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ABSTRACT 

Tea is a unique commodity in many respects. Like other agricultural produce, the 

valuation of tea, though an agricultural product, is not determined by the free play of 

forces of supply and demand. Primarily, the valuation of tea depends on its quality. The 

success of tea producers in global tea trade mainly depends on the quality of their prodUct. 

In the changed global economic scenario, new equations integrating production, quality 

management and market forces have been evolved. The consumers, especially from the 

west, are very much concerned about the quality of food and beverage products. That's 

why it has become extremely necessary for the tea producers to adopt a balanced and 

reliable approach to the quality management. The quality of tea, like other beverages, is 

evaluated by sensory methods. The Tea Tasters play an important role in the tea trade 

by judging the tea lots in terms of overall quality in auction centers. The Tasters of 

Broker Houses taste the infused sample, and ultimately give the basic price for different 

lots of teas. Though the judgement of quality by these Tasters matters a lot in the 

evaluation of the produce, it is not devoid of human bias of various kinds resulting in 

increasing uncertainty. The Tasters may have some preconceived idea about the origin 

and chemical composition of the tea, there remains every possibility of human bias which 

may have significant impact on the price and demand for a particular brand of tea. The 

tasters consider liquor characteristics, such as strength, brightness, briskness, Havour, 

etc. resulting from the infused tea, while assessing tea. A group of Tasters may broadly 

agree on the merits of a sample of tea, but ther'e is bound to be some difference of 

opinion among themin details. We note here that market conditions in general and the 

requirements of the Broker House whose needs the Taster serves have profound inHuence 

on the judgement of quality. From scientific point of view it is quite reasonable to say 

that the biochemical parameters inherent in the tea leaf are responsible for the quality in 

tea. At the present stage of knowledge, most of the biochemical quality parameters are 

measurable with high degree of accuracy. But we can not quantify the quality on the basis 

of biochemical information. The Tasters evaluate the different quality ,attributes (which 

are due to biochemical parameters) only. That's why, if the correspondence between 
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biochemical information and the Tasters' judgement can be established, the problem of 

uncertainty can be reduced. It is important to study the subjectivity of the Taster's choice 

in assessing the quality of tea. We have discussed different aspects of sensory evaluation 

and the statistical methodologies to study the error associated with Taster's choice. A 

sensible approach in this direction is to consider a panel of Tas.ters, who may assess the 

same set of tea samples and give scores on each sample independently. We may study the 

individual variations due to Tasters. A possible model can be thought that would give 

us an idea about the true inherent quality for the given set of samples after eliminating 

the bias due to Tasters. It may be possible to measure the extent of relative bias due to 

individual Tasters also. 

From earlier discussions we may legitimately say that there are two aspects in the 

problem of tea quality assessment. One aspect is the sensory evaluation. The other 

aspect is the biochemical information. It is believed that the quality attributes are the 

effects of some combinations of biochemical information. Thus we may think of relating 

the sensory evaluations with the biochemical quality parameters, and study how the 

different chemical parameters are related to the Taster's evaluations. If we assume some 

functional relationship between the sensory evaluations and the biochemical information 

for a particular set of tea samples, we may possibly write the relationship in the following 

way: 

True Quality = Taster's assessment + Error due to Taster = Quality explained by 

biochemical parameters + Random error. 

We explicitly state here that there may be various ways to approach the problem, we 

in our study limit the scope to only a few statistical investigations. 

Primarily our aim is to study how closely the biochemical information can be func­

tionally related to Taster's choice and thereby study whether the chemical information is 

being explained by the sensory analysis, may be partially. For this we have associated 

the biochemical parameters with the choice made by a single Taster. The performance 

of different regression techniques (e.g. Minimum Absolute Deviation technique, Ridge 

regression, etc.) is compared with the ordinary least square (OLS) regression. Also the 

scores on different quality attributes given by a single Taster are associated with the 
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biochemical information introducing Multiple Response Regression model. The possible 

non-linearity in the data is studied separately using Box-Cox transformation model. Some 

critical investigations have been performed to assess the small sample estimation problem 

with Box-Cox transformed model. 

As a distinct approach to study the subjectivity of Taster's choices, we have obtained' 

repeated observations on the quality assessment by taking more than one Taster on the 

same set of sample. Subjectivity in the sensory evaluation is studied introducing one­

way and two-way variance components (VC) models with heteroscedastic formulation of 

variance-covariance matrix. The next step is to associate the sensory evaluations with 

the biochemical information after eliminating the bias due to Tasters. This is tried by 

developing regression models with repeated observations on the response variable. The 

qne-way and two-way error component models have been studied under heteroscedastic 

environment. The first chapter introduces to the problem under study. Some interesting 

information about tea is given. The quality aspects in tea are discussed in detail including 

the biochemical front. Different aspects of sensory evaluation, that is, tea tasting is 

discussed in detail. This is followed by explanation on the objective and organization of 

the problem. The next section includes explanations on the different data sets used in 

this study, which are provided by the Tea Research association of India (TRA) and the 

Tata Tea Ltd. 

A review of the up-to-date literature on the studies made on different aspects of VC 

models is presented in the second chapter. Special emphasis is given on the repeated mea­

surement models. A detailed account of linear and non-linear models is given. Different 

aspects of longitudinal data analysis is discussed including approaches to data diagnostics. 

The ANOVA, MANOVA and generalized MANOVA (GMANOVA) model and estimation 

of variance components are discussed. This includes a section on profile analysis also. The 

general linear model for longitudinal data analysis is discussed in detail. The maximum 

likelihood (ML) an'd restricted maximum likelihood (REML) method of estimation are 

discussed along with the available algorithms for estimation. A detailed discussion on the 

testing aspects in general linear model is given. The review work is done keeping in line 

with the different repeated measurements models investigated by us to study the quality 
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aspects of tea. 

The third chapter deals with some simple regression studies to associate quality pa­

rameters with taster's choice for given set of CTC tea sample. This is attempted using 

the data set where a single Taster makes sensory/organoleptic evaluations on different 

samples. Two different problems are dealt with. The first approach is to associate a 

single quality attribute (say, strength or overall value) with the biochemical information. 

We have compared the performance of OL8, Ridge regression and the minimum abso­

lute deviation (MAD) method of estimation. The second approach is to associate the 

sensory evaluations made by a single Taster separately on 'strength', 'quality' and/or 

'overall valuation' with biochemical quality parameters. For this we have considered a 

multiple response regression model. The testing aspect of different parameter estimates 

is discussed. The 'within - sample' forecasting is also done. 

The possible non-linearity in the tea quality assessment data is studied using Box­

Cox transformation model in the third chapter. Certain problems of using Box-Cox 

transformed linear models in case of small samples is discussed in the forth chapter. 

The fifth chapter explicitly deals with the different aspects of sensory panel data. The 

subjectivity of Tasters' choices is studied using repeated measurement variance component 

models. Measurements made independently by different Tasters on quality attribute con­

stitute the repeated observations on the sensory scores. The ANOVA and ML estimators 

of the heteroscedastic variance components are obtained. 

The one-way random effects linear regression model with repeated observations on the 

response variable is the theme of sixth chapter. The aim is obviously to associate the 

biochemical parameters with Tasters' scores. The measurements on biochemical quality 

parameters are however fixed for each sample. The effects due to Tasters are assumed to 

be random. With such a formulation we aim to assess the error due to sensory evalua­

tions and also to assess the statistical significance of the effects of different biochemical 

parameters in quality assessment. The error variances associated with different Taster's 

choices may be obtained using a heteroscedastic formulation. The ML and REML esti­

mates of regression coefficients and the variance components are obtained employing a 

simple iterative algorithm. The statistical properties of the regression coefficients are also 
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discussed. 

A generalization of the linear random effects model is done introducing dummy variable 

to study the variations due to groups. This formulation is done to support a 'quatity 

improvement experiment' for CTC tea, conducted in the Tocklai Experimental Station of 

TRA. A controlled experiment was carried out to develop a particular brand of CTC tea 

with better quality. A detailed discussion on the experiment is presented with original 

data. The experimental samples showed better quality as compared to the control sample. 

The one-way random effect model is an appropriate specification if we are drawing 

samples randomly from the same population of teas. But such a formulation would hOt 

be appropriate if we are focusing on a particular set of samples, for example, the samples 

representing different clones of CTC tea. Inference in this case is conditional on the 

particular samples under consideration. In this case the effects due to samples (fixed 

effects) needs to be incorporated in the error component model along with the effects due 

to Tasters. Thus we have a two-way error component formulation, which is discussed in 

the seventh chapter. We note here that certain computational problems arise in obtaining 

the estimates of implicit parameters from the general likelihood function, due to the fact 

that the design matrix is not of full rank. An alternative ML estimation of variance 

components and the fixed parameters are discussed. 

The last chapter includes brief discussion on the possible statistical studies that could 

have been undertaken had the required data base on quality assessment been available 

and some concluding remarks. The data and other technical information for this study 

are provided by the Tea Research Association of India (TRA). 
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CHAPTER-l 

THE PROBLEM AND BACKGROUND INFORMATION 

1.1 Introduction 

Tea is a unique commodity in many respects. The valuation of tea, unlike other agricul­

tural products, is not purely determined by the free play of forces of supply and demand. 

The valuation of tea is considerably distorted by an institution called the Tea Tasters. 

The Tasters play an important role in the tea trade by judging the tea lots about their 

qualities (or overall qualities) in the auction centers. The tea Broker Houses have their 

own Tasters who taste the infused tea samples, evaluate the samples and give the basic 

p,rices for different lots of teas to be auctioned. Thus the Tasters, who are representatives 

of the Brokers, reflect the taste and preferences of the ultimate consumers of tea. Though 

the judgement of quality by these Tasters matters a lot in the valuation of the produce, 

it is not devoid of human bias of various kinds. The Tasters may also have some pre-' 

conceived idea about the origin and chemical composition of the tea, there remains every 

possibility of human bias which may have significant impact on the price and demand 

of a particular brand of tea. Hence there is an urgent need to minimize the uncertainty 

factors in the quality-price-demand relationship. This can be, to some extent, achieved 

through an objective and scientific analysis of the influence of the human as well as the 

chemical factors in tea. From the scientific point of view it is quite reasonable to say that 

the biochemical parameters inherent in the tea leaf are responsible for the quality in tea. 

At the present stage of knowledge, most of the biochemical parameters responsible for 

the quality in tea are measurable with high degree of accuracy. But we can not quantify 

the quality of tea on the basis of biochemical information, as we do not know the exact 

relation between quality and the biochemical parameters. There are different quality at­

tributes in tea such as 'strength', 'briskness', 'brightness', etc. that are due to different 

biochemical parameters. But these quality attributes are judged (evaluated) by the Tea 
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Tasters only. That is why the correspondence between the biochemical informatioq and 

the Taster's judgement is called for. 

1.2 Some basic information about tea 

The history of tea began in ancient China over 5000 years ago. The tea, what we 

drink today, was discovered by Chinese Emperor Shen-Nung in 2737 BC (ref: web site 

www.stashtea.com/facts.htm). According to legends, Shen-Nung was boiling a kettle of 

water in his terrace when the wind blew a few errant tea leaves in to the kettle. The 

curious Emperor sampled the steaming liquid. He was delighted with its pleasant aroma 

and taste, and soon the taste of tea spread to Japan and other Far East countries. Ea.rly 

Dutch and English colonists introduced tea to the new world. It was the famed East India 

Trading Company that formally introduced tea to England and other European countries. 

Tea is a beverage made from the processed leaf of a plant whose scientific name is 

Camellia Sinensis. Compared to other agricultural crops, tea production is unique so 

far as its plantation structure and the processing system are concerned. It takes five years 

for a tea bush to grow before it reaches any commercial significance. The life of a tea 

bush is more than fifty years. To maintain productivity and yield, 2% of tea bushes need 

to be uprooted and re-planted every year. Once the bushes are uprooted, it will be seven 

years before a re-planted bush will reach commercial bearing. Tea production requires 

considerable technical expertise and innovation. The Indian tea industry has developed 

considerable R&D, and has made significant contributions in several areas such as tea 

biochemistry, biotechnology and agronomy. Specialized research institutes such as Tea 

Research Association (TRA, with their famous research laboratory at Tocklai, Assam), 

Darjeeling Tea Research Center, and the Indian Institute of Plantation Management has 

significantly contributed to the tea research. The laboratory of Tea Research Foundation 

of Kenya (situated at Kericho), the Tea Research Institute of China, the Shizuoka Tea 

Experimental Station (Shizuoka, Japan), and the Tea Research Institute of SriLanka (St. 

Colombus), are some of the famous laboratories in this field. There are more than three 
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thousand varieties of teas, each with its own flavor, body, color, and aroma. While th,ere 

is only one species of tea plant, namely Camellia Sinensis, from which all teas are m~de, 

local conditions in the various tea growing regions of the world determine varieties, which 

are unique from each other. The major tea producing countries include India, Sri Lanka, 

China, Japan and Kenya. We outline below the different types of tea produced in th,ese 

countries. 

Black Tea (Fermented Tea) 

Orthodox black tea : Darjeeling tea of India, Keemum tea from China, and Uva 

tea from Sri Lanka are the most famous black tea in the world because of their supetior 

flavors. There are flavor characteristics that clearly differentiate each from the other. The 

difference in the aroma characteristics of Keemum, Uva, and the Darjeeling teas are due 

to the varieties of tea plants used in producing these teas. The processing of this tea is 

that the harvested leaves are first withered and then rolled, which liberates the aromatic 

juice and onsets a mysterious chemical change through the absorption of oxygen. This 

fermentation process occurs in high humidity and warm temperature and turns the leaves 

a bright copper color and imparts them with subtle flavors. 

Crush-Tear-Curl (CTC) tea The best quality CTC teas are produced in Assam 

of India and some parts of Sri Lanka and Kenya. The production of CTC tea is rapidly 

increasing with the increased use of tea bags throughout the world. The flavor of dTC 

tea is inferior to that of orthodox black tea. eTe teas are stronger. The biochemical 

aspects of CTC tea are discussed by Yamanishi (1995), and Deb and Ullah (1986), among 

many others. 
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Oolong tea : The process is similar to black tea, but the withering and fermentation 

times are cut down. This type of tea is generally produced in Japan and China. This tea 

involves the qualities of both black and green tea. 

Green tea The leaves are harvested and immediately put in a large steamer and 

heated. The leaves are 'rolled until crisps. They remain green in color. There are some 

other types of teas such as white tea, scented black tea, etc. 

The Processing of Tea 
"-

The tea leayes (top two leaves and the bud) are first plucked and then brought to the 

tea manufactory where they undergo the following processes: 

The plucked leaves are first withered (dried) on a rack. This withering process may 

take 10 to 30 hours and its purpose is to bring down the internal moisture of the leaves to 

somewhere between 60% to 70% of the original moisture. The next phase is the activity 

of grinding or breaking machines, which cut or crush the leaf. This is done to expose 

the enzyrpes present in leafs for further development as a result of coming into contact of 

oxygen. This is called oxidation. The leaves turn to bright copper penny color and 2 to 

3 hours are generally enough to accomplish tris. After this phase the tea goes into the 

drying operation. The tea is dried for between 30 minutes to several hours. This drying 

operation is very important in that this is the process which 'seals in' all of the fiavor 

and aroma and can determine one of the major differences between a mediocre tea and a 

high quality tea though they may come from the same plantation. Finally the tea may be 

exposed to electric roller or other devices to remove tpe unwanted leaf stem or vein fiber. 

The ab,ove are the basic steps for producing black tea. There could be several variants 

of this approach (depending on the production region), but essentially all that is needed 

are the above steps. We note here that the green and semi-black teas are processed 

differently than above. 

4 



Tea Leaf Grading 

Grading tea leaves is very complicated and is done differently in different countries. 

The most extensive grading is found in black teas, followed by green teas. Black tea is 

classified into four different categories. The main division is between the leaf grade and 

the brokens grade. A lesser quality grade of very small pieces is called fannings. Finally 

dust grades are used primarily in tea bags. In addition to the grading process, the tea 

industry classifies tea leaves according to the place of plucking, and also the time of year 

of the harvesting. 

1.3 The Quality Aspects in Tea 

1.3.1 Assessment of quality 

The term quality has different connotation for different products. In tea, it is really a 

complex situation, so far the understanding of quality is concerned. In assessing tea qual­

ity, dry leaf appearance is used as one of the criteria. This is because it gives an idea of the 

standard of the manufacture. But a tea sample is mainly judged from its liquor charac~er­

istics. We note here that the appearance of the dry black tea particles varies according to 

the method of cultivation, manufacturing methods and the skill shown in both. The liquor 

brewed from the particles or samples varies in taste according to manufacturing method, 

particle grade, original planting materials and the environmental factors, including the 

time of year (Baruah, 1992). The work carried out at the Tocklai Experimental Station 

since early twenties shows that the tea liquor can be described adequately from its liquor 

characteristics. These are: color, strength, brightness, briskness, ftavor and quality. A 

study of these characteristicsshows that they offer little hope of being translated, at their 

face value, into quantitative definitions (Harder, 1956; Trick et aI., 1967; Baruah, 1992). 

Color and brightness have the usual meanings. Lightly fermented tea will tend to be 

greener, while the liquor of more heavily fermented black tea will be red. The way the tea 

is fired will have an influence on the liquor's brightness. Lightly fired tea will be compar­

atively brighter or clearer. Appreciating the beautiful color of tea is intimately connected 
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to experiencing its wonderful flavor. Flavor is the most important factor in determining 

the tea quality, and especially the quality of orthodox tea produced in Darjeeling ~nd 

Dooars regions of India. The market price of orthodox tea is based on its flavor. The 

term flavor involves both taste (nonvolatile compounds) and aroma (volatile compou~ds). 
, 

Aroma is considered to be the most important factor contributing to the quality of tea. 

Very complicated mixture of volatile compounds, such as terpenoids, alcohols, carbonyl 

compounds, etc., contributes to the characteristic tea aromas. Yamanishi (1995) makes a 

detailed study on the flavor of tea. 

The degree of briskness has not yet been estimated chemically. It is a sort of astrin­

gency. The term 'quality' is rather ambiguous attribute and conveys different meanip.gs 

to different persons. Weight and Gilchrist (1961) have described quality as a 'dulcet 

freshness', and used various analogies to describe the term more clearly. In the widest 

sense, we may say that ,the quality describes the appeal to the palate as a whole. But in 

a restricted sense it is described as a liquor characteristic recognizable by a Tea Taster. 

The definition of quality may be differing, but it is a fact that the concept of overall 

quality alters with the kind of tea and its place of cultivation. It appears that the tea 

trade, which is accustomed to deal with teas from different countries and regions, looks 

for certain specific character in tea from a particular region. Absence of the regional 

characters reduces the value of teas. 

1.3.2 The Biochemical Quality Parameters in Tea 

The characteristic taste of tea is made up of a balanced mixture of astringency, bitterness, 

bothery taste and slight sweetness. Principal contributors of astringency and bitterness 

are catechines and caffeine. We note that catechines are phenolic compounds that occur 

in plants naturally. One of these, polyphenol oxidase, is responsible for turning freshly 

picked tea leaves black. On the other hand, caffeine is an alkaloid, which is nitrogen 

containing compound. The alkaloids taste bitter. In the tea brew, part of the caffeine 

complex with f1avanols and play an important role in the tea taste, with contributions to 

briskness, mouthfeel, and thickness. 
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Difrer~nt types of flavanols constitute a group, all of which occur naturally in plants. 

In the manufacturing process of black tea, some of the catechines are changed to the 

two biochemical quality parameters, which are said to be the most important quality 

parameters in tea. These are theaHavins (TF) and thearubigins (TR). Roberts (1950), 

who originated tl1ese terms, considered that the TR are as important to the Havor and 

quality of tea as are TF. TR is responsible for body, richness, and fullness of the tea 

brew. TF-imparts the mouth sensations of briskness, freshness, and aliveness. Recently, 

a study of Tea Research Institute of China reported on the inHuence of catechines and 

TF on the astringent taste of black tea brew. The study included tea:samples from 

Darjeeling, Assam, China and Kenya. TF produces a yellowish or golden color in black 

teas. TR is actually the red or brown pigment in tea leaves that are responsible for the 

color of the tea. Brown pigments occur in the Indian teas and the redpigments occur 

in Chinese teas. Generally, for CTC tea samples, apart from TF and TR, the other 

biochemical parameters such as Caffeine (C), Water Soluble Solids (WSS), Total Liquor 

Color (TLC), Ash content, etc., are also measured. We note that all these biochemical 

quality parameters are measurable with high degree of accuracy using High-Performance 

Liquid Chromatography (HPLC) machine. 

1.4 The Tea Tasting 

. The professional Tea Tasters in the world tea trade playa great role. The Tea Tas~ers 

play an important role in the quality assessment of tea. A Taster tastes the infused teas 

and describes each sample in terms of 'strength', 'quality', and 'overall value/quality'. 

The overall quality score is given considering all the tea liquor characters together. The 

Tasters' evaluation of tea samples is called the organoleptic evaluation or the sensory 

evaluation. The Tasters also indicate the cash valuation of tea. The prices of different 

lots of tea in the auction center!i are guided by the organoleptic evaluations made by the 

Tasters. We note that the 'cash valuation' of tea samples evaluated by the Tasters may 

not be the eventual seIling price. 
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While assessing the valuation of tea samples, the Tea Tasters take into consideration 

mainly the liquor characteristics, such as their color, strength, brightness, briskness, flavor, 

quality, resulting from the infused tea. The Tasters assess tea by their sensory methods: 

eye (sight), tongue (taste), nose (smell). The quality perceived by the eye and the tongue 

are collectively called the black tea quality parameters (Owuor, 1995). 

1.5 Objective and Organization of the Problem 

As discussed in the introductory part, the valuation of tea mainly depends on quality. 

There are several quality attributes, which collectively determine the overall quality. This 

overall quality generally guides the auction market. The quality attributes in tea are due 

to several biochemical parameters. By this we mean that different biochemical quality 

parameters present in a particular type of tea (produced in a particular region) give 

some idea about the strength, color, brightness, etc., of the tea. Obviously, these quality 

attributes are not directly measurable. This is a big problem, and the chemists in different 

research stations of the world working on tea, have been struggling for a long time with 

the problem of chemical evaluation of tea quality. The advances made in the field of tea 

biochemistry since the last world war seems to be no way nearer to this goal. 

That is why, a big importance is given to the tea tasting aspects. In the world tea 

trade, the assessment of quality for different regional teas basically depends on the sensory 

or organoleptic evaluations made by the professional Tea Tasters. For a given set of tea 

samples, a panel of Tasters may broadly agree on the merits of the samples, but there is 

bound to be some difference of opinion among them in details. This is obvious since the 

Tasters are human beings, and can not remain aloof from extraneous influences. In many 

experiments, it has been observed that the Tasters' choices vary widely even for the same 

quality cup of tea. Market conditions in general and the requirements of the particular 

buyer of blender whose needs a Taster serves have profound influence on the judgeIllent 

of a taster. Another important aspect is the absence of a fixed standard of reference for 

the Taster to compare the teas. As we discussed earlier, the quality varies over regions 
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and also over the storage periods. In fact inthe auction center, the tea lots lose in price if 

they remain unsold even for 3 to 4 days only. For these reasons, a Taster is compelled to 

adopt comparative standard. 

From the above discussions, it is clear that while assessing value/quality of a tea, 

apart from the inherent overall quality (natural quality or true quality), the Tasters keep 

in mind the market demand structure for particular brand of tea. This comes from the 

consumer's attitudes towards different regional kinds of teas. In fact, the market demand 

structure has profound influence on the Taster's judgement. Thus we can not expect 

that the Taster's choice would only reflect the true inherent quality of a particular tea 

sample. Reliability of Taster's choice may be questioned on these grounds. Even in case 

of laboratory experiments, intended to study some tea clones of same region or different 

regions, the Tasters' scores vary significantly from one to another. The possibility of 

Taster's effort to promote some particular clones (may be of some particular region aiso) 

can not be denied. 

It is important to study the subjectivity of Taster's choice in assessing the quality of 

tea: We may search for different methodologies to study the error associated with the 

Taster's scores. But if for a given set of samples only one Taster evaluates the teas in 

terms of different quality attributes, we have no option but to opt for this score only. We 

must have repeated observations or choices made on each sample to study if there is any 

variation due to Tasters or due to repeated observations. Two different situations may 

arise. First, a single Taster may assess the quality of a particular tea sample on different 

occasions. The situation may be that, for a particular sample, different cups are prepared 

and the same Taster evaluates each of the cups. We note here that if such repeated 

observations are made on different days, there will be some variations in quality due to 

storage effects. Again if he assesses the different cups of the same sample on the s4me 

date, he may not remain totally immune from the impact of the first cup while assessing 

the second cup, and so on. Hence, his evaluations of different cups may not be completely 

independent. Thus, considering the repeated choices made by single taster, we may not 

be able to assess the true quality given the sample set. 
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The second approach is that, we may consider a panel of Tasters, who may assess the 

same set of samples and give scores on each sample independently. This makes sense. 

Because, in this case we may overcome the problems discussed above. Also we may study 

the individual variations due to different Tasters. We may think of a possible model t~at 

would give us idea about the true inherent quality (or qualities) for the given set of tea 

samples after eliminating the bias due to Tasters. It may be possible to assess the extent 

of bias due to individual Taster. Any way, question may arise on the cost effectiveness of 

considering a panel of Tasters. But if the industry intends to depend on the Taster's choice 

for auction pricing, they may always make a choice among the Tasters. To rationalize the 

whole system of quality assessment, experiments may be conducted for a reasonable length 

of time to study the error associated with different Tasters. The particular Taster with 

consistently minimum error of assessment may be the ultimate choice for the industry. 

From the introductory discussions we may legitimately say that there are two aspects 

in the problem of tea quality assessment. One aspect is obviously the tea tasting, which 

is the sensory or organoleptic evaluation of tea quality attributes. The other aspect is the 

biochemical information. The question is whether we can say something about the true or 

inherent quality (in overall sense) of tea only on the basis of biochemical information'! At 

the present stage of knowledge it seems impossible. Again, can we say something about 

the quality of a given set of tea samples on the basis of sensory evaluations'? The Tasters' 

evaluations explicitly involve the consumers' attitude apart from the actual quality of tea. 

If a panel of Tasters evaluate the samples, then it may give some idea about the actual 

quality of the given tea, after eliminating the relative bias due to Tasters. 

It is clear from section 1.2, that, the quality attributes (evaluated by the Taster) are 

nothing but the reflections of different biochemical quality parameters. We may say that 

the quality attributes are the effects of some combinations of biochemical informat~on. 

Thus we may think of relating the sensory evaluations with the biochemical quality pa­

rameters, and study how the different chemical parameters are related to the Taster's 

evaluations. If we assume some functional relationship between the sensory evaluations 

and the biochemical information for a particular set of tea samples, we may possibly write 
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the relationship i'n the following way: 

True Quality = Taster's Assessment + Error due to Taster = Quality Explained by 

Biochemical Parameters + Random Error. 

Let us explicitly state that there may be various ways to approach the problem, we 

, in our study limit the scope to only statistical investigations. There are a number of 

published attempts to correlate in a quantitative manner, the chemistry of tea with the 

Taster's descriptions and cash valuations. Attempts have been made by researchers to 

explain quality and various liquor characteristics of manufactured teas in terms of chemical 

composition and biochemical behavior of the unprocessed tea shoots and manufactured 

teas. To name a few: Harrison and Bose (1942), Roberts (1944), Ramaswamy (1903), 

Wood and Roberts (1904), Bhatia and Ullah (1905), Biswas and Biswas (1971), among 

many others. 

Roberts (1958) found that TF and TR were largely responsible for color and strength, 

and that TF were factors in quality and briskness. He also found that highest cash 

values were given to teas with high TF levels, so long as the TR content was also at 

satisfactorily high level. Wood and Roberts (1964) observed that Taster's scores for color 

and strength were related to the TF and TR contents of the manufactured teas. T~ey 

also ohserved that scores for briskness and quality depend to some extent on TF, with 

Caffeine contributing to briskness. According to their observation, cash valuation would 

be more closely related to TF than to TR. Wickremasinghe and Swain (1905) discussed 

the relationship between the quantities of phenolic compounds and commercial valuation, 

and the contributions of the volatile compounds to flavor of Ceylon tea. They observed 

that the quality of black tea might be predicted from an estimation of the polyphenol 

content before processing the tea shoots because the amount of polyphenols in black tea 

depends 011 the amount originally present in the unprocessed tea shoots. All these studies 

were usually made on -the basis of total correlation between the individual biochemical 

constituents and the Taster's scores on the individual liquor characteristics or on the cash 

valuation of the manufactured teas. A much known study on the statistical associatioh of 

liquor characteristics with the cash valuation of N-E India black tea is due to Biswas and 
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Diswas (1971, I and II). They used multiple regression technique to determine whether 

~hc term 'quality' of the N-E Indian plains black tea has its own single characteristic as 

recognizable by Tasters or if it is the integration of some of the other important liquor 

characteristics. They tried to determine the influence of different quality characteristics on 

the cash valuation of tea. According to their observation, the N-E Indian plain black tea 

was found to depend mainly on the briskness, quality being increased with an increase in 

briskness. Cash valuations of CTC as well as Orthodox teas, in general, depended mainly 

on the quality and/or briskness. They related the biochemical quality parameters with 

individual Taster's choice and studied the significance of different biochemical parameters. 

We note here that they did not consider the inherent subjectivity of Taster's choice. We 

were largely motivated to initiate statistical study on the quality aspects of 

tea after going through the Biswas' work. It is surprising to observe that after 

1971, no serious attempt has been made (so far as our knowledge goes) to study 

the quality aspects in tea from statistical point of view. Not only the statistical 

approach, no other methodological approach has yet been investigated by the 

researchers to address this interesting problem of quality assessment. Qi;lly 

very recently, we have been informed that some studies have been initiated in 

the Sizukaya Tea Experimental Station, Japan, to address the problem of tea 

quality assessment using "Pattern Recognition" technique. 

However, several statistical studies have been made to understand the nature of sensory 

panel data specific to the food industry. The studies of Brockhoff et al. (1994) and Naes 

(1990) worth mentioning among others. 

1.6 Data Description 

In this section we discuss the data sets on which the whole study is based. There are 

nine sets of data, eight of which were provided by the Tea Research Association of India 

(TRA) and one data set was provided by the Tata Tea Ltd. (India). 

Data Set 1 Four sets of CTC samples were collected from the Tocklai garden in 
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Tli2t 

four different years. All these samples were collected in the autumn flush period. The 

manufacturing/processing systems are same for all these samples and the biochemical and 

sensory analysis were conducted in the biochemistry and tea tasting laboratories of the 

Tocklai station. The samples are of sizes 25, 23, 25 and 21. The biochemical quality 

parameters are TF, TR, brightness (B), total liquor colour (TLC) and total soluble solids 

(TSS). The sensory analysis was done by the Taster of the experimental station and the 

samples evaluated in terms of quality and value on a O-tO point scale. The basic statistics 

for these four data sets are presented in Table 1.1. 

Data Set 2: Under normal CTC processing system, 93 tea samples were studied in the 

Tocklai Station. An experienced Taster evaluated the tea samples in terms of 'strength' 

(S), 'quality' (Q), and 'valuation' (V). The scores were given on 0-10 point scale. We 

note here t.hat by 'valuation ' we mean the overall quality here. The tea samples were 

plucked from the experimental garden in a particular flush period. It may be noted that 

in tea plantation there are four flush periods, namely, first flush, second flush, rain flush, 

and autumn flush. The quality of tea may vary over the flush periods. The biochemical 

parameters measured are TF, TR, B, TLC, and Total Soluble Solids (TSS). Some basic 

statistics for the chemical parameters and quality attributes are given in Table 2.1 and 

2.2. 

Data Set 3 This data set was provided by the Tata Tea Ltd. (India). Fifty black 

CTC tea samples were collected from the Achbam Tea Estate of Assam (under Tata Tea 

Ltd.). The aliquots of each of these drier-mouth were tasted by an experienced Taster. 

The Taster evaluated the samples in terms of overall quality (V) and the scores were given 

on 0-5 point scale. From the data we observe that there are only three distinct scores, 

viz. 2.6, 3.00 and 3.40, assigned to the samples. 

The biochemical analysis was done in the R&D center of Tata Tea Ltd., at Teok, 

Assam. The chemical parameters measured are TF, TR, TLC, and brightness (B). Some 

basic statistics for this data are pre~ented in Table3.1. 

Data Set 1 This set of data contains 23 CTC samples, for which the biochemical 
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quality parameters measured are TF, TR, caffeine (C), crude fiber (CF) and Ash content 

(A). The sensory evaluation is made by a single Taster in terms of overall quality. The 

study was conducted in the experimental garden of Tocklai Experimental Station in the 

year 1997 as a part of the regular quality assessment study. The basic statistics for this 

data set are presented in Table 4.1 and Table 4.2. The Taster's scores (TS) are given on 

0-10 point scale. 

Data Set 5 This sensory panel data is a part of the CTC manufacturing method 

development experiment, conducted in the year 1998 in the Tocklai Experimental Station. 

A panel of three Tasters evaluated the set of 14 samples in terms of S, Q and V. All the 

tasters scored the samples on a 0-10 point scale. Each Tasters made ten repeats for each 

sample, though only the mean of these repeats are provided to us. For certain reasons, 

the sensory panel data can not be presented here and only the basic fftatistics on these 

scores are given below. We can not specify the brand name of the samples also. The basic 

statistics are presented in Table 5.1. 

Data Set G : For a set of 16 Tocklai released CTC clones a panel of five Tasters 

evaluated the samples in terms of Sand Q in the year 1998. For each samples 10 repeats 

were lIIade by each Taster. However, the mean of these repeats for each sample by each 

Taster was provided to us for study. The samples represent different clones though the 

identities of the products are not known to us. The basic statistics on the sensory scores 

are presented in Table 6.1. 

Data Set 7: This data is based on a trial experimental conducted in Tocklai to study 

the effect of a detergent, called Sumatotal, on the quality of CTC tea produced in upper 

Assam condition. This liquid detergent is used for washing the fermenting Hoor and green 

leaf processing machinery. The preconditioned leaf was rolled to pass through the CTC 

machine and then the leafs were spread with a thickness of 1 inch on the cement floor clean 

hy Sumatotal liquid detergent to complete the fermentation. The processed tea samples 

were sent to a panel of four Tasters for sensory evaluation. The Tasters evaluated til{' 18 

tea samples in terms of strength and quality on 0-10 point scale. The Tasters were of the 
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opinion that there was no significant development in the cup quality due to the use of the 

liquid detergent. We are studying only the experimental samples as the control samples 

are not available. 

After processing the leafs using the detergent liquid, the samples were sent for the 

hioehernical analysis. The biochemical parameters measured were TF, TR, TLe, WSS, 

and e. Some basic statistics about the data are given iIi the Table 7.1 and Table 7.2. S 

and Q denote scores on strength and quality respectively for the four Tasters. 

Data Set 8: A new process of manufacture of eTe tea has been developed at Tocklai 

station by modifying the sequences of manufacturing steps (Pal, Paul and Das, 1999). In 

this direction experiments were carried out in different commercial factories in various 

agro-climet,ic regions and the results confirmed higher percentage of finer grades and leaf 

appearances as well as improvement in cup quality. As per the modified method, when 

the plucked shoots were withered, rolled, fermented and then taken to eTe machine and 

dried instead of fermenting after the eTe cut, the product showed marked improvement 

in the cup quality and other quality attributes. The eTe manufacturing process has 

thereafter been adopted by different commercial gardens of Doors and Assam regions and 

outstanding performances have been observed in terms of auction price realization. 

This data originates from the experimental results on the quality improvement of N-E 

India eTe tea by modifying the eTe processing system. The biochemical analysis and 

the sellsory evaluations were done at the Biochemistry Laboratory and the Tea Tasting 

Department of Tocklai. The tea leaves were collected from the experimental garden of 

Tocklni HS well as frolll different commercial gardens of Dooars and Assam regions. The 

~~xperilllclIl.s were aimed at modifying the eTe process to meet the market demand for 

higher percentages of Broken grades alld leaf appearances. 

Shoots plucked from the experimental garden were divided into two equal parts. One 

part, of withered leafs was preconditioned in Rotorvane and passed through eTe machine 

three times and allowed to ferment on the Hoor at a thickness of spread of 1.25 cm. The 

fermentation time was kept between 1-10 min. to 1-30 min. depending on the temperature 
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and humidity. After the completion of fermentation the leaf was sent for drying. This is 

the conventional way of CTC processing (control samples). The other part of the leafs 

was passed through the same Rotorvane and was allowed to ferment on the floor with a 

thickness of spread of 3.75 cm. For a period varying between 1-10 to 1-30 hours. The 

preconditioned and fermented leaf was then passed through CTC machine three times and 

sent to dryer. Detail discussion on manufacturing method and the chemical properties is 

available in Pal et a1. (2000). This is the experimental tea. The made tea samples were 

then drawn for different analysis. Nine control and experimental samples were considered 

for both biochemical and sensory evaluations. 

Sensory analysis was done by a panel of four experienced Tasters in terms of overall 

value (V) on 0-10 point scale. The basic statistics on the chemical and sensory data are 

presented in Table 8.1. 

DI\t.a Set 9 This data represents the measurements on five biochemical quality 

parameters and the sensory scores are given by a panel of three Tasters on valuation (V) on 

a 0-10 point scale. The samples represent 30 Tocklai released CTC clones. There are two 

Rets of' information collected in the years 1997 and 1998. The chemical quality parameters 

studied are TF, TR, C, TLC and crude fiber (CF). The details on manufacturing methods 

and the system of chemical measurements are available in the Annual Scientific Report 

19970fTRA. 

We note here that these CTC clones have different manufacturing/processing systems 

and lIaturally their chemical and quality characteristics vary. The clones are generally 

termed as CVl, CV2, etc. It is believed that the CV1 and CV2 are the best CTC clones 

among the 30 clones, in terms of quality and price realization. We have only one sarrwle 

of each clone studied for each year. That is why we do not present the basic statistics on 

these two sets of CTC clone data. There is no meaning of giving information on means 

etc. taking over all the clones as each clone represents a particular type of tea under the 
I 

CTC category. 
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1. 7 Methodology 

In this section we briefly introduce the methodologies used to study the quality aspects 

in tea. We explicitly state here that there may be various ways to approach the problem, 

we in our study limit the scope to only a few statistical investigations. 

Primarily our aim is to study how closely the biochemical information can be function­

ally related to Taster's choice. For this we have associated the biochemical parameters 

with the choice made by a single Taster. The multiple regression techniques (partial re­

gression analysis) have been applied to study the association on the basis of initial dll.ta 

diagnostics related to linearity etc. The performance of ridge regression technique and the 

robust technique like Minimum Absolute Deviation technique is compared with the ordi­

nary least square (OLS) regression. Also the scores on different quality attributes given 

by a single Taster are associated with the biochemical information jntroducing Multiple 

Response Regression model. 

The possible non-linearity in the data is studied separately using Box-Cox transforma­

tion model. The small sample estimation problem with the Box-Cox transformed linear, 

models have been studied on the basis of a tea quality assessment data. The pertor­

mance of non-linear least square estimation technique is compared with the maximum 

likelihood estimation (MLE) methods. A theoretical formulation of the Box-Cox type 

tmnsformation model with measurement error in the response variable is also presented. 

As n distinct approach to study the subjectivity of Taster's choices, we have obtained 

repeated observations on the quality assessment by taking more than one Taster on the 

same set of sample. Subjectivity in the sensory evaluation is studied introducing Qne­

way and twa-way variance components (VC) models with heteroscedastic formulation of 

variance-covariance matrix. The next step is to associate the sensory eVll.luations with 

the biochemical information after eliminating the bias due to Tasters. This is tried by 

developing regression models with repeated observations on the response variable. The 

random effects and mixed effects linear regression models are studied separately. 

