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ABSTRACT

Tea is a unique commodity in many respects. Like other agricultural produce, the
valuation of tea, though an agricultural product, is not determined by the free play of
forces of supply and demand. Primarily, the valuation of tea depends on its quality. The
success of tea producers in global tea trade mainly depends on the quality of their product.
In the changed global economic scenario, new equations integrating production, quality
management and market forces have been evolved. The consumers, especially from the
west, are very much concerned about the quality of food and beverage products. That’s
why it has become extremely necessary for the tea producers to adopt a balanced and
reliable approach to the quality management. The quality of tea, like other beverages, is
evaluated by sensory methods. The Tea Tasters play an important role in the tea trade
by judging the tea lots in terms of overall quality in auction centers. The Tasters of
Broker Houses taste the infused sample, and ultimately give the basic price for different
lots of teas. Though the judgement of quality by these Tasters matters a lot in the
evaluation of the produce, it is not devoid of human bias of various kinds resulting in
increasing uncertainty. The Tasters may have some preconceived idea about the origin
and chemical composition of the tea, there remains every possibility of human bias which
may have significant impact on the price and demand for a particular brand of tea. The
tasters consider liquor characteristics, such as strength, brightness, briskness, flavour,
etc. resulting from the infused tea, while assessing tea. A group of Tasters may broadly
agree on the merits of a sample of tea, but there is bound to be some difference of
opinion among themin details. We note here that market conditions in general and the
requirements of the Broker House whose needs the Taster serves have profound influence
on the judgement of quality. From scientific point of view it is quite reasonable to say
that the biochemical parameters inherent in the tea leaf are responsible for the quality in
tea. At the present stage of knowledge, most of the biochemical quality parameters are
measurable with high degree of accuracy. But we can not quantify the quality on the basis
of biochemical information. The Tasters evaluate the different quality attributes (which

are due to biochemical parameters) only. That's why, if the correspondence between
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biochemical information and the Tasters’ judgement can be established, the problem of
uncertainty can be reduced. It is important to study the subjectivity of the Taster’s choice
in assessing the quality of tea. We have discussed different aspects of sensory evaluation
and the statistical methodologies to study the error associated with Taster’s choice. A
sensible approach in this direction is to consider a panel of Tasters, who may assess the
same set of tea samples and give scores on each sample independently. We may study the
individual variations due to Tasters. A possible model can be thought that would give
us an idea about the true inherent quality for the given set of samples after eliminating
the bias due to Tasters. It may be possible to measure the extent of relative bias due to
individual Tasters also.

From earlier discussions we may legitimately say that there are two aspects in the
problem of tea quality assessment. One aspect is the sensory evaluation. The other
aspect is the biochemical information. It is believed that the quality attributes are the
effects of some combinations of biochemical information. Thus we may think of relating
the sensory evaluations' with the biochemical quality parameters, and study how the
different chemical parameters are related to the Taster’s evaluations. If we assume some
functional relationship between the sensory evaluations and the biochemical information
for a particular set of tea samples, we may possibly write the relationship in the following
way:

True Quality = Taster’s assessment + Error due to Taster = Quality explained by
biochemical parameters + Random error.

We explicitly state here that there may be various ways to approach the problem, we
in our study limit the scope to only a few statistical investigations.

Primarily our aim is to study how closely the biochemical information can be func-
tionally related to Taster’s choice and thereby study whether the chemical information is
being explained by the sensory analysis, may be partially. For this we. have associated
the biochemical parameters with the choice made by a single Taster. The performance
of different regression techniques (e:g. Minimum Absolute Deviation technique, Ridge
regression, etc.) is compared with the ordinary least square (OLS) regression. Also the

scores on different quality attributes given by a single Taster are associated with the
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biochemical information introducing Multiple Response Regression model. The possible
non—linearit‘y in the data is studied separately using Box-Cox transformation model. Some
critical investigations have been performed to assess the small sample estimation problem
with Box-Cox transformed model.

As a distinct approach to study the subjectivity of Taster’s choices, we have obtained’
repeated observations on the quality assessment by taking more than one Taster on the
same set of sample. Subjectivity in the sensory evaluation is studied introducing one-
way and two-way variance components (VC) models with heteroscedastic formulation of
variance-covariance matrix. The next step is to associate the sensory evaluations with
the biochemical information after eliminating the bias due to Tasters. This is tried by
developing regression models with repeated observations on the response variable. The
one-way and two-way error component models have been studied under heteroscedastic
environment. The first chapter introduces to the problem under study. Some interesting
information about tea is given. The quality aspects in tea are discussed in detail including
the biochemical front. Different aspects of sensory evaluation, that is, tea tasting is
discussed in detail. This is followed by explanation on the objective and organization of
the problem. The next section includes explanations on the different data sets used in
this study, which are provided by the Tea Research association of India (TRA) and the
Tata Tea Ltd.

A review of the up-to-date literature on the studies made on different aspects of VC
models is presented in the second chapter. Special emphasis is given on the repeated mea-
surement models. A detailed account of linear and non-linear models is given. Different
aspects of longitudinal data analysis is discussed including approaches to data diagnostics.
The ANOVA, MANOVA and generalized MANOVA (GMANOVA) model and estimation
of variance components are discussed. This includes a section on profile analysis also. The
general linear model for longitudinal data analysis is discussed in detail. The maximum
likelihood (ML) and restricted maximum likelihood (REML) method of estimation are
discussed along with the available algorithms for estimation. A detailed discussion on the
testing aspects in general linear model is given. The review work is done keeping in line

with the different repeated measurements models investigated by us to study the quality
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aspects of tea.

The third chapter deals with some simple regression studies to associate quality pa-
rameters with taster’s choice for given set of CTC tea sample. This is attempted using
the data set where a single Taster makes sensory/organoleptic evaluations on different
samples. Two different problems are dealt with. The first approach is to associate a
single quality attribute (say, strength or overall value) with the biochemical information.
We have compared the performance of OLS, Ridge regression and the minimum abso-
lute deviation (MAD) method of estimation. The second approach is to associate the
sensory evaluations made by a single Taster separately on 'strength’, 'quality’ and/or
'overall valuation’ with biochemical quality parameters. For this we have considered a
multiple response regression model. The testing aspect of different parameter estimates
is discussed. The 'within - sample’ forecasting is also done.

The possible non-linearity in the tea quality assessment data is studied using Box-
Cox transformation model in the third chapter. Certain problems of using Box-Cox
transformed linear models in case of small samples is discussed in the forth chapter.

The fifth chapter explicitly deals with the different aspects of sensory panel data. The
subjectivity of Tasters’ choices is studied using repeated measurement variance component
models. Measurements made independently by different Tasters on quality attribute con-
stitute the repeated observations on the sensory scores. The ANOVA and ML estimators
of the heteroscedastic variance components are obtained.

The one-way random effects linear regression model with repeated observations on the
response variable is the theme of sixth chapter. The aim is obviously to associate the
biochemical parameters with Tasters’ scores. The measurements on biochemical quality
parameters are however fixed for each sample. The effects due to Tasters are assumed to
be random. With such a formulation we aim to assess the error due to sensory evalua-
tions and also to assess the statistical significance of the effects of different biochemical
parameters in quality assessment. The error variances associated with different Taster’s
choices may be obtained using a heteroscedastic formulation. The ML and REML esti-
mates of regression coefficients and the variance components are obtained employing a

simple iterative algorithm. The statistical properties of the regression coefficients are also
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discussed.

A generalization of the linear random effects model is done introducing dummy variable
to study the variations due to groups. This formulation is done to support a ‘quality
improvement experiment’ for CTC tea, conducted in the Tocklai Experimental Station of
TRA. A controlled experiment was carried out to develop a particular brand of CTC tea
with better quality. A detailed discussion on the experiment is presented with original
data. The experimental samples showed better quality as compared to the control sample.

The one-way random effect model is an appropriate specification if we are drawing
samples randomly from the same population of teas. But such a formulation would not
be appropriate if we are focusing on a particular set of samples, for example, the samples
representing different clones of CTC tea. Inference in this case is conditional on the
particular samples under consideration. In this case the effects due to samples (fixed
effects) needs to be incorporated in the error component model along with the effects due
to Tasters. Thus we have a two-way error component formulation, which is discussed in
the seventh chapter. We note here that certain computational problems arise in obtaining
the estimates of implicit parameters from the general likelihood function, due to the fact
that the design matrix is not of full rank. An alternative ML estimation of variance
components and the fixed parameters are discussed.

The last chapter includes brief discussion on the possible statistical studies that could
have been undertaken had the required data base on quality assessment been available
and some concluding remarks. The data and other technical information for this study

are provided by the Tea Research Association of India (TRA).



CHAPTER -1

THE PROBLEM AND BACKGROUND INFORMATION

1.1 Introduction

Tea is a unique commodity in many respects. The valuation of tea, unlike other agricul-
tural products, is not purely determined by the free play of forces of supply and demand.
The valuation of tea is considerably distorted by an institution called the Tea Tasters.
The Tasters play an iml;ortant role in the tea trade by judging the tea lots about their
qualities (or overall qualities) in the auction centers. The tea Broker Houses have their
own Tasters who taste the infused tea samples, evaluate the samples and give the basic
prices for different lots of teas to be auctioned. Thus the Tasters, who are representatives
of the Brokers, reflect the taste and preferences of the ultimate consumers of tea. Though
the judgement of quality by these Tasters matters a lot in the valuation of the produce,
it is not devoid of human bias of various kinds. The Tasters may also have some pre-
conceived idea about the origin and chemical composition of the tea, there remains every
possibility of ’human bias which may have significant impact on the price and demand
of a particular brand of tea. Hence there is an urgent need to minimize the uncertainty
factors in the quality-price-demand relationship. This can be, to some extent, achieved
through an objective and scientific analysis of the influence of the human as well as the
chemical factors in tea. From the scientific point of view it is quite reasonable to say that
the biochemical parameters inherent in the tea leaf are responsible for the quality in tea.
At the present stage of knowledge, most of the biochemical parameters responsible for
the quality in tea are measurable with high degree of accuracy. But we can not quantify
the quality of tea on the basis of biochemical information, as we do not know the exact
relation between quality and the biochemical parameters. There are different quality at-
tributes in tea such as ‘strength’, ‘briskness’, ‘brightness’, etc. that are due to different

biochemical parameters. But these quality attributes are judged (evaluated) by the Tea



Tasters only. That is why the correspondence between the biochemical information and

the Taster's judgement is called for.

1.2 Some basic information about tea

The history of tea began in ancient China over 5000 years ago. The tea, what we
drink today, was discovered by Chinese Emperor Shen-Nung in 2737 BC (ref: web site
www.stashtea.com/facts.htm). According to legends, Shen-Nung was boiling a kettle of
water in his terrace when the wind blew a few errant tea leaves in to the kettle. The
curious Emperor sampled the steaming liquid. He was delighted with its pleasant aroma
and taste, and soon the taste of tea spread to Japan and other Far East countries. Early
Dutch and English colonists introduced tea to the new world. It was the famed East India
Trading Company that formally introduced tea to England and other European countries.

Tea is a beverage made from the processed leaf of a plant whose scientific name is
Camellia Sinensis. Compared to other agricultural crops, tea production is unique so
far as its plantation structure and the processing system are concerned. It takes five years
for a tea bush to grow before it reaches any commercial significance. The life of a tea
bush is more than fifty years. To maintain productivity and yield, 2% of tea bushes need
to be uprooted and re-planted every year. Once the bushes are uprooted, it will be seven
years before a re-planted bush will reach commercial bearing. Tea production requires
considerable technical expertise and innovation. The Indian tea industry has developed
considerable R & D, and has made significant contributions in several areas such as tea
biochemistry, biotechnology and agronomy. Specialized research institutes such as Tea
Research Association (TRA, with their famous research laboratory at Tocklai, Assam),
Darjeeling Tea Research Center, and the Indian Institute of Plantation Management has
significantly contributed to the tea research. The laboratory of Tea Research Foundation
of Kenya (situated at Kericho), the Tea Research Institute of China, the Shizuoka Tea
Experimental Station (Shizuoka, Japan), and the Tea Research Institute of SriLanka (St.

Colombus), are some of the famous laboratories in this field. There are more than three



thousand varieties of teas, each with its own flavor, body, color, and aroma. While there
is only one species of tea plant, namely Camellia Sinensis, from which all teas are made,
local conditions in the various tea growing regions of the world determine varieties, which
are unique from each other. The major tea producing countries include India, Sri Larika,
China, Japan and Kenya. We outline below the different types of tea produced in these

countries.
Black Tea (Fermented Tea)

h black : Darjeeling tea of India, Keemum tea from China, and Uva
tea from Sri Lanka are the most famous black tea in the world because of their supefior
flavors. There are flavor characteristics that clearly differentiate each from the other. The
difference in the aroma characteristics of Keemum, Uva, and the Darjeeling teas are due
to the varieties of tea plants used in producing these teas. The processing of this tea is
that the harvested leaves are first withered and then rolled, which liberates the aromatic
juice and onsets a mysterious chemical change through the absorption of oxygen. This
fermentation process occurs in high humidity and warm temperature and turns the leaves

a bright copper color and imparts them with subtle flavors.

Crush-Tear-Curl (CTC) tea : The best quality CTC teas are produced in Assam

of India and some parts of Sri Lanka and Kenya. The production of CTC tea is rapidly
increasing with the increased use of tea bags throughout the world. The flavor of OTC
tea is inferior to that of orthodox black tea. CTC teas are stronger. ‘The biochemical
aspects of CTC tea are discussed by Yamanishi (1995), and Deb and Ullah (1986), among

many others.



Oolong tea :  The process is similar to black tea, but the withering and fermentation
times are cut down. This type of tea is generally produced in Japan and China. This tea

involves the qualities of both black and green tea.

Green tea : The leaves are harvested and immediately put in a large steamer and
heated. The leaves are tolled until crisps. They remain green in color. There are some

other types of teas such as white tea, scented black tea, etc.

The Processing of Tea

The tea leaves (top two leaves and the bud) are first plucked an:i then brought to the
tea manufactory where they undergo the following processes:

The plucked leaves are first withered (dried) on a rack. This withering process may
take 10 to 30 hours and its purpose is to bring down the internal moisture of the leaves to
somewhere between 60% to 70% of the original moisture. The next phase is the activity
of grinding or breaking machines, which cut or crush the leaf. This is done to expose
the enzymes present in leafs for further development as a result of coming into contact of
oxygen. This is called oxidation. The leaves turn to bright copper penny color and 2 to
3 hours are generally enough to accomplish this. After this phase the tea goes into the
drying operation. The tea is dried for between 30 minutes to several hours. This drying
operation is very important in that this is the process which ‘seals in’ all of the flavor
and aroma and can determine one of the major differences between a mediocre tea and a
high quality tea though they may come from the same plantation. Finally the tea may be
exposed to electric roller or other devices to remove the unwanted leaf stem or vein fiber.

The above are the basic steps for producing black tea. There could be several variants
of this approach (depending on the production region), but essentially all that is needed
are the above steps. We note here that the green and semi-black teas are processed

differently than above.



Tea Leaf Grading

Grading tea leaves is very complicated and is done differently in different countries.
The most extensive grading is found in black teas, followed by green teas. Black tea is
classified into four different categories. The main division is between the leaf grade and
the brokens grade. A lesser quality grade of very small pieces is called fannings. Finally
dust grades are used primarily in tea bags. In addition to the grading process, the tea
industry classifies tea leaves according to the place of plucking, and also the time of year

of the harvesting.

1.3 The Quality Aspects in Tea
1.3.1 Assessment of quality

The term quality has different connotation for different products. In tea, it is really a
complex situation, so far the understanding of quality is concerned. In assessing tea qual-
ity, dry leaf appearance is used as one of the criteria. This is because it gives an idea of the
§tandard of the manufacture. But a tea sample is mainly judged from its liquor character-
istics. We note here that the appearance of the dry black tea particles varies according to
the method of cultivation, manufacturing methods and the skill shown in both. The liquor
brewed from the particles or samples varies in taste according to manufacturing method,
particle grade, original planting materials and the environmental factors, including the
time of year (Baruah, 1992). The work carried out at the Tocklai Experimental Station
since early twenties shows that the tea liquor can be described adequately from its liquor
characteristics. These are: color, strength, brightness, briskness, flavor and quality. A
study of these characteristicsshows that they offer little hope of being translated, at their
face value, into quantitative definitions (Harder, 1956; Trick et al., 1967; Baruah, 1992).

Color and brightness have the usual meanings. Lightly fermented tea will tend to be
greener, while the liquor of more heavily fermented black tea will be red. The way the tea
is fired will have an influence on the liquor’s brightness. Lightly fired tea will be compar-

atively brighter or clearer. Appreciating the beautiful color of tea is intimately connected
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to experiencing its wonderful flavor. Flavor is the most important factor in determining
the tea quality, and especially the quality of orthodox tea produced in Darjeeling and
Dooars regions of India. The market price of orthodox tea is based on its flavor. The
term flavor involves both taste (nonvolatile compounds) and aroma (volatile compour}(ls).
Aroma is considered to be the most important factor contributing to the quality of tea.
Very complicated mixture of volatile compounds, such as terpenoids, alcohols, carbonyl
compounds, etc., contributes to the characteristic tea aromas. Yamanishi (1995) makes a
detailed study on the flavor of tea.

The degree of briskness has not yet been estimated chemically. It is a sort of astrin-
gency. The term ‘quality’ is rather ambiguous attribute and conveys different meanings
to different persons. Weight and Gilchrist (1961) have described quality as a ‘dulcet
freshness’, and used various analogies to describe the term more clearly. In the widest
sense, we may say that the quality describes the appeal to the palate as a whole. But in
a restricted sense it is described as a liquor characteristic recognizable by a Tea Taster.

The definition of quality may be differing, but it is a fact that the concept of overall
duality alters with the kind of tea and its place of cultivation. It appears that the tea
trade, which is accustomed to deal with teas from different countries and regions, looks
for certain specific character in tea from a particular region. Absence of the regional

characters reduces the value of teas.

1.3.2 The Biochemical Quality Parameters in Tea

The characteristic taste of tea is made up of a balanced mixture of astringency, bitterness,
bothery taste and slight sweetness. Principal contributors of astringency and bitterress
are catechines and caffeine. We note that catechines are phenolic compounds that occur
in plants naturally. One of these, polyphenol oxidase, is responsible for turning freshly
picked tea leaves black. On the other hand, caffeine is an alkaloid, which is nitrogen
containing compound. The alkaloids taste bitter. In the tea brew, part of the caffeine
complex with flavanols and play an important role in the tea taste, with contributions to

briskness, mouthfeel, and thickness.



Different types of flavanols constitute a group, all of which occur naturally in plants.
In the manufacturing process of black tea, .some of the catechines are changed to the
two biochemical quality parameters, which are said to be the most important quality
barameters in tea. These are theaflavins (TF) and thearubigins (TR). Roberts (1950),
who originated these terms, considered that the TR are as impoftant to the flavor and
quality of tea as are TF. TR is responsible for body, richness, and fullness of the tea
brew. TF imparts the mouth sensations of briskness, freshness, and aliveness. Recently,
é, study of Tea Research Institute of China reported on the influence of catechines and
TF on the astringent taste of black tea brew. The study included tea -samples from
Darjeeling, Assam, China and Kenya. TF produces a yellowish or golden color in black
teas. TR is actually the red or brown pigment in tea leaves that are responsible for the
color of the tea. Brown pigments occur in the Indian teas and the redpigments occur
in Chinese teas. Generally, for CTC tea samples, apart from TF and TR, the other
biochemical parameters such as Caffeine (C), Water Soluble Solids (WSS), Total Liquor
Color (TLC), Ash content, etc., are also measured. We note that all these biochemical
guality parameters are measurable with high degree of accuracy using High-Performance

Liquid Chromatography (HPLC) machine.

1.4 The Tea Tasting

" The professional Tea Tasters in the world tea tr\ade play a great role. The Tea Tasters
play an important role in the quality assessment of tea. A Taster tastes the infused teas
and describes each sample in terms of ‘strength’, ‘quality’, and ‘overall value/quality’.
The overall quality score is given considering all the tea liquor characters together. The
Tasters’ evaluation of tea samples is called the organoleptic evaluation or the sersory
evaluation. The Tasters also indicate the cash valuation of tea. The prices of different
lots of tea in the auction éenters_ are guided by the organoleptic evaluations made by the
Tasters. We note thét the ‘cash valuation’ of tea samples evaluated by the Tasters may

not be the eventual selling price.



While assessing the valuation of tea samples, the Tea Tasters take into consideration
mainly the liquor characteristics, such as their color, strength, brightness, briskness, flavor,
quality, resulting from the infused tea. The Tasters assess tea by their sensory methods:
eye (sight), tongue (taste), nose (smell). The quality perceived by the eye and the tongue

are collectively called the black tea quality parameters (Owuor, 1995).

1.5 Objective and Organization of the Problem

As discussed in the introductory part, the valuation of tea mainly depends on quality.
There are several quality attributes, which collectively determine the overall quality. This
overall quality generally guides the auction market. The quality attributes in tea are due
to several biochemical parameters. By this we mean that different biochemical quality
parameters present in a particular type of tea (produced in a particular region) give
some idea about the strength, color, brightness, etc., of the tea. Obviously, these quality
attributes are not directly measurable. This is a big problem, and the chemists in different
research stations of the world working on tea, have been struggling for a long time with
the problem of chemical evaluation of tea quality. The advances made in the field of tea
biochemistry since the last world war seems to be no way nearer to this goal.

That is why, a big importance is given to the tea tasting aspects. In the world tea
trade, the assessment of quality for different regional teas basically depends on the sensory
or organoleptic evaluations made by the professional Tea Tasters. For a given set of tea
samples, a panel of Tasters may broadly agree on the merits of the samples, but there is
bound to be some difference of opinion among them in details. This is obvious since the
Tasters are human beings, and can not remain aloof from extraneous influences. In many
experiments, it has been observed that the Tasters’ choices vary widely even for the same
quality cup of tea. Market conditions in general and the requirements of the particular
buyer of blender whose needs a Taster serves have profound influence on the judgement
of a taster. Another important aspect is the absence of a fixed standard of reference for

the Taster to compare the teas. As we discussed earlier, the quality varies over regions



and also over the storage periods. In fact inthe auction center, the tea lots lose in price if
they remain unsold even for 3 to 4 days only. For these reasons, a Taster is compelled to
adopt comparative standard.

From the above discussions, it is clear that while assessing value/quality of a tea,
t;part from the inherent overall quality (natural quality or true quality), the Tasters keep
in mind the market demand structure for particular brand of tea. This comes from the
consumer’s attitudes towards different regional kinds of teas. In fact, the market demand
structure has profound influence on the Taster’s judgement. Thus we can not expect
that the Taster’s choice would only reflect the true inherent quality of a particular tea
sample. Reliability of Taster’s choice may be questioned on these grounds. Even in case
of laboratory experiments, intended to study some tea clones of same region or different
regions, the Tasters’ scores vary significantly from one to another. The possibility of
Taster’s effort to promote some particular clones (may be of some particular region also)
can not be denied.

It is important to study the subjectivity of Taster’s choice in assessing the quality of
tea. We may search for differcht methodologies to study the error associated with the
Taster's scores. But if for a given set of samples only one Taster evaluates the teas in
terms of different quality attributes, we have no option but to opt for this score only. We
must have repeated observations or choices made on each sample to study if there is any
variation due to Tasters or due to repeated observations. Two different situations may
arise. First, a single Taster may assess the quality of a particular tea sample on different
occasions. The situation may be that, for a particular sample, different cups are prepared
and the same Taster evaluates each of the cups. We note here that if such repeated
observations are made on different days, there will be some variations in quality due to
storage effects. Again if he assesses the different cups of the same sample on the sdme
date, he may not remain totally immune from the impact of the first cup while assessing
the second cup, and so on. Hence, his evaluations of different cups may not be completely
independent. Thus, considering the repeated choices made by single taster, we may not

be able to assess the true quality given the sample set.



The second approach is that, we may consider a panel of Tasters, who may assess the
same set of samples and give scores on each sample independently. This makes serse.
Because, in this case we may overcome the problems discussed above. Also we may study
the individual variations due to different Tasters. We may think of a possible model that
would give us idea about the true inherent quality (or qualities) for the given set of tea
samples after eliminating the bias due to Tasters. It may be possible to assess the extent
of bias due to individual Taster. Any way, question may arise on the cost effectiveness of
considering a panel of Tasters. But if the industry intends to depend on the Taster’s choice
for auction pricing, they may always make a choice among the Tasters. To rationalize the
whole system of quality assessment, experiments may be conducted for a reasonable length
of time to study the error associated with different Tasters. The particular Taster with
consistently minimum error of assessment may be the ultimate choice for the industry.

From the introductory discussions we may legitimately say that there are two aspects
in the problem of tea quality assessment. One aspect is obviously the tea tasting, which
is the sensory or organoleptic evaluation of tea quality attributes. The other aspect is the
biochemical information. The question is whether we can say sométhing about the true or
inherent quality (in overall sense) of tea only on the basis of biochemical information? At
the present stage of knowledge it seems impossible. Again, can we say something about
the quality of a given set of tea samples on the basis of sensory evaluations? The Tasters’
evaluations explicitly involve the consumers’ attitude apart from the actual quality of tea.
Il a panel of Tasters evaluate the samples, then it may give some idea about the actual
quality of the given tea, after eliminating the relative bias due to Tasters.

It is clear from section 1.2, that, the quality attributes (evaluated by the Taster) are
nothing but the reflections of different biochemical quality parameters. We may say that
the quality attributes are the effects of some combinations of biochemical informatjon.
Thus we may think of relating the sensory evaluations with the biochemical quality pa-
rameters, and study how the different chemical parameters are related to the Taster's
evaluations. If we assume some functional relationship between the sensory evaluations

and the biochemical information for a particular set of tea samples, we may possibly write
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the relationship in the following way:

True Quality = Taster’s Assessment + Error due to Taster = Quality Explained by
Biochemical Parameters + Random Error.

Let us explicitly state that there may be various ways to approach the problem, we

“in our study limit the scope to only statistical investigations. There are a number of
[_)ub]ished attempts to correlate in a quantitative manner, the ch;:mistry of tea with the
Taster's descriptions and cash valuations. Attempts have been made by researchers to
explain quality and various liquor characteristics of manufactured teas in terms of chemical
composition and biochemical behavior of the unprocessed tea shoots and manufactured
teas. To name a few: Harrison and Bose (1942), Roberts (1944), Ramaswamy (1963),
Wood and Roberts (1964), Bhatia and Ullah (1965), Biswas and Biswas (1971), among
many others.

Roberts (1958) found that TF and TR were largely responsible for color and strength,
t'md that TF were factors in quality and briskness. He also found that highest cash
values were given to teas with high TF levels, so long as the TR content was also at
satisfactorily high level. Wood and Roberts (1964) observed that Taster’s scores for color
and strength were related to the TF and TR contents of the manufactured teas. They
also observed that scores for briskness and quality depend to some extent on TF, with
Caffeine contributing to briskness. According to their observation, cash valuation would
be more closely related to TF than to TR. Wickremasinghe and Swain (1965) discussed
the relat.ionship between the quantities of phenolic compounds and commercial valuation,
émd the contributions of the volatile compounds to flavor of Ceylon tea. They observed
that the quality of black tea might be predicted from an estimation of the polyphénol
content before processing the tea shoots because the amount of polyphenols in black tea
depends on the amount originally present in the unprocessed tea shoots. All these studies
were usually made on-the basis of total correlation between the individual biochemical
constitnents and the Taster’s scores on the individual liquor characteristics or on the cash
valuation of the manufactured teas. A much known study on the statistical association of

liquor characteristics with the cash valuation of N-E India black tea is due to Biswas and
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Biswas (1971, T and II). They used multiple regression technique to determine whether
the term 'quality’ of the N-E Indian plains black tea has its own single characteristic as
recognizable by Tasters or if it is the integration of some of the other important liquor
characteristics. They tried to determine the influence of different quality characteristics on
the cash valuation of tea. According to their observation, the N-E Indian plain black tea
was found to depend mainly on the briskness, quality being increased with an increase in
briskness. Cash valuations of CTC as well as Orthodox teas, in general, depended mainly
on the quality and/or briskness. They related the biochemical quality parameters with
individual Taster’s choice and studied the significance of different biochemical parameters.
We note here that they did not consider the inherent subjectivity of Taster’s choice. We
were largely motivated to initiate statistical study on the quality aspects of
tea after going through the Biswas’ work. It is surprising to observe that after
1971, no serious attempt has been made (so far as our knowledge goes) to study
the quality aspects in tea from statistical point of view. Not only the statistical
approach, no other methodological approach has yet been investigated by the
researchers to address this interesting problem of quality assessment. Only
very recently, we have been informed that some studies have been initiated in
the Sizukaya Tea Experimental Station, Japan, to address the problem of tea
quality assessmgnt using ”"Pattern Recognition” technique.

However, several statistical studies have been made to understand the nature of sensory
panel data épeciﬁc to the food industry. The studies of Brockhoff et al. (1994) and Naes

(1990) worth mentioning among others.

1.6 Data Description

In this section we discuss the data sets on which the whole study is based. There are
nine sets of data, eight of which were provided by the Tea Research Association of India

(TRA) and one data set was provided by the Tata Tea Ltd. (India).

Data Set 1 Four sets of CTC samples were collected from the Tocklai garden in
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four different years. All these samples were collected in the autumn flush period. The
manufacturing/processing systems are same for all these samples and the biochemical and
sensory analysis were conducted in the biochemistry and tea tasting laboratories of the
Tocklai station. The samples are of sizes 25, 23, 25 and 21. The biochemical quality
parameters are TF, TR, brightness (B), total liquor colour (TLC) and total soluble solids
(TSS). The sensory analysis was done by the Taster of the experimental station and the
samples evaluated in terms of quality and value on a 0-10 point scale. The basic statistics

for these four data sets are presented in Table 1.1.

Data Set 2 :  Under normal CTC processing system, 93 tea samples were studied in the
Tocklai Station. An experienced Taster evaluated the tea samples in terms of 'strength’
(S), 'quality’ (Q), and 'valuation’ (V). The scores were given on 0-10 point scale. We

]

note here that by 'valuation ' we mean the overall quality here. The tea samples were
plucked from the experimental garden in a particular flush period. It may be noted that
in tea plantation there are four flush periods, namely, first flush, second flush, rain flush,
and autumn flush. The quality of tea may vary over the flush periods. The biochemical
paramecters measured are TF, TR, B, TLC, and Total Soluble Solids (TSS). Some basic
statistics for the chemical parameters and quality attributes are given in Table 2.1 and

2.2.

Data Set 3 This data set was provided by the Tata Tea Ltd. (India). Fifty black
CTC tea samples were collected from the Achbam Tea Estate of Assam (under Tata Tea
Ltd.). The aliquots of each of these drier-mouth were tasted by an experienced Taster.
The Taster evaluated the samples in terms of overall quality (V) and the scores were given
on 0-5 point scale. From the data we observe that there are only three distinct scores,
viz. 2.6, 3.00 and 3.40, assigned to the samples.

The biochemical analysis was done in the R & D center of Tata Tea Ltd., at Teok,
Assam. The chemical parameters measured are TF, TR, TLC, and brightness (B). Some

basic statistics for this data are presented in Table3.1.

Data Set 4 This set of data contains 23 CTC samples, for which the biochemical
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quality parameters measured are TF, TR, caffeine (C), crude fiber (CF) and Ash content
(A). The sensory evaluation is made by a single Taster in terms of overall quality. The
study was conducted in the experimental garden of Tocklai Experimental Station in the
year 1997 as a part of the regular quality assessment study. The basic statistics for this
data set are presented in Table 4.1 and Table 4.2. The Taster’s scores (TS) are given on

0-10 point scale.

Data Set 5 This sensory panel data is a part of the CTC manufacturing method
development experiment, conducted in the year 1998 in the Tocklai Experimental Station.
A panel of three Tasters evaluated the set of 14 samples in terms of S, Q and V. All the
tasters scored the samples on a 0-10 point scale. Each Tasters made ten repeats for each
sample, though only the mean of these repeats are provided to us. Fof certain reasons,
the sensory panel data can not be presented here and only the basic dfatistics on these
scores are given below. We can not specify the brand name of the samples also. The basic

“

statistics are presented in Table 5.1.

Data Set 6 : For a set of 16 Tocklai released CTC clones a panel of five Tasters
evaluated the samples in terms of S and Q in the year 1998. For each samples 10 repeats
were made by each Taster. Tlowever, the mean of these repeats for each sample by each
Taster was provided to us for study. The samples represent different clones though the
identities of the products are not known to us. The basic statistics on the sensory scores

are presented in Table 6.1.

Data Set 7 : This data is based on a trial experimental conducted in Tocklai to study
the effect of a detergent, called Sumatotal, on the quality of CTC tea produced in upper
Assam condition. This liquid detergent is used for washing the fermenting floor and green
leal processing machinery. The preconditioned leaf was rolled to pass through the CTC
machine and then the leafs were spread with a thickness of 1 inch on the cement floor clean
by Sumatotal liquid detergent to complete the fermentation. The processed tea samples
were sent to a panel of four Tasters for sensory evaluation. The Tasters evaluated the 18

tea samples in terms of strength and quality on 0-10 point scale. The Tasters were of the
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opinion that there was no significant development in the cup quality due to the use of the
liquid detergent. We are studying only the experimental samples as the control samples
are not available.

After processing the leafs using the detergent liquid, the samples were sent for the
biachemical analysis. The biochemical parameters measured were TF, TR, TLC, WSS,
and C. Some basic statistics about the data are given in the Table 7.1 and Table 7.2. S

and Q denote scores on strength and quality respectively for the four Tasters.

Data Set 8 : A new process of manufacture of CTC tea has been developed at Tocklai
station by modifying the sequences of manufacturing steps (Pal, Paul and Das, 1999). In
this direction experiments were carried out in different commercial factories in various
agro-climetic regions and the results confirmed higher percentage of finer grades and leaf
appearances as well as improvement in cup quality. As per the modified method, when
the plucked shoots were withered, rolled, fermented and then taken to CTC machine and
dried instead of fermenting after the CTC cut, the product showed marked improvement
in the cup quality and other quality attributes. The CTC manufacturing process has
thereafter been adopted by different commercial gardens of Doors and Assam regions and
outstanding performances have been observed in terms of auction price realization.

This data originates from the experimental results on the quality improvement of N-E
India CTC tea by modifying the CTC processing system. The biochemical analysis and
Lhe sensory evaluations were done at the Biochemistry Laboratory and the Tea Tasting
Department of Tocklai. The tea leaves were collected from the experimental garden of
Tocklai as well as from different commercial gardens of Dooars and Assam regions. The
experiments were aimed at modifying the CTC process to meet the market demand for
higher percentages of Broken grades and leaf appearances.

Shoots plucked from the experimental garden were divided into two equal parts. One
part of withered leafs was preconditioned in Rotorvane and passed through CTC machine
three times and allowed to ferment on the floor at a thickness of spread of 1.25 cm. The

fermentation time was kept between 1-10 min. to 1-30 min. depending on the temperature



and humidity. After the completion of [ermentation the leaf was sent for drying. This is
the conventional way of CTC processing (control samples). The other part of the leafs
was passed through the same Rotorvane and was allowed to ferment on the floor with a
thickness of spread of 3.75 cm. For a period varying between 1-10 to 1-30 hours. The
preconditioned and fermented leaf was then passed through CTC machine three times and
sent to dryer. Detail discussion on manufacturing method and the chemical properties is
available in Pal et al. (2000). This is the experimental tea. The made tea samples were
then drawn for different analysis. Nine control and experimental samples were considered
for both biochemical and sensory evaluations.

Sensory analysis was done by a panel of four experienced Tasters in terms of overall
value (V) on 0-10 point scale. The basic statistics on the chemical and sensory data are

presented in Table 8.1.

Data Set 9 This data represents the measurements on five biochemical quality
parameters and the sensory scores are given by a panel of three Tasters on valuation (V) on
‘2 0-10 point scale. The samples represent 30 Tocklai released CTC clones. There are two
scls of information collected in the years 1997 and 1998. The chemical quality parameters
studied are TF, TR, C, TLC and crude fiber (CF). The details on manufacturing methods
and the system of chemical measurements are available in the Annual Scientific Report
1997 of TRA.

We note here that these CTC clones have different manufacturing/processing systems
and naturally their chemical and quality characteristics vary. The clones are generally
termed as CV1, CV2, ete. It is believed that the CV1 and CV2 are the best CTC clones
among the 30 clones, in terms of qualily and price realization. We have only one sample
of each clone studied for each year. That is why we do not present the basic statistics on
these two sets of CTC clone data. There is no meaning of giving information on means

etc. taking over all the clones as each clone represents a particular type of tea under the

CTC category.
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1.7 Methodology

In this section we briefly introduce the methodologies used to study the quality aspects
in tea. We explicitly state here that there may be various ways to approach the problem,
we in our study limit the scope to only a few statistical investigations.

Primarily our aim is to study how closely the biochemical information can be function-
ally related to Taster's choice. For this we have .associated the biochemical parameters
with the choice made by a single Taster. The multiple regression techniques (partial re-
gression analysis) have been applied to study the association on the basis of initial data
diagnostics related to linearity etc. The performance of ridge regression technique and the
robust technique like Minimum Absolute Deviation technique is compared with the ordi-
nary least square (OLS) regression. Also the scores on different quality attributes given
by a single Taster are associated with the biochemical information introducing Multiple
Response Regression model.

The possible non-linearity in the data is studied separately using Box-Cox transforma-
tion model. The small sample estimation problem with the Box-Cox transformed linear.
models have been studied on the basis of a tea quality assessment data. The perfor-
mance of non-linear least square estimation technique is compared with the maximum
likelihood estimation (MLE) methods. A theoretical formulation of the Box-Cox type
transformation model with measurement error in the response variable is also presented.

As a distinct approach to study the subjectivity of Taster’s choices, we have obtained
repeated observations on the quality assessment by taking more than one Taster on the
same set of sample. Subjectivity in the sensory evaluation is studied introducing one-
way and two-way variance components (VC) models with heteroscedastic formulation of
variance-covariance matrix. The next step is to associate the sensory evaluations with
the biochemical information after eliminating the bias due to Tasters. This is tried by
developing regression models with repeated observations on the response variable. The
random effects and mixed effects linear regression models are studied separately.

A review of the up-to-date literature on the studies made on different aspects of VC
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models is presented in the second chapter. Special emphasis is given on the repeated mea-
surement models. A detailed account of linear and non-linear models is given. Different
aspects of longitudinal data analysis is discussed including approaches to data diagnos-
tics. The analysis of variance (ANOVA), multivariate analysis of variance (MANOVA),
generalized MANOVA (GMANOVA) model and estimation of variance components are
discussed. This includes a section on profile analysis also. The general linear model for
longitudinal data analysis is discussed in detail. The maximum likelihood (ML) and re-
stricted maximum likelihood (REML) method of estimation are discussed along with the
available algorithms for estimation. A detailed discussion on the testing aspects in general
linear model is given. The review work is done keeping in line with the different repeated
measurements models developed by us to study the quality aspects of tea.

