has also been in-vestigated.
[t has been shown that if the positive cquilibriﬁm of the system without diffusion
is globally asymptotically stable, then the corresponding uniform steady state of the
system with diffusion is also globally asymptotically stable. It has further been noted
that if the positive equilibrium of the system with no diffusion is unstable, then the
corresponding uniform steady state of the system with diffusion can be made stable by
increasing diffusion coefficients appropriately. This shows that the global stability is
more plausible in the case of diffusion than the case of no diffusion. Thus we conclude

that in the case of diffusion solutions approach to its equilibrium levels faster than the

case of no diffusion.



Chapter 8

MODELLING THE EFFECT OF
POLLUTANTS FORMED BY
PRECURSORS IN THE
ATMOSPHERE ON
POPULATION

8.1 Introduction

With the rapid pace of industrralization, urbanization, deforestation etc. our envi-
ronment is getting polluted day by day. The effects of pollution caused by various
human factors on structure and functions of ecosystems have been studied by several
researchers (Woodwell, 1970; Smith, 1981; McLaughlin, 1985; Hari ct al., 1986; Wood-
man and Cowling, 1987; Schulze, 1989). In recent decades some investigations have
been made to study the effect of pollution on a single biological species (Hallam et al.,
1983; Hallam and De Luna. 1984; Hallam and Ma, 1986; De Luna and Hallam, 1987,
Freedman and Shukla, 1991; Shukia and Dubey, 1996a; Dubey, 1997a; Shukla and
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Dubey, 1997). As pointed out in the previops chapters, in the above investigations it
is assumed that the pollutant enters into the environment by some manmade projects
which may be population (industrialization) dependent, constant, zero or periodic. In
the above studies the effect of pollutant lag has not been considered. In this regard,
Rescigno (1977) studied the effect of a precursor pollutant on a single species, but he
did not consider the rate of uptake concentration of the pollutant on the growth of the
species. Further, in the above works the effects of diffusionﬂhas not been considered.
Keeping the above in view, in this chapter we propose anci analyse a mathematical
model to study the effect of a precursor pollutant, which is formed by various human
activities in the atmosphere, on populétion where the effect of uptake concentration,

diffusion and conservation are considered.

8.2 The Model

We consider an environment which is polluted by various population activities. It is
assumed that the population is affected by the pollutant formed in the atmosphere by
its precursor. Let P(z,y,t) be the population density, Q(z,y,t) the concentration of
the precursor pollutant emitted by various activities of the population, T(z,y,t) the
concentration of the pollutant formed by @ in the atmospherc and U(z, v, t) the uptake
concentration of pollutant by the population at coordinates (z,y)eD and time t > 0. It
is also assumed that the larger the population, the faster the precursor is produced. It
is further assumed that the larger the precursor, the faster the pollutant is produced.

Then the system may be governed by the following set of differential equations:

aP _ . T0P2 2

—E}—L'—F(U)P—}?'(—YT)—}-D]v P,

9Q

o - e

ar . 9

Et— = hQ - ,]0T+9;(S]U —QPT+DQV T, (81)
a

'5({— = '—6|U +00}10T+OPT,

OSOO=OI_<_1-
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We analyse the system 8.1 with the following initial and boundary conditions:

P(z,y,0) = é(z,y) > 0,Q(z,y,0) = ¥(z,y) >0,

T(z,9,0) = £(z.4) > 0,U(z,3,0) = (5,1 20, &y)e D (82)
oP aT

0P _oT _ b s

on  In 0, (z,y) 9D, t 20,

where n is the unit outward normal to dD.

In model (8.1), V? = 56:—, + _aa% is the Laplacian diffusion operator. Dy and D, are the
diffusion rate coeflicients of P(xz,y,t) and T(z,y,t) respectively in D. v is the growth
rate of Q due to the population P, 7 the natural depletion rate coeflicient of Q. h is
the growth rate coefficient of T due to Q, hg the natural depletion rate coefficient of T,
a fraction 8y of which goes inside the body of the population. « is the depletion rate
coefficient of T due to P. d, is the natural depletion rate coefficient of U, a fraction 6,

of which reenters into the environment.

In model (8.1), the function r(U) is the specific growth rate of the population which

decreases as U increases, i.e.,

r(0) =roand r'(U) <0 for U > 0. (8.3)

The function K(T) is the carrving capacity of the population which satisfies the fol-

lowing properties:

K(0) = Ky, and K'(T) <0 for T > 0,

and there exists a T =T, such that K(T,) = 0. (8.4)

The model is analysed with and without diffusion.
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8.2 Model Without Diffusion

In this section we take D; = D, = 0 in model (8.1). Then model (8.1) reduces to

dQ ,
‘(E =P — 7Q,

dT

—ZE = hQ—hoT+9161U-CtPT, (85)

% = -06U + 0hyT + aPT,
¢

P(0) 20, Q(0) 20, T(0) =20, U(0) = 0.

[t can be checked that there exist two nonnegative equilibria, namely,

- — P - -~

Ey(0,0,0,0) and E(P,Q,T,U),
where P, Q, T and U are the positive solutions of the following algebraic equations:

roP = r(U)K(T),

Q=2Lp
7o
hQ
T = (P
ho(1 — 606,) + a(l —6,)P f(P), say

U = 5-Walof (P) + aP[(P)) = g(P). say

It can be verified that the equilibrium E exists if the following inequality holds at Z:
ro — ' (U)g'(P)K(f(P)) — r(g(P))I'(T) f'(P) > . (8.6)

By computing the variational matrix corresponding to the equilibrium £, it can be

checked that Ey is a saddle point with unstable manifold locally in the P direction and

with stable manifold locally in the Q — T — U space.

In the following theorem, it is shown that E is locally asymptotically stable.

Theorem 8.3.1 Let the following inequalities hold:

P - 4
(X K'(T) +aT)? < =2
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- 2 _
{9161 + C2(00h0 + C!P)}z < §C2(51 (ho + CYP), (88)

h? < %cn'o(ho + aB), (8.9)
where 0)
1 797 (U

S — and co = — ——==. 8.10

QT 3aK@ T T 6T (8.10)

Then the equilibrium E 1is locally asymptotically stable.

Proof: By taking the transformations
P=P4+p, Q=Q+q, T=T+7, U=U+u,

we first linearize model (8.5). Then we consider the following positive definite function
in the linearized form of model (8.5):

p?

: 1
V(p,q,7,u) = 5{—1—;+61q2+72+62u2}, (8.11)

where ¢; and c, are positive constants given by (8.10). It can be checked that the

derivative of V with respect to t is negative definite under the conditions (8.7)-(8.9),

proving the theorem.

In the following theorem it is shown that the equilibrium E is globally asymptotically
stable. To prove this theorem, we need the following lemma which establishes a region

of attraction for system (8.5). The proof of this lemma is easy and hence is omitted.

Lemma 8.3.1 The set

)

is a region of attraction for all solutions initiating in the interior of the positive orthant,

where

Yo > hand é = min{'yo i h, ho(l - 90), 61(1 — 91)}

Theorem 8.3.2 In addition to the assuniptions (8.3) and (8.4), let r(U) and K(T)
satisfy in §2,,

0< —7"(U) < p, Km < K(T) < Kyand 0 < —K'(T) <k, (8.12)
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. for some positive constants p, K, and k. Let the following inequalitics hold:

ToI\’ok O")’I\/o 4 79

2o —— P 8.13
Q")’[(Q 2 _2_ To 8.14

2 -
h? < 561’)'0(’10 + aP), (8.15)

_ 2 -
(91(51 -+ 90h0 + O!P)2 < gdl(ho + O!P), (816)
where
_ 1 770

= 37K(T)
Then E is globally asymptotically stable with respect to all solutions initiating in the

positive orthant.

