
r

c TH P 'r~ol g, .

. Oat

REVISED

A SEQUENTIAL CONSTRUCTIVE SAMPLING
AND RELATED APPROACHES

TO COMBINATORIAL
OPTIMIZATION

-.A Jhedid dubmitted in partial fulfillment

0/ lhe reCJuiremenld /or lhe degree 0/

DEPARTMENT OF MATHEMATICAL SCIENCES

SCHOOL OF SCIENCE AND TECHNOLOGY
TEZPUR UNIVERSITY

Tezpur-784 028, INDIA

AUGUST, 2000

::Dedicated Jo
my Beloved parenlj

Begum Jahanara .-4hmed
&

.-4tdUj Sahd .-4hmeJ .

CER.nfICA IT

This is to certify that the thesis entitled "A SEQUNETIAL
CONSTRUCTIVE SAMPLING AND RELATED APPROACHES TO
COMBINA TORIAL OPTIMIZATION" submitted for the award of Doctor
of Philosophy to the Tezpur University, Tezpur, Assam, is a record of
bonafide research carried out Mr. Zakir Hussain Ahmed under our
supervision and guidance .. No part of this thesis has been submitted for any
degree or diploma of any other University.

Supervisors:

.~

~~~ 
1. (Prof. S.N.Narahari Pandit) 

Director, 
Center for Quantitative Methods, 
Osmania University, Hyderabad. 

2. (Dr. Munindra Borah) 
Head, 
Department of Mathematical Sciences, 

Tezpur University, Assam. 



ACKNOWLEDGMENTS 

It is my pleasure and privilege to express my very deep sense of gratitude to Prof S. 

N. Narahari Pandit, Director, Center for Quantitative Methods, Osmania University, 

Hyderabad (and formerly visiting Professor of Department of Computer Science, Tezpur 

University, Tezpur), who initiated me into this interesting field of research, and whose 

esteemed guidance has enabled me to present this thesis. 

Also I express my special appreciation to Dr. Munindra Borah, Head, Department of 

Mathematical Sciences, Tezpur University, firstly for agreeing to be my co-supervisor and 

secondly, for his valuable guidance. 

I am very grateful to my parents, brother, sister and brother-in-law for their 

encouragement in prosecuting studies. Their love and faith are my source of inspiration and 

strength. 

I am thankful to Prof A. K. Borkakoty and Prof S. K. Laskar, Department of 

Mathematical Sciences; Prof D. K. Saikia, Head, Department of Computer Science; Tezpur 

University and other faCUlty members of various departments for their constant 

encouragement and moral support. 

My special thanks goes to Ms. Shanta Pandit for her motherly behavior and Dr. V. V. 

Haragopal of Osmania University for hostel accommodation in New Research Scholars' 

Hostel during my visit to Hyderabad 

I wish to thank the authorities of the Computer Center of Tezpur University, 

Navigational Electronics Research and Training Unit, and Center for Quantitative Methods, 

Osmania University for extending computationalfacilities. 

I offer my thanks, for the interest and encouragement accorded by my well wishers, 

friends- Anjan, Deep, Jamal, Sofiur, Dhiraj and Mrs. Roshanara Begum of Tezpur University 

and Laxminarayan, Pavan, Hamid, Sampath and Selim of Osmania University. 

Finally, I thank the North Eastern Council, Shillong and Council ~f Scientific am! 

Industrial Research, New Delhifor providingfinancial assistance for my research work. 

~ 
(Z. H. Ahmed) 



CONTENTS 

Chapter I IN'TRODUCTION ........................................................... ... 1 

1.1 The Optimal Assignment Problem ........................ . . . . . . . . . . . . . . . . . . 2 

1.2 The Travelling Salesman Problem ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.3 The Shortest Route Problem................................................. 2 

1.4 The Job-Scheduling Problem................................................ 2 

1.5 The Knapsack Problem ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.6 Chapter-wise summary ....................................................... 4 

Chapter II: THE TRAVELLING SALESMAN PROBLEM-A SURVEy....... 6 

2.1 Introduction...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 

2.2 Methods of solution-general comments and classification ... . . . . . . . . . .. 8 

2.2.1 Exact methods ... .. . .. . .. . .. . .. .. .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. .. 9 

2.2.1.1 Integer programming approach... .. . ... . .. ... ... ... .. . .... 9 

2.2.1.2 Dynamic programming approach ... . . . . . . . . . . . . . . . . . . . . . . 10 

r
2.2.1.3 Branch and bound approach... ... ... ... ... ... ... .. . ... .... 11 

2.2.1.4 Lexicographic search...... ............ ...... ...... .......... 12 

2 .. 2 Approximate solution methods (heuristics) ........................ 13 

2.2.2.1 Greedy algorithms.:. ... ... .. . ... ... ... .. . ... . .. ... . .. ... ... . 13 

2.2.2.2 Simulated annealing...... ...... ...... ...... ...... ...... ..... 21 

2.2.2.3 Genetic algorithm approach ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

2.3 Some variations of the usual TSP ........................................ 24 

2.3.1 The Truncated Travelling Salesman Problem.................... 24 

2.3.2 The Precedence Constrained Travelling Salesman Problem... 24 

2.3.3 The Fixed Positional Travelling Salesman Problem............ 24 

2.3.4 Vehicle Routing Problem.......................................... 24 

2.3.5 The Clustered Travelling Salesman Problem.................... 25 

2.3.6 "M" Travelling Salesman Problem............................... 26 



2.3.7 The Traveller Purchaser Problem................................. 26 

2.3.8 The Time Constrained Travelling Salesman Problem......... 26 

Chapter ill: THE LEXI SEARCH APPROACH S FOR THE TSP ........ ... 27 

3.1 Introduction................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

3.2 Adjacency approach and illustration....................................... 31 

3.3 Path approach and illustration.............................................. 40 

3.2.1 Bound calculation..................................................... 42 

3.2.2 Illustration.............................................................. 43 

3.4 Sequential constructive sampling approach and illustration........... 47 

3.4.1 Bound calculation.................................................... 50 

3.4.2 Illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 50 

3.4.3 Modified 2-0pt move............................................ .... 54 

Chapter IV: GENTIC ALGORITHM APPROACH ............................... 56 

4.1 Introduction ................................................................. 56 

4.2 Genetic algorithm implementation...... .. .. .. .... .. ...... .. .... .. ....... 57 

4.3 Control parameters......................................................... 61 

4.4 Genetic algorithm for the TSP- a review................................ 62 

4.5 The sequential constructive operator.................................... 70 

4.6 Hybrid genetic algorithm for the TSP ................................... 73 

4.7 Relative efficiency of different approaches ... . . . . . . . . . . . . . . . . . . . . . . . . . 77 

Chapter V: THE TRAVELLING SALESMAN PROBLEM WITH 

PRECEDENCE CONSTAINTS .....................•................ 80 

5.1 Introduction................................................................. 80 

5.2 Lexisearch approach and illustration.................................... 83 

5.2.1 Illustration .................................................. , ... ... ... 85 

5.3 Sequential constructive sampling approach and illustration......... 89 

5.3.1 Illustration............................................................ 90 

5.4 Hybrid genetic algorithms for the TSP-PC ............................. 92 



5.5 Relative efficiency of different approaches............................ 94 

Chapter VI: THE TRAVELLING SALESMAN PROBLEM WITH FIXED 

POSITION CONSTRAINTS .......................................... 98 

6.1 Introduction .................. '" ..................................... ,. . .. ... 98 

6.2 Lexisearch approach and illustration. .. .. . .. . .. . .. . ... ... ... . . . ... . . . .... 98 

6.2.1 Illustration ................................ , ... ... ... ... ... ... ... ... ... 99 

6.3 Sequential constructive sampling approach and illustration .... , . ... . 103 

6.3.1 Illustration............................................................ 103 

6.4 Hybrid genetic algorithm for the TSP-FPC ........................... ... 106 

6.5 Relative efficiency of different approaches... ... ... ... ... ... ... ... ... ... 108 

Chapter VII: THE TRAVELLING SALESMAN PROBLEM WITH FIXED 

POSITION AND PRECEDENCE CONSTRAINTS .•.......... 111 

7. 1 Introduction ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

7.2 Lexisearch approach and illustration ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

7.2.1 Illustration .......................... : ... ... ... ... ... ... ... ... ... ... ... 112 

7.3 Sequential constructive sampling approach and illustration.......... 115 

7.2.1 Illustration... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

7.4 Hybrid genetic algorithms for the TSP-FfPC ........................... 119 

7.5 Relative efficiency of different approaches ..................... . . . . . . .. 121 

Chapter VIII: THE TRAVELLING SALESMAN PROBLEM WITH 

BA CKHA ULS ........................................................ 125 

8.1 Introduction................................................................ 125 

8.2 Lexisearch approach and illustration................................. ... 127 

8.2.1 Illustration ....... " .......................... '" ... ... ... ... ... ... ... ... 128 

8.3 Sequential constructive sampling approach. .. . .. ... ... .. . ... . . . ... . .. 131 

8.4 Hybrid genetic algorithm for the TSPB.. . ... .. . ... ... .. . ... ... . .. ... .. 131 

8.5 Relative efficiency of different approaches........................... 133 



Chapter IX: THE MIN-MAX TRAVELLING SALESMAN PROBLEM .... 136 

9.1 Introduction ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 136 

9.2 The adjacency approach and illustration................................. 136 

9.2.1 Illustration............................................................ 137 

9.3 Path approach and illustration ................ , ............... , ... ... ..... 139 

9.3.1 Bound calculation............ ....................................... 139 

9.3.2 Illustration............................................................ 140 

9.4 Sequential constructive sampling approach '" . . . . . . . . . . . . . . . . . . . . . . . . . 141 

9.S Hybrid genetic algorithm for the MMTSP .............................. 142 

9.6 Relative efficiency of different approaches ... ... ... ... ... ... ... ... ... 142 

Chapter X: DISCUSSIONS AND COMMENTS. ......... •..•••... .... ..... ..... 145 

APPENDIX ................................................................................. 152 

BffiLIOGRAPHY ......................................................................... 254 



Research paper published in the Journal from the Thesis:-

• The Travelling Salesman Problem with Precedence Constraints, OPSEARCH, Vol. 

38, No.3, pp 299-318,2001. Cloy -"""'....c. ..... u., ~ ".w.lIf'. p~t) 



CHAPTER I 

INTRODUCTION 

The problem of optimization (or Mathematical Programming) can be 

construed as one of extremizing a function (viz., objective function) of some 

decision variables, which latter are to satisfy some constraints. Depending on the 

nature of the constraints and objective function, one has many types of optimization 

problems like Linear programming, Convex programming, Geometrical 

programming etc. In particular, when the decision variables are continuous, it is 

called Continuous Programming Problem. This type of problems is solved by some 

procedures which are based on concepts like continuity, convexity and 

neighborhood. Some of them are Simplex procedure, Lagrangian multiplier method 

and Steepest Ascent method. 

If the decision variables are not continuous but rather discrete (e.g., confmed 

to a set of integers), it is called Integer Programming Problem. The decision 

variables may also be associated with Permutations, Combinations etc. Then the 

optimization problem is said to be a "Combinatorial Programming Problem" and 

the problem of fmding optimal solution to such a problem is known as 

"Combinatorial Optimization Problem". 

The general structure of the Combinatorial Programming Problems can be 

described as follows (cf, Pandit 1963): 

"There is a numerical function defmed over the domain of arrangements 

(permutations or selections) of a set of elements. There is also a feasibility 

criterion. The problem is to fmd the arrangements which are feasible and which 

optimize the numerical function". 

Following are some well-known combinatorial programming problems. 



1.1 THE OPTIMAL ASSIGNMENT PROBLEM 

There are n workers and n jobs. Each worker must be assigned to exactly one 
~ 0 ~ 

job and vice-versa. The r":Sl 01 ~signing worker i to job j i~~JThe problem is to fmd 

the optimal assignment so that the total cost of the assignment is +um. ~ 
~ ~ A cL~L- ~r-< 'fly' 

1.2 THE TRAVELLING SALESMAN PROBLEM 

A network with In' nodes ( or cities) and a cost matrix of order n associated with 

each node pair (i, j) is given. The problem is to find a least cost tour for a salesman 

who must visit each of the nodes exactly once except that the salesman should end the 

tour at the same node from which he starts. 

1.3 THE SHORTEST ROUTE PROBLEM 

There are n nodes connected with one another by 'links' (or arcs) of given 

lengths (weighted network). The problem is to fmd the shortest route from one 

specified node to another specified node, if necessary through other nodes in the 

network. L l' 
1.4 THE JOB-SCHEDULING PROBLEM 

There are 'n' jobs to be completed and each job is processed through each of 

the 'm' machines in the same order. Ajob can not be processed on machine 'j' until it 

is finished on machine 'j-l'. The processing times of each job on each machine are 

given. The problem is to fmd a sequencing of jobs (defmed as a schedule) that 

minimizes the total elapsed time (makespan) to complete all the jobs on all the 

machines. 

1.5 THE KNAPSACK PROBLEM 

An instance KNAP(A, c) of the knapsack problem consists of a set A of m 

objects, and an integer knapsack capacity, denoted by c. Each object a j & A has 

2 



positive weight Wi and profit Pi. For each object ai that is placed in the knapsack, a 

~i is earned. The object is to fill the knapsack in such a way that the total~t ~'j,~ 
is maximized. 

Most of the combinatorial programming problems are NP-co~ or NP- 4~ 

hard (cf, Papadimitriou et aI., 1997). To solve such problems one ha~ly to list 

all the possible solutions find out their objective function values and pick out the 

best. It is easy to solve any problem in this way when the size is small enough. 

However this 'complete enumeration approach' is not practicable even for problem 

of moderate size. In fact for most of the combinatorial programming problems, the 

computational time grows exponentially with the problem size. Special techniques 

are available for solving different combinatorial programming problems. However, 

no general approach, which is suitable for all combinatorial programming 

problems, seems to be available and methods of fmding optimum solutions are 

largely search methods (cf, Pandit 1963). ~~!~ 
Many real life problems, when idealized as mathematical problems-for their 

solution-will necessarily involve approximations, both conceptual and in numerical 

estimation of the parameters involved. It is therefore, obvious that good, practicable 

solutions to approximately well formulated problems are more useful than exact 

optimal solution of very approximately formulated problems. This is particularly 

true of combinatorial problems, where conventional criteria of approximations 

through continuity-based neighborhood approaches are not applicable. 

Hence, currently, in the field of operations research and decision sciences, 

emphasis has shifted from the aim of fmding exactly optimal solutions to 

combinatorial optimization problems, to the aim of getting, heuristically, 'good 

solutions' in reasonable time and 'establishing the degree of goodness'. Artificial 

Neural Network (ANN), Genetic Algorithm (GA), Simulated Annealing (SA) are a 

few such approaches. 

In this present dissertation we shall develop Lexicographic search 

(Lexiseach, for short) approach for obtaining exact optimal solutions to various 

3 



combinatorial optimization problems considered, and a quasi-exact method, which 

provides solution within a pre-specified neighborhood of the exact optimal solution 

to the problems. Also, a sequential constructive sampling approach, and a hybrid 

genetic algorithm have been developed for obtaining heuristically optimal solution 

to each of the problems. The efficiency of the hybrid genetic algorithm to each of 
"<="- , 

the problems as against lexi-search approach, quasi-exact method and sequential -----. 
constructive sampling approach has been examined by solving a variety of 

randomly generated test problems of different sizes. 

1.5 CHAPTER-WISE SUMMARY 

The thesis presents solution of the usual Travelling Salesman Problem (TSP) 

and some of its variations. Our main aim is to develop exact and heuristic 

algorithms to some Restricted TSPs. For that, we fust developed the algorithms for 

the usual TSP and then modified them in the context of the required restrictions. 

Hence, we have reported the algorithms explicitly for the usual TSP and the 

modifications to the algorithms due to the constraints have been reported only for 

the other restricted TSPs. All the algorithms are coded in Borland C and the 

Programs are reported in the Appendix. Finally a comparative study, examining 

the relative efficiency of different approaches, is carried out for each problem. The 

computation is reported in seconds on a Pentium/450 MHz/64 MB RAM. 

Chapter II discusses the usual TSP with the objective to minimize the total 

tour cost. Some of the available algorithms for solving the same are reported 

briefly. 

In Chapter III, some of the basic concepts of the Lexisearch approach are 

explained. Also, this approach is explained with the usual TSP in the context of 

both path representation and adjacency representation of a tour. A comparative 

study of both these approaches is then carried out. It is also shown that the 'bias' 

removal of the given matrix plays an important role in case of time taken for 

4 



solving the same. Also, this chapter develops a quasi-exact method based on 

lexisearch approach and a sequential constructive sampling approach. 

Chapter IV discusses the basic concepts of the genetic algorithm with 

different proposed operators in context of solving the usual TSP. We have proposed 

~ere a new operator, named sequential constructive search operator, and tested the 

efficiency of the operator by comparing with some other crossover operators 

proposed by various researchers. Then a hybrid genetic algorithm is developed for 

the usual TSP. 

Chapter V discusses the TSP with Precedence Constraints, in which every 

tour of the salesman has to satisfy some precedence constraints .. 

Chapter VI discusses the TSP with Fixed Position Constraints, in which 

every fixed position in the tour of the salesman is to be occupied by the prescribed 

node. 

The TSP with Fixed Position and Precedence Constraints is discussed in 

Chapter VII, where each tour of the salesman is to satisfy.both Fixed Position and 

Precedence Constraints as discussed in Chapter V and VI. 

Chapter VIII discusses the TSP with Backhauls, in which the nodes in the 

network (except the starting node) are divided into two sets of nodes- linehaul and 

backhaul nodes, and all linehaul nodes, should be visited contiguously after the 

starting node and before all the backhaul nodes. 

Chapter IX discusses the usual TSP but with a different objective, viz., to 

minimize the largest arc length of the tour. 

The thesis concludes with some general observations on the problems 

considered in the thesis, which are given in Chapter X. 

5 



CHAPTER II 

TRAVELUNG SALESMAN PROBLEM-A SURVEY 

2.1 INTRODUCTION 

The Travelling Salesman Problem (TSP) is a relatively old problem: it was 

documented as early as 1759 by Euler (though not by that name), whose interest 

was in solving the Knights' tour problem (cf, Michalewicz 1994). A correct 

solution would have a knight visit each of the 64-squares of a chessboard exactly 

once in its tour. 

~ The tenn 'travelling salesman' was fIrst used in 1932, in a German book 

'The travelling salesman, how and what he should do to get commissions and be 

~. successful in his business', written by a veteran travelling salesman (ibid.). 

The TSP can be stated as follows: 

A network with en' nodes, with node 1 as 'headquarters' and a travel cost 

(or distance, or travel time etc.) matrix C=[ cij] of order n associated with ordered 

node pairs (i, j) is given. The problem is to fmd a least cost Hamiltonian cycle. That 

is the problem is to obtain the tours {l=ao, Ul. U2, .... ,Un-J. u n=l} == 

{ 1 ~uJ ~U2~ ... ~un-J ~ I} representing irreducible pennutations interpreted as 

simple cycles for which the total travel cost 

n-l 

C (l=ao, UI. U2, ..... , Uno}, un=l) =2: C (Ui. Ui+l) 
;=0 

IS ffillllmUm. 

The RAND Corporation introduced the TSP in 1948. The Corporation's 

reputation helped to make the TSP well-known and popular problem. The TSP also 

became popular at that time due to the new subject of linear programming and 

attempts to solve Combinatorial Optimization Problems. 

6 



On the basis of the structure of the distance (or time or cost) matrix, the 

TSPs are classified into two groups: symmetric and asymmetric. The TSP is 

symmetric if Cij=Cji, Vi, j and asymmetric otherwise. For an n-city asymmetric TSP, 

there are en-I)! possible s~ns, one or more of which gives the minimum cost. 
~ 

For an n-city symmetric TSP, there are (n-I)!/2 possible sol~s along with their 

reverse cyclic permutations having the same total cost. In either case the number of 

solutions becomes extremely large for large n, so that an exhaustive search is 

impracticable. The TSP was proved to be NP-Complete (cf, Papadimitriou et aI., 

~ 1997). NP-Complete problems are intractable in the sense that no one has found 

~ c.t any really efficient way of solving them for large n. They are also known to be 

more or less equivalent to each other; if one knew how to solve one kind of NP-
, -------

Complete problem one could solve the lot. Also, all the other problems considered 

in this present dissertation are said to be NP-hard. N u 
The TSP finds;ze application in a variety of situations. As an example, 

consider a scenario in which a robot arm is used to tighten the nuts on some piece of 

machinery on an assembly line. The arm starts from its initial position (which is over 

the first nut to be tightened), successively moves to each of the remaining nuts and 

returns to the initial position. The path of the arm is clearly a tour with cities 

represented by nuts. A minimum cost tour will minimize the time needed for the arm 

to complete its task. Only the total arm movement time is variable; the nut tightening 

time being independent of the tour. Other applications have also been described, as 

for example, automatic drilling of printed circuit boards, where the movement of the 

robot arm must be minimized, and threading of scan cells in a testable VLSI circuit, 
~ 

where cost of the scan path must be minimized (cf, Ravikumar 1992), experiments in 

x-ray crystallography involve sequential collection of data on a diffractometer, where 

a small sample of crystal under study is mounted in the apparatus, which has 

computer-driven motors that can accurately position the crystal and a detector. The 

time to repositioning the apparatus between reading is the delay time. The problem is 

of sequencing the readings to minimize the total delay. The readings correspond the 

7 



nodes of the TSP. The length of an edge of the TSP is the delay time for repositioning 

the apparatus from one setting to other (cf, Bland and Shallcross 1989). 
h-1. A: fr' * -t" 
I -~ Though cij' s above are referred as 'travel cost & the node j from the node i', 

~ ~- it is obvious that they need not be 'metric', i.e., satisfy the usual distance postulates 

¥- like symmetry and triangular inequality; they can be distances or times for direct 

travel from node i to node j, the 'energy' required for transiting a 'system' from 

state i to state j in one 'step' etc.; in fact, it can be any non-negative quantity which 

is additive. 

In this chapter, we have confmed our study to the 'usual' TSP in which the 

salesman visits each node once and only once in the entire tour. 

The combinatorial structure of this problem is very close to that of the 

Assignment Problem (AP). Basic difference between the AP and the TSP solution

space is that fonner can be viewed as the set of all pennutations of 'n' elements 

while the latter are restricted to 'in-decomposable' permutations only. In

decomposable permutations are the pennutations that have single cycle and can't 

be decomposed into more than one pennutation. 

It may be noted in passing that the solution space of the TSP is a subset of 

solution space of AP and hence, steps like bias-removal (i.e., subtract each row-
~ 

mini~from its corresponding row elements. Repeat the same column-wise on the 

resultant matrix. The total of the row-minima and the subsequent column-minima is 

called the 'bias' of the matrix), which are useful in the latter context can also be 

applied in the case ofTSP as well (cf, Pandit 1964). M L 

2.2 METHODS OF SOLUTION-GENERAL COMMENTS AND 
CLASSIFICATION 

The methods for solving the TSP, which also can be applied to ~ther 

optimization problem, can be classified mainly in two classes based on different 

viewpoints or purposes. They are as follows: 

8 



2.2.1 EXACT METHODS 

The methods provide the exact optimal solution to the problem, are called 

exact methods. An implicit way of solving the TSP is simply to list all the feasible 

solutions, evaluate their objective function values and pick out the best. However it 

is obvious that this 'complete enumeration approach' is grossly inefficient and 

impracticable because of vast number of possible solutions to the TSP even for 

problem of moderate size. Quite a few exact algorithms, which fmd exact optimal 

solution to the problem much more efficiently than complete enumeration, have 

been developed. Some of them are briefly discussed below. 

2.2.1.1 INTEGER PROGRAMMING APPROACH 

The TSP can be formulated as an integer linear programming as follows: 

Defme xij, a binary variable equal to 1 ( one), if and only if the edge (i, j) 

belongs to the solution, else 0 (zero). Then the TSP can be formulated as 

n 

Minimize L CijXij ; i:;t:j. 
i.j=1 

0 < < 1 ~ .. - Xij _ ,v 1, J 

Xij integer, 'tii, j 

Subject to the constraints 

n 

(a) L Xij=l, j==I,2, ... ,n 
i=1 

n 

(b) L xij=l, i=I,2, ... ,n 
j=1 

~ (c) L Xij ? lSI-I, where S ranges over all possible subsets of size 
i.jES 

lSI, Sc {2,3, ..... ,n}. 

The equalities in (a) express the fact that exactly one arc enters each node, (b) 

exactly one leaves each of the nodes 1,2, .... ,n and (c) confmnsthe exclusion of cycle 

9 



formulation. The objective function with only constraints (a) and (b) leads to the 

Assignment Problem. 

The difficulties in fmding an optimal tour in solving the above integer program 

are the enormous number of loop constraints (2n
-
1_l) and the requirement that the 

(n2 -n)/2 variables xij equal to 0 or 1. The solution of a linear program with the loop 

constraints and the constraints 0 ~ Xjj ~ 1 will not necessarily satisfy Xjj=O or 1. This is 

in contrast with the situation for solution of Transportation Problem, which guarantees 

an optimal integer solution if supplies and demands are integers. 

It is Interesting to note that Dantizig et al. (1954) found an optimal solution to 

a 42-city problem using linear programming. They overcame the large number of 

loop constraints by beginning with only a few, and then adding new ones only as they 

were needed to block sub-tours. Combinatorial arguments were used to eliminate 

fractional solutions and to fmd an optimal tour. Finally, it was demonstrated that for 

the problem at hand, an ordinary linear program could be devised whose solution 

gave integer-valued xij's representing the optimal tour. The constraints that rule out 

some fractional solutions, but no integer solutions were forerunners to Gomory's 

'cutting plane' constraints for solving any integer linear programs (cf, Gomory 1963). 

Miller et al. (1960) earlier formulated the problem by replacing the sub-tour 

eliminating constraint ( c) by 

Uj-Uj+nxij :::;; n-1; 1~ i:;t:j :::;; n, 

where Uj, i=1,2, ... ,n are unrestricted real variables. However results were rather 

disappointing (cf, Srinivas 1989). 

2.2.1.2 DYNAMIC PROGRAMMING APPROACH 

Dynamic programming is the mathematical technique whose development is 

largely due to Richard E. Bellman. It is applicable to many types of problems where 

in a series of interrelated decisions is required. This technique of dynamic 

programming divides a given problem into sub problems and then solve the sub

problems sequentially (usually working backward from the natural end of the 

10 



problem) until the initial problem is finally solved. This technique of solving a given 

problem is often termed as recursive approach. The principle behind the operation of 

this technique is known as principle of optimality, which as set forth by Bellman, 

states that "An optimal solution has the property: whatever the initial state and 

decision are, the remaining decisions must consti~equence with regard 

to the state resulting from the fIrst decision" (cf, ym 1992r 

This technique of dynamic programming has been applied to TSP (cf, Bellman 

1962, Held and Karp 1962). Owing to its enormous storage requirements this 

technique can only solve relatively small size problems. However, the method is 

perhaps useful in obtaining some theoretical running time characteristics and is the 

basis for an effective bounding procedure in practical routing algoritluns (cf, Srinivas 

1989). ~'J\;\ 

2.2.1.3 BRANCH AND BOUND ALGORITHMS 

The Branch and Bound approach was developed by Little et al. (1963) in the 

first instance, in the context of the TSP. The technique involves a systematic search of 

the space of all feasible solutions. The basic approach followed in this algoritlun is to 

break up the set of all tours into smaller and smaller subsets and to calculate for each 

of them a lower bound on the cost (or length) of the tour. The bounds guide the 

algoritlun in deciding whether a given subset needs to be further scrutinized for 

optimality or whether it can be rejected for containing no solution better than the one 

at hand. 

The subsets of tours are conveniently represented as the nodes of a tree and the 

process of partitioning as a branching of the tree. Hence this method is known as 

"Branch and Bound". 

In fact in 1958, Eastman (cf, Eastman 1958) suggested one technique for 

solving the TSP, which is similar to the branch and bound approach. The lower bound 

considered was the optimal solution of the corresponding Assignment Problem.;As it 

is known that any solution to the TSP is also a solution of the ~lem, so 



the Assignment Problem is first solved allowing the sub-tours and then systematically 

sub-tours are eliminated until finally a tour is obtained that is optimal. 

Depending on the procedure used for getting the bounds at each branch, many 

branch and bound algorithms were developed for instance by Little et al. (1963), 
\ 

Shapiro (1966), Christofides (1970), Bellmore and Mellone (1971), Smith et al. 

(1977). I I 7 
~ r' 

2.2.1.4 LEXICOGRAPIDC SEARCH 

This search (Lexi-search, for short) is a systematic branch and bound 

approach, developed by Pandit (1962), first for Loading Problem, before branch 

and bound approach of Little et al. (1963) was published. The approach may be 

summarized as follows (cf, Pandit 1963): The set of all possible 'solutions' to a 

combinatorial programming problem is arranged in a hierarchy- like words in a 

dictionary, such that each 'incomplete word' represents the block of words with 

this incomplete word as the 'leader'. Bounds are computed for the values of the 

objective function over these blocks of words. These are compared with the 

'currently best available solution value'. If no word in the block can be better in 

value than the trial value (i.e., the value of best solution available so far), jump over 

the block to the next one. However, if the bound indicates a possibility of better 

solutions in the block, enter into the sub block by concatenating the present leader 

with appropriate 'letter' and set a bound for the new (sub) block so obtained. This 

procedure is very much like looking for a word in a dictionary; hence the name 

'Lexi(cographic) Search'. The basic difference with the branch and bound approach 

of Little et al. (1963) is that lexi search approach is one-pass, implicitly exhaustive, 

search approach, avoiding the need for book-keeping involved in storing, in active 

memory, the bounds, at various branching nodes at various levels and related 

backtracking procedures, which can be expensive in terms of memory space and 

computing times. "r V1.Jvvo ~;v\ ~ 
Details of this approach are given in Chapter III. 

12 



As the problem size increases, solving the TSP (and also any combinatorial 

optimization problem) exactly becomes impractical and so heuristic must be used. 

Also, it is to be noted that one can truncate the search by setting a % bound margin; 

setting this to k means that one winds up with a tour whose value is within k% of 

the exact optimal value. Such a solution is easily obtained by suitably modifying 

the 'bound' in the exact search procedure. These methods of truncating the search 

are called Quasi-Exact (QE) methods. They give solution more quickly than that of 

the exact methods, but do not guarantee the optimality of the solution. Of course, 

they will guarantee that the solution is at most k% away from the exact optimal 

solution. 

In this study, after improving the solution by lexi-search every time, the new 

total travel cost is further reduced by 15% (and also for all the problems considered 

in the present dissertation) and the 'current trial solution value' is replaced by the 

reduced travel cost. This way the upper bound is modified in the lexi-search 

approach. This modification will guarantee that the solution is at most 15% away 

from the exact optimal solution. 

2.2.2 APPROXIMATE SOLUTION METHODS (HEURISTICS) 

These are the techniques, which seek good solutions (i.e., near optimal 

solutions) at a reasonable computational cost without being able to guarantee either 

optimality or even in many cases to state how close to optimality a particular solution 

is. Examples are Greedy algorithms, Artificial Neural Network (ANN), Genetic 

Algorithm (GA), Simulated Annealing (SA) etc. 

2.2.2.1 GREEDY ALGORITHMS 

The greedy algorithms are usually very fast and intuitively appealing, but they 

do not always work; one can construct examples to this effect. Some popular greedy 

algorithms for solving the TSP are nearest neighbor algorithm (cf, Bhatia and Rocha 

1987) and .k-Opt moves. 
. .. _-----_ ... _-_._-----., 
:·:NTRA:.. LlWUIf...:v ,Ii 

13 . ::c. UO .............. . 
. -'-- -------_._. 



(i) NEAREST NEIGHBOR ALGORITHM 

The nearest neighbor algorithm works by selecting the locally supenor 

alternative at each step. Applying it to the TSP produces the following procedure: 

Step 1: - Select node' l' as the starting node (current node 'i=1 '). 

Step 2: - To select the next node to be visited, look at all the 'legitimate' nodes (i.e., 

the nodes that are not yet visited). Select the node 'j' such that the cost to go to 

the node 'j' from node 'i' is the minimum. Go to the node 'j' next and then 

rename this node as node 'i'. 

Step 3: - Repeat step 2 until all nodes have been visited. 

Step 4: - When all nodes have been added to the path, add an edge connecting the 

starting node to the last one and stop. 

This greedy algorithm is easy to program. The worst feature of the algorithm is 

that its greed to pick up the cheap costs at the early and middle visits can force it to 

choose very expensive options in the last few visits. However from the empirical 

evidence, it is claimed that the solutions obtained by these algorithms are within 20% 

nearness of the optimal solution (cf, Bhatia and Rocha 1978, Lawler et al. 1985). It is 

typically a tour-construction heuristic. Many variants are described in Johnson (1990), 

Grendeau et al. (1992). 

It may be noted here that the 'word-building' in the lexi search procedure 

(discussed later) also essentially follows this approach. 

14 



(ii) K-OPTIMAL MOVES 

Using k-Opt moves, neighboring solutions can be obtained by deleting kedges 

from the current tour and reconnecting the resulting paths using k new edges. The k

Opt moves are the basis of the three most famous local search heuristics (greedy --algoritlnns) for the TSP, namely, 2-0pt (cf, Croes 1958), 3-0pt (cf, Lin 1965, Stewart 

1987) and Lin-Kernighan (LK) (cf, Lin and Kernighan 1973). 

(a) 2-0PT MOVES 

A neighboring solution is obtained from the current solution by removing two 

edges, replacing them by a different set bf edges, in such a way as to maintain the 

feasibility of the tour. 

Let aj be the node in the position i of the tour, then if the edges (<Xi, <Xi+ 1) and 

(aj, aj+l) are removed, the only way to form a new valid tour is to connect <Xi to <Xj and 

aj+l to <Xj+l. Let us have a look on Figure 2.1, which represents a complete TSP tour 
~ 

{I ~3~4~2~ 7~6~5~8~ I} of 8-node problem. 
f\ 

1 

3 3 

4 

~ 
5 

Figure 2.1:- An initial TSP tour. Figure 2.2:- After edge removal 

15 



2 

Ifwe take i=l andj=4, edge (1,3) and (2,7) 

would be removed as in Figure 2.2.The only 

way of reconnecting two edges to form a valid 

3 tour is to connect node 1 to node 2 and 

node 3 to node 7, while reversing the travel 

4 between node 2 and node 3, as in Figure 2.3. 

5 The size of neighborhood is n(n-l)/2 (in the 

Figure 2.3: - Neighboring tour. case is of the symmetric TSP). A neighboring 

solution can be easily generated at random by generating randomly 'i' and 'j'. In 

order to check the preferability of the new tour, just to calculate 

{c(Uj, Uj) + C(Uj+h Uj+l)}-{C(Uj, Uj+l) + c(Uj, Uj+l)}. 

If this has a negative value, the new tour is preferable to the current one. The worst 

case complexity for searching the neighborhood defmed by this method is O(n2). 

(b) 3-0PT MOVES 

In this case, three edges are deleted and replacing them by a different set of 

three edges, in such a way as to maintain the feasibility of the tour. Figure 2.4 shows 

two possible 3-0pt moves that can be performed by deleting the edges (Ui, Ui+l), (OJ, 

Uj+l) and (Uk.> Uk+l) of a tour. 

16 



U· :J 

CXj+l 

Ui Uj+l 

U· 1 

Uj+l 

Figure 2.4. Two ways to perform 3-0pt. 

U· 1 

Uj+l 

There is one important difference between the two 3-0pt moves shown above: 

in the latter the orientation of the paths (Ui+l, ..... , CXj) and (CXj+h ..... , Uk) is preserved, 

whereas in the former this orientation is reversed. 3-0pt is much more effective 

than 2-0pt, since the size of neighborhood is larger; but; for the same reason, it is 

more time consuming to search. The worst case complexity for searching the 

neighborhood defmed by 3-0pt moves is O(n3
). 

An important modification of 3-0pt, introduced by Or (1976), can be 

implemented in O(n2) time. Or-Opt works by removing substrings of one, two, or 

three points from the tour, and reinserting them (possibly in reversed order) 

elsewhere such that the tour value of the new tour is better than that of initial (see 

Figure 2.5). The path (Ui+l, ...... , Uj) is reinserted between Uk and Uk+l. No paths are 

reversed in this case. 

17 



aj+l 

Figure 2.5. An Or-Opt move. 

(c) LIN-KERNIGHAN PROCEDURE 

To improve 3-0pt moves further Lin and Kernighan developed a sophisticated 

edge exchange procedure, where the nwnber k of edges to be exchanged is variable 

(ct: Lin and Kernighan 1973). This algorithm is mentioned in the literature as Lin

Kernighan (LK) algorithm and it was considered for many years to be 'uncontested 

champion' of local search heuristics for the TSP. LK uses a very complex 

neighborhood structure, which we will briefly discuss here. 

LK, instead of examining a particular 2-0pt or 3-0pt exchange, is building an 

exchange of variable size k by sequentially deleting and adding edges to the current 

tour while maintaining tour feasibility. Given node al in tour T as a starting point. In 

step m of this sequential building of the exchange: edge (aI, a2m) is deleted, edge 

(a2m, cx.2m+l) is added, and then (a2m+h a2m+2) is picked so that deleting edge 

(a2m+I, a2m+2) and joining edge (a2m+2, al) will close up the tour giving tour Tm. The 

edge (a2m+2, al) is deleted if and when step (m+ 1) is executed. The fIrst three steps of 

this mechanism are illustrated in Figure 2.6. 

18 



Figure 2.6 :-The first three steps of the Lin-Kernighan edge exchange mechanism. 

~~ ~0\Jf/vr>1; 
As we can see in this figure, the method is essentially executing a sequence of 

2-0pt moves. The length of these sequences (i.e., depth of the search) is controlled by 

the LK's 'gain criterion', which limits the nwnber of the sequences examined. In 

addition to that, limited backtracking is used to examine the sequences that can be 

generated if a nwnber of different edges are selected for addition at steps 1 and 2 of 

the process. 

The neighborhood structure described so far, although it provides the depth 

needed, is lacking breadth, and potentially missing improving 3-0pt moves. To gain 

breadth, LK temporarily allows tour infeasibility, examining so called 'infeasibility' 

moves which consider various choices for nodes <l4 to ag in the sequence generation 

process, examining all possible 3-Opt moves and more. Figure 2.7 illustrates the 

infeasibility move mechanism. The worst case complexity for searching the LK 

neighborhood in O(ns). 

19 



Figure 2.7:- Lin-Kernighan's infeasibility moves. 

Implementations of 2-0pt, 3-0pt and LK-based local search methods may 

vary in performance. Martin et al. (1991, 1992) and Johnson (1990) have improved 

the above algorithms. These algorithms, along with divide and merge, comprise a 

family of similar heuristics. They work by fIrst exchanging four old edges for four 

new edges, and then improving the resulting tour with local search optimizations. 

Johnson (1990) uses random cycle maintaining 4-exchanges, while Martin et a1. 

(1991, 1992) use random 4-exchanges with a limit on the amount the tour's value 

can increase. Martin et al. have explored the use of both 3-0pt and LK algorithm 

for local optimization, while Johnson focuses on the LK algorithm. Zweig (1995) 

developed a divide and merge neighborhood technique, by dividing a cycle into 

two sub-cycles, reversing a sub-cycle and splicing two sub-cycles back together 

into a single cycle, and [mally, performing modified Or-Opt and modifIed 2-0pt, in 

the neighborhood of all the newly formed edges. This form of divide and merge 

takes linear time per iteration. Zweig also described a restricted form of divide and 

merge that takes a constant time per iteration. Martin et a1. (1991) reported running 

times averaging one hour on SP ARC-1 for the 532-city instance and three hours for 

783-city instance, while divide and merge of Zweig requires only about 42 and 90 

SP ARC-1 seconds respectively. But they did not report how far their solutions were 

from the exact optimals. 

20 



2.2.2.2 SIMULATED ANNEALING 

Simulated Annealing (SA) was first proposed by Metropolis et al. (1953) for 

the efficient simulation of the evolution of a solid to a thermal equilibrium. After 

almost thirty years, Kirkpatrick et al (1983) realized that there exists a strong 

similarity between minimizing the cost function of a combinatorial optimization 

problem and slow cooling of a solid until it reaches its low energy ground state and 

that the optimization process can be realized by applying Metropolis criterion. By 

substituting cost function for· energy of the solid and by executing the Metropolis 

algorithm at a sequence of slowly decreasing 'temperature' values, Kirkpatrick et al 

(1983) obtained a combinatorial optimization algorithm, which they called 

"Simulated Annealing". The algorithm is based on Monte-Carlo methods and can 

be considered as a special form of iterative improvement. 

Annealing is a process of heating a solid and cooling it slowly so as to 

remove the strain and crystal imperfections. The SA procedure. simulates this 

process of slow cooling of molten metal to achieve minimum function value in a 

minimization problem. Controlling a temperature- like parameter introduced with 

the concept of the Boltzmann probability distribution simulates the cooling 

phenomenon. According to the Boltzmann probability distribution, a system in 

thermal equilibrium at a temperature T has its energy distributed probabilistically 

according to 

where j(x) is a <!ynamic function and k is the Boltzman constant. 

This expression suggests that a system at high temperature has almost 

uniform probability of being at any energy state, but at a low temperature, it has a 

small probability of being at high-energy state. So, by controlling the temperature T 

and assuming that the search process follows the Boltzmann probability 

distribution, the convergence of an algorithm is controlled. 

21 



Metropolis et al. set up a method, which simulates, for a fixed temperature 

T, the random evolution of a physical system in contact with a heat bath. The 

procedure is as follows (see also Deb 1995): 

Step 1: - Choose an initial point Xi and a termination criterion E. Set T a sufficiently 

high value, number of iterations to be performed at a particular temperature 

m, and i=O. 

Step 2: - Calculate a neighboring point Xi+l=N(Xi). A random point m the 

neighborhood is usually created. 

Step 3: - Iff=j(Xi+l)-j(Xi) < 0, set i=i+ 1; 

else create a random number (r) in the range (0,1). 

If r ~ exp( - ~), set i=i+ 1; 

else go to step 2. 

Step 4: - If IXi+l-xd < E and T is small, then terminate; 

else, if (i mod m) = 0, then lower T according to a cooling schedule 

and 

go to step 2. 

Else go to step 2. 

The initial temperature (T) and the number of iterations (m) performed at a 

particular temperature are two important parameters, which govern the successful 

working of the SA procedure. A suitable value of m can be chosen (usually 

between 20 to 100, see Deb 1995) depending on the available computing resource 

and the solution time. The choice of the initial temperature and the subsequent 

cooling schedule still remain an art and usually require some trial and error efforts. 

7 

22 



Several Simulated Annealing for solving the TSP have been reported 

(cf, Johnson 1990, Sumana 1995). Sumana examined 24 different SA algorithms 

based on different cooling schedules. But the results showed that lexi search was 

better than SA. 

2.2.2.3 GENETIC ALGORITHM APPROACH 

Genetic Algorithms (GAs) fIrst developed by John Holland (Holland 1975) 

are based essentially on 'mimicking' the 'survival of the fIttest among the species' 