In the third chapter, the association of different chemical quality parameters (specific
to CTC tea) with a single Taster’s scores on particular quality attribute is studied using
regression techniques and the statistical significance of different chemical quality param-
eters in explaining the quality attribute(s) is observed. The multiple response regression
model is applied to associate the biochemical quality parameters with a single Taster’s
choices on different quality attributes. The statistical aspects of measurement error with
the response variable, when a single response is available, are discussed.

The possible non-linearity in the tea quality assessment data is studied using Box-Cox
transformation model in the fourth chapter. Different computational problems associated
with the Box-Cox models with small samples are discussed in detail.

The fifth chapter explicitly deals with the statistical analysis of sensory panel data.
The statistical techniques useful to study the different possible variations in the sensory
data are discussed in detail. The subjectivity of Tasters’ choices is studied using one-way
and two-way repeated measurement variance component models. Measurements made in-
dependently by different Tasters on quality attribute constitute the repeated observations
on the sensory scores. Using random and mixed effects models the error variances asso-
ciated with different Tasters’ choices are estimated. The ANOVA and ML estimators of

the heteroscedastic VC models are obtained. The statistical properties of the estimators
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arc studied.

The one-way error component linear regression model with repeated observations on
the response variable is the theme of sixth chapter. The aim is obviously to associate
the biochemical parameters with Tasters’ scores after eliminating the bias associated with
the sensory choices. The statistical significance of the chemical parameters in explaining
the quality attribute(s) along with the error variances associated with the Tasters’ scores
may be studied using heteroscedastic formulation of the variance-covariance matrix. The
ML and REML estimates of regression coefficients and the variance components are ob-
tained employing a simple iterative algorithm. The statistical properties of the regression
coefficients are also discussed.

A generalization of the linear random effect model is done introducing dummy variable
to study the variations due to groups. This formulation is done to support a 'quality
improvement experiment’ for CTC tea, conducted in the Tocklai Experimental Station of
TRA. A controlled experiment was carried out to develop a particular brand of CTC tea
with better quality. A detailed discussion on the experiment is presented with original
data. The experimental samples showed better quality as compared to the control sample.

The one-way error component regression model is appropriate specification when there
is sufficient ground to believe that the tea samples under study are truly random samples
representing a particular grade of tea and have the same intrinsic quality characteristic.
However, in many situations, the quality characteristic may vary over samples. In such
situations, apart from the variation due to Tasters, the sample specific effects should also
be taken into consideration as an assignable source of variation. Keeping this aspect in
view, we have discussed the two-way error component regression model in the seventh
chapter.

The last chapter includes some discussions on several possibilities of technical studies
to understand the association of hiochemical quality parameters in tea with the Tea

Tasters' sensory choices.
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Table 1.1 : Summary statistics for the Data Set 1.

Parameters Samples Mean | SD | Minimum | Maximum

Quality Sample=251| 548 | 1.89 2.00 8.00
Sample=23 | 5.83 | 1.70 4.00 8.00

Sample =25 | 5.72 | 1.51 4.00 8.00

Sample =21 | 4.78 | 1.40 2.00 8.00

Value Sample=251| 7.84 | 0.85 6.00 9.00
Sample =23 | 8.00 | 0.80 7.00 9.00

Sample =25 | 7.88 | 0.78 7.00 9.00
Sample=21| 7.44 | 0.71 6.00 9.00

TF Sample =251 0.80 | 0.06 0.67 0.93
Sample =23 | 0.80 | 0.06 0.72 0.94

Sample =25 0.82 | 0.05 0.73 0.91
Sample=21| 0.83 | 0.09 0.66 0.94

TR Sample =25 9.88 | 1.49 7.06 12.02
Sample =231 997 | 0.94 7.87 11.39

Sample =25 9.21 | 0.39 8.06 10.61

Sample =21 | 10.04 | 0.72 8.94 11.12

B Sample =25 | 17.88 | 2.62 15.47 23.36
Sample =23 | 17.51 | 1.21 15.95 19.80
Sample=251 17.13 | 1.36 15.22 20.12
Sample=21 | 19.38 | 1.01 17.69 20.77

TLC Sample =25 | 3.08 | 0.29 2.75 3.90
Sample =23 | 2.87 | 0.22 2.34 3.30

Sample =251 295 | 0.18 2.55 3.29

Sample =21 3.04 | 0.24 2.34 3.30
TSS Sample =25 | 40.03 | 0.35 38.90 40.70
Sample =23 | 39.63 | 0.46 38.96 40.30
Sample =25 | 39.55 | 2.02 29.60 40.20

Sample =21 | 40.19 | 0.45 39.49 41.00




Table 2.1 : Summary statistics for Data Set 2.

Parameters | Mean SD Ranga Correlation Metrix
Vv 2.90 0.23 2.60 - 3.40 1
TF 0.84 0.13 0.52-1.09 049 1
TR 12.32 1.78 8.07-16.13 0.55 0.57 1
TLC 4.33 0.62 3.03 - 5.85 056 083 054 1
B 15.97 1.51 13.61 - 19.67 -0.09 0.35 -023 -0.17 1
Table 3.1 : Summary statistics for Data Set 3.
Parameters Mean SD Minimum Maximum
S 5.46 1.67 2.00 8.00
Q 4.76 1.72 2.00 8.00
\Y 7.80 0.81 6.00 8.00
TF 0.81 0.06 0.66 0.94
TR 9.79 1.04 7.06 12.02
B 18.04 1.95 15.22 23.36
TLC 2.97 0.22 2.34 3.90
TSS 39.82 1.17 29.60 41.00




Table 3.2 : Correlation matrix for the Data Set 3.

S 1
Q 0.73 |
\ 0.82 0.94 |
TF 0.19 0.29 0.26 |
TR 0.32 0.38 0.35 0.41 1
B -0.08 -0.07 -0.08 0.55 0.32 |
TLC -0.12 -0.04 -0.009 0.22 -0.0 0.32 |
TSS -0.10 -0.02 -0.02 0.19 0.13 0.29 0.15
Table 44 : Summary statistics for Data Set 4.
Variable Mean S.D. Minimum Maximum
TS 7.10 0.9472 5.50 9.20
TF 1.5339 0.2409 1.05 2.06
TR 12.45 1.0789 10.70 14062
CAF 3.6591 0.2769 2.99 4.06
CF 9.7948 0.7503 8.60 11.00
A 6.4913 0.2802 6.00 6.99
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Table 4.2 : Correlation Matrix for Data Set 4

\Y 1
TF 0.3765 1
TR 0.2205 0.3742 1
CAF -0.1104 0.6978 -0.5929 1
CF -0.6233 -0.4198 -0.1541 0.1553 1
A -0.3316 -0.1032 -0.2971 0.3312 0.2342 1
Table 5.1 : Summary statistics for Data Set 5.
Attributes Taster 1 Taster 2 Taster 3
Mean Strength 5.09 4.36 5.66
Quality 6.50 6.34 6.33
Value 7.96 7.55 7.00
SD Strength 0.26 0.36 0.79
Quality 0.78 0.63 0.63
Value 0.31 0.77 0.96
Minimum Strength 4.75 3.85 4.00
Quality 5.28 5.43 5.00
Value 7.57 6.00 6.00
Maximum Strength 5.75 5.05 6.25
Quality 7.75 7.25 7.25
Value 8.42 9.00 9.00
Table 6.1 : Summary statistics for Data Set 6.
Attribute Taster 1 Taster 2 Taster 3 Taster 4 Taster §
Mean Strength 7.37 5.43 7.09 6.35 7.38
Quality 7.36 5.38 7.31 4.22 7.41
SD Strength 0.33 0.74 0.27 0.88 043
Quality 0.35 0.68 0.43 0.34 0.44
Minimum Strength 6.75 4.50 6.50 3.50 6.50
Quality 6.75 4.50 6.50 6.50 6.50
Maximum Strength 8.00 7.25 7.50 7.28 8.14
Quality 8.25 7.00 8.00 8.00 8.00
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Table 7.1 : Summary statistics for the Data Set 7.

Mean SD Minimum Maximum
S1 6.00 1.37 4 8
S 2 7.33 1.19 ‘ 6 10
S3 6.33 1.97 4 10
S4 8.44 1.10 6 10
Qt 7.00 0.69 6 8
Q2 7.78 0.65 7 9
3 7.19 0.96 6 9
Q4 8.28 0.57 7 9
TF 1.51 0.23 1.14 2.02
TR. 12.78 1.01 10.90 14.08
WSS 45.02 0.86 43.20 46.58
TLC 5.53 0.28 5.05 5.98
C 428 0.42 3.67 5.37
Table 7.2 : Correlation Matrix for chemical parameters for Data Set 7,
TF TR WSS TC C
TF 1
TR -0.48 1
WSS 0.41 -0.19 1
TLC 0.23 -0.35 0.41 1
C 0.21 -0.04 0.37 1
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Table 8.1 : Summary statistics for Data Set 8.

Mean SD Minimum Maximum
Exp. Cont. Exp.  Cont. Exp. Cont. Exp. Cont.
V1 7.67  6.44 0.94 1.07 6 4 9 8
V2 8.44  6.89 0.50 0.74 8 6 9 8
V3 7.89  6.78 0.74 1.31 7 4 9 8
V4 8.80  6.67 0.74 095 8 5 10 8
TF 1.66 145 0.24  0.54 1.17  1.14 202  1.60
TR 11.83 13.24 076  0.13 10.90 13.04 13.72 14.08
TLC 576 5.30 0.14  0.30 545 5.05 598 5.51
WSS 4551 44.53 0.72  0.16 44.65 43.21 46.58 45.55
C 449 426 0.63 0.78 375  3.76 537 4.66
MO 343 346 0.32 0.54 297 245 98 4.10
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CHAPTER - 2

A REVIEW OF LITERATURE ON VARIANCE
COMPONENT MODELS FOR REPEATED
MEASUREMENTS

2.1 A Brief History of Developments in Variance Components

Models

Scheffe (1956) and Anderson (1978, pp 11-25) gave a detailed account of the early history
(1861-1949) of development of models and methods of estimating variance components.
From their survey it appears that Legendre (1806) and Gauss (1809) implicitly dealt with
fixed and random effects aspects of linear models in the field of astronomy.

The first known formulation of random effects model seems to that of Airy (1861),
who simplicity used a variance Component (VC) model for one-way layout. Airy’s study
was on telescopic observations with respected measurements. It is note worthy that this
earliest known use of VC model included unbalanced data structure. Airy assumed the

following structure for the j** observation on the i** night.

Yij = p+ o + e (2.1)
i=1,2,...,a
i=4L2,..,n

where 4 is the true value, and the {¢;} and {e;} are random effects. ‘a;’ was termed as
‘constant error’. The {e;} for fixed ‘4’ was explained as the errors about conditional mean

p + ;. For the i** night, he proposed the following estimate of error variarice

6% = Z(yiz — 9i0)?/(ni = 1)
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and the average of the square roots of the values was obtained as
2 ’
o= [Se2rsa]
1

The second user of a random effect, model appears to be Chauvenet (1863). Coming
into nineties, the major fundamental ideas on VCs are due to R.A. Fisher. He started
with the basic paper is the theory of quantitative genetics (1918) where Fisher made
inceptive use of the terms ‘variance’ and "analysis of variance”. Following the genetics
paper, Fisher’s book (1925, Sec. 40) made a major contribution to the VC models. The
basic approach of equating sum of squares (SS) from analysis of variance (ANOVA} to
their expected values, and thereby obtaining a set of equations that are linear is VC’s to
be estimated, is due to Fisher.

Fisher did not use liner models to explain the ANOVA of designed experiments. In
contragt L..C. Tippet (1931) not only classified the ANOVA method of estimating VC’s
from balanced data but also extended it to the two-way crossed classification, without
interaction random model. Although Tippet considered an optimal design, the initial
work on optimal sampling design through VC models (including higher order models)
is due to Yates and Zacopany (1935). We note that at the early period of research on
optimal sampling design, Cochran (1939) made substantial contribution.

Since linear models have now-a-days become an integral part of describing VC's, it
is interesting to note that this had become widely accepted by 1939 : e.g. Neyman et
al. (1935), Welch (1936), Deniels (1939). The specifications of the models were very
much up-to-date in some cases : Welch utilized properties of x2-variates, Jackson (1939)
assumed normality for random effects and error terms. The work of Deniels was significant
as sampling variance of the VC estimates were derived for balanced date, up to the
complexity of a 3 way crossed classification random effects model.

Cochran is the first statistician to discuss VC models for unbalanced data. Actually
Cochran was not specifically concerned with the estimation of VC’s, Winsor and Clarke
(1940) actually did it for unbalanced data. The extension of general ANOVA method

camee after 1940. Ganguly (1941) applied it to k-way nested classification random model
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with interaction. In l'act,_ Ganguly and Crumpt draw attention to a deficiency of the
ANOVA method, namely that, depending on data it may produce negative estimates of
VC. The aspects of negative estimates of variance components are discussed in details by
Searle (1972). Crumpt also derived the sampling variance of the class of estimators for
1-way and 2-way crossed models. Wald (1941) considered confidence intervals for ratios
of VCs.

The year from 1950 to 1969 brought major developments in the methods of estimating
VCs, starting with important extensions of the methodology and ending with establish-
ment of new methods based on maximum likelihood (ML) and minimum norm criteria.
The first Lo mention is the Anderson-Bancraft’s (1952) book which contains detail discus-
sion on VCs. The book deals thoroughly with estimation of VCs from both balanced and
unbalanced data for mixed and random models. This book is a milestone is the history
of VC estimation. Details on the ML estimation of VCs would be discussed in separate
section.

A landmark paper dealing with the difficult problem of how to use unbalanced data
in VC models in due to Handerson (1953). This paper classified three different ways of
using unbalanced data, from random and mixed models. All these three are applications
of ANOVA method of equation SS to expected values. These three methods have came
to be known as Handerson’s Method I, IT and III.

Keeping in view the question of optimality, several papers between 1956 to 1968 devel-
oped formulae for sampling variances of ANOVA estimates and of Handerson’s method
catimales in particular. The unbiasedness properties of different statistics for ANOVA
estimates were first developed for balanced data by Graybill and Wortham (1956), and
for unbalanced data by Scheffe (1959).

Whatever computability considerations on the part of different researches were there,
the weaknesses of ANOVA estimators remained : negativity, lack of distributional proper-
tics and no useful way to compare different applications of ANOVA methodology. In light
of that, the maximum likelihood (ML) estimation duly came to be considered as an better

alternative. The initial effort in this line appears to lie with Crumpt (1947, 1951), who
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dealt with 1-way classification. Herbech (1959) derived explicit ML estimators for certain
halanced data models and also studied the non-negativity of VCs, The landmark paper
for ML, estimation in general is due to Hartley and Rao (1967), wherein a methodology
was developed for a very wide class of models. But for few years there was an impediment
to wide spread use of ML method due to computational complexities. Miller (1973, 1977)
also worked on the ML estimation for balanced as well as unbalanced data. He showed
that the ML equations for 2-way random model can be written in comparatively simple
look, but these can not be solved analytically. He also studied the asymptotic properties
of the estimators.

The study on restricted maximum likelihood estimation (REML) was initiated by
W.A. Thompson (1962). He introduced the idea of maximizing that part of the likelihood
which in invariant to the location parameters (the fixed effects) of the model. REML esti-
mation for unbalanced data is due to Patterson and Thompson (1971). There is no dernial
of the great importance of Harville’s (1977) effort to study the computational difficulties
of ML as well as REML methods of estimation. This study reduced the computational
confusions in variance components estimation.

The search for best linear unbiased estimated (BLUE) of VCs begun with Tounsend
(1968), Harville (1969), Searle and Tounsend (1971). This is nothing but finding the min-
imum variance quadratic unbiased estimators of VCs, which is popularly known as Mini-
mum Norm Estimation. The initial papers were quickly followed by La Motte’s (1970, 71,
73a,b; 1976) work on minimum variance estimation and C.R.Rao’s (1970, 1971a,b; 1972)
study on minimum norm quadratic unbiased estimation (MINQUE). These estimators
have, in some sense, a minimized generalized variance, derived from the minimization of

Euclidean norm, which under normality, equates to a minimum variance property.
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The MINQUE estimation demands no distributional assumptions. Also it does not
involve any iteration procedure, just the solution of linear equations. The estimators are
- unbiased. We note that any MINQUE estimate is same as first round iterate from‘REML,
using a priori value needed for MINQUE as the starting value for REML iteration. The
importance of these connections between MINQUE and REML is discussed in the book
of Rao and Kleffe (1988).

Lastly, we discuss in brief the developments made in the field of VC estimation through
Bayesian approach. Some pioneering details is this line are due to Tiao and Tan (1965,
1966), Tiao and Box (1967), Hill (1965, 1967, 1970) and Culver (1971). Hill dealt with
one-way classified data in balanced structure. Appropfiate class of prior distribution on
the components and/or their ratios is considered by Culver. There are only a few papers
on Bayesian approach for unbalanced models. To cite a few works in our knowledge -
Khuri and Sahai (1985), Gnot and Klefle (1983), among others.

Coming on to the computational aspects, we note that much of the earlier estimation
methods require approximation of integrals. The evaluation of very high dimensional inte-
grals can be a computational problem (Smitﬁ, 1983). But there are mimerous alternative
methods available now-a-days for computing VC through Bayesian approach. Approxi-
mation of integrals, particularly arising from Bayesian hierarchical modeling, are treated
in details by Tierney and Kadane (1986, 1989). Recent techniques include interesting
work on’ application of Gibb's sampling (Gelfand and Smith 1990, Gelfand et. al., 1990)
which can provide methods of obtaining estimates without doing the integration that the

formal derivations dictate.

2.2 Linear Variance Component Models

Much of the early story of VC models revolves around the one-way classification which
may be summarized as
Yij = p+ oy e (2.2)
with i = 1,2,...a
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Var(ey) = 0%, Var(e;,) = o2, all covariances zero

j = 1,2,..., n , for balanced data

= 1,2,...n;, for unbalanced data.

(2.2) may be written in matrix notation as

Y=(la®1) i+ (la®la) a+e (2.3)

where a denotes the number of classes and n denotes the number of observations. Searle
and Handerson (1979) and Anderson (1984) use extension of this random model. The

dispersion matrices of ¥, o and ¢ are -
Var(e) =02 I, Var(a)=0"1,, and
Va"'(g) =0 (LL®J.) +0}(LoL)=1® (0*Jn + 021,

In some situation, adopting Cov (a;, @}) = p 0?) for i # ¢' is reasonable. Then the general

form is

Var(a) = a2[(1 = p) Lo + pJa].
The traditional fixed effects linear model may be written as

y=Xf+e (2.4)

where y is (N x 1) data vector, § is (k x 1) vector of fixed parameters occurring in
the data, X is known (n X k) coefficient matrix and e is an error vector defined as
e =y— E(y) = y— XF and thus has E(e) = 0. Usually the dispersion matrix is
Var(e) = 0?Iy. X is often matrix of zero and ones in ‘no-regression’ situation in which
case it is kr_xown as ‘incidence matrix’. But X may also include columns of regressors. To
take care of all possibilities, X is called model matrix.

In VC models the random effects may be presented as Z U, where U is the vector

of random effects that occur in the data and Z is the corresponding matrix, usually an
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incidence matrix. Moreover, U can be partitioned into sub vectors. Incorporating the
random component U into (2.3.4). We get a general from of model equation for a mixed
model as

y=Xg+ZU+e (2.5)

where 8 and U represent for fixed and random effects respectively. We have E(y) = X
and E(y |U) = X+ Z U. As mentioned above, partitioning Z and U, the mixed model
may be represented as

Y= Xﬁ+§: Z;Ui+e (2.6)

=1

q
Then we have, V =Var(y) + Z D Z'+ 0% Iy = 62 Z; Z! + 0% In. A useful extension
1=1
is to consider Up = e, Zp = Iy and 02 = 02, and so have

q 9
y=X,H+Z Z,'U,' and V=Z Z,'Z‘{O'?.

i=0 i=0
The above formulations are due to Hartly and Rao (1967), who used these to great
advantage for unbalanced data. Usually the following assumptions are made on the above

formulation

Var(e) = 0® Iy, Cow(Up,U)=0VY i#j and Cov(U, ¢) =0.

The zero covariances provides no opportunity to deal with situations where components
of covariance would be appropriate. But many researchers have studied the components

of covariances. The possible formulation in this line is outlined below :

i) Suppose u; be an element of U; for t = 1,2,...q;. Suppose covariances between all
pairs of clements of U; are to be non-zero but covariances between different U’s are

to be zero; then

Cov (uy, uy) =d;,w and Cov (u,-t,u,vt)\= 0Vi#id.

Hence Var (U;) = D;; and Var(U )Z D;;. For example, in the intra-class correlation
i
pattern discussed earlier, we have Dy; = 62 [(1 — p;) i + pi Jyi), which has d; g = o?

and d,"ul = P 0';'2.
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ii) Another possibility is the covariance between effects of different random factors. In

this situation one may assume,
Cov (i, Uiry) = diggy 0 thatCov (U, U’ ) = Dig =3 Y disrar
~3 Nt’ t t’

and Var(U)=D=Y_ Dj.

i
One possibility for Dy; is Dy; = 02 [(1 — pii) Ii + pu Jgi] and Dig = pig 0; 09 Jgixqi V1 #
i, so that Var(uy) =02Vt =1,2,...q

Cov(up, uw) = p 02Vt #t' and Cov(uy, upy) = pw 040 ¥V t,t' and 1#7.

For error terms it is generally assumed that covariances between all pairs of error terms
are zero. Also that all error terms have same variance o2. But one may assume some
specific covariance structure for error component also. The situation of ‘equi-correlated
errors’ may be considered. With diagonal elements af and off-diagonal elements po, oy
in the variance-covariance matrix V, we may write V = s[(1 — p)I, + p J4]s, where
8 = diag(oy,0,...0,). Such a structure may be considered when all measurements are
made at about the same time. Such situation are encountered in ‘split-plot’ type set-up.
Again when the measurements on an individual subject have been made in sequence over
time, the errors may be correlated. A widely used time series model is the autoregressive

process

€j =pej1-+u;,. for j>2

where p is the regression parameter and u,, are innovation errors usually assumed to be
N(0,0?), cach independent of the past. Again when the data are unequally spaced over
time, some researchers propose the "Markov correlation structure” for error component.

A useful review in this field with many references is due to Mukherjee (1976). Rao
(1967) considers least square (LS) estimators with unstructured and autoregressive forms
of V. Webb (1973) applied the non-stationary autoregressive model. Beach and MacK-

innon (1978) studied the ML estimation aspects in the autoregressive  case. Wilson et
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al. (1981() considered, among other things, MLE for the model y; = pl, + e; with
Vi = 0%J, + £, T having the autoregressive form discussed above. Azzalini (1984) added
the regressors (covariates) to this scheme. To name few other contributors in this field

are Kenward (1985), Rochan et al. (1989), Jennrich and Schluchter (1986).

2.2.1 ANOVA Estimators of Variance Components

We now discuss the ANOVA estimation of four different VC models which have been
used extensively by bio-statisticians. For the one-way random model discussed earlier,

the ANOVA table and the estimators are given below :

Source d.f. S.S

A a—1 SSA=Z’II (gio—ﬂoo)2

Residual | a—1 [ SSE =33 (yij — fi0)?
i

Residual [ an —1 [ SST =3 (4 — i0)?
i

o= MSE,

02 =(MSA - MSE)/n

The two-way nested random model is

Vije = M+ o+ i+ egp

i = 1,2,...a; j=1,2,...b; k=1,2,...n.



The ANOVA table is

Source d.f. S.S

A a—1 SSA = 2 bn _(171‘00 - 1(7000)2
B Within A | a(b—1) | SSB:A=>_35" n (fijo — Fio)?
i

Residual | ab(n—1) | SSE = E(y,-,-k - To0o)?
ik

Total abn — 1

62=MSE
62 =(MSA - MSB : A)/bn
65=(MSB:A- MSE)/n
The two-way crossed, with interaction mixed model is
Yijk = B+ g + B + Aij + e

with «'s lixed. The ANOVA table is
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Source d.f. S. S
A a—1 SSA = ; b (Fioo ~ Fooo)®
B . alb—1) |[SSB= 5,3 an (Gojo — Jooo)*
AB | (a-1)(b-1)|SSAB = 2]‘, n (ijo — Tioo — Tojo + Fooo)?
Residual ab(n — 1) SSI = ‘z; (Yije — Tijo)*
i)
Total abn — 1

6% =(MSB - MSAB)/an

52 = (MSAB — MSE)/n

62 = MSE.

Again the 2-way crossed, no interaction mixed model equation is

Yigk = p+ o + 0, + eipx

with o;'s fixed. The ANOVA table and the estimators of VC are
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Source d.f. SS

A a-1 SSA = an(ﬂioo — Tooo)?
B b-1 SSB =Y an(iojo — Hooo)?
J

Error |abn—-a—-b | SSE = Z(y,-jk — Gioo — Fojo + Fooo)?
ijk

Total abn — 1

6% =(MSB - MSE)/an

5% = MSE.

2.2.2 Studies with Repeated Measurements

We now turn our discussion on the situation where repeated measurements are available
on both the covariates (regressors) and the response variate. It means that both y and
X have errors and repeated measurements are available on both of them. Such problems
have been discussed extensively by Madansky (1959) and Cochran (1968). If we have N;

observations on each (Xj,y;) with

Yij = Yi + 5 1=1,2,...n

.TU.'J'=X,‘+‘U.;J' i=12,...N;

and if the usual assumptions of independence are made, then we can perform ANOVA on

the X's and y’s and obtain the estimates of .
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Lord (1960), Dagracie and Fuller (1972), proposed an estimate of the following func-

tionally related covariance model.

Yij = o+ A+ Pz

i=1,2,...,n, j=12,...,7

where 7 is the number of treatments and r is the number of repetitions. ); is the i*? treat-
ment effect with 3 A; = 0.x;; and y;; are observed with errors following a bivariate normal
form with zero means. For known estimates of variance components, they developed the
estimators of § that are unbiased to O(r™') where r is the number of observations on
each treatment.

Ord (1969) assumed a model where replicated observations (only two) are possible
for fixed true vales of the variables and obtained the ML estimators for the functional
relationship |

¥ = o+ f;

1 = 1L,2,...n
A= X-»H),-j

j = 12
o= Vite

with usual assumptions.. This may be relevant when observations are based on two in-
dependent situations. Some good discussions in the field of measurement errors with
repeated observations on both the covariates and response are made in the book of Carrol
et al. (1995). A detail statistical study on the error-in-variables is due to Pal (1981).

Many of these models can be generalized in the longitudinal set up as discussed below.

2.3 Some Discussions on Longitudinal Studies

Longitudinal studies represent one of the principal research strategies employed in biomed-
ical and social science research. The defining characteristic of a longitudinal study is that
individuals are measured repeatedly through time. This is obviously in contrast to cross-
sectional studies, in which a single outcoime is measured for each individual. In longitu-

dinal data the response of each individual (sample) is observed on two or more occasions.
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Longitudinal designs are uniquely suited to the study of individual change over time,
including the effects of development, aging and other factors that effect change. Longi-
tudinal studies typically have unbalanced designs, missing data, time-varying covariates,
and other characteristics that make standard multivariate procedures (e.g5. MANOVA
etc.) inapplicable. The major advantage of longitudinal study is its capacity to separate
what in the context of population studies are called cohort and age effects.

The defining feature of a longitudinal data is repeated observation on individuals al-
lowing direct study of changes. Longitudinal data require special statistical methods
because the set of observations on one subject tends to be interrelated generally. The
research of eighties focused on the development of statistical methods that not only con-
sider the inter-correlation of serial mcasurements but also accommodate the complexities
of typical longitudinal data sets. Ware(1985) viewed the analysis of serial measurements
as a univariate regression analysis of responses with correlated errors. He discussed more
flexible approaches to modeling and parameter estimation. He argued that the repeated
measures designs may be regarded as a subset of longitudinal designs. The methods de-
veloped for longitudinal designs can be directly applied to data collected in the repeated
measurers setting.

The issue for accounting correlation also arises when analyzing a single long time
series of measurements. Diggle (1990) discusses time series analysis in the biological
sciences. Analysis of longitudinal data tends to be simpler when subjects can usually
be assumed normal. However, in many situations the non-normal patterns are observed,
which demand special statistical treatments. The inferences from longitudinal studies can
be made more robust to model assumptions than those from time series data, particularly

to assumptions about the nature of the correlation.

2.3.1 Approaches to Longitudinal or Repeated Measures Data Analysis

When we have single observation on each unit, then we are confined to modeling the
population average of response y, called the marginal mean response. In this case we have

no other choice. But with repeated measurements, there are several different approaches
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that can be adopted. A simple strategy may be to :
(i) Reduce the repeated observations into one or two summaries;
(ii) Analyze cach summary variable as a function of covariates X.

Such an approach in adopted in Pal and Paul (1997), where a summary measure of
quality scores on different tea samples are obtained from the repeated observations on
quality scores given by Tea Tasters. Than these summary scores are regressed on the
corresponding measures of biochemical quality parameters and the coefficient estimates
are obtained. We may call this approach a two stage or derived variable analysis. But
it is worth noting that this approach is less useful if the most demanding explanatory
variable change over time.

An alternative to the above approach may be to model the individual y;, in terms
of z;;. The first approach is to model the maréinal mean as in cross sectional studies
(Diggle et al. 1995, p.18). Since repeated observations are likely to be dependent, the
marginal analysis must include assumptions about the form of correlation. For example,
in the linear model we may assume I(y;) = X;0, Var(y;) = Vi(a), where § and o must
be estimated. This approach carry the advantage of separately modeling the mean and
covariance. Valid inference about 3 can sometimes be made even for incorrect form of
V().

A second approach, the random effects model assumes that correlation arises among
repeated responses because the regression coefficients vary across individuals. Here, we
model conditional mean of y;;, given 8, by E(y;;/8:) = zj; Bi. It may be noted that
fixed effects model is a appropriate specification if focus is on specific set of n individuals
(samples). Inference is this case is conditional on the particular n individuals. Again
random effects model is appropriate specification if we are drawing individuals randomly
from large population,

Another approach, known as ‘transition model’ (Ware et al. 1988) focuses on the con-
ditional expectation of y;; given past outcomes, ¥;;_1,...yi1. Here we specily regrésgion

model for the conditional expectation, E(yi;/¥; -1, ... ¥i1, Tij) , as an explicit function of
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;;, and of the past responses. An example of such model is the logistic regression model

for binary data

log Pr(yij = 1/yijr, . Y1, Tij)

'
=z,0 + ayij1.
1-—- Pr(yij = l/yi,j_la . ~yilamij) Y 7

Transition model of this type combine the assumptions about the dependence of y on X
and the correlation among repeated ys into a single equation.

In cach of the three approaches discussed above, we model both the dependence of y
on X and the autocorrelation among ys. With cross sectional data, only the dependence
of y on X need to be specified; there is no correlation.

Thus longitudinal data analysis or repeated measurements problems may be parti-

tioned into two groups :

(i) where regression of y an X is the point of interest and the number of observation

(n) is greater than the number of repetitions (r).

(i) problems where the correlation among repeated observation are of prime interest or

when n is small.

2.3.2 Data Diagnostics

The longitudinal data analysis has two components that operate side by side : exploratory
and confirmatory analysis. Exploratory Data Analysis (EDA) comprises techniques to vi-
sualize the data patterns. Confirmatory analysis is obviously technical in nature, weighing
evidence in data for or against hypothesis.

Most longitudinal analysis address relationship of response with explanatory variables,
often including time. So a scatter plot of responses against an explanatory variable may
be the basic display. Smoothing techniques are discussed in literature that highlights
the typical response as a function of explanatory variable without reliance on specific
parametric models. Smoothing splines, kernel estimators, and the robust method ‘lowess’

are reviewed in Diggle et al. (1995).
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We may also explore the correlation structure for degree of association in repeated
measurements. To remove the effects of X, we first regress the response, y;; on z;j, to
obtain residuals; eij = Yij — xi; B. With data collected at a fixed number of equally spaced
points, the correlation can be studied nsing scatter plot matrix in which e;; is plotted
against e, for all j < k = 1,...r. When each scatter plot in the matrix appears like a
sample from the bivariate normal distribution, we may summarize the association with a
correlation matrix, comprised of a correlation coefficient for each plot.

The best sources for studies in EDA are the books by Tukey (1977) and by Mosteller
and Tukey (1977). Background information on graphical methods in statistics can be
found in Chambers et al. (1983).

2.3.3 Repeated Measures ANOVA

The ropeated measures ANOVA can be regarded as a initial attempt to a single analysis
of a complete longitudinal data set. These aspects are discussed in detail earlier. Here
we outline the ‘split-plot’ type approach, which was adopted by researchers in different

agricultural studies. The underlying model may be presented as

Yijh = Oh +anj + Anitegn i=12,...,n, j=12,...,r, h=12,...¢g

where y;;, denotes the j** repeated observation for i** sample within A* treatment group.
Bn represent the main effects for treatments and o interaction between treatment and

repetition with the constraint Z apj = 0. Ap; are mutually independent random ef-

fects. ei;n are mutually indepencjlent measurement errors. We have, E(y,-jh) = [ + aiy.
Under the assumptions An; ~ N(0,03), eijn ~ N(00?), the resulting distribution of
y = (Yith, Yizhy - - - Virn) is multivariate normal with covariance matrix V = 0% I + 0% J,
where J is the matrix of ones. This implies a constant correlation p = 02/(02 + o?),
between any two observations on the same sample. .

The split-plot ANOVA for the above model is presented in the following Table. In

the Table n = }°, nj denotes the total number of units. We note here that split - plot
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ANOVA requires a complete data or balanced data. But we may analyze incomplete data

under split-plot model by general likelihood based approach (Diggle et al. 1995).
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Table : Split-Plot ANOVA Table

Source SS d. f
Between BTSS  =nYpnilih. - §..)° g-1

treatment

Whole plot RSS] = TSSl hd BTSSI n-—g

residual

Whole plot TSS) =ny, Tilini. —9..)?

total

Between BRSS; = r ¥ ;(§.5 — §..)? (r—1)

repeats (time)

Treat x repeat | JSSy = ¥, ¥y ra(fpij — §..)2 — BTSS; — BTS8S; | (9-1) x (r —1)

interaction

Split plot

residual

Split plot
total

RS88; =T8S, — 185, — BTS8S5; — TS5

TSSy = 3p i j{Tnij — i.)?

(n—g)x(r—1)

(nr-1)




The split-plot. ANOVA contains strong assumptions about the covariance structyre,
and hence a model based analysis under the assumed uniform correlation structure achieves
a lot. We may adjust for missing values and also allow a structured linear model for the
mean response profiles. But it is worth noting that although ANOVA methods are useful
in particular circumstances, they do not constitute a general viable approach to longitu-

dinal or repeated measurements analyses.

2.4 MANOVA and GMANOVA Models for Repeated Mea-

sures
2.4.1 MANOVA Models

The multivariate analysis of variance model (MANOVA) consists of p different response
variables which are observed for each of n experimental units or subjects. The responses
can be distinct variables or repeated measurements of one variable, or repeated measure-
ments of a set of variables.

In such situations one may opt for the multiple design multivariate (MDM) liner model
or the Zelner’s seemingly unrelated regressions (SUR) model. The MDM linear model has
applications to the multivariate analysis of repeated measures and crossover experiments.
In many psychometric studies such approach is adopted.

Let v = (i1, Yia - - - Usp)' be p measurements on i** individual (i = 1,2,...,n), which
is treatec; as a single vector multivariate observation. The general model on which the
analysis would be based is ¥ = ¢ + e for individual 7, corresponding to (2.2), where

~e N'
the errors e are independent with mean 0 and covariance matrix V(e ) = £. Thus I is
~y ~g ~i
(p x p) with (7, k)** element Cov(e,j, €ix) = Lix. We note that V(¥ ) = V(e ) = T is same
for all 4.

Tt is convenient to express the MANOVA model in matrix notation as

y=AB+e (2.7)

where y = [, ¥ ... ¥, A=[d,d...a’} and e = [¢/, €’ ... €' are (n x p),(n X q)
~1 o~2 ~n ~1o~2 ~n ~1 ~2 ~n
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and (n x p) matrices respectively. Generally A is assumed to be of full rank ¢ so that the
increase exists. It is generally assumed that e ~ N”(Q’ I l).

Clearly the MANOVA model (2.7) consists of p distinct, but correlated, univariate
linear models each with the same between - subjects design matrix A. The ML estimator

of [ and digpersion matrix T are

f=(A A" Ay and £=Q/n,

where @ = '[I, — A (A’A)"'A’] y is the error SS and cross product matrix (Anderson,
1084).

In multivariate regression study, we have a system of p separate regression models
which are correlated. As is known in MANOVA framework, the same set of regressors is
used for each of the p response variates.

The multivariate analysis of covariance (MANCOVA) is well described in Anderson’s
book (1984). The typical MANCOVA model is mixture of A and the parameter matrix §
is partitioned into groups according to the need of the experiment. In fact, the theory for
the comparison of different group effects are well developed in the literature of multivariate

analysis and ‘Profile Analysis’ is one of the popular techniques in such situations.

2.4.2 Profile Analysis

Profile analysis pertains to situations where a battery of p-treatments are assigned to
two or more groups of subjects. All responses must be expressed in similar units. For
different groups the responses should be independent. The basic question is whether the
mean vectors are same or not. In profile analysis, the question of equality of mean vectors
is divided into specific possibilities.

Suppose él and éz are mean responses of p-treatments for two populations. We can

formulate the question of equality in a stagewise fashion.
(i) Are the profiles parallel 7
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e, Ho: i = phao1 = poi — f2i-1 V1
or equivalently Hj : Cu1 = Cu2 where C is (p — 1) X p contrast matrix.

(i) If the profiles are parallel do they coincide ?

’

ie, Hytpy=pgy Vi
or, Hy: 1's =1u
(iii) I the profiles are coincident, are all the means equal to same constant?

ey My = pug = ... = pigy ... = ligp

or, Hy : Cre=10

Tn all these cases the related T statistics are described by Johnson and Wichern
(1992).
In repeated measurements design, if we are interested in comparing the mean - effects
(for two groups only), then we may represent the cell mean model as
Y =p+e ,j=12 (2.8)
~ij ~y3 Ty
where £ = (i1, 44y2. . . ftjp) is the mean vector response for j** group. Alternatively the
~j

cell mean model may be written in terms of the one-way MANOVA model(2.7), where

4 !
y=|Y ...Y Y ...Y ] = [Y Y] is the (n % p) observation matrix with

~ 11 ~ml ~12 ~ ng2 ~ 1 ~n

n=mn+n;and e = [61 ... € ] is the corresponding random error matrix. The design
~J Nn

matrix A may be presented as

A= jm Onl ,ﬂ — ﬁll v ﬂlp — &1
Oy o B By | |

Here ( represents the cell means. The primary hypotheses of interest may be written as

M :C U, = 0 (equal group effects)
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Hy:Co U, = 0 (equal time effects)

Hy:C36U; = 0 (no groups X time interaction)

where C, = [1 = 1], Uy = j,, C2 = [1 1] = C3, Uz & Us; are contrast matrices. For all
these hypotheses to be tested, the UMP invariant tests are given by T? statistics. The
testing aspect is well described by Vonesh and Chinchilli (1997).