Proof: Consider the following positive definite function around £,

mwﬂﬂﬂﬂ=P—P—Pm§+%@—QY+aT—fﬁ+gU—M? (8.17)

Now differentiating V; with respect to t along the solutions of (8.5), we get

v _ - _ -
& = “REE PV = am(@- Q) - (ho+ oP)(T - T)?

~6,(U — U) + e1v(P = P)(Q — Q) - (roPE(T) + oT)(P — BY(T - T)
+(n(U) + aT)(P = P)(U -~ U) + h(Q - Q)(T - T)
+(0,6; + boho + aP)(T — TY(U - 0), (8.18)

where

(i — #m)/(T=T), T#T
6(T) = ¢

Il
~J



From (8.12) and the mean value theorem, we note that

k

|7(U)] < p and 1E(T)] < -
Now Eq. (8.18) can be rewritten as the sum of the quadratics

v, 1 - _ _ .
— = T3P =P +an(P-P)Q-0Q)-san(@Q-C)

Ll N N ]

~3an(P = PY + ais(P = P)(T ~T) = Zas(T ~ T)?

2
1 - . _ 1 _
—5011(P—P)2+014(P—P)(U" U) - 5044((}— U)2
1 = = - 1 -
—5022(@ - QP +an(Q - Q)T -T) - §a33(T - T)
1 _ - - 1 -
—;(l;;;;(T - T)2 +034(T - T)(U — U) - 50.44(U - U)z,
where
2 r > 2 -
ay = EK(OT)‘ Ay = €170, Q33 = 3(’7'0 +O'P), asq = 0y,

a2 = %, a3 = —(roPE(T) + aT), ayy = n(U) + aT,

Qo3 = h, Q3 = 9;]]1 T+ 601]0 + QP.

Sufficient conditions for £t to be negative definite are that the following conditions

hold:

a’, < ayyan, (8.19)
a’; < ayy0s3, (8.20)
al, < ajay, (8.21)
a3; < axpas;, (8.22)
a3, < a3a4s. (8.23)

We note that inequality (8.19) is satisfied automatically. We also note that (8.13) =
(8.20), (8.14) => (8.21), (8.13) = (8.22) and (8.16) => (8.23). Hence V; is a Liapunov
function with respect to E, whose domain contains the region of attraction §2,, proving

the theorem.

The above theorem implies that the population living in a polluted environment caused

by its own pollutant attains an equilibrium level under certain conditions, and the
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equilibrium level of the precursor pollutant is crucial in affecting the equilibrium level

of population which decreases as the equilibrium level of precursor pollutant increases.

8.4 Model With Diffusion

In this section we consider the complete model (8.1)-(8.2) and state the main results

in the form of the following theorem.

Theorem 8.4.1 (i) If the equilibrium E of model (8.5) is globally asymptotically sta-
ble, then the corresponding uniform steady state of the initial-boundary value problems

(8.1)-(8.2) is also globally asymptotically stable.

(ii) If the equilibrium E of model (8.5) is unstable even then the uniform steady state

of the initial-boundary value problems (8.1)-(8.2) can be made stable by increasing

diffusion coefficients to sufficiently large values.

Proof: Let us consider the following positive definite function

(P(©,Q. 71, U®) = [ [ Vi(P.Q.T,U)dA

where V] is given by Eq. (8.17).

We have,

dV, BV oP BV BQ ov, 0T oV, oU

© = 1, Gra *20a Tarar T au a0
where

// d—‘ldfl and I, = // (D,?Lv P+DQ%‘§}V2T)dA.

We note the following properties of V|, namely,

CACY I Y I
oP},, OT w“

and for all points of D,
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v, 8V, 8V, &V, Vi &V,

. 8P8Q  9PoT _ 0POU  9QOT _ 9QoU  oToU |
%>0’%>0,§p‘4>0 d%ijl;>0'
Under an analysis similar to chapter 2, we note that
[],Sevran==[[ S0ihr+ Cmanso, @)
[, Beraa— [ 25 ‘ZZ cTyaaso o
This shows that
L <0 (8.27)

Thus we note that if I, < 0, i.e., if £ is globally asymptotically stable in the absence of
diffusion, then the uniform steady state of the initial-boundary value problems (8.1)-

(8.2) also must be globally asymptotically stable. This proves the first part of Theorem
8.4.1.

We further note that if ‘-%:l > 0, i.e., if J; > 0, then £ may Become unstable in the
absence of diffusion. But, Eqs. (8.24) and (8.27) show that by increasing diffusion

. . Z . .
coefficients D} and D, to sufficiently large values, %" can be made negative even if

I, > 0. This proves the second part of Theorem 8.4.1.

The above theorem implies that diffusion with reservoir boundary conditions may sta-

bilize a system which is otherwise unstable.

We shall explain the above theorem for a rectangular habitat D defined by

D={(z,y): 0<z<a, 0<y<b} (8.28)

in the form of the following theorem.

176



Theorem 8.4.2 In addition to assumptions (8.3) and (8.4), let r(U)

the inequalities in (8.12). If the following inequalities hold:

To 1(0 k

avKy

4 19 Dy Pn?(a? + b?)

2 —
) ;) ) K
- 1)271'2((31,2 + b2)
{ho + aP + YT },
avKo, 2 To D, Pr?(a? 4 b?)
o+ —5—} 3% K
2 = Dyr%(a? + b?)
h.2 §C1’)‘0{ho +aP + a,Zb,Z
- 2 = Dom?(a? + b?)
{90}10 -+ 9161 -+ QP}2 §61{h0 -+ O.'P -+ a2b2 },
where B
oo X0 ( To D1P7r2(a2+b2)}‘
P32 K(T) K2a2b? '

, K(T) satisfy

(8.29)

(8.30)

It (8.31)

(8.32)

(8.33)

Then the uniform steady state of the initial-boundary value problems (8.1)-(8.2) is

globally asymptotically stable with respect to all solutions initiating in the interior of

the positive orthant.

Proof: Let us consider the rectangular region D given by Eq..(8.28). In this case /5,

which is defined in Theorem 8.4.1, can be written as

82\/ P 24 82\/1 T 24
_Dl// 2 o) 1A= Dz// 777
From Eq. (8.17) we get
0%V, _ _}z and 02V 1
0Pz p? or:
Hence
_ D P (’)P oT
= KZ //{ )2 '} dA - DZ//{ (ay
Now
OP ., 2
[y = | / Co } 4
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Letting z = %, it can be scen under an analysis similar to chapter II that

[franz % [ pras

and \
[[Grea= R [[e-r
Thus,
< -2 15;{2:2[; &) f/ (P — P)2dA — 227 a§b2+b2 // dA.

Now from (8.18) and (8.24) we get
dV2 D, Pr%(a? + b? oy -
< [ [ + i P - M- (@ - Q)
Dgﬂ'2((12 + bz)
a?b?
+a7(P = P)(Q - Q) = {roP&(T) + oT}H(P — P)(T - T)
+{n(U) + oT}(P - P)(U - U)

+{90h0 + 9161 + OB}(T - T)(U - U)]dA

~{ho +aB + HT - T)* - 6,(U - U)?

where £(T") and 7(U) are defined in Eq. (8.18).