A review of the up-ta-date literature on the studies made on different aspects of VC 
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models is presented in the second chapter. Special emphasis is given on the repeated mea­

surement models. A detailed account of linear and non-linear models is given. Different 

aspects of longitudinal <.lata analysis is discussed including approaches to data diagnos­

tics. The analysis of variance (ANOVA), multivariate analysis of variance (MANOVA), 

generalized MANOVA (GMANOVA) model and estimation of variance components are 

discllsse<.l. This includes a section on profile analysis also. The general linear model for 

longitudinal data analysis is discussed in detail. The maximum likelihood (ML) and re­

stricted maximum likelihood (REML) method of estimation are discussed along with the 

available algorithms f9r estimation. A detailed discussion on the testing aspects in general 

linear model is given. The review work is done keeping in line with the different repeated 

measurements models developed by us to study the quality aspects of tea. 

In the third chapter, the association of different chemical quality parameters (specffic 

to CTC tea) with a single Taster's scores on particular quality attribute is studied uslng 

regression techniques and the statistical significance of different chemical quality param­

eters in explaining the quality attribute(s) is observed. The multiple response regression 

model is applied to associate the biochemical quality parameters with a single Taster's 

choices on different quality attributes. The statistical aspects of measurement error with 

the response variable, when a single response is available, are discussed. 

The possible non-linearity in the tea quality assessment data is studied using Box-Cox 

transformation model in the fourth chapter. Different computational problems associated 

with tile Box-Cox models with small samples are discussed in detail. 

The fifth chapter explicitly deals with the statistical analysis of sensory panel data. 

The stntistical tcchniques useful to study the different possible variations in the sensory 

datn arc diAcussed in detail. The subjectivity of Tasters' choices is studied using one-way 

and two-way repeated measurement variance component models. Measurements made in­

dependcntly hy different Tasters on quality attribute constitute the repeated observations 

on the sensory scores. Using random and mixed effects models the error variances aSso­

ciated with difrerent Tasters' choices are estimated. The ANOVA and ML estimators of 

the heteroscedastjc VC models are obtained. The statistical properties of the estimators 
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arc studied. 

The one-way error component linear regression model with repeated observations on 

tile response variable Is the theme of sixth chapter. The aim is obviously to asso~iate 

the biochemical parameters with Tasters' scores after eliminating the bias associated with 

the sellsory choices. The statistical significance of the chemical parameters in explaining 

the quality attrilmte(s) along with the error variances associated with the Tasters' scores 

may be studied using heteroscedastic formulation of the variance-covariance matrix. The 

ML and REML estimates of regression coefficients and the variance components are ob­

tained employing a simple iterative algorithm. The statistical properties of the regression 

coefficients are also discussed. 

A generalization of the linear random effect model is done introducing dummy variable 

to study the variations due to groups. This formulation is done to support a 'quality 

improvement experiment' for eTe tea, conducted in the Tocklai Experimental Station of 

TRA. A controlled experiment was carried out to develop a particular brand of eTe tea 

with better quality. A detailed discussion on the experiment is presented with original 

data. The experimental samples showed better quality as compared to the control sample. 

The one-way error component regression model is appropriate specification when there 

is sufficient ground to believe that the tea samples under study are truly random samples 

representing a particular grade of tea and have the same intrinsic quality characterispc. 

However, in many situations, the quality characteristic may vary over samples. In such 

situations, apart from the variation due to Tasters, the sample specific effects should also 

be taken into consideration as an assignable source of variation. Keeping this aspect in 

view, we have discussed the two-way error component regression model in the seventh 

chapter. 

The last chapter includes some discussions on several possibilities of technical studies 

to understand the association of biochemical quality parameters in tea with the Tea 

Tasters' sensory choices. 
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Table 1.1 : Summary statistics for the Data Set I. 

Parameters Samples Mean SD Minimum Maximum 

Quality Sample = 25 5.48 1.89 2.00 8.00 

Sample = 23 5.83 1.70 4.00 8.00 
Sample = 25 5.72 1.51 4.00 8.00 
Sample = 21 4.78 1.40 2.00 8.00 

Value Sample = 25 7.84 0.85 6.00 9.00 

Sample = 23 8.00 0.80 7.00 9.00 
Sample = 25 1.88 0.78 7.00 9.00 
Sample = 21 7.44 0.71 6.00 9.00 

TF Sample = 25 0.80 0.06 0.67 0.93 
Sample = 23 0.80 0.06 0.72 0.94 
Sample = 25 0.82 0.05 0.73 0.91 
Sample = 21 0.83 0.09 0.66 0.94 

TR Sample = 25 9.88 1.49 7.06 12.02 

Sample = 23 9.97 0.94 7.87 11.39 
Sample = 25 9.21 0.59 8.06 10.61 
Sample = 21 10.04 0.72 8.94 11.12 

B Sample = 25 17.88 2.62 15.4 7 23.36 
Sample = 23 17.51 1.21 15.95 19.80 
Sample = 25 17.13 1.36 15.22 20.12 
Sample = 21 '19.38 1.01 17.69 20.77 

TLC Sample = 25 3.08 0.29 2.75 3.90 

Sample = 23 2.87 0.22 2.34 3.30 
Sample = 25 2.95 0.18 2.55 3.29 
Sample = 21 3.04 0.24 2.34 3.30 

I-

TSS Sample = 25 40.03 0.35 38.90 40.70 
Sample = 23 39.63 0.46 38.96 40.30 
Sample = 25 39.55 2.02 29.60 40.20 
Sample = 21 40.19 0.45 39.49 41.00 



Table 2.1 : Summary statistics for Data Set 2. 

Parameters Mean SD Ranga Correlation Metrix 
V 2.90 0.23 2.60 - 3.40 1 
TF 0.84 0.13 0.52 - 1.09 0.49 1 
TR 12.32 1.78 8.07-16.13 0.53 0.57 1 

TLC 4.33 0.62 3.03 - 5.85 0.56 0.83 0.54 I 
B 15.97 1.51 13.61 - 19.67 -0.09 0.35 -0.23 -0.17 1 

Table 3.1 : Summary statistics for Data Set 3. 

Parameters Mean SD Minimum Maximum 

S 5.46 1.67 2.00 8.00 

Q 4.76 1.72 2.00 8.00 

V 7.80 0.81 6.00 8.00 

TF 0.81 0.06 0.66 0.94 

TR 9.79 1.04 7.06 12.02 

B 18.04 1.95 15.22 23.36 

TLC 2.97 0.22 2.34 3.90 

TSS 39.82 1.17 29.60 41.00 
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Table 3.2 : Correlation matrix for the Data Set 3. 

S I 
Q 0.73 I 
V 0.82 0.94 I 

TF 0.19 0.29 0.26 I 
TR 0.32 0.38 0.35 0.41 I 
0 -0.08 -0.07 -0.08 0.55 0.32 I 

TLC -0.12 -0.04 -0.009 0.22 -0.08 0.32 I 
TSS -0.10 -0.02 -0.02 0.19 0.13 0.29 0.\5 \ 

Table 4.:., Summary statistics for Data Set 4. 

Variable Mean S.D. Minimum Maximum 

TS 7.10 0.9472 5.50 9.20 

TF 1.5339 0.2409 1.05 2.06 

TR 12.45 1.0789 10.70 14062 

CAF 3.6591 0.2769 2.99 4.06 

CF 9.7948 0.7503 8.60 11.00 

A 6.4913 0.2802 6.00 6.99 
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Table 4.2 : Correlation Matrix for Data Set 4 

V 1 

TF 0.3765 1 

TR 0.2205 0.3742 1 

CAF -0.1104 0.6978 -0.5929 1 

CF -0.6233 -0.4198 -0.1541 0.1553 1 

A -0.3316 -0.1032 -0.2971 0.3312 0.2342 1 

Table 5.1 : Summary statistics for Data Set 5. 

Attributes Taster 1 Taster 2 Taster 3 
Mean Strength 5.09 4.36 5.66 

Quality 6.50 6.34 6.33 
Value 7.96 7.55 7.00 

SO Strength 0.26 0.36 0.79 
Quality 0.78 0.63 0.63 
Value 0.31 0.77 0.96 

Minimum Strength 4.75 3.85 4.00 
Quality 5.28 5.43 5.00 
Value 7.57 6.00 6.00 

Maximum Strength 5.75 5.05 6.25 
Quality 7.75 7.25 7.25 
Value 8.42 9.00 9.00 

Table 6.1 : Summary statistics for Data Set 6. 

Attribute Taster 1 Taster 2 Taster 3 Taster 4 Taster 5 
Mean Strength 7.37 5.43 7.09 6.35 7.38 

Quality 7.36 5.38 7.31 4.22 7.4.1 
SO Strength 0.33 0.74 0.27 0.88 0.43 

Quality 0.35 0.68 0.43 0.34 0.44 
Minimum Strength 6.75 4.50 6.50 3.50 6.50 

Quality 6.75 4.50 6.50 6.50 6.50 
Maximum Strength 8.00 7.25 7.50 7.28 8.14 

Quality 8.25 7.00 8.00 8.00 8.00 
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Table 7.1 Summary statistics for the Data Set 7. 

, 

Mean SO Minimum Maximum 

S 1 6.00 1.37 4 8 

\ 

S2 7.33 1.19 6 10 

S3 6.33 1.97 4 10 

S4 8A4 1.10 6 10 

Ql 7.00 0.69 6 8 

Q2 7.78 0.65 7 9 

Q3 7.19 0.96 6 9 

Q4 8.28 0.57 7 9 

TF 1.51 0.23 1.14 2.02 

TR, 12.78 1.01 10.90 14.08 

WSS 45.02 0.86 43.20 46.58 

TLC 5.53 0.28 5.05 5.98 

C 4.28 OA2 3.67 5.37 

Table 7.2 : Correlation Matrix for chemical parameters for Data Set 7. 

TF TR WSS TC C 
TF 1 
TR -0.48 1 

WSS OAI -0.19 1 
TLC 0.23 -0.35 OAI 1 

C 0.21 -0.04 0.31 0.37 1 



Table 8.1 : Summary statistics for Data Set 8. 

Mean SO Minimum Maximum 
Exp. Cont. Exp. Cont. Exp. Cont. Exp. Cont. 

VI 7.67 6.44 0.94 1.07 6 4 9 8 
V2 8.44 6.89 0.50 0.74 8 6 9 8 
V3 7.89 6.78 0.74 1.31 7 4 9 8 
V4 8.89 6.67 0.74 0.95 8 5 10 8 
TF 1.66 1.45 0.24 0.54 1.17 1.14 2.02 1.60 
TR 11.83 13.24 0.76 0.13 10.90 13.04 13.72 14.08 

TLC 5.76 5.30 0.14 0.30 5.45 5.05 5.98 5.51 
WSS 45.51 44.53 0.72 0.16 44.65 43.21 46.58 45.55 

C 4.49 4.26 0.63 0.78 3.75 3.76 5.37 4.66 
MO 3.43 3.46 0.32 0.54 2.97 2.45 .98 4.10 



CHAPTER- 2 

A REVIEW OF LITERATURE ON VARIANCE 
COMPONENT MODELS FOR REPEATED 

MEASUREMENTS 

2.1 A Brief History of Developments in Variance Components 

Models 

Schcffe (1956) and Anderson (1978, pp 11-25) gave a detailed account of the early history 

(1861-1D49) of development of models and methods of estimating variance compone'1ts. 

From their survey it appears that Legendre (1806) and Gauss (1809) implicitly dealt with 

fixed and random effects aspects of linear models in the field of astronomy. 

The first known formulation of random effects model seems to that of Airy (1861), 

who simplicity used a variance Component (VC) model for one-way layout. Airy's study 

was on telescopic observations with respected measurements. It is note worthy that this 

earliest known use of VC model included unbalanced data structure. Airy assumed the 

following structure for the lh observation on the ith night. 

(2.1) 

i = 1,2, ... , a 

j=1,2, ... ,ni 

where J-L is the true value, and the {ad and {eii} are random effects. 'a/ was termed as 

'constant error'. The {ei} for fixed Ii' was explained as the errors about conditional mean 

J-L -I- ai' For the ith night, he proposed the ,following estimate of error variarice 

a;i = E(YiJ - fJio)2/(ni - 1) 
j 

27 



and the average of the square roots of the values was obtained as 

&2 = [~)&;1)1/2/ar 

The second user of a random effect model appears to be Chauvenet (1863). Coming 

into nineties, the major fundamental ideas on VCs are due to R.A. Fisher. He started 

with the basic paper is the theory of quantitative genetics (1918) where Fisher made 

inceptive use of the terms 'variance' and "analysis of variance". Following the genet.ics 

paper, Fisher's book (1925, Sec. 40) made a major contribution to the VC models. The 

basic approach of equating sum of squares (8S) from analysis of variance (ANOVA) to 

their expected values, and thereby obtaining a set of equations that are linear is VC's to 

be estimat.ed, is due to Fisher. 

Fisher did not use liner models to explain the ANOVA of designed experiments. In 

COIlt.rlUit fJ.C. TippC't (1931) not only classified the ANOVA method of estimating VC's 

from bnlanced data but also extended it to the two-way crossed classification, without 

illteraction random model. Although Tippet considered an optimal design, the initial 

work 011 optimal sampling design through VC models (including higher order models) 

is due to Yates and Zacopany (1935). We note that at the early period of research on 

optimal sampling design, Cochran (1939) made substantial contribution. 

Since linear models have now-a-days become an integral part of describing VC's, it 

is interesting to note that this had become widely accepted by 1939 : e.g. Neyman et 

al. (1935), Welch (1936), Deniels (1939). The specifications of the models were very 

much up-to-date in some cases: Welch utilized properties of x2-variates, Jackson (1939) 

assumed normality for random effects and error terms. The work of Deniels was significant 

as sampling variance of the VC estimates were derived for balanced date, up to the 

complexity of a 3 way crossed classification random effects model. 

Cochran is the first statistician to discuss VC models for unbalanced data. Actually 

Cochran was not specifically concerned with the estimation of VC's, Winsor and Clarke 

(1940) actually did it for unbalanced data. The extension of general ANOVA method 

camee after 1940. Ganguly (1941) applied it to k-way nested classification random model 
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with interaction. In fact, Ganguly and Crumpt draw attention to a deficiency of ~he 

ANOVA method, namely that, depending on data it may produce negative estimates of 

VC. The aspects of negative estimates of variance components are discussed in details by 

Searle (1972). Crumpt also derived the sampling variance of the class of estimators for 

I-way and 2-way crossed models. Wahl (1941) considered confidence intervals for ratios 

of VCs. 

The year from 1950 to 1969 brought major developments in the methods of estimating 

VCs, starting with important extensions of the methodology and ending with establish­

ment of new methods based on maximum likelihood (ML) and minimum norm criteria. 

The first to mention is the Anderson-Bancraft's (1952) book which contains detail discus­

sion on VCs. The book deals thoroughly with estimation of VCs from both balanced and 

unbalanced data for mixed and random models. This book is a milestone is the history 

of VC estimation. Details on the ML estimation of VCs would be discussed in separate 

section. 

A landmark paper dealing with the difficult problem of how to use unbalanced data 

in VC models in due to Handerson (1953). This paper classified three different ways of 

IIsing unhalanced data, from random and mixed models. All these three are applications 

of ANOVA method of equation SS to expected values. These three methods have came 

to be known as IIanderson's Method I, II and III. 

Keeping in view the question of optimality, several papers between 1956 to 1968 devel­

oped formulae for salnpling variances of ANOVA estimates and of Handerson's method 

cst.imat.es in particular. The unbiasedness properties of different statistics for ANOVA 

cst.imat.('M were first. developed for halanced data by Graybill and Wortham (1956), and 

lill' unlJalallced data hy Scheffe (19G9). 

Whatever computability considerations on the part of different researches were there, 

the weaknesses of A NOVA estimators remained: negativity, lack of distributional proper­

ties and no useful way to compa.re different applications of ANOVA methodology. In light 

of that, the maximum likelihood (ML) estimation duly came to be considered as an better 

aIt,ernative. The initial effort in this line appears to lie with Crumpt (1947, 1951), who 
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dcn.1t wit.h I-way c1assilicat.ion. Herbech (1959) derived explicit ML estimators for certain 

hnlanc(xl dala models and also studied the non-negativity of VCs. The landmark paper 

for ML estimation in general is due to Hartley and Rao (1967), wherein a methodology 

was developed for a very wide class of models. But for few years there was an impediment 

to wiele spread use of ML method due to computatio,nal complexities. Miller (1973, 1977) 

also worked on the ML estimation for balanced as well as unbalanced data. He showed 

that the ML equations for 2-way random model can be written in comparatively simple 

look, but these can not be solved analytically. He also studied the asymptotic properties 

of the estimators. 

The study on restricted maximum likelihood estimation (REML) was initiated by 

W.A. Thompson (1962). He introduced the idea of maximizing that part of the likelihood 

which in invariant to the location parameters (the fixed effects) of the model. REML esti­

mation for unbalanced data is due to Patterson and Thompson (1971). There is no denial 

of the great importance of Harville's (1977) effort to study the computational difficult.ies 

of ML as well as REML methods of estimation. This study reduced the computational 

confusions in variance components estimation. 

The search for best linear unbiased estimated (BLUE) of VCs begun with Tounsend 

(1968), Harville (1969), Searle and Tounsend (1971). This is nothing but finding the ll1in­

imum variance quadratic unbiased estimators of VCs, which is popul~rly known as M~ni­

mum Norm Estimation. The initial papers were quickly followed by La Motte's (1970, 71, 

73a,bj 1976) work on minimum variallce estimation and C.R.Rao's (1970, 1971a,bj 1972) 

study on minimum norm quadratic unbiased estimation (MINQUE). These estimators 

have, in some sense, a minimized generalized variance, derived from the minimization of 

Euclidean norm, which under normality, equates to a minimum variance property. 
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The MINQUE estimation demands no distributional assumptions. Also it does not 

involve any iteration procedure, just the solution of linear equations. The estimators are 

unbiaseu. We note that any MINQUE estimate is same as first round iterate from REML, 

\Jsing a priori value needed for MINQUE as the starting value for REML iteration. The 

import.nnce of these connections between MINQUE and REML is discussed in the book 

of Rao nnd Kleffe (1988). 

Ln~l.ly, we diHeuss in brief the developments made in the field of VC estimation through 

Bnyesinn approach. Some pioneering details is this line are due to Tiao and Tan (1965, 

1966), Tiao and Box (1967), Hill (1965, 1967, 1970) and Culver (1971). Hill dealt with 

one-way classified data in balanced structure. Appropriate class of prior distribution on 

the components and/or their ratios is considered by Culver. There are only a few papers 

on Bayesian approach for unbalanced mouels. To cite a few works in our knowledge -

Khuri and Sahai (1985), Gnot and Kleffe (1983), among others. 

Co!ning on to the computational aspects, we note that much of the earlier estimation 

methods require approximation of integrals. The evaluatioQ of very high dimensional inte­

grals can be a computational problem (Smith, 1983). But there are mirrierous alternative 

methods available now-a-days for computing VC through Bayesian approach. Approxi­

mation of integrals, particularly arising from Bayesian hierarchical modeling, are treated 

in details by Tierney and Kadane (1986, 1989). Recent techniques include interesting 

work on' application of Gibb's sampling (Gelfand and Smith 1990, Gelfand et. al., 1990) 

which can provide methods of obtaining estima,tes without doing the integration that the 

formal derivations dictate. 

2.2 Linear Variance Component Models 

Much of the early story of VC models revolves around the one-way classification which 

may be sllmmarized as 

(2.2) 

with ~ = 1 I 2, ... a 
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Var(ai) = 0
2

, Var(Ci]) = o~, all covariances zero 

J = 1,2, ... , n ,for balanced data 

= 1,2, ... ni, for unbalanced data. 

(2.2) may be written in matrix notation as 

(2.3) 

where E\ denotes the number of classes and n denotes the number of observations. Searle 

Illlcl IInnderson (1979) and Anderson (1984) use extension of this random model. The 

diHpersion matrices of V, a and care -
'" '" '" 

In some situation, adopting Cov (ai, aD = p (72) for i =1= if is reasonable. Then the general 

form is 

The traditional fixed effects linear model may be written as 

v=X(J+e (2.4) 

where y is (N x 1) data vector, (J is (k x 1) vector of fixed parameters occurring in 

the data, X is known (n x k) coeHicient matrix and e is an error vector defined as 

e = V - E(y) = y - X (J and thus has E(e) = O. Usually the dispersion matrix is 

Var(e) = (721 N. X is often matrix of zero and ones in 'no-regression' situation in wijich 

case it is known as 'incidence matrix'. But X may also include columns of regressors. To 

take care of all possibilities, X is called model matrix. 

In VC models the random effects may be presented as Z U, where U is the vector 

of random effects that occur in the data and Z is the corresponding matrix, usually an 
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incidence matrix. Moreover, U can be partitioned into sub vectors. Incorporating the 

random component U into (2.3.4). We get a general from of model equation for a mixed 

model as 

y=X{:J+ZU+e (2.5) 

where (:J and U represent for fixed and random effects respectively. We have E(y) = X (:J 

and E(y I U) = X (:J + Z U. As mentioned above, partitioning Z and U, the mixed model 

may be represented as 
q 

y'= XfJ + L Zi Ui + e (2.6) 
i=:::1 

q 

Then we have, V = V ar(y) + Z D Z' + a2 IN = L a; Z, Z: + a2 IN. A useful extension 
i=:::1 

is to consider Uo == e, Zo = IN and a~ = a;, and so have 
q q 

y = X (:J + L Zi Uj and V = L Zj Z: a;. 
,=:::0 i=:::O 

The ahove formulations are due to Hartly and Rao (1967), who used these to great 

advlllltnge for unbalanced data. Usually the following assumptions are made on the above 

fo 1'1111 tI nti 0 1\ 

Var(e) = a'l IN, Oov(Ui , U~) = 0 V if j and Oov(U, e') = o. 

The zero covariances provides no opportunity to deal with situations where components 

of covariance would be appropriate. nut many researchers have studied the components 

of covariances. The possible formulation in this line is outlined below: 

i) Suppose Uit be an element of Ui for t = 1,2, ... qi' StlPpose covariances between all 

pairs of clements of Uj are to be non-zero but covariances between different U's are 

to be zero; then 

Oov (Uit, Uit') = di , tt' and Oov (Uit, Uilt) '= 0 V i i= i'. 

Hence Var (Ui ) = Dii and Var(U) 2: D ii • For example, in the intra-class correlation 
i 

pattern discussed earlier, we have Dii = a; [(1 - Pi) Iq, + Pi Jqi], which has dj,tt = a; 
and di,tt l = Pi a;. 
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ii) Another possibility is the covariance between effects of different random factors. In 

this situation one may assume, 

so thatCov (V, U~) = Dii' = E E dii'.tt' 
"'. "'.' t t' 

and Var(U) = D = E D~i' 
ii' 

One possibility for Dii is D.i = a[ [(1 - Pii) lqi + P,i Jqi] and Dii' = Pii' ai ai' Jqjxqj V i =l­

i', so that Var(uit) = a; V t = 1,2, ... q, 

For error terms it is generally assumed that covariances between all pairs of error terms 

are zero. Also that all error terms have same variance a;. But one may assume some 

specific covariance structure for error component also. The situation of 'equi-correlated 

errors' may be considered. With diagonal elements a; and off-diagonal elements pa, ak 

in the variance-covaria.nce matrix V, we may write V = s[(1 - p)Ja + P Jajs, where 

s = diag{al' a2'" aa). Such a structure may be considered when all measurements are 

made at ~bout the same time. Such situation are encountered in 'split-plot' type set-up. 

Again when the measurements on an individual subject have been made in sequence over 

Lillle, the errors may be correlated. A widely used time series model is the autoregressive 

procesH 

Cj = P ej-l -I- Uj , . for j > 2 

where P is t.he regression parameter aml1LJ' are innovation errors usually assumed to be 

N{O, ( 2
), each indepe/ldent of the past. Again when the data are unequally spaced over 

time, some researchers propose the "Markov correlation structure" for error component. 

A useful review in this field with many references is que to Mukherjee (1976). Rao 

(19(7) considers least Rquare (LS) estimators with unstructured and autoregressive forms 

of V. Webb (1973) applied the non-stationary autoregressive model. Beach and MacK­

innon (1978) studied the ML estimation aspects in the autoregressive· case. Wilson et 
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a1. (1981) considered, among other things, MLE for the model Yi = IJ.lr + ei with 

Vi = 02Jr + E, E having the autoregressive form discussed above. Azzalini (1984) added 

the regressors (covariates) to this scheme. To name few other contributors in this field 

are Kenward (1985), Rochan et al. (1989), Jennrich and Schluchter (1986). 

2.2.1 ANOVA Estimators of Variance Components 

We now discuss the ANOVA estimation of four different VO models which have been 

used extensively by bio-statisticians. For the one-way random model discussed earlier, 

the ANOVA table and the estimators are given below: 

Source d.f. S. S 

A a-I SSA = L: n WiO - Yoo)2 
i 

Residual a-I SSE = L: L:(Yij - iiio)2 
i j 

Residual an -1 SST = L: L:(Yij - YiO)2 
i 3 

(J2 = MSE e , 

0; = (MSA - MSE)/n 

The two-way nested random model is 

Yijk = It + ai + Pij + eijk 

z = 1,2, ... a; j = 1,2, ... b; k = 1,2, ... n. 
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The ANOVA table is 

Source cU. S.S 

A a-I SSA = L bn ~1/iOO - 1/000)2 
i 

D Within A a(b - 1) SSB : A = L L n (17ijO - 1/iOO)2 
i J 

Residual ab(n - 1) SSE = L(Yijk - 1/000)2 
ijk 

Total abn -1 

&2 = MSE e 

&~ = (MSA - MSB : A)/bn 

&~ = (MSB: A - MSE)/n 

The two-way crossed, with interaction mixed model is 

with ni's fixed. The ANOVA table is 
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Source dJ. S. S 

A a-I SSA = L bn (thoo - YOOO)2 
i 

B a(b - 1) SSB = Lan (YOjO - YOOO)2 
J 

An (a - l)(b - 1) SSAB = L n (YijO - YiOO - YOjO + YooO)2 
'J 

Residual ab(n - 1) SSE = L (Vijk - Yijo)2 
i,k 

Total abn -1 

a~ = (MSB - MSAB)/an 

a~ = (MSAB - MSE)/n 

a; = MSE. 

Again the 2-way crossed, no interaction mixed model equation is 

with aI's fixed. The ANOVA table and the estimators of VC are 
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Source d.f. SS 

A a-I SSA = ~)n(jlioo - YOOO)2 
; 

B b-l SSE = 'Lan(YojO - Yooo)2 
j 

Error abn - a - b SSE = L(Yijk - tlioo - YOjO + YOOO)2 
ijk 

Total abn -1 

a~ = (MSB - MSE)/an 

a~ = MSR. 

2.2.2 Studies with Repeated Measurements 

We now turn our discussion on the situation where repeated measurements are available 

on both the covariates (regressors) and the response variate. It means that both Y and 

X have errors and repeated measurements are available on both of them. Such problems 

have been discussed extensively by Madansky (1959) and Cochran (1968). If we have Ni 

observations on each (Xi, Vi) with 

Yij = Yi + Vij i=I,2, ... n 

j = 1,2, .. . N; 

and if the usual assumptions of independence are made, then we can perform ANOVA on 

the X's and V's and obtain the estimates of {3. 
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Lord (1960), Dagracie and Fuller (1972), proposed an estimate of the following func­

tionally related covariance model. 

i=1,2, ... ,n, j=1,2, ... ,r 

where n is the number of treatments and r is the number of repetitions. Ai is the ith tre~t­

ment effect with E Ai = O.xii and Yii are observed with errors foilowing a bivariate normal 

form with zero means. For known estimates of variance components, they developed the 

estimators of fJ that are unbiased to O(r-l) where r is the number of observations on 

each treatment. 

Orcl (1969) assumed a model where replicated observations (only two) are possible 

for fixed true vales of the variables and obtained the ML estimators for the functiopal 

relat.iollsl, ip 

Yi = n·+ (}xi 
z = 1,2, ... ~ 

Ai = X +·8ii 
J = 1,2, 

1Ji = Yi + fi 

with usual assumptions .. This may be relevant when observations are based on two in­

dependent situations. Some good discussions in the fielq of measurement errors with 

repeated observations on both the covariates and response are made in the book of Carrol 

et al. (1995). A detail statistical study on the error-in-variables is due to Pal (1981). 

Many of these models can be generalized in the longitudinal set up as discussed below. 

2.3 Some Discussions on Longitudinal Studies 

Longitudinal studies represent one of the principal research strategies employed in biomed­

ical and social science research. The defining characteristic of a longitudinal study is t~at 

individuals are measured repeatedly through time. This is obviously in contrast to cross­

sectional studies, in which a single outcome is measured for each individual. In longitu­

dinal data the response of each individual (sample) is observed on two or more occasions. 
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Longitudinal designs are uniquely suited to the study of individual change over time, 

including the effects of development, aging and other factors that effect change. Longi­

tudinal studies typically have unbalanced designs, missing data, time-varying covariates, 

and other characteristics that make standard multivariate procedures (e.g. MANOVA 

etc.) illllpplicable. The major advantage of longitudinal study is its capacity to separate 

what in the context of population studies are called cohort and age effects. 

The defining feature of a longitudinal data is repeated observation on individuals al­

lowing direct study of changes. Longitudinal data require special statistical methods 

because the set of observations on one subject tends to be interrelated generally. The 

research of eighties focused on the development of statistical methods that not only con­

sider the inter-correlation of serial measurements but also accommodate the complexities 

of typical longitudinal data sets. Ware(1985) viewed the analysis of serial measuremerts 

as a univariate regression analysis of responses with correlated errors. He discussed more 

flexible approaches to modeling and parameter estimation. He argued that the repeated 

measures designs may be regarded a.<; a subset of longitudinal designs. The methods de­

veloped for longitudinal designs can be directly applied to data collected in the repea~ed 

measurers setting. 

The issue for accounting correlation also arises when analyzing a single long time 

series of measurements. Diggle (1990) discusses time series analysis in the biological 

sciences. Analysis of longitudinal data tends to be simpler when subjects can usually 

be assllmed normal. However, in many situations the non-normal patterns are observed, 

which demand special statistical treatments. The inferences from longitudinal studies can 

be made more robust to model assumptions than those from time series data, particularly 

to &<;sIIIIJpl.ioIlS about tIlC nature of the correlation. 

2.3.1 ~pproaches to Longitudinal or Repeated Measures Data Analysis 

When we have single observation on each unit, then we are confined to modeling the 

population average of response y, called the marginal mean response. In this case we have 

no other choice. But with repeated mea.<;urements, there are several different approaches 
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UlI\t ClLlI be adopted. A simple strategy may be to : 

(i) Reduce the repented observations into one or two summaries; 

(ii) J\lIllly:f.C each summary variable as a function of covariates X. 

Such nn approach in adopted in Pal and Paul (1997), where a summary measure of 

quality scores on different tea samples are obtained from the repeated observations on 

quality scores given by Tea Tasters. Than these summary scores are regressed on the 

corresponding measures of biochemical quality parameters and the coefficient estimates 

are obtained. We may call this approach a two stage or derived variable analysis. But 

it is worth noting that this approach is less useful if the most demanding explanatory 

variable change over time. 

An alternative to the above approach may be to model the individual Yi, in terms 

of Xij. The first approach is to model the marginal mean as in cross sectional studies 

(Diggle et al. 1995, p.18). Since repeated observations are likely to be dependent, the 

marginal analysis must include assumptions about the form of correlation. For example, 

in the linear model we may assume E(Yi) = XdJ, Var(Yi) = Vi(a), where {J and a must 

be estimated. This approach carry the advantage of separately modeling the mean and 

covariance. Valid inference about (i can sometimes be made even for incorrect form of 

V(a). 

A second approach, the random effects model assumes that correlation arises among 

repeated responses because the regression coefficients vary across individuals. Here, we 

model conditional mean of Yij, given {ii, by E(Yij/ {iij = X~j {ii. It may be noted that 

fixed efrects model is a appropriate specification if focus is on specific set of n individuals 

(samples). Inference is this case is conditional on the particular n individuals. Again 

random efrects model is appropriate specification if we are drawing individuals randomly 

from huge population. 

Allother approach, known as 'transition model' (Ware et al. 1988) focuses on the con­

ditional expectation of Yij given pnst outcomes, Yi,j-l,'" Yil. Here we specify regres~ion 

model for t.he conditional expectation, E(Yij/Yi,j-b'" Yn, Xij) , as an explicit function of 
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Xij, and of the past responses. An example of such model is the logistlc regression model 

for hinary data 

Transition model of this type combine the assumptions about the dependence of y on X 

and the correlation amon~ repeated ys into a single equation. 

Tn each of the three approaches discussed above, we model both the dependence of y 

011 X Hnd the aut.ocorrelation among vs. With cross sectional data, only the dependence 

of y on X need to be specified; there is no correlation. 

'Thus longitudinal data analysis or repeated measurements problems may be parti­

tioned into two groups: 

(i) where regression of y an X is the point of interest and the number of observation 

(n) is greater than the number of repetitions (r). 

(ii) problems where the correlation among repeated observation are of prime interest or 

when n is small. 

2.3.2 Data Diagnostics 

The longitudinal data analysis has two components that operate side by side: exploratpry 

and confirmatory analysis. Exploratory Data Analysis (EDA) comprises techniques to vi­

sualize the data patterns. Confirmatory analysis is obviously technical in nature, weighing 

evidence in data for or against hypothesis. 

Most longitudinal analysis address relationship of response with explanatory variables, 

often including time. So a scatter plot of responses against an explanatory v~riable may 

he the basic display. Smoothing techniques are discussed ip literature that highlights 

the typical response as a function of explanatory variable without reliance on sp~cific 

parametric models. Smoothing splines, kernel estimators, and the robust method 'lowess' 

are reviewed in Diggle et a1. (1995). 
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We may also explore the correlation structure for degree of association in repeated 

measurements. To remove the effects of X, we first regress the response, Vi; on Xi;, to 

obtain residuals eij = Vi; - X~j {J. With data collected at a fixed number of equally spaced 

points, the correlation can be studied using scatter plot matrix in which ei; is plot~ed 

against eik for all j < k = 1, ... r. When each scatter plot in the matrix appears like a 

sample from the bivariate normal distribution, we may summarize the association with a 

correlation matrix, comprised of a correlation coefficient for each plot. 

The best sources for studies in EDA are the books by Tukey (1977) and by Mosteller 

and Tukey {1977}. Background information on graphical methods ih statistics can be 

found in Chambers et al. (1983). 

2.3.3 Repeated Measures ANOVA 

The ropeated merumrCA ANOVA can be regarded as a initial attempt to a single analysis 

of a complete longitudinal data set. These aspects are discussed in detail earlier. Here 

we outline the 'split-plot' type approach, which was adopted by researchers in different 

agricultural studies. The underlying model may be presented as 

Vijh = (Jh + C'thj + Ahi + Cijh i = 1,2, ... , n, j = 1,2, ... , r, h = 1,2, ... 9 

where Yijh denotes the j'h repeated observation for ith sample within hth treatment group. 

(Jh represent the main effects for treatments and C'thj interaction be~ween treatment and 

repetition with the constraint E C'thj = O. Ahi are mutually independent random ef-
; , 

fects. Ci;h are mutually independent measurement errors. We have, E{Yi;h) = (Jh + ah;' 

Under the assumptions Ahi '" N{O, (1~), Ci;h '" N{0(12), the resulting distribution of 

Y = (Yilh, Yi2h, ... Yirh) is multivariate normal with covariance matrix V = (12 I + (1~ J, 
"'h 

where J is the matrix of ones. This implies a constant correlation p = (1V{(1~ + q2), 

between any two observations on the same sample. 

The split-plot ANOVA for the above model is presented in the following Table. In 

the Table n = Eh nh denotes the total number of units. We note here that split - plot 
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ANOVA requires a complete data or balanced data. But we may analyze incomplete data 

under split-plot model by general likelihood based approach (Diggle et al. 1995). 
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Source 

Between 

treatment 

Whole plot 

residual 

Whole plot 

total 

Between 

repeats (time) 

Table: Split-Plot ANOVA Table 

SS d. f. 

g-1 

RSS1 = TSS1 - BTSS1 n-g 

(r - 1) 

Treat x repeat ISS2 = Lj Lh rh(fihi.j - ti .. Y - BTSS1 - BTSS2 (g - 1) x (r - 1) 

interaction 

Split plot 

residual 

Rplit plot 

total 

45 

(n-g)x(r-l) 

(nr - 1) 



Tho split-plot. ANOVA contains strong assumptions abol\t the covariance struct4re, 

alld hence a model based analysis under the assumed uniform correlation structure achieves 

a lot. We may adjust for missing values and also allow a structured linear model for the 

mean response profiles. But it is worth noting that although ANOVA methods are useful 

in particular circumstances, they do not constitute a general viable approach to longitu­

dinal or repeated measurements analyses. 

2.4 MANOVA and GMANOVA Models for Repeated Mea-

sures 

2.4.1 MAN OVA Models 

The multivariate analysis of variance model (MANOVA) consists of p different response 

variables which are observed for each of n experimental units or subjects. The responses 

can be distinct variables or repeated measurements of one variable, or repeated meas4re­

ments of a set of variables. 

In such situations one may opt for the multiple design multivariate (MDM) liner model 

or the ZeIner's seemingly unrelated regressions (SUR) model. The MDM linear model has 

applications to the multivariate analysis of repeated measures and crossover experiments. 

In mallY psychometric studies such approach is adopted. 

Let ~. = (Yib Yi2" . YIP)' be p measurements on ith individual (i = 1,2, ... , n), wqich 
I 

is treated as a single vector multivariate observation. The general model on which the 

analysis would be based is Y. = {t. + e for individual i, corresponding to (2.2), where IV, "", ,...", 
the errors e. are independent with mean O. and covariance matrix V( e J = E. Thus E is 

~ ~ ~ 

(p x p) with (j, k)th element Cav(elj, Cik) = Eik • We note that V(YJ = V( e J = E is same 
....... , "", 

for all i. 

H is convenient to express the MANOVA model in matrix notation as 

1J = A{:J + e (2.7) 

wllCre y = [y', y' ... y' ]', A = [a', (£' ••• a']' and e = [e', e' ... e']' are (n x p), (n x q) 
"'1"""2 ""1) 1V1 ""2 ""n "'1 ....... 2 IV" 
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and (n x p) matrices respectively. Generally A is assumed to be of full rank q so that the 

increase exists. It is generally assumed that e '" Np(O, E ® In). 
'" '" 

Clcl\r1y the MANOVA model (2.7) consists of p distinct, but correlated, univariate 

Iillear models each with the same between - subjects design matrix A. The ML estimator 

of {J nml d iApersion matrix E are 

/J = (A' Atl A' y and E = Q/n, 

where Q = y/[In - A (A' At1 A'l y is the error SS and cross product matrix (Anderson, 

1984) . 

In lIlultivariate regression study, we have a system of p separate regression models 

which are correlated. As is known in MANOVA framework, the same set of regressors is 

used for each of the p response variates. 

The multivariate analysis of covariance (MANCOVA) is well described in Anderson's 

book (1984). The typical MANCOVA model is mixture of A and the parameter matrix (:J 

is partitioned into groups according to the need of the experiment. In fact, the theory for 

the comparison of different group efrects are well developed in the literature of multivariate 

analysis and 'Profile Analysis' is one of the popular techniques in such situations. 

2.4.2 Profile Analysis 

Profile analysis pertains to situations where a battery of p-treatments are assigned to 

two or more groups of subjects. All responses must be expressed in similar units. For 

difrerent groups the responses should be independent. The basic question is whether the 

mean vectors are same or not. In profile analysis, the question of equality of mean vectors 

is divided into specific possibilities. 
I I 

Suppose J.L and J.L are mean responses of p-treatments for two populations. We can 
"'1 "'2 

formulate the question of equality in a stagewise fashion. 

(i) A re the profiles parallel '! 
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i.e., Ho : I'u = j.I'l I-I = J1.2i - J1.2 i-I Vi 

or equivalently Ho : CJ1. = CI£ where C is (p - 1) x p contrast matrix. 
"'I "'2 

(ii) If the profiles are parallel do they coincide '! 

i.e., Ho : I'li = J1.2i Vi 

or, Ho: 1'1£ = 1'1' 
""'I "'2 

(Iii) II' the profiles are coincident, are all the means equal to same constant't 

1.11., ITo : Illl = 1'12 = .. " = 1'21 ••• = 1'2P 

or, 110 : CI' = () 
'" 

Til nil theMe cases the related T2 statistics are described by Johnson and Wichern 

(1992). 