generated by random changes in the gene-structure of the 'cmomosomes' in the 

evolutionary biology (cf, Goldberg, 1989). 

In order to solve any real life problem by GA, two main requirements are to 

be satisfIed: 

(a) a (possibly binary) string can represent a solution C)fthe solution 

space, 

(b) an objective function and hence a fItness function which measures the 

goodness of a solution can be constructed / defmed. 

A simple GA works by randomly generating an initial population of strings 

which is referred as gene pool and then applying (possibly three) operators to create 

new, and hopefully, better populations as successive 'generations' . The fIrst 

operator is 'reproduction' where strings are copied to the next generation with some 

probability based on their objective function value. The second operator is 

'crossover' where randomly selected pairs of strings are 'mated', creating new 

strings. The third operator, 'mutation', is the occasional random alteration of the 

value at a string position. The 'crossover' operator together with 'reproduction' is 

the most powerful process in the GA search. Mutation diversifIes the search space 

and protects from loss of genetic material that can be caused by reproduction and 

crossover. 

23 



Several genetic-based algorithms for solving the TSP were reported 

(cf, Goldberg 1989, Michalewicz 1994, Reeves 1993, Deb 1995). Details of this 

approach are given in Chapter IV. 

2.3 SOME VARIATIONS OF THE USUAL TSP 

Some of the many interesting variations of the TSP are given below: 

2.3.1 THE TRUNCATED TRAVELLING SALESMAN PROBLEM 

There are 'n' cities i=I,2, .... ,n and N={ 1,2, ..... ,n}. The distance dij between 

any pair of cities (i, j) is known. A subset '0' of size less than n, of the cities 

constitutes the potential places for setting up a 'headquarters'. A salesman has to 

visit only 'm' (m<n) cities out of 'n' cities with the restriction that this tour should 

include at least one city from the subset O. The problem is to fmd a feasible tour of 

'm' cities with a minimum length (cf, Sundara Murthy 1979). 

2.3.2 THE PRECEDENCE CONSTRAINED TRAVELLING SALESMAN 
PROBLEM 

Some ordered pairs of the cities are given. The salesman should visit the fIrst 

city in each pair before the second one, not necessarily immediately (cf, Scroggs 

and Therp 1972, Das 1976, Bianco et al. 1994). 

2.3.3 THE FIXED POSITIONAL TRAVELLING SALESMAN PROBLEM 

Some cities are specified to be visited at specific steps from the 

'headquarters' (cf, Scroggs and Therp 1972, Das 1976). 

2.3.4 VEHICLE ROUTING PROBLEM 

The 'n' nodes are indexed i=I,2, ... ,n and i=1 refers to the origin. There are 

'm' vehicles, indexed k=I,2, .... ,m. Node 'i' has a demand qj, the distance between 

node 'i' and node 'j' is dij. The capacity ofvehic1e k is Qk. Partition the nodes into 

24 



sets such that each set contain the origin. An assignment is a one to many mapping 

of the vehicles to the nodes in such a way that the sum of the requirements of the 

nodes in the set associated with a vehicle should not exceed the capacity of that 

vehicle. The optimal assignment is that assignment whose total tour length of all 

the vehicles is minimum. The basic Vehicle Routing Problem is that of identifying 

the partition of nodes, which has the shortest distance covered by the vehicles (cf, 

Clerke and Wright 1964, Laporte et al. 1985). 

2.3.5 THE CLUSTERED TRAVELLING SALESMAN PROBLEM 

The set of nodes in the usual TSP is partitioned into k clusters. The problem 

IS to fmd a least cost Hamiltonian tour such that the clusters are visited 

contiguously (cf, Chisman 1975, Lokin 1978). A particular type of this problem is 

called TSP with Backhauls (TSPB) in which the nodes of the network (except the 

starting node) are divided into linehaul and backhaul nodes. All the linehaul nodes 

should be visited contiguously after the starting node, followed by all the backhaul 

nodes. 

One generalization of the TSPB is the Vehicle Routing Problem with 

Backhauls (VRPB) studied by Deif and Bodin (1984). In the VRPB, tr.ere is a non

negative demand qi associated with each node i, and a fleet of k vehicles of capacity 

Q. The problem is to fmd a set of k vehicle routes of least total travel cost, in such a 

way that (1) each route starts and ends at the headquarters, (2) each node (except 

the headquarters), is visited exactly once by exactly one vehicle, (3) the total 

demand of any route does not exceed Q, and (4) on any route, all backhaul nodes 

are visited contiguously after all linehaul nodes. So, the TSPB may also be 

regarded as a subproblem of the VRPB, as each individual vehicle route is the 

solution of a TSPB. 

25 



2.3.6. "M" TRAVELLING SALESMAN PROBLEM 

Let there are 'm' travelling salesman and we are given 'n' nodes with the 

specified direct travel costs cij, iJ= 1 ,2, ... ,n, where node '1' is the 'headquarters'. 

Each of the salesmen is to start from node '1' and after touring his set of nodes 

should return to node '1'. The tours should have no common nodes (except node 

'1 '). The problem is to determine the optimal tour plan, i.e., the sequence of nodes 

for each salesman, so that the total cost of the tour is minimum (cf, Frederickson et 

al. 1978, Ramesh 1997). It may be. noted ~at this problem can be reduced to a 

single salesman problem by introducing a suitable number of dummy-origins (cf, 

Ramesh 1997). 

2.3.7. THE TRAVELLER PURCHASER PROBLEM 

There is a set I={ 1,2, ... ,m} of 'm' markets and a set K={ 1,2, ..... ,n} of 'n' 

commodities. Cost of a commodity keK at market ieI is dik and the cost of travel 

from market 'i' to market 'j' is Cij. The purchaser starts from home place (one 

market in I) and returns to it after purchasing all the commodities. The purchaser in 

his tour can visit a market, which already visited, and also he need not visit all the 

markets. The problem is to fmd a tour for the purchaser such that the total travel 

cost and purchase cost of all the commodities is minimum (cf, Ramesh 1980). 

2.3.8 THE TIME CONSTRAINED TRAVELLING SALESMAN PROBLEM 

The salesman of the usual TSP should start from node '1' at time '0' and 

must visit each node 'i' at time tj, such that ei S 4 S ii, where [ei, Id is called time 

window of the node 'i'. The salesman is required to return to node '1' before time 

11. (cf, Baker 1983, Mingozzi et al. 1997). 

26 



CHAPTER III 

THE LEXISEARCH APPROACHES FOR THE TSP 

3.1 INTRODUCTION 

The Lexicographic Search (Lexisearch, for short) approach to the 

Combinatorial Optimization Problem, as already mentioned in section 2.2.1.4, was 

fIrst developed in the context of 'The Loading Problem" (cf, Gali 1960), popularly 

known as knapsack problem, and has since been applied to many combinatorial 

programming problems efficiently (cf, Pandit 1962), e.g., The Assignment Problem 

(cf, Pandit et al. 1964), The Travelling Salesman Problem (cf, Pandit 1964, Sundara 

Murthy 1979, Srinivas 1989), The facility Location Problem (cf, Das 1976, 

Ramesh 1997), Job Scheduling Problem (cf, Gupta 1969). 

The Lexisearch derives its name from lexicography, the science of effective 

storage and retrieval of information. As already mentioned, the set of all possible 

solutions to a combinatorial programming problem is arranged in a hierarchy - like 

words in a dictionary, such that each 'incomplete word' represents the block of 

words with this incomplete word as the 'leader'. Each node is considered as a letter 

in an alphabet and each tour can be represented as a word with this alphabet. Thus 

the entire set of 'words' in this 'dictionary' (viz., the set of solution) is partitioned 

into 'blocks'. A block 'B' with a 'leader (a.I, 0.2, 0.3) of length three', consists of all 

the words beginning with (aI, a2, (3) as the string of fust three letters. The block 

'A' with 'leader (ah (2) of length 2' is the inunediate 'superblock' of B and 

includes B as one of its sub-blocks. The block 'c' with leader (aI, a2, a3,~) is a 

sub-block of 'B'. The block 'B' consists of many sub-blocks (aI,a.2, a3,~i), one for 

each ~i. The block 'B' is the inunediate super-block of block 'C'. 

27 



By the structure of the problem it is often possible to get bounds to the 

values of all words in a block (i.e., the 'bound for the block') by an examination of 

its leader. Hence, by comparing that bound with the value of a trial solution, one 

can 

(i) go into the 'sub-blocks', if the block-bound is less than the trial solution 

value and hence, the current block may contain a solution better than the trial 

solution value, 

(ii) jump over to the 'next' block; if the block-bound is greater than the trial 

solution value, or 

(iii) jump out to the next 'super-block', if the current block, which is to be 

jumped over is the last block of the present superblock. 

Further, if the value of the current leader is already greater than or equal. to 

the 'current trial value'; no need for checking the subsequent blocks within this 

super-block. These concepts are illustrated below; in case of the TSP. 

Let a, b, c, d be the four cities to be traveled by a salesman. Than the set of 

possible partial and complete words is listed lexicographically as follows: 

--abc----abcd 
- ab----J 

L-abd -----abdc 

a---- -ac-----{

-aCb-----acbd 

-acd -----acdb 
r-adb-----adbc 

--ad-----, 
--adc-----adcb 

28 



--bac----bacd 
--ba-----I 

--bad-----badc 

[

-bCa-----bCad 
b---- --bc-----

-bcd-----bcda 

{

-bda-----bdaC 
--bd----

-bdc-----bdca 

--cab----cabd 
--ca-----! 

--cad-----cadb 

c----- -cb------[

-Cba-----c bad 

-cbd-----cbda 
r-cda-----cdab 

--cd----1 --cdb-----cdba 

J --dab----dabc 
. --da----l 

--dac-----dacb 

r
-dba -----dbac 

d---- --db-----
--dbc-----dbca 

{

-dCa-----dcab 
--dc----

-dcb-----dcba 

The words starting with 'a' constitute a 'block' with 'a' as its leader. In a 

block, there can be many sub-blocks; for instance 'ba', 'bc' and 'bd' are leaders of 

the sub-blocks of block 'b'. There could be blocks with only one word; for 

instance, the block with leader 'abd' has only one word 'abdc'. All the incomplete 

words can be used as leaders to defme blocks. For each of blocks with leader 'ab', 

'ac' and 'ad', the block with leader 'a' is the immediate super-block. 

29 



There are mainly two ways of representing salesman's path in the context of 

Lexisearch approach, viz., path representation and adjacency representation. For 

example, let {l,2,3,4,5} be the labels of nodes in a 5 node TSP and let path to be 

represented be {1~3~4~2~5~1}. Adjacency representation of this path is 

I . f d' ., (1 2 3 4 5J usua representatIon 0 correspon mg permutatIon, VIZ., , 
35jf21 

I 

indicating that the edges 1 ~3, 2~5, .... , constitute the tour. The path 

representation just lists the sequence of the tour as (1,3,4,2,5). The adjacency 

approach (where adjacency representation is considered for representing a tour) 

generates permutation in a systematic lexical order. Since all permutations 

(
1 2 3 ...... n J do not lead to acceptable solution (i.e., path in a single cycle), a 
a) a 2 a 3 •••• a n 

permutation is to be tested for acceptability- either at the formation stage its elf- ! as 

each 'letter a j ' is added to the incomplete word, or it is to be tested at the end -

once a full permutation is generated. Whichever is the better of these two is not 

easy to judge - it depends on the efficiency of the algorithm used to check 

premature cycle formation, but in this approach, the bound setting IS 

computationally more efficient. 

In the path approach (where path representation is considered for 

. representing a tour), explicit testing for cycle formation is avoided, but bound 

setting is not efficient. In particular, a schema of path may occur at different 

relative positions in the path and thus, can lead to highly wasteful bound 

computation. 

The relative efficiency of these two approaches is studied for the case of 

usual TSP in the following sections. However, for the major problems of the 

present thesis - i.e., TSP with Constraints, the path approach is a better approach, 

since the constraints can be checked during solution formation. 

1 

30 



302 ADJACENCY APPROACH AND ILLUSTRATION 

Let us now illustrate the Lexisearch algorithm by outlines of an algorithm 

and an associated nwnerical problem's solution that follows, where adjacency 

representation is considered. 

Pandit (1964) developed a Lexisearch algorithm where adjacency 

representation was considered for representing the salesman's tour. The algorithm 

(ALS) is as follows: -

Let C=[cij] be the given n x n cost matrix and Cij be the cost of travelling~ 

node j from node i, and let node' l' be the starting node (cf, Table-301). 

Step 0: - - Remove the 'bias' of the given matrix. This bias removal 'reduces' the 

cost matrix to a non-negative matrix with at least one zero in each row and 

in each column (cf, Table-30$). Obviously, it is enough to solve the problem 

with respect to this cost matrix.llSort in ascending 'order, this matrix row

wise. Store the corresponding column mdices of each row of the matrix in a 

similar manner. Initialize the 'current trial solution value' to a large number. 

Step 1: - With the partial word oflength (1-1), take as leader (for the partial word to 

be filled) the first unchecked or free letter. Compute the bound by adding the 

costs of the remaining (n-l) successive letters after ensuring that the column 

repetition with each of the (1-1) letters of the partial word is avoided. 

Step 2: - If the bound is less than the 'current trial solution value', go to step 3, else 

go to step 50 

Step 3: - If the colwnn index of the leader tallies with the corresponding column 

index of any of the (1-1) letters of the partial word or if there is a sub-tour, go 

to step 1, else go to step 4. 

31 



Step 4: - Go to sub-block, i.e., augment the current leader, concatenate the fITst free 

letter to it, lengthening the leader by one letter and go to step 1. 

Step 5: - Jump this block, i.e., decrement I by 1 (one), rejecting all the subsequent 

words from this block as the solution worse than the 'current trial solution 

value'. If 1= 1 and letter=n, go to step 6, else go to step 1. 

Step 6: - Current word gives the optimum tour sequence, with 'current trial 

solution value' as the optimum cost, and go to step 7. 

Step 7: - Add the 'bias' to the optimum solution and stop. 

Working of this algorithm is explained through a seven-city example; with 

inter city travel costs as given in Table-3.1 with bias of the matrix. Table-3.2, 

Table-3.3 and Table-3.4 give the reduced cost matrix, the 'alphabet table' and the 

'search table' respectively. The symbols used therein (and also for all the problems 

in this present dissertation) are listed below: 

GS: Go to sub-block, i.e., attach the fITst 'free' letter to the current leader. 

GS for 'db' leads to 'dba' as augmented leader. 

JB: Jump the block, i.e., go to the next block of the same order i.e., replace 

the last letter of the current block by the letter next to it in the alphabet table. JB for 

'abc' is 'abd'. 

JO: Jump out to the next, higher order block, i.e., drop out the last letter of 

the current leader and then jump the block. JO for 'cdbe' is 'cde'. 

TRVL: Currently trial solution value. 

CR: Column repetition. 

32 



TABLE-3.1: - The Cost Matrix 

1« 1 2 3 4 5 6 7 Row 
Min 

1 999 75 99 9 35 63 8 8 
2 51 999 86 46 88 29 20 20 
3 . 100 5 999 16 28 35 28 5 
4 20 45 11 999 59 53 49 11 
5 86 63 33 65 999 76 72 33 
6 36 53 89 31 21 999 52 21 
7 58 31 43 67 52 60 999 31 

Col. 9 0 0 1 0 9 0 
Min 

Total Bias = row minima + column minima = 129 + 19 = 148. 

TABLE-3.2: - The Reduced Cost Matrix 

~ 1 2 3 4 5 6 7 
1 982* 67 91 0 27 46 0 
2 22 979* 66 25 68 0 0 
3 86 0 994* 10 23 21 23 
4 0 34 0 987* 48 33 38 
5 44 30 0 31 966* 34 39 
6 6 32 68 9 0 969* 31 
7 18 . 0 12 35 21 29 968* 

*The diagonal terms do not have to be computed. They could as well be left as 999. 

TABLE-3.3: - The Alphabet Table 

*N-V N-V N-V N-V N-V N-V N-V 
1 4-0 7-0 5-27 6-46 2-67 3-91 1-982 
2 6-0 7-0 1-22 4-25 3-66 5-68 2-979 
3 2-0 4-10 6-21 5-23. 7-23 1-86 3-994 
4 1-0 3-0 6-33 2-34 7-38 5-48 4-987 
5 3-0 2-30 4-31 6-34 7-39 1-44 5-966 
6 5-0 1-6 4-9 7-31 2-32 3-68 6-969 
7 2-0 3-12 1-18 5-21 6-29 4-35 7-968 

*Note:- N=Node number, V=Value of the node. 

33 



Table-3.4: - Search Table 

Leaders *Bounds Trial 
1 2 3 4 5 6 7 L-l + N-L Value Remarks 

Value 
4-0 0+0 9999 GS 

6-0 0+0 9999 GS 
2-0 0+12 9999 GS 

1-0 0+12 9999 CR 
3-0 0+57 9999 GS 

7-39 0+18 9999 GS 
5-0 39+18 9999 GS 

1-18 39+0 9999 GS 
TRVL= 57 m,JO 

1-6 39+21 57 m,JO 
1-44 0+21 57 m,JO 

.7-38 0+12 57 GS 
3-0 38+18 57 GS 

5-0 38+18 57 CR 
1-6 38+21 57 m,JO 

1-44 38+12 57 JB,JO 
5-48 0+18 57 JB,JO 

5-23 0+6 57 GS 
1-0 23+31 57 CR 
3-0 23+36 57 JB 

2-34 23+6 57 JO 
7-23 0+0 57 GS 

1-0 23+0 57 CR 
3-0 23+30 57 GS 

2-30 23+18 57 JB 
1-44 23+0 57 JO 

2-34 23+12 57 JO 
1-86 0+0 57 JO 

7-0 0+0 57 GS 
2-0 0+12 57 GS 

1-0 0+12 57 CR 
3-0 0+62 57 JB 

6-33 0+12 57 GS 
3-0 33+18 57 GS 

5-0 33+18 57 GS 
1-18 33+0 57 GS 

TRVL= 51 JB,JO 
*Note: -Here I is the length of the present (incomplete) tour. Total bound value is the sum 

of leader value + cumulative value of (/-1) letters + value of remaining possible (n-I) 

letters. 

34 



Table-3.4: - Search Table (Continued) 

Leaders Bounds Trial 
1 2 3 4 5 6 7 L-l + N-L Value Remarks 

value 
1-6 33+21 51 CR,JO 

1-44 33+12 51 JO 
5-48 0+18 51 JB,JO 

6-21 0+0 51 GS 
1-0 21+0 51 CR 
3-0 21+30 51 JB 

2-34 21+12 51 JO 
5-23 0+6 51 GS 

1-0 23+32 51 CR 
3-0 23+36 51 JB 

6-33 23+6 51 JO 
1-86 0+0 51 JO 

1-22 0+0 51 GS 
2-0 22+12 51 GS 

3-0 22+55 51 CR 
6-33 22+12 51 JO 

6-21 22+0 51 GS 
3-0 43+30 51 JB 

2-34 43+12 51 CR,JO 
5-23 22+31 51 JB 
7-23 22+0 51 GS 

3-0 45+30 51 JB 
6-33 45+0 51 JO 

1-86 22+0 51 CR,JO 
3-66 0+30 51 JO 

7-0 0+0 51 GS 
6-0 0+0 51 GS 

2-0 0+12 51 GS 
1-0 0+12 51 GS 

3-0 0+21 51 GS 
5-0 0+35 51 CR,JO 

4-31 0+12 51 GS 
5-0 31+12 51 GS 

1-18 31+0 51 CR,JO 
1-6 31+21 51 JB,JO 

3--0 0+49 51 GS 
4-31 0+18 51 GS 

5-0 31+18 51 CR 
1-6 31+21 51 JB,JO 

35 



Table-3.4: - Search Table (Continued) 

Leaders Bounds Trial 
1 2 3 4 5 6 7 L-l+ N-L Value Remarks 

value 
1-44 0+21 51 JB,JO 

5-48 0+18 51 JB,JO 
4-10 0+0 SI GS 

1-0 10+0 51 GS 
3-0 10+0 51 GS 

5-0 10+0 51 GS 
2-0 10+0 Sl GS 

TRVL= 10 JB,JO 
2-32 10+21 10 eR,JO 

2-30 10+12 10 JO 
3-0 10+30 10 JO 

6-21 0+0 10 JO 
1-22 0+0 10 JO 

5-27 0+0 10 STOP 

As seen from the above search table, the optimal solution is given by the 

(
1 2 3 4 5 6 7) permutation or equivalently the tour is 
7641352 

{1-+7~2-+6-+5~3~4-+1}, and optimal solution::: bias + trial value::: 148 + 10 

= 158. 

As it is already mentioned that in this adjacency approach a permutation is 

to be tested for acceptability - either at the tour fonnation stage or at the end - once 

a full permutation is generated. In the tour fonnation stage, if the incomplete 

permutation is (1 2 3 ...... i J, i.e., if letter' a
j

' is added to the incomplete word, 
a1 a2 a3 ····aj 

and if aj -< i, then there is a possibility of a sub tour. So, check it, else need not 

have to check. In the other approach, the permutation is checked only after a full 

permutation is obtained. We have employed both the approaches of checking the 

cycle. So, let us have a comparative study of these two sub-tour checking Lexi 

search program. For simplicity, the approach involving cycle checking while 

36 



building the tour is named as SIr, and the other is named as SIA. The comparative 

study is carried out for two sets of problems of sizes 25 and 30 (see in Table-3.5). 

Table-3.5: - Comparative study of STI, STA and STC. 

N Seed Sol Time N Seed Sol. Time 
STI STA STC STI STA STC 

930 152 0.27 1.32 1.32 930 156 3.85 >60 >60 
160 192 0.66 0.82 0.99 160 184 0.55 >60 >60 

25 681 154 0.17 1.21 0.22 30 681 166 0.82 10.60 2.25 
418 167 0.22 0.28 0.27 418 187 5.11 >60 >60 
522 164 0.11 13.01 11.70 522 199 2.97 >60 >60 
Mean 0.29 3.33 2.90 Mean 2.66 ----- ----
S.D. 0.19 4.85 4.42 S.D. 1.75 

From Table-3.5, it is seen that STr approach is better than the SIA 

approach. Though theoretically, the sub-tour checking after completing a full 

permutation is less costly than the other, but it is seen that the cost of throwing a 

complete permutation, as it is not a feasible solution, is much more, which leads 

STA to an inefficient approach. To reduce the throwing infeasible complete 

permutation, we allow some check post in the entire tour, and between two check 

posts we concatenate the 'first free' letter to the current leader without calculating 

bound and checking the occurrence of a sub-tour. Only when we reach the check 

post (i.e., length of the present tour equals the value of the check post), the bound 

of the present tour is computed and check for cycle formation. In this present study 

we consider the check posttat the length of l ~ J l2sn J l3; J l7 J and n. But, still 

this approach (which is named as SIC for simplicity) is worse than the STI (as 

shown inTable-3.5). Hence, we accept the STr approach (see Program 1.'1. in 

Appendix) for sub-tour checking. 

Sundara Murthy (1979) proposed another scheme for the 'search' sequence 

of Pandit's Lexisearch algorithm. He arranged 'n(n-I)' direct distances in 

37 



ascending order and these corresponding 'ordered pairs- i,j' are the words in a 

dictionary. When a leader is specified, he checked for 

(i) non-repetition and 

(ii) non-cycling in the leader after considering the bOWlds for block values. 

Thus, once a word is accepted as possibly containing a better solution within 

the corresponding block, he checked for 'row' and 'column' repetitions of the letter 

and also checked for sub-tour fonnations. This was expected to increase the 

computational efficiency of the algorithm to considerable extenf. 

But, the proposed algorithm is likely to be efficient in case of highly skewed 

distance distributions and does not seem to be any better than the conventional 

branch and bOWld algorithms (cf, Srinivas 1989). So, Srinivas (1989) again 

modified Pandit's Lexisearch algorithm, which is named as "Data-Guided 

Lexisearch Algorithm". Here the nodes of the network are renamed on the basis of 

a scrutiny of the cost matrix and an 'alphabet' table is defmed after the above pre

processmg. 

In the data-guided lexisearch (DGLS) algorithm the following steps of ALS 

algorithms are modified. 

f' 
Step 0: - Remove the 'bias' of the given cost matrix. Interchange the row, so that 

the rows with maximum zeros are shifted to the bottom while rows with 

minimum zeros are shifted to the top. In the even of a tie, the tie is broken 

by comparing the values of the smallest non-zero elements in the two rows: 

the row with the larger value precedes the other. Sort in ascending order, this 

matrix row-wise and store the corresponding column indices of each row of 

the matrix in a similar manner. Initialize the 'current trial solution value' to a 

large number. 

38 



Table-3.7: - Search Table 

Leaders Bounds Trial 

1(5) 2(7) 3(3) 4(6) 5(4) 6(1) 7(2) L-l + N-L Value Remarks 
value 

3-0 0+0 9999 GS 
2-0 0+10 9999 GS 

2-0 0+0 9999 CR 
4-10 0+0 9999 GS 

5-0 10 + 0 9999 GS 
1-0 10 + 0 9999 GS 

4-0 10 + 0 9999 CR 
7-0 10 +0 9999 GS 

6-0 10 + 0 9999 GS 
TRVL= 10 m,JO 

5-27 10 + 0 10 JO 
3-0 10 + 0 10 CR 
6-33 10 + 0 10 JO 

1-6 10+ 0 10 JO 
6-21 0+0 10 JO 

3-12 0+0 10 JO 
2-30 0+0 10 STOP 

As seen from the above search table, the optimal solution is given by the 

permutatlOn or eqmva ent y e tour IS ~ ~ ~ ~ ~3~4~ , . (1,2,3,4,5,6,7J . I I th . {I 7 2 6 5 I} 
7,6,4,1,3,5,2 

and optimal solution = bias + trial value =: 148 + 10 = 158. 

Apart from the advantage of minimal memory requirement, the Lexisearch, 

in general and the Data-Guided Lexisearch, in particular, is far superior than that of 

Branch and Bound approach of Little et al. (1963) (cf, Srinivas 1989). 

As it is mentioned that for the TSP with constraints, the path approach is 

better than the adjacency approach. So, let us describe the path approach. 

3.3 PATH APPROACH AND ILLUSTRATION 

Let us fIrst illustrate the Lexisearch algorithm by outlines of an algorithm 

and an associated numerical problem's solution that follows, where path 

representation is considered (also see Ramesh 1997). 

40 



Now for the algorithm (PLS) and illustration: 

Let C=[ cij] be the given n x n cost matrix and Cij be the cost of travelling of 

node j from node i, and let node' l' be the starting node (cf, Table-3.1). Then for 

all nodes in the network, generate a zero-one vector V of order n as follows: 

Vi= 1 ; if node 'i' is in the tour. 

=0 ; otherwise. 

Though this is not a part of the program (or algorithm), but for checking the 

feasibility of the tour, we follow this convention. 

Step 0: - In addition to the step 0 of ALS, in section 3.2, we put r=1. 

Step 1: - Go to the rth element of the. row (say, node ex) and compute the cost of 

travelling. If the travel cost is greater than or equal to the 'current trial 

solution value', go to step 8, else, go to step 2. 

Step 2: - If the (incomplete) word forms a sub-tour, drop the city added in step 1 

and increment r by 1, and then go to step 6; else, go to step 3. 

Step 3: - If all the nodes of the network is visited, add an edge connecting the 

starting node to the last one and compute the travel cost and go to step 4, 

else go to step 5. 

Step 4: - If the travel cost is greater than or equal to the 'current trial solution 

value', go to step 9, else, replace the travel cost as the 'current trial solution 

value' and go to step 9. 

Step 5: - Calculate the Bound. 

41 



Step 6: - If the (Bound + Travel cost) is greater than or equal to the 'current trial 

solution value', drop the city added in step 1 and increment r by 1, and then 

go to step 7; else, go to step 8. 

Step 7: - Ifr is less than n (total number of nodes), go to step 1, else, go to step 8. 

Step 8: - Go to sub-block, i.e., go to a th row and then put r=I; go to step 1. 

Step 9: - Jump this block, i.e., go to the previous row (i.e., node) and increment r 

by 1, where r was the column number of that row. This will automatically 

.. 'Jsequent words from this block as solutions worse (at least, 

.. ~u .. U\;.\.LC-l) Ulan the current trial value. If the present node is the starting node 

and r =n, go to step 10, else, go to step 1. 

Step 10: - Current word gives the optimal tour sequence, with 'current trial solution 

value' as the optimum cost, with respect to the 'reduced' cost matrix. 

Step 11: - Add the 'bias' to the optimal solution value obtained above and stop. 

3.3.1 BOUND CALCULATION 

It is already mentioned that the bound setting in this path approach is not 

efficient and getting very efficient lower bound is computationally very costly. 

However, following bound setting technique is used for the usual TSP. 

Bound is the sum of travel costs of the rows (cities) (which ?not in the 

word, excluding latest city) to the first reachable city (excluding latest city) within 

the first (~-I) cities if any; otherwise take the cost of travelling the ~ th city in that 

row. The larger value of {3, the better (more 'efficient') is the bound obtained but 

the computations also will be higher, while smaller ~ requires less computations for 

bound setting requires a more intensive search. In other words, this way of 

42 



computing the bound may result in increasing the number of solutions to be 

searched, but reduces the computational time on computing the bound as it is 

calculated for every partial solution. The value of ~(~) we have considered in this 

present study as l~ J (and also for all of the problems considered in this present 

dissertation). 

For the problems with constraints also, this bound calculation, without 

considering the constraints, is considered in developing path approach in the 

context of lexisearch approach. 

3.3.2. ILLUSTRATION 

Working of this algorithm is explained through the same problem as given in 

Table-3.I. The logic-flow of the algorithm at various stages is indicated in Table-

3.8, which sequentially records the intermediate results, with decision taken (i.e., 

remarks) at these steps in every column. 

As the illustration of the example, we fIrst set 'trial solution value' as 9999. 

Since our starting node (or city) is '1', so we start from 1st row of the 'alphabet 

table' and select the 1st node, which is not present in the partial tour (i.e., the tour, 

which is not yet completed). In this table, node 4 is the acceptable node with value 

O. Since the total partial tour value, if the node 4 is accepted, is less than the 'trial 

solution value', so we can go for bound calculation. The bound will guide us 

whether this node 4 will be accepted or not. If it is accepted, then go to the next 

step of searching, otherwise, leave this node and jump out to the next block of same 

size. Since node 1 is only present in the actual partial tour and node 4 is the latest 

node, so sequentially search all the fIrst nodes, except node 1 and node 4, of the 

rows expect 1st row, and add the corresponding node values. So, in 2nd and 3rd rows 

we can visit node 6 with value ° and node 2 with value 0 respectively. In 4th row 

we can visit node 1 with value 0, which is allowed in bound calculating as at last 

43 



we have to come back to the starting node 1, though it is already present in the 

partial tour. 

TABLE-3.8: SEARCH TABLE 

l~a.l a.l~a.2 a.2~a.3 a.3~a.4 a.4~a.5 a.5~a.6 a.6~1 

1~4(o) 4~3(o) 3~2(o) 2~6(o) 6~5(o) 5~7(39) 7~1(18) 
(O)+O,GS (O)+30,GS (O)+52,GS (O)+57,GS (O)+57,GS (39)+18,GS TRVL=57 

JO 
6~7(31) 
(31)+62,10 

2~7(o) 7~5(21) 
(O)+52,GS (5)+40,JB 

7~6(29) 
(29)+44,JO 

2~5(68), JO 
3~6(21) 6~5(o) 
(21)+30,GS (21)+39,JB 

6~7(31) 
(52)+61,JO 

3~5(23) 
(23)+40,JB 
3~7(23) 
(23)+34,JO 

4~6(33) 6~5(o) 5-+3(0) 3-+2(0) 2-+7(0) 7~l(J8) 
(33)+O,GS (33)+O,GS (33)+O,GS (33)+ 18,GS (33)+18,GS TRVL=51 

JO 

3~7(23),JO 
5-+2(30),JO 

4~2(34) 
6~7(31),JO 

7~2(o) 
(34)+33,JB (38)+21,JB 
4~7(38) 7~3(12) 
(38)+O,GS (50)+30,JB 

4-+5(48) 
7~5(21),JO 

1-+7(0) 
(48)+6,JO 

7-+2(0) 2~6(0) 6~5(o) 5~3(o) 3~4(Jo) 4~1(0) 
(O)+O,GS (O)+lO,GS (O)+lO,GS (O)+lO,GS (O)+lO,GS (lO)+O,GS TRVL=lO 

JO 

5~4(31),JO 

6~4(9) 
(9)+23,JB 
6~3(38) ,JO 

7~3(12),JO 
2~4(25),JO 

1~5(27) 
STOP 

44 



Next, in 5th, 6th and 7th rows the nodes 3 with value 0, 5 with value 0 and 2 

with value 0 can be visited respectively. So, the bound is the 0+0+0+0+0+0=0 and 

the total bound is the addition of this with the present tour value, hence 0+0=0. 

Since this total bound is less than the 'trial solution value', so we can accept the 

node 4, which leads to the partial tour {I ~4} with value O. N oyv, go to the 4th row, 

as the present node is 4, and visit the 15t untouched node 3 with value 0, as node I 

is present in the partial tour and tour is not complete. This node value is added to 

the present tour value, and as this total is less than the 'trial solution value', hence 

we can go for bound calculation. For bound calculation, in 2nd
, 3rd

, 5th
, 6th and 7th 

rows, the nodes 6 with value 0, 2 with value 0, 2 with value 30, 5 with value ° and 

node 2 with value ° can be visited respectively. It is to be noted that since this 

problem is of small size, so we take f3 = n -1, i.e., we search for the legitimate node 

in a row upto (n-I yh element for the bound calculation. In 5th row, the 15t node was 

3, but as it is the latest node, we can't visit it again. So, the bound will be 30. Since 

the addition of this bound and the present tour value is less than the 'trial solution 

value', hence we can accept the node 3. Thus, the partial tour will be {1~4~3} 

with value O. Proceeding in this way we obtain the 15t complete tour as 

{1~4~3~2~6~5~7~1} with value 57, and as this value is less than the 'trial 

solution value', replace the 'trial solution value' by this value. Now, we jump out to 

the next higher order block, i.e., {1~4~3~2~6~5~7} and go to complete the 

tour. Since to complete the tour no option except node I is left and we have already 

searched it, hence we jump out to the next higher order block, i.e., 

{1~4~3~2~6~5}. Proceeding in this way, we obtain the fmal tour as 

{1~7~2~6~5~3~4~1} with value 10. And hence the optimal tour value with 

respect to the given cost matrix = bias + trial value = 148 + 10 = 158. 

It is interesting to see that the problem with 'bias' (PLSB) takes more time 

than that of the same problem without 'bias' (PLS). Let us have a look at the 

comparative study of the programs in Table-3.9. Relative efficiency analysis is 

carried out for two sets of randomly generated problems of sizes 20 and 25. Each 

45 



set contains 5 randomly generated problems. Later on we will apply the genetic 

algorithms also to the reduced cost matrix after removal of 'bias'. 

Table-3.9: - A Comparative study of PLSB and PLS programs. 

N=20 N=25 
Soln. Time Soln. Time 

Seed PLS PLSB PLS PLSB 

930 137 0.00 0.11 152 0.22 4.83 
160 163 0.00 0.27 192 0.72 217.78 
681 162 0.05 0.38 154 0.16 12.86 
418 180 0.06 0.28 167 0.22 15.48 
522 178 0.00 0.27 164 0.11 4.56 

Mean 0.02 0.26 0.29 51.10 
S.D. 0.03 0.09 0.22 83.45 

Now, as it is already mentioned that in path approach bound setting is very 

costly, whereas in adjacency approach the sub-tour checking is costly. So, let us 

have a comparative study of both the approaches. Comparative study of PLS, ALS 

and DGLS algorithms is carried out for four sets of randomly generated test 

problems of sizes 34, 36, 39 and 40 (see Table-3.10). 

Table-3.10: - A comparative study ofPLS, ALS and DGLS for the Usual TSP. 

N Seed Sol Time N Seed Sol. Time 
PLS ALS DGLS PLS ALS DGLS 

930 174 7.36 1.31 0.60 930 168 30.65 5.87 0.27 
160 151 13.73 2.26 9.83 36 160 186 1233.96 50.75 31.53 

34 681 209 46.85 167.35 1.38 681 168 4.34 1.21 1.43 
418 153 8.68 6.82 1.48 418 156 97.65 57.45 4.67 
522 179 9.56 6.48 16.09 522 205 65.64 274.52 190.42 

Mean 17.24 36.84 5.88 Mean 286.45 77.96 45.66 
S.D. 14.96 65.29 6.12 S.D. 474.81 100.88 73.28 
930 188 495.93 60.91 71.79 930 154 119.52 215.80 25.60 
160 150 39.49 4.07 17.41 40 160 168 796.03 94.86 159.34 

39 681 158 121.16 0.82 14.06 681 166 539.76 81.95 67.83 
418 157 161.76 17.52 152.75 418 180 1310.14 1245.10 7.25 
522 185 20.10 45.10 4.12 522 192 121.06 126.94 32.24 

Mean 167.69 25.68 52.03 Mean 577.30 352.93 58.45 
S.D. 172.14 23.54 55.62 S.D. 448.11 448.53 54.14 

46 



It is seen from the Table-3010 that as the size of the problem increases PLS 

algorithm takes more time than that of ALS algorithm. Of course, for few of the 

problems, ALS takes more time than that of PLS. As example, for the 3rd problem 

of size 34, PLS takes only 46.85 seconds, whereas ALS takes 167.35 seconds. 

Now, let us compare the ALS algorithm with DGLS algorithm. It is seen for most 

of the problems that DGLS is better than ALS. Of course here also, for few 

problems ALS takes ~5S. time than DGLS. For example, for the 4th problem of 

size 39 ALS takes only 17.52 seconds, whereas DGLS takes 152.75 seconds. The 

DGLS is the modification of ALS, and it comprises of two stages - preliminary 

scrutiny and preprocessing, in addition to the stages in ALS. So, the actual building 

of full-fledged data-guided algorithm is not presented. Of course, if one considers 

the mean and standard deviation of the times, then one can conclude that DGLS 

algorithm is the best among these exact algorithms. So, the DGLS approach is used 

for getting exact optimal solution and then quasi-exact optimal solution for the 

usual TSP. 

The DGLS approach is one of the best exact methods for the usual TSP. 

However, when the size of the problem increases, the computational time increases 

exponentially; very fast. Hence our aim is to fmd heuristically optimal solution to 

the TSP by Quasi-Exact method, Sequential Constructive Sampling approach, and 

Genetic Algorithms (GAs) and then establishing the 'degree of goodness' of these 

heuristic methods by comparing them with the solutions obtained by the DGLS. 

3040 SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 
AND ILLUSTRATION 

This is a sampling approach to 'guess' or 'estimate' the best tour. It can be 

described as a statistical version of the lexisearch approach; it combines the 

lexisearch approach with the sequential sampling approach for estimating the 

minimum of a statistical population through adaptive sampling, with reasonable 

stopping rule. 

47 



It is not a simple random generation of tours. The 'alphabet table' of the 

lexisearch approach for the TSP is considered, and instead of visiting the fIrst 

'legitimate' node of a row from its corresponding row (node), one of the 

'legitimate' nodes is visited probabilistically. For this the probability of visiting 

each 'legitimate' node is assigned in such a way that the first legitimate node gets 

more probability than second one, and so on. The probability of visiting each 

'legitimate' node is assigned as follows. Suppose the number of 'legitimate' nodes 

is k. The probability of visiting ith 'legitimate' node is 

p,=2(k-i+1) .............................. 3.1 
I k(k + 1) 

Thereafter, the cumulative probability (Pi) of each node being visited can be 

calculated by adding the individual probabilities from the left of the list. So, Po=O 

and Pk=1. Now, a random number between 0 to 1 is generated and the node that 

represents the chosen random number in the cumulative probability range for that 

node is accepted for the next stage of testing (i.e., bound calculation). 

The procedure may be summarized as follows: 

Step 0: - Construct the 'alphabet table' based on the given cost matrix (i.e., without 

bias removing). Initialize the 'current trial solution value' to a large number. 

Step 1: - Start from 15t row (node 1) (i.e., current node i=l). 

Step 2: - Visit probabilistically jth node of the ith row (as described above). That is 

go:~ , ,,:. to the node 'j' next. 

Step 3: - Compute the (incomplete) travels cost. If this travel cost is already greater 

than or equal to the 'current trial solution value', then go to step 6 and then 

try to generate another tour; else go to step 4. 

48 



Step 4: - Compute $e Bound for the 'residual part of the tour' . 

Step 5: - If (incomplete travel cost + bound) is greater than or equal to the 'current 

trial solution value', then go to step 6, else got to step 7. 

Step 6: - Repeat step 2 to step 5 at most k times, where k is number of 'legitimate' 

nodes. If within this many trials no improvement is possible then go to step 

1 and then try to generate another tour; else, go to step 7. 

Step 7: - If all the nodes have been added to the path, add an edge connecting the 

starting node to the last one. If the total travel cost is less than the 'current 

trial solution value', then replace the 'current trial solution value' by the 

travel cost, else go to step 1. Else rename the node 'j' as node 'i', go to step 

2. 

When the number of (incomplete or complete) tours generated is 'large 

enough', stop sampling and accept the 'current trial solution value' as the estimate 

of the best solution value and the corresponding tour as the best tour. 

Obviously, the crucial question is, how large is 'large enough'? 

No exact theoretical answer to this general question is statistical inference 

seems to be available. The stopping rule adopted depend essentially on the 

judgment of the solution-seeker and are often detennined by the 'time and 

computational effort' incurred so far. They may also be guided by 'experience 

gained by simulational studies'. 

In this present study (also for all of the problems in this present dissertation) 

we have considered a sample of size 5n3
, i.e., the best solution value obtained 

within this 5n3 trials is considered as the best solution value of the problem. 

49 



3.4.1 BOUND CALCULATION 

Arrange the entire matrix el~II.1ents in ascending order and store them in an 

array, say D, also their corresponding row and column indices are stored in other 

two arrays, say R and K respectively. Also the cumulative sums of the elements in 

D are stored in an array, say CD. Let the length of the partial array be I, so n-I+ 1 

steps are still required. Then check the elements (nodes) in R sequentially, whether 

they are already in the partial word (tour) (except the latest node). If one of them is 

not in the partial word, then check the corresponding element (node) in K, whether 

it is already present in the partial word. If no and the element is the ith element in K, 

then the bound will be CD(n-l+i)-CD(i-l), else check the next element of R, else 

check within flrst (m_lyh elements in the array R, otherwise take the bound as 

CD(n-l+m)-CD( m-l). 

In this present study (also for all of the problems studied in this present 

dissertation) we take m=lO. This bound calculation technique, without introducing 

constraints, is considered for the other Restricted TSPs also. 

3.4.2 ILLUSTRA TION 

Let us illustrate the process through an example of seven-city problem given 

in Table-3.1. The 'alphabet tables' for building the tour and calculating the bound 

are given in Table-3.11 and Table-3.12 respectively. 

TABLE-3.11: - The Alphabet Table 

N-V N-V N-V N-V N-V N-V N-V 
1 7-8 4-9 5-35 6-63 2-75 3-99 1-999 
2 7-20 6-29 4-46 1-51 3-86 5-88 2-999 
3 2-5 4-16 5-28 7-28 6-35 1-100 3-999 
4 3-11 1-20 2-45 7-49 6-53 5-59 4-999 
5 3-33 2-63 4-65 7-72 6-76 1-86 5-999 
6 5-21 4-31 1-36 7-52 2-53 3-89 6-999 
7 2-31 3-43 5-52 1-58 6-60 4-67 7-999 

50 



TABLE-3.12: - The Alphabet Table for Bound Calculation 

Sl. Value Cum. Row Col. SI. Value Cum. Row Col. 
Value Value 

1 5 5 3 2 22 51 630 2 1 
2 8 13 1 7 23 52 682 6 7 
3 9 22 1 4 24 52 734 7 5 
4 11 33 4 3 25 53 787 4 6 
5 16 49 3 4 26 53 740 6 2 
6 20 69 2 7 27 58 798 7 1 
7 20 89 4 1 28 59 857 4 5 
8 21 110 6 5 29 60 917 7 6 
9 28 138 3 5 30 63 980 1 6 
10 28 166 3 7 31 63 1043 5 2 
11 29 195 2 6 32 65 1108 5 4 
12 31 226 6 4 33 67 1175 7 4 
13 31 257 7 2 34 72 1247 5 7 
14 33 290 5 3 35 75 1322 1 2 
15 35 325 1 5 36 76 1398 5 6 
16 35 360 3 6 37 86 1484 2 3 
17 36 396 6 . 1 38 86 1570 5 1 
18 43 439 7 3 39 88 1658 2 5 
19 45 484 4 2 40 89 1747 6 3 
20 46 530 2 4 41 99 1846 1 3 
21 49 579 4 7 42 100 1946 3 1 

Set the 'current trial solution value' a large number, say n x max( Cjj ). Now since the 

starting node is '1', the number of 'legitimate' nodes in 15t row is 6. These nodes in 

the order appearing in 15t row (of the alphabet table) and the probabilities, with 

which they are to be selected, are given below. 

Legitimate Probabilities Cumulative Random Node to be 
Nodes Probabilities Number concatenating 

7 0.286 0.286 
4 0.238 0.524 
5 0.190 0.714 0.572 5 
6 0.143 0.857 
2 0.095 0.952 
3 0.048 1.000 

51 



So, the partial tour will be (1, 5) with value 35 and bound of this leader is 69. Since 

(bound + travel cost) is less than the 'current trial solution value', we accept the 

latest node and go ahead. Number of 'legitimate' nodes in 5th row is 5. So, we 

proceed in a similar way. The following table gives idea how the tour is built. 

Row Legitimate Random Node to be Bound Partial tour Tour 
Nodes Number concatenating value 

5 3,2,4,7,6 0.753 4 49 (1, 5, 4) 100 
4 3,2,7,6 0.335 3 44 (1, 5,4, 3) 111 
3 2,7,6 0.932 6 28 (1, 5,4, 3, 6) 147 
6 7,2 0.543 7 64 (1, 5,4, 3, 6, 7) 199 
7 2 --- 2 ---- (1, 5,4, 3, 6, 7, 2) 281* 

*Note: - The value of the partial tour is 230. Since all nodes in the network are present in the 

current tour, so add the edge connecting to the node' l' from the latest node. Then the 

value of the tour will be 281. For the other problems also we will report the fmal tour 

value in this stage. 

Since the fmal tour value is less than the 'current trial solution value', so replace 

this 'current trial solution value' by this travel cost. This completes one trial. 

Repeat the whole process 5n3 times. 

Then the algorithm is slightly modified. Instead of considering all the 

'legitimate' nodes, we also consider k = .i. +2 at most, where I is the nwnber of 
10 

'legitimate' nodes. It is interesting to see that the algorithm with restricted number 

of 'legitimate' nodes, where k = .i. +2, is more efficient than that of with all 
10 

'legitimate' nodes. So, we shall follow the latter approach for the present problem 

and also for the problems considered in this present dissertation. Let us have a look 

at the comparative study of the programs in Table-3.13. Relative efficiency 

analysis is carried out for three sets of randomly generated problems of sizes 20, 30 

and 40. Each set contains 5 randomly generated problems. 

52 



Table-3.13: - Comparative study of SCS programs. 

N=20 N=30 N=40 
Without With Without With Without With 

Seed restriction restriction restriction restriction restriction restriction 
Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time 

930 361 1.92 177 l.1O 527 14.61 238 7.97 750 64.97 260 29.88 
160 356 l.93 193 l.27 539 13.51 254 7.91 780 65.69 293 3l.36 
681 363 l.92 163 l.09 565 13.78 200 7.69 755 62.29 290 29.88 
418 376 l.87 182 l.21 583 14.56 253 7.96 784 63.00 289 30.26 
522 328 1.81 210 1.21 560 14.00 248 7.96 793 64.59 285 30.15 

Mean 1.89 1.18 14.09 7.90 64.11 30.15 
S.D. 0.05 0.07 0.43 0.11 1.27 0.55 

Considerations of trade off between possible gain in capturing a 'better' 

solution and the cost of 'hidden computation' involved in implementing the 

chance-selection procedure suggests that restricting choice of chance-selection to 

only the fIrst few of the 'legitimate nodes' in the alphabet table seem to give better 

results than the other. This is clearly brought out by the computational experience, 

reported in Table-3.13. 

In this SCS approach the motivation for using ranks to the bias probabilities 

is to select the nodes, which have lesser values. Now, let us have a comparative 

study of this approach and the approach having no ranks to the probabilities of 

selecting a node. The comparative study is carried out for the problems of sizes 20, 

30 and 40, and is reported in the Table-3.14. 

53 



Table-3.14: - Comparative study of SCS programs with ranks and without 
ranks to the bias probabilities. 

N=20 N=30 N=40 
Without With Without With Without With 

Seed ranks Ranks ranks ranks ranks ranks 
Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time 

930 214 1.10 177 1.10 281 7.58 238 7.97 316 29.33 260 29.88 
160 210 1.20 193 1.27 272 7.36 254 7.91 359 30.70 293 31.36 
681 217 1.16 163 1.09 271 7.20 200 7.69 359 29.66 290 29.88 
418 204 1.10 182 1.21 293 7.41 253 7.96 299 29.11 289 30.26 
522 219 1.15 210 1.21 294 7.45 248 7.96 349 20.39 285 30.15 

Mean 1.14 1.18 7.46 7.90 29.64 30.15 
SD. 0.04 0.07 0.19 0.11 0.56 0.55 

From this Table-3.14, it is seen that the ranks to the bias probabilities is 

better than the other, in the context of solution value, which is our main aim in the 

context of the sequential constructive sampling approach. 

3.4.3 MODIFIED 2-0PT MOVE 

To improve the quality of the solutions obtained after the SCS program, we 

apply the following Modified 2-0pt move. As it is seen in the 2-0pt Move, in 

section 2.2.2.1, that given a tour 

{1~al~a2~ ... ~ai~ai+l~ai+2~ ... ~aj-l~aj~aj+l~ .... ~an-l~l}, 

a neighboring solution can be easily generated at random by generating randomly 

'i' and 'j'. So, the new tour will be 

{1~al~a2~ ... ~ai~aj~ai+2~ ... ~aj-l~ai+l~aj+l~ .... ~an-l~1}. 

In order to check the preferability of the new tour, just to calculate 