Now Eq. (8.35) can be written as the sum of the quadratics

< [ [ (5buP = PV + 0P - PYQ - Q) - 3hl@ - Q)
—%b“(P _ PP 4 ba(P- BT -T) - %bsg(T T2
—%bn(P — P 4+ b, (P-P)U-U) - -;—b,m(U - U)?
~Lbn(Q - O 4 bu(Q — Q)T = T) = 2bua(T — T
~Sbss(T =T + b5y (T = TYU = 0) = (U = 07}

where

2 1o D, Pia?(a® + b?)

m=dTm t T Kew

},b22 = €170,
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D,7%(a? + b?)
a2b2 }) b44 = 61:

bia = c17, bis = —(roPE(T) + oT),

2 _
b33 = 3(ho+0‘P+

bM = 7](U) + O’T, ()23 = h, b34 = 00’10 + 01(51 + QP.

Sufficient conditions for €2 to be negative definite are that the following conditions
hold:

b2, < byyba, (8.35)
b2, < byibas, (8.36)
b2, < bybag, (8.37)
b3, < bygba, (8.38)
b2, < basbys. (8.39)

We note that inequality (8.35) is automatically satisfied for the value of ¢, given in
(8.33). We further note (8.29) = (8.36), (8.30) = (8.37), (8.31) = (8.38) and (8.32)
= (8.39). Hence V; is a Liapunov function with respect to F whose domain contains

the region of attraction §2,, proving the theorem.

From the above theorem we note that inequalities (8.29)-(8.32) may be satisfied by
increasing D, and D, to sufficiently large values. This implics that in the casc of
diffusion stability is more plausible than the case of no diffusion. Thus, in the case of
diffusion the population converges towards its carrying capacity faster than the case of

no diffusion, and hence the survival of the population may be ensured.

8.5 Conservation Model

In the previous section it has been noted that uncontrolled human activities that are
polluting the environment may harm itself considerably. Therefore, some kind of efforts \
must be adopted to stop further deterioration of the environment. In this section a

mathematical model is proposed and analysed to control the undesired level of precursor

pollutant by some mechanisms. It is assumed that the effort applied to control the
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precursor pollutant is proportional to the undesired level of the precursor pollutant.

Then the dynamics of the system is assumed to be governed by the system of differential

equations given below.

8P _ . r0P2 2

o0 = r(U)P = s + DIV°P,

aQ

i 1P —10Q —nF,

T )
S =hQ = heT +6:6,U — aPT + D,V°T, (8.40)
oUu

.5[,— = —5|U -+ 90h0T+ O’PT,

aF

Ef.— =m(Q - QC)H(Q - Qc) - unF,
0<86y, 6, <1.

The above model (8.40) is to be analysed with following initial and boundary condi-

tions:

P(z,y,0) = é(z,y) > 0, Q(z,y,0) = ¢(z,y) >0,

T(z,y,0) =&(z,y) > 0, U(z,y,0) = ((z,y) >0,

F(z,y.0) = ¢i(z,y) 20, {z,y) e D (8.41)
apP _ aT

— = = >
I I 0, (z,y) e 0D, t >0,

where n is the unit outward normal to dD.

In model (8.40), F(z,v, t) is the density of effort applied to control the undesired level
of precursor pollutant formed by the po‘pulat.ion. r; > 0 is depletion rate coefficient of
Q(z,y,t) due to the effort F. pu, is the growth rate coefficient of F' and v, its natural
depreciation rate coefficient. Q. is the critical level of precursor pollutant which is
assumed to be harmless to the population. In the last equation of system (8.40), H (1)

denotes the unit step function which takes into account the case for which Q < Q..
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8.6 Conservation Model Without Diffusion

In this section we take, D; = D, = 0 in model (5.1). Then model (5.1) has only one

interior equilibrium, namely, E*(P*,Q*,T*,U*, F*), where P*,Q",T*,U" and F* are

the positive solutions of the system of algebraic equations given below.

roP = r(U)K(T),

Y P +r1ipm Q.
= = f1(P), (sa
Vivo + T f1(P), (say)

T = ' hf1(P)
h0(1—6’091) + a(l—GI)P

U= 6%(00/:0 +aP)fo(P) = f5(P), (say)

o 0, Q<Q
%:'(Q—Qc)) Q > Qc

= f2(P), (say)

As earlier, it is easy to check that E* exists if the following inequality holds at E*,

ro — ' (U)f3(P)K(f2(P)) — K'(T)f,(P)r(f3(P)) > 0. (8.42)

In the following theorem it is shown that E* is locally asymptotically stable. The proof

is similar to Theorem 8.3.1 and hence is omitted.

Theorem 8.6.1 Let the following inequalities hold:

where

TQP'

Tg

4
K'(T") +aT")? < =—% _(hy +aP" .
{KQT'\( )+aT'}* < 9]((T‘)(7°+a ), (8.43)
4
h.2 < §C1"/'0(ho + O‘P'), (844)
2
{91(51 + Cg(goh{) + O’P')}2 < 5626](’10 + CX’P‘), (845)
ro ()
T 3T e oT

Then E* is locally asymptotically stable.

In the following lemma a region of attraction for system (8.40) without diffusion is

established. Tha proof of this lemma is easy and hence is omitted.
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Lemma 8.6.1 The set

Q= {(PQTUF):0SP< K, 0<Q+T+U < 152 o< < 1280y

6 1/1(5

attracts all solutions initiating in the positive orthant, where

Yo > h and § = min{vy, — h, ho(1l — 6), & (1 - 6,)}.

The following theorem gives criteria for global stability of E*, whose proof is similar

to Theorem 8.6.2 and hence is omitted.

Theorem 8.6.2 In addition to the assumptions (8.3) and (8.4), let r(U) and K(T)
satisfy in §2,

0< —r'(U) < p'y K2 < K(T) < Ko and 0 < —K'(T) < k°, (8.46)

for some positive constants p*, K, and k*. Let the following inequalities hold:

Tol(ok.' O."TI(Q 2 4 g
——————(h. P* .
{ ]{1,712 5 } < 9 I((T')( 0ot a )) (8 47)
. avk 2 T
{p + _Tg}z < 5517{%1,—), (8.48)
4
h? < §C|’)‘o(h0 +C)1P'), (849)
2
(01(51 + 90’10 -+ C).‘]D.)2 < 5(51 (ho + QP‘), (850)
where
o = T07%0
' T3 K(TYY

Then E* is globally asymptotically stable with respect to all solutions initiating in the

positive orthant.

Theorems 8.6.2 and 8.6.2 show that if suitable efforts are made to control the undesired
level of precursor pollutant formed by the activities of populations in the environment,

the population density may be maintained at a desired level under certain conditions.



8.7 Conservation Model With Diffusicn

We now consider the case when D; > 0 (i = 1,2) in model (8.40). Under an analysis
similar to section 8.4 of this chapter, it can be established that if the interior equilib-
rium E* of model (8.40) with no diffusion is globally asymptotically stable, then the
corresponding uniform steady state of system (8.40)-(8.41) is also globally asymptot-
ically stable with respect to solutions such that ¢(z,y) > 0, ¥(z,y) > 0, &(z,y) >
0, ¢(z,y) >0, Ci(z,y) >0, (z,y) e D.

Further, it should be noted if the system (8.40) with no diffusion is unstable even then

the corresponding uniform steady state of system (8.40)-(8.41) can be made stable by

increasing diffusion coefficients to sufficiently large values.

Thus, we conclude that diffusion in our model plays the general role of stabilizing the

-System.

8.8 Numerical Examples

Example 1 Here we present a numerical example to illustrate the results obtained in

section 8.3. We consider the following particular form of the functions in model (8.5).