In repeated measurements design, if we are interested in comparing the mean - effects 

(for two groups only), then we may represent the cell mean model as 

Y = Il -I- e ,j = 1,2 
'" ij "'J "'iJ 

(2.8) 

where ~. = [/'JI, I'J2 .. • ILjp]' is the mean vector response for lh group. Alternatively the 
J 

cell menn model may be written in terms of the one-way MANOVA model(2.7), where 

Y = [Y ... Y : Y ... Y ]' = [Y ... Y ]' is the (n x p) observation matrix with 
'" 11 '" nil ""' 12 '" n22 ""' I '" n 

n = nl -I- n2 and e = [e ... e ]' is the corresponding random error matrix. The design 
~l ...... n 

matrix A may be presented as 

Here {J represents the cell means. The primary hypotheses of interest may be written as 

HI : C I {J UI = 0 (equal group effects) 
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H2 : C2 fJ U2 = 0 (equal time effects) 

H3 : C3 fJ U3 = 0 (no groups x time interaction) 

where C1 = [1 - 1], U1 = jp, C2 = [1 1] = C3 , U2 & U3 are contrast matrices. For all 

these hypotheses to be tested, the UMP invariant tests are given by T2 statistics. the 

testing aspect is well described by Vonesh and Chinchilli (1997). 

2.4.3 The GMANOA Model 

The generalized multivariate analysis of variance (GMANOVA) is another important as­

pect of repeated measurement design. It is a linear regression type approach, and is more 

f1exlLll! than ANOVA or MANOVA. Pathoff and Roy (1964), Roy (1967) introduced the 

GMANOVA model. 

1\ OMAOVA 1I10doi for balanced nnd complete data may be presented as 

y = AfJX + e (2.9) 

where y is (n x p) response matrix, fJ is (q x t) unknown parameter matrix, X is (t x p) 

within-subject design matrix with full rank t(~ p), e is (n x p) random error matrix. The 

distributional assumption for this model is same as MANOVA model when X is square, 

i.e. t = p, because X being invertible leads to E(y X-I) = AfJ. 

Here the elements of X may be considered as regressors, but not necessarily. X may 

be constructed so as to contain binary indicator variable in order to model the within 

subjects main effects and interaction (if any). The difference between MANOVA and 

GMANOVA models for repeated measures design is that the former requires all within 

subject effects to included in the model (t = p), whereas the later does not (t ~ p). Thus 

GMANOVA model with t < p, may lead to more efficient estimation as to contain fewer 

parameters. 
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The ML estimator for fJ and E under GMANOVA set up is given by 

B = (A' A)-l A' y Q-l X'(X Q-l ~')-l 

f; = ~ [Q -I- W' y' A(A'A)-l A' yW] , 

where Q = y' [In - A (A'A)-l A'l y, 

W = Ip - Q-l W'(X Q-l X')-l X. 

Vonesh and Chinchilli (1997) give the proof of these results. Grizzle and Allen (1969) 

developed a goodness of fit test for the within units design matrix X in GMANOVA model. 

Khatri (1973) and Lee (1991) described different tests for certain variance structures 

within the GMANOVA mode\. Khatri developed different LR tests. Lee developed LR 

tests when E has autocorrelation structure. Puri and Sen (1985) described the use of rank 

statistic for CMANOVA model. 

2.5 The General Linear Model for Longitudinal Data 

In seventies the analysis oflongitudinal data generally used a split-plot type model. These 

models required an assumption of equal variance covariance for repeated measurements, 

even though MANOVA approach (Cobe and Grizzle, 1966) and growth curve analysis 

methods already existed. In growth curve analysis, the expected response is modeled as 

a continuous fllnctioll of time. Techniques for analyzing incomplete data from general 

(II11HI.I'\lel.1Irtld rIltjplll'sinn matrix) OJultivlLriate normal populapon were developed (Demp­

!-ItOI' et. ilL, 1977). However these methodH were found not suitable for clinical and some 

other biulIledical studies, specially when the number of measurements on a subject is I~rge 

relative to the number of subjects. 

The work having major impact of clinical trials with repeated measures designs come 

from Laird and Ware (1982). Based on the work of Harville (1977), they developed ML 

and restricted maximum likelihood (REML) procedures for analyzing a general mixed 

effect model for repeated measurements. 

Let ~ denote (p xl) vector of population parameters and Xi be a known (nj x p) design 
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IIIIlt.rlx IIl1ldllg U to lIi' Let b denotes n (~: X 1~ vector of unkilOwn individual effects ~nd 
""'-J """'i 

Zj a known (nj x k) design matrix linking b to Yo' For measure~, multivariate normal 
""i ....." 

data, Laird and Ware proposed the following model: . 
I 

Stage 1: For each individual i, 

(2.10) 

where e, rv N(O, ~), ~ being a positive definite covariance matrix. At this stage, ~ and ..... , 
b are assumed fixed, and e are assumed to be independent . 
.....,. """i 

Stage 2 : The b rv N(O, D) independently of each other and of the e " D is (k x k) 
"""'i .....,. 

positive definite covariance matrix. The population parameters Q are treated as fixed .... 

effects. 

Marginally, y rv N(Xj ~, ~ + Zj D Zi). Further simplification of the model is .... , 
when ~ = a2 I. This allows us to write likelihood as the product of marginal densities of 

YI! Y2,· .. Yn· D and I4 are assumed to have sa.me structures so that their elements can 

be written as a function of parameters on a lower dimensional space. 

When one or more columns of X j are function of time points and Xi = Zj, the model 

serves as a growth curve model. Other columns present either the overall mean or changing 

covariates (regressors). 

The model can accommodate any missing date pattern. Jennrich and Schluchter 

(1986) illustrated this model with different structures of E, = ~ + Z, D Z: and proposed 

computing algorithms for ML and REML estimates and the corresponding LR tests under 

norm'ality. They considered independence, compound symmetry, random effects, AR(1) 

and ullstructured models for Ej . 

We note here that no systematic efforts have been made to suggest a practical structure 

for /'/10 eovnrinncc matrix E, for a repeated measurement design. Test of goodness of fit 

"I' " IIll1dd wlt.h IlItrt.icplar covariance structure is difficult, Inj!. its asympt.otic Lft test, Is, 

ill g;erH~ntl, HCIlHitive t,o the departure ('rom multivariate nOrmfl.lity. 

The Laird-Ware model has the advantage of combining both one stage and t.ow-stage 

regression models (Crowder and Hand, 1995). That is why, it is a more flexible model 
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as compared to the general models proposed by earlier researchers. As the Laird-W~re 

model also include two stage regression format, this may easily be reduced to a random 

coefficient growth curve model. Random coefficient regression fTlodel include growth curve 

models as discussed by C.R. Rao (1005), Swamy (1970), Lindsey and smith (1972), Fearn 

(1D75) nnd many others. 

Milch of the classical work on two stage models concern!) the fitting of polynomial 

curves to animal growth measurements over time. Here the design matrix X has lh raw 

(1, Xi' x;, ... xrl) or the orthogonal polynomials version of this. Also in the literature (see 

Vonesh and Chinchilli, 1997) Xi has generally been equal to Zi or Zi Ai for some Ai' This 

arises from Y = Zj a, + e, at the first stage, and than a, having distribution N(Ai a, D) 
""-I i ""'I ""I """'s 

at the sccond stage. Thlls E(y,) = Xi a, with X j = Zj Ai and Var (Yi) = Zj D ZI + Ri. 
Heitjan (1991) has proposed same generalization of growth curves for repeated mea­

sures design basing on the logistic growth curves proposed by Helder (1901). A good 

discussion on linear and non linear growth curves is available in Lindsey's book (1993). 

2.5.1 Studies With Non-Normal Distributions 

Recently mixed effects models for a distribution from the exponential family have received 

considerable attention. Beitler and Landis (1985) considered a mixed effects model with , \ 

no covariates, directly for a binary response. They computed the VC from the quadratic 

forms from the conventional ANOVA table as one would obtain from normal data. How­

ever, the validity and efficiency of these estimates are questionable. 

For analyzing a longitudinal data satisfying a distribution from the exponential family, 

several methods have been developed. The empirical generalized least squares (EGLS) 

procedure developed by Koch et aJ. (1977) exploits full multinomial structure in comput­

ing the dispersion matrix for the estimates. Although computationally more complicated, 

the generalized estimating equations (GEE) approach for marginal models, proposed by 

Liang and Zeger (1986), has certain advantages. The population averaged paramet.ers 

fUC modelled as functions of covariates in marginal models. The main advantage of GEE 

is that it accomodates continuous time dependent or time independent covariates. Also, 
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the dispersion matrix can be modeled in terms of fewer parameters than the number of 

parameters in an unstructured dispersion matrix and thus the consequence of sparse data 

can be avioded. The GEE appro<\.ch does not attempt to model the joint distribution of 

the repeated measurements. The marginal distribution at each time point is modeled as a 

function of covariates. Allowing a working correlation matrix among the subject responses 

the regression parameters and their dispersion matrix are estimated. These estimators 

arc consistent as long as the population means are correctly specified. Otherwise, there is 

Borne loss of efficiency. This procedure is a multivariate extension of quasi-likelihooq. ~nd 

is not n likelihood based procedure. Prentice and Zhao (1991) has contributed to extend 

this theory. 

Anotl1er approach for analyzing random effects model is to use the conditional likeli­

hood given suHicient statistics for the subject effects. Diggle et al. (1995) describe this 

approach in the context of cross-over designs and point out the disadvantage of loosing 

some information as the m~thod relies entirely upon within-subjects comparisons. 

2.6 Non-Linear Variance Component Models 

Nonlinearity is an important theme underlying many current developments in the field 

of biostatistics and clinical studies. Tn this section we outline few general aspects of non 

linearity in connection with components in both regression and no regression situations, 

that is, with or without the covariates. 

Dolby and Freeman (1975) discussed the ML estimation of non linear functional re­

lationships with repeated observations. The analysis for bivariate data was extended to 

multivariate situations and the error variance was considered to be knows. Previous ar­

ticles dealing with repeated observations are Villages (1961), Dolby (1972), etc. Dolby 

{1976} later worked on structural relations of this type. Chan and Mak (1979) assumed 
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a linear structural relation of the type 

= Q + fjXi l i = 1,2, ... , n 
= Yi + ejj . 

J = 1,2, ... r 
= Xi + eij 

Yj 

Yjj (2.11) 

with IIsual assumptions. He found the ML solution to be a root of a fourth deg:ree 

polynomial. However, it is consistent as the number of replication increases. 

We now consider the linear set-up 

Y = Xfj+Zu } 
i.= 1,2, ... ,n 

J = 1,2, ... r 
(2.12) 

Yij = f.l + Qi + eij 

The non-linearity may arise from the above formulation in the following ways: 

(i) The systematic part Xfj is replayed by non-linear form, as considered by Rudemo 

el al. (1989) in application to bioassay data. 

(ii) The random component Qj and ej, combine non-linearity. For example, the non­

linearity may be approximately modeled as 

(2.13) 

(iii) The random and systematic parts, in general model, combine non-linearity. One 

may consider a exponential growth model 

(2.14) 

Racine and Poon (1985) adopted such type of approach. 

(iv) The essential normal theory based structure may be replaced by an analogous form 

of the exponential family. 

Solomon et at. (1992) discussed in detail the model formulation is a balanced set up. 

They also proposed the transformation model of the type 

1/>. " Yij = It + Qj + eij, (2.15) 
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the right hand side being a normal theory representation. The transformation models 

are widely used in practice and often provide a simple basis for structural analysis and 

interpretation. Choice between the models would naturally depend on the context, as 

well as on practical considerations. 
/ 

Soloman also proposed few generalizations of the model and explained the estimates 

obtained for a medical treatment data. The approximate likelihood function is developed 

and its accurate performance is examined is exami~ed numerically using examples of 

exponential regression. 

2.7 A Discussion on the ML Method of Estimating VariaQce 

Components 

The beginning in search for an alternative to ANOVA procedure of estimating VCs appears 

to lie with Crumpt (1947, 19(1). He dealt with the one-way classification for both balanced 

and unbalanced data and derived equations that have to be solved iteratively. Herbach 

(1959) derived explicit ML equation for certain balanced models and felt the necessity that 

slIch estimators must be non negative. CarbeiI and Searle (1976 b) studied a number of 

tllcse balanced mouels and obtained the biases and sampling variances of the estimll-tors. 

In contrast to the ANOVA approach, the basis requirements of ML estimation is that 

of assuming an underlying probability distribution for the data. The ML approach to 

the estimation of VCs has some attractive features. The ML estimators are functions of 

every sufficient statistics and are consistent. These are also asymptotically normal Il-nd 

eflicient. The ML approach is always well defined even for many generalizations of the 

ANOVA models. Also with ML approach, the non negativity constraints on the ves or 

other constraints on the parameter space cause no conceptual difficulties. Moreover, the 

ML estimates and the information matrix (1M) for a given parameterization of the model 

can be obtained readily from those for any other parameterization (Harville, 1977). 

In late seventies and eighties, many researchers have studies different aspects of ML 

method of estimating VCs. To name a few: Olsen et al.(1976), Hocking and Kutrer 
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(1975), Harville (1977). 

For the model (2.4), we assume V,..., N (/lIN, V), where V = Var(v) = Ia ® (a~ Jri; + 
'" "" 

a~ In;) is defined earlier with exception that n, stands for uhbalanced data and n, = n 

for balanced data. The log likelihood may be defined as 

l = -~ N In(27T) - ~(N - a) In a; - ~ ~ In(a; + ni a~) , 

For balanced data, this log likelihood may be written as 

1 1 1 
l = -2 N In(27T) - 2(n - l)a In a; - 2a [In{a; + n a~)l 

I 

1 n2 a2 

--2 2L L{Vi; - /l? + 2 2(a2 + Q ( 2)) ~ (Vi; - /l)2 
ae , J ae en? ' 

1 1 2 1 SSE SSA an (Voo - /l)2 
= -- N In(27T) - -a(n - 1) In a - - a In A - - - - - (2.17) 

2 2 e 2 2a: 2A 2A' 

for A = a; + n a! (Seart'e et al. (1995). Then for balanced data, the ML estimators rhay 

be obtained as 
~ 2 ~ SSA 
/l = Voo, MSE = ae , A = -- and, 

a 

~ ~ - ;2 (1 - l/a) MSA - MSE 
a2 = e = . 

Q n n 

Similarly, for unbalanced data, the loglikelihood may be defined as 

1 () 1 ( ) 2 1 L SSE 1 L ( )2 1= - N In 27T - - N - a In a - - In A' - -- - - n· y·o - H 
2 2 e 2. ' 2 2 2A" " fA" , ae' , 

(2.18) 

where '\i = a; -I- ni a;, and the ML estimates may be obtained from the following relations 

Var'(V') = a2 + a2/n·· I. a e I' 
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nllll LnHyiO - (L)2 /~? = L t-
00' . , 

A detailed discussions on the non-negativity conditions ofVCs, the bias and sampling 

variances are availahle in Searle et at. (1992). 

ML Estimates of Some Linear Models 

The ML estimates of four VC models discussed in Section (2.5) are presented in Searle's 

book (1992). 

For general linear model proposed by Laird and Ware, we have, 
-1 

Var(Yi) = ~ = Zi D Z: + ~ and for Wi = ~, we have 
I I 

a= __ (L XI Wi Xi)-1 L XI Wi Yi } 

DZ: Wi(Yi - Xi a) 
(2.19) 

the estimate of a maximizes the likelihood based on the marginal distribution of the 

data and it is also the MVUE. The expression for bi is of course not ML but can be derived 

by an extensive of Gauss-Markov theorem to cover random effects (Harvill, 1976). the 

estimate for bi is also empirical Bayes. 

as 

Since a and bi linear functions of y, the expression for their S.E. can be easily derived 

VaT (a) = (L XI Wi Xi)-1 
i 

and Var(bi) = DZHWi - Wi Xi(L XI Wi Xi)-1 X: Wi] Zi D 
(2.20) 

Laird and Ware has also discussed in detail the estimation procedure for unknqwn 

variance and the estimation of covariance matrix. They have discussed the use of EM 

(Expectation Maximization) algorit.hm for ML estimation of variance components. 

The MLE of the implicit parameters in the general linear model can be obtained by 

maximizing the joint. likelihood function 
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where N is the total number of observation. The value of a which maximizes the above 

likelihood for fixed elements of E is the GLS estimator & defined above. Using the estimate 

in the of a, the problem reduces to maximize the profile likelihood 

i = ~[N In (27f) + t(e~ E;l e, + In IE, 11 
,=1 

(2.22) 

where c, = (y, - Xi a). 
We note hare that MLE of VCs are biased in small samples. That in why many 

authors has advocated the use of REML method of estimation. 

2.8 REML Method of Estimation VC 

A property of ML estimation is that in estimating VCs it does not take into account the 

degree of freedom that are involved in estimating fixed effects. Although under normality 

ANOVA estimators are MVUE, ML estimators not do. 

The feature of ML not taking account of the degrees of freedom when estimating VCs 

is overcome by what is known as REML method of estimation. First developed for certain 

balanced data by Anderson et al. (1952) and Russel el al. (1958), it was extended by 

Patterson and Thompson (1971, 1974) to mixed model generally. 

The basic idea of REML estimation is that of estimating VCs based on residuals 

calculated after fitting by OLS just the fixed part of the model. REML estimation can 

also be viewed as maximizing a marginal likelihood. 

Let us start with the REML estimation of VC for one-way random model for balanced 

data. For the one-way ANOVA model under balanced data set up, the likelihood function 

can be written as 

L( 2 2/) _ (2 ))-Ian -2[!aG'l'J- O),,'" \-Ia E [1 {SSE SSA + Yoo - p,)2}] 
/I a a y - 7f 2 ae ~'" '1'\ 2 xp - - -- + --
,..., e' Cl. ",,-,' 'J' 2 a~ A A/an 

(2.23) 

Since Yoo is independent of bath SSE and SSA, the above likelihood can be factored as 

58 



L(Jt, 0;, o~/y) = L(Jt/yoo L(o;, o~/SSE, SSA), where 

L(a~, o~/SSE, SSA) = (27T)-!(an-l) 0;2 [~a(n - 1)] A-!(a-l) (an)-! 

[
1 (SSE SSA)] 

exp 2 o~ + -A- . (2.24) 

The laRt likelihood may be expressed as 

showing the marginal likelihood relationship. For I-way balanced model, this is known as 

restricted likelihood. The REML equations may be obtained as 

-a(n -1) SSE 
lRul = ' +--

, c 202 201 
e e 

-(a -1) SSA 
and lR,\ = + " 2A 2A2 . 

The estimates may be obtained as 

AR 

A2 
°a,R 

= 

= 

SSA/(a - 1) = MSA, a; = SSE/a(n - 1) = MSE, and thus 

~ [MSA - MSEJ. 
n 

Let us now outline he methodology for the general model. Actually are maximiz¢ a 

reduced log likelihood function obtained by transforming Yi to Y· where the distribution 
"'i 

of Y· is independent of Q~. One such transformation is obtained by taking y. = (I -
~i~' ~i 

X(X'X)-l X')Y, where y. l =y.l ... y.lJ. The transformation is obviously y. = Y -
""-J IVI ""1 IVn "'i ""i 

X j a where a = (X' X)-l Xl Y is simply the OLS estimator of Q. It follows that E(Y· = 0 
"" /"oJ '" i 

for any Q and in fact distribu-tion,of Y· is independent of Q • Under this transformation, 
IV IV i ""n 

the reached profile log likelihood can be shown to be 

~ 1 [ -1 -1 ] 
lR = -2 (N - 8) In(27T) + L)cI L Cj + In I L J) + In I ~ Xl ~ Xi) I 

" , " 
(2.25) 
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In both ML and REML, a is obtained by (2.19). The REML estimates ofVC are obtained 

by maximizing the above log-likelihood. Details on REML estimating equations for mixed 

models is given in the book of Searle et al. (1992). We note hare that sections of 

REML equations, for all cases of balanced data from mixed model, are same as ANOVA 

estimators. This result is true whether normality is assumed or not. 

For unbalanced data each of ML and REML are to be preferred over any ANOVA 

method (Searle et al., 1992). This is because the ML and REML estimates are consistent, 

asymptotically normal, and the sampling dispersion matrix is also known. This provides 

opportunity to develop confidence interval and testing hypotheses about parameters. If 

is true that ML and REML estimators are based on normality assumption, but in many 

situations this assumption is unlikely to be seriously wrong. Of course, the asymptotic 

variance-covariance property are valid only is large sample sense, and for small samples 

this may nullify their usefulness. Nevertheless, these properties seem to be sufficiently 

reliable to have more faith in ML and REML than in the ANOVA method. 

Now, to chose between ML or REML - then is no hard and fast answer. Both have the 

same merit.s of being based on maximum likelihood principle - and they have the same 

demerit of computational complexity. ML provides estimators of fixed effects, whereas 

REML, on its own, does not. But for balanced set up REML solutions are identical to 

ANOVA estimators which have optimal minimum variance p party. For many researchers 

this is n strong ground for REML that they prefer it over ML. 

2.B.1 The Use of Different Algorithms for Likelihood Estimation 

We know that both ML and REML method contain considerable amount of computational 

complexities. without the aid of high speed computers, obtaining ML and REML esti­

mates of VCs along with the estimates of fixed effects seems to be an impossible task. In 

this section we review considerations in computing ML and REML estimates and outline 

algorithms used to the estimates. 

In all but the simplest cases, iterative methods must be used to find estimates for the 

parameters in mixed effects repeated measurements models. The basic iterative methods 
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Now, to chose hetween ML or RE1\lL - there is no hard and fast answer. Both 

have the samE' merit" of being based Clll maximum likelihood principlE' - and they haVE' 

the SHme demerit of computational complexity. 1\lL provides estimator" of fixed effects, 

whereHs REML, on its own, does not. But for balanced 'Set up RE1\lL solutions are 

identical to ANOVA estimators which have optimal minimum variance property. For 

many researchers this is a strong ground for RE1\lL that they prefer it over ML. 

2.8.1 The Use of Different Algorithms for Likelihood Estimation 

\Ve know that both :ML and RE:ML method contain cousicierable amonnt of computa­

tional complexities. without the aid of high speed computers. obtaining 1\lL and REML 

estimates of ves along with the estimates of fixed effects seems to be an impossible task. 

In this section we briefly review consiciC'rHtiolls in compnting 1\IL and REML estimates 

and outlinC' algorithms used to obtain the estimates. 

In all bnt the simplest cases, iterative methods must be used to find estimates for 

the parameters in mixed effects repeated measurements models. The basic iterative 

methods are C'xplicitly based on th derivatives of the log likelihood. These are called 

gradient methods in the numerical analysis literature. The commonly l1sed method is 

the N<'wt.oll-Raphson (NR) method. 

SllPPOSI' til<' fllllftion is .f that we (up trying to maximize in the parameter space 8. 

The it<'rat.iV<' forlIlulation would be 

(2.2(3) 

whet'l' H(I1I) and 6..f(III) arE' Hession and gra(lient vector respectively. Thi" is NR method. 

In vHl'iann' ('om}Xlllellt estimat.ion, the parameter space is ~l = [~1. ~21] for ML and 

~ = ~:!I for RE1\lL. The NR interactioll would be (2.2()) with .f(III) l'('placed by l(III). 
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V/ith til(' t'ntrif''i in Hessian H given by 

In - X I11- 1y-X l l1- 1Xo 

l - -Xq/-l X. and fin 
fOT' !If L 

Hud ()fT1J'~la) = j t,.[rzJz;rz,z:] -y'PZJ Z; PZ,Z; Py. [01' REI\IL with 11 as thp 
I ) 

dispel''iion matrix of X and P = 1((1(,11 1()-1 1(' under the a'i'inmption 1('X = O . ..., 

Apart from NR c,ame other methods lik{l method of 5coring (Jen1ll'ich and Sampson, 

198()) and Qlla'ii-Newton method (KPlllwdy and Gentle, 1983) are al'io available. 

There are many technique'i that can bf' applied to reduce computational burden for 

1'1L and REML methods. Harville (1977), .Jennrich and Samp"on (1986) give matrix 

identitie5 that greatly reduce the size of matrice'i to be manipulated. Lindstrom and 

Bate5 (1988) give a nnmber of detail<; on matrix decomp05ition that can be exploited 

to spp{'d np iteration5. 

All altel"llatiV<' algoritlrnl for calculating I'IIL rUld REI'IIL ec.;timrltl''' that differ from 

NR or ':>coring mt,thod i<; the Expectation I'IIaximizdtlOn (EI'II) algorithm. This method 

alternates between caknlating conditional expected value'i and maximizing specified 

likelihoods. Thi'i algorithm i<; dne to Dempster. Lair ,-md Rubin (1977). The EM 

algorithm only generate':> estimatc'i and doe<; not give variance of the (,,,timMes qS by 

prodllCt, (1':> do NR and 'icoring method. To obtain variance e'itimates extra computation 

mnst be lWl'formed. 

2.9 Some Discussions on the Testing Aspects in Linear Models 

Thl'l'l' i" a loug hic.;tory ill the dl'wlopull'llt of F - te'it':> for ANOVA ('':>timHtOl'S in variance 
-

{,Ol1llJIlllC'llt<; model... TIl!-' hi'Story of development'S i':> well di'i('u<;<;t'd by Searle (1971). 

Conc.;ider t 11<' l1lod(,1 

!II] - /' + (\, + e'J' i = 1. 2 .... It 

j = 1.2 ..... 11 , • 

(j2 



In the fixed effecte; model (2:, (1, = 0). F = ~~~i tee;ts the hypnthee;is H : (11 's are all 

equal. Under thie; Hypothee;is F "'" F(n-I). n(II-I). In the random effectc; model, provided 

the data arc balanced, we have 

which lead ... to 

SSA/(11(1~ + (1;) "'" X(n-l)' SSE/(1; "'" X~(1I-1)' and thus 

/\lJ SA/(11(1~ + (1n 
!llSE/(12 "'" F(n-l)n(II-1)' 

" 

(2.27) 

Similarly, tlw test<; can be formulated for unbalanced data and the cnrrec;ponding con­

fidenC'l' intervals CHn be developed. 

\V(, not(\ that if the intel'ee;t ic; to tcst the hypothec;ic; Ho : (1;' ::; A agaill'it Ho : (1~ > A, 

then tllC' F-t{\st can be formulated on the basic; of SSA and SSE. The<;e tcc;ts are due to 

Scheffc (1 Dr, 9). 

\Vcerahandi (1991) developed an altcrnative tee;ting procedl1l'e for ves in mixed 

model" with generalized p-valnec;. Hic; tC'it wac; bac;ed nn minimal c;nfficient <;tatistics. 

TI10 p-valnc for te<;ting Ho . (1;' ::; A ic; 

wht're G ic; the cumulative density function of Xf"-l)' and thp expertation is taken with 

rec;pect to r- "'" X~(1I-1) . Here U = SSE/rT;. Ho can be rejected if the obc;erved value 

of]J i<; too "mall, c;ay if]J < 0.05. \Veerahandi ale;o extended the tec;t for 2-way crossE,d 

classification models. 

2.9.1 Tests Under Unequal Error Variances 

It i<; well known that F-tec;t for I-way ANOVA ic; c;enc;itive to the homogeneity of error 

variance<; (for example. Brown and For<;ythc. 1974. Bishop dnd DudewIC'z. 1978; Tatl and 

Tahatabai, l!)~fj). 1vIany rec;earcher ... di"c'U<;'ipd the c,ffeer on type 1 ('nor and conclude 
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that the effect i'3 not '5erioU'3 when thc group size'3 are equal. The effect of heterogeneity 

on the F - te'lt with re'5peet to both size ami power 1S de'5Cl'ibed by Krutchkaff (1988). He 

di'5cll'5'5cd tIl(> drawback'5 of well-known Kl'll'ikal- \~lalli" Te'3t which i" often recommended 

in <;ituation where the errors are heterogeneoU'3. Krutchk9ff propo"ed an alternative, 

called K-Stati"tie which is developed on the principle of weighting each component with 

it<; information (one OWl' it" e"timated variance). Hi" average for pach group is 

wllPr0 II rI'1)L'P'5cnts the J. t', ob'5ervation on ith (Trou1) and &2 i'5 an estimate of the variance .IJ "" • I 

of !I,), Using tli!'<;(' til!' ()wrall averag(l become'> 

Thp tl,.,t <;tati<;tic' that can be u<;ed to te<;t the equality of group mean" i'3 given by 

]( = L [(.9, - ,9)2 n}/a;) /(~. - 1). 
I 

If pooled (lstimat(' ()f variance is U'3E'd for each &; then thi'3 K-'>tati'3tic i<; identical to 

the F-<;tatistic. The cli'5tribntion of K and it'3 relation to likelihood ratio (LR) statistic 

nnder het01'Ogeneity is stndied by Good (In86). Krutchkoff (1985) obtained the critical 

valu0'> for K-<;tatistic. 

\Veerahandi (1991), Zhou and 1lathpw (1994) u'3pd p-valuE''3 to con<;tl'Uct exact pI'o-

cE'dlU'e" for comparing VC'3 in the mix0d lllodpl'3. By t <1king a generalil'ed approach to 

finding p-valnes, the da'5'3ical F-te'3t of the I-way ANOVA i'3 extended to the ca'3e of un­

equal error variances by \Veerahandi (In95). In the context of regI'e'5<;ioll, Koschat and 

\Veerahandi (1992) provided a cla'5'3 of te'3t'3 ba'3ed on p-value'3 to compare parameters 

of regres<;ion model'3 ill the pre'5ence and ab'3ence of conm1on parameter. 
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2.9.2 Testing For General Linear Model 

\\Te now di'lcnse:; the inference problem in general linear mixed effect., model. The large 

"ample tests of hypotheses can be carried out ming the \\Tald Chi-e:;quare tee:;t defined ae:; . 

The alternative tests inclnde the LR test 

As an improvement on the \~Tatd tee:;t in "mall e:;ample'>. one may al<;o n<;e the :MANOVA 

like F -te'lt 

fot' tl'sting tlH) hY}Joth(),>is Ho : (C' ~, C) (\ = O. Here C is d (c X q) contrast matrix of 
~ 

within-.,nhject ('ompari<;ou. The critical valuee:; for thi<; approximate tee:;t are obtained 

from tabled vnlne<; of F-(li'3tribution : F(tll 2&0 110- 50- 2). Here. c = T'lLnh·(C). 11 = T'anh{U). 

80 = min(c.II). n{) = [(n - q) - uJ/2. Thi<; <;mall sample t(\,>t i" asymptotically valid as 

eli <;Cll <;<;eel by VOlwsh a ne! Chinchilli (1007). 

Umkr uOl'mality a<;<;nmption'>, the gnndne<;e:; of fit nnd model <;eketion for repeated 

mea~l1l'e<; model" eau be carried out nsing LR test for nested modele:; and Akaike's 1nfor­

matinll Criteria (AIC) 01' Schwarez'<; Daye<;ion Criteria (SIZE) for UOll-1H:'"ted models. 

L(,t n<; c()llsid(\l' the following two lilW(ll' model<; (ne"tPd). 

Uodl'l I : if, = IX" X,,J [ ~: 1 + Z, b, + e, 

l'dodel II :,1}, = X I1 (11 + Z,b, + e, 
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To t(,r.;t Ho : n = 0 where C\ has dimen'5ion (81 x 1) and 0 ha'5 dimen'5ion (82 x 1), thp 
...... 1 ...... ] ...... .1 

LTI te'5t ir.; 

where II & l2 arc log-likelihoodr.; for fnll and reduced model'5. 

The LR t(,r.;t for neqted model i'5 '>ome what cumber'5ome particularly if one wi'5he'5 

to examine the robu'>tne'>'5 of model'5 to change<; 111 mean c1nd variance-covariance. An 

alternative approach i'5 due to Akalke (1974) which U'5e'5 likplihood ba'5ed measure with 

adjustment of pc1l'ameter<; in the model. The AIC is defined by 

AlC l(e) - 8' 

- lR(§) - 8' 

where t and ~ arc profile and restricted profile log-likelihood'i evaluated at 5(e) and 

e. s' = di1ll(n) + dim(B). The altermHive approach snc i'i defined <1'5 

SEC - l(e) - 8
1 In(N)/2 

- In(e) - 8' In(N - 8)/2 

who!'!' N i.., th<' total nnmuel' of observation. '~Thile comparing model..,. lcll'gel' the value'5 

of AIC or snc, till' bett!'r the fit. 

AlternativC' criteria <;inular to Rl-type measure may al'5o be ll'Ied to a'5'5e'i'5 the fit, as 

prnpo .... C'd hy Kral'3<,th (1985). Suppo'5e om model is the hypothetical model and :Modcl 

II be the nn1l model. AI'5o '5nppO'5e for 1Iodel I. ear (e,) = Ld' c1nd ear (e,) = LI2 for 

Model II. Lot .I}II bC' thr fitted value for 1lodel I clnd .0,2 be that for 2nd one. Then R2 

wllC'l't, ,~ i.., lilly po..,ltiw - definite matl'lX Elther I:1l or I:,2 may be dlO<,en for '~. Since 

llllli IIl()(.lf'1 Ilnd I:12 rcmain fixed, choo5ing 1~ = I:,.? would be cOll'5i"ltent with de'5irc of 
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havillg It gooduf'ss-of-fit measure that can be compared across different hypothesized 

modpl. 

U"ing the critE'l'ia E'5tablished by Kl'alseth. Vonesh et. HI. (1!)~)6) define a model 

concordancC' correlation coefficient that can be used a5 an alternative to R2 defined 

aboYf'. It j<; definC'd as 

,. = 1 _ L-,(Y, - Yld' (.II, - .O,d 
c L-,(!I, - 1) jp,)' (!I, - yjp,) + L-,(Y, - Y jp,)' (Y, - yjp,) + N(y - yF 

where .1", is (1), X 1) \lnit vector,:V = L-U,)/N. Y = L-.O'J/N are grand means !II) and YI) 
r('spC'ct.i vC' ly. 

Both R2 and "c providC' measure of goodness-of-fit. HoweVE'r, "c may be bet.ter in that 

it is directly interpretable as a concordance correlation between ob5€'rved and predict.ed 

valuE's. As a mE'a'iure of agreement 1 its value reflects how well a scattE'r plot of .lfl) verstts 

1/1) falls about thE' line of identity. Thus T'c doe5 not require "pecification of a null model 

since til€' line of identity serves as a point of reference. The range of "c is [-1. 1]. V,Te 

not€' here that T'c can easily be modified to allow for hC'terogeneity in !I by basing on 
~I 

certain transformation for .II . 
~I 
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CHAPTER- 3 

ASSOCIATION OF BIOCHEMICAL 

PARAMETERS IN CTC TEAS 

WITH TASTER'S CHOICE 

3.1 Introduction 

In the chapter we try to associate the chemical parameters in tea with the Tea Taster's 

choice, so that the significance of different biochemical quality parameters in explaining 

different quality attributes can be statistically assessed. We note here that the tea quality 

attributes are not directly measurable and are evaluated by the Tea Tasters using their 

sensory methods. In regression setup, the ordinal scores given by a Taster, on a partic4lar 

attribute, represent the response (dependent) variable. We restrict our study to those data 

sets, where only a single Taster evaluates the tea samples in terms quality attribute(s). 

We note here that the general practice in Tocklai Experimental Station, India, is to get 

the sensory analysis done by a single Taster only, possibly due to cost consideration. 

Only a few statistical studies have been made so far in these lines (McDwell et al., 

1001). Most of the studies are based on only total correlation between biochemical infor­

matioll and Taster's scores on individual liquor characteristic. Linear equations were set 

lip without proper data diagnostics. 

The series of papers by Biswas et al. (1971) attempt to associate Taster's scores 

on attribute like strength, briskness, brightness etc. with the overall quality scores. 

Associations have also been investigated between biochemical quality parameters and 

Ta.qter's choices 011 various liquor characteristics and on cash valuations; and thereafter 

the biochemical and botanical implications of the results have been studied. Their study 
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WIlB based on the North-East Indian plain black CTC and Orthodox teas. According 

to their findings, regardless of Tasters and method of manufacturing, four biochemical 

constituents: total oxygen uptake of unprocessed tea shoots, TF, theogallin (TG) ~nd 

epicatechin gallate (ECG) of black tea, are the main guiding constituents of N-E Indian 

plains tea. For tHe orthodox tea samples, the enzyme activity and ECG of unprocessed 

tea shoots along with water soluble solids (WSS) are of utmost importance. 

Although Biswas et al. (1971) contributed to a great extent in understanding the 

association of different chemical quality parameters with the Taster's choices, they could 

not provide sufficient information on the behaviour of different biochemical quality pa­

rameters towards individual quality attrihutes, though they had a strong data base for 
I 

these studies. Another important aspect left untouched is the subjectivity of Taster's 

choice while formulating the association. However, their study helped the biochemists 

and agronomists associated with the tea research to a great extent. 

Some progress have been made in relating certain groups of tea constituents to quality. 

Successful relationships have been demonstrated between the total theaflavins level& of 

Central African black teas and sensory evaluations or prices (Cloughley, 1981 and Ellis 

and Cloughley, 1981). Such relationships were positive but less successful for Kenya black 

teas (Owuor et al., 1986). The success obtained in the regression between prices and 

total (Flavognost) theaflavins for Central African black teas led to the suggestion that 

total TF level is the objective quality parameter (Davis, 1983) which may be used as 

standard in black teas. But this suggestion was opposed by producers whose total TF 

levels show little relation WitJl sensory evaluations (Othieno and Owuor, 1984) and it was 

argued that there may be other more important black tea quality parameters. In~eed, 

some .Kenyan black teas subsequently showed better relationship between the fiIQ..!lli!, and 

sensory evaluation (Owuor, 1992). Unfortunately, we can not site a single study in this 

liue specific to Indian black teas (except those of Biswas et aL, 1971). 

McDwell et al. (1901) studied the black tea sample using HPLC, collected from seven 

countries. Principal Component method was used to highlight the characteristic difrer­

ences in phenolic constituent levels lor different countries. Linear regression technique was 

69 



Ilsed to illvestigate the relationships between price (score) and phenolic constituent levels. 

They supported the great importance of phenolic chemistry In the determination of tea 

quality. The similar phenolics (TFs) appeared to be capable of explaining intra-regional 

as well as inter-regional variation in quality or value. They took the Tasters' scores on 

Rtructmed scale but did not address the problem of subjectivity in Taster's choices. 

From the studies made so far, it is clear that the quality/value depend on a complex of 

biochemical constituents and are region dependent. That is why it is more important to 

study 11 wider mnge of biochemical quality parameters and their influence on the overall 

quality or value. We try to study this aspect on the basis of the data provided by the 

tea industry. The insufficiency in data base limits our study, as information only on 

a few chemical parameters (that too for eTe teas only) have been provided to us. We 

cannot claim completeness of our statistical analysis which could otherwise provide a great 

statistical support service to the tea industry so far the aspects of tea quality assessment 

is concerned. 

3.2 Multiple Regression Analysis With Measurement Error in 

Response : A Discussion 

When a single Taster's score corresponding to a set of chemical information (explanatory 

variables) is available for a particular tea sample, we may formulate the linear regression 

model as 

where Ui represents the error due to Taster (i.e., corresponding to the observed value of the 

response) and ei is the random error compone,nt which includes the effect of unobserved 

or unobservable chemical components in explaining the quality. The above formulation 

typically represents a regression model with error-in-variable (ElV) in the regrassand. 

The effects of measurement error in the explanatory variables have long been recog­

nized (Fuller, 1!)87; Pa.l, 1981). But error in the response variable is often ignored. A 

reason is that errors in the response in standard linear model are inconsequential so long 
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as the asymptotic properties of the conventional least square (LS) estimators are con­

cerned. The usual LS method gives unbiased and consistent estimates of {J coefficients. 

With response measurement errors, the response errors get confounded with the equation 

error, and the effect is to increase the standard errors of the {J estimates. Thus, response 

errors can be ignored if we are only interested in the estimates of regression coefficieqts, 

especially in the simple situations. However, in more complicated regression models, cer­

tain types of response errors can not be ignored and it is important to explicitly account 

for the response error in regression analysis. A good text in this line is due to Carrol et 

al. (1995). 