2.4.3 The GMANOA Model

The generalized multivariate analysis of variance (GMANOVA) is another important as-
pect of repeated measurement design. It is a linear regression type approach, and is more
flexible than ANOVA or MANOVA. Pathoff and Roy (1964), Roy (1967) introduced the
GMANOVA model.

A GMAQOVA model for balanced and complete data may be presented as

y=ABX +e¢ (2.9)

where y is (n X p) response matrix, 4 is (g X t) unknown parameter matrix, X is (¢ X p)
within-subject design matrix with full rank ¢(< p), e is (n X p) random error matrix. The
distributional assumption for this model is same as MANOVA model when X is square,
i.e. t = p, because X being invertible leads to E(y X~!) = Ap.

Here the elements of X may be considered as regressors, but not necessarily. X may
be constructed so as to contain binary indicator variable in order to model the within
subjects main effects and interaction (if any). The difference between MANOVA and
GMANOVA models for repeated measures design is that the former requires all within
subject effects to included in the model (¢ = p), whereas the later does not (¢t < p). Thus
GMANOVA model with ¢t < p, may lead to more efficient estimation as to contain fewer

parameters.
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The ML estimator for § and £ under GMANOVA set up is given by

= (AT Ay QXX QT X
L Qewy Ay A W],

M ™
|

where Q =y [I, — A (A'A)~! Ay,

W=L-Q'W(XQ'!'X)!X.

Vonesh and Chinchilli (1997) give the proof of these results. Grizzle and Allen (1969)
developed a goodness of fit test for the within units design matrix X in GMANOVA model.
Khatri (1973) and Lee (1991) described different tests for certain variance structures
within the GMANQOVA model. Khatri developed different LR tests. Lee developed LR

tests when I has autocorrelation structure. Puri and Sen (1985) described the use of rank

statistic for GMANOVA model.

2.5 The General Linear Model for Longitudinal Data

In seventies the analysis of longitudinal data generally used a split-plot type model. These
models required an assumption of equal variance covariance for repeated measurements,
cven though MANOVA approach (Cobe and Grizzle, 1966) and growth curve analysis
methods already existed. In growth curve analysis, the expected response is modeled as
a continuous function of time. Techniques for analyzing incomplete data from general
(nnstruetired dispersion matrix) multivariate normal population were developed (Demp-
sler et al, 1977). However these methods were found not suitable for clinical and some
other biomedical studies, specially when the number of measurements on a subject is large
relative to the number of subjects.

The work having major impact of clinical trials with repeated measures designs come
from Laird and Ware (1982). Based on the work of Harville (1977), they developed ML
and restricted maximum likelihood (REML) procedures for analyzing a general mixed
effect model for repeated measurements.

Let o denote (px 1) vector of population parameters and X; be a known (n; x p) design



matrix linking « to y;. Let b denotes a (k x 1) vector of unkpown individual effects and
~ ~g
Z; a known (n; x k) design matrix linking p {to ¥ . For measured, multivariate normal
~q ~g '

data, Laird and Ware proposed the following rlnodel :
Stage 1: For each individual 4,

Y =Xia+Zib +e (2.10)

where e~ N(0, R;), R; being a positive definite covariance matrix. At this stage, @ and
Q. are assumed fixed, and e, are assumed to be independent.

Stage 2: The Qi ~ N(0, D) independently of each other and of the e D is (k x k)
positive definite covariance matrix. The population parameters « are treated as fixed
effects.

Marginally, Y ~ N(Xi a, R + Z; D Z)). Further simplification of the model is
when R; = o?1. 'I“his allows us to write likelihood as the product of marginal densities of
Y,Y2,...Yn. D and R; are assumed to have same structures so that their elements can
be written as a function of parameters on a lower dimensional space.

When one or more columns of X; are function of time points and X; = Z;, the model
serves as a growth curve model. Other columns present either the overall mean or changing
covariates (regressors).

The model can accommodate any missing date pattern. Jennrich and Schluchter
(1986) illustrated this model with different structures of £, = R; + Z, D Z! and proposed
computing algorithms for ML and REML estimates and the corresponding LR tests under
normality. They considered independence, compound symmetry, random effects, AR(1)
and unstructured models for T;.

We note here that no systematic efforts have been made to suggest a practical structure
for the covariance matrix X, for a repeated measurement design. Test of goodness of fit
of aomadel with particular covariance structure is difﬁc‘ult, but its asymptotic LR test is,
in general, sensitive to the departure from multivariate normality.

The Laird-Ware model has the advantage of combining both one stage and tow-stage

regression models (Crowder and Hand, 1995). That is why, it is a more flexible model

"~
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as compared to the general models proposed by earlier researchers. As the Laird-Ware
model also include two stage regression format, this may easily be reduced to a random
cocllicient growth curve model. Random coefficient regression model include growth curve
models as discussed by C.R. Rao (1965), Swamy (1970), Lindsey and smith (1972), Fearn
(1975) and many others.

Much of the classical work on two stage models concerns the fitting of polynomial

curves to animal growth measurements over time. Here the design matrix X has j** raw

(1,zj,2%,.. .z?"l) or the orthogonal polynomials version of this. Also in the literature (see
Vonesh and Chinchilli, 1997) X; has generally been equal to Z; or Z; A; for some A;. This
arises from Y = Z; a +gi at the first stage, and than a having distribution N(A; e, D)
at the sccond‘stage. Thus E(y,) = X; a, with X; = Z; A; and Var (y;) = Z; D Z! + R;.
Heitjan (1991) has proposed same generalization of growth curves for repeated mea-
sures design basing on the logistic growth curves proposed by Helder (1961). A good

discussion on linear and non linear growth curves is available in Lindsey’s book (1993).

2.5.1 Studies With Non-Normal Distributions

Recently mixed effects models for a distribution from the exponential family have received
considerable a'ttention. Beitler and Landis (1985) considered a mixed effects model with
no covariates, directly for a binary response. They computed the VC from the quadratic
forms from the conventional ANOVA table as one would obtain from normal data. How-
ever, the validity and efficiency of these estimates are questionable.

For analyzing a longitudinal data satisfying a distribution from the exponential family,
several methods have been developed. The empirical generalized least squares (EGLS)
procedure developed by Koch et al. (1977) exploits full multinomial structure in comput-
ing the dispersion matrix for the estimates. Although computationally more complicated,
the generalized estimating equations (GEE) approach for marginal models, proposed by
Liang and Zeger (1986), has certain advantages. The population averaged parameters
arc modelled as functions of covariates in marginal models. The main advantage of GEE

is that it accomodates continuous time dependent or time independent covariates. Also,



the dispersion matrix can be modeled in terms of fewer parameters than the number of
parameters in an unstructured dispersion matrix and thus the consequence of sparse data
can be avioded. The GEE approach does not attempt to model the joint distribution of
the repeated measurements. The marginal distribution at each time point is modeled as a
function of covariates. Allowing a working correlation matrix among the subject responses
the regression parameters and their dispersion matrix are estimated. These estimators
are consistent as long as the population means are correctly specified. Otherwise, there is
gome loss of efficiency. This procedure is a multivariate extension of quasi-likelihood and
is not a likelihood based procedure. Prentice and Zhao (1991) has contributed to extend
this theory.

Anotlier approach for analyzing random effects model is to use the conditional likeli-
hood given sufficient statistics for the subject effects. Diggle et al. (1995) describe this
approach in the context of cross-over designs and point out the disadvantage of loosing

some information as the method relies entirely upon within-subjects comparisons.

2.6 Non-Linear Variance Component Models

Nonlinearity is an important theme underlying many current developments in the field
of biostatistics and clinical studies. In this section we outline few general aspects of non
linearity in connection with components in both regression and no regression situations,
that is, with or without the covariates.

Dolby and Freeman (1975) discussed the ML estimation of non linear functional re-
lationships with repeated observations. The analysis for bivariate data was extended to
multivariate situations and the error variance was considered to be knows. Previous ar-
ticles dealing with repeated observations are Villages (1961), Dolby (1972), etc. Dolby
(1976) later worked on structural relations of this type. Chan and Mak (1979) assumed



a linear structural relation of the type

i = a+pX; |
i1=12,...,n

Yii = Yi+tey , (2.11)
j=12,...r

Xi; = X,-+e,-j )

with usual assumptions. He found the ML solution to be a root of a fourth degree
polynomial. However, it is consistent as the number of replication increases.

We now consider the linear set-up

Yij = p+o;+e; i=12,...,n

(2.12)
y = X0+ Zu i=12...r
The non-linearity may arise from the above formulation in the following ways :

(i) The systematic part X( is replayed by non-linear form, as considered by Rudemo

el al. (1989) in application to bioassay data.

(i1) The random component ¢; and ¢;, combine non-linearity. For example, the non-

linearity may be approximately modeled as

Yij = b+ oy -+ €5 + ag o? +an o €ij + o2 e?j (2.13)

(iii) The random and systematic parts, in general model, combine non-linearity. One

may consider a exponential growth model
Yij = €Ip [/l + ([j + a,-) X,’j] + €. (2.14)
Racine and Poon (1985) adopted such type of approach.

(iv) The essential normal theory based structure may be replaced by an analogous form

of the exponential family.

Solomon et at. (1992) discussed in detail the model formulation is a balanced set up.

They also proposed the transformation model of the type

vl = p+al+ €ij» (2.15)
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the right hand side being a normal theory representation. The transformaltion models
are widely used in practice and often provide a simple basis for structural analysis and
interpretation. Choice between the models would naturally depend on the context, as
well as on practical considerations.

Soloman also proposed few generalizations of the model and explained the estimates
obtained for a medical treatment data. The approximate likelihood function is developed
and its accurate performance is examined is examined numerically using examples of

exponential regression.

2.7 A Discussion on the ML Method of Estimating Variance

Components

The beginning in search for an alternative to ANOVA procedure of estimating VCs appears
to lie with Crumpt (1947, 1951). He dealt with the one-way classification for both balanced
and unbalanced data and derived equations that have to be solved iteratively. Herbach
(1959) derived explicit ML equation for certain balanced models and felt the necessity that
such cstimators must be non negative. Carbeil and Searle (1976 b) studied a number of
these balanced models and obtained the biases and sampling variances of the estimators.

In contrast to the ANOVA approach, the basis requirements of ML estimation is that
of assuming an lxnderlying probability distribution for the data. The ML approach to
the estimation of VCs has some attractive features. The ML estimators are functions of
every sulficient statistics and are consistent. These are also asymptotically normal and
efficient. The ML approach is always well defined even for many generalizations of the
ANOVA models. Also with ML approach, the non negativity constraints on the VCs or
other constraints on the parameter space cause no conceptual difficulties. Moreover, the
ML estimates and the information matrix (IM) for a given parameterization of the model
can be obtained readily from those for any other parameterization (Harville, 1977).

In late seventies and eighties, many researchers have studies different aspects of ML

method of estimating VCs. To name a few : Olsen et al.(1976), Hocking and Kutrer

~
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(1975), Harville (1977).
For the model (2.4), we assume ¥ ~ N (u 1w, V), where V = Var(y) = L, ® (02 Ju, +
ol I,,,) is defined earlier with exception that n; stands for unbalanced data and n; = n

for balanced data. The log likelihood may be defined as

| = —% N In(27) — %(N ~a)lnol- % E In(o? + n; 02)

(yi — ma )’ (2.16)

1
=557 2 (v~ #) %72
e i

For balanced data, this log likelihood may be written as

02 + n; o2

1= —% N In(27) —~ %(n -1alno? - %a [in(o? + n 62)]

1 n? o2 9
3032 205 ~ 1"+ oy 2 s )

— 2
= —% Nln(27r) - %a(n__ 1) In 0.3 _ l aln \— SSE _ SSA _an (yOO u)

2 202 2A o @)

for A = 02 +n o2 (Searle et al. (1995). Then for balanced data, the ML estimators ray

be obtained as

it =1y, MSE =02 A= SiA and,
o A—0? (1-1/a) MSA— MSE
o5 = - = - .

Similarly, for unbalanced data, the loglikelihood may be defined as

1 SSE

l=- Nlin(27) - —(N —a)lno? -~ E In X — 257 21)‘. Z ni(yio — 1), (2.18)

e

[ V]

where \; = 02+-n; 02, and the ML estimates may be obtained from the following relations

- ZytO/Var yzO)
=% P | Ty A=
=35, ol X > 1/Varto

Var(y,) = 6%+ 62/n;;
SSE N-a ni(yio — f1)? 1 _



and Zn (yio — )2/ N2 = Z i
A detailed discussions on the non-negativity conditions of VCs, the bias and sampling

variances are available in Searle et at. (1992).

ML Estimates of Some Linear Models

The ML estimates of four VC models discussed in Section (2.5) are presented in Searle’s
book (1992).
For general linear model proposed by Laird and Ware, we have,

Var(y)) =L =2; D Z;+ R; and for W; = 331, we have

QCXIWi X)) Y X Wiwi
: :

and by = DZ! Wi(y: — X; &)

(2.19)

QD>
1

The estimate of & maximizes the likelihood based on the marginal distribution of the
data and it is also the MVUE. The expression for J; is of course not ML but can be derived
by an extensive of Gauss-Markov theorem to cover random effects (Harvill, 1976). The
estimate for b; is also empirical Bayes.

Since & and 5,- linear functions of y, the expression for their S.E. can be easily derived

Var (&) = (Q_ X] W; X;)™!
. i (2.20)
and Var(b) = DZ{{W; - W; X;(d_ X! W; X;)' X! W,) Z;D
i

Laird and Ware has also discussed in detail the estimation procedure for unknown
variance and the estimation of covariance matrix. They have discussed the use of EM
(Expectation Maximization) algorithm for ML estimation of variance components.

The MLE of the implicit parameters in the general linear model can be obtained by
maximizing the joint likelihood function

n

l=——Nln (2m) —% ) [ 5 (g — Xi ) +In | 5, |] (2.21)
=1



where N is the total number of observation. The value of & which maximizes the above
likelihood for fixed elements of T is the GLS estimator & defined above. Using the estimate

in the of a, the problem reduces to maximize the profile likelihood

[= %[N In(2m)+ > (& 7 é+1In | 5, | (2.22)
=1

where é, = (y, — X; &).
We note hare that MLE of VCs are biased in small samples. That in why many

authors has advocated the use of REML method of estimation.

2.8 REML Method of Estimation VC

A property of ML estimation is that in estimating VCs it does not take into account the
degree of freedom that are involved in estimating fixed effects. Although under normality
ANOVA estimators are MVUE, ML estimators not do.

The feature of ML not taking account of the degrees of freedom when estimating VCs
is overcome by what is known as REML method of estimation. First developed for certain
balanced data by Anderson et al. (1952) and Russel el al. (1958), it was extended by
Patterson and Thompson (1971, 1974) to mixed model generally.

The basic idea of REML estimation is that of estimating VCs based on residuals
calculated after fitting by OLS just the fixed part of the model. REML estimation can
also be viewed as maximizing a marginal likelihood.

Let us start with the REML estimation of VC for one-way random model for balanced
data. For the one-way ANOVA model under balanced data set up, the likelihood function
can be written as

210 = (o))~ dan, ~2ka (DT~ 4 1({SSE  SSA o — p)?
L(p,02,05/y) = (2m)) 3% 0c " *" W™ AT Exp 2 o? + A + Alan

-

Since ygp i independent of bath SSE and SSA, the above likelihood can be factored as



L{p, 02,02 /y) = L(u/yeo L(0?,0%/SSE,SSA), where

L(p/yoo = (2m)7% (\an)—} exp[-yoo — 1)?/(2X/an)] and
I(0?,02/SSE,SSA) = (2r)~1(an=1) 52 [% a(n — 1)] A=3(e=D) (gn)-3

1 ([SSE SSA
exrp [5 ( p +—/\——)] (2.24)

The last likelihood may be expressed as

L(c%,02/SSE,SSA) = /L(u, ok, 0%/y) du,

showing the marginal likelihood relationship. For 1-way balanced model, this is known as

restricted likelihood. The REML equations may be obtained as

] _ —a(n-1)  SSE
Rl = 202 20
—(a—1) SSA
and lR‘,\ = o3 + N2 . 3

The estimates may be obtained as

Ar = SSA/(a-1)=MSA, 6= S8SE/a(n—1)= MSE, and thus
62p = ;lz- [MSA — MSE].

Let us now outline he methodology for the general model. Actually are maximize a
reduced log likelihood function obtained by transforming y; to v where the distribution
of Z" is independent of a*. One such transformation is obtainéd by taking X‘ =(I-
X(X"X)‘1 X")Y, where 2,;‘1 =Y*!...Y"!]. The transformation is obviously X: =Y -
Xi & where & = (X'X)"! XIIY is slimply t';xe OLS estimator of c. It follows that l‘?(g‘ -‘—z 0
for any o and in fact distribution of Y* is independent of & . Under this transform;ti‘on,

~' ~n

the reached profile log likelihood can be shown to be
N 1 -1 -1
ln=~3 |(N = 5) In(2n) +3@ Y a+in | D+in| Y XY X)) (2:25)
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In both ML and REML, a is obtained by (2.19). The REML estimates of VC are obtained
by maximizing the above log-likelihood. Details on REML estimating equations for mixed
models is given in the book of Searle et al. (1992). We note hare that sections of
REML equations, for all cases of balanced data from mixed model, are same as ANOVA
estimators. This result is true whether normality is assumed or not.

For unbalanced data each of ML and REML are to be preferred over any ANOVA
method (Searle et al., 1992). This is because the ML and REML estimates are consistent,
asymptotically normal, and the sampling dispersion matrix is also known. This provides
opportunity to develop confidence interval and testing hypotheses about parameters. If
is true that ML and REML estimators are based on normality assumption, but in many
situations this assumption is unlikely to be seriously wrong. Of course, the asymptotic
variance-covariance property are valid only is large sample sense, and for small samples
this may nullify their usefulness. Nevertheless, these properties seem to be sufficiently
reliable to have more faith in ML and REML than in the ANOVA method.

Now, to chose between ML or REML — then is no hard and fast answe}. Both have the
same merits of being based on maximum likelihood principle — and they have the same
demerit of computational complexity. ML provides estimators of fixed effects, whereas
REML, on its own, does not. But for balanced set up REML solutions are identical to
ANOVA estimators which have optimal minimum variance p party. For many researchers

this is a strong ground for REML that they prefer it over ML.

2.8.1 The Use of Different Algorithms for Likelihood Estimation

We know that both ML, and REML method contain considerable amount of computational
complexities. without the aid of high speed computers, obtaining ML and REML esti-
mates of VCs along with the estimates of fixed effects seems to be an impossible task. In
this section we review considerations in computing ML and REML estimates and outline
algorithms used to the estimates.

In all but the simplest cases, iterative methods must be used to find estimates for the

parameters in mixed effects repeated measurements models. The basic iterative methods
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Now, to chose between ML or REML — there is no hard and fast answer. Both
have the same merits of being based on maximum likelihood principle — and they have
the same demerit of computational complexity. ML provides estimators of fixed effects,
whereas REML, on its own, does not. But for balanced set up REML solutions are
identical to ANOVA estimators which have optimal minimum variance property. For

many rescarchers this is a strong ground for REML that they prefer it over ML.

2.8.1 The Use of Different Algorithms for Likelihood Estimation

We know that both ML and REML method contain considerable amount of computa-
tional complexities. without the aid of high speed computers. obtaining ML and REML
estimates of VCs along with the estimates of fixed effects seems to be an impossible task.
In this section we briefly review considerations in computing ML and REML estimates
and outline algorithms used to obtain the estimates.

In all but the simplest cases, iterative methods must be used to find estimates for
the parameters in mixed effects repeated measurements models. The basic iterative
methods are explicitly based on th derivatives of the log likelihood. These are called
gradient methods in the numerical analysis literature. The commonly used method is
the Newton-Raphson (NR) method.

Suppose the function is f that we are trying to maximize in the parameter space 6.

The iterative formulation would be

9(m~ 1) — O(m) — (H(m))_l A f(m) (226)

where H™ and A f) are Hession and gradient vector respectively. This is NR method.

In variance component cstimation, the parameter space is ' = [n‘. 0'3'] for ML and

-~

H= (ZT for REML. The NR interaction would be (2.26) with ) replaced by 1.

glm=1 — glm) _ (H("'))_] 'g—é oo




With the entries in Hessian H given by

L, = X'Wly—X'V-'Xa
lew = —-X'V71X. and for ML
L = —XVIZZV-1y-Xa)

and (—,”2’43;7 =1t [PZj Z, Pz, Z,’] - y'PZ, Z) PZ,Z Py. for REML with V as the
dispersion matrix of X and P = K(I{'VK) ' K' under the assumption X'X = 0.

Apart from NR same other methods like method of scoring (Jennrich and Sampson,
1986) and Quasi-Newton method (Kennedy and Gentle, 1983) are also available.

There are many techniques that can be applied to reduce computational burden for
ML and REML methods. Harville (1977), Jennrich and Sampson (1986) give matrix
identities that greatly reduce the size of matrices to be manipulated. Lindstrom and
Bates (1988) give a number of details on matrix decomposition that can be exploited
to speed up iterations.

An alternative algorithm for calcularing ML and REML estimates that differ from
NR or scoring method is the Expectation Maximization (EM) algorithm. This method
alternates between calculating conditional expected values and maximizing specified
likelihoods.  This algorithm is due to Dempster. Lair and Rubin (1977). The EM
algorithm only generates estimates and does not give variance of the estimates as by
product, as do NR and scoring method. To obtain variance estimates extra computation

must be performed.

2.9 Some Discussions on the Testing Aspects in Linear Models

There is a long history in the development of F - tests for ANOVA estimators in variance
components models, The history of developments is well discussed by Searle (1971).

Consider the model

Yy = p+a,+e,. i=1.2....ua
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In the fixed effects model (3, a, =0). F = U—ﬁ; tests the hypothesis H : a,’s are all
equal. Under this Hypothesis F ~ Fia_1).a(u-1y- In the random effects model, provided

the data are balanced, we have

SSA/(no] +07) ~ Xfu-ry: SSE/0} ~ Xi_1y- and thus

MSA/(na? + a?) 7
]\’ISE/(T(?; (a—1) a(n-1)-

which leads o

O':F/(n(f:: + 0;)) ~ F(a—l)a(u—l) (227)

Similarly, the tests can be formulated for unbalanced data and the corresponding con-
fidence intervals can be developed.

We note that if the interest is to test the hypothesis Hy : 02 < X against Hy : 02 > A,
then the F-test can be formulated on the basis of SSA and SSE. These tests are due to
Scheffe (1959).

Weerahandi (1991) developed an alternative testing procedure for VCs in mixed
models with generalized p-values. His test was based on minimal sufficient statistics.

The p-value for testing Hy " 02 < X is

SSA
p=1-E [G <77/\+ SSE/C')}

where G is the cumulative density function of X(zﬂ_l). and the expectation is taken with
respect to U~ x7,_) - Here U = SSE/a?. Hy can be rejected if the observed value
of p is too small, say if p < 0.05. Weerahandi also extended the test for 2-way crossed

classification models.

2.9.1 Tests Under Unequal Error Variances

It is well known that F-test for 1-way ANOVA is sensitive to the homogeneity of error
variances (for example. Brown and Forsythe. 1974. Bishop and Dudewiez. 1978; Tan and

Tabatabai, 1986). Many researchers discussed the effect on type 1 error and conclude
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that the effect is not serious when the group sizes are equal. The effect of heterogeneity
on the F - test with respect to both size and power 1s described by Krutchkaff (1988). He
discussed the drawbacks of well-known Kruskal-Wallis Test which is often recommended
in situation where the errors are heterogeneous. Krutchkaff proposed an alternative,
called K-Statistic which is developed on the principle of weighting each component with

its information (one over its estimated variance). His average for each group is

ZUIJ/(}:Z
— 1
T

’

Y
where y,, represents the j™ observation on i " aroup. and &7 is an estimate of the variance
of y,,. Usiug these the overall average beconies

j= (z g,n,/a,-') /S ng o

t

The test statistic that can be used to test the equality of group means is given by

K=Y [ -5 n/a)/(k-1).

]

If pooled estimate of variance is used for cach &7 then this K-statistic is identical to
the F-statistic. The distribution of K and its relation to likelihood ratio (LR) statistic
under heterogeneity is studied by Good (1986). Krutchkoff (1985) obtained the critical
values for K -statistic.

Weerahandi (1991), Zhou and Mathew (1994) used p-values to construct exact pro-
cedwres for comparing VCs in the mixed models. By taking a generalized approach to
finding p-values, the classical F-test of the 1-way ANOVA is extended to the case of un-
equal error variances by Weerahandi (1995). In the context of regression, Koschat and
Weerahandi (1992) provided a class of tests based on p-values to compare parameters

of regression models in the presence and absence of common parameter.
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2.9.2 Testing For General Linear Model

We now discuss the inference problem in general linear mixed effects model. The large

sample tests of hypotheses can be carried out using the Wald Chi-square test defined as

T (6) =6 C' [CAC ] CO~ Xaney
The alternative tests include the LR test
2L (afll”' éfl,,]) — 2L (a,educe‘d- prﬂlllcfd) ~ X-)dj(jull)—df(r(dm‘ui)

As an improvement on the Wald test in small samples. one may also use the MANOVA

like F-test
F(a) = (2 8,0, — 8o+ 2)(5,Cu) ' (n = ¢)"'(n — ¢)) T*(A)

for testing the hypothesis Hy : ({72 C) o = 0. Here C is a (¢ x ¢) contrast matrix of
within-subject comparison. The critical values for this approximate test are obtained
from tabled values of F-distribution : Fi, 1, .,-s,-2). Here. ¢ = rank(C). u = rank(U).
So = min(c.u). n, = [(n = ¢) = v}/2. This small sample test is asymptotically valid as
discussed by Vonesh and Chinchilli (1997).

Under normality assumptions, the goodness of fit and model selection for repeated
measures models can be carried out using LR test for nested models and Akaike’s Infor-
mation Criteria (AIC) or Schwarez's Bayesion Criteria (SIZE) for non-nested models.

Let us consider the following two linear models (nested).

n
ModelI:y = [Xa X | ' | +Z, b, +e¢
a

ModelIl: y, = X,y o0+ Z.b, + e,



To test Hp : a = 0 where a has dimension (s; x 1) and o i has dimension (s3 x 1), the
\«2 'v] ~
LR test is

2(4 .4,.0) - 21(4 .6) ~ X

where I} & 1, are log-likelihoods for full and reduced models.

The LR test for nested model is some what cumbersome particularly if one wishes
to examine the robustness of models to changes i mean and variance-covariance. An
alternative approach is due to Akaike (1974) which uses likelihood based measure with

adjustment of parameters in the model. The AIC is defined by

-~

AIC = 1(8) -5

-~ -~

= l]?(g) - s

~

where [ and I are profile and restricted profile log-likelihoods evaluated at a(6) and

6. s* = dim(a) + dim(f). The alternative approach SBC is defined as

SBC = 1(8) - s' In(N)/2

= () — s In(N — s)/2

where N is the total number of observation. While comparing models. larger the values
of AIC or SBC, the better the fit.

Alternative criteria sinnlar to R2-type measure may also be used to assess the fit, as
proposed by Kralseth (1985). Suppose our model is the hypothetical model and Model
IT be the null model. Also suppose for Model L. var (e,) = ¥,;. and var (e,) = ¥,; for
Model II. Let j,; be the fitted value for Model T and j,» be that for 2ud one. Then R?

measure is
R=1- (.’/: - .‘7:1)’ V;] (.’/: - !7;1)
' (.’/' - .’713)l V: ! (.I/r - .’7:2)

where V, is any postive - definite matrix  Either £, or £,; may be chosen for V.. Since

null model and X,, remain fixed, choosing V, = %,, would be consistent with desire of
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having a goodness-of-fit measure that can be compared across different hypothesized
model.

Using the criteria established by Kralseth. Vonesh et. al. (1996) define a model
concordance correlation coefficient that can be used as an alternative to R* defined

above. It is defined as

Zl(yl - g:l)l (y: - .’711)

Z:(.’/l - .’7 jp.)l (Uw - !7,7}1,) + Zr(!]t - 37 jp,)’ (.lr - .ij.) + N(g - .‘7)2

Il'e =

where j, is (p, x 1) unit vector, § = > y,,/N. § =2 §),/N are grand means y,, and §,,
respectively.

Both I? and r, provide measure of goodness-of-fit. However, r. may be better in that
it is directly interpretable as a concordance correlation between observed and predicted
values. As a measure of agreement, its value reflects how well a scatter plot of y,, versus
., falls about the line of identity. Thus r. does not require specification of a null model
since the line of identity serves as a point of reference. The range of r. is [-1. 1]. We

note here that r. can easily be modified to allow for heterogeneity in ¥ by basing on
~i

certain transformation for ¥ .

~1
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CHAPTER - 3

ASSOCIATION OF BIOCHEMICAL

PARAMETERS IN CTC TEAS
WITH TASTER’S CHOICE

3.1 Introduction

In the chapter we try to associate the chemical parameters in tea with the Tea Taster’s
choice, so that the significance of different biochemical quality parameters in explaining
different quality attributes can be statistically assessed. We note here that the tea quality
attributes are not directly measurable and are evaluated by the Tea Tasters using their
sensory methods. In regression setup, the ordinal scores given by a Taster, on a particylar
attribute, represent the response (dependent) variable. We restrict our study to those data
sets, where only a single Taster evaluates the tea samples in terms quality attribute(s).
We note here that the general practice in Tocklai Experimental Station, India, is to get
the sensory analysis done by a single Taster only, possibly due to cost consideration.

Only a few statistical studies have been made so far in these lines (McDwell et al.,
1991). Most of the studies are based on only total correlation between biochemical infor-
mation and Taster’s scores on individual liquor characteristic. Linear equations were set
up without proper data diagnostics. -

The series of papers by Biswas et al. (1971) attempt to associate Taster’s scores
on attrib‘ute like strength, briskness, brightness etc. with the overall quality scores.
Associations have also been investigated between biochemical quality parameters and
Taster's choices on various liquor characteristics and on cash valuations; and thereafter

thie biochemical and botanical implications of the results have been studied. Their study
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was based on the North-East Indian plain black CTC and Orthodox teas. According
to their findings, regardless of Tasters and method of manufacturing, four biochemical

constituents : total oxygen uptake of unprocessed tea shoots, TF, theogallin (TG) and

epicatechin gallate (ECG) of black tea, are the main guiding constituents of N-E Indian

plains tea. For the orthodox tea samples, the enzyme activity and ECG of unprocessed
tea shoots along with water soluble solids (WSS) are of utmost importance.

Although Biswas et al. (1971) contributed to a great extent in understanding the
associalion of different chemical quality parameters with the Taster's choices, they could
not provide sufficient information on the behaviour of different biochemical quality pa-
rameters towards indi/vidual quality attributes, though they had a strong data base for
these studies. Another important aspect left untouched is the subjectivity of Taster’s
choice while formulating the association. However, their stddy helped the biochemists
and agronomists associated with the tea research to a great extent.

Some progress have been made in relating certain groups of tea constituents to quality.
Successful relationships have been demonstrated between the total theaflavins levels of
Central African black teas and sensory evaluations or prices (Cloughley, 1981 and Ellis
and Cloughley, 1981). Such relationships were positive but less successful for Kenya black
teas (Owuor et al., 1986). The success obtained in the regression between prices and
total (Flavognost) theaflavins for Central African black teas led to the suggestion that
total TF level is the objective quality parameter (Davis, 1983) which may be used as
standard in black teas. But this suggestion was opposed by producers whose total TF
levels show little relation with sensory evaluations (Othieno and Owuor, 1984) and it was
argued that there may be other more important black tea quality parameters. Indeed,
some -Kenyan black teas subsequently showed better relationship between the aroma and
sensory evaluation (Owuor, 1992). Unfortunately, we can not site a single study in this
line specific to Indian black teas (except those of Biswas et al., 1971).

McDwell et al. (1991) studied the black tea sample using HPLC, collected from seven
countries. Principal Component method was used to highlight the characteristic differ-

ences in phenolic constituent levels for different countries. Linear regression technique was
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used to investigate the relationships between price (score) and phenolic constituent levels.
They supported the great importance of phenolic chemistry in the determination of tea
quality. The similar phenolics (TFs) appeared to be capable of explain’ing intra-regional
as well as inter-regional variation in quality or value. They took the Tasters’ scores on
structured scale but did not address the problem of subjectivity in Taster’s choices.
Fromn the studies made so far, it is clear that the quality/value depend on a complex of
biochemical constituents and are region dependent. That is why it is more important to
study a wider range of biochemical quality parameters and their influence on the overall
quality or value. We (ry to study this aspect on the basis of the data provided by the
tea industry. The insufficiency in data base limits our study, as information only on
a few chemical parameters (that too for CTC teas only) have been provided to us. We
cannot claim completeness of our statistical analysis which could otherwise provide a great
statistical support service to the tea industry so far the aspects of tea quality assessment

is concerned.

3.2 Multiple Regression Analysis With Measurement Error in

Response : A Discussion

When a single Taster's score corresponding to a set of chemical information (explanatory
variables) is available for a particular tea sample, we may formulate the linear regression

model as

Yty =zf+e

where u; represents the error due to Taster (i.e., corresponding to the observed value of the
response) and ¢; is the random error component which includes the effect of unobserved
or unobservable chemical components in explaining the quality. The above formulation
typically represents a regression model with error-in-variable (EIV) in the regrassand.
The effects of measurement error in the explanatory variables have long been recog-
nized (Fuller, 1987; Pal, 1981). But error in the response variable is often ignored. A

reason is that errors in the response in standard linear model are inconsequential so long
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as the asymptotic properties of the conventional least square (LS) estimators are con-
cerned. The usual LS method gi;res unbiased and consistent estimates of § coefficients.
With response measurement errors, the response errors get confounded with the equation
error, and the effect is to increase the standard errors of the f estimates. Thus, response
errors can be ignored if we ate only interested in the estimates of regression coefficierjts,
especially in the simple situations. However, in more complicated regression models, cer-
tain types of response errors can not be ignored and it is important to explicitly account
for the response error in regression analysis. A good text in this line is due to Carrol et
al. (1995).

Consider our situation where the measurement error u; is additive and is independent
of e, (assumption). In this case the response measurement error can be ignored if the
regression variance is homoscedastic. Here the only effect of measurement error is that
the MSE is 02 = 02 + 02 and not 2. Thus, if we are not interested in estimating separate
VCs (02 and 62), then the response error can be ignored. Even in case of heteroscedastic
situation, the response error can be ignored under certain conditions. We note here that
the variance components of the model are not identifiable without repeated observations

on the response variable.

3.3 Analysis of 4 Sets of Autumn Flush Data

The four sets of CTC tea data (Datd Set 1) have been introduced in the introductory
chapter. The biochemical parameters measured are TF, TR, B, TLC and total solvable
solids (TSS). We note here that the information on Caffeine is not available which is
otherwise known to be a very important biochemical parameter so far the CTC black tea
is concerned. The same Taster evaluated the CTC tea samples in terms ‘quality’ and
‘value’ on a structured scale of 0-10 points. The four sets of CTC samples were collected
from the Tocklai experimental garden over four years in the autumn flush period only.
The manufacturing/drying process is the same for all the samples.

The basic statistics for the four sets of samples are presented in Chapter 1. The range
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of correlation coefficients for all the variables under study are presented in Table 3.1. The
mean profiles for all the variables may be studied. We may test if the profiles for means
of the variables for the four data sets under study are parallel and coincide. Here we are
interested to test whether the means of variables under study differ significantly for all
sets of samples or not. Similar test may be performed for the standard deviations as well.
If boﬁh means and standard deviations do not differ significantly, we may pool the four
data sets together and study the association. As discussed in the second chapter, the
tests for parallel and coincident profiles are the F tests based on T? statistics. The profile
analysis may be performed using the SAS or STATISTICA computational packages.

For the four sets of data we have n; = 25, ny = 23, n3 = 25 and ny = 21. For the mean
profiles the estimated value of T2 is 3.67 and the 5% critical value of F with 1 and 90
degrees of freedom is 3.92. Thus we may accept the hypothesis of parallel and coincident
mean profiles at 5% level of significance. But the same hypothesis does not hold for the
profiles of standard deviations, as the calculated value of T? is 12.89. It is clear from the
Table 1.1 of Chapter 1 that the values of SD differ widely for most of the variables under
study.
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The most surprising aspect in the data is the variation in the correlation coefficients
between different chemical parameters. As the four sets of CTC samples have the same
origin and received the same manufacturing process, it is expected that the correlation
pattern between the biochemical quality parameters would be similar. But as may be
obscrved from Table 3.1, the ranges of correlation coefficients are wide enough. The
widest among them is the correlation coefficients between B and TR (-0.44, 0.60). This
is really surprising. Also, the correlation between chemical parameters (TLC and TSS)
and Taster's scores on Q and V are not significantly high. Though the sensory scores are
given by the same Taster and the average levels of TF and TR do not differ significantly
for all sets of samples, even than the correlation coefficients between quality attributes
and TF and TR vary widely. This is partially due to the fact that the Taster's choice is
subjective.

For all four sets of samples the ‘heteroscedasticity’ problem has been the common
feature. We have used the x? test for 2 and § and the é% on X (Brusch-Pagan test,
1980). To check for the ‘multicollinearity’ we have used the conditional index (CI) test,
which is defined as the square root of the ratio of maximum and minimum eigen values
(Judge et al., 1985). If this ratio lies between 10 and 30, there is evidence of moderate
to severe multicollinearity. For all the four sets of samples under study, these ratios have
been found to be much below 10. In the presence of multicollinearity, we could opt for
the Principal Component (PC) regression or the Ridge Regression technique (Judge et
al., 1985).

We have associated all the five chemical parameters with Q and V respectively. Owing
to the problem of heteroscedasticity, we fit the linear regression model with dependent
variable heteroscedasticity. For the model y; = z}0 + e;, we assume that e; is a zero
mean, serially uncorrelated process with variance function h;. A survey of approaches
to the specification of h; is available in Judge et al. (1985). The dependent variable
heteroscedasticity form applied in our study is h; = (z}0)2a?, where « is a scalar param-
eter. This may be easily applied in SHAZAM econometric package which calculates the

parameters using Quasi-Newton method. The regression results for all sets of CTC data
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are presented in Table 3.2 to Table 3.5. In the association of chemical parameters with
Q, the estimated regression coefficients of TF are positive and statistically significant at
5% level only in two cases. The slope coefficients associated with TR are all significant
except for the fourth set of samples. The estimated coefficients for B are negative for
three sets of samples and are significant only in two cases. The significant influence of
TLC on Q is observed only for the second data set. TSS is significant only for the fourth
data. The sum of squares of errors (SSE) values are fairly small in all the cases. The
values of adjusted R? ranges from 0.36 to 0.54.

The association of chemical parameters with V reveals the significant influence of
overall TF level for the first three sets of samples. TR is significant only for the first set.
B is significant only in two cases. TL.C and TSS are insignificant in all cases. Comparing
the values of R?, SSE and loglikelihood (In L), we may say that the fit is better with V
than that with Q for all the four samples.