T(U) =Tq — T]oU,
K(T) = Ko — K,\T. (8.51)

Now choose the following set of values of the parameters in Eq. (8.51) and in model
(8.5).

ro = 20.0, 710 = 0.07, Ko = 60.0, K, = 0.08, v = 0.05,
~o = 0.04, h = 0.30, hg = 0.20, & = 7.0, 6 = 0.01, (8.52)
0, = 0.02, ap = 0.06.

With the above values of the parameters, it can be checked that the condition (8.6) for
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the existence of the interior equilibrium E is satisfied and F is given by

P =58.88342, Q = 73.60427, T = 6.02934, U = 3.04482. (8.53)

It can also be checked that conditions (8.7)-(8.9) in Theorem 8.3.1 are satisfied which

shows that E is locally asymptotically stable.

By choosing K, = 50.0 in Theorem 8.3.2 it can also be verified that conditions (8.13)-

(8.16) are satisfied which shows that £ is globally asymptotically stable.

Example 2 Now to illustrate the results obtained in section 8.6, we present a numerical
example. In model (8.40) without diffusion we consider the same particular form of
functions as given in (8.51). Now in addition to the values of parameters given in

(8.52), we choose the following values of parameters in model (8.40) with no diflusion:

ry = 0.09, u, = 12.0, v, =0.09, Q. =0.14. (8.54)

Then it can be checked that condition (8.42) for the existence of the interior equilibrium

E* is satisfied, and E* is given by

P* =59.99146, Q* = 0.38868, T™ = 0.03128, U* = 0.01609,
F* =33.15734. - (8.55)

It can easily be verified that conditions (8.43)-(8.45) in Theorem 8.6.1 are satisfied

which shows that E* is locally asymptotically stable.

Further, by choosing K, = 50.0 in Theorem 8.6.2, it can be checked that conditions

(8.47)-(8.50) are satisfied. This shows that £* is globally asymptotically stable.

By comparing equilibrium levels £ and E* in Eqs. (8.53) and (8.55) we note that due
to effort F, the equilibrium level of the population has increased whereas equilibrium
level of the concentration of precursor pollutant, concentration of pollutant in the

environment and in the population have decreased.
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8.9 Conclusions

In this chapter, a mathematical model is proposed and analysed to study the effect of
a pollutant on a population which is living in a an environment polluted by its own
activities. It has been assumed that the pollutant enters into the environment not
directly by the population but by a precursor produced by the population itself. It
has been further assumed that the larger the population, the faster the precursor is
produced, and the larger the precursor, the faster the pollutant is produced. The model
has been studied with and \\.'ithout, diffusion. In the case of no diffusion it has been
shown that population density settles down to its equilibrium level, the magnitude of
which depends upon the equilibrium levels of emission and \}rasllout rates of pollutant
as well as on the rate of precursor formation and its depletién. It has been noted that
the rate of precursor formation is crucial in eflecting the population. It has further
been noted that if the concentration of pollutant increase unabatedly, the survival of

the population would be threatened.

The effect of diffusion on the interior equilibrium state of the system has also been
investigated. It has been shown that if the positive equilibrium of the system without
diffusion is globally asymptotically stable, then the corresponding uniform steady state
of the system with diffusion is also globally asymptotically stable. It has further been
noted that if the positive equilibrium of the system with no dif:f‘usion is unstable, then
the corresponding uniform steady state of the system with diffusion can be made stablc
by increasing diffusion coefficients appropriately. Thus, it has been concluded that the

global stability is more plausible in the case of diffusion than the case of no diffusion.

In case of conservation model it has been shown that if the rate of formation of the

precursor pollutant is controlled by some external means, its effect on the population

can be minimised.



Bibliography

Anderson N. and Arthur A. M., Analytical boundary functions for diffusion

problems with Michaelis-Menten kinetics, Bull. Math. Biol. 47(1) (1985) pp.
145-153.

Angulo J. and Linares I, Global existence of solutions of a nonlinear dispersive

model, J. Math. Anal. and Appl. 195(3) (1995) pp. 797-808.
Anon, Desertification and its control (ICAR, New Delhi, 1977a).

Anon (Ed.), Desertification, its Causes and Consequences (Pregman Press, Ox-
ford, 1977b).

Armstrong R. A. and McGhehee R., Coexistence of species competing for shared

resources, Theor. Popul. Biol. 9 (1976) pp. 317-328.

Armstrong R. A. and McGhehee R., Competitive exclusion Am. Nat. 115 (1980)
pp. 1561-170.

Banerjee U. K. and Banerjee S., North Western Himalayas: Impact of human

activities on its Ecosystem, Advances in Forestry Research in India, X V1 (1997)
pp. 93-62. |

Bergerud A. T., Butler H. E. and Miller D. R., Antipredator tactics of calving
caribou: dispersion in mountains, Cand. J. Zool. 62 (1984) pp. 1566-1575.

Bergerud A. T. and Page R. E., Displacement and dispersion of parturient cari-

“bou at calving as antipredators tactics, Can. J. Zool. 65 (1987) pp. 1597-1606.

186



Biswas M. R. and Biswas A. K. (Eds.), Desertification Case Studies (Pergamon
Press, Oxford, 1986).

Borsillino A. and Torre V., Limits to growth from Volterra Theory cf population,
Kybernetik 16 (1974) pp. 113-118.

Brauer F., Stability of some population models with Delay, Math. Biosci. 33
(1978) pp. 345-358.

Brown L. R., World population growth soil erosion and food security. Science,

214 (1981) pp. 1087-1095.

Brown L. R. and Wolf E. C., Soil Erosion: Quict Crisis in th¢ World Economy,
Worldwatch Paper 60, 1984.

Burton T. A., Volterra Integral and Differential Equations, (Academic Press,
New York, 1983).

Butler G. J., Hsu S. B. and Waltman P., Coexistence of competing predators in

a chemostat, J. Math. Biol. 17 (1983) pp. 133-151.

Cantrell R. S. and Cosner C., On the steady-state problem for the Volterra-Lotka

competition model with diffusion, Houston J. Math. 13 (1987) pp. 337-352.

Cantrell R. S. and Cosner C., Diffusive logistic equations with indefinite weights:

population models in disrupted environments, Proc. of the Royal Society of Ld-

inburgh 112A (1989) pp. 293-318.

Casten R. G. and Holland C. J., Instability results for reaction-diffusion cqua-

tions with Neumann boundary conditions, J. Diff. Fq. 27 (1978) pp. 266-273.

Caswell H., A simulation study of a time lag population model, J. Theor. Biol.

34 (1972) pp. 419-439.

.Cavani M. and Avis R., Wave Train Solutions for General Reaction-Diflusion

Systems, DEDS 3(3) (1993) pp. 225-234.

187



Chattopadhyay J., Effect of toxic substances on a two-species competitive sys-

tem, Ecol. Model. 84 (1996) pp. 287-289.

Chattopadhyay J., Sarkar A. K. and Tapaswi P. K., Effect of cross-diffusion on

a diffusive prey-predator system: A nonlinear analysis, J. Biol. Sys. 4(2) (1996)
pp. 159-169.

Chewning W., Migratory effects in predator-prey models, Math. Biosci. 23
(1975) pp. 253-262.

Chow P. L. and Tam W. C., Periodic and travelling wave solutions to Volterra-

Lotka equations with diffusion, Bull. Math. Biol. 38 (1976) pp. 643-658.

Cohen D. S. and Murray J. D., A generalized diffusion model for growth and
dispersal in a population, J. Math. Biol. 12 (1981) pp. 237-249.

Comins H. N. and Blatt D. W. E., Prey-predator models in spatially heteroge-
neous environments, J. Theor. Biol. 48 (1974) pp. 75-83.