COllsider our situation where the measurement error Ui is additive and is independent 

01' e, (nssumption). In this case the response measurement error can be ignored if ~he 

regression variance is homoscedastic. Here the only effect of measurement error is that 

the MSE is C1~ = a~ -I- a; and not a~. Thus, if we are not interested in estimating separate 

VCs (a~ and a~), then the response error can be ignored. Even in case of heteroscedaStic 

situation, the response error can be ignored under certain conditions. We note here that 

the variance components of the model are not identifiable without repeated observations 

on the response variable. 

3.3 Analysis of 4 Sets of Autumn Flush Data 

The four sets of CTC tea data (Data Set 1) nave been introduced in the introductory 

chapter. The biochemical parameters measured are TF, TR, B, TLC and total solvable 

solids (TSS). We note here that the information on Caffeine is not available which is 

otherwise known to be a very important biochemical parameter so far the CTC black tea 

is concerned. The same Taster evaluated the CTC tea samples in terms 'quality' and 

'value' on a structured scale of 0-10 points. The four sets of CTC samples were collected 

from the Tocklai experimental garden over four years in the autumn flush period only. 

The manufacturing/drying process is the same for all the samples. 

The basic statistics for the four sets of samples are presented in Chapter 1. The range 
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of correlation coefficients for all the variables under study are presented in-Table 3.1. The 

mean profiles for all the variables may be studied. We may test if the profiles for means 

of the variables for the four data sets under study are parallel and coincide. Here we are 

interested to test whether the means of variables under study differ significantly for all 

sets of samples or not. Similar test may be performed for the standard deviations as well. 

If both means and standard deviations do not differ significantly, we may pool the four 

data sets together and study the association. As discussed in the second chapter, the 

tests for parallel and coincident profiles are the F tests based on T2 statistics. The profile 

analysis may be performed using the SAS or STATISTICA computational packages. 

For the four sets of data we have nl = 25, n2 = 23, n3 = 25 and n1 = 21. For the mean 

profiles the estimated value of T2 is 3.67 and the 5% critical value of F with 1 and 90 

degrees of freedom is 3.92. Thus we may accept the hypothesJs of parallel and coincident 

mean profiles at 5% level of significance. But the same hypothesis does not hold for the 

profiles of standard deviations, as the calculated value of T2 is 12.89. It is clear from the 

Tnble 1.1 of Chapter 1 that the values of SD differ widely for most of the variables under 

study. 
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The most surprising aspect in the data is the variation in the correlation coefficients 

between different chemical parameters. As the four sets of CTC samples have the same 

origin and received the same manufacturing process, it is expected that the correl~tion 

pattern between the biochemical quality parameters would be similar. But as may be 

ohserved from Table 3.1, the ranges of correlation coefficients are wide enough. The 

widest among them is the correlation coefficients between Band TR (-0.44, 0.(0). This 

is rcally surprising. Also, the correlation between chemical parameters (TLC and TSS) 

and TaBter's scores on Q and V are not significantly high. Though the sensory scores are 

given hy the same Taster and the average levels of TF and TR do not differ significantly 

for all sets of sarpples, even than the correlation coefficients between quality attributes 

and TF and TR vary widely. This is partially due to the fact that the Taster's choice is 

subjective. 

For all four sets of samples th'c 'heteroscedasticity' problem has been the common 

featllre. We have used the X2 test for e2 and y and the e2 on X (Brusch-Pagan t~st, 

1980). To check for the 'multicollinearity' we have used the conditional index (Cl) test, 

which is defined as the square root of the ratio of maximum and minimum eigen values 

(Judge et al., 1985). If this ratio lies between 10 and 30, there is evidence of moderate 

to severe multicollinearity. For all the four sets of samples under study, these ratios have 

been found to be much below 10. In the presence of multicollinearity, we could opt for 

the Principal Component (PC) regression or the Ridge Regression technique (Judge et 

al., 1985). 

We have associated all the five chemical parameters with Q and V respectively. Owing 

to the problem of heteroscedasticity, we fit the linear regression model with dependent 

variable heteroscedasticity. For the model Yi = x~(J + ei, we assume that ei is a zero 

mean, serially uncorrelated process with variance function hi. A survey of approaches 

to the specification of hi is available in Judge et al. (1985). The dependent variable 

hcteroscedasticity form applied in our study is hi = (X~fJ)2Q2, where Q is a scalar param­

eter. This may be easily applied in SHAZAM econometric package which calculates the 

parameters using Quasi-Newton method. The regression results for all sets of CTC data 
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are presellted in Table 3.2 to Table 3.5. In the association of chemical parameters with 

Q, the estimated regression coefficients of TF are positive and statistically significant at 

5% level only in two cases. The slope coefficients associated with TR are all significant 

except for the fourth set of samples. The estimated coefficients for B are negative for 

three sets of samples and are sign.ificant only in two cases. The significant influence of 

TLC on Q is observed only for the second data set. TSS is significant only for the fourth 

datEl.. The sum of squares of errors (SSE) values are fairly small in all the cases. The 

values of adjusted R2 ranges from 0.36 to 0.54. 

The association of chemical parameters with V reveals the significant influence of 

overall TF level for the first three sets of samples. TR is significant only for the first set. 

B is significant only in two cases. TLC and TSS are insignificant in all cases. Comparing 

the values of fi.2, SSE and loglikelihood (In L), we may say that the fit is better with V 

than that with Q for all the four samples. 

The TF - TR interaction 

We tried the regression with TF and TR only. On the suggestion of the biochemillts, 

we incorporate the T F x T R interaction effect in the model. Here the interaction variable 

tend to be correlated rather strongly with the individual TF and TR. However, in case 

of only two variables the problem would not be that serious as it is likely to be with 

large number of interaction and higher order components. In simple cases the difficulties 

can be avoided by orthogonalizing the product and power terms with respect to the 

predictors from which they are constructed (Aiken and West, 1991). A simple procedure 

of orthogonalization may be to represent the interaction variable by the residual part. 

The procedure may be described as follows: 

We may regress TF x TR on TF and TR (fit the model TF x TR = a + b1 TF + 
U2 T R + residual), and save the residual as new variable TF"'TR. Note that TF"'TR has 

zero mean and correlates zero with both TF and TR, because it is a residual. With this 

Ilew variable (TF"'TR), the regression model would be 

Quality attrib'ute = a + b1TF + b2TR + baTF '" TR + error. 
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Here we may use the standard t-tesLs for the significance of regression coefficients. 

For all the four data sets, the TF*TR interaction compohent has been insignificant. 

This is certainly not supporting the general perception among the chemists about the 

importance of studying the interaction effects of these compounds. We note here that 

we have studied only the total TF and TR levels. May be, different TFs and TRs would 

guide Lhe interaction effects and their consequences towards other volatile compounds like 

caffeine. That is why it is necessary to study the HPLC data on different TF and TR 

levels. 

From the regression analysis on available data, we may say that TF is the most 

important chemical parameter in explaining the valuation of CTC tea. We may observe 

the variability in the partial correlations presented for all the chemical parameters. Similar 

are the findings of Biswas et al. (1971) for the N-E Indian plain black teas and Ellis and 

Cloughley (1981) for Central African Black teas. However, detailed study is necessary with 

several other important chemical parameters. Different TFs and TRs need to be studied 

separately, specific to the flush periods and on a continuous basis. The relationship 

between different chemical parameters and the pattern of their variation over samples 

and also over the flush periods are some important technical aspects which needs to be 

addressed in detail while associating the biochemical parameters with sensory analysis. 

3.3.1 Analysis of Data of Set 3 

As mentioned in the first chapter, this set of data was provided by the Tata Tea Ltd. 

(India). For a set of 50 CTC tea samples, the biochemical parameters measured are TF, 

TR, TLC and B. Analysis of TF is done by the method of Ullah (1984), based on the 

liquid-liquid extraction in presence of N a2 H P01 • TLC is measured from the whole 

aqueous extract being diluted with methanol. Duplicate analysis of each were done and 

the brightness is calculated from the measured biochemical parameters. The Taster's 

score is given on a 0-5 point scale. There are only three distinct values in the scores, viz., 

2.6, 3.0 and 3.4. 

The correlation matrix and other basic statistics for this set of samples has already 
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been presented in the introductory. chapter. 

Due to the multicollinearity problem (on the basis of CI test) we opt for the Ridge 

Regression technique here. We have also tested for the heteroscedasticity, and no evidence 

is founo against the hypothesis of homoscedasticity. The estimates obtained using Ridge 

Regression is compared with those obtained using the Ordinary Least Square (OLS) 

method. 

: The 01.S fit in this data is very poor and all the coefficient estimates came out in­

significant with relatively higher value of R2. This actually indicates the presence of 

possible multicoIlinearity. The OLS assumes normality of residuals. But OLS residuals 

for this data do not support the assumption of approximate normality. But the residuals 

obtained using Ridge Regression technique follow approximate normality with a slightly 

flat right-hand tail. As an alternative, we may also think of a robust estima~ion proce­

dure, like t.he Least Ahsolute Deviation (LAD) technique. This technique is reasonably 

efficient irrespective of the form of the error distribution and is elaborately discussed by 

.Tudge et al. (1985). But for the given samples, the LAD technique do not give a better fit 

in comparison to the Ridge Regression. We do not present the estimates obtained, using 

LAD t.echniqlJe here. The OLS and Ridge Regression results are presented in Table 3.6. 

We note here that of the 50 samples, only of 4 received the highest score (3.4). The 

medilJllI category quality rating (3) is received by 30 samples and the remaining 16 s~mples 

are evn.luated as poor or inferior score (2.6). We may divide the data into two categories 

on the basis of Taster's choice: The first group contains all those samples which received 

the scores 3.4 and 3. The second group includes 16 samples that received the poor score. 

We may test if the chemical parameters differ in their average level over these two groups. 

Tests reveal that only the average level of TR differ significantly at 5% level (t- test). 

We may also introduce dummy variables to test the significance of difference betw~en 

estimated regression coefficients for the chemical parameters. However, for the given 

set of data only the intercept varies significantly as evident from the estimated value of 

dummy coefficient (#dUmmy), which is positive for both OLS and ridge regression. In the 

linear regression model, the dummy variable is of the form: di = 0 if ith sample receives 
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lower rating and d, = 1 otherwise. 
I 

We note here that regression estimates are obtained for all samples and separately 

for first 40 and last 40 samples. This is done to predict the first and last 10 samples of 

the data set (Paul, 1999). Prediction performances using both Ridge regression and LAD 

method are presented in Table 3.7. As may be observed from the Table, the predictfon 

performance is better using the Ridge Regression method. 

As may be observed from Table 3.6, all the biochemical parameters have came out to 

be significant at 5% level along with the intercept. The coefficient estimate for B is neg­

ative. For the comparison of fit, the values of R?, SSE, loglikelihood, Akaike Information 

Criteria (AIC, 1973) and Final Prediction Error (FPE) are considered. Lower the val~es 

of AIC and FPE, better is the fit when we compare different nested or non-nested models. 

These are likelihood based criteria and remain same (theoretically) when we compare the 

estimates using OLS and Ridge techniques. 

3.4 Multiple Response Regression Model 

The Tl\.st.ers may evaluate the tea samples in terms of different quality attributes (e.g., 

strengt.h, quality, etc.) on a structured scale. The scales may differ among the attributes 

as well as among the assessors. Dealing with scores on different scales would be more 

complicated. We consider the situation where a single Taster evaluate the tea samples In 

terms of different quality attributes using the same structured scale, as is the situation 

in Data Set 2. This is a multiple response situation where for a given set of regressors 

(biochemical measurements), there are more than one response variables. 
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In regreHsion set lip, the approach of simultaneous equations systems for multiple re­

sponse dltta is appropriate and standard techniques are well developed in the literature. As 

n specinl CaRe, when the reduced form equations are same as the structural form equations 

as in the Zellner's seemingly unrelated regression equations (SURE), the system is always 

identified and the system equations may be estimated using the techniques discussed 

in Zellner (1962). We may also assume specific correlation structure of the disturbance 

terms. Such a specification is reasonable when estimating a number of related functions 

and the error components for these functions are likely to exhibit some correlation. Tris 

correlation between different disturbances at a given point of measurement is known as 

contemporaneous correlation. The disturbances at a given point of measurement might 

be expected to refiect some common unmeasurable or omitted infiuences. Contempora­

neolls correlation could be the result of these common factors that are not included in the 

regression. 

We outline the multiple response regression model and the estimation procedure in 

the following subsection. 

3.4.1 Model and Estimation 

Consider the following generic situation. For zth response variable, the linear regressIon 

set up for a set of n samples is given by 

y = X, fJ + e, z = 1,2, ... p 
""I ""t ""I 

(3.1) 

where Y and e are (n xI) vectors, X, is (n x k) matrix of known regressors and fJ is 
"", ""t ""i 

(k, x 1) vector of unknown coefficients. Stacking the data for all p response variables, we 

may write the multiple response regression model as 

Y=XfJ+e 
'" '" '" 

(3.2) 

where Y = (11 , Y , ... , Y )f, 
'" "'1 "'2 "'p 

X = dzag (Xl, X2 , ... , Xp), fJ = (fJ , fJ ... fJ )', and 
"'1 "'2 "'k 

C = ((] ,c '" e)'. Here Y and e has the dimension (np xl), 
I'V ""I ""2 ""p fV I'V 

X is (np x k) and /i is 
'" 

(k x 1) with k = L k,. 
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Suppose eij be the error component for jth sample in ith equation (j = 1,2, ... n). In­

troducing contemporaneous disturbance correlation, but no correlation between samples, 

we may write E(eij, elk) = ail for j = k and 0 for j =I- k. It implies E(~i~;) = ailIn for 

model (3.1) and the covariance matrix of the error component in model (3.2) would be 

, 
E(~~) = 

Dielman (1989) discusses the nature of gain when viewing the equations as a system rather 

than estimating them one at a time by OLS method. The GLS estimator of (J may be 
N 

obtained as fi = (X' <1>-1 X)-IX' <1>-l y by minimizing e' <1>-1 e = (y - X (J)'<1>P-l (y - X (J). 
""-I "'-J I"o.J N f'OJ N ',...,., 

The estimator of (J is unbiased with covariance matrix [X'<1>-1 X]-I. 
N 

Judge et al. (1988) discuss the estimated generalized least squares (EGLS) metho4 of 

estimating the (J for unknown 2:. Here we use the LS residuals e = y - Xi b to obtain 
. '''''i ""i ""'i 

the estimator t. b is the OLS estimator of (J. It may be shown that the ijth element in 

t is of the form 
""i "" 

~ 2 ~,~ " 1 2 
aij = -e.e., Z,J = , , . .. p. n N ,,,,) 

(3.3) 

It is easy to obtain the EGLS estimator of regression coefficient as (J = 
--1 --1 

[X'(2: ® In)X]-1 (2: ® In)Y. This is the Zellner's SUR estimator. 
"'SUR 

We may use an iterative approach to obtain the SUR estimator. After obtaining PS'r;R' 

We recomputed the residuals and apply the formula (3.3) to get revised estimate of aij' 

We substitute these revised estimate into t and recomputed the coefficient estima~es. 

Convergence criteria may be defined to achieve locally efficient estimates. Hiller et al. 

(1986) has shown that the iterative estimator and the ML estimator are equivalent. It 

is known that EGLS estimator is asymptotically superior to LS counterpart. The small 

sample properties of SURE have been studied by many researchers. We may simultane-
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ously estimate {J and E using likelihood based procedures. The asymptotic properties 
'" 

of ML estimators would be identical to the EGLS estimators of {J. But Monte Carlo 
'" 

evidence suggests that the iterative ML estimator is not uniformly better than the EGLS 

estimator in case of finite samples (Judge et al. 1988). 

We !lOW consider the problem of introducing an error component with the Taster's 

choice. For the ith response variable, the regression model may be written as 

y + U = Xi {J + e, i = 1,2, ... ,p, 
""i ""i Ni ""i 

where '!!;. = (UI, U2, ... , u,), is the vector of response error component for the ith response , 
variable. u and e are assumed to be independent with each elements in tt and e follows 

~ ~ ~ ~ 

(0, O'~i) and (0, O'~i) respectively. Here the only effect of response measurement error is 

that the MSE is O'~ == O'~, + O'~, and not O'~i' Thus the residual mean square is increased 

only without any effect on coefficient estimates. This is as well true for the multiple 

response model. So, the problem of response measurement error is otherwise harmless, so 

far the estimation of regression coefficients are concerned. Anyway, we can not help the 

estimation procedure without repeated observations on each response variable, if separate 

variance components for the measurement errors are of special interest. Had repeated 

measurements on each response variable been available, we could formulate the multiple 

response error component regression model. 

3.4.2 Analysis of Data Set 2 

The Data Set 2 has already been introduced in the first chapter. The three response 

variables on the basis of Taster's sensory scores are 'quality' (Q), 'strength' (S) and 'total 

valuation' or 'overall quality' (V). All the quality attributes have b~en evaluated or a 

same structured scale. On the basis of the biochemical knowledge discussed in the ijrst 

chapter and the perception of the Tea Ta.c;ter of Tocklai Experimental Station, we relate 

Q with TF, TR, BR and TSS; V with BR, TLC and S. It is believed that Q and V are 

related, as V is evaluated considering all the higher characteristics tog;ether. We have the 
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following systems of equations. 

Q = fJo+ fJITF+fJ2TR+fJ3BR +fJ1TSS+el 

V = fJ~ + fJ~BR + fJ~TC + fJ~S + e2 

The iterative EGLS method of estimation is applied to obtain parameter estimates along 

with their standard errors. The estimates obtained applying SUR procedure along with 

different test criteria are presented in Table 3.9. For estimation the convergence tolerance 

was set at 105 and local convergence was achieved after only 9 iterations, obviously showing 

very low estimation cost. 

We have applied both Breusch-Pagan lagrange multiplier (B-P LM test, 1980) and 

the likelihood ratio (LR) test of Conniffe (1982a) to investigate whether the estimated 

covariance matrix, ~, is diagonal or not. The null hypotheses are of no correlation among 

rcsponHe variates. We note here that both LM and LR test sta~istics have, asymptotically, 

chi-square distribution with 1 dr. The calculated values of X2 for LM and LR t.ests are 

15.827 and 29.552 (Table 3.9). Clearly the hypothesis of diagonality of estimated covari­

ance ITIll.trix is rejected here with a strong evidence of the presence of contemporaneous 

correlation. ITence the application of SUR method is justified here. An improvement in 

the precision of the estimates may be observeq applying SUR method against the QLS 

count.erpart (Table 3.8 and Table 3.9). Note that S.E. of the regression coefficients from 

EGLS nrc Hmaller than those from OLS, resulting from the gain in efficiency due \'0 EQLS 

ovor OLS. TIle OLS fit of the equation involving Q shows very poor per/ormll.l1ce with 

low n'J vallie and very high residual sum of squares (SSE). Similar is the performance of 

OLS fit for the equation involving V. 

From Table 3.9 we observe that the biochemical parameters TF, TR, BR and the 

quality attribute S are statistically significant at 5% level of significance. BR is included 

in both the equations. It may be observed that BR is statistically significant to explain 

quality (Q) but not that for V. In this situation we apply both asymptotic normal t.est 

and the Wald's chi-square test to investigate the hypothesis of no difference between the 

,estimated coefficients B(BR) and B'(BR). The calculated values of normal statistic and 
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t.\to ,'('1 Ht.nt.iHLic (with 1 cl.f.) are -1.7272 and 2.9832 respecpvely wiLh p-va!tws 0.0841 in 

boLh CURes; clearly indicating no signiricant difference between the estimated coefficients. 

We note that for large samples these test statistics are equivalent. We may also test 

whether all the regression coefficients in SUR model are zero or not. The test statistics 

discussed by Dielman (1989), is a chi-square one which following central X2 distribution 

with (p - l)k dJ. Here p denotes the number of equations and k denotes the number of 

regression parameters. The estimated value of X2 (139.05, presented in Table 3.9) strongly 

suggests non-zero coefficients. The value of system R2 (0.78) is also reasonably high. 
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Table 3.1 : Range of correlation coefficients between 

the variable for four sets of samples 

V (0.92 - 0.99) 

TF (.20 - .52) (.19 - .56) 

TR (.30 - .55) (.29 - .55) (.16 - .56) 

B (- .33 - .64) (- .29 - .07) (.13 - 0.7) (- .44 -.6) 

TLC (- .22 - .46) (- .20 - .39) (.13 - .46) (- .32, .14) (.20 - .44) 

TSS (- .05 - .44) (- .04 - .26) (- .01 - .52) (- .26, .60) (.17 , .56) (.05, .37) 
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Table 3.2 : Regression results for first set of samples 

Estimates S.E. t-ratio Partial Correlation 

/30 -35.759 16.77 2.132 -0.45 

iJrF 18.519 5.195 3.564 0.64 

iJrn 0.6595 0.2050 3.224 0.61 

fiB -0.5245 0.1308 4.01 -0.69 

finc 1.1435 .D464 1.208 0.27 

{irss -0.6461 OA39 1.472 0.33 

n'J 0.54 

SSE 0.0734 

In L -39.81 

/30 -2.0231 17.08 0.1184 -0.03 

iJrF 5.2913 2.198 2.4073 0.63 

iJrR 0.2660 0.1200 2.216 0.46 

fiB -.1752 0.0782 2.240 -0.47 

f3rLC 0.2866 0.5132 0.5595 0.13 

f3rss 0.1317 0.4332 0.2917 0.07 

R2 0.43 

SSE 0.0183 

In L -24.063 
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Table 3.3 : Regression results for second set of samples 

Estimates S.E. t-ratio Partial Correlation 

Po -6.9431 22.80 0.3045 -0.08 

iJrF 7.2749 3.053 2.381 0.44 

!3rn 0.7900 '\ 0.2546 3.103 0.61 

PH -0.3154 0.2380 -1.325 -0.31 

flnc 3.3711 1.029 3.277 0.63 

fh.ss -0.1288 0.645 0.1997 -0.05 

fl2 0.49 

SSE 0.061 

In L -34.93 

flo -14.209 12.81\ 1.106 -0.27 

/J.CF 6.1134 2.675 2.285 C).50 

(Jrn 0.1965 0.1393 1.31 7 0.31 

{JH -0.1632 0.1390 1.174 -0.28 

{Jnc 0.6597 0.6911 0.9545 0.23 

hss 0.4112 0.3565 1.153 0.28 

Fe 0.51 

SSE 0.016 

In L -20.60 
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Table 3.4 : Regression result for third set of samples 

Estimates S.E. t-ratio Partial Correlation 

{Jo 3.976 8.238 0.4827 0.12 

f>rF 15.441 9.844 1.568 0.28 

f>rR 1.3243 0.5777 2.298 0.49 

fiB -0.2173 0.3307 0.6571 -0.15 

fiTLe 1.1139 1.652 0.6744 0.16 

fJrss 0.0863 0.1378 0.6261 0.15 

17.2 0.36 

SSE 0.0768 

in L -42.50 

fio 7.1877 4.552 1.579 0.35 

fJrF 5.1622 2.357 2.1735 0.56 

[J,rR 0.4288 0.3196 1.341 0.30 

fiB -0.1589 0.1892 0.8401 0.19 

rJ.nc 0.5651 O.8!)~O 0.6324 0.15 

r}1'88 0.0285 (U)75D 0.3753 0.09 
I 

fl'l 0.39 

SSB 0.0205 

in L -26.84 
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Table 3.5 : Regression result for fourth set of sample 

Estimates S.E. t-ratio Partial Correlation 

flo -53.804 23.63 2.277 -0.52 

/h'F 2.5143 4.858 0.5175 0.10 

fh.R -0.1377 0.5100 0.2700 0.07 

~B -1.0420 0.5039 2.068 0.48 

iJrLC -2.3556 1.958 1.203 0.31 

{J.rss 1.2230 0.5470 2.2360.51 

f?2 0.5] 

HSE 0.0504 

in L -28.7228 

~o -16.467 12.30 1.338 0.34 

ihF 1.3830 3.586 0.3857 0.10 

ihR -0.0897 0.3583 0.4456 -0.09 

~B 0.6232 0.2685 2.321 0.53 

fJrLC -0.9274 1.025 0.9046 -0.24 

ihss 0.4170 0.2815 1.481 0.37 

fl2 0.49 

SSE 0.011 

in L -14.38 
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Table 3.6 : OLS and Ridge estimates for Data Set 3. 

Estimates OLS Ridge 

/lo 2.4646 2.34 

(1.906) (30.00) 

/J.rF -0.135 0.179 

(1.749) (4.74) 

/JrR 0.121 0.13 

(1.430) (5.43) 

/J.rLC 0.476 0.475 

(1.54) (7.56) 

/lB -0.956 -0.955 

(1.767) (2.767) 

R.2 0.59 0.74 

SSE 1.307 0.1794 

in L -40.76 -8.784 

AlC -2.614 -3.67 

FPE -0.569 -0.269 

{Jdummy 0.1925 0.965 

(8.602) (29.60) 
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Table 3.7 : Prediction Result 

Observed Ridge Prediction LAD Prediction 

First set Last set First set Last set First set Last set 

3 3 2.945 3.012 2.935 3.226 

3 3 
\ 

2.976 3.002 2.937 2.957 

3 2.6 3.025 2.70 3.04 2.634 

2.6 2.6 2.531 2.641 2.473 2.712 

3 2.6 3.021 2.680 3.20 3.004 

, 

3.4 3 3.31 3.002 3.082 2.740 

2.6 3 2.496 I 3.012 2.438 2.941 

3.4 3 3.297 2.977 3.118 2.860 

3 2.6 2.989 2.611 2.99 2.610 

3 3 3.011 3.012 3.021 2.923 

Sum of Sqr. of 0.0392 0.0192 0.2733 0.3266 

Prediction Error 
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Table 3.8 : OLS results for individual equations 

Equation for Q Estimates t-ratio 

fJ (intercept) 7.1895 1.59 

fJ(TF) 4.35 1.60 

fJ(TR) 0.4044 2.90 

fJ{BR) -0.1599 1.61 

(j(TSS) -0.1768 1.54 

R2 0.16 

SSE 28.48 

In L -174.614 

Equation for V 

(j'{intercept) 5.9911 4.44 

(j'{BR) -0.0077 0.449 

{l'{TLC) -0.035 0.2788 

{l'{S) 0.3751 23.58 

R2 0.58 

SSE 18.85 

In L -172.614 
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Table 3.9 : EGLS Estimates of regression coefficients 

and the values of test statistics 

Coefficients/Test Values Estimates t-ratio 

fJ{TF) 5.4966 1.965 

fJ{TR) 004884 3.075 

fJ(BR) -0.1896 1.962 

fJ(TSS) -0.1963 1.470 

fJl(BR) -0.0043 0.2678 

fJl(TLC) -0.0804 0.5991 

(JI(S) 004081 24.659 

R2 0.78 

X2 139.05 (7 d.f.) 

LM test 15.827 (1 d.f.) 

LR test 29.552 (1 d.f.) 

In L -170.61 
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CHAPTER- 4 

SMALL SAMPLE ESTIMATION PROBLEM 

WITH BOX-COX TRANSFORMATION 

APPLICATION TO TEA QUALITY 

ASSESSMENT DATA 

4.1 Introduction 

In the last chapter we have used only linear models to associate the biochemical infornla­

tion with Tea Taster's choices made on tea samples. In statistical studies linear models 

are applied with the assumption of homogeneity of variance, simplicity of structure for 

tllC expected value of the response variable and approximate normality of the additive 

errors. The independence of errors is also assumed. 

Bill it may not always be possible to satisfy the above mentioned requirements in 

the original scale of measurement of the response variable. There may be inherent non­

linearity in the data. In such a situation a non-linear transformation of the response 

variable may yield homogeneity of variance and, at least approximately, normality of the 

error. A better fit may thus be obtained. 

Tn this chapter we explicitly deal with the possible non-linearity in a tea quality assess­

ment data. The Box-Cox transformation technique is applied to a particular data set to 

achieve better fit. A vast literature is available on the transformation techniques (Atkin­

son, 1985), especially on Box-Cox technique (Box et al., 1964). Section 4.2 presents a brief 

discussion on the needs for transformation from application point of view. A brief review 

of literature on Box-Cox transformation and on related studies is presented in section 

4.3. There are two approaches of estimation in the Box-Cox transformation model - (i) 
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maximization of likelihood function for the transformed model, (ii) minimization of SSE 

for the normalized transformation model. We note here that the inference procedures in 

the Box-Cox transformed model are basically based on large or moderately large samples 

(Carrol and Ruppert 1987, Atkinson 1~85). Since in our quality assessment study, we 

deal wit.h small sample size, it is important'to investigate the performance of the usual 

estimation approaches with small sample data. An alternative non-linear least square 

method of estimation for Box-Cox transformation model is proposed, which is expected 

to give more robust estimates of parameters compared to those obtained through the usual 

estimation procedures. However, the inference procedure and other statistical properties 

of the proposed method of estimation are not discussed. In section 4.4 we try to st4dy 

different possible estimation problems in the transformation model with small samples. 

The usual inference procedures for the transformatio~ model are briefly discussed in sec­

tion 4.5. The analysis of the Data Set 4 using different estimation procedures is presented 

in section 4.6. 

4.2 Motivation Behind Nonlinear Transformation 

As mentioned in the introductory section, if the fundamental assumptions behind a linear 

regression model is not satisfied, a nonlinear transformation of the response variable may 

reasonably meet the homogeneity and approximate normality requirements. Given a data 

set, the usefulness of a transformation may be indicated by empirical evidences. The non­

negativit.y of the response variable may be one indication (Atkinson 1985). In this case 

t.he log of response is likely to be more close to normality. However, if the values of 

response are far from zero and variation among the values of response is relatively small, 

the transformation may have little effect. 

To see whether there is any outliers one may use a normal plot of the residuals before 

and after transformations. The presence of outliers or, more particularly, the depart4res 

from the assumptions in the residuals, is sometimes an indication of the need for transfor­

mation. But, we note here that, if the presence of two or three outliners is an indication 
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of the need for a transformation, we may delete the outliers from the data set and then 

rUII the linear regression. Deletion of the outliers may be possible in case of large samples 

and if the deleted observations do not effect much in the analysis. But if the inclusion 

of all the observations is very much necessary for the analysis, and particularly, if the 

sample size is small, then we can not afford to delete the outlying observations. In such 

a situation, we have no way out but to opt for a suitable transformation. 

Of many transformation possibilities, the most popular one is the parametric family 

of transformations. analyzed by Box and Cox (1964), which brings out the choice of a 

transformation within the framework of standard statistical theory. In the followlng 

section we briefiy present different aspects of Box-Cox transformation. 

4.3 The Box-Cox Transformed Linear Model : A Brief Review 

Box-Cox (1964) proposed the following parametric family of power transformation 

{

zt::! 
yeA) = >. 

log Y 

(A =1= 0) 

(A = 0) 
(4.1 ) 

In the absence of a transformation we have A = 1 and the value of the transformation 

for A = 0 is found as the limit of (4.1) as A ---t 0 . Thus the function is continuous at '0' 

as l im>.--+o Y~l = In A. 

A Box-Cox transformed linear model is a model that usu/illy takes the following form: 

for some unknown real value A and i = 1,2, ... , n, 

(4.2) 

where e;'s are iid N(O, (72). The intention is that, for some A, E [yeA)] = X fJ with yeA) 

satisfying the condition of variance homogeneity, independence and additivity. Also it is 

expected that, to an adequate degree of approximation, yeA) will be normally distributed. 

The power transformation (4.1) is only one of many parametric families of transf'or­

mntion developed by different researchers. A detailed account of such transformations is 

presen/.ed in Atkinson's book (1985). There is an extensive literature on the estimation 
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aspects as well as the problems in application of Box-Cox transformation (for instance, 

Egy and Lahiri 1979; Savin and White 1978). Collins (1991) reviews several techniques 

useful for forming point and interval prediction in regression models with Box-Cox trans­

formed variables. Monte Carlo studies are made to examine the small sample accuracy 

using the techniques proposed. A related study is due to Carrol and Ruppert (1981), who 

study the cost, in terms of forecast mean squared error, of estimating >.. 

Carrol (1982) discusses how one can test the regression parameters within the context 

of'the Dox-Cox power transformation family. He proposes a simple conditional test which 

consists of estimating the correct scale and than proposes the use of usual linear model 

F-test in this estimated scale. He investigates situations in which this test has the correct 

level asymptotically as well as comparable power to \Vald's test or the LR test. Box and 

Cox (1982) and Hinkley and Runger (1984) take a conditional approach that essentially 

says that one should make conditional inference for an appropriately defined regression 

parameter, conditioned on the data based >.. Cox and Reid (1987) arrive at a similar 

conclusion to that of Hinkley et al.(1984). Recently Chen and Lockhart {1997} study 

the Fisher information matrix and in particular, it's inverse, for unknown parameters 

in the likelihood based analysis of Box-Cox model. They discuss the inference problem 

associated with {j when>. is estimated from the data. Both conditional and unconditional 

inference procedures are studied. 

We note here that most of the studies based on Box-Cox model, in our knowledge, 

deal with the large sample problems. We do not have specific information about any 

study dealing with the likely problems is applying Box-Cox transformed linear model to 

small sample data. Certain complexities may arise in making inference about {j when >. 

is estimated from the data, in case of small sample size. In the following section we try 

to make some comments on the possible problems that may arise in this situation. 
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4.4 Some Comments On The Estimation Problem 

The likelihood function (LF) for the transformation model (4.2) may be written as 

L = (~ (]) n exp [- 2:2 (y(,X);- Xf;I)' (y(X) - X,B)] J , (4.3) 

where J = (nYi)>.-l is the term due to Jacobian of transformation. The ML estimate of 

f;I for given '\, which we denote by S(,\), is the least squares estimate given by S(>~) = 
(X' X)-l X'y('\). The sum of squares of errors of the y{,X) is 

SSE('x) = Y(,\)'{I - X{X'X)-lX'} y{'x} 

(4.4) 

= y(,\)'(I - H) y(,\) = y(,\)' M y('\). 

The ML estimate of the residual variance is &2(,\) = SSE(,\}/n. For fixed '\, the profile 

loglikelihood (using the estimators of f;I and (]2), apart from the constant, may be written 

lmax('x) = -% In &2{,X) + In ~, 

which is a function of '\, and clearly d'epends on SSE('\) and the Jacobian J. 

An equivalent form for lmax{'x) may be found by using the normalized transformation 

1 
Z{,X) = y(,\}/ In. 

For the power transformation (4.1), we have a~J:) = y;-l, so that log J = (,\ -

1) Li log Yi' Under this transformation we see that the Yi values are divided by their 

geometric mean (GM). Let the GM of Yi values be G(y). Then the normalized power 

transformation is 

Z{'x) = U>'-l 
>.(G(y)JX-1 (,X f O) 

(4.5) 

= G{y) log y (,X = 0). 

Apart from a constant, the partially maximized log-likelihood of the observations can be 

written as 
n 

lmax{'x) = -2" In [R{,X)/n] 
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where R(A) = Z'(A) M Z(A) is the SSE of the Z(A). 

Here maximization of the likelihood function becomes equivalent to minimization of RSS 

of the transformed values. This is true as long as GM of the response values are re­

garded as constant. In fact a simple modification of the transformed estimates would give 

the estimates for original parameters. The loglikelihood function in original parameters, 

without the constant term is 

-i in a2 
- 2~2 [Y(A) - X,8]' [Y(A) - X,8] + (A - 1) E In Yi . 

Now suppose each response value is multiplied by a constant C and we maximize the 

loglikelihood function to estimate the parameters. In this case we have 

n 1 (')2 1" (C>.yt-1 r~' r~' rol,)2 -2" n a - 2(0")2 L. A - IJO - 1J1 Xli - ..• - IJk Xki 

+(A - 1) L In (OYi) + n In 0 

_, n 1 (')2 1" (C>.y;-l_C>'+C>'-l r~' r~,)2 - - 2" n a - 2(0")2 L. A - IJO - ••• - IJk Xki 

+(A - 1) L In (OYi) + n In C 

_ n 1 (')2 1" [OA CAl OA r~' r~'] 2 - -2" n a - 2(0'/)2 L. Yi + - IJO - ••• - IJk Xki 

+(A -1) L In (CYi) +n In 0 

_ n 1 (')2 1 (0)')2 [A {J' -c(>') {J' {JI] 2 - -2 n a - 2(0")2 L Yi -~ - §;- Xli - '" - §It Xki 

+(A - 1) L In ((7Yi) + n in 0 

= -~ in (a')2 - ~7u~l: L [Y; - f30 - ,81 Xli - .•• - f3k xkit 

+(A - 1) L In (CYi) + n In 0 

= -~ In (a)2 - 2(!)2 L [yI>') - (10 - ,81 Xli - •.• - ,8k xkit 

+(A - 1) L In (Yi) , 

where (a)2 = (a')2/(CA)2. r~ _ ,8b - C(A) /~ _ ,8~ /~ _ f3;' 
. ,IJO - OA ,1J1 - OA"" IJk - C>" (4.6) 

Thus the original estimates can be obtained from (4.6). The estimate of A does not differ. 

The same comment is applicable when C == G~ and G M is regarded as constant. But 

GM being a function of all the Yi values can not always be regarded as constant. Let 
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us now try to develop the form of likelihood function under varying GM. The underlying 

transformation is 

The derivatives of the Jacobian of transformation may easily be obtained as 

1 
_..11i... (nYltn , iij IIYi 

8Zi 
= 

aYj 
_ (IT y~)-f; + (n Ylr* , i=j 

It may easily be examined that the determinant of this matrix is zero: 

I-n 

1ll. 

18(ZI,Z2'"ZII) 1 = (nYir
l III 

a(Yl, Y2 ... YII) nil 

lln. 
III 

Yl(1 - n) Yl 

= (nYi)-2 
Y2 Y2(1 - n) 

nil 

Yn Yn 

(1- n) 1 

1 I-n 

= 
(nYi) -2 

nn 

1 1 

III !ll. 
III lin 

I-n 11l. 
lin 

lln. 
III 

I-n 

YI 

Y2 

Yn(1- n) 

1 

1 

I-n 

=0, 

since the sum of the rows in the matrix is equal to zero vector. 

(4.7) 

(4.8) 

Instead of transformation twice (first by A-transformation and than dividing Yi values 

by their GM), we may consider the normalized power transformation (4.5). This also 
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stlfrers rrom the same derect, as expected. The Jacobian or transformation is again zero. 

The result has a serious implication on the estimate of SE of the parameters. In this 

cas~ the estimates obtained by minimizing ESS of the transformed response values need 

not be same as those obtained by maximizing the loglikelihood function. But it is always 

possible to obtain one set of estimates from the other. So these are equivalent procedures 

as long as we are interested only is estimating the parameters. However, the SE's of the 

estimates will differ for these two procedures, as because the GM should not be regarded 

as a constant. The problem would be more serious in case of small samples, and further 

investigation is necessary to study the likely complexities in estimating the SE and to go 

for inference. Asymptotically, however, both the procedures will result in the same value 

of S.E. 

When the minimum of Y values (Ymm, say) approaches zero, the likelihood function 

defined in (4.3) or the corresponding loglikelihood, when maximized, becomes unbounded. 

The minimum value of ESS of the transformed observations becomes zero. This is because 

GM is very much sensitive to small observations. As Ymm approaches zero, the GM also 

approaches zero. Change in GM value is significant even for a small change in Ymir" when 

Ymm is close to zero. Thus GM can not be regarded as constant. 
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The Box-Cox power transformation discussed above is based on the implicit assump­

tion that the apparent origin of the response variable is a true lower limit. In general 

linear model, the subtraction of a constant may be required before taking transformation. 

In this case only the value of the intercept is affected leaving other aspects of the model 

unchanged. But the effect of changing the values of the response variable by shifting the 

origin, before transformation, may be serious. This may alter many aspects of the fitted 

model, including the estimate of A. The empirical necessity for such shift in origin in the 

transformation model is discussed by Atkinson (1985, p. 184). The normalized form of 

the transformation introducing a shift parameter J-L, compared to (4.5) is 

(,\ -I 0) 

Z(,\, J-L) = (4.9) 

(,\ = 0), 

where G(y + J-L) is the geometric mean of the constructed response variable after shift is 

origin. 