(c(aj, a) + c(CXj';'j, CXJ+JJ-{c(aj, aj+l) + crap CXJ+JJ· 

If this has a negative value, the new tour is preferable to the current one (cf, Reeves 

1993). 

Here, only the pairs of new and old edges are considered to measure the 

preferability of the new tour. But, their preceding and succeeding edges before and 

after edge exchange are not considered, which should also be considered. We have 

54 



considered those edges also. Hence the modified measure of preferability of the 

new tour is 

(e(ab a) + e(aj ai+V + e(aj_l, ai+V + e(ai+l, aj+JJ-{e(ab ai+J + e(ai+l, a,+v + 

e(CXj_l, a) + e(aj CXj+vJ. 

This is our Modified 2-0pt move. 

Now, to see how much this approach improves the solution quality, let us 

have a comparative study of the SCS and SCS+ Modified 2-0pt move (which is 

named as MSCS) for three sets of the problems of sizes 20, 30 and 40 (see in 

Table-301S). 

Table-301S: - Comparative study of SCS and MSCSo 

N=20 N=30 N=40 
SCS MSCS SCS MSCS SCS MSCS 

Seed Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time 

930 177 l.10 177 l.16 238 7.97 238 7.97 260 29.88 250 29.88 
160 193 l.27 193 l.32 254 7.91 253 7.97 293 3l.36 287 31.42 
681 163 l.09 163 l.10 200 7.69 200 7.69 290 29.88 262 29.93 
418 182 1.21 182 1.21 253 7.96 253 7.96 289 30.26 284 30.32 
522 210 1.21 210 1.21 248 7.96 234 7.97 285 30.10 285 30.15 

Mean 1.18 1.19 7.90 7.91 30.15 30.33 
SD. 0.07 0.07 0.11 0.11 0.55 0.57 

From this Table-3.1S, it is seen that as the size of the problem increases the 

Modified 2-0pt move improves the solution values obtained by SCS. Though the 

improvement is not so large, still for all of the problems considered in this present 

dissertation, we shall incorporate the Modified 2-0pt move and the name will be 

same as SCS. For the other Restricted TSPs also, this modified 2-opt move, taking 

constraints into account, is incorporated to the solution as done in the usual 

salesman case. 

55 



CHAPTER IV 

GENETIC ALGORITHM APPROACH 

4.1 INTRODUCTION 

Genetic Algorithms (GAs) are search and optimization algorithms; they 

were flIst developed by John Holland (cf, Holland 1975). They are based 

essentially on 'mimicking' the 'survival of the fittest among the species' generated 

by random changes in the gene-structure of the 'chromosomes' in the evolutionary 

biology (cf, Goldberg, 1989) . 
• 

GAs were designed by exploiting the metaphor of evolution. Generation 

after generation the individual species compete with each other to survive 

(Darwinian selection). Better members are likely to mate with one another in 

subsequent generations. This mating leads to recombination of the genetic materials 

of the fit members and often leads to a sequence of generations, which are 

successively fit. To transform this evolutionary metaphor into a way of developing 

heuristics, the essential idea is to treat each solution for a problem as an 

'individual', whose fitness typically is either the corresponding objective function 

value or a closely related function. The solutions for a problem are represented or 

coded as strings. The string representing an individual is called a chromosome. 

Also in genetic terminology, variables are often called genes, the possible values of 

a variable are called alleles, and the position of a variable (e.g., solution value in an 

array) in a string is called its locus. In natural systems, one or more chromosomes 

combine to form the total genetic prescription for the construction and operation of 

some organism. In genetics, the total genetic package is called the genotype and the 

organism formed by the interaction of the total genetic package with its 

environment is called the phenotype. In terms of a GA, the coded string, which is 

56 



processed by the algorithm is called genotype, while the decoded set of parameters 

represents the phenotype. 

GAs differ from traditional optimization techniques in many aspects. They 

work with an encoding of the variables (typically as strings) rather than variables 

themselves, and use probabilistic transition rules to move from one population of 

solutions to another rather than a single solution to another. The most important and 

interesting characteristic of GAs is that they use only objective function 

evaluations. That is, they do not use any information on differentiability, convexity 

or other auxiliary characteristics of the function to be optimized. This property 

makes GAs easy to use and implement for wide variety of optimization problems. 

They are robust search algorithms, which are suited for problems having 

comparatively larger solution spaces. However, they are essentially heuristics, and 

by themselves, can not guarantee the optimality of the solutions they produce. 

The main feature of GAs is that information is passed through generations. 

Moreover, in domain independent algorithms, like GAs, the learning process can be 

viewed as a search whose main function is to exploit the knowledge embodied in 

the good structures so far created and the exploration, through the combining 

operators (selection, crossover, mutation and inversion), of regions in the solution 

space. All this process is performed in parallel, in a sense, on a pool of strings; this 

prevents the algorithm from being trapped in a local minimum and, perhaps most 

importantly, by allowing for movements in the search space, which are non

optimal, to reach regions which could not be reached by a conventional descent 

algorithm. In this respect GAs are similar to Simulated Annealing algorithm. 

4.2 GENETIC ALGORITHM IMPLEMENTATION 

In order to solve any problem by GA, two main requirements are to be 

satisfied: 

(i) a (possibly binary) string can represent a solution in the solution space, 

(ii) an objective function and hence a fitness function which measures the 

57 



goodness of a solution can be constructed / defmed. 

The work on GAs uses binary representation as well as decimal 

representation (cf, Goldberg 1989). The fitness function can be seen as the bridge 

connecting the GA to the real world problem under study. GAs do not start from 

one individual point in the search space, but from a population of strings, usually 

referred as gene pool. 

The search of the solution space in a simple GA is performed by means of 

the following operators: 

1. Reproduction / selection, 

2. Crossover, 

3. Mutation, 

In the reproduction process, strings are copied into the next generation 

mating pool with a probability associated with their fitness value. By assigning to 

the next generation a higher portion of the highly fit strings, reproduction mimics 

the Darwinian survival-of-the-fittest in the natural world. In natural population, 

fitness is determined by a creature's ability to survive predators, pestilence, and 

other obstacles to adulthood and subsequent reproduction. In this phase no new 

string! chromosome is produced. The commonly used reproduction operator is the 

proportionate reproduction operator, where a string is selected for the mating pool 

with a probability proportional to its fitness. More specifically, iff (.) is the fitness 

function, and Psis the size of population, then one selection process is performed 

using roulette wheel having P s slots. Each slot corresponds to a population member, 

and the width of a slot is proportional to its fitness. There are P s fixed pointers 

uniformly spaced around the slotted wheel. The wheel is spun once, and the 

positions marking these Ps pointers dictate the new population (cf, Goldberg 1989, 

Deb 1995). Although this roulette wheel selection is easier to implement, it is 

noisy. Hence, a more suitable version of this selection operator, called Stochastic 

Remainder Selection method (cf, Goldberg 1989, Deb 1995), is sometimes used. 

This operator can be discussed as follows. 

58 



The GAs are used for maximization problem. For the maximization problem 

the fitness function is same as the objective function. But, for minimization 

problem, one way of defining a 'fitness function' is as F(x)= 1 , wherefCx) is 
1 + f(x) 

the objective function. Now, for the algorithm, compute the "expected count" of 

each chromosome by dividing the corresponding fitness function value with the 

average fitness function value. After these expected count for each individual 

chromosome is calculated, the chromosomes are assigned copies exactly equal to 

the mantissa of the expected count. Then subtract the mantissa from the expected 

count of the corresponding individuals. Now, all of the expected counts are having 

value less than 1 ( one). Then randomly select a chromosome and a random number 

(r). If r is less than the expected count of the corresponding chromosome, then 

insert the chromosome into the new mating pool and subtract 0.5 from the 

corresponding expected count. Repeat this process until the number of the 

chromosomes in the new mating pool equals to P s. 

The search of the solution space is done by creating new chromosomes from 

old ones. The most important search process is crossover. Firstly, a pair of parents 

is randomly selected from the mating pool. Secondly, a point, called crossover site, 

along their common length is randomly selected, and the informations after the 

crossover site of the two parent strings are swapped, thus creating two new 

children. 

Let PI and P2 be two parent chromosomes of length 7 and the randomly 

selected crossover site be say, between 3rd and 4th genes. Then the crossover 

operator gives the children (offsprings) 01 and 02 created as follows. 

Parents 

Children 

PI: al 

PI: bl 

PI: al 

PI: b l 

59 



As can be seen, crossover does not involve any change in the length of the 

chromosome; only an exchange of alleles of a string takes place. This exchange of 

infonnation together with reproduction is the most powerful process in the GA 

search. This search is not just a simple random search, because through 

reproduction, the most promising region of the solution space are explored. 

The mutation operator randomly selects a position in the chromosome and 

changes the corresponding allele, thereby modifying infonnation. The need for 

mutation comes from the fact that as the less fit members of successive generations 

are discarded; some aspects of genetic material could be lost forever. By 

performing occasional random changes in the chromosomes, GAs ensure that new 

parts of the search space are reached, which reproduction and crossover alone 

couldn't fully guarantee. In doing so, mutation ensures that no important features 

are prematurely lost, thus maintaining the mating pool diversity. 

The frequency of mutation is usually chosen to be considerably less than the 

frequency of crossover. So, mutation plays a secondary role in the GA search. 

The GA operators, discussed above, exploit the similarities in string

structures to make an effective search. A schema (plural schemata) or similarity 

template represents a number of strings with similarities at certain string positions. 

For example in 7-bits situation, the schema 

H= I * * I D * * 
( a * denotes either D or I), represents all the strings with I in the first position and, 

I and D in the 4th and 5th positions respectively. This is analogues to the leader 

defining a block, the difference being that the positions whose 'contents' are 

defIDed (to be D or I as the case may be) need not be consecutive. For strings of 

length I and binary alphabet {D,I}, there are i-defIDed strings, but 31 schemata. 

Also for each string there are i schemata, and in a population of size p, there are at 

most p i schemata. The length of a schema H, 8 (H), is the difference in the 

outennost defIDed positions and the order of schema, o(H), is the number of fixed 

60 



positions in the schema. For example, the schema H, considered above, has 8(H)= 4 

and o(H)=3 since the gap between the 1st and last defmed (unambiguously defmed) 

positions is 5-1=4 while only 3-bits positions are defmed in value. In the gene pool 

the fittest chromosomes share some common features: the genes which make them 

successful chromosomes. Schemata defme these shared features, and can be 

regarded as the building blocks of the different chromosomes. The fundamental 

role of crossover is to shuffle the different building blocks. As a result, short 

schemata (i.e., those with smaller o(H)) will be more likely to survive as opposed to 

long schemata. The ideal situations for a GA are those where short, low-ordered 

schemata combine with each other to form better and better solutions. This is the 

building block hypothesis of GA (cf, Goldberg 1989). The combined action of 

reproduction and crossover defmes the comer stone of the schemata theory. Of 

course, this schema theory has been heavily criticized in the past 10 years. 

4.3 CONTROL PARAMETERS IN GA 

These are the parameters that govern the GA search process. Some of them 

are: 

(i) Population size: - It determines how many chromosomes and thereafter, 

how much genetic material is available for use during the search. If there is too 

little, the search has no chance to adequately cover the space. If there is too much, 

the GA wastes time evaluating chromosomes. 

(ii) Crossover rate: - It specifies the probability of crossover occurring 

between two chromosomes. 

(iii) Mutation rate: - It specifies the probability of doing bit-wise mutation 

(iv) Termination criteria: - It specifies when to terminate the genetic 

search. Any heuristic solution is essentially 'trial and error' solution; when 

'enough' number of trials are made (i.e., when the number of solutions, generated 

according to the heuristic rules employed, is felt large enough), one stops further 

solution generation and accepts the best solution found so far as the (reasonable 

61 



near-) optimal solution to the given problem. It may include a specified number of 

generations being exceeded, or certain high fitness value chromosome is found, or 

population has become sufficiently homogeneous or any other meaningful 

termination criterion. 

4.4 GENETIC ALGORITHMS FOR THE TSP- A REVIEW 

Application of GAs to the operations research problems has been limited 

due to the complexity of feasible domains. Given an optimization problem, often 

the hardest step in applying a GA is the encoding the solutions as strings so that the 

crossovers of feasible solutions result in feasible solutions. However, several 

genetic based algoritluns have been reported (cf, Goldberg 1989, Reeves 1993, 

Michalewicz 1994). 

The techniques for encoding solutions vary by problem and, involve a 

certain amount of art. The binary representation is not suited for the TSP. For the 

TSP, solutions are typically represented by integer numbers of length equal to the 

total number of the nodes in the network, n, where each string position can take any 

integer in {1,2, ...... ,n} without any repetition. 

There are three representations considered for representing a tour of the TSP 

in GAs. These are as follows: 

(i) Adjacency representation: - The adjacency representation does not 

support the classical crossover operator. A repair algoritlun might be necessary. 

Grefenstette et a1. (1985) developed three crossover operators for this 

representation, viz., alternative· edges, subtour chunks, and heuristic crossover. 

Among them the heuristic crossover is the best operator. However, as reported by 

them, performance of the heuristic crossover is not outstanding for the 50, 100 and 

200 city problems. For 50, 100 and 200 cities, the algorithm found tours within 

25%, 16% and 27% of the optimum, in approximately 15000, 20000 and 25000 

generations, respectively. 

62 



(ii) Ordinal representation: - The ordinal representation represents a tour 

as a list of n-cities; the ith element of the string is a number in the range from 1 to n

i+ 1. The idea behind the ordinal representation is as follows. There is some ordered 

list of cities C, which serves as reference point for string for ordinal representation. 

For example, let C be the ordered list of cities C={ 1,2,3,4,5,6, 7}. A tour 

{1-73-74-72-75-77-76-71} is represented as a string S= (1,2,2,1,1,1,1) and can be 

interpreted as follows: 

The ftrst number on the string S is 1, take the ftrst city from the list C as the 

ftrst city of the tour (i.e., city 1), and remove it from C. The next nwnber is 2, so 

take the 2nd city of the current list C as the next city of the tour (i.e., city 3) and 

remove it from list C, and so on. 

The main advantage of the ordinal representation is that classical crossover 

works. However, experimental results show that this representation together with 

classical crossover does not give good result for the TSP (cf, Grefenstette et al. 

1985). 

(iii) Path representation: - This path representation also does not support 

the classical crossover operator. Several authors have tried to deftne a crossover

like operators, which produce a legal tour. 

Goldberg and Lingle (1985) defmed an operator called PMX (partially 

mapped crossover), which used two crossover points. The section between these 

points defmes an interchange mapping. For example, two parents P I and P2 of 

length 7 at crossover points 3 and 5, produce offspring 01 and 02 as follows: 

PI: 1 5 7 3 6 4 2 

P2: 1 6 2 4 3 5 7 

First the segments between crossover points are swapped (the symbol 'x' can be 

interpreted as 'at present unknown'): 

01: x x x I 4 3 x x 

63 



02: x x x I 3 6 I x x 

This swap defmes also a series of mappings 4~3 and 3~6. Then we can fill 

further cities (from the original parents), for which there is no conflict: 

01: 1 5 

02: 1 x 

7 

2 

4 

3 

3 

6 

x 

5 

2 

7 

Finally, the x in the offspring 01 (which should be 4, but there was a conflict) is 

replaced by 6, because of the mapping 4~3, 3~6=>4~6. Similarly, the x in the 

offspring 02 is replaced by 4. The offspring are 

01: 1 

02: 1 

5 

4 

7 

2 

4 

3 

3 

6 

6 

5 

2 

7 

This PMX operator of Goldberg and Lingle was the frrst attempt to apply 

GAs to the TSP, in which they found near-optimal solutions to a well-known 33-

city problem. Operators similar to PMX have also been devised by others as 

well(cf, Davis 1985, Oliver et al. 1989). 

The OX (ordered crossover) operator developed by Davis (1985) builds 

offspring by choosing a subsequence of a tour from one parent and preserving the 

relative order of cities from the other parent. For example, two parents PI and P2 of 

length 7, at crossover points 3 and 5, produce offspring 01 and 02 as follows: 

PI: 1 5 7 3 6 4 2 

P2: 1 6 2 4 3 5 7 

First the segment between crossover points are copied (the symbol 'x' can be 

interpreted as 'at present unknown'): 

01: x x x 3 6 I x x 

02: x x x 4 3 x x 

Next, starting from the second crossover point of one parent, the cities from the 

other parent are copied in the same order, omitting symbols already present. 

Reaching the end of the string, we continue from the frrst place of the string. The 

sequence of the cities in the second parent (from the second crossover point) is 

64 



{5,7, 1,6,2,4,3}; after removal of cities 3 and 6, which are already in the fIrst 

offspring, we get {5,7,1,2,4}. This sequence is placed in the fIrst offspring (starting 

from the second crossover point, except that city 1 will have to appear in 1 st 

position of the string): 

01: 1 2 4 3 6 5 7 

02: 1 7 6 4 3 2 5 

Although PMX and OX are similar, they process different kinds of 

similarities. PMX leads to respect absolute city position, whereas OX leads to 

respect relative city position. 

Another crossover operator, named ex (cycle crossover) operator was 

proposed by Oliver et aI. (1987), where offspring are built in such a way that each 

city (ad its position) comes from one of the parents., This procedure may be 

illustrated as follows: 

Let PI and P2 below be two parents, of length 7. 

PI: 1 5 7 3 6 4 2 

P2: 1 6 2 4 3 5 7 

The fIrst offspring is produced by taking the 2nd city (as city 1 will have to appear 

in the 1st position of the offspring) from the fIrst parent: 

01: 1 5 x x x x x 

Since every city in the offspring should be taken from one of its parents (from the 

same position), the next city must be city 6, as the city from P2 just below the 

selected city 5. In PI this city is at position '5'. Thus 

01: 1 5 x x 6 x x 

in turn, implies city 3, as the city from P2 just 'below' the selected city 6. Thus 

01: 1 5 x 3 6 x x 

Following this rule, the next city to be included is 4. However, the selection of city 

4 requires the selection of city 5, which is already in the list- thus we have 

completed a cycle 

01: 1 5 x 3 6 4 x 

65 



The remaining cities are filled from the other parent: 

01: 1 5 2 3 6 4 7 

Similarly, 

02: 1 6 7 4 3 5 2 

The experimental investigation of Oliver et al. (1987) shows that OX does 

11 % better than PMX, and 15% better than CX. 

Whitley et al. (1991) proposed a crossover operator, named as ERX (Edge 

Recombination Crossover), which uses an 'edge map' to construct an offspring that 

inherits as much information as possible from the parent structures. This edge map 

stores all the connections from the two parents that lead into and out of a city. The 

following example illustrates this procedure. Consider two parents PI and P2 as 

PI: 1 5 7 3 6 4 2 

P2: 1 6 2 4 3 5 7 

The edge map for these parents is as follows: 

1 has edges to: 5, 2, 6, 7 2 has edges to: 4, 1, 6 

3 has edges to: 7, 6,4, 5 

5 has edges to: 1, 7, 3 

7 has edges to: 5, 3, 1 

The ER algorithm is as follows: 

4 has edges to: 6,2, 3 

6 has edges to: 3, 4, 1, 2 

Step 1: Choose the initial city from one of the two parents. This is the 'current 

city'. 

Step 2: Remove all the occurrence of the 'current city' from the left hand side of 

the edge map. 

Step 3: If the 'current city' has entries in its edge-list go to step 4; else go to step 5. 

66 



Step 4: Detennine which of the cities in the edge-list of the 'current city' has the 

fewest entries in its own edge-list. The city with the fewest entries becomes 

the 'current city'. Ties are broken randomly. Go to step 2. 

Step 5: If there are no remammg 'unvisited' cities, then STOP, otherwise, 

randomly choose an 'unvisited' city and go to step 2. 

As an illustration, the new offspring is initialized with city 1, as it is our 

starting city. The edge-list for' l' indicates the candidates for the next city are 5, 2, 

6 and 7. The city 5 and 7 have two edges: initial three minus 'city 1', and the cities 

2 and 6 each have three edges: initial four minus 'city 1'. City 2 and 6 have three 

edges and thus are not considered. Assume city 5 is randomly chosen. 

City 5 now has edges to city 7 and 3. City 7 is chosen next, since it has 

fewest edges. 

City 7 only has an edge to city 3, so city 3 is chosen next. 

City 3 has edges to city 6 and 4, both of which have two edges left. 

Randomly choose city 4. 

City 4 only has edges to city 6 and 2, both of which have one edge left. 

Randomly choose city 6. 

City 6 only has an edge to city 2, of course this is the last city to be taken, so 

city 2 is chosen next. 

The resulting offspring is 

0: 1 5 7 3 4 6 2 

The experimental result as reported by Whitley et al. (1991) shows that ERX 

gives equal solution value on 15 out of 30 runs to the best known solution of a 105 

city problem, and on remaining 15 runs, the solution found was always within 1 

percentage of the best known solution. 

Another crossover operator, named CI-Crossover (CIX) operator, was 

proposed by Reeves (1993), which is as follows: 

67 



Choose a crossover point x randomly, take the pre-x section of the fIrst 

parent, and fill up the chromosome by taking in order each 'legitimate' element 

from the second parent. For example, two parents PI and P2 of length 7, at 

crossover point 3, produce offspring 01 and 02 as follows: 

PI: 1 5 7 3 6 4 2 

P2: 1 6 2 4 3 5 7 

First the segments before crossover point are copied (the symbol 'x' can be 

interpreted as 'at present unknown'): 

01: 1 5 7 I x x x x 

02: 1 6 2 I x x x x 

Then fill up the 'x's of 01 by taking 'legitimate' alleles from P2 in order. So, 

01: 1 

Similarly, 

02: 1 

5 

6 

7 6 

2 5 

2 4 3 

7 3 4 

The rationale for C I-operator is that it preserves the absolute positions of the 

cities taken from PI, and the relative positions of those taken from P2. 

A new crossover operator based on the conventional N-point crossover 

operator, named as GNX (Generalized N-point Crossover), was proposed by 

Radcliffe and Surry (1995), which is as follows: let L = g,l2' ........ ,lm} be a set of 

crossover points, with 0 < I < 12 < ......... < 1m < n. This breaks a parent chromosome 

X into m+ 1 segments 

(X1,X2 .... 'Xl_1)'(X/ ,Xl , ........ X l -1)' ............ ·'(XI ,Xl , ........... Xn)' 
• 1 1 1+1 1 .. ..+1 

and breaks the second chromosome, Y, into corresponding segments. 

The first phase of GNX operation uses the same genetic material as ordinary 

N-point crossover, i.e., alternate segments from two parents. It proceeds by picking 

a random order to visit m+ 1 segments (irrespective of the parents to which these 

segments are assigned). Within each segment, the alleles are 'tested' in a random 

order. An allele is 'tested' by seeing whether it can be placed in the child - i.e., 

whether it is compatible with those alleles that have already been accepted. If 

68 



compatible, the new allele is inserted, otherwise, it is discarded. Then the 

complementary alternative sections are used to fill up the gaps, if any. The 

segments are again visited in a random order and the alleles within them are tested 

in a random sequence. If the child is still not fully specified after this) it is 

completed at random from amongst the legal combination of alleles. 

the 

Consider two parents PI and P2, and G2X with cross points 3 and 5) where 

PI: 1 

P2: 1 

5 

6 

7 

2 

3 

4 

6 

3 

4 

5 

2 

7 

bold alleles are the ones that would normally be chosen by N-point crossover. 

Suppose the order in which the segments are tested is (2) 3, 1). Then the 2nd 

segment of P 1 will be inserted whole, give the proto-child (x x x 3 6 x x). 

Alleles in the 3rd segment from P2 will then be tested in a random order. Both the 

city 5 and 7 will be accepted, giving the proto-child ( x x x 3 6 5 7). The 

I st segment of P2 is then tested) and I and 2 will be accepted, giving fmal proto

child at the end of the 1 st phase as 

(1 x 2 3 6 5 7). 

The untested segments are the visited in random order. Only the 15t segment for PI 

is relevant here. All the cities are rejected. So) the proto-child at the of the 2nd phase 

IS as 

(1 x 2 3 6 5 7). 

Since this child is still incomplete, it must be randomly filled up. In this case 

however, only one legal chromosome has the required allele pattern, so the fmal 

child is given by 

0: 1 4 2 3 6 5 7. 

As reported by Radcliffe and Surry (1995» the results obtained with GNX 

are at least competitive with, and arguably superior to, those obtained with edge 

recombination. 

69 



The classical mutation operator does not support any of the tour 

representation for the TSP. So, mutation operator also needs to be re-defmed in the 

context of the TSP. Several researchers developed several mutation operators (cf, 

Michalewicz 1994) for the TSP, they are as follows: 

(a) Inversion- select two points along the length of chromosome, which is 

cut at these points, and reverse the substring between these points. 

(b) Insertion- select a city and insert it in a random place. 

(c) Displacement- select a substring and insert it in a random place. 

Reciprocal exchange- select two cities randomly and swap them. 

Traditional GAs focus on the global aspects of an optimization task, whereas 

local search methods in contrast focus on the local aspects of optimization task. The 

hybridization of both, genetic algorithm and local search methods has been shown 

to be an effective route to follow for fmding high quality solutions for the TSP (cf, 

Miihlebin et al. 1988, Ulder et al. 1991, Freisleben and Merz 1996). Ulder et al. 

(1991) developed GA by incorporating 2-0pt, Or-Opt, 3-0pt and LK local search 

heuristics. Keeping the computational time fixed they showed that the usage of LK

heuristic gave the best quality solutions; for the ATT 532-cities problem their 

algorithms found tour within 170/0 of the optimum. 

4.5. THE SEQUENTIAL CONSTRUCTIVE OPERATOR 

We represent a tour as a path (full cycle) rather than as 'permutation'. We 

have developed a genetic operator that generates high quality solutions to the TSP; 

this operator gives results which are remarkably better than the others listed above. 

It constructs an offspring using better links on the basis of their values present in 

the parents structure. It also uses the better links, which are present neither in the 

parents structure. We refer to this operator as sequential constructive (SC) operator. 

70 



As the ERX and GNX, the SC operator does not depend only on the parents 

structure, it sometimes introduces new, but good, links to the offspring, which are 

not event present in the present population. Hence, the chances of producing a 

better offspring are more than those of ERX and GNX. The algorithm for the 

sequential constructive operator is as follow: 

Step 1: - Start from node' I' (i.e., current node i=I). 

Step 2: - Select two 'legitimate' nodes appeared immediately after node 'i', one 

from each of the chromosomes'. Between these two nodes, select node 'j' 

such that the cost to go to node 'j' from node 'i' is minimum. If in one of the 

parent chromosomes, no any 'legitimate' node is present after node 'i', then 

select the first 'legitimate' node (i.e., node 'j') of other parent chromosome. 

Also, if node 'i' is the last allele of both the chromosomes (or there is no 

any 'legitimate' node after node 'i') and there are some nodes which are still 

to be visited, then select the node amongst the 'legitimate' nodes which has 

least cost from node 'i'. The tie is broken randomly. That is, go to node 'j' 

next and then rename the node 'j' as node 'i'. 

Step 3: - Repeat Step 2 until all nodes have been visited. 

Let us illustrate this sequential constructive operator through our earlier 

example (see Table-3.1 of section 3.2.2). Let a pair of selected chromosomes be 

Al and A2, with values 312 and 331 respectively. 

AI: I 5 7 3 6 4 2 

A2: I 6 2 4 3 5 7 

Select node I, the I st allele and the 'legitimate' nodes after node I in A I and 

A2 are 5 and 6 respectively with C15=35 and CI6=63. Since CI5 < C16, accept node 5. 

So, the partially constructed chromosome will be (1,5). 

71 



The 'legitimate' nodes after node 5, in Al and A2 are 7 both. So, accept the 

node 7, and the partially constructed chromosome will be (1,5,7). 

The 'legitimate' nodes after node 7, in Al is 3 but in A2 is not available. 

So, the only option is to accept node 3. Thus, the partially constructed chromosome 

will be (1,5,7,3). 

Again, the 'legitimate' nodes after node 3, in Al is 6 but in A2 is not 

available. So, the only option is to accept node 6. Thus, the partially constructed 

chromosome will be (1,5,7,3,6). 

The 'legitimate' nodes after node 6, in Al and A2 are 4 and 2 respectively 

with c64=31 and C62=52. Since C64 < C62 SO, accept the node 4, and the partially 

constructed chromosome will be (1,5,7,3,6,4). 

The 'legitimate' nodes after node 4, in Al is 2 but in A2 is not available. 

So, the only option is to accept node 2. Thus, the full chromosome will be 

(1,5,7,3,6,4,2), with value 312. 

Now, let us compare our SCX operator with ERX, C IX and GNX operators. 

To compare them, we have considered a randomly generated initial population 

scheme, the stochastic remainder selection method and the required crossover 

operator with crossover probability as 1.00. Also, we have considered a population 

of size 400 and a maximum number of 4n generations as the stopping rule. Table-

4.1(a) gives the same for the randomly generated problems of sizes 30, 35 and 40. 

Considering the solution quality, it is seen from the Table-4.1(a) that the 

sequential constructive operator is far superior to ERX, C IX and GNX. Of course, 

time-wise 4CIX == 2GNX == lSCX . So, we tried out the same problems by C IX with 

16n generations and GNX with 8n generations. But the solution values are not 

improved. Again, we start with four 'initial' populations in case of C IX and two 

'initial' populations in case of GNX, and retain the best solution so far as the 

(estimated) optimum (see Table-4.1(b)). It is still seen from the Table-4.1(a & b) 

that SCX is better than C IX, GNX and of course ERX. 

72 



Table-4.1(a):- Comparative study of different crossover operators. 

ERX CIX GNX SCX 

N Seed Sol. Time Sol. Time Sol. Time Sol. Time 

930 422 11.37 453 0.44 364 0.77 201 1.81 
160 436 1l.26 407 0.44 407 0.77 217 l.87 
681 395 1l.64 514 0.49 403 0.77 202 1.87 

30 418 510 11.81 482 0.44 457 0.82 239 1.86 
522 512 11.43 490 0.44 423 0.77 222 1.87 

Mean 11.50 0.45 0.78 1.86 
S.D. 0.20 0.02 0.02 0.02 
930 586 18.46 549 0.60 380 1.04 203 2.80 
160 513 18.07 488 0.61 363 1.04 251 2.81 

35 
681 538 17.30 584 0.61 356 1.05 268 2.80 
418 506 17.47 432 0.60 412 1.04 195 2.74 
522 559 18.18 392 0.60 476 1.05 229 2.80 

Mean 17.90 0.60 1.04 2.79 
S.D. 0.44 0.01 0.00 0.03 
930 637 25.38 632 0.77 540 1.32 222 3.96 
160 632 25.49 520 0.77 574 1.31 216 3.95 

40 
681 605 25.37 575 0.82 551 1.38 237 3.96 
418 589 25.16 603 0.77 482 1.37 235 3.95 
522 608 25.26 587 0.77 623 l.32 242 3.90 

Mean 25.33 0.78 1.34 3.94 
S.D. 0.11 0.02 0.03 0.02 

Table-4.1 (b): - Comparative study of different crossover operators. 

N=30 N=35 N=40 

CIX GNX CIX GNX CIX GNX 

Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time 

364 l.70 364 l.56 399 2.45 380 2.10 495 3.29 540 2.70 
407 l.76 395 1.60 457 2.49 363 2.13 520 3.22 574 2.66 
403 l.69 403 l.61 460 2.40 356 2.05 562 3.19 525 2.71 
377 l.81 443 l.57 431 2.51 351 2.15 565 3.23 455 2.70 
369 l.70 423 l.61 392 2.43 455 2.17 497 3.25 551 2.69 

Mean 1.73 1.59 2.46 2.12 3.24 2.69 
S.D. 0.05 0.02 0.04 0.04 0.03 0.02 

4.6 HYBRID GENETIC ALGORITHM (HGA) FOR THE TSP. 

We randomly generate Ps initial feasible solutions (or chromosomes). Each 

'chromosome' so generated being a salesman's tour has a corresponding cost, 

73 



which is evaluated, and the best among them is treated as 'current trial solution 

value'. 

So, given a current generation of population, the next generation of our 

hybrid genetic algorithm is created as follows. 

(i) Reproduction: - Stochastic Remainder selection method (cf, Goldberg 

1989, Deb 1995) is used here. As the reproduction operator does not create any new 

chromosomes, so it obviously does not violate any constraints also. Hence, for the 

Restricted TSPs, we shall use this operator and we need not have to mention about 

this operator there. 

(ii) Crossover: CI-Crossover operator (C.f. Reeves 1993) is used for our 

HGA, which is as follows: choose a crossover point x randomly, take the pre-x 

section of the fIrst parent, and fIll up the chromosome by taking in order each 

'legitimate' element from the second parent. 

Though it is said that the GAs are robust search techniques, the global 

optimum with reasonable effort has remained a moot point. One of the reasons may 

be the random selection of the crossover point, which may result in the 

indiscriminate breaking down of the 'building block'. Therefore, for a pair of 

parents, select randomly several (=10, in this present study and also for all of the 

problems considered in this present dissertation) alternative crossover points and 

create several offspring as above. Once the offspring are created, they are 

evaluated, and only the one with the best objective value is included in the new 

generation. 

(iii) Mutation: For each of the chromosomes of the Ps populations, we do 

this operation. Generate a random number (r) in the interval (0,1). If r is less than 

the prescribed probability of mutation (Pm), then select two genes (except the fIrst 

74 



n 
gene) and then swap the alleles. Continue the process times for each 

2 

chromosome. 

(iv) Sequential Constructive operator: To improve the fitness of the 

chromosomes created after reproduction, crossover and mutation (i.e., the simple 

GA), this sequential constructive operator is incorporated. The motivation to use 

this approach is to build chromosomes such that the solution is likely to converge to 

the optimal solution quickly. Here we select two chromosomes and produce a 

single new chromosome from them. 

Hence our HGA may be summarized as follows: 

HGA() 

{ Initialize random population~ 

Evaluate the population; 

Generation = 0; 

} 

While stopping rule is not satisfied 

{ Generation = Generation + 1; 

'} 

Select good solutions by reproduction procedure; 

Perform crossover with probability of crossover (Pc); 

Perform mutation with probability of mutation (Pm); 

Perfonn sequential constructive search technique; 

Evaluate the population; 

We have allowed a maximum of 4n (n being the total number of nodes in the 

network) nwnber of generations, and the best solution value obtained within these 

generations is retained as the best solution value. 

75 



The GA approach has been claimed to lead to very good, near-optimal 

solutions. However, the approach is obviously 'controlled or guided' by choice of 

parameters: viz. probability of crossover (Pc), probability of mutation (Pm), and 

population size (Ps). As Deb (1995) points out: successful working of GAs depends 

on a proper selection of these parameters, but often one is in the dark as to what 

values should be taken for these parameters. For HGA, several runs were executed 

with different settings of parameters for different problems. These runs were used 

to fme-tune the parameters and to set their values at Pc= 0.95, Pm= 0.09 (for all of 

the problems considered in this present dissertation) and different population sizes 

(P s) for different problem sizes which will be reported in the corresponding tables 

showing the comparative study (for all of the problems). 

To see how near-optimal solution is obtained by the HGA, we have tested 

some of the benchmark problems given in the TSPLIB (cf, Reinelt, 1995). In order 

to investigate the robustness of the HGA, 50 runs from different random initial 

solutions were performed, and the various performance measures (solution quality, 

running time etc) were averaged. The solution quality was measured by the 

percentage excess above the best known solution (or optimal solution, ifknown), as 

given by the formula 

E 
Solution Value - Best Known Solution Value 100 

xcess = x . 
Best Known Solution Value 

Table-4.2 reports the best found solution by HGA, the percentage of excess over 

the best-known solution value (reported in the TSPLIB). It also reports the 

percentage of excess of the average solution value and the worst solution value 

over the best-known solution value, and standard deviation of the percentages of 

excess of 50 runs. The size of the populations is considered as 200 for solving 

problems in the TSPLIB. 

76 



Table-4.2: Results of benchmark problems by HGA only. 

Problem Reported Best Best Avg. Worst S.D. Avg. S.D. 
Soln. Soln. (%) (0/0) (%) (%l (Time) (Time' 

Ftv33 1286 1286 0 5.21 7.9 l.97 3.77 0.66 
Ftv35 1473 1475 0.14 l.35 3.7 l.03 4.42 0.03 
Ftv38 1530 1530 0 2.09 6.5 1.89 5.21 0.29 
Ftv44 1613 1625 0.74 3.53 7.2 l.85 7.31 0.17 
Ftv47 1776 1780 0.23 2.86 7.7 1.61 8.44 0.14 
Ftv55 1608 1608 0 3.17 9.3 1.83 11.65 1.68 
Ftv64 1839 1846 0.38 3.01 10.2 2.20 17.28 0.52 
Ftv70 1950 1957 0.36 3.35 8.0 2.04 21.54 0.96 
Ft53 6905 6923 0.26 3.99 11.0 2.11 10.79 0.36 
Ft70 38673 38725 0.13 1.61 3.6 0.63 20.87 0.77 
P43 5620 5624 0.07 0.30 0.5 0.08 6.94 0.26 
Ry48p 14422 14511 0.62 4.08 7.3 l.55 8.61 0.28 

It is seen (from Table-4.2) that the best tours found in 50 runs never 

exceeded 0.74% over reported best-known solution in TSPLIB. The average 

percentage over the optimal solution is also very less~ not more than 5.21% only. 

So, the HGA is good for the usual TSP and hence we can consider it as a good 

basis for the Restricted TSPs also. Also, it is difficult to compare with other 

reported running times for different approaches due to the variety of machines 

used. It is to be noted that though the benchmark problems are available for the 

usual TSP, but they are not available for the other Restricted TSPs. Hence, we 

consider some randomly generated test problems of different sizes for the usual 

TSP as well as the Restricted TSPs and solve them by different approaches 

considered in this present dissertation. 

4.7 RELATIVE EFFICIENCY OF DIFFERENT APPROACHES 

Relative efficiency analysis was carried out for three sets of randomly 

generated problems of sizes 34, 36 and 50. Each set contains 20 randomly 

generated problems. For each of the problems generated, the exact optimal solution 

obtained by DGLS, and the best solution obtained by QE and SCS are tabulated. 

77 



Seed 

930 
160 
681 
418 
522 
667 
264 
826 
15 
85 
855 
334 
597 
493 
348 
19 

802 
795 
102 
28 

Mean 
S.D. 

Also are tabulated the times taken for obtaining the same. In case of HGA, the best

found solution; the solution-ratio of it to the optimal solution obtained by DGLS 

along with the average solution-ratio, worst solution-ratio and standard deviation of 

solution-ratios of 50 runs are reported. These are reported in Table-4.3 (a, b & c). 

TABLE-4.3: - Solution values and time taken (in Seconds) by different 
algorithms, for twenty randomly generated problems of sizes 34, 36 and 39. 

(a) N=34 and Ps=200. 

DGLS QE SCS HGA 
Sol. Time Sol. Time SR Sol. Time SR Best Best Avg. Worst S.D. Avg. 

Sol. SR SR SR SR Time 
174 0.60 174 0.22 1.00 258 14.28 1.48 174 1.00 1.12 1.34 0.07 3.59 
151 9.83 151 4.28 1.00 246 14.28 1.63 154 1.02 1.14 1.34 0.07 3.62 
209 1.38 209 0.54 1.00 287 14.67 1.37 210 1.01 1.10 1.26 0.06 3.66 
153 1.48 157 0.77 1.03 243 13.90 1.59 163 1.07 1.19 1.39 0.08 3.66 
179 16.09 179 6.21 1.00 256 14.17 1.43 187 1.05 1.12 1.27 0.05 3.68 
215 0.75 215 0.33 1.00 293 14.09 1.36 224 1.04 1.15 1.33 0.06 3.61 
193 18.08 197 12.71 1.02 282 14.23 1.46 194 1.01 1.10 1.24 0.06 3.62 
125 0.16 125 0.06 1.00 190 13.97 1.52 128 1.02 1.20 1.35 0.08 3.61 
198 14.24 198 6.49 1.00 264 13.89 1.33 200 1.01 1.08 1.20 0.04 3.63 
165 10.11 165 5.45 1.00 254 14.08 1.54 165 1.00 1.17 1.34 0.08 3.64 
156 0.82 156 0.45 1.00 234 14.19 1.50 160 1.03 1.18 1.34 0.08 3.65 
179 19.55 183 10.56 1.02 249 14.11 1.39 180 1.01 1.12 1.29 0.06 3.66 
182 4.45 186 4.47 1.02 263 13.98 1.45 186 1.02 1.16 1.34 0.07 3.64 
147 0.22 147 0.06 1.00 214 13.87 1.46 151 1.03 1.15 1.31 0.06 3.61 
172 0.17 173 0.11 1.01 261 14.01 1.52 176 1.02 1.17 1.36 0.09 3.66 
178 1.27 178 0.48 1.01 256 14.50 1.44 180 1.01 1.16 1.43 0.06 3.61 
201 9.24 208 4.47 1.03 288 14.44 1.43 201 1.00 1.13 1.24 0.06 3.63 
197 49.86 201 21.90 1.02 295 15.16 1.50 203 1.03 1.15 1.29 0.08 3.64 
204 1.51 207 1.12 1.01 271 14.24 1.33 208 1.02 1.13 1.29 0.04 3.65 
146 2.78 150 1.04 1.03 221 13.04 1.51 146 1.00 1.16 1.42 0.08 3.66 

8.13 4.09 1.01 14.16 1.46 1.02 1.14 1.32 3.64 
11.52 5.44 0.01 0.39 0.08 0.02 0.03 0.06 0.02 

78 

S.D. 
Time 

0.36 
0.03 
0.03 
0.03 
0.04 
0.03 
0.03 
0.03 
0.03 
0.34 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.04 
0.03 



DGLS QE SCS HGA 
Seed Sol. Time Sol. Time SR Sol. Time SR Best Best Avg. Worst S.D. Avg. S.D. 

Sol. SR SR SR SR Time Tim 
930 168 0.27 168 0.11 1.00 279 19.00 1.66 168 1.00 1.17 1.44 0.08 6.14 0.65 
160 186 31.53 189 7.91 1.02 284 18.95 1.53 189 1.02 1.15 1.34 0.06 6.27 0.03 
681 168 1.43 169 0.49 1.01 254 18.01 1.51 171 1.02 1.10 1.24 0.06 6.25 0.03 
418 156 4.67 159 1.98 1.02 221 18.98 1.42 160 1.03 1.16 1.38 0.08 6.25 0.02 
522 205 190.42 205 82.77 1.00 292 14.06 1.42 209 1.02 1.08 1.19 0.04 6.25 0.02 
667 194 3.01 195 0.89 1.01 283 18.02 1.46 199 1.03 1.10 1.22 0.04 6.22 0.02 
264 198 1.95 204 1.56 1.03 281 18.21 1.42 203 1.03 1.11 1.23 0.04 6.19 O.O~ 
826 139 1.05 142 0.49 1.02 236 17.98 1.70 144 1.04 1.14 1.35 0.07 6.20 0.0: 
15 177 50.06 178 14.42 1.01 253 18.32 1.43 179 1.01 1.08 1.20 0.04 6.22 O.O~ 
85 172 3.90 172 1.68 l.00 270 17.77 1.57 176 l.02 1.13 1.32 0.06 6.23 0.0: 
855 168 7.09 173 4.56 1.03 235 15.09 1.40 173 1.03 1.13 1.33 0.07 6.19 0.0 
334 183 28.19 183 13.21 1.00 269 15.86 1.47 191 1.04 1.12 1.28 0.05 6.22 O.O~ 
597 154 11.05 158 8.18 1.03 254 16.98 1.65 156 1.01 1.21 1.37 0.08 6.25 0.02 
493 149 1.75 151 0.95 1.01 222 17.l0 1.49 153 1.03 1.18 1.40 0.09 7.13 1.66 
348 186 43.28 186 13.25 1.00 245 15.01 1.32 186 1.00 1.09 1.19 0.06 6.52 1.22 
19 215 206.l9 216 63.23 1.00 300 19.70 1.40 217 1.01 1.08 1.27 0.06 6.29 0.03 

802 149 1.91 152 0.87 1.02 250 18.06 1.68 154 1.03 ' 1.16 1.40 0.08 6.29 0.03 
795 167 4.70 167 1.36 1.00 240 18.06 1.44 170 1.02 1.10 1.28 0.05 6.29 0.03 
102 194 194.49 196 76.30 1.01 273 19.12 1.41 199 1.03 1.13 1.25 0.05 6.33 0.04 
28 157 13.53 158 2.86 1.01 262 18.52 1.67 167 1.06 1.16 1.36 0.07 6.35 0.03 

Mean 40.02 14.85 1.01 17.64 1.50 1.02 1.13 1.30 6.30 
S.D. 67.52 25.48 0.01 1.49 0.11 0.01 0.04 0.08 0.20 

(c) N=39 and Ps=300. 

DGLS QE SCS HGA 
Seed Sol. Time Sol. Time SR Sol. Time SR Best Best Avg. orst S.D. Avg. S.D. 

Sol. SR SR SR SR Time Time 
930 188 71.79 188 28.56 1.00 275 27.24 1.46 192 1.02 1.12 1.26 0.05 7.80 0.03 
160 150 17.41 150 8.35 1.00 245 26.70 1.63 151 1.01 1.14 1.34 0.08 8.l4 0.03 
681 158 14.06 160 4.07 1.01 253 26.96 1.60 165 1.04 1.15 1.29 0.06 7.93 0.03 
418 157 152.75 157 49.38 1.00 278 26.31 1.77 164 1.05 1.18 1.34 0.07 7.92 0.03 
522 185 4.l2 186 3.57 1.01 277 26.64 1.50 192 1.04 1.12 1.39 0.07 7.99 0.02 
667 221 31.05 224 13.69 1.01 331 25.96 1.50 225 1.02 1.09 1.19 0.05 7.89 0.03 
264 213 1257.8 220 651.8 1.03 303 25.32 1.42 218 1.02 1.14 1.30 0.06 7.82 0.22 
826 174 53.31 175 5.88 1.01 270 26.32 1.55 179 1.03 1.14 1.29 0.05 7.91 0.02 
15 177 8.75 182 6.79 1.03 256 26.11 1.45 180 l.02 1.13 1.33 0.05 7.92 0.03 
85 185 25.96 185 7.01 1.00 234 26.07 1.26 186 1.01 1.10 1.25 0.06 7.86 0.03 

8SS 170 425.80 173 136.8 l.02 249 25.12 1.46 173 l.02 1.11 1.21 0.05 7.89 0.03 
334 179 256.03 179 112.2 1.00 267 27.32 1.49 187 1.05 1.14 1.37 0.06 7.87 0.03 
597 184 4.21 188 2.03 1.02 315 26.95 1.71 186 l.01 1.15 1.30 0.07 7.89 0.03 
493 185 174.31 190 65.92 1.03 284 26.85 1.54 190 1.03 1.15 1.39 0.07 7.93 0.02 
348 166 13.53 167 6.59 1.01 291 26.36 1.75 171 1.03 1.13 1.23 0.05 7.99 0.03 
19 195 2574.1 202 936.6 1.04 314 26.10 1.61 207 1.06 1.17 1.33 0.06 7.98 0.02 

802 196 8.37 198 4.63 1.01 311 26.95 1.59 197 1.01 1.12 1.31 0.06 7.89 0.03 
795 196 5403.8 205 2347. 1.00 271 26.38 1.38 196 1.00 1.12 1.26 0.06 7.68 0.03 
102 168 361.33 168 143.4 1.00 268 26.36 1.60 176 1.05 1.16 1.36 0.07 7.99 0.02 
28 181 97.00 185 42.60 1.02 294 26.49 1.62 182 1.01 1.10 1.22 0.05 7.86 0.02 

Mean 547.77 228.9 1.01 26.43 1.54 1.03 1.13 1.30 7.91 
S.D. 1262.1 539.9 0.01 0.55 0.12 0.02 0.02 0.06 0.09 



CHAPTER V 

THE TRAVELUNG SALESMAN PROBLEM WITH 
PRECEDENCE CONSTRAINTS 

5.1 INTRODUCTION 

Good algorithms are available for the usual TSP. However quite a few 

situations require special restrictions on the acceptability of a tour as solution. The 

Travelling Salesman Problem with Precedence Constraints (TSP-PC, for short) is 

such a variation of the usual TSP, in which each admissible solution is to satisfy a 