Cosner C. and Laser A. C., Stable coexistence states in the Volterra-Lotka com-

petition model with diffusion, SIAM J. Appl. Math. 44 (1984) pp. 1112-1132.

Cushing J. M., Predator Prey interactions with time delays, J. Math. Biol. 3
(1976) pp. 369-330.

De Luna J. T. and Hallam T. G., Effects of toxicants on populations: a qualita-

tive approach IV. Resource-Consumer-Toxicant models, Ecol. Model. 35 (1987)
pp. 249-273.

Crank J., The Mathematics of Diffusion, (Clarendon Press, Oxford, 1975).

Das D. C., Soil conservation practices and erosion control in India - A casc study,

FAQ Soils Bulletin 33 (1977) pp. 11-30.

Davis D. R., Sulphur dioxide fumigation of soybeans: Effect on yield, J. Aur
Pollution Control Assoc., 22 (1972) pp. 12-17.

188



Dcininger R. A., Models for Environmental Pollution Control, (Ann Arbor Sci-
ence Publishers Inc., Michigan, 1974).

De Jong G., A model of competition for food. 1. Frequency dependent viabilities,
Am. Nat. 110 (1976) pp. 1013-1037.

De Luna J. T. and Hallam T. G., Effects of toxicants on populations: a qualita-

tive approach IV. Resource-Consumer-Toxicant models, Ecol. Model. 35 (1987)
pp. 249-273.

Denn M. M., Stability of Reaction and Transport Processes (Prentice-Hall, En-
glewood Cliffs, N. J., 1972).

Detwyler T. R. (Ed.), Man’s Impact on Environment (McGraw Hill, New York,
1971). '

Driver R. D., Existence theory for a delay-differential system, Contr. Diff. Eqgs.,
1 (1961) pp. 317-366.

Driver R. D., Existence and stability of solutions of a delay-differential system,

Arch. Rational Mech. Anal. 10 (1962) pp. 401-426.

Dubey B., Modelling the effect of toxicant on forestry resources, Ind. J. Pure

and Appl. Math. 28 (1997a) pp. 1-12.

Dubey B., Modelling the depletion and conservation of resources: Effects of two

interacting populations, Ecol. Model. 101 (1997b) pp. 123-136.

Dubey B., Time delay model for degradation of forestry resources, Ind. J. Ecol.
24(1) (1997¢) pp. 10-16.

Dubcey B. and Das B., Models for the Survival of species Dependent on Resource

in Industrial Environments, J. Math. Anal. and Appl. 231 (1999) pp. 374-396.

Erbe L. H., Freedman H. I. and Rao V. S. H., Three Specics Food-chain Modcls
with a Mutual Interference and Time Delays, J. Math. Biol. 80 (1986) pp. 57-80.

189



Fife P. C., Mathematical aspects of reacting and diffusion-systeins, Lecture notes

in Biomathematics, 28, Springer-Verlag, Heidelberg, 1979.
Forrester J. W., World Dynamics (Cambridge, Mass, 1971).

Freedman H. I., Graphical Stability, Enrichment and Pest Control by a Natural
Enemy, Math. Biosci. 31 (1976) pp. 207-225.

Freedman H. 1., Stability Analysis of a Predator-Prey System with Mutual In-

terference and Density Dependent Death Rates, Bull. Math. Biol. 41 (1979) pp.
67-78.

Freedman H. I, Single species migration in two habitats: Persistence and ex-

tinction, Math. Model. 8 (1987a) pp. 778-780.

Freedman H. 1., Deterministic mathematical models in population ecology (HIFR

Consulting Ltd., Edmonton, 1987b).

Freedman H. I. and Rao V. S. H., The Trade off Between Mutual Interference

and Time Lags in a Predator-Prey Systems, Bull. Math. Biol. 45 (1983) pp.
991-1004.

Freedman H. [. and Gopalsamy K., Global stability in time-delayed single-specics
dynamics, Bull. Math. Biol. 48(5/6) (1986) pp. 485-492.

Freedman H. I., Rai B. and Waltman P., Mathematical models of population
interactions with dispersal 1I: Differential survival in a change of habitat, J.

Math. Anal. Appl. 115(1) (1986).

Freedman H. I. and Shukla J. B., Models for the effect of toxicant in single-

species and predator-prey systems, J. Math. Biol. 30 (1991) pp. 15-30.

Freedman H. I. and Shukla J. B., The effect of a predator resource on a Diflusive

Predator-Prey System, Nat. Res. Model. 3(3) (1989) pp. 359-383.

Freedman H. I., Shukla J. B. and Takeuchi Y., Population diffusion in a two

patch environment, Math. Biosci. 95 (1989) pp. 111-123.

190



Freedman H. I. and Waltman P., Mathematical models of population interactions

with dispersal I: Stability of two habitats with and without a predator, SIAM
J. Appl. Math. 32(3) (1977) pp. 631-648.

Freedman H. I. and Wu J., Steady-state analysis in a model for population
diffusion in multi-patch environment, Nonlinear analysis, Theory, Methods and

Applications 18(6) (1992) pp. 517-542.

Frevert R. K., Schwab G. O., Edminster T. M. and Barnes K. K., Soul and Water

Conservation Engineering, (John Wiley Sons, Inc., New York, 1962).

Gadgil M., Social Restraint on Resource Utilization: The Indian Experience,
1985.

Gadgil M., Diversity: Cultural and Biological, Trend in Ecology and Evolution
2(12) (1987) pp. 369-373.

Gadgil M. and Chandran M. D.S., Environmental Impact of Forest based Indus-
tries on the Evergreen Forests of Uttara Kannada District: A case study, Dept.

of Ecology and Environment, Govt. of Karnataka, 1989.

Gadgil M. and Prasad S. N., Vanishing bamboo stocks, Commerce 136(3497)
(1978) pp. 1-5.

Gadgil M., Prasad S. N. and Ali R., Froest management in India: A critical
review, Social Action, 33 (1983) pp. 127-155.

Gatto M. and Rinaldi S., Stability analysis of predator-prey models via the
Liapunov method, Bull. Math. Biol. 39 (1977) pp. 339-347.

Ghosh R. C. and Lohani D. N., Plantation Forestry - Its Implication in Indian

Economy, Proc. 7th World for Cong. Buenos Aires, Argentina, 1972.

Gilpin M. E., A Liapunov function for competition communities, J. Theor. B1ol.

44 (1974) pp. 35-48.

191



Goh B. S., Management and Analysis of Biological Populations, (Elsevier Scicn-

tific Publishing Company, New York, 1980).

Goh B. S., Global stability in two species interactions, J. Math. Biol. 3 (1976)
pp. 313-318.

Goh B. S., Global stability in many species systems, Am. Nat. 111 (1977) pp.
135-143.

Goh B. S., Global stability in a class of prey-predator models, Bull. Math. Biol.
40 (1978) pp. 525-533. -

Gomatam J., A New Model for Interacting Populations 1, Bull. Math. Biol. 386
(1974) pp. 347-353.

Gopalsamy K., Competition, dispersion and coexistence, Ma\th. Biosci.,, 33
(1977) pp. 25-34.

Gopalsamy K., Optimal stabilization and harvesting in logistic population mod-

cls, Leol. Model., 11 (1980) pp. 67-69.

Gopalsamy K., Limit cycles in periodically perturbed population systems Bull.

Math. Biol., 43(4) (1981) pp. 463-485.

Gopalsamy K., Convergence in a resource based competition system, Bull. Math.

Biol., 48 (1986) pp. 681-699.