In this formulation (4.9) also the problem of estimation become severe. If J-L approaches 

- Ym'fI' there is at least one value of Y + J-L which becomes very small, so that G(y + J-L) 

also becomes very small. In this situation the likelihood function becomes unbounded or 

the ESS zero. 

One way to resolve the problem of shifted origin, we think, is to obtain a nonlinear least 

square solution by minimizing l:(y, - y,)2, where y, is the estimate of the untransformed 

y,. For the transformation with shift parameter: 

we may obtain y, as 

(y+e)"-l 
A 

y(A, J-L) = 

In (y + IL) 

Y. =! 
['\(x~,8 + IJ~ - IL 

Exp (x~,8) - IL, 
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The above formulation is straightforward from the relationship (11'+1)>'-1 = x~,B+ei for ,x =1= 

o. 

4.5 The Testing Aspects in Transformation Model 

Extensive studies have been made by researchers to investigate the testing aspects of 

regression parameters within the context of Box-Cox transformation family. To refer a 

few among many others: Carrol (1982), Box and Cox (1982), Hinkley and Runger (1984), 

Cox and Reid (1987). Recently Chen and Lockhart (1997) discuss the inference problem 

associated with ,B when ,x is estimated from the data. 

The main aim is to test whither a transformed model fit better in comparison to the 

linear model for a given data set. Thus the null hypothesis is Ho ,xo = 1 against the 

alternative H1 ,xo i= 1. The likelihood based test is used iI1 general. To compare ~he 

likelihood for various values of ,x, Lmax(,x) can be plotted over a range of plausible values. 

An approximate 100(1 - a) per cent confidence region for ,x is found for those values for 

which 

(4.10) 

We note here that the SSE, S(,x) = y(,x)'[! - X(X'X)-1 X'] y(,x) = y(,x)' My(,x), 

of the transformation (4.1)' can not be used to compare the adequacy of the models for 

various values of ,x. This is because of the change of scale on transformation. However, 

R(,x) = Z(,x)' MZ(,x), the SSE based on the normalized transformation (4.9), can be 

used as the basis of an approximate method for making such comparisons. But in case of 

small samples, this approach also has a serious drawback. This is because the sampling 

variability of the geometric mean of y, which is included in Z(,x), is ignored. In case of 

small samples we can not consider GM(y) to be constant. The problem becomes severe if 

the minimum values of y approaches zero. However, asymptotically sampling fluctuation 

of GM(y) becomes less important and the distribution of Z(,x) converges to that of y(,x). 

That is why, in small sample situation, we think .that the comparison of the confidence 

regions for,x based on S(,x) and R(,x) should be compared. In terms of R(,x), the confidepce 
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region for A includes all those values for which 

(4.1)) 

As noted by Atkinson (1985), the confidence regions based on SeA) and R(A) are asymp­

totically equivalent. In case of small sample, the confidence interval (4.11) will be broader 

due to term 'n' is the denominator, as compared to the region (4.1O). 

4.6 Analysis of Data Set 4 Using Box-Cox Transformation 

Model 

Here our primary aim is to associate the biochemical information for 23 CTC tea samples 

with the sensory evaluation made by a single Taster. We first fit the linear regression 

model. The estimates of regression parameters along with other information about re­

gression diagnostics are presented in Table 4.1. As evident from the table, the OLS offers 

a very poor fit with low adjusted R2 (= 0.28) and hence with comparatively higher value 

of SSE. All the biochemical quality parameters except CF are statistically insignificant, 

as evident from the t-ratios (or p-values). To test the normality of residuals we apply the 

X2 test of normality of residuals. The hypothesis o(symmetric residuals is rejected at 5% 
level of significance. 

Guided by asymmetry of residuals and the poor OLS fit, we try the Box-Cox trans­

formed linear model. We first obtain the estimates of parameters by maximizing the 

likelihood function (4.3) of the transformed model. The estimates along with information 

required for diagnostics are presented in Table 4.2. Apparently this gives a better fit in 

the sense of higher value of if? (= 0.51) and the value of SSE (10.2872). Only the quality 

parameter CF is statistically significant along with the intercept term, as evident from 

the conditional t-ratios. This conditional t-ratio is referred in section 4.3. Comparing the 

loglikelihood values of Table 4.1 and 4.2, we see that the twice of the difference between 

the loglikelihood values is greater than 3.83, the 5% value of X2 with 1 df. Thus using the 

confidence region (4.10), we may reject the null hypothesis Ho : A = 1 at 5% level. 
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Apart from SSE and loglikelihood, we may also use some information criteria to com­

pare tlle fit. Some popular likelihood based information criteria are: Akaike Final Pre­

diction Error (FPE), Akaike Information Criteria (AIC) and Shibata Criteria (SC). A 

detailed discussi9n on these information criteria is available in the book of Judge et al. 

(1985). Lower the values of these criteria better is the fit. In our case, the values of these 

information criteria are much less for transformation model as compared to those for the 

general liner model. 

The ~alues ofloglikelihl;>od and SSE [8(A)J for vari?us values of A, around the optimum 

value (>. = -1.79), are presented in Table 4.3. Note that because of change of scale on 

transformation, the SSE [8{>.)J values can not be used to compare adequacy of the model 

for various values of >.. To compare the various values of >., L{>.) can be plotted over a 

range of plausible values. An approximate confidence region for >., using (4.10), in this 

case is (-1.75, -I). 

Another approach in estimation is to minimize SSE for the normalized transformation 

Z(>.) defined on (4.5). Here R(A) = Z(>')'(1 - X'(X'X)-lX] Z(>.) is the SSE. The R(>.) 

values for various values of >. may be considered as the basis of an approximate method 

of making comparison for model adequacy. But as we have mentioned in section 4.4, 

the sampling variability of GM(y) may seriously affect the estimation in case of small 

samples. In this situation, maximization of loglikelihood and minimization of SSE [R(A)] 

will not give similar results, A being estimated from the data. For small sample, the 

estimates obtained using both the approaches, which are otherwise equivalent, should not 

be compared. However, asymptotically sampling Huctuations in GM(y) is not important 

and the distribution of Z{>.) converges to that of y(>.). 

The values of SSE for various values of >., obtained through minimization of R(>'), 

are presented in Table 4.4. The optimum value of ~ is -1.7894 with SSE = 9.0266. It is 

interesting to observe that although the estimated values of >. are approximately equal for 

both the methods of minimum SSE and maximum loglikelihood, the SSE values differ. 

The estimated fi coefficient, obtained by normalized transformation, are: fio = 133.3119, 

fiTF = 0.6517, fiTR = 0.1242, fiCAF = 0.0897, fiCF = -0.6298, fiA = -0.5943. These /J values 

104 



are different from those presented in Table 4.2. One of the reasons for these differences 

in the estimates obtained is the effect of the sampling variability of GM(y). The plot 

of SSE against>. is presented in Figure 4.1 with 9Q per cent confidence interval line. 

The estimated values of X2 (using R(>')) is 4.4046, rejecting the null hypothesis of >. = 1 

at 5% level of significance. The confidence region for >. takes all those values of >. for 

which the SSE values are below the confidence like in Figure 4.1. An approximate 95 per 

cent confidence interval for>. is (-1.79,0.9474), which is much wider than the confidence 

interval obtained through maximization of loglikelihood. 

Thus we observe that in case of small samples, the usual estimation approaches in Box­

Cox transformed model may give misleading results. The problem may be more severe if 

the minimum value of y approaches zero after transformation, when we use the normalized 

version Z(>.). In this situation the non-linear least squares (NLLS) approach, proposed in 

section 4.3, is expected to give more stable estimates. This approach is likely to be mpre 

robust as compared to estimation from Z(>.). With this approach, the estimated value of 

>. is 0.6703 with SSE = 9.0233. The percentage of variation explained is 57.1. A fall in 

the value of SSE as compared to those in Table 4.1 and 4.2 may be observed. Note that A 
= 0.6703 is within the confidence limit obtained through normalized transformation. The 

estimated values of regression coefficients, obtained using NLLS method are flo = 8.2586, 

fiTF = 0.1956, fiT[l = 0.0493, fJCAF = 0.1516, fJCF = -0.3530 and fJA = -0.3421. 

4.7 Concluding Remarks 

On the basis of our study, we may say that the likelihood based approach of estimation 

in Box-Cox transformation model should not be adopted in case of smaH sample data. 

The approach of minimization of SSE for the normalized transformation is sensitive to 

sampling variability of GM(y). The confidence region for>. is unduly broadened due to the 

efrect of small sample size. The proposed non-linear estimation approach, which is very 

trivial, seems to be more robust than the usual estimation approaches. Moreover, since 

the problem of normalization of the transformed model is not involved in the estimation 
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process, it can be applied to small sample. 

In this chapter we have not addressed the problem of subjectivity (error) associated 

with the response. As discussed in the last chapter, the response measurement error 

dose not pose much of statistical problems, apart from affecting the standard errors of 

the regression coefficients. However, we may theoretically formulate a transformation 

model incorporating the error component associated with the response variable. Such a 

formulation is presented as Note! in the concluding chapter. 
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Table 4.1 : OLS estimates and information for regression 

diagnostics for Data Set 4 

Estimates S.E. t-ratio p-value 

flo 15.2959 6.3571 2.4061 0.027 

fJrF 0.084 0.2388 0.3528 0.73 

/"lrR 0.1028 0.2684 0.3831 0.70 

{JCAF 0.0938 0.2569 0.3651 0.71 

flCF -0.5405 0.2101 -2.5723 0.02 

flA -0.1962 0.1965 -1.0015 0.33 

SSE 11.9310 

(72 0.664 

R2 0.28 

FPE 0.8108 

AlC 0.7233 

SC 0.8009 

X2 normal 11.6944 

In L -24.0818 
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Table 4.2 : Estimates using ML method for transformation Y(A} 

Estimates S.E. Conditional t-ratio p-value 

f30 0.5721 0.2493 22.95 0.00 

fhF 0.0281 0.0368 0.7631 0.45 

fhR 0.0054 0.0092 0.57% 0.57 

(3CAF 0.0039 0.0345 0.1127 0.91 

(3CF -0.0256 0.0104 2.613 0.018 

(3A -0.0256 0.0216 0.9846 0.34 

fl2 0.51 

SSE 10.2872 

0 2 0.4907 

FPE 0.0001 

AIC 0.0001 

SC 0.0001 

X2 normal 5.5573 

,\ -1.79 

In L -21.8795 
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Table 4.3 : Log likelihood values along with SSE 

for different values of A. 

>. In L SSE 

-2.00 -21.8920 0.0007 

-1.75 -21.8800 0.0019 

-1.50 -21.9049 0.0052 

-1.25 -21.9663 0.0139 

-1.00 -22.064 0.0373 

-0.75 -22.1974 0.1001 

-0.50 -22.3661 0.2697 

-0.25 -22.5995 0.7284 

0 -22.8069 0.1973 

0.25 -23.0776 0.5361 

0.50 -23.3809 1.4607 

0.75 -23.7159 3.9906 

1.00 -24.0818 10.932 
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Table 4.4 : Values of A and SSE for normalized 

transformation Z(A). 

A SSE 

-2.00 9.0365 

-1.7894 9.0266 

-1.5789 9.0373 

-1.1579 9.1202 

-0.9474 9.1927 

-0.5263 9.4009 

-0.3158 9.5376 

-0.1053 9.6366 

0.1053 9.8789 

0.5263 10.3158 

0.7474 10.8565 

1.1579 11.1688 

1.5789 11.884 

1.7894 12.2919 

2.00 12.7343 
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CHAPTER- 5 

ANALYSIS OF TASTERS' SENSORY SCORES 

5.1 Introduction 

In this chapter we explicitly deal with the sensory evaluations made by the Tea Tasters 

in assessing the quality of tea samples. Sensory analysis, where the Tasters/assessors give 

scores on a structured or non-structured scale for several attributes, is usually called 

sensory profiling or descriptive sensory analysis (Amerine et al.,1965). Sensory panel 

data, where the assessors evaluate different products in terms of one or more attribute(s), 

are often blurred by extensive individual variations. These individual variations arise 

purely from the subjectivity inherent in the process of sensory analysis. The subjectivity 

in the sensory evaluation may be analyzed in several ways. 

The sensory panel data are often analyzed by ANOVA technique based on the raw 

data or by multivariate technique like principal component analysis after averaging over 

the assessors' scores (Martens, 1985). Some statistical studies have been made to handle 

the individual difference among the assessors in sensory profiling. One remarkable study 

in this line is due to Brockhoff et al. (1994). They discuss the linear variance com­

ponent models which take into account the scale differences among assessors as well as 

the reproducibility aspect. They also address the problem of measuring assessor precision 

and propose testing procedures for the significance of difference among the assessors' error 

variances. Naes (1990) discusses the statistical analysis and interpretation of data from 

sensory analysis. Techniques are discussed to handle the differences among assessors in 

using the 'scale'. Some studies in this line, specific to the Tea Tasters' sensory data, have 

been made by Pal et al. (1997) and Paul (1998, 2000). Pal et al. (1997) discusses the 

problem of estimating the mean profile for quality attributes specific to eTC tea samples 

using the Tasters' sensory panel data. The heteroscedastic variance component models 

and the ML estimation procedures are discussed. A similar study addressing the problem 

of Tasters' precision is due to Paul (1998). The problem of detecting assessors' repro­

ducibility is addressed by Naes (1999) and Paul (2000), among others. Naes and Solheim 
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(1998) have addressed the problem of individual variations using graphically oriented 

tools. 

We aim at addressing the 'subjectivity' inherent in the choices made by the Tasters 

through modeling individual difference among the assessors. If a single Tester evaluates 

a set of tea sample, it is not possible to study the error associated with his choices. But 

if the same sample is evaluated by panel of Testers, we may statistically study the bias 

associated with the sensory scores. Thus, in a restricted sense, we may consider this as 

a problem of repeated measurements. In our study we consider ordinal choices (given on 

a structured scale), made by a panel of Testers independently on a tea sample, as the 

repeated measurements or repeated observations. 

In reality, the sensory panel data are more complex and there are various fixed and 

interaction effects with several other combinations, which needs to be taken care of while 

understanding the data clearly. Brockhoff et al. (1994) has discussed several complex 

aspects of the sensory panel data. Replicated sensory scores on different quality attributes 

for a particular sample may be given by a panel of assessors. In this case each assessor 

may give scores on a sample for different quality attributes on different scales. The 

interaction effect(s) mentioned above includes 'different use of scale'. Also, the individual 

variances, measured using replications on the same experimental sample, may very among 

the assessors. There are several other aspects also. Thus formulation of a unified model 

for sensory profile data is rather a complicated task. 

In a typical sensory panel data the main emphasis should be given to the following 

two problems. 

1. The within assessor variability. It means the detection of differences in reproducibil­

ity among assessors. Here the assessor with good reproducibility can be distin­

guished from those who are more unreliable. 

2. Detection and interpretation of differences or variation among the assessors. This 

is the between assessor variability. 

Following Naes (1990) and Brockhaff et al.' (1994), we may formulate a model for 

a sensory panel data. Consider the following generic situation. Suppose there are r 
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assessors in the panel evaluating K quality attributes for n samples. Also there may be 

several replicates (say, L) available for each sample and each Taster. Thus without loss 

of generality, the data may be decomposed for particular attribute k by the following 

additive models 

Yijkl = J.Lk + {l:ik + (:Jjk + Aijk + Uijkl (5.1) 

Here J.Lk represents the overall mean effect for kth attribute. {l:ik represents the variation 

between ith assessor's average score for kth attribute and the overall average for the same 

attribute. The effect fijk describes how average for yth sample deviates from the overall 

average for the kth attribute. The interaction effect Aijk represents the difference among 

assessors in differentiating among the samples. In the model (5.1), the individual dif­

ferences among assessors are present in both the main effect {l:ik and interaction effect 

Aijk. Uijkl is the error component representing variation due to replicates under the same 

experimental condition. 

In most applications, the researchers have been interested in the analysis and inter­

pretation of the sample effects fijk. If we are to model the individual differences among 

assessors, then the interest lies on the main effect {l:ik and interaction Aijk. Generalization 

of (5.1) may be done and ANOVA can be performed to test the significance of different 

effects. 

We note here that the database for our study does not allow us to go deep into different 

complex aspects of sensory panel data. We do not have replicated observations on each 

sample. Also, is almost all the cases, measurements are available only on one quality 

attribute (e.g. overall quality). Given the minimum information on the basis of available 

data, we restrict to the analysis of over simplified sensory experiments. 

The basic data format may be identified tersely as "n samples xr measurements". 

We consider only the balanced and complete data. By balanced data we mean that the r 

occasions of measurement are the same for all experimental samples. By complete data we 

mean that measurements are available at each point of observations for each experimental 

sample. We do not consider the incomplete or missing data problems in our study. 

In the next section we briefly discuss the assumptions on Tea Tasters' effects in con­

nection with the ANOVA models. In section 5:3 we address the statistical aspects in 
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measuring the reproducibility in sensory panel data. We study the Tasters' reproducibil­

ity under heterogeneity. This is a theoretical extension of Naes's (1998) work. In section 

5.4 we discuss a naive statistical approach to estimate the Tasters' bias. Formulations are 

done under the assumptions of both correlated and independent error components. The 

testing aspect is also discussed. 

The sfatistical approach to modeling the individual differences among Tasters using 

one-way VC model is presented in section 5.5. Under the assumption of unequal er­

ror variances associated with the Tasters, the ANOVA and ML estimators of variance 

components for two models are presented in section 5.6 and section 5.7. 

The two-way mixed effects variance component model and the estimation procedures 

are discussed in section 5.8. Both ML and ANOVA estimators of variance components 

and fixed effects parameter are obtained under the mixed-effects formulation. The mixed 

effects formulation is useful when we legitimately assume that the sample specific effects 

are fixed and the Tasters' effects are random. Analysis of the Data Sets 5 and 6 are 

presented in section 5.9. 

5.2 Random or Fixed Assessors' Effects 

In most ANOVA applications it is assumed that all the assignable effects arising from a 

typical sensory panel data analyses are fixed parameters. In sensory analysis this implies 

that the sample specific and assessor specific effects are fixed. For samples, this 'fixed' 

assumption may be logical if we are dealing with specific products or different category 

products belonging to the same class. Here the inference would be based on the specific 

set of samples. However, if the samples truly represent a particular product, then one 

may legitimately assume the sample specific effects as random. But for the assessors 

(Tasters) this is a more questionable assumption. If the hypothesis of interest is Ho = 
al = ... = ar = 0, under fixed effects formulation, then the possible consequence 

is that the results refer only to differences among average levels taken over the actual 

assessors. These averages can be quite different from the averages taken over the whole 

population. This is actually more interesting aspect to investigate. 

On the other hand, if we consider the Tasters as random representatives from a pop-
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ulation of trained persons, the Tasters' effects as well as the interaction effects should be 

considered as random effects in the model. One may raise question against this random 

Tasters' effects on the ground that the selection of Tasters in not a random process; the 

Tasters have gone through training process. In our opinion, the number of Tasters in 

a sensory panel is likely to be quite close to the population of all Tasters. At least in 

case of tea industry, this is very much true. There are only a handful number of Tasters 

working in the tea industry of India. That is why, we consider the effects due to Tasters 

as random. 

5.3 Detecting Tasters' Reproducibility Under Heterogeneity 

A measurement is said to be reproducible if, on repetition under similar condition, it 

gives the same results; that is to say, if the variation between the measurements are small 

and negligible. To assess a change or variation in the sensory evaluation on a particular 

tea sample by the Taster, the reproducibility of measurements and the relevant factors 

affecting the results should be known. We may legitimately consider that the variability 

in sensory scores on a particular sample (product) is due to the subjectivity associated 

with Taster's choice. In general scientific activities, the variability of results may be due to 

technical reasons band to the analytic method and to the equipment. Variability may also 

be due to measurement technique and the measurers, as we]] as the testing environment. 

Therefore, a simple description of variability is insufficient and a proper analytic model 

is needed that can quantify the different sources of random variation. 

The data analytic problem is : what kind of statistical model is best suited for studies 

on reproducibility of Tasters' scores on tea samples. In this section we consider a simple 

statistical tool to detect the differences in reproducibility among the Tasters, that is, to 

detect the within Taster variability. This is possible only if the replicated scores for each 

sample given by each Taster is available. 

The problem of detecting the differences in the reproducibility among assessors is 

addressed by Tormod Naes (1998) and residual variances (MSE) and F-values arising 

from an one-way ANOVA model (under homoscedasticity) are considered as statistical 

tools to differentiate among the assessors in their capacity to assess differences among 
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samples. Some graphical techniques are also discussed. 

A general approach in this line, due to Diggle at al. (1995), to the analysis of re­

peated measures assumes a general linear model for the mean vector of the measurements 

and a particular parametric correlation model for the variance matrix that incorporates 

three qualitatively different sources of variation - (i) a random variation between samples, 

(ii) a positive correlation between ~easurements on the same sample over time (auto­

correlation), and (iii) a random variation among responses within an individual. T~is 

formulation enables an estimation of the major components of variance and thereby an 

assessment of the reproducibility. 

For particular attribute and assessor, the simple one-way ANOVA model to study the 

reproducibility of assessors may be written as 

(5.2) 

i=1,2, .... n, l=1,2, .... Li , 

where Qi is the effect due to ith sample and Uij is the replicate error. Here we assume 

unbalanced data setup as the number of replicates need not be equal for each sample. We 

may assume Uil rv iid(O, at), as in practice the unequal variances and sample sizes (Li) 

appear to be the rule rather than the exception. 

Though the aim is to discuss the MSE and F values only under the above formulation, we 

like to introduce a brief discussion on the F- tests, which are claimed to be robust under 

heterogeneity. We note here that the hypothesis of interest in the one-way formulation, 

in general, is Ho : Ql = Q2 = ... = Q n against HI : Qi #- Qk for atleast one pair (i,k), 

i #- k. Under Ho, with the assumption of equal variances, the likelihood ratio F- test is 

based on the F statistic 

. F = (n - 1)-1 Ei Li(YiO - YOO)2 , 
(L - n)-l Ei Ej(Yij - YiO)2 

(5.3) 

where L = ELi, YiO = L-;1 EJ Yij and Yoo = L -1 Ei L,YiO' Note that the term in the 

denominator of (5.3) is the MSE. Again, if a; #- a~ for atleast one pair (i, k), i #- k, then 

the Welch's (1951) robustified version of F is 

W = {n - 1)-1 Ei a,{yiO - Yoo)2 
1 + [2(n - 2)/(n2 - l)J E,(l - ada? /(Li - 1) 

(5.4) 
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Assuming normality and unequal variances, the null distribution ofW can be approxi­

mated by the F -distribu tion wi th (n - 1) and k degrees of freedom, where k is determined 

by 
k-1 = [_3 _] L (1 - ai/a)2 

n2 - 1 . Li - 1 , 

The differences between F and W is that denominator of F is based on the pooled 

sample variance, whereas, in the denominator of W, the variances of the n samples are 

considered separately. 

The one-way ANOVA F- tests are known to be a-robust in case of unequal error 

variances if the Li are all equal. However, the F- test is very sensitive to the heterogeneity 

of variances for unequal sizes and to long tailed distribution. Some well known robustified 

versions of F- tests are Kruskal-Wallis test, Welch test (1951), among others. Krutchkoff 

(1988) discusses some common misconception about the F- tests and provides a simulation 

based solution to overcome drawback of the tests. The failure of the assumption of equal 

variances can have serious effect on the power of F- test. Krutchkoff (1988) provides an 

extensive study on the power performance of F- tests. 

Turning back to our main aim of studying the MSE and F values under heteroscedas­

ticity, we note that a more sensible approach to obtain the between-sample and within­

sample (error) sum of squares would be to consider the standardized values. Before writing 

the standardized values, we obtain the ML estimators of the location parameters and the 

variance components.as follows: 

The loglikelihood function may be written as 

Differentiating this l with respect to the parameters and equating to zero, the ML 
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estimators of the location parameter and the variance components may be obtained as 

where Wi = Lila; (i = 1, 2, ... n) are the weights. Here the means are appropriately 

weighted by the sample sizes to variance ratios. The ML estimator of variance components 

may be obtained as 

a; = ~ E E(Yil - J],- ai)2. 
L i I 

Note that the ML estimators are consistent and BLUE also. We now consider the 

standardized between-sample sum of squares as 

n 

SSa = SSa(a~, ai, ..... , a!) = E Liy'fo/(J;- (E LiYiO/a;)2 /(E Li/a;), (5.5) 
i 

and the standardized error sum of squares may be written as 

(5.6) 

where Sl = Li1 Ej (Yil - YiO)2 is the sample variance (MLE). 

Using the ML estimators, the standardized sum of square may be written as 

which easily simplifies to obtain (5.5). We may incorporate the ML estimato~ of at in 

(5.6) and obtain the value of SSe. The estimates of mean sum of squares would be 

MSe = (L - ntlSSe and MSa = (n - 1t1SSa. 

Now we can construct the F- test also. Note that Li Sl/at '" Xl,-l and consequently, 

SSe = Ei Li S; /a; has a X2 distribution with (L - n) degrees of freedom. Further, it can 

be easily shown that SSa defined by (5.5) has an independent Chi-square distribution 

with (n - 1) df when Ho is true. Hence, as in standard one-way ANOVA with equal 

variances, we get under Ho, 

F
* = SSa(n _1)-1 

SS (L ) 1 '" Fn-1,L-n. e -n-
(5.7) 
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Thus the SSe defined in (5.6) or the MSe and the F- ratio defined in (5.7) may be used to 

study the reproducibility of the assessors. It would be more logical to use these MSe and 

F value, as the effect of unequal variances has been taken care of while estimating the 

parameters. Also the estimation of sums of squares using the ML estimates of implicit 

location parameters and the variance components is sensible since the properties of ML 

estimators are well defined under very broad conditions. 

5.4 A Naive Approach To Estimate Tasters' Bias 

5.4.1 Independent Errors 

Suppose three independent measurements (in our case, the quality scores given indepen­

dently for the same response Y, say, the overall quality). Each observation is made up of 

two components - the true value of the variable (y) and an error in measurement. 

We may assume zero means and at least approximate normality for the measurement 

errors. If follows : 

E(Yl) = E(1'2) = E(Ya) = O,E(Yl-Y2 ) = E(u-v) = O,E(Yl-Yj) = 0 and E(1'2-Yj) = o. 

For small samples, we may use the paired t- test to study the significance of difference 

between the mean values of YI , Y2 and Y3 • If the hypotheses of differences are rejec~ed 

(for at least one case), we may proceed to estimate the independent measurement error 

variances as follows: 

V(Yl) = V(y) + V(u), V(1'2) = V(y) + V(v), V(Yj) = V(y) + V(w); 

V(YI - 1'2) = V(u) + V(V)) V(Yl) - V(1'2) = V(u) - V(v) ) 

V(1'2 - Yj) = V(v) + V{w) ,V(Yz) - V(Ya) = V(v) - V(w) 

V(Yl - Yj) = V(u) + V(w) V(Yl) - V(Ya) = V(u) + V(w) 

120 



Using the above systems of equations we may obtain: 

V(u) = V(Yl-Y2}+V(Yl}-V(Y2} or V(Yl-Y~}+V(Yl}-V(Y~} 
2 2 

V(v) = V(Y2 - Y3~-V(Y2~+V(Y3~ or V(Yl- Y2~-V(YI ~+V(Y2} 
2 2 

Yew) = V{Y2-Y3)-V(Y2!+V(Y31 or V{Yi -Y31-V(Yi !+V(Y31 
2 2 

Clearly two estimates of the variances of each error component are obtained. we may test 

whether these two estimates differ significantly or not. Also, it may be easily verified that 

V(u) $ V(v) $ Yew) implies V(ll) $ V(Y2 ) $ V(lJ) We note here that under normality 

assumption, we may simultaneously estimate the error variances and also the variance of 

y through likelihood function. 

5.4.2 Correlated Error Components 

We now estimate the error variances under the assumption that the measurement error 

are correlated. Such formulation is logical if we assume that the Tasters' scores, though 

given independently, may be influenced by some common market related factors also. 

Under the assumption of correlated errors, we may formulate the problem as follows: 

A}so we have; 

V(u) + V(v) = V(ll - 1'2) + 2PI (7u(7v, PI = p(u, v) 

V(u) + yew) = V(Yt - Y3) + 2P2(7u(7w, P2 = p(u, w) 

V(v) + yew) = V(1'2 - Y3) + 2P3(7v(7w, P3 = p(v, w) 

V(YI ) - V(Y2) = V(u) - V(v) 

V(YI ) - V(lJ) = V(u) - Yew) 

V(1'2) - V(lJ) = V(v) - Yew) 

From the above systems, we obtain 
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It may be noted that the differences of error variances are independent of correlation 

coefficient p, as V(u) - V(v) = A2C, V(u) - V(w) = B2E, V(v) - V(w) = D2F. As in the 

earlier case of independence, have also V(u) :::; V(v) :::; V(w) implies V(Yt) ~ V(12) ~ 

V(Y2). It also follows that once we have a solution for V(u), we can obtain solution for 

V(v) or V(w) and vice versa. We have, 

AO AO 
C V(u) - CPl(Ju(Jv = 2 and A V(v) - Apl(Ju(Jv = 2' 

Subtracting, we get 

C V(u) - A V(w) + (A - C) Pl(Ju(Jv = O. 

Solving this equation for V(v), we obtain 

0 2 

V(v) = --------r===== 
2C + (A - C) p? + PI J4AC + (A - C)2 p? 

Again, F V(v) - FP3(Jv(Jw = D/, D V(w) - DPJ(Jv(Jw = D/, giving F V(v) - DV(w) + 
(D - F) P3(Jv(Jw = O. Solution of this equation gives 

F2 
V(w) = -------:----;====== 

2F + (D - F) p~ + PJ J4DF + (D - FF p~ 

V(v) and V(w) still contains the unknown parameters PI and PJ. Note that the expressions 

under square-root signs can not be negative. This allows us to estimate the minimum 

value of p, which allows a real solution for V(v) and V(w). Thus we observe that the above 

formulation provides us an indirect way to obtain some information about the minimum 

values of correlation coefficients. The minimum values of correlation coefficients follows 

from 
2 4AC 2 4DF 

Pi = - (A _ 0)2. and P3 = - (D _ F)2' 
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Solutions for minimum and P~ and P~ always exist, since for P~ = 1 and P~ = 1, the 

expressions 4DF + (D - F)2 P~ and 4AC + (A - C)2 P~ are necessarily positive: reducing 

to (D+ F)2 and (A +C)2 respectively. We may estimate the corresponding error variances 

for alternative value of P6' ranging from the estimated minimum to the maximum of unity. 

5.4.3 Some Discussion on Testing 

In this section we outline the possible testing procedure for the error variances obtained 

through the Naive Approach. If is worth noting that the same formula which are used 

to solve for population error variances O"~, 0"; and O"!, yield unbiased estimates for the 

sample values 8~, 8~ and 8~, if we replace the population variances O"~l' 0"~2 and 0"~3 by th~ir 

respective unbiased estimators. Furthermore, the use of F-test to study the significance of 

difference between 8~, 8~ and 8~ will be biased if basic assumption of independent variates 

of tt, v and w is violated here. If we are not interested in the magnitude of error variances 

but only in the fact that they are statistically different from each other or not, then we 

may apply the test procedure disuse by Morgan (1940) and Young (1971). 

Morgan (1940) proved that testing lIo : 0";;, = ).2 a;j against Hl : a;/, f ).2 a;J is 

equivalent to testing Ho : Pab = ° against Hl : Pab ::I 0, where 

b \ . ...J.. d \ O"Yi = y, - /\Y, Z -r J an /\ = -. 
aYj 

In the simplest case we may put). = 1. This particular test may be applied in our case as 

it has been mentioned that O"~ ::; 0"; ::; O"! implies O"~l ::; 0"~2 ::; 0";3' Testing lIo : O"~ = 0"; 

etc. is equivalent to testing lIo : Pab = 0 etc. 

5.5 Modeling Individual Differences Among Tasters Using 

Random Effects VC Models 

In this section we model the individual differences among assessors using RE linear VC 

models. For the repeated measurement studies the basic approach discussed in the liter­

ature are obviously the repeated measurements ANOVA and MANOVA techniques. We 

shall investigate the simple one way classification models here with unequal error vari­

ances. The heteroscedastic ANOVA models are nothing new in the statistical literature. 
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For fixed effects models, the estimators of location parameters and the variance compo­

nents are discussed by Rao et al. (1982), Chen et al. (2000), among many others. The 

testing procedures for equality of mean effects under heterogeneity are also discussed. 

For a particular quality attribute at a time, let Yijl represents the lth replicate of a 

score given by ith Taster for the sample j, where i = 1,2, ... , r, j = 1,2, ... , nand l = 

1,2, ... , L ij . For simplicity, we may assume Lij = L for all i and j. This implies that we 

have typically a balanced data setup where the number of replicates are equal on each 

sample by each Taster. Also, we may assume that the replications are introduced ih a 

randomized sequence of assessment so that block effects are not necessary in the model. 

The obvious approach in this situation would be to consider the model 

Yijl = J.L + O:i + Aj + Uijl , (5.8) 

where Uijl are independent random variates. This is the usual two-way modeJ where AjS 

represent the sample specific effects with respect to the particular quality attribute under 

consideration. O:iS correspond to 'average level of assessment' for the Tasters. 

Brockhoff et al. (1994) discusses the following parametric formulation which takes 

scale differences among assessors into account as well as reproducibility differences. Under 

the assumption of same unknown sample effects Aj, the model is 

Yijl = O:i + fJi Aj + Uijl (5.9) 

Var{Uijl) = (7;, EAj = 0, MSE). = 1. 
j 

The restrictions over Aj ensure that the model (5.9) is uniquely parameterized by the 

space (0:; , fJi , (7l) and the AjS whenever atleast two samples differ. (5.9) is clearly a 

'sample x assessor' interaction model with different assessor variances. 

We note here that there is one identification problem associated with the model. If 

all the sample effects are same, that is, all AjS are identical, the parameters O:i and fJj are 

not identifiable. This is quite likely when the samples are believed to be the true repre­

sentatives of a particular population and are likely to posses the same intrinsic property. 

In the absence of replication (average of replicated scores may be available) we may 

study the individual differences among Tasters using the simple one-way heteroscedas­

tic model. In one-way model we simply assume the Taster specific effects as the only 
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assignable source of variation. If there is sufficient ground to believe that the samples 

are truly random samples having the same intrinsic characteristic, then the formulation 

of one-way ve model seems logical. For example, the tea samples (Data Set 5) are es­
sentially the same eTe teas collected from the same experimental garden at the same 

time and received the same manufacturing process. All the samples were processed in the 

same factory in the same day. These tea samples may be considered to be truly random 

samples from the same population of eTe tea. However, the sample variation may be in­

corporated in the model as an assignable source of variation, leading to a two-way model, 

and the performance of the two models for the given set of data may always be compared. 

For a particular quality attribute, the one-way model may be written as 

(5.10) 

where J.tk represents the overall mean for the attribute k and aik represents the deviation 

in ith Taster's average from the overall mean. aik and Uijk are assumed to be independent . . 
In matrix notation the model may be presented as 

y 

y o 0 

=} Y = J.t1nr + Za + U , 

o 
o 

+ 

(5.11 ) 

where Z = Ir ® In is the incidence matrix associated with a. The Taster specific effects 

a = (al, a2, ... , a r )1 may be assumed to be random. The two possible heteroscedastic 

formulation of the RE model (5.10) may be proposed. On the basis of two different 

distributional pattern we distinguish (5.11) by Modell and Model 2. 

Modell: ai rv iid (0, a~), Uij rv iid (0, an and E(ai Ui;) = o. 

In this formulation we assume that the variation between average level of Tasters' effects 

is constant and is equal to a~. But, the variation among Tasters over samples are unequal. 
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In this case O'~ = 0 would imply that all the Tasters on average agree on the characteristic 

of the given set of samples, so far the particular quality attribute is concerned. 
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Here we assume that the variation between the average level of Tasters' effects is not 

equal. However, the overall variation among the Tasters over samples is constant (O"~). 

Here we may test if O"~ = O"~ = ... = O"~, or 0"; = 0 for all z. 

In the next two sections we study the ANOVA and ML estimators of variance compo­

nents for the two formulations. 

5.6 Estimation of Variance Components For Model 1 

5.6.1 ANOVA Estimation 

The total sum of squares (TSS) for the model (5.10) may be decomposed as 

where 

L, L,(Y" - Yoo)2 = L, L,(y,o - YoO)2 + L, L,(Y" - Y,0)2 

= SSa+SSE ::} TSS 

y,o = ~ L, y" , Yoo = ~ L, Y,o· 

E(SSE) = L, L, E(u" - U\0)2 

E(SSA) 

= L. L,[E(u;,) + E(u;o) - 2E(u'J u.o)] 

= L, L,[O"; + ~E(L, u.,)2 - ~ E(u" L, us,)] 

= L. L,[O"; + ~ 0"; - ~ 0";] = (n - 1) L. 0"; 

= L, L, E[(a. - ao) + (u1o - uoo)J2 

= L. L, [Var(a, - ao) + Var(u,o - uoo)] 

Var(a, - ao) = Var(a.) + Var(ao) - 2 Gov(a" ao) 

O"~ + ~ O"~ - 2E[a, ~ L, a.] 

= 0"2 + 1. 0"2 - ~ 0"2 = (1 - 1. )0"2 
II rll rll rll 

Var(u,o - uoo) = Var(u,o) + Var(uoo) - 2 Gov(u,o) uoo) 

Var(u,o) = Var(~ L, us,) = ~ 0"; 

Var(uoo) = V ar( ~ L, Uta) = ~ 2:,0"; 
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Cov( U,o, Uoo) = E( u,o uoo) - E( u,o) E( uoo) 

= E[~ L, Ui, ~r Lk LI Ukt! + a 
= fnr E[L, u,' Lk;l, ukd + fnr E[L, U,' LI ukd 

= a + ~ E[L, U" (U'l + U,2 + ... + um )] 

= 1 L E( 2) - 1 2 i=fi2 , u" - m: a, 

E(SSa) = n(r -1) a~ + (1-~) L,a;] 

From (5.12), we have 

E(SSE) = SSE 

=? (~ - 1) L a; = SSE , 
=? L 2 1 

, a, = (n _ 1) SSE 

Also, 

E(SSa) = SSa 
1 1 

=? (r - 1) n a~ + --(1 - -) SSE = SSa 
n -1 r 

Thus, the ANOVA estimator of a~ is 

A2 1[ 1 1] ao = - -- SSa - ( 1) SSE. nr-l rn-

Again for fixed i, we have 

E[L,(y" - y'O)2] = E[L,(U" - U'O)2] = L,[a; + ~a; - ~a:] 

=? a; = n~l L, (y" - y,O)2 , 

which is the ANOVA type estimator of a;. 
The a-~ and a-: are unbiased, since 

1 2 
= r(n _ 1) E(SSE) = a" and 
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1 1 
( ) E(SSa) - ( ) E(SSE) n r -1 nr n-1 

(1 )[n(r-1)a~+!(r-1)Ea~1- (1 1) (n-1) Ea~ 
n r - 1 r, nr n - , 

= 

2 1 ,,2 1 ,,22 
= (Jet + - ~ a, - - L...J a, = (Jo· 

nr, nr, 

To establish the minimum variance property we may proceed as follows : 

y'y = SSJ.L + SSa + SSE 

= n\ Y50 + L, L,(Y,o - YoO)2 + L, L,(y" - Y,O)2 

We have, y,o = J.L + a, + u'o f'V N(J.L, a~ + ~ an under the prior assumption of normality 

of a, and u,,. If we denote yb = (Y ,Y ... Y ) then Y' f'V N(lrJ.L, (a~ + -n
1 (1;)1r ). 

~lO ~20 ~rO ~o 

Thus SS(a) = L, L,(y,O - YoO)2 = Y' [Ir - l1r1~1 Y follows (a~ + 1 a:) X~-l. Now 
~o r ~o n 

for SSE, we note that Y" - y,o = u,' - U'o. Since u" f'V N(O, (1:) and us, are all mutually 

independent, we can write for each 'to 

a, = E(y" - y,O)2 = l:)u l , - U,O)2 f'V a; X~-1 
,=! , 

and a, ('t = 1,2, ... n) are mutually independent. Thus SSE = L~=l a~ f'V a; X~(n-l). 