set of k precedence relations denoted by ir < jr ;r=1,2, .... ,k. That is, the node jr 

should not be visited unless node ir is already visited. So, node jr is called 

predecessor node of corresponding node ir. This chapter formally presents this 

variation of the problem and develops solution algorithm for the same. 

The problem may be stated formally as follows: 

A network with n nodes, with node I as 'headquarters' and a cost (or 

distance or time etc.) matrix C=[ Cjj] of order n associated with ordered node pairs (i, 

j) is given. Also is given a set ofk precedence relations between node pairs (i.e., ir< 

jr; r=1,2, ... ,k) representing the restrictions that any cycle (tour) is to satisfy for its 

acceptability. The problem is to obtain the tours 

{l=ao, aI, a2, ..... , an-I, an=l} == {1~aI~a2~a3 ..... ~an-I~l} 

representing irreducible permutations interpreted as simple cycles in which the 

node ir (as one of the a's) is to come before node jr (as one of the a's in the cycle) 

for which the total travel cost 
n-l 

C(l =ao, aI, a2,· .... , an-I, an==l) :: L c( aj , aj+l) 
i=O 

80 



IS rrurumum. 

The importance of the TSP-PC is well explained by Scroggs and Therp 

(1972), Das (1976). For example, an executive may have to visit plant X before 

plant Y, since the information he gains at plant X may influence his discussions at 

plant Y, or he may personally want to deliver something from plant X to plant Y. 

Similarly, starting from a factory a truck has to deliver items to a number of depots. 

From certain depots the truck must have to pick up goods to be delivered to some 

other depots. Here, 'factory' means the 'headquarters' and the 'depots' mean the 

'nodes' of the salesman problem. The tour, truck will travel must be of a minimum 

length (or cost or time), but certain depots must be visited before some others (cf, 

Lokin 1978). The TSP-PC has many other practical applications to sequencing and 

transportation problems (cf, Bianco et al. 1994). 

Das (1976) proposed a lexisearch algorithm for obtaining optimal solution to 

the TSP-PC. However, the lower bound calculation method adopted therein is not 

efficient and hence the procedure is not practicable. 

Lokin (1978) developed a branch and bound approach, based on the branch 

and bound approach of Little et al. (1963). A zero-one matrix P is introduced to 

indicate the precedence relations between the points (nodes) as follows: 

Pij= 1 ; if point 'i' must be visited before point 'j'. 

=0 ; otherwise. 

The matrix P may not explicitly give all the transitive precedence relations. Hence, 

another matrix Q is to be derived in which all the transitive relation implied by the 

explicitly stated precedence constraints occur. For example, while pij=l, pjk=l and 

Pik7>J by implication, i must precede k and hence ~ik= 1. Matrix Q can be derived 

from matrix P by Boolean matrix multiplication of P. If after a certain stage'l', the 

matrix p/-1= p/=O, then the matrix Q equals p/-l. In developing this branch and 

bound approach, the given 'cost' matrix is restructured at each stage so that it 

becomes impossible for branching forward by taking a link such that precedence 

relations are violated. This modification of the matrix is done by giving the value 

81 



infInity to the elements of the matrix based on the precedence relations such that in 

selecting the links for a feasible solution the precedence relations are always 

obeyed. However, Lokin did not report any computational experience to the TSP

PC. A particular version of the TSP-PC with a generalized obJective function, 

called dial-a-ride problem, is discussed by Psaraftis (1980, 1983). 

Savelsbergh (1990) proposed modified 2-0pt and Or-Opt moves for the 

TSP, but he did not report any computational experience for the same. Bianco et al. 

(1994) developed exact and heuristic procedures, based on dynamic programming, 

to solve the TSP-PC. Two types of precedence constraints generation have been 

investigated by Bianco et al.(1994), which are as follows. 

(i) Dial-a-ride problems: - The set of nodes (except the starting node) is 

randomly split in the set of origins and the set of destinations such that the number 

of nodes in these two subsets is equal. A random assignment of the origins to the 

destinations is made. Then a random feasible tour is generated, where the node 'i' 

will occupy the position Ui in the tour and each node 'i' can stay only in the range 

of positions [ei, uil, where ei = max{2, Ui - MPS}, Ui = max{ui + MPS, n} andMPS 

be the Maximum Position Shift from Ui accepted by node 'i'. The introduction of 

MPS reflects that, in some dial-a-ride problems for a vehicle starting from a depot 

and visiting all customers of a given calling list, it is required that the difference 

between the positions occupied by any customer in the vehicle tour and in the 

calling list, is within a fixed limit. 

The computational report given by them shows that these problems with 

MPS=5 can be solved optimally up to n=105 in less than 300 seconds, but the size 

of the problems that can be solved decreases for increasing value ofMPS. 

(ii) General precedence problems: - A Maximum Number of 

Precedence (MNP) are randomly generated for each node Iii (except the starting 

node) with the guarantee that a feasible solution exists. This is achieved by 

generating a random and choosing for each node 'i' (except the starting node), a 

subset Ai of those nodes that in the tour precede 'i' so that IAil ~ MNP. 

82 



The computational report shows that these problems become easier for 

increasing values of MNP and the problems of size 100 can be solved with 

MNP=20. Of course, as reported by them, some of the problems could not be 

solved optimally. 

Mingozzi et al. (1997) also developed an exact algorithm based on the 

dynamic programming procedure for both the generalized precedence constraints 

and dial-a-ride problem, which outperforms the algorithms proposed by Bianco et 

al. (1994). But the computational experience shows that the problems involving the 

dial-a-ride precedence constraints can be solved to optimality only up to n=25 and 

the size of the problems involving the generalized precedence constraints can be 

solved decreases for decreasing values of MNP. 

But our precedence constraint generation is completely different with that of 

their approach. 

5.2. LEXISEARCH APPROACH (PATH APPROACH) AND 

ILLUSTRA TION. 

The procedure is essentially same as the lexisearch algorithms for the usual 

TSP of section 3.3, with appropriate modifications to include checking for 

precedence constraints. 

At first, set the cost of (1, jr), (ir. 1) and (jr, ir) to large values in the given 

cost matrix C, for all r=1,2, .... ,k. Since the precedence relations are transitive, we 

can derive possibly many more precedence relations, which follow typically from 

the explicitly stated constraints. For instance two constraints: node a < node p and 

node p < node y, lead to three constraints in all as one more constraint viz., node a 

< node y is also implied by the two constraints. 

Determination of all constraints from the explicitly given constraints can be 

achieved as follows: 

For each r=1,2, ... ,k, we check whether ir equals to js for any s=1,2, .... ,k. If 

any ir=js, then increment k by 1 ( one) and set ik=is and jk=jr. So, when the number of 

83 



constraints is specified, we are only referring the explicitly stated constraints. Then 

we check the precedence-feasibility of the solutions, i.e .• we test whether any node 

ir equals to its corresponding node jr, for any r=1,2 ..... ,k. If yes. the feasible solution 

of that problem for these precedence constraints is not possible. then we generate 

another set of precedence constraints for the same problem; else. we do the lexi 

search approach. 

Now. for convenience in checking the constraints. a predecessor table for all 

nodes in the network is derived. For this we generate initially a zero matrix P of 

order n. Then we enter the predecessors of the nodes in the corresponding row 

sequentially. This is done by the following method: 

Let Pst=O; for all s, t=1,2, ...... ,n. Then for all s=I.2, ... ,n, set first u=O and then 

check whether for any r=1,2, .... ,k. jr equals to s. If yes, increment u by one and put 

Psu=ir. For a 10-node problem with constraints node 2 < node 5, node 6 < node 7. 

node 7 < node 9. node 10 < node 2 and node 8 < node 9. the 'predecessor table' will 

be as follows: 

Node a. Predecessors of node a. 
1 0. 0, 0, 0, 0, 0, 0, 0, 0, ° 
2 10, 0, 0, 0, 0, 0, 0, 0, 0, ° 
3 0, 0, 0, 0, 0. 0, 0, 0, 0, ° 
4 0, 0, 0, 0. 0. 0, 0, 0, 0, ° 
5 5, 10, 0, 0, 0, 0, 0, 0, 0, ° 
6 0, 0, 0, 0. 0, 0, 0, 0, 0, ° 
7 6, 0. 0, 0. 0. 0. 0, 0, 0, ° 
8 0,0,0,0,~~0,0,0,0 

9 7, 6, 8, 0, 0, 0, 0, 0, 0, ° 
10 ~~~~~~o,~O,O 

Now, for a node to be concatenated to a leader, check whether the row 

elements of the corresponding node (row) are non-zero. 

If yes, check whether all (or some of) the corresponding elements of V (as 

defmed in the section 3.2) are zero. 

If yes, then go for the next stage of testing (e.g., bound calculation). 

84 



else, jwnp the block. 

else (i.e., if the first element is zero), go for the next stage of testing (e.g., bound 

calculation). 

Now, for the lexisearch algorithm of the TSP-PC, following steps are 

replaced in the lexisearch algorithm for usual TSP, described in section 3.3. 

Step 0: - Form the 'alphabet table' based on the 'reduced' (i.e., bias-removal) cost 

matrix after incorporating all precedence constraints. Initialize the 

'current trial solution value' to a large number. Since our starting node is 

, 1', we start our computation from 1 st row. Put r= 1. 

Step 2: - If the (incomplete) word forms a sub-tour or if any prescribed precedence 

constraints is violated, drop the city added in step 1 and increment r by 1, 

and then go to step 6; else, go to step 3. 

5.2.1 ILLUSTRATION 

Working of this algorithm is explained through the seven city example 

considered earlier, with the two explicit constraints node 6 < node 5, node 5 < node 

2 added. The nwnber of constraints is three, as one more constraint, viz., node 6 < 

node 2, is derived from the explicitly stated constraints. So, set the cost of the edges 

(5, 6), (2, 5), (2, 6), (1, 5), (1, 2), (6, 1) and (5, 1) to a large nwnber (for the 

convenience we take as 999). Table-5.1 and Table-5.2 give the modified cost 

matrix with bias and the reduced cost matrix respectively, while Table-5.3 and 

Table-5.4 give the 'alphabet table' and the logic-flow of the algorithm at various 

stages, which sequentially records the intermediate results, with decision taken (i.e., 

remarks) at these steps in every column respectively. In addition to the symbols 

given in section 3.2.2, the following symbol is also used therein. 

RV: Restriction is violated, lB. 

85 



TABLE-Sol: - The Modified Cost Matrix with Bias 

~ 
Row 

1 2 3 4 S 6 7 Min 
1 999 999 99 9 999 63 8 8 
2 51 999 86 46 999 999 20 20 
3 100 5 999 16 28 35 28 S 
4 20 45 11 999 59 53 49 11 
S 999 63 33 65 999 999 72 33 
6 999 53 89 31 21 999 52 21 
7 58 31 43 67 52 60 999 31 

Col. 9 0 0 1 0 29 0 
Min 

Total Bias = 129 + 40 = 169. 

TABLE-So2:- The Reduced Cost Matrix 

A 1 2 3 4 S 6 7 
1 982 991 91 0 991 26 0 
2 22 979 66 25 979 950 0 
3 86 0 994 10 23 1 23 
4 0 34 0 987 48 13 38 
S 957 30 0 31 966 937 39 
6 969 32 68 9 0 949 31 
7 18 0 12 35 21 0 968 

TABLE-So3: - The Alphabet Table 

N-V N-V N-V N-V N-V N-V N-V 
1 4-0 7-0 6-26 3-91 1-982 2-991 5-991 
2 7-0 1-22 4-25 3-66 6-950 2-979 5-979 
3 2-0 6-1 4-10 5-23 7-23 1-86 3-994 
4 1-0 3-0 6-13 2-34 7-38 5-48 4-987 
S 3-0 2-30 4-31 7-39 6-937 2-957 5-966 
6 5-0 4-9 7-31 2-32 3-68 6-949 1-969 
7 2-0 6-0 3-12 1-18 5-21 4-35 7-968 

86 



TABLE-S.4: SEARCH TABLE 

l~a.l a.l~a.:z a.:z~a.3 a.3~a.4 a.4~a.S 

1~4(o) 4~3(o) 3~2(o) 
(O)+o,GS (0)+30,GS RV 

3~6(l) 6~5(o) 5~2(30) 
(l)+30,GS (l)+30,GS (31)+ 18,GS 

5~7(39) 
(40)+22,JO 

6~7(31) 
(32)+52,JB 
6~2(32) 
RV,JO 

3~5(23) 
RV 
3~7(23) 
(23)+30,JO 

4~6(13) 6~5(o) 5~3(o) 3~2(o) 
(13)+O,GS (13)+O,GS (13)+O,GS (13)+18,GS 

3~7(23),JO 
5~2(3o),JO 

4~2(34) 
6~7(31),JO 

RV,JO 
7~2(o) 

RV 
1~7(o) 7~6(o) 6~5(o) 5~3(o) 3~2(o) 
(0)+22,GS (0)+22,GS (0)+22,GS (0)+22,GS (0)+22,GS 

3~4(1o),JO 

5~2(3o), JO 
6~4(9) 
(9)+22,JB 
6~2(32) 

RV,JO 
7~3(12) 
(l2)+52,JB 
7~5(21) 

RV 
7~4(3s), JO 

1~6(26) 
STOP 

So, the optimum tour is {1~7~6~5~3~2-74-71}, and 

optimal solution = bias + trial value = 169 + 25 = 194. 

87 

a.S~a.6 a.6~1 

2~7(o) 7~1(18) 
(31)+18,GS TRVL=57 

JO 

2~7(o) 7~1(18) 
(13)+18,GS TRVL=31 

JO 

2~4(2S) 4~1(o) 
(25)+O,GS TRVL=25 

JO 



We have seen in the case usual TSP that the adjacency approach is better 

than the path approach in the context of the lexisearch. But, for the Restricted 

TSPs, the restriction checking is much more easier in path approach (PLS) than in 

adjacency approach while forming the tour. In fact, in the adjacency approach 

(ALS), we can check the feasibility of a solution only after a complete permutation 

is obtained. A comparative study of both these approaches is carried out for two 

sets of randomly generated problems of sizes 20 and 25 (see Table-5.5). 

Table-5.5: Comparative study ofPLS and ALS for TSP-PC. 

N Seed Sol Time N Seed Sol. Time 
PLS ALS PLS ALS 

930 153 0.06 0.44 930 173 1.10 >60 
160 170 0.00 0.11 160 204 0.44 >60 

20 681 178 0.05 0.06 25 681 171 0.11 >60 
418 198 0.33 0.11 418 198 7.80 >60 
522 178 0.00 0.05 522 181 1.21 >60 
Mean 0.09 0.15 Mean 2.13 ----
S.D. 0.12 0.15 S.D. 2.86 

It is seen from the Table-5.5 that though the path approach was worse for 

the usual TSP than adjacency approach, but it is better for the TSP-PC. Hence, we 

consider the path approach for this problem and the quasi-exact (QE) approach is 

obtained by modifying the bound in the path approach described above. 

In order to examine the possible effect of nwnber of constraints on the value 

of solution and time taken, we have considered different nwnber of precedence 

constraints for a same problem (see Table-5.6). Here, as the nwnber of constraints 

increases, the only additional nwnber of constraints is added to the old existing 

constraints, in spite of taking a new set of constraints. Hence, as expected, it is 

seen from the Table-5.6 that as the nwnber of constraints increases the solution 

value, for a same problem, also monotonically non-decreases. In the context of time 

taken to solve the problem, one may expect that as the nwnber of constraints 

increases, the time taken should decrease. However, there is no logical reason why 

such monotonicity is expected. Time taken and the value of the solution depend 

88 



N 

30 

34 

upon particular set of constraints, not the numbers. So, as the number of the 

constraints increases, if one considers a new set of constraints, then one can not 

expect about the monotonicity of the solution value also. 

Table-5.6: - Comparative study of PLS considering various number of 
constraints for the TSP-PC 

Seed Const=4 Const=5 Const=6 Const=7 Const=8 Usual TSP 
Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time Sol. 

930 169 7.52 176 11.48 176 9.45 176 8.07 176 6.53 156 
160 191 6.87 192 6.98 195 12.03 195 13.73 206 7.75 184 
681 186 5.82 188 25.38 188 21.26 188 21.97 188 11.64 166 
418 193 2.15 196 3.46 203 11.59 203 9.23 203 7.96 187 
522 200 3.51 200 2.85 200 1.15 208 1.70 208 1.32 199 

Mean 5.20 10.03 11.10 10.94 7.04 
S.D. 2.04 8.27 6.42 6.73 3.33 
930 178 32.68 179 34.50 180 34.44 180 26.15 181 19.66 174 
160 154 28.67 154 19.77 154 18.23 154 14.17 154 12.08 151 
681 210 13.13 221 45.15 221 35.32 223 42.02 227 59.93 209 
418 158 4.62 160 8.29 178 10.76 178 7.52 178 5.87 153 
522 186 30.97 186 22.68 186 19.39 186 23.73 186 21.42 179 

Mean 22.01 27.38 23.63 22.72 23.79 
S.D. 11.13 13.23 9.66 11.74 18.91 

5.3. SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 
AND ILLUSTRATION 

At fIrst, we set the cost of some appropriate edges to as large as possible (for 

simplicity, we take 999) due to the precedence constraints. In this case, k of 

equation 3.1 is the number of 'legitimate' nodes in each row having value less than 

999 and obey the constraints. So, while considering the 'legitimate' nodes we check 

whether any precedence constraint is violated. If it is violated, then we select 

another 'legitimate' node. For checking the precedence constraints we follow the 

rule described in section 5.2. 

For the sequential constructive sampling algorithm of the TSP-PC, following 

modifIcations are carried out in the sequential constructive sampling for usual TSP, 

described in section 3.4. 

89 

Time 
2.36 
2.85 
2.64 

33.61 
3.63 
9.02 
12.30 
7.36 

13.73 
46.85 
8.68 
9.56 

17.24 
14.96 



Step 0: - Fonn the 'alphabet table', based on 'modified' cost matrix after 

incorporating all precedence constraints. Initialize the 'current trial solution 

value' to a large number. 

5.3.1 ILLUSTRATION 

Let us illustrate the process through the same example considered earlier, as 

given in Table-S.lin Section 5.2.1. The 'alphabet tables' for building the tour and 

calculating the bound are given in Table-S.7 and Table~S.8 respectively. 

TABLE-S.7: - The Alphabet Table 

N-V N-V N-V N-V N-V N-V N-V 
1 7-8 4-9 6-63 3-99 1-999 2-999 5-999 
2 7-20 4-46 1-51 3-86 2-999 5-999 6-999 
3 2-5 4-16 5-28 7-28 6-35 1-100 3-999 
4 3-11 1-20 2-45 7-49 6-53 5-59 4-999 
5 3-33 2-63 4-65 7-72 1-999 5-999 6-999 
6 5-21 4-31 7-52 2-53 3-89 1-999 6-999 
7 2-31 3-43 5-52 1-58 6-60 4-67 7-999 

90 



TABLE-5.S: - The Alphabet Table for Bound Calculation 

SI. Value Cum. Row Col. SI. Value Cum. Row Col. 
Value Value 

1 5 5 3 2 19 51 530 2 1 
2 8 13 1 7 20 52 582 6 7 
3 9 22 1 4 21 52 634 7 5 
4 11 33 4 3 22 53 687 4 6 
5 16 49 3 4 23 53 740 6 2 
6 20 69 2 7 24 58 798 7 1 
7 20 89 4 1 25 59 857 4 5 
8 21 110 6 5 26 60 917 7 6 
9 28 138 3 5 27 63 980 1 6 
10 28 166 3 7 28 63 1043 5 2 
11 31 197 6 4 29 65 1108 5 4 
12 31 228 7 2 30 67 1175 7 4 
13 33 261 5 3 31 72 1247 5 7 
14 35 296 3 6 32 86 1333 2 3 
15 43 339 7 3 33 89 1422 6 3 
16 45 384 4 2 34 99 1521 1 3 
17 46 430 2 4 35 100 1621 3 1 
18 49 479 4 7 36 -- --- --- ---

Set the 'current trial solution value' a large number, say n x max( elf)' Now 

since the starting node is '1', the number of 'legitimate' nodes in 15t row, taking the 

precedence constraints in to account, is 4. These nodes in the order appearing in 15t 

row (of the alphabet table) and the probabilities, with which they are to be selected, 

are given below. 

Legitimate Probabilities Cumulative Random Node to be 
Nodes Probabilities Number concatenating 

7 0.400 0.400 
4 0.300 0.700 0.572 4 
6 0.200 0.900 
3 0.100 1.000 

So, the partial tour will be (1,4) with value 9 and bound of this leader is 69. Since 

(bound + travel cost) is less than the 'current trial solution value', we accept the 

latest node and go ahead. Number of 'legitimate' nodes in 4th row is 5. But taking 

91 



the precedence constraints in to account, the number of 'legitimate' nodes is 3. So, 

we proceed in a similar way. The following table gives idea how the tour is built. 

Row Legitimate Random Node to be Bound Partial tour Tour 
Nodes Number concatenating value 

4 3,7,6 0.893 6 49 11,4,6) 62 
6 5,7,3 0.335 5 33 (1,4, 6, 5) 83 
5 3,2,7 0.331 3 22 (1,4, 6, 5, 3) 116 
3 2, 7 0.743 7 59 Jl, 4, 6, 5, 3, 7) 144 
7 2 ---- 2 --- (1,4, 6, 5,3, 7,2) 226 

Since the fmal tour value is less than the 'current trial solution value', so replace 

this 'current trial solution value' by this travel cost. This completes one trial. 

Repeat the whole process 5n3 times. 

5.4 HYBRID GENETIC ALGORITHM FOR THE TSP-PC 

To start with, we choose a population Ps of chromosomes, which satisfy the 

specified precedence constraints, evaluate them and choose the best of them as the 

'current trial solution value'. The crossover, mutation and the sequential 

constructive operators for the TSP-PC are as follows. 

(i) Crossover: - CI-Crossover operator (cf, Reeves 1993) is used for our 

HGA, which is discussed in the section 4.4. The Cl-crossover rule also does not 

violate any precedence restrictions. For example, two parents PI and P2 of length 7 

with constraints node 6 < node 5, node 5 < node 2., at crossover point 3, 

PI: 1 4 6 7 5 3 2 

P2: 1 6 5 3 7 4 2 

produce the following offspring 01 and 02 as: 

01: 1 4 6 5 3 7 2 

02: 1 6 5 4 7 3 2 

The offspring 01 and 02 do not violate the precedence constraints. 

92 



(ii) Mutation: The mutation operator for our problem is as follows. Select 

two consecutive genes of a chromosome, say i and (i+ J)th genes, with prescribed 

probability of mutation (Pm) and interchange the alleles, taking the precedence 

constraints into account, where i=2, 3, ..... ,n-l. 

(iii) Sequential Constructive operator: The method is essentially same as 

that of the usual salesman case, described in section 4.5, with additional checking 

for the precedence constraints: Let us explicitly describe the algorithm. 

Select a pair of chromosomes randomly. 

Step 1: - Start from node' I' (i.e., current node i=I). 

Step 2: - Select two 'legitimate' nodes appear immediately after node 'i' (taking 

the precedence constraints into account), one from each of the 

chromosomes'. Between these two selected nodes, select node 'j' such that 

the cost to go to node 'j' from node 'i' is minimum. If in one of the parent 

chromosomes, no 'legitimate' node is present after node 'i', then select the 

fIrst 'legitimate' node (i.e., node 'j') of the other parent chromosome, which 

does not violate the constraints. Also, if node 'i' is the last allele of both the 

chromosomes (or there is no 'legitimate' node after node 'i') and there are 

some nodes which are still to be visited, then select the node amongst the 

'legitimate' nodes which has least cost from node 'i' and does not violate 

any precedence constraints. The tie is broken randomly. That is, go to node 

'j' next and then rename the node 'j' as node 'i'. 

Step 3: - Repeat Step 2 until all nodes have been visited. 

The following example illustrates this operator. 

Suppose a pair of selected chromosomes be Al and A2, with values 255 and 

308 respectively. 

93 



AI: 1 

A2: 1 

4 

6 

6 

5 

7 

3 

5 

7 

3 

4 

2 

2 

Select node 1, as the first allele and the 'legitimate' nodes after node 1 in Al 

and A2 are 4 and 6 respectively with C14=9 and C16=63. Since C14 < C16, accept node 

4. So, the partially constructed chromosome will be (1,4). 

The 'legitimate' nodes after node 4, in Al and A2 are 6 and 2 respectively. 

But the node 2 violates the constraints, and there is no any other 'legitimate' node 

after node 4 in A2. So, there is no other option except node 6. So, accept the node 

6; the partially constructed chromosome will be (1,4,6). 

The 'legitimate' nodes after node 6, in Al and A2 are 7 and 5 respectively 

with C67=52 and C65=21. Since C65 < C67, accept node 5. So, the partially constructed 

chromosome will be (1,4,6,5). 

The 'legitimate' node after node 5 in both Al and A2 is 3. So, accept the 

node 3. Thus, the partially constructed chromosome will be (1,4,6,5,3). 

The 'legitimate' nodes after node 3, in Al and A2 are 2 and 7 respectively 

with C32=5 and C37=28. Since C32 < C37 SO, accept the node 2, and the partially 

constructed chromosome will be (1,4,6,5,3,2). 

The 'legitimate' nodes after node 2, in both Al and A2 are not available and 

there is still one node to be visited. So, check the parent Al sequentially and accept 

node 7. Thus, the full chromosome will be (1,4,6,5,3,2,7) with value 199. 

5.5 RELATIVE EFFICIENCY OF DIFFERENT APPROACHES 

Relative efficiency analysis was carried out for four sets of randomly 

generated problems of sizes 30, 34, 36 and 50. Each set contains~o randomly 

generated problems. For each of the problems generated, the exact optimal solution 

obtained by PLS, and the best solution obtained by QE and SCS are tabulated. Also 

are tabulated the times taken for obtaining the same. In case of HGA, the best-

94 



Seed 

930 
160 
681 
418 
522 
667 
264 
826 
15 
85 

855 
334 
597 
493 
348 
19 

802 
795 
102 
28 

Mean 
S.D. 

found solution; the solution-ratio of it to the optimal solution obtained by PLS 

along with the average solution-ratio, worst solution ratio and standard deviation of 

solution ratios of 50 runs are reported. These are reported in TabJe-S.9 (a, b, c & 

d). It is to be noted that for the problem of size 50 (also for the other problems 

discussed in next chapters), the results of the quasi-exact method is not reported as 

the improvement in time taken is not significant. 

TABLE-S.9: - Solution values and time taken (in Seconds) by different 
algorithms, for twenty randomly generated problems of sizes 30, 34, 36 and SO. 

(a) N=30, No. of Constraints=6 and Ps=300. 

PLS QE SCS HGA 
Sol Time Sol Time SR Sol Time SR Best Best Avg. tworst S.D. Avg. 

Sol. SR SR SR SR Time 
176 9.28 181 5.00 1.03 250 8.07 1.42 189 1.07 1.25 1.43 0.09 5.53 
195 11.92 200 6.04 1.03 286 8.52 1.47 210 1.08 1.18 1.39 0.06 5.54 
188 21.04 191 7.03 1.02 272 8.07 1.45 199 1.06 1.24 1.41 0.08 5.57 
203 11.31 203 4.06 1.00 284 8.51 1.40 220 1.08 1.21 1.38 0.08 5.70 
200 1.21 203 0.50 1.01 288 8.52 1.44 203 1.02 1.17 l.28 0.06 5.57 
212 5.01 212 l.72 l.00 249 8.65 1.17 222 1.05 l.21 1.46 0.09 5.59 
225 11.81 226 4.10 1.00 321 8.01 1.43 248 1.10 1.26 1.42 0.07 5.61 
187 15.42 192 2.35 l.03 320 7.95 l.71 202 l.08 l.22 l.41 0.08 5.65 
172 0.72 177 0.35 l.03 261 7.85 1.52 192 1.12 1.23 1.51 0.09 5.61 
225 58.07 233 26.06 l.04 314 8.19 1.40 225 l.00 1.14 l.28 0.06 5.59 
199 55.69 204 16.32 l.03 297 8.62 l.49 212 l.07 1.19 1.39 0.07 5.51 
169 0.85 169 0.22 1.00 264 7.51 l.56 169 1.00 1.23 1.44 0.08 5.51 
197 84.50 197 32.06 1.00 314 8.12 l.59 215 l.09 1.23 l.44 0.10 5.59 
182 4.21 182 2.01 1.00 262 8.23 1.44 188 1.03 1.20 1.31 0.06 5.58 
227 2.64 232 2.20 1.02 294 8.01 1.30 227 1.02 1.18 1.32 0.06 5.57 
175 5.92 181 3.37 l.03 256 6.93 1.46 189 1.08 1.26 1.48 0.09 5.18 
175 l.32 175 0.31 1.00 263 6.88 1.50 185 1.06 1.17 1.37 0.08 5.18 
182 5.92 188 3.46 l.03 262 9.49 l.44 189 1.04 l.28 l.49 0.11 5.09 
213 1.76 213 0.55 l.00 323 10.22 l.52 217 1.02 1.14 1.31 0.06 5.06 
206 18.91 210 6.23 l.02 266 9.51 l.29 213 1.03 l.22 1.33 0.06 5.08 

16.38 6.20 1.02 8.29 1.45 1.06 1.21 1.39 5.47 
22.26 8.46 0.01 0.78 0.11 0.03 0.04 0.07 0.21 

95 

S.D 
Tim 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 . 
0.7 
0.0 
0.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 



(b) N=34, No. ofConstraints=6 and Ps=340. 

PLS QE SCS HGA 
Seed Sol Time Sol Time SR Sol Time SR Best Best Avg. ~orsj S.D. Avg. S.D 

Sol. SR SR SR SR Time Tim 
930 180 34.83 185 13.51 1.03 282 14.67 1.57 193 1.07 1.27 1.45 0.09 8.17 0.0 
160 154 18.40 161 7.15 1.05 284 15.38 1.84 165 1.07 1.26 1.43 0.12 8.20 0.0 
681 221 35.70 221 8.29 1.00 313 15.48 1.42 235 1.06 1.23 1.43 0.07 8.59 0.0 
418 178 10.87 183 4.45 1.03 287 14.50 1.61 204 1.15 1.23 1.46 0.10 8.29 0.0 
522 186 19.50 186 6.09 1.00 277 14.88 1.49 195 1.05 1.27 1.42 0.08 8.77 0.0 
667 215 1.45 215 0.44 1.00 343 15.06 1.60 231 1.07 1.27 1.39 0.10 8.23 3.6 
264 209 5.80 212 2.21 1.01 317 15.32 1.52 219 1.05 1.20 1.36 0.09 8.35 0.0 
826 133 3.62 137 1.46 1.03 223 15.21 1.68 141 1.06 1.26 1.38 0.13 8.41 0.0 
15 204 40.66 209 25.06 1.02 305 14.31 1.50 215 1.04 1.16 1.26 0.06 8.39 0.0 
85 173 9.83 174 2.35 1.01 292 14.96 1.69 174 1.01 1.16 1.31 0.10 8.36 0.0 
855 169 5.59 174 1.95 1.03 289 14.65 1.71 190 1.12 1.23 1.41 0.10 8.42 0.0 
334 183 52.80 188 21.52 1.03 280 15.12 1.53 204 1.12 1.25 1.39 0.08 8.45 0.0 
597 195 5.80 196 1.10 1.01 279 15.01 1.43 211 1.08 1.25 1.37 0.08 8.58 0.0 
493 160 13.06 160 3.78 1.00 276 15.21 1.73 160 1.00 1.30 1.46 0.13 8.52 0.0 
348 203 9.82 203 2.18 1.00 304 14.95 1.50 230 1.13 1.28 1.42 0.08 8.49 0.0 
19 192 13.06 192 4.93 1.00 263 14.95 1.37 197 1.03 1.29 1.45 0.07 8.59 0.0 
802 212 11.38 217 4.62 1.02 288 15.03 1.36 230 1.06 1.15 1.30 0.05 8.65 0.0 
795 199 192.40 202 77.35 1.02 323 16.05 1.62 216 1.07 1.28 1.54 0.09 8.45 0.0 
102 255 49.67 255 21.45 1.00 326 15.98 1.28 242 1.05 1.30 1.56 0.09 8.55 0.0 
28 155 2.46 155 0.54 1.00 274 14.99 1.77 165 1.07 1.25 1.51 0.09 8.45 0.0 

Mean 26.83 10.52 1.01 15.09 1.56 1.07 1.24 1.42 8.45 
S.D. 41.01 16.97 0.01 0.42 0.14 0.04 0.04 0.07 0.15 

(c) N=36, No. of Constraints=7 and Ps=400. 

PLS QE SCS HGA 
Seed Sol Time Sol Time SR Sol Time SR Best Best Avg. rworSl S.D. Avg. S.D 

Sol. SR SR SR SR Time Ti~. 
930 184 83.32 184 33.01 1.00 324 20.11 1.76 200 1.09 1.27 1.52 0.10 11.35 0.0 
160 200 661.40 208 329.8 1.04 301 20.38 1.50 218 1.09 1.23 1.40 0.07 11.92 0.0 
681 191 33.12 192 8.30 1.01 332 20.10 1.74 208 1.09 1.31 1.45 0.09 11.61 0.0 
418 172 162.40 172 46.68 1.00 301 19.11 1.75 179 1.04 1.32 1.53 0.12 11.70 0.0 
522 207 23.29 207 7.69 1.00 300 19.78 1.45 218 1.05 1.18 1.38 0.08 11.57 0.0 
667 205 295.56 206 80.46 1.00 318 19.98 1.55 224 1.09 1.24 1.34 0.06 11.05 0.0 
264 204 45.60 208 25.29 1.02 301 19.07 1.48 229 1.12 1.26 1.43 0.07 10.97 0.0 
826 162 1058.4 169 240.22 1.04 267 20.12 1.65 187 1.15 1.29 1.50 0.08 11.21 0.0 
15 188 117.60 189 58.01 1.01 280 20.65 1.49 204 1.09 1.25 1.51 0.10 11.78 0.0 
85 192 12.59 194 5.29 1.01 292 20.13 1.52 204 1.08 1.24 1.44 0.09 11.12 0.0 
855 176 129.38 186 46.01 1.06 305 19.65 1.73 193 1.10 1.29 1.49 0.09 11.32 0.0 
334 197 20.30 197 5.03 1.00 285 19.49 1.45 207 1.05 1.19 1.38 0.06 10.97 4.0 
597 174 155.28 180 48.01 1.03 290 19.98 1.67 185 1.06 1.27 1.48 0.10 12.01 2.1 
493 173 47.65 173 17.06 1.00 299 19.82 1.73 189 1.09 1.27 1.47 0.13 11.50 0.0 
348 200 1.26 200 0.48 1.00 306 20.13 1.53 213 1.07 1.24 1.42 0.09 11.17 0.0 
19 222 77.81 228 42.21 1.03 343 20.72 1.55 259 1.17 1.28 1.42 0.06 11.06 0.0 
802 163 8.15 163 3.54 1.00 307 22.13 1.88 170 1.04 1.28 1.63 0.14 10.97 0.0 
795 173 32.45 173 12.00 1.00 279 22.16 1.61 187 1.08 1.24 1.59 0.10 11.05 0.0 
102 203 283.82 212 190.85 1.04 317 25.36 1.56 225 1.11 1.24 1.41 0.07 11.16 0.0 
28 166 15.70 174 6.23 1.05 305 20.76 1.84 192 1.16 1.37 1.53 0.09 11.06 0.0 

Mean 163.25 60.31 1.02 20.51 1.62 1.09 1.26 1.47 11.33 
S.D. 254.41 86.83 0.02 1.36 0.13 0.04 0.04 0.07 0.33 



(d) N=50, No. of Constraints=10 and Ps=400. 

PLS SCS HGA 
Seed Sol. Time Sol. Time SR Best Best Avg. Worst S.D. Avg. S.D. 

Sol. SR SR SR SR Time Time 

930 232* 3600.00 360 94.80 1.55 232 1.00 1.19 1.42 0.11 21.60 2.28 
160 198* 3600.00 334 96.09 1.69 199 1.01 1.23 1.41 0.09 22.01 0.04 
681 194 1279.20 332 96.96 1.71 241 1.24 1.37 1.57 0.10 21.95 0.66 
418 191 2802.20 376 92.99 1.97 205 1.07 1.30 1.50 0.16 22.05 0.08 
522 239 2737.20 376 91.97 1.57 262 1.10 1.29 1.48 0.08 22.64 0.04 
667 248* 3600.00 368 93.77 1.48 248 1.00 1.12 1.32 0.09 21.97 3.09 
264 240* 3600.00 377 94.11 1.57 251 1.05 1.22 1.51 0.11 23.23 3.86 
826 251* 3600.00 350 97.03 1.39 251 1.00 1.14 1.33 0.10 21.06 2.31 
15 222 1161.60 376 96.07 1.69 228 1.03 1.26 1.53 0.10 22.63 0.03 
85 204 1190.40 327 97.52 1.60 220 1.08 1.36 1.56 0.13 22.05 0.03 
855 241* 3600.00 380 95.04 1.58 247 1.03 1.24 1.54 0.11 22.93 0.08 
334 205* 3600.00 363 97.97 1.77 205 1.00 1.26 1.52 0.10 21.01 2.30 
597 185 1647.60 369 93.89 1.99 216 1.17 1.38 1.59 0.15 22.56 3.61 
493 203* 3600.00 370 99.07 1.82 227 1.12 1.38 1.51 0.12 22.03 0.03 
348 249 1128.00 415 98.01 1.67 249 1.00 1.25 1.43 0.09 21.07 2.25 
19 247 1534.47 387 98.20 1.57 267 1.08 1.32 1.68 0.13 21.61 0.03 

802 176 3131.88 369 99.24 2.10 191 1.09 lAO 1.71 0.16 21.82 0.14 
795 218 1490.93 364 98.51 1.67 229 1.05 1.22 1.55 0.09 21.84 0.03 
102 208 2433.52 362 99.01 1.74 234 1.12 1.36 1.63 0.12 21.86 0.03 
28 215 2237.27 353 98.51 1.64 235 1.09 1.26 1.47 0.09 21.06 1.98 

Mean 2578.71 96.44 1.69 1.07 1.28 1.51 21.95 
S.D. 993.29 2.18 0.17 0.06 0.08 0.10 0.61 

* The solution, which is obtained in 3600 seconds, is reported here. 

N.B. A part of the above study has been published in the Journal of the 
Operational Research Society of India (OPSEARCH), vol. 38, No. 
3, pp. 299-318, 2001. 



CHAPTER VI 

THE TRAVELUNG SALESMAN PROBLEM WITH 
FIXED POSITION CONSTRAINTS 

6.1 INTRODUCTION 

In this chapter we will discuss the Travelling Salesman Problem with Fixed 

Position Constraints (TSP-FPC, for short), in which each admissible tour is to 

satisfy k fixed position constraints; prescribed positions pI, P2, ... ,Pk along the tour 

are to be occupied by specified nodes qh q2, ... ,qk respectively. 

Schematically, let Ph P2, ... ,Pk be the k fixed positions in which nodes qh q2, 

LL ..v b l' 11 (Pl,P2, ...... ,Pk) S 1 . . {I qk are to l:Je appeare.k1, sym 0 lca y . 0 utlOn set IS ~ ... 
~q2) ....... )qk 

~ql~'" ~q2~ ... ~qk~1}. The problem is to fmd an optimal solution. 

The TSP-FPC has practical applications as well explained by Scroggs and 

Therp (1972), and Das (1976). 

6.2 LEXISEARCH APPROACH (PATH APPROACH) AND 
ILLUSTRATION 
At first set the cost of (qi, q;) to as large as possible in the given cost matrix 

C, for all i, j=O, 1, 2, .... ,k; i:tj, if IPi - Pj 1 > 1 and po=qo=1. If, for any i,j, IPi - q; 1=1, 

it is obvious that qi ~q; or q; ~qi as the case may be in every acceptable solution. 

Hens.~ one can coalesce the nodes qi and q; into a single node and reduce the total 
. ~·,l~ 

number of nodes to be considered by '1'. It is to be noted that the node '1' will 

. appear in oth position of the tour. Furthermore, we examine at each stage of 

concatenation of the present leader with the node, whether it violates any of the 

constraints. 

The algorithm is the modification of some steps in the lexisearch algorithm 

98 



for the usual TSP, described in section 3.3. First we assume that the nodes to be 

appeared in the fixed positions are already present in the incomplete tour, though in 

.. reality they may, not be present, there. Then whenever a prescribed fixed position 

appears, we accept the node for further computation (i.e., bound calculation etc.). 

Later on, this assumption is assumed in the sequential constructive sampling (SCS) 

approach also. 

Now, for the lexisearch algorithm, following steps are replaced in the 

lexisearch algorithm for usual TSP, described in section 3.3. Also step 1 is replaced 

by step l(b). 

Step 0: - Form the 'alphabet table', based on the 'reduced' (Le., bias-removal) cost 

matrix after incorporating all fixed position constraints. Initialize the 

'current trial solution value' to a large number. Since our starting node is 

, 1', we start our computation from 1 st row. Put r= 1. 

Step l(a): - If any prescribed position appears, then accept the corresponding node 

(say, node a.) and compute the cost of travelling. If the travel cost is greater 

than or equal to the 'current trial solution value', go to step 8, else, go to 

step 3, else, go to step 1 (b). 

Step 6: - If the (Bound + Travel cost) is greater than or equal to the 'current trial 

solution value', drop the city added in step 1 and increment r by 1, and then 

go to step 7; else, go to step 8. 

6.2.1 ILLUSTRATION 

Working of this algorithm is explained through the seven-city example; with 

inter city travel costs as given in Table-3.1 with constraints (!) i.e., node 5 is to be 

placed at 3rd position of the tour. So, we set the cost of the edges (1, 5) and (5, 1) to 

99 



a large number. Table-6.1 and Table-6.2 give the modified cost matrix with bias 

and the reduced cost matrix respectively, while TabIe-6.3 and TabIe-6.4 give the 

'alphabet table' and the logic-flow of the algorithm at various stages, which 

sequentially records the intermediate results, with decision taken (i.e., remarks) at 

these steps in every column respectively. In addition to the symbols given in 

section 3.2.2, the following symbol is also used therein. 

FIX: Go to the prescribed city. 

TABLE-6.1: - The Modified Cost Matrix with Bias 

k Row 
1 2 3 4 5 6 7 Min 

1 999 75 99 9 999 63 8 8 
2 51 999 86 46 88 29 20 20 
3 100 5 999 16 28 35 28 5 
4 20 45 11 999 59 53 49 11 
5 999 63 33 65 999 76 72 33 
6 36 53 89 31 21 999 52 21 
7 58 31 43 67 52 60 999 31 

Col. 9 0 0 1 0 9 0 
Min 

Total Bias = 129 + 19 = 148. 

TABLE-6.2:- The Reduced Cost Matrix 

4 ON 1 2 3 4 5 6 7 
1 982 67 91 0 991 46 0 
2 22 979 66 25 68 0 0 
3 86 0 994 10 23 21 23 
4 0 34 0 987 48 33 38 
5 957 30 0 31 966 34 39 
6 6 32 68 9 0 969 31 
7 18 0 12 35 21 29 968 

- . - e lpl a e a e .. TABLE 63Th Al h h t T hi 
N-V N-V N-V N-V N-V N-V N-V 

1 4-0 7-0 6-46 2-67 3-91 1-982 5-991 
2 6-0 7-0 1-22 4-25 3-66 5-68 2-979 
3 2-0 4-10 6-21 5-23 7-23 1-86 3-994 
4 1-0 3-0 6-33 2-34 7-38 5-48 4-987 
5 3-0 2-30 4-31 6-34 7-39 1-957 5-966 
6 5-0 1-6 4-9 7-31 2-32 3-68 6-949 
7 2-0 3-12 1-18 5-21 6-29 4-35 7-968 

100 



TABLE-6.4: SEARCH TABLE 

1-+0.1 0.1-+0.2 0.2-+0.3 (=5) (5=)0.3-+0.4 0.4-+0.5 0.5-+0.6 0.6-+1 
1-+4(0) 4-+3(0) 3-+5(23) 5-+2(30) 2-+6(0) 6-+7(31) 7-+ 1(18) 
(O)+O,GS (0)+30,FIX (23)+3,GS (53)+24,GS (53)+24,GS (84)+18,GS TRVL=10 

2JO 
2-+7(0) 7-+6(29) 6-+ 1(6) 
(53)+24,GS (82)+6,GS TRVL=88 

JO 
5-+6(34) 6-+7(31) 
(57)+6,GS JO 
5-+7(39) 7-+2(0) 2-+6(0) 6-+ 1(6) 
(62)+6,GS (62)+6,GS (62)+6,GS TRVL=68 

JO 
7-+6(29) JO 

4-+6(33) 6-+5(0) 
3-+2(0) 

5-+3(0) (33)+18,GS 2-+ 7(0) 7-+1(18) 
(33)+0,FIX (33)+0,GS (33)+0,GS (33)+18,GS TRVL=51 

3-+7(23), JO JO 

5-+2(30) ,JO 
4-+2(34) 
(34)+33,IB 
4-+7(38) 7-+5(21) 
(38)+0,FIX JO 

1-+7(0) 7-+2(0) 2-+5(68) 
(O)+O,GS (0)+22,FIX JO 

7-+3(12) 3-+5(23) 
(12)+30,FIX (35)+36,JO 
7-+6(29) 

1-+6(46) 
(29)+22,JO 

6-+4(9) 
(46)+0,GS JO 
1-+2(67) 
STOP 

So, the optimum tour is {1~4~6~5~3~2~7~1}, and optimal solution = 169 

+ 51 = 199. 

The adjacency approach is not easy for this problem also. Hence we do not 

try that approach. 

In order to examine the possible effect of number of constraints on the value 

of solution and time taken, we have considered different number of fixed position 

101 



constraints for a same problem (see Table-6.S). Here, as the number of constra~s .. 
increases, the only additional number of constraints is added to the old existing 

constraints, in spite of taking a new set of constraints. Hence, as expected, it is 

seen from the Table-6.S that as the number of constraints increases the solution 

value, for a same problem, also monotonically non-decreases. However, in the 

context of time taken to solve the problem, one can not say anything about the 

mono tonicity in time taken to solve the problem. Of course, if one looks at the 

mean and standard deviation of the time taken for the TSP-FPC, one can conclude 

that as the number of constraints increases the mean and standard deviation of the 

time taken also increase monotonically. Time taken and the value of the solution 

depend upon particular set of constraints, not the numbers. So, as the number of the 

constraints increases, if one considers a new set of constraints, then one can not 

expect about the mono tonicity of the solution value also. 

N 

30 

34 

Table-6.S: - A comparative study ofPLS considering various number of 
constraints for TSP-FPC 

Seed Const=4 Const=5 Const=6 Const=7 Usual TSP 
Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time 

930 232 3.19 254 5.55 265 7.47 289 15.27 156 2.36 
160 247 3.79 271 5.05 274 4.40 316 42.62 184 2.85 
681 224 0.22 255 1.70 267 3.29 278 2.75 166 2.64 
418 231 2.36 250 4.17 259 10.82 297 17.08 187 33.61 
522 253 2.08 256 2.09 271 5.66 285 5.93 199 3.63 

Mean 2.33 3.71 6.33 16.73 9.02 
S.D. 1.22 1.55 2.64 14.03 12.30 
930 243 9.50 257 18.02 268 32.02 268 33.40 174 7.36 
160 197 7.31 211 12.41 220 28.23 231 33.39 151 13.73 
681 255 8.84 265 2.64 297 14.78 311 28.67 209 46.85 
418 205 0.50 236 2.64 254 21.97 293 202.73 153 8.68 
522 228 3.78 232 4.61 251 12.14 267 34.55 179 9.56 

Mean 5.97 8.06 21.83 66.548 17.24 
S.D. 3.38 6.15 7.60 68.121 14.96 

102 



6.3 SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 
AND ILLUSTRATION 

At first we set the cost of some appropriate edges to large values due to the 

fixed position constraints. Furthermore, we examine at each stage of concatenation 

of the present leader with the node, whether it violates any of the constraints. In this 

case, k of equation 3.1 is the number of 'legitimate' nodes in each row having 

value less than 999 which obey the constraints. 

The following are the modification carried out in the SCS algorithms for the 

usual TSP discussed in section 3.4. Also, the existing step 2 is replaced by step 

2(b), which follows the following step 2(a). 

Step 0: - Form the 'alphabet table', based on 'modified' cost matrix after 

incorporating all fixed position constraints. Initialize the 'current trial 

solution value' to a large number. 

Step 2(a): - If any prescribed position appears, then accept the corresponding node 

and compute the cost of travelling. If the travel cost is greater than or equal 

to the 'current trial solution value', go to step 6, else, go to step 4, else, go 

to step 2(b). 

6.3.1 ILLUSTRATION 

Let us illustrate the process through the same example considered earlier, as 

given in section 6.2.1 in Table-6.1. The 'alphabet tables' for building the tour and 

calculating the bound are given in Table-6.6 and Table-6.7 respectively. 

103 



TABLE-6.6: - The Alphabet Table 

N-V N-V N-V N-V N-V N-V N-V 
1 7-8 4-9 6-63 2-75 3-99 1-999 5-999 
2 7-20 6-29 4-46 1-51 3-86 5-88 2-999 
3 2-5 4-16 5-28 7-28 6-35 1-100 3-999 
4 3-11 1-20 2-45 7-49 6-53 5-59 4-999 
5 3-33 2-63 4-65 7-72 6-76 1-999 5-999 
6 5-21 4-31 1-36 7-52 2-53 3-89 6-999 
7 2-31 3-43 5-52 1-58 6-60 4-67 7-999 

TABLE-6.7: - The Alphabet Table for Bound Calculation 

Sl. Value Cum. Row Col. SI. Value Cum. Row Col. 
Value Value 

1 5 5 3 2 21 51 595 2 1 
2 8 13 1 7 22 52 647 6 7 
3 9 22 1 4 23 52 699 7 5 
4 11 33 4 3 24 53 752 4 6 
5 16 49 3 4 25 53 805 6 2 
6 20 69 2 7 26 58 863 7 1 
7 20 89 4 1 27 59 922 4 5 
8 21 110 6 5 28 60 982 7 6 
9 28 138 3 5 29 63 1045 1 6 
10 28 166 3 7 30 63 1108 5 2 
11 29 195 2 6 31 65 1173 5 4 
12 31 226 6 4 32 67 1240 7 4 
13 31 257 7 2 33 72 1312 5 7 
14 33 290 5 3 34 75 1387 1 2 
15 35 325 3 6 35 76 1463 5 6 
16 36 361 6 1 36 86 1549 2 3 
17 43 404 7 3 37 88 1637 2 5 
18 45 449 4 2 38 89 1726 6 3 
19 46 495 2 4 39 99 1825 1 3 
20 49 544 4 7 40 100 1925 3 1 

Set the 'current trial solution value' as large as possible. Now since the 

starting node is '1', the nwnber of 'legitimate' nodes in 1st row is 5. 

104 



Legitimate Probabilities Cumulative Random Node to be 
Nodes Probabilities Number concatenating 

7 0.333 0.333 
4 0.267 0.600 
6 0.200 0.800 0.572 4 
2 0.133 0.933 
3 0.067 1.000 

So, the partial tour will be (1,4) with value 9 and bound of this leader is 69. Since 

(bound + travel cost) is less than the 'current trial solution value', we accept the 

latest node and go ahead. Number of 'legitimate' nodes in 4th row is 4. 

Legitimate Probabilities Cumulative Random Node to be 
Nodes Probabilities Number concatenating 

3 DADO DADO 
2 0.300 0.700 0.753 7 
7 0.200 0.900 
6 0.100 1.000 

So, the partial tour will be (1,4,7) with value 58 and the bound of this leader is 49. 

Since (bound + travel cost) is less than the 'current trial solution value', we accept 

the latest node and go ahead. Since the next position is fixed, so we accept the node 

5. So, the partial tour will be (1,4,7,5) with value 110 and the bound of this leader is 

33. Since (bound + travel cost) is less than the 'current trial solution value', so we 

go ahead. Number of 'legitimate' nodes in 5th row is 3. So, we proceed in a similar 

way. The following table gives idea how the tour is built. 

Row Legitimate Random Node to be Bound Partial tour Tour 
Nodes Number concatenating value 

5 3,2,6 0.932 6 22 (1,4, 7, 5,6) 186 
6 2, 3 0.543 2 57 (1,4, 7, 5,6,2) 239 
2 3 ----- 3 --- (1,4, 7, 5, 6,2,3) 425 

105 



Since the fmal tour value is less than the 'current trial solution value', so replace 

this 'current trial solution value' by this travel cost. This completes one trial. 

Repeat the whole process 5n3 times. 

6.4 HYBRID GENETIC ALGORITHM FOR THE TSP-FPC 

To start with, we choose a population P s of chromosomes, which satisfy the 

specified fixed position constraints, evaluate them and choose the best of them as 

the 'current trial solution value'. The crossover, mutation and the sequential 

constructive operators for the TSP-FPC are as follows. 

(i) Crossover: - CI-Crossover operator (C.f. Reeves 1993), taking fixed 

position constraints into account, is used for our HGA. Let us describe the 

crossover rule for the problem through an example. Two parents PI and P2 of 

length 7 with constraint (!), at crossover point 3, 

PI: I 4 6 5 3 7 2 

P2: 1 7 3 5 4 6 2 

produce the following offspring Oland 02 as: 

01: 1 4 6 5 3 7 2 

02: I 7 3 5 4 6 2 

(ii) Mutation: The mutation operator for our problem is as follows. Select 

two consecutive genes of a chromosome, say i and (i+ J)th genes, with prescribed 

probability of mutation (Pm) and interchange the alleles, taking the fixed position 

constraints into account, where i=2, 3, ..... ,n-1. This is done by checking whether 

any of the genes is in fixed position. If no, then interchange the alleles, otherwise 

do not interchange them and select next pair and repeat the process. 

(iii) Sequential Constructive operator:- This method is essentially same as 

that of the usual salesman case, described in section 4.5, with additional checking 

106 



for the fixed position constraints. Assume that the nodes to be appeared in the fixed 

positions are already present in the new partially constructed chromosome, though 

in reality they may not be present there. Then whenever a prescribed fixed position 

is appeared, we accept the nod~. Let us explicitly describe the algorithm. 

Select a pair of chromosomes randomly. 

Step 1: - Start from node' I' (i.e., current node i=I). 

Step 2: - Select two 'legitimate' nodes appeared immediately after node 'i' (taking 

the precedence constraints into account), one from each of the 

chromosomes'. Between these two selected nodes, select node 'j' such that 

the cost to go to node 'j' from node 'i' is minimum. If in one of the parent 

chromosomes, no 'legitimate' node is present after node 'i', then select the 

first 'legitimate' node (i.e., node 'j') of the other parent chromosome, which 

does not violate the constraints. Also, if node 'i' is the last allele of both the 

chromosomes (or there is no 'legitimate' node after node 'i') and there are 

some nodes which are still to be visited, then select the node amongst the 

'legitimate' nodes which has least cost from node 'i' and does not violate 

any fixed position constraints. The tie is broken randomly. That is, go to 

node 'j' next and then rename the node 'j' as node 'i'. 

Step 3: - Repeat Step 2 until all nodes have been visited. 

The following example illustrates this method. 

As earlier, we shall use the same problem as before, for illustration. Suppose 

a pair of selected chromosomes be Al and A2, with values 330 and 337 

respectively. 

AI: I 4 7 5 2 3 6 

A2: I 2 4 5 3 7 6 

107 



Select node 1, as the fIrst allele and the 'legitimate' nodes after node 1 in Al 

and A2 are 4 and 7 respectively with C14=9 and C12=75. Since C14 < C12, accept node 

4. So, the partially constructed chromosome will be (1,4). 

The 'legitimate' nodes after node 4, in Al and A2 are 7 and 3 respectively 

with C47=49 and C43= 11. Since C43 < C47, accept node 3. So, the partially constructed 

chromosome will be (1,4,3). 

~ince the next position is fIxed, accept the corresponding node, i.e., node 5. 

So, the partially constructed chromosome will be (1,4,3,5). 

The 'legitimate' nodes after node 5, in Al and A2 are 2 and 7 respectively 

with C52=63 and C57=72. Since C52 < C57, accept node 2. So, the partially constructed 