The TF - TR interaction

We tried the regression with TF and TR only. On the suggestion of the biochemists,
we incorporate the TF x TR interaction effect in the model. Here the interaction variable
tend to be correlated rather strongly with the individual TF and TR. However, in case
of only two variables the problem would not be that serious as it is likely to be with
large number of interaction and higher order components. In simple cases the difficulties
can be avoided by orthogonalizing the product and power terms with respect to the
predictors from which they are constructed (Aiken and West, 1991). A simple procedure
of orthogonalization may be to represent the interaction variable by the residual part.
The procedure may be described as follows:

We may regress TF x TR on TF and TR (fit the model TF x TR = a+ b, TF +
by TR+ residual), and save the residual as new variable TF*TR. Note that TF*TR has
zero mean and correlates zero with both TF and TR, because it is a residual. With this
ncw variable (TF*TR), the regression model would be

Quality attribute = a + b;TF + b, TR + byTF « TR + error.
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Here we may use the standard t-tests for the significance of regression coefficients.

For all the four data sets, the TF*TR interaction compohent has been insignificant.
This is certainly not supporting the general perception among the chemists about the
importance of studying the interaction effects of these compounds. We note here that
we have studied only the total TF and TR levels. May be, different TFs and TRs would
guide the interaction effects and their consequences towards other volatile compounds like
calfeine. That is why it is necessary to study the HPLC data on different TF and TR
levels.

From the regression analysis on available data, we may say that TF is the most
important chemical parameter in explaining the valuation of CTC tea. We may observe
the variability in the partial correlations presented for all the chemical parameters. Similar
are the findings of Biswas et al. (1971) for the N-E Indian plain black teas and Ellis and
Cloughley (1981) for Central African Black teas. However, detailed study is necessary with
several other important chemical parameters. Different TFs and TRs need to be studied
separately, specific to the flush periods and on a continuous basis. The relationship
between different chemical parameters and the pattern of their variation over samples
and also over the flush periods are some important technical aspects which needs to be

addressed in detail while associating the biochemical parameters with sensory analysis.

3.3.1 Analysis of Data of Set 3

As mentioned in the first chapter, this set of data was provided by the Tata Tea Ltd.
(India). For a set of 50 CTC tea samples, the biochemical parameters measured are TF,
TR, TLC and B. Analysis of TF is done by the method of Ullah (1984), based on the
liquid-liquid extraction in presence of Na, HPQO,. TLC is measured from the whole
aqueous extract being diluted with methanol. Duplicate analysis of each were done and
the brightness is calculated from the measured biochemical parameters. The Taster’s
score is given on a 0-5 point scale. There are only three distinct values in the scores, viz.,
2.6, 3.0 and 3.4.

The correlation matrix and other basic statistics for this set of samples has already
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been presented in the introductory. chapter.

Due to the multicollinearity problem (on the basis of CI test) we opt for the Ridge
Regression technique here. We have also tested for the heteroscedasticity, and no evidence
is found against the hypothesis of homoscedasticity. The estimates obtained using Ridge
Regression is compared with those obtained using the Ordinary Least Square (OLS)
method. ‘

The OLS fit in this data is very poor and all the coefficient estimates came out in-
significant with relatively higher value of R%. This actually indicates the presence of
possible multicollinearity. The OLS assumes normality of residuals. But OLS residuals
for this data do not support the assumption of approximate normality. But the residuals
obtained using Ridge Regression technique follow approximate normality with a slightly
flat right-hand tail. As an alternative, we may also think of a robust estimation proce-
dure, like the Least Absolute Deviation (LAD) technique. This technique is reasonably
efficient irrespective of the form of the error distribution and is elaborately discussed by
Judge et al. (1985). But for the given samples, the LAD technique do not give a better fit
in comparison to the Ridge Regression. We do not present the estimates obtained using
LAD technigue here. The OLS and Ridge Regression results are presented in Table 3.6.

We note here that of the 50 samples, only of 4 received the highest score (3.4). The
medium category quality rating (3) is received by 30 samples and the remaining 16 samples
are evaluated as poor or inferior score (2.6). We may divide the data into two categories
on the basis of Taster’s choice: The first group contains all those samples which received
the scores 3.4 and 3. The second group includes 16 samples that received the poor score.
We may test if the chemical parameters differ in their average level over these two groups.
Tests reveal that only the average level of TR differ significantly at 5% level (t- test).
We may also introduce dummy variables to test the significance of difference between
estimated regression coefficients for the chemical parameters. However, for the given
set of data only the intercept varies significantly as evident from the estimated value of
dummy coefficient ([idummy), which is positive for both OLS and ridge regression. In the

linear regression model, the dummy variable is of the form: d; = 0 if i** sample receives
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lower rating and d, = 1 otherwise.

We note here that reglression estimates are obtained for all samples and separately
for first 40 and last 40 samples. This is done to predict the first and last 10 samples of
the data set (Paul, 1999). Prediction performances using both Ridge regression and LAD
method are presented in Table 3.7. As may be observed from the Table, the predictjon
performance is better using the Ridge Regression method.

As may be observed from Table 3.6, all the biochemical parameters have came out to
be significant at 5% level along with the intercept. The coefficient estimate for B is neg-
ative. For the comparison of fit, the values of R?, SSE, loglikelihood, Akaike Information
Criteria (AIC, 1973) and Final Prediction Error (FPE) are considered. Lower the valpes
of AIC and FPE, better is the fit when we compare different nested or non-nested models.
These are likelihood based criteria and remain same (theoretically) when we compare the

estimates using OLS and Ridge techniques.

3.4 Multiple Response Regression Model

The Tasters may evaluate the tea samples in terms of different quality attributes (e.g.,
strength, quality, etc.) on a structured scale. The scales may differ among the attributes
as well as among the assessors. Dealing with scores on different scales would be more
complicated. We consider the situation where a single Taster evaluate the tea samples in
terms of different quality attributes using the same structured scale, as is the situation
in Data Set 2. This is a multiple response situation where for a given set of regressors

(biochemical measurements), there are more than one response variables.
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In regression set up, the approach of simultaneous equations systems for multiple re-
spouse data is appropriate and standard techniques are well developed in the literature. As
a specinl case, when the reduced form equations are same as the structural form equations
as in the Zellner's seemingly unrelated regression equations (SURE), the system is always
identified and the system equations may be estimated using the techniques discussed
in Zellner (1962). We may also assume specific correlation structure of the disturbance
terms. Such a specification is reasonable when estimating a number of related functions
and the error components for these functions are likely to exhibit some correlation. This
correlation between different disturbances at a given point of measurement is known as

contemporaneous correlation. The disturbances at a given point of measurement might

be expected to reflect some common unmeasurable or omitted influences. Contempora-
.neous correlation could be the result of these common factors that are not included in the
regression.

We outline the multiple response regression model and the estimation procedure in

the following subsection.

3.4.1 Model and Estimation

Consider the following generic situation. For 1*P response variable, the linear regression

set up for a set of n samples is given by
y=X,8+e, 1=12,...p (3.1)

where ¥ and e are (n x 1) vectors, X, is (n x k) matrix of known regressors and 8 is
~y ~e N‘
(ki x 1) vector of unknown coefficients. Stacking the data for all p response variables, we

may write the multiple response regression model as

Yy=Xf+e (3.2)

where ¥ = (yl, y2,...,y ), X =dwag (X1, Xs,...,Xp), 6=(,0 ...0), and
~ ~ ~ ~1l ~2

~p ~ ~k
e=(c,e ...gp)’. Here ¥ and ¢ has the dimension (np x 1), X is (np x k) and (3 is

~p 2

(kx 1) withk=>" k.
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Suppose e;; be the error component for 4* sample in i** equation (j = 1,2,...n). In-
troducing contemporaneous disturbance correlation, but no correlation between samples,
we may write E(eij,ex) = oy for j = k and 0 for j # k. It implies E‘(e'e:) = oy, for

~‘~

model (3.1) and the covariance matrix of the error component in model (3.2) would be

- -
gn 012 ....0pp
) On 0O ... O
!
Elee)=1|... ... ... ... ® L=YXel,=2.
Op1 Op2 ... UPPJ

Dielman (1989) discusses the nature of gain when viewing the equations as a system rather
than estimating them one at a time by OLS method. The GLS estimator ofg may be
obtained as § = (X' ! X)~'z’ 'y by minimizing edle= (?NJ—X[})’CI)P‘l(g—Xﬂ).
The estimat;r of B is unbiased with covariance matrix [X'®-1 X)L ) i

Judge et al. (1988) discuss the estimated generalized least squares (EGLS) method of .
estimating the 4 for unknown Y. Here we use the LS residuals € =¥ — X; b to obtain
‘ RS ~i

the estimator 3. b is the OLS estimator of 6. It may be shown that the i5¢* element in

f is of the form

~ 2, . 4
Fij = ;g:gj, ,7=1,2,...p. (3.3)

It is easy to obtain the EGLS estimator of regression coefficient as E}SUR =
X' (T ' @ I)X]"! (' ® I.)y. This is the Zellner's SUR estimator.

We may use an iterative approach to obtain the SUR estimator. After obtaining ﬁsy R
We recomputed the residuals and apply the formula (3.3) to get revised estimate of oy;.
We substitute these revised estimate into f and recomputed the coefficient estimates.
Convergence criteria may be defined to achieve locally efficient estimates. Hiller et al.
(1986) has shown that the iterative estimator and the ML estimator are equivalent. It
is known that EGLS estimator is asymptotically superior to LS counterpart. The small

sample properties of SURE have been studied-by many researchers. We may simultane-
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ously cétimate B and ¥ using likelihood based procedures. The asymptotic properties
of ML estimato~rs would be identical to the EGLS estimators of [Nj But Monte Carlo
evidence suggests that the iterative ML estimator is not uniformly better than the EGLS
estimator in case of finite samples (Judge et al. 1988).

We now consider the problem of introducing an error component with the Taster’s

choice. For the it* response variable, the regression model may be written as
?/.+’U.=-‘X,'ﬂ +e€, t=1,2,...,p,
~o™M ~p ™M

where v = (w1,u,...,u,)" is the vector of response error component for the i** response
variable. u and €. are assumed to be independent with each elements in u and €, follows
(0,0%;) and (0,0%) respectively. Here the only effect of response measurement error is
that the MSE is 02 = 02, + 02 and not ¢%. Thus the residual mean square is increased
only without any effect on coefficient estimates. This is as well true for the multiple
response model. So, the problem of response measurement error is otherwise harmless, so
far the estimation of regression coefficients are concerned. Anyway, we can not help the
estimation procedure without repeated observations on each response variable, if separate
variance components for the measurement errors are of special interest. Had repeated

measurements on each response variable been available, we could formulate the multiple

response error component regression model.

3.4.2 Analysis of Data Set 2

The Data Set 2\has already been introduced in the first chapter. The three response
variables on the basis of Taster’s sensory scores are ‘quality’ (Q), ‘strength’ (S) and ‘total
valuation’ or ‘overall quality’ (V). All the quality attributes have been evaluated op a
same structured scale. On the basis of the biochemical knowledge discussed in the first
chapter and the perception of the Tea Taster of Tocklai Experimental Station, we relate
Q with TF, TR, BR and TSS; V with BR, TLC and S. It is believed that Q and V are

related, as V is evaluated considering all the higher characteristics together. We have the
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following systems of equations.

Q = Bo+OTF+ TR+ 3BR+ ,TSS +e
14 By + B1BR + (3TC + 35S + ez

The iterative EGLS method of estimation is applied to obtain parameter estimates along
with their standard errors. The estimates obtained applying SUR procedure along with
different test criteria are presented in Table 3.9. For estimation the convergence tolerance
was set at 10° and local convergence was achieved after only 9 iterations, obviously showing
very low estimation cost.

We have applied both Breusch-Pagan lagrange multiplier (B-P LM test, 1980) and
the likelihood ratio (LR) test of Conniffe (1982a) to investigate whether the estimated
covariance matrix, ®, is diagonal or not. The null hypotheses are of no correlation among
response variates. We note here that both LM and LR test statistics have, asymptotically,
chi-square distribution with 1 df. The calculated values of ¥ for LM and LR tests are
15.827 and 29.552 (Table 3.9). Clearly the hypothesis of diagonality of estimated covari-
ance matrix is rejected here with a strong evidence of the presence of contemporaneous
correlation. Ilence the application of SUR method is justified here. An improvement in
the precision of the estimates may be observed applying SUR method against the QLS
counterpart (Table 3.8 and Table 3.9). Note that S.E. of the regression coeflicients from
EGLS arc smaller than those from OLS, resultirg from the gain in efficiency due to EGLS
over OLS. The OLS fit of the equation involving Q shows very poor performance with
low J?? value and very high residual sum of squares (SSE). Similar is the performance of
OLS fit for the equation involving V.

From Table 3.9 we observe that the biochemical parameters TF, TR, BR and the
quality attribute S are statistically significant at 5% level of significance. BR is included
in both the equations. It may be observed that BR is statistically significant to explain
quality (Q) but not that for V. In this situation we apply both asymptotic normal test
and the Wald’s chi-square test to investigate the hypothesis of no difference between the

estimated coefficients §(BR) and §'(BR). The calculated values of normal statistic and
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the v* statistic (with 1 d.f.) are -1.7272 and 2.9832 respectively with p-values 0.0841 in
both cases; clearly indicating no significant difference between the estimated coefficients.
We note that for large samples these test statistics are equivalent. We may also test
whether all the regression coefficients in SUR model are zero or not. The test statistics
discussed by Dielman (1989), is a chi-square one which following central x? distribution
with (p — 1)k d.f. Here p denotes the number of equations and & denotes the number of
regression parameters. The estimated value of x? (139.05, presented in Table 3.9) strongly

suggests non-zero coefficients. The value of system R? (0.78) is also reasonably high.
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Table 3.1 : Range of correlation coefficients between

the variable for four sets of samples

Q |

vV | (0.92-0.99)

TF | (.20 - .52) (.19 - .56)

TR | (.30 - .55) (.29 - .55) (.16 - .56)

B | (-.33-.64) (-.29- .07) (.13- 0.7) (- .44 -.6)

TLC | (- .22 - .46) (- .20 - .39) (.13 - .46) (- .32, .14) (.20 - .44)

TSS | (- .05 - .44) (- .04 - .26) (- .01 - .52) (- .26, .60) (.17, .56) (.05, .37)
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Table 3.2 : Regression results for first set of samples

Estimates | S.E. | t-ratio | Partial Correlation

Bo | -35.759 | 16.77 | 2.132 -0.45
Brr | 18519 | 5.195 | 3.564 0.64
frr | 0.6595 |0.2050 | 3.224 0.61
Ba | -0.5245 |0.1308 | 4.01 -0.69
Bric | 11435 | 9464 | 1.208 0.27
Brgs | -0.6461 | 0.439 | 1.472 0.33
h? 0.54

SSE | 0.0734

InL -39.81

By | -2.0231 | 17.08 | 0.1184 -0.03
Bre | 52913 | 2.198 | 2.4073 0.63
Brr | 0.2660 |0.1200 | 2.216 0.46
B85 -1752 1 0.0782 | 2.240 -0.47
Bric | 0.2866 | 0.5132 | 0.5595 0.13
Brss | 01317 |0.4332 | 0.2017 0.07
R? 0.43

SSE | 0.0183

InL | -24.063

84




Table 3.3 : Regression results for second set of samples

Estimates | S.E. | t-ratio | Partial Correlation
Bo | -6.9431 | 22.80 |0.3045 -0.08
Brr | 7.2749 | 3.053 | 2.381 0.44
Brr | 0.7900 | 0.2546 3.103 0.61
Bs | -0.3154 |0.2380 | -1.325 -0.31
Bric| 33711 | 1.020 | 3.277 0.63
Brss | -0.1288 | 0.645 | 0.1997 -0.05
R? 0.49
SSE | 0.061
InL | -34.93
Bo | -14.209 | 12.84 | 1.106 -0.27
Brr | 61134 | 2675 | 2.285 (.50
Brn | 02965 |0.1393 | 1.317 0.31
Bs | -0.1632 |0.1390 | 1.174 -0.28
Bric | 0.6597 | 0.6911 | 0.9545 0.23
Brss | 0.4112 |0.3565 | 1.153 0.28
R? 0.51
SSE | 0.016
InL | -20.60




Table 3.4 : Regression result for third set of samples

Estimates | S.E. | t-ratio | Partial Correlation
Bo 3.976 | 8.238 | 0.4827 0.12
Brr | 15.441 | 9.844 | 1.568 0.28
Brr | 1.3243 |0.5777| 2.298 0.49
Bs | -0.2173 |0.3307 | 0.6571 -0.15
Bric| 11139 | 1.652 | 0.6744 0.16
Brss | 0.0863 |0.1378 | 0.6261 0.15
R? 0.36
SSE | 0.0768
InL | -42.50
Bo | 7877 | 4.552 | 1.579 0.35
Brr | 51622 | 2.357 | 2.1735 0.56
Brr | 0.4288 |0.3196 | 1.341 0.30
Bs | -0.1589 |0.1892 | 0.8401 0.19
Bric | 05651 |0.8936 | 0.6324 0.15
Pras | 00285 | 0.0759 | 0.3753 0.09
R 0.39
SSE | 0.0205
InL -26.84
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Table 3.5 : Regression result for fourth set of sample

Estimates | S.E. t-ratio | Partial Correlation
Bo | -53.804 | 23.63 | 2.277 -0.52
Bre | 25143 | 4.858 | 0.5175 0.10
Bre | -0.1377 |0.5100| 0.2700 0.07
fp | -1.0420 |0.5039 | 2.068 0.48
Bric| -2.3556 | 1.958 | 1.203 0.31
Bres | 1.2230 |0.5470 | 2.236 0.51
R? 0.51
SSE | 0.0504
InI, | -28.7228
Bo | -16.467 | 12.30 | 1.338 0.34
Brr | 13830 | 3.586 | 0.3857 0.10
Brr | -0.0897 |0.3583| 0.4456 -0.09
Be | 06232 |0.2685] 2.321 0.53
Bric | -0.9274 | 1.025 | 0.9046 -0.24
Brss | 0.4170 |0.2815| 1.481 0.37
R? 0.49
SSE | 0.011
InL | -14.38
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Table 3.6 : OLS and Ridge estimates for Data Set 3.

Estimates | OLS | Ridge

~

Bo 2.4646 | 2.34
(1.906) | (30.00)
Br -0.135 | 0.179
(1.749) | (4.74)
Brr 0.121 | 0.13
(1.430) | (5.43)
Bric | 0476 | 0475
(1.54) | (7.56)

o -0.956 | -0.955
(1.767) | (2.767)
R? 0.59 0.74

SSE | 1.307 | 0.1794
InL | -40.76 | -8.784
AIC | -2.614 | -3.67
FPE | -0.569 | -0.269
Baummy | 0.1925 | 0.965
(8.602) | (29.60)
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Table 3.7 : Prediction Result

Observed Ridge Prediction LAD Prediction
First set Last set | First set | Last set | First set | Last set

3 3 2.945 3.012 2.935 3.226
3 3 ' 2.976 3.002 2.937 2.957
3 2.6 3.025 2.70 3.04 2.634
2.6 2.6 2.531 2.641 2.473 2.712
3 2.6 3.021 2.680 3.20 3.004
3.4 3 3.31 3.002 3.082 2.740
2.6 3 2.496 3.012 2,438 2,941

34 3 3.297 2.977 3.118 2.860

3 2.6 2.989 2.611 2.99 2.610

3 3 3.011 3.012 3.021 2.923

Sum of Sqr. of 0.0392 0.0192 | 0.2733 0.3266

Prediction Error
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Table 3.8 : OLS results for individual equations

Equation for Q | Estimates | t-ratio
B (intercept) 7.1895 1.59
B(TF) 4.35 1.60
B(TR) 0.4044 2.90
B(BR) -0.1599 1.61
B(TSS) -0.1768 1.54
R? 0.16
SSE 28.48
In L -174.614
Equation for V
[’ (intercept) 5.9911 4.44
g'(BR) -0.0077 | 0.449
B (TLC) -0.035 | 0.2788
g'(S) 0.3751 | 23.58
R? 0.58
SSE 18.85
InL -172.614
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Table 3.9 : EGLS Estimates of regression coefficients

and the values of test statistics

&emcients/Test Values | Estimates | t-ratio
B(TF) 5.4966 1.965
B(TR) 0.4884 3.075
G(BR) -0.1896 1.962
B(TSS) -0.1963 1.470
G'(BR) -0.0043 0.2678
g'(TLC) -0.0804 | 0.5991

B'(S) 0.4081 24.659
R? 0.78
x* 139.05 (7 d.f.)
LM test 15.827 (1 d.f.)
LR test 29.552 (1 d.f.)
In L -170.61
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CHAPTER - 4

SMALL SAMPLE ESTIMATION PROBLEM
WITH BOX-COX TRANSFORMATION :

APPLICATION TO TEA QUALITY
ASSESSMENT DATA

4.1 Introduction

In the last chapter we have used only linear models to associate the biochemical informa-
tion with Tea Taster’s choices made on tea samples. In statistical studies linear models
are applied with the assumption of homogeneity of variance, simplicity of structure for
the expected value of the response variable and approximate normality of the additive
errors. The independence of errors is also assumed.

But it may not always be possible to satisfy the above mentioned requirements in
the original scale of measurement of the response variable. There may be inherent non-
linearity in the data. In such a situation a non-linear transformation of the response
variable may yield homogeneity of variance and, at least approximately, normality of the
error. A better fit may thus be obtained.

In this chapter we explicitly deal with the possible non-linearity in a tea quality assess-
ment data. The Box-Cox transformation technique is applied to a particular data set to
achieve better fit. A vast literature is available on the transformation techniques (Atkin-
son, 1985), especially on Box-Cox technique (Box et al., 1964). Section 4.2 presents a brief
discussion on the needs for transformation from application point of view. A brief review
of literature on Box-Cox transformation and on related studies is presented in section

4.3. There are two approaches of estimation in the Box-Cox transformation model - (i)
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maximization of likelihood function for the transformed model, (ii) minimization of SSE
for the normalized transformation model. We note here that the inference procedures in
the Box-Cox transformed model are basically based on large or moderately large samples
(Carrol and Ruppert 1987, Atkinson 1985). Since in our quality assessment study, we
deal with small sample size, it is important' to investigate the performance of the usual
estimation approaches with small sample data. An alternative non-linear least square
method of estimation for Box-Cox transformation model is proposed, which is expected
to give more robust estimates of parameters compared to those obtained through the usual
estimation procedures. However, the inference procedure and other statistical properties
of the proposed method of estimation are not discussed. In section 4.4 we try to study
different possible estimation problems in the transformation model with small samples.
The usual inference procedures for the transformation model are briefly discussed in sec-
tion 4.5. The analysis of the Data Set 4 using different estimation procedures is presented

in section 4.6.

4.2 Motivation Behind Nonlinear Transformation

As mentioned in the introductory section, if the fundamental assumptions behind a linear
regression model is not satisfied, a nonlinear transformation of the response variable may
reasonably meet the homégeneity and approximate normality requirements. Given a data
set, the usefulness of a transformation may be indicated by empirical evidences. The non-
negativity of the response variable may be one indication (Atkinson 1985). In this case
the log of response is likely to be more close to normality. However, if the values of
response are far from zero and variation among the values of response is relatively small,
the transformation may have little effect.

To see whether there is any outliers one may use a normal plot of the residuals before
and after transformations. The presence of outliers or, more particularly, the departures
from the assumptions in the residuals, is sometimes an indication of the need for transfor-

mation. But, we note here that, if the presence of two or three outliners is an indication
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of the nced for a transformation, we may delete the outliers from the data set and then
run the linear regression. Deletion of the outliers may be possible in case of large samples
and if the deleted observations do not effect much in the analysis. But if the inclusion
of all the observations is very much necessary for the analysis, and particularly, if the
sample size is small, then we can not afford to delete the outlying observations. In such
a situation, we have no way out but to opt for a suitable transformation.

Of many transformation possibilities, the most popular one is the parametric family
of transformations analyzed by Box and Cox (1964), which brings out the choice of a
transformation within the framework of standard statistical theory. In the following

section we briefly present different aspects of Box-Cox transformation.

4.3 The Box-Cox Transformed Linear Model : A Brief Review

Box-Cox (1964) proposed the following parametric family of power transformation

y(A) = 5 020 (4.1)
logy (A=0)

In the absence of a transformation we have A = 1 and the value of the transformation
for A = 0 is found as the limit of (4.1) as A — 0 . Thus the function is continuous at ‘0’

. A
as im0 L,\l =In A

A Box-Cox transformed linear model is a model that usually takes the following form:

for some unknown real value A and i =1,2,...,n,

YN =bi+Bezia+...+ Br s + & (4.2)

where e;'s are sid N(0,0%). The intention is that, for some A, E [y(})] = X with y())
satisfying the condition of variance homogeneity, independence and additivity. Also it is
expected that, to an adequate degree of approximation, y(A) will be normally distributed.

The power transformation (4.1) is only one of many parametric families of transfor-
mation developed by different researchers. A detailed account of such transformations is

presented in Atkinson’s book (1985). There is an extensive literature on the estimation
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aspects as well as the problems in application of Box-Cox transformation (for instance,
Egy and Lahiri 1979; Savin and White 1978). Collins (1991) reviews several techniques
useful for forming point and interval prediction in regression models with Box-Cox trans-
formed variables. Monte Carlo studies are made to examine the small sample accuracy
using the techniques proposed. A related study is due to Carrol and Ruppert (1981), who
study the cost, in terms of forecast mean squared error, of estimating A.

Carrol (1982) discusses how one can test the regression parameters within the context
of the Box-Cox power transformation family. He proposes a simple conditional test which
consists of estimating the correct scale and than proposes the use of usual linear model
F-test in this estimated scale. He investigates situations in which this test has the correct
level asymptotically as well as comparable power to Wald’s test or the LR test. Box and
Cox (1982) and Hinkley and Runger (1984) take a conditional approach that essentially
says that one should make conditional inference for an appropriately defined regression
parameter, conditioned on the data based A\. Cox and Reid (1987) arrive at a similar
conclusion to that of Hinkley et al.(1984). Recently Chen and Lockhart (1997) study
the Fisher information matrix and in particular, it’s inverse, for unknown parameters
in the likelihood based analysis of Box-Cox model. They discuss the inference problem
associated with § when A is estimated from the data. Both conditional and unconditional
inference procedures are studied.

We note here that most of the studies based on Box-Cox model, in our knowledge,
deal with the large sample problems. We do not have specific information about any
study dealing with the likely problems is applying Box-Cox transformed linear model to
small sample data. Certain complexities may arise in making inference about # when \
is estimated from the data, in case of small sample size. In the following section we try

to make some comments on the possible problems that may arise in this situation.
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4.4 Some Comments On The Estimation Problem

The likelihood function (LF) for the transformation model (4.2) may be written as
1 \" 1 '
=|—— ——(y(N) - X X)) -Xo)|J , 4.3
L (ﬁﬁg exp [~ 53 (V0Y) = XB) (09 - XB) (43)

where J = (ITy;)*~! is the term due to Jacobian of transformation. The ML estimate of
g for given A, which we denote by [3(/\), is the least squares estimate given by [3(/\) =
(X'X)~! X'y()). The sum of squares of errors of the y(A) is

SSE(N) = y(W'{I - X(X'X)"' X"} y(3)
(4.4)

= y(W)'(I - H)y(\) =y(A) M y(A).

The ML cstimate of the residual variance is 62(\) = SSE()\)/n. For fixed A, the profile
loglikelihood (using the estimators of § and 0?), apart from the constant, may be written
as

lmaz() = —g In 5*(\) +In J,

which is a function of A, and clearly depends on SSE()) and the Jacobian J.

An equivalent form for l;,;(\) may be found by using the normalized transformation
Z(3) =y(N)/J7.

For the power transformation (4.1), we have Q%fé‘_& =y}, so that log J = (A -
1) ¥; log y;. Under this transformation we see that the y; values are divided by their
geometric mean (GM). Let the GM of y; values be G(y). Then the normalized power

transformation is
A

_ -1
zZ(\) = j\[—dl(mm (A#0)
(4.5)

= Gy)logy  (A=0).
Apart from a constant, the partially maximized log-likelihood of the observations can be

written as

lnaz(3) = 7 In [R(\)/n]
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where R(A\) = Z'(A) M Z()) is the SSE of the Z(A).

Here maximization of the likelihood function becomes equivalent to minimization of RSS
of the transformed values. This is true as long as GM of the response values are re-
garded as constant. In fact a simple modification of the transformed estimates would give
the estimates for original parameters. The loglikelihood function in original parameters,
without the constant term is

y(A) = XB) [y(XN) - XBl+ (A =1) 3 Iny;.

n 2 1
—§lno ] 5 [y(

Now suppose each response value is multiplied by a constant C and we maximize the

loglikelihood function to estimate the parameters. In this case we have

Agh_ 2
_‘"21 ln (Ul)2 - 2(01/)2 Z (C li\‘ : - ,B(,] - ,Bi .’Du T el T /H;C Ik‘)
+(A-1) X In(Cy)+ninC
A, A=l _ 2
*"% ln (0,)2 - 2(011)2 E (C b SA—'—C'\ L - ,66 e = ﬂllc Ik,’)
+A-1) T In(Cy)+ninC
2
=-2in (0" - zhe T[C 4V + O - By — ... — B} ]
+A-1) T In(Cy)) +ninC
{ i ’ 2
c=—%in (o) - ﬂ;llj'l T(C)? [?J.'\ é“—(i:i) g-k Ty — ... (—’,f& IBM]

+(A-1) Z In(Cy) +ninC

-—’E‘ln(o')2—%§ ):[y{\—,@o—ﬂl wli—---—ﬂkil?kir
+A-1) L in (Cy) +ninC
= -3 (0)? - & Z[U:(A)_ﬂO-ﬁl $1i—---—ﬁk$ki]2
+(A-1) X in(y) ,

(0] 4
where (0)? = (0')2/,(?'\) bo = __C—"g—’ b= %, L= ﬁk~ (4.6)

Thus the original estimates can be obtained from (4.6). The estimate of A does not differ.
The same comment is applicable when C = EIM‘ and GM is regarded as constant. But

GM being a function of all the y; values can not always be regarded as constant. Let

98



us now try to develop the form of likelihood function under varying GM. The underlying

transformation is
1
Z;=y; (My)" (4.7)

The derivatives of the Jacobian of transformation may easily be obtained as

Py —;ﬁj; (Hyl)_;l; ’ i 74 J

5 = (4.8)

-3 S
R (M) m, =

It may easily be examined that the determinant of this matrix is zero :

- n
l-p @ . 4
2 1-p .. &
'O(Zl,Zg...Z,,) _ (Hyi)"l n Yo
3(yx,y2-..'yn) nn
Yn Un 1—n
n y2
yl(l —n) N o
- y2 y2(1 _n) e y2
_ (nyi) ?
= _._.__nn _
Un Un yn(l —_ n)
(1 —n) 1 1
-2 1 l1-n 1
— (My;) .
T - [}
nﬂ
1 1 1—n

since the sum of the rows in the matrix is equal to zero vector.
Instead of transformation twice (first by A-transformation and than dividing y; values

by their GM), we may consider the normalized power transformation (4.5). This also
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suffers from the same defect, as expected. The Jacobian of transformation is again zero.
The result has a serious implication on the estimate of SE of the parameters. In this
case the estimates obtained by minimizing ESS of the transformed response values need
not be same as those obtained by maximizing the loglikelihood function. But it is always
possible to obtain one set of estimates from the other. So these are equivalent procedures
as long as we are interested only is estimating the parameters. However, the SE’s of the
estimates will differ for these two procedures, as because the GM should not be regarded
as a constant. The problem would be more serious in case of small samples, and further
investigation is necessary to study the likely complexities in estimating the SE and to go
for inference. Asymptotically, however, both the procedures will result in the same value
of S.E.

When the minimum of y values (ym.n, Say) approaches zero, the likelihood function
defined in (4.3) or the corresponding loglikelihood, when maximized, becomes unbounded.
The minimum value of ESS of the transformed observations becomes zero. This is because
GM is very much sensitive to small observations. As ym,, approaches zero, the GM also
approaches zero. Change in GM value is significant even for a small change in y,,in, when

Yman 18 close to zero. Thus GM can not be regarded as constant.

100



The Box-Cox power transformation discussed above is based on the implicit assump-
tion that the apparent origin of the response variable is a true lower limit. In general
linear model, the subtraction of a constant may be required before taking transformation.
In this case only the value of the intercept is affected leaving other aspects of the model
unchanged. But the effect of changing the values of the response variable by shifting the
origin, before transformation, may be serious. This may alter many aspects of the fitted
model, including the estimate of A. The empirical necessity for such shift in origin in the
transformation model is discussed by Atkinson (1985, p. 184). The normalized form of

the transformation introducing a shift parameter u, compared to (4.5) is

O (A#0)
Z2(\p) = (4.9)
In(y+p)Gly+p) (A=0),
where G(y + u) is the geometric mean of the constructed response variable after shift is
origin.

In this formulation (4.9) also the problem of estimation become severe. If u approaches
- Ymun, there is at least one value of y + ;¢ which becomes very small, so that G(y + )
also becomes very small. In this situation the likelihood function becomes unbounded or
the ESS zero.

One way to resolve the problem of shifted origin, we think, is to obtain a nonlinear least
square solution by minimizing 3>(y, — §,)?, where , is the estimate of the untransformed
Y,. For the transformation with shift parameter :

=l (A #0)
y(\ ) =
In(y+up) (A=0),

we may obtain g, as
MzB+1 —p  (A#0)
Ezp (z,0) — u, (A=0).
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(i) =
The above formulation is straightforward from the relationship M’f\)——l =zif+e; for A#
0.

4.5 The Testing Aspects in Transformation Model

Extensive studies have been made by researchers to investigate the testing aspects of
regression parameters within the context of Box-Cox transformation family. To refer a
few among many others : Carrol (1982), Box and Cox (1982}, Hinkley and Runger (1984),
Cox and Reid (1987). Recently Chen and Lockhart (1997) discuss the inference problem
associated with § when A is estimated from the data.

The main aim is to test whither a transformed model fit better in comparison to the
linear model for a given data set. Thus the null hypothesis is Hy Ay = 1 against the
alternative Hy Ay # 1. The likelihood based test is used in general. To compare the
likelihood for various values of A, Ly,.-(A) can be plotted over a range of plausible values.
An approximate 100(1 — a) per cent confidence region for ) is found for those values for

which

2 [Lmnz(;\) - Lmaz(’\)] < X%,a (410)

We note here that the SSE, S(A) = y(A\)[I - X(X'X)™1 X'] y(A) = y(A)' My()),
of the transformation (4.1), can not be used to compare the adequacy of the models for
various values of A. This is because of the change of scale on transformation. However,
R(A\) = Z(\) MZ()), the SSE based on the normalized transformation (4.9), can be
used as the basis of an approximate method for making such comparisons. But in case of
small samples, this approach also has a serious drawback. This is' because the sampling
variability of the geometric mean of y, which is included in Z()), is ignored. In case of
small samples we can not consider GM (y) to be constant. The problem becomes severe if
the minimum values of y approaches zero. However, asymptotically sampling fluctuation
of GM (y) becomes less important and the distribution of Z()) converges to that of y(\).

That is why, in small sample situation, we think that the comparison of the confidence

regions for A based on S(\) and R()) should be compared. In terms of R()), the confidence

i
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region for ) includes all those values for which

R(N) ~ R(Y) < (3 ./n) R(Y) (4.11)

¥

As noted by Atkinson (1985), the confidence regions based on S(A) and R(A) are asymp-
totically equivalent. In case of small sample, the confidence interval (4.11) will be broader

due to term ‘n’ is the denominator, as compared to the region (4.10).

4.6 Analysis of Data Set 4 Using Box-Cox Transformation
Model

Here our primary aim is to associate the biochemical information for 23 CTC tea samples
with the sensory evaluation made by a single Taster. We first fit the linear regression
model. The estimates of regression parameters along with other information about re-
gression diagnostics are presented in Table 4.1. As evident from the table, the OLS offers
a very poor fit with low adjusted R? (= 0.28) and hence with comparatively higher value
of SSE. All the biochemical quality parameters except CF are statistically insignificant,
as evident from the t-ratios (or p-values). To test the normality of residuals we apply the
x? test of normality of residuals. The hypothesis of symmetric residuals is rejected at 5%
level of significance.

Guided by asymmetry of residuals and the poor OLS fit, we try the Box-Cox trans-
formed linear model. We first obtain the estimates of parameters by maximizing the
likelihood function (4.3) of the transformed model. The estimates along with information
required for diagnostics are presented in Table 4.2. Apparently this gives a better fit in
the sense of higher value of R? (= 0.51) and the value of SSE (10.2872). Only the quality
parameter CF is statistically significant along with the intercept term, as evident from
the conditional t-ratios. This conditional t-ratio is referred in section 4.3. Comparing the
loglikelihood values of Table 4.1 and 4.2, we see that the twice of the difference between
the loglikelihood values is greater than 3.83, the 5% value of x? with 1 df. Thus using the

confidence region (4.10), we may reject the null hypothesis Hy: A = 1 at 5% level.
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Apart from SSE and loglikelihood, we may also use some information criteria to com-
pare the fit. Some popular likelihood based information criteria are : Akaike Final Pre-
diction Error (FPE), Akaike Information Criteria (AIC) and Shibata Criteria (SC). A
detailed discussion on these information criteria is available in the book of Judge et al.
(1985). Lower the values of these criteria better is the fit. In our case, the values 6f these
information criteria are much less for transformation model as compared to those for the
general liner model. ‘

The values of loglikelihood and SSE [S(X)] for various values of A, around the optimum
value (A = -1.79), are presented in Table 4.3. Note that because of change of scale on
transformation, the SSE [S(\)] values can not be used to compare adequacy of the model
for various values of A. To compare the various values of A, L(\) can be plotted over a
range of plausible values. An approximate confidence region for A, using (4.10), in this
case is (-1.75, -1).

Another approach in estimation is to minimize SSE for the normalized transformation
Z()) defined on (4.5). Here R(A\) = Z(A\)(I — X"(X'X)~'X] Z(}) is the SSE. The R()\)
values for various values of A may be considered as the basis of an approximate method
of making comparison for model adequacy. But as we have mentioned in section 4.4,
the sampling variability of GM(y) may seriously affect the estimation in case of small
samples. In this situation, maximization of loglikelihood and minimization of SSE [R())]
will not give similar results, A being estimated from the data. For small sample, the
estimates obtained using both the approaches, which are otherwise equivalent, should not
be compared. However, asymptotically sampling fluctuations in GM (y) is not important
and the distribution of Z(A) converges to that of y(A).

The values of SSE for various values of A, obtained through minimization of R(}),
are presented in Table 4.4. The optimum value of ) is -1.7894 with SSE = 9.0266. It is
interesting to observe that although the estimated values of ) are approximately equal for
both the methods of minimum SSE and maximum loglikelihood, the SSE values differ.
The estimated J coefficient, obtained by normalized transformation, are: f§, = 133.3119,

Brr = 0.6517, Brr = 0.1242, Bcar = 0.0897, for = -0.6298, §4 = -0.5943. These [f values
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are different from those presented in Table 4.2. One of the reasons for these differences
in the estimates obtained is the effect of the sampling variability of GM(y). The plot
of SéE against \ is presented in Figure 4.1 with 95 per cent confidence interval line.
The estimated values of x2 (using R())) is 4.4046, rejecting the null liypothesis of A =1
at 5% level of significance. The confidence region for A takes all those values of A for
which the SSE values are below the confidence like in Figure 4.1. An approximate 95 per
cent confidence interval for A is (-1.79, 0.9474), which is much wider than the confidence
interval obtained through maximization of loglikelihood.