Finally we are to show that SSa and SSE are independent. For the identity 

it is sufficient to show that b, and Ca, are independent. Since b, and Ca, are normally 

distributed, it is sufficient to show that they are uncorrelated. It means that for all i, i' 

and j, Cov{b" Ca' ,) = 0, which may easily be shown. Hence the ANOVA estimators of 

variance components of the heteroscedastic one-way model are MVUE. 

5.6.2 ML Estimation 

The variance of composite random component e'l = a, + u" of the model (5.10) is a~ + a:. 

The variance-covariance matrix may be written as 

E(e e') = <1>1 = Z E(aa') Z' + E(u u') 

= Za2 IrZ' + E, ® In = a~(Ir ® I n) + E, ® In, 
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where Z Z' = Ir®Jn and Ei = diag (a;, a; ... an. We may write ~l = diag(Sl, S2,"" Sr), 

where 

S;= , i = 1,2, .. . r. 

The determinant and inverse of ~l may be obtained as follows: 

a2 +a~ a , a2 
a a2 

a a2 + na~ a , a2 + nc1~ a , ., . a2 + na~ a , 

a2 
Ct a2 +a? Ct , a2 

a a2 
Ct a2 +a~ Ct , a2 

a 

1 Si 1= = 

a2 
Ct a2 

Ct a2 + a~ a , a2 
Ct a2 

Ct a2 +a~ Ct , 

a2 
a a2 

a a2 
a a2 

a a2 
a a2 

a 

a2 a2 +a~ a2 0 a? 0 
a~ + na2 

a Q , a 
a~ + na2 

, 
_, a =' a 

a2 
Q a2 

a 

a2 
a a2 

a a2 +a2 
a , 0 0 a? , 

Thus, 

(5.16) 
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Also, 

(5.17) 

[ 

~ In In I~In 1 
= ::\ In - -" .... ; """2---

(T, I+~ I' I 1 , (1, n n n 

- 1 [1 - u~ J] - "Uf n (Tl+~(Tt n 

In finding the Si- l we have used the formula presented in the Rao's book (Rao, 1973, p. 

33). 

Under normality assumption, the probability function of the response Y may be written 

as 

The likelihood function for Model 1 may be written as 

LI = (2?TtT (ni (J;) n;l [ni ((J; + n(J;)r! exp [-~(y - tt Inr)' <P11(y - tt 1nr )] , 

(18) 

and the quadratic form in the exponent may be written as 

(y - ttInr)' <P1
I (y - tt1nr) 

= t(~. - ttIn)' -; [In - 2 (J~ 2 In] (~. - ttIn) 
i::::1 ' (Ji (Ji + n(J a ' 

= L: -; L:(Yij - tt)2 - L: -; 2 (J~ 2 [L:(Yij - ttW . 
i (Ji j i (J, (Ji +n(Ja ] 

The loglikelihood function would be 

il = -!!! In(2?T) - n-l ". In (J~ - ! ". In((J~ + n(J2) 2 2 L." , 2 L." , a 

-~ Li Lj ~(Yij - tt)2 + ~ Li ~ U~:~C72 [Lj(Yij - I-L)j2' , ,. a 

(5.19) 
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Partially differentiating (5.19) with respect to J.£, a~ and a; respectively, the ML estima­

tors of the location parameters and the variance components may be obtained from the 

following relations: 

ill.1.-0· -" 
8/J - -T' Li Lj -!r [1- u?~;ul] (Yij - J.£) = 0 

=? Li Lj Wi Yij/ Li Wi = n J.£ 

_ ." . =? J.£ - n L.j Yj' 

(5.20) 

where Wj = ~. is the weight. Clearly ML estimator of J.£ is the weighted mean where 
CT, no-a 

Wi is the weight for ith response. Note that the GLSE of J.£ may be shown to be of the 

form: GLSE (J.£) = . l,t.o/Var(1/iO) , where Var(YiO) = Var(J.£+aj+uiO) = a~+l al, which 
iVorlviO} n 

implies that Wj = -v I( ). Also, ar 1/10 

~l~ =O=?-'L ~: 2 [1- ~+n 2] (YiO-J.£?=O, (5.21) 
ua Q i a, na Q a I n a Q 

8l. 0 al a~ [ 1 1] -==? + -+ 
8a~ a~ + na2 a2 + na2 a~ a2 + na2 , 

, 'Q' Q' , Q 

D; = --\ L {Yij - ~)2 - (n - 1). 
ai j 

(5.22) 

where Di = Ej(Yij - J.£). Note that for unequal als, explicit expressions for al and a~ can 

not be obtained from (5.21) and (5.22). 

5.6.3 Estimation of Random Component of the Model 

We briefly discuss the prediction aspects in the heteroscedastic one-way model (5.10) in 

this section. We start with the prediction of the random component aj. The general 

theory of prediction for the random/mixed effects models is discussed by Searle et al. 

(1992). 

We may think of some related information, say YiO, for the unobservable random 

component ai' Now the question is, can we think of some numerical value of aj (sayan 

on the basis of YiO'? In predicting aj, it is sensible to consider E(aj) ~ the predictor. 

That is, a; may be taken as E(aj)j b-ut E(aj) = O. Again if we can think that YiO is 

considerably larger than the overall average J.£, then we may expect that aj is positive 

(YjO = J.£ + aj + UjO and YiO > J.£ implies aj > 0). With this thought, we may use the 

conditional mean E(adYiO) rather than E(aj) as our predictor. 

132 



Note that ai and YiO jointly follows bivariate normal distribution with 

[ 1 [ 
2 

ai aa 
and Var = 2 

YiO aa 

Thus, we have 

(5.23) 

which is the predictor of ai' 

An alternative approach of estimating ai would be to consider the conditional distri­

bution of ai given the total errors ai + Uil, ai + Ui2, ... ,ai + Uin' An appropriate summary 

measure of this conditional distribution may be assumed to represent the deviation due 

to ith Taster's effect. The conditional distribution being normal, the summary measure 

would be the same for mean, median or mode. 

We have, ~* fV N(O, n), where 

aj + Uil Yil - J.L a 2 +a~ a , a 2 
a a 2 

a a 2 
a 

ai + Ui2 Yi2 - J.L a 2 
a a 2 +a? a , a 2 

a a 2 
Q 

a* = = and 0 = 

ai + Uin Yin - J.L a 2 
a a 2 

a a 2 +U~ a , a 2 
~ 

aj Yi a 2 
a a 2 

a a 2 
a a~ 

Q 

The conditional probability of ai given the total errors is 

p(.) ( I ) p(aj+uib.··ai+uin,ai) 
= P ai ai + UiI, ... ai + Uin = ( ) 

p aj + UjI," .aj + Uin 

where 
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To obtain n-1 we use the following result (Rao, 1973, p. 33) : 

(:' ~r = 

\ 

E = D - B' Si- 1 B, F = SI-1 B, where B' = O"~ 1~ and Si is defined in Section 5.5.2. 

We obtain 

F = S-:-l B = [~I - a~ 1.] 2 1 - a~ 1 
I a~ n a~ (a~ + n(2) n aCt n - a~ + na2 n 

I II Ct I Ct 

Thus we may write, 

Thus we may write 
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ThIlS, the distribution of a, may be written as 

The approximate predictor of a, may thus be written as 

(5.24) 

5.7 Estimation of Variance Components for Model 2 

5.7.1 ANOVA Estimation 

For the Model 2, we assume a, fV iid (O, a?) and u'J fV iid (O, a~). The partition of TSS is 

, 3 , 3 , 3 

:::} TSS = SSa + SSE. 

The Y,o and Yoo have already been defined in Section 5.5.1. 

E{SSE) = L, L3 [E(U~3) + E(u~o) - 2E(u'3 u\o)] 

= nr [a~+~E(L3U'3)2_~E(u'3 L3U'3)] (5.25) 

= nr [a2 + ! a2 - 1a2 ] = r(n - 1) a2 
U nUn U U 

E(SSa) = L, L3 [E(a, - ao)2 + E(u\o - uooF - 2E(a, - ao)(u,o - uoo)] 

= L, LJ [Var(a, - ao) + Var(u,o - uoo)] 

135 

(5.26) 



Var (a. - ao) = Var (a.) + Var (ao) - 2 Cov (a" ao) 

= a; + Var (~ E. a.) - 2E(a.~ E. a.) 

= a2 + 1- ~ a2 _ ~ a2 
• rl L.... • r' 

Var (u.o - uoo) = ;!r Var (E3 u.3 ) + n2\'J Var (E. E, u.3 ) - 2E (u.o uoo) 

~ a; + ~r a; - 2E(u.o uoo) 

= n1rE [E3 u~,] = ~r a; 

Thus from (5.26) 

E(SSa) = E. L:, [(1-~) a; + ft E. a; + ~(1 - ~) a;] 

= n(l - ~) E. a; + (r - l)a; 
(5.27) 

From (5.25), equating E(SSE) to SSE, the ANOVA estimator of a; is obtained as 

2 1 
au = r(n -1) SSE . (5.28) 

Also, for fixed i, starting with the form E3(Y'3 - Y'O)2 and using the relation (5.27), 

the ANOVA estimator of a; may be obtained from the following relation 

2 2 L 2 ( 2) 2 1 n{l - -) a = (y, - y,o) - 1 - - a - SSa 
r • 3 ' r U r{r - 1) 

(5.29) 

These ANOVA estimators may easily be shown to be unbiased. Also they are MVUE. 

Using the following result given by Rao et al. (1982), the large sample variance of the 

location parameter & variance components may be calculated. 
1 
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5.7.2 ML Estimation 

The variance of the composite random component e'J = a, + u'J of the Model 2 is O'~ + O'~. 
The variance-covariance matrix may be written as 

E(e e') = <1>2 = ZE(aa') Z' + E(u u') = Z E Z' + O'~ Inr , 

where E = diag (O'~, O'~, ... , 0';). Also it may be easily shown that Z E Z' = E ® I n • 

Thus we have, <1>2 = dzag (81,82"", 8r ), where 

8,= 

nxn 

The determined and inverse of 8, may be obtained as follows: 

(12 + n0'2 tI , 0'2 + n0'2 
tI a 0'2 + n0'2 

tI 1 
0'2 , (12 , 0'2 , 

0'2 0'2 + 0'2 0'2 (12 0'2 + (12 0'2 , , tI , 
0'2 + n(12 

, tI , , 
18,1= = tI , 

0'2 , 

0'2 , (12 , 0'2 + 0'2 
I tI 

0'2 , 0'2 , 0'2 + 0'2 
I tI 

(12 , 0'2 , 0'2 , 
0 0'2 0 

0'2 + n0'2 
tI 

_ tI I = (O'~)n-l (O'~ + nO';), and thus 
0'2 , 

0 0 0'2 
tI 

1 <I> 1= (0'2r(n-l) nr (0'2 + n0'2) 2 tI 1=1 tI , (5.30) 

Following the procedure adopted in obtaining the form (5.17), the inverse of S, may 

easily be obtained as 

(5.31 ) 

137 



Under normality assumption, the likelihood function for Model 2 may be written as 

and the quadratic form in the exponent may be simplified as 

r 

= ~)y, - fl. 1n)' 
,=1 

The loglikelihood function would be 

;. 
l2 = -!!! In(27T) - r(n-l) In a2 - ! " In(a2 + na2 ) 2 2 u 2 L..J, u , 

(5.32) 

Partially differentiating (5.32) with respect to fl., a~ and a; respectively, the ML estima­

tors of location parameters and variance components may be obtained from the following 

relations: 
!lli.-o::}" n ( ) 0 8jJ - L..J, u2 +nu2 Y'J - fl. = 

::} - ti,y',O 
fl.- a,' 

(5.33) 

where a, = uL~nu2 is the weight. The GLS estimator of fl. is fl. = Yio/var(y,o), where 
u , 1~ 

Var(y,o) = a,2 + !au
2 = (a,}-I. This implies that a, = -v 1( )' which further implies that 

n M~ 

GLS and ML estimators of location parameter are same. Also, it may be easily shown 

that 

2 ( }2 1 2 a, = Y,o - fl. - -a , 
n 

(5.34) 

2 S2 
::} (n - l}r + L, u2:':tu2 + (n - 1) L,~-

u • • 

::} r(n-l)L,~+(n-l) L, S;/a;--k L, a;/d,[l+ u~~~] D; 

(5.35) 
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where Sl = (n - 1)-1 Ej(Yij - {t), Di = Ej(Yij - {t) and di = a~ + n al. As in case 

of Model 1, for unequal als explicit expressions for al and a~ can not be obtained from 

(5.34) and (5.35), for the Model 2 as well. 

The approach to estimate (predict) ai here is exactly same as discussed for Model 1 

in Section 5.5.3. The conditional expectation of eli given YiO may be obtained as 

which is the predictor of eli. Again, from the conditional distribution of eli given the total 

errors, the appropriate measure of eli may be obtained easily following the procedure 

discussed for the Model 1. 

5.8 Two-Way Mixed Model' 

Incorporating the sample specific effects as assignable source of variation in the basic 

assessors' model, we may write a two-way no-interaction additive model as 

(5.36) 

where Aj represents the deviation from the average score for jth sample. This model would 

be useful to study the Data Set 6, where the Tasters' scores are given specific to some 

CTC clones. The clonal effects may be assumed to be fixed and under the assumption 

of random Tasters' effects, the model (5.36) is typically a mixed effects model. The 

interaction effect can not be considered here as the Tasters' are independently evaluating 

single sample from each individual CTC clone. The inclusion of interaction term would 

have been logical had repeated observations on each clone by each Taster been available. 

Note that the model (5.36) is an over-simplified one, which is specific to particular 

sensory attribute and does not include the possible repetition. The model is written 

specific to the data under consideration. For n samples and r Tasters, the model may be 
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written in matrix form as follows: 

Y In 0 0 al In (:JI U 
",1 ",1 

Y 0 
",2 

In 0 a2 In A2 U 
",2 

= It(1r ® In) + + + 

Y 0 0 In ar In An U 
"'r "'r 

~ Y = It(1nr ® In) + Zaa + Z>.A + U , (5.37) 

where Za = Ir®ln and Z>. = lr®In are the matrices of individual dummies associated with 

Taster specific and sample specific effects respectively. We note here that ZaZ~ = Ir ® In 

and Z>.Z~ = Jr ® In. 

We assume that a, f'V zid(O, a~) , u" f'V 1,id(O, a;) and A, are fixed with L, A, = O. 

Also, a, and u,' are independent for all i and j. The assumption on u,' implies that the 

variation of Tasters in their scoring over samples is unequal. In the model the number of 

parameters to be estimated is (n+r+2), as there are n fixed effects, one location parameter 

and (r+l) variance components. 

In the following two sections we discuss the ANOVA and ML estimators of parameters 

in the model (5.36). 

5.8.1 ANOVA Estimation 

For the two-way model (5.36), we have 

1 
Y,o = - L y" = It + a, + u,o 

n , 
1 

y" = - L y" = It + ao + A) + uo) 
r I 

1 1 
Yoo = L Yo) = It + ao + Uoo, ao =-

E(SSe) 

n 
) 

= E E E [(u') - u'o) - (uo, - UOO)]2 
) 

n 

= E (u~)) + E (.!. E U')) 2 
- 2 E (u') .!. E u')) 

n ) n ) 
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Thus, 

E(SSe) = 
= 

E(SSa) = 

E(a, - ao)2 = 

= 

E( u,o - uoo)2 = 

= 

= 

Thus, 

1 1 
= E(u,} - E UI}) - E(u,} - E E UI}) 

r I nr I } 

1 1 1 1 
- E (- E UI) - E U'}) + E (- E US) - E E U1}) 

n} r In} nr I } 

~ 0-2 __ 1_ 0-2 __ 1_ 0-2 + _1_ 0-2 = ~ (1 _ .!.) 0-2 • 

r I nr' nr' nr' r n' 

l:, l:} [(1-~) 0-; + ~ (1 - ~) l:, 0-; - 2: (1- ~) 0-;] 

(n - 1) (1 - ~) l:, 0-; 

1 
E(SSa) = n (r - 1) o-~ + (1 - -) L: 0-; , 

r I 

(5.38) 

(5.39) 

From (5.39), equating SSe to E(SSe) we get 

_1_ SSe = (1 _ ~) '" 0-2 
n-1 r ~ I , 
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"'2 1 r S :::} L..J (J = -- -- S e 
, n-1r-1 , 

From (5.39), equating SSo: to E(SSo:) and using (5.40) we get 

1 
SSo: = n(r - 1) (J! + --1 SSe 

n-

2 1 [ 1 ] :::} (Ja = ( ) SSo: - --1 SSe n r-1 n-

Again, 

E(SSA) = SSA 

=> E [~ ~(AJ + uOJ - Uoo)r = SSA 

:::} L: L: A~ + L: L: E( uo, - UOO)2 + 0 = SSA , , 

Thus, 

1 E E A~ + - (n - 1) E (J; = SSA I, r I 

1 1 r 
= SSA - ~ (n - 1) n _ 1 r _ 1 SSe , 

1 1 
= - SSA - SSe 

r r(r - 1) 

Now for fixed i, 

E (YI' - Y,O)2 - L: [A, + (u" - u,oW , , 

E [pY'J - Y'O)'] ~ L: A; + L: E (u
" 

- U,O)2 , , 
1 1 

= - S S A - ( 1) SSe + (n - 1) (J? r rr-

Thus, (J; may be obtained from the following relation 

(n - 1) (J; + ~ SSA - (1 ) SSe = E (YIJ - Y,O)2 
r rr-1 , 
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5.8.2 ML Estimation 

Under the assumption of normality of response, the likelihood function for the two-way 

mixed model may be written as 

n-l 1 

L = (2TI)- ;r (l! a;) --2 [l! (a; + na~) r2 

exp [-~ (y - J.L Inr - Z>. ;\)' <1>-1 (y - J.L Inr - Z>. ;\)] , (5.43) 

and the quadratic form in the exponent may be written as 

L (y, - J.L In - In;\)' [~In - ~ 2 a~ 2 In] (y, - J.L In - In ;\) 
I a, a, a, + na a 

= L ~ L (Y" - J.L - ;\,)2 - L: ~ 2:~ 2 [L: (YI, - J.L - ;\,)]2 . 
, a, , , a, a, naa , 

Note that ;\, being fixed, the dispersion matrix <1> has the same form as that of <1>1 defined 

in (5.15). 

The loglikelihood functio~ may be written as 

(5.44) 

Differentiating (5.44) with respect to J.L and equating to zero, the ML estimator of location 

parameter is obtained as 

where 

The estimator of fixed parameter ;\, may be obtained from the following relation 

J!.L - 0 ->.. 8>'j - -.' 

(5.45) 

where fjlW = E. a'a
Y
", a, = ~. Clearly, fjlW is the weighted mean where weights are 
~ 1 

reciprocal of the error variances associated with individual Tasters. 

143 



Also, the estimators of variances components a~ and a; may be obtained from the 

following relations respectively, 

[
1 - n A2] = 0 

a; + na~ , 
(5.46) 

(5.47) 

where A, = L, (y" - /-L - >.,) = L,(Y" - /-L). 

5.9 Data Analysis 

5.9.1 Analysis of Data Set 5 

A set of 14 CTC samples are evaluated independently by a panel of three experienced 

Tasters in terms of 'strength', 'quality' and 'overall quality'. All the Tasters used the 

same structured scale and evaluated the samples on 0-10 point scale. The basic statistics 

for the three different attributes are presented in Chapter 1. We note here that the score 

on each sample is the average of 10 repeats. However the repeated scores are not provided 

to us. 

As evident from the basic statistics, the scores are minimum (on average) on strength 

and are highest for the overall quality or value. We first perform the two-way ANOVA 

without interaction on the three attributes separately. For all these attributes, the 

'between-Taster' variation has come out highly significant at 5% level. However, the 

within-sample variability is insignificant. The ANOVA results are presented in Table 5.1. 

We have tested the significance of difference among the average scores under the as­

sumption of unequal error variance. The average score of the three Tasters differ signifi­

cantly for Sand V. However, for Q the difference is insignificant. The profile plot of the 

scores on S, Q and V are presented in Figure 5.1 to Figure 5.3. 

Since the within sample variability is insignificant for all the three attributes, we may 

use the Model 1 and/or Model 2 to estimate the mean scores and the error variances 

associated with the three Tasters' scores. We first discuss the ML estimators. We note 

here that though both Model 1 and 2 are tried for the given sets of data, we only present 
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the estimates obtained using Model 1, as this model provides better fit, on the basis of 

likelihood information and the sum of squares of errors. The ML estimates of location 

parameter and the variance components for all the three attributes are presented in Table 

5.2 and Table 5.4 contains the estimated scores for the attributes along with the sum of 

squared distance between the estimated scores and the three Tasters' scores. 

The estimates of a~, a~ and a~ may be considered to be the guiding factor to decide 

upon the precision of individual Taster's. However, this is a naive approach to assess 

'how good' a Taster is. This would favour a Taster scoring consistently within a narrow 

interval on the scale he/she adopts, whether the Taster is able to separate or distinguish 

the samples or not. Here als concerns precision actually. If the samples are truly random 

having the same intrinsic properties, then at would measure how inconsistent the ith 

Taster is in evaluating the same type of samples. For moderately large sample size we 

could use the Burtlett's test (Judge et al., 1995, p. 448) for equality of als or we could 

easily develop a likelihood ratio test to test the hypothesis : Ho : a~ = a~ = ... = a; and 

Ho : a~ = 0, under Ho. We do not opt for either of these two tests because of very small 

sample size (n = 14). However, from Table 5.2 it appears that als are different, especially 

for 'strength' and 'value'. 

As may be observed from Table 5.2 the patterns in the estimates of als for three 

different attributes is not the same, though the same Tasters have evaluated the samples. 

For V the Taster 3 has the highest error variance whereas Taster 1 is having the least. 

But for Q the error variance is maximum for Taster 1 and is least for the second Taster. 

A completely different pattern is observed for S. 

- The estimates of a~s for the three attributes are relatively small, suggesting that the 

three Tasters do agree on average for all the three attributes. In fact, the estimates of 

a~ for 'strength' and 'value' are close to zero. This, in turn, support our approach of 

proposing the Model 1 for the given sets of data. 
11 

In Table 5.4, L(ilj-Yij)2 represents the sum of squared distance between the estimated 
j=1 

scores and the ith Taster's sensory scores. Higher the value of al(i = 1,2,3), higher would 

be the value for L(Yij - Yij)2. A typical feature of the scores on V is that the estimated 
j 

scores for last 7 samples are all lower than these for the first of samples. But such feature 
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is not observed for the other two attributes. 

5.9.2 Analysis of Data Set 6 

A set of 16 eTe samples are evaluated by a panel of five Tasters independently in terms 

of 'strength' and 'quality'. These samples are developed through blending of different 

eTe clones in different proportions and thus the quality characteristic is likely to vary 

over samples. As mentioned in the introductory chapter, the identification of the clonal 

combinations are not disclosed. 

As may be observed from the two-way analysis of variance result presented in Table 

5.5, the variations due to samples as well as Tasters are significant at 5% level. The 

Tasters' variations for the two attributes are very highly significant. For obvious reasons, 

we use the two-way heteroscedastic ve model to estimate the error variances associated 

with the five Tasters' scores along with the mean scores. The sample specific effects may 

also be estimated. 

The ML and ANOVA estimators of variance components and the mean scores are 

presented in Table 5.6 and Table 5.7 respectively, along with the estimated loglikelihood 

values for the two attributes. It may be observed that the ML estimates of error variances 

associated with the Tasters (al s) are not very large. However, the estimates of a~ are 

comparatively large, especially for the attribute quality. This implies-disagreement among 

the Tasters in their average choices. Small values of al implies that the individual Tasters' 

choices do not vary much over the different clonal combinations. We note here that the 

estimates of a; can not be considered as the guiding factor to decide upon the precision 

of the Tasters in this case. This is because each sample represents a particular clonal 

combination and the variation in terms of quality attribute(s) over samples is most likely. 

Small value of al implies that the ith Taster do not find much difference in the samples in 

terms of strength and quality. No specific interpretation about the samples can be drawn 

on the basis of these findings, as only a single sample for each clonal combination is studied. 

Had several observations on each clonal combination been available, we could infer about 

the characteristics of the samples with validity. For the same reason of poor information, 

we can not introduce much discussion on the estimates of fixed effects parameters Aj. 
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The estimated scores ({i. + ~j) and the estimates of Aj along the row scores of the 

five Tasters on strength and quality are presented in Table 5.8 and Table 5.9. It may be 

observed from the row scores that the scores given by the fourth Taster (T 4) on quality 

are very low as compare9 to those given by other. In fact this Taster's scores ranges from 

3.71 to 4.50, which is far below the ranges of the other Tasters' scores. Profile plots of 

Tasters' choices on strength and quality along with the estimated scores are presented in 

Figure 5.4 and 5.5. 

147 



Table 5.1 : Two-Way ANOVA result 

Source df SS F F critical at 5% 

I -
Sample 13 4.38 1.38 2.12 

Strength Taster 2 6.24 12.83 3.37 

Error 26 6.32 

Sample 13 3.22 2.12 

Quality Taster 2 13.52 3.37 

Error 26 4.74 

Sample 13 11.28 2.33 2.12 

Value Taster 2 6.55 8.78 3.37 

Error 26 9.70 
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Table 5.2 : ML estimators of {t and variance components 

Strength Quality value 

{t 5.2299 6.3909 7.8867 

~2 
(11 0.5772 0.2217 0.0684 

~2 
(12 1.1980 0.1154 0.6157 

~2 
(13 0.0001 0.1658 1.4104 

-
~2 
(10 0.5772 0.2217 0.0684 

in L -19.4351 -19.0047 -21.5630 

Table 5.3 : ANOVA estimators of {t and variance components 

Strength Quality value 

{t 5.4302 6.4987 7.7854 

~2 
(11 0.6925 0.2943 0.1358 

~2 
(12 1.3645 0.2541 0.6352 

~2 
(13 0.0021 0.1956 1.5684 

~2 
(10 0.9824 0.3212 0.1653 
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Table 5.4 : Estimated scores for the three attributes 

Sample Strength Quality value 

1 5.75 6.94 8.21 

2 4.84 6.68 8.08 

3 5.04 7.09 8.28 

4 4.25 6.92 8.10 

5 4.15 6.73 8.09 

6 4.50 6.76 8.27 

7 4.85 6.67 8.12 

8 4.00 5.85 7.73 

9 4.15 6.07 7.74 

10 4.28 6.19 7.60 

11 4.35 5.81 7.35 

12 3.85 5.88 7.69 

13 4.25 6.09 7.57 

14 4.55 5.69 7.58 

"L(y, - Yl))2 8.07 2.49 0.68 

"L(y, - Y2))2 16.77 1.01 8.35 

E(y) - Y3,)2 0.00001 1.71 19.47 
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Table 5.5 : Two-Way AN OVA for Data Set 6 

Source df SS F F critical at 5% 

Sample 15 3.68 0.68 1.84 

Strength Taster 4 44.61 30.87 2.53 

Error 60 21.68 

Sample 15 4.09 1.35 1.84 

Quality Taster 4 136.32 169.69 2.53 

Error 60 12.08 
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Table 5.6 : ML estimators of J-t and variance components 

Parameters Strength Quality 

it 6.7433 6.3379 

A2 
0'1 0.1173 0.1285 

A2 
0'2 0.5957 0.4888 

A2 
0'3 0.0783 0.2003 

A2 
0'1 0.8167 0.1261 

A2 
O's 0.1966 0.2055 

A2 
O'a 0.5029 1.6858 

lnA L -32.0607 -30.5576 
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Table 5.7 : ANOVA estimators 

Strength Qua.lity 

/-L 6.9985 6.7568 

A2 a l 0.2365 0.3212 

A2 
a2 0.6984 0.5878 

A2 
a3 0.0985 0.3012 

A2 
a1 0.9987 0.1546 

A2 
as 0.2122 0.3214 

A2 
aa 0.7561 1.8751 
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Table 5.8 : The Tasters' scores on strength and estimated scores 

along with the fixed effects estimates ~j 

Tl T2 T3 T4 T5 Estimated Score Aj 

8.00 4.85 7.43 6.57 8.14 7.1815 0.4382 

7.85 5.28 7.00 7.28 7.14 6.8310 0.08771 

7.00 4.85 7.28 6.74 7.43 6.6975 -0.0458 

7.75 4.86 7.14 6.14 7.85 6.8621 0.11884 

7.29 5.14 7.29 6.57 7.43 6.8071 0.06389 

7.14 5.14 6.86 6.71 7.00 6.5071 -0.2362 

7.33 5.00 7.00 7.00 7.17 6.6571 -0.0862 

7.17 4.50 7.17 6.67 7.67 6.7290 -0.0143 

7.50 5.50 7.25 7.00 7.75 6.9449 0.2017 

7.50 6.00 6.50 3.50 7.25 6.4134 -0.3299 

7.25 6.50 7.25 6.50 7.25 6.8218 0.07850 

7.75 7.25 7.50 5.50 7.00 7.0341 0.29081 

7.00 5.25 7.25 6.50 7.50 6.7208 -0.0225 

7.25 4.75 6.75 7.00 8.00 6.6547 -0.0887 

7.50 5.57 7.00 6.25 6.50 6.6018 -0.1415 

6.75 6.25 6.75 6.00 7.00 6.3795 -0.3638 
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Table 5.9 : The Tasters' scores on quality and estimated scores 

along with the fixed effects estimates >', 

Tl T2 T3 T4 T5 Estimated Score )." 

7.71 5.00 7.71 4.14 8.00 7.0125 0.6746 

7.57 5.14 7.00 4.43 7.28 6.9062 0.5683 

7.00 4.85 7.71 4.28 7.57 6.7986 0.4607 

7.57 4.57 7.71 4.14 7.85 6.9496 0.6117 

7.29 4.86 7.71 4.40 7.43 6.9585 0.6206 

7.14 4.71 6.86 3.71 7.00 6.4798 0.1419 

7.33 4.67 7.50 3.83 7.50 6.7219 0.3814 

7.17 7.17 7.50 3.83 7.67 6.6289 0.2909 

7.50 5.50 7.50 4.25 7.50 6.9659 0.6280 

7.50 6.00 6.75 4.50 7.00 6.9214 0.5835 

7.25 6.50 8.00 4.50 7.25 7.1563 0.8184 

8.25 7.00 7.50 4.50 7.00 7.4211 1.0832 

7.00 5.25 7.00 4.25 8.00 6.6822 0.3443 

7.25 4.75 7.00 5.00 8.00 6.9775 0.6395 

7.50 5.50 6.50 4.00 6.50 6.6407 0.3028 

6.75 6.00 7.00 3.75 7.00 6.4687 0.1308 
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Figure 5.1: Profile plot of scores on strength 
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Figure 5.2: Profile plot of scores on quality 
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Figure 5.3: Profile plot of scores on value 
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Figure 5.4: Profile plot of scores on quality and estimated score 
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Figure 5.3: ProfIle plot of scores on strength and estimated score 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Sample 

I-T(1) -T(2) -T(3) -T(4) -T(5) -EslScore I 

I§f 



CHAPTER- 6 

.ONE-WAY ERROR COMPONENT REGRESSION 

MODELS WITH HETEROSCEDASTIC ERROR 

6.1 Introduction 

In the third chapter we discussed the association of biochemical quality parameters in tea 

with the sensory score given by single Taster. In this chapter we study the possibility of 

associating the chemical information in tea samples with sensory scores given by a panel 

of Tasters. We adopt the regression approach here. In the regression setup the measured 

values of chemical parameters are treated as regressors and these measurements are known 

to be obtained with high degree of accuracy. The dependent variable (response) is nothing 

but the sensory scores given by the panel of Tasters independently. Thus we have repeated 

observations on the response variate. 

The problem may be viewed typically as a chemometric one, where the information set 

includes both chemical parameters and the sensory scores. Note that the measurements 

on biochemical parameters are fixed for a particular sample. Only the sensory choices 

vary due to Tasters. Unlike a typical sensory panel data, we have no replicated scores by 

Tasters on each sample. Only a single score on each sample (for a particular attribute) by 

a particular Taster is available. Thus we can not study the different possible aspects of 

the sensory panel data related to 'scale differences', 'non-linearity component' for sample 

x assessor 'interaction' etc., while relating chemical information with the sensory scores. 

Given the Data Sets 7 and 8, we can atb est study the individual variations among the 

Tasters apart from identifying the biochemical quality parameters, which are statistically 

significant in terms of influencing a particular quality attrioute. 
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One possible statistical approach in this situation may be the multiple linear regression 

on the means of the scores given by the Tasters. In this approach we ignore the subjectivity 

associated with the assessors, choices and can not track the individual variation. Aga!n, 

if the regressors are interrelated leading to multicollinearity problem, the applications of 

techniques like Principal Component Regressions may be used. However, for the data sets 

under study, the conditional Index test does not indicate severe multicollinearity. 

Keeping in view the inherent subjectivity associated with the Tasters' choices, we 

may introduce an error component with the response variable. As several Tasters' scores 

are available for a given set of samples, we may formulat our regression model so as 

to take into account the individual variations due to Tasters. Keeping this in view we 

propose some error-component regression models in this chapter. As has been discussed 

in the last chapter, there is a continuing debate on whether to assume Tasters' affects 

as fixed or random. In the error component regression set up, we discuss random effects 

formulations, under the assumption that the error variances associated with different 

Tasters' scores are unequal. Thus our study is specific to error-component regression 

models with heteroscedastic errors. 

The error-component models are well developed in the statistical literature. (Baltagi, 

1996) and we do not claim any originality in our study, so for the statistical model 

formulation is concerned. We simply extend the basic model formulation and discuss the 

estimation procedures in a heteroscedastic situation. 

Before we formally introduce the error-component models, we need to undertake some 

basic diagnostics, which is discussed in the next section. 

6.2 The Basic Diagnostics 

In the regression set up, under the assumption of same distribution for different individual 

responses, it is important to study whether the intercepts and/or the regression coefficients 

exhibit same pattern while associating the chemical information on a particular set of· 

tea samples with different Tasters' scores. Here we address the problem of studying 

159 



the stability (consistency) of different coefficient estimates. If, for the given two data 

sets under study, it is established that the sets of regression coefficients are different for 

different individual responses, then we may have to incorporate this into the model in an 

appropriate manner. 

In a multivariate multiple regression setup, we model the relationship between r re­

sponses Y ,Y , ... , Y , and a single set of predictor variables, Xl, X2,' •• Xk, as 
""1 ""2 ""r 

(6.1) 

Each response is assumed to follow its own regression model. The error component U = 

(Ul' U2,'" Ur )' has E(u) = 0 and Var(u) = <fl. The error component associated with 

different responses may be correlated. In matrix form the above formulation may be 

written as Y = X {J + u, where 

Yn Y12 YIr 

Y21 Y22 Y2r 

y= , {J = 

(k+l)xr 
Ynl Yn2 Ynr 

nXr 

u= 

Uni U n2 Unr 

Here E(,!!.) = 0, Cov (~i' ~I) = (lie I for i, l ~ 1,2, ... r. We are primarily interested in 

the estimates of the regression coefficients vectors {J. Note that for the ith response, the 
""i 
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GLS estimator of fl would be (X' ~i1 xt1 X'Y.' where ~i = (}"ii I. Thus for all the 
l'Vi "' • 

. responses, the estimated GLS estimator would be 

which is obtained by minimizing ui <1>-1 Ui = (Yi - X fl )' <1>-1 (Yi - X fl ) for each i. Here 
""i lVi 

~ is unbiased and consistent with covariance matrix E[(~ - fl)(~ - fl)'] .= [X' <1>-1 X]-I. 
I'V IV "" ,..", 

To obtain the estimator t we use the OLS residuals Ui = Y - Xi ~i' The ith element in 
"'i 

t is of the form Oill = ~ ui UI' 

Before we develop a formal error-component regression model combining all the re­

sponses together, it is important to test if fl ,fl , ... fl , the vectors of regression coeffi-
I'V} 1"V2 "'r 

cients are all equal for the r responses on the given set of n samples. Here the problem 

is to study the stability of regression coefficients for different responses given the same 

set of predictors for all the responses. This can be done introducing dummy variables in 

the regression model. The techniques and implications of introducing dummy variables to 

allow for differences in the intercepts and/or slopes are well developed in the econometric 

literature. To test the hypothesis of stability (or consistency) of fl coefficients, we may 

extend the ANOVA test proposed by Chow (1960). In our situation, the null hypothesis 

to be tested is 

Ho : flll = ... = flln"" flkl = ... = flkr and /-Ll = /-L2 = ... = ttr . 

If this hypothesis holds, we can estimate a single equation pooling the responses together 

and assume fixed regression coefficients for all the independent response variates. Other­

wise, we have to develop regression model with varying slopes over the responses. Here 

we use the concept of restricted error sum of squares (RESS) and the unrestricted error 

sum of squares (UESS). To attain UESS we estimate the regression model for each of the 

equations defined in (6.1). Suppose UESS i is the error sum of squares for the ith equation 

wi th regression error variance (}"2. Then u ~~Si follows X2 distribution wi th ni - k degrees 

of freedom, where n, is the sample size for ith equation. Now since the responses are 
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, 
independently made by panel of Tasters, L FRS S, I er!. ha5 a X!. distribution with 

1=1 , ,. 
d.f. L n, - rk - r. 'Ale have, URSS = L URSS,ler!.. 

,=1 ,=1 
Again, RESS is obtained from the regression with the pooled data, which obviously 

imposes the restriction that the regression parameters are the same (Ho). It is known , 
that RESSler!' has a X!. distribution with d.f. L 77, - k - 1. Now the ratio 

1=1 

F = -'-( R_E_S_S_-_U_E_S_S.:....:.) I-=-( r_' ---.:1 )-=-( A_' +----:..1) 
UESSle'L, 11, - rk - r) 

(6.2) 

has a F-distribution with d.f. (r - l)(k + 1) and L 11, - rk - t. Note that the 
. , 

term (r - 1) (k + 1) represents the difference of the degree5 of freedom of RESS and 

UESS. One limitation of this F -test is that it gives a general test about the equality of 

all the slope coefficients and intercepts. This. Chow test might tell the consistency of all 

the coefficients estimates but not tell us which particular coefficients are inconsistent. 

Keeping this problem in view, the use of dummy variable5 in the regression model may 

be suggestive and with this approach are may check for the significance of different 

dummy variables looking at the t-ratios. But it the number of re5})On5e5 i'S large, then 

there will be too many dummy variables in the model. Al'So if the multicollinearity 

problem exist'S, then the t-ratios for each of the regres'Sion coefficient'S are likely to be 

insignificant and still the F -ratio for the entire 'Set of coefficients is 'Significant. That is 

why we propose the use of F -test first. 

For both the data sets under study, the estimated values of F do not suggest rejection 

of the null hypothesis. These estimates we presented in the data analY5is section. On 

the basis of our diagnostics. V.,Te consider the error-component regres'Sion models, which 

are described in the section 6.4. A brief discussion on the respon'Se variable error is 

followed in the following section. 
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,. 
independently made by panel of Tasters, E URSSd(J2 has a X2 distribution with d.f. 

1==1 ,. ,. 
E ni - rk - r. We have, URSS = E URSS,/(J2. 
i==1 i==1 

Again, RESS is obtained from the regression with the pooled data, which obviously 

imposes the restriction that the regression parameters are the same (Ho). It is known ,. 
that RESS/(J2 has a X2 distribution with d.f. L: n, - k - 1. Now the ratio 

i=1 

F = (RESS - UESS)/(r - l)(k + 1) 
UESS/('£i ni - rk - r) 

(6.2) 

has a F-distribution with dJ. (r - 1)(k + 1) and L: ni - rk - r. Note that the term 
I 

(r - 1)(k + 1) represents the difference of the degrees of freedom of RESS and UESS. 

One limitation of this F-test is that it gives a general test about the equality of all 

the slope coefficients and intercepts. This, Chow test might tell the consistency of all 

the coefficients estimates but not tell us which particular coefficients are inconsistent. 

Keeping this problem in view, the use of dummy variables in the regression model may be 

suggestive and with this approach are may check for the significance of different dummy 

variables looking at the t-ratios. But it the number of responses is large, then there will 

be too many dummy variables in the model. Also if the multicollinearity problem exists, 

then the t-ratios for each of the regression coefficients are likely to be insignificant and 

still the F -ratio for the entire set of coefficients is significant. That is why we propose the 

use of F-test first. 