chromosome will be (1,4,3,5,2). 

The 'legitimate' nodes after node 2 in Al and in A2 are 6 and 7 respectively 

with C26=29 and C27=20. Since C27 < C26, accept node 7. So, the partially constructed 

chromosome will be (1,4,3,5,2,7). 

The 'legitimate' nodes after node 7, in both Al and A2 6. So, accept the 

node 6, and thus, the full chromosome will be (1,4,3,5,2,7,6) with value 227. 

6.5 RELATIVE EFFICIENCY OF DIFFERENT APPROACHES 

Relative efficiency analysis was carried out for four sets of randomly 

generated problems of sizes 30, 34, 36 and 50. Each set contains 20 randomly 

generated problems. For each of the problems generated, the exact optimal solution 

obtained by PLS, and the best solution obtained by QE and SCS are tabulated. Also 

are tabulated the times taken for obtaining the same. In case of HGA, the best

found solution; the best solution-ratio of it to the optimal solution obtained by PLS 

along with the average solution-ratio and standard deviation of solution-ratios of 50 

runs are reported. These are reported in Table-6.8(a, b, c & d). 

108 



Seed 

930 
160 
681 
418 
522 
667 
264 
826 
15 
85 

855 
334 
597 
493 
348 
19 

802 
795 
102 
28 

Mean 
S.D. 

Seed 

930 
160 
681 
418 
522 
667 
264 
826 
15 
85 
855 
334 
597 
493 
348 
19 

802 
795 
102 
28 

Mean 
S.D. 

TABLE-6.8:- Solution values and time taken (in Seconds) by different 
algorithms, for twenty randomly generated problems of sizes 30, 34, 36 and 50. 

(a) N=30, No. of Constraints=6 and Ps=225. 
PLS QE ' SCS HGA 

Sol Time Sol 'rime SR Sol Time SR Best Best Avg. orst S.D. Avg. 
Sol. SR SR SR SR Time 

265 7.63 277 3.96 1.05 351 6.27 1.32 294 1.11 1.42 1.74 0.11 3.27 
274 4.45 281 1.48 1.03 379 5.21 1.38 314 1.15 1.35 1.50 0.08 3.24 
267 3.41 281 2.25 1.05 379 5.50 1.42 281 1.05 1.24 1.48 0.11 3.26 
259 10.93 266 2.91 1.03 318 5.05 1.23 259 1.00 1.29 1.48 0.09 3.20 
271 5.82 271 2.91 1.00 376 5.72 1.39 293 1.08 1.28 1.50 0.11 3.26 
302 5.02 313 4.33 1.04 415 5.52 1.37 311 1.03 1.27 1.52 0.12 3.21 
321 13.71 321 7.75 1.00 449 5.13 1.40 347 1.08 1.23 1.44 0.09 3.25 
252 5.66 257 2.74 1.02 342 5.21 1.36 268 1.06 1.37 1.54 0.10 3.23 
252 3.88 252 0.98 1.00 318 6.12 1.26 269 1.07 1.34 1.74 0.15 3.27 
299 39.28 318 20.05 1.06 364 5.95 1.22 329 1.10 1.23 1.54 0.09 3.20 
275 20.95 276 11.21 1.00 298 6.02 1.08 303 1.10 1.28 1.40 0.07 3.27 
273 32.23 280 10.41 1.03 393 5.62 . 1.44 309 1.13 1.31 1.52 0.09 3.22 
291 6.98 295 2.21 1.01 338 5.69 1.16 312 1.07 1.24 1.47 0.10 3.23 
235 7.64 249 2.97 1.06 397 6.16 1.69 271 1.15 1.40 1.50 0.16 3.25 
310 6.13 320 4.01 1.03 419 6.25 1.35 343 1.11 1.20 1.38 0.06 3.26 
269 6.86 269 1.58 1.00 419 5.66 1.56 315 1.17 1.44 1.70 0.10 3.12 
300 18.59 316 9.02 1.05 349 6.76 1.16 355 1.18 1.31 1.55 0.08 3.26 
258 5.40 272 1.72 1.05 358 6.96 1.39 304 1.18 1.39 1.59 0.11 3.06 
287 1.78 300 0.85 1.05 345 5.86 1.20 306 1.07 1.22 1.40 0.09 3.12 
317 8.31 328 2.77 1.03 334 5.99 1.05 334 1.05 1.23 1.45 0.09 . 3.15 

10.73 4.81 1.03 5.83 1.32 1.10 1.30 1.52 3.22 
9.64 4.62 0.02 0.50 0.15 0.05 0.07 0.10 0.06 

(b) N=34, No. of Constraints=6 and Ps=400. 
PLS QE SCS HGA 

Sol Time Sol Time SR Sol Time SR Best Best Avg. Worst S.D. Avg. 
Sol. SR SR SR SR Time 

268 32.90 280 14.56 1.05 414 9.45 1.54 296 1.10 1.32 1.50 0.10 7.74 
220 28.89 233 14.39 1.06 319 7.74 1.45 258 1.17 1.58 1.73 0.14 7.69 
297 15.11 317 12.85 1.07 417 9.45 1.40 326 1.10 1.24 1.41 0.06 7.66 
254 22.35 272 10.71 1.07 415 9.72 1.63 285 1.12 1.42 1.67 0.10 7.69 
251 12.41 251 4.67 1.00 375 8.85 1.49 275 1.10 1.26 1.47 0.09 7.66 
305 17.53 305 4.78 1.00 374 8.95 1.23 334 1.10 1.25 1.52 0.09 7.68 
292 5.59 293 1.21 1.00 392 8.62 1.34 293 1.00 1.14 1.35 0.08 9.61 
211 15.09 228 9.52 1.08 316 9.01 1.50 251 1.19 1.37 1.57 0.10 7.63 
279 44.76 279 28.06 1.00 413 9.62 1.48 309 1.11 1.32 1.53 0.08 7.66 
260 17.92 260 18.59 1.00 409 9.11 1.57 285 1.10 1.33 1.54 0.11 7.67 
262 38.28 267 25.01 1.02 430 8.92 1.64 313 1.20 1.47 1.71 0.13 7.67 
259 13.78 278 14.21 1.07 363 7.97 1.40 297 1.15 1.35 1.55 0.09 7.68 
278 9.04 298 3.52 1.07 417 7.99 1.50 322 1.16 1.35 1.56 0.09 7.69 
232 21.35 235 8.21 1.01 405 8.92 1.75 265 1.14 1.47 1.72 0.11 7.71 
258 9.43 258 2.10 1.00 418 9.16 1.62 304 1.18 1.35 1.70 0.13 7.65 
265 35.53 269 14.69 1.02 433 10.51 1.63 292 1.10 1.33 1.74 0.14 7.69 
298 27.42 307 8.70 1.03 438 9.46 1.47 311 1.04 1.23 1.48 0.11 7.69 
276 31.31 285 15.04 1.03 432 10.35 1.57 316 1.15 1.30 1.50 0.08 7.68 
284 7.38 300 4.21 . 1.06 427 9.65 1.50 315 1.11 1.31 1.59 0.11 7.68 
226 7.57 236 3.43 1.04 358 8.98 1.58 236 1.04 1.28 1.48 0.10 7.67 

20.68 10.92 1.03 9.12 1.51 1.12 1.33 1.57 7.78 
11.23 7.22 0.03 0.69 0.12 0.05 0.10 0.11 0.42 

109 

S.D. 
Time 
0.02 
0.02 
0.02 
0.34 
0.02 
0.02 
0.03 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.03 
0.03 
0.03 
0.03 
0.03 

S.D. 
Time 
0.03 
0.03 
0.04 
0.03 
0.03 
0.04 
2.48 
0.03 
0.03 
0.02 
0.02 
0.04 
0.03 
0.03 
0.04 
0.03 
0.03 
0.04 
0.03 
0.03 



(c) N=36, No. of Constraints=7 and Ps=450. 
PLS QE SCS HGA 

Seed Sol Time Sol Time SR Sol Time SR Best Best Avg. orst S.D. Avg. S.D 
Sol. SR SR SR SR Time Tim~ 

930 291 200.92 291 48.88 1.00 436 13.07 1.50 339 1.17 1.47 1.64 0.10 10.24 0.03 
160 267 98.28 278 27.46 1.04 471 13.13 1.76 335 1.26 1.53 1.82 0.12 10.11 0.03 
681 287 121.55 308 57.57 1.07 427 14.06 1.49 331 1.15 1.41 1.56 0.10 10.18 0.03 
418 264 128.69 288 56.57 1.09 458 13.84 1.73 321 1.22 1.50 1.69 0.11 10.12 0.03 
522 296 486.97 313 146.21 1.06 439 12.75 1.48 344 1.16 1.36 1.62 0.09 10.40 0.03 
667 325 322.87 325 55.05 1.00 509 14.01 1.57 359 1.11 1.25 1.38 0.07 10.01 0.35 
264 314 292.77 334 145.32 1.06 455 14.56 1.45 346 1.10 1.33 1.52 0.08 10.12 0.04 
826 266 176.45 286 81.02 1.08 337 14.01 1.27 333 1.25 1.43 1.63 0.08 10.41 0.02 
15 274 115.23 274 31.01 1.00 472 12.95 1.72 357 1.23 1.55 1.71 0.12 10.12 0.05 
85 306 367.33 310 65.12 1.01 452 12.65 1.48 341 1.11 1.28 1.42 0.08 10.13 0.04 
855 254 140.42 273 55.87 1.07 404 13.06 1.59 284 1.12 1.42 1.59 0.14 10.16 0.03 
334 266 11.59 274 3.12 1.03 404 14.32 1.52 306 1.15 1.32 1.51 0.11 10.12 0.03 
597 243 21.43 243 6.16 1.00 385 13.67 1.58 309 1.27 1.47 1.61 0.11 10.29 0.12 
493 223 174.23 223 57.11 1.00 433 13.95 1.94 268 1.20 1.52 1.70 0.18 10.23 0.03 
348 310 105.66 319 25.13 1.03 451 14.01 1.45 336 1.08 1.20 1.32 0.08 10.18 0.03 
19 320 232.14 342 157.93 1.07 485 14.54 1.52 380 1.19 1.34 1.56 0.07 10.25 0.02 

802 272 100.64 281 33.61 1.03 410 14.65 1.51 308 1.13 1.40 1.70 0.13 10.27 0.03 
795 305 152.33 305 40.20 1.00 422 14.06 1.38 367 1.20 1.35 1.51 0.06 10.12 0.02 
102 269 631.68 269 186.34 1.00 438 14.25 1.63 355 1.32 1.55 1.78 0.13 10.29 2.15 
28 291 1716.4 291 577.10 1.00 475 14.35 1.63 372 1.28 1.50 1.66 0.08 10.21 1.35 

Mean 279.88 92.84 1.03 13.79 1.56 1.18 1.41 1.60 10.20 
S.D. 361.61 121.88 0.03 0.62 0.14 0.07 0.10 0.12 0.10 

I) N=50, No. of Constraints=10 and Ps=400. (d 
PLS SCS HGA 

Seed Sol. Time Sol. Time SR Best Best Avg. Worst S.D. Avg. S.D. 
Sol. SR SR SR SR Time Time 

930 343 3020.08 582 66.20 1.70 425 1.24 1.52 1.75 0.11 20.40 0.03 
160 371* 3600.00 483 65.12 1.30 371 1.00 1.25 1.51 0.10 21.03 2.07 
681 420* 3600.00 556 67.03 1.32 420 1.00 1.23 1.47 0.08 20.03 2.87 
418 410* 3600.00 480 65.01 1.17 419 1.02 1.23 1.46 0.11 19.67 1.87 
522 375 2422.40 581 63.98 1.55 431 1.15 1.34 1.49 0.16 20.01 1.10 
667 504* 3600.00 653 67.01 1.30 505 1.00 1.13 1.38 0.08 20.67 0.03 
264 422 2557.80 540 65.09 1.28 463 1.10 1.30 1.54 0.08 21.01 0.08 
826 379* 3600.00 562 66.12 1.48 379 1.00 1.23 1.59 0.11 20.56 0.08 
15 403 2126.60 558 66.05 1.38 404 1.00 1.21 1.49 0.11 20.37 0.04 
85 373 1325.80 532 .63.09 1.43 394 1.06 1.28 1.57 0.11 20.97 0.03 

855 369* 3600.00 537 67.20 1.46 409 1.11 1.32 1.66 0.10 20.53 0.08 
334 429* 3600.00 550 67.45 1.28 429 1.00 1.16 1.34 0.07 19.09 5.54 
597 418* 3600.00 564 66.09 1.35 418 1.00 1.21 1.46 0.08 21.27 0.03 
493 377* 3600.00 557 64.01 1.48 377 1.00 1.28 1.60 0.09 19.97 0.05 
348 422* 3600.00 523 67.98 1.24 422 1.00 1.19 1.42 0.07 20.01 2.07 
19 337* 3600.00 604 65.47 1.79 403 1.20 1.43 1.64 0.13 19.66 0.50 

802 395* 3600.00 569 67.56 1.44 395 1.00 1.31 1.54 0.27 19.76 0.13 
795 409* 3600.00 442 66.06 1.08 409 1.00 1.18 1.49 0.16 19.78 0.03 
102 384* 3600.00 537 67.75 1.40 384 1.00 1.19 1.58 0.16 19.77 0.03 
28 364* 3600.00 486 66.21 1.34 364 1.00 1.16 1.48 0.17 19.76 0.03 

Mean 3272.63 66.02 1.39 1.04 1.26 1.52 20.22 
S.D. 632.80 1.31 0.16 0.07 0.09 0.10 0.56 

* The solution, which is obtained in 3600 seconds, is reported here. 

110 



CHAPTER VII 

THE TRAVELUNG SALESMAN PROBLEM WITH 
FIXED POSITION AND PRECEDENCE CONSTRAINTS 

7.1 INTRODUCTION 

In this chapter we will discuss the usual TSP with Fixed Position and 

Precedence Constraints (TSP-FPPC, for short). The TSP-FPPC in an appropriate 

union of the problems discussed in chapters V and VI. Hence the algorithms 

developed for the problem are the appropriate union of algorithms developed for 

the TSP-PC and TSP-FPC discussed in chapters V and VI respectively. 

The TSP-FPPC has practical applications (cf, Scroggs and Therp 1972, and 

Das 1976). Despite its applicability, few papers exist about this problem in the 

literature. Some of them refer to the TSP-PC and some other deal with the TSP

FPC, as mentioned in chapter V and VI respectively, but very few refer to the TSP

FPPC (cf, Das 1976). 

Das (1976) proposed a lexisearch algorithm for obtaining exact optimal 

solution to the TSP-FPPC. However the lower bound calculation method adopted 

therein is not efficient and hence the procedure is not practicable, when the problem 

sizes are even moderately large. 

7.2 LEXISEARCH APPROACH (PATH APPROACH) AND 
ILLUSTRATION 

Here all the assumptions made in the context of precedence and fixed 

position constraints are considered. 

Now, for the lexisearch algorithm of the TSP-FPPC, following steps are 

replaced in the lexisearch algorithm for usual TSP, described in section 3.3. Also 

111 



step 1 is replaced by step l(b). 

Step 0: - Fonn the 'alphabet table', based on the 'reduced' (i.e., bias-removal) cost 

matrix after incorporating all fixed position and precedence constraints. 

Initialize the 'current trial solution value' to a large number. Since our 

starting node is '1', we start our computation from 1 st row. Put r= 1. 

Step l(a): - If any prescribed position appears, then accept the corresponding node 

(say, node a) and compute the cost of travelling. If the travel cost is greater 

than or equal to the 'current trial solution value', go to step 9, else, go to 

step 2, else, go to step l(b). 

Step 2: - If the (incomplete) word forms a sub-tour or if any prescribed constraints 

is violated, drop the city added in step 1 and increment r by 1, and then go to 

step 6; else, go to step 3. 

Step 6: - If the (Bound + Travel Cost) is greater than or equal to the 'current trial 

solution value', check whether the latest node is one of the prescribed fixed 

node; else go to step 8. If the latest node is one of the prescribed fixed 

nodes, then drop the city added in step 1 and go to step 9; else drop the city 

added in step 2, increment I by 1, and then go to step 7. 

7.2.1 ILLUSTRATION 

Working of this algorithm is explained through the same problem as earlier, 

as given in Table-3.1 with the precedence and fixed positions constraints 

considered in the section 5.2.1 and 6.2.1 respectively and accordingly. Table-7.1, 

Table-7.2, Table-7.3 and Table-7.4 give the modified cost matrix with bias, the 

reduced cost matrix, the 'alphabet table' and the 'search table' respectively. 

112 



TABLE-7.1: - The Modified Cost Matrix with Bias 

A Row 
1 2 3 4 5 6 7 Min 

1 999 999 99 9 999 63 8 8 
2 51 999 86 46 999 999 20 20 
3 100 5 999 16 28 35 28 5 
4 20 45 11 999 59 53 49 11 
5 999 63 33 65 999 999 72 33 
6 999 53 89 31 21 999 52 21 
7 58 31 43 67 52 60 999 31 

Col. 9 0 0 1 0 29 0 
Min 

Total BIas = 129 + 39 = 168. 

TABLE-7.2: - The Reduced Cost Matrix 

~ 1 2 3 4 5 6 7 
1 982 991 91 0 991 26 0 
2 22 979 66 25 979 950 0 
3 86 0 994 10 23 1 23 
4 0 34 0 987 48 13 38 
5 957 30 0 31 966 937 39 
6 6 32 68 9 0 949 31 
7 18 0 12 35 21 0 968 

TABLE-7.3: - The Alphabet Table 

N-V N-V N-V N-V N-V N-V N-V 
1 4-0 7-0 6-26 3-91 1-982 2-991 5-991 
2 7-0 1-22 4-25 3-66 6-950 2-979 5-979 
3 2-0 6-1 4-10 5-23 7-23 1-86 3-994 
4 1-0 3-0 6-13 2-34 7-38 5-48 4-987 
5 3-0 2-30 4-31 7-39 6-937 2-957 5-966 
6 5-0 4-9 7-31 2-32 3-68 6-949 1-969 
7 2-0 6-0 3-12 1-18 5-21 4-35 7-968 

113 



TABLE-704: SEARCH TABLE 

l~a.l a.l~a.2 a.2~a.3(=5) (5=)a.3~a.4 a.4~a.5 a.5~a.6 a.6~1 

1~4(0) 4~3(0) 3~5(23) 
(O)+o,GS (0)+30,FIX RV,JO 

4~6(13) 6~5(0) 5~3(0) 3~2(0) 2~7(0) 7-1-1(18) 
(13)+O,FIX (13)+O,GS (13)+O,GS (13)+18,GS (13)+18,GS TRVL=31 

JO 
3~7(23),JO 

5~2(30),J0 
4-1-2(34),J 0 

1-1-7(0) 7~2(0) 
(0)+22,GS RV 

7~6(0) 6-1-5(0) 
(0)+22,FIX (O)+31,JO 

7~3(12) 
(12)+52, JB 

1-1-6(26) 
7~4(35),JO 
6~(9), JO 

(26)+0,GS 
1~2(91) 
STOP 

So, the optimum tour is {l~4~6~5~3~2~7~1}, and optimal solution = 168 

+ 31 = 199. 

Let us now examine the possible effect of the number of constraints on the 

solution value and the time taken for solving the same. Table-70S shows a 

computational report for some problems with different number of constraints. Here, 

the constraints are the combination of same constraints considered in the TSP-PC 

and TSP-FPC reported in the Tables S06 and 60S respectively. As expected here 

also, it is seen from the Table-70S that as the number of constraints increases the 

solution value, for a same problem, also monotonically non-decreases. In this case 

also, as the number of constraints increases, one can not say about the 

monotonicity of the time taken for solving the same. 

114 



N 

30 

N 

34 

Table-7.S: - A comparative study ofPLS for TSP-PC, TSP-FPC 
and TSP-FPPC for different number of constraints. 

No. of constraints=4 No. of constraints=5 
Seed 

TSP-PC TSP-FPC TSP-FPPC TSP-PC TSP-FPC TSP-FPPC 
Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time Sol. 

930 169 7.52 232 3.l9 239 l.65 176 1l.48 254 5.55 262 
160 191 6.87 247 3.79 259 3.90 192 6.98 271 5.05 276 
681 186 5.82 224 0.22 251 3.90 188 25.38 255 l.70 277 
418 193 2.15 231 2.36 232 3.73 196 3.46 250 4.17 250 
522 200 3.51 253 2.08 253 1.70 200 2.85 256 2.09 256 

Mean 5.20 2.33 2.98 10.03 3.71 
S.D. 2.04 1.22 1.06 8.27 1.55 

No. of constraints=6 No. of constraints=7 

930 176 9.45 265 7.47 286 3.08 176 8.07 289 15.27 306 
160 195 12.03 274 4.40 281 1.97 195 13.73 316 42.62 331 
681 188 21.26 267 3.29 279 5.83 188 21.97 278 2.75 338 
418 203 1l.59 259 10.82 312 3.95 203 9.23 297 17.08 342 
522 200 l.15 271 5.66 281 4.23 208 1.70 285 5.93 302 

Mean 11.10 6.33 3.81 10.94 16.73 
S.D. 6.42 2.64 1.28 6.73 14.03 
Seed No. of constraints=4 No. of constraints=5 

930 178 32.68 243 9.50 264 27.03 179 34.50 257 18.02 283 
160 154 28.67 197 7.31 208 7.96 154 19.77 211 12.41 223 
681 210 13.13 255 8.84 255 4.83 221 45.15 265 2.64 265 
418 158 4.62 205 0.50 236 3.96 160 8.29 236 2.64 258 
522 186 30.97 228 3.78 228 7.85 186 22.68 232 4.61 242 

Mean 22.01 5.97 10.33 27.38 8.06 
S.D. 11.13 3.38 8.50 13.23 6.15 

No. of constraints=6 No. of constraints=7 

930 180 34.44 268 32.02 294 33.12 180 26.15 268 33.40 311 
160 154 18.23 220 28.23 244 27.63 154 14.17 231 33.39 271 
681 221 35.32 297 14.78 312 13.23 223 42.02 311 28.67 337 
418 178 10.76 254 2l.97 280 24.77 178 7.52 293 202.73 334 
522 186 19.39 251 12.14 294 62.01 186 23.73 267 34.55 306 

Mean 23.63 21.83 32.15 22.72 66.548 
S.D. 9.66 7.60 16.28 11.74 68.121 

7.3 SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 
AND ILLUSTRATION 

Here all the assumptions made in the context of precedence and fixed 

position constraints are considered. In this case, k of equation 3.1 is the number of 

115 

Time 
2.20 
2.96 
4.62 
2.03 
1.70 
2.70 
1.04 

4.78 
26.69 
14.33 
5.99 
4.23 
11.20 
8.56 

28.23 
9.34 
0.82 
4.12 
12.20 
10.94 
9.51 

49.38 
86.67 
31.80 
102.49 
124.24 
78.92 
33.95 



'legitimate' nodes in each row having value less than 999 which obey the 

constraints. In this case, while considering the 'legitimate' nodes, we check only 

whether any precedence constraint is violated. If it is violated, then we select next 

'legitimate' node. 

Now, for the algorithm, following steps are replaced in the sequential 

constructive sampling for usual TSP, described in section 3.4. Also, step 2 is 

replaced by step 2(c). 

Step 0: - Form the 'alphabet table', based on 'modified' cost matrix after 

incorporating all fixed position and precedence constraints. Initialize the 

'current trial solution value' to a large number. 

Step 2(a): - If any prescribed position appears, consider the corresponding node 

and compute the cost of travelling and then go to step 2(b), else, go to step 

2(b). 

Step 2(b): - If the travel cost is greater than or equal to the 'current trial solution . 
value', go to step 1, else, check for the precedence constraints. If one of the 

precedence constraints is violated, go to the previous position of the tour and 

the go to step 2(a), else, go to step 4. 

7.3.1 ILLUSTRATION 

Let us illustrate the process through the same example considered earlier, as 

given in section 7.2.1 (Table-7.1). The 'alphabet tables' for building the tour and 

calculating the bound are given in Table-7.6 and Table-7.7 respectively. 

116 



TABLE-7.6: - The Alphabet Table 

N-V N-V N-V N-V N-V N-V N-V 
1 7-8 4-9 6-63 3-99 1-999 2-999 5-999 
2 7-20 4-46 1-51 3-86 2-999 5-999 6-999 
3 2-5 4-16 5-28 7-28 6-35 1-100 3-999 
4 3-11 1-20 2-45 7-49 6-53 5-59 4-999 
5 3-33 2-63 4-65 7-72 1-999 5-999 6-999 
6 5-21 4-31 7-52 2-53 3-89 1-999 6-999 
7 2-31 3-43 5-52 1-58 6-60 4-67 7-999 

TABLE-7.7: - The Alphabet Table for Bound Calculation 

Sl. Value Cum. Row Col. Sl. Value Cum. Row Col. 
Value Value 

1 5 5 3 2 19 51 530 2 1 
2 8 13 1 7 20 52 582 6 7 
3 9 22 1 4 21 52 634 7 5 
4 11 33 4 3 22 53 687 4 6 
5 16 49 3 4 23 53 740 6 2 
6 20 69 2 7 24 58 798 7 1 
7 20 89 4 1 25 59 857 4 5 
8 21 110 6 5 26 60 917 7 6 
9 28 138 3 5 27 63 980 1 6 
10 28 166 3 7 28 63 1043 5 2 
11 31 197 6 4 29 65 1108 5 4 
12 31 228 7 2 30 67 1175 7 4 
13 33 261 5 3 31 72 1247 5 7 
14 35 296 3 6 32 86 1333 2 3 
15 43 339 7 3 33 89 1422 6 3 
16 45 384 4 2 34 99 1521 1 3 
17 46 430 2 4 35 100 1621 3 1 
18 49 479 4 7 36 -- --- --- ---

Set the 'current trial solution value' as large as possible. Now since the starting 

node is '1', the number of 'legitimate' nodes in 1st row, taking the precedence 

constraints in to account, is 4. 

117 



Legitimate Probabilities Cumulative Random Node to be 
Nodes Probabilities Number concatenating 

7 0.400 0.400 
4 0.300 0.700 0.572 4 
6 0.200 0.900 
3 0.100 1.000 

So, the partial tour will be (1,4) with value 9 and bound of this leader is 69. Since 

(bound + travel cost) is less than the 'current trial solution value', we accept the 

latest node and go ahead. Nwnber of 'legitimate' nodes in 4th row is 5. But taking 

the precedence constraints in to account, the nwnber of 'legitimate' nodes is 3. 

Legitimate Probabilities Cumulative Random Node to be 
Nodes Probabilities Number concatenated 

3 0.500 0.500 
7 0.333 0.833 0.893 6 
6 0.167 1.000 

So, the partial tour will be (1,4,6) with value 62 and the bound of this leader is 49. 

Since (bound + travel cost) is less than the 'current trial solution value', we accept 

the latest node and go ahead. Since the next position is one of the fixed positions, 

so accept the prescribed node, i.e., node 5. So, the partial tour will be (1,4,6,5) with 

value 83 and the bound of this leader is 33. Since (bound + travel cost) is less than 

the 'current trial solution value', we go ahead. Nwnber of 'legitimate' nodes in 5th 

row, taking the precedence constraints in to account, is 3. So, we proceed in a 

similar way. The following table gives idea how the tour is built. 

Row Legitimate Random Node to be Bound Partial tour Tour 
Nodes Number concatenating value 

5 3,2,7 0.335 3 22 (1,4, 6, 5, 3) 116 
3 2, 7 0.743 7 59 (1, 4, 6, 5, 3, 7) 144 
7 2 ---- 2 --- (1, 4, 6, 5, 3, 7, 2) 226 

118 



Since the fmal tour value is less than the 'current trial solution value', so replace 

this 'current trial solution value' by this travel cost. This completes one trial. 

Repeat the whole process 5n3 times. 

7.4 HYBRID GENETIC ALGORITHM FOR THE TSP-FPPC 

To start with, we choose a population Ps of chromosomes, which satisfy the 

specified fixed position and precedence constraints, evaluate them and choose the 

best of them as the 'current trial solution value'. The crossover, mutation and the 

sequential constructive operators for the TSP-FPPC are as follows. 

(i) Crossover: - CI-Crossover operator (C.f. Reeves 1993), taking fixed 

position and precedence constraints into account, is used for our HGA. Let us 

describe the crossover rule for the problem through an example. Two parents PI 

and P2 of length 7 with constraint node 6 < node 5, node 5 < node 2 and (~} at 

crossover point 3, 

PI: 1 7 6 5 4 3 2 

P2: 1 6 3 5 7 2 4 

produce the following offspring Oland 02 as: 

01: 1 7 6 5 3 2 4 

02: 1 6 3 5 7 4 2 

(ii) Mutation: The mutation operator for our problem is as follows. Select 

two consecutive genes of a chromosome, say i and (i+ J)th genes, with prescribed 

probability of mutation (Pm) and interchange the alleles, taking the fixed position 

and precedence constraints into account, where i=2, 3, ..... ,n-1. This is done by 

checking whether any of the genes is in fixed position or both i and (i+ J)th alleles 

are in precedence constraints. If no, then interchange the alleles, otherwise do not 

interchange them and select next pair and repeat the process. 

119 



(iii) Sequential Constructive operator: This method is the appropriate 

union of the sequential constructive operator described in section 5.4 and 6.4. Let 

us explicitly describe the algorithm. So, whatever assumptions are made there, we 

consider here also. 

Now, for the algorithm, select a pair of chromosomes randomly. 

Step 1: - Start from node' l' (i.e., current node i=l). 

Step 2: - If the fixed position is reached, go to the prescribed node 'j', taking the 

precedence constraints into account, else, select two 'legitimate' nodes 

appeared immediately after node 'i', taking the precedence constraints into 

account, one from each of the chromosomes. Between these two selected 

nodes, select node 'j' such that the cost to go to node 'j' from node 'i' is 

minimum. If in anyone of the parent chromosomes, no any 'legitimate' 

node is present after node 'i', then select the fITst 'legitimate' node (i.e., 

node 'j ') of the other parent chromosome, taking the constraints into 

account. Also, if node 'i' is the last allele (or there is no any 'legitimate' 

node after node 'i' which does not violate the constraints) of both the 

chromosomes and there are some nodes which are still to be visited, then 

select the node amongst the 'legitimate' nodes which does not violate the 

constraints and which has least cost from node 'i'. The tie is broken 

randomly. That is go to node 'j' next and then rename the node 'j' as node 
, ., 
1 . 

Step 3: - Repeat Step 2 until all nodes have been visited. 

The following example illustrates this method. 

For illustration, we shall use the same problem as given earlier in section 

120 



7.2.1. Suppose a pair of selected chromosomes be Al and A2, with values 343 and 

226 respectively. 

AI: 1 

A2: 1 

3 

4 

6 

6 

5 

5 

4 

3 

2 

7 

7 

2 

Select node 1, as the 1st allele and the 'legitimate' nodes after node 1 in Al 

and A2 are 3 and 4 respectively with c13=99 and C14=9. Since C14 < C13, accept node 

4. So, the partially constructed chromosome will be (1,4). 

The 'legitimate' nodes after node 4, in Al and A2 are 2 and 6 respectively. 

But node 2 leads to a violation of a precedence constraint: node 5 < node 2. So, we 

consider the next 'legitimate' node in AI, i.e., node 7, with C47=49 and C46=53. 

Since C47 < C46, accept node 7. So, the partially constructed chromosome will be 

(1,4,7). 

Since the next position is fixed, accept the corresponding node, i.e., node 5, 

which violates the constraint: node 6 < node 5 and there is no any option of leaving 

node 5. So, we reject the node 5 at this stage and go back to the previous node in 

the partially constructed chromosome and replace that by node 6 and then visit 

node 5. So, the partially constructed chromosome will be (1,4,6,5). 

The 'legitimate' nodes after node 5, in Al and A2 are 2 and 3 respectively 

with C52=63 and C53=33. Since C53 < C52, accept node 3. So, the partially constructed 

chromosome will be (1,4,6,5,3). 

The 'legitimate' nodes after node 3 in Al and in A2 are 2 and 7 respectively 

with c32=5 and C37=28. Since C32 < C37, accept node 2. So, the partially constructed 

chromosome will be (1,4,6,5,3,2). 

The 'legitimate' node after node 2, in Al is 7, but in A2 is not available. So, 

accept the node 7, and thus, the full chromosome will be (1,4,6,5,3,2,7) with value 

199. 

121 



Seed 

930 
160 
681 
418 
522 
667 
264 
826 
15 
85 
855 
334 
597 
493 
348 
19 

802 
795 
102 
28 

Mean 
S.D. 

7.5 RELATIVE EFFICIENCY OF DIFFERENT APPROACHES 

Relative efficiency analysis was carried out for four sets of randomly 

generated problems of sizes 30, 34, 36 and 50. Each set contains 20 randomly 

generated problems. For each of the problems generated, the exact optimal solution 

obtained by PLS, and the best solution obtained by QE and SCS are tabulated. Also 

are tabulated the times taken for obtaining the same. In case of HGA, the best

found solution; the solution-ratio of it to the optimal solution obtained by PLS 

along with the average solution-ratio, worst solution-ratio and standard deviation of 

solution ratios of 50 runs are reported. These are reported in Table-7.8(a, b, c & d). 

TABLE-7.8: - Solution values and time taken (in Seconds) by different 
algorithms, for twenty randomly generated problems of sizes 30, 34, 36 and 50. 

(a) N=30, No. of Constraints (in each case) =6 and Ps=200. 

PLS QE SCS HGA 

Sol Time Sol Time SR Sol Time SR Best Best Avg. Worst S.D. Avg. 
Sol. SR SR SR SR .Time 

289 4.67 312 3.57 1.08 393 5.33 1.36 431 1.18 1.36 1.54 0.12 4.38 
281 2.41 281 0.66 1.00 386 5.60 1.37 323 1.15 1.37 1.55 0.09 4.16 
324 21.21 350 16.58 1.08 387 5.38 1.19 363 1.12 1.29 1.66 0.15 4.18 
289 1.20 293 0.55 1.01 385 5.66 1.33 318 1.10 1.33 1.54 0.13 4.38 
291 4.84 301 2.36 1.03 405 6.04 1.39 314 1.08 1.29 1.55 0.12 4.34 
349 20.83 363 6.06 1.04 448 5.95 1.28 394 1.13 1.28 1.58 0.11 4.13 
362 42.50 376 16.23 1.04 433 5.62 1.20 391 1.08 1.20 1.40 0.10 4.32 
286 10.66 296 3.21 1.03 386 5.31 1.35 320 1.12 1.35 1.53 0.11 4.31 
289 25.43 299 5.56 1.03 348 5.45 1.20 306 1.06 1.21 1.49 0.11 4.39 
334 44.40 342 11.32 1.02 407 6.06 1.22 384 1.15 1.22 1.54 0.10 4.18 
309 38.23 309 12.10 1.00 400 5.64 1.29 331 1.07 1.29 1.44 0.09 4.21 
299 19.64 307 4.56 1.03 363 5.95 1.21 308 1.03 1.17 1.38 0.11 4.41 
294 3.63 294 0.78 1.00 414 6.32 1.41 315 1.07 1.31 1.53 0.10 4.01 
301 39.6 316 12.16 1.05 382 5.62 1.27 346 1.15 1.25 1.63 0.13 4.09 
360 24.67 366 8.98 1.02 470 5.89 1.31 400 1.11 1.29 1.63 0.07 4.32 
307 38.77 316 13.37 1.03 446 5.75 1.45 347 1.13 1.36 1.54 0.12 4.37 
321 138.87 338 65.67 1.05 410 5.86 1.28 372 1.16 1.29 1.49 0.09 4.16 
275 15.08 279 5.30 1.02 410 5.09 1.49 316 1.15 1.35 1.59 0.18 4.23 
293 3.00 293 0.77 1.00 330 5.01 1.13 319 1.09 1.24 1.42 0.37 4.05 
344 35.69 375 32.45 1.09 421 5.06 1.22 368 1.07 1.20 1.38 0.08 4.33 

26.77 11.11 1.03 5.63 1.30 1.11 1.28 1.52 4.25 
29.56 14.60 0.03 0.35 0.09 0.04 0.06 0.08 0.12 

122 

S.D. 
Time 
0.03 
0.02 
0.02 
0.02 
0.02 
0.04 
0.02 
0.03 
0.03 
0.02 
0.02 
0.02 
1.24 
1.19 
0.03 
0.03 
0.02 
0.04 
1.37 
0.03 



(bJ N=34, No. of Constraints in each case) =6 and Ps=400. 
PLS QE SCS HGA 

Seed 
Sol Time Sol Time SR Sol Time SR Best Best Avg. Worst S.D. Avg. S.D. 

Sol. SR SR SR SR Time Time 
930 268 13.73 268 3.96 1.00 428 10.17 1.60 316 1.18 1.46 1.64 0.12 11.08 0.03 
160 220 17.14 234 9.44 1.06 355 9.77 1.61 257 1.17 1.41 1.56 0.08 10.91 0.03 
681 320 21.42 337 8.19 1.05 368 8.79 1.15 352 1.10 1.38 1.59 0.14 11.19 0.04 
418 268 25.71 268 7.25 1.00 432 9.28 1.61 316 1.18 1.35 1.51 0.17 11.50 0.04 
522 273 17.73 276 5.99 1.01 345 8.57 1.26 300 1.10 1.26 1.52 0.13 11.34 0.02 
667 355 66.63 371 20.64 1.05 479 8.95 1.35 281 1.10 1.24 1.49 0.17 11.01 0.03 
264 319 22.81 322 4.82 1.01 421 8.62 1.32 367 1.15 1.31 1.60 0.11 11.00 0.02 
826 228 43.21 249 17.07 1.09 384 8.31 1.68 271 1.19 1.45 1.69 0.10 10.14 1.23 
15 292 56.45 311 18.53 1.07 438 8.99 1.50 345 1.18 1.48 1.71 0.11 11.56 0.06 
85 286 67.02 307 13.55 1.07 405 9.01 1.42 323 1.13 1.32 1.61 0.13 11.54 0.02 
855 267 24.36 267 6.94 1.00 393 9.21 1.47 320 1.20 1.43 1.67 0.19 11.17 0.02 
334 272 18.87 272 3.32 1.00 395 9.06 1.45 313 1.15 1.29 1.49 0.11 10.29 1.02 
597 310 24.13 313 4.98 1.01 444 8.66 1.43 360 1.16 1.27 1.49 0.10 11.01 0.04 
493 255 42.63 272 20.82 1.07 437 8.99 1.71 291 1.14 1.31 1.56 0.13 11.09 0.09 
348 288 34.80 288 5.86 1.00 454 9.01 1.58 340 1.18 1.29 1.61 0.17 11.34 0.03 
19 278 33.53 300 20.52 1.08 359 8.98 1.29 311 1.12 1.28 1.56 0.08 11.08 0.03 

802 317 76.82 318 13.23 1.00 452 9.13 1.43 377 1.19 1.39 1.61 0.12 11.12 0.04 
795 301 46.98 314 21.91 1.04 453 9.39 1.50 361 1.20 1.42 1.59 0.13 11.01 0.02 
102 314 58.75 324 20.69 1.03 429 8.75 1.37 355 1.13 1.39 1.67 0.09 11.59 0.09 
28 247 23.60 249 5.77 1.01 352 8.65 1.43 289 1.17 1.36 1.69 0.19 11.38 0.16 

Mean 36.82 11.67 1.03 9.01 1.46 1.16 1.35 1.59 11.12 
S.D. 18.86 6.68 0.03 0.41 0.14 0.03 0.07 0.07 0.036 

Jcl N=36, No. of Constraints in each case} =7 and Ps=450. 
PLS QE SCS HGA 

Seed 
Sol Time Sol Time SR Sol Time SR Best Best Avg. Worst S.D. Avg. S.D. 

Sol. SR SR SR SR Time Time 
930 348 741.17 364 138.41 1.05 538 16.15 1.55 442 1.27 1.57 1.79 0.10 16.03 0.03 
160 306 87.28 315 22.30 1.03 492 15.77 1.61 386 1.26 1.53 1.72 0.12 15.87 0.05 
681 329 412.21 356 250.68 1.08 571 15.43 1.74 411 1.25 1.54 1.76 0.10 16.07 0.04 
418 307 223.22 319 70.58 1.04 498 14.12 1.62 375 1.22 1.50 1.76 0.11 15.90 0.06 
522 306 143.52 306 60.86 1.00 506 14.66 1.65 361 1.18 1.36 1.62 0.09 16.44 0.02 
667 394 1353.6 405 273.23 1.03 569 16.01 1.44 437 1.11 1.25 1.68 0.07 16.33 0.05 
264 339 355.61 354 106.51 1.04 522 16.06 1.54 383 1.13 1.39 1.56 0.08 15.77 0.08 
826 310 180.51 311 64.00 1.00 440 15.92 1.42 388 1.25 1.53 1.73 0.08 16.23 0.03 
15 318 39.66 329 13.33 1.03 536 15.32 1.69 391 1.23 1.55 1.71 0.12 15.89 0.06 
85 308 126.30 308 48.25 1.00 465 15.89 1.51 354 1.15 1.38 1.52 0.08 16.14 0.02 

855 290 121.25 316 56.63 1.09 532 14.12 1.83 354 1.22 1.39 1.59 0.14 16.03 0.02 
334 356 334.80 356 80.21 1.00 549 14.97 1.54 409 1.15 1.42 1.61 0.11 15.87 0.05 
597 357 295.20 359 78.03 1.01 560 14.65 1.57 453 1.27 1.47 1.61 0.11 16.44 0.04 
493 289 75.65 294 20.65 1.02 445 16.11 1.54 347 1.20 1.45 1.78 0.18 15.97 0.07 
348 379 254.45 393 81.36 1.04 550 15.97 1.45 447 1.18 1.46 1.73 0.08 16.34 0.09 
19 376 2651.4 399 653.84 1.06 452 14.02 1.20 421 1.12 1.25 1.50 0.08 16.39 0.03 

802 297 151.72 319 53.98 1.07 471 15.52 1.59 371 1.25 1.41 1.65 0.11 16.06 0.04 
795 320 65.81 320 21.76 1.00 458 14.98 1.43 394 1.23 1.46 1.72 0.12 15.97 0.12 
102 318 493.60 342 151.65 1.08 469 14.92 1.47 369 1.16 1.32 1.69 0.16 16.12 0.06 
28 337 1866.6 339 602.78 1.01 485 15.52 1.44 401 1.19 1.39 1.71 0.09 16.25 0.04 

Mean 498.68 142.45 1.03 15.31 1.54 1.20 1.43 1.67 16.11 
S.D. 667.16 175.78 0.03 0.69 0.13 0.05 0.09 0.08 0.20 



(d) N=50, No. of Constraints (in each case) =10 and P 5=400. 

PLS SCS RGA 
Seed Sol. Time Sol. Time SR Best Best Avg. Worst S.D. Avg. S.D. 

Sol. SR SR SR SR Time Time 

930 343 4114.60 616 66.09 1.80 459 1.34 1.61 1.91 0.08 25.09 0.03 
160 378* 5400.00 526 63.95 1.39 445 1.18 1.51 1.80 0.11 23.06 0.06 
681 550* 5400.00 617 63.06 l.12 545 1.00 1.29 l.50 0.13 23.25 0.08 
418 410* 5400.00 623 63.56 1.52 557 1.36 1.64 1.83 0.09 24.01 0.11 
522 375* 5400.00 600 59.16 1.60 461 l.23 l.54 1.75 0.06 24.32 0.16 
667 504* 5400.00 725 71.06 l.44 634 1.26 1.41 1.89 0.15 22.98 0.12 
264 309* 5400.00 596 68.06 l.93 402 l.30 1.61 1.93 0.08 24.12 0.09 
826 422* 5400.00 695 64.98 1.65 536 1.27 1.63 1.90 0.011 24.03 0.05 
15 422 4263.00 653 68.56 1.55 519 1.23 1.50 1.75 0.08 23.56 0.03 
85 353 2405.00 558 65.04 1.58 417 1.18 1.46 1.69 0.07 22.76 0.04 

855 369* 5400.00 551 63.79 1.49 494 1.34 1.61 1.95 0.l4 23.06 0.06 
334 452* 5400.00 668 68.21 1.48 589 1.30 1.54 1.79 0.07 23.97 0.26 
597 621* 5400.00 658 69.65 1.05 621 1.00 1.18 1.29 0.15 22.07 1.26 
493 493* 5400.00 653 71.03 1.32 534 1.08 1.27 1.45 0.16 24.23 0.36 
348 442* 5400.00 673 75.32 1.52 526 1.19 1.49 1.76 0.09 23.75 0.52 
19 422* 5400.00 669 75.96 1.59 516 1.22 1.51 1.78 0.06 23.65 0.03 

802 502* 5400.00 508 76.05 1.01 534 1.06 1.29 1.57 0.12 23.16 0.04 
795 402* 5400.00 586 66.50 1.46 554 1.38 1.64 1.97 0.13 23.95 0.11 
102 460* 5400.00 627 66.50 1.36 460 1.00 1.19 1.41 0.16 23.07 0.13 
28 493 3204.98 533 63.16 1.08 517 1.05 1.26 1.43 0.11 23.06 0.04 

Mean 5019.38 67.48 1.45 1.20 1.46 1.72 23.56 
S.D. 831.74 4.49 0.23 0.12 0.15 0.20 0.67 

* The solution, which is obtained in 5400 seconds, is reported here. 

124 



CHAPTER VIII 

THE TRAVELLING SALESMAN PROBLEM 
WITH BACKHAULS 

8.1 INTRODUCTION 

ill this chapter we will discuss the Travelling Salesman Problem with 

Backhauls (TSPB, for short), in which the nodes of the network (except the starting 

node) are divided into linehaul and backhaul nodes. The problem is to fmd a least 

cost Hamiltonian tour such that all the linehaul nodes are visited contiguously after 

the starting node, followed by all the backhaul nodes. 

Let us fonnally defme the problem. 

A network with n nodes, with node 1 as 'headquarters' and a travel cost (or 

distance, or travel time etc.) matrix C=[ cij] of order n associated with ordered node 

pairs (i,j) is given. Also is given a set of linehaul nodes (L), and a set of backhaul 

nodes (B) such that ILI=I, IBI=m and n=l+m+ 1. The problem is to obtain the tours 

{l=ao, 0.1, a.2, .... ,a.n-l. a.n=l} == {l~a.l~a.2~ ... ~a.n-l ~1} 

representing irreducible pennutations interpreted as simple cycles in which for all 

1=1,2, ..... ,/ , a.i ELand a.j E B, for allj=l+l, /+2, ..... ,n-l; for which the total travel 

cost 

n-1 

C (l=ao, 0.1.0.2, ..... , a.n-1. a.n=l)=L: c (a.i,a.i+l) 
;=0 

ISmmlmum. 

The TSPB can be viewed as a special case of the Clustered Travelling 
f\ 

Salesman Problem (CTSP) studied by Chisman (1975), Lokin (1978), Jongens and 

Volgenant (1985), and Kalantari et al. (1984). ill the CTSP, the set of nodes is 

125 



partitioned into k clustered B1, B2, .•....... , Bk, and it is required that the nodes ofBi 

be visited contiguously. 

As shown by Chisman (1975), it can be transformed into the usual TSP by 

adding /. subtracting an arbitrarily large constant M to/ from the edges linking any 

two of the sets {l}, L, B. Chisman proposed to solve the problem by branch and 

bound approach of Little et al. (1963). But Lokin (1978) reported that Little's 

algorithm in combination with Chisman's transformation is very ineffective. 

Therefore, Lokin modified this algorithm by introducing a new bound technique 

and got better results. However, precedence relations on the clusters are also 

imposed by Lokin. But, Jongens and Volgenant (1985) adapted an algorithm for the 

TSP based on Lagrangean approach. In the Lagrangean approach a new multiplier 

is introduced to improve the lower bounds. Furthermore, a heuristic to fmd upper 

bounds is also described. This algorithm is not based on Chiman's transformation. 

Also according to Kalantari et al. (1985), better exact algorithms can be derived by 

suitably modifying existing TSP algorithms to account for clusters. 

Several heuristics having good empirical behaviour, but no bounded worst

case ratio, are described by Gendreau et al. (1996) for the TSPB. These methods 

are based on the GENIUS algorithm developed for the usual TSP by Gendreau et 

al. (1992) and then compared the solutions with a lower bound based on I-tree 

relaxation. Again, Gendreau et al. (1997) has described a heuristic having worst-

case performance ratio of ~ for the TSPB. But they did not report the results 
2 

explicitly. As reported by them, on randomly generated problems of sizes 100, 200 

and 300, their procedure produce an average deviation of 30% over a shortest 

spanning tree based lower bound. 

The TSPB fmds application in a variety of situations, naturally in a number 

of distribution settings. For example, in a warehouse system customer orders for 

goods will arrive, which will contain several commodities, each of which will call 

for different stock numbers. A motorized truck will be dispatched through the 

126 



warehouse to pick up the commodities. the restriction is that a customer order must 

be completely satisfied before the next customer order picking is started. The order 

of picking commodities within each customer order and the sequencing in the 

customer orders are to be such, that the total order picking time is a minimum. The 

location of a commodity can be seen as a city and customer order as a linehaul or 

backhaul city (cf, Chisman 1975, Lokin 1978). 

8.2 LEXISEARCH APPROACH (PATH APPROACH) AND 
ILLUSTRATION 

The algorithm is the modification of some steps in the lexisearch algorithm 

for the usual TSP, described in section 3.2. At first set the cost of some appropriate 

edges to as large as possible due to the linehaul-backhaul precedence relation. That 

is, set the cost of (l,j), for j=I+2, 1+3, ....... , n; (i,1), for i=2, 3, 1+1; and (i,j), for 

i=I+2, i+3, .... ,n, j=2, 3, .. ,1+1 to a large number. Furthermore, we examine at each 

stage of concatenation of the present leader with the node, whether it violates any 

of the linehaul-backhaul precedence relation. 

N ow, for the lexisearch algorithm of the TSPB, following steps are replaced 

in the lexisearch algorithm for usual TSP, described in section 3.3. 

Step 0:- Remove the 'bias' of matrix C. Construct the alphabet table in such a way 

that in 2nd
, 3rd

, •..... , (l+ l)th rows all possible linehaul nodes come 

contiguously before all backhaul nodes, and in (l+2)th, (l+3yh, ...... , nth rows, 

the node' l' come after all possible backhaul nodes. 

Step 1: - Go to the rth element of the row (say, node a) and compute the cost of 

travelling. If the travel cost is greater than or equal to the 'current trial 

solution value' or if any linehaul-backhaul precedence relation is violated, 

go to step 8, else, go to step 2. 

127 



Step 7: - If length of the incomplete word is less than 1+ 1 and r < I , go to step 1, 

else, go to step 9. Also, if length of the incomplete word is greater than 1+ 1 

and r <m, go to step 1, else, go to step 9. 

Step 8: - Go to sub-block, i.e., go to nth row. If length of incomplete word is 1+ 1, 

then set r=l, else, r=1; go to step 1 in either case. 

8.2.1 ILLUSTRATION 

Working of this algorithm is explained through the same problem as given in 

Table-3.l and L=={2,3,4}, B=={5,6,7}. So, set ClS=C16=C17=C21=C31=C41=CS2 = CS3 

=CS4=C62 =C63=C64==C72=C73=C74=999. Table-8.l and Table-8.2 give the modified 

cost matrix with bias and reduced cost matrix respectively. The Table-8.3 give the 

'alphabet table', while Table-S.4 indicates the logic-flow of the algorithm at 

various stages, which sequentially records the intermediate results, with decision 

taken (i.e., remarks) at these steps in every colUIlUl. 

TABLE-S.l: - The Modified Cost Matrix with bias. 

A Row 
.", 1 2 3 4 5 6 7 Min 
1 999 75 99 9 999 999 999 9 
2 999 ·999 86 46 88 29 20 20 
3 999 5 999 16 28 35 28 5 
4 999 45 11 999 59 53 49 11 
5 86 999 999 999 999 76 72 72 
6 36 999 999 999 21 999 52 21 
7 58 999 999 999 52 60 999 52 

Col. 6 0 0 0 0 4 0 
Min 

Total Bias == row minima + column minima == 190 + 10 = 200. 

128 



TABLE-8.2: - The Reduced Cost Matrix 

A 1 2 3 4 5 6 7 
1 984 66 90 0 990 986 990 
2 973 979 66 26 68 5 0 
3 988 0 994 11 23 26 23 
4 982 34 0 988 48 38 38 
5 8 927 927 927 927 0 0 
6 9 978 978 978 0 974 31 
7 0 947 947 947 0 4 947 

TABLE-8.3: - The Alphabet Table 

N-V N-V N-V N-V N-V N-V N-V 
1 4-0 2-66 3-90 1-984 6-986 5-990 7-990 
2 4-26 3-66 7-0 6-5 5-68 1-973 2-979 
3 2-0 4-11 5-23 7-23 6-26 1-988 3-994 
4 3-0 2-34 6-38 7-38 5-48 1-982 4-988 
5 6-0 7-0 1-8 2-927 3-927 4-927 5-927 
6 5-0 7-31 1-9 6-974 2-978 3-978 4-974 
7 5-0 6-4 1-0 2-947 3-947 4-947 7-947 

TABLE-8.4: SEARCH TABLE 

1~1 al~al al~aJ aJ~a4 a4~a5 a5~a6 a6~1 

1~4(o) 4~3(o) 3~2(o) 2~7(o) 7~5(o) 5~6(o) 6~1(9) 
(O)+o,GS (O)+o,GS (O)+o,GS (O)+o,GS (O)+9,GS (O)+9,GS TRVL=9 

JO 
7~6(4) 
(4)+8,JO 

2~6(5) 6~5(o) 5~7(o) 7~1(o) 
(5)+O,GS (5)+O,GS (5)+O,GS TRVL=5 

JO 
6~7(31) 

JO 
2~5(68) 

JO 
4~2(34) 

JO 
1~2(66) 
STOP 

129 



So, the optimum tour is {l--t4--t3--t2--t6--t5--t7--tl}, and optimal solution 

= bias + trial value = 200 + 5 = 205. 

Here, the Lexisearch approach ill the context of path representation IS 

considered, the other approach is not easy. To examine the effect of the number of 

backhaul nodes we have considered different number of backhaul nodes for a same 

problem. Since the number of nodes in a problem is fixed, so as the number of 

backhaul nodes increases the number of linehaul nodes decreases. Table-8.S shows 

a comparative study of the path approach considering different number of backhaul 

nodes. As the number of backhaul nodes increases the only additional number of 

the nodes (from old set of linehaul nodes) are added to the old existing set of the 

backhaul nodes. 

Table-8.S: - A comparative study ofPLS considering various number of BackhauI 
nodes for the TSPB. 

IBI=l!%J IBI=l4%J IBI=l5%J Usual TSP 
N Seed 

Sol. Time Sol. Time Sol. Time Sol. Time 
930 208 0.11 293 9.51 286 2.64 156 2.36 
160 242 0.28 278 1.53 265 1.21 184 2.85 
681 319 0.22 268 0.22 289 1.42 166 2.64 

30 418 326 0.66 328 0.61 221 0.99 187 33.61 
522 345 1.09 344 1.37 234 2.31 199 3.63 

Mean 0.47 2.65 1.71 9.02 
S.D. 0.36 3.46 0.64 12.30 
930 234 2.64 251 1.65 316 38.99 168 30.65 
160 310 14.12 308 18.01 357 158.90 186 1233.96 
681 320 31.69 316 4.01 216 11.70 168 4.34 
418 270 5.93 297 7.58 250 19.61 156 97.65 

36 522 298 5.77 296 60.80 301 645.54 205 65.64 
Mean 12.03 18.41 174.95 286.45 
S.D. 10.54 21.92 241.24 474.81 
930 298 154.56 331 860.68 263 440.83 188 495.93 
160 293 441.06 263 21.70 224 99.97 150 39.49 
681 338 189.76 319 28.73 276 8.12 158 121.16 
418 259 9.78 306 5.49 267 53.12 157 161.76 

39 522 352 43.06 315 98.48 253 162.25 185 20.10 
Mean 167.64 203.02 152.86 167.69 
S.D. 152.22 330.37 152.78 172.14 

130 



As the number of the backhaul nodes increases one can't say, from Table-

8.5, that the solution value as well as the time taken for solving the same will also 

increase or decrease. Of course, if one compares with the same problem with out 

the linehaul-backhaul precedence constraints (i.e., same usual TSP), then one will 

notice that the solution values will be more than that of the solution value to the 

usual TSP, which is expected also. It is seen for most of the problems that the time 

taken for a TSPB is less than that of the same usual TSP. Of course, there are some 

problems for which the time taken for obtaining the solution values are more than 

that of the same usual TSP. On the average one should expect to fmd an exact 

optimal solution for TSPB faster than for a 'usual' TSP. The number of admissible 

solutions decreases from (n-I)! for the TSP to (l!m!) for the TSPB, where I=ILI and 

m=IBI. The computational results support the expectation for most of the problems. 

For rest of the problems, while m > > I, the factors, e.g. the structure of the cost 

matrix, may have an impact on the computational effect 

8.3 SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 

This algorithm is basically same as the algorithm for the usual TSP 

described in section 3.4. The only difference here is that the nodes are partitioned 

mainly into two subsets and fITst we have to visit probabilistically the nodes of the 

fITst subset and then visit the nodes of other subset. For that, we set the cost of 

some appropriate edges to a large number due to linehaul-backhaul precedence 

constraints. Now the 'legitimate' nodes in each row are only the nodes which do 

not violate any linehaul-backhaul relations and which are not present in the 

incomplete tour and this number is assumed to be as k of equation 3.1. Then we 

visit probabilistically as described in section 3.4 for the usual TSP. 

8.4 HYBRID GENETIC ALGORITHM FOR THE TSPB 

F or the TSPB, the chromosome is a combination of two ordered substrings

one is the irreducible permutations of nodes 1, 2, ...... , 1+1 and another is the 

131 



irreducible pennutations of the nodes 1+2,1+3, ...... , n. So, for a 7-city problem with 

L={2,3,4} and B={ 5,6, 7}, one of the chromosomes may be (1,2,4,3,6,7,5) 

representing the salesman's path {I~2~4~3~6~7~5~I}. Each 

'chromosome' so generated being a salesman's tour has a corresponding cost, 

which is evaluated, and the best among them is treated as 'current trial solution 

value'. The crossover, mutation and the sequential constructive operators for the 

TSP-FPPC are as follows. 

(i) Crossover: - CI-Crossover operator (C.f. Reeves 1993) is used for our 

HGA. The crossover operator is fIrst applied to each of the substrings, then the 

resultant substrings are combined to have full offspring. For two parents PI & P2 

with L={2,3,4}, B={5,6,7}, 

PI: 1 3 I 2 4 6 5 7 

P2: I 2 I 4 3 7 6 5 

at two crossover sites 2 and 5 respectively for the two substrings, the offspring 01 

and 02 will be 

01: I 3 2 4 6 7 5 

02: 1 2 3 4 7 6 5 

(ii) Mutation:- The mutation operator for our problem is as follows. Select 

randomly a pair of genes (except node 1) randomly within a sub string and 

interchange the alleles with the probability of mutation (Pm). Repeat the process for 

the fIrst sub string 112 times and for the other ml2 times, where I and m and the 

numbers of line haul and backhaul nodes respectively. 

(iv) Sequential Constructive operator:- This sequential constructive 

search approach is same as that of the usual salesman case described in section 4.5. 

Only the difference is that this approach is applied fIrst for flIst sub string starting 

from node '1' and for the second sub string starting from the last node of the flIst 

new sub string, and then the resultant substrings are combined in order to get 

completely new chromosome. 

132 



IBI 

15 

20 

25 

8.5 RELATIVE EFFICIENCY OF DIFFERENT APPROACHES 

Relative efficiency analysis was carried out for four sets of randomly 

generated problems of sizes 30, 36, 39 and 50 having three different number of 

backhaul nodes each. Each set contains 5 randomly generated problems. For each 

of the problems generated, the exact optimal solution obtained by PLS, and the best 

solution obtained by QE (which is not reported for the problem of size 50) and SCS 

are tabulated. Also are tabulated the times taken for obtaining the same. In case of 

HGA, the best-found solution; the solution-ratio of it to the optimal solution 

obtained by PLS along with the average solution-ratio and standard deviation of 

solution-ratios of 50 runs are reported. These are reported in Table-8(a, b, c, &d). 

TABLE-8.6: Solution values and time taken (in Seconds) by different algorithms, for 
five randomly generated problems of sizes 30, 36 and 39. 

(a) N=34 and Ps=75. 
PLS QE SCS HGA 

Seed 
Sol Time· Sol Time SR Sol Time SR Best Best Avg. S.D. Avg. 

Sol. SR SR SR Time 
930 208 0.11 208 0.05 1.00 338 6.54 1.62 208 1.00 1.12 0.05 1.11 
160 242 0.28 242 0.11 1.00 431 7.03 1.78 242 1.00 1.10 0.08 1.14 