Gopalsamy K., Stability and oscillations in Delay Differential Jquations of pop-
ulation Dynamics (Kluwer Academic Publishers, 1992).

Gopalsamy K. and Aggarwalla B. D., Recurrence in two species competition,

Ecol. Model. 9 (1980) pp. 153-163.

Gordon A. G. and Gorham E., Ecological aspects of air pollution {from iron

sintering plant at Wawa, Cand. J. Bot. 41 (1963) pp. 1063-1078.



Gurtin M. E. and MacCamy R. C., On the diffusion of biological populations,
Math. Biosci. 33 (1977) pp. 35-49.

Gurney W. S. C. and Nisbet R. M., The regulation of inhomogeneous popula-
tions, J. Theor. Biol. 52 (1975) pp. 441-457.

Gyori I. and Ladas G., Oscillation Theory of Delay Differential Equations with
Applications (Clarendu Press, Oxford, 1991).

Hadeler K. P., van der Heiden U., Rothe F., Nonhomogeneous spatial distribu-
tions of populations, J. Math. Biol. 1 (1974) pp. 165-176.

Hadcler K. P. and Rothe. ., Travelling fronts in non-lincar diffusion equations,

J. Math. Biol. 2 (1973) pp. 251-264.

Haigh M. J., Deforestation and Disasters in Northern India, Land use policy
(1984) pp. 187-198.

Hale J. K., Asymptotic behavior of the solutions of differential-difference equa-

tions, RIAS Tech. Rept. 61-10, 1961.

Hale J. K., Functional-differential equations with parameters, Contr. Diff. Eqs.
1(4) (1962) pp. 401-410.

Hale J. K., Linear functional-differential equations with constant coefficients,

Contr. Diff. Eqs. 2 (1963) pp. 291-317.

Hale J. K., Averaging methods for differential equations with retarded arguments
and small parameters, Tech. Rept. No. 64-1, Center for Dynamic Systems, Div.

App. Math., Brown Univ., Providence, R. ., 1964a.

Hale J. K., Periodic and almost periodic solutions of functional-differential equa-

tions, Arch. Rational Mech. Anal. 15(4) (1964b) pp. 289-304.

Hallam T. G. and Clark C. E., Nonautonomous logistic equations as modecls
of populations in a deteriorating environment, J. Theor. DBiol. 93 (1982) pp.

303-311.

193



Hallam T. G., Clark C. E. and Jordan G. S., Effects of toxicants on populations:

a qualitative approach II. First order kinetics, J. Math. Biol. 18 (1983a) pp.
25-37.

Hallam T. G., Clark C. E. and Lassiter R. R., Effects of toxicants on populations:

a qualitative approach 1. Equilibrium environmental exposure, Ecol. Model. 18
(1983b) pp. 291-304.

Hallam T. G. and De Luna J. T., Effects of toxicants on populations: a qualita-

tive approach IIl. Environmental and food chain pathways, J. Theor. Biol. 108
(1984) pp. 411-429.

Hallam T. G. and Ma Z., Persistence in population models with demographic

fluctuations, J. Math. Biol. 24 (19806) pp. 327-339.

Hallam T. G., Svoboda L. J. and Gard T. C., Persistence and extinction in

three species Lotka-Volterra competitive systems, Math. Biosci. 46 (1979) pp.
117-124.

Harada K. and Fukao T., Coexistence of Competing Species Over a Linear Habi-

tat of Finite Length, Math. Biosci. 38 (1978) pp. 279-291.

Hari P, Raunemaa T. and Hautojarvi A., The effect on forest growth of air

pollution from energy production, Atom. Environ. 20(1) (1986) pp. 129-137.

Harrison G. W., Global stability of predator-prey interactions, J. Math. Biol. 8
(1979) pp. 159-171.

Hastings A., Global stability in Lotka-Volterra systems with Diﬁﬁsion, J. Math.
Biol. 6 (1978a) pp. 163-168.

Hastings A., Global stability of two species systems, J. Math. Biol. 5 (1978b)
pp. 399-403.

i
Hastings A., Dynamics of a single species in a spatially varying environment:

The stabilizing role of high dispersal rates, J. Math. Biol. 16 (1982) pp. 49-55.

194



Holling C. S., The functional response of predators to prey density and its role

in mimicry and population regulation, Mem. Entomol. Soc. Can. 45 (1965) pp.
1-60.

Hsu S. B., Limiting behavior of competing species, SIAM J. Appl. Math. 34
(1978a) pp. 760-763.

Hsu S. B., On global stability of predator-prey systems, Math. Biosci. 39 (1978b)
pp. 1-10.

Hsu S. B, On a resource based ecological competition model with interference,

J. Math. Biol. 12 (1981a) pp. 45-52.

Hsu S. B., Predator mediated coexistence and extinction, 'Math. Biosci. 54
(1981b) pp. 231-248.

Hsu S. B. and Huang T. W., Global stability for a class of predator-prey systems,
SIAM J. Appl. Math. 55(3) (1995) pp. 763-783.

Hsu S. B. and Hubbell S. P., Two predators competing for two prey specics: An
analysis of MacArthur's model, Math. Biosci. 47 (1979) pp. 143-171.

Huaping L. and Ma Z., The threshold of survival for system of two species in a

polluted environment, J. Math. Biol. 30 (1991) pp. 49-61.

Huffaker C. B., Experimental studies on predation; dispersion factors and prey

predator oscillations, Hilgardia 27 (1958) pp. 305-329.

Huffaker C. B., Experimental studies on predation; Complex dispersion and

levels of food in an Acarsian predator-prey interactions, Hilgardia 37 (1963) pp.
305-309.

Huttl R. F. and Wisniewski J., Fertilization as a tool to mitigate forest decline
associated with nutrient deficiencies, Water, Awr and Soil Pollution 33 (1987)

pp. 265-276.

195



Jensen A. L., Simple models for exploitative and interference competition, Ecol.

Model. 35 (1987) pp. 113-121.

Jensen A. L. and Marshall J. S., Application of a surplus production model to
assess environmental impacts on exploited populations of Daphina pluex in the

laboratory, Environmental pollution A28 (1982) pp. 273-280.

Jorne J., The diffusive Lotka-Volterra oscillating systems, J. Theor. Biol. 65
(1977) pp. 133-139.

Jorne J. and Carmi S., Liapunov stability of the diffusive Lotka-Volterra equa-
tions, Math. Biosci. 37 (1977) pp. 51-61.

Karamchandani K. P., Environmental management: Forestry, Reading in Envi-

ronmental Management edited'by Rama D. V., Bharadwaj J. and Vidaken V.,
UNNAPDI, Bangkok (1980).

Khoshoo T. N., Environmental Properties in India and Sustainable Development

(ISCA, New Delhi, 1986).

Kormondy E. J., Concepts of Ecology, (Third Edition, Prentice Hall -of India
Pvt. Ltd., New Delhi, 1986).

Krasovskii N. N., On periodical solution of differential equations involving a time

lag, Dokl. Akad. Nauk USSR 114 (1957) pp. 252-255.

Lakshmikantham V., Lyapunov function and a basic inequality in delay-

differential equations, Arch. Rattonal Mech. Anal. 10 (1962) pp. 305-310.

Lakshmikantham V., Functional-differential systems and extensions of Lya-

punov’s method, F. Math. Anal. Appl. 8(3) (1964) pp. 392-405.

Lakshmikantham V. and Rao M. R. M., Stability in Variation for Non-lincar

Integro-Differential Equations, Applicable Analysis 24 (1987) pp. 165-173.