For both the data sets under study, the estimated values of F do not suggest rejection of the null t 

On the basis of our diagnostics. We consider the error-component regression models, 

which are described in the section 6.4. A brief discussion on the response variable error 

is followed in the following section. 

6.3 Some Discussions on the Response Variable Error 

Most of the studies made so far have focused extensive by on problems associated 

measurement error in independent variate. Carrol et. al. (1995) have discussed dit 

162 



examples where either the predictors and/or response variates are measured with errors. 

Such situations arise in different fields like Nutrition studies, Bioassay studies, etc. Some 

specific examples are Rudemo (H)89) in a Herbiade study, Testensen et al. (1989) in long 

function in children, heart disease and blood pressure studies by Kannel et al. (1986), 

Liu and Liang (1992), among many others. Pierce et al. (1992) considered analysis of 

A-bomb survivor data from the Hiroshima explosion. 

Not many studies have been made (in our knowledge) where only the response in 

measured with error. A clinical example is due to Witter et a1.(1989) in which damage 

of heart muscle cause by a infraction can be assessed accurately, but the procedure is 
f 

expensive and invasive, and instead it is common practice· to use peak cardiac enzyme 

level in the blood stream as a proxy for the to true response. This is obviously a surrogate 

response variate. 

We may introduce an example from the economic field, where the profit (response) of 

a company is a function of input price and input quality for a given technology and in 

such a situation we get measurement error only in response variate. Such situation may 

,arise in Sociological and Psychological studies also. 

The extensive attention paid to predictor measurement error is obyious as the predictor 

measurement error is seldom ignorable. The causes and remedies are studied by many 

researchers. But the response measurement error is often ignorable, as the model holding 

for true response hold also for the proxy response, except that a measurement error 

variance component is ctdded to the response variance. For example, in lines .regression 

models with simple types of response measurement error, the response error is confounded 

with equation error and the effect is simply to increase the variance of the parameter 

estimates. Thus response measurement error is ignorable in some cases. However, in most 

of the empirical situations, the response errors are not ignorable. In more complicated 

regression models, especially is nonlinear situations, it is important to explicitly account 

for the responses error in the regression analysis. 

Carrol et al. (1993) discuss the unbiased and biased measures of true response. Both 

additive and multiplicative error structures are considered for a case control study. As 
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they observe, the case of homoscedastic regression variance provides an example of 'ig­

norable' response measurement error. In such situations, unless the separate ves are of 

independent interest, the response error can be ignored and no repeated or validation 

data is required. But when the ves are of independent interest, one must have repeated 

observation for response variate. 

The literature on regression models with repeated observations on response variate 

is scarce. The cause is possibly the 'no-serious statistical complexity' in the estimation 

procedure. As discussed earlier, the usual estimators of regression coefficients are still 

unbiased and consistent. However, if heteroscedasticity is introduced in the repeated 

observations, it adds some special features to the regression estimators since values of 

the regressors do not change over repetitions of the regressand. One such result is that 

the GLS estimates reduces to OLS estimates with the response variate replaced by the 

weighted mean of repeated observations (Pal and Paul 1997, 1998). One may utilize the 

repeated observations to estimate the ves along with improved estimates of' regression 

coefficients. 

Problems also arise when we like to test the coefficient estimates for specific values 

or simply to see the significance of the efficiency of estimates by incorporating distribu­

tion assumption on the response error. If both response as well as the equation error 

are assumed normal, then there is no wayout to isolate these two effects. Identification 

problem arises for these parameters. Thus the efficiency of the estimates can not be in­

creased. This problem can be partially solved if repeated observations are available for 

the response measurement. 

6.4 One-Way Error Component Regression Model 

In this section we consider the one-way error-component linear model, where the Taster 

specific effects are assumed to be random. The logical explanation behind the assumption 

of random Tasters' effects has already been given in the previous chapter. Here we present 

two alternative formations. 
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The general linear random effects model is of the form y = X (J + Za + e, which 

haS already been discussed in the second chapter. Here the definition of e is based first 

on defining E(y) = X{J and E(y I a) = X{J + Za and then e = y - E(y I a). We 

genera]]y consider E(e) = 0 and E(a) = o. For Var(a) = A and Var(e) = E, we have 

Var(y) = E + ZAZ'. The estimators of {J and the variance components along with their 

statistical properties are well developed in the literature (see review chapter). 

We formulate our model specific to the tea quality assessment data under study. Sup­

pose for n tea samples, r Tasters have independently evaluated the tea samples. Also, 

measurements on k biochemical parameters are available and we do not have any missing 

observation. The tea samples are collected from the same experimental garden, received 

the. same manufacturing/processing system and are assumed to be random samples hav­

ing the same intrinsic quality. Then we may associate the chemical information with the 

sensory scores using the fo]]owing model 

Yij = J.L + X~j (J + eij 

i=1,2 ... r, j=1,2, ... n 
(6.3) 

with i denoting Tasters and j denoting samples, Xi) is the matrix of k regressors (biochem­

ical parameters) for the yth sample. Note that X,j is fixed over i. f:J = (f:Jl, {J21 ... I f:Jk}' is 

the k x 1 vector of slope coefficients and J.L represents the intercept. The error component 

ej) may be decomposed as 

(6A) 

where aj denotes the unobservable Taster specific effect and tijj denotes the remainder 

disturbance. Combining (6.3) and (6.4), we have the one-way error cOlTlPonent regression 

model 

{6.5} 

1 

Here a is the average effect due to ith Taster and tiij varies with Taster and sample. 

Stacking the data for all the samples, the linear error-component regression model may 
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be written as 

Y /-LIn X fh In 
~1 

0 0 01 1£ 
"'1 

Y /-LIn 
"'2 

X {J2 0 In 0 02 1£ 
"'2 

= + + + 

Y X o 0 0 In 1£ 
""r ""r 

(6.6) 

where Y~ = (Yil Yi2'" Yin), 1£', = (Uil Ui2'" Uin), Z = Ir ® In is the matrix of dummy 
~, ~. 

variables associated with o. X represents the matrix of regressors on n samples for ith 

repeat and is of the form 

X= 

Here the X matrix is same for all the repeats. Note that, if 0i are assumed to be fixed 

Taster specific effects with remainder disturbance stochastic, then we have fixed effects 

error component model. The Xij are assumed to be independent of Ui, for all i and j. 

The fixed effects (FE) model is an appropriate specification if we are focusing on set of r 

Tasters. Inference in this case is conditional to the specific r repeats. In FE model, tQere 

is a large loss of degrees of freedom as we are estimating r extra fixed effects apart from 

the location parameters. In fact, we are to include (r -1) dummies in the regression, and 

too many dummies may aggravate the problem of multicollinearity among the regressors. 

Also, it may be mentioned here that the one-way random effects model Yij = ,t-f-orf-uij, 

discl/ssed in the fifth chapter is a special case of the model (6.5) with random at when 

{J = 0 or x, (the matrix of regressors for lh sample) are all the same. 
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6.4.1 Heterosedastic Formulation of Dispersion Matrix 

Under homoscedasticity, we may introduce the assumptions in RE m0gel : a, '" iid (0, o~), U'j 

iid (0, o~) and Qi are independent of Uij. In addition, the X,j are independent of a, and 

Hjj for all i and j. Tn this situation, the variance-covariance matrix of thn composite 

disturbance e = Zel + U would be of the form 

E(e e') = ZE(a a') Z' + E(u u') 

= a~(Ir ® I n) + a~(Ir ® In) 

This implies a homoscedastic variance VaT (eij) = o~ + o~ for all i and j and an equi­

correlated block-diagonal covariance matrix. In fact, 

Cov (eij, elk) = 2 2 
0 0 + au, for i = l and j=k 

= 2 0 0 , for i = l and jik 

= ° , otherwise 

The best quadratic unbiased estimators of variance components and the ML estimators 

of the implicit parameters are discussed by Baltagi (1995). 

Now the homoscedastic error component model may be generalized to the case where 

eli and/or Uij are heteroscedastic. Here we may assume ct, heteroscedastic, i.e., el, f'V (0, an 
for i = 1,2, ... T, but U,j f'V (0, a~). Again we may-keep a, homoscedastic with el, f'V (0, a~) 

and impose heteroscedasticity on Uij, i.e., U,j rv (0, at). Thus we have two distinct 

formulations. The one-way regression model with the assumption eli rv iid (0, a~) and 

U,j rv iid (0, or), be termed as Model I and that with the assumption eli '" iid (0, an 
and Uij f'V iid (0,0;) be termed as Model II. 

If we presume that the Tasters' do agree on average about the particular quality 

attribute for the given set of tea samples, but the variation over samples by each Taster 

differ, then the use of Model I seems appropriate. Otherwise we may try the Model II. 

Anyway, the appropriateness of using either of the models may always be tested. Here, 

Model I and Model II are non-nested and we may use the "information criteria" based 

test to compare the fit (Vonesh and Chinchilli, 1997). 
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The heteroscedastic formulation of one-way error component model has already been 

introduced by Baltagi (1995). Baltagi discussed the estimation of ves using the OLS 
n 

residuals eij. The estimates proposed are: ill; = L (~j - e;o/(n - 1) using the OLS 
p"l 

residuals eij, and then obtain 8; = ill; - 0';. Here the estimate of 0'; is the within residuals 

MSE, obtained by regression on means. This is clearly a two-stage regression procedure 

and the OLS regression coefficient estimates are still consistent, but not efficient. This 

estimation procedure is specific to Model II. 

In case of Model I, we have E(e;j) = 1.1); = a~ + 0';' Using OLS residual e;;, we may 

obtain ~ = Lj(e;; - £;O)2/(n - 1). Also, we may compute ~ = Lj(e;; - £;0)2 I(n - 1), 

using the within residuals. Then (~-~) gives r estimates of 0'; and ~ = Li(~ -~)/r 
is a consistent estimator of a~. 

Here the problem lies with the fact that the within residual MSE is obtained from 

the regression on means and may not always provide a stable information if the between 

Taster variation is very high for a given set of data. This may also effect the standard 

errors of the estimates of (J coefficients. For Model II, this two-stage procedure requires a 

large n and preferably small r. In our study, we restore to the ML estimation procedure 

for many obvious reasons. The ML estimates of regression parameters and the ves are 

discussed in the following section for both Model I and II. 

6.5 ML Estimation For Heteroscedastic Models 

6.5.1 ML Estimation For Model I 

The variance-covariance matrix of the composite disturbance component e = Za+u, may 

be presented as 

<PI = E(e e') = ZE(ac/)Z' + E(uu') 

where ZZ' = Ir ® In and Li = diag(a; 0'; ... an. We may write, <PI = diag(81 82 ... 8r ), 
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where 
(12 +(1~ , (12 

(12 (12 + (1~ , 
Si= 

(12 (12 

The determinant and inverse of Si matrix has already been obtained in Section 5.5.2 

of Chapter 5. Under the normality assumption, the probability function of the response 

y may be written as 

The likelihood function for Model I may be written as 

and the quadratic form in the exponent may be simplified as 

where xj = (Xj1' Xj2 ••. , Xjk). 

Thus the loglikelihood function may be writt~n as 

(6.7) 

Partially differentiating l1 with respect to the parameters and equating to zero, the 

ML estimating equations for the location parameters and the VCs may be obtained as 
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L 2: 2 L (y" - I-L - x~,B)X~ = 0, 
a, naa , 

:::} E (ti,w - I-L - x~,B)X~ = 0, , 

E (Y3 W - I-L - x~,B) = O. , 

Here 

and 

Note that from the last two equations, the estimates of ,B and JL may be obtained 

respectively. These estimators are same as the WLS estimators. here B = (X' xt1 X'Yw, 

where X is (n x k) matrix of regressors defined earlier and Yw = (Ylw Y2w'" Ynw)' is the 

weighted mean vector. The weighted mean for each j (sample) is calculated by taking 

weight w, = :::ri'":":2+1 2 with Y'3' We mention here that for unequal a?s, explicit expressions 
U, naQ 

for a? and a~ can not be obtained from the above equations. Also, the ML estimators 
, 

obtained from the above system of equations for a? and a~ may take negative values. If 

negative estimate of the variance component(s) is encountered, it may be replaced by zero 

and the iteration process may be continued. 

6.5.2 Estimation of Random Component 

In the model (6.3), the random component a, represents the effect due to tth Taster. 

This may be looked upon as the variation in the average score due to ith assessor. This 
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unobservable random part can be estimated using the technique discussed in the fifth 

chapter. 

The conditional distribution of aj given the total errors aj + Uib aj + Un, ••. , aj + Ujn 

can be obtained and an approximate summary measure of this conditional distribution 

may be assumed to represent the random component. The computational details follows 

from Section 5.5.3 of Chapter 5. The conditional probability of aj given the total errors 

is 

The conditional distribution being normal the mean of this conditional distribution 

may be assumed to give an approximate measure of aj. From the above form we may 

write, 

6.5.3 Discussion on the Estimator of {J 

We note that ~ obtained here is nothing but the GLS or WLS estimator {J;;;'s = (XI~-lX)-lX'<J.-ly. 

This is obvious since under normality assumption ML and GLS estimates are same. 

It is also known that the covariance matrix of the estimated regression coefficients is 

Var({J;;;'s) = (X/~:"'lX)-l. The estimated value of the covariance matrix is found by 

replacing the error variances by their ML estimators. Here ~ is consistent as well as 

efficient. 

Again we may think of a transformation matrix P such that pI P = ~-l. Then the esti­

matorof {J is ~ = (X' pIp X)-l(XIP'Py) = [(PX),PXl-l[(PX), pYl = (X·'X·)-I(X·' y.), 

where X· is the transformed design matrix and y. is the transformed response vector. 

In this case we need not obtain the unknown ~ to estimate the fixed part of the model 

(6.5). Clearly PaLS reduces to POLS under this transformation as the GLS estimator can 

be obtained applying OLS to the transformed observations (y., X·). 

If interest lies only with the estimation of {J, then the problem boils down in choosing 

an appropriate form of the transformation matrix P only. Such a formulation would 
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substantially reduce the computation as we need not obtain <J>-1 in this case. 

In many longitudinal analysis, the primary interest lies in making inference about 

{J. When the mean response is of primary interest, we may use the WLS estimation 

technique. Here a symmetric weight matrix W may be introduced and ~w is obtained as 

Bw = (XWX)-lX'Wy. This estimate is unbiased whatever may be the choice of W. If 

W = I, we obtain OLS estimator. We note here that under random effects formulation, 

the GLS estimator of {J based on the true VCs are BLUE. All the feasible GLS estimators 

considered are asymptotically efficient as neither n or r tends 00. Maddlla and Mount 

(1973), Taylor (1980) and Baltagi (1981a) conducted Monte Carlo studies and found little 

to choose among various feasible GLS estimators in small samples and argued in favour 

of ANOVA feasible GLS and ML to ensure that these do not yield drastically different 

results. 

6.5.4 The REML Estimation for Model I 

In a homoscedastic situation the ML estimator of VO is not unbiased. One needs to 

adjust for its degrees of freedom. This is overcome by REML approach. In this section 

we obtain the REML estimators of variance components for the linear error component 

model - ModelL 

In case of general linear model y rv N(X{J, ~), the REML estimator may be defined 

as a ML estimator based on a linearly transformed set of data y. = Ay such that the 

distribution of y. does not depend on {J. One way of achieving this is by taking A to be 

the matrix which converts y to OLS residuals. 

A = 1- X(X'X)-lX 

Here we have yj = Yj - xj ~OLS', where ~OLS = (X'X)-l X'y. It follows that E(yj) = 0 

or E(y·) = 0 for any choice of {J, and in fact, the distribution of y. is independent of {J. 

Under this transformation the reduced profile loglikelihood can be shown to be 

AI' A A 
IR = -"2[(nr - k) In(271") + In I <J> I + In I X' <J>-1 X I +(y - XfJ)' <J>-l(y - XfJ)J 
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where the MLE of the parameters are obtained by maximizing 

1 A 1 A 

lml = -"2[nr In(21l") + In 14>+ I (y - XfJ)' 4>- (y - XfJ)] 

It follows from the results that the general linear model incorporates only a simple mod~ 

ification of the ML algorithm in the earlier section. 

The restricted likelihood function for the Model I can be maximized by using the EM 

algorithm or the Newton-Raphson algorithm. Various packages now exist to maximize or 

- minimize the loglikelihood function (for example, SPLUS, using nlmin command). 

If we compare the lml and In, we observe that the basic difference lies with the term 

t In I X'4>-l X I apart from the coefficient of In(27T). It may be noted that X'<I>-l X 

is a (k x nr) x (nr x nr) x (nr x k) = (k x k) matrix. So this term is typically of 

order k, where as lml is of order nr suggesting, correctly, that the distinction between 

ML and REML estimation is important only when k is relatively large. Many authors 

have discussed the relative merits of ML and REML estimators for covariance parameters. 

Cullins et al. (1990), Verbyla et al. (1990) apply REML in longitudinal data settings, 

whilst Tunnichiffe-Wilson (1989) uses it for time-series estimation. One of Tunnichiffe­

Wilson examples shows how REML copes much more efficiently with a near singular 

variance matrix than does ML estimation. The two methods are asymptotically equivalent 

as either or both nand r tend to infinity for fixed k. When k tends to infinity, comparisons 

unequivocally favour REML. In summary, ML and REML estimators will often give very 

similar results. But when they differ substantially, the REML estimators are preferable. 

But we note here that not much is known about this while dealing with small sample size 

(fixed samples). 

6.6 ML Estimation for Model II 

In the heteroscedastic Model II we assume that 0i tv iid(O, on and Uij I'V iid(O, a;). 

The random component 0i is assumed to be independent of UiJ and ol(i f.= l). In this 

case, for the model (G.G) we have E(Yij/Xij) = J-L + X~jfJ, Var(Yij/xij) = at + a~, and 

COV(Yij, Yik) = a~ for j f.= k. 
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The variance-covariance matrix for this model may be obtained as (see Section 5.6.2 

of Chapter 5) 

E(e e') = <1>2 = Z E Z' + a~ Inr 

= E ® I n + a~(Ir ® In) 

= dW9(a~ I n + a~In a~Jn + a~In .. ' a;Jn + a~In) 

where E = dwg(a?, a~, ... an. 

The determinant and inverse of <1>2 may be obtained as 1 <I> 1=1 81 II 82 1 ... 1 8r 1= 

( 2)r(n-l) r ( 2 2) d 8-1 _ 1 J u~ T au IT au + na, , an -:2 n - 2( 2+ 2) "n' 1=1 U u U u 0u nUl 

Now the likelihood function for the Model II may be written as (under the gaussian 

assumption) 

L2 = (v'2?i)-nr(atr(n-l)[IT,(a~ + na?)t~ exp[-~(y - /.L - XfJ)' <1>;-1 (y - /.L - XfJ) , 

and the quadratic part in the exponent may be simplified as 

t(YI - /.L - X1fJ)' [~In - 2( 2
ai 2) In] (YI - /.L - X1fJ) 

,=1 au au an na, 

The loglikelihood function for the Model II may be written as 

nr 1 ( ) r{n - 1) 2 1 '" 2 2 l2 = -2 n 27r - 2 lnau - '2 LJ In(au +na,) , 
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(6.8) 

n 

where (n - 1) S; = L)Y,) - J-L - X;fj)2 and D, = L) (Y') - J-L - x~fj). 
;=1 

Partially differentiating (6.8) with respect to a~, a;, J-L and fj, we obtain the following ML 

estimating equations : 

2 _ [1 " ( , (~)] 2 1 2 => a, - n L..) y" - /-L - X)I-' - nau 

=> 

=> 

~ 1 ~( ,-1 
L 2 + 2 L V,) - J-L - x,fJ) x, = 0 
,au na, , 

L:(y,w - J-L - x~fJ) :c~ = 0 and , 

L:(Y,w - J-L - x~fj) '= 0 , 

J-L = ! ~]Y,w - x~/3) , 
n , 

(6.9) 

where Y,w = L:W,y,,/L:W,, W';;;nu2. Here 'ij,w is the weighted mean for lh sample, 
u • , , 

where weights are obtained from the estimates of variance components. Clearly the ML 

estimators of fj and J-L are the weighted least square estimators. 
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6.7 Residual Analysis for the Error Component Model With 

General Covariance Structure 

Haslett and Hayes (1998) has discussed the general theory for residuals from the general 

linear model. For the model y = J.1, + X fJ + Zo: + u, we have y fV (XfJ, cp), where 

4> = E(WW') for W = Za + u. The GLS estimator of fJ is fi = (X' 4>-1 xt1 X' cp-1y 

with Var(fi) = (X' 4>-1 Xt1. Here the classical residual may be defined as iL = y-Xfi = 

4>QY, where Q = cp-1 P and P = 4>-1X(X'4>-lXt1 X' 4>-1, Also, Var(iL) = 4>Qcp = G. 

The 'lack of fit' statistic for the model is defined as S = iL' 4>-1 iL = y'Qy. Note here 

Ithat to estimates S, we may use the ML estimators of variance components. The closer 

the values of S to zero, the better is the fit. 

We note here that since the method assumes normality, there is also a need to assess 

the adequacy of that assumption. For RE models, Ryan and Dempster (1984) proposed 

the weighted normal plot as a graphical approach to the assessment of normality. However, 

failure of approximate normality assumption does not invalidate the estimates of location 

parameters since weighted least squares estimates are unbiased and consistent under very 

broad conditions. It does, however, invalidate the usual tests and confidence intervals 

based on normality theory. 

The 'bootstrap' provides an alternative approach to assessing the distributional prop­

erties of estimators without reliance on normality assumptions. The 'bootstrap' approach 

provides an estimate of the sampling distribution of an estimator based only on that 

estimation procedure and the sample in hand, without appealing to distributional as­

sumptions. If an approximately optimal estimator can be defined, the bootstrap can be 

used to assess its properties. 
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6.8 Study on Improvement of Quality of CTC Teas Through 

Process Modification 

A new process of manufacture of eTC tea has been developed at Tocklai Experimental 

Station, by modifying the sequences of manufacturing steps. In the modified method, the 

plucked shoots were withered, rolled, rotorvened, fermented and then taken to a eTC 

machine and dried instead of fermenting after eTC cut. The final products obtained 

from the new sequences furnished marked improvement in shelf-life of the commercially 

manufactured teas. This modified manufacturing process has, therefore, been adapted 

by different commercial gardens of Assam and Dooars regions of India and outstanding 

results have been observed in terms of auction price realization. 

Shoots plucked from Tocklai experimental plot were manufactured at the Miniature 

factory. The whole lot of leafs were divided into two equals parts. One part received 

the conventional manufacturing process, whereas the other part received the innovative 

modified manufacturing system. Thus we have the 'central' and 'experimental' samples. 

The biochemical parameters measured are moisture (MO), TF, TR, e, brightness (B), 

total colour (TC) and water-soluble solids (WSS). Detail technical discussion on the man­

ufacturing methods and the chemical analysis is avail~ble in Pal et. a1. (2000). 

Four experienced Tasters have evaluated the samples in terms of 'valuation' on a 0-10 

point structured scale. For each sample (control and experimental), each Taster made 10 

repeats. But the replicated scores are not available, the mean of replicated scores on each 

sample is provided. 

The whole batch of samples are divided into 'central' and 'experimental' group. In such 

a situation, the natural interest is to study whether the quality for given set of samples has 

really improved over the experimental condition or not. This is a 'too treatment group' 

situation and model has to be developed taking account of the two groups. We adjust our 

model 6.6 introducing dummy variable with the intercept term in the model matrix. We 

assume that only the intercept term varies between the groups, as separate slopes ({J) is 

not suggestive for the given data set under study. We have examined the difference of {J 
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coefficients two groups for each biochemical parameter. Thus we can write our model as 

y = ( y(1) ) = (1m 0 X(l)) ( ~: 1 + (Z(l) 0 ) ( 0(1) ) + ( e(2) ) 
y(2) 1 1 X(2) 0 Z(2) 0(2) e(2) 

m m fJ 

where y(l) and y(2) and (m x 1) vectors of repeated response for experimental and control 

samples respectively, with 2m = n. J.t* is the intercept and b* is the dummy coefficient 

associated with the dummy variable. Similarly we have the partition of incidence matrices 

Z(l) and Z(2) and the random component. Here fJ = (fJl fJ2 .•• fJle)' is the vector of fixed 

coefficients associated with the regressors. 

Following the logIikelihood function is (6.7) we may write the loglikelihood for the 

'two-group' model as 

The ML estimators of parameters can be obtained by maximizing the loglikelihood func­

tion. We have obtained the estimators of the variance components and the regression 

coefficients along with the estimate of dummy coefficient using the nlmin command in 

the SPLUS computational package. 

We note here that the estimators of variance components, dummy coefficient and the 

regression coefficients may be obtained similarly using the Model II and its corresponding 

likelihood function (6.12). 
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6.8.1 Data Analysis and Discussion 

The measurements of biochemical parameters and the Tasters' scores for CTC tea samples 

are presented in Table 6.9 and Table 6.8 respectively. The basic statistics for all the 

chemical parameters and sensory scores, for control and experimental samples separately, 

have already been presented in the introductory chapter. The significance of difference 

between the mean levels over the two groups of samples for each chemical parameter 

have been tested. The mean levels of TR., TC and WSS differ significantly at 5% level 

(5% probability values of t with 16 dJ. is 2.12). Also each Taster's mean scores differ 

significantly over the control and experimental samples. It may be observed that the 

average scores of all the assessors are higher for the experimental samples as compared to 

those for control samples. 

It may be observed from the basic statistics that the ranges of TF for control and 

experimental samples are (1.14m 1.60) and (1.17, 2.02) respectively; and those for TR 

are (13.04, 14.08) and (10.90, 13.72). The ranges of these two variables are quite large 

for the experimental samples. Similar is the case with WSS as well. The within sample 

variability is higher for TR in case of experimental samples (S.D. = 0.76) though that for 

TF is relatively low (S.D. = 0.24). Also, it is interesting to observe that the correlation 

coefficient between TF and TR is negative for experimental samples (-0.26) but that for 

the control samples is positive (0.15) although the degree of association is very low. 

We now associate the biochemical quality parameters with the average (arithmetic 

mean) of four Tasters' scores. Dummy variable is introduced (1 for experimental and 0 

for control) with the regressors. This is done to study whether the quality has really 

improved over experimental condition or not. The regression result is presented in Table 

6.6. The fit is very poor with adjusted R2 = 0.26 and SSE = 7.9549. All the regression 

coefficients along with the dummy coefficients are statistically insignificant. 

The estimates of regression parameters and variance components using our error com­

ponent regression model with dummy variable are presented in Table 6.7. To obtain the 

iterative estimates of implicit parameters we set the convergence tolerance at 10-5• The 
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estimate of dummy coefficient b* is positive and statistically highly significant (t-ratio : 

6.84). Thus we may infer that the cup quality has significantly improved for the experi­

mental samples, so far the given eTe samples are concerned. In fact, the experimental 

samples have received higher scoring in most of the cases. The estimated coefficients for 

both TF and TR along with WSS are statistically significant at 5% level. Interestingly, 

the coefficient estimates for MO and Te are negative, though statistically insignificant. 

The estimated scores for 'valuation' are given in the last column of Table 6.B. The esti­

mated true scores are higher for the experimental samples in comparison to the control 

samples. 

The variance component 0'2 represents the variation in average levels among t.he 

Tasters. A negligibly small value of 0'2 (= 0.0001) indicates the agreement among all 

the fOllr Tasters in their average valuation for the given eTe samples. Thus we may 

say that the average scores given by Tasters for the eTe tea samples are nearly equal. 

On the other hand, O'?s represents the within Taster variation. We note how that the 

unobservable regression error variance is confounded in O'? and can not be separated. As 

may be observed from Table 6.7, the estimated error variance is minimum for the Taster 

2 and is maximum for Taster 1. These error variances may be considered as grinding 

factors to assess the reliability of a particular Taster's choice. Here a? concerns precision. 

We could apply the LR test to study the significance of difference between O';s. But we 

restrict to do so keeping in view the small sample size. 

For residual analysis, the scatter plot of error against the estimated response was 

studied and an approximate normality was ascertained from the plot. The estimated value 

of SSE is 0.3639, which is much less than the SSE obtained from the regression on average. 

Also the value of estimated loglikelihood is much higher in case of error component model 

as compared to the regression on average. In fact, the difference between the values of 

In Lis 27.76. We can apply the information criteria based test (Vonesh and ehinchilli, 

1997) discussed in the second chapter, to compare the fit. We note here that the general 

linear regression model, where the response represents average of four Tasters' scores, and 

the error-component regression model are non-nested models. The Akaike; information 
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criterion (AIC) values for the regression on mean and the error-component model are 

-27.1917 and -22.5782. Since the AIC value is larger in case of error component model, 

we conclude that the fit is better with the 'two-group' variant of Modell. 

Also note that as the estimated value of (J2 is very close to zero, supporting the model 

assumption of constant variability among the average levels of Tasters' scores, we do not 

try the 'two-group' variant of model II. 

We note here that some statistical confusions may arise while dealing with small sample 

size, as it is our case. One may raise arguments on the danger of incorrect conclusion 

about the slope coefficients, while dealing with small samples. But we note here that, 

though it appears as if we have 18 samples (two groups combined), we have practically 

72 observations because of 4 repeats on each sample for the response variable. Under the 

assumption of same {J coefficients for both groups, we are estimating only 13 parameters, 

namely 5 variance components, 6 slope coefficients, intercept and dummy. Thus we have 

59 degrees of freedom left for estimating the {J coefficients. In this situation we do not think 

that there is any real danger of incorrect conclusion about the slope coefficients. The real 

danger due to small samples of this type may come from the problem of mlllticolHnearity 

since the biochemical parameters (regressors) are not repeatedly observed. 

We restrict ourselves to draw general conclusion about the statistical significance of the 

biochemical parameters, as we believe, a more planned experiment is required with strong 

data base to decide upon the significance of biochemical parameters in this modified CTC 

manufacturing process. Experiments should be carried out at different CTC tea produc­

ing regions and other relevant chemical parameters should be measured. Assessment of 

individual theaflavins, which have different astringencies, can be made by HPLC, but is 

difficult to undertake such assessment at production level. For the given CTC samples 

under study, only TF, TR and WSS are statistically significant in explaining the overall 

valuation. Note that the significance is specific to the quality attribute 'V', and should 

not be generalized for other attributes like strength, briskness, etc. 

At commercial gardens, the manufactured teas are classified in terms of different grades 

like Brokens, Fannings, Dust, etc. The higher the percentage of Brokens, the higher would 
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be the price for a particular tea lot. For obvious reasons, the producers would favour a 

manufacturing process which gives higher Broken percentage for a given lot of tea. The 

modified manufacturing process waS tried by three gardens of Dooars region and four 

.gardens of Assam region of India. The grade percentage obtained for both control and 

experimental teas are presented in Table "S-. As many be seen from the Table, Broken 

percentages for experimental samples are much higher in all the commercial gardens. 

The Tasters and the manufacturers have observed that the tea samples obtained by 

the modified manufacturing process has better shelf-life and fetched higher prices. Indeed, 

the teas are brighter and brisker. The price realization for these teas have been found to 

be the highest amongst the best CTC category in both Calcutta and Guwahati Auction 

Centers. 

6.8.2 Analysis of Data Set 7-

As discussed in the first chapter, for a set of 18 CTC samples, a panel of 4 Tasters 

have given scores (on an uniform structured scale) on 'strength' and 'quality' attrib~tes 

separately and independently. The biochemical parameters measured are TF, TR, WSS, 

TC and C. 

We first test the significance of difference among the mean scores of four Tasters for 

strength and quality. That is, we text if the profiles for means of Tasters' scores are 

parallel and coincide. This text is discussed in the Chapter 2. The estimated value of 

T2 is 6.43 and the 5% critical value of F with 1 and 72 degrees of freedom is 

Thus we may reject the hypothesis of parallel and coincident mean profiles at 5% level of 

significance. This implies that the Tasters differ in their average choices on strength and 

quality for the given set of 18 CTC tea samples. 

In the second stage of our initial diagnostics, we calculated the F-statistics (discussed 

in Section 6.2) to study the stabilit.y of location parameters, before we pool the data for 

four Tasters' scores. We calculate the F-values separately for strength and quality. The 

calculated values ofF-statistic for strength and quality are ;2-13 and ,.,-; respectively. 

The hypothesis of stable estimates of regression coefficients is accepted, as the critical 
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value o( F with dJ. at 5% level is On the basis of this test result, we may 

use our error component regression model with same {3 coefficients for all the individual 

responses. 

We now adopt the technique of regression on means of Tasters' scores, discussed in the 

introductory section. The results of multiple regression analysis (where response variable 

represents mean of 4 Tasters' scores) are presented in Table 6.6 and Table 6.6, for strength 

and quality respectively. The fits are very poor in both the cases with very low values 

of adjusted R2 and high values of SSE. All the chemical parameters are statistically 

insignificant in explaining the quality, as evident from the t-ratios. Only.the Caffeine (C) 

has come out significant at 5% level in explaining the strength. 

The association of chemical parameters with the scores on strength indicates that only 

TF and C have significant influence on the attribute strength. Both ML and REML esti­

mates provide the same indication. The coefficient estimates ofTR and WSS are negative, 

though statistically insignificant. Again for the attribute 'quality', the parameters TF, 

TR, TC and C have come out significant. It is interesting to observe that fJrn is positive 

now. We have observed the similar behaviour of TR in Chapter 3 also. The significant 

influence of TF and TR on 'quality' in this case support the common belief among the 

biochemists about the importance of TF and TR in the CTC tea quality assessment 

(Yumanishi, 1995, and the references therein). 

The error variance (on is highest for Taster 1 and is lowest for the Taster 2, in case 

of strength. But in case of quality, though the variation is highest for the first Taster, 

it is lowest for the Taster 4. Thus the pattern of error variances is not same for the two 

different quality attributes. The variation among the average levels of Tasters (0'2) is not 

at all close to zero. It means that the Tasters do not agree on average, for both strength 

and quality, for the given set of CTC samples. Also the within sample variability is high 

for all the Tasters, as evident from the estimates of O';s. 

The fit is far bettcr with the heteroscedastic error component model a.<> comparcd to t.he 

regression on average. The in L values are much higher and the SSE values are very small. 

We note here that the performance of ML and REML estimation is almost equivalent. 
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Comparing the in L and SSE values we can not claim any significant improvement with 

REML estimation. We have studied the patters of residuals in both the cases. The scatter 

plots of residuals against the estimated response exhibit similar patterns. However, we 

do not present the scatter plots here. 

We note here that we have also tried the Model II (both ML and REML) on the 

strength and quality data separately. The estimated values of loglikellhood (ML) for 

strength and quality data re -5.1340 and -5.0698; and given the equal number of estimated 

parameters in both the cases, the AlC values are certainly larger for Modell. It means 

that though the estimated values of a2s are not very close to zero (Table G.8), still the 

use of Model 1 remain valid and gives a hetter first in comparison to Model II. That is 

why we prefer to present the estimates obtained using Model I for given Data Set. 

As the regression on mean of Tasters' scores do not provide a good fit in our pursuit 

to associate the chemical information with sensory evaluation, we proceed to fit the error 

component model. Here we prefer to use the Model II as in initial diagnostics we have 

observed that the average scores of the four Tasters for the given sample differ significantly. 

The ML and REML estimates of fJ coefficients along with the estimator ofVCs, separately 

for strength and quality, are presented in Table G.B. 
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Table 6.1 : OLS Regression on average of four Tasters 

Var Estimate S.E. t-ratio 

j1* -7.9738 23.13 0.3447 

b* 0.9166 0.6872 1.344 

{JMO -0.5616 0.6992 0.738 

iJrF 1.3519 1.245 1.086 

fJrR -0.3516 0.4071 0.8638 

fJre -1.046 1.26 0.83 

iJwss 0.4150 0.5263 0.7903 

iJe 0.2220 0.5846 0.3813 

Ii? 0.26 

SEE 7.9540 

In L -18.19] 7 
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Tab1e 6.2 : ML estimates of parameters and variance components 

Parameter Estimates SE 

~2 
G 1 1.0738 

~2 
G2 0.3639 
~2 
G3 1.0273 
~2 

G4 0.9090 

(j2 0.0001 

Jl* 8.2874* 2.7738 

b* 10.2844* 1.5028 

SMO -0.1451 0.1988 

fiTF 1.2477* 0.5842 

fiTR -0.0046* 0.0021 

fiTc -0.8047* 0.5907 

{:Jwss 0.0731 * 0.0245 

{:Jc 0.4353 0.2735 

in L 9.5682 

SEE 0.3639 

*indicates significance at 5% 1eve1. 
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Table 6.3 : Tasters' scores on 'valuation' and the 'estimated scores' 

Sample Ta..'Iter (1) Taster (2) Taster (3) Taster (4) Estimated Score 

Exp. 6 8 7 9 8.1684 

Cont. 6 7 6 7 6.7345 

Exp. 7 9 9 8 8.2174 

Cont. 7 6 7 6 6.6817 

Exp. 7 9 8 8 7.8868 

Cont. 7 7 6 6 6.7421 

Exp. 8 9 9 9 8.8253 

Cont. 8 8 8 5 7.2761 

Exp. 8 8 8 9 8.0479 

Cont. 7 6 8 7 6.7921 

Exp. 8 9 8 10 8.9594 

Cont. 7 7 8 8 6.7714 

Exp. 7 8 7 9 7.6603 

Cont. 4 8 6 7 6.6665 

Exp. 9 8 7 8 8.0725 

Cont. 6 6 8 6 6.5302 

Exp. 9 8 8 10 8.4187 

Cont. 6 7 4 8 6.6053 
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Tahle 0.4 : Measurement.s on biochemical paramet.ers 

Sample MO TF TR TC WSS C 

Exp. 3.48 1.75 11.26 5.69 45.73 4.07 

Cont. 3.72 1.40 13.14 5.17 44.12 3.92 

Exp. 3.05 1.80 11.78 5.79 45.86 4.70 

Cont. 3.16 1.46 13.12 5.38 44.40 4.30 

Exp. 3.36 1.70 11.63 5.75 45.72 4.68 

Cont. 3.50 1.45 13.24 5.30 44.53 4.25 

Exp. 2.97 1.17 11.27 5.70 44.65 4.06 

Cont. 2.85 1.14 13.04 5.24 44.00 4.00 

Exp. 3.12 1.50 11.72 5.98 44.91 4.18 

Cont. 2.45 1.46 13.09 5.10 43.21 4.14 

Exp. 3.86 1.79 12.09 5.85 46.57 5.67 

Cont. 4.03 1.45 13.12 5.45 45.49 4.66 

Exp. 3.59 2.02 10.90 5.45 44.90 3.73 

Cont. 3.29 1.60 14.08 5.05 43.95 3.67 

Exp. 3.98 1.46 13.72 5.89 44.63 3.97 

Cont. 4.10 1.56 13.18 5.50 45.52 4.65 

Exp. 3.65 1.79 12.06 5.77 46.58 5.37 

Cont. 4.00 1.53 13.15 5.51 45.55 4.66 

188 



Gardens 

Garden A 

Garden B 

Garden C 

Garden D 

Garden E 

Garden F 

Garden G 

Table 6.5 : Grade percentages in different gardens 

of Assam and Dooars region 

Brokens Fannings Dust Secondary 

Cont. Exp. Cont. Exp. Cont. Exp. Cont. Exp. 

63.9 67 16.4 16.2 4.4 3.4 15.3 13.4 

68.3 74.7 12.4 11.7 6.7 6.0 12.6 7.6 

70.6 78.1 16.9 12.3 12.5 9.6 - -

36.4 ,47.19 23.37 23.62 29.65 29.19 10.58 -

38.45 60.40 18.01 22.29 26.05 13.38 17.49 3.93 

42.28 57.05 24.05 21.35 19.17 13.60 14.40 8.00 
/ 

60.01 69.50 14.58 13.33 15.40 9.16 10.01 8.01 

* Gardens A, Band C belong to Dooars region and the rest gardens belong to the 

Assam region. 