681 319 0.22 325 0.11 1.02 438 7.31 1.37 319 1.00 1.08 0.01 1.03 
418 326 0.66 337 0.27 1.03 502 6.97 1.54 334 1.03 1.10 0.09 1.18 
522 345 1.09 356 0.66 1.03 508 7.69 1.47 345 1.00 1.08 0.04 1.12 

Mean 0.47 0.23 1.02 7.11 1.56 1.01 1.10 1.12 
S.D. 0.36 0.20 0.02 0.38 0.14 0.01 0.01 0.05 
930 293 9.51 293 5.16 1.00 419 6.65 1.43 322 1.10 1.17 0.10 1.18 
160 278 1.53 290 0.61 1.04 412 5.93 1.48 279 1.00 1.14 0.09 1.18 
681 268 0.22 276 0.11 1.03 346 6.65 1.29 268 1.00 1.08 0.02 1.15 
418 328 0.61 330 0.11 1.01 424 5.87 1.29 328 1.00 1.08 0.03 1.14 
522 344 1.37 348 0.11 1.01 467 7.42 1.36 344 1.00 1.06 0.05 1.16 

Mean 2.65 1.22 1.02 6.50 1.37 1.02 1.11 1.16 
S.D. 3.46 1.98 0.02 0.57 0.08 0.04 0.04 0.02 
930 286 2.64 286 0.38 0 400 7.96 1.40 286 1.00 1.12 0.04 1.18 
160 265 1.21 270 0.61 l.9 389 7.25 1.47 278 1.05 1.13 0.10 1.21 
681 289 1.42 294 0.22 1.7 390 7.53 1.35 289 1.00 1.13 0.07 1.18 
418 221 0.99 226 0.60 2.3 300 7.25 1.36 230 1.04 1.18 0.03 1.20 
522 234 2.31 240 1.21 2.6 312 8.18 1.33 239 1.02 1.13 0.06 1.20 

Mean 1.71 0.60 1.7 7.63 1.38 1.02 1.14 1.19 
S.D. 0.64 0.34 0.01 0.38 0.05 0.02 0.02 0.01 

133 

S.D. 
Time 
0.05 
0.09 
0.11 
0.12 
0.05 

0.11 
0.10 
0.06 
0.08 
0.06 

0.02 
0.04 
0.08 
0.14 
0.07 



(b) N=36 and Ps=125. 
PLS QE SCS HGA 

/B/ Seed 
Sol Time Sol Time SR Sol Time SR Best Best Avg. S.D. Avg. S.D. 

Sol. SR SR SR Time Time 
930 234 2.64 234 0.93 1.00 443 15.93 1.89 234 1.00 1.14 0.08 2.81 0.10 
160 310 14.12 310 7.47 1.01 449 16.70 1.61 310 1.00 1.08 0.07 2.82 0.10 
681 320 31.69 332 16.92 1.04 463 17.63 1.45 320 1.00 1.10 0.06 2.82 0.13 

18 418 270 5.93 272 2.19 1.01 47l 16.70 1.74 270 1.00 1.09 0.09 2.81 0.16 
522 298 5.77 309 4.62 1.04 436 16.53 1.46 300 1.01 1.06 0.03 2.86 0.25 

Mean 12.03 6.43 1.02 16.70 1.63 1.00 1.09 2.82 
S.D. 10.54 5.70 0.02 0.55 0.17 0.00 0.03 0.02 
930 251 1.65 251 0.38 1.00 404 13.40 1.61 251 1.00 1.21 0.10 2.81 0.11 
160 308 18.01 313 7.09 1.02 422 14.12 1.37 317 1.03 1.17 0.09 2.95 0.10 
681 316 4.01 317 1.76 1.00 506 17.52 1.60 318 1.01 1.08 0.02 2.87 0.16 

24 418 297 7.58 311 2.47 1.05 506 15.38 1.70 298 1.00 1.15 0.03 2.88 0.10 
522 296 60.80 298 15.54 1.01 469 14.06 1.58 301 1.02 1.11 0.05 2.85 0.09 

Mean 18.41 5.45 1.02 14.90 1.57 1.01 1.14 2.87 
S.D. 21.92 5.53 0.02 1.46 0.11 0.01 0.05 0.05 
930 316 38.99 319 5.66 1.01 443 18.84 1.40 324 1.03 1.10 0.04 2.99 0.07 
160 357 158.90 368 69.09 1.03 518 18.12 1.45 367 1.03 1.10 0.10 2.95 0.06 
681 216 11.70 224 4.01 l.04 336 18.12 l.56 224 l.04 l.22 0.07 2.96 0.18 

30 418 250 19.61 255 9.23 1.03 368 15.33 1.47 255 1.02 1.16 0.07 3.03 0.14 
522 301 645.54 305 252.82 1.01 422 20.04 1.40 316 1.05 1.15 0.09 3.28 0.09 

Mean 174.95 68.16 1.02 18.09 1.46 1.03 1.15 3.04 
S.D. 241.24 95.49 0.01 1.55 0.06 0.01 0.04 0.12 

(c) N=39 and Ps=250. 

PLS QE SCS HGA 
/B/ Seed 

Sol Time Sol Time SR Sol Time SR Best Best Avg. S.D. Avg. S.D. 
Sol. SR SR SR Time Time 

930 298 154.56 305 47.73 1.02 497 24.55 1.67 298 1.00 1.08 0.04 6.96 0.17 
160 293 441.06 295 154.61 1.01 565 25.76 1.93 297 1.01 1.08 0.03 7.06 0.13 
681 338 189.76 348 85.30 1.03 573 24.55 1.70 339 1.00 1.06 0.06 6.81 0.10 

19 418 259 9.78 268 5.55 1.04 491 23.01 1.90 259 1.00 1.06 0.07 6.56 0.26 
522 352 43.06 356 16.81 1.01 623 26.04 1.77 357 1.01 1.05 0.03 6.85 0.15 

Mean 167.64 62.00 1.01 24.78 1.79 1.00 1.07 6.85 
S.D. 152.22 53.95 0.01 1.08 0.10 0.00 0.01 0.17 
930 331 860.68 333 220.69 1.01 536 22.96 1.62 341 1.03 1.11 0.10 6.83 0.12 
160 263 21.70 27l 4.50 '1.03 463 22.24 1.76 271 1.03 1.13 0.09 6.93 0.16 
681 319 28.73 320 4.73 1.00 506 21.53 1.59 322 1.01 1.09 0.05 7.49 0.09 

26 418 306 5.49 306 1.04 1.00 496 16.69 1.62 327 1.07 1.13 0.10 7.36 0.10 
522 315 98.48 331 29.82 1.05 516 23.68 1.64 326 1.04 1.09 0.09 7.05 0.19 

Mean 203.02 52.17 1.02 21.42 1.65 1.04 1.11 7.13 
S.D. 330.37 84.90 0.02 2.47 0.06 0.02 0.02 0.25 
930 263 440.83 270 128.31 1.03 432 21.97 1.64 270 1.03 1.09 0.05 7.31 0.17 
160 224 99.97 230 27.52 1.03 406 23.18 1.81 231 1.03 1.17 0.10 7.60 0.06 
681 276 8.12 276 1.43 1.00 431 25.37 1.56 283 1.03 1.11 0.09 7.30 0.10 

32 418 267 53.12 272 17.30 1.02 466 . 25.32 1.75 293 1.10 1.21 0.12 7.23 0.14 
522 253 162.25 255 20.27 1.01 387 26.48 1.53 266 1.05 1.13 0.09 7.23 0.19 

Mean 152.86 38.97 1.02 24.46 1.66 1.05 1.14 7.33 
S.D. 152.78 45.48 0.01 1.64 0.11 0.03 0.04 0.14 

134 



(d) N=50 and Ps=400. 

PLS SCS HGA 
IBI Seed Sol Time Sol Time SR Best Best Avg. S.D. Avg. S.D. 

Sol. SR SR SR Time Time 
930 237 168.11 557 78.05 2.35 253 1.07 1.16 0.04 12.72 0.07 
160 250 2692.65 608 79.69 2.43 275 1.10 1.20 0.07 12.14 0.03 
681 375* 3600.00 719 71.03 1.92 377 1.01 1.13 0.06 12.05 0.10 

25 418 284 3570.98 633 75.05 2.23 308 1.08 1.24 0.10 12.62 0.06 
522 338* 3600.00 651 68.17 1.93 345 1.02 1.12 0.13 12.69 0.05 

Mean 2726.35 74.40 2.17 1.06 1.17 12.44 
S.D. 1325.57 4.29 0.21 0.03 0.04 0.29 
930 293 3448.01 619 68.06 2.11 303 1.03 1.21 0.12 12.96 0.02 
160 235 530.70 570 60.78 2.43 255 1.08 1.19 0.23 12.92 0.06 
681 379* 3600.00 615 72.36 1.62 384 1.01 1.08 0.15 13.06 0.09 

33 418 325 429.19 698 78.97 2.15 337 1.04 1.15 0.17 12.98 0.10 
522 419* 3600.00 722 84.38 1.72 419 1.00 1.09 0.10 13.06 0.09 

Mean 2321.58 72.91 2.01 1.03 1.14 13.00 
S.D. 1505.05 8.24 0.30 0.03 0.05 0.06 
930 261 324.51 504 82.17 1.93 277 1.06 1.16 0.12 13.92 0.07 
160 301 3572.97 492 76.98 1.63 322 1.07 1.19 0.17 13.98 0.06 
681 321* 3600.00 552 89.54 1.72 321 1.00 1.15 0.10 13.92 0.10 

41 418 426* 3600.00 634 91.32 1.49 426 1.00 1.09 0.10 14.04 0.04 
522 319* 3600.00 516 84.26 1.62 319 1.00 1.12 0.13 14.03 0.09 

Mean 2939.50 84.85 1.68 1.03 1.14 13.98 
S.D. 1307.54 5.16 0.15 0.03 0.03 0.05 

*Note: The solution, which is obtained in 3600 seconds, is reported here 

135 



CHAPTER IX 

THE MIN-MAX TRAVELLING SALESMAN PROBLEM 

9.1 INTRODUCTION 

In this chapter we will discuss a new variation of the usual TSP, called Min

Max Travelling Salesman Problem (MMTSP, for short), in which the objective is to 

minimize the maximum arc length in the tour. 

Let us formally defme the problem. 

A network with n nodes, with node 1 as 'headquarters' and a travel cost (or 

distance, or travel time etc.) matrix C=[ Cij] of order n associated with ordered node 

pairs (i,j) is given. Let {1=a.o, 0.1, a2, .... ,an-l, a n=1} :: {1~al~a2~"'" ~an_l~1} 

be a tour, representing irreducible permutations interpreted as simple cycles. The 

tour value is now defmed as max. {coo, ai+l : i=O,1,2, ..... ,n-1}. The objective is to 

choose a tour which has minimum tour value. 

The MMTSP is fIrst proposed by Ramesh (1997); a tour may have a total 

length relatively small, but may have one or more of the laps rather very large, 

while other tours, with larger total lengths may have all the laps of the tour small 

values. Hence the MMTSP has been considered, in which we are interested to 

minimize the largest arc length in a tour, instead of minimizing the total tour length. 

For this problem both adjacency and path approaches are possible. A Lexi 

search approach (i.e., path approach) was developed to solve the MMTSP by 

Ramesh (1997). We study his algorithm and compare with our algorithms in the 

following sections. 

9.2 THE ADJACENCY APPROACH AND ILLUSTRAION 

The adjacency approach for the MMTSP is same as the adjacency approach 

for the usual TSP described in section 3.2, with only modifIcation in the objective 

136 



function and in the bound. For this algorithm (ALS) following steps are replaced in 

the algorithm for the usual TSP, described in the section 3.2. Here 'bias' removal of 

the given cost matrix is not justified and hence, should not be carried out. 

Step 0: - Form the 'alphabet table' as follow. Sort in ascending order, this matrix 

row-wise and store the corresponding column indices of each row of the 

matrix. Initialize the 'current trial solution value' to a large number. 

Step 1: - With the partial word of length (i-1), take as leader (for the partial word to 

be filled) the first unchecked or free letter. Compute the bound by taking the 

maximum among the leader value, the costs of the remaining (n-£) 

successive letters after ensuring that the column repetition with each of the 

(1-1) letters of the partial word is avoided and the present word value. 

Step 6: - Current word gives the optimum tour sequence, with 'current trial 

solution value' as the optimum cost, and stop. 

9.2.1 . ILLUSTRATION 

Working of this algorithm is explained through the same example as given 

earlier in Table-3.1. Table-9.1 and Table-9.2 give 'the alphabet table' and the 

'search table' respectively. 

Table-9.1: - Alphabet table 

N-V N-V N-V N-V N-V N-V N-V 
1 7-8 4-9 5-35 6-63 2-75 3-99 1-999 
2 7-20 6-29 4-46 1-51 3-86 5-88 2-999 
3 2-5 4-16 5-28 7-28 6-35 1-100 3-999 
4 3-11 1-20 2-45 7-49 6-53 5-59 4-999 
5 3-33 2-63 4-65 7-72 6-76 1-86 5-999 
6 5-21 4-31 1-36 7-52 2-53 3-89 6-999 
7 2-31 3-43 5-52 1-58 6-60 4-67 7-999 

137 



Table-9.2: - Search Table 

Leaders Bounds Trial Remarks 
L-1 , N-L Value 

1 2 3 4 5 6 7 values 
7-8 0,33 9999 GS 

6-29 8,33 9999 GS 
2-5 29, 33 9999 GS 

3-11 29,65 9999 GS 
4-65 29, 58 9999 GS 

5-21 65, 58 9999 CR 
1-36 65, 52 9999 GS 

5-52 65,0 9999 GS 
TRVL= 65 JB, JO 

7-52 65, 52 65 JO 
7-72 29, 52 65 JO 

1-20 29,43 65 GS 
3-33 29, 52 65 GS 

5-21 33,67 65 CR 
4-31 33, 52 65 GS 

5-52 33,0 65 GS 
TRVL= 52 JB, JO 

1-36 33,52 52 CR 
7-52 33, 52 52 CR, JO 

2-63 29,43 52 JO 
5-59 29,43 52 JO 

4-16 29, 33 52 GS 
3-11 29,63 52 CR 
1-20 29,33 52 GS 

3-33 29,31 52 GS 
5-21 33,31 52 GS 

2-31 33,0 52 GS 
TRVL= 33 JB, JO 

2-53 33, 52 33 JO 
2-63 29, 52 33 JO 

2-45 29,43 33 JO 
5-28 29, 33 33 JB 
7-28 29,33 33 CR 
6-35 29, 33 33 JO 

4-46 8,33 33 JO 
4-9 0,33 33 JB 
5-35 0, 33 33 STOP 

*Note: - The overall bound value is the maximum among the leader value, bound value of (I-I) 
and bound value of (n-1) letters. 

138 



As seen from the above search table, the optimal solution is given by the 

pennutation (
1 2 3 4 5 6 7) 
7641352 

or equivalently the tour IS 

{l~7~2~6~5~3~4~1}, and optimal solution = trial value = 33. 

9.3 LEXISEARCH APPROACH (PATH APPROACH) AND 
ILLUSTRATION 

The Lexisearch approach for the MMTSP is same as the lexisearch approach 

for the usual TSP, described in section 3.3, with only modification in the objective 

function and in the bound (cf, Ramesh 1997). 

Now, for the lexisearch algorithm (PLS) of the MMTSP, following steps are 

replaced in the lexisearch algorithm for usual TSP, described in section 3.3. 

Step 0:- Form the 'alphabet table', based on the 'given cost matrix'. Initialize the 

'current trial solution value' to a large number. Since our starting node is 

'1', we start our computation from 1st row. Put r=1. 

Step 6:-· If the Bound is greater than or equal to the 'current trial solution value', 

drop the city added in step 1 and increment r by 1, and then go to step 7; 

else, go to· step 8. 

Step 10:- Current word gives the optimal tour sequence, with 'current trial solution 

value' as the optimum cost. 

9.3.1 BOUND CALCULATION 

Bound is the maximum value of the costs among the first reachable cities 

(excluding latest city) from each city within the first (/3-1) cities if any; otherwise 

139 



take the cost of travelling the ~th city in that row. The value of ~(~) we have 

considered in this present study as l ~ J . 

9.3.2 ILLUSTRATION 

As illustration, we consider the same problem described in section 9.2. 

Table-9.1 gives the 'alphabet table'. The logic-flow of the algorithm at various 

stages is indicated in Table-9.3, which sequentially records the intermediate 

results, with decision taken (i.e., remarks) at these steps in every column. 

TABLE-9.3: SEARCH TABLE 

l~al al~a2 a2~a3 a3~a4 a4~a5 a5~a6 a6~1 

1~7(8) 7~2(31) 2~6(29) 6~5(21) 5~3(33) 3~4(16) 4~ 1(20) 
33,GS 33,GS 33,GS 33,GS 20,GS 20,GS TRVL=33 

JO 
5~4(65) 

JO 
6~4(31) 
33,JB 
6~3(89) 

JO 
2~4(46) 

JO 
7~3(43) 

JO 
1~4(9) 
33,JB 
1~5(35) 
STOP 

So, the optimum tour is {l~7~2~6~5~3~4~1}, and optimal solution = trial 

value = 33. 

140 



To see which of the algoritlun between PLS and ALS is good for the 

MMTSP, we make a comparison between them. So, a comparative study is carried 

out for three sets problems of sizes 20, 25 and 30, and is shown in Table-9.4. 

Table-9.4: Comparative study of PLS and ALS for the Min-Max TSP. 

N=20 N=25 N=30 
Sol. Time Sol. Time Sol. Time 

Seed PLS ALS PLS ALS PLS ALS 
930 13 0.00 0.00 12 0.05 0.00 12 1.43 1.04 
160 26 6.10 2.58 20 3.57 19.77 14 1.87 0.11 
681 19 0.05 0.00 23 202.90 66.30 14 9.22 3.79 
418 23 0.22 0.00 22 322.90 75.58 19 600 600 
522 19 0.00 0.06 14 0.17 0.05 15 89.80 68.60 

Mean 1.27 0.53 105.92 32.34 140.46 134.71 
S.D. 2.41 1.03 133.68 32.46 232.17 234.09 

It is seen from Table-9.4 that the ALS algorithm is better than the PLS 

algorithm. So, the ALS approach is used for obtaining exact optimal solution and 

then the quasi-exact optimal solution for the MMTSP. 

9.4. SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 

Our Sequential Constructive Sampling (SCS) approach is same as the 

Sequential Constructive Sampling Approach developed in the context of usual TSP, 

described in section 3.4. The only difference is in the objective function value 

calculation and the bound calculation method. We consider the bound as calculated 

in the Lexi search approach, described in section 9.3.1. Of course, we will discuss 

the modified 2-0pt move for the MMTSP. The modified 2-0pt move is as follows. 

As it is already discussed in the 2-0pt Move, for the usual TSP, that given a 

tour 

141 



{1~al~a2~ ... ~aj~aj+l~aj+2~ ... ~aj-l~aj~aj+l~ .... ~an-l~1}, 

a neighboring solution can be easily generated at random by generating randomly 

'i' and 'j'. So, the new tour will be 

{I ~al~a2~ ... ~aj~aj~aj+2~" .~aj-l~aj+l~aj+l~" .. ~an-l~ I}. 

In order to check the preferability of the new tour, just to see whether the costs 

{c(aj, aj) < c(aj, aj+l)}, {c(aj, ai+2) < c(ai+h ai+2)}, {C(Oj-l, <Xi+l) < C(Oj-h OJ)} 

and {c(ai+h aj+l)< c(aj, aj+l)}. 

If the above satisfied, then only we accept the new tour. 

9.5 ff'TTHHD GENETIC ALGORITHM FOR THE MMTSP 

OW" nyorid genetic algorithm (HGA) is same as the HGA developed in the 

context of usual TSP, described in section 4.6. The only difference is in the objective 

fimction value calculation and hence the fitness fimction. 

9.6 RELATIVE EFFICIENCY OF DIFFERENT APPROACHES 

Relative efficiency analysis was carried out for four sets of randomly 

generated problems of sizes 20, 25, 30 and 50. Each set contains!lO randomly 

generated problems. For each of the problems generated, the exact optimal solution 

obtained by ALS, and the best solution obtained by QE (it is not reported for the 

problem of size 50) and SCS are tabulated. Also are tabulated the times taken for 

obtaining the same. In case of HGA, the best-found solution~ the solution-ratio of it 

to the optimal solution obtained by ALS along with the average solution-ratio, 

worst solution-ratio and standard deviation of solution-ratios of 50 runs are 

reported). These are reported in Table-9.5(a, b, c & d). 

142 



Seed 

930 
160 
681 
418 
522 
667 
264 
826 
15 
85 

855 
334 
597 
493 
348 
19 . 

802 
795 
102 
28 

Mean 
S.D. 

Seed 

930 
160 
681 
418 
522 
667 
264 
826 
15 
85 

855 
334 
597 
493 
348 
19 

802 
795 
102 
28 

Mean 
S.D. 

TABLE - 9.5: - Solution values and time taken (in Seconds) by different 
algorithms, for twenty randomly generated problems of sizes 20, 25, 30 and 50. 

(a) N=20 and Ps=150. 
ALS QE SCS HGA 

Sol Time Sol Time SR Sol Time SR Best Best Avg. Wors S.D. Avg. S.D. 
Sol. SR SR SR SR Time Time 

13 0.00 13 0.00 1.00 16 0.61 1.23 13 1.00 1.57 2.46 0.35 0.96 0.10 
26 2.58 28 0.00 1.08 26 1.86 1.00 26 1.00 1.09 1.35 0.11 0.68 0.32 
19 0.00 19 0.00 1.13 19 1.16 1.00 19 1.00 1.28 1.74 0.18 0.85 0.23 
23 0.00 26 0.00 1.13 23 1.15 1.00 23 1.00 1.13 1.57 0.10 0.95 0.14 
19 0.06 20 0.00 1.05 19 0.71 1.00 19 1.00 1.22 1.58 0.17 0.88 0.19 
25 0.08 26 0.00 1.04 25 1.12 1.00 25 1.00 1.22 1.28 0.08 0.79 0.07 
18 1.47 18 0.11 1.00 19 1.03 1.06 19 1.06 1.40 1.78 0.16 0.84 0.03 
16 1.46 16 0.06 1.00 16 1.25 1.00 17 1.06 1.44 1.64 0.21 0.89 0.02 
21 1.51 22 0.11 1.05 21 1.09 1.00 21 1.00 1.14 1.43 0.14 0.91 0.28 
22 0.05 23 0.00 1.05 22 0.92 1.00 22 1.00 1.08 1.45 0.12 0.85 0.32 
18 0.05 20 0.00 1.11 18 1.12 1.00 18 1.00 1.37 1.89 0.26 0.87 0.09 
24 35.28 24 5.98 1.00 28 1.02 1.17 24 1.00 1.12 1.42 0.10 0.94 0.28 
29 13.23 29 0.13 1.00 29 0.86 1.00 29 1.00 1.12 1.41 0.12 0.95 0.31 
17 0.06 19 0.00 1.12 17 0.95 1.00 17 1.00 1.25 1.88 0.20 0.86 0.04 
24 386.72 26 292.64 1.08 24 0.77 1.00 24 . 1.00 1.08 1.42 0.11 0.81 0.32 
20 0.11 21 0.05 1.05 20 1.27 1.00 20 1.00 1.14 1.55 0.15 0.86 0.51 
16 0.05 18 0.00 1.12 17 0.75 1.06 17 1.06 1.41 1.94 0.21 1.13 0.56 
15 0.00 15 0.00 1.00 17 1.09 1.13 17 1.13 1.72 2.47 0.40 1.36 0.54 
18 0.00 18 0.00 .1.00 18 0.42 1.00 24 1.33 1.59 1.83 0.13 1.10 0.52 
22 0.17 22 0.06 1.00 22 0.32 1.00 22 1.00 1.19 1.36 0.12 0.76 0.46 

22.14 14.96 1.05 0.97 1.03 1.03 1.28 1.67 0.91 
84.02 63.72 0.05 0.33 0.07 0.08 0.18 0.33 0.14 

(b) N=25 and Ps=225. 
ALS QE SCS HGA 

Sol Time Sol Time SR Sol Time SR Best Best Avg. orst S.D. Avg. S.D. 
Sol. SR SR SR SR Time Time 

12 0.00 13 0.00 1.08 12 1.32 1.00 13 1.08 1.55 2.08 0.27 2.34 0.02 
20 19.77 22 8.92 1.10 20 4.61 1.00 20 1.00 1.31 1.80 0.16 2.33 0.18 
23 66.30 23 8.25 1.00 23 4.94 1.00 23 1.00 1.11 1.30 0.11 1.61 0.73 
22 75.58 23 15.26 1.05 22 4.95 1.00 22 1.00 1.19 1.50 0.11 2.33 0.14 
14 0.05 15 0.06 1.07 15 4.11 1.07 16 1.14 1.52 1.79 0.13 2.32 0.03 
21 262.45 23 18.42 1.10 21 3.12 1.00 23 1.10 1.33 1.67 0.11 2.33 0.03 
19 0.11 21 0.00 1.11 19 1.02 1.00 19 1.00 1.16 1.37 0.l3 2.21 0.53 
13 2.35 15 0.65 1.15 13 4.11 1.00 17 1.31 1.50 2.08 0.17 2.25 0.03 
12 1.43 12 0.88 1.00 13 3.65 1.08 16 1.33 1.52 2.58 0.24 2.29 0.02 
18 85.83 20 29.17 1.11 18 3.97 1.00 18 1.00 1.23 1.44 0.09 2.25 0.29 
21 26.35 21 15.41 1.00 21 0.99 1.00 21 1.00 1.09 1.38 0.09 2.31 0.71 
11 0.08 11 0.00 1.00 11 3.11 1.00 11 1.00 1.65 2.27 0.23 2.32 0.09 
17 2.70 17 1.70 1.00 17 3.98 1.00 17 1.00 1.45 1.76 0.24 2.29 0.35 
21 0.35 21 0.11 1.00 21 1.12 1.00 21 1.00 1.20 1.38 0.21 2.34 0.21 
16 14.35 17 3.09 1.06 19 4.32 1.19 18 1.13 1.56 1.81 0.17 2.28 0.03 
17 0.00 17 0.00 1.00 17 0.97 1.00 17 1.00 1.36 1.65 0.19 2.32 0.03 
15 . 0.16 17 0.07 1.13 15 3.06 1.00 15 1.00 1.42 1.67 0.14 2.36 0.11 
17 0.62 19 0.55 1.12 17 3.86 1.00 18 1.06 1.36 1.76 0.17 2.28 0.03 
15 0.07 16 0.00 1.07 18 3.52 1.20 21 1.40 1.47 1.87 0.13 2.32 0.03 

22* 600.00 22 1.23 1.00 22 4.98 1.00 22 1.00 1.10 1.32 0.08 2.36 0.02 
57.93 5.19 1.06 3.29 1.03 1.08 1.35 1.72 2.27 
137.94 8.02 0.05 1.39 0.06 0.12 0.17 0.33 0.16 



(c) N=30 and Ps=325. 
ALS QE SCS HGA 

Seed Sol Time Sol Time SR Sol Time SR Best Best Avg. Worst S.D. Avg. S.D. 
Sol. SR SR SR SR Time Time 

930 12 1.04 14 0.55 1.08 12 7.20 1.00 14 1.17 1.78 2.17 0.19 5.02 0.03 
160 14 0.11 15 0.06 1.07 16 11.04 1.14 15 1.07 1.65 2.21 0.20 5.06 0.04 
681 14 3.79 14 1.37 1.00 14 7.74 1.00 14 1.00 1.37 1.64 0.17 5.00 0.51 
418 19* 600.00 19 444.78 1.00 19 11.37 1.00 19 1.00 1.18 1.47 0.12 5.09 0.13 
522 15 68.60 15 2.80 1.00 16 8.96 1.07 16 1.07 1.22 1.53 0.11 5.01 0.04 
667 18 0.06 20 0.06 1.11 18 3.35 1.00 18 1.00 1.33 1.72 0.16 5.12 0.54 
264 17 3.11 18 1.04 1.06 17 1.98 1.00 17 1.00 1.24 1.47 0.11 5.11 0.73 
826 13 50.74 13 26.09 1.00 15 12.67 1.15 14 1.08 1.78 2.31 0.38 5.12 0.04 
15 11 594.72 12 47.07 1.09 11 4.13 1.00 13 1.18 1.53 2.09 0.23 5.02 0.05 
85 18* 600.00 20 243.87 1.10 18 11.24 1.00 18 1.00 1.08 1.62 0.16 5.09 1.42 

855 13 0.52 13 0.16 1.00 13 8.01 1.00 15 1.15 1.60 2.08 0.25 5.08 0.04 
334 11 0.19 11 0.11 1.00 11 10.32 1.00 14 1.27 1.64 2.27 0.21 5.07 0.05 
597 20* 600.00 20 324.98 1.00 20 1.56 1.00 20 1.00 1.19 1.45 0.17 5.11 1.13 
493 12 3.23 12 1.85 1.00 16 14.12 1.33 18 1.50 1.81 2.33 0.22 5.09 0.04 
348 15 66.08 15 31.25 1.00 20 9.85 1.33 20 1.33 1.55 1.73 0.09 5.08 0.4 
19 15* 600.00 15 600.00 1.00 15 7.88 1.00 16 1.07 1.38 1.87 0.16 4.96 0.03 

802 15* 600.00 15 600.00 1.00 15 9.57 1.00 16 1.07 1.40 1.80 0.21 4.98 0.03 
795 13 4.66 14 1.58 1.08 13 9.06 1.00 14 1.08 1.81 2.38 0.25 4.92 0.04 
102 31* 600.00 32 600.00 1.02 31 14.98 1.00 31 1.00 1.00 1.00 0.00 0.76 0.27 
28 15 1.98 16 0.06 1.07 20 8.97 1.33 17 1.13 1.53 1.93 0.16 4.99 0.04 

Mean 219.94 146.38 1.03 8.70 1.07 1.11 1.45 1.85 4.83 
S.D. 279.10 225.64 0.04 3.60 0.12 0.13 0.25 0.36 0.94 

*Note: The solution, which is obtained in 600 seconds, is reported here 

(d I) N=50 and Ps=400. 
ALS SCS HGA 

Seed Sol. Time Sol. Time SR Best Best Avg. Worst S.D. Avg. S.D. 
Sol. SR SR SR SR Time Time 

930 10 5.44 13 141.06 1.30 13 1.30 1.64 2.10 0.16 21.03 4.09 
160 12 0.21 12 145.46 1.00 12 1.00 1.55 2.33 0.30 20.97 1.80 
681 13* 3600.00 13 158.54 1.00 13 1.00 1.31 2.10 0.25 16.50 5.86 
418 11* 3600.00 13 170.06 1.18 14 1.27 1.69 2.61 0.20 19.58 1.11 
522 13* 3600.00 13 56.08 1.00 15 1.15 1.41 ·2.27 0.18 19.97 0.08 
667 11* 3600.00 12 123.81 1.09 11 1.00 1.51 2.00 0.15 19.01 1.70 
264 13* 3600.00 13 149.53 1.00 13 1.00 1.34 2.18 0.12 18.59 3.05 
826 10* 3600.00 13 149.98 1.30 13 1.30 1.94 1.61 0.25 19.87 0.06 
15 9 50.40 11 128.26 1.22 11 1.22 1.83 2.56 0.26 19.89 0.08 
85 8 2811.60 11 142.65 1.38 12 1.50 2.12 2.88 0.29 21.56 1.83 
855 17* 3600.00 17 165.13 1.00 17 1.00 1.13 1.36 0.09 18.86 3.48 
334 12* 3600.00 12 124.26 1.00 14 1.17 1.23 1.71 0.16 18.86 2.10 
597 13* 3600.00 13 140.35 1.00 14 1.08 1.26 1.57 0.10 20.31 4.50 
493 10 3.10 15 157.98 1.50 14 1.40 1.93 2.30 0.21 20.03 0.16 
348 12* 3600.00 13 153.92 1.08 16 1.33 1.63 2.00 0.12 21.12 1.24 
19 12* 3600.00 12 179.12 1.00 14 1.17 1.58 1.75 0.13 19.27 1.80 

802 12* 3600.00 13 208.05 1.08 12 1.00 1.31 1.92 0.15 19.11 5.86 
795 10* 3600.00 10 187.08 1.00 11 1.10 1.65 2.20 0.25 18.89 1.11 
102 13* 3600.00 13 232.34 1.00 13 1.00 1.63 1.85 0.21 19.77 0.08 
28 7 1241.72 11 215.95 1.57 11 1.57 1.35 3.14 0.19 19.79 1.70 

Mean 2725.62 156.48 1.13 1.18 1.55 2.12 19.65 
S.D. 1454.46 37.12 0.18 0.17 0.26 0.43 1.10 

*Note: The ~Jlution, which IS obtained in 3600 seconds, is reported here. 

144 



CHAPTER X 

DISCUSSIONS AND COMMENTS 

We have discussed exact and heuristic algorithms for the usual TSP and 

some of its variations. Lexisearch approach have been developed to obtain exact 

optimal solutions to the problems and based on the lexisearch approach, quasi-exact 
- ---

method have been developed. Then a sequential constructive sampling and hybrid 

genetic algorithm have been developed to obtain heuristically optimal solutions to 

the problems. Finally the relative efficiency have been carried out for randomly 

generated test problems of different sizes. 

In the context of lexisearch, two methods have been discussed - adjacency 

approach and path approach. For the usual TSP, in context of lexisearch, there are 

two ways of sub-tour checking - (i) during formation of permutation and (ii) at the 

end of full permutation. One may say that the second method is better than the first 

one. But it is seen from the Table-3.5 that the first one is better than the second 

one. It is due to the fact that there are so many full permutations generated which 

are not feasible tours, so one has to throw them away, which involves too much 

time. It is also seen that adjacency approach shows large variations in the context of 

time taken for solving the problems of same sizes. Hence, the data-guided 

lexisearch approach has been developed to minimize the variations in times. But 

. the data-guided lexisearch approach still shows large variations in times and the 

problems seem to fall into two distinct groups, so far as time requirement is 

concerned. One group requires significantly less time than the average while 

another takes significantly more time than the average, with a big' gap' between the 

two groups. Also, it is seen from the Table-3.10 that for some of the problems ALS 

is better than DGLS in the context of time requirement. The DGLS is the 

modification of ALS, and it comprises of two stages- preliminary scrutiny and pre-



N 

34 

36 

processing. Though the data-guided algorithm is presented by Srinivas (1989), but 

the actual building of full-fledged data-guided is not presented and in some cases, 

preliminary scrutiny and pre-processing take too much time. 

In path approach, explicit testing for cycle fonnation is avoided, but bound 

setting is not efficient. Also in the context of lexisearch approach, the 'bias' 

removal plays an important role in time requirement for solving the problems. In 

case of PLS also, a large variation in times is seen. In the adjacency approach, the 

data-guided module is not easily obtained and we could not fmd it. So, one might 

try to get data-guided module for the path approach. A comparative study has been 

carried out for the two approaches along with the data-guided lexisearch. It is seen 

from the Table-3.10 that DGLS is the best exact method. 

In the context of sequential constructive sampling approach for the TSP, the 

restricting choice of chance selection to only the first few of the 'legitimate nodes' 

in the alphabet table, is better than any systematic biasing in node selection- either 

by rank order or by the actual cost factors involved. In case of hybrid genetic 

algorithm, our proposed sequential constructive operator seems to be better than 

some existing good crossover operators, e.g., ERX, C1X and GNX. To see the 

robustness of our HGA, several runs were perfonned and the solution values for 

some of the benchmark problems given in TSPLIB are reported in Table-4.2. From 

that table it is seen that our HGA is efficient for the usual TSP. Now let us 

summarize the Table-4.3 as shown in Table-IO.lin the context of time taken. 

Table-10.I- Time taken for solving usual TSP by different approaches. 

DGLS QE SCS HGA N DGLS QE SCS HGA 
Mean 8.13 4.09 14.16 3.64 547.77 228.9 26.43 7.91 
S.D. 11.52 5.44 0.39 0.02 1262.1 539.9 0.55 0.09 

Median 1.51 1.04 14.11 3.64 39 53.31 13.69 26.36 7.89 
Max Gap 30.31 9.19 0.83 0.02 2829.70 1411.30 0.64 0.15 
Max-Min 49.70 21.84 2.12 0.09 5399.68 2345.87 2.20 0.46 

Mean 40.02 14.85 17.64 6.30 
S.D. 67.52 25.48 1.49 0.20 

Median 4.70 1.98 18.02 6.25 ----- ---- ----- -----
Max Gap 140.36 48.81 1.12 0.61 
Max-Min 205.92 82.66 5.64 0.99 

146 

~ 



Here, for calculating Max Gap, the time taken for solving the problems of 

same size are arranged in ascending order and the difference between two 

consecutive timings are calculated. Then the maximum of these differences is 

retained as the Max Gap and Max-Min is the difference between maximum and 

minimum timings. It is seen from the Table-IO.1 that as the size of the problem 

increases the mean, standard deviation, median, Max Gap and max-min increase 

rapidly. Also it is seen that at least half of the problems of same size take very less 

time and rest halves take very large time. To reduce the computational times and 

variation in times, the quasi-exact method based on lexisearch approach have been 

developed. Though the time taken by the quasi-exact method is reduced by about 

50% of by lexisearch, still it shows a large variation in times. Hence a usual 

question may be arisen- what type of problem takes less time and large time? Or, 

can we say by analysing a problem before going to solve the problem, whether it 

takes less or large time? To answer the question, we carried out the analysis of 

variance of the problem, but we could not come to any conclusion. So, one might 

try to analyse this fact. In case of sequential constructive sampling and hybrid 

genetic algorithm, the time taken are stable. 

However, when it comes to the most important criterion of performance, viz. 

nearness to the optimal solution value, the quasi-exact method is better than 

sequential constructive sampling approach as well as hybrid genetic algorithm. For 

HGA, let us have a look on the solution quality as shown in Table-IO.2. 

Table-IO.2- Performance of our HGA for the usual TSP. 

N Problem Best Avg. Worst Avg. 
SR SR SR (Time) 

34 Ftv33 1.00 1.05 1.08 3.77 
Random* 1.02 1.14 1.32 3.64 

36 Ftv35 1.00 1.01 1.04 4.42 
Random* 1.02 1.13 1.30 6.30 

39 Ftv38 1.00 1.02 1.07 5.21 
Random* 1.03 1.13 1.30 7.91 

*Note: - mean of the 20 randomly generated problems, as 
reported in table-4.3, is reported here. 

147 



It is seen from the Table-lOo2 that our HGA is good for the randomly 

generated test problems and better for the benchmark, structured problems. Hence, 

if we consider the solution quality as well as the time taken, then it can be 

concluded that HGA is the best for the usual TSP. 

We have seen in case of usual TSP that the adjacency approach is better than 

the path approach in the context of the lexisearch. But, for the TSP-PC as well as 

TSP-FPC, TSP-FPPC and TSPB, the restriction checking is much more easier in 

the path approach than in the adjacency approach while forming the tour. In fact, in 

the adjacency approach, we can check the feasibility of a solution only after a 

complete permutation is obtained. It is seen from the Table-50S that PLS is better 

than the ALS for TSP-PC, so far the time taken is concerned. Hence, one can't say 

that a method which is good for the usual TSP will also good for the TSP with 

restrictions, in the context of time requirement. The PLS is considered for obtaining 

exact optimal solutions to TSP-PC, TSP-FPC, TSP-FPPC and TSPB, and the quasi

exact methods are developed on the basis of path approaches. Let us summarize the 

time taken by various methods for the TSP-PC, TSP-FPC and TSP-FPPC as shown 

in Table-lOo3 . 

.It is seen from the Table-lOo3 that as the size of the problem increases, the 

mean, standard deviation, median, Max Gap and Max-Min of times also increase. 

Here also, at least half of the problems take very less time and the other half takes 

very large time, while the time taken by sequential constructive sampling and 

hybrid genetic algorithm are stable. For these problems also, though the time taken 

by the Quasi Exact method is reduced by about 50% of by PLS, still it shows a 

large variation in times and the problems seem to fall into two distinct groups, in so 

far as time required is concerned. This fmding is similar to the situations found in 

quite a few other combinatorial programming problems as well. (cf, Pandit and 

Ravikumar 1993, Ravikumar 1994) suggesting that a preprocessing of particular 

problem data is very desirable, to evolve a data-guided sequencing of modules in 

optimization algorithm so as to obtain solution much quicker than otherwise, by 

148 



TSP-
PC 

TSP-
FPC 

TSP-
FPPC 

using the same algorithm with arbitrary, rigid, sequencing of modules. Hence, 

in case of the TSP with different constraints considered here, it is perhaps desirable 

Table-lO.3- Time taken for solving TSP-PC, TSP-FPC and TSP-FPPC by 
d'ffi t h I eren ap proae es. 

N PLS QE SCS HGA N PLS QE SCS 
Mean 16.38 6.20 8.29 5.47 163.25 60.31 20.51 
S.D. 22.26 8.46 0.78 0.21 254.41 86.83 1.36 

30 Median 5.92 3.37 8.12 5.57 36 47.65 25.29 20.12 
Max Gap 34.65 9.74 0.84 0.33 397.00 110.39 3.20 
Max-Min 83.78 31.84 3.34 0.64 1057.14 329.32 6.29 

Mean 26.83 10.52 15.09 8.45 2578.71 96.44 
S.D. 41.01 16.97 0.42 0.15 993.29 2.18 

34 Median 11.38 4.45 15.01 8.45 50 2737.20 ---- 96.96 
Max Gap 139.60 52.29 0.50 0.12 589.67 1.03 
Max-Min 190.95 76.91 1.74 0.60 2472.00 7.27 

Mean 10.73 4.81 5.83 3.22 279.88 92.84 13.79 
S.D. 9.64 4.62 0.50 0.06 361.61 121.88 0.62 

30 Median 6.86 2.91 5.72 3.23 36 152.33 55.87 14.01 
Max Gap 11.28 8.84 0.49 0.06 1084.72 390.76 0.54 
Max-Min 37.50 19.20 1.91 0.21 1704.81 573.98 2.00 

Mean 20.68 10.92 9.12 7.78 3272.63 66.02 
S.D. 11.23 7.22 0.69 0.42 632.80 1.31 

34 Median 17.53 9.52 9.01 7.68 50 3600.00 ------ 66.09 
Max Gap 6.48 6.42 0.63 1.87 800.80 1.00 
Max-Min 39.17 26.85 2.77 1.98 2274.20 4.89 

Mean 26.77 11.11 5.63 4.25 498.68 142.45 15.31 
S.D. 29.56 14.60 0.35 0.12 667.16 175.78 0.69 

30 Median 20.83 5.56 5.62 4.23 36 223.22 70.58 15.43 
Max Gap 94.47 33.22 0.26 0.08 784.80 329.55 0.53 
Max-Min 137.67 65.12 1.31 0.40 2611.74 640.51 2.13 

Mean 36.82 11.67 9.01 11.12 5019.38 67.48 
S.D. 18.86 6.68 0.41 0.036 831.74 4.49 

34 Median 25.71 8.19 8.99 11.09 50 5400.00 ----- 66.50 
Max Gap 9.80 3.79 0.40 0.62 1137.00 4.26 
Max-Min 63.09 18.59 1.86 1.45 2995.00 16.89 

~1~~1 
0.33 
11.17 
0.15 
1.04 

21.95 
0.61 

21.95 
0.53 
2.22 
10.20 
0.10 
10.18 
0.11 
0.40 
20.~7 

0.56 
20.01 
0.57 
2.18 
16.11 
0.20 
16.06 
0.10 
0.67 
23.56 
0.67 
23.56 
0.77 
3.02 

to investigate the possibility of using a data-guided module-sequencing approach to 

optimization, but we could not do so. It is also observed that during the process of 

obtaining the optimum solution by the Lexisearch approach, the confmnation of a 

solution to be 'optimal' takes a lion's share in the total computational time, But the 

heuristics give most of the times "near optimal" (if not optimal) solutions very 

quickly, There are some problems of size 50, which can't be solved optimally by 

149 



PLS within one hour, but HGA gives a good result in a reasonable amount of time. 

For all of the problems, if one considers the solution quality as well as the time 

taken for solving them, then one can conclude that HGA is the best. 

In the context of lexisearch approach for the TSPB, as the number of the 

backhaul nodes increases one can't say from Table-8.S whether the solution value 

will also increase or decrease. On the average, one should expect to fmd an exact 

optimal solution for TSPB faster than that of a 'usual' TSP. The number of 

admissible solutions decreases from (n-I)! for the TSP to (l!m!) for the TSPB, 

where 1=ILI.and m=IBI. The computational results support the expectation for most 

of the problems. For the rest of the problems, the factors, e.g. the structure of the 

cost matrix, may have an impact on the computational effect while m » I. For this 

problem also in the context of time requirement, ~exisearch shows a large variation 

while the sequential constructive sampling and hybrid genetic algorithm are stable, 

and HGA is the best among the heuristic algorithms. 

The bound calculation method plays a vital role in the lexisearch approach. 

But no good bound is found for the TSP with different constraints. So, we have 

used the method whatever used for the usual TSP without taking the constraints 

into account. Hence, a good (efficient) bound may reduce the time taken for 

obtaining the exact optimal solution. 

For MMTSP, both the adjacency and path approaches are possible. Ramesh 

(1997) proposed the path approach for solving the same. So, we discussed both the 

approaches. As shown in Table-9.4, it is seen that adjacency approach is better than 

the path approach in the context of time taken. For this problem also, adjacency 

approach as well as quasi-exact method show a large variation in times, while the 

sequential constructive sampling and hybrid genetic algorithm are stable (see also 

Table-lO.4). From Table-9.S, if one compares the solution quality by SCS with the 

best as well as average solution quality by HGA, then one can conclude that the 

sequential constructive sampling approach is the best among the heuristic 

approaches. Also there are some problems of size 50, which can't be solved 

150 



optimally by ALS within one hour, but SCS gives a good result with a reasonable 

amount of time. 

a e- . - Ime ta en or so vmg ,y 1 eren approac es. T bl 104 T' I' MMTSP b d'ffi t h 

N ALS QE SCS HGA N ALS QE SCS HGA 
Mean 22.14 14.96 0.97 0.91 219.94 146.38 8.70 4.83 
S.D. 84.02 63.72 0.33 0.14 279.10 225.64 3.60 0.94 

20 Median 0.06 0.00 1.02 0.87 30 4.66 1.85 8.97 5.06 
Max Gap 351.44 286.66 0.59 0.23 526.12 196.80 3.07 4.16 
Max-Min 386.72 292.64 1.54 0.68 599.94 599.94 13.42 4.36 

Mean 57.93 5.19 3.29 2.27 2725.62 156.48 19.65 
S.D. 13.7.94 8.02 1.39 0.16 1454.46 37.12 1.10 

25 Median l.43 0.65 3.65 2.32 50 3600.00 ----- 149.98 19.77 
Max Gap 337.55 10.75 1.74 0.60 1569.88 67.73 2.09 ! 

Max-Min 600.00 29.17 4.01 0.75 3599.79 176.26 5.06 I 
In this present study, it is very difficult to say how big n before the 

lexisearch becomes impracticable. It certainly depends upon the structure of the 

problem. That is why some of the problems, say, of size 50, give solution very 

quickly and some other take large amount of time. One important point, ignored in 

the present study, needs special mention. In real-life situation, one expects some 

sort of structure to be present in the cost matrix C. One does not expect that every 

node is statistically equivalent to every other node in terms of cost of travel 

between them; cost of travelling only a few nodes will be near enough to a 

particular node, many more nodes being quite far from it. This situation could act 

very favourable with respect to lexisearch and could possibly profitably utilized in 

sequential constructive sampling approach by making the probability of selection of 

nodes for augmentation to be not equal (as was done in the present study) but 

dependent on this prior information about the structure of the C matrix. We 

investigated in this direction, but we could not come to any conclusion in this 

regard. 

In case of HGA, though we have tried to fme-tune the parameters for better 

performance, actually the setting of parameters is not a simple task. Carefully 

choosing the parameters may lead to a better performance of the HGA for the 

problems. . 

151 



APP~N"P\X 

II PROGRAM 1.1 
II USUAL TRAVELLING SALESMAN PROBLEM USING LEXI-SEARCH 
II ADJACENCY APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,bias,d[41] [41]; 
void bias_removal(); 

void main ( ) 
{ 

struct time t; 
float tl,t2; 
int i,j,k,1,il,i2,i3,seed,temp,index,dis,templ,check,elt,bound; 
int min, ass [46] ,str[46] ,y[46] ,p(46] ,vv(46] ,dist(46] (46]; 
in t x (46] [46] , z ( 46] (46] ; 

printf(" ENTER THE No. OF CITIES AND A SEED :"); 
scanf("%d%d",&n,&seed); 

/ / RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d(i] (j]=(rand()%lOO)+l; 

for(i=l;i<=n;i++) 
d[i] (i]=999; 

gettime (&t) ; 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 

bias_removal(); 
printf(" BIAS=%d",bias); 

/ / ALPHABET TABLE 
for(i=l;i<=n;i++) 

( for(j=l;j<=n;j++) 
vv[j] =0; 

for(j=l;j<=n;j++) 
( min=999; 

for(k=l;k<=n;k++) 
if ( (vv( k] ==0) && (d (i] (k] <min) ) 

{ index=k; 

) 
} 

min=d[i] (k]; 

z[i] (j]=index; 
vv(index]=l; 

for(i=l;i<=n;i++) 
for(j=l;j<n;j++) 

for(k=j+l;k<=n;k++) 
if (d ( i) (j] >d ( i] (k] ) 

152 



temp=d[i) [j); 
d [ i) [j) =d [ i] [k] i 

d[i] [k]=temp; 

for(i=l;i<=n;i++) 
for(j=l;j<=nij++) 

( di s t [ j) (i 1 =d ( i 1 (j 1 ; 
x [j] [i] =z [i) [j 1 ; 
} 

II MAIN PROGRAM STARTS HERE 
min=900; 
for(i=l;i<=nii++) 

{ vV[i]=Oi 
y[i]=O; 
p[i)=O; 
} 

dis=j=i=O; 
GS: j=j+1; 

i=y [j 1 +1; 
NC: temp=p[j); 

temp1=x [il [j) ; 
check=dis+dist[i) [j]; 
if (check>=min) 
goto JOi 

if (vv[temp1] ==1) 
JB: {i=i+1; 

goto NC; 
} 

II CYCLE CHECKING 
if(temp1<j && j!=n) 

( k=temp1i 
for(i1=1;i1<j;i1++) 

( if(p[k)<j) 
k=p[kl; 

BD: 

} 
} 

else 
if (p [k) ==j ) 

goto JB; 
else 

goto BD; 

, II BOUND CALCULATION 

bound=O; 
for(i1=j+1;i1<=n;i1++) 

( for(i2=1;i2<n;i2++) 
( elt=x [i2] [i1) ; 

if((elt!=temp1) && (vv[elt]==O» 
( bound+=dist[i2] [i1); 

go to next col; 

next col: 

153 



bound+=check; 
if (bound>=min) 

goto JB; 
p[j)=templ; 
if(temp!=O) 

y[j+l)=O; 
y[j]=i; 
vv[templ]=l; 
dis=check; 
if (dis>min) 

goto JO; 
if (j==nl 

{ 
for(il=l;il<=n;il++l 
ass[il]=p[il]; 

min=dis; 
PREY: dis-=dist[i] [j]; 

vv[p[j] )=0; 
JO: j=j-l; 

if (j<l) 
goto STOP; 

vv[p[j)l=O; 
dis-=dist[y[j]] [j]; 
i=y [j 1 +1; 
goto NC; 
} 

goto GS; 

STOP: 

str[l]=l; 
for(i=2;i<=n;i++) 

{ k=str[i-l]; 
str[i]=ass [k]; 
} 

gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 
min+=bias; 

printf("\n N=%d SEED=%d SOL=%d TIME=%.2f ",n,seed,min,t2-tl); 

II REMOVING BIAS 
void bias_removal() 

{ int i,j,rmin[41],cmin[41]; 
for(i=l;i<=n;i++) 

{ rmin[i)=9999; 
for(j=l;j<=n;j++) 

if(d[i) [jl<rmin[i)) 
rmin [i] =d [i] [j] ; 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j]-=rmin[i]; 

for{j=l;j<=n;j++) 

154 



( crnin[j]=9999; 
for(i=l;i<=n;i++) 

if(d[i] [j]<crnin[j]) 
crnin [j ] =d [i] [j] ; 

}' 

for(j=l;j<=n;j++) 
for(i=l;i<=n;i++) 

d [i] [j] -=crnin [j ] ; 
bias=O; 
for(i=l;i<=n;i++) 
bias+=rrnin[i]+crnin[i]; 

155 



II PROGRAM 1.2 
II USUAL TSP USING DATA-GIUDED LEXI-SEARCH APPROACH 

#include<stdio.h> 
#include<stdlib.h~ 
#include<dos.h> 

void main ( ) 
( 

struct time t; 
float tl,t2; 
int i,j,k,l,ll,l2,m,ml,j2,n,min,seed,temp,bias,big,srnl,rernb; 
int bond,king,kl,d[46) [46) ,x[46) [46) ,ind[46) [46) ,dest[46); 
int digit[46],seq[46],flag[46),p[46],mrow[46],ord[46],nzr[46); 
int index[46],rmin[46),cmin[46),post[46],bnd[46],vv[46); 

printf(" ENTER THE No. OF CITIES AND A SEED:"); 
scanf("%d%d",&n,&seed); 

II RANDOM MATRIX GENERATION 
srand((unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i) [j)=(rand()%100)+1; 

for(i=l;i<=n;i++) 
d[i] [i)=999; 

gettime(&t); 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 

II CALCULATING THE MINIMUM ELEMENTS OF ROWS 
for(i=l;i<=n;i++) 

( rmin[i)=999999; 
for(j=l;j<=n;j++) 

if (d[i] [j] <rrnin [i]) 
rmin[i]=d[i] [j]; 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j]-=rrnin[i]; 

II CALCULATING THE MINIMUM ELEMENTS OF COLUMNS 
for(j=l;j<=n;j++) 

( cmin[j]=999999; 
for(i=l;i<=n;i++) 

if(d[i] [j]<cmin[j]) 
cmin [j] =d [i] [j] ; 

for(j=l;j<=n;j++) 
( mrow[j]=999999; 

index[j]=j; 
nzr [j] =0; 

II REMOVING BIAS 
bias=O; 
for(i=l;i<=n;i++) 

156 



( bias+=rminCiJ+cminCi); 
far(j=lij<=nij++) 

{ d(i] (j]-=cmin(j]i 

} 
} 

if (d (i] (j] ==0) 
{ nzr(j]+=li 

gata nextl; 
} 

if(mraw(i]>d(iJ (jJ) 
mraw (i ] =d (i ] (j 1 ; 

nextl: 

II ALPHABET TABLE 
far(i=lii<=nii++) 
flag[i]=Oi 

far(i=l;i<=nii++) 

sml=999999i 
far(j=lij<=nij++) 

( if(flag[j]==l) 
gata next2i 

if(nzr(j]<sml) 
sml=nzr [j] i 

next2: 

far(j=lij<=nij++) 
{ iff (flag[j]==l) II (nzr[j] !=sml)) 

gata next3i 
if (mraw[j] >big) 

( big=mraw[j]i 
remb=ji 

next3: 

flag[remb]=li 
ard[l]=rembi 
index[remb]=ii 

for(i=l;i<=n;i++) 
( k=ord[iJi 

for(j=l;j<=n;j++) 
{ x [ i] [j] =d [ k] [j] ; 

ind[k] (jJ=index[j]i 
) 

} 

for(l=lil<=nil++) 
far(i=lii<n;i++) 
far(j=i+lij<=nij++) 
if (x ( 1 1 (i] >=x ( 1 J C j J ) 

{ temp=x (11 [iJ i 
x (1] (i] =x (1] (j] i 
x (11 (j J =tempi 
temp=ind[l] (i] i 
ind[l] [1] =ind [1] (j 1 i 

157 



ind (1] (j] =ternp; 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
if (j>i) 

{ ternp=x (i] [j] ; 
x [ i] [j] =x [ j] [i] ; 
x [j] [i] =ternp; 
ternp=ind [i] [j] ; 
ind [i] [j] =ind [j] [i] ; 
ind[j] [i] =ternp; 
} 

/ / MAIN PROGRAM STARTS HERE 
for(i=l;i<=n;i++) 
dest[i]=digit[i]=post[i]=bnd[i]=flag[i]=O; 

rnin=900; 
post[l]=O; 

Nl: post[l]+=l; 
k=post[l]; 
j2=ind [k] [1] ; 
rn=2; 
rnl=l; 
bnd[l]=x[k] [1]; 
dest[1]=j2; 
digit[1]=j2; 
flag[j2]=1; 
if(post[l]==n) 
goto NlO; 

N2: for (l=rn;l<=n;l++) 
{ bond=O; 
for(ll=l+l;ll<=n;ll++) 

{ for(12=1;12<n;12++) 
{ j2=ind[12] [11]; 

if (flag [j2] ==1) 
goto next4; 

bond+=x[12] [11]; 
goto next5i 

next4 : 

next5: 

for (k=rnl;k<=n;k++) 
( if((bnd[l-l]+bond+x[k] [l]»=rnin) 

goto NIl; 
j2=ind[k) [1]; 
if(flag[j2]==1) 
goto next6; 

king=j2; 
if(l==n) 
goto N5; 

N4: if(dest[king]==l) 
goto next6; 

if(dest[king]==O) 
goto N5; 

king=dest (king] ; 
goto N4; 

158 



next6 : 

NS: post[l]=k; 
dest[1]=j2; 
digit[1]=j2; 
flag[j2]=1; 
bnd[l]=bnd[l-l]+x[k] [1]; 
ml=l; 
if (l<n) 

goto next7; 
min=bnd[n] ; 
for(i=l;i<=n;i++) 
seq(iJ=digit(i]; 

go to NIl; 
next7: 
} 

Nll: kl=post [1] ; 
if(kl==O) 

goto NlS; 
j2=ind[kl] [1] i 
post[l]=O; 
bnd[l]=O; 
dest[l]=O; 
flag[j2J=Oi 

NlS: 1--; 
kl=post[l]; 
j2=ind[kl] [1]; 
flag[j2]=Oi 
bnd[l]=O; 
dest[l]=O; 
if (1==1) 
goto Nl; 

post[l]=O; 
m=l; 
ml=kl+l; 
if(ml<nl 

goto N2; 
goto Nll; 

NlO: for(i=l;i<=n;i++) 
k=seq[i] ; 
p[l]=l; 
for(i=l;i<=n;i++) 

( k=seq[iJ; 
post[i]=ord[k]; 

for(i=l;i<=nii++) 
for(j=l;j<=nij++) 
if(p[i]==ord[j]) 

p [i+l] =post [j] ; 
gettime(&tl; 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 
min+=bias; 
printf("\n N=%d SEED=%d SOL=%d TIME=%.2f ",n,seed,min,t2-tl); 

159 



II PROGRAM 1.3 
II USUAL TRAVELLING SALESMAN PROBLEM USING LEXI-SEARCH 
II PATH APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,bias,d[41] [41]; 
void bias_removal(); 

void main ( ) 
( 

struct time t; 
float t1,t2; 
int i,j,k,1,i1,i2,i3,seed,temp,index,dis,temp1,check,elt,bound,min; 
int str[41] ,y[41] ,p[41] ,vv[41] ,x[41] [41]; 
printf(" ENTER THE No. OF CITIES AND A SEED :"); 

scanf("%d%d",&n,&seed); 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=lii<=n;i++) 
for(j=l;j<=n;j++) 
d [ i] [j] = ( rand ( ) % 100) +1 ; 

for(i=l;i<=n;i++) 
d[i] [i]=999; 

gettime(&t); 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

II CALLING BIAS REMOVAL FUNCTION 
bias_removal() ; 

I I ALPHABET TABLE 
for(i=l;i<=n;i++) 

( for(j=l;j<=n;j++) 
vv[j]=O; 

far(j=l;j<=n;j++) 
( min=999; 

for(k=l;k<=n;k++) 
if ( (vv [k] ==0) && (d [i] [k] <min) ) 

{ index=k; 

} 
} 

min=d[i] [k]; 

xli] [j]=indexi 
vv[index]=l; 

I I MAIN PROGRAM STARTS HERE 
min=900; 
for(j=l;j<=n;j++) 

{ vv[j)=O; 
y [j] =0; 
p[j]=O; 
} 

160 



dis=O; 
i=k=p[l]=vv[l]=l; 

GS: k=k+1; 
j=y[k]+l; 

NC: temp=p[k]; 
temp1=x(i] (j]; 
check=dis+d[p (k-1]] [temp1]; 
if (check>=min) 

goto JO; 
if (vv (temp1] ==1) 

JB: {j=j+1; 
go to NC; 
} 

II BOUND CALCULATION 
bound=O; 
for(i1=1;i1<=n;i1++) 

{ if (vv(i1] ==0) 
( for(i2=1;i2<n/5;i2++) 

( elt=x[il] [i2]; 
if«elt!=temp1) && «vv[elt]==O) I I (elt==l») 

{ bound+=d[i1] [elt]; 
goto next_row; 
} 

} 
elt=x (il] (n/5] ; 
bound+=d(i1] (elt]; 

next row: 

bound+=check; 
if (bound>=min) 

goto JB; 
p(k]=temp1; 
if (temp !=O) 

y(k+1]=O; 
y[k]=j; 
vv[temp1] =1; 
dis=check; 
i=p[k]; 
if (k==n) 

( dis+=d[temp1] [1]; 
if (dis>min) 

goto PREY; 
for(j=l;j<=n;j++) 
str[j]=p[j] ; 

min=dis; 
PREY: dis-=d[temp1] [1]; 

dis-=d(p[k-1]] (temp1]; 
vv(temp1] =0; 

JO: k=k-1; 
if (k<=l) 

goto STOP; 
vv[p[k]]=O; 
dis-=d[p[k-1]] (p(k]]; 
j=y[k]+1; 
i=p(k-1]; 

161 



goto NC; 
} 

goto GS; 

STOP: 
gettime (&t) ; 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 
min+=bias; 

printf("\n N=%d SEED=%d SOL=%d TIME=%.2f",n,seed,min,t2-tl); 

II REMOVING BIAS 
void bias_removal() 

( int i,j,rmin[41] ,cmin[41]; 
for(i=l;i<=n;i++) 

( rmin[i]=9999; 
for(j=l;j<=n;j++) 

if(d[i] [j)<rmin[i)) 
rmin [ i) =d [ i) [j) ; 

for(i=l;i<=n;i++) 
for(j=lij<=n;j++) 
d[i) [j)-=rmin[i]; 

for(j=l;j<=n;j++) 
( cmin[j]=9999; 

for(i=lii<=nii++) 
if(d[i) [j]<cmin[j)) 

cmin [j ) =d [i) [j] ; 

for(j=l;j<=n;j++) 
for(i=l;i<=nii++) 

d [i) [j) -=cmin [ j ) ; 
bias=O; 
for(i=lii<=n;i++) 
bias+=rmin[i)+cmin[i); 

162 



II PROGRAM 1.4 
II USUAL TSP USING SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

void main ( ) 
{ 

struct time t; 
int n,iter,i,j,k,1,i1,i2,i3,dis,min,idx1,idx2,seed,lex,temp; 
int elt,bound,c[1601] ,vv[41] ,v[41] [41] ,d[41] [41] ,x[41] [41]; 
int pop,value1,value2,str[41],p[41],y[41],temp1,row[1601],col[1601]; 
float t1,t2,surn,rnd,py[41]; 
printf(" ENTER THE No. OF CITIES, SEED AND No. OF SAMPLES :"); 

scanf("%d%d%d",&n,&seed,&pop); 

II RANDOM MATRIX GE~RATION 
srand«unsigned)seed); 
for{i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

d [ i) [j] = ( rand () %1 0 0) + 1 ; 
for(i=l;i<=n;i++) 
d[i] [i]=999; 

gettime (&t) ; 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

I I ALPHABET TABLE 
for(i=l;i<=n;i++) 

{ for(j=l;j<=n;j++) 
vv[j] =0; 

for(j=l;j<=n;j++) 
{ rnin=9999; 

for(k=l;k<=n;k++) 
if «vv[k]==O) && (d[i] [k]<rnin» 

{ idx1=ki 

} 
} 

rnin=d[i] [k]; 
} 

xCi] [j]=idxl; 
vv[idx1]=1; 

II ALPHABET TABLE FOR BOUND CALCULATION 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