Thus we observe that in case of small samples, the usual estimation approaches in Box-
Cox transformed model may give misleading results. The problem may be more severe if
the minimum value of y approaches zero after transformation, when we use the normalized
version Z (). In this situation the non-linear least squares (NLLS) approach, proposed in
section 4.3, is expected to give more stable estimates. This approach is likely to be more
robust as compared to estimation from Z()). With this approach, the estimated value of
A is 0.6703 with SSE = 9.0233. The percentage of variation explained is 57.1. A fall in
the value of SSE as compared to those in Table 4.1 and 4.2 may be observed. Note that
= 0.6703 is within the confidence limit obtained through normalized transformation. The
estimated values of regression coefficients, obtained using NLLS method are f, = 8.2586,

Brr = 0.1956, Brr = 0.0493, Bcar = 0.1516, fcr = -0.3530 and f4 = -0.3421.

4.7 Concluding Remarks

On the basis of our study, we may say that the likelihood based approach of estimation
in Box-Cox transformation model should not be adopted in case of small sample data.
The approach of minimization of SSE for the normalized transformation is sensitive to
sampling variability of GM(y). The confidence region for A is unduly broadened due to the
effect of small sample size. The proposed non-linear estimation approach, which is very
trivial, seems to be more robust than the usual estimation approaches. Moreover, since

the problem of normalization of the transformed model is not involved in the estimation



process, it can be applied to small sample.

In this chapter we have not addressed the problem of subjectivity (error) associated
with the response. As discussed in the last chapter, the response measurement error
dose not pose much of statistical problems, apart from.affecting the standard errors of
the regression coefficients. However, we may theoretically formulate a transformation
model incorporating the error component associated with the response variable. Such a

formulation is presented as Notel in the concluding chapter.

106



Table 4.1 : OLS estimates and information for regression

diagnostics for Data Set 4

Estimates { S.E. | t-ratio | p-value
Bo 15.2959 | 6.3571 | 2.4061 | 0.027
Brr 0.084 0.2388 | 0.3528 | 0.73
Brr 0.1028 | 0.2684 | 0.3831 0.70
Bcar 0.0938 | 0.2569 | 0.3651 0.71
Pcr -0.5405 | 0.2101 | -2.5723 | 0.02
Ba -0.1962 | 0.1965 | -1.0015 | 0.33
SSE 11.9310
o? 0.664
R? 0.28
FPE 0.8108
AIC 0.7233
SC 0.8009
x? normal | 11.6944
InL -24.0818
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Table 4.2 : Estimates using ML method for transformation y(A)

Estimates | S.E. | Conditional t-ratio | p-value
Bo 0.5721 | 0.2493 22.95 0.00
Brr 0.0281 | 0.0368 0.7631 0.45
Brr 0.0054 | 0.0092 0.57% 0.57
BcaF 0.06639 | 0.0345 0.1127 0.91
Bcr -0.0256 | 0.0104 2.613 0.018
Ba -0.0256 | 0.0216 0.9846 0.34
R? 0.51
SSE 10.2872
o? 0.4907
FPE 0.0001
AIC 0.0001
SC 0.0001
x% normal | 5.5573
A -1.79
InL -21.8795
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Table 4.3 : Log likelihood values along with SSE

for different values of A.

A InL SSE

-2.00 | -21.8920 | 0.0007

-1.75 | -21.8800 | 0.0019

-1.50 | -21.9049 | 0.0052

-1.25 | -21.9663 | 0.0139

-1.00 | -22.064 | 0.0373

-0.75 | -22.1974 | 0.1001

-0.50 | -22.3661 | 0.2697

-0.25 { -22.5995 | 0.7284

0 |-22.8069 | 0.1973

0.25 | -23.0776 | 0.5361

0.50 | -23.3809 | 1.4607

0.75 | -23.7159 | 3.9906

1.00 | -24.0818 | 10.932
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Table 4.4 : Values of A and SSE for normalized

transformation Z(A).

A SSE

-2.00 | 9.0365
-1.7894 | 9.0266
-1.5789 | 9.0373
-1.1579 { 9.1202
-0.9474 | 9.1927
-0.5263 | 9.4009
-0.3158 | 9.5376
-0.1053 | 9.6366

0.1053 | 9.8789

0.5263 | 10.3158

0.7474 | 10.8565

1.1579 | 11.1688

1.5789 | 11.884

1.7894 | 12.2919

2.00 | 12.7343
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CHAPTER - 5
ANALYSIS OF TASTERS’ SENSORY SCORES

5.1 Introduction

In this chapter we explicitly deal with the sensory evaluations made by the Tea Tasters
in assessing the quality of tea samples. Sensory analysis, where the Tasters/assessors give
scores on a structured or non-structured scale for several attributes, is usually called

sensory profiling or descriptive sensory analysis (Amerine et al.,1965). Sensory panel

data, where the assessors evaluate different products in terms of one or more attribute(s),
are often blurred by extensive individual variations. These individual variations arise
purely from the subjectivity inherent in the process of sensory analysis. The subjectivity
in the sensory evaluation may be analyzed in several ways.

The sensory panel data are often analyzed by ANOVA technique based on the raw
data or by multivariate technique like principal component analysis after averaging over
the assessors’ scores (Martens, 1985). Some statistical studies have been made to handle
the individual difference among the assessors in sensory profiling. One remarkable study
in this line is due to Brockhoff et al. (1994). They discuss the linear variance com-
ponent models which take into account the scale differences among assessors as well as
the reproducibility aspect. They also address the problem of measuring assessor precision
and propose testing procedures for the significance of difference among the assessors’ error
variances. Naes (1990) discusses the statistical analysis and interpretation of data from
sensory analysis. Techniques are discussed to handle the differences among assessors in
using the ‘scale’. Some studies in this line, specific to the Tea Tasters’ sensory data, have
been made by Pal et al. (1997) and Paul (1998, 2000). Pal et al. (1997) discusses the
problem of estimating the mean profile for quality attributes specific to CTC tea samples
using the Tasters’ sensory panel data. The heteroscedastic variance component models
and the ML estimation procedures are discussed. A similar study addressing the problem
of Tasters’ precision is due to Paul (1998). The problem of detecting assessors’ repro-

ducibility is addressed by Naes (1999) and Paul (2000), among others. Naes and Solheim
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(1998) have addressed the problem of individual variations using graphically oriented
tools.

We aim at addressing the 'subjectivity’ inherent in the choices made by the Tasters
through modeling individual difference among the assessors. If a single Tester evaluates
a set of tea sample, it is not possible to study the error associated with his choices. But
if the same sample is evaluated by panel of Testers, we may statistically study the bias
associated with the sensory scores. Thus, in a restricted sense, we may consider this as
a problem of repeated measurements. In our study we consider ordinal choices (given on
a structured scale), made by a panel of Testers independently on a tea sample, as the
repeated measurements or repeated observations.

In reality, the sensory panel data are more complex and there are various fixed and
interaction effects with several other combinations, which needs to be taken care of while
understanding the data clearly. Brockhoff et al. (1994) has discussed several complex
aspects of the sensory panel data. Replicated sensory scores on different quality attributes
for a particular sample may be given by a panel of assessors. In this case each assessor
may give scores on a sample for different quality attributes on different scales. The
interaction effect(s) mentioned above includes ‘different use of scale’. Also, the individual
variances, measured using replications on the same experimental sample, may very among
the assessors. There are several other aspects also. Thus formulation of a unified model
for sensory profile data is rather a complicated task.

In a typical sensory panel data the main emphasis should be given to the following

two problems.

1. The within assessor variability. It means the detection of differences in reproducibil-
ity among assessors. Here the assessor with good reproducibility can be distin-

guished from those who are more unreliable.

2. Detection and interpretation of differences or variation among the assessors. This

is the between assessor variability.

Following Naes (1990) and Brockhaff et al.’ (1994), we may formulate a model for

a sensory panel data. Consider the following generic situation. Suppose there are r
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assessors in the panel evaluating K quality attributes for n samples. Also there may be
several replicates (say, L) available for each sample and each Taster. Thus without loss
of generality, the data may be decomposed for particular attribute k by the following
additive models

Yijrt = pe + Otk + Bk + Aijr + Uiint (5.1)

Here py represents the overall mean effect for k*h attribute. oy represents the variation
between i** assessor’s average score for k%" attribute and the overall average for the same
attribute. The effect §;) describes how average for j** sample deviates from the overall
average for the k™ attribute. The interaction effect A;;x represents the difference among
assessors in differentiating among the samples. In the model (5.1), the individual dif-
ferences among assessors are present in both the main effect a;; and interaction effect
Aijk. Uijkt is the error component representing variation due to replicates under the same
experimental condition.

In most applications, the researchers have been interested in the analysis and inter-
pretation of the sample effects 8;¢. If we are to model the individual differences among
assessors, then the interest lies on the main effect a;; and interaction A;;x. Generalization
of (5.1) may be done and ANOVA can be performed to test the significance of different
effects.

We note here that the database for our study does not allow us to go deep into different
complex aspects of sensory panel data. We do not have replicated observations on each
sample. Also, is almost all the cases, measurements are available only on one quality
attribute (e.g. overall quality). Given the minimum information on the basis of available
data, we restrict to the analysis of over simplified sensory experiments.

The basic data format may be identified tersely as "n samples xr measurements”.
We consider only the balanced and corﬁplete data. By balanced data we mean that the r
occasions of measurement aré the same for all experimental samples. By complete data we
mean that measurements are available at each point of observations for each experimental
sample. We do not consider the incomplete or missing data problems in our study.

In the next section we briefly discuss the assumptions on Tea Tasters’ effects in con-

nection with the ANOVA models. In section 5.3 we address the statistical aspects in
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measuring the reproducibility in sensory panel data. We study the Tasters’ reproducibil-
ity under heterogeneity. This is a theoretical extension of Naes’s (1998) work. In section
5.4 we discuss a naive statistical approach to estimate the Tasters’ bias. Formulations are
done under the assumptions of both correlated and independent error components. The
testing aspect is also discussed.

The statistical approach to modeling the individual differences among Tasters using
one-way VC model is presented in section 5.5. Under the assumption of unequal er-
ror variances associated with the Tasters, the ANOVA and ML estimators of variance
components for two models are presented in section 5.6 and section 5.7.

The two-way mixed effects variance component model and the estimation procedures
are discussed in section 5.8. Both ML and ANOVA estimators of variance components
and fixed effects parameter are obtained under the mixed-effects formulation. The mixed
effects formulation is useful when we legitimately assume that the sample specific effects
are fixed and the Tasters’ effects are random. Analysis of the Data Sets 5 and 6 are

presented in section 5.9.

5.2 Random or Fixed Assessors’ Effects

In most ANOVA applications it is assumed that all the assignable effects arising from a
typical sensory panel data analyses are fixed parameters. In sensory analysis this implies
that the sample specific and assessor specific effects are fixed. For samples, this ‘fixed’
assumption may be logical if we are dealing with specific products or different category
products belonging to the same class. Here the inference would be based on the specific
set of samples. However, if the samples truly represent a particular product, then one
may legitimately assume the sample specific effects as random. But for the assessors
(Tasters) this is a more questionable assumption. If the hypothesis of interest is Hy =
oy = ... = a = 0, under fixed effects formulation, then the possible consequehce
is that the results refer only to differences among average levels taken over the actual
assessors. These averages can be quite different from the averages taken over the whole
population. This is actually more interesting aspect to investigate.

On the other hand, if we consider the Tasters as random representatives from a pop-
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ulation of trained persons, the Tasters’ effects as well as the interaction effects should be
considered as random effects in the model. One may raise question against this random
Tasters’ effects on the ground that the selection of Tasters in not a random process; the
Tasters have gone through training process. In our opinion, the number of Tasters in
a sensory panel is likely to be quite close to the population of all Tasters. At least in
case of tea industry, this is very much true. There are only a handful number of Tasters
working in the tea industry of India. That is why, we consider the effects due to Tasters

as random.

5.3 Detecting Tasters’ Reproducibility Under Heterogeneity

A measurement is said to be reproducible if, on repetition under similar condition, it
gives the same results; that is to say, if the variation between the measurements are small
and negligible. To assess a change or variation in the sensory evaluation on a particular
tea sample by the Taster, the reproducibility of measurements and the relevant factors
affecting the results should be known. We may legitimately consider that the variability
in sensory scores on a particular sample (product) is due to the subjectivity associated
with Taster’s choice. In general scientific activities, the variability of results may be due to
technical reasons band to the analytic method and to the equipment. Variability may also
be due to measurement technique and the measurers, as well as the testing environment.
Therefore, a simple description of variability is insufficient and a proper analytic model
is needed that can quantify the different sources of random variation.

The data analytic problem is : what kind of statistical model is best suited for studies
on reproducibility of Tasters’ scores on tea samples. In this section we consider a simple
statistical tool to detect the differences in reproducibility among the Tasters, that is, to
detect the within Taster variability. This is possible only if the replicated scores for each
sample given by each Taster is available.

The problem of detecting the differences in the reproducibility among assessors is
addressed by Tormod Naes (1998) and residual variances (MSE) and F-values arising
from an one-way ANOVA model (under homoscedasticity) are considered as statistical

tools to differentiate among the assessors in their capacity to assess differences among
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samples. Some graphical techniques are also discussed.

A genéral approach in this line, due to Diggle at al. (1995), to the analysis of re-
peated measures assumes a general linear model for the mean vector of the measurements
and a particular parametric correlation model for the variance matrix that incorporates
three qualitatively different sources of variation - (i) a random variation between samples,
(ii) a positive correlation between measurements on the same sample over time (auto-
correlation), and (iii) a random variation among responses within an individual. This
formulation enables an estimation of the major components of variance and thereby an
assessment of the reproducibility.

For particular attribute and assessor, the simple one-way ANOVA model to study the

reproducibility of assessors may be written as
Ya = pt+ o+ uy (5.2)
1=1,2,..n, 1 =1,2,....L;,
where «; is the effect due to i** sample and u;; is the replicate error. Here we assume
unbalanced data setup as the number of replicates need not be equal for each sample. We

may assume uy ~ 4d(0,0?), as in practice the unequal variances and sample sizes (L;)

appear to be the rule rather than the exception.

Though the aim is to discuss the MSE and F values only under the above formulation, we
like to introduce a brief discussion on the F- tests, which are claimed to be robust under
heterogeneity. We note here that the hypothesis of interest in the one-way formulation,
in general, is Hy : oy = a3 = ... = o, against H, : a; # o4 for atleast one pair (i,k),
i # k. Under H,, with the assumption of equal variances, the likelihood ratio F- test is
based on the F statistic
F= (n—1)"' T, Li(yio — Yo0)®
(L —n)~t 5, Ti(yi5 — Yio)?’

where L = © L, yio = L' &, yi; and yoo = L' T; Liyio. Note that the term in the

(5.3)

denominator of (5.3) is the MSE. Again, if 02 # o2 for atleast one pair (i, k), i # k, then
the Welch’s (1951) robustified version of Fis

W = (n — D)7 ¥ ailyio — Yoo)? (5

1+[2(n~2)/(n? - )] Ti(1 - ai/a)?/(L; - 1) '
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where a; = L;/A?, A? = 225 T (45 — vi0)?, @ = L a5 and Yoo = ;¢ T; G-
] i Li—-1 <3\99

Assuming normality and unequal variances, the null distribution of W can be approxi-
mated by the F-distribution with (n —1) and k degrees of freedom, where k is determined
by

k—1=[n2i112(1;f/f) .

The differences between F and W is that denominator of F is based on the pooled
sample variance, whereas, in the denominator of W, the variances of the n samples are

considered separately.

The one-way ANOVA F- tests are known to be a-robust in case of unequal error
variances if the L; are all equal. However, the F- test is very sensitive to the heterogeneity
of variances for unequal sizes and to long tailed distribution. Some well known robustified
versions of F- tests are Kruskal-Wallis test, Welch test (1951), among others. Krutchkoff
(1988) discusses some common misconception about the F- tests and provides a simulation
based solution to overcome drawback of the tests. The failure of the assumption of equal
variances can have serious effect on the power of F- test. Krutchkoff (1988) provides an

extensive study on the power performance of F- tests.

Turning back to our main aim of studying the MSE and F values under heteroscedas-
ticity, we note that a more sensible approach to obtain the between-sample and within-
sample (error) sum of squares would be to consider the standardized values. Before writing
the standardized values, we obtain the ML estimators of the location parameters and the

variance components as follows:

1 1 \
plya) = —W&UP[*%?(W - p— o))

The loglikelihood function may be written as
L 1 1
| = —Eln(27r) -3 > L; Ino? - 3 ZZ-{:—? (ya — 1 — o)
i i 3 i

Differentiating this [ with respect to the parameters and equating to zero, the ML
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estimators of the location parameter and the variance components may be obtained as

= %‘%&ganda,-zym—p,
i Wi
where w; = L;/o? (i = 1, 2, ... n) are the weights. Here the means are appropriately

weighted by the sample sizes to variance ratios. The ML estimator of variance components

may be obtained as

1
0? =T Z Z(yu —u—ai)2~
i

Note that the ML estimators are consistent and BLUE also. We now consider the

standardized between-sample sum of squares as

n
SSa = 5Sa(o?,0%,....,02) =3 Liyk/o? — (3 Liyio/0?)?/ (3. Li/o?), (5.5)
and the standardized error sum of squares may be written as
SSe =Y L:S/dl, (5.6)

where S7 = L' T; (it — yi0)? is the sample variance (MLE).
Using the ML estimators, the standardized sum of square may be written as
SSa =" (yio — & — &),
1

which easily simplifies to obtain (5.5). We may incorporate the ML estimator of o? in

(6.6) and obtain the value of SSe. The estimates of mean sum of squares would be
MSe=(L-n)"'SSe and MSa=(n-1)"'SSa.

Now we can construct the F- test also. Note that L; S?/o? ~ x},_, and consequently,
SSe =Y ; L; S/o? has a x? distribution with (L - n) degrees of freedom. Further, it can
be easily shown that SSa defined by (5.5) has an independent Chi-square distribution
with (n - 1) df when Hj is true. Hence, as in standard one-way ANOVA with equal
variances, we get under Hy,

_ SSa(n-1)"!

F = S5ett =)=

~ Fn—l,L-—n- (57)
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Thus the SSe defined in (5.6) or the MSe and the F- ratio defined in (5.7) may be used to
study the reproducibility of the assessors. It would be more logical to use these MSe and
F value, as the effect of unequal variances has been taken care of while estimating the
parameters. Also the estimation of sums of squares using the ML estimates of implicit
location parameters and the variance components is sensible since the properties of ML

estimators are well defined under very broad conditions.

5.4 A Naive Approach To Estimate Tasters’ Bias
5.4.1 Independent Errors

Suppose three independent measurements (in our case, the quality scores given indepen-
dently for the same response Y, say, the overall quality). Each observation is made up of

two components - the true value of the variable (y) and an error in measurement,
Ya=yut+u, Yo=you, Ys=gs+uw.

We may assume zero means and at least approximate normality for the measurement

errors. If follows :

E(")) = E(Y2) = E(Y;) = 0, E(Y;-Y2) = E(u—v) = 0, E(Y1-Y3) = 0 and E(Y;-Y3) = 0.

For small samples, we may use the paired t- test to study the significance of difference
between the mean values of Y;,Y; and Y;. If the hypotheses of differences are rejected

(for at least one case), we may proceed to estimate the independent measurement error

variances as follows :
Vi) =V(y) +V(),V(¥2) =V(y) + V(v),V(Ys) = V(y) + V(w);

VG -Y) =V + V() | V() - V() = V() - V()
VX2-Yy) =V(@)+V(w) ¢, V(¥2) - V(¥3) = V(v) - V(w)
VY1 - Y;) =V(u) + V(w) Vivy) - V(Y3) = V(u) + V(w)
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Using the above systems of equations we may obtain :

V(u) = Y1 —Y2)+‘2’(Yn)—V(Yﬁ or V(Yl—ﬁ)-ﬂz’(}’l)—v(",ﬂ
V('U) - V(Yz—Ys)—‘;(ﬁHV(Ys) or V(Y,-Y;)—\;(YQ+V(Y;)
V(w) — VLYZ—YS)—‘;&HVU@ or VQ’l-Ys)—‘;(VxHV(YSI )

Clearly two estimates of the variances of each error component are obtained. we may test
whether these two estimates differ significantly or not. Also, it may be easily verified that
V(u) < V(v) < V(w) implies V(Y;) < V(¥,) < V(Y;) We note here that under normality
assumption, we may simultaneously estimate the error variances and also the variance of

y through likelihood function.

5.4.2 Correlated Error Components

We now estimate the error variances under the assumption that the measurement error
are correlated. Such formulation is logical if we assume that the Tasters’ scores, though
given independently, may be influenced by some common market related factors also.

Under the assumption of correlated errors, we may formulate the problem as follows :

V(u) + V(v) V(Y - Y2) + 2p10404, o1 = p(u,v)

V(u)+V(w) = V(Yi—Y3) + 2020400, 02 = p(u, w)
V('U) + V(w) = V(Y'2 - l/3) + 203004, p3 = p(v) w)

Also we have;

V() - V(¥) = V(w)-V()
V) -V(¥) = V() -V(w)
V() -V(¥y) = V() -V(w)

From the above systems, we obtain

V(u) — proyo, = Vih —Y) + V() - V() = A

. 2 2
V({Y; - ;) + V(Y;) — V(Y5 B
V(w) = posce = L 3)2(” (”=5
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V)= o, = LOAZHIHVOD VO €
Vo) = ooy = YTV ;/(Yz) ~V(Yy) _ %
Vi) - g, = VTRV ZVR) _E
Vi) oo, = LOAZBZVOR V0D _F

It may be noted that the differences of error variances are independent of correlation
coefficient p, as V(u) —V(v) = 455, V(u) - V(w) = BE V(v) - V(w) = B5E. Asin the
earlier case of independence, have also V(u) € V(v) < V(w) implies V(Y;) < V(Y3) <
V(Y,). Tt also follows that once we have a solution for V'(u), we can obtain solution for

V(v) or V(w) and vice versa. We have,

C V(u) - C’;Ol(qu"J = —A2—C and 4 V(’U) — Aplo'ugu = %C.

Subtracting, we get
CV(u)-AV(w)+(A-C) po,o, =0.
Solving this equation for V(v), we obtain

C2

V(v)=20+(A—C)p';’+p1 J1AC +(A-Cr gt

Again, F V(v) — Fp30,0, = %’3, D V(w) — Dp3o,0, = %, giving F V(v) — DV (w) +
(D - F) p30,04 = 0. Solution of this equation gives

F2
2F + (D~ F) 2+ ps \JADF + (D - F)? g}

V(w) =

V(v) and V(w) still contains the unknown parameters p; and ps3. Note that the expressions
under square-root signs can not be negative. This allows us to estimate the minimum
value of p, which allows a real solution for V(v) and V(w). Thus we observe that the above
formulation provides us an indirect way to obtain some information about the minimum
values of correlation coefficients. The minimum values of correlation coefficients follows
from

4DF

and p2= ——ve

(D—-F)*

>_ 4AC
= (A__C)Q
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Solutions for minimum and p? and p} always exist, since for p} = 1 and pj = 1, the
expressions 4DF + (D — F)? p? and 4AC + (A — C)? p} are necessarily positive : reducing
to (D+ F)? and (A+C)? respectively. We may estimate the corresponding error variances

for alternative value of p,, ranging from the estimated minimum to the maximum of unity.

5.4.3 Some Discussion on Testing

In this section we outline the possible testing procedure for the error variances obtained

through the Naive Approach. If is worth noting that the same formula which are used

to solve for population error variances ¢2,02 and 02, yield unbiased estimates for the
sample values s2, s2 and s2, if we replace the population variances 0}, , 0%, and o}, by their
respective unbiased estimators. Furthermore, the use of F-test to study the significance of
difference between s, s2 and s2 will be biased if basic assumption of independent variates
of u,v and w is violated here. If we are not interested in the magnitude of error variances
but only in the fact that they are statistically different from each other or not, then we
may apply the test procedure disuse by Morgan (1940) and Young (1971).
Morgan (1940) proved that testing Ho : 0Z,= A’ o2 against H, : oZ,%# A o2 is
equivalent to testing Hy : poy = 0 against Hy : p,p # 0, where
a=yi+My, b=y, My, i#j and A= -2,
oy;
In the simplest case we may put A = 1. This particular test may be applied in our case as
it has been mentioned that o2 < 0 < o2 implies 02, < 02, < 02. Testing Hy : 02 = 02
etc. is equivalent to testing Hp : pp = O etc.

5.5 Modeling Individual Differences Among Tasters Using
Random Effects VC Models

In this section we model the individual differences among assessors using RE linear VC
models. For the repeated measurement studies the basic approach discussed in the liter-
ature are obviously the repeated measurements ANOVA and MANOVA techniques. We
shall investigate the simple one way classification models here with unequal error vari-

ances. The heteroscedastic ANOVA models are nothing new in the statistical literature.
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For fixed effects models, the estimators of location parameters and the variance compo-
nents are discussed by Rao et al. (1982), Chen et al. (2000), among many others. The
testing procedures for equality of mean effects under heterogeneity are also discussed.
For a particular quality attribute at a time, let y;;; represents the I** replicate of a
scoré given by i** Taster for the sample j, where i = 1,2,...,r, j=1,2,...,nand! =
1,2,..., L;;. For simplicity, we may assume L;; = L for all i and j. This implies that we
have typically a balanced data setup where the number of replicates are equal on each
sample by each Taster. Also, we may assume that the replications are introduced ih a
randomized sequence of assessment so that block effects are not necessary in the model.

The obvious approach in this situation would be to consider the model
Yijt = B+ o5 + Aj 4 uiie (5.8) -

where u;; are independent random variates. This is the usual two-way model where A;s
represent the sample specific effects with respect to the particular quality attribute under
consideration. ;s correspond to ‘average level of assessment’ for the Tasters.

Brockhoff et al. (1994) discusses the following parametric formulation which takes

scale differences among assessors into account as well as reproducibility differences. Under

the assumption of same unknown sample effects A;, the model is
Yijt = o + i Aj 4 uii (5.9)
Var(u;,—;) =0‘~2 y Z/\] =0 s MSEA =1.
J

The restrictions over \; ensure that the model (5.9) is uniquely parameterized by the
space (c; , f; , 0?) and the \;s whenever atleast two samples differ. (5.9) is clearly a
‘sample x assessor’' interaction model with different assessor variances.

We note here that there is one identification problem associated with the model. If
all the sample effects are same, that is, all A;s are identical, the parameters o; and g; are
not identifiable. This is quite likely when the sarﬁples are believed to be the true repre-
sentatives of a particular population and are likely to posses the same intrinsic prOperty.

In the absence of replication (average of replicated scores may be available) we may
study the individual differences among Tasters using the simple one-way heteroscedas-

tic model. In one-way model we simply assume the Taster specific effects as the only
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assignable source of variation. If there is sufficient ground to believe that the samples
are truly random samples having the same intrinsic characteristic, then the formulation
of one-way VC model seems logical. For example, the tea samples (Data Set 5) are es-
sentially the same CTC teas collected from the same experimental garden at the same
time and received the same manufacturing process. All the samples were processed in the
same factory in the same day. These tea samples may be considered to be truly random
samples from the same population of CTC tea. However, the sample variation may be in-
corporated in the model as an assignable source of variation, leading to a two-way model,
and the performance of the two models for the given set of data may always be compared.

For a particular quality attribute, the one-way model may be written as
Vijk = Mk + Qa + Uik, (5.10)

where p represents the overall mean for the attribute k and oy, represents the deviation
in ¢** Taster's average from the overall mean. a;; and u;; are assumed to be independent.

In matrix notation the model may be presented as

- 1T b 7
(Nylw , 0 ... ... 0 || e Fyl
512 0 1, ... ... 0 (4] ;1’142
=p(l, QL)+ | ... ... oL e |+
k}»jr _0 0o ... ... lﬂJ*_a,-_ | u ]
Dy=ply+Za+u, (5.11)

where Z = I, ® 1, is the incidence matrix associated with a. The Taster specific effects
a = (o, az,...,a,)! may be assumed to be random. The two possible heteroscedastic
formulation of the RE model (5.10) may be proposed. On the basis of two different
distributional pattern we distinguish (5.11) by Model 1 and Model 2.

Model 1: o; ~ 11d (0,02), u;; ~ did (0,0?) and E(o; u;5) = 0.

In this formulation we assume that the variation between average level of Tasters’ effects

is constant and is equal to o2. But, the variation among Tasters over samples are unequal.
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In this case 02 = 0 would imply that all the Tasters on average agree on the characteristic

of the given set of samples, so far the particular quality attribute is concerned.
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Model 2 : a, ~ ud (0,02), u,y; ~ ud (0,02) and E(a, u,y) = 0.

Here we assume that the variation between the average level of Tasters’ effects is not

equal. TTowever, the overall variation among the Tasters over samples is constant (o2).

Here we may test if 0> =02 =... =02, or 62 =0 for all 1.

In the next two sections we study the ANOVA and ML estimators of variance compo-

nents for the two formulations.

5.6 Estimation of Variance Components For Model 1

5.6.1 ANOVA Estimation

The total sum of squares (TSS) for the model (5.10) may be decomposed as

Zc Zg(ytj - yOO)‘2 = 21 E,(yzo - y00)2 + Z; Z,(yu - ?110)2

=TSS = SSa+ SSE
where
Yo = % ZJ Yy » Yoo = % 2, Y:.0-
E(SSE) = Zl ZJ E(uu - uzo)z
= Z’ EJ[E(uf_]) + E(uzzo) - 2E(uu utO)] (5.12)

= Zt 21[012 + "—le(ZJ ul])2 - ,% E(uu ZJ uu)]
= L Elot+ ol -2oll=(n-1)L, o

E(SSA) = ., El(es — ap) + (w0 ~ uoo))?
= 2, %, [Var(a, — ao) + Var(uw — uoo)]
Var(a, —ag) = Var(a,) + Var(a) — 2 Cov(a,, o)

= 0a+ ;05— 2E[0 1T,

— 2 1 .2 2 2 1\ ,2
- 0a+Faa—;0a—(1-;)oa

Var(u,o - uoo) = Var(u,o) + VaT(U(]o) -2 CO’U(U,(), U()o)
Var(u,) = Var(} T, uy) =102
Va’l‘(’u,oo) = Va"'(% 2; utO) = ﬁi’ 21 012
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Cov(ug,ugo) = E(u tioo) — E(u0) E(ugo)
= E[} &, uy o Tp Ty un] +0
= ,._:Tf E[ZJ ut] Zk;ét ukl] + T—:Tf E[EJ ul] Zl ukl]

(5.13)
= 0+ r—:{’ E[Z] Uy, (uﬂ +Ug+...+ um)]
= ;.'];f E] E(utzj) = n_l,-' 012
E(5Sa) = n(r-1)oi+(1-7) L]
From (5.12), we have
E(SSE) = SSE
= (n—-1) ) ¢?=SSE
1
1
= 0} =-—— SSE
2%
Also,
E(SSa) = SSa
1 1
—_ 2 ——— —_ - =
= (r l)naa+n_1(1 T)SSE‘ SSa
Thus, the ANOVA estimator of 02 is
1. 1 1
a2 _ 1 _ .
64 = n[r — SSa —_ SSE]. (5.14)
Again for fixed ¢, we have
E[ZJ (v — Y0)?] = E[ZJ(U’U — uyp)?] = 23[0,2 + %0:2 - ”26012] (5.15)

= 012 = ﬁ ZJ (yu - y10)2 ’

which is the ANOVA type estimator of o2

The 62 and 62 are unbiased, since

1

BG) = oy

E(SSE) =02, and
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A2 1

1
B(oa) = n(r—1) nr(n —1)
1

2 _1_1, 02
= i~ Dok =) el -

1 1
= 03‘—{—; ZU?—;’;EO’,‘:-O'G.

) t

E(SSa) - E(SSE)

(n-1) > a2

nr(n 1) "

To establish the minimum variance property we may proceed as follows :

Yy = SSp+ SSa+ SSE
= ;,Lr' yg() + Z: ZJ(ytO - y00)2 + Zi EJ(ytJ - y10)2

We have, y,o = pt + o, +uyg ~ N(p,02 + 02) under the prior assumption of normality

of oy and u,,. If we denote yy = (2/ Y oY 0) then g; ~ N(1ep, (02 + £ o)1)

Thus SS(a) = ¥, &, (%0 ~ ¥o0)? = g;[I, - 11,1] Y follows (02 + % 02) x2_,. Now
for SSE, we note that y,, — y,9 = u,; — uy. Since u,; ~ N(0,02) and u,, are all mutually

independent, we can write for each 1.

ay = Z(yt] - y10)2 = E(ut] - utO)2 ~ U? X?}—l

J=1 J
and a, (+ = 1,2,...n) are mutually independent. Thus SSE = L1, af ~ 0 xZ,_y-

Finally we are to show that SSa and SSE are independent. For the identity
Yy = Yoo + (yzO - yOO) + (yu - yzo) = a+b + Ciys

it is sufficient to show that &, and c¢,; are independent. Since b, and c,, are normally
distributed, it is sufficient to show that they are uncorrelated. It means that for all ¢, ¢
and j, Cov(b, ¢y ,) = 0, which may easily be shown. Hence the ANOVA estimators of

variance components of the heteroscedastic one-way model are MVUE.

5.6.2 ML Estimation

The variance of composite random component e,, = o, +u,, of the model (5.10) is 62 + 2.

The variance-covariance matrix may be written as
Elee)=® = ZE(ad)Z'+E(ud)
= 2L 2+ 5,0, =0X(I,®J,) +E,®I,,
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where Z Z' = I,®J, and &; = diag (02, 0?...0%). We may write &, = didg(Sl, Say ey Sy),
where

.
rag—ka? a? a2
o2 02 +o? o2
S; = , 1=12,...7
2 2 2, 2
| Oa o, Oq + 05 |

The determinant and inverse of ®; may be obtained as follows :

B 1
2 4 2 2 2 ] 2 2 42 .2 2 2
o, + 0} 04 g ( o, +no; oy+no; ... o5+ no;
02 o240 ... 02 o2 ol+0? ... o2
| S; |= =
2 2 2 4 42 2 2 24 2
| Y% o Oq + 07 | | Y% Oo .o Ogtop |
[ 2 2 2 ] [ 2 2 2 |
ot ot o 05 0o ... O4
ot ol+a? .. o2 o? 0
2 2 2 2
_ 0i +no; _ 0i+nog
Ug o_g ..
2 2 2, 2 2
| %2 % 05+ 07 | | 0 O o; |

= (02 +n ola) (c})*!
Thus,

(01151 182115 = [ TT(0F + )] [H} (5.16)

§
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Also, .
ST = (02 I+ 02 Ju)t = (02) [1,,1§,+§§-I,,]

2-1 2
2\l [ I ) (S )Y
= (ag)_l [(% In) - ( @ ) n )}
@ L1 ( In) 7 1n

c’2111'1
;q_‘nnnn

—_
1428 1), In 1n
i

!
a4~
by

|

_ a2y __e
- &7 I oitnal J"]

In finding the S;! we have used the formula presented in the Rao’s book (Rao, 1973, p.
33).

Under normality assumption, the probability function of the response y may be written

py) = (2m)"% | & |7 exp[—- (v~ 1 1nr) @7 (y — o 1nr)]-

The likelihood function for Model 1 may be written as

1

1
nr n=1 -3 1 -
Ly = (21)"% (I 62)°F [IL; (02 +no?)] " exp [—E(y—ﬂlm)' &7 (v — # 1nr)| s

(18)
and the quadratic form in the exponent may be written as
(y plgr)' 7y — plny)
= Z(y _ﬂl) ! In__og—n (y ﬂln)
=1 Ut 0 +no 2
1 2 2
= E Z(yu - Z o2 mlz(yu w)* .
The loglikelihood function would be
h = -2 In27) -2, Ino? -1 5 In a~2+n02

_% Ei Zj ;ti(ytg N)2 + Zt ;70 +na [E](ylj N)F
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Partially differentiating (5.19) with respect to u, 02 and o? respectively, the ML estima-
tors of the location parameters and the variance components may be obtained from the

following relations :
w=0 = LTz [1—m] (vij —w) =0
= YL wiyi/ Siwi=np (5.20)
= u=5 Ly
where w; = m is the weight. Clearly ML estimator of u is the weighted mean where

w; is the weight for #** response. Note that the GLSE of u may be shown to be of the
form : GLSE (u) = ZEMM, where Var(yio) = Var(p+a; +up) = 62 +1 o2, which
Vorlvio)

implies that w; = Var(y‘ 3 Also,
all 1 n 2
—_— == - 1- i0 — = 0 y r'.21
do? ; o? + no? [ ol+n 02] (o = 1) (5:21)
ol o? o? 1 1
— =0t — 2 |y —— | D (n—1
do? o?+no2  o?+nok o} 0?4+ nok b: o? Z Yii = )

(5.22)

where D; = 5,(3i; — 1) Note that for unequal os, explicit expressions for o} and 02 can

not be obtained from (5.21) and (5.22).

5.6.3 Estimation of Random Component of the Model

We briefly discuss the prediction aspects in the heteroscedastic one-way model (5.10) in
this section. We start with the prediction of the random component a;. The general
theory of prediction for the random/mixed effects models is discussed by Searle et al.
(1992).

We may think of some related information, say y;, for the unobservable random
component «;. Now the question is, can we think of some numerical value of ¢; (say of)
on the basis of y;p? In predicting o, it is sensible to consider E(w;) as the predictor.
That is, o may be taken as E(c;); but E(a;) = 0. Again if we can think that y, is
considerably larger than the overall average u, then we may expect that o; is positive
(yio = pu+ o4 + uyp and y;o > p implies @; > 0). With this thought, we may use the

conditional mean E(q;/y;) rather than E(a;) as our predictor.
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Note that o4 and y;g jointly follows bivariate normal distribution with

(07

E =
Yio 2

2
(o Hs g
and Var = @

Yio o

-

RN

Thus, we have

9%

2 1.2
0'0+;0"'

Elai/yn) = E(ai) + Cov(os, yio) [Var(vio)) ™ (vio — 1)

= 02 (024 202) Hyio — p) =

which is the predictor of «;.

m (0 —

u,

(5.23)

An alternative approach of estimating o; would be to consider the conditional distri-

bution of a; given the total errors a; + u;;, a; + 2, -

.., @; +Ujn. An appropriate summary

measure of this conditional distribution may be assumed to represent the deviation due

o it Taster’s effect. The conditional distribution being normal, the summary measure

would be the same for mean, median or mode.