189 



Table G.G : Regression results on average of Tasters' score on strength 

Parameter Estimate S.E. t-ratio 

Po -7.9046 4.4185 1.7889 

fJrF 0.37846 0.3375 1.12 

fJrR -0.2457 0.2102 1.1688 

f3wss -0.1794 0.3158 0.568 

fJrc 0.789 0.562 1.4039 

Pc -0.4873 0.2296 2.1228 

R2 0.38 

SSE 4.7346 

in L -14.8560 

2 
X(normal) 
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Table 6.7 : Regression results on average of Tasters' score on Quality 

Parameter Estimate S.E. t-ratio 

(30 6.7463 11.27 0.5986 

f3TF 0.4333 1.125 0.3853 

f3TR 0.2042 0.2681 0.7617 

(3wss -0.2274 0.3451 0.6591 

f3Te 1.5301 1.042 1.469 

(3e +0.3418 0.7211 0.4739 

il2 0.1938 

SSE 7.6734 

In L -17.8673 

2 
X(normal) 
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Table 6.8 : ML and REML estimates of fJ and VC for strength and quality 

Parameter Strength Quality 

ML REML ML REML 

~o 12.2921 9.4521 24.3666 25.56 

(11.9579) (10.234) (10.7482)- (10.35)-

hF 0.2697 0.5621 0.1821 0.5642 

(0.1172)* (0.1103)* (0.0074)- (0.131)-

fJrR -0.1985 -0.2356 1.5865 2.0321 

(0.6782) (0.1232)- (0.6166)- (0.132)-

~wss -0.0906 -0.2019 0.0834 0.2879 

(0.2175) (0.2356) (0.1643) (0.3121) 

he 0.1913 0.3256 0.3870 0.9875 

(0.2225) (0.2545) (0.1879)· (0.12(8)-

~e 0.3093 0.4352 0.3973 0.6546 

(0.2326)- (0.1527)- (0.20)- (0.12)-
A2 
a, 3.8936 3.97 4.1239 3.9478 
A2 a2 1.6936 1.5987 1.5523 2.0218 
A2 
aa 2.8236 2.3789 3.0902 3.4635 
A2 
a1 2.8249 2.4563 1.0943 1.4849 

&2 0.98 0.9890 0.974 ' 0.9231 

in L -3.97 -3.002 -3.51 -3.01 

SSE 0.9984 0.8445 0.7644 0.7342 
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Table 6.9 : Estimated true scores on strength and quality 

Strength Quality 

ML REML ML REML 

6.2873 6.2312 6.4998 6.5535 

6.3595 6.3989 6.6138 6.6336 

5.0065 5.0787 4.7579 4.9968 

6.6794 6.9872 6.8622 6.8877 

6.2886 6.3254 6.9917 7.0120 

5.9389 5.9987 6.2629 6.3636 

6.0122 6.1210 6.1783 6.4451 

5.9405 5.9868 6.1093 6.1363 

6.4861 6.5423 6.1390 6.3839 

5.8548 5.9851 6.1204 6.3135 

6.0705 6.1310 5.9473 5.9983 

6.0712 6.0909 5.6493 5.8871 

6.6923 6.8878 6.6592 6.6979 

6.3714 6.3939 6.8803 6.9791 

6.0323 6.1312 5.8591 5.8787 

6.6723 6.6961 6.8507 7.0012 

6.2106 6.3223 5.5057 5.6561 

6.3688 6.3698 6.0501 6.1535 
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Table 6.10 : Measurements on biochemical parameters 

TF TR WSS TC C 

1.40 13.14 44.12 5.17 3.92 

1.75 11.26 45.73 5.69 4.07 

1.46 13.12 44.40 5.38 4.30 

1.80 11.78 45.86 5.79 4.70 

1.45 13.24 44.53 5.30 4.25 

1.50 13.59 45.72 5.73 4.17 

1.14 13.63 44.00 5.24 4.00 

1.17 11.27 44.65 5.70 4.06 

1.46 13.09 43.20 5.10 4.14 

1.50 11.72 44.91 5.98 4.18 

1.45 13.12 45.49 5.45 4.66 

1.37 ]4.00 46.57 5.85 4.52 

1.60 ]4.08 43.95 5.05 3.67 

2.02 10.09 44.90 5.45 3.73 

1.56 13.18 45.52 5.50 4.65 

1.46 13.72 44.63 5.89 3.97 

1.53 13.15 44.55 5.51 4.66 

1.79 12.06 46.58 5.77 4.37 
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CHAPTER 7 

TWO-WAY ERROR COMPONENT REGRESSION 
MODELS WITH HETEROSCEDASTIC ERROR 

7.1 INTRODUCTION 

As an extension of the one-way error component model, we study the two-way error 

component regression models in this chapter. The error component is decomposed into 

two parts to incorporate the sample specific effects apart from the effects due to Tasters. 

This is done to check for the variation over samples. 

Consider the Data Set 8, where 30 samples represent different CTC clones. Single 

sample for each clone has been observed. The chemical characteristics may differ over 

clones. This difference is also likely to influence the overall quality. Thus apart from 

studying the Tasters' variation, it is also important to consider the clonal variation as 

well. We may legitimately assume that the chemical characteristics is fixed I:Ipecific to a 

particular CTC clone. Thus in regression setup, we may assurpe the sample specific efl'cts 

to be fixed. The variation due to Tasters may be assumed random. Thus we have a mixed 

effects error components regression model. 

The two-way error component regression models are well developed in the statistical 

literature and a detail account of such formulations is due to Daltagl (1905). The fixed and 

random effects models with homoscedastic error components have been discussed. The 

GLS and ML estimators of the location parameters are developed along with the testing 

procedures about the fixed effects. We simply concentrate on the mixed effects model 

with heteroscedastic formulation of variance-covariance matrix. The ML estimators of 

the location parameters along with the estimators of variance components are discussed. 

The possible heteroscedastic formulations and the estimation procedures are discussed in 

section 7.3. The basic model is presented in section 7.2. The section 7.4 contains the 
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results obtained using Data Set 8 and discussions. The original roW dat~ on Tasters' 

scores and five biochemical quality parameters are also presented. 

7.2 The Two-Way Error Component Regression Models 

In the linear regression model Yij = 11 -\- x~if) -\- eij, the error component eij may be 

decomposed as 

(7.1) 

where ai represents the effect due to ith Taster and Aj represents the effect due to lh 

sample. Then the two-way error component regression model can be written as 

(7.2) 

i=1,2, ... ,r, j=I,2, ... ,n. 

Here Uij represents the remainder stochastic disturbance. We note here that ai and 

Ai are independent. In vector form, (7.2) can be written as 

where Zo and Z>. are (Ir ® In) and {l r ® In} incidence rrjatrices respectively. a' = 
(al a2 ... (\:r) and)..' = (AI A2 ... An). We note here that Za Z~ = Ir ® I n and 

Z>. Z~ = Jr ® In. The regression coefficient vector f) and the remainder disturbance U are 

as defined in the previous chapter. 

7.2.1 The Fixed Effects Model 

If aj and Ai are assumed to be fixed parameters and the remainder disturbance stochastic 

with tLij '" iid(O, a 2), then (7.2) represents a two-way fixed effects error component 

model. . Here Xii are assumed independent of tLii for all i and j. Inference In this case 

would be specific to the h samples and r Tasters. 

We note here that for large nand r, there will be too many dummy variables in the 

model, which may aggravate the multicollinearity problem among the regressors. Also, 
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there is an enormous loss of degreeA of freedom as we have to estimate n + l' humber of 

parameters apart from the k regreHAion parameters. Baltagi (1995) discusses the fixed 

effects estimates of fJ by performing a transformation, which essentially sweeps the Qi 

and AJ effects. The regression coefficient vector fJ and the temainder disturbance u are as 

defined in the last chapter. 

7.2.2 The Random Effects Model 

If we assume Qi '" iid(O, (7;), A, '" iid(O, (7~) and ut , '" iid(O, (72), independent of each 

~ther, then the model (7.2) becomes a two-way random effects regression model. Also, 

Xi, are independent of Qi, A, and UiJ for all i and j. In this case the inference is specific 

to the population from which the sample was drawn randomly. The variance-covariance 

matrix in this case would be 

4> = E(e e') = E(ZaQ + Z>.A + u)(ZaQ + Z>.A + u)' 

= ZaE(Q Q')Z~ + Z>.E(A A')Z~ + u u' 

= (7~(Ir ® I n) + (7~(Jr ® In) + (72(Ir ® In) . 

Here the GLS estimator of fJ is BQUE, so also the estimators of variance components. 

Under the normality assumption, the ANOVA estimators of VCs are MVUE. Baltagi 

(1981a) performed a Monte Carlo study on a simple regression equation with two-way 

error component disturbances and studied the properties or OLS, the within estimator, 

MINQUE, and six feasible GLS estimators. According to the findings, the OLS estimator 

of fJ is unbiased, but asymptotically inefficient. The GLS estimator of' (:J is BLUE, but 

the VCs can not be estimated simultaneously. All the feasible GLS estimators studied are 

asymptotically efficient. Paruch (1984) showed that the GLS estimator of fJ is asympt.ot­

ically efficient as long as the estimate of (72 is consistent and Lhe probability limits of the 

estimates of (7~ and (71 are finite. 
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7.3 The Two -Way Regression Model With Heteros~edastic :mr-

ror 

We have discussed so far the fixed and random effects models with homoBcedastic er­

ror component(s). In this section we introduce the mixed effects formulation with het­

eroscedastic error. In the model (7.2) we suppose that the sample specific effects A)s are 

fixed and needs to be estimated. The distributional assumpt.ions may be made in two 

ways as we have done in the sixth chapter. We specify the two-way models on the basis 

of assumptions as follows: 

Model A: 0i '" iid (0, (J"~) , Uij '" iid (0, (J"l) and Lj Aj = 0 

Model B: 0i '" iid (0, (J"l) , Uij '" iid (0, (J";) and Lj Aj = O. 

The assumptions of independence of various components are same as before. Note that 

for both the models, the number of parameters to be estimated is (n + k + r + 2), as there 

are n sample specific effects, k + 1 location parameters and r + 1 variance components. 

The dispersion matrices for Model A and Model B would be same as those for Model I 

and Model II of the previous chapter resp~ctively. 

7.3.1 ML Estimation For Model A 

As the assumptions about the random components in Model A are exactly same as those 

for Model I discussed in the previous chapter, the variance-covariance matrix for the mixed 

model 

would be 

where Sj is a 11 x n matrix defined in Section 5.5.2 of Chapter 5. The determinant and 

inverse of Sj has already beer presented in Chapter 5. 

The loglikellhood function for Model A may be written as 
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nr n - 1 " 2 1" (2 2) lA = -2 ln(2'Jr) - -2-~ lna j - 2 ~ln aj +naa , , 

1 LEI I 2 1 E 1 a~ [E ( \ I f-l)J2 -- -(V··-IJ-A·-X.f-l) +- - Yi)'-H-A)'-X,'P 2. a?- ') ,.., ) )p 2. a?- a?- + na2 . ,.., I, 
')' ,II a) 

nr n - 1 E 2 1 L 2 2 n - 1 L 1 2 = -- In(2'Jr) - -- lna· - - In(a. + na ) - --' -28. + 
2 2.' 2. ' a 2 .. a," 

" 1 

2 1 2 
~" _ aa D~ 
2 7 al al + na~ " 

(7.4) 

where 8?- = _1_ ~ .(y .. - 't - A' - X'J-l)2 D· = ~ .(y .. - II - A' - x'· f-l) We note here , n-1 /.J) ')" ) )p, , /.J) ') ,.., . J )p • , 

that the MI estimates of the implicit parameters in this form4hi.tion can not be obtained 

directly as the model matrix is not of full rank. This follows from the following discussion. 

Rank of Model Matrix eX z>.) 

The augmented mat.rix of regressors and the incidence matrix associated wi th the fixed 

efrects A may be written as 

, where X is (n x k) matrix of regressors and In is (n x n) 

Now, rank(X Z>.) = rank(X In), and the rank of this is aLleast n because of last n 

columns. Again, as the maximum number of rows is n, the rank can not exceed nand 

hence the rank of the augmented matrix is n. 

The Constrained ML Estimation 

As we have to estimate n + k + 1 number of fixed parameters, we need to impose k + 1 

restrictions to estimate the required number of fixed parameters. 

We make some changes in the matrix of regressors for our convenience. Including the 

intercept term in the X matrix and the new matrix be denoted by X· where the first 
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column is Inr • The model in this case may be written as 

Here the X· matrix is of the form 

1 Xnl Xn2 Xnk 

We now impose the restriction XX· = 0 which implies 

LAj = 0 
j 

AIXll + A2X 2I + ... + AnXnl = 0 

With the restriction the loglikellhood function may be defined as 

where a = (ao ar ... ak)' is the vector of Lagrange Multiplier. Now, 

-ar Lj Aj Xjl - a2 LJ Aj Xj2 - ••• - ak Lj Aj Xjk 

Differentiating lA with respect to Aj and equating to zero and after simplification, we get 
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\ . _ (_. _ x.'fJ.) - ('" ~)-l '" ~ a; "( .'fJ*) 
/I) - VjW) LJ a7 ~ a7 a7 + na2 LJ Yij - x) , 

" ", aj 

(7.6) 

where Y~ = ~"and Wi = Ei ~ is the weight. Here Y
J
•w is the weighted mean for jLh 

JW ~ tTl 

sample taken over the r Tasters' scores and the weight is reciprocal to the error variances 

associated with individual Tasters' scores. 

The ML estimators of a; and at may be obtained from the following relations respec­

tively : 

4= a7 : na2 [1 - a7 : na2 D;] - 0 and 
" a , a 

al a~ [ 1 1] D2 1 L ( \ ., (~.)2 ( ) ~---=--+ - + . -- Y'-/l'-X'''' - n-l 
a7 + na2 a7 + na2 a7 a7 + na2 , - a7 '3 3 3 . 

, a' a' 'a '3 

7.4 Analysis of CTC Clonal Data 

In this section we study the Data Set 9, which have been introduced in the first chapter. 

There are actually two data sets containing information on 30 Tocklal released CTC 

c~ones. A panel of three Tasters has evaluated the clones in t.erms of over",')1 quality (V) 

and the scores are given on 0-10 point scale. The five biochemical parameters llleasured 

are TF, TR, C, CF and TLC. The plot of each biochemical parameters for the two dB:ta 

sets arc presented in Fig 7.3 to Fig 7.7. The profile Dlot of Tasters' scores are presented 

ill Fig 7.1 and Fig 7.2. 

As may be observed from the graphical plots, the vari!\lion of TF values over the 

clones is very low, whereas that for TR is high. The caffeine and total liquor colour also 

varies over clones. However, the clonal variation of crude fiber is negligible. It Is believed 

that the clones TVl, TV2 and TV17 are of good quality; TV 19 is of medium qual!ty, 

and the rest are of average quality. This perception or the manufacturers is based on the 

price realization. 
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As initial diagnostics, we conduct the two-way ANOVA test to stjldy it tho clone wise 

. variation is significant on the basis of Tasters' scores. The ANOVA results for both the 

data are presented in Table 7.1. Clearly the clonal variation is hig~ly significant at 5% 

level. However, the average levels of Tasters' scores do not differ significantly as evident 

from the F-ratios for the Tasters. Thus, in associating the chemical information with the 

Tasters' choices, we may use the two-way error component regression model (Model A) 

which incorporates the sample wise variation as an assignable source of variation. For 
-

obvious reasons, we consider the effects due to clones as fixed. 

We fit the Model A to both the data sets. The estimates of regression coefficients 

associated with different chemical parameters (along with t-ratios) and the estimates of 

variance components are presented in Table 7.2 for bpth the data sets. It may be observed 

t!Jat all the chemical quality parameters but crude fiber are statistically significant at 5% 

level in explaining the overall quality or value. This is true for both the samples collected in 

two consecutive years. It is interesting to observe that the coefficient estimates associated 

with CF are negative and statistically insignificant. This is against the common belief 

of the chemists, as they are of the opinion that in tea brew the CF is supposed to ~ct 

positively towards quality and/or value and the Tasters are well in position to recognize 

the presence of CF. However, this notion of the chemists can not be questioned only on 

the basis of our analysis, as we are studying a single sample per clone. Had a large number 

of samples per clones been analyzed, then on the basis of regression analysis specific tp a 

particular clone we could comment confidently on the behaviour of CF and other quality 

parameters. Also, the quality parameters measured for green shoots (e.g. total oxygen . , , 

uptake, total carotenoids, etc.) needs to be analyzed separately to develop fairly good idea 

about t.he chemical characteristics of CTC clones and their association with the sensory 

choices. 
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The estimates of a! are close to zero suggesting tluit the 'tasters do agree on average 

about the quality. However, for the given data sets it means that the Tasters do not 

find any difference in quality for all the eTe clones. Anyway, the estimates of a; ~re 
reasonably large and is highest for the first Taster (an for both sets of samples. The 

values of lnL and SSE suggests that the fit is better with the second set of samples. The 

SSE values are reasonably small in both the cases. 

The estimated scores (x;' iJ* -I- ~j) and the estimates of the clone specific fixed effects 

(Aj) are presented in Table 7.3 and 7.4, along with the observed Tasters' scores. The 

measurements on biochemical quality parameters for both the data sets are presented in 

Table 7.5 and Table 7.6. Much technical discussions on the estimates of Aj obtained can 

not be introduced at this instance, as we are no way in a position to detect those clones 

which appear to be the best in terms of quality, on the basis of given data sets. We 

can only say that the estimates of Aj includes those clone specific effects with respect to 

several measured and unmeasured chemical components. 
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Table 7.1 : ANOVA Results for Two Sets of Data 

Source d.f. SS F Fcnt,cal 

Data 1 Clone 29 86.08 6.30 1.66 

Taster 2 1.92 2.04 3.16 

Error 58 27.32 

Data 2 Clone 29 86.20 6.50 1.66 

Taster 2 0.68 0.75 3.16 

Error 58 26.50 
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Table 7.2 : ML estimators of the regression 

coefficients and variance components 

Parameters Data 1 Data 2 

Estimate t-ratio Estimate t-ratio 

jl* 11.9728 3.567 5.0473 2.978 

fJrF 0.0411 2.67 0.8357 3.846 

fh.R 0.2723 3.865 0.0031 1.968 

fie 0.3119 2.832 0.6539 2.573 

8CF -0.3652 - 1.841 -0.2843 1.360 

iJrLC 0.6615 3.102 0.6515 3.Q41 
~2 
(Jl 1.1483 1.3331 
~2 
(J2 0.5848 0.9438 
~2 
(J3 0.9099 0.8786 
~2 
(Jcr 0.0001 0.0001 

In L -29.2082 -20.3158 

SSE 0.7283 0.4645 
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Table 7.3 : The Tasters' scores along with the estimated scores 

and estimates of fixed effects AJ for Data 1 

Clone Taster 1 Taster 2 Taster 3 Estimated Score >"J 

CVl 9.30 8.10 8.00 8.3536 1.0998 

CV2 8.70 7.50 7.00 7.6341 1.1971 

CV3 6.50 6.00 6.50 6.2671 -0.1521 

CV4 6.00 6.50 6.00 6.2318 -0.0447 

CV5 7.50 7.00 6.50 6.9685 0.2497 

CV6 7.00 7.00 6.00 6.7008 0.4054 

CV7 7.20 6.50 6.00 6.5158 -0.7544 

CV8 7.50 6.00 5.50 6.2051 -1.0721 

CV9 9.10 8.00 8.37 8.3702 0.9753 

CVlO 7.00 7.50 6.00 6.9331 0.3058 

CVll 7.80 7.50 7.00 7.4211 0.1509 

CV12 7.60 6.50 7.00 6.9091 0.0019 

CV13 6.00 6.50 8.00 6.8291 0.6305 

CV14 6.50 6.00 7.00 6.4164 -0.4929 

CV15 7.00 8.00 6.50 7.3148 -0.4509 

CV16 7.20 7.00 5.00 6.4495 -0.8821 

CV17 7.00 7.50 7.00 7.2318 -0.0631 

CV18 9.20 7.20 8.40 8.0311 1.5861 

CV19 6.00 6.50 6.00 6.2318 -0.1161 

CV20 8.50 8.00 7.50 7.9684 0.6823 

CV21 6.50 7.00 . 7.20 6.9409 0.4534 

CV22 7.50 6.50 7.10 6.9153 0.3153 

CV23 7.00 6.30 6.00 6.3755 -0.0894 

CV24 6.20 5.00 5.50 5.4327 -0.6817 

CV25 5.50 5.00 6.50 5.5658 -0.1886 

CV26 5.00 4.00 5.00 4.5348 -1.5438 

CV27 4.00 6.50 5.50 5.6091 -0.2169 

CV28 4.00 6.00 5.00 5.2275 0.3866 

CV29 5.00 5.60 5.50 5.4276 -1.0301 

CV30 5.00 6.00 5.00 5.4642 -0.7904 
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Table 7.4 : The Tasters' scores along with the estimated scores 

and estimates of fixed effects A, for Data 2 

Clone Taster 1 Taster 2 Taster 3 Estimated Score >'j 

eVI 8.60 7.90 9.15 8.5606 1.9448 

eV2 8.90 8.50 7.50 8.2156 1.0817 

eV3 7.20 7.10 6.50 6.8937 -0.1157 

eV4 6.50 5.90 7.20 6.5545 -0.5023 

eV5 6.90 7.20 6.20 6.7375 -0.5000 

eV6 7.20 6.80 5.90 6.5542 -0.4749 

eV7 6.20 6.80 6.50 6.5314 -.. 1246 

eV8 5.60 6.00 5.80 5.8209 -0.6024 

eV9 8.70 8.50 6.90 7.9330 1.2053 

eVlO 6.50 6.30 7.20 6.6983 0.3224 

eVIl 5.20 4.50 4.90 4.8325 -1.1823 

eV12 5.90 5.80 4.50 5.3234 -0.9831 

eV13 5.88 6.25 6.55 6.2716 0.4578 

eV14 5.80 5.25 6.25 5.7760 -0.6902 

eV15 4.50 4.20 4.80 4.5079 -1.4968 

CV16 5.20 5.00 5.90 5.3983 ·0.6048 

eV17 6.50 6.00 6.80 6.4361 0.4516 

CV18 8.90 8.50 7.80 8.3314 2.2494 

CV19 6.85 6.25 5.88 6.2598 -0.3683 

CV20 5.70 5.70 7.50 6.3949 -0.2896 

CV21 6.50 6.00 5.50 5.9341 -0.8074 

CV22 6.50 7.30 7.30 7.0964 0.9872 

CV23 8.50 6.30 6.50 6.9369 0.7042 

OV24 6.20 6.80 5.80 6.2612 -0.2585 

OV~5 6.70 6.00 5.80 6.1008 -0.4397 

eV26 8.00 6.50 6.20 6.7658 0.4775 

CV27 7.60 6.30 6.00 6.5149 0.02139 

CV2B 4.00 4.90 5.60 4.9421 -0.3323 

CV29 4.55 5.89 6.50 5.7844 -0.3858 

CV30 5.50 7.50 5.80 6.3346 0.2370 
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Table 7.5: The biochemical measurements for Data 1 

CLONE TF TR CAF CF tLC 

TVI 1.11 14.03 3.52 9.54 6.50 

TV2 1.88 12.23 3.65 10.40 6.40 

TV3 1.11 11.38 3.92 10.10 6.62 

TV4 U)5 11.60 3.14 10.40 6.47 

TV5 1.78 12.84 3,45 10.64 6.23 

TV6 1.54 12.34 3.75 10.81 6.55 

TV7 1.55 14.08 3.60 10.35 6.05 

TV8 1.70 12.95 3.59 8.98 6.34 

TV9 1.53 12.86 3.82 8.60 6.32 

TVlO 1.43 11.52 3,48 8.96 6.73 

TVll 1.65 13.96 2.99 9.06 6.73 

TV12 1.58 12.15 3.69 9.09 6.50 

TV13 1.30 11.13 3.56 10.46 6.38 

TV14 1.59 14.09 3.50 10.23 6.67 

TV15 1A9 14.62 3.27 9,49 6.00 

TV16 1.59 13.43 3.19 9.57 6.13 

TV17 1.50 12.48 3,43 9.00 6.29 

TV18 1.27 10.95 3.68 9.68 6.36 

TV19 1.44 10.70 3.97 9.57 6.47 

TV20 2.06 12,48 4.00 8.76 6.27 

TV21 1.96 11.60 4.06 9.86 6.50 

TV22 1.74 12.66 3.92 9.67 6.86 

TV23 1.70 12.26 3.97 9.50 6.99 

TV24 1,45 12.78 3.71 10.90 6.95 

TV25 1.27 11.48 3.87 11.00 6.89 

TV26 1.32 12.38 3.79 10.23 7.20 

TV27 1.05 11.84 3.85 11.03 6.90 

TV28 0.88 8.96 3.62 11.85 6.12 

TV29 1.24 8.80 3.87 8.92 5.87 

TV30 1.12 8.59 4.17 8.88 6.10 
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Table 7.6: The biochemical measurements for Data 2 

CLONE TF TR CAF CF TLC 

TV1 1.46 14.67 3.61 12.06 5.85 

TV2 1.57 14.46 4.71 12.58 5.90 

TV3 1.11 11.62 4.61 11.84 4.92 

TV4 1.20 12.05 4.57 11.94 5.19 

TV5 1.41 14.63 4.52 11.54 5.60 

TV6 1.44 13.55 3.85 10.93 5.73 

TV7 1.16 12.32 3.76 10.92 4.89 

TV8 1.21 11.60 4.14 13.32 4.83 

TV9 1.28 12.25 4.16 11.28 4.91 

TVI0 1.18 11.12 4.03 11.24 4.36 

TVll 1.20 11.78 3.59 11.82 4.60 

TV12 1.32 11.57 4.31 12.34 4.63 

TV13 0.98 9.!J8 4.08 12.37 3.6!J 

TV14 1.27 12.27 4.41 11.59 4.39 

TV15 1.19 12.70 3.39 11.13 4.39 

TV16 1.31 13.41 3.37 11.18 4.J6 
TV17 1.26 13.07 3.72 11.69 4.36 

TV18 0.98 09.77 4.09 11.06 3.52 

TV19 1.25 11.40 4.30 10.84 4.39 

TV20 1.70 14.55 3.56 11.18 5.93 

TV21 1.64 12.68 3.71 11.32 5.86 

TV22 1.47 12.62 3.18 11.06 5.09 

TV23 1.47 12.45 3.74 11.43 4.88 

TV24 1.12 12.79 4.36 11.55 4.30 

TV25 1.25 11.95 4.39 11.59 4.49 

TV26 1.15 12.52 3.65 11.74 4.78 

TV27 0.!J8 10.91 4.21 11.94 4.41 

TV28 0.78 8.80 3.63 12.30 3.03 

TV29 0.91 10.87 3.35 12.29 4.48 

TV30 0.82 9.86 3.45 11.70 4.26 
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CHAPTER- 8 

CONCLUDING DISCUSSIONS 

Tn this study we have tried to understand the association between the chemistry in ~ea 

allli the sensory choices. This is typically a quality determination problem in tea industry, 

which has not received much attention from the scientific community. We address this 

problem and try to solve this practical problem using statistical methodologies. Our main 

aim was to understand if the effects of the important biochemical quality parameters (ac­

cording to the belief of the chemists) are reflected, may be partially, in the Tasters' choice. 

This is because, if the significance of chemical parameters in ultimate quality assessment 

can be established, then we may expect that the whole system of quality determinatjon 

and the auction pricing can be rationalized to some extent. If some threshold limits for 

few important parameters can be evolved, which may guide the chemists as well as the 

sensory experts to understand the possible levels of different quality attributes for the 

given set of samples, then the absolute dependence on sensory analysis can be minimized. 

Tn fact, these threshold limits, however approximate they may be, may guide the brokers 

and the buyers about the quality of a given lot of tea. 

To start with, we have tried to understand the association of few important chemical 

parameters with the Taster's scores t~sing the statistical regression techniques. Approxi­

mate linear relation between the chemical measurements and the sensory scores on various 

quality attributes have been observed in almost all the data sets studied. One may raise 

question on such associations on the ground that many other chemical parameters re­

sponsible for aroma and strength in eTC teas, have not been considered. Such questions 

are quite justified. Apart from other phenolic compounds, different levels of theaflavins 

and thcal'Ubigins also needs to be included in the regression formulation to get a better 

understanding of the association. However, we had to depeqd on the data provided by 

tho Tell. Hcsenrch Association of India, and the insufficiency of ch~mical information re­

fltrletfl our sLudy and general conclusion regarding the behaviour of chemical paramet.ers 
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can not be drawn. But, we have observed that the total levels of TF and TR significantly 

contribute towards quality. One point worth mentioning here that the Caffeine aspect, 

as much talked about in case of CTC teas, needs to be studied in detail in relation to 

different levels of TF and TR. It is known that in the tea brew, part of the caffeine must 

complex with Havanols (TF, TR, etc.) and play an important role in the tea taste, with 

contributions to briskness, mouthfeel, and thickness. As discussed by Yamanishi (1995), 

TF and TR are very astringent, and caffeine is very bitter. Interaction between these 

compounds reduce the astringency of the fonner and the bitterness of the latter. It is 

claimed by the chemists that the caffeine contributes about one fourth of the bitterness 

of the tea brew. Removal of caffeine from the tea infusion has a significant effect on the 

taste of the infusion. Decatfeination cause the bitterness of a black tea infusion to increase 

slightly and changes the nature of the astringency. 

It is necCflRnry to measure different TF and TR levels along with Caffeine nno the 

f1~\Unrtl or lllOlr vfl.rlllt.lon along with the possible interactio~s needs to be IIJ1(\£lr8topd 

Lll(Jrnl1~lIly. 1\ rnldy good atnOlint of Inrorma.tion on such bphavloyr lIlay Ilc ohLnitlCd 

from the graphical plots. It is posslhle to study the rtature of interllctlons and t.helr pl'­

fects on different quality attributes using regression techniques. Given differont samples 

collected from various gardens, the Pattern Recognition Technique may be also applied to 

understand the variation in chemical behaviour. A good idea about the techniques used 

to understand the variations in chemical measurements may be obtained from the web 

site www.chemometrics.com. Understanding the interrelationship among various chemi­

cal parameters is very important before we associate chemistry with the sensory analysis. 

We have only tested the multicollinearity among few chemical parameters available with 

us. The influence of various volatile and non-volatile compounds and their possible in­

teractions could not be studied, which obviously limits our study. It is important to see 

the peaks of various TF and TR in HPLC chromatogram while assessing the variations. 

However, we could not obtain such information. 
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A .. t.ho sellRory choices are subjective, to understand the sample wise variation in dif­

li,l'tlllL quality flLI,rlbutes we need a sensory panel data. A group of Tasters t choices iB 

needed to staListically assess the between-Taster and within-Taster variability. Replica­

tion of choices on each Bample by each Taster would be of milch help to trac~ different 

possiblo aspects of variations. Had replicated scores been available, we could go for a 

more detailed discussions about possible statistical formulationB to address the problem of 

reproducibility. Also, to develop a proper statistical methodology to measure the Tasters' 

precision, we need replicated scores. Unless, all possible variations in sensory panel data 

are eliminated, sped He to a particular quality attribute, the application of variance com­

ponents models would 110t be of much help. Also, the use of error-component regress Ibn 

models (while simulLaneously studying the chemical parameters and the sensory choices) 

would not provide sufficient information about the significance of different chemical pa­

rameters unless the quality assessment experiment is properly designed taking care of all 

possible aspects of product variation and the variation due to Tasters. 

In the past 20 years there has been a considerable increase in the activity in the 

field of sensory evaluation. Evidence for this is seen by the number of books, journals, 

and articles published on the topic; the number of professional organizations and the 

number of universities offering sensory courses. Much of the recent growth for Bensory 
I 

evaluation can be attributed to the increased interest and Bupport of the conBumer product 

industry. The food and beverage industry provides the vital sponsorship for the senBory 

activities. For this industry, sensory analysis is the natural extension of each company's 

aim to achieve highest product quality and thus attain a dpminant share in the highly 

competitive market. The rapidly developing technology and the subtleties of the market 

dictate that all available resources, including sensory evaluation, be used to the best 

advantage. 

We now focuB on certain problems of measuring consumer acceptance for a Bpecific 

bmlld of tca (nr It rowl product in general). A tea producing company may bo interested 

Lo InlOW wlml her Lhe consumers can differentiate their product with the other availa~le 

vnrll'Lics. Such knowledge is very imporLant from t.he marketing poinL of view. In 
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this case, the ideal practice would be to design an experiment to assess the different 

quality aspects of the particular brand of tea, where the choices of a large number of 

consumers along with the choices of the sensory panelists needs to be analyzed. As the 

consumers' way of preparing tea differs from the Tea Tasters' rrethod of tea preparation, 

the comparison of the choices given on two completely different preparations would not 

help. Here the treatment differs. That is why the sensory panelists should also taste the 

home-type prepared teas. The company's aim would always be to study whether the 

consumers can identify the inherent quality or qualities of the brand under consideration 
, 

in the same way the sensory panelists can. This is purely a choice identification problem 

which can be solved statistically if the information on the choices are obtained properly 

on the basis of a suitably designed experiment. 

Coinciding with these activities, marketing strategies need to be evolved. This \8 

certainly related to the company's sales and advertising activities. On the basis of t.he 

findings of choice determination experiments, we may always obtain a fairly good i4ea 

about the consumers' choices. Thus the advertising policy would be based on those 

preferences. The product wise and region wise choice variation may always be taken care 

of as the consumer segments and niche marketing are impdrtant concepts in marketing 

research. The statistical techniques may provide great support to the marketing specialists 

in order to better comprehend the consumer behaviour. 

Thus the importance of sensory analysis can not be dertied. But a proactive and 

less fragmented approach to applying sensory analysis will require testing large number 

of prodllcts, M mentioned earlier, to provide more comprehensive learning about how 

prodllct. uncI I'rocesR vnriables infiuonce the consumers' perception and preferences. The 

statistical rnodclfl will certainly describe the relationship between perception amI proquct 

variables with greater understanding and more long term benefits is expected for the 

product development process. 

We now turn our discussion to an important inference problem in the error compo­

nent regression models discussed in this study. The one-way random effects model is used 

when there is sufficient ground to believe that the tea samples are truly random sam-
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pIes representing a particular population, and the variation due to sample is negligible. 

However, for a given data we may always try both the. ~>ne-way and two-way models and 

compare the fits. The comparison of SSE values and the li~elihood based AIC criteria 

seem sufficient in this situation. One important aspect which needs to be addressed here 

is the consequence of under,:,specifying or over-specifying the error component 

model on the variance components ·est~mates. 

U nderspecifcation : Here the true model is two-way with 

i = 1,2, ... r,j = 1,2, ... n 

while the estimated model is one-way with random c9mponent 

ejj = O:j + Ujj , 

E )..j = ° , O:j f'V iid(O, a~) , tilj f'V iid(O, al) , independent of each other among 

themselves. 

As may be observed from Chapter 7, the ML estimators of at involves )"jS,' the fixed 

parameters. Here one interesting study would be to estimate tqe bias of at and a~ for the 

misspecified model. The consistency and unbiasedness of the variance components under 

different estimation methods (ML, two-stage least squares, etc.) may also be studied. 

Similarly we may study the behaviour of variance components under over-specification. 

Also, the small sample behaviour of these estimators needs to be addressed thoroug~ly. 
However, we could not address all these theoretical problems in this thesis, and ther~ is 

much scope for further study. 

Another important aspect is the Determination of superior CTC clones. In 

Chapter 7 we have studied the quality aspects in Tocklai released CTC clones. The 

manufacturers believe that among these clones, only a few (9V 1, CV 2 and CV 17) Yleld 

best in terms of quality and market valoe. Their observation Is simply based on the price 

realization. The Tocklai Experimental Station has been studying the chemical behaviour 

of these clones on a continuous basis. The general practice is to measure the chemical 
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parameters for a single sample for each clone. The Taster(s) also give single score on e~ch 

sample. A typical presentation of this practice is the data we have studied in the severyth 

chapter. 

If interest lies in determining the best clones in terms of market performance, t~en 

we believe that a more comprehensive approach is necessary. It is possible to determtne 

the best performing clones in terms of quality or overall qual~ty using the advanced sta-
I 

tistical techniques like Frontier Techniques and Data Envelopment Analysis (DEA). The 

frontier technique is related to the econometric concepts of frontier production functions 

and technical etliciency measurements. In DEA the basic approach is non-parametric, 

wllero there is a mapping of chemicnl information on sensory choices without any prior , 

assumption on the distributions of errors and on specific functional relatiohShip. 

Suppose for each of the 30 clones, several samples are sttJdied in terms of chemical 

characteristics and sensory choices. All the samples under study must be evaluated by 

the sensory panel. If such data baRe is available, we may formulate our problem as -

given the measured levels of chemical parameters, what would be the possible maxim~m 

score in terms of quality/market value. In doing so we may always take care of the qias 

associated with individual members of sensory panel. Such studies would certainly help 

t.he manufacturers t? rationalize the system of"best proCluct determination" which wo~ld 

ultimately help them in introducing their products in market with confidence. Also, 

the introduction of a methodological approach in product selection would minimize ~he 

dependence on sensory panelists. This practical problem can be solved using the above 

mentioned statistical techniques. 

We have tried to understand the quality aspects in CTC tea in this study with the data 

base provided by the Tea Research Association of India. We do not claim any originality 

in our statistical formulations. We have only extended the developed techniques in some 

situations to fit our empirical set up. We should say that statistics as a tool has been 

applied with confidence in understanding the cherqical and sensory infortnation related 

to tea quality assessment. 
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Note 1 

One interesting statistical formulation related" to non-linef!.r model formulation is the 

Box-Cox model with error associated with the respollse. In Chapter 4, we have 

mentioned this while associating the chemical components in ~ea with the single Taster's 

sensory choice. Here we try to formulate a transformation model introducing error compo-
/ , 

nentwith the response variable. This is done keeping in view the subjectivity associa~ed 

with the Taster's choice. Only transformation of the response variable with additive error 

component is considered. We note here that this formulation is not presente~ in the Ohap-
" I 

ter 4 only .because of the fact that a local convergence for the estimates of the impl~cit 

parameters by maximizing the loglikelihood function could nqt be achieved. 

Suppose the true values of the response are Yi(i = 1,2, ... n), wHich are unknown. The 

~bserved response are Vi' We assume Yi = Yi + Vi, where Vi'S are the errors-in-variables. 

We suppose a functional relationship between the regressors and the rer:;ponse variable as 

(1) 

where ,.\ is the Box-Cox type transformation parameter. Assuming e, '" N(O, O'~), 0': 
helng unknown, we have 

Now from (1) we have 

which give ~ = ViA-I. Thus we may write the probability differential of Yi as 
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We now consider the conditional distribution of the error component v, given each Yi to 

be Pearsonian type II. Then the conditional density function may be written as 

where, 

is a beta function. 

The joint density function of v, and Yi may now be written as 

f(v, , Yi) = p(vdYi)·g(Yi) 

= y;-1 K [1 _ (!!i.)2]m 1 
I m 1'; :.;:r; (1. 

Y~-1 A-I 2] 2 { T - (Jo - (Jl Xl' ... - (Jk Xki} l'i . 

Now to find the Jacobian of transformation, we proceed as follows: 

The Jacobian of transformation is 

8(y, W) 
= 

8(Y, v) 
1 

-.a y.' 1 

1 
Y, 

1 

The joint density function of Wi and Yi can now be written as 
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(4) 

(5) 



== 1 (--1lL),\ J( (1 W2)m 1 Vi l+WI m - i Jriu. 

[ 1 {( I!~I r- -1 }2] exp -2U! - ,\- - (JO'" - (Jk Xki 

Now the density ftinction Yi may be obtained by integrating the joint density function 

f( Wi, Yi) with respect to Wi as 

The likelihood function is 

L = n~==1 P(Wi) 

= ni::::l In t (~/ Km{1- wnm $ue (7) 

[ 
1 {(Y1 1+Wj»,-1 {~{~ {~}2] d exp -2u; ,\ - /JO - /Jl Xli" • /Jk Xki Wi' 

We have tried to maximize the log of the likelihood function (7) to obtain the estimates 

of the parameters m, A, a;, and k + 1 (J coefficients using the SPLUS computational 

package. However, for the given data set (studied in Chapter 4), the local converge~ce 

could not be achieved. 
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