v[i] [j] =0; 

for(i=l;i<=n*n;i++) 
{ rnin=9999; 

for(j=l;j<=n;j++) 
for(k=l;k<=n;k++) 
if«v[j] [k]==O)&&(d[j] [k]<rnin» 
{ idx1=j; 

idx2=k; 
rnin=d[j] [k]; 

row[i]=idx1; 

163 



} 

col [i]"'idx2; 
v[idx1] [idx2] =1; 

c[O]=O; 
for(i"'l;i<=n*n;i++) 

{ el t=d [ row [i] ] [col [i] ] ; 
if (elt<999) 
c[i]=c[i-1]+e1t; 

II MAIN PROGRAM 
min=9999; 
for (i=l;i<=pOPii++) 

( for(j=l;j<=n;j++) 
( vv[ j] =0; 
str[j]=O; 
) 

dis=O; 
str[l]=vv[l]=l; 
for(j=2;j<=n;j++) 

( 1=0; 
for(k=l;k<=n;k++) 

y[k]=O; 
il=n-j+1; 
temp=str[j-1]; 
for(k=l;k<=n;k++) 

{ elt=x [temp] [k] ; 
if ( (vv[elt] ==0) && (d[temp] Celt) <999» 

( 1=1+1; 
y[1)=e1t; 
if(1)ilI10.0+1) 

go to NEXT; 
} 

NEXT: 
py[O)=Oi 
sum=1*(1+1)/2.0; 
for(k=l;k<=l;k++) 
py[k)=py[k-l]+ (1-k+1)/sum; 

i3=0; 
REPT: rnd=(rand()%lOO)*O~Ol; 

i3++; 
for(k=l;k<=l;k++) 
if(rnd>=py[k-l) && rnd<py[k) 

( str(j)=y[k]; 
goto EXIT; 

EXIT: 
dis+=d[temp] [str[j]]; 
if (dis>=min) 
goto OUT; 

templ=str[j]; 

II BOUND CALCULATION 
bound=O; 
for(il=l;il<=lO;il++) 

{ if(vv[row[i1]]==0) 

164 



( if(vv[col[i1]]==O I I col[i1]==1) 
bound=c[j+i1-1]-c[i1-1]i 

gote next_row; 

} 
bound=c[j+10]-c[10]; 

next row: 
bound+=disi 
if(bound>=min && i3<1) 

goto REPTi 
vv[str[j] ]=1; 
} 

dis+=d[str[n]] [1]; 
if (dis<min) 

( min=dis i 
for(j=lij<=nij++) 
p[j]=str[j]; 

} 

OUT: 
} 

II MODIFIED 2-0PT MOVE 
p[n+1]=li 
for(j=2ij<n-1;j++) 
for(k=j+2;k<=n;k++) 
(value1=d[p[j-1]] [p[j] ]+d[p[j]] [p[j+1] ]+d[p[k-1]] [p[k] ]+d[p[k]] [p[k+1]] i 

va 1 u e 2 =d [p [ j -1] ] [p [ k] ] +d [p [ k] ] [p [ j + 1] ] +d [p [ k -1] ] [p [ j ] ] +d [p [ j ] ] [p [ k +1] ] i 
if (value2<value1) 

( ternp=p[k]i 
p [k] =p [j] i 
p[j]=ternp; 

min=O; 
for(j=l;j<=nij++) 
min+=d[p[j]] [p[j+1]]; 

gettirne (&t) ; 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hundi 

printf("\n N=%d SEED=%d SOL=%d TIME=%.2f ",n,seed,min,t2-t1)i 

165 



II PROGRAM 1.5 
II USUAL TSP USING HYBRID GENETIC ALGORITHM 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 
#include<conio.h> 

int n,pop,bias,dis,chr[601] [41] ,d[41] [41]; 

void bias_removal(); 
void create(); 
void objective(int); 
void repro_duction(); 
void cross_over(float); 
void mutation(float)i 
void seq search(); - . 
void main () 

( 
struct time ti 
float pcr,pmt,t1,t2i 
int i,j,min,str(41],vv[41],seed,gen; 

printf("ENTER THE No. OF CITY and A SEED RESPECTIVELY: It); 
scanf("%d%d",&n,&seed); 

printf ("ENTER THE POPULATION SIZE : "); 
scanf("%d",&pop); 

printf("ENTER THE PROB. OF CROSSOVER AND MUTATION RESPECTIVELY: It); 
scanf("%f%f",&pcr,&pmt); 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

d [i] [j] = (r and () %1 0 0) +1 ; 
for(i=l;i<=n;i++) 
d[i] [i]=999; 

gettime(&t); 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

II CALLING BIAS REMOVAL FUNCTION 
bias_removal(); 

II TERMINATING CRITERION 
min=d[l] [1]; 
create(); 
for(i=l;i<=pop;i++) 

( objective(i); 
if (dis<min) 

( min=dis; 
for(j=l;j<=n;j++) 
str[j]=chr[i] [j]; 

} 
} 

for (gen=1;gen<=4*n;gen++) 

166 



repro_duction(); 
cross_over(pcr); 
mutation{pmt); 
seq_search() i 

for{i=l;i<=pop;i++) 
( objective(i); 

if (dis<min) 
min=dis; 

min+=bias; 
gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 

printf("\n N=%d Best Solution=%d Time=%.2f \n",n,min,t2-t1); 

II REMOVING BIAS 
void bias_removal() 

{ int i,j,rmin[41],cmin[41]; 
-for(i=l;i<=n;i++) 

( rmin[i]=9999; 
for(j=l;j<=n;j++) 

if(d[i] [j]<rmin[i]) 
rmin [ i ] =d [ i] [j] ; 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j] -=rmin [i] ; 

for(j=l;j<=n;j++) 
( cmin[j]=9999; 

for(i=l;i<=n;i++) 
if(d[i] [j]<cmin[j]) 
. cmin [j ] =d [i] [j] ; 

} 

for(j=l;j<=n;j++) 
for (i=l;i<=n;i++) 
d[i] [j] -=cmin [j]; 

bias=O; 
for(i=lii<=nii++) 
bias+=rmin[i]+cmin[i]i 

II INITIALIZE THE POPULATION 
void create () 

( int m,i,j,i1,elt,count,vv[41]; 
for(i=lii<=pOPii++) 

( for(j=lij<=nij++) 
{ vv[j]=O; 
chr[i] [j]=Oi 
} 

chr [i] [1] =1 i 
vv[l]=l; 
for(j=2;j<=n;j++) 

( elt=rand() % (n-j+1) +1; 
count=O; 
for(il=2;il<=n;il++) 

1~7 



if (vv[il] ==0) 
( count++; 

if (count==elt) 
{ chr[i] [j]=il; 
goto rxx; 
} 

rxx: 
vv[il] =1; 
} 

I I CALCULATE THE VALUE OF THE OBJECTIVE FUNCTION 
void objective(int i) 

{ int j; 
dis=O; 
for (j=l; j<n; j++) 
dis+=d[chr[i] [j]] [chr[i] [j+1]]; 

dis+=d[chr[i] [n]] [1]; 

II STOCHASTIC REMAINDER SELECTION METHOD 
void repro duction() 

. ( float fit[601],randorn,avg,expect,surn=O,frac[601]; 
int i,j,k,assign,se1ect,choice[601]; 
for(i=l;i<=pop;i++) 

( objective(i); 

} 

fit [i] =1. 0/ (float) (dis+1) ; 
surn+=fi·t [i] ; 

avg=surn/pop; 
k=O; 
for(i=l;i<=pop;i++) 

{ expect=fit[i]/avg; 
assign=expect; 
frac[i]=expect-assign; 
while (assign>O) 

( k=k+1; 
assign-=l; 
choice[k]=i; 

) 

} 

i=O; 
while (k<pop) 

( i==i+l; 
if(i>pop) 

i=l; 
if(frac[i]>O.O) 

( randorn=(rand()%lOOO)*O.OOl; 
if(frac[i]>randorn) 

} 

} 

{ k=k+1; 
choice[k]=i; 
frac[i]-=1.0; 

168 



for(i=l;i<=pop;i++) 
{ se1ect=choice[i]; 

for(j=l;j<=n;j++) 
chr(i] (j]=chr(select] (j]; 

} 

II Cl-CROSSOVER OPERATION 
void cross over(float pc) 

{ int i,j-;k,m,cross,min,cost,v1[41] ,v2[41] ,x,y,nwchr[21] [41]; 
float random; 
for(i=l;i<pop;i++) 

{ random=(rand()%lOO)*O.Ol; 
if (random<pc) 

{ for (m=1;m<=20;m=rn+2) 
( for(j=l;j<=n;j++) 

{ v1[j]=O; 
v2(j]=O; 
} 

cross=(rand()%(n-2»+2; 
for(j=l;j<cross;j++) 

{ x=chr [i] [j] ; 
y=chr [i+1] [j] ; 
nwchr [m] (j] =x; 
nwchr (m+1] [j] =y; 
v1[x]=li 
v2[y]=li 
} 

k=O; 
for(j=crossij<=nij++) 

read1: {k=k+1i 
x=chr[i+1] [k] i 

if(vl[x]==l) 
goto read1i 

v1(x]=li 
nwchr[m] (j]=x; 
} 

k=Oi 
for(j=crossij<=n;j++) 

read2: {k=k+1; 
y=chr[i] [k]; 
if(v2[y]==1) 
goto read2; 

v2[y]=li 
nwchr [m+1] [j] =y i 
} 

min=999; 
for (m=1;m<=20;m++) 

{ cost=O; 
for (j=li j<ni j++) 

cost+=d[nwchr[m] [j]] [nwchr[m] [j+l]]i 
cost+=d[nwchr[m] en]] [1]; 
if (cost<min) 

( min=cost; 
for(j=l;j<=nij++) 
chr[i] [j]=nwchr[m] [j]; 

169 



} 
} 

II BITWISE MUTATION OPERATION 
void mutation(float pm) 

( int temp,m,i,j,rl,r2i 
float randomi 
for(i=lii<=pOPii++) 

{ m=rand ( ) %n+ 1 i 
for(j=lij<=rnij=j+2) 

( random=(rand()%lOO)*O.Oli 
if (random<pm) 

{ rl=rand()%(n-l)+2i 
r2=rand()%(n-l)+2i 
temp=chr[i] [rl]i 
chr[i] [rl]=chr[i] [r2] i 

chr[i] [r2]=tempi 
} 

II SEQUENTIAL CONSTRAUCTIVE SEARCH APPROACH 
void seq_search() 

( int i,j,k,l,m,rnin,temp,index,x[3],cost[3],v[51],nwchr[51]i 
for(i=lii<pOPii++) 

( for(j=lij<=nij++) 
( v[j]=O; 

nwchr[j]=Oi 

nwchr[lJ=v[lJ=li 
for(k=2ik<=nik++) 

( for(l=O;l<=lil++) 
( x[lJ=O; 

cost[lJ::::999; 
for(j=lij<=n;j++) 

( if(chr[i+lJ [j]==nwchr[k-lJ) 
( for (m=l;m<=nim++) 

} 

} 

} 

next: 

{ if ( j +rn>n) 
go to next; 

if(v[chr[i+l] [j+mJ]==O) 
{ cost[l]::::d[chr[i+lJ [j] J [chr[i+l] [j+m]]; 
x[lJ=chr[i+l] [j+m]; 
goto next; 
} 

if(cost[lJ==999 && cost[OJ==999) 
( rnin=999; 

for(j=lij<=n;j++) 
if (v [j ] ==0) 

170 



{ temp=d[nwchr[k-l]] [j]; 
if ( temp<min) 

ACCEPT: 
} 

} 

{ nwchr[k)=j; 

} 
} 

min=temp; 

goto ACCEPT; 

nwchr[k]=x[O]; 
if(cost[l]<cost[O]) 
nwchr[k)=x[l]; 
v[nwchr(k]]=l; 

for(j=l;j<=n;j++) 
chr[i] [j]=nwchr[j]; 

171 



II SUB-ROUTINE 1.1 
II EDGE-RECOMBINATION CROSSOVER OPERATOR 
void cross_over() 

( 

int i,j,k,1,m,min,count,temp,templ,temp2,index[41]i 
int x[41] [6] ,nwchr[41] ,v[51] ,w[41] ,node[4] i 
for(i=lii<pOPii++) 

( chr [i] [n+l] =li 
chr[i+l] [n+l]::oli 
chr [i] [0] =chr [i] [n] ; 
chr[i+l] [O]=chr[i+l] [n]; 

II CREATING THE EDGE MAP 
for(k=lik<=nik++) 

{ for(j=lij<=n;j++) 
w [j] =0; 

for(j=lij<=5;j++) 
x[k] [j]=Oi 

count=Oi 
for(1=0;1<=li1++) 

{ for(j=l;j<=nij++) 
{ if(chr[i+1] [j]==k) 

{ if(w(chr(i+l] [j-l]]==O) 

} 
} 

{ count+==li 
temp=chr[i+l] [j-l] i 
x[k] [count]=temp; 
w[temp1=li 

} 

if(w[chr[i+1] [j+l]]==O) 
{ count+==li 

temp=chr[i+l] [j+l]; 
x[k] [count]=tempi 
w[temp1=li 

I I EDGE MAP IS CRAETED 

I I BUILDING NEW CHROMOSOMES 
nwchr[l]=v[l]=li IISTARTING NODE 1 II 
for(j=2ij<=n;j++) 

v (j J =0; 
for (m=2im<=nim++) 

{ for(k=l;k<=nik++) 
if(v(k]==O) 

{ for(j=lij<=4ij++) 
if(x[k] [j]==nwchr(m-l]) 

( for(1=j+l;1<=4;1++) 
x [ k] [1-1] ==x [ k] [1] i 

x[k] [4]=0; 
goto DELETE_NEXTi 

DELETE NEXT: 

172 



II COUNTING EDGES 
for(k=1;k<=n;k++) 

{ for(j=1;j<=5;j++) 
if (x [ k) [j) == 0 ) 

{ index[k)=j-l; 
goto NEXT_INDEX; 
} 

NEXT INDEX: 

I I EDGE COUNT ENDS HERE 

II ACCEPTING THE NODE WHICH HAS MINIMUM EDGES 
temp=nwchr[m-1); 
min=5; 
if(index[temp»O) 

for(k=1;k<=index[temp);k++) 
{ templ=x(temp] (k); 

if (index (templ) <min) 
( min=index(temp1); 
temp2=temp1; 
count=O; 
} . 

if (index (temp1J ==min) 
{ node(count)=temp2; 
count+=1; 
} 

if (count>O) 
caunt=rand()%caunt; 

temp=nade[caunt); 
if (v[temp) ==1} 
far(j=l;j<=n;j++) 
if(v[j]==O) 

{ temp=j; 
gata ACCEPT; 

ACCEPT: nwchr[m]=temp; 
v[temp] =1; 

for(j=lij<=nij++) 
chr [iJ (j J =nwchr [j 1 ; 

) 

173 



II SUB-ROUTINE 1.2 
II GENERALIZED N POINT CROSSOVER OPERATOR 

void cross_over() 
( 

int i,j,k,l,nx,point,temp,start,endi 
int xpoint(41),segment[11),nwchr[41),v[51),w[41)i 
for(i=1ii<pOPii++) 

( 
nx=n/5i 

II RANDOMLY GENERATING N CROSSOVER POINT 
xpoint[O)=Oi 
xpoint[nx+1)=ni 
for(j=1ij<=nxij++) 

xpoint[j)=xpoint[j-1)+rand()%3+2i 

I I RANDOMLY ORDERING THE SEGMENTS TO BE TESTED 
segment[O]=Oi 
for(j=1;j<=nx+1ij++) 

W[j)=Oi 
for(j=lij<=nx+1ij++) 

REPEAT: { temp=rand()%(nx+1)+li 
if(w[temp]==l) 
goto REPEATi 

segment[j)=tempi 
w[temp) =1; 

II CREATING THE OFFSPRING 
for(j=lij<=nij++) 

( v [j ) =0 i 
nwchr[j)=Oi 

for(1=lil<=2il++) 
for(j=lij<=nx+1ij++) 

{ point=segment[j)i 
start=xpoint[point-1)+1i 
end=xpoint[point)i 
if«point%2==0 && 1==1) I I (point%2==1 && 1==2» 

( for(k=startik<=endik++) 

else 

( temp=chr[i) [k) i 

if(v[temp)==O && nwchr[k)==O) 
{ nwchr[k)=tempi 

} 
} 

v[temp)=1i 

( for (k=startik<=endik++) 
( temp=chr[i+l) [k) i 
if(v[temp)==O && nwchr[k)==O) 

{ nwchr[k)=tempi 

} 
} 

v[temp)=1; 

174 



II FILLING UP THE GENES WHICH ARE BLANK 
fer(j=l;j<=n;j++) 

if(nwchr[j]==O) 
( fer(k=l;k<=n;k++) 

if (v[k] ==0) 
( nwchr[j]=k; 

v[k]=l; 
gete NEXT; 

NEXT: 

fer(j=l;j<=n;j++) 
chr[i] (j]=nwchr(j]; 

) 

175 



II PROGRAM 2.1 
II TSP WITH PRECEDENCE CONSTRAINTS USING LEXI-SEARCH 
II PATH APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,bias,d[41] [41] i 
void bias_removal()i 

void main () 
{ 

struct time ti 
float t1,t2i 
int i,j,k,1,i1,i2,nres,seed,temp,index,dis,temp1,check,elt i 

int a[15],b[15],idx[15],y[41],p(41],str(41],vv(41]i 
int c[41] [41] ,x[41J [41J ,min,boundi 

printf (" ENTER THE No. OF CITIES AND A SEED :") i 
scanf("%d%d",&n,&seed); 

printf (" ENTER THE No. OF CONSTRAINTS:"); 
scanf("%d",&nres); 

printf (" ENTER THE CONSTRAINTS IN THE FORM A < B ") i 

for(i=1ii<=nres;i++) 
scanf("%d%d",&a(i),&b[i)i 

II ARRANGE THE NODES THAT ARE INVOLVED IN THE RESTRICTIONS 
for (i=1;i<=nresii++) 
for(j=lij<=nresij++) 
if(a[iJ==b[jJ) 

{ nres++i 
a[nres]=a[jJi 
b[nres]=b[i]; 
} 

for(i=1;i<=n;i++) 
for(j=lij<=nij++) 
c[i) [j)=O; 

for(i=lii<=nii++) 
( il=O; 

for(j=lij<=n;j++) 
VV[jJ=Oi 

for(j=l;j<=nres;j++) 
if(i==b[j) && vv[a[j))==O) 

{ il++; 

} 
} 

c [ i) [il] =a [ j] ; 
vv[a[j]]=l; 

I I RANDOM MATRIX GENERATION 
srand«(unsigned)seed); 
for(i=1;i<=nii++) 
for(j=1ij<=n;j++) 
d[iJ (jJ=(rand() %100)+li 

for(i=l;i<=n;i++) 

176 



d[i) [i)=999; 

gettime (&t) ; 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

// MAKE THE DISTANCE BETWEEN b & a TO LARGE ENOUGH 
for(i=l;i<=nres;i++) 

{ d[b[i)) [a[i) )=999; 
d[l) [b[i) )=999; 
d[a[i)) (1)=999; 

/1 CALLING THE BIAS REMOVAL FUNCTION 
bias_removal(); 

/ I THE ALPHABET TABLE 
for(i=l;i<=nii++) 

{ for(j=l;j<=n;j++) 
vv[j)=O; 
for(j~l;j<=nij++) 

{ min=999; 
for(k=lik<=n;k++) 
if ( (vv [ k) == 0) & & (d [ i) [k) <mi n) ) 

( index=k; 

} 
} 

min=d[i) [k); 

x[i) [j)=index; 
vv[index)=l; 

1/ MAIN PROGRAM STARTS HERE 
min=900; 
for(j=l;j<=n;j++) 

{ vv[j)=O; 
y [j) =0; 
p[j):::O; 

dis=O; 
p[l)=vv[l)=i=k=l; 

GS: k=k+l; 
j=y[k)+1; 

NC: temp=p[k); 
templ=x [i) [j) ; 
check=dis+d[p[k-l)) [templ); 
if (check>=rnin) 

goto JO; 
if(vv[templ)==l) 
goto JB; 

for(il=l;il<=n;il++) 
{ if (templ==il) 
for(i2=1;i2<=n;i2++) 

{ if(c[il) [i2)==0) 
goto BND; 

if (vv[ c [il) [i2) ) ==0) 
JB: { j=j+l; 

goto NC; 

177 



II BOUND CALCULATION 
BND: 
baund=O; 
far(il=l;il<=n;il++) 

{ if (vv[il] ==0) 
{ far(i2=1;i2<n/5;i2++) 

{ elt=x[il] [i2]; 
if(elt!=templ)&&«vv[elt]==O) I I (elt==l») 

{ baund+=d[il] [elt]; 
gata next_row; 
} 

} 

elt=x[ilJ [n/5J; 
baund+=d[il] [elt]; 

next row: 

baund+=check; 
if (baund>=rnin) 
gata JB; 

p[kJ=templ; 
if(temp!=O) 

y[k+l]=O; 
y[k]=j; 
vv(templ] =1; 
dis=check; 
i=p[k]; 
if (k==n) 

{ dis+=d (tempI] (1] ; 
if (dis>=min) 
gata PREY; 

far(j=lij<=nij++) 
. str[j]=p[j]; 
rnin=disi 

PREY: dis-=d[templ] [l]i 
dis-=d[p[k-l]] [tempI]; 
vv(templ] =Oi 

JO: k=k-l; 
if(k<=l) 
gata STOP; 

vv(p[k]]=O; 
dis-=d[p [k-l]] [p [k]]; 
j=y[k]+l; 
i=p[k-l]; 
gata NCi 
} 

gata GSi 

STOP: 
gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hundi 
rnin+=bias; 

178 



printf("\n N=%d SEED=%d SOL=%d TIME=%.2f ",n,seed,min,t2-tl)i 

II REMOVING BIAS 
void bias_removal() 

{ int i,j,rmin[41],cmin[41] i 

for(i=lii<=nii++) 
{ rmin[i]=999i 

for(j=lij<=nij++) 
if(d[i] [j]<rmin[i]) 

rmin [ i ] =d [i] [j] i 

for(i=lii<=nii++) 
for(j=lij<=nij++) 

d [i] [j ]-=rmin [i] i 
for(j=lij<=nij++) 

{ cmin[j]=999i 
for(i=lii<=nii++) 

if(d[i] [j]<cmin[j]) 
cmin [j ] =d [i] [j] i 

for(j=lij<=nij++) 
for(i=lii<=nii++) 

d [i] [j ]-=cmin [j ] i 
bias=Oi 
for(i=lii<=nii++) 
bias+=rmin[i]+cmin[i]i 

179 



II PROGRAM 2.2 
II TSP WITH PRECEDENCE CONSTRAINTS USING LEXI-SEARCH 
I I ADJACENCY APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,bias,d[41] [41]; 
void bias_removal-(); 

void main () 
( 

struct time t; 
float t1,t2; 
int i,j,k,1,i1,i2,i3,seed,temp,index,dis,temp1,check,elt,bound; 
int min,iter,v[41] ,ass [41] ,str[41] ,y[41] ,p[41] ,vv[41] ,dist[41) [41]; 
int nres,a[15],b[15],c[41] [41],x[41] [41],z[41] [41]; 

printf(" ENTER THE No. OF CITIES AND A SEED :"); 
scanf("%d%d",&n,&seed); 

printf (" ENTER THE No. OF CONSTRAINTS:"); 
scanf("%d",&nres); 

printf (" ENTER THE CONSTRAINTS IN THE FORM A < B ") ; 
for(i=l;i<=nres;i++) 

scanfl"%d%d",&a[i),&b[i)); 

I I ARRANGE THE NODES THAT ARE INVOLVED IN THE RESTRICTIONS 
for(i=l;i<=nres;i++) 
for(j=l;j<=nres;j++) 
if(a[i]==b[j]) 

{ nres++; 
a [nres ] =a [ j] ; 
b[nres]=b[i]; 
) 

for (i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
c[i] [j]=O; 

for(i=l;i<=n;i++) 
( i1=0; 

for(j=l;j<=n;j++) 
vv[j]=O; 

for(j=l;j<=nres;j++) 
if(i==b[j] && vv[a[j] ]==0) 

{ i1++; 

} 
} 

c [ i] [i1] =a [ j ] ; 
vv[a[j] ]=1; 

II RANDOM MATRIX GENERATION 
srand((unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

180 



d[i) [j)=(rand()%100)+1; 
for(i=l;i<=n;i++) 
d[i) [i)=999; 

gettime(&t); 
tl= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 

II MAKE THE DISTANCE BETWEEN b & a TO LARGE ENOUGH 
for(i=l;i<=nres;i++) 

{ d[b[i)) [a[i] ]=999; 
d[l] [b[i] ]=999; 
d[a[i]] (1)=999; 

II CALLING THE BIAS REMOVAL FUNCTION 
bias_removal(); 

I I THE ALPHABET TABLE 
for(i=l;i<=n;i++) 

{ for(j=l;j<=n;j++) 
vv[j]=O; 

for(j=l;j<=n;j++) 
{ min=999; 

for(k=l;k<=n;k++) 
if((vv[k]==O)&&(d[i] [k]<min)) 

{ index=k; 

} 
} 

min=d[i) [k] ; 

z [i] [j] =index; 
vv [index] =1; 

for (i=1;i<=n;i++) 
for(j=1;j<n;j++) 

for(k=j+1;k<=n;k++) 
i f (d [ i] [j] >d [ i] [k] ) 

{ temp=d [i] [j) ; 
d [ i) [j] =d [ i] [k] ; 
d[i] [k]=temp; 

for(i=1;i<=n;i++) 
for(j=1;j<=n;j++) 

{ di 5 t [ j ) (i] =d [ i ) (j ) ; 
x [j] [i] =z [i] [j ) ; 
} 

I I MAIN PROGRAM STARTS HERE 
min=900; 
for(i=1;i<=n;i++) 

{ vv[i]=O; 
y[i]=O; 
p[i]=O; 
} 

dis=j=i=O; 
GS: j=j+l; 

181 



i=y[jJ+li 
NC: temp=p[j]i 

templ=x[i] [j] i 
check=dis+dist [i] [j J i 
if (check>=min) 

goto JOi 
if(vv[templJ==l) 

JB: {i=i+li 
goto NCi 
} 

II CYCLE CHECKING 
if(templ<j && j!=n) 

{ k=templi 
for(il=liil<jiil++) 

{ if(p[kJ<j) 
k=p[k]i 

BD: 

} 
} 

else 
if(p[k]==j) 
goto JBi 

else 
goto BD; 

II BOUND CALCULATION 
bound=Oi 
for(il=j+liil<=niil++) 

{ for(i2=lii2<nii2++) 
{ elt=x[i2] [il] i 

if((elt!=templ) && (vv[eltl==O» 
{ bound+=dist[i2J [ilJi 

goto next_coli 

next col: 
} 

bound+=checki 
if (bound>=min) 
goto JBi 

p[j]=templi 
if (temp !=O) 

y[j+l]=Oi 
y[j J =ii 
vv[templ] =1 i 
dis=checki 
if (dis>min) 

goto JOi 
if (j==n) 

{ 

ass[l]=li 
for(il=2iil<=niil++) 

{ k=ass[il-1Ji 
ass[ilJ=p[kJi 
veil] =0 i 

lS2 



II CHECKING FOR CONSTRAINTS 
for(i1=1;i1<=n;i1++) 

{ v[ass [ill] =1; 
for(i2=lii2<=n;i2++) 

{ if(c[ass[i1)) [i2)==0) 
goto OK; 

if (v[c [ass [il) ) [i2) ) ==0) 
go to PREY; 

OK: 
} 

min=dis; 
for(i1=1;il<=n;i1++) 
str[i1)=ass[il); 

PREY: dis-=dist[i) [j); 
vv[p[j))=O; 

JO: j=j-1; 
if (j<l) 

goto STOP; 
vv[p[j))=O; 
dis-=dist[y[j]] [j); 
i=y[j)+l; 
goto NC; 
} 

go to GSi 
STOP: 

gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 
min+=bias; 
printf("\n N=%d SEED=%d SOL=%d TIME=%.2f ",n,seed,min,t2-t1)i 

II REMOVING BIAS 
void bias_removal() 

{ int i,j,rmin[41),cmin[41); 
for(i=lii<=nii++) 

{ rmin[i)=9999; 
for(j=l;j<=n;j++) 

if (d [i) [j) <rmin [i) ) 
rmin [i) =d[i) [j) ; 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i) [j)-=rmin[i); 

for(j=l;j<=n;j++) 
{ cmin[j)=9999i 

for(i=l;i<=nii++) 
if(d[i) [j)<cmin[j) 

cmin [j ) =d [i) [j) i 

for(j=l;j<=n;j++) 
for(i=lii<=nii++) 
d[i) [j) -=cmin [j) ; 

bias=O; 
for(i=l;i<=n;i++) 
bias+=rmin[i)+cmin[i); 

183 



II PROGRAM 2.3 
II TSP WITH PRECEDENCE CONSTRAINTS 
II USING SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

void main ( ) 
( 

struct time t; 
int n,i,j,k,1,i1,i2,i3,i4,nres,dis,rnin,idx1,idx2,seed,~emp,elt,bound; 
int c1[1601] ,vv[41] ,v[41] [41] ,d[41] [41] ,x[41] [41] ,streHl ,p[41] ,y[41]; 
int temp1,value1,value2,pop,row[1601],col[1601],c[41] [41],a[15],b[15]; 
float' t1,t2,surn,rnd,py[41]; 
printf(" ENTER THE No. OF CITIES, A SEED AND No. OF sAMPLES :"); 

scanf("%d%d%d",&n,&seed,&pop); 
printf(" ENTER THE No. OF CONSTRAINTS:"); 

scanf("%d",&nres); 
printf (" ENTER THE CONSTRAINTS IN THE FORM A < B ") ; 
for(i=l;i<=nres;i++) 
scanf("%d%d",&a[i],&b[i]); 

I I THE PREDECESSOR TABLE 
for(i=l;i<=nres;i++) 
for \ j =1; j <=n:ces; j -r-r) 
if (a [i] ==b [j ] ) 

{ nres++; 
a[nres]=a[j] ; 
b[nres]=b[i]; 
} 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
c[i] [j]=O; 

for(i=l;i<=n;i++) 
( i1=O; 
for(j=l;j<~n;j++) 

vv[j]=O; 
for(j=l;j<~nres;j++) 

if(i==b[j] && vv[a[j]]==O) 
{ i1++; 

c [ i] [i 1 ] ~a [ j] ; 
vv[a[jl]~l; 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j]=(rand()%lOO)+l; 

for(i=l;i<=n;i++) 
d[i] [i]=999i 

184 



gettime(&t)i 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hundi 

II MAKE THE DISTANCE BETWEEN b & a TO LARGE ENOUGH 
for (i=lii<=nres;i++) 

{ d[b[i]] [a[i] ]=999; 
d[l] [b[i] ]=999; 
d[a[i]] [1]=999; 

I I THE ALPHABET TABLE 
for(i=l;i<=nii++) 

{ for(j=lij<=nij++) 
VV[j]=Oi 

for(j=lij<=n;j++) 
( min=9999; 
for(k=lik<=n;k++) 

if((vvtk)==O)&&(dti) tk)<min» 
{ idx1=k; 

min=d[i] [k]; 
} 

xCi] [j]=idx1i 
vv[idx1]=li 
} 

II ALPHABET TABLE FOR BOUND CALCULATION 
for(i=1;i<=nii++) 
for(j=1ij<=n;j++) 
veil [j] =0; 

for(i=1;i<=n*n;i++) 
( min=9999; 

for(j=1;j<=nij++) 
for(k=1;k<=n;k++) 
if«v[j] [k]==O)&&(d[j] [k]<min» 
{ idx1=j; 

} 

idx2=k; 
min=d[j] [k] i 

row[i]=idx1; 
col[i]=idx2i 
v[idx1] [idx2] =1; 

c1[O]=O; 
for(i=lii<=n*n;i++) 

{ el t=d [ row [i] ] [col [i) ] ; 
if (elt<999) 
c1[i]=c1[i-1]+elt; 

II MAIN PROGRAM 
min=9999; 
for(i=1;i<=pop;i++) 

{ for(j=l;j<=nij++) 
{ vv[j]=O; 
str[j]=O; 
} 

185 



dis=O; 
str( 1] =vv( 1] =1; 
for(j=2;j<=nij++) 

{ 1==0; 
for(k=l;k<=n;k++) 

y(k]==O; 
H=n-j+li 
temp=str[j-l]; 
for(k==l;k<=n;k++) 

{ e1t=x[temp] [k]; 
if( (vv[e1t]==0) && (d[temp] [e1t]<999)) 

{ for(i2=I;i2<=n;i2++) 
{ if(c[e1t] [i2]===0) 

goto NEXTli 
if(vv(c[e1t] [i2] ]==0) 

} 
} 

goto NEXT2; 

goto NEXT2; 
NEXTl: 1=1+1; 

NEXT2: 
} 

y[1]=e1t; 
if(1)H/I0.0+1) 

go to NEXT3; 

NEXT3: py[O]=O; 
sum=1*(1+1)/2.0; 
for(k=lik<=lik++) 
py[k]=py[k-l]+ (l-k+l)/SUIni 

i3=0; 
REPT: rnd=(rand()%100)*O.01; 

i3++; 
if(i3>1) 
goto OUT; 

for(k=l;k<=l;k++) 
if(rnd>=py[k-l] && rnd<py[k]) 

{ templ=y[k]; 
goto EXIT; 

} 
EXIT: dis+=d[temp] [tempI]; 

if (dis>=min) 
goto REPT; 

II BOUND CALCULATION 
bound=O; 
for(il=l;il<=10;il++) 

{ if(vv[row[il]]==O) 
{ if(vv[co1[il])==O II co1[il)==I) 
bound=cl[j+il-11-cl[il-11i 

goto next row; 

} 
bound=cl[j+l0]-cl[10]; 
next row: 
bound+=dis; 
if (bound>=rnin) 
goto REPT; 

186 



OUT: 
} 

str[j]=temp1; 
vv[temp1]=1; 
} 

dis+=d[str[n]] [1]; 
if(dis<min) 

{ min=dis; 
for(j=l;j<=n;j++) 
p[j]=str[j] ; 

} 

II MODIFIED 2-0PT MOVE 
p[n+1]=1; 
for(j=2;j<n-1;j++) 

for(k=j+2;k<=n;k++) 
{ temp=O; 

for(i=l;i<=n res;i++) 
if(p[j]==a[i] && p[k]==b[i]) 

temp=l; 
if (temp==O) 

{ value 1 =d [p [ j -1]] [p [ j ] ] +d [p [ j ] ] [p [ j + 1] ] +d [p [k-1] ] [p [ k] ] +d (p ( k]] [p ( k+ 1] ] ; 
value2=d(p(j-1]] [p(k]]+d(p[k]] (p[j+1]]+d(p(k-l]] (p[j]]+d(p(j]] (p(k+1]]; 
if (value2<value1) 

{ temp=p(k]; 
p (k] =p (j] ; 
p(j]=temp; 

min=O; 
for(j=l;j<=n;j++) 
min+=d(p(j]] (P[j+1]]; 

gettime(&t) ; 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 
printf("\n N=%d SEED=%d SOL=%d TIME=%.2f",n,seed,min,t2-=-tl); 

187 



II PROGRAM 2.4 
II TSP WITH PRECEDENCE CONSTRAINTS 
II USING HYBRID GENETIC ALGORITHM 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,nres,pop,bias,a[lS] ,b[lS] ,dis,c[41] [41] ,chr[4S1] [41] ,d[41] [41] i 

void bias_removal(); 
void create(); 
void objective(int); 
void repro_duction()i 
void cross_over(float)i 
void mutation(float); 
void seq_search(); 

void main () 
( 

struct time ti 
float pcr,pmt,t1,t2i 
int i,j,i1,min,nres,str[72],vv[72J,seed,iter,geni 

printf("ENTER THE No. OF CITY and A SEED RESPECTIVELY: ")i 

scanf("%d%d",&n,&seed); 
printf("ENTER No.OF CONSTRAINTS AND POPULATION SIZE RESPECTIVELY:"); 
scanf("%d%d",&nres,&pop); 
printf("ENTER THE PROB. OF CROSSOVER AND MUTATION RESPECTIVELY: "); 

scanf ("%f%f", &pcr, &pmt) i 

printf(" ENTER THE CONSTRAINTS IN THE FORM A < B : "); 
for(i=l;i<=nres;i++) 
scanf("%d%d",&a[iJ,&b(ij); 

. / / ARRANGE THE NODES THAT ARE INVOLVED IN THE RESTRICTIONS 
for(i=lii<=nresii++) 
for(j=l;j<=nres;j++) 
if(a[iJ==b[j]) 

{ nres++; 
a[nres]=a[j]; 
b[nres]=b[i]; 
} 

for(i=l;i<=n;i++) 
for(j=1ij<=n;j++) 
c[i] [j)=Oi 

for(i=lii<=nii++) 
{ i1=0; 

for(j=lij<=nij++) 
vv[j]=O; 
for(j=l;j<=nres;j++) 

if(i==b[j] && vv[a[j] ]==0) 
{ i1++; 

c [ i] [i 1] =a [ j ] ; 
vv[a[j]]=1; 

188 



II RANDOM MATRIX GENERATION 
srand«unsigned)seed) i 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

d [i) [j] = ( rand ( ) %1 00) + 1 ; 
for(i=l;i<=n;i++) 
d[i] [i]=999; 

gettime(&t); 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 

II MAKE THE DISTANCE BETWEEN b & a TO LARGE ENOUGH 
for(i=l;i<=nres;i++) 

d [b'[i] ] [a [i) ] =999; 

II CALLING BIAS REMOVAL FUNCTION 
bias_removal(); 

II TERMINATING CRITERION 
min=d [1] [1] ; 
create(); 
for(i=l;i<=pop;i++) 

( objective(i); 
if (dis<min) 

( min=dis; 
for(j=l;j<=n;j++) 
str[j]=chr[i] [j]; 

} 
} 

for (gen=1;gen<=4*n;gen++) 
( repro_duction(); 

cross_over (pcr) ; 
mutation (pmt) ; 
seq_search(); 
for(i=l;i<=pop;i++) 

{ objective (i) ; 
if (dis<min) 
min=dis; 

} 
} 

min+=bias; 
gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti hund; 

printf("\n N=%d Best Solution=%d Time=%.2f \n",n,min,t2-t1); 

II REMOVING BIAS 
void bias_removal() 

( int i,j,rmin[41],cmin[41]; 
for(i=l;i<=nii++) 

( rmin [i] =9999; 
for(j=l;j<=n;j++) 

if(d[i] [j]<rmin[i]) 
rmin [i) =d [i) [j] ; 

189 



for(i=lii<=nii++) 
for(j=lij<=nij++) 
d[i] [j]-=rmin[i] i 

for(j=lij<=nij++) 
( cmin[j]=9999; 

for(i=lii<=nii++) 
if(d[i] [j]<cmin[j]) 

cmin [j ] =d [i] [j] i 

for(j=lij<=nij++) 
for(i=lii<=nii++) 

d [i] [j] -=cmin [ j ] i 

bias=Oi 
for(i=l;i<=n;i++) 
bias+=rmin[i]+cmin[i]i 

II INITIALIZE THE POPULATION 
void create() 

( int i,j,i1,i2,elt,count,temp,vv[41]i 
for (i=l;i<=pop;i++) 

( for(j=lij<=nij++) 
{ vv[j] =Oi 
chr [i] [j] =0 i 
} 

chr[i] [1]=1; 
vv[l]=l; 
for(j=2;j<=n;j++) 

RPT: (elt=rand() % (n-j+1) +li 
count=O; 
for(i1=2ii1<=n;i1++) 
if (vv [i1] ==0) 

( count++; 
if (count==elt) 

{ temp=i1; 
goto rXXi 
} 

rxx: for(i1=lii1<=nii1++) 
( if (temp==i1) 

for(i2=lii2<=nii2++) 
( if(c[i1] [i2]==0) 
goto ACCEPTi 

if (vv [c [il] [i2] ) ==0) 
goto RPTi 

} 

ACCEPT: chr[i] [j]=tempi 
vv[temp] =1; 
} 

I I CALCULATE THE VALUE OF THE OBJECTIVE FUNCTION 
void objective(int i) 

{ int j; 

190 



dis=O; 
for (j=l; j<n; j++) 
dis+=d[chr[i] [j]] [chr[i] [j+1]]; 

dis+=d[chr[i] [n]] [1]; 

II STOCHASTIC REMAINDER SELECTION ~THOD 
void repro duction() 

( float fit[451],random,avg,expect,sum=0,frac[451]; 
int i,j,k,assign,select,choice(451]i 
for(i=lii<=pOPii++) 

{ objective(i)i 

} 

fit [i) =1. 0/ (float) (dis+l) i 

surn+=fit [i] i 

avg=surn/pOpi 
k=Oi 
for(i=l;i<=pop;i++) 

{ expect=fit[i]/avgi 
assign=expecti 
frac[i]=expect-assigni 
while(assign>O) 

{ k=k+li 
assign-=li 
choice[k]=ii 

} 
} 

i=Oi 
while (k<pop) 

{ i=i+li 
if(i>pop) 

i=li 
if(frac[i]>O.O) 

{ random=(rand()%1000)*0.001; 
if(frac[i]>random) 

} 

{ k=k+li 
choice[k]=ii 
frac[i]-=1.0i 

} 

for(i=lii<=pOPii++) 
{ select=choice[i]i 

for(j=lij<=n;j++) 
chr[i] [j]=chr[select] [j]; 

} 

II Cl-CROSSOVER OPERATION 
void cross over(float pc) 

{ int i,J,k,m,cross,rnin,cost,v1[41],~2[41],x,y,nwchr[21] [41]; 
float random; 
for(i=lii<pOPii++) 

{ random=(rand()%100)*0.01i 
if (random<pc) 

{ for (m=lim<=20im=rn+2) 
( for(j=lij<=nij++) 

191 



{ vl [j 1 =0; 
v2[j]=O; 
} 

cross=(rand()%(n-2»+2; 
for(j=l;j<cross;j++) 

{ x=chr [i] [j] ; 
y=chr[i+l] [j]; 
nwchr [ml [j] =x; 
nwchr[m+l] [j]=y; 
vl[x]=l; 
v2[y]=1; 
} 

k=O; 
for(j=cross;j<=n;j++) 

readl: {k=k+l; 
x=chr[i+l] [k]; 
i£{vl[x]==l) 

goto readl; 
vl[x]=l; 
nwchr [m] [j] =x; 
} 

k=O; 
for(j=cross;j<=n;j++) 

read2: {k=k+l; 
y=chr[i] [k]; 
if(v2[y]==l) 

goto read2; 
v2[y)=1; 
nwchr[m+l] [j]=y; 
} 

min=9999; 
for (m=1;m<=20;m++) 

{ cost=O; 
for(j=1;j<n;j++) 

cost+=d[nwchr[m] [j]] [nwchr[m] [j+l]]; 
cost+=d[nwchr[m] [n]] [1]; 
if (cost<min) 

{ min=cost; 
for(j=l;j<=n;j++) 
chr[i) [j)=nwchr[m) [j); 

} 

} 

} 

II BITWISE MUTATION OPERATION 
void mutation (float pm) 

{ int temp,i,i1,j,rv[41]; 
float random; 
for(i=l;i<=pop;i++) 
for(j=2;j<=n;j++) 

{ for(il=l;il<=nres;il++) 
rv[b[il))=l; 

if (j<n) 
{ random=(rand()%lOO)*O.Ol; 

192 



if (random<pm) 
{ if( (rv[chr[i] [j]]==l) II (rv[chr[i] [j+1]]==l» 
goto next; 

temp=chr[i] [j]; 
chr[i] [j]=chr[i] [j+1]; 
chr[i] [j+1]=temp; 

next: 
} 

II SEQUENTIAL CONSTRUCTIVE SEARCH APPROACH 
void seq search() 

{ int i,j,k,1,m,x[3] ,v[41] ,p[3] [41] ,nwchr[41]; 
int i1,i2,temp; 
long min,cost[3]; 
for(i=l;i<pop;i++) 

{ for(j=l;j<=n;j++) 
{ p [1] [j] =chr [i] [j] ; 

p[2] [j]=chr[i+1] [j]; 
v[j]=O; 

nwchr[l]=l; 
v[l]=l; 
for(k=2;k<=n;k++) 

{ for(1=1;1<=2;1++) 
{ for(j=l;j<=n;j++) 

} 

{ if(p[l] [j]==nwchr[k-1]) 
{ for (m=l;m<=n;m++) 

) 
} 

next: 

{ if(j+m>n) 
{ cost[1]=999; 
x [ 1] =p [1] [j] ; 
goto next; 
} 

if (v[p [1] [j+m]] ==0) 
{ cost[l]=d[p[l] [j]] [p[l] [j+m]]; 
x [ 1] =p [1] [j +m] ; 
for(i1=1;i1<=n;i1++) 

{ if(x[1]==i1) 
for(i2=1;i2<=n;i2++) 

{ if (c [il] [i2] ==0) 

} 

} 
RPT: 

goto next; 
if (v [c [il] [i2]] ==0) 
gata RPT; 
} 

if( (cast[1]==999) && (cost[2]==999» 
far(j=l;j<=n;j++) 

{ if (v [p [1] [j]] ==0) 

193 



{ temp=p(l] (j]; 
for(il=l;il<=n;il++) 

{ if (temp==il) 
for(i2=1;i2<=n;i2++) 

{ if ( c ( i 1] (i 2] == 0 ) 
goto ACCEPT; 

if(v[c(il] [i2))==O) 
goto RPT1; 

} 

} 

RPT1: 

} 

temp=x(l); 
if(cost[2]<cost[1]} 

temp=x[2); 
ACCEPT: nwchr[k)=temp; 

v(temp1=1; 

for(k=l;k<=n;k++) 
chr[i) [k)=nwchr[k); 

} 

194 



II PROGRAM 3.1 
II TSP WITH FIXED POSITION CONSTRAINTS USING LEXI-SEARCH 
II PATH APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,bias,d[41] [41]; 
void bias_removal(); 

void main ( ) 
( 

struct time t; 
float t1,t2; 
int i,j,k,1,i1,i2,i3,i4,i5,nres,seed,temp,index,dis,temp1,check,elt; 
int p[21] ,q[21] ,r[41] ,str[41] ,vv[41] ,y[41]; 
int x[41] [41] ,bv[41] ,pv[41] ,min,bound,iter; 

printf(" ENTER THE No. OF CITIES AND A SEED RESPECTIVELY"); 
scanf("%d%d",&n,&seed); 

printf(" ENTER THE No. OF CONSTRAINTS: "); 
scanf("%d",&nres); 

printf(" ENTER THE PRESCRIBED POSITIONS: "); 
for(i=l;i<=nres;i++) 
scanf("%d",&p[i]); 

printf(" ENTER THE CORRESPONDING NODES "); 
for(i=l;i<=nres;i++) 
scanf("%d",&q[i]) ; 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j]=(rand()%100)+1; 

for(i=l;i<=n;i++) 
d [i] [i] =999; 

II MAKE THE DISTANCE BETWEEN TWO POSSIBLE NODES TO LARGE ENOUGH 
for(i=O;i<nres;i++) 
for(j=i+1;j<=nres;j++) 
if(p[j]-p[i]>=2) 

{ d[q[i]][q[j]]=999i 
if(q[j]-q[i]==n-1) 
goto DONOT; 

d[q[j]] [q[i] ]=999; 
DONOT: 
) 

gettime(&t); 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 

II CALLING BIAS REMOVAL FUNCTION 
bias_removal(); 

I I THE ALPHABET TABLE 
for(i=l;i<=n;i++) 

195 



{ for(j=l;j<=n;j++) 
vv[j]=O; 

for(j=l;j<=n;j++) 
{ rnin=999; 

for(k=l;k<=n;k++) 
iff (vvlkJ==O) && (dliJ IkJ<rnin» 

{ index=k; 

} 

} 

rnin=d[i] [k]; 
} 

x [i] [j] =index; 
vv[index] =1; 

II MAIN PROGRAM STARTS HERE 
for(j=l;j<=n+l;j++) 

{ vv[j] =0; 
y[j]=O; 
r [j ] =0; 
bv[j]=O; 
pv[j]=O; 

rnin=900; 
for(i=l;i<=nres;i++) 

( vv[q[i]]=l; 
pv[p[i]+l]=l; 

dis=O; 
i=k=r[lJ=vv[lJ=bv[lJ=l; 
p[OJ=O; 
p[nres+l]=n; 
q[nres+1J=1; 
for(il=O;il<=nres;il++) 

{ for(i2=p[il]+2;i2<=p[il+l]+1;i2++) 
{ j=y[i2]+1; 

NC: i5=O; 
if(i2==p[il+l]+1) 

{ templ=q [i1+1] ; 
temp=templ; 
check=dis+d[r[i2-1] J [temp1J"; 
if (check>=rnin) 

go to JO; 
if(i2==n+l) 

{ min=check; 
for(i3=1;i3<=n;i3++) 

str[i3]=r[i3] ; 
goto JO; 

i5=1; 
goto BOUND; 

temp=r[i2]; 
templ=x[i] [j]; 
check=dis+d[r[i2-1]] [templJ; 
if (check>=rnin) 

JO: { i2--; 
if(i2<=p[il]+1) 

196 



il--i 
if (i2<=1) 
goto STOP; 

dis-=d [r(i2-1] ] [r [i2] ) i 
bv[r(i2]]=Oi 
vv[r[i2]]=O; 
if(pv[i2]==1) 

{ vv(r(i2]]=1; 
goto JO; 

} 
j=y[i2]+1; 
i=r[i2-1]i 
goto NCi 

if(vv(templ]==l) 
JB: { j=j+1; 

if(j>=n I I is==l} 
goto JO; 

goto NCi 

BOUND: bound=O; 
for(i3=1;i3<=nii3++) 

( if(bv[i3]==O) 
( for(i4=lii4<6;i4++) 

{ elt=x[i3] (i4]; 
if ( (el t! =templ) && ( (bv(elt] ==0) I I (elt==l) l ) 

{ bound+=d[i3] felt]; 

} 

goto next_row; 

elt=x[i3] [6]; 
bound+=d(i3] (elt]i 

next row: 

elt=boundi 
bound+=check; 
if (bound>=minl 
goto JB; 

r[i2)=templi 
if (temp !=O) 

y[i2+1]=O; 
y[i2]=ji 
vv[r(i2] J=li 
bv(r[i2]]=li 
dis=checki 
i=r(i2Ji 
} 

STOP: 
gettime(&t)i 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 
rnin+=biasi 
printf("\n N=%d SEED=%d SOL=%d TIME=%.2f",n,seed,min,t2-tl}i 

197 



II REMOVING BIAS 
void bias_rernoval() 

{ int i,j,rrnin[41],crnin[41]i 
for(i=lii<=nii++) 

{ rrnin[i]=9999i 
for(j=lij<=nij++) 

if(d[i] [j]<rrnin[i]) 
rrnin[i]=d[i] [j] i 

. } 

for(i=lii<=nii++) 
for(j=l;j<=n;j++) 

d (i] [j] -=rrnin (i] ; 
for(j=l;j<=nij++) 

{ crnin(j]=9999; 
for(i=l;i<=n;i++) 

if(d(i] [j]<crnin(j]) 
crnin [j ] =d [i] (j] i 

for(j=lij<=nij++) 
for(i=l;i<=nii++) 

d [i] (j] -=crnin [j ] i 
bias=Oi 
for(i=lii<=n;i++) 
bias+=rrnin[i]+crnin[i]i 

198 



II PROGRAM 3.2 
II TSP WITH FIXED POSITION CONSTRAINTS 
II USING SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

void main ( ) 
( 

struct time t; 
int nl,n,iter,i,j,k,l,i1,i2,i3,i4,dis,min,idx1,idx2,seed,lex, temp; 
int elt,bound,c1[1601] ,vv[41] ,v[41] [41] ,d[41] [41] ,x[41] [41] ,str[41]; 
int r[41],y[41],temp1,row[1601],col[1601]; 
int nres,c[41] [41] ,p[lS] ,q[lS] ,bv[41] ,pop,value1,value2; 
float t1,t2,surn,rnd,py[41]; 

printf(" ENTER No.OF CITIES,A SEED AND No.OF SAMPLES RESPECTIVELY:"); 
scanf("%d%d%d",&n,&seed,&pop); 

printf(" ENTER THE No. OF CONSTRAINTS: "); 
scanf("%d",&nres); 

printf(" ENTER THE PRESCRIBED POSITIONS: "); 
for(i=l;i<=nres;i++) 
scanf ("%d", &p [i] ) ; 

printf(" ENTER THE CORRESPONDING NODES "); 
for(i=l;i<=nres;i++) 
scanf("%d",&q[i]) ; 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j]=(rand()%100)+1; 

for(i=l;i<=n;i++) 
d[i] [i]=999; 

gettime(&t); 
tl= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 

II MAKE THE DISTANCE BETWEEN TWO POSSIBLE NODES TO LARGE ENOUGH 
for(i=O;i<nres;i++) 
for(j=i+l;j<=nres;j++) 
if(p[j]-p[i]>=2) 

( d[q[i]][q[j]]=999; 
if(q[j]-q[i]==n-l) 
goto DONOT; 

d[q[j]] [q[i] ]=999; 
DONOT: 
} 

I I THE ALPHABET TABLE 
for(i=l;i<=n;i++) 

( for(j=l;j<=n;j++) 
vv[j]=O; 

for(j=l;j<=n;j++) 
{ min=9999; 

for(k=l;k<=n;k++) 

199 



} 

} 

if«vv(k]==O)&&(d(i] (k]<min)) 
{ idxl=k; 

min=d[i] [k]; 

x [i] [j] =idxl; 
vv[idxl]=l; 

II ALPHABET TABLE FOR BOUND CALCULATION 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
v[i] [j]=O; 

for(i=l;i<=n*n;i++) 
( min=9999; 

} 

for(j=l;j<=n;j++) 
for (k=l;k<=n;k++) 
if «v[j] (k] ==0) && (d[j] [k] <min) ) 
{ idx1=j; 

idx2=k; 
min=d [j] [k] ; 

row[i]=idx1i 
col[i]=idx2i 
v[idx1] [idx2]=1; 

c1[0]=Oi 
for(i=lii<=n*n;i++) 

( el t=d [row [i] ] [col [i] ] ; 
if (elt<999) 
cl[i]=cl[i-l]+elt; 

I I MAIN PROGRAM 
min=9999; 

for(i=lii<=pop;i++) 
( for(j=lij<=n;j++) 

( vv [j] =0; 
str [j] =Oi 
bv[j]==O; 

for(i1=lii1<==nresii1++) 
vv[q[il]] =1; 

dis=Oi 
str[l]=vv[l]=bv[l]=l; 
for(j=2ij<=nij++) 

( temp=str(j-l]; 
for (i1==lii1<=nresii1++) 
if ( j ==p [ i 1] + 1 ) 

{ temp1=q [il] ; 
dis+=d[temp] [temp1]; 
if (dis>=min) 

go to OUT; 
i3=-2; 
goto BND; 
} 

1=0; 

200 



for(k=l;k<=n;k++) 
y[k]=O; 

i4=n-j+l; 
for(k=l;k<=n;k++) 

{ elt=x [temp] [k] ; 
H( (vv[elt]==O) && (d[temp] [e1t]<999)) 

( 1=1+1; 

} 

} 

y[l]=e1t; 
if(1)i4110.0+1) 
goto NEXT; 

NEXT: py[ 0] =0; 
sum=1*(1+1)/2.0; 
for(k=l;k<=l;k++) 
py[k]=py[k-1]+ (1-k+1)/sum; 

i3=0; 
REPT: i3++; 

if(i3>1 I I i3<0) 
goto OUT; 

rnd=(rand()%lOO)*O.Ol; 
for(k=l;k<=l;k++) 
if(rnd>=py[k-1] && rnd<py[k]) 

{ temp1=y[k]; 
goto EXIT; 
} 

EXIT: dis+=d[temp] (temp1]; 
if (dis>=min) 

goto REPT; 

II BOUND CALCULATION 
BND: bound=O; 

for(i1=1;i1<=10;i1++) 
( if(bv[row[i1]]==0) 

( if(bv[col[i1]]==0 I I col[i1]==1) 
bound=c1[j+i1-1]-c1[i1-1]; 

goto next_row; 
} 

} 

bound=c1[j+10]-c1[10]; 
next row: 
bound+=dis; 
if (bound>=min) 

goto REPT; 
str[j]=temp1; 
vv [temp1] =1; 
bv[temp1]=1; 

di 5 +=d [ 5 t r [n] ] [1] ; 
if (dis<min) 

( min=dis; 
for(j=l;j<=nij++) 
r[j]=str[j] ; 

OUT: 
} 

201 



II MODIFIED 2-0PT MOVE 
r[n+l]=li 
for(j=2ij<n-1;j++) 

for(k=j+2;k<=n;k++) 
( temp==Oi 

for(i=l;i<=nresii++) 
if(j===p[i]+l I I k==p[i]+l) 

temp=l; 
if (temp==O) 

{value1=d [r [j -1] ] [r [j J ] +d [r [j JJ [r [j +1] J +d [r[ k-1J ] [r [kJJ +d [r[ kJJ [r [k+lJJ i 
value2=d[r[j-l]] (r(k] ]+d(r(k]] (r(j+1J ]+d(r[k-l]] (r[j]] +d(r[j]] [r(k+l]]; 
if (value2<value1) 

( temp=r[k]; 
r[k]=r[j] ; 
r[j]=tempi 

min=Oi 
for(j=lij<=nij++) 
min+=d[r[j]] [r[j+1]] i 

gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 

printf("\n N=%d SEED=%d SOL=%d TIME=%.2f",n,seed,min,t2-t1); 

202 



II PROGRAM 3.3 
II TSP WITH POSITION CONSTRAINTS 
II USING HYBRID GENETIC ALGORITHM 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,nres,pop,dis,bias,p[15] ,q[15] ,chr[501] [41] ,d[41] [41]; 

void bias_removal(); 
void create(); 
void objective(int); 
void repro_duction(); 
void cross_over(float); 
void mutation(float); 
void seq_search(); 

void main () 
( 

struct time t; 
float pcr,pmt,t1,t2; 
int i,j,min,seed,gen,str[72],vv[72]; 

printf(" ENTER THE No. OF CITIES AND A SEED RESPECTIVELY"); 
scanf("%d%d",&n,&seed); 

printf(" ENTER THE No. OF CONSTRAINTS: "); 
scanf("%d",&nres); 

printf(" ENTER THE PRESCRIBED POSITIONS: "); 
for(i=l;i<=nres;i++) 
scanf("%d",&p[i]); 

printf(" ENTER THE CORRESPONDING NODES "); 
for(i=l;i<=nres;i++) 
scanf("%d",&q[i]); 

printf(" ENTER POP_SIZE,PROB.OF CROSSOVER AND MUTATION RESPECTIVELY:"); 
scanf("%d%f%f",&pop,&pcr,&pmt); 

II RANDOM MATRIX GENERATION 
srand((unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j]=(rand()%lOO)+l; 

for(i=l;i<=n;i++) 
d[i] [i]=999; 

gettime(&t); 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

II CALLING BIAS REMOVAL FUNCTION 
bias_removal(); 

II TERMINATING CRITERION 
min=d[l] [1]; 
create(); 
for(i=l;i<=pop;i++) 

( objective (i) ; 

203 



if (dis<min) 
{ min=disi 

for(j=lij<=nij++) 
str[j)=chr[i) [j) i 

} 
} 

for (gen=1;gen<=4*nigen++) 
repro_duction()i 
cross_over(pcr)i 
mutation(pmt)i 
seq_search()i 
for(i=lii<=pOPii++) 

{ objective (i) i 

if (dis<min) 

} 
} 

min=disi 

min+=biasi 
gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hundi 

printf("\nN=%d Best Solution=%d Time=%.2f ",n,min,t2-tl)i 

II REMOVING BIAS 
void bias removal() 

{ int i,j,rrnin[41) ,crnin[41) i 

for(i=lii<=nii++) 
{ rmin [i) =9999; 

for(j=l;j<=nij++) 
if(d[i) [j)<rmin[i)) 

rrnin [i) =d [i) [j) i 

for(i=lii<=n;i++) 
for(j=l;j<=nij++) 
d[i] [j]-=rrnin[i]; 

for(j=l;j<=nij++) 
{ crnin[j]=9999i 

for(i=lii<=nii++) 
if(d[i) [j)<cmin[j)) 

cmin [j ) =d [i) [j) i 

for(j=lij<=nij++) 
for(i=lii<=nii++) 
d[i) [j)-=crnin[j) i 

bias=Oi 
for(i=lii<=nii++) 
bias+=rrnin[i)+crnin[i)i 

II INITIALIZE THE POPULATION 
void create() 

{ int m,i,j,k,elt,count,vv[41)i 
for(i=lii<=pOPii++) 

{ for(j=lij<=nij++) 
VV[j)=Oi 

204 



for(j=l;j<=nresij++) 
vv[q[j] ]=1; 

chr[i] [1]=1; 
vv[l]=l; 
rn=n-nres-1; 
for(j=2;j<=n;j++) 

{ for(k=l;k<=nresik++) 
i f ( j ==p [ k] + 1 ) 

{ chr[i] [j]=q[k] i 

goto next2i 

elt=(rand()%rn)+li 
count=Oi 
for(k=2;k<=n;k++) 
if(vv[k]==O) 

{ count++; 
if (count==elt) 

{ chr[i] [j]=k; 
goto next1i 
} 

nextl: 
vv [chr [i) [j] ] =1; 
rn--i 
next2: 
} 

// CALCULATE THE VALUE OF THE OBJECTIVE FUNCTION 
void objective(int i) 

{ int j; 
dis=O; 
for(j=lij<n;j++) 
dis+=d[chr[i] [j]] [chr[i] [j+1J]; 

dis+=d[chr[i] en]] [1]; 

/1 STOCHASTIC REMAINDER SELECTION METHOD 
void repro_duction() 

{ float fit[501],randorn,avg,expect,surn=O,frac[501]; 
int i,j,k,assign,select,choice[501]; 
for(i=l;i<=pop;i++) 

{ fit[i]=O; 
objective (i); 
if (dis>O) 

fit[i]=1.0/(float)disi 
surn+=fit[i]i 

avg=surn/poPi 
k=Oi 
for(i=l;i<=pop;i++) 

{ expect=fit[i]/avg; 
assign=expecti 
frac[i]=expect-assigni 
while (assign>O) 

{ k=k+1; 

205 



} 

} 

i=O; 

assign-=l; 
choice[k)=i; 

while (k<pop) 
{ i=i+l; 

if(i>pop) 
i=l; 
if(frac[i»O.O) 

{ random=(rand(}%1000)*0.001; 
if(frac[i»random) 

} 

{ k=k+l; 
choice[k)=i; 
frac[i)-=l.O; 

} 

for(i=l;i<=pop;i++) 
{ select=choice[i); 

for(j=l;j<=n;j++) 
chr[i] [j]=chr[select) [j]; 

} 

II Cl-CROSSOVER OPERATION 
void cross_over(float pc) 

{ int i,j,k,1,m,cross,min,cost,vl[41],v2[41),x,y,nwchr[211 [41); 
float random; 
for(i=lii<pOPii++) 

{ random={rand{}%100)*0.01i 
if (random<pc) 

{ for (m=1;m<=10im=m+2) 
{ for(j=lij<=nij++) 

( vI [j) =0 i 
v2 [j 1 =0 i 
} 

cross=(rand()%(n-2»+2i 
for(j=lij<crossij++) 

( x=chr [i) [j 1 ; 
y=chr[i+ll [j) i 
nwchr [m] [j 1 =x; 
nwchr[m+l] [j]=Yi 
vl[x)=l; 
v2[y)=1; 
} 

k=O; 
for(j=cross;j<=n;j++) 

readl: {for(l=lil<=nres;l++) 
i f ( j ==p [ 1 ] + 1 ) 

{ x=q [1] ; 
goto nextl; 

k=k+l; 
x=chr[i+ll [k]; 
if(vl[x)==l) 

goto readl; 

206 



nextl: vl[x)=l; 
nwchr[m) [j) =x; 
} 

k=O; 
for(j=cross;j<=n;j++) 

read2: (for(l=l;l<=nres;l++) 
if(j==p[l)+l) 

( y=q[l); 
goto next2; 

} 

k=k+l; 
y=chr[i) [k); 
if(v2[y)==1) 
goto read2; 

next2: v2[y)=1; 
nwchr [m+l) [j) =y; 
} 

min=9999; 
for (m=l;m<=lO;m++) 

( cost=O; 
for(j=l;j<n;j++) 

cost+=d[nwchr[m) [j)) [nwchr[m) [j+l)); 
cost+=d[nwchr[m) [n)) (1); 
if (cost<min) 

( min=cost; 
for(j=lij<=n;j++) 
chr[i) [j)=nwchr[m) [j); 

} 
} 

} 

II BITWISE MUTATION OPERATION 
void mutation(float pm) 

( int temp,i,il,j,rv[4l); 
float random; 
for(i=l;i<=pop;i++) 
for(j=2;j<n;j++) 

{ random=(rand()%lOO)*O.Ol; 
if (random<pm) 

( for(il=l;il<=nres;il++) 
if(j==p[il)+l I I j+l==p[il)+l) 

goto next; 
temp=chr [i) [j) ; 
chr [i) [j) =chr [i) [j +1) ; 
chrfi) fj+l)=tempi 

next: 

II SEQUENTIAL CONSTRUCTIVE SEARCH APPROACH 
void seq_search() 

( int i,j,k,1,il,i2,m,min,x(3) ,cost[3) ,v[4l) ,r[3) (41) ,nwchr[4l); 

207 



for(i=lii<pOPii++) 
{ for(j=lij<=nij++) 

{ r [ 1] [j] =chr [ i] [j] i 
r [2] [j] =chr [i + 1] [j] i 
V[j]=Oi 

for(i1=lii1<=nreSii1++) 
v[q[il]] =li 
nwchr[l]=li 
v[l]=li 
for(k=2ik<=nik++) 

{ for(i1=lii1<=nresii1++) 
if(k==p[il]+1) 

{ nwchr[k]=q[i1]i 
go to FIXEDi 

for(1=lil<=2il++) 
( for(j=l;j<=n;j++) 

{ if(r[l] [j]==nwchr[k-1]) 
{ for (m=lim<nim++) 

} 

} 

next: 

{ if (j+m>n) 
{ cost[1]=9999i 
x[l]=r[l] [j] i 
goto nexti 
} 

if(v[r[l] [j+m] ]==0) 
{ cos t [1] =d [ r [1] [j] ] [r [1] [j +m] ] i 
x [1] =r [1] [j+m] i 

goto nexti 
} 

nwchr[k]=x[l]i 
if(cost[2]<cost[1]) 
nwchr[k]=x[2]i 

if(v[nwchr[k]]==l) 
for(j=lij<=nij++} 
if (v[j] ==0) 

{ nwchr[k]=ji 
goto FIXEDi 

FIXED: v[nwchr[k]]=li 
} 

for(k=lik<=nik++) 
chr[i] [k]=nwchr[k]i 

} 

208 



II PROGRAM 4.1 
II TSP WITH FIXED POSITION & PRECEDENCE CONSTRAINTS 
II USING LEXI-SEARCH PATH APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,bias,d[41] [41]; 
void bias_removal(); 

void main ( ) 
{ 

struct time t; 
float 't1,t2; 
int i,j,k,l,i1,i2,i3,i4,i5,mres,nres,pres,seed,temp,index,dis; 
int temp1,check,elt,rnin,bound,itr,a[15],b[15],idx[15],y[41],r[41]; 
int str[41] ,vv[41] ,c[41] [41] ,x[41] [41] ,p[ll] ,q[ll] ,pv[41] ,bv[41]; 
printf (" ENTER THE No. OF CITIES AND A SEED : "); 

scanf("%d%d",&n,&seed); 
printf(" ENTER No.OF FIXED POSITION AND PRECEDENCE CONSTRAINTS:"); 

scanf("%d%d",&mres,&nres); 
printf(" ENTER THE PRESCRIBED POSITIONS: "); 
for(i=1;i<=mres;i++) 
scanf("%d",&p[i]); 

printf (" ENTER THE CORRESPONDING NODES ") ; 
for (i=1;i<=mres;i++) 
scanf("%d",&q[i]); 

printf(" ENTER THE PRECEDENCE CONSTRAINTS IN THE FORM A < B "); 
for(i=1;i<=nres;i++) 
scanf("%d%d",&a[i],&b[i]); 

II MAKE THE PREDECESSOR TABLE 
for(i=1;i<=nres;i++) 
for(j=1;j<=nres;j++) 
if (a [il ==b [j 1) 

{ nres++; 
a[nres]=a[j]; 
b[nres]=b[i]; 
} 

for(i=1;i<=nres;i++) 
if(a[i]==b[i]) 

{ printf("\n solutions are not feasible\n"); 
goto OUT; 
} 

pres=nres; 

II ARRANGE THE NODES THAT ARE INVOLVED IN THE PRECEDENCE RESTRICTIONS 
for(i=1;i<=n;i++) 
for(j=1;j<=n;j++) 

c [i] [j] =0; 
for(i=1;i<=n;i++) 

{ i1=0; . 
for(j=1;j<=n;j++) 

vv[j]=O; 

209 



for(j=l;j<=nres;j++) 
if(i==b[j] && vv[a[j] ]==0) 

{ il++; 
c [ i] [i 1 ] =a [ j ] ; 
vv[a[j] ]=1; 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j] = (rand () %100) +1; 

for(i=l;i<=n;i++) 
d [i] [i] =999; 

II MAKE THE DISTANCE BETWEEN b & a TO LARGE ENOUGH 
for(i=l;i<=pres;i++) 

( d[b[i]] [a[i] ]=999; 
d[l] [b[i] ]=999; 
d[a[i]] [1]=999; 

II MAKE THE DISTANCE BETWEEN TWO POSSIBLE NODES TO LARGE ENOUGH 
p[O]=l; 
q[O]=l; 
for (i=O;i<mres;i++) 
for(j=i+1;j<=mres;j++) 
if(p[j]-p[i]>=2) 

{ d[q[i]][q[j]]=999; 
if(q[j]-q[i]==n-l) 

go to DONOT; 
d[q[j]] [q[i] ]=999; 
DONOT: 
} 

gettime(&t}; 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

II CALLING BIAS REMOVAL FUNCTION 
bias_removal(); 

II ARRANGING THE INDICES IN ASCENDING ORDER 
for (i=l;i<=n;i++) 

{ for(j=l;j<=n;j++) 
vv[j] =0; 

for(j=l;j<=n;j++) 
{ min=999; 

for (k=l;k<=n;k++) 
if( (vv[k]==O) && (d[i] [k]<min» 

{ index=k; 

} 
} 

min=d[i] [k]; 

x [i] [j] =index; 
vv [index] =1; 

210 



/ / MAIN PROGRAM STARTS HERE 
for(j=l;j<=n+l;j++) 

( vv[j)=O; 
y[j) =0; 
r[j)=O; 
bv[j) =0; 
pv[j)=O; 

min=9999; 
for(i=l;i<=mres;i++) 

( vv[q[i))=-:l; 
pv[p[i]+l]=-:l; 

dis=O; 
i=k=r[l]=vv[l]=bv[l]=l; 
p[O)=O; 
p[mres+l]=n; 
q[mres+l]=l; 
for(il=O;il<=mres;il++) 

( for(i2=p[il]+2;i2<=p[il+l]+1;i2++) 
( j=y(i2]+1; 

NC: i5=0; 
if(i2==p(il+l)+1) 

( templ=q(i1+1); 
temp=templ; 
check=dis+d[r(i2-1]) [templ]; 
if (check>=min) 

. gota JO; 
if (i2==n+l) 

( min=checki 
for(i3=1;i3<=n;i3++) 

str[i3]=r[i3]; 
go to JO; 

far(i3=1;i3<=nii3++) 
( if (ternpl==i3) 

for(i4=1;i4<=nii4++) 
( if(c[i3] [i4)==0) 

gate ACC; 
if(bv[c[i3) [i4) )==0) 

I 
} 

ACC: 
i5=1; 

gate JO; 

gata BOUND; 

ternp=r[i2); 
ternpl=x [i) [j) ; 
check=dis+d[r[i2-1)) [ternpl); 
if (check>=min) 

JO: { i2--; 
if(i2<=p[il)+1) 
il--; 

if (i2<=1) 
go to STOP; 

211 



} 

dis-=d[r[i2-1]] [r[i2]]; 
bv[r[i2]]=0; 
vv[r[i2]]=0; 
if(pv[i2]==1) 

{ vv[r[i2] ]=1; 
go to JO; 

} 

j=y[i2]+1; 
i=r[i2-1]; 
goto NC; 

if (vv[temp1] ==1) 
go to JB; 

for(i3=1;i3<=n;i3++) 
( if (temp1==i3) 

for(i4=1;i4<=n;i4++) 
( if(c[i'3] [i4]==0) 
goto BOUND; 
if(bv[c[i3] [i4] ]==0) 

JB: ( j=j+1; 

} 
} 

if(j>=n I I i5==1) 
goto JO; 

go to NC; 

BOUND: bound=O; 

. } 

STOP: 

for(i3=lii3<=nii3++) 
( if(bv[i3]==0) 

( for(i4=lii4<6;i4++) 
( elt=x[i3] [i4]; 

if«elt!=temp1)&&«bv[elt]==0) II (elt==l))) 
{ bound+=d[i3] Celt]; 

} 

go to next_row; 

el t=x [ i 3] [6] ; 
bound+=d[i3] Celt]; 

next row: 

bound+=check; 
if (bound>=min) 

go to JB; 
r[i2]=temp1; 
if (temp! =0) 

y[i2+1]=0; 
y[i2]=j; 
vv[r[i2]]=1; 
bv[r[i2]]=1; 
dis=check; 
i=r [i2] ; 
} 

212 



gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 
min+=bias; 

printf("\n N=%d SEED=%d SOL=%d TIME=%.2f",n,seed,min,t2-tl); 

OUT: 
} 

II REMOVING BIAS 
void bias_removal() 

( int i,j,rmin[4l],cmin[4l]; 
for(i=l;i<=n;i++) 

( rrnin[i]=9999; 
for(j=l;j<=n;j++) 

if(d[i] [j]<rmin[i]) 
rrnin[i]=d[i] [j]; 

for(i=lii<=nii++) 
for(j=lij<=nij++) 

d [i] [j ]-=rmin [i] ; 
for(j=lij<=nij++) 

( crnin[j]=9999i 
for(i=lii<=nii++) 

if (d[i] [j] <crnin[j]) 
crnin [j ] =d [i] [j] i 

for(j=lij<=nij++) 
for(i=lii<=nii++) 

d [i] [j ]-=cmin [j ] ; 
bias=Oi 
for(i=lii<=nii++) 
bias+=rrnin[i]+crnin[i]i 

213 



II PROGRAM 4.2 
II TSP WITH FIXED POSITION & PRECEDENCE CONSTRAINTS 
II USING SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

void main () 
{ 

struct time t; 
int n,i,j,k,l,i1,i2,i3,i4,i5,dis,min,idx1,idx2,seed,lex,temp; 
int elt,bound,c1[1601] ,vv[41] ,v[41] [41] ,d[41] [41] ,x[41] [41] ,bv[41]; 
int str[41],r[41],y[41],temp1,row[1601],col[1601], p[15],q[15]; 
int mres,nres,pres,pop,flag,value1,value2,c[41] [41] ,a[15] ,b[15]; 
float t1,t2,rnd,py[41],sum; 
printf(" ENTER THE No. OF CITIES, A SEED AND No. OF SMAPLES : "); 

scanf("%d%d%d",&n,&seed,&pop); 
printf(" ENTER No.OF FIXED POSITION AND PRECEDENCE CONSTRAINTS:"); 

scanf("%d%d",&mres,&nres); 
printf(" ENTER THE PRESCRIBED POSITIONS: "); 
for(i=l;i<=mres;i++) 
scanf("%d",&p[i]); 

printf (" ENTER THE CORRESPONDING NODES ") ; 
for(i=l;i<=mres;i++) 
scanf("%d",&q[i]); 

printf (" ENTER THE PRECEDENCE CONSTRAINTS IN THE FORM A < B ") ; 
for(i=l;i<=nres;i++) 
scanf("%d%d",&a[i],&b[i]); 

II CREATING THE PREDECESSOR TABLE 
for(i=l;i<=nres;i++) 
for(j=l;j<=nres;j++) 
if(a[i]==b[j]) 

{ nres++; 
a [nres] =a [j] ; 
b[nres]=b[i]; 
) 

for(i=l;i<=nres;i++) 
if (a [i] ==b [i] ) -

{ printf("\n Solutions are not feasible\n"); 
goto NF; 
} 

pres=nres; 

II ARRANGE THE NODES THAT ARE INVOLVED IN THE PRECEDENCE RESTRICTIONS 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

c [i] [j] =0; 
for(i=l;i<=n;i++) 

{ i1=0; 
for(j=l;j<=n;j++) 

vv[j] =0; 
for(j=l;j<=nres;j++) 

if(i==b[j] && vv[a[j]]==O) 

214 



i1++; 
c [ i) [i 1 ] =a [ j ] ; 
vv[a[j]]=l; 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j]=(rand()%100)+1; 

for(i=l;i<=n;i++) 
d[i] [i]=999; 

II MAKE THE DISTANCE BETWEEN b & a TO LARGE ENOUGH 
for(i=l;i<=pres;i++) 

( deb [i)] [a [i)] =999; 
del] (b[i] ]=999; 
d(a[i]] (l]=999i 

II MAKE THE DISTANCE BETWEEN TWO POSSIBLE NODES TO LARGE ENOUGH 
p[O]=l; 
q(O]=l; 
for(i=Oii<mres;i++) 

for(j=i+l;j<=mres;j++) 
if(p[j]-p[i]>=2) 

( d[q[i]][q[j]]=999; 
if(q[j]-q[i]==n-l) 
goto DONOT; 

d[q[j]] [q[i] ]=999; 
DONOT: 
} 

gettime(&t) ; 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

I I ALPHABET TABLE 
for(i=l;i<=n;i++) 

( for(j=l;j<=nij++) 
vv[j]=O; 
for(j=l;j<=n;j++) 

( min=999; 
for(k=l;k<=n;k++) 
if(vv[k]==O)&&(d[i] [k]<min)) 

{ idx1=k; 

} 
} 

min=d[i] [k]; 

xCi] [j]=idx1; 
vv[idx1]=1; 

II ALPHABET TABLE FOR BOUND CALCULATION 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
veil [j] =0; 

215 



for(i=l;i<=n*n;i++) 
{ min=999; 

for(j=l;j<=n;j++) 
for(k=l;k<=n;k++) 
if«v[j] [k]==O)&&(d[j] [k]<min» 
{ idxl=j; 

} 

idx2=k; 
min=d [ j] [k] ; 

row[i]=idxl; 
col[i]=idx2; 
v[idxl] [idx2]=li 

cl[O]=O; 
for(i=l;i<=n*n;i++) 

{ elt=d[row[i]] [col [i)]; 
H(elt<999) 
cl[i]=cl[i-l]+elt; 

/ / MAIN PROGRAM 
min=999; 
for(i=l;i<=pop;i++) 

{ for(j=l;j<=nij++) 
{ vv[j]=O; 

str[j]=O: 
bv [j] =0; 

for (il=l:il<=mres;il++) 
vv[q[il]]=li 

dis=O; 
str[l)=vv[l]=bv[l]=l; 
for(j=2;j<=nij++) 

{ temp=str[j-l]i 
flag=Oi 
for(il=liil<=mresiil++) 
if(j==p[il)+l) 

{ elt=q[il] i 
dis+=d[temp] felt]; 
if (dis>=min) 

goto OUTi 
for(i3=1;i3<=nii3++) 