We have, a* ~ N(0,2), where

[oitun | [wa—n] [ o2+0? o o3
o; + Uiz Yio — 1 o  oi+of o
a* = = and ) =
& + Uin Yin — 1 a2 o2 o2 +o0,
a L ¥ | o % %
The conditional probability of a; given the £otal errors is
p() = ploi]oi+up,...o5+up) = P;(JE;TLL;;:I,O;"F_:Z:;:)
= (V2r)"®) Q"% exp [—%a*’ 0! a'] /L = E]! :
where
I = (VRIS eon [ ) 87w - w)
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= (@2m) 30} T (0 +02)77

exTp [— 2‘17'2 {;(yij - H)2 - ﬁz@ {Zj:(%‘] - u)} H

To obtain {2~! we use the following result (Rao, 1973, p. 33) :

-1
S B\ _
B' D

E=D-BS'B, F=S"B, where B' = 02 1, and S; is defined in Section 5.5.2.
We obtain

S;'+ FE-'F' —FE™!
_E—IFI E—l

E =D-o 1|21 % __g.|o21
= D-o I, - 52— J.| o
@ Mo " o¥o?+no2) " 2"
1 2 o2
no olo
= D- 55— 5ot for D=o0J.
o; +no; o/ +no;
1 o2 o2
F = §{'B=|5h- 52— h|oili=5"2=1,
: o? 0%(0? + no?) @ o? + no?
2
o 1

FE-'F' = Jo, end S+ FEZ'F = < 1,

ai(o7 + no?) i

E7'F = %1,,=FE“.

i

Thus we may write,

1 In '_ln
-1 —_—
N = el A } , and
n Ug

|2 = Si{|D - B'S;' B| = o5 (0f)"

Thus we may write

0 Vo +no?
p() = F—=ceap |-
v 2mol o2

2

{(E Yj — 1 )yt

2 2
o, +nog

1
202
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a? (o2 +nol)
20 (Z yu_"l‘)"'_("——a—
3

2
Oa

\/0’2+’I’L0'2 02 +no?
= /‘ 2 2"‘ P [_( t202020) : 2 Zyu—nu)
2no; o2 t Ja

+(3° vy —np)? (#io?,)z}]

J

2
2 2 2 2
Vo, +nog (a" +no‘a)
A A e Y -n
2,”0,'2 ag &’L'p E 2 O'g 0? ) 0_ + n 0_2 Z yIJ l‘

Thus, the distribution of o, may be written as

2 2 ;2
nag - g, O
a’ ~ ]V{.__;('yl _'u) ’_2"—‘]}

ol +no? ol +no?

The approximate predictor of o, may thus be written as

. n &2

A - S — 5.24
Q, 02 ¥nol (%0 i) (‘) )

5.7 Estimation of Variance Components for Model 2
5.7.1 ANOVA Estimation
For the Model 2, we assume o, ~ iid (0,0?) and u,, ~ iid (0,02). The partition of TSS is

E Z(ytj yOO = Z Z ytO - yOO) + E E(yu le

= TSS = SSa+SSE.

The y,0 and yoo have already been defined in Section 5.5.1.

E(SSE) = %.%,[B(u})+ E(u?) - 2E(uy uy)]
nr [03 + 1 B(Z,uy)’ - 2 E(w, &, utJ)] (5.25)

— 2.1 52 _252) — r(n—1) g2
= nr [Uu'*',,"u nau]—r(n l)o

E‘(SSa) = Z, ZJ [E(a, bt 00)2 -+ E(U,O - u00)2 e 2E(a, — ao)(’u‘o - ’U,oo)]
= ¥, %, [Var(a, — ag) + Var(uo — uoo)]



Var (o, —ap) = Var (o) + Var (ag) — 2 Cov (o, o)

= o2+Var (} T, o) - 2E(ov; T, @)

= o’+% ¥, 02207

Var (uy — uge) = 771; Var (¥, uy) + ﬁ; Var (£, I, uy) — 2E (wo Ugo)
1

2 1 2
O, t+ ar Ou ™ 2E(u10 uOO)

Ewouw) = E[1¥,u, L iu
= E[T,uy Tk Tigy un] + 7B [T, vy Tiuw
= 04 ZE[5, uyua +ua ..+ )]
= FE[T, ] =4

2 _ 1 .2 1 2 2 2__1 1 2
E(’U,O—U()o) = ;Uu+'ﬁ70u—";0u—;(1—;)0’u

Thus from (5.26)

E(SSe) = £, %, [(1-Yo2+% £, 02+ L(1-1) ol

5.27
= n(l - %) Zt 0"2 + (7' — 1)0’3 (o )

From (5.25), equating E(SSE) to SSE, the ANOVA estimator of o2 is obtained as

2 ! SSE

e (

5.28)

Also, for fixed 4, starting with the form ¥,(y,; — y0)? and using the relation (5.27),

the ANOVA estimator of 62 may be obtained from the following relation

TI,(I - %) U? = Z(yu - y10)2 - (1 - %) 0',2, - 7‘(7'_-1—1) SSa (5.29)

These ANOVA estimators may easily be shown to be unbiased. Also they are MVUE.
Using the following result given by Rao et al. (1982), the large sample variance of the

location parameter & variance components may be calculated.
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5.7.2 ML Estimation

The variance of the composite random component e,; = o, + u,, of the Model 2 is o2+o02.

The variance-covariance matrix may be written as

Elee)=®=ZE(ad)Z'+ Euv)=ZL 2 +02 I, ,

where £ = diag (0%,0%,...,0%). Also it may be easily shown that Z L Z' = £ ® J,.
Thus we have, &, = diag (S, Sa, ..., Sy), where

2, .2 2 2 W
o, +o, o, e o,
o? ol+o0 ... o2
S‘ =
2 2 2, 2
o o ol+o
L ) t 1 u Jnxn
The determined and inverse of S, may be obtained as follows :
- - - -
02 +no? o2+no? ... 02+no? o2 o2 ... of
o? o2+0k ... o2 02 ol+o02 ... o
02 + no?
|S,|= =
01
2 2, 2 2 2, 42
| o o; o, +0, | Ky o} oy +0y |
o2 o? o? |
1 1 v 13
0 o2 0
2 2
o, +no -
=“—02——'— e e e o = (@D (0% 4 no?), and thus
1
2
| 00 o, |
— 2\r(n—1 r 2 2
| @2 |=(o2) ™V T, (0F + no?) (5.30)

Following the procedure adopted in obtaining the form (5.17), the inverse of S, may

easily be obtained as

1 2
S7'== [I,, S — J,,] (5.31)



Under normality assumption, the likelihood function for Model 2 may be written as

r{n-1

nr % l -_—
Ly = (2n)¥ (o375 [M(o2 +n0?)] ™ eap [~5(u - ular) 7'y~ ilar)]

and the quadratic form in the exponent may be simplified as
(y — plar) ®31(y — plar)

2

g,
—_— —ul
03 (03 +n02) n] (y u nr)

A 1
= Z(yz - /-‘ln)l "03‘ I, -

1=1 u

= %;Z}(yq— Z [Z(yu r

- 02+n0

The loglikelihood function would be

IS
lh = —%in@r) - LNing2 -1 ¥ In(0? +no?)

(5.32)

2 2
~a1 T E (v — 1) + 57 T 15t [T — )]

Partially differentiating (5.32) with respect to u, 02 and o? respectively, the ML estima-

tors of location parameters and variance components may be obtained from the following

relations :
8y _ —
%=0 = L g —p)=0 (5.3
a: 10 :

=> p=

a

where a, = 7 is the weight. The GLS estimator of u is u = Zflﬂ“’_f&ﬁ where
o ' + Var(vs0)

Var(ywo) = 02 + £02 = (a,)~". This implies that a, = 5, which further implies that

Va,r(y
GLS and ML estimators of location parameter are same. Also, it may be easily shown

that

1
o = (yo — 1)* - ;;02 ; (5.34)
2
5o =0 = (n-1r+ 5, gt +(n-1) T, 5%~
2 o2 o2
1—713- Z‘ az—zna? [1 + az+na?] D;Z =Q

= r(n—l)Z,”{—E—i—(n—l) Z, St/ol -5 T, ol/d, [1+ gz“:_';]

(5.35)
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where S? = (n - 1)7! T;(i; — p), Di = £;(yij — p) and d; = 02 + n o?. As in case
of Model 1, for unequal o7s explicit expressions for 0? and o2 can not be obtained from
(6.34) and (5.35), for the Model 2 as well.

The approach to estimate (predict) ¢; here is exactly same as discussed for Model 1
in Section 5.5.3. The conditional expectation of o; given y;p may be obtained as

no?

E(ai |l yio) = 5=
u 1

(yio — )

which is the predictor of o;. Again, from the conditional distribution of ¢; given the total
errors, the appropriate measure of o; may be obtained easily following the procedure

discussed for the Model 1.

5.8 Two-Way Mixed Model

Incorporating the sample specific effects as assignable source of variation in the basic

assessors’ model, we may write a two-way no-interaction additive model as
Yij=p+og+ /\] + w5, (536)

where A; represents the deviation from the average score for 7% sample. This model would
be useful to study the Data Set 6, where the Tasters’ scores are given specific to some
CTC clones. The clonal effects may be assumed to be fixed and under the assumption
of random Tasters’ effects, the model (5.36) is typically a mixed effects model. The
interaction effect can not be considered here as the Tasters’ are independently evaluating
single sample from each individual CTC clone. The inclusion of interaction term would
have been logical had repeated observations on each clone by each Taster been available.

Note that the model (5.36) is an over-simplified one, which is specific to particular
sensory attribute and does not include the possible repetition. The model is written

specific to the data under consideration. For n samples and r Tasters, the model may be
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written in matrix form as follows :

_ - . _
/;{/l\ 1,, o ... ... 0 aq Inw (ﬂl\ /l‘l\
) 0 1, ... ... 0 (7] In /\2 Uu
=p(l,®1)+ ] ... ... ... ... L. AU I U
'y 00 o Le] [\ M) )

S y=puley®1l,) + Zoa+ 232 +u, (56.37)

where Z, = I,®1,, and Z), = 1,®I, are the matrices of individual dummies associated with
Taster specific and sample specific effects respectively. We note here that Z,Z! = I, ® J,
and 2,25 = J, ® I,.

We assume that o, ~ 1d(0, 02) , u,, ~ d(0, 0?) and ), are fixed with T, A, = 0.
Also, o, and u,, are independent for all ¢ and j. The assumption on u,, implies that the
variation of Tasters in their scoring over samples is unequal. In the model the number of
parameters to be estimated is (n+r+2), as there are n fixed effects, one location parameter
and (r+1) variance components.

In the following two sections we discuss the ANOVA and ML estimators of parameters

in the model (5.36).

5.8.1 ANOVA Estimation

For the two-way model (5.36), we have

1
Yo = —Zyu=u+at+u10
n J
1
Yy = ;Zyt]=’~‘+ao+/\_1+u03
1
1 1
Yoo = ;Zy01=u+ao+uoo, ao=;b‘zaz-
2 [

E(SSe) = 3 E(uy — wo) — (ug, - ugo)]?

3=

E(u,, — up)? = B(ul) + E(% > uy)?—2E(u, = > u,)

J J
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E (UoJ - Uoo)2

Asasw izt TTw

E(uu - utO) (UOJ - uOO) = E(uq % z ul]) ut] Z Z uu)

Thus,

E(SSe)

E(SSa)

E(a, — ap)?

E (U:o - 'uoo)2

Thus,

1
—E(;Zu,, Z%HE(;Z% ZZU'J)
7 t
1 5 1 , 1 , 1 5, 1 1, »
= = — — —_— —_ =-{(1-—
ra‘ nro‘ nra' nro’ r( n)a'

S5 (-t E(-Y TioeP -2t (1- 1) oY
(n—l)(l—%) T, o2

Z Z [ — ) + E(uyp — u00)2]

1

(af)'*'E(_ Z a,) - 2E(e, T Z o)

1 2'
(1_7,) a 1

1

;Zuu n—zzuu)2~2E Zuu“"zzuv

3
S ol 22710—-—0
1
RU-Dete G el

E(SSa)=n (r—1) o2 + (1 %) Y o2, (5.39)

From (5.39), equating SSe to E(SSe) we get

1 1 .
mSSe—-(l T);O’,
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,
=>za n—lr—lsse

From (5.39), equating SSa to E(SSa) and using (5.40) we get

1
— — 2 —
SSa = n(r l)aa—i-n_lSSe

=02 = ﬁ’(rl__f) [50- n-—i—l sse]
Again,
E(SSA) = SSA
2
= E [E D (A + oy — uoo)] = S5\
aDIDIREDY Z]: E(ug, — upe)? +0 = SSA
=4 =4 ’
E(uo — uno)* = E(ufy) + E(ugo) — 2E(uo, uoo)
= su-p T
Thus,

1
};ijz\i-i-;(n—l);af = S5\

=27y AN = SS/\—-—(n—l) SSe
3

—lr—l
1

r(r —1) SSe

= A= - SS/\ -
T -]
Now for fixed 1,

Z (yyy — %)’ = Z (A + (wy - uzo)]z

E [Z (v — y:0)2:| = T N2+Y E(uy — u)?

1 1 \
= ;SS/\—;(T:T)SSC"F(R—I)O',

Thus, 02 may be obtained from the following relation

1 1
(n—l) 0:2+;SS’\—T(T— Z(yn ytO
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5.8.2 ML Estimation

Under the assumption of normality of response, the likelihood function for the two-way

mixed model may be written as

n—1

p=em ¥ () | (03+mg)]'%

1
ezp [—5 (Y=t lnr — 22 A) 71 (y — pt 1y — 2y, /\)] , (5.43)
and the quadratic form in the exponent may be written as

1 o2
E(yt_ﬂln_jn)‘)l [;"In - ‘5";*]'1] (yz_lf'ln“fn)‘)

)

bl ¥

=2 Elf P IESER DY 7 [Z(yu—u—/\a)} |

Note that A, being fixed, the dispersion matrix ® has the same form as that of ®; defined
in (5.15).

The loglikelihood function may be written as

l = _%ln(zﬂ.)—nT-l Et lno?—% EI ln(03+nog)—% Zt E] ;l‘f(y'J-”‘_’\t)z
2 2
+5 T o griaer (S5 (e X))
(5.44)
Differentiating (5.44) with respect to x4 and equating to zero, the ML estimator of location

parameter is obtained as

_Z, W, Yy W, = 1

1
L= — *  where Yt PO = — .
=0 EJ: Y Y Sw, ' ' o+no?

The estimator of fixed parameter A, may be obtained from the following relation

2
80le=0 = Zt 0_1‘7 (yu—u*/\;)—):. ;l'!' E:g'i'a'z ZJ(ytJ'_/J'_’\J)=O
2
= Zt ;1:1' /\J = Zz ;1‘7 (le - N) - Z; ;l? ;?m EJ(ytJ - lj') (545)
_ _ 2
= A= (Tw-p - (% 31'7) ' a_?(_a?a_in_q’,_) Zj(y!,] -1,
where f,, = 2V g, = 4. Clearly, ., is the weighted mean where weights are
a e g

5 2]
reciprocal of the error variances associated with individual Tasters.
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Also, the estimators of variances components o2 and o2 may be obtained from the
following relations respectively,
> 21 2[1_ _m 2A3]=0 (5.46)
. 0, +nog g, + nog
2

o2 1 1 1
B [ | 4= 5 Do h - - (-1, G
J

ol+no2  o0?+no? |o?  o?+no? o?

g

where A, = Eg (ytJ - U ’\J) = ZJ(yiJ - ‘u’)

5.9 Data Analysis
5.9.1 Analysis of Data Set 5

A set of 14 CTC samples are evaluated independently by a panel of three experienced
/Tasters in terms of ‘strength’, ‘quality’ and ‘overall quality’. All the Tasters used the
same structured scale and evaluated the samples on 0-10 point scale. The basic statistics
for the three different attributes are presented in Chapter 1. We note here that the score
on each sample is the average of 10 repeats. However the repeated scores are not provided
to us.

As evident from the basic statistics, the scores are minimum (on average) on strength
and are highest for the overall quality or value. We first perform the two-way ANOVA
without interaction on the three attributes separately. For all these attributes, the
‘between-Taster’ variation has come out highly significant at 5% level. However, the
within-sample variability is insignificant. The ANOVA results are presented in Table 5.1.

We have tested the significance of difference among the average scores under the as-
sumption of unequal error variance. The average score of the three Tasters differ signifi-
cantly for S and V. However, for Q the difference is insignificant. The profile plot of the
scores on S, Q and V are presented in Figure 5.1 to Figure 5.3.

Since the within sample variability is insignificant for all the three attributes, we may
use the Model 1 and/or Model 2 to estimate the mean scores and the error variances
associated with the three Tasters’ scores. We first discuss the ML estimators. We note

here that though both Model 1 and 2 are tried for the given sets of data, we only present
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the estimates obtained using Model 1, as this model provides better fit, on the basis of
likelihood information and the sum of squares of errors. The ML estimates of location
parameter and the variance components for all the three attributes are presented in Table
5.2 and Table 5.4 contains the estimated scores for the attributes along with the sum of
squared distance between the estimated scores and the three Tasters’ scores.

The estimates of 02,02 and 02 may be considered to be the guiding factor to decide
upon the precision of individual Taster’s. However, this is a naive approach to assess
‘how good’ a Taster is. This would favour a Taster scoring consistently within a narrow
interval on the scale he/she adopts, whether the Taster is able to separate or distinguish
the samples or not. Here oZs concerns precision actually. If the samples are truly random
having the same intrinsic properties, then o? would measure how inconsistent the i**
Taster is in evaluating the same type of samples. For moderately large sample size we
could use the Burtlett’s test (Judge et al., 1995, p. 448) for equality of o?s or we could
easily develop a likelihood ratio test to test the hypothesis : Hy: 0} =02 =...=0? and
Hy : 02 =0, under Hy. We do not opt for either of these two tests because of very small
sample size (n = 14). However, from Table 5.2 it appears that o2s are different, especially
for ‘strength‘ and ‘value’.

As may be observed from Table 5.2 the patterns in the estimates of o?s for three
different attributes is not the same, though the same Tasters have evaluated the samples.
For V the Taster 3 has the highest error variance whereas Taster 1 is having the least.
But for Q the error variance is maximum for Taster 1 and is least for the second Taster.
A completely different pattern is observed for S. |

- The estimates of o2s for the three attributes are relatively small, suggesting that the
three Tasters do agree on average for all the three attributes. In fact, the estimates of
o2 for ‘strength’ and ‘value’ are close to zero. This, in turn, support our approach of
proposing the Molglel 1 for the given sets of data.

In Table 5.4, ‘Lj(gj,-—y,-,-)2 represents the sum of squared distance between the estimated
scores and the i"]‘_'ll‘aster’s sensory scores. Higher the value of 6?(s = 1,2, 3), higher would

be the value for Z(gjij —yij)%. A typical feature of the scores on V is that the estimated

J
scores for last 7 samples are all lower than these for the first of samples. But such feature
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is not observed for the other two attributes.

5.9.2 Analysis of Data Set 6

A set of 16 CTC samples are evaluated by a panel of five Tasters independently in terms
of ‘strength’ and ‘quality’. These samples are developed through blending of different
CTC clones in different proportions and thus the quality characteristic is likely to vary
over samples. As mentioned in the introductory chapter, the identification of the clonal
combinations are not disclosed.

As may be observed from the two-way analysis of variance result presented in Table
5.5, the variations due to samples as well as Tasters are significant at 5% level. The
Tasters’ variations for the two attributes are very highly significant. For obvious reasons,
we use the two-way heteroscedastic VC model to estimate the error variances associated
with the five Tasters’ scores along with the mean scores. The sample specific effects may
also be estimated.

The ML and ANOVA estimators of variance components and the mean scores are
presented in Table 5.6 and Table 5.7 respectively, along with the estimated loglikelihood
values for the two attributes. It may be observed that the ML estimates of error variances
associated with the Tasters (o7 s) are not very large. However, the estimates of o2 are
comparatively large, especially for the attribute quality. This impliesdisagreement among
the Tasters in their average choices. Small values of o2 implies that the individual Tasters’
choices do not vary much over the different clonal combinations. We note here that the
estimates of 02 can not be considered as the guiding factor to decide upon the precision
of the Tasters in this case. This is because each sample represents a particular clonal
combination and the variation in terms of quality attribute(s) over samples is most likely.
Small value of o? implies that the i** Taster do not find much difference in the samples in
terms of strength and quality. No specific interpretation about the samples can be drawn
on the basis of these findings, as only a single sample for each clonal combination is studied.
Had several observations on each clonal combination been available, we could infer about
the characteristics of the samples with validity. For the same reason of poor information,

we can not introduce much discussion on the estimates of fixed effects parameters ;.
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The estimated scores (it + X;) and the estimates of \; along the row scores of the
five Tasters on strength and quality are presented in Table 5.8 and Table 5.9. It may be
observed from the row scores that the scores given by the fourth Taster (T 4) on quality
are very low as compared to those given by other. In fact this Taster’s scores ranges from
3.71 to 4.50, which is far below the ranges of the other Tasters’ scores. Profile plots of
Tasters’ choices on strength and quality along with the estimated scores are presented in

Figure 5.4 and 5.5.
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Table 5.1 : Two-Way ANOVA result

Source | df | SS F | F critical at 5%
| Sample | 13 | 4.38 | 1.38 2.12
Strength | Taster | 2 | 6.24 | 12.83 3.37
Error |26 6.32
Sample { 13 | 3.22 2.12
Quality | Taster | 2 |13.52 3.37
Error 26 | 4.74
Sample | 13 | 11.28 | 2.33 212
Value Taster | 2 | 6.55 | 8.78 3.37
Error 26 | 9.70
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Table 5.2 : ML estimators of y and variance components

Strength | Quality | value

5.2209 | 6.3909 | 7.8867

=

0.5772 | 0.2217 | 0.0684

Q»
-

62 1.1980 | 0.1154 | 0.6157

62 0.0001 0.1658 | 1.4104

0.5772 | 0.2217 | 0.0684

(o3
!N

In L | -19.4351 | -19.0047 | -21.5630

Table 5.3 : ANOVA estimators of y and variance components

Strength | Quality | value

5.4302 | 6.4987 | 7.7854

=

62| 0.6925 | 0.2943 | 0.1358

62| 1.3645 | 0.2541 | 0.6352

62| 0.0021 | 0.1956 | 1.5684

62| 0.9824 | 0.3212 | 0.1653
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Table 5.4 : Estimated scores for the three attributes

Sample Strength | Quality | value

1 5.75 6.94 8.21
2 4.84 6.68 8.08
3 5.04 7.09 8.28
4 4.25 6.92 8.10
5 4.15 6.73 8.09
6 4.50 6.76 8.27
7 4.85 6.67 8.12
8 4.00 .85 7.73
9 4.15 6.07 7.74
10 4.28 6.19 7.60
11 4.35 .81 7.35
12 3.8 5.88 7.69
13 4.25 6.09 7.57
14 4.55 5.69 7.58

Tl —wmy)? | 8.07 2.49 | 0.68
(@ —yy)? | 16.77 1.01 | 8.35

(9, — v3,)% | 0.00001 | 1.71 |19.47
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Table 5.5 : Two-Way ANOVA for Data Set 6

Source {df | SS F | F critical at 5%

Sample | 15| 3.68 0.68 1.84
Strength | Taster | 4 | 44.61 | 30.87 2.53

Error | 60| 21.68

Sample | 15 4.09 1.35 1.84
Quality | Taster | 4 | 136.32 | 169.69 2.53

Error (60| 12.08




Table 5.6 : ML estimators of 1 and variance components

Parameters | Strength | Quality

P 6.7433 | 6.3379

62 0.1173 | 0.1285

62 0.5957 | 0.4888

52 0.0783 | 0.2003

52 0.8167 | 0.1261

52 0.1966 | 0.2055

62 0.5029 | 1.6858
InL -32.0607 | -30.5576
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Table 5.7 : ANOVA estimators

) TStrengc)z Quality

6.9985 | 6.7568

=

62 | 0.2365 | 0.3212

52| 0.6984 | 0.5878

62| 0.0985 | 0.3012

621 0.9987 | 0.1546

621 0.2122 | 0.3214

52 | 0.7561 | 1.8751
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Table 5.8 : The Tasters’ scores on strength and estimated scores

along with the fixed effects estimates Xj

T1|T2|[T3| T4 /| TS5 | Estimated Score Aj

8.00 | 4.85 | 7.43 | 6.57 | 8.14 7.1815 | 0.4382
7.85 (528 | 7.00 728|714 6.8310 v 0.08771
7.00 | 4.85 | 7.28 | 6.74 | 7.43 6.6975 -0.0458
7.75 | 4.86 | 7.14 | 6.14 | 7.85 6.8621 0.11884
7.29 | 5.14 | 7.29 | 6.57 | 7.43 6.8071 0.06389
7.14 | 5.14 | 6.86 | 6.71 | 7.00 6.5071 -0.2362
7.33 | 5.00 1 7.00 | 7.00 | 7.17 6.6571 -0.0862
7.17 | 4.50 | 7.17 | 6.67 | 7.67 6.7290 -0.0143
7.50 [ 5.50 | 7.25 | 7.00 | 7.75 6.9449 0.2017
7.50 | 6.00 | 6.50 | 3.50 | 7.25 6.4134 -0.3299
7.25 [ 6.50 | 7.25 | 6.50 | 7.25 6.8218 0.07850
7.75 | 7.25 | 7.50 | 5.50 | 7.00 7.0341 0.29081
7.00 | 5.25 | 7.25 | 6.50 | 7.50 6.7208 -0.0225
7.25 | 4.75 1 6.75 | 7.00 | 8.00 6.6547 -0.0887
7.50 | 5.57 | 7.00 | 6.25 | 6.50 6.6018 -0.1415
6.75 [ 6.25 | 6.75 | 6.00 | 7.00 6.3795 -0.3638
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Table 5.9 : The Tasters’ scores on quality and estimated scores

along with the fixed effects estimates X,

T1 T2 T3| T4 | TS5 | Estimated Score | X,

7.71 | 5.00 | 7.71 | 4.14 | 8.00 7.0125 0.6746
7.57 [ 5.14 | 7.00 { 4.43 | 7.28 6.9062 0.5683
7.00 | 4.85 | 7.71 | 4.28 | 7.57 6.7986 0.4607
7.57 | 457 | 7.71 [ 4.14 | 7.85 6.9496 0.6117
7.29 | 486 | 7.71 | 4.40 | 7.43 6.9585 0.6206
7.14 | 4.71 | 6.86 | 3.71 | 7.00 6.4798 0.1419
7.33 | 4.67 | 7.50 | 3.83 | 7.50 6.7219 0.3814
717 | 717 | 7.50 | 3.83 | 7.67 6.6289 0.2909
7.50 | 5.50 | 7.50 | 4.25 | 7.50 6.9659 0.6280
7.50 | 6.00 | 6.75 | 4.50 | 7.00 6.9214 0.5835
7.25 | 6.50 | 8.00 | 4.50 | 7.25 7.1563 0.8184
8.25 | 7.00 | 7.50 | 4.50 | 7.00 7.4211 1.0832
7.00 | 5.25 | 7.00 | 4.25 | 8.00 6.6822 0.3443
7.25 { 4.75 | 7.00 | 5.00 | 8.00 6.9775 0.6395
7.50 | 5.50 | 6.50 | 4.00 { 6.50 6.6407 0.3028
6.75 { 6.00 | 7.00 | 3.75 | 7.00 6.4687 0.1308




Figure 5.1: Profile plot of scores on strength
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Figure 5.4: Profile plot of scores on quality and estimated score
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CHAPTER - 6

ONE-WAY ERROR COMPONENT REGRESSION
MODELS WITH HETEROSCEDASTIC ERROR

6.1 Introduction

In the third chapter we discussed the association of biochemical quality parameters in tea
with the sensory score given by single Taster. In this chapter we study the possibility of
associating the chemical information in tea samples with sensory scores given by a panel
of Tasters. We adopt the regression approach here. In the regression setup the measured
values of chemical parameters are treated as regressors and these measurements are known
to be obtained with high degree of accuracy. The dependent variable (response) is nothing
but the sensory scores given by the panel of Tasters independently. Thus we have repeated
observations on the response variate.

The problem may be viewed typically as a chemometric one, where the information set
includes both chemical parameters and the sensory scores. Note that the measurements
on biochemical parameters are fixed for a particular sample. Only the sensory choices
vary due to Tasters. Unlike a typical sensory panel data, we have no replicated scores by
Tasters on each sample. Only a single score on each sample (for a particular attribute) by
a particular Taster is available. Thus we can not study the different possible aspects of
the sensory panel data related to ‘scale differences’, ‘non-linearity component’ for sample
x assessor ‘interaction’ etc., while relating chemical information with the sensory scores.
Given the Data Sets 7 and 8, we can atb est study the individual variations among the
Tasters apart from identifying the biochemical quality parameters, which are statistically

significant in terms of influencing a particular quality attribute.



One possible statistical approach in this situation may be the multiple linear regression
on the means of the scores given by the Tasters. In this approach we ignore the subjectivity
associated with the assessors, choices and can not track the individual variation. Again,
if the regressors are interrelated leading to multicollinearity problem, the applications of
techniques like Principal Component Regressions may be used. However, for the data sets
under study, the conditional Index test does not indicate severe multicollinearity.

Keeping in view the inherent subjectivity associated with the Tasters' choices, we
may introduce an error component with the response variable. As several Tasters' scores
are available for a given set of samples, we may formulat our regression model so as
to take into account the individual variations due to Tasters. Keeping this in view we
propose some error-component regression models in this chapter. As has been discussed
in the last chapter, there is a continuing debate on whether to assume Tasters' affects
as fixed or random. In the error component regression set up, we discuss random effects
formulations, under the assumption that the error variances associated with different
Tasters’ scores are unequal. Thus our study is specific to error-component, regression
models with heteroscedastic errors.

The error-component models are well developed in the statistical literature. (Baltagi,
1996) and we do not claim any originality in our study, so for the statistical model
formulation is concerned. We simply extend the basic model formulation and discuss the
estimation procedures in a heteroscedastic situation.

Before we formally introduce the error-component models, we need to undertake some

basic diagnostics, which is discussed in the next section.

6.2 The Basic Diagnostics

In the regression set up, under the assumption of same distribution for different individual
responses, it is important to study whether the intercepts and/or the regression coefficients
exhibit same pattern while associating the chemical information on a particular set of -

tea samples with different Tasters’ scores. Here we address the problem of studying



the stability (consistency) of different coefficient estimates. If, for the given two data
sets under study, it is established that the sets of regression coefficients are different for
different individual responses, then we may have to incorporate this into the model in an
appropriate manner.

In & multivariate multiple regression setup, we model the relationship between r re-

sponses ¥ ,¥ ,...,¥ , and a single set of predictor variables, z,,z,,...Tk, as
gl = .u1+ﬁ11z1+...+ﬁk1mk+u1
gz = [£2+ﬁ12$1+...+ﬂk2$k+UQ
Y = po+ Bz + .. 4 Biezi + u, (6.1)

Each response is assumed to follow its own regression model. The error component u =
(u1,uz,...u,)" has E(u) = 0 and Var(u) = ®. The error component associated with
different responses may be correlated. In matrix form the above formulation may be

written as y = X + u, where

r . r E
Yn Y2 ... Yir Hr M2 ... Uy
Yn Y2 ... Yor ,611 ﬂxz oo ,Blr
Y = s ,6 =
| Ynl Yn2 ... Ynr Soxr i Brx1 Brz ... DBre J kriyxr
[ h
Ui 2 ... U
U1 Uz ... Ugy
U=
unl un2 s Unr |

Here E(v) =0, Cov (u.,ul) =04 I for 4,1 = 1,2,...r. We are primarily interested in

the estimates of the regression coefficients vectors 3. Note that for the ih response, the

~g
t
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GLS estimator of § would be (X't X)) X’ZNI’., where ¥; = o I. Thus for all the
" responses, the esti;l'auted GLS estimator would be

B= {gl[zzgr] = (X' 1 X)" 1 X'$! {glgz...gr] :
which is obtained by minimizing u} &' u; = (y; — Xg')’ & (y; - X ) for each i. Here
B is unbiased and consistent with covariance matrix E[([’:f - g)(é - é)"] =[X'o! X7
To obtain the estimator 3 we use the OLS residuals i; = gi - X; [3’.-. The :** element in
3" is of the form 6;, = = qy .

Before we develop a formal error-component regression model combining all the re-
sponses together, it is important to test if é , ,9 e g , the vectors of regression coeffi-
cients are all equal for the r responses on th(la giifen se; of n samples. Here the problem
is to study the stability of regression coefficients for different responses given the same
set of predictors for all the responses. This can be done introducing dummy variables in
the regression model. The techniques and implications of introducing dummy variables to
allow for differences in the intercepts and/or slopes are well developed in the econometric
literature. To test the hypothesis of stability (or consistency) of § coefficients, we may
extend the ANOVA test proposed by Chow (1960). In our situation, the null hypothesis

to be tested is
Ho:Bu=...=0i ..., Ba=...=0 and gy =g =... =ty .

If this hypothesis holds, we can estimate a single equation pooling the responses together

and assume fixed regression coefficients for all the independent response variates. Other-

wise, we have to develop regression model with varying slopes over the responses. Here

we use the concept of restricted error sum of squares (RESS) and the unrestricted error

sum of squares (UESS). To attain UESS we estimate the regression model for each of the

equations defined in (6.1). Suppose UESS; is the error sum of squares for the i** equation
UESS;

with regression error variance 0®. Then 235 follows x? distribution with n; — k degrees

of freedom, where n, is the sample size for i** equation. Now since the responses are
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independently made by panel of Tasters, Z URSS,/a* has a x* distribution with

=1
d.f. Z n, — rk —r. We have, URSS = Z URSS,/a°.
1=1 1=1
Again, RESS is obtained from the regression with the pooled data, which obviously
imposes the restriction that the regression parameters are the same (Hp). It is known

that RESS/a? has a x? distribution with d.f. ) n, — & — 1. Now the ratio
=1
(RESS — UESS)/(r = 1)(k + 1)

F = ""0Es5/(> n, — vk - "

(6.2)

has a F-distribution with d.f. (r — 1)(k 4+ 1) and )_ n, — rk — r. Note that the
term (r — 1)(k + 1) represents the difference of the degrees of freedom of RESS and
UESS. One limitation of thié F-test is that it gives a general test about the equality of
all the slope coefficients and intercepts. This. Chow test might tell the consistency of all
the coefficients estimates but not tell us which particular coefficients are inconsistent.
Keeping this problem in view, the use of dummy variables in the regression model may
be suggestive and with this approach are may check for the significance of different
dummy variables looking at the t-ratios. But it the number of responses is large, then
there will be too many dummy variables in the model. Also if the multicollinearity
problem exists, then the t-ratios for each of the regression coefficients are likely to be
insignificant and still the F-ratio for the entire set of coefficients is significant. That is
why we propose the use of F-test first.

For both the data sets under study, the estimated values of F do not suggest rejection
of the null hypothesis. These estimates we presented in the data analysis section. On
the basis of our diagnostics. We consider the error-component regression models, which
are described in the section 6.4. A brief discussion on the response variable error is

followed in the following section.
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independently made by panel of Tasters, Z URSS;/o* has a x* distribution with d.f.

=1

S ni —rk —r. We have, URSS =) URSS, /o>
=1 i=1 N
Again, RESS is obtained from the regression with the pooled data, which obviously

imposes the restriction that the regression parameters are the same (Hop). It is known
r

that RESS/o? has a x? distribution with d.f. ) n, — k — 1. Now the ratio
=1
o _ (RESS ~ UESS)/(r ~1)(k + 1)
- UESS/(T; ny — Ttk ~71)

(6.2)

has a F-distribution with d.f. (r —1)(k +1) and 3 n; —rk —r. Note that the term
(r — 1)(k + 1) represents the difference of the degree; of freedom of RESS and UESS.

One limitation of this F-test is that it gives a general test about the equality of all
the slope coefficients and intercepts. This, Chow test might tell the consistency of all
the coefficients estimates but not tell us which particular coefficients are inconsistent.
Keeping this problem in view, the use of dummy variables in the regression model may be
suggestive and with this approach are may check for the significance of different dummy
variables looking at the t-ratios. But it the number of responses is large, then there will
be too many dummy variables in the model. Also if the multicollinearity problem exists,
then the t-ratios for each of the regression coefficients are likely to be insignificant and
still the F-ratio for the entire set of coefficients is significant. That is why we propose the
use of F-test first.

For both the data sets under study, the estimated values of F do not suggest rejection of the null I

On the basis of our diagnostics. We consider the error-component regression models,
which are described in the section 6.4. A brief discussion on the response variable error

is followed in the following section.

6.3 Some Discussions on the Response Variable Error

Most of the studies made so far have focused extensive by on problems associated

measurement error in independent variate. Carrol et. al. (1995) have discussed dif
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examples where either the predictors and/or response variates are measured with errors.
Such situations arise in different fields like Nutrition studies, Bioassay studies, etc. Some
specific examples are Rudemo (1989) in a Herbiade study, Testensen et al. (1989) in long
function in children, heart disease and blood pressure studies by Kannel et al. (1986),
Liu and Liang (1992), among many others. Pierce et al. (1992) considered analysis of
A-bomb survivor data from the Hiroshima explosion.

Not many studies have been made (in our knowledge) where only the response in
measured with error. A clinical example is due to Witter et al.(1989) in which damage
of heart muscle cause by a infractibn can be assessed accurately, but the procedure is
expensive and invasive, and instead it is common‘ practice to use peak cardiac enzyme
level in the blood stream as a proxy for the to true response. This is obviously a surrogate
response variate.

We may introduce an example from the economic field, where the profit (response) of
a company is'a function of input price and input quality for a given technology and in
such a situation we get measurement error only in response variate. Such situation may
;\.rise in Sociological and Psychological studies also.

The extensive attention paid to predictor measurement error is obvious as the predictor
measurement error is seldom ignorable. The causes and remedies are studied by many
researchers. But the response measurement error is often ignorable, as the model holding
for true response hold also for the proxy response, except that a measurement error
variance component is added to the response variance. For example, in lines regression
models with simple types of response measurement error, the response error is confounded
with equation error and the effect is simply to increase the variance of the parameter
estimates. Thus response measurement error is ignorable in some cases. However, in most
of the empirical situations, the response errors are not ignorable. In more complicéted
regression models, especially is nonlinear situations, it is important to explicitly account
for the responses error in the regression analysis.

Carrol et al. (1993) discuss the unbiased and biased measures of true response. Both

additive and multiplicative error structures are considered for a case control study. As

163



they observe, the case of homoscedastic regression variance provides an example of ‘ig-
norable’ response measurement error. In such situations, unless the separate VCs are of
independent interest, the response error can be ignored and no repeated or validation
data is required. But when the VCs are of indepepdent interest, one must have repeated
observation for response variate.

The literature on regression models with repeated observations on response variate
is scarce. The cause is possibly the ‘no-serious statistical complexity’ in the estimation
procedure. As discussed earlier, the usual estimators of regression coefficients are still
unbiased and consistent. However, if heteroscedasticity is introduced in the repeated
observations, it adds some special features to the regression estimators since values of
the regressors do not change over repetitions of the regressand. One such result is that
the GLS estimates reduces to OLS estimates with the response variate replaced by the
weighted mean of repeated observations (Pal and Paul 1997, 1998). One may utilize the
repeated observations to estimate the VCs along with improved estimates of regression
coefhicients.

Problems also arise when we like to test the coefficient estimates for specific values
or simply to see the significance of the efficiency of estimates by incorporating distribu-
tion assumption on the response error. If both response as well as the equation error
are assumed normal, then there is no wayout to isolate these two effects. Identification
problem arises for these parameters. Thus the efficiency of the estimates can not be in-
creased. This problem can be partially solved if repeated observations are available for

the response measurement.