196



Lamberson R. H., The conservation and maintenance of valuable resources: Op-
- timal expenditure strategies, Second Autumn Course on Mathematical Ecology,

ICTP, Trieste, Italy, 1986.

Lancaster P. L. and Tismanetsky M., The theory of Matrices, Second Edition,
(Academic Press, New York, 1985).

Landahl H. D., A note on the population growth under random dispersal, Bull.
Math. Biophysics 21 (1959) pp. 153-159.

Larson W. E.; Pierce F. J. and Dowdy R. H., The Threat of Soil Erosion to
Long-Term Crop Production, Science 219 (1983) pp. 458-465.

La Salle J. and Lefschetz S., Stability by Liapunouv’s Direct :Method with Appli-

cations (Academic Press, New York, London, 1961).

Leung A., Conditions for Global Stability Concerning a Prey-Predator Model
with Delay Effects, STAM J. Appl. Math., 36 (1979) pp. 281-286.

Leung A. W. and Zhou Z., Global stability for large systems of Volterra-Lotka
'type integro-differential population delay equations, Nonlinear Anal. Theor.

Method and Appl. 12 (1988) pp. 495-505.

Levins R. and Culver D. Regional coexistence of species and competition between

rare species, Proc. Nat. Acad. Sci. USA 68 (1971) pp. 1246-1248.

Levin S. A., Dispersion and population interactions, Am.Nat. 108 (1974) pp.
207-228.

Levin S. A., Population Dynamic Models in Heterogeneous environments, Annu.

Rev. Ecol. Syst. 7 (1976) pp. 287-310.

Ma Z. and Hallam T. G., Effects of parameter fluctuations on community sur-

vival, Math. Biosci. 86 (1987) pp. 35-49.

Martino J. P., Technological Forecasting for Decision Making, (American Else-

vier, New York, 1983).



Maugh T. H., Restoring damaged lakes, Science, 203 (1979) pp.425-427.

May R. M., Stability in multispecies community models, Math. Biosci. 12 (1971)
pp. 59-79.

May R. M., Stability and Complezity in Model Ecosystemns, (Princeton, Princeton
U. P., 1973).

May R. M., Ecosystem patterns in randomly fluctuating environments. In

Progress in Theoretical Biology, ed. Rosen R., Snell F., pp. 1-50, Academic P.,
New York, 1974). -

Maynard Smith J., Mathematical ideas in Biology, (Cambridge University Press,
1968). - f

Maynard Smith J., Models in Ecology ( Cambridge, Cambridge U. P., 1974).

MacDonald N., Time delay in prey-predator models, Math. Biosci. 28 (1976)
pp- 321-330.

MacDonald N., Time Delay in Prey-Predator Models, Math. Biosci. 33 (1977)
pp. 227-234.

MacDonald N., Time lags in Biological Models, Lecture Notes in Biomathematics

Vol. 27 (Springer-Verlag, Berlin, 1978).

McLaughlin S. B., Effects of air pollution on forests, J. Air Pollution Control
Assoc. 35 (1985) pp. 512-534.

McMurtrie R., Persistence and stability of single species and prey-predator sys-

tems in spatially heterogenous environments, Math. Biosci. 39 (1978) pp. 11-51.
Meadows D. H., The Limits to Growth, New York, 1972.

Miller, R.. K., On Volterra’s Population Equations, SITAM J. Appl. Math., 14(3)
(1966) pp. 446-452.

198



Miller R. S., Pattern and process in competition, Adv. in Ecol. Res. 4 (1976)
-pp- 1-74.

Mitra D., Mukherjee D., Roy A. B. and Ray S., Permanent coexistence in a
resource-based competition system, Ecol. Model. 60 (1992) pp. 77-85.

Mukherjee D. and Roy A. B., Uniform persistence and global stability of two

prey-predator pairs linked by competition, Math. Biosci. 99 (1990) pp. 31-45.

Munn R. E. and Fedorov V., The environmental assessment, IIASA, Project

Report, vol. 1, International Institute for Applied Systems Analysis, Laxenburg,
Austria, 1986.

Murakami S. and Hamaya Y., Global Attractivity in an Integro Differential
Equation with Diffusion, DEDS 3(1) (1995) pp. 35-42.

Nallaswamy R. and Shukla J. B., Effects of convective and dispersive migration
on the linear stability of a two species system with mutualistic interactions and

functional response, Bull. Math. Biol. 44(2 (1982a) pp. 271-282.

Nallaswamy R. and Shukla J. B., Effects of dispersal on the stability of a prey-
predator system with functional response, Math. Biosc:. 60 (1982b) pp. 123-132.

Nelson S. A., The problem of oil pollution of the sea, In: Advances in Marine

Biology pp. 215-306 (Academic Press, London, 1970).

Okubo A., Diffusion and ecological problem: Mathematical models, (Springer-
Verlag, Berlin Heidelberg, New York, 1980).

Pasquill F., Atmospheric Diffusion (Van Nostrand, N. J., Princeton, 1962).

Pathak S., Role of forests in soil conservation with special reference to Ramganga

watcrshed, Soil Conservation Digest 2(1) (1974) pp. 44-47.

199



Parry M. L. and Carter T. R., The assessment of effect of climate variation on
- agriculture: Aims, methods and summary In: M. L. Parry, T. R. Carter and

N. T. Konijn (editors), The impact of climate variation on agriculture, (Kluwer

Academic Publisher Dordrecht, Netherlands, 1988).

Peterson C. E., Rayon P. J. and Gassel S. P., Response of northwest Douglas-fir

stands to urea: Correlations with forest soil properties, Soil Sci. Soc. of America

J. 48 (1984) pp. 162-169.

Pimental D. et al., Land degradation: Effects on food and energy resources,

.Science, 194 (1976) pp. 149-155.

Patin S. A., Pollution and the biological resource of the Ocean (Butterworth

Scientific, London, 1982).

Putnam A. R. and Chung-Shih Tang (Eds.), The Science of Allelopathy, 1986.

Rao M. R. M., Ordinary Differential Equations- Theory and Application (1981),
Edward Arnold (Publishers) Ltd., London (U. K.).

Rao M. R. M and Pal V. N., Asymptotic Stability of Grazing Systems with
Unbounded Delay, J. Math. Anal. and Appl. 163(1) (1992) pp. 60-72.

Rao M. N. and Rao H. V. N., Air Pollution, (Tata McGraw Hill Publishing Co.
Ltd., New Delhi, 1989).

Rao M. R. M. and Sivasundaram S., Asymptotic Stability for Equations with

. Unbounded Dclay, J. Math. Analysis and Applications 131(11) (1988) pp. 97-
105.

Raichaudhury S. Sinha D. K. and Chattopadhyay J., Effcct of time-varying cross-

diffusivity in a two-species Lotka-Volterra competitive system, Ecol. Model. 92

(1996) pp. 55-64.

Reed W. J. and Heras H. E., The conservation and exploitation of vulnerable

resources, Bull. Math. Biol. 54(2/3) (1992) pp. 185-207.

200



Reish D. J., Gill G. G., Frank G. W., Phillips S. O., Alan J. M., Steven S. R.

. and Thomas C. G., Marine and estuarine pollution, Journal WPCI', 54 (1982)
pp. 786-812.

Reish D. J., Gill G. G., Frank G. W., Phillips S. O., Alan J. M., Steven S. R.

and Thomas C. G., Marine and estuarine pollution, Journal WPCF, 55 {(1983)
pp. 767-787.

Repetto R. and Holmes T., The Role of Population in Resource Depletion in

Developing Countries, Population and Development Review 9 (1983) pp. 609-
632.