{ flag=li 
if(c[e1t] [i3]==0) 
goto BNDi 

if(vv[c[elt] [i3] ]==0) 
{ j=j-2i 

} 

} 

,i4=Oi 
flag=Oi 
go to JOi 

JO: l=Oi 
for(k=lik<=n;k++) 
y[k]=O; 

i5=n-j+1; 

216 



for(k=l;k<=nik++) 
( e1t=x[ternp] [k] i 

if((vv[e1t]==0) && (d[ternp] [e1t]<999» 
( for(i2=lii2<=nii2++) 

( if(c[e1t] [i2]==0) 
goto NEXTli 

if (vv[c[elt] [i2] ]==0) 
goto NEXT2i 

goto NEXT2i 
NEXT1: 1=1+1; 

} 

y(l]=elti 
if(1)iS/10.0+1) 

goto NEXT3; 
NEXT2: 

NEXT3: py[O]=Oi 
sum=1*(1+1)/2.0; 
for(k=l;k<=lik++) 
py[k]=py[k-1]+ (1-k+1)/sumi 

i4==Oi 
REPT: rnd=(rand()%lOO)*O.Ol; 

i4++; 
if (H>l) 
goto OUT; 

for(k=l;k<=l;k++) 
if (rnd>=py[k-11 && rnd<py[k1l 

{ elt=y[k]; 
goto EXIT; 
} 

EXIT: dis+=d[ternp] Celt]; 
if (dis>=rnin) 
goto REPT; 

II BOUND CALCULATION 
BND: bound=O; 

for(il=l;il<=lO;il++} 
( if(bv[row[il]]==O) 

( if(bv[col[il]]==O I I col[il]==l) 
bound=cl[j+il-l]-cl[il-ll; 

goto next row; 
} 

} 
bound=cl[j+10]-cl[10]; 
next row: 
bound+=dis; 
if (bound>=rnin) 

( if (flag==l) 
{ j=j-2; 

i4=0; 
flag=O; 
goto JOi 

else 
goto REPTi 

217 



} 

str[j]=elt; 
vv[eltJ=l; 
bv(elt]=li 

dis+=d[str[n]] [1] i 

if (dis<min) 
( min=disi 

for(j=lij<=nij++) 
r[j]=str[j] i 

OUT: 
} 

II MODIFIED 2-0PT MOVE 
r[n+1]=li 
for(j=2;j<n-l;j++) 
for (k=j+2ik<=nik++) 

( temp=O i 
for (i=lii<=mresii++) 

if(j==p[i]+l I I k==p[i]+l) 
temp=l; 

for(i=l;i<=pres;i++) 
if(r[j]==a[i] && r[k]==b[i]) 

temp=l; 
if (temp==O) 

{valuel=d(r(j-l]] (r(j] ]+d(r(j]] (r(j+1] ]+d(r[k-l]] [r(k] ]+d(r[k]] [r[k+1]]; 
value2=d[r[j-l]] (r[k]]+d[r[k]] (r[j+1] ]+d(r(k-l]] (r(j]]+d(r(j]] [r[k+1]]; 
if (value2<valuel) 

( temp=r(k]; 

NF: 
} 

r[k]=r[j] ; 
r[j]=tempi 

min=O; 
for(j=l;j<=n;j++) 
min+=d(r(j]] [r[j+1]]; 

gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 

printf{"\n N=%d SEED=%d SOL=%d TIME=%.2f",n,seed,min,t2-tl); 

218 



II PROGRAM 4.3 
II TSP WITH FIXED POSITION & PRECEDENCE CONSTRAINTS 
II USING HYBRID GENETIC ALGORITHM 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,mres,nres,pop,dis,bias,p[15],q[15],a[15],b[15],idx[15]; 
int c[36] [36] ,chr[601] [36] ,d[36] [36]; 

void bias_removal(); 
void create(); 
void objective{int); 
void repro_duction(); 
void cross_over{float); 
void mutation{float); 
void seq_search(); 

void maine) 

struct time t; 
float pcr,pmt,tl,t2; 
int i,j,il,min,seed,gen,vv[36],str[36]; 

printf{" ENTER THE No. OF CITIES, A SEED AND POPULATION SIZE "); 
scanf("%d%d%d",&n,&seed,&pop); 

printf (" ENTER THE PROB. OF CROSSOVER AND MUTATION : "); 
scanf("%f%f",&pcr,&pmt); 

printf(" ENTER No.OF FIXED POSITION AND PRECEDENCE CONSTRAINTS:"); 
scanf("%d%d",&mres,&nres); 

printf{" ENTER THE PRESCRIBED POSITIONS: "); 
for (i=l;i<=mres;i++) 
scanf("%d",&p[i]); 

printf (" ENTER THE CORRESPONDING NODES ") ; 
for(i=l;i<=mres;i++) 
scanf("%d",&q[i]); 

printf (" ENTER THE PRECEDENCE CONSTRAINTS IN THE FORM A < B ") ; 
for(i=l;i<=nres;i++) 
scanf("%d%d",&a[i],&b[i]); 

for(i=l;i<=nres;i++) 
for(j=l;j<=nres;j++) 
if(a(i]==b[j]) 

{ nres++; 
a [nres] =a [j] ; 
b(nres]=b[i]; 
} 

/ / ARRANGE THE NODES THAT ARE INVOLVED IN THE PRECEDENCE RESTRICTIONS 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

c [i] [j] ==0 ; 
for(i=l;i<=n;i++) 

{ 11=0; 
for(j=l;j<=nres;j++) 

if (i==b [j]) 

219 



{ i1++; 
c[i] [il]=a[j]; 

else 
c[i] [j]=O; 

} 

il=O; 
for(i=l;i<=n;i++) 

{ if(c[i] [1] !=O) 
{ il++; 

b[il]=i; 
for{j=lij<=nres ij++) 
if(c[i] [j]>O) 

{ crill [j]=c[i] [j]; 
idx[il)=j; 

else 
goto NEXT_RES; 

nres=il; 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i) [j]=(rand()%lOO)+l; 

for(i=l;i<=n;i++) 
d[i] (i]=999; 

II MAKE THE DISTANCE BETWEEN b & a TO LARGE ENOUGH 
for(i=l;i<=nres;i++) 

{ d[b[i]) [a[i]]=999; 
del] [b[i] )=999; 
d[a[i]) (1)=999; 

II MAKE THE DISTANCE BETWEEN TWO POSSIBLE NODES TO LARGE ENOUGH 
p[O]=l; 
q[O]=l; 
for(i=O;i<mres;i++) 
for(j=i+l;j<=mresij++) 
if(p[j]-p[i»=2) 

{ d[q[i)) [q[j] ]=999; 
if(q[j]-q[i]==n-l) 

goto DONOT; 
d[q[j]] [q[i] ]=999; 
DONOT: 
} 

gettime(&t); 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 

II CALLING BIAS REMOVAL FUNCTION 
bias_removal(); 

220 



II TERMINATING CRITERION 
min=d[l] [1]; 
create(); 
for (i=l;i<=pop;i++) 

{ objective(i); 
if (dis<min) 

( min=dis; 
for(j=l;j<=n;j++) 
str[j]=chr[i] [j]; 

) 
} 

for (gen=1;gen<=4*n;gen++) 
repro_duction(}; 
cross_over (pcr) ; 
mutation(pmt); 
seq_search(); 
for(i=l;i<=pop;i++) 

{ objective(i); 

} 

if (dis<min) 
( min=dis; 

for(j=l;j<=n;j++) 
str [j] =chr[i] [j]; 

} 
min+=bias; 
gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 
printf("\nN=%d Best Solution~%d Time=%.2f",n,min,t2-tl); 

II REMOVING BIAS 
void bias_removal() 

( int i,j,rmin[41],cmin[41]; 
for(i=l;i<=n;i++) 

{ rmin[i]=9999; 
for(j=l;j<=n;j++) 

if (d[i] [j] <rmin [i] ) 
rmin[i]=d[i] [j]; 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j]-=rmin[i]; 

for(j=l;j<=n;j++) 
{ cmin[j]=9999; 

for(i=l;i<=n;i++) 
if(d[i] [j]<cmin[j]) 

cmin [j] =d [i] [j] ; 

for(j=l;j<=n;j++) 
for(i=l;i<=n;i++) 

d [i] [j] -=cmin [ j ] ; 
bias=O; 
for(i=l;i<=n;i++) 
bias+=rmin[i]+cmin[i]; 

221 



II INITIALIZE THE POPULATION 
void create ( ) 

( int m,i,j,k,il,elt,temp,count,vv[41); 
for(i;l;i<=pop;i++) 

( for(j=l;j<;n;j++) 
vv [j) =0; 

for(j=l;j<=mres;j++) 
vv[q[j]]=l; 

chr[i] [1]=1; 
vv[l]==l; 
m=n-mres-l; 
for(j==2;j<=n;j++) 

( for(k=l;k<=mres;k++) 
i f ( j ==p [ k) + 1 ) 

{ chr [i] [j] =q [k] ; 
goto next2; 

RPT: elt=(rand()%m)+l; 
count=O; 
for(k=2;k<=n;k++) 

if(vv[k]==O) 
{ count++; 

if (count==elt) 
{ temp=k; 
goto nextl; 
} 

next1: for(i1=l;il<=n;il++) 
( if (c[temp] [il];=O) 

goto ACCEPT; 
if(vv[c[temp] [i1]]==0) 

goto RPT; 

ACCEPT: chr[i] [j]=temp; 
vv [chr [i] (j] ] =1; 
m--; 
next2: 
} 

II CALCULATE THE VALUE OF THE OBJECTIVE FUNCTION 
void objective(int i) 

{ int j; 
dis=O; 
for{j=l;j<nij++) 
dis+=d[chr[i] [j]] [chr[i] [j+1]]; 

dis+=d[chr[i] [n)) [1]; 

II STOCHASTIC REMAINDER SELECTION METHOD 
void repro_duction{) 

{ float fit[55l],random,avg,expect,sum=0,frac[55l]; 
int i,j,k,assign,select,choice[55l]; 
for(i=lii<=pop;i++) 

( objective(i); 
fit[i)=l.O/(float)dis; 

222 



sum+=fit[i); 

avg=surn/pop; 
k=O; 
for(i=l;i<=pop;i++) 

( expect=fit[i)/avg; 
assign=expect; 
frac[i)=expect-assign; 
while (assign>O) 

{ k=k+l; 
assign-=l; 
choice[k)=i; 

} 
} 

i=O; 
while (k<pop) 

( i=i+l; 
if (i>pop) 

i=l; 
if(frac[i»O.O) 

( random=(rand()%lOOO)*O.OOl; 
if(frac[i»random) 

} 

{ k=k+l; 
choice[k]=i; 
frac[i)-=l.O; 

} 

for(i=l;i<=pop;i++) 
( select=choice[i]; 

for(j=l;j<=n;j++) 
chr[i] [j]=chr[select) [j); 

} 

II Cl-CROSSOVER OPERATION 
void cross_over(float pc) 

( int i,j,k,1,m,cross,rnin,cost,vl[41) ,v2[41] ,x,y,nwchr[21) [41]; 
float random; 
for(i=l;i<pop;i++) 

{ random=(rand()%lOO)*O.Ol; 
if (random<pc) 

( for (m=1;m<=20;m=rn+2) 
( for(j=l;j<=n;j++) 

{ v1[j]=0; 
v2 [j] =0; 
} 

cross=(rand()%(n-2))+2; 
for(j=l;j<cross;j++) 

{ x=chr [i] [j] ; 
y=chr [i + 1] [j] ; 
nwchr[m] [j]=x; 
nwchr [m+l] [j] =y; 
v1[x]=1; 
v2[y]=1; 
} 

k=O; 

223 



} 

} 

for(j=cross;j<=n;j++) 
( for(l=l;l<=mres;l++) 
i f ( j ==p [ 1 ] + 1 ) 

{ x=q[l]; 
goto next1; 

read1: k=k+1; 
x=chr[i+1] [k]; 
if (v1 [x] ==1) 

go to read1; 
next1: v1[x]=1; 

nwchr [m] [j] =x; 
} 

k=O; 
for(j=cross;j<=n;j++) 

( for(l=l;l<=mres;l++) 
if ( j ==p [ 1 ] +1 ) 

{ y=q[l]; 
go to next2; 

read2: k=k+1; 
y=chr[i] [k]; 
if (v2 [y] ==1) 

goto read2; 
next2: v2[y]=1; 

nwchr[m+1] [j]=y; 
} 

rnin=999; 
for (m=1;m<=20;m++) 

( cost=O; 
for(j=l;j<n;j++) 

cost+=d[nwchr[m] [j]] [nwchr[m] [j+1]]; 
cost+=d[nwchr[m] [n]] [1]; 
if (cost<rnin) 

(rnin=cost; 
for(j=l;j<=n;j++) 
chr [i] [j] =nwchr [m] [j] ; 

} 

II BITWISE MUTATION OPERATION 
void mutation (float pm) 

( int temp,i,i1,j,rv[41]; 
float random; 
for (i=l;i<=pop;i++) 
for(j=2;j<=n;j++) 

( for(il=1;i1<=nres;il++) 
rv [b [ i1] ] = 1 ; 

if (j<n) 
( random=(rand()%100)*O.Ol; 

if (random<pm) 
( for(il=1;i1<=mres;i1++) 
if(j==p[i1]+1 I I j+1==p[i1]+1) 

224 



goto next; 
if ( (rv [chr [i) [j] ] ==1) I I (rv [chr [i) [j +1] ] ==1) ) 

goto next; 
ternp=chr [iJ [j J ; 
chr[i] [j]=chr[i] [j+1]; 
chr[i] [j+l]=ternp; 

next: 
} 

II SEQUENTIAL CONSTRUCTIVE SEARCH APPROACH 
void seq_search() 

{ int i, j , k, I, rn, min, x [3] , cos t [3] , v [41] , r [3] [41] , nwchr [41] ; 
int rv[15] [15] ,il,i2; 
for(i=l;i<pop;i++) 

{ for(j=lij<=nij++) 
{ r [1] [j] =chr [i) [j] i 

r [2] [j] =chr [i+1] [j]; 
v[ j] =0; 

for (il=l;il<=rnresiil++) 
v[q[il]]=li 

for(il=l;il<=nres;il++) 
for(i2=lii2<=idx[il];i2++) 
rv[il] [i2]=Oi 
nwchr[l]=li 
v[l]=li 
for(k=2;k<=nik++) 

{ for (il=liil<=rnresiil++) 
if(k==p[il]+1) 

{ nwchr[k]=q[il]i 
goto FIXEDi 

for(l=lil<=2;1++) 
{ for(j=lij<=nij++) 

{ if(r[l] [j]==nwchr[k-l]) 
{ for (rn=lirn<=nirn++) 

} 

} 
} 

next: 

{ if (j+rn>n) 
{ cost[I]=999i 
x [I] =r[ I] [j] i 

goto nexti 
} 

if(v[r[I] [j+rn] ]==0) 
{ cost[I)=d[r[I) [j)) [r[I) [j+rn]) i 
x[I]=r[l] [j+rn] i 

goto nexti 
} 

if((cost[1]==999) && (cost[2]==999)) 
for(j=lij<=n;j++) 
if (v[j] ==0) 

225 



nwchr[k)=j; 
go to CHK; 

nwchr[k)=x(l); 
if(cost[2)<cost[l)) 

nwchr[k)=x[2); 
CHK: for(il=1;il<=nres;i1++) 

for(i2=1;i2<=idx[il];i2++) 
if«nwchr[k]==b[il])&&(rv[il] [i2]==0)) 

RPT: (for(j=l;j<=n;j++) 
if(v[r[l) [j) ]==0) 

( nwchr[k]=r[l] [j]; 
goto ACCEPT; 

ACCEPT: 
if(v(nwchr(k]]==l) 

goto RPT; 
for(il=l;il<=nres;il++) 
for(i2=1;i2<=idx[i1];i2++) 
if(nwchr(k]==c[i1] (i2]) 

rv (i1] [i2] =1; 
FIXED: v[nwchr[k]]=l; 

} 

for(k=l;k<=n;k++) 
chr[i] [k]=nwchr[k]; 

} 

226 



II PROGRAM 5.1 
II TSP WITH BACKHAULS USING LEXI-SEARCH 
II PATH APPROACH 

#in~lude<stdio.h> 

#include<stdlib.h> 
#include<dos.h> 

int n,bias,d[41] [41]; 
void bias_removal(); 

void main ( ) 
( 

struct time t; 
float t1,t2; 
int i,j,k,1,i1,i2,nl,nbl,seed,temp,index,dis,temp1,check,count; 
int y[41] ,p[41] ,str[41] ,vv[41] ,x[41] [41] ,elt,bound; 
int min,arc,z[41] [41] ,p1[41] ,q[41]; 

printf(n ENTER THE No. OF CITIES, A SEED AND BACKHAUL NODES "); 
scanf("%d%d%d",&n,&seed,&nbl); 
nl=n-1-nbl; II No. of linehaul II 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i) [j)=(rand() %100) +1; 

for(i=l;i<=n;i++) 
d [i) [i) =999; 

II CONDITIONS 
for(j=nl+2;j<=n;j++) 

d [1] [j] =999; 
for(i=2;i<=nl+l;i++) 
d[i] [1]=999; 

for(i=nl+2;i<=n;i++) 
for(j=2ij<=nl+1ij++) 
d[i] [j] =999; 

gettime (&t) i 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

II CALLING BIAS REMOVAL FUNCTION 
bias_removal()i 

I I ALPHABET TABLE FOR BOUND CALCULATION 
for(i=lii<=nii++) 

{ for(j=lij<=n;j++) 
vV[j]=Oi 

for(j=l;j<=nij++) 
{ min=999; 

for(k=lik<=nik++) 
if«vv[k]==O)&&(d[i] [k]<min)) 

{ index=k; 
min=d[i] [k]; 

227 



} 
} 

} 

z[i] [j]=index; 
vv[index]=1; 

for(i=2;i<=nl+1;i++) 
for(j=nl+2;j<=n;j++) 

d [ i] [j] += 1 0 0 ; 
for (i=nl+2;i<=n;i++) 

d [ i] [1] += 100 ; 

I I THE ALPHABET TABLE 
for(i=1ii<=nii++) 

{ for(j=1ij<=n;j++) 
vv[j] =Oi 

for(j=1;j<=n;j++) 
{ min=9999; 

for(k=1;k<=n;k++) 
if ( (vv[k] ==0) && (d[i] [k] <min» 

{ index=ki 

} 

} 

min=d[i] [k]; 
} 

xli] [j]=indexi 
vv[index]=1i 

for(i=2;i<=nl+1;i++) 
for(j=nl+2ij<=n;j++) 
d[i] [j] -=100; 

for(i=nl+2;i<=nii++) 
d[i] [1]-=100; 

II MAIN PROGRAM STARTS HERE 
min=900i 
for(j=2;j<=nij++) 

{ vv[ j] =0 i 
Y [j] =0; 
p [j] =0; 
} 

dis=Oi 
k=p[1]=i=vv[1]=1; 
y[nl+2]=nl-1; 

GS: k=k+1; 
j=y[k]+1i 

NC: temp=p[k]; 
temp1=x[i] [j]; 
arc=d[i] [temp1]; 
check=dis+arci 
if( (k<=nl+1 && temp1>nl+1) II (arc>100) II (check>=min» 

goto JO; 
if(vv[temp1]==1) 

JB: {j=j+1; 
goto NC; 
} 

228 



II BOUND CALCULATION 
bound=O; 
index=n/2; 
for(il=l;il<=n;il++) 
if (vv[il] ==0) 

( for(i2=l;i2<index;i2++) 
{ elt=z [il] [i2]; 

if «elt !=templ) && «vv[eltJ ==0) II (elt==l))) 
( bound+=d[il] Celt]; 

goto next_row; 

elt=z[il] [index]; 
bound+=d[il] Celt]; 
next row: 

bound+=check; 
if (bound>=min) 

go to JB; 
p[k]=templ; 
if(temp!=O) 

( y[k+l]=O; 
if (k==nl+1) 

y[k+1]=nl-1; 
} 

y[k]=j; 
vv[temp1] =1; 
dis=check; 
i=temp1; 
if(k==n) 

( di s +=d [ i] [l] ; 
if (dis>=min) 
goto PREY; 

for(j=1;j<=n;j++) 
s tr [j ] =p [j ] ; 

min=dis; 
PREY: dis-=d[i] [1]; 

dis-=d[p[k-1]] [i]; 
vv[i]=O; 

JO: k=k-l; 
if (k<=1) 

goto STOP; 
vv[p[k]]=O; 
dis-=d[p[k-l]] [p[k]]; 
j=y[k]+l; 
i=p[k-1]; 
goto NC; 
} 

goto GS; 

STOP: 
gettime (&t) ; 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 
min+=bias; 

printf("\nN=%d IBI=%d SEED=%d SOL=%d TIME=%.2f",n,nbl,seed,min,t2-tl); 

229 



II REMOVING BIAS 
void bias removal() 

{ int i~j,rmin[41],cmin[41]; 
for(i=l;i<=n;i++) 

" 

{ rmin[i]=9999; 
for(j=l;j<=n;j++) 

if(d[i] [j]<rmin[i]) 
rmin [i] =d [i] [j] ; 

for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

d [i] [j] -=rmin [i] ; 
for(j=l;j<=n;j++) 

{ cmin[j]=9999; 
for(i=l;i<=n;i++) 

if(d[i] [j]<cmin[j]) 
cmin[j]=d[i] [j]; 

for(j=l;j<=n;j++) 
for(i=l;i<=n;i++) 

d [i] [j] -=cmin [j ] ; 
bias=O; 
for(i=l;i<=n;i++) 
bias+=rmin[i]+cmin[i]; 

230 



II PROGRAM 5.2 
II TSP WITH BACKHAULS 
II USING SEQUENTIAL CONSTRUCTIVE SAMPLING APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

void main () 
( 

struct time t; 
int nl,n,pop,i,j,k,l,i1,i2,i3,dis,min,idx1,idx2,seed,temp,eIt,bound; 
int c[1601] ,vv[41] ,v[41] [41] ,d[41] [41] ,x[41] [41], str[41] ,p[41] ,y[41]; 
int value1,value2,row[1601],col[1601],nbl,temp1,st; 
int Im[41] [41] ,bm[41] [41]; 
float t1,t2,sum,rnd,py[41]; 

printf(" ENTER THE No. OF CITIES AND BACKHAUL NODES RESPECTIVELY:"); 
scanf("%d%d",&n,&nbl); 
printf(" ENTER A SEED AND SAMPLE SIZE RESPECTIVELY:"); 
scanf("%d%d",&seed,&pop); 

nl=n-1-nbl; II No. of linehaul II 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=1;j<=n;j++) 
d[i] [j] = (rand () %100) +1; 

for(i=1;i<=n;i++) 
d[i] [i]=999; 

II CONDITIONS 
for(j=nl+2;j<=n;j++) 
d[1] [j]=999; 

for(i=2;i<=nl+1;i++) 
d[i] [1]=999; 

for(i=nl+2;i<=n;i++) 
for(j=2;j<=nl+1;j++) 
d[i] [j]=999; 

gettime (&t) ; 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + 0.01*t.ti_hund; 

for(i=2;i<=nl+1;i++) 
for(j=nl+2;j<=n;j++) 

d [ i] [j] += 1 0 0 ; 

/ / THE ALPHABET TABLE 
for(i=1;i<=n;i++) 

( for(j=1;j<=n;j++) 
vv[j]=O; 

for(j=1;j<=n;j++) 
( min=9999; 

for(k=1;k<=n;k++) 
if«vv[k]==O)&&(d[i] [k]<min)) 

{ idx1=k; 

231 



} 

1 

min=d[i] [k]; 

xli] [j]=idx1; 
vv[idx1]=1; 

for(i=2;i<=n1+1;i++) 
for(j=nl+2;j<=n;j++) 
d[i] [j] -=100; 

II ALPHABET TABLE FOR BOUND CALCULATION 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

v [i) [j] =0; 
for~i=l;i<=n*n;i++) 

( min=9999i 
for(j=l;j<=n;j++) 

for(k=l;k<=n;k++) 
if«v[j] [k]==O)&&(d[j] [k]<min)) 
{ idx1=j; 

1 

idx2=k; 
min=d[j] (k]; 

row[i]=idx1; 
col[i]=idx2; 
v[idx1] [idx2]=1; 

C[O]=Oi 
for(i=l;i<=n*n;i++) 

( elt=d[row[i]] [col [i)] ; 
if(elt<999) 
c[i]=c[i-1]+elt; 

II MAIN PROGRAM 
min=9999; 
for(i=l;i<=n;i++) 
p[i]=O; 

for(i=lii<=pop;i++) 
( for{j=l;j<=n;j++) 

( vv[j]=O; 
str[j]=O; 

dis=Oi 
str[l]=vv[l]=l; 
for(j=2ij<=n;j++) 

{ 1=0; 
st=l; 
if(j==nl+2) 
st=nli 

for(k=l;k<=n;k++) 
y[k]=O; 

i1=n-j+1; 
temp=str[j-1]; 
for(k=st;k<=n;k++) 

{ elt=x [temp] [k] ; 

232 



if((vv[elt]==O) && (d[temp] [elt]<999» 
( if(j<=nl+l && elt>nl+l) 

} 

} 

NEXT: 

goto NEXT; 
else 

( 1=1+1; 
y[l]=elt; 
if(1)il/5.0+1) 

go to NEXT; 

py[O]=O; 
swn=1*(1+1)/2.0; 
for(k=l;k<=l;k++) 
py[k]=py[k-l]+ (l-k+l)/swn; 

i3=O; 
REPT: rnd=(rand()%lOO)*O.Ol; 

i3++; 
for(k=l;k<=l;k++) 
if(rnd>=py[k-l] && rnd<py[k]) 

{ str[j]=y[k]; 
goto EXIT; 
} 

EXIT: 
dis+=d[temp] [str[j]]; 
if (dis>=min) 
goto OUT; 

templ=str[j]; 

II BOUND CALCULATION 
bound=O; 
for(il=1;il<=lO;i1++) 

( if(vv[row[i1]]==O) 
( if(vv[col[i1]]==O II col[il]==1) 

bound=c[j+i1-1]-c[i1-1]; 

} 

} 
} 

goto next_row; 

bound=c[j+10]-c[10]; 
next row: 
bound+=dis; 
if(bound>=min && i3<1) 

goto REPT; 
vv[str[j] ]=1; 

dis+=d[str[n]] [1]; 
if (dis<min) 

( min=dis; 
for(j=1;j<=n;j++) 
p[j]=str[j] ; 

OUT: 
} 

233 



II MODIFIED 2-0PT MOVE 
p[n+1]=1; 
for(j=2;j<n-1;j++) 

for(k=j+2;k<=n;k++) 
if ((j<nl && k<=nl+1) I I (j>nl+1 && k>nl+1)) 

(val ue1=d [p [j -1] J [p [ j J J +d [p [ j J J [p [ j + 1 J J +d [p [ k-1 J J [p [ k J J +d [p [ k J J [p [ k+ 1 J J ; 
value2=d[p[j-1]] [p[k] ]+d[p[k]] [p[j+1] ]+d[p[k-1]] [prj] ]+d[p[j]] [p[k+1]]; 
if (value2<value1) 

{ temp=p[k]; 
p [k] =p [j ] ; 
p[j]=temp; 

min=O; 
for(j=1;j<=n;j++) 
min+=d[p[j]] [p[j+1]]; 

gettime(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 
printf("\nN=%d IBI=%d Best Solution=%d Time=%.2f ",n,nbI,min,t2-t1); 

234 



II PROGRAM 5.3 
II TSP WITH BACKHAULS USING HYBRID GENETIC ALGORITHM 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,nl,nbl,pop,dis,bias,chr[326] [41] ,d[41] [41]; 

void bias_removal(); 
void create(); 
void objective(int); 
void repro_duction(); 
void cross_over(float); 
void mutation(float); 
void seq_search(); 

void main ( ) 
( 

struct time t; 
float pcr,pmt,t1,t2; 
int i,j,seed,gen,min,vv[41],str[41]; 

printf("ENTER THE No.OF CITIES AND BACKHAUL NODES "); 
scanf("%d%d",&n,&nbl); 

printf("ENTER A SEED AND POPULATION SIZE: "); 
scanf("%d%d",&seed,&pop); 

printf("ENTER PROBABILITY OF CROSSOVER AND MUTATION RESPECTIVELY:"); 
scanf("%f%f",&pcr,&pmt); 

nl=n-1-nbl; II No. of linehaul II 

II RANDOM MATRIX GENERATION 
srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d[i] [j] = (rand () %100) +1; 

for(i=l;i<=n;i++) 
d [i] [i] =999; 

II CONDITIONS 
for(j=nl+2;j<=n;j++) 
d[l] [j]=999; 

for(i=2;i<=nl+1ii++) 
d[i] [1]=999; 

for(i=nl+2;i<=n;i++) 
for(j=2;j<=nl+1;j++) 
d[i] [j]=999; 

gettime(&t); 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

II CALLING BIAS REMOVAL FUNCTION 
bias removal(); 

II TERMINATING CRITERION 
min=d [ 1] [1] ; 

235 



create(); 
for(i=l;i<=pop;i++) 

( objective(i); 
if (dis<min) 

( min=dis; 
for(j=l;j<=n;j++) 
str[j]=chr[i] [j]; 

} 

} 

for (gen=1;gen<=4*n;gen++) 
( repro_duction(); 

cross_over(pcr); 
mutation(pmt); 
seq_search(); 
for(i=l;i<=pop;i++) 

( objective(i); 

} 

if (dis<min) 
min=dis; 

for(j=l;j<=n;j++) 
str [j] =chr [i] [j] ; 

} 

min+=bias; 
gettime (&t) ; 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 
printf("\nN=%d IBI=%d Best Solution=%d Time=%.2f",n,nbl~min,t2-tl); 

II REMOVING BIAS 
void bias removal() 

( int i~j,rmin[41],cmin[41]; 
for(i=l;i<=n;i++) 

( rmin[i]=9999; 
for(j=l;j<=nij++) 

if(d[i] [j]<rmin[i]) 
rmin[i]=d[i] [j]; 

for(i=l;i<=nii++) 
for(j=l;j<=n;j++) 
d[i] [j]-=rmin[i]; 

for(j=lij<=n;j++) 
( cmin[j]=9999; 

for(i=l;i<=nii++) 
if(d[i] [j]<cmin[j]) 

cmin [j ] =d [i] [j] i 

for(j=l;j<=nij++) 
for(i=l;i<=n;i++) 

d [ i] [j) -=cmin [ j ) ; 
bias=O; 
for(i=l;i<=n;i++) 
bias+=rmin[i]+cmin[i]; 

II INITIALIZE THE POPULATION 
void create ( ) 

{ int m,i,j,il,elt,count,vv[41]; 

236 



for(i=l;i<=pop;i++) 
( for(j=l;j<=n;j++) 

( vv[j] =0; 
chr [i) [j] =0; 
} 

chr[ i) [1] =1; 
vv[l]=li 
m=nl; 
for(j=2;j<=n;j++) 

( if (j>nl+1) 
m=n-j+1; 

elt=(rand()%m)+l; 
count=O; 
for(i1=2;i1<=n;i1++) 
if (vv[il] ==0) 

( count++; 

rxx: 

if (count==elt) 
{ chr [i] [j] =il; 
goto rxx; 
} 

vv [chr [i] [j] ] =1; 
m--; 

I I CALCULATE THE VALUE OF THE OBJECTIVE FUNCTION 
void objective (int i) 

{ int j; 
dis=O; 
for (j=l; j<n; j++) 
dis+=d[chr[i] [j]] [chr[i] [j+1]]; 

dis+=d[chr[i] [n]] [1); 

II STOCHASTIC REMAINDER SELECTION METHOD 
void repro_duction() 

( float fit[326],random,avg,expect,sum=0,frac[326]; 
int i,j,k,assign,select,choice[326]; 
for(i=lii<=pop;i++) 

( fit[i]=O; 
objective(i); 
fit[i]=1.0/ (float) (dis+1); 
sum+=fit[i]; 

avg=sum/poPi 
k=O; 
for(i=l;i<=pop;i++) 

( expect=fit[i]/avg; 
assign=expect; 
frac[i]=expect-assign; 
while(assign>O) 

{ k=k+1; 
assign-=l; 
choice[k]=i; 

237 



} 
} 

i=O; 
while (k<pop) 

{ i=i+1; 
if(i>pop) 

i=l; 
if(frac[i]>O.O) 

{ random=(rand()%lOO)*O.Ol; 
if(frac[i»random) 

} 

{ k=k+l; 
choice[k]=i; 
frac[i)-=l.O; 

} 

for(i=1;i<=pop;i++) 
{ select=choice[i); 

for(j=l;j<=n;j++) 
chr[i) [j]=chr[select] [j); 

} 

II Cl-CROSSOVER OPERATION 
void cross_over(float pc) 

{ int i,j,k,p,m,i1,i2,min,cost,cross,v1[41],v2[41],x,y,nwchr[21] [41]; 
float random; 
for (i=1;i<pop;i++) 

{ random=(rand()%lOO)*O.Ol; 
if (tandom<pc) 

{ for(p=1;p<=20;p=p+2) 
( for(j=l;j<=n;j++) 

{ v1 [j] =0; 
v2[j]=0; 
} 

for(i1=1;i1<=2;i1++) 
{ if (i1<=1) 

( m=nl+l; 
i2=1; 
cross=(rand()%(m-l))+l; 

else 
m=n; 
i2=nl+2; 
cross=(rand()%(m-nl-2))+nl+2; 

for(j=i2;j<=cross;j++) 
( x=chr [ i] [j) ; 

y=chr [i+l) [j) ; 
nwchr[p) [j)=x; 
nwchr[p+l] [j)=y; 
vl[x]=l; 
v2[y]=1; 

k=O; 
for(j=cross+l;j<=m;j++) 

read1: { k=k+l; 

238 



x=chr[i+l] [k]; 
if(vl[x]==l) 

go to readl; 
vl[xJ=l; 
nwchr[pJ [jJ=x; 

k=O; 
for(j=cross+l;j<=m;j++) 

read2: { k=k+l; 

} 
} 

y=chr[iJ [kJ; 
if (v2 [y J == 1 ) 

goto read2; 
v2[yJ=1; 
nwchr[p+1J [jJ=y; 

min=999; 
for(p=1;p<=20;p++) 

{ cost=O; 
for(j=l;j<n;j++) 
cost+=d[nwchr[pJ [jJJ [nwchr[pJ [j+1JJ; 

cost+=d[nwchr[pJ [nJJ [lJ; 
if (cost<min) 

{ min=cost; 
for(j=l;j<=n;j++) 
chr[i] [jJ=nwchr[pJ [jJ; 

) 

J 

} 

II BITWISE MUTATION OPERATION 
void mutation(float pm) 

{ int temp,i,j; 
float random; 
for(i=l;i<=pop;i++) 
for(j=2;j<n;j++) 
if(j!=nl+1) 

{ random=(rand()%100)*O.Ol; 
if (random<pm) 

{ temp=chr [iJ [j J ; 
chr [i) [j] =chr [iJ [j+1J ; 
chr [iJ [j+1J =temp; 

II SEQUENTIAL CONSTRUCTIVE SEARCH APPROACH 
void seq_search() 

{ int 
i, j, k, l,m, p,min, start, end, temp, x [3J , cost [3J , v[ 41J , nwchr [326J [41J ; 

for(i=l;i<pop;i++) 
{ for(j=l;j<=n;j++) 

{ nwchr [i J [j J =chr [i J [j J ; 

239 



} 

nwchr[i+l] [j]=chr[i+l] [j]; 
v[j]=O; 

chr[i] [l]=v[l]=l; 
start=2; 
end=nl+l; 
for(p=1;p<=2;p++) 

{ if(p==2) 
{ start=nl+2; 

end=n; 

for(k=start;k<=end;k++) 
{ for(l=O;l<=l;l++) 

{ cost[1]=999; 
x[l]=l; 
for(j=start-l;j<=end;j++) 

{ if(nwchr[i+l] [j]==chr[i] [k-l]) 
{ for (rn=l;j+rn<=end;rn++) 

if(v[nwchr[i+l] [j+rn]]==O) 
{ cost[l]=d[chr[i] [k-l]] [nwchr[i+l] [j+rn]]; 

x[l]=nwchr[i+l] [j+rn]; 
goto next; 

next: 
} 

if(cost[1]==999 && cost[0]=~999) 

{ rnin=999i 
for(j=start;j<=endij++) 

} 

if (v[j] ==0) 
{ ternp=d [chr [i] [k-l]] [j] ; 

if (ternp<rnin) 
{ chr[i] [k]=j; 

rnin=ternpi 

goto ACCEPT; 

chr[i] [k]=x[O]; 
if(cost[l]<cost[O]) 
chr[i] [k]=x[l]; 

ACCEPT: v[chr[i] [k]]=l; 

} 
} 

} 

240 



:..f. ........ . 
• :);;" ~. < •• ~",. •• '" 

II PROGRAM 6.1 
/ I ,M+N~MAX TRAVELLING SALESMAN PROBLEM USING LEXI-SEARCH 
II ADJACENCY APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

void main ( ) 
{ 

struct time ti 
float tl,t2i 

int i,j,k,1,il,i2,i3,n,seed,temp,index,dis,templ,bias,check,elt,bound; 
int max, min, ass [46], str[46) ,y[46] ,p[46] ,vv[46] ,d[46] [46] ,dist[46] [46]; 
int x[46] [46],z[46] [46],c[46] [46] i 

printf (" ENTER THE No. OF CITIES AND A SEED ") i 
scanf("%d%d",&n,&seed); 

/ / RANDOM MATRIX GENERATION 
srand(unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=lij<=nij++) 
d[i) [j) = (rand () %100) +1i 

for(i=lii<=nii++) 
d[i) [i]=999; 

for(i=l;i<=n;i++) 
for(j=lij<=nij++) 

c [ i) [j) =d [ i) [j) i 

gettime(&t); 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec 

II ALPHABET TABLE 
for(i=lii<=nii++) 

( for(j=lij<=nij++) 
vv[ j] ==0 i 

for(j=lij<=nij++) 
{ min==999i 

for(k=lik<=nik++) 
if ((vv[kJ==O) && (d[i) [k) <min)} 

( index==ki 

} 
} 

min=d[iJ [k) i 

z[iJ [j]=indexi 
vv[index]=li 

for(i=lii<=nii++) 
for(j=lij<nij++} 

for(k=j+l;k<=nik++) 
if (d [i) [j] >d [ i) [k] } 

( temp=d[i] [j] i 
d [i) [j) =d [i) [k] i 
d [il. [k] =tempi 

241 

O.Ol*t.ti hund; 



for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

{ di s t [ j] [i] =d [ i] [j] ; 
xtj] ti]=zti] tj]; 
} 

I I MAIN PROGRAM STARTS HERE 
min=900; 
for(i=l;i<=n;i++) 

{ vv[i]=O; 
y[i]=O; 
p[i]=O; 
} 

dis=j=i=O; 
GS: j=j+1; 

i=y[j]+1; 
NC: temp=p[j]; 

temp1=x[i] [j]; 
dis=dis t [i] [j] ; 
if (dis>=min) 

go to JO; 
if (vv[temp1] ==1) 

JB: (i=i+1; 
goto NC; 
1 

II CYCLE CHECKING 
if(temp1<j && j!=n) 

( k=temp1; 
for(i1=1;i1<j;i1++) 

( if(p[k]<j) 
k=p[k]; 

} 
} 

BD: 

else 
if(p[k]==j) 
goto JB; 

else 
goto BD; 

II BOUND CALCULATION 
bound=O; 
for(i1=j+1;i1<=n;i1++) 

( for(i2=1;i2<n-1;i2++) 
{ elt=x(i21 (il1; 

if((elt!=temp1) && (vv[elt]==O)) 
( if (bound<dist[i2] [i1]) 

bound=dist[i2] [i1]; 
goto next_col; 

next col: 
} 

if (dis>bound) 

242 



bound=dis; 
if (bound>=min) 
goto JB; 

p[j]=ternpl; 
if(ternp!=O) 

y[j+1]=O; 
y[j]=i; 
vv[ternp1] =1; 
if (j==n) 

{ 
rnax=O; 
for(i1=1;il<=n;il++) 

{ check=c [il] [p [il] ] ; 
if (check>rnax) 

rnax=check; 

if (rnax>=min) 
go to PREY; 

for(il=l;il<=n;il++) 
ass [il] =p [il] ; 

min=rnax; 
PREY: vv[p[j]]=O; 
JO: j=j-l; 

if (j<l) 
goto STOP; 

vv[p[j]]=O; 
i=y[j]+1; 
goto Ne; 
I 

goto GS; 

STOP: 

str[l]=l; 
for(i=2;i<=n;i++) 

{ k=str[i-l]; 
str[i]=ass[k]; 
} 

gettirne(&t) ; 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 

printf("\n N=%d SEED=%d SOL=%d TIME=%.2f",n,seed,min,t2-tl); 

243 



II PROGRAM 6.2 
II MIN-MAX TRAVELLING SALESMAN PROBLEM USING LEXI-SEARCH 
II PATH REPRESENTATION 
#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 
void main ( ) 

{ struct time t; 
float tl,t2; 

int i,j,k,1,il,i2,i3,n,seed,temp,index,dis,templ,check,elt,bound,iter; 
int str[41] ,y[40] ,p[40] ,vv[40] ,d[40] [40] ,x[40] [40] ,max,arc,min,maxl; 
printf(" ENTER THE No. OF CITIES AND A SEED: "); 

scanf("%d%d",&n,&seed); 
II RANDOM MATRIX GENERATION 

srand«unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 
d(i] (j]=(rand()%lOO)+l; 

for(i=l;i<=n;i++) 
d[i] [i]=999; 

gettime(&t); 
tl= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

I I ALPHABET TABLE 
for(i=l;i<=n;i++) 

( for(j=l;j<~n;j++) 

vv[j]=O; 
for(j=l;j<=n;j++) 

{ max=9999; 
for(k=l;k<=n;k++) 
if( (vv[k]==O)&&(d[i] [k]<max)) 

( index=k; 

} 
} 

max=d[i] [k]; 

x [i) [j] =index; 
vv[index] =1; 

I I MAIN PROGRAM STARTS HERE 
max=9999; 
for(j=l;j<=nij++) 

{ vv [j] =0; 
y[j]=O; 
p [j] =0; 
} 

k=i=p[l]=vv[l]=str[n+l]=l; 
GS: k=k+l; 

j=y[k]+l; 
NC: temp=p[k]; 

templ=x[i] (j]; 
if (vv(templ] ==1) 

JB: {j=j+l; 
if (j>=n) 

goto JO; 
goto NC; 
} 

dis=d[p[k-l)] [tempI]; 
if (dis>=max) 

244 



goto JO; 
bound=Oi 
for(il=l;il<=n;il++) 

( if(vv[il]==O) 
( for(i2=1;i2<6;i2++) 

( elt=x[il] [i2]; 
if( (elt!=templ) && «vv[elt]==O) II (elt==l») 

( if(d[il] [elt]>bound) 
bound=d[il] Celt]; 

goto next_row; 
} 

I 
elt=x[il] [6]; 
if(d[il] [elt]>bound) 
bound=d[il] Celt]; 

next row: 

if (bound>=max) 
go to JB; 

p[k)=templ; 
if(temp!=O) 

y[k+1]=O; 
y[k]=j; 
vv[templ] =1; 
i=temp1; 
if (k==n) 

( dis=d[temp1] [1]; 
if (dis>=max) 

go to PREY; 
for(j=l;j<=nij++) 

s tr [j ] =p [j] ; 
max1=O; 
for(j=l;j<=n;j++) 

( check=d[str[j]] [str[j+l]] i 
if (check>max1) 
maxl=check; 

if (max1>=max) 
goto PREVi 

max=max1; 
PREY: vv[p[k))=O; 
JO: k=k-1; 

if{k<=l) 
gato STOP; 

vv(p[k]]=O; 
j=y[k]+li 
i=p[k-1]; 
goto NC; 
} 

goto GS; 
STOP: 

gettime (&t) ; 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti hund; 
printf("\n N;:;%d SEED=%d SOL;:;%d TIME=%.2f",n,seed,max,t2-tl); 

245 



II PROGRAM 6.3 
II MIN-MAX TSP USING SEQUENTIAL CONSTRUCTIVE SAMPLING 
II APPROACH 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

void main () 
( 

struct time ti 
int n,max,i,j,k,1,i1,i2,i3,dis,min,idx1,idx2,seed,temp,elt, boundi 
int vv[41] ,v[41] [41] ,d[41] [41] ,x[41] [41] ,str[41] ,p[41] ,y[41] i 
int temp1,check,pop,new1,new2,new3,new4,old1,old2,old3,old4i 
float t1,t2,rnd,sum,py[41]i 

printf(" ENTER THE No. OF CITIES, SEED AND No. OF SAMPLES :")i 
scanf("%d%d%d",&n,&seed,&pop)i 

II RANDOM MATRIX GENERATION 
srand((unsigned)seed)i 
for(i=lii<=nii++) 
for(j=lij<=nij++) 
d[i] [j]=(rand()%lOO)+li 

for(i=lii<=nii++) 
d[i] [i]=999i 

gettime(&t)i 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hundi 

I I ALPHABET TABLE 
for(i=lii<=nii++) 

( for(j=lij<=nij++) 
VV[j]=Oi 

for(j=lij<=nij++) 
( min=9999i 

for(k=lik<=nik++) 
if ( (vv[ k] ==0) && (d [i) [k] <min) ) 

( idx1=ki 

} 
} 

min=d [i) [k] i 

xli] [j]=idx1i 
vv[idx1]=li 

II MAIN PROGRAM 
min=9999i 
for(i=lii<=pOPii++) 

( for(j=lij<=nij++) 
{ VV[j]=Oi 

str[j]=Oi 
} 

str[1]=vv[1]=p[n+1]=li 
for(j=2ij<=nij++) 

( l=Oi 
for(k=lik<=nik++) 

246 



y[k]=O; 
il=n-j+l; 
temp=str[j-l]; 
for(k=l;k<=n;k++) 

{ e1t=x[temp] [k]; 
if«vv[e1t]==OI && (d[ternp1 [e1t1<99911 

( 1=1+1; 

} 

} 

y[1]=e1t; 
if(l>il/lO.O+1) 
goto NEXT; 

NEXT: py[O]=O; 
surn=1*(1+1)/2.0; 
for(k=l;k<=l;k++) 
py[k]=py[k-l]+ (l-k+l)/sUID; 

i3=O; 
REPT: rnd=(rand()%lOO)*O.Ol; 

i3++; 
'if(i3>1) 

goto OUT; 
for(k=l;k<=l;k++) 
if (rnd>=py[k-l] && rnd<py[k]) 

{ str[j]=y[k]; 
goto EXIT; 
} 

EXIT: 
dis=d[ternp] [str[j]]; 
if (dis>=rnin) 
goto REPT; 

templ=str[j]; 

II BOUND CALCULATION 

} 

bound=O; 
for(il=l;il<=n;il++) 

( if(vv[il]==O) 
{ for(i2=I;i2<6;i2++} 

( elt=x [il] [i2] ; 

} 

if«e1t!=ternpl) && «vv[e1t]==O) I I (e1t==I») 
( if(d[il] [e1t]>bound) 
bound=d[il] [e1t]; 

goto next_row; 
} 

e1t=x [ill [6] ; 
if(d[il] [e1t]>bound) 
bound=d[il] [e1t]; 

next row: 

if (bound>=rnin) 
goto REPT; 

vv[str[j]]=l; 

dis=d[str[n]] [1] ; 
if (dis<rnin) 

( for(j=l;j<=n;j++) 

247 



p[j]=str[j] ; 
rnax=O; 
for(j=l;j<=n;j++) 

( check=d[p[j]] [p[j+l]]; 
if (check>rnax) 

rnax=check; 
} 

if (rnax>=min) 
goto OUT; 

min=rnax; 

OUT: 
} 

II MODIFIED 2-0PT MOVE 
for(j=2;j<n-l;j++) 

for(k=j+2;k<=n;k++) 
( oldl=d[p[j-l]] [p[j]]; 

newl=d[p[j-l]] [p[k]]; 
old2=d[p[j]] [p[j+l]]; 
new2=d[p[k]] [p[j+l]]; 
old3=d[p[k-l]] [p[k]]; 
new3=d[p[k-l]] [p[j]]; 
old4=d[p[k]] [p[k+l]]; 
new4=d[p[j]] [p[k+l]]; 
if(newl<oldl && new2<old2 && new3<old3 && new4<old4) 

( ternp=p[k]; 
p [k] =p [j ] ; 
p[j]=ternp; 

min=O; 
for(j=l;j<=n;j++) 

{ check=d[p[j]] [p[j+l]]; 
if ( check>min) 

min=check; 

gettirne(&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti_sec + O.Ol*t.ti_hund; 

printf("\n N=%d SEED=%d SOL=%d TIME=%.2f",n,seed,min,t2-tl); 

248 



II PROGRAM 6.4 
II MIN-MAX TSP USING HYBRID GENETIC ALGORITHM 

#include<stdio.h> 
#include<stdlib.h> 
#include<dos.h> 

int n,pop,chr[601] [41] ,d[41] [41] ,dis; 

void create(); 
void objective(int); 
void repro_duction(); 
void cross_over(float); 
void mutation(float); 
void seq_search(); 

void main() 
( 

struct time t; 
float pcr,pmt,t1,t2; 
int i,j,seed,gen,min,str[72),vv[72]; 
printf("ENTER THE No. OF CITY and A SEED RESPECTIVELY: "); 

scanf("%d%d",&n,&seed); 
printf("ENTER POP_SIZE,PROB.OF CROSSOVER AND MUTATION RESPECTIVELY:"); 

scanf("%d%f%f",&pop,&pcr,&pmt); 

// RANDOMLY GENERATING THE DISTANCE MATRIX 
srand((unsigned)seed); 
for(i=l;i<=n;i++) 
for(j=l;j<=n;j++) 

d [ i) [j] = ( rand () % 100) +1 ; 
for(i=l;i<=n;i++) 
d[i] [i]=999; 

gettime(&t); 
t1= 3600*t.ti hour + 60*t.ti min + t.ti sec + O.Ol*t.ti_hund; 

/1 TERMINATING CRITERION 
min=d [1] [1] ; 
create(); 
for(i=l;i<=pop;i++) 

( objective(i); 
if (dis<min) 

( min=dis; 
for(j=l;j<=n;j++) 
str[j]=chr[i] [j]; 

} 
} 

for(gen=1;gen<=4*n;gen++) 
repro duction(); 
cross=:over(pcr); 
mutation(pmt); 
seq_search(); 
for(i=lii<=pOPii++) 

{ objective (i); 
if (dis<min) 
min=dis i 

249 



} 
} 

gettirne (&t); 
t2= 3600*t.ti hour + 60*t.ti min + t.ti sec + 0.01*t.ti hund; 
printf("\nN=%d Best Solution~%d Tirne=%.2f ",n,rnin,t2-t1); 

II INITIALIZE THE POPULATION 
void create () 

( int rn,i,j,i1,elt,count,vv[41]; 
for(i=1;i<=pop;i++) 

( for(j=1;j<=n;j++) 
{ vv [j] ==0; 
chr [i] [j] =0; 
} 

chr[i] [1]=1; 
vv[1]=1; 
for(j=2;j<=n;j++) 

( elt=rand() % (n-j+l) +1; 
count=O; 
for(i1=2;i1<=n;i1++) 
if(vv[il]==O) 

( count++; 
if (count==elt) 

{ chr[i] [j]=il; 
goto rxx; 
} 

rxx: 
vv[i1]=1; 
} 

I I CALCULATE THE VALUE OF THE OBJECTIVE FUNCTION 
void objective(int i) 

( int arc,j; 
dis=O; 
chr[i) [n+l)=1; 
for(j==1;j<=n;j++) 

{ arc=d[chr[i) [j)) [chr[i) [j+1)); 
if(arc>dis) 

dis=arc; 
} 

II STOCHASTIC REMAINDER SELECTION METHOD 
void repro duction() 

( float fit(601),randorn,avg,expect,surn=0,frac[601]; 
int i,j,k,assign,select,choice(601); 
for(i=1;i<=pop;i++) 

{ objective(i); 
fit[i)=1.0/ (float) (dis+l); 
surn+=fit[i); 

avg=surn/pop; 
k=O; 

250 



for(i=l;i<=pop;i++) 
( expect=fit[i]/avg; 

assign=expect; 
frac[i]=expect-assign; 
while (assign>O) 

{ k=k+l; 
assign-=l; 
choice[k]=i; 

} 
} 

i=O; 
while (k<pop) 

( i=i+l; 
if(i>pop) 

i=li 
if(frac[i]>O.O) 

( random=(rand()%lOOO)*O.OOl; 
if(frac[i»random) 

} 

{ k=k+l; 
choice[k)=ii 
frac[i]-=l.O; 

} 
for(i=lii<=pOPii++) 

( select=choice[i)i 
for(j=lij<=n;j++l 

chr[i] [j)=chr[select] [j) i 
} 

II Cl-CROSSOVER OPERATION 
void cross_over(float pc) 

( int i, j, k,m, cross,rnin,max, cost, vi [41] , v2 [41] , X, y, nwchr [21J [41J ; 
float random; 
for(i=l;i<pOPii++) 

( random=(rand()%100)*O.Ol; 
if (random<pc) 

( for (m=lim<=20im=rn+2) 
( for(j=l;j<=n;j++) 

{ v1[j)=O; 
vZ(j]=Oi 
} 

cross=(rand()%(n-Z))+Zi 
for(j=lij<crossij++) 

( x=chr [i] [j] i 
y=chr(i+l] [j) i 
nwchr[m) [j)=Xi 
nwchr [m+l) [j] =y i 
v1[x]=1; 
v2[y]=1; 
} 

k=Oi 
for(j=crossij<=nij++) 

readl: (k=k+1i 
x=chr [i+lJ [k] i 

if(vl(x)==l) 

251 



goto readl; 
vl(x]=l; 
nwchr em] [j] =x; 
) 

k=O; 
for(j=cross;j<=n;j++) 

read2: {k=k+1; 

} 
} 

y=chr(i] (k]; 
if (v2 (y) ==1) 

goto read2; 
v2(y]=1; 
nwchr [m+l) [j] =y; 
} 

rnin=999; 

for (m=1;m<=20im++) 
{ nwchr[m] [n+l]=l; 

max=O; 
for(j=lij<=n;j++) 

} 

{ cost=d (nwchr (m] [j] ) [nwchr em] [j +l] ] ; 
if(cost>max) 
max=cost; 

} 
if (max>=min) 
goto IGNOR; 

else 
{ rnin=max; 
for(j=1;j<=n;j++) 
chr[i] [j]=nwchr[m) [j); 

} 

IGNOR: 

II BITWISE MUTATION OPERATION 
void mutation (float pm} 

{ int temp,m,i,j,rl,r2; 
float random; 
for(i=1;i<=pop;i++} 

{ m=rand () %n+l; 
for(j=1;j<=m;j=j+2) 

{ random=(rand()%lOO)*O.Ol; 
if (random<pm) 

{ rl=rand()%{n-l)+2; 
r2=rand()%(n-l)+2i 
temp=chr [i) [rl] ; 
chr[i) [rl]=chr[i) [r2J; 
chr[i) [r2)=temp; 
} 

252 



II SEQUENTIAL CONSTRUCTIVE SEARCH APPROACH 
void seq_search() 

( int i,j,k,1,m,temp,x[3],v[41],nwchr[41],cost[3],min; 
for(i=l;i<poPii++) 

{ for(j=l;j<~n;j++) 
{ v[j]=O; 

nwchr[j]=O; 
I 
nwchr[I]=v[I]=I; 
for(k=2;k<~n;k++) 

{ for(l=O;l<=I;l++) 

ACCEPT: 
} 

{ x[l]=Oi 
cost[l]=d[I] [1]; 
for(j=l;j<=n;j++) 

} 

{ if(chr[i+l] [j]==nwchr[k-l]) 
{ for (m=l;m<=n;m++) 

} 

I 
next: 

{ if (j+m>n) 
goto next; 

if (v[chr[i+l] [j+m] ]==0) 
{ cos t [1] =d [ chr [i +l] [j] ] [chr [i +l] [j +m] ] ; 
x [1] =chr [ i +l] [j +m] ; 
goto next; 
} 

if(cost(I]==d(11 (11 && cost(01==d(11 (11) 
{ min=d[l] [1]; 

} 

for(j=l;j<=n;j++) 
if(v[j]==O) 

{ temp=d [nwchr [ k-l] ] [j] ; 
if (temp<min) 

{ nwchr(kl=j; 
min=temp; 

} 
} 

goto ACCEPT; 

nwchr[k]=x[O); 
if(cost[I]<cost[O]) 

nwchr[k]==x[I]; 
v[nwchr[k]]=I; 

for(j=l;j<=n;j++) 
chr[i) [j)=nwchr(j); 

253 



BIBLIOGRAPHY 

1. Balas, E., and N. Christofides (1981): "A Restricted Lagrangian Approach to 

~ The Travelling Salesman Problem". Mathematical Programming, 21, 19-46. 

~ .\1\ Bellman, R. E. (1962): "Dynamic Programming Treatment of the Travelling 

Salesman Problem". Journal 0/ ACM, 9, 61-63. 

3. Bellmore, M. and 1. C. Mellone (1971): "Pathology of Travelling Salesman Sub

tour Elimination Algorithms'. Operations Research, 19, 278-307. 

4. Bentley, 1. L. (1992): "Fast Algorithms for Geometric Travelling Salesman 

Problems". ORSA Journal o/Computer, 4,387-41l. 

5. Bhatia, S. K., and A. N. Rocha (1987): "Travelling Salesman". Computer Society 

of India Communications, 3-10. 

6. Bianco, L., Mingozzi, S., Ricciardelli, S., and Spadoni, M. (1994): "Exact and 

Heuristic Procedures for the Travelling Salesman Problem with Precedence 

Constraints, Based on Dynamic Programming", Information Systems & 

Operational Research, 32, 19-32. 

7. Bland, R. G. and D. F. Shallcross (1989): "Large Travelling Salesman Problems 

arising form Experiments in X-ray Crystallography: A Preliminary Report on 

Computation". Operations Research Letters, 8, 125-128. 

8. Chisman, 1. A. (1975): "The Clustered Travelling Salesman Problem". 

Computers Ops Res, 2, 115-119. 

9. Christofides, N. (1970): "The Shortest Hamiltonian Chain of a Graph". SIAM 

Journal of AppliedMathematics, 19, 689-696. 

10. Clarke, G., and 1. W. Wright (1964): "Scheduling of Vehicles from a Central 

Depot to a Number of Delivering Points". Operations Research, 12, 568-581. 

11. Croes, A. (1958): "A Method for Solving the Travelling Salesman Problem". 

Operations Research, 5, 791-812. 

12. Das, S. (1976): "Routing And Allied Combinatorial Programming Problems: 

A Lexicographic Search Approach". Ph.D. Thesis, Dibrugarh University, 

Assam, India. 

13. Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson (1954): "Solution of a Large

scale Travelling Salesman Problem". Operations Research, 2,393-410. 

254 



14. Davis, L. (1985): "Job-shop Scheduling with Genetic Algorithms". 

Proceedings of an International Conference on Genetic Algorithms and Their 

Applications, 136-140. 

15. Dawkins, R. (1989): "The Selfish Gene". 2nd edition, Oxford University Press, 

Oxford. 

16. Deb, K. (1995): "Optimization For Engineering Design: Algorithms And 

Examples". Prentice Hall OfIndia Pvt. Ltd., New Delhi, India. 

17. Deif, I. and L. D. Bodin (1984): "Extention of the Clarke and Wright 

algorithm for solving the Vehicle Routine with BackhauIing". Proceeding of 

the Babson Conference on Software Uses in Transportation and Logistics 

Management (Edited by A. E. Kidder), Babson Park, Mass., 75-96. 

18. Eastman, W. L. (1958): "Linear Programming with Pattern Constraints". Ph. 

D. Thesis, Harvard. 

19. Frederickson, G. N., M. S. Hecht, and C. E. Kin (1978): "Approximation 

algorithms for Some Routing Problems". SIAM Journal of Computer, 7, 178-

193. 

20. Freisleben, B. and P. Merz (1996): "A Genetic Local Search Algorithm for 

Solving the Symmetric and Asymmetric TSP". In the Proceedings of IEEE 

International Conference on Evolutionary Computation, Nagoya, Japan, 616-621. 

21. Gendreau, M., A. Hertz, and G. Laporte (1992): "New Insertion and Post

Optimization Procedures for the Travelling Salesman Problem". Operations 

Research, 40, 1086-1094. 

22. Gendreau, M., A. Hertz, and G. Laporte (1996): "The Travelling Salesman 

Problem with Backhauls". Computers Ops Res., 23, 501-508. 

23. Gendreau, M., G. Laporte, and A. Hertz. (1997):"An Approximation Algorithm 

For the Travelling Salesman Problem with Backhauls". Operations Research, 

45,639-641. 

24. Goldberg, D.E. (1989): "Genetic Algorithms In Search, Optimization, And 

Machine Learning". Addison-Wesley, New York. 

25. Goldberg, D.E., and R. Lingle (1985): "Alleles, Loci and the Travelling 

Salesman Problem". In [27], 154-159. 

255 



26. Gomory, R. E. (1963): "An Algorithm for Integer Solutions to Linear 

Programs". In Recent Advances in Mathematical Programming, (R. L. Graves 

and P.Wolfe, eds), 269-302, McGraw-Hill, New York. 

27. Grefenstette, 1. 1. (ed.) (1985): "Proceedings of the 1st International Conference 

on Genetic Algorithms and Their Applications". Lawrence Erlbaum Associates, 

Hilladale, N1. 

28. Grefenstette, 1. 1. (ed.) (1987): "Genetic Algorithms and Their Applications: 

Proceedings of the 2nd International Conference on Genetic Algorithms". 

Lawrence Erlbaum Associates, Hilladale, N1. 

29. Gupta, 1. N. D. (1969): "A General Algorithm for the n x m Flow-shop 

Scheduling Problems". International Journal of Production Research, 7, 1-7. 

30. Held, M. and R. Karp (1971): "The Travelling Salesman Problem and 

Minimum Spanning Trees: Part IT". Operations Research, 18, 1138-1162. 

31. Held, M. and R. Karp (1962): "A Dynamic Programming Approach to 

Sequencing Problems". SIAM Journal of Applied Mathematics, 10, 196-210. 

32. Held, M. and R. Karp (1971): "The Travelling Salesman Problem and 

Minimum Spanning Trees: Part IT". Mathematical Programming, 1,6-25. 

33. Holland, J.H. (1975): "Adaptation In Natural And Artificial Systems". 

University Of Michigan Press, Ann Arbor, MI. 

34. Johnson, D. S. (1990): "Local Optimization and the Travelling Salesman 

Problem". In Lectures Notes in Computer Science 443, M. S. Paterson (ed.), 

Springer-Verlag, Berlin, 446-461. 

35. Jongens, K., And T. Volgenant (1985): "The Symmetric Travelling Salesman 

Prat!lem", Eur. J. Opl Res., 19,68-75. 
"' 36. ~ntari, B., A.V. Hill, and S.R.Arora (1985):"An Algorithm For The 

Travelling Salesman Problem With Pickup And Delivery Customers", Eur. 1 

Opl Res., 22, 377-386. 

37. Kirkpatrick, S., C. D. Gellat and M. P. Vecchi (1983): "Optimization by 

Simulated Annealing". Science, 220,671-680. 

38. Kothari, C. R. (1992): "An Introduction to Operational Research". Vikas 

Publishing House Pvt. Ltd., New Delhi. 

256 



39. Laporte, G., Y. Nobert, and M. Desrochers (1985): "Optimal Routng Under 

Capacity and Distance Restrictions". Operations Research, 5. 

40. Lawler, E. L., J. K Lenstra, A H. G. Rinooy Kan, and Shnoys (eds.) (1985): "The 

Travelling Salesman Problem: A Guided Tour in Combinatorial 

Optmization". John Wiley and Sons Ltd., New York. 

4l. Lin, S. (1963): "Computer Solutions of the Travelling Salesman Problem". Bell 

Systems Technical Journal, 44, 2245-2269. 

42. Lin, S., and B. W. Kernighan (1973): "An Efficient Heuristic Algorithm for the 

Travelling Salesman Problem". Operations Research, 21,498-516. 

43. Little, 1.D.C., KG. Murthy, D.W. Sweeny, and C. Karel (1963): "An Algorithm 

For The Travelling Salesman Problem". Operations Research, 11, 972-989. 

44. Lokin, F. C. 1. (1978): "Procedures For Travelling Salesman Problems With 

Additional Constraints". Eur. 1. Opl Res, 3, 135-14l. 

45. Mak, K, and A 1. Morton (1993): "A Modified Lin-Kernighan Travelling 

Salesman Heuristic". Operations Research Letters, 13, 127-132. 

46. Martin, 0., S. W. Otto, and E. Felten (1991): "Large-Step Markov Chains for 

the Travelling Salesman Problem Incorporating Local Search heuristics". 

Operations Research Letters, 11, 219-224. 

47. Martin, 0., S. W. Otto, and E. Felten (1991): "Large-Step Markov Chains for 

Uhe Travelling Salesman Problem". Computer System, 5,299-326. 

48. Metropolis, N., A W. Rosenbluth, M. N. Roshenbluth, A H. Teller, and E. Teller 

(1953): "Equation of State Calculation by Fast Computing Machines". Journal 

o/Chemical Physics, 21, 1087-109l. 

49. Michalewicz, z, (1994): "Genetic Algorithms + Data Structures = Evolution 

Problems". Second Edition, Springer-Verlag, New York. 

50. Miller, C. E., A W. Tucker, and R. A Zelmin (1960): "Integer Programming 

Formulations and Travelling Salesman Problems". Journal 0/ ACM, 7, 326-

332. 

51. Mingozzi, A, L. Bianco, and S. Ricciardelli (1997): "Dynamic Programming for 

the Travelling Salesman Problem with Time Window and Precedence 

Constraints". Operations Research, 45, 365-377. 

257 



52. Mtihlenbein, H. M. Gorge-Schleuter, and O. Kramer (1988): "Evolution 

Algorithms in Combinatorial Optimization". Parallel Computing. 7,65-85. 

53. Oliver, I. M., D. 1. Smith, and J.R.C. Holland (1987): "A Study of Permutation 

Crossover Operators on the Travelling Salesman Problem". In [28], 224-230. 

54. Oliveira, P., S. McKee, and C. Coles (1994): "Genetic Algorithms and 

Optimizing Large Non-linear Systems". In Procedings of the IMA conference on 

ArtificialIntelligence in Mathematics (eds): J. H. Johnson, S. McKee and A. Vella, 

Oxford University Press. 305-312, Oxford. 

55. Or, 1. (1976): "Travelling Salesman - Type Combinatorial Problem and Their 

Relation to the Logistics of Regional Blood Banking". Ph. D. Dissertation, 

North-Western University, Evanston, Ill. (Ill). 

56. Pandit, S.N.N. (1962): "The Loading Problem". Operations Research. 11, 639-

646. 

57. Pandit, S.N.N. (1963): "Some Quantatitive Combinatorial Search Prblems". 

Ph. D. Thesis, lIT, Kharagpur. 

58. Pandit, S.N.N. (1964): "An Intelligent Approach to Travelling Salesman 

Problem". Symposium in Operations Resaerch, lIT, Kharagpur. 

59. Pandit, S.N.N., S.C. Jain, and R. Misra (1964): "Optimal Machine Allocation". 

Journal of Institute of Engineers, 44, 226-240. 

60. Pandit, S.N.N., and M. Ravikumar. (1993): "A Lexicographic Search For 

Strongly Correlated 0-1 Knapsack Problems". OPSEARCH, 30,97-116. 

61. Papadimitriou, C. H. and K. Steglitz (1997): "Combinatorial Optimization: 

Algorithms and Complexity". Prentice Hall ofindia Private Limited, India. 

62. Psaraftis, H.N. (1980): "A Dynamic Programming Solution To The Single 

Vehicle Many-To-Many Immediate Request Dial-A-Ride Problem", 

Transportation Science, 14. 

63. Psaraftis, H.N. (1983): "An Exact Algorithm for the Single Vehicle Many-To

Many Dial-A-Ride Problem with Time Windows", Transportation Science, 17, 

351-357. 

258 



64. Radcliffe, N.J., P.D. Surry (1995): "Formae and variance of fitness". In D. 

Whitley and M. Vose (Eds.) (1995) Foundations of Genetic Algorithms 3, Morgan 

Kaufmann, San Mateo, CA, 51-72. 

65. Ramesh, M. (1997): "A Lexisearch Approach To Some Combinatorial 

Programming Problems", PhD. Thesis, University OfHyderabad, India. 

66. Ramesh, T. (1980): "(Traveller Purchaser Problem): Some Problems in Min

Max and Combinatorial Programming". Ph D. Dissertation, Kakatiya 

University, Warangal. 

67. Ravikumar, C. P. {l992): "Solving Larege-scale Travelling Salesperson 

Problems on Parallel Machines". Microprocessors and Microsystems, 16(3), 

149-158. 

68. Ravikumar, M. (1994): "Data Guided Algorithms In Combinatorial 

Optimization". PhD. Thesis, Osmania University, India. 

69. Reddy, S. C. (1994): "Quasi Assignment Problem: A Lexi Search Approach". 

M Phil. Thesis, Osmania University, India. 

70. Reeves, C.R. (Ed.) (1993): "Modern Heuristic Techniques For Combinatorial 

Problems". Orient Longman Ltd, India. 

71. Reinelt, G. (1992): "Fast Heuristics for Large Geometric Travelling Salesman 

Problems". ORSA Journal of Computer, 4,206-217. 

72. Reinelt, G. (1995) "TSPLIB: A library of sample instances for the TSP (and 

related problems) from various sources and of various types" Web site: 

http://www.iwr.uni-heidelberg.de/groups/comopt/sojtware/TSPLIB951 

73. Rooij, 1. F., L. C. Jain, And R. P. Johnson. (1996): "Neural Network Training 

Using Genetic Algorithms". World Scientific Publishing Co. Pte. Ltd., Singapore. 

74. Savelsbergh, M. W. P. (1990): "An Efficient Implementation of Local Search 

Algorithms for Constrained Routing Problems". European Journal of 

Operational Research, 47, 75-85. 

75. Schwefel, H. P., and R. Manner (eds.): "Proceedings of the Ct International 

Conference on Parallel Problem Solving from Nature (PPSN)". Lecture Notes 

in Computer Science, 496, Springer-Verlag. 

259 



76. Scroggs, R.E., and A.L. Therp (1972): "An Algorithm For Solving The 

Travelling Salesman Problem In Restricted Context". Privately Communicated. 

77. Shapiro, D.M. (1966): "Algorithms for the Solution of the Optimal Cost and 

Bollteneck Travelling Salesman Problems". Sc.D. Thesis, Washington 

University, St. Louis, MO. 

78. Smith, S. F. (1984): "Adaptive Learning Systems". In R. Forsyth (ed.) Expert 

Systems- Principles and Case Studies, 168-189. 

79. Smith, T. H. C., V. Srinivasan, and G. L. Thompson (1977): "Computational 

Performance of Three Sub-tour Elimination Algorithms for Solving 

Asymmetric Travelling Salesman Problems". Annals of Discrete Mathematics, 

1,495-506. 

80. Srinivas, K. (1989): "Data Guided Algorithms In Optimization And Pattern 

Recognition". Ph.D. Thesis, University OfHyderabad, India. 

81. Stewart (Jr), W. R. (1987): "Accelerated Branch Exchange Heuristics for 

Symmetric Travelling Salesman Problems". Networks, 17, 423-437. 

82. Sumana, A. (1995): "Optimization By Simulated Annealing: An Empirical 

Evaluation". MPhi/. TheSiS, University OfHyderabad, India. 

83. Sundara Murthy, M. (1979): "Some Combinatorial Search Problems (A Pattern 

Recognition Approach)". Ph. D. TheSis, Kkatiya University, Warangal. 

84. Ulder, N. L. J., E. H. L. Aarts, H.-J. Bandelt, P. J. M. Van Van Laarhoven, E. 

Pesch (1991): "Genetic Local Search Algorithms for the Travelling Salesman 

Problem". In [73], 109-116. 

85. Whitley, D., T. Starkweather and D. Shaner (1991): "The traveling salesman and 

sequence scheduling: Quality solutions using genetic edge recombination". In 

L. Davis (Ed.) (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold, 

New York, 350-372. 

86. Zweig, G. (1995): "An effective Tour Construction and Improvement 

Procedure for the Travelling Salesman Problem". Operations Research, 43, 

1049-1057. 

260 