6.4 One-Way Error Component Regression Model

In this section we consider the one-way error-component linear model, where the Taster
specific effects are assumed to be random. The logical explanation behind the assumption
of random Tasters’ effects has already been given in the previous chapﬁer. Here we present

two alternative formations.
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The general linear random effects model is of the form y = X8 + Za + e, which
has already been discussed in the second chapter. Here the definition of e is based first
on defining E(y) = X8 and E(y | @) = X0 + Za and then e = y — E(y | o). We
generally consider E(e) = 0 and E(a) = 0. For Var(a) = A and Var(e) = E, we have
Var(y) = E + ZAZ'. The estimators of § and the variance components along with their
statistical properties are well developed in the literature (see review chapter).

We formulate our model specific to the tea quality assessment data under study. Sup-
pose for n tea samples, r Tasters ilave independently evaluated the tea Samples. Also,
measurements on k biochemical parameters are available and we do not have any missing
observation. The tea samples are collected from the same experimental garden, received
the.same manufacturing/processing system and are assumed to be random samples hav-
ing the same intrinsic quality. Then we may associate the chemical information with the
sensory scores using the following model

Yj = pt+ai;f+e; (6.3)
1=1,2...1, i=12...n
with ¢ denoting Tasters and j denoting samples, z;, is the matrix of k regressors (biochem-
ical parameters) for the j** sample. Note that z,; is fixed over i. 8 = (61, 02,...,0k) is
the k x 1 vector of slope coefficients and p represents the intercept. The error component
e;; may be decomposed as

€5 = 0y + Uy (84)

where «; denotes the unobservable Taster specific effect and u;; denotes the remainder
disturbance. Combining (6.3) and (6.4), we have the one-way error component regression
model

Yij = p+ 250 + o+ ug (6.5)

L
Here o is the average effect due to i Taster and u;; varies with Taster and sample.

Stacking the data for all the samples, the linear error-component regression model may



be written as

(8} (me) (x\[B] [0 0 ][w] (®)
22 puly X ﬁQ 0o 1, ... 0 (023 E2
= + + +
\ v \ 1l \ X /ls] Lo 0o 0 1,]]a] \ ¢
Sy=p1, @) +X0+ Za+u, (6.6)

where ¥' = (ya Yia.. - Yin), ¥ = (Ui Uin...Uin), Z = I, ® 1, is the matrix of dummy
N‘ ~g
variables associated with a. X represents the matrix of regressors on n samples for ith

repeat and is of the form

- -
Ty T2 ... Tik
Toy To2 .. Tk
X =
In1 Tn2 ... Tnk |

Here the X matrix is same for all the repeats. Note that, if a; are assumed to be fixed
Taster specific effects with remainder disturbance stochastic, then we have fixed effects
error component model. The z;; are assumed to be independent of u;; for all ¢ and j.
The fixed effects (FE) model is an appropriate specification if we are focusing on set of r
Tasters. Inference in this case is conditional to the specific r repeats. In FE model, there
is a large loss of degrees of freedom as we are estimating r extra fixed effects apart from
the location parameters. In fact, we are to include (r — 1) dummies in the regression, and

too many dummies may aggravate the problem of multicollinearity among the regressors.

Also, it may be mentioned here that the one-way random effects model y;; = po-t-a+usj,
discussed in the fifth chapter is a special case of the model (6.5) with random «; when

g = 0 or z, (the matrix of regressors for j** sample) are all the same.

166



6.4.1 Heterosedastic Formulation of Dispersion Matrix

Under homoscedasticity, we may introduce the assumptions in RE model : a; ~ 1id (0,02), uy;
iid (0,02) and o are independent of u;;. In addition, the x;; are independent of o; and
ui; for all ¢ and j. Tn this situation, the variance-covariance matrix of the composite

disturbance ¢ = Za 4+ 1 would be of the form

E(e¢) ZE(ad) Z'+ E(uv')

= oal;® Ju) + ol ® I)

This implies a homoscedastic variance Var (e;;) = 02 + o2 for all i and j and an equi-

correlated block-diagonal covariance matrix. In fact,

Cov (eij,e) = 02 +02, for =1 and j=k
= o2, for i=10 and j#k
= 0, otherwise

The best quadratic unbiased estimators of variance components and the ML estimators
of the implicit parameters are discussed by Baltagi (1995).

Now the homoscedastic error component model may be generalized to the case where
a; and/or u;; are heteroscedastic. Here we may assume o; heteroscedastic, i.e., a; ~ (0,07)
fori=1,2,...7, but u; ~ (0,02). Again we may keep a; homoscedastic with a; ~ (0, 02)
and impose heteroscedasticity on wu;j, i.e., u;; ~ (0,0%). Thus we have two distinct
formulations. The one-way regression model with the assumption o; ~ iid (0,02) and
u;; ~ wid (0,0?), be termed as Model I and that with the assumption o; ~ iid (0,0?)
and w;; ~ 4id (0,02) be termed as Model I].

If we presume that the Tasters’ do agree on average about the particular quality
attribute for the given set of tea samples, but the variation over samples by each Taster
differ, then the use of Model I seems appropriate. Otherwise we may try the Model II.
Anyway, the appropriateness of using either of the models may always be tested. Here,
Model T and Model IT are non-nested and we may use the "information criteria” based

test to compare the fit (Vonesh and Chinchilli, 1997).
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The heteroscedastic formulation of one-way error component model has already been
introduced by Baltagi (1995). Baltagi discussed the estimation of VCs using the OLS
residuals &;. The estimates proposed are : @7 = zn: (&; — €5/(n — 1) using the OLS
residuals &;;, and then obtain 57 = @7 — ¢2. Here thé ;;timate of 02 is the within residuals
MSE, obtained by regression on means. This is clearly a two-stage regression procedure
and the OLS regression coefficient estimates are still consistent, but not efficient. This
estimation procedure is specific to Model II.

In case of Model I, we have E(e};) = w} = o}, + 0}. Using OLS residual &;, we may
obtain 17):2 = ¥;(&; — €0)?/(n — 1). Also, we may compute ;? = ¥;(&; — €0)*/(n - 1),
using the within residuals. Then (1;):-2 —;?) gives r estimates of o2 and r;z = Z,-(ﬂ)\? —;?)/r
is a consistent estimator of o2.

Here the problem lies with the fact that the within residual MSE is obtained from
the regression on means and may not always provide a stable information if the between
Taster variation is very high for a given set of data. This may also effect the standard
errors of the estimates of § coefficients. For Model 11, this two-stage procedure requires a
large n and preferably small r. In our study, we restore to the ML estimation procedure
for many obvious reasons. The ML estimates of regression parameters and the VCs are

discussed in the following section for both Model I and II.

6.5 ML Estimation For Heteroscedastic Models
6.5.1 ML Estimation For Model I

The variance-covariance matrix of the composite disturbance component e = Za+u, may

be presented as

¢, =E(ee') = ZE(ad)Z' + E(uu')
= 0§ZZI+Ei®In = Ug(Ir®Jn)+2i®In )

where ZZ' = I, ® J,, and ¥; = diag(o? o?...02). We may write, &, = diag(S) S;...S,),
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where

- 1
ol +o? of cee 0t
o> d*+a? ... o
S =
2 2 2, 2
| o° Lo o+ 0; |

The determinant and inverse of S; matrix has already been obtained in Section 5.5.2
of Chapter 5. Under the normality assumption, the probability function of the response

y may be written as
ply) = (2m)"% | &1 | ezpl-5(y — i ~ XBY 87'(y  plor — X5
The likelihood function for Model I may be written as
Ly = (2m)" % (0?)*F [TLi(0? + no?)]~Feap [——(y plae — XB) &7y ~ plar — XB)),
and the quadratic form in the exponent may be simplified as

(v — plar — X0) 97" (y — pelar — XB)'

r ) x ,1 0.2
= Z:l(yi'"ﬂnr_ f) 0—?[ m
1 . 1
= X5 2—n-m) -3
i T 3

~ of 02+n0

n](y: Nlnr - xﬂ)

Q[E Yij — /"‘xg ﬁ)]2 )

where 2} = (z;1,Zj2. .., Tjk)-
Thus the loglikelihood function may be written as

h = -% In(27) —~ "2:—1 i lno? — %Zi In(o? + nol) - %Zi 2 ;1‘7 (yij — p — x}ﬂ)2

2
+1 5 ;17 P e (T (vis — 1 — x5 B)?
(6.7)
Partially differentiating !, with respect to the parameters and equating to zero, the

ML estimating equations for the location parameters and the VCs may be obtained as
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follows:

S? o? o2
(n—-1)(1~ 02) + 57 -inoz [(2 + no?/o?) D? + a; (62 +no?)] = 0,
1 n 2
S R LA = 0
Z,: o? + no? [t 0% +no? bl ’

X =

t

22(%, p-z)p)z, = 0,

o + no;

I
o

= Z (gjw - N‘x;ﬁ)j;
J
Z(yaw_ll"x;ﬁ) = 0.
J

Here =(n-1)" z:(y,J p—2,0)%, D3 — n— ,0), 5 = = Zy,, ,
and G = 2‘: w, y,,/}i: w,, where W, = ?‘?_WLI_"E is the weight.

Note that from the last two equations, the estimates of # and u may be obtained
respectively. These estimators are same as the WLS estimators. here 8= (X'X) 1 X'yy,
where X is (n x k) matrix of regressors defined earlier and yy = (Y1w Y2w . - - Ynw)' is the
weighted mean vector. The weighted mean for each j (sample) is calculated by taking
weight w, = ‘-;3+‘ng- with y,,. We mention here that for unequal o2s, explicit expressions
for 02 and o2 can not be obtaine\d from the above equations. Also, the ML estimators
obtained from the above system of equations for 0? and o2 may take negative values. If
negative estimate of the variance component(s) is encountered, it may be replaced by zero

and the iteration process may be continued.

6.5.2 Estimation of Random Component

In the model (6.3), the random component a, represents the effect due to 1** Taster.

This may be looked upon as the variation in the average score due to i** assessor. This

170



unobservable random part can be estimated using the technique discussed in the fifth
chapter.

The conditional distribution of ¢; given the total errors o; + w1, o + uio, . . ., 0 + Uin
can be obtained and an approximate summary measure of this conditional distribution
may be assumed to represent the random component. The computational details follows
from Section 5.5.3 of Chapter 5. The conditional probability of a; given the total errors
is

p() = ploi | oi +uiny 0 + uiz . 05 + u4)

The conditional distribution being normal the mean of this conditional distribution
may be assumed to give an approximate measure of ¢;. From the above form we may
write, i
no?

& = E(os | o +ui, o + w0 + i) = = (Yio — 211[9)

A,? +no?
6.5.3 Discussion on the Estimator of §

We note that 5 obtained here is nothing but the GLS or WLS estimator fgrs = (X'®-1X)-1X'®"1y.
This is obvious since under normality assumption ML and GLS estimates are same.
It is also known that the covariance matrix of the estimated regression coefficients is
Var(ors) = (X'®-1X)-1. The estimated value of the covariance matrix is found by
replacing the error variances by their ML estimators. Here J is consistent as well as
efficient.

Again we may think of a transformation matrix P such that P'P = &', Then the esti-
matorof fis § = (X'P'PX)~(X'P'Py) = [(PX)' PX]"Y[(PX)'Py] = (X" X*)"1(X"y"),
where X* is the transformed design matrix and y* is the transformed response vector.
In this case we need not obtain the unknown & to estimate the fixed part of the model
(6.5). Clearly Bors reduces to fors under this transformation as the GLS estimator can
be obtained applying OLS to the transformed observations (y*, X*).

If interest lies only with the estimation of §, then the problem boils down in choosing

an appropriate form of the transformation matrix P only. Such a formulation would
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substantially reduce the computation as we need not obtain ®~! in this case.

In many longitudinal analysis, the primary interest lies in making inference about
. When the mean response is of primary interest, we may use the WLS estimation
technique. Here a symmetric weight matrix W may be introduced and B, is obtained as
By = (XWX)"!X'Wy. This estimate is unbiased whatever may be the choice of W. If
W = I, we obtain OLS estimator. We note here that under random effects formulation,
the GLS estimator of 8 based on the true VCs are BLUE. All the feasible GLS estimators
considered are asymptotically efficient as neither n or r tends oo. Maddlla and Mount
(1973), Taylor (1980) and Baltagi (1981a) conducted Monte Carlo studies and found little
to choose among various feasible GLS estimators in small samples and argued in favour
of ANOVA feasible GLS and ML to ensure that these do not yield drastically different

results. .

6.5.4 The REML Estimation for Model I

In a homoscedastic situation the ML estimator of VC is not unbiased. One needs to
adjust for its degrees of freedom. This is overcome by REML approach. In this section
we obtain the REML estimators of variance components for the linear error corﬁponent
model - Model I.

In case of general linear model y ~ N (X, ®), the REML estimator may be defined
as a ML estimator based on a linearly transformed set of data y* = Ay such that the
distribution of y* does not depend on 8. One way of achieving this is by taking A to be

the matrix which converts y to OLS residuals.

A=T-X(X'X)'X

Here we have y; = y; — 1 Bors, where fors = (X'X)~! X'y. 1t follows that E(y;) =0
or E(y*) = 0 for any choice of (3, and in fact, the distribution of y* is independent of 3.

Under this transformation the reduced profile loglikelihood can be shown to be
. 1 ' . .
lp= -—5[(nr — k) In(2m)+In |®|+In | X' &P X | +(y - XB) &' (y — XP)]
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where the MLE of the parameters are obtained by maximizing
Iy = —%[nr In(27) +1n | &+ | (y — XB) &y — XB)]

It follows from ille results that the general linear model incorporates only a simple mod-
ification of the ML algorithm in the earlier section.

The restricted likelihood function for the Model I can be maximized by using the EM
algorithm or the Newton-Raphson algorithm. Various packages now exist to maximize or

" minimize the loglikelihood function (for example, SPLUS, using nlmin command).

If we compare the l,,,; and [, we observe that the basic difference lies with the term
3 In | X'®1X | apart from the coefficient of In(27). It may be noted that X'®~'X
is a (k X nr) x (nr x nr) x (nr x k) = (k x k) matrix. So this term is typically of
order k, where as l,; is of order nr suggesting, correctly, that the distinction between
ML and REML estimation is important only when k is relatively large. Many authors
have discussed the relative merits of ML and REML estimators for covariance parameters.
Cullins et al. (1990), Verbyla et al. (1990) apply REML in longitudirial data settings,
whilst Tunnichiffe-Wilson (1989) uses it for time-series estimation. One of Tunnichiffe-
Wilson examples shows how REML copes much more efficiently with a near singular
variance matrix than does ML estimation. The two methods are asymptotically equivalent
as either or both n and r tend to infinity for fixed k. When k tends to infinity, comparisons
unequivocally favour REML. In summary, ML and REML estimators will often give very
similar results. But when they differ substantially, the REML estimators are preferable.
But we note here that not much is known about this while dealing with small sample size

(fixed samples).

6.6 ML Estimation for Model 11

In the heteroscedastic Model II we assume that a; ~ iid(0,0?) and u;; ~ iid(0,02).
The random component a; is assumed to be independent of u;, and (¢ # I). In this
case, for the model (6.5) we have E(y;;/zi;) = p + zi;8, Var(yij/zi;) = o? + o2, and

Cou(yij, yix) = 02 for j # k.

173



The variance-covariance matrix for this model may be obtained as (see Section 5.6.2

of Chapter 5)
Elee) = ®=ZLZ +o0ll,
= L®J,+02(I, ®1,)
= diag(o}J, + 021, 02J, +0%l,...0%J, + o2I,)

= diag($,Ss,...S,),

where & = diag(0?,0%,...0%).

The determinant and inverse of &, may be obtained as | ® |=| Sy || Sz | ... | ¢ |=
T 2
(02)r(n=1) tI=]1(U:‘I +no?), and S = ;;13- I, - mazj;;;;?j Ja-

Now the likelihood function for the Model II may be written as (under the gaussian

assumption)
Ly = (VER) ™ (o) (M (02 + ol espl—3(u — - XY 85" (y - s~ XB),

and the quadratic part in the exponent may be simplified as

r 1 02
[ X.p) —In - 5 n t T BT Ay
gzl(y ru’ lﬂ) 0,3 03(03+n0?)J (y M X:H)

1
= Y- = X (- - Xo6)
2

—2_’—0—7)(% "= Xﬂ)J(y, ©w— Xﬂ)

02(02 + no

2
1 ,
= ;—Zzt:;(yu‘#—%ﬂ)?—z:m[zwu u= $ﬁ]

!
where 1) = ()1, %52, .. - Tsx)-

The loglikelihood function for the Model IT may be written as

nr r(n—1) 1
L, = -3 In(27) - ——= 1 —§;]n(aﬁ+n0?)
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n—1 1 ol
- S? 4+ = —_—__D? 6.8
27 =S X gy Do 08

n

where (n — 1) S} = Z(yu K- X;’ﬂ)2 and D, =5, (v, — p — z},0).

1=1

Partially differentiating (6.8) with respect to 02, 02, 1 and f, we obtain the following ML

estimating equations :

2
03 + TLO'? = }1{ [Z](ytj — K~ x;ﬂ)]
= 2= 1%,y —u-g,p)| - Lo? (6.9)

= =D? - Lo2

n

S2

-1 (-5 %)
1

;W zj:(yu—u—xjﬂ)i;=0

= 3 (Ww-hn-26) % =0 and
J

Z(gzw —u—- IIJ;,B) =0

where §,u = Y W, /d W, Wﬂfm Here g,,, is the weighted mean for 7** sample,
1] )
where weights are obtained from the estimates of variance components. Clearly the ML

estimators of § and u are the weighted least square estimators.



6.7 Residual Analysis for the Error Component Model With

General Covariance Structure

Haslett and Hayes (1998) has discussed the general theory for residuals from the general
linear model. For the model y = u + X8 + Za + u, we have y ~ (Xf,®), where
& = E(WW') for W = Za + u. The GLS estimator of #is § = (X' &' X)™! X' 'y
with Var(8) = (X' &' X)~!. Here the classical residual may be defined as @ = y—Xf=
®QY, where Q = @' Pand P = 7' X(X'®7'X)~! X' &~1. Also, Var (@) = 2Q% = G.

The ‘lack of fit’ statistic for the model is defined as S = @’ ®~! 4 = y'Qy. Note here
‘that to estimates S, we may use the ML estimators of variance components. The closer
the values of S to zero, the better is the fit.

We note here that since the method assumes normality, there is also a need to assess
the adequacy of that assumption. For RE models, Ryan and Dempster (1984) proposed
the weighted normal plot as a graphical approach to the assessment of normality. However,
failure of approximate normality assumption does not invalidate the estimates of location
parameters since weighted least squares estimates are unbiased and consistent under very
broad conditions. It does, however, invalidate the usual tests and confidence intervals
based on normality theory.

The ‘bootstrap’ provides an alternative apf)roach to assessing the distributional prop-
erties of estimators without reliance on normality assumptions. The ‘bootstrap’ approach
provides an estimate of the sampling distribution of an estimator based only on that
estimation procedure and the sample in hand, without appealing to distributional as-
sumptions. If an approximately optimal estimator can be defined, the bootstrap can be

used to assess its properties.
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6.8 Study on Improvement of Quality of CTC Teas Through

Process Modification

A new process of manufacture of CTC tea has been developed at Tocklai Experimental
Station, by modifying the sequences of manufacturing steps. In the modified method, the
plucked shoots were withered, rolled, rotorvened, fermented and then taken to a CTC
machine and dried instead of fermenting after CTC cut. The final products obtained
from the new sequences furnished marked improvement in shelf-life of the commercially
manufactured teas. This modified manufacturing process has, therefore, been adapted
by different commercial gardens of Assam and Dooars regions of India and outstanding
results have been observed in terms of auction price realization.

Shoots plucked from Tocklai experimental plot were manufactured at the Miniature
factory. The whole lot of leafs were divided into two equals parts. One part received
the conventional manufacturing process, whereas the other part received the innovative
modified manufacturing system. Thus we have the ‘central’ and ‘experimental’ samples.
The biochemical parameters measured are moisture (MO), TF, TR, C, brightness (B),
total colour (TC) and water-soluble solids (WSS). Detail technical discussion on the man-
ufacturing methods and the chemical analysis is available in Pal et. al. (2000).

Four experienced Tasters have evaluated the samples in terms of ‘valuation’ on a 0-10
point structured scale. For each sample (control and experimental), each Taster made 10
repeats. But the replicated scores are not available, the mean of replicated scores on each
sample is provided.

The whole batch of samples are divided into ‘central’ and ‘experimental’ group. In such
a situation, the natural interest is to study whether the quality for given set of samples has
really improved over the experimental condition or not. This is a ‘too treatment group’
situation and model has to be developed taking account of the two groups. We adjust our
model 6.6 introducing dummy variable with the intercept term in the model matrix. We
assume that only the intercept term varies between the groups, as separate slopes (f) is

not suggestive for the given data set under study. We have examined the difference of
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coeflicients two groups for each biochemical parameter. Thus we can write our model as

y® L, 0 XO ’; 70 0 o) [ e
= = * +
Y2 lp 1n, X@ 0 2zZ® a® 2

B

where y(!) and Y and (m x 1) vectors of repeated response for experimental and control
samples respeciively, with 2m = n. u* is the intercept and b* is the dummy coefficient
associated with the dummy variable. Similarly we have the partition of incidence matrices
ZM and Z® and the random component. Here 8 = (8, 82 ... B¢) is the vector of fixed
coefficients associated with the regressors.

Following the loglikelihood function is (6.7) we may write the loglikelihood for the

‘two-group’ model as

InL = —ﬁ In(27) — 2
_Z Z E 0 y,, - J;5.1') ﬂ)2 Z Z yu ur - xgz) ﬂ)2
i j=1 i jamt1 0

2
5 T e [Z(yw ‘—x§""’)}

[_E (i — (1’)[3)] }

The ML estimators of parameters can be obtained by maximizing the loglikelihood func-
tion. We have obtained the estimators of the variance components and the regression
coefficients along with the estimate of dummy coefficient using the nlmin command in

the SPLUS computational package.

We note here that the estimators of variance components, dummy coefficient and the
regression coefficients may be obtained similarly using the Model II and its corresponding

likelihood function (6.12).

178



6.8.1 Data Analysis and Discussion

The measurements of biochemical parameters and the Tasters’ scores for CTC tea samples
are presented in Table 6.9 and Table 6.8 respectively. The basic statistics for all the
chemical parameters and sensory scores, for control and experimental samples separately,
have already been presented in the introductory chapter. The significance of difference
between the mean levels over the two groups of samples for each chemical parameter
have been tested. The mean levels of TR, TC and WSS differ significantly at 5% level
(5% probability values of ¢t with 16 d.f. is 2.12). Also each Taster’s mean scores differ
significantly over the control and experimental samples. It may be observed that the
average scores of all the assessors are higher for the experimental samples as compared to
those for control samples.

It may be observed from the basic statistics that the ranges of TF for control and
experimental samples are (1.14m 1.60) and (1.17, 2.02) respectively; and those for TR
are (13.04, 14.08) and (10.90, 13.72). The ranges of these two variables are quite large
for the experimental samples. Similar is the case with WSS as well. The within sample
variability is higher for TR. in case of experimental samples (S.D. = 0.76) though that for
TF is relatively low (S.D. = 0.24). Also, it is interesting to observe that the correlation
coefficient between TF and TR is negative for experimental samples (-0.26) but that for
the control samples is positive (0.15) although the degree of association is very low.

We now associate the biochemical quality parameters with the average (arithmetic
mean) of four Tasters’ scores. Dummy variable is introduced (1 for experimental and 0
for control) with the regressors. This is done to study whether the quality has really
improved over experimental condition or not. The regression result is presented in Table
6.6. The fit is very poor with adjusted R? = 0.26 and SSE = 7.9549. All the regression
coefficients along with the dummy coefficients are statistically insignificant.

The estimates of regression parameters and variance components using our error com-
ponent regression model with dummy variable are presented in Table 6.7. To obtain the

iterative estimates of implicit parameters we set the convergence tolerance at 10~5. The
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estimate of dummy coefficient b* is positive and statistically highly significant (t-ratio :
6.84). Thus we may infer that the cup quality has significantly improved for the experi-
mental samples, so far the given CTC samples are concerned. In fact, the experimental
samples have received higher scoring in most of the cases. The estimated coefficients for
both TF and TR along with WSS are statistically significant at 5% level. Interestingly,
the coefficient estimates for MO and TC are negative, though statistically insignificant.
The estimated scores for ‘valuation’ are given in the last column of Table 6.8. The esti-
mated true scores are higher for the experimental samples in comparison to the control
samples.

The variance component o>

represents the variation in average levels among the
Tasters. A negligibly small value of 02 (= 0.0001) indicates the agreement among all
the four Tasters in their average valuation for the given CTC samples. Thus we may
say that the average scores given by Tasters for the CTC tea samples are nearly equal.
On the other hand, o?s represents the within Taster variation. We note how that the
unobservable regression error variance is confounded in o2 and can not be separated. As
may be observed from Table 6.7, the estimated error variance is minimum for the Taster
2 and is maximum for Taster 1. These error variances may be considered as grinding
factors to assess the reliability of a particular Taster’s choice. Here o2 concerns precision.
We could apply the LR test to study the significance of difference between o?s. But we
restrict to do so keeping in view the small sample size.

For residual analysis, the scatter plot of error against the estimated response was
studied and an approximate normality was ascertained from the plot. The estimated value
of SSE is 0.3639, which is much less than the SSE obtained from the regression on average.
Also the value of estimated loglikelihood is much higher in case of error component model
as compared to the regression on average. In fact, the difference between the values of
In L is 27.76. We can apply the information criteria based test (Vonesh and Chinchilli,
1997) discussed in the second chapter, to compare the fit. We note here that the general
linear regression model, where the response represents average of four Tasters’ scores, and

the error-component regression model are non-nested models. The Akaike; information
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criterion (AIC) values for the regression on mean and the error-component model are
-27.1917 and -22.5782. Since the AIC value is larger in case of error component model,
we conclude that the fit is better with the ‘two-group’ variant of Model I.

Also note that as the estimated value of o2 is very close to zero, supporting the model
assumption of constant variability among the average levels of Tasters’ scores, we do not
try the ‘two-group’ variant of model II.

We note here that some statistical confusions may arise while dealing with small sample
size, as it is our case. One may raise arguments on the danger of incorrect conclusion
about the slope coefficients, while dealing with small samples. But we note here that,
though it appears as if we have 18 samples (two groups combined), we have practically
72 observations because of 4 repeats on each sample for the response variable. Under the
assumption of same  coefficients for both groups, we are estimating only 13 parameters,
namely 5 variance components, 6 slope coefficients, intercept and dummy. Thus we have
09 degrees of freedom left for estimating the § coefficients. In this situation we do not think
that there is any real danger of incorrect conclusion about the slope coefficients. The real
danger due to small samples of this type may come from the problem of multicollinearity
since the biochemical parameters (regressors) are not repeatedly observed.

We restrict ourselves to draw general conclusion about the statistical significance of the
biochemical parameters, as we believe, a more planned experiment is required with strong
data base to decide upon the significance of biochemical parameters in this modified CTC
manufacturing process. Experiments should be carried out at different CTC tea produc-
ing regions and other relevant chemical parameters should be measured. Assessment of
individual theaflavins, which have different astringencies, can be made by HPLC, but is
difficult to undertake such assessment at production level. For the given CTC samples
under study, only TF, TR and WSS are statistically significant in explaining the overall
valuation. Note that the significance is specific to the quality attribute ‘V’, and should
not be generalized for other attributes like strength, briskness, etc.

At commercial gardens, the manufactured teas are classified in terms of different grades

like Brokens, Fannings, Dust, etc. The higher the percentage of Brokens, the higher would
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be the price for a particu}ar tea lot. For obvious reasons, the producers would favour a
manufacturing process which gives higher Broken percentage for a given lot of tea. The
modified manufacturing process was tried by three gardens of Dooars region and four
.gardens of Assam region of India. The grade percentage obtained for both control and
experimental teas are presented in Table ¢5. As many be seen from the Table, Broken
percentages for experimental samples are much higher in all the commercial gardens.
The Tasters and the manufacturers have observed that the tea samples obtained by
the moditied manufacturing process has better shelf-life and fetched higher prices. Indeed,
~ the teas are brighter and brisker. The price realizétion for these teas have been found to
be the highest amongst the best CTC category in both Calcutta and Guwahati Auction

Centers.

6.8.2 Analysis of Data Set #

As discussed in the first chapter, for a set of 18 CTC samples, a panel of 4 Tasters
have given scores (on an uniform structured scale) on ‘strength’ and ‘quality’ attribuites
separately and independently. The biochemical parameters measured are TF, TR, WSS,
TC and C. _

We first test the significance of difference among the mean scores of four Tasters for
strength and quality. That is, we text if the profiles for means of Tasters’ scores are
parallel and coincide. This text is discussed in the Chapter 2. The estimated value of
T? is 6.43 and the 5% critical value of F with 1 and 72 degrees of freedom is
Thus we may reject the hypothesis of parallel and coincident mean profiles at 5% level of
significance. This implies that the Tasters differ in their average choices on strength and
quality for the given set of 18 CTC tea samples.

In the second stage of our initial diagnostics, we calculated the F-statistics (discussed
in Section 6.2) to study the stability of location parameters, before we pool the data for
four Tasters’ scores. We calculate the F-values separately for strength and quality. The
calculated values of F-statistic for strength and quality are 2'/3 and |97 respectively.

The hypothesis of stable estimates of regression coefficients is accepted, as the critical

~
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value of F with d.[. at 5% level is On the basis of this test result, we may
use our error component regression model with same § coefficients for all the individual
responses.

We now adopt the technique of regression on means of Tasters’ scores, discussed in the
introductory section. The results of multiple regression analysis (where response variable
represents mean ol 4 Tasters’ scores) are presented in Table 6.6 and Table 6.6, for strength
and quality respectively. The fits are very poor in both the cases with very low values
of adjusted R? and high values of SSE. All the chemical parameters are statistically
insignificant in explaining the quality, as evident from the t-ratios. Only.the Calfeine (C)
has come out significant at 5% level in explaining the strength.

The association of chemical parameters with the scores on strength indicates that only
TF and C have significant influence on the attribute strength. Both ML and REML esti-
mates provide the same indication. The coefficient estimates of TR and WSS are negative,
though statistically insignificant. Again for the attribute ‘quality’, the parameters TF,
TR, TC and C have come out significant. It is interesting to observe that /;m is positive
now. We have observed the similar behaviour of TR in Chapter 3 also. The significant
influence of TF and TR on ‘quality’ in this case support the common belief among the
biochemists about the importance of TF and TR in the CTC tea quality assessment
(Yumanishi, 1995, and the references therein).

The error variance (02) is highest for Taster 1 and is lowest for the Taster 2, in case
of strength. But in case of quality, though the variation is highest for the first Taster,
it is lowest for the Taster 4. Thus the pattern of error variances is not same for the two
different quality attributes. The variation among the average levels of Tasters (¢?) is not
at all close to zero. It means that the Tasters do not agree on average, for both strength
and quality, for the given set of CTC samples. Also the within sample variability is high
for all the Tasters, as evident from the estimates of o2s.

The fit is far better with the heteroscedastic error component model as compared to the
regression on average. The In L values are much higher and the SSE values are very small.

We note here that the performance of ML and REML estimation is almost equivalent.
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Comparing the In L and SSE values we can not claim any significant improvement with
REML estimation. We have studied the patters of residuals in both the cases. The scatter
plots of residuals against the estimated response exhibit similar patterns. However, we
do not present the scatter plots here.

We note here that we have also tried the Model II (both ML and REML) on the
strength and quality data separately. The estimated values of loglikelihood (ML) for
strength and quality data re -5.1340 and -5.0698; and given the equal number of estimated
parameters in both the cases, the AIC values are certainly larger for Model 1. It means
that though the estimated values of o%s are not very close to zero (Table 6.8), still the
use of Model I remain valid and gives a better first in comparison to Model II. That is
why we prefer to present the estimates obtained using Model I for given Data Set.

As the regression on mean of Tasters’ scores do not provide a good (it in our pursuit
to associate the chemical information with sensory evaluation, we proceed to fit the error
component model. Here we prefer to use the Model II as in initial diagnostics we have
observed that the average scores of the four Tasters for the given sample differ significantly.
The ML and REML estimates of § coefficients along with the estimator of VCs, separately
for strength and quality, are presented in Table 6.8.
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Table 6.1 : OLS Regression on average of four Tasters

Var | Estimate | S.E. | t-ratio

gt | -7.9738 | 23.13 | 0.3447
5 | 0.9166 |0.6872| 1.344
Buo | -0.5616 | 0.6992 | 0.738
Bre | 1.3519 | 1.245 | 1.086
Bre | -0.3516 | 0.4071 | 0.8638
Brc | -1.046 | 1.26 | 083
Bwss | 04159 |0.5263 | 0.7903
Be | 0.2220 |0.5846 | 0.3813

R? 0.26
SEE | 7.9549
InL | -18.1917




Table 6.2 : ML estimates of parameters and variance components

Parameter | Estimates | SE

& 1.0738

52 0.3639

52 1.0273

52 0.9090

5?2 0.0001

iy 8.2874* | 2.7738

b* 10.2844* | 1.5028
Buo -0.1451 | 0.1988
Br 1.2477* | 0.5842
Brr -0.0046* | 0.0021
Brc -0.8047° | 0.5907
Bwss | 0.0731° |0.0245

Be 0.4353 | 0.2735
Inl 9.5682

SEE 0.3639

*indicates significance at 5% level.
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Table 6.3 : Tasters’ scores on ‘valuation’ and the ‘estimated scores’

Sample | Taster (1) | Taster (2) | Taster (3) | Taster (4) | Estimated Score
Exp. 6 8 7 9 8.1684
Cont. 6 7 6 7 6.7345
Exp. 7 9 9 8 8.2174
Cont. 7 6 7 6 6.6817
Exp. 7 9 8 8 7.8868
Cont. 7 7 6 6 6.7421
Exp. 8 9 9 9 8.8253
Cont. 8 8 8 5 7.2761
Exp. 8 8 8 9 8.0479
Cont. 7 6 8 7 6.7921
Exp. 8 9 8 10 8.9594
Cont, 7 7 8 8 6.7714
Exp. 7 8 7 9 7.6603
Cont. 4 8 6 7 6.6665
Exp. 9 8 7 8 8.0725
Cont 6 6 8 6 6.56302
Exp. 9 8 8 10 8.4187
Cont 6 7 4 8 6.6053
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Table 6.4 : Measurements on biochemical pararneters

Sample | MO | TF | TR | TC | WSS | C

Exp. 3.48 | 1.75 | 11.26 | 5.69 | 45.73 | 4.07
Cont. | 3.72 140 13.14 | 5.17 | 44.12 | 3.92

Exp. 3.05 {1.80(11.78 | 5.79 | 45.86 | 4.70
Cont. | 3.16 | 1.46 | 13.12 | 5.38 | 44.40 | 4.30

Exp. 3.36 ) 1.70 | 11.63 | 5.75 | 45.72 | 4.68
Cont. | 3.50 | 1.45 | 13.24 | 5.30 | 44.53 | 4.25

Exp. 297 | L.17 1 11.27 { 5.70 | 44.65 | 4.06
Cont. | 2.85 | 1.14 | 13.04 | 5.24 | 44.00 | 4.00

Exp. 3.12 | 1.50 | 11.72 | 5.98 | 44.91 | 4.18
Cont. | 2.45 ) 1.46 | 13.09 | 5.10 | 43.21 | 4.14

Exp. 3.86 | 1.79 | 12.09 | 5.85 | 46.57 | 5.67
Cont. | 4.03 145 13.12 | 545 | 45.49 | 4.66

Exp. 3.59 1 2.02 | 10.90 | 5.45 | 44.90 | 3.73
Cont. | 3.29 | 1.60 | 14.08 | 5.05 | 43.95 | 3.67

Exp. 3.98 | 1.46 | 13.72 | 5.89 | 44.63 | 3.97
Cont. | 4.10 { 1.56 | 13.18 | 5.50 | 45.52 | 4.65

Exp. 3.65 | 1.79 | 12.06 | 5.77 | 46.68 | 5.37
Cont. 4.00 | 1.53 | 13.15 | 5.51 | 45.66 | 4.66

188



Table 6.5 : Grade percentages in different gardens

of Assam and Dooars region

Gardens Brokens Fannings Dust Secondary
Cont. Exp. | Cont. Exp. | Cont. Exp. | Cont. Exp.
Garden A | 63.9 67 164 162 | 4.4 3.4 163 134
Garden B | 68.3 74.7 { 124 11.7 | 6.7 6.0 126 7.6
Garden C | 706 781 | 169 123 | 125 9.6 - -
Garden D | 36.4 ,47.19 | 23.37 23.62 | 29.65 29.19| 10.58 -
Garden E | 38.45 60.40 { 18.01 22.29 | 26.05 13.38|17.49 3.93
Garden F | 42.28 57.05 | 24.05 21.35| 19.17 13.60 | 14.40 8.00
Garden G | 60.01 69.50 | 14.58 13.33 | 1540 9.16 | 10.01 8.01

* Gardens A, B and C belong to Dooars region and the rest gardens belong to the

Assam region.
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Table 6.6 : Regression results on average of Tasters’ score on strength

Parameter | Estimate | S.E. | t-ratio

Bo -7.9046 | 4.4185 | 1.7889

Brr 0.37846 | 0.3375 1 1.12

Brr -0.2457 | 0.2102 | 1.1688

Bwss -0.1794 | 0.3158 | 0.568

Bre 0.789 | 0.562 | 1.4039
Be -0.4873 | 0.2296 | 2.1228
R? 0.38

SSE 4.7346

InL -14.8560

X%normal)
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Table 6.7 : Regression results on average of Tasters’ score on Quality

Parameter | Estimate | S.E. | t-ratio
Bo 6.7463 | 11.27 | 0.5986
Brr 0.4333 | 1.125 | 0.3853
Brr 0.2042 0.2681 0.7617
Bwss -0.2274 | 0.3451 | 0.6591
Brc 1.5301 1.042 | 1.469
Be +0.3418 | 0.7211 [ 0.4739
R? 0.1938
SSE 7.6734
InL -17.8673
X?narrnal)
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Table 6.8 : ML and REML estimates of # and VC for strength and quality

Parameter Strength Quality

ML REML ML REML

Bo 12,2021 | 9.4521 | 24.3666 | 25.56
(11.9579) | (10.234) | (10.7482)* | (10.35)*

Brr 0.2697 | 0.5621 0.1821 0.5642
(0.1172)* | (0.1103)* | (0.0074)* | (0.131)*

Brr -0.1985 | -0.2356 | 1.5865 | 2.0321
(0.6782) | (0.1232)* | (0.6166)* | (0.132)*

Bwss -0.0906 | -0.2019 | 0.0834 | 0.2879
(0.2175) | (0.2356) | (0.1643) | (0.3121)

Bre 0.1913 | 0.3256 | 0.3870 | 0.9875
(0.2225) | (0.2545) | (0.1879)* | (0.1268)*

Be 0.3093 | 0.4352 0.3973 0.6546
(0.2326)* | (0.1527)* | (0.20)* | (0.12)*

&2 3.8936 3.97 41239 | 3.9478
a2 1.6936 | 1.5987 | 1.5523 | 2.0218
o2 2.8236 | 2.3789 | 3.0902 | 3.4635
52 2.8249 | 24563 | 1.0943 | 1.4849
52 0.98 0.9890 0.974 |. 0.9231
In L -3.97 -3.002 -3.51 -3.01
SSE 0.0984 | 0.8445 | 0.7644 | 0.7342
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Table 6.9 : Estimated true scores on strength and quality

Strength Quality
ML | REML | ML | REML

6.2873 | 6.2312 | 6.4998 | 6.5536
6.3595 | 6.3989 | 6.6138 | 6.6336
5.0065 | 5.0787 | 4.7579 | 4.9968
6.6794 | 6.9872 | 6.8622 | 6.8877
6.2886 | 6.3254 | 6.9917 | 7.0120
5.9389 | 5.9987 { 6.2629 | 6.3636
6.0122 | 6.1210 | 6.1783 | 6.4451
5.9405 | 5.9868 | 6.1093 | 6.1363
6.4861 | 6.5423 | 6.1390 | 6.3839
5.8548 | 5.9851 | 6.1204 | 6.3135
6.0705 | 6.1310 | 5.9473 | 5.9983
6.0712 | 6.0909 | 5.6493 | 5.8871
6.6923 | 6.8878 | 6.6592 | 6.6979
6.3714 | 6.3939 | 6.8803 | 6.9791
6.0323 | 6.1312 | 5.8591 | 5.8787
6.6723 | 6.6961 | 6.8507 | 7.0012
6.2106 | 6.3223 | 5.5057 | 5.6561
6.3688 | 6.3698 | 6.0501 | 6.1535
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Table 6.10 : Measurements on biochemical parameters

TF | TR |WSS| TC | C

1.40 | 13.14 | 44.12 | 5.17 | 3.92
1.75 | 11.26 | 45.73 | 5.69 | 4.07
1.46 | 13.12 | 44.40 | 5.38 | 4.30
1.80 | 11.78 | 45.86 { 5.79 | 4.70
1.45 | 13.24 | 44.53 | 5.30 | 4.25
1.50 [ 13.59 | 45.72 | .73 | 4.17
1.14 | 13.63 | 44.00 | 5.24 | 4.00
1.17 1 11.27 | 44.65 | 5.70 | 4.06
1.46 { 13.09 | 43.20 | 5.10 | 4.14
1.50 { 11.72 | 44.91 | 5.98 | 4.18
1.45( 13.12 | 45.49 | 5.45 | 4.66
1.37 1 14.00 | 46.57 | 5.85 | 4.52
1.60 | 14.08 { 43.95 | 5.05 | 3.67
2.02 110.09 | 44.90 | 5.45 | 3.73
1.56 | 13.18 | 45.52 | 5.50 | 4.65
1.46 | 13.72 | 44.63 | 5.89 | 3.97
1.53 | 13.15 | 44.55 | 5.51 | 4.66
1.79 | 12.06 | 46.58 | 5.77 | 4.37
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Figure 8.2: Profile ptot of scores on quallty
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CHAPTER 7

TWO-WAY ERROR COMPONENT REGRESSION
MODELS WITH HETEROSCEDASTIC ERROR

7.1 INTRODUCTION

As an extension of the one-way error component model, we study the two-way error
component regression models in this chapter. The error component is decomposed into
two parts to incorporate the sample specific effects apart from the effects due to Tasters.
This is done to check for the variation over samples.