Rescigno A., The Struggle For Life-11. Three Competitors, Bull. Math. Biophy.
30 (1968) pp. 291-298.

Rescigno A., The Struggle For Life-V. One species living in a limited environ-

ment, Bull. Math. Biol. 39 (1977) pp. 479-485.

Rescigno A. and Richardson I. W., The Struggle for Life-I. Two Species, Bull.
Math. Biophys. 29 (1967) pp. 377-388.

Rice E. L., Allelopathy, 2nd ed., 1984.

Roff D. A., The analysis of a population model demonstrating the importance

of dispersal in a heterogeneous environment, Oecologia 15 (1974) pp. 259-275.

Rosen G., Global Theorems for species distributions governed by reaction-

diffusion equations, J. Chem. Phys. 61(9) (1974) pp. 3676-3679.

Rosen G., Solutions to systems of nonlinear reaction-diffusion equations, Bull.

Math. Buol. 37 (1975) pp. 277-289.

Rosen R., Dynamic system theory in biology, Vol. 1 (Wiley-Interscience, New
York, 1970).

Rosen G., Effects of diffusion on the stability of the equilibrium in multi-specics

ecological systems, Bull. Math. Biol. 39 (1977) pp. 373-383.

201



Sahani D. V., Air Pollution, Advances in Forestry Research in India, X VIII
- (1998) pp. 54-63.

Sanchetz D. A.,'Ordinary Differential Equations and Stability Theory: An In-

troduction, (Freeman, San Francisco, 1968).
Scorer R., Air Pollution, (Pergamon Press, Oxford, 1968).

Schulze E. D., Air pollution and forest decline in a Spruce (Picea abies) forest,

Science 224 (1989) pp. 776-783.

Segel L. A. and Jackson J. L., Dissipative structure: an explanation and an

ecological example, J. Theor. Biol. 37 (1972) pp. 545-559.

Shukla J. B. and Dubey B., Simultaneous effect of two toxicants on biological

species: a mathematical model, J. Biol. Syst.4(1) (1996a) pp. 109-130.

Shukla J. B. and Dubey B., Effect of changing habitat on species: Application
to Keoladeo National Park, India, Ecol. Model. 86 (1996b) pp. 91-99.

Shukla J. B., Dubey, B. and Freedman H. 1., Eflfect of cha.n'ging habitat on
survival of specics, Ecol. Model. 87(1-3) (1996) pp. 205-216.

Shukla J. B. and Dubcey B., Modelling the depletion and conscrvation of forestry

resources: effects of population and pollution, J. Math. Biol. 36 (1997) pp. 71-94.

Shukla J. B., Hallam T. G. and Capasso V (Eds.), Mathematical Modelling of

Enuvironmental and Ecological Systems (Elsevier Sci. Publi. Amsterdam, 1987).

Shukla J. B., Pal. V. N., Mishra O. P., Agarwal M. and Shukla A., Effects of
Population and Industrialization on the Degradation of Biomass and its Re-
generation by Afforestation: A Mathematical Model, Journal of Biomath, 3(1)
(1988) pp. 1-9.

Shukla J. B., Freedman H. I., Pal V. N., Misra O. P., Agarwal M. and Shukla A,

Degradation and subsequent regeneration of forestry resource: A mathematical

model, Ecol. Model. 44 (1989) pp. 219-229.

202



Shukla V. P. and Shukla J. B., Multispecies food webs with diffusion, J. Math.
- Biol. 13 (1982) pp. 339-344.

Shukla V. P., Shukla J. B. and Das P. C., Environmental effects on the lincar
stability of a three species food chain model, Math. Biosci. 57 (1981) pp. 35-58.

Shukla J. B. and Verma S., Effects of convective and dispersive interactions on

the stability of two species, Bull. Math. Biol. 43(5) (1981) pp. 593-610.

Singh K. D., Forest Resource Assessment 1990, Tropical Countries, Food and

Agriculture Organization, the United Nations, Rome, FAO Forestry Paper No.
112, 1993.

Skellam J. G., Random dispersal in theoretical populations, Biomeirika 38
(1951) pp. 196-218.

Smith R. L., The Ecology of Man: An Ecosystem Approach (Harper and Row,
* New York, 1972). '

Smith W. H., Air Pollution and Forests, (Springer-Verlag, New York, 1081).

Stepan G., Great Delay in predator-prey model, Nonlinear Anal. Theory Method
and Appl. 10(9) (1986) pp. 913-929.

Stern A. C., Air Pollution, (Academic Press, New York, 1968).
Sutton O. G., Micrometeorology, (McGraw-Hill, New York, 1953).

Takcuchi Y., Global stability in generalized Lotka-Volterra diffusion systems, J.

Math. Anal. Appl. 116(1) (1986a).

Takeuchi Y., Diffusion effect on stability of Lotka-Volterra models, Bull. Math.
Biol. 48(5/6) (1986b) pp. 585-601.

Takeuchi Y., Adachi N. and Tokumaru H., The stability of generalized Volterra

equations, J. Math. Anal. Appl. 62 (1978) pp. 453-473.

203



Tansky M., Switching effect in prey-predator systems, J. Theor. Biol. 70 (1978)
pp. 263-271.

Timm U. and Okubo A., Diffusion-driven instability in a predator-prey system
with time varying diffusivities, J. Math. Biol. 30 (1992) pp. 307-320.

Thompson A. C. (Ed.), The chemistry of Allelopathy: Biochemical Interactions
among Plants, ACS Symp. Ser. 268, 1985.

Treshow M., The impact of air pollutants on plant populations, Phytopathology,
58 (1968) pp. 1108-1113.

Vandermeer J. H., On the regional stabilization of locally unstable predator-prey

relationships, J. Theor. Biol. 41 (1973) pp. 161-170.

Veeman T. S., Land degradation, Conservation reserves and Rationalizing ex-
cess Agricultural production: an economic prospective, Preprint for Agricultural

[nstitute of Canada National Conference, August 21-24, 1988, Calgary Canada.

Verma S., Effects of convective and dispersive migration on stability of inter-
active species system in heterogeneous habitats, Ph. D. thesis, Department of

Mathematics, Indian Institute of Technology, Kanpur, India (1980).

Volterra V., Theory of Functionals and Integral and Integro-Differential Equa-
tions, (Dover, New York, 1959).

Waller G. R. (Ed.), Allelochemicals: Role in Agriculture and Forestry, ACS
Symp. Ser. 330, 1987.

Wang L. and Zhan Yi, Global Stability of Volterra-Lotka Systems with Delay,
DEDS 3(2) (1995) pp. 205-216.

Wangersky P. J. and Cunningham W. J., Time lag in prey-predator population
models, Ecology 38 (1957) pp. 136-139.

Waring R. H. and Schiessinger W. H., Froest Ecosystems: Concepts and Man-

agement (Academic Press, New York, 1985).

204



Wilson E. O., Threats of biodiversity, In the Scientific American Special Issue

(Managing Planet Earth), September, pp. 108-117, New York, 1989.

Wollkind D. J., Collins J. B. and Barba M. C. B., Diffusive instabilities in
one-dimensional temperature-dependent model system for a mite bredator-prey

interaction on fruit trees: Dispersal mobility and aggregative preytaxis effects,

J. Math. Biol. 29 pp. 339-362.

Woodman J. N. and Cowling E. B., Airborne chemical and forest health, Enuvi-

ron. Sci. Technol. 21 (1987) pp. 120-126.

Woodwell G. M., Effects of pollution on the structure and physiology of ecosys-
tems, Science 168(3930) (1970) pp. 429-431.