Consider the Data Set 8, where 30 samples represent different CTC clones. Single
sample for cach clone has Been observed. The chemical characteristics may differ over
clones. This difference is also likely to influence the overall quality. Thus apart from
studying the Tasters’ variation, it is also important to consider the clonal variation as
well. We may legitimately assume that the chemical characteristics is fixed specific to a
particular CTC clone. Thus in regression setup, we may assume the sample specific eflcts
to be fixed. The variation due to Tasters may be assumed random. Thus we have a mixed
effects error components regression model.

The two-way error component regression models are well developed in the statistical
literature and a detail account of such formulations is due to Baltagi (1995). The fixed and
random effects models with homoscedastic error components have been discussed. The
GLS and ML estimators of the location parameters are developed along with the testing
procedures about the fixed effects. We simply concentrate on the mixed effects model
with heteroscedastic formulation of variance-covariance matrix. The ML estimators of
the location parameters along with the estimators of variance components are discussed.
The possible heteroscedastic formulations and the estimation procedures are discussed in

section 7.3. The basic model is presented in section 7.2. The section 7.4 contains the

197



results obtained using Data Set 8 and discussions. The original row data on Tasters’

scores and five biochemical quality parameters are also presented.

7.2 The Two-Way Error Component Regression Models

In the linear regression model 3;; = p + a::-jﬂ + €;j, the error component e;; may be
decomposed as

' € = a; -+ /\j + U o, (7.1)
where o; represents the effect due to i** Taster and \; represents the effect due to j**

sample. Then the two-way error component regression model can be written as
Yij = p+oy + )\J‘ + -'132]',5 + Uij (72)
t=12,...,r, 7=12,...,n.

Here u;; represents the remainder stochastic disturbance. We note here that o; and

A; are independent. In vector form, (7.2) can be written as

y=ply +Zopa+ 22+ X0+ u, (7.3)

where Z, and Z, are (I, ® 1,) and (1, ® I,,) incidence matrices respectively. o =
(g ... @) and N = (A Ay ... A,;). We note here that Z, Z!, = I, ® J, and
Z\ 25 = J. ® I,,. The regression coefficient vector'[j and the remainder disturbance u are

as defined in the previous chapter.

7.2.1 The Fixed Effects Model

If a; and A; are assumed to be fixed paraméters and the remainder disturbance stochastic
with uw;; ~ 4d(0,0?), then (7.2) represents a two-way fixed éffects error component
model. . Here z;; are assumed independent of u;; for all < and j. Inference in this case
would be specific to the n samples and r Tasters.

We note here that for large n and r, there will be too many dummy variables in the

model, which may aggravate the multicollinearity problem among the regressors. Also,
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there is an cnormnous loss of degrees of freedom as we have to estimate n +  number of
parameters apart from the k regression parameters. Baltagi (1995) discusses the fixed
effects estimates of B by performing a transformation, which essentially sweeps the o;
and ), effects. The regression coefficient vector § and the temainder disturbance u are as

defined in the last chapter.

7.2.2 The Random Effects Model

If we assume oy ~ iid(0,02), A, ~ iid(0,0%) and u,, ~ iid(0,0?), independent of each
other, then the model (7.2) becomes a two-way random effects regression model. Also,
;, are independent of o, A, and u;, for all i and j. In this case the inference is specific
to the population from which the sample was drawn randomly. The variance-covariance

matrix in this case would be
d=FE(ee) = E(Zoa+ ZyA+u)(Zaa+ Zy\ +u)

= Z4E(ad)Z, + Z\E(\ N)Z} + u
o2, ® J,) +02(J, ® I,) + o*([, ® 1) .

Here the GLS estimator of § is BQUE, so also the estimators of variance components.
Under the normality assumption, the ‘ANOVA estimators of VCs are MVUE. Baltagi
(1981a) performed a Monte Carlo study on a simple regression equation with two-way
error component disturbances and studied the properties of OLS, the within estimator,
MINQUE, and six feasible GLS estimators. According to the findings, the OLS estimator
of A is unbiased, but asymptotically inefficient. The GLS estimator of § is BLUE, but
the VCs can not be estimated simultaneously. All the feasible GLS estimators studied are
asymptotically efficient. Paruch (1984) showed that the GLS estimator of f§ is asymptot-
ically efficient as long as the estimate of 0? is consistent and the probability limits of the

estimates of o2 and o2 are finite.
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7.3 The Two -Way Regression Model With Heteroscedastic Fr-

ror

We have discussed so far the fixed and random effects models with homoscedastic er-
ror component(s). In this section we introduce the mixed effects formulation with het-
eroscedastic error. In the model (7.2) we suppose that the sample specific effects A;s are
fixed and needs to be estimated. The distributional assumptions may be made in two
ways as we have done in the sixth chapter. We specify the two-way models on the basis
of assumptions as follows :

Model A: oy ~ iid (0,02), u; ~ 4id (0,07) and T, A; =0

Model B: oy ~ iid (0,07), uy; ~ d (0,02) and £; A; = 0.

The assumptions of independence of various components are same as before. Note that
for both the models, the number of parameters to be estimated is (n+ k +r -+ 2), as there
are n sample specific effects, k£ + 1 location parameters and r + 1 variance components.
The dispersion matrices for Model A and Model B would be same as those for Model I

and Model II of the previous chapter respectively.

7.3.1 ML Estimation For Model A

As the assumptions about the random components in Model A are exactly same as those
for Model I discussed in the previous chapter, the variance-covariance matrix for the mixed

model

y=play +Zoa+ 22+ X0+u

would be

E(e€) = ®4 = diag($, S;...5,),

where S; is a n X n matrix defined in Section 5.5.2 of Chapter 5. The determinant and
inverse of S; has already been presented in Chapter 5.

The loglikelihood function for Model A may be written as
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lA=—71n( Zlna + no?)
1 1
A g za ISR
=———ln(2 *__.Z 52

2

Z Z ——e - D?, (7.4)

2
7 o? o + no?

where S? = S5 Ty — e — A — 258)% , Di = Tj(yi; — u— Aj — z30). We note here
that the Ml estimates of the implicit parameters in this formylation can not be obtaired

directly as the model matrix is not of full rank. This follows from the following discussion.

Rank of Model Matrix (X Z,)

The augmented matrix of regressors and the incidence matrix associated with the fixed
effects A may be written as
X I,

X ]
XZy)=1| " , where X is (n x k) matrix of regressors and I, is (n x n)

| X Ta |

Now, rank(X Z,) = rank(X I,), and the rank of this is atleast n because of last n
columns. Again, as the maximum number of rows is n, the rank can not exceed n and

hence the rank of the augmented matrix is n.

The Constrained ML Estimation

As we have to estimate n+ k + 1 number of fixed parameters, we need to impose k + 1
restrictions to estimate the required number of fixed parameters.
We make some changes in the matrix of regressors for our convenience. Including the

intercept term in the X matrix and the new matrix be denoted by X* where the first
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column is 1,,. The model in this case may be written as
y=2Zsa+ HA+X'0"+u.

Here the X* matrix is of the form

/ 1 Irnn ITiz2 ... Ik \
1 Iy T ... T
1 Tal Tp2 ... Tk )

We now impose the restriction M'X* = 0 which implies

2N =0
i
Az 4+ Aoy + ...+ AZm = 0

M2+ /\22)22 + ...+ )\".’17,,2 =0

AT+ Mo oo+ Mgy = 0

With the restriction the loglikelihood function may be defined as
U=1a-NX,
where a = (ag a1 ... a;)' is the vector of Lagrange Multiplier. Now,

I =~ In(2r) — &0 570 0? — L8, In(0? + no?)
2
_% Zi ;1?_ Ej (yij _ z;lﬁt2 - /\j)2 + %E' ;1?, 7 ia:az [Zj(l/ij - _q;;.’/ﬂ- — /\j)] (7.5)

—a1 5 A Tt — G2 T, Aj Tja — v — QR i Aj Tjk

Differentiating [’ with respect to A; and equating to zero and after simplification, we get
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Aj = (U5 — 25 07) = Z Z o+ no? Z(yu - 2767, (7.6)

o? o? + n
where y3,, = %‘”‘—:ﬂ and w; = ¥ ;“7 is the weight. Here y},, is the weighted mean for gt
sample taken over the r Tasters’ scores and the weight is reciprocal to the error variances
associated with individual Tasters’ scores.

The ML estimators of 02 and o may be obtained from the following relations respec-

tively :
n
D? = 0and
Z 2+n<72[ o} + no? ']
2 2
ai Oa 1 1 * )e\2
- 4 ———| D N =) — (n—1).

o +nol o+ no? [a? a?-{-nag] : ?;(y,, i =B )

7.4 Analysis of CTC Clonal Data

In this section we study the Data Set 9, which have been introduced in the first chapter.
There are actually two data sets containing information on 30 Tocklai released CTC
clones. A panel of three Tasters has evaluated the clones in terms of overall quality (V)
and the scores are given on 0-10 point scale. The five biochemical parameters measured
are TF, TR, C, CF and TLC. The plot of each biochemical parameters for the two data
sets are presented in Fig 7.3 to Fig 7.7. The profile plot of Tasters' scores are presented
in Fig 7.1 and Fig 7.2.

As may be observed from the graphical plots, the variation of TF values over the
clones is very low, whereas that for TR is high. The caffeine and total liquor colour also
varies over clones. However, the clonal variation of crude fiber is negligible. It is believed
that the clones TV1, TV2 and TV17 are of good quality; TV 19 is of medium quality,
and the rest are of average quality. This perception of the manufacturers is based on the

price realization.
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As initial diagnostics, we conduct the two-way ANOVA test to study if the clone wise
.variation is significant on the basis of Tasters’ scorés. The ANOVA results for both the
data are presented in Table 7.1. Clearly the clonal variation is highly significant at 5%
level. However, the average levels of Tasters' scores do not differ significantly as evident
from the F-ratios for the Tasters. Thus, in associating the chemical information with the
Tasters’ choices, we may use the two-way error component regression model (Model A)
which incorporates the sample wise variation as an assignable source of variation. For
obvious reasons, we consider the effects due toi‘clones as fixed.

We fit the Model A to both the data sets. The estimates of regression coefficients
associated with different chemical parameters (along with t-ratios) and the estimates of
variance components are presented in Table 7.2 for both the data sets. It may be observed
that all the chemical quality parameters but crude fiber are statistically significant at 5%
level in explaining the overall quality or value. This is true for both the samples collected in
two consecutive years. It is interesting to observe that the coefficient estimates associated
with CF are negative and statistically insignificant. This is against the common belief
of the chemists, as they are of the opinion that in tea brew the CF is supposed to act
positively towards quality and/or value and the Tasters are well in position to recognize
the presence of CF. However, this notion of the chemists can not be questioned only on
the basis of our analysis, as we are studying a single sample per clone. Had a large number
of samples per clones been analyzed, then on the basis of regression analysis specific to a
particular clone we could comment tonfidently on the behaviour of CF and other quality
parameters. Also, the quality parameters measured for green shoots (e.g. total oxygen
uptake, total carotenoids, etc.) needs to be analyzed separately to develop fairly good idea
about the chemical characteristics of CTC clones and their association with the sensory

choices.
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The estimates of o2 are close to zero suggesting that the Tasters do agres on average
about the quality. However, for the given data sets it means that the Tasters do not
find any difference in quality for all the CTC clones. Anyway, the estimates of o are
reasonably large and is highest for the first Taster (0%) for both sets of samples. The
values of InL and SSE suggests that the fit is better with the second set of samples. The
SSE values are reasonably small in both the cases.

The estimated scores (z;’[f‘ + Xj) and the estimates of the clone specific fixed effects
(A;) are presented in Table 7.3 and 7.4, along with the observed Tasters’ scores. The
measurements on biochemical quality parameters for both the data sets are presented in
Table 7.5 and Table 7.6. Much technical discussions on the estimates of A; obtained can
not be introduced at this instance, as we are no way in a position to detect those clones
which appear to be the best in terms of quality, on the basis of given data sets. We
can only say that the estimates of ); includes those clone specific effects with respect to

several measured and unmeasured chemical components.



Table 7.1 : ANOVA Results for Two Sets of Data

Source | d.f. | SS F | Fetrcal

Pata 1 { Clone | 29 (86.08(6.30 | 1.66

Taster | 2 1.92 {204 ] 3.16

Error 58 |27.32

Data 2 | Clone { 29 |86.20 { 6.50 { 1.66

Taster | 2 068 {0.75| 3.16

Error 58 | 26.50
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Table 7.2 : ML estimators of the regression

coefficients and variance components

Parameters Data 1 Data 2
Estimate | t-ratio | Estimate } t-ratio
iy 11.9728 | 3.567 | 5.0473 | 2.978
Brr 0.0411 | 2.67 | 0.8357 | 3.846
Brr 0.2723 | 3.865 | 0.0031 | 1.968
Bc 0.3119 | 2.832 | 0.6539 | 2.573
Ber -0.3652 -| 1.841 | -0.2843 | 1.360
Pric 0.6615 | 3.102 | 0.6515 | 3.041
52 1.1483 1.3331
52 0.5848 0.9438
52 0.9099 0.8786
&2 0.0001 0.0001
InL -29.2082 -20.3158
SSE 0.7283 0.4645
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Table 7.3 : The Tasters’ scores along with the estimated scores

and estimates of fixed effects A, for Data 1

Clone | Taster 1 | Taster 2 | Taster 3 | Estimated Score Aj

CV1 9.30 8.10 8.00 8.3536 1.0998
Cv2 8.70 7.50 7.00 7.6341 1.1971
CV3 6.50 6.00 6.50 6.2671 -0.1521
Cv4 6.00 6.50 6.00 6.2318 -0.0447
CVs 7.50 7.00 6.50 6.9685 0.2497
CVé 7.00 7.00 6.00 6.7008 0.4054
cv? 7.20 6.50 6.00 6.5158 -0.7544
Ccvs 7.50 6.00 5.50 6.2051 -1.0721
Ccvy 9.10 8.00 8.37 8.3702 0.9753
CVv10 7.00 7.50 6.00 6.9331 0.3058
Cvii 7.80 7.50 7.00 7.4211 0.1509
Cvi2 7.60 6.50 7.00 6.9091 0.0019
CVvi3 6.00 6.50 8.00 6.8291 0.6305
Cvi4 6.50 6.00 7.00 6.4164 -0.4929
CVis 7.00 8.00 6.50 7.3148 -0.4509
CV16 7.20 7.00 5.00 6.4495 -0.8821
Cvir 7.00 7.60 7.60 7.2318 -0.0631
cvis 9.20 7.20 8.40 8.0311 1.5861
Cvi19 6.00 6.60 6.00 6.2318 -0.1161
Cv20 8.50 8.00 7.50 7.9684 0.6823
cvai 6.50 7.00° 7.20 6.9409 0.4534
Ccv22 7.50 6.50 7.10 6.9153 0.3153
Cv23 7.00 6.30 6.00 6.3755 -0.0894
cv24 6.20 5.00 5.50 5.4327 -0.6817
CV25 5.50 5.00 6.50 5.5658 -0.1886
Cv26 5.00 4.00 5.00 4.5348 -1.5438
Cv27 | 4.00 6.50 5.50 5.6001 -0.2169
Cvag 4.00 6.00 5.00 5.2275 0.3866
Cv29 5.00 5.60 5.50 5.4276 -1.0301
CVv30 5.00 6.00 5.00 5.4642 -0.7904
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Table 7.4 : The Tasters’ scores along with the estimated scores

and estimates of fixed effects A; for Data 2

Clone | Taster 1 | Taster 2 | Taster 3 | Estimated Score Aj

CVi 8.60 7.90 9.15 8.5606 1.9448
Cv2 8.90 8.50 7.50 8.2156 1.0817
Cv3 7.20 7.10 6.50 6.8937 -0.1157
CV4 6.50 5.90 7.20 6.5545 -0.5023
CVs 6.90 7.20 6.20 6.7375 -0.5000
Ccve 7.20 6.80 5.90 6.5542 -0.4749
Ccv7 6.20 6.80 6.50 6.5314 -..1246
Cvs 5.60 6.00 5.80 5.8209 -0.6024
CV9 8.70 8.50 6.90 7.9330 1.2053
CV10 | 6.50 6.30 7.20 6.6983 0.3224
CVil| 5.20 4.50 4.90 4.8325 -1.1823
CV12 | 5.90 5.80 4.50 5.3234 -0.9831
CVi3 | 588 6.25 6.55 6.2716 0.4578
CVid | 5.80 5.25 6.25 5.7760 -0.6902
CV15 | 4.50 4.20 4.80 4.5079 -1.4968
CV16 | 5.20 5.00 5.90 5.3983 -0.6048
CV17 | 6.50 6.00 6.80 6.4361 0.4516
CVig | 8.90 8.50 7.80 8.3314 2.2494
CVi9 | 6.85 6.25 5.88 6.2598 -0.3683
CvV20 | 5.70 5.70 7.50 6.3949 -0.2896
Cv21 | 6.50 6.00 5.50 5.9341 -0.8074
Cv22 | 6.50 7.30 7.30 7.0964 0.9872
CvV23 | 8.50 6.30 6.50 6.9369 0.7042
ov24 | 6.20 6.80 5.80 6.2612 -0.2585
OV26 | 6.70 6.00 5.80 6.1008 -0.4397
CV26 | 8.00 6.50 6.20 6.7658 0.4775
CvV27 | 17.60 6.30 6.00 6.5149 0.02139
cves | 4.00 4.90 5.60 4.9421 -0.3323
cv2o | 455 5.80 6.50 5.7844 -0.3858
CvV30 | 5.50 7.50 5.80 6.3346 0.2370
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Table 7.5: The biochemical measurements for Data 1

CLONE | TF | TR | CAF| CF | TLC
TV1 | 1.77 { 14.03 | 3.52 | 9.54 | 6.50
TV2 | 1.88 | 1223 3.65 | 10.40 | 6.40
TV3 | 1.11]11.38]| 3.92 | 10.70 | 6.62
TV4 | 1056 | 11.60 | 3.74 | 10.40 | 6.47
TV5 | 1.78 | 12.84 | 345 | 10.64 | 6.23
TV6 | 1541234 | 3.75 | 10.81 | 6.55
TV7? {155 14.08 | 3.60 | 10.35 [ 6.05
TV8 | 170 )12.95) 359 | 898 | 6.34
TV9 | 1.53|12.86 | 3.82 | 8.60 | 6.32
TV1O |1.43 | 11.52 | 348 | 896 | 6.73
TV11 |1.65|13.96 | 2.99 | 9.06 | 6.73
TV12 | 158 {1215 | 3.69 | 9.09 | 6.50
TV13 | 1.30 { 11.13 | 3.56 | 10.46 | 6.38
TV14 | 1.59 | 14.09 | 3.50 | 10.23 | 6.67
TV15 | 149 | 14.62 | 3.27 | 9.49 | 6.00
TV16 | 1.50 | 13.43 | 3.19 | 9.57 | 6.13
TV17 | 1.50 | 12.48 | 3.43 | 9.00 | 6.29
TV18 | 1.27 (1095 | 3.68 | 9.68 | 6.36
TV19 | 1.44 [ 10.70 | 3.97 | 9.57 | 6.47
TV20 | 2.06 | 12.48 | 4.00 | 8.76 | 6.27
TV21 | 196 |11.60 | 4.06 | 9.86 | 6.50
TV22 | 1.74 | 12.66 | 3.92 | 9.67 | 6.86
TV23 | 1.70 | 12.26 | 3.97 | 9.50 | 6.99
TV24 | 145 | 12.78 | 3.71 | 10.90 | 6.95
TV25 | 1.27 | 11.48 | 3.87 | 11.00 | 6.89
TV26 | 1.32 | 12.38 | 3.79 | 10.23 | 7.20
TV27 |1.05 | 11.84 | 3.85 | 11.03 | 6.90
TV28 (088 896 | 362 ( 11.85 | 6.72
TV29 |1.24 | 880 | 3.87 | 892 | 5.87
TV30 |1.12| 859 | 4.17 | 8.88 | 6.10

210



Table 7.6: The biochemical measurements for Data 2

CLONE | TF | TR | CAF | CF | TLC
TV1 1.46 | 14.67 | 3.61 | 12.06 | 5.85
Tv2 1.57 | 14.46 | 4.71 | 12.58 | 5.90
TV3 1.11 1 11.62 | 4.61 | 11.84 | 4.92
TV4 1.20 | 12.05 | 4.57 | 11.94 { 5.19
TV5 141 | 14.63 | 4.52 | 11.54 | 5.60
TV6 144 ] 13.55 | 3.85 | 10.93 | 5.73
V7 116 1 12.32 | 3.76 | 10.92 | 4.89
TV8 1.21 | 11.60 | 4.14 | 13.32 | 4.83
TV9 1.28 | 12.25 | 4.16 | 11.28 | 4.91
TV10 | 1.18 ] 11.12 | 4.03 | 11.24 | 4.36
TvVil [ 1.26 | 11.78 ] 3.59 | 11.82 | 4.60
TV12 132 | 11.67 | 4.31 | 12.34 | 4.63
TV13 {0098 9.98 | 4.08 { 12.37 | 3.69
TV14 | 1.27 | 12.27 | 441 | 11.59 | 4.39
TV15 | 11911270 | 3.39 | 1113 | 4.39
TV16 | 1.31 1341 | 3.37 [ 11.18 | 4.56
TV17 | 1.26 | 13.07 | 3.72 | 11.69 | 4.36
TV18 | 0.98 | 09.77 ) 4.09 | 11.06 | 3.52
TV19 ] 1.25)11.40 ) 4.30 | 10.84 | 4.39
TV20 (170 { 14.55 ) 3.56 | 11.18 | 5.93
TV21l {164 ]12681{ 3.71 | 11.32 | 5.86
Tv22 | 1471262 3.18 | 11.06 | 5.09
TV23 1147 (1245 | 3.74 | 1143 | 4.88
Tv24 | 1.12 (1279 | 4.36 | 11.55 | 4.30
TV25 | 12561 11.95| 4.39 | 11.59 | 4.49
TV26 | 1.15 ] 12.52 | 3.65 | 11.74 | 4.78
TV27 10981091 ] 421 | 1194} 441
TV28 ] 0.78 ) 880 | 3.63 | 12.30 | 3.03
TV29 | 0.91 | 1087 | 3.35 | 12.29 | 4.48

L_TV3O 0821 986 | 345 | 11.70 { 4.26
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Fig 7.1: Profile Plot of Scores
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Fig 7.3: Plot of TF for two data
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Fig 7.4: Plot of TR for two data
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Fig 7.5: Plot of Caffeine for two data
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Fig 7.8: Plot of CF for two data
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CHAPTER - 8
CONCLUDING DISCUSSIONS

In this study we have tried to understand the association between the chemistry in tea
and the sensory choices. This is typically a quality determination problem in tea industry,
which has not received much attention from the scientific community. We address this
problem and try to solve this practical problem using statistical methodologies. Our main
aim was to understand if the effects of the important biochemical quality parameters (ac-
cording to the belief of the chemists) are reflected, may be partially, in the Tasters’ choice.
This is because, if the significance of chemical parameters in ultimate quality assessment
can be established, then we may expect that the whole system of quality determination
and the auction pricing can be rationalized to some extent. If some threshold limits for
few important parameters can be evolved, which may guide the chemists as well as the
sensory experts to understand the possible levels of different quality attributes for the
given set of samples, then the absolute dependence on sensory analysis can be minimized.
In fact, these threshold limits, however approximate they may be, may guide the brokers
and the buyers about the quality of a given lot of tea.

To start with, we have tried to understand the association of few important chemical
parameters with the Taster’s scores using the statistical regression techniques. Approxi-
mate linear relation between the chemical measurements and the sensory scores on various
quality attributes have been observed in almost all the data sets studied. One may raise
question on such associations on the ground that many other chemical parameters re-
sponsible for aroma and strength in CTC teas, have not been considered. Such questions
are quite justified. Apart from other phenolic compounds, different levels of theaflavins
and thearubigins also needs to be included in the regression formulation to get a better
\understanding of the association. However, we had to depend on the data provided by
the Tea Research Association of India, and the insufficiency of chemical information re-

stricts our study and general conclusion regarding the behaviour of chemical parameters
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can not be drawn. But, we have observed that the total levels of TF and TR significantly
contribute towards quality. One point worth mentioning here that the Caffeine aspect,
as much talked about in case of CTC teas, needs to be studied in detail in relation to
different levels of TF and TR. It is known that in the tea brew, part of the caffeine must
complex with flavanols (TF, TR, etc.) and play an important role in the tea taste, with
contributions to briskness, mouthfeel, and thickness. As discussed by Yamanishi (1995),
TF and TR are very astringent, and caffeine is very bitter. Interaction between these
compounds reduce the astringency of the former and the bitterness of the latter. It is
claimed by the chemists that the caffeine contributes about one fourth of the bitterness
of the tea brew. Removal of caffeine from the tea infusion has a significant effect on the
taste of the infusion. Decalfeination cause the bitterness of a black tea infusion to increase
slightly and changes the nature of the astringency.

It is necessary to measure different TF and TR levels along with Caffeine and the
pattern of their varintion along with the possible interactions needs to he underatopd
thoroughly, A faltly good amount of information on such behaviour may he obtatped
from the graphical plots. It is possible to study the nature of interactions and thelr ol-
fects on different quality attributes using regression techniques. Given different samples

collected from various gardens, the Pattern Recognition Technique may be also applied to

understand the variation in chemical behaviour. A good idea about the techniques used
to understand the variations in chemical measurements may be obtained from the web
site www.chemometrics.com. Understanding the interrelationship among various chemi-
cal parameters is very important before we associate chemistry with the sensory analysis.
We have only tested the multicollinearity among few chemical parameters available with
us. The influence of various volatile and non-volatile compounds and their possible in-
teractions could not be studied, which obviously limits our study. It is important to see
the peaks of various TF and TR in HPLC chromatogram while assessing the variations.

However, we could not obtain such information.



An tho sensory choices are subjective, to understand the sample wise variation in dif-
feront quality atiributes we need a sensory panel data. A group of Tasters' choices is
needed to statistically assess the between-Taster and within-Taster variability. Replica-
tion of choices on each sample by each Taster would be of miich help to traci( different
possible aspects of variations. Had replicated scores been available, we could go for a
more detailed discussions about possible statistical formulations to address the problem of
reproducibility. Also, to develop a proper statistical methodology to measure the Tastefs’
precision, we need replicated scores. Unless, all possible variations in sensory panel data
are eliminated, specific to a particular quality attribute, the application of variance com-
ponents models would not be of much help. Also, the use of error-component regression
models (while simultaneously studying the chemical parameters and the sensory choices)
would not provide sufficient information about the significance of different chemical pa-
rameters unless the quality assessment experiment is properly designed taking care of all
possible aspects of product variation and the variation due to Tasters.

In the past 20 years there has been a considerable increase in the activity in the
field of sensory evaluation. Evidence for this is seen by the number of books, journals,
and articles published on the topic; the number of professional organizations and the
number of universities offering sensory courses. Much of the recent growth for sensory
evaluation can be attributed to the increased interest and support of the consumer product
industry. The food and beverage industry provides the vital sponsorship for the sensory
z;ctivities. For this industry, sensory analysis is the natural extension of each company’s
aim to achieve highest product quality and thus attain a dominant share in the highly
competitive market. The rapidly developing technology and the subtleties of the market
dictate that all available resources, including sensory evaluation, be used to the best
advantage.

We now focus on certain problems of measuring consumer acceptance for a specific
brand of tea (or n food product in general). A tea producing company may be interested
Lo know whother the consumers can diffcrentiate their product with the other available

varleties.  Such knowledge is very important from the marketing point of view. In
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this case, the ideal practice would be to design an experiment to assess the different
quality aspects of the particular brand of tea, where the choices of a large number of
consumers along with the choices of the sensory panelists needs to be analyzed. As the
consumers’ way of preparing tea differs from the Tea Tasters’ method of tea preparation,
the comparison of the choices given on two completely different preparations would not
help. Here the treatment differs. That is why the sensory panelists should also taste the
home-type prepared teas. The company’s aim would always be to study whether the
consumers can identify the inherent quality or qualities of the brand under consideration

in the same way the sensory panelists can. This is purely a choice identification problem

which can be solved statistically if the information on the choices are obtained propefly
on the basis of a suitably designed experiment.

Coinciding with these activities, marketing strategies need to be evolved. This is
certainly related to the company’s sales and advertising activities. On the basis of the
findings of choice determination experiments, we may always obtain a falrly good idea
about the consumers’ choices. Thus the advertising policy would be based on those
preferences. The product wise and region wise choice variation may always be taken care
of as the consumer segments and niche marketing are important concepts in marketing
research. The statistical techniques may provide great support to the marketing specialists
in order to better comprehend the consumer behaviour.

Thus the importance of sensory analysis can not be denied. But a proactive and
less fragmented approach to applying sensory analysis will require testing large number
(;f products, as mentioned earlier, to provide more comprehensive learning about how
product and process variables influonce the consumers’ perception and preferences. The
statistical models will certainly describe the relationship between perception and product
variables with greater understanding and more long term benefits is expected for the
product development process.

We now turn our discussion to an important inference problem in the error compo-
nent regression models discussed in this study. The one-way random effects model is used

when there is sufficient ground to believe that the tea samples are truly random sam-
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ples representing a particular population, and the variation due to sample is negligible.
' However, for a given data we may always try both the one-way and two-way models and
compare the fits. The comparison of SSE values and the likelihood based AIC criteria
seem sufficient in this situation. One important aspect which needs to be addressed here
is the consequence of under-specifying or over-specifying the error component
hodel on the variance components estimates.

Underspecifcation : Here the true model is two-way with

€ij = o + /\j + Uiy

while the estimated model is one-way with random component
€ij = 05 +Uj5 ,

AN =0, 0 ~ id0, 02), uy ~ 14d(0, 0?), independent of each other among
themselves.

As may be observed from Chapter 7, the ML estimators of o? involves /\,-s,'the fixed
parameters. Here one interesting study would be to estimate the bias of 0? and o2 for the
misspecified model. The consistency and unbiasedness of the variance components under
different estimation methods (ML, two-stage least squares, etc.) may also be studied.

Similarly we may study the behaviour of variance components under over-specification.

Also, the small sample behaviour of these estimators needs to be addressed thoroug’nly.
However, we could not address all these theoretical problems in this thesis, and therg is
much scope for further study.

Another important aspect is the Determination of superior CTC clones. In
Chapter 7 we have studied the quality aspects in Tocklai released CTC clones. The
manufacturers believe that among these clones, only a few (CV 1,CV 2and CV 17) yield
best in terms of quality and market valte. Their observation is simply based on the p#ice
realization. The Tocklai Experimental Station has been studying the chemical behaviour

of these clones on a continuous basis. The general practice is to measure the chemical
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parameters for a single sample for each clone. The Taster(s) also give single score on edch
sample. A typical presentation of this practice is the data we have studied in the severth
chapter.

If interest lies in determining the best clones in terms of market performance, tl*en
we believe that a more comprehensive approach is necessary. It is possible to determ}ne
the best performing clones in terms of quality or overall quality using the advanced sta-

tistical techniques like Frontier Techniques and Data Envelopment Analysis (DEA). The

frontier technique is related to the econometric concepts of frontier production functions
and technical efficiency measurements. In DEA the basic approach is non-parametric,
»yhem there is & mapping of chemical information on sensory choices without any prior
assumption on the distributions of errors and on specific functional relationship.

Suppose for cach of the 30 clones, several samples are studied in terms of chemical
characteristics and sensory choices. All the samples under study must be evaluated by
the sensory panel. If such data base is available, we may formulate our problem as -
given the measured levels of chemical parameters, what would be the possible maximjim
score in terms of quality/market value. In doing so we may always take care of the bias
associated with individual members of sensory panel. Such studies would certainly help
the manufacturers to rationalize the system of " best product determination” which would
ultimately help them in introducing their products in market with confidence. Also,
the introduction of a methodological approach in product selection would minimize the
dependence on sensory panelists. This practical problem can be solved using the above
mentioned statistical techniques.

We have tried to understand the quality aspects in CTC tea in this study with the data
base provided by the Tea Research Association of India. We do not claim any origina‘ity
in our statistical formulations. We have only extended the developed techniques in some
situations to fit our empirical set up. We should say that statistics as a tool has been
applied with confidence in understanding the chemical and sensory information related

to tea quality assessment.
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Note 1

One interesting statistical formulation related to non-linear model formulation is the
Box-Cox model with error associated with the response. In Chapter 4, we have
mentioned this while associating the chemical components in tea with the single Taster’s
sensory choice. Here we try to formulate a transformation model introducing error compo-
nent with the response variable. This is done keeping in view the subjectivity associated
with the Taster's choice. Only transformation of the response variable with additive error
component is considered. We note here that this formulation is not presenteci in the Chap-
ter 4 only because of the fact that a local convergence for the estimates of the impljcit
parameters by maximizing the loglikelihood function could not be achieved.

Suppose the true values of the response are Y;(i = 1,2,...n), which are unknown. The
6bserved response are y;. We assume y; = Y; + v;, where v;'s are the errors-in-variabies.
We suppose a functional relationship between the regressors and the response variable as

A
. A

=L+ LT+ ...+ O Thi + €55 (1)

where ) is the Box-Cox type transformation parameter. Assuming ¢; ~ N(0,0?), o3

heing unknown, we have

g(ei) = \/% o,

exp [—€2/20?).

Now from (1) we have

VA -1
€ = — 3 — o — B T1i ... Bk Thi,

which give g%f = Y~'. Thus we may write the probability differential of Y; ds

[

4 A 2
f(x)=—\/__2—:r-a—emp|'_2}7{Y.A 1—ﬂ0...—ﬂk$ki}] Y‘-'\—l dY, (2)
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We now consider the conditional distribution of the error component v; given each Y; to

be Pearsonian type I1. Then the conditional density function may be written as

\2]™
p(wi/Y) =Y ' Ky, [1 - (%) ] dv;. (3)
where,
Km-——B_l(m-H,%) =B Y(m+1,m+1) 2-@m+D) (4)

is a beta function.

The joint density function of v; and Y; may now be written as

flui, ¥i) = P(Ua‘/Yi);ng(Yi)
=y K- (8)] ®)
2
{Z‘AT\'__1 —fo— b Ty — B xki}z] YA

¢

1
ETD [— by ]

Now to find the Jacobian of transformation, we proceed as follows :

vi Y+
v.
=Y = ya—vi=yi-‘7'3’i=yi—wﬁ’i

§

% _ 1

_% _ ow; v Ow; 1
Y

v~ OV, Y2 on Vi

The Jacobian of transformation is

1
= '1'/:(1 + w.')

Ay, w) _ 1 1
oy, v) _

The joint density function of w; and g; can now be written as
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fwn 3) = Y Kmll—wl]™ V' () o=

N 2
) -1
exp [—ﬁ{%—ﬁo—ﬂl zli--'"ﬁkzki}}

_ w (y Y1 2 1
= o (po) B (1 - o))" Kn iy 72

A 2
i) - (6)
—rlg{gi—;l—l—ﬂo—ﬂlmum—ﬂkwki}}

A
- & () K- o

N 2
exp ["ﬁ{ﬁ-ﬁb—ﬁo-u"ﬂkmm}]

Now the density function y; may be obtained by integrating the joint density function

f(w;, y;) with respect to w; as

plyi) = /R fwi, i) dw;.

The likelihood function is

L = Iy, p(w)
= M e & (25)" Kn(l - o)™ 2 ™
exp [—57}5 {m_i—mf =L~ o~ By 7 B mki}z] dw;.
We have tried to maximize the log of the likelihood function (7) to obtain the estimates
of the parameters m, A, o2, and k + 1 § coefficients using the SPLUS computational

package. However, for the given data set (studied in Chapter 4), the local convergence

could not be achieved.
